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Preface to ”Microbial Community Modeling: 
Prediction of Microbial Interactions and 
Community Dynamics”

Microbial communities are complex adaptive systems. Understanding them requires mathematical 
models that enable the reliable prediction of community structures and functions in response to 
environmental perturbations. Due to the wide span of temporal and spatial scales and the level 
of complexity in microbial communities, the scope of modeling is extremely broad, ranging from 
molecular-level understanding to global-scale simulation. Thus, microbial community modeling may 
be considered a topic so broadly scoped that it cannot be fully covered in a single volume. Indeed, there 
is a great diversity of methodological concepts and ideas in studying the microbiome. However, 
researchers may rightly use mathematical models as a platform to integrate multifarious experimental 
data and observations in order to arrive at a fundamental understanding of the microbial interactions 
that link community dynamics and environment. With that common point of convergence in mind, 
this book represents an edition of a special issue of Processes  that collected papers presenting novel 
modeling approaches for both simple and complex communities. Together, they demonstrate 
the strength of mathematical modeling as a tool for addressing advanced science questions in this 
field.

Hyun-Seob Song

Special Issue Editor
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Received: 20 April 2018; Accepted: 20 April 2018; Published: 24 April 2018

Microbial communities are networks of species, the interaction structure of which dynamically 
reorganizes in a varying environment. Even in a static condition, community dynamics are often 
difficult to predict due to highly nonlinear interspecies interactions. Understanding the fundamental 
principles of microbial interactions is therefore key for predicting and harnessing community function 
and properties. As extensively reviewed previously, mathematical models and computational methods 
that can predictively link interactions to community behaviors are indispensable tools for achieving 
this goal [1].

This Special Issue of Processes collects eleven papers from lead scientists and researchers 
active in the area, under the topic “Microbial Community Modeling: Prediction of Microbial 
Interactions and Community Dynamics”. The collected papers cover various topics of interest: (1) two 
review/opinion papers discussing recent advances in biofilm modeling [2] and specific issues for 
successful collaboration between experimentalists and theorists [3]; (2) one paper on the dynamics of 
complex environmental communities [4]; (3) six papers dealing with fundamental aspects of microbial 
interactions and stability in model communities [5–10]; and (4) two papers on the development and 
utilization of microbial consortia for biotechnology applications [11,12].

The paper by Graham and Stegen [4] serves as a good example to show how mathematical 
modeling and simulation techniques can be useful for addressing fundamental ecological questions, 
for example, compositional and functional shifts in environmental communities under the influence 
of deterministic (such as selection) versus stochastic (such as dispersal) processes. Their model 
reveals that, under given postulates, dispersal can increase the proportion of maladapted taxa, which in 
turn decreases community-performed biogeochemical function.

Understanding microbial interactions in ecological communities can be greatly facilitated 
by studying model consortia of tractable complexity. Based on a relatively simple metabolic 
network structure, El Moustaid et al. [8] develop a dynamic model of a phototroph-heterotroph 
consortium to provide new insights into the role of oxygenic phototroph reactions in interspecies 
metabolic coupling. The study by Beck et al. [5] addresses more complex aspects of phototrophy, such as 
metabolic acclimation to stresses of irradiance, O2 and nutrients, through a comprehensive pathway 
analysis of the developed genome-scale metabolic network of a cyanobacterium. Their prediction of 
the shifts in growth efficiency, photosystem utilization and photorespiration is consistent with the 
experimental data.

Microbial interactions can significantly affect stability in communities (such as coexistence and 
resistance to invasion). For a nitrifying consortium composed of two ammonia-oxidizing bacteria 
and two nitrite-oxidizing bacteria growing in a chemostat, Dumont et al. [7] show that interspecies 
interactions enable the coexistence of the four species on two limiting nutrients. Henson and Phalak [9] 
investigate the effect of interspecies interactions on stability in a more mechanistic way by developing 
a genome-scale community metabolic network model. For a model community composed of three
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species that represent Bacteriodetes, Firmicutes and Proteobactera in the gut microbiome, they identify
four essential cross-feeding relationships enabling the coexistence of the three species. Moejes et al. [10]
investigate the effect of culture media on community dynamics and stability. For a community
composed of one microalgae and four bacterial species, they reveal that the community growth is
more stable in minimal media than in complex media, as indicated by an accelerated culture crash in
the latter. The developed dynamic model may serve as a monitoring tool with industrial applications,
for example, for predicting harvesting time before a crash occurs. In the case study of a bioaugmented
sand filter community, Daly et al. [6] extends the discussion to a spatially heterogeneous environment.
Using an individual-based model accounting for interspecies competition (both deterministic and
non-deterministic), they reproduce experimentally observed community dynamics and, further, reveal
that community diversity (particularly evenness) promotes stability.

Examples showing the direct application of mathematical models for practical applications
include the work by Wilken et al. [12] and by Capodaglio et al. [11] With an aim toward constructing
consortia converting lignocellulose to valuable bioproducts, Wilken et al. use dynamic flux
balance analysis to screen fermenting bacterial partners to pair with a given anaerobic fungus that
possesses cellulolytic machinery. Consequently, they identify two candidate organisms found in the
rumen microbiome. Capodaglio et al. provide a mathematical model for microbial fuel cells, which are
drawing increased attention due to the capability of simultaneous waste treatment and energy recovery.
Their work presents a microbial community model as a key component for reliable simulations of such
complex systems.

The need to develop reliable mathematical models of microbial communities for both fundamental
and applied science will keep increasing. A mechanistic understanding of interspecies interaction
principles and the link to community function and properties will remain a key issue for
predictive modeling. State-of the-art examples of microbial community modeling presented in this
Special Issue may serve as valuable references for future research in this direction.
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Abstract: Ecological mechanisms influence relationships among microbial communities, which
in turn impact biogeochemistry. In particular, microbial communities are assembled by deterministic
(e.g., selection) and stochastic (e.g., dispersal) processes, and the relative balance of these two process
types is hypothesized to alter the influence of microbial communities over biogeochemical function.
We used an ecological simulation model to evaluate this hypothesis, defining biogeochemical
function generically to represent any biogeochemical reaction of interest. We assembled receiving
communities under different levels of dispersal from a source community that was assembled purely
by selection. The dispersal scenarios ranged from no dispersal (i.e., selection-only) to dispersal
rates high enough to overwhelm selection (i.e., homogenizing dispersal). We used an aggregate
measure of community fitness to infer a given community’s biogeochemical function relative
to other communities. We also used ecological null models to further link the relative influence
of deterministic assembly to function. We found that increasing rates of dispersal decrease
biogeochemical function by increasing the proportion of maladapted taxa in a local community. Niche
breadth was also a key determinant of biogeochemical function, suggesting a tradeoff between the
function of generalist and specialist species. Finally, we show that microbial assembly processes exert
greater influence over biogeochemical function when there is variation in the relative contributions
of dispersal and selection among communities. Taken together, our results highlight the influence
of spatial processes on biogeochemical function and indicate the need to account for such effects
in models that aim to predict biogeochemical function under future environmental scenarios.

Keywords: stochastic; deterministic; microbial ecology; simulation; null model; ecosystem function

1. Introduction

Recent attempts to link microbial communities and environmental biogeochemistry have yielded
mixed results [1–6], leading researchers to propose the inclusion of community assembly mechanisms
such as dispersal and selection in our understanding of biogeochemistry [2,7–9]. Although much
work has examined how assembly processes influence the maintenance of diversity and other
ecosystem-level processes in macrobial systems [10–13], our comprehension of how these processes
influence microbially-mediated biogeochemical cycles is still nascent [2,8,14]. Thus, there is a need
to discern the circumstances under which knowledge on assembly processes is valuable for predicting
biogeochemical function.

Community assembly processes collectively operate through space and time to determine
microbial community composition [3,7,14,15]. They fall into two predominate categories that can
be summarized as influenced (i.e., deterministic) or uninfluenced (i.e., stochastic) by biotic and abiotic
environmental conditions. Stochastic processes can be further classified into dispersal, evolutionary
diversification, and ecological drift, while determinism is largely dictated by selection [7,16]. We refer

Processes 2017, 5, 65 4 www.mdpi.com/journal/processes
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readers to a recent review article for a more nuanced understanding of deterministic influences
on dispersal and of stochastic influences on selection, which are not discussed here [17]. Experimental
research has shown unpredictable relationships between microbial diversity and biogeochemical
function (generically defined here to represent any biogeochemical reaction of interest), leading
to the hypothesis that differences in community assembly history—and thus the relative contributions
of stochastic and deterministic processes—drives relationships between microbial community structure
and biogeochemical function [8,9].

Dispersal in particular may vary the relationship between community structure and
biogeochemical function [7]. Both positive and negative associations between dispersal and community
function have been hypothesized (reviewed in [18]). The ‘portfolio effect’ argues for enhanced
community functioning under high levels of dispersal, proposing that high diversity communities
are more likely to contain more beneficial species properties on average than lower diversity
communities [19,20]. Additionally, if dispersal increases biodiversity, there should be a greater chance
that the community can occupy more niche space (i.e., niche complementarity), reducing direct
competition and increasing function [21].

Alternatively, dispersal may decrease community-level biogeochemical function [7,22]. High rates
of dispersal can add organisms to a microbial community that are not well-suited to local environmental
conditions (i.e., mass effect or source-sink dynamics [23,24]). Maladapted individuals may invest
more in cell maintenance to survive as opposed to investing in cellular machinery associated
with biogeochemical reactions needed to obtain energy for growth and reproduction. In this
case, the community’s ability to drive biogeochemical reactions may be depressed. For instance,
pH [25] and salinity [26,27] are widely considered strong regulators of microbial community
structure. If microorganisms are well adapted to and disperse from a moderate pH or salinity
environment to a more extreme environment, they may be maladapted and have to expend energy
to express traits that maintain neutral internal pH (e.g., H+ pumps) or maintain cellular water
content (e.g., osmotic stress factors). These cell maintenance activities detract from the energy
available to transform biogeochemical constituents and may suppress overall community rates
of biogeochemical function. In contrast, locally adapted species would putatively have more efficient
mechanisms for cell maintenance in the local environment and be able to allocate more energy for
catalyzing biogeochemical reactions.

These dispersal effects also interact with local selective pressures and the physiological ability
of organisms to function across a range of environments to collectively influence biogeochemical
function in uncertain ways. Here, we propose that (1) communities more influenced by dispersal
are composed of species that are less well adapted to the local environment and, in turn,
that (2) dispersal-based assembly processes decrease biogeochemical function (Figure 1). Our aim
is to formalize these hypotheses and provide a simulation-based demonstration of how dispersal-based
assembly can influence function. To do so, we employ an ecological simulation model to explicitly
represent dispersal and selection-based processes, and we leverage ecological null models that
have a long history of use in inferring assembly processes [28]. We link the resulting communities
to biogeochemical function through organismal fitness. In our conceptualization, biogeochemical
function is a generic representation, and thus, our results can be applied to any process of interest.
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Figure 1. We propose a conceptual model in which dispersal-based assembly processes decrease
biogeochemical function. Purple organisms in this figure represent all species that are well-adapted
to and are thus good competitors in a given environment. Yellow and green organisms represent
all species that are less adapted to the environment than purple organisms. While not displayed
for simplicity, we conceptualize multiple species within each color. We acknowledge that the
environment influences microbial community composition through effects of both abiotic (e.g., resource
availability) and biotic (e.g., competition and predator-prey interactions) factors. We use the term
‘selective filter’ to indicate influences of both factors on an organism’s fitness [29]. (A) In a community
structured entirely by determinism, selective filtering restricts community composition to species
that are well-adapted to prevailing conditions, resulting in enhanced biogeochemical function.
(B) In communities with moderate stochasticity (here, moderate rates of dispersal), there is an increase
in the abundance of maladapted organisms in the community. In turn, the community is less efficient
and exhibits lower biogeochemical function. (C) Under high levels of stochasticity (here, high rates
of dispersal), a large portion of community members are maladapted, resulting in the lowest rates
of biogeochemical function.

2. Materials and Methods

All simulations, null models, statistical analyses, and graphics were completed in R software
(https://cran.r-project.org/). The simulation model consisted of two parts and was followed
by statistical analysis. The model builds upon previous work by Stegen, Hulbert, Graham,
and others [2,14,15,30–33]. Relative to this previous work, the model used here is unique in connecting
evolutionary diversification, variation in the relative influences of dispersal and selection, null models
to infer those influences, and biogeochemical function. Previous models have addressed some subset
of those features (e.g., connecting evolutionary processes with stochastic and deterministic ecology),
but as far as we are aware, previous studies have not integrated all features examined here.

A central purpose of the simulation model was to vary the influences of community assembly
processes. Previously developed null models (see below) were used to identify parameter combinations
that provided a range of scenarios across which the relative balance among community assembly
processes varied. As such, parameter values were selected to generate conceptual outcomes needed
to evaluate the relationship between assembly processes and biogeochemical function. Specific
parameter values do not, therefore, reflect conditions in any particular ecosystem. Likewise, the model
reflects a general timescale across which there are (1) large numbers of birth/death events such that
community composition closely tracks environmentally-imposed differences in organismal fitness,
and/or (2) opportunities for significant immigration into local communities via dispersal. The model’s
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spatial scale is also a general representation that depends on the rate at which individual cells can
move through space in a given environment. Therefore, the model’s spatial and temporal scales
depend on the environment of interest and may be short (e.g., microaggregates in unsaturated soils
or communities with fast generation times) or long (e.g., stream biofilms influenced by hydrologic
transport across long distances or communities with long generation times). One hundred replicates
were run for each parameter combination in the simulation model.

2.1. Regional Species Pool Simulation

First, a regional species was constructed following the protocol outlined in Stegen et al. [15].
Regional species pools were constructed by simulating diversification in which entirely new species
arise through mutations in the environmental optima of ancestral organisms. Environmental
optima evolve along an arbitrary continuum from 0 to 1, following a Brownian process. Regional
species pools reach equilibria according to the constraints described by Stegen et al. [15] and
Hurlbert and Stegen [30] and summarized here: (1) we define a maximum number of total
individuals in the pool (2 million) such that the population size of a given species declines with
an increasing number of species, and (2) the probability of extinction for a given species increases
as its population size decreases according to a negative exponential function [population extinction
probability ∝ exp(−0.001 × population size)].

The evolution of a regional species pool was initiated from a single ancestor with a randomly
chosen environmental optimum (initially comprising all two million individuals in the population).
Mutation probability was set as 1.00 × 10−5. A descendant’s environmental optimum deviated from its
ancestor by a quantity selected from a Gaussian distribution with mean 0 and standard deviation 0.2.
Following mutation, population sizes were reduced evenly such that the total number of individuals
remained at two million. The simulation was run for 250 time steps, which was sufficient to reach
equilibrium species richness.

2.2. Community Assembly

The model’s second component assembled four local communities from the regional species
pool according to scenarios conceptualized to test our hypotheses. In the model, both selection and
dispersal are probabilistic. Selection is based on the difference between species environmental optima
and local environmental conditions, while dispersal is unrelated to environmental conditions.

Species were drawn from the regional species pool to generate a source community under
weak selection and three receiving communities with no dispersal, moderate dispersal, and high
dispersal in which organismal niche breadth (n, 0.0075 to 0.175) and environmental conditions
(E, 0.05 to 0.95) were allowed to vary across simulations. A simplifying assumption of the model
was that all organisms in a simulation had equivalent niche breadth. The purpose of this assumption
was to examine tradeoffs between communities comprised of high-functioning, specialist organisms
vs. those comprised of lower-functioning, generalist species. Our intent was to simulate communities
across a gradient in the degree of specialization (i.e., niche breadth). This allowed for an evaluation
of the influence of niche breadth on the relationship between assembly processes and biogeochemical
function. All communities had 100 species and 10,000 individuals, drawn probabilistically from the
regional species pool. To define species presence/absence in each community, we drew 100 species
without replacement from the regional species pool based on selection probabilities described below.
In turn, we drew 10,000 individuals with replacement into those 100 species using the same selection
probabilities. Selection probabilities (P) of each species from the regional pool were set by a Gaussian
function with variance n (reflecting niche breadth) and the deviation (d) of each species environmental
optimum from the local environment per the following equation:

P =
1√
2nπ

e−
d2
2n (1)
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This equation represents the probability of an individual from a given species surviving in a given
environment—and thus the strength of selection for or against it—as directly related to three factors:
(1) its own environmental optimum, (2) the simulated environment in which it finds itself, and (3) its
niche breadth.

For assembly of the source community, we used one niche breadth (n) for all simulations, which
was the maximum value used for receiving communities (0.175). This value represents generalist
organisms, which allows for assembly of species representing a broader range of environmental
optima than when niches are narrow. The environmental conditions in the source community were
also set to a single value using the following procedure: we generated 10 regional species pools and
combined species abundances and environmental optima from these pools to generate one aggregate
pool representative of the probable distributions of environmental optima yielded by our simulations.
We set the environmental optimum of the source community to one end of this spectrum (5th percentile)
to allow for comparisons with receiving communities that had the same or larger environmental values.
This allowed us to study emergent behavior across a broad range of environmental differences between
the source and receiving communities.

For receiving communities, we allowed the environmental conditions and niche breadth to vary
across simulations. Environmental conditions ranged from 0.05 to 0.95 by intervals of 0.04736842
to yield 20 conditions. Environmental conditions were static within each simulation. Niche
breadth ranged from 0.0075 to 0.175 by 0.008815789 to yield 20 conditions. Receiving communities
were assembled under all possible combinations of environmental conditions and niche breadths.
Communities for the selection-only case (i.e., no dispersal from the source community) were assembled
based only on the selection probabilities as defined by Equation (1), using the same approach as for
the assembly of the source community. For moderate and homogenizing dispersal, we modified
selection probabilities to incorporate species dispersing from the source community as defined by the
following equation:

Pdisp = P + 0.05(Ssource
D) (2)

where Pdisp is the selection probability of a given species accounting for dispersal, Ssource is the
abundance of that species in the source community, and D a parameter reflecting dispersal rate.
This equation alters the selection probability without dispersal (Equation (1) with an exponential
modifier that enhances the probability of selection for species that are abundant in the source
community. Parameter D was set to 1 for moderate dispersal and 2 for homogenizing dispersal.
All possible communities were simulated with 100 replicate regional species pools such that all
possible combination of parameters were used once with each regional species pool.

Equation (2) simplifies dispersal as a probabilistic function without regard to phylogeny, although
we acknowledge that the ability of organisms to disperse is not phylogenetically random in natural
settings [17]. In our view of community assembly (and in our simulation model), both selection
and dispersal are probabilistic. Selection is based on the difference between species environmental
optima and local environmental conditions, while dispersal is unrelated to environmental conditions.
In this view, the word ‘deterministic’ indicates that the environment determines the probability
of drawing a given species into a local community, even though assembly is still probabilistic. Likewise,
the word ‘stochastic’ indicates that the random movement of organisms is the only factor influencing
local community assembly. Future studies should build upon this work to examine the influence
of phylogenetically-structured dispersal probabilities in affecting biogeochemical function.

Our estimation of biogeochemical function is meant to be illustrative and is not associated
with any specific reaction. Given this perspective, we make a simplifying conceptual assumption
that individuals well-fit to their environment generate higher rates of biogeochemical function than
maladapted individuals. The motivation for this assumption is that individuals that are maladapted
to a given environmental condition will have to use a larger portion of available energy to maintain
their physiological state than well-adapted organisms. In turn, maladapted organisms can invest less
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in the production of enzymes needed to carry out biogeochemical reactions, thereby leading to lower
biogeochemical rates.

In our model, selection probability of a given species in a given environment (Equation (1))
defines how adapted an individual of that species is to its local environment. This leads to another
simplifying assumption: the contribution of an individual to the overall biogeochemical rate (B)
is directly proportional to how well adapted it is to the local environment such that the contribution
of each individual is a linear function of its selection probability within a given environment.
The biogeochemical contribution of each species is therefore found by multiplying its selection
probability by its abundance. To find the total biogeochemical rate for each community, we then
summed across all species in a community. Biogeochemical function for each community was thus
calculated as:

B =
100

∑
i=1

aiPi (3)

where B is the biogeochemical function for a given community and ai and Pi are the abundance
and probability of selection for species i, respectively (note there were 100 species within each
community). An inherent result of this calculation is that simulations with smaller niche breadth have
higher maximum selection probabilities (see Equation (1)), which can lead to higher biogeochemical
function, relative to simulations with larger niche breadth. Our formulation therefore assumes higher
biogeochemical function for specialist organisms, but only if they are well adapted to their local
environment. This assumption reflects a tradeoff between the breadth of environments an individual
can persist in and the maximum fitness of an individual in any one environment (discussed in [34]).

2.3. Ecological Inferences Using Null Models

Following the assembly of communities, the relative influences of stochasticity (i.e.,
dispersal-based) and determinism (i.e., selection) in structuring communities were estimated using
a null modeling approach previous described in Stegen et al. [15,31]. We refer the reader to these earlier
publications for full details and provide only a summary of the major elements of the null modeling
approach here. The composition of each receiving community was compared to an associated source
community that was assembled from the same regional species pool. We first estimated pairwise
phylogenetic turnover between a given pair of communities. This was done by calculating the
abundance-weighted β-mean-nearest-taxon-distance (βMNTD) [35,36]. A null model was then run
999 times. In each iteration of the null model, species names were moved randomly across the
tips of the regional pool phylogeny. This breaks phylogenetic relationships among taxa observed
in each community. Using the resulting (randomized) phylogenetic relationships, we re-calculated
phylogenetic turnover between the pair of communities and refer to this as βMNTDnull. Running the
null model 999 times generated a distribution of βMNTDnull values. We then compared the observed
βMNTD to the mean of the βMNTDnull distribution and normalized this difference by the standard
deviation of the βMNTDnull distribution. The difference between βMNTD and the βMNTDnull
distribution was therefore measured in units of standard deviations and is referred to as the β-nearest
taxon index (βNTI) [32]. Values of βNTI that are <−2 or >+2 are deemed significant in the sense
that observed βMNTD deviated significantly from the βMNTDnull distribution. The βMNTDnull
distribution is what’s expected when community assembly is not strongly influenced by deterministic
ecological selection. Significant deviation from this distribution therefore indicates that selective
pressures are very similar (βNTI < −2) or very different (βNTI > +2) between the two communities
being compared. Following the convention of Dini-Andreote et al. [37] we refer to βNTI <−2
as indicating homogeneous selection (i.e., significantly less turnover than expected due to consistent
selective pressures) and βNTI > +2 as indicating variable selection (i.e., significantly more turnover
than expected due to divergent selective pressures). Inferences from βNTI have previously been
shown to be robust [15]. This method has also been used extensively across a broad range of systems
(e.g., [2,14,38–40]) and is described in detail in previous work [32].
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2.4. Statistical Analysis

We analyzed differences in model outputs using standard statistical approaches. We calculated
the alpha diversity of each source and receiving community using the Inverse Simpson Index [41,42]
in the R package ‘vegan’ [43]. Differences in alpha diversity across communities were evaluated with
one-way ANOVA followed by post-hoc Tukey’s HSD tests. We used pairwise Kolmogorov-Smirnov
tests to compare distributions of species optima between simulations (distributions were non-normal).
To compare biogeochemical function of the three dispersal cases, we used one-way ANOVA followed
by post-hoc Tukey’s HSD tests. We also analyzed how biogeochemical function changed as the
environmental difference between source and receiving communities increased; this was done using
quadratic regressions due to non-linearity in the relationships. We also compared the influence
of dispersal on biogeochemical function across different niche breadths. This was done by first finding
the ratio of function in selection-only communities to function in associated homogenizing dispersal
communities. Ratios were calculated by comparing communities assembled from the same regional
species pool and with identical environmental condition and niche breadth. The resulting distributions
of ratios were compared across different niche breadths using one-way ANOVA followed by post-hoc
Tukey’s HSD tests. To evaluate the relationship between the relative influence of dispersal-based
assembly (inferred from the value of βNTI) and biogeochemical function, correlations between βNTI
and biogeochemical function were assessed with linear regression. In most studies βNTI values are
not independent of each other such that statistical significance requires a permutation-based method
such as a Mantel test. Here, each βNTI estimate is independent whereby standard statistical methods
that assume independence are appropriate.

3. Results and Discussion

As ecosystem process models become more sophisticated (e.g., [44–46]), there is a need to improve
these models by better understanding the linkages among community assembly processes and
ecosystem function. Here, we used an ecological simulation model to highlight the importance
of dispersal-based microbial community assembly for biogeochemical function. Our results suggest
that incorporating assembly processes into ecosystem models may improve model predictions
of biogeochemical function under future environmental conditions.

3.1. Microbial Community Composition in Response to Dispersal

We found that diversity was highest when both dispersal and selection influenced community
structure (Figure 2). In communities assembled with moderate to broad niches, intermediate amounts
of dispersal led to the highest diversity (Figure 2A,B). These moderate-dispersal communities were
characterized by distributions of environmental optima (across species and individuals) that did not
match the source or selection-only distributions, and instead reflect an influence of both dispersal
from the source and local selection (Figure 3B,D,F). Both moderate- and homogenizing-dispersal
cases exhibited higher diversity than source or selection-only communities (Figure 2A,B). We note
that the slight differences in diversity between source and selection-only communities were due
to environmental conditions in source communities being defined at one end of the environmental
spectrum. This edge-effect truncated its distribution of species environmental optima, causing
the distribution to be right skewed (Figure 3A,C,E). Our results suggest a conceptual parallel
to Connell’s [47] Intermediate Disturbance Hypothesis, whereby intermediate levels of dispersal
lead to the highest overall diversity, but only when niche breadth is broad enough to allow for strong
contributions from both dispersal and selection (Figure 2).
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Figure 2. Alpha diversity (inverse Simpson Index) of communities assembled under wide ((A) niche
breadth = 0.175), moderate ((B) niche breadth = 0.086842105), and narrow ((C) niche breadth = 0.0075),
niches in the mid-point environment (0.476315789). Upper and lower hinges of the box plots represent
the 75th and 25th percentiles and whiskers represent 1.5 times the 75th and 25th percentiles, respectively.
Colors coincide with labels on the x-axis.
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optima without accounting for abundances. Column 2 displays distributions of individuals’ optima.
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With the narrowest niche breadths (Figure 2C), we observed a distinct pattern of diversity relative
to broader niche breadths (Figure 2A,B). Diversity in moderate-dispersal cases decreased substantially
as niche breadth narrowed, indicating that moderate levels of dispersal can be overwhelmed when local
selective pressures are strong. In contrast, homogenizing dispersal cases maintained consistent levels
of diversity across niche breadths and displayed distributions of environmental optima that tracked
those of the source community (Figure 3). Diversity in selection-only cases was greatest under the
narrowest niche breadth. This was due to only very well-adapted species being part of the community,
which led to high abundance across all species in those communities (Figure 3F). For selection-only
communities, broader niche breadths resulted in more species with low abundances, and thus lower
diversity (cf. black lines in Figure 3B,D,F).

3.2. Dispersal, Microbial Community Composition, and Biogeochemical Function

We found that microbial community assembly history altered the degree to which organisms
within a community were adapted to their local environment. Given our assumption of the connection
between the degree of adaptation and biogeochemical function (see Methods), assembly history was
therefore found to have an indirect effect on biogeochemical function. The environmental optima
of taxa in selection-only communities more closely matched their simulated environmental conditions
compared to communities assembled with dispersal (Figure 3, 1st column, p < 0.001). When niche
breadth was broad (Figure 3A), species’ environmental optima were distributed around the simulated
environment under all dispersal cases. However, as niche breadth decreased (Figure 3C,E), the species
distribution of selection-only cases tightened around the simulated environment, with moderate
and homogenizing dispersal cases having a wider distribution than the selection-only case. These
disparities were maintained when accounting for species abundances (Figure 3B,D,F), in which
selection-only communities had unimodal distributions separate from the source community, while
moderate and homogenizing dispersal communities had distributions ranging from unimodal
to multi-modal, depending on niche breadth. Dispersal from the source therefore resulted in significant
numbers of individuals having large deviations between their environmental optima and the
local environmental condition. The large number of maladapted individuals in communities
experiencing dispersal from the source resulted in selection-only communities having the highest rates
of biogeochemical function, on average, regardless of the simulated environment (Figure 4, p < 0.0001).

In natural systems, microbial community compositional differences can be due to competitive
dynamics that select for organisms based on their niche optima [48,49] and to immigration of new
taxa from the regional species pool [7,32,50]. Strong local selective pressures can lead to more fit
species and enhanced biogeochemistry [7]. Due to the lack of immigrating maladapted species in the
selection-only simulations, biogeochemical rates were maintained regardless of the difference between
source and receiving community environments. This indicates that biogeochemical function can
be enhanced by species adaptation to local conditions. Indeed, a plethora of literature demonstrates
that environmental features such as pH [25], nutrients [51], and salinity [26,27] impact microbial
community structure and biogeochemical function, and our results indicate that the linkage between
community structure and function is due to microbial adaptation to local conditions.

Our results also indicate that when immigrating microorganisms are derived from environments
that differ from the receiving community (e.g., dispersal across steep geochemical gradients),
biogeochemical function may be suppressed. When we included dispersal from a source community,
greater differences between the source and receiving communities led to decreases in biogeochemical
function in the receiving communities (Figure 4B, p < 0.0001), and this effect became more pronounced
as the rate of dispersal increased. Natural systems are influenced by some combination of dispersal
and selection and our results indicate that function is maximized when dispersal is minimized and
selection is maximized.
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Figure 4. (A) Biogeochemical function across dispersal cases. Upper and lower hinges of the box
plot represent the 75th and 25th percentiles and whiskers represent 1.5 times the 75th and 25th
percentiles, respectively. Different letters indicate statistically significant differences in mean values.
(B) Biogeochemical function across environmental conditions in receiving communities (vertical axis
is the same as in panel A). In the selection-only case (black), biogeochemical function did not vary
with environmental condition such that no regression line is drawn. With moderate (blue) and
homogenizing (red) dispersal, biogeochemical maxima occurred when the receiving community’s
environmental condition aligned with the environmental optima of species in the source community
(compare to Figure 3). For these two cases, quadratic regression was used and resulting models are
shown as solid lines (statistics provided).

Dispersal had the greatest influence on biogeochemical function when niche breadth was
narrow (Figure 5). The biogeochemical function of selection-only communities in comparison
to homogenizing-dispersal communities was greatest under the narrowest niche breadth (0.0075) and
rapidly decreased when transitioning to broader niche breadths. Selection-only communities simulated
with narrow niches are comprised of specialist species that can generate high biogeochemical rates
and that are well adapted to their local environment. Increasing niche breadth results in the assembly
of species with a broader range of environmental optima and that generate lower biogeochemical
rates even if their environmental optimum matches the environmental condition (see Methods for
a discussion of this assumed trade-off). Thus, high rates of dispersal combined with narrow niche
breadth causes replacement of high-functioning specialist organisms with maladapted taxa, thereby
significantly reducing community-level biogeochemical function. When niche breadth is broader,
immigrating organisms replace lower-functioning organisms (i.e., generalists), resulting in a smaller
decreased in community biogeochemical function. We note that our model does not represent
dispersal-competition tradeoffs [19], nor does it explicitly represent organismal interactions; exploring
the influence of these features would be an interesting extension of the model presented here.
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Figure 5. The ratio of biogeochemical function in selection-only cases to homogenizing dispersal cases
across five niche breadths that span the entire parameter range (0.0075 to 0.175). Each column represents
all replicates across all environments for a given niche breadth. Different letters indicate statistically
significant differences in mean values. Upper and lower hinges of the box plots represent the 75th and
25th percentiles and whiskers represent 1.5 times the 75th and 25th percentiles, respectively.

Regardless of dispersal, simulations with broader niche breadth led to lower rates
of biogeochemical function, supporting a tradeoff between communities comprised of specialist vs.
generalist species [52–54]. Previous work in microbial systems has posited life-history tradeoffs
between specialist vs. generalist species, whereby specialists expend more energy to establish their
niches but function at higher levels once established [55]. Specialist species have also been found
to be more sensitive to changes in the environment due to strong adaptation to their local environment,
with generalists being more resilient to change [56–59]. While we do not address temporal dynamics
in our model, the separation of biogeochemical function based on niche breadth indicates a central
role for the balance of specialist vs. generalist microorganisms within a community in determining
function, regardless of prevailing environmental conditions.

3.3. Impact of Assembly Processes on Biogeochemical Function

We also observed that niche breadth within the receiving community was a key parameter
in dictating biogeochemical function when environmental conditions (and thus selective pressures)
differed between source and receiving communities. In cases without dispersal, biogeochemical
function was dictated entirely by niche breadth regardless of differences in selective environments
(as inferred from βNTI) between source and receiving communities (Figure 6A,D). Selective pressures
in the selection-only receiving communities were most dissimilar to the source community (βNTI > 2)
in simulations with both narrow niche breadth and environmental conditions that were very
different from the source community (Figure 6A). This relationship was also apparent (but weaker)
in simulations with an intermediate amount of dispersal (Figure 6B). In receiving communities with
high rates of dispersal, stochasticity (|βNTI| < 2) was the dominant process regardless of niche
breadth or environmental condition in the receiving community (Figure 6C).
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Figure 6. Interpolated contour plots showing average βNTI (A–C) and biogeochemical function
(D–F) for each dispersal case across all parameter combinations. Interpolations are based
on parameter combinations at each of 20 evenly spaced values across each axis. Values of βNTI
that are further from 0 indicate increasing influences of deterministic assembly (and decreasing
stochasticity). (A,D) depict selection-only communities; (B,E) depict moderate dispersal communities;
and (C,F) depict homogenizing dispersal communities.

Across the full parameter space defined by niche breadth and environmental condition, cases with
moderate and homogenizing dispersal were generally characterized by a dominance of stochasticity
(Figure 6B,C). This increase in stochasticity relative to selection-only cases corresponded to decreased
biogeochemical function. This was particularly true as the environment diverged from the source
community (Figure 6D–F). Biogeochemical function in these cases was also negatively correlated
to niche breadth (i.e., highest under narrow niche breadths), revealing higher functioning of specialist
organisms regardless of assembly processes.

Given these apparent associations between assembly processes and biogeochemical function,
we directly examined differences in relationships between βNTI and biogeochemical function across
a range of environments and niche breadths (Figure 7). Our results suggest that microbial assembly
processes may exert the most influence over biogeochemical function when there is significant
variation in the relative contributions of deterministic and stochastic processes among communities.
We found the strongest relationships between βNTI and function when environmental conditions
were dissimilar to the source community, regardless of niche breadth (Figure 7G–I). βNTI had the
greatest range in these scenarios, reflecting substantial variation in the contribution of stochastic
and deterministic processes. By contrast, scenarios with environments more similar to the source
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environment had little variation in assembly processes and no relationship between βNTI and
biogeochemical function (Figure 7A–F).
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Figure 7. Relationship between βNTI and biogeochemical function across different niche breadths
(columns) and different environmental conditions of the receiving communities (rows). (A–C), (D–F),
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of the source community, respectively. (A,D,G), (B,E,H), and (C,F,I) respectively show narrow,
moderate, and wide niche breadths. Values of βNTI that are further from 0 indicate increasing
influences of deterministic assembly (and decreasing stochasticity). Horizontal gray lines indicate
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are shown as black lines and statistics are provided on each panel. Panels without regression models
had non-significant (p > 0.05) relationships. Note that the vertical axis is scaled the same across panels,
but the horizontal axis is not. Black, blue, and red symbols indicate selection-only, moderate dispersal,
and homogenizing dispersal scenarios, respectively.

Variation in the balance of stochastic and deterministic assembly processes is prevalent in natural
systems [2,7,16,38], as most ecosystems experience spatially and/or temporally variable rates
of dispersal. For example, hydrologic connectivity facilitates microbial dispersal and differs with
physical matrix structure in soils and sediments. We therefore pose that variation in βNTI may
be an effective tool for predicting biogeochemical function when biotic and abiotic conditions lead
to a mixture of stochastic and deterministic assembly processes. Natural systems have repeatedly
shown such a mixture, and previous field observations have revealed connections between βNTI
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and biogeochemical function [2,14,60]. These outcomes support our model-based inference that
βNTI—as a proxy for assembly processes—offers a practical means to inform models that represent
the effects of ecological processes on biogeochemical function.

While our results suggest that maladapted immigrating organisms decrease biogeochemical
function, it is important to note that stochasticity may offer buffering capacity that maintains
or increases biogeochemical function relative to well-adapted deterministic communities in the
context of future environmental perturbations not simulated with the static environmental conditions
in our model [56]. Stochastic spatial processes, such as dispersal, may lead to coexistence
of species with different environmental optima resulting in a community that can rapidly adapt
to changing environment conditions and maintain biogeochemical function in the face of perturbation.
Researchers have long demonstrated positive relationships between biodiversity and ecosystem
function in both macrobial [61,62] and microbial [63–65] systems, and new work has highlighted
the role of stochasticity in maintaining this connection [66]. Conversely, a lack of stochasticity may
result in species so specialized to a given environment that they are vulnerable to environmental
change [56]. While these communities would putatively exhibit high rates of biogeochemical function
under stable environmental conditions, their function would plummet in response to perturbation,
akin to observations of a tradeoff between function and vulnerability in plant communities [21,67].

3.4. Implications for Ecosystem Models

The cumulative impacts of ecological processes through time and how they relate
to ecosystem-level processes is an emerging research frontier in ecosystem science [2,44,52,68,69].
We reveal how dispersal-based community assembly can decrease adaptation to local environments
and, in turn, decrease biogeochemical function. Our modelling approach demonstrates plausible
outcomes of microbial assembly processes on ecosystem functioning, and integrating this knowledge
with factors such as historical abiotic conditions, competitive dynamics, and life-history traits could
substantially improve ecosystem model predictions.

Previous work by Hawkes and Keitt [52] laid a theoretical foundation for incorporating
time-integrated ecological processes into predictions of biogeochemical function. They demonstrate
that community-level microbial functions are the accretion of individual life-histories that determine
population growth, composition, and fitness. However, they acknowledge their exclusion of dispersal
processes from their models and do not explicitly consider dispersal in their analysis. Hawkes
and Keitt [52] therefore provide a baseline for future research and call for a holistic understanding
of historical processes on microbial function, with a particular emphasis on the underlying mechanisms
generating these trends. Our work enhances this framework by demonstrating that community
assembly processes are integral to knowledge of biogeochemical function in natural systems.

Microbially-explicit models (e.g., MIMICS, MEND) are rapidly becoming more sophisticated and
are readily amenable to modules that represent ecological assembly processes [70,71]. As models begin
to consider microbial ecology, there is a need to decipher linkages among spatiotemporal microbial
processes and ecosystem-level biogeochemical function. We propose that new microbially-explicit
models should go beyond microbial mechanisms at a given point in time or space, and building
upon the foundation laid by Hawkes and Keitt [52], incorporate ecological dynamics that operate
across longer time scales to influence biogeochemical function. Although there are many available
avenues to merge modelling efforts in microbial ecology and ecosystem science, there is little debate
that integrated models will increase the accuracy of predictions in novel future environments.

4. Conclusions

We demonstrate the influence of ecological assembly processes on biogeochemical function.
Specifically, we show that dispersal can increase the abundance of maladapted organisms
in a community, and in turn, decrease biogeochemical function. This impact is strongest when
organismal niche breadth is narrow. We also pose that the explanatory power of microbial assembly
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processes on biogeochemical function is greatest when there is variation in the contributions
of dispersal and selection across a collection of local communities within a broader system of interest.
While our work is an encouraging advancement in understanding relationships between ecology and
biogeochemistry, a key next step is incorporating assembly processes into emerging model frameworks
that explicitly represent microbes and that mechanistically represent biogeochemical reactions.
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Abstract: Metabolic acclimation to photosynthesis-associated stresses was examined in the
thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 using integrated computational and
photobioreactor analyses. A genome-enabled metabolic model, complete with measured biomass
composition, was analyzed using ecological resource allocation theory to predict and interpret
metabolic acclimation to irradiance, O2, and nutrient stresses. Reduced growth efficiency, shifts in
photosystem utilization, changes in photorespiration strategies, and differing byproduct secretion
patterns were predicted to occur along culturing stress gradients. These predictions were compared
with photobioreactor physiological data and previously published transcriptomic data and found
to be highly consistent with observations, providing a systems-based rationale for the culture
phenotypes. The analysis also indicated that cyanobacterial stress acclimation strategies created
niches for heterotrophic organisms and that heterotrophic activity could enhance cyanobacterial stress
tolerance by removing inhibitory metabolic byproducts. This study provides mechanistic insight
into stress acclimation strategies in photoautotrophs and establishes a framework for predicting,
designing, and engineering both axenic and photoautotrophic-heterotrophic systems as a function of
controllable parameters.

Keywords: cross-feeding; cyanobacteria; elementary flux mode analysis; irradiance; resource
allocation; RuBisCO; stress acclimation

1. Introduction

Environmental stresses dictate competitive ecological strategies impacting nutrient and energy
flows from the scale of individual cells to ecosystems [1,2]. Cyanobacteria are significant drivers
of global nutrient and energy flows, accounting for ~10% of global primary productivity [3] and
forming essential links in carbon and nitrogen biogeochemical cycles [4]. Cyanobacteria are also used
in wastewater treatment and as bioprocess catalysts for bioproduction of specialty chemicals [5,6].
Cyanobacteria are deeply rooted in the tree of life and have adapted competitively to common stressors
associated with photosynthesis and are model organisms for examining metabolic acclimation to
these stresses.

Photoinhibition is a broad term encompassing different types of photosynthesis-associated
stresses including photo-damage by excitation, damage by reactive oxygen species (ROS), and
high localized O2 concentrations [7]. Cyanobacteria can mitigate photo-damage by downregulating
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synthesis of photosystems, as well as adjusting relative photon absorption at photosystems I and
II (PSI, PSII) to modulate ATP and NADPH regeneration (PSII extracts electrons from water which
can be used in conjunction with PSI to regenerate NADPH and ATP, while PSI operating alone
recycles electrons to regenerate ATP only; see Figure 1) [8]. High excitation can lead to oxidative
damage at the photosystems and/or a highly reduced electron transport chain, which may also lead to
cellular oxidative damage via ROS. Acclimation strategies include directing excess electrons toward
alternative biochemical routes, such as reduction of O2 (by either cellular respiration or the water-water
cycle (photoreduction of O2 to water)) or secretion of reduced carbon byproducts. High rates of
oxygenic photosynthesis can also lead to locally high O2 levels [9,10], and environments with high
concentrations of O2 relative to CO2 can cause additional metabolic stress. Ribulose-1,5-bisphosphate
carboxylase oxygenase (RuBisCO) is a dual-functioning enzyme which can react with either CO2 or
O2. When RuBisCO reacts with O2, 2-phosphoglycolate is produced, which is either secreted as the
inhibitory compound glycolate or catabolized using one of three photorespiration pathways found in
cyanobacteria [11]. Cyanobacteria have evolved mechanisms to reduce O2 consumption at RuBisCO,
including species-specific enzymes with varying affinities for CO2 and O2, as well as expression of
carboxysomes to increase the relative CO2 concentration in the vicinity of RuBisCO [12,13].

 
(a) (b) 

 
(c) (d) 

Figure 1. Light and dark reactions of photosynthesis. The role of photosystems I and II (PSI and
PSII) in linear (a) and cyclic (b) photosynthesis and their relation to production of O2 and regeneration
of NADPH and ATP. Linear photosynthesis produces O2 and regenerates both ATP and NADPH,
whereas cyclic photosynthesis does not produce O2 and regenerates ATP only. In the dark reactions, the
bifunctional RuBisCO enzyme can incorporate inorganic carbon into biomass via the Calvin cycle (c) or
can react with O2 (d), resulting in a toxic byproduct and reducing incorporation of carbon into biomass.
Abbreviations: hν, photons (photosynthetically active radiation); PQ, plastoquinone/plastoquinol;
Cyt b6f, cytochrome b6f; PC, plastocyanin; FNR, ferredoxin-NADP+ reductase; Fd, ferredoxin; RuBP,
ribulose-1,5-bisphosphate; PGA, 3-phosphoglycerate; PG, 2-phosphoglycolate.

Stoichiometric modeling of metabolism enables prediction and interpretation of system-wide
properties of complex metabolic networks, including community-level networks [14–20]. These
systems biology approaches, such as flux balance analysis (FBA) and elementary flux mode
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analysis (EFMA), use genomic and physiological data to inform the construction of computational
representations of metabolism. The application of a steady state assumption simplifies the
mass-balanced metabolic reactions into a series of solvable linear equations, reducing the need
for difficult-to-measure, condition-dependent enzyme kinetic parameters [16]. Whereas FBA uses
objective functions such as biomass production to predict an optimal flux distribution under a specific
set of conditions, EFMA calculates the complete set of minimal pathways (elementary flux modes,
EFMs) through a metabolic network using steady state, reaction reversibility, and indecomposability
constraints. Non-negative linear combinations of EFMs define the entire phenotypic solution space of
a steady state metabolic network using a single simulation and can be used to examine all possible
physiologies in an unbiased manner [19,21]. Similarities and differences in the output of EFMA
versus other stoichiometric modeling techniques can be found in the review by Trinh et al. [19].
The enumerated EFMs can be evaluated by resource allocation theory, which quantitatively assesses
the computational phenotypic space according to tradeoffs in consumption of different resources for
the production of bioproducts [22–26]. Previous stoichiometric modeling studies of cyanobacterial
metabolism have examined the occurrence of photorespiration as well as irradiance and carbon
limitations [27–30].

The presented study analyzes metabolic acclimation to photosynthesis-associated stresses
in the thermophilic, non-diazotrophic unicellular cyanobacterium Thermosynechococcus elongatus
BP-1 (hereafter BP-1) and the formation of heterotrophic niches. BP-1 was isolated from the
alkaline (pH 8.6) Beppu hot springs in Japan where temperatures range from 50–65 ◦C [31,32].
BP-1 is a major primary producer in its native hot springs where it often grows in bacterial
mat communities with heterotrophs and is subject to high irradiance, high O2, and low nutrient
availability stresses. The objectives of this study were to (i) identify ecologically relevant acclimation
strategies to high irradiance, O2/CO2 competition at RuBisCO, and nutrient limitation at varying
degrees using a computational BP-1 stoichiometric model and EFMA combined with resource
allocation theory, (ii) analyze BP-1 acclimation to high irradiance through controlled photobioreactors,
(iii) compare general computational predictions to specific photobioreactor observations to interpret
BP-1 acclimation strategies, and (iv) examine the impact of stress acclimation strategies on the ability
of BP-1 to interact with heterotrophic partners. The presented study contributes to the understanding
of cyanobacterial metabolism by examining specific photorespiration pathways, relative photon
absorption of the photosystems, and byproduct secretion profiles under simultaneous stress conditions
of high irradiance and O2/CO2 competition at RuBisCO, as well as by predicting cross-feeding
photoautotrophic-heterotrophic interactions. The computational resource allocation-based modeling
integrated with photobioreactor observations provides a rational basis for interpreting natural
cyanobacterial behavior and a framework for controlling cyanobacteria for bioprocess applications.

2. Materials and Methods

2.1. Photobioreactor Culturing

T. elongatus BP-1 cultures were grown using modified BG-11 (mBG-11) medium [33,34], containing
17.6 mM NaNO3, 0.304 mM MgSO4·7H2O, 0.175 mM KH2PO4, 0.245 mM CaCl2·2H2O, 0.0028 mM
Na2EDTA, and 0.0144 mM FeCl3. A trace metal supplement was added (1 mL/L), comprised of
46.254 mM H3BO3, 9.146 mM MnCl2·4H2O, 0.772 mM ZnSO4·7H2O, 1.611 mM Na2MoO4·2H2O,
0.316 mM CuSO4·5H2O, and 0.170 mM Co(NO3)2·6H2O. Inoculum cultures of BP-1 were initiated
from frozen stocks into 150-mL sealed serum bottles filled with 50 mL mBG-11 amended with 15 mM
sodium bicarbonate and adjusted to pH 7.5 under N2 headspace containing 10% CO2.

Photobioreactors were operated as turbidostats as described in Bernstein et al. [33], similar to
Bernstein et al. and Melnicki et al. [35,36]. Reactors were inoculated with exponentially growing
inoculum culture to OD730nm = 0.01. All cultures were grown under continuous light of varying
irradiances at 52 ◦C, pH 7.5, and were continuously sparged at 4 L min−1 with a 98% N2 and 2%
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CO2 gas mixture. Incident and transmitted scalar irradiances were measured and used to adjust
the turbidostat growth rate. The specific optical cross section (σ, m2 (g CDW)−1, CDW, cell dry
weight) was determined according to a previously described method using a light diffuser and
spectrophotometer [37]. The specific photon absorption rate was calculated by multiplying the specific
optical cross section by the incident irradiance.

2.2. Biomass Composition Determination

Macromolecular composition was analyzed from turbidostat biomass samples (pelleted and frozen
at Pacific Northwest National Laboratory and then shipped to Montana State University for subsequent
analysis) according to the following procedures. DNA was quantified from alkali-lysed solutions with
Hoechst 33258 fluorescent dye [38]. Glycogen was quantified by co-precipitation with sodium sulfate
and detection with anthrone [39]. Lipids were quantified gravimetrically via chloroform-methanol
extraction [40]. Total protein and amino acid distribution were quantified with HPLC fluorescence
detection using o-phthalaldehyde (OPA) and 9-fluorenylmethylchloroformate (FMOC) derivatizations
of acid-hydrolyzed protein [41]. Cysteine, methionine, and tryptophan were degraded, and asparagine
and glutamine were converted to aspartate and glutamate, respectively, during hydrolysis [42];
therefore, abundances were predicted from protein-coding gene codon usage. RNA was quantified
by lysis with potassium hydroxide, extraction into cold perchloric acid, and measurement of UV
absorbance at 260 nm [43]. Appendix A contains detailed protocols for each method.

2.3. Model Construction

The metabolic network model for BP-1 was constructed in CellNetAnalyzer [44,45] from the
annotated genome [46] with the aid of MetaCyc, KEGG, BRENDA, and NCBI databases [47–49].
Reversible exchange reactions were defined for protons and water. Irreversible exchange reactions
defined bicarbonate, magnesium, nitrate, phosphate, photons, and sulfate as possible substrates and
O2, acetate, alanine, ethanol, formate, glycolate, lactate, pyruvate, and sucrose as possible byproducts.
Biomass was also defined as a product.

Macromolecular synthesis reactions were defined for nucleic acids, glycogen (most common
form of cyanobacterial carbohydrate storage [50]), lipid, and protein. Synthesis reactions utilized two
phosphate bonds per nucleic acid monomer, one phosphate bond per glycogen monomer, and four
phosphate bonds per protein monomer [51]. Nucleotide distributions were set based on percent GC
content of the genome for DNA and nucleotide sequence of the rRNA genes for RNA. Fatty acid
distribution was assigned based on literature values of fatty acid chain and lipid types measured
for BP-1 [52–54]. The amino acid distribution was set using the experimentally measured values
in the current study. Macromolecular composition (DNA, glycogen, lipid (including chlorophyll),
protein, and RNA) was determined experimentally in the current study (see Section 2.2) and used to
set the molar coefficients in the biomass synthesis reaction, normalized to 1 kg dry biomass (File S1 in
the Supplementary Materials). Chlorophyll was also included in biomass synthesis using the mass
fraction measured for Synechococcus sp. PCC 7002 [29], and the lipid mass fraction was adjusted
to reflect the proportion of chlorophyll. The biomass composition was converted into an electron
requirement using degree of reduction (moles of electrons per mole of carbon) calculations [55] with the
assumption that each biosynthetic electron requires two photons (one absorbed at each PSII and PSI).
Degree of reduction was calculated with respect to nitrate as a nitrogen source. To estimate photons
necessary for ATP regeneration, the phosphate bond requirement for polymerization of monomers
into macromolecules was converted into a photon requirement via a stoichiometry of four photons per
phosphate bond (one photon absorbed at PSI per proton pumped, with four protons translocated per
ATP molecule synthesized). Photon and proton stoichiometries remain active areas of research, and this
estimate is recognized as an upper bound considering linear photosynthesis without a Q-cycle [56,57].

All reactions were balanced for elements, charge, and electrons. Thermodynamic considerations
were built into the model via reaction reversibilities, based on data from BRENDA [49]; in the
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event that data for bacterial species were not available from BRENDA, thermodynamic calculations
were performed with eQuilibrator (http://equilibrator.weizmann.ac.il/) to determine physiological
reversibility, using a product concentration three orders of magnitude greater than the reactant
concentration [58,59]. Nitrogen requirements were determined for each reaction by summing the
number of nitrogen atoms specified by the enzyme amino acid sequences. Iron requirements were
determined for central carbon metabolism and photosynthesis reactions based on metal requirements
of similar cyanobacterial species in BRENDA [49]. For instances of missing or conflicting information
in the database, literature values compiled for oxygenic photoautotrophs were used [60]. A one-to-one
(minimal resource investment) correspondence of enzyme to reaction was used to calculate the total
cost per EFM, as it has previously been shown to provide a good approximation of flux distributions in
Escherichia coli [23,24]. EFMs were enumerated using EFMtool [61]. Resource allocation analysis (cost
assessment) of the resulting EFMs was performed with MATLAB and Python. The metabolic model
with supporting details and CellNetAnalyzer metabolite and reaction input, SBML model version, and
documented analysis routines can be found in the Supplementary Materials (Files S1–S4).

3. Results

3.1. Computational BP-1 Metabolic Model and Photobioreactor Biomass Composition Measurement

The BP-1 computational metabolic model was constructed from the annotated genome [46].
Genetic potential was mapped to enzymes and metabolic reactions which encompassed photosynthesis,
central metabolism, and biosynthetic reactions leading to biomass production according to a defined
macromolecular composition reaction. Transport reactions were defined for nutrient uptake and
product secretion. Subsequent EFMA resulted in a description of the phenotypic space spanning
the range of possible nutrient uptake and product secretion rates, which could then be analyzed for
ecologically relevant stress acclimation strategies. The model accounted for 334 metabolism-associated
genes which were mapped to 279 metabolites and 284 reactions (File S1 in the Supplementary Materials).
Photons were assumed to be within the spectrum of photosynthetically active radiation (PAR;
400–700 nm). A stoichiometrically balanced schematic demonstrating operation of the photosynthetic
electron transport chain (linear and cyclic photosynthesis) and carbon flow in the model is shown
in Figure 1. Nutrient substrates for the model were selected in alignment with the photobioreactor
culturing medium. Bicarbonate was modeled as the sole carbon source based on culturing pH while
interconversion with CO2 was modeled via the carboxysomal carbonic anhydrase enzyme, and nitrate
was modeled as the sole nitrogen source. Two of the three photorespiration pathways possible in
cyanobacteria [11] were identified in BP-1, namely, the C2 cycle and the glycerate pathway. A variety
of organic byproducts (Table 1) were considered based on previous genomic analysis of BP-1 [62] and
culturing studies of related unicellular cyanobacteria [63,64]. Secretion of several different amino acids
has been observed in BP-1 and related species [33,63,64]; alanine was included as a representative
amino acid byproduct in the current model, closely linked to central metabolism.

Biomass composition impacts growth and byproducts [65], making appropriate composition
parameters important for computational growth predictions. BP-1 macromolecular biomass
composition was determined analytically from continuous culture samples and was used to
parameterize the model growth reactions. The major measured macromolecule classes (DNA, glycogen,
lipid (including chlorophyll), protein, and RNA) summed to 98.1% of cell dry weight (Table 2); the
remaining 1.9% was assumed to be ash. Protein and lipid/chlorophyll comprised the largest mass
fractions of biomass, accounting for 62.0% and 17.4%, respectively. Since protein comprises the largest
fraction of biomass, amino acid monomer distribution was also determined analytically (Table A1 in
Appendix C) and used to parameterize the model reaction for protein synthesis. A strong correlation
was observed between the measured amino acid distribution and the distribution predicted from
protein-coding gene sequences (Figure A1 in Appendix B).
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Table 1. T. elongatus BP-1 metabolic model inputs and outputs, including potential reduced carbon
byproducts, with corresponding degree of reduction.

Compound Formula Charge Degree of Reduction

Inputs

Carbon dioxide CO2 0 0
Water H2O 0 0

Photons NA NA NA
Nitrate NO3 −1 −8/−5/0

Outputs

Molecular oxygen O2 0 −4
Biomass CH1.6N0.2O0.3P0.01S0.005 −0.7 4.3/5.0/6.1 a

Acetate C2H3O2 −1 4
Alanine C3H7NO2 0 4/5/6.7 a

Ethanol C2H6O 0 6
Formate CHO2 −1 2

Glycolate C2H3O3 −1 3
Lactate C3H5O3 −1 4

Pyruvate C3H3O3 −1 3.3
Sucrose C12H22O11 0 4

a Degree of reduction calculated with respect to ammonia/molecular nitrogen/nitrate. NA, not applicable.

Table 2. Experimentally determined T. elongatus BP-1 biomass composition from turbidostat biomass
samples grown under an irradiance of 2000 μmol photons m−2 s−1.

Macromolecule Mass Percent Extraction Method/Analytical Method

DNA 0.4 Alkaline lysis/Hoechst 33258 fluorescence

Glycogen 2.0 Sodium sulfate
co-precipitation/Anthrone detection

Lipid (including chlorophyll) 17.4 Chloroform-methanol/Gravimetric

Protein 62.0 Hydrochloric acid hydrolysis/OPA,
FMOC derivatization

RNA 16.3 Alkaline lysis, perchloric acid/UV
absorbance

Total 98.1

3.2. Computational Analysis of Stress Acclimation

The computational BP-1 metabolic model was decomposed into 4,636,498 unique EFMs using
EFMtool [61], with ~99.5% producing biomass. Each EFM, as well as any non-negative linear
combination of multiple EFMs, represented a mathematically feasible phenotype and possible stress
acclimation strategy. Competitive stress acclimation strategies were identified using ecological resource
allocation theory. Resource allocation theory analyzes the amount of catabolic or anabolic resource
required to synthesize a cellular product, often biomass. Minimizing the requirement of a limiting
resource represents a competitive, cost-effective phenotype and is hypothesized to be a probable
cellular strategy selected by evolution. When two or more resources are considered simultaneously,
a multi-dimensional tradeoff surface is created that quantifies the utilization relationship between
the limiting resources [22–25]. Biomass-producing EFMs were ranked quantitatively based on
efficiency of resource use for biomass production under simulated environmental stresses including
high irradiance, O2/CO2 competition at RuBisCO, and limited availability of dissolved inorganic
carbon (DIC) as well as nitrogen or iron. The tradeoff between optimal use of two resources was
quantified by simultaneously minimizing the cost of biomass production under two different stress
factors. Similar methods have been applied to extend FBA to account for biosynthetic costs [26],
but enumeration of complete EFMs combined with resource allocation theory allows exploration of
the entire phenotypic space.
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3.2.1. Irradiance and Photosynthetic Electron Flow

Photosynthetic electron flow was examined as a function of irradiance-induced stress to interpret
relationships between photon absorption and photocatalytic water oxidation. Net O2 production
per carbon mole (Cmol) biomass produced was plotted as a function of photons absorbed per Cmol
biomass produced, a metric of irradiance-induced stress (Figure 2). Each net O2 molecule is the
byproduct of four photosynthetically derived electrons extracted from water and requires eight
total photons absorbed [66]; this relationship is reflected in the slope of the upper boundary of the
phenotypic cone. Photons absorbed at PSI during cyclic photosynthesis are decoupled from O2

production. Growth phenotypes were analyzed for the ability to direct electrons toward either biomass
or reduced byproducts. The EFMs along the lowest boundary of the phenotypic cone in Figure 2
represented growth where all electrons were directed to biomass and no reduced byproducts were
secreted, extending up to ~80 mol photons absorbed per Cmol biomass produced. Net O2 production
(~1.53 mol O2 per Cmol biomass) at the lowest boundary corresponds to the biomass degree of
reduction, ~6.1 mol electrons available to reduce O2 per Cmol biomass (Table 1). EFMs with higher net
O2 production directed electrons to reduced carbon byproducts, such as formate or acetate.

Figure 2. Computational analysis of irradiance and photosynthetic electron flow in cyanobacterium

T. elongatus BP-1. Net O2 production (net mol O2 evolved (Cmol biomass produced)−1) is
plotted as a function of photon absorption (mol photons absorbed (Cmol biomass produced)−1)
for biomass-producing EFMs. Each point represents a unique EFM. The slope of the upper boundary
of the phenotypic cone indicates maximum net moles of O2 produced per mole of photons absorbed
(eight photons required per molecule O2 evolved; theoretical minimum quantum requirement).
No byproducts were secreted on the lower boundary of the phenotypic cone minimizing net O2

production per biomass produced; net O2 production along this boundary was a direct result of
electrons incorporated into biomass; secreted reduced carbon byproducts were predicted throughout
the remaining phenotypic space. Color scale represents the photon absorption at PSII relative to PSI for
each EFM (mol photons absorbed at PSII (mol photons absorbed at PSI)−1). Relative contribution of
PSII was predicted to increase as photon absorption increased. Less than 1% of the EFMs had a PSII/PSI
ratio greater than 6 (with maximal value of 20) and were excluded from the plot to represent a more
feasible phenotypic space [67–69]. Modeled biomass production did not include maintenance energy
requirements. Points in the plot area shown are representative of 4,371,798 EFMs.

Biomass-producing EFMs were assessed for photon absorption at PSII relative to PSI to quantify
the contribution of the two photosystems to photosynthetic electron flow (Figure 2, shaded color bar).
A value less than one indicated elevated cyclic photosynthesis, a value greater than one indicated
elevated operation of PSII independent of linear photosynthesis (i.e., reduction of O2 through either
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cellular respiration or the water-water cycle), and a value equal to one indicated linear photosynthesis
or, alternatively, equivalent cyclic photosynthesis and O2 reduction. Figure 1 provides greater detail on
cyclic and linear photosynthesis. An increase in photon absorption at PSII at a fixed net O2 production
indicated greater gross production of O2, which was consumed by cellular respiration and/or the
water-water cycle. In general, photon absorption at PSII relative to PSI was predicted to increase
as irradiance-induced stress increased (Figure 2), indicating a greater contribution of PSII to photon
absorption at high irradiance.

3.2.2. Irradiance, High O2, and Nutrient Limitation

Computational BP-1 growth phenotypes were interrogated for stress acclimation strategies under
a range of relative O2 to DIC concentrations, represented by O2/CO2 competition at RuBisCO
(Figure 3a). The tradeoff curve simultaneously minimizes the cost of biomass production under
O2/CO2 competition (moles O2 per mole CO2 consumed at RuBisCO) and irradiance-induced stress;
EFMs on the tradeoff curve (or non-negative linear combinations thereof) represent optimal predicted
growth phenotypes under the combined stresses. Photorespiration, as opposed to secretion of glycolate,
was predicted as an essential process on the tradeoff curve except at zero O2/CO2 competition,
and utilization of photorespiration reactions increased with increasing stress. Utilization of the C2
photorespiration cycle was predicted to increase along the tradeoff curve, whereas use of the glycerate
pathway remained minimal. Photon absorption at PSII relative to PSI was also predicted to increase
along the tradeoff curve. Neither cellular respiration nor the water-water cycle was active along the
tradeoff curve, indicating that all photosynthetically derived electrons were directed to either biomass
or reduced carbon byproducts. The tradeoff curve was divided into four phenotypic zones based on
the suite of byproducts predicted. Zone 1 phenotypes did not secrete reduced byproducts, but as
O2/CO2 competition at RuBisCO increased, more energy from photons was required to mediate the
stress as indicated by higher photon absorption per biomass. At high O2/CO2 competition (~0.8 mol
O2 (mol CO2)−1), byproduct secretion represented the most resource-efficient acclimation strategy
under the combined stresses. Byproduct synthesis effectively consumed photosynthetically derived
electrons at the expense of fixed DIC and, conditionally, reduced nitrogen, as seen in the transition in
byproducts produced along the tradeoff curve. Formate was predicted to be the most resource-efficient
byproduct (zone 2 phenotypes), followed by combinations of formate and amino acids, represented in
the model as alanine (zone 3 phenotypes), and acetate and amino acids (zone 4 phenotypes). Secretion
of glycolate was not the most competitive use of metabolic potential under the considered stresses.
Net O2 production of the tradeoff curve EFMs quantified the fraction of electrons directed to biomass
and reduced byproducts as a function of stress acclimation (Figure 3b). A nonlinear increase in net O2

production per Cmol biomass was predicted; the increase in net O2 production correlated with the
secretion of reduced byproducts (formate, acetate, and/or alanine).

In addition to DIC, nitrogen and iron are essential anabolic resources and place constraints on
cellular functions such as growth or ATP regeneration [70]. Acclimation to nitrogen- or iron-limited
growth, assessed by investment into enzymes, was analyzed in conjunction with O2/CO2 competition
(Figure A2a,b in Appendix B). Increasing O2/CO2 competition at RuBisCO necessitated an increase
in nitrogen and iron investments into metabolic enzymes due to the requirement to process
2-phosphoglycolate. Tradeoff curve analysis of simultaneous acclimation to O2/CO2 competition
and nutrient limitation showed trends similar to those predicted under irradiance-induced stress
in Figure 3a, and amino acid secretion was again predicted at the highest resource limitation
stress. However, under nitrogen limitation, reduced byproduct secretion was required for the most
competitive phenotypes over the entire range of resource-limited growth. BP-1 metabolism was
predicted to be less robust to nitrogen-limited stress than irradiance-induced stress as indicated by
relatively fewer suboptimal EFMs near the tradeoff curve (Figure A2a in Appendix B). Additional
details on nitrogen and iron limitation are found in Appendix D. While the majority of EFMs produced

29



Processes 2017, 5, 32

biomass, energy-producing EFMs (not producing biomass) also showed similar optimal byproducts
under irradiance-induced stress and O2/CO2 competition (data not shown).

 
(a) (b) 

Figure 3. Computational analysis of irradiance-induced stress and O2/CO2 competition at

RuBisCO in cyanobacterium T. elongatus BP-1. (a) O2/CO2 competition at RubisCO (mol
O2 (mol CO2)−1 consumed) as a function of photon absorption (mol photons absorbed (Cmol
biomass produced)−1) for biomass-producing EFMs are plotted. Each point represents a unique
EFM. The tradeoff curve defining competitive strategies between O2/CO2 competition and
irradiance-induced stress was divided into four distinct phenotypic regions based on byproduct
secretion behavior, labeled accordingly (intensity of shading increases with increasing stress). The
maximum amount of O2 per CO2 consumption at RuBisCO that can be sustained is two to one.
Consumption of two O2 molecules followed by photorespiration recycles 2-phosphoglycolate to
regenerate the ribulose-1,5-bisphosphate precursor, but loses the single molecule of CO2 that
was consumed and thus cannot support biomass production. Points in the plot area shown are
representative of 4,457,199 EFMs. (b) Net O2 production (net mol O2 evolved (Cmol biomass
produced)−1) as a function of photon absorption (mol photons absorbed (Cmol biomass produced)−1)
for biomass-producing EFMs are plotted. Colored points indicate net O2 production of EFMs on the
tradeoff curve in (a). Color scale represents the photon absorption at PSII relative to PSI (mol photons
absorbed at PSII (mol photons absorbed at PSI)−1). Modeled biomass production did not include
maintenance energy requirements. Points in the plot area shown are representative of 4,355,094 EFMs.

3.3. Comparison of Computational Predictions with Photobioreactor Physiological Data

The optimal predicted growth phenotypes identified along the tradeoff curve (Figure 3a) were
compared with data from turbidostat culturing experiments. Irradiance levels altered both specific
growth rate and biomass yield during cultivation. Specific growth rates ranged from 0.06–0.29 h−1 at
irradiances varying from 200–2000 μmol photons m−2 s−1 (Figure 4a). Specific growth rates increased
linearly as a function of incident irradiance below 500 μmol photons m−2 s−1. Above 500 μmol photons
m−2 s−1, irradiance became saturating, possibly inhibitory, and specific growth rate approached
a maximum at 1800–2000 μmol photons m−2 s−1. Conversely, biomass yield per photon absorbed
had a maximum at low irradiance (200–300 μmol photons m−2 s−1) and decreased nonlinearly as a
function of incident irradiance (Figure 4b). Irradiance-induced stress at 2000 μmol photons m−2 s−1

reduced the biomass production efficiency by more than 50% compared to low irradiance conditions.
The decrease in biomass per photon yield is consistent with predicted acclimation strategies, as is the
nonlinear relationship between stress and biomass growth efficiency (Figure 3).
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(a) (b) 

Figure 4. Photobioreactor impact of irradiance on specific growth rate and biomass production

efficiency in T. elongatus BP-1 continuous culture. (a) Photobioreactor measurement of BP-1 specific
growth rate (g CDW (g CDW)−1 h−1) as a function of incident irradiance (μmol photons m−2 s−1).
CDW, cell dry weight. (b) Photobioreactor measurement of BP-1 biomass yield (g CDW (mol photons
absorbed)−1) as a function of incident irradiance (μmol photons m−2 s−1).

BP-1 maintenance energy requirements were estimated by analyzing specific photon absorption
rate as a function of specific growth rate (Figure 5). The non-growth associated maintenance energy
requirement (0.16 mol photons (g CDW)−1 h−1) was estimated by extrapolating the specific photon
absorption rate data to a zero growth rate. Photon requirements for growth can be partitioned into the
cellular energy required to (1) reduce nutrients such as DIC and nitrate into biomass monomers and
(2) polymerize monomers into macromolecules. The photon requirement to reduce nutrient substrates,
including bicarbonate and nitrate, to biomass monomers was calculated using the experimentally
measured biomass composition. Macromolecular synthesis reactions in the model incorporated the
energy cost of phosphate bonds required to polymerize monomers.

Photon requirement per Cmol biomass increased nonlinearly at higher growth rates (Figure 5),
which corresponded to higher incident irradiance and represented successively increasing
irradiance-induced stress and reduced biomass production efficiency. The difference between the
photon requirement for biomass and the experimentally measured photon requirement is hypothesized
to be the photon requirement for growth-associated maintenance energy, including tasks such as
general protein repair, enzyme turnover, and maintenance of gradients, or other drains such as
non-photochemical quenching of absorbed photons [8,71–73]. Additionally, the repair and recycling
of PSII due to increased photoinactivation at high irradiance requires a large investment of nitrogen
and poses a significant limitation on growth [74,75]. The implications of nitrogen source degree of
reduction were also factored into maintenance energy calculations. A comparison of the effects
of different nitrogen sources on the photon requirement is shown in Figure A3 in Appendix B.
Molecular nitrogen and ammonia required fewer photons per biomass since they are more reduced
than nitrate. Nitrate may be a preferred nitrogen source for photoautotrophs under high irradiance
conditions, likely because it represents a possible sink for electrons which can buffer over-reduced
photosynthetic machinery.
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Figure 5. Growth rate-dependent photon absorption rate and maintenance energy in cyanobacterium

T. elongatus BP-1. Specific photon absorption rate (mol photons absorbed (g CDW)−1 h−1) is plotted as
a function of specific growth rate (g CDW (g CDW)−1 h−1) for experimental BP-1 turbidostat cultures
(black circles). Specific photon absorption rate is dependent on specific growth rate (μ) according to
the equation 0.16e9.47μ determined from an exponential regression of the photobioreactor data. The
non-growth associated maintenance energy requirement was extrapolated from a specific growth rate of
zero (light blue line). Measured photon absorption rates are contrasted with calculated requirements for
biomass synthesis, including polymerization (dark blue line). CDW, cell dry weight.

3.4. Comparison of Computational Predictions with Photobioreactor Transcriptomic Data

The optimal predicted growth phenotypes identified along the tradeoff curve (Figure 3a) were
compared with previously published BP-1 transcriptomic data [33]. The transcriptomic data were
analyzed for differentially expressed genes (two-fold or greater difference) between high and low
irradiance conditions (2000 versus 200 μmol photons m−2 s−1). A change in expression of two-fold
or greater was observed for 1147 genes. Differentially expressed genes were examined according
to metabolic pathways and compared with the pathways utilized in the predicted optimal stress
acclimation phenotypes. Consistencies and inconsistencies between predicted and observed metabolic
functionalities were grouped into six categories (Table 3) and are discussed in detail below.

Table 3. Comparison between computational predictions of stress acclimations and previously
published photobioreactor gene expression data under high versus low irradiance conditions [33].
Metabolic functionalities were predicted from competitive pathways along the optimal tradeoff curve
for irradiance-induced stress and O2/CO2 competition (Figure 3a), and observations were made
from gene expression data comparing change in transcripts from high to low irradiance (2000 versus
200 μmol photons m−2 s−1) [33].

Prediction Observation

1. Photosystem
contribution

• Increased PSII photon absorption
relative to PSI

• Upregulation of PSII-associated genes
• No change in PSI-associated genes

2. Photorespiration
pathways

• Use of photorespiration
• Increase in photorespiration with higher
O2/CO2 competition

• Transcription of photorespiration genes
• Upregulation of C2 cycle genes

• Primarily C2 cycle, minimal glycerate
pathway usage • No change in glycerate pathway genes

3. Byproduct secretion
• Production of reduced byproducts•
Formate and acetate production

• Upregulation of formate, acetate, and sucrose
synthesis genes

• Amino acid (alanine) secretion at
highest stress

• Upregulation of amino acid synthesis
pathway and transporter genes
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Table 3. Cont.

Prediction Observation

4. Glycolysis • Increased use of lower portion of
glycolysis

• Upregulation of genes in lower portion of
glycolysis

5. TCA cycle • No change in TCA cycle use • Upregulation of TCA cycle genes leading to
synthesis of α-ketoglutarate

6. Nitrate and sulfate
assimilation

• Increased nitrate uptake in pathways
that secrete amino acid byproducts

• Upregulation of nitrate uptake and
assimilation genes

• No change in sulfate uptake • Upregulation of sulfate uptake and
assimilation genes

3.4.1. Photosynthesis, Photorespiration, and Byproducts

The predicted increase in photon absorption at PSII relative to PSI (Figure 3a) was reflected
in the transcriptomic data [33] showing upregulation of genes coding for several PSII subunit and
repair genes but no upregulation of PSI-associated genes (Table A2 in Appendix C). The increase in
transcript level could be due to increased photon absorption, or it could reflect an increased turnover
of PSII, which has been reported during culturing at high irradiance [74,75]. A relative increase in
photon absorption at PSII would suggest an increased relative contribution of PSII to photosynthetic
electron flow under irradiance-induced stress. Photorespiration was a predicted strategy under high
irradiance and O2/CO2 competition, corresponding to upregulation of photorespiration pathway
genes observed in the transcriptomic data [33]. Predicted pathways indicated preferential utilization
of the C2 photorespiration cycle as opposed to the glycerate pathway, and transcriptomic data [33]
indicated upregulation of C2 cycle genes with no change in expression of glycerate pathway genes
(Figure 6). Byproduct secretion was predicted as a competitive strategy at high irradiance and O2/CO2

competition. Irradiance, nitrogen investment, and iron investment analyses in conjunction with
O2/CO2 competition all predicted amino acid secretion as a resource-efficient strategy at the highest
combined stress conditions (Figures 3a and A2). These predictions corresponded with observations
of upregulated genes for synthesis pathways of organic compounds such as acetate and formate
(Figure 6), as well as for more than 50 amino acid synthesis pathway and transporter genes (Table A3
in Appendix C). Altogether, these parallels with the transcriptomic data [33] suggest increased electron
flow into the system, increased photorespiration, and reprocessing of salvaged carbon into other
byproducts with greater degree of reduction (Table 1) at higher irradiance.

3.4.2. Central Metabolism and Nutrient Assimilation

Several glycolysis genes were observed to be upregulated under high irradiance conditions [33],
primarily genes involved in the lower portion of glycolysis after glyceraldehyde-3-phosphate
(glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase,
enolase, and pyruvate kinase) (Table A2 in Appendix C). Tradeoff curve analysis of the EFMs under
high irradiance and O2/CO2 competition predicted that utilization of the reactions catalyzed by these
enzymes increased with increasing stress except for glyceraldehyde-3-phosphate dehydrogenase. Both
glyceraldehyde-3-phosphate and 3-phosphoglycerate intersect the Calvin cycle and glycolysis; thus,
increased use of the lower portion of glycolysis suggested funneling of glyceraldehyde-3-phosphate
from the Calvin cycle into glycolysis to produce pyruvate, which may be used to synthesize byproducts
such as formate, acetate, and amino acids. Several TCA cycle genes were also observed to be
upregulated under high irradiance conditions, predominantly genes catalyzing reactions up to the
synthesis of α-ketoglutarate, from which several amino acids are synthesized (Table A2 in Appendix C).
Tradeoff curve analysis of the EFMs under high irradiance and O2/CO2 competition predicted no
change in utilization of any TCA cycle reactions. The BP-1 model utilized alanine as a representative
amino acid which could be secreted as a byproduct; alanine is synthesized via pyruvate. However,
if the computational model was modified to allow secretion of amino acids that are synthesized via
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TCA cycle intermediates, such as glutamate, it would lead to predictions of increases in some TCA
cycle fluxes.

Figure 6. Cyanobacterium T. elongatus BP-1 photorespiration and byproduct secretion

pathways with transcriptomic data measured under high versus low irradiance. Genome-based
photorespiration routes (C2 cycle, dark blue, and glycerate pathway, light blue) and byproduct
secretion pathways included in the BP-1 model are illustrated. Green circles represent upregulated
gene expression measured under high irradiance (2000 versus 200 μmol photons m−2 s−1), and red
circles represent downregulated gene expression, previously measured in [33]. Numbers indicate fold
change for each gene. Enzymes coded in Roman numerals are: i, ribulose-1,5-bisphosphate carboxylase
oxygenase; ii, phosphoglycolate phosphatase; iii, glycolate oxidase; iv, glyoxylate carboligase; v,
tartronate semialdehyde reductase; vi, glycine transaminase; vii, serine hydroxymethyltransferase; viii,
serine-glyoxylate transaminase; ix, glycerate dehydrogenase; x, glycerate 3-kinase; xi, acetaldehyde
dehydrogenase; xii, alcohol dehydrogenase; xiii, succinate-semialdehyde dehydrogenase; xiv,
acetyl-CoA synthetase; xv, pyruvate dehydrogenase; xvi, formate acetyltransferase; xvii, lactate
dehydrogenase; xviii, alanine dehydrogenase; xix, sucrose phosphate synthase and sucrose phosphate
phosphatase; xx, formyltetrahydrofolate deformylase. Other abbreviations: αkg, α-ketoglutarate.

Finally, the transcriptomic data [33] showed upregulation of genes involved in both nitrate and
sulfate uptake and assimilation under high irradiance conditions (Table A2 in Appendix C). Tradeoff
curve analysis of the EFMs under high irradiance and O2/CO2 competition predicted increased use of
the nitrate uptake reaction for strategies that secreted amino acids; conversely, no change in use of
the sulfate uptake reaction was predicted. Reduction of nitrate to ammonia for amino acid synthesis
represents an effective strategy for using excess electrons from the photosynthetic electron transport
chain, consuming 8 moles of electrons per mole of nitrate reduced. Thus, at high irradiance and O2

production, secretion of amino acids represents an economical stress acclimation strategy. Similarly,
sulfate reduction also consumes 8 moles of electrons per mole of sulfate reduced to hydrogen sulfide,
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which is used in synthesis of cysteine and methionine. Permitting secretion of cysteine or methionine in
the computational model would lead to predictions of increased sulfate uptake. Altogether, comparison
of the predicted competitive strategies with transcriptomic data under high irradiance (Table 3)
suggests overall consistency of the computational model with photobioreactor observations.

3.5. Stress Acclimation and Photoautotrophic-Heterotrophic Interactions

BP-1 acclimation to a variety of culturing stresses was predicted to result in secretion of
reduced carbon byproducts including organic acids and amino acids (Figures 3a and A2a,b;
illustrated in Figure 7a). These byproducts represent a nutritional niche for heterotrophs.
Photoautotrophic-heterotrophic cross-feeding could represent a mutually beneficial mechanism for
buffering a photoautotroph from environmental stresses. Consumption of reduced carbon byproducts
by the heterotroph would relieve potential inhibitory organic acid stress, as well as maximize the
efficiency of total resource usage by the community (illustrated in Figure 7b). Cross-feeding of
byproducts could also promote growth of the photoautotroph through consumption of O2 by an aerobic
heterotroph, thus decreasing local O2 concentrations and lowering O2/CO2 competition. The amount
of heterotroph able to be supported by secreted byproducts was predicted as a function of stress
using published heterotrophic biomass per byproduct yields [76–82] (Figure 7c, see File S5 in the
Supplementary Materials for calculations). The predicted amount of heterotrophic biomass that can be
supported by BP-1 through cross-feeding of byproducts increased as stress increased due to higher
byproduct yields at higher stress levels, as well as the varying heterotrophic biomass yields on different
byproducts (Table A4 in Appendix C). The cross-feeding was also predicted to reduce local O2 levels,
which was calculated based on heterotrophic biomass O2 requirements (Figure 7d, File S5 in the
Supplementary Materials).

The predicted ratio of heterotroph to photoautotroph as a function of stress acclimation
was compared to published photobioreactor co-culture data of BP-1 with the aerobic heterotroph
Meiothermus ruber strain A [33]. Experiments reported heterotroph to photoautotroph ratios of
~1:10 [33]. This ratio, with some variation accounting for cell size differences between the two
populations, falls within the range of heterotroph to photoautotroph ratios predicted at modest
culturing stress (Figure 7c). These predictions considered autotrophic-heterotrophic interactions based
on secreted carbon and not necessarily nitrogen source. Additional analysis of potential cross-feeding
based on nitrogen or iron limitation can be found in Appendix B (Figure A2c–f).
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(a) (b) 

  
(c) (d) 

Figure 7. Byproduct secretion generates a heterotrophic niche and stimulates a mutually beneficial

relationship. (a) Cyanobacterium BP-1 produces O2 and reduced carbon compounds as metabolic
byproducts during environmental stress, both of which are inhibitory to BP-1 growth. (b) The presence
of reduced byproducts and O2 forms a nutritional niche for heterotrophic organisms, which relieves
inhibition for BP-1. (c) Heterotrophic biomass yield per BP-1 biomass (Cmol Cmol−1) is presented
as a function of O2/CO2 competition at RuBisCO (mol O2 (mol CO2)−1 consumed) for the EFMs
forming the optimal tradeoff with irradiance-induced stress. (d) Presence of a heterotroph lowers net
O2 production per Cmol BP-1 biomass as a function of O2/CO2 competition (mol O2 (mol CO2)−1

consumed) for the EFMs forming the optimal tradeoff with irradiance-induced stress, which reduces
O2 inhibition. The distinct phenotypic regions defined by the tradeoff between O2/CO2 competition
and irradiance-induced stress are labeled according to byproduct secretion patterns as in Figure 3a.

4. Discussion

Computational modeling was integrated with photobioreactor analyses to identify and interpret,
from a systems perspective, the inferred mechanisms that underpin cyanobacterial acclimation to
irradiance-associated stress. The combined results of this study show how different cyanobacterial
systems, such as the photosynthetic apparatus and central carbon metabolism, can respond to
environmentally induced stresses. Photobioreactor steady state growth of BP-1 showed decreased
biomass production efficiency at high irradiance (Figure 4b), indicating that electrons were partitioned
into non-biomass-producing alternative metabolic routes. Examination of transcriptomic data [33]
comparing high to low irradiance conditions identified upregulation of genes involved in PSII
operation, photorespiration, organic acid synthesis, and amino acid synthesis, among other pathways
(Figure 6, Tables A2 and A3). Interrogation of BP-1 metabolic pathways with EFMA and resource
allocation theory under conditions of high irradiance, high O2, and limited nutrient availability
provided a theoretical explanation for utilization of these pathways. Evolution has selected phenotypes
which allocate limiting resources competitively. The origin of the stresses is the imbalance in resource
acquisition which is manifested as a resource limitation. Acclimation to the resource stresses resulted
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in the secretion of reduced byproducts in a behavior analogous to classic overflow metabolism in
heterotrophs. The byproduct-secreting phenotypes represent a competitive and economical response
to the stress [1]. It is worth noting that photobioreactor observations and computational predictions
for BP-1 are in general agreement with the transcriptional patterns and physiological trends observed
in the closely related Synechococcus sp. PCC 7002 [83]. The predicted byproduct secretion profiles
furthermore control nutrient niches for proximal heterotrophic partners (Figure 7). In some cases,
heterotrophic consumption of the byproducts represents a mutually beneficial interaction in that
byproduct removal prevents accumulation of byproducts to a degree that represents an additional
stress. This mutually beneficial interaction template likely plays a significant role in the many reported
occurrences of photoautotrophic-heterotrophic consortia [84–86]. In fact, cross-feeding between BP-1
and the aerobic heterotroph M. ruber strain A has been both predicted by genome-scale modeling and
observed in a laboratory setting [14,33].

The computational analyses investigated several metabolic acclimations to photosynthesis-
associated stresses that apply broadly to photoautotrophs, including photosystem utilization and
photorespiration strategies, the nature of reduced carbon byproducts, and the severity of O2/CO2

competition at RuBisCO. PSII was predicted to increase in photon absorption relative to PSI as
irradiance increased (Figure 3), supported by transcriptomic data [33] (Tables 3 and A2). Increased
relative photon absorption of PSII under higher irradiance is also reported in the literature from
studies with the mesophilic cyanobacterium Synechocystis sp. PCC 6803 and is hypothesized to aid in
reducing overall electron transport [68]. Additionally, increased utilization of the C2 photorespiration
cycle at high irradiances may intersect with byproduct secretion strategies and contribute to amino
acid synthesis as a resource-efficient strategy at high irradiances. Photorespiration permits salvage
of carbon from unusable RuBisCO oxygenation byproducts; this carbon may be directed toward
other byproduct pathways. The C2 photorespiration cycle requires more enzymatic steps and thus
more biosynthetic resources (e.g., nitrogen) than the glycerate pathway, but links into glycine-serine
interconversion and amino acid synthesis pathways.

Formate is the least reduced organic byproduct considered in the model (Table 1). It is predicted
to be a more competitive byproduct secretion strategy at intermediate irradiance-induced stress
and O2/CO2 competition, releasing a minimal quantity of electrons in the form of reduced carbon
byproducts and retaining the remaining electrons for biomass (Figure 3). Alanine is predicted to be
a competitive byproduct at high stress levels due to its high degree of reduction (Table 1). At high
electron load (supported by high rates of oxygenic photosynthesis) and high O2/CO2 competition,
alanine synthesis consumes more electrons per Cmol, resulting in a more efficient redox sink (Figure 3).
Alanine was selected in this study as a representative amino acid; however, amino acids with higher
nitrogen content, such as arginine, histidine, or lysine, would serve as even more effective electron
sinks when nitrate is the nitrogen source. Genes involved in synthesis pathways for several amino
acids beside alanine (Table A3 in Appendix C) were identified as upregulated under high irradiance
conditions in the transcriptomic data [33]. Additionally, qualitative measurements from BP-1 steady
state cultures have previously identified a variety of amino acids in the extracellular environment,
including glutamate, isoleucine, leucine, lysine, phenylalanine, serine, threonine, and valine [33].

Experimental assessment of O2/CO2 competition and actual concentrations of O2 and CO2 at the
active site of RuBisCO in vivo is challenging. The specificity factor, a kinetic constant describing the
relative affinity of RuBisCO for CO2 versus O2 (vc/vo = SF[CO2]/[O2]) [87], has been measured for
a variety of phototrophs and is typically obtained from enzyme extracts. Falkowski and Raven [88]
compiled a list of specificity factors from a variety of organisms, including cyanobacteria, algae, and
plants, and estimated vo/vc ratios under assumptions of air equilibrium at 25 ◦C. These experimental
estimates were compared with the predicted vo/vc values from the BP-1 model irradiance tradeoff
curve (Figure 8a(A)). The variation in values within and among different types of organisms highlights
the diversity of RuBisCO enzyme properties, which organisms are thought to have optimized over time
based on different selective pressures [89,90]. However, the experimental estimates do not account for
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the optimal temperature environment of the organism, the confounding influence of photosynthetic O2

evolution, or effects of the carbon-concentrating mechanism, which may also be influenced by pH [91].
The specificity factor can be used to convert predicted O2/CO2 competition values to local

relative O2/CO2 concentrations around RuBisCO [87], thereby permitting extension of stoichiometric
modeling into the kinetic realm. Equivalent relative O2/CO2 competition values convert to different
relative concentrations depending upon the magnitude of the specificity factor. Values for mesophilic
cyanobacteria range from 45 to 70, and higher plants have an average value around 100 [87].
Figure 8a(B–D) shows the effect of varying the specificity factor on the O2/CO2 concentrations
necessary to achieve the predicted vo/vc values along the irradiance tradeoff curve in Figure 3a;
relative concentrations are lowered with a smaller specificity factor and raised with a higher
specificity factor. A higher specificity factor indicates a greater tolerance to stress from O2/CO2

competition. In vivo measurements of oxygenation and carboxylation rates are sparse in the literature,
particularly for microbial species; Taffs et al. [20] calculated a range of 3–7% oxygenation based on
measurements of extracellularly secreted glycolate [92], but these values are likely an underestimate
considering glycolate may be salvaged through the complete photorespiration pathway rather than
excreted (Figure 3). Isotopic labeling studies of cyanobacteria also provide experimental data, but
extrapolation of vc/vo ratios should be exercised with caution. Studies have shown operation of
photorespiration even under high CO2 (5%) conditions [93]. Another study has presented both
modeling and experimental validation of the necessity of photorespiration even under saturating
CO2 conditions, positing that high CO2 stimulates high photosynthetic rates to provide adequate
energy for carbon fixation, which thereby leads to increased O2 production levels [94]. Additionally,
elevated temperatures have been shown to enhance oxygenation due to both changes in the specificity
of RuBisCO and the different solubilities of O2 and CO2 [95] (Figure 8b). Experimental data on
vo/vc. values is variable and dependent on the conditions under which the measurements were
made. However, an environmental scenario with low O2/CO2 ratios may indicate that greater
priority is placed on minimizing O2/CO2 competition than on minimizing photon absorption cost
particularly under high irradiance conditions, e.g., O2/CO2 competition is a stronger driver of stress
acclimation. Byproduct production and existence of heterotrophic partners is observed in experimental
cyanobacterial systems, suggesting that byproduct production is an effective strategy for managing
electrons from excess photon absorption. Instead, the cell may be simultaneously optimizing for other
stresses such as biosynthetic nutrient investment like nitrogen or iron (Figure A2).

The systems-level analysis provided by this study indicated that the suite of metabolic carbon
and electron sinks (i.e., secreted byproducts and biomass) is dependent upon environmental
stressors. Pathway utilization and resource investments were co-dependent upon irradiance,
O2/CO2 competition at RuBisCO, and DIC, nitrogen, and iron levels. These results provided novel
insight into ecologically competitive metabolic strategies that cyanobacteria use to acclimate to
environmental conditions. Physiological and transcriptomic [33] data paralleled the predictions,
providing an additional level of support to the stoichiometric modeling predictions. It is noted
that the stoichiometric model does not account for kinetic constraints, regulatory effects, or other
aspects of thermodynamics beside reaction reversibilities [97,98], which may account for some of
the differences between predictions and data and represents an avenue for further development.
Finally, analysis of predicted optimal growth phenotypes was extended to make inferences about the
nature of photoautotrophic-heterotrophic interactions and provide a theoretical basis for examining
community composition. Taken holistically, this work presents a synergistic experimental and
theoretical approach for understanding metabolic acclimation and provides a new level of insight
into how different cyanobacterial systems, such as the photosynthetic apparatus and central carbon
metabolism, coordinate and respond to environmental stresses that influence resource allocation.
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(a) (b) 

Figure 8. Comparison of computational and experimental O2/CO2 competition and concentrations

at RuBisCO. (a) Predicted O2/CO2 competition values (mol O2 (mol CO2)−1 consumed at RuBisCO)
from the irradiance tradeoff curve in Figure 3a are shown in gray (A). Experimental O2/CO2 values for a
variety of organisms calculated at air equilibrium and 25 ◦C [88] are overlaid in color. Predicted O2/CO2

competition values (gray points) were converted to relative O2/CO2 concentrations around RuBisCO
by multiplying by the specificity factor (SF). The experimentally measured SF for BP-1 of 82 [87] was
used for conversion in (B). Experimental data points from Falkowski and Raven (colored points) were
converted to O2/CO2 concentrations via the respective SF of each organism [88]. Comparison of
the BP-1 SF with lower and higher SF values is visualized using a lower SF of 41 (representative of
Synechococcus sp.) (C) and a higher SF of 129 (representative of a red alga) (D). A lower SF indicates that
lower relative O2/CO2 concentrations result in higher O2/CO2 competition ratios, whereas a higher SF
indicates that an organism is more tolerant of higher relative O2/CO2 concentrations. (b) Temperature
affects the relative propensity of RuBisCO for oxygenation. Dashed and dotted blue curves represent O2

and CO2 concentrations in aqueous phase at equilibrium with atmospheric concentrations, calculated
using Henry’s law constants from Sander [96]. The black curve represents the ratio of the [O2] to [CO2]
curves, showing that the relative proportion of O2 increases with elevated temperature. Calculations
are provided in File S6.
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Appendix A. Biomass Composition Analytical Methods

Appendix A.1. DNA, After Downs and Wilfinger [38]

50 μL of frozen cell pellet equivalent to approximately 1.5 mg of biomass (dry weight) was
re-suspended in 50 μL of alkali extraction solution (1 N NH4OH, 0.2% Triton X-100 with nuclease-free
water) in 2-mL Eppendorf tubes. Tubes were incubated at 37 ◦C for 10 min in a block heater.
After 10 min, samples were diluted to 2 mL total volume with assay buffer (100 mM NaCl, 10 mM
EDTA, 10 mM Tris, pH 7.0 with HCl, nuclease-free water) and transferred to 15-mL Falcon tubes
for centrifugation (2500× g, 30 min, 4 ◦C). Calf thymus DNA standards were prepared by making a
DNA stock solution in nuclease-free water about 300 μg/mL (stored at 4 ◦C). Exact concentration was
measured with a NanoDrop 1000 spectrophotometer. The standard solution was diluted to a working
stock of 100 μg/mL with standard buffer (assay buffer containing the same concentration of alkali
extraction solution as the diluted samples (100 mM NaCl, 10 mM EDTA, 10 mM Tris, pH 7.0 with HCl,
0.025 N NH4OH, 0.005% Triton X-100)). The DNA working stock was then diluted into a standard series
with standard buffer (1–5 μg/mL). 50 μL of sample or standard were added to a black polystyrene
96-well plate with clear bottom (Corning 3603). 295 μL of Hoechst working reagent was added to each
well. Hoechst working reagent was prepared fresh daily from an intermediate stock of 200 μg/mL by
diluting to 1 μg/mL with assay buffer. The intermediate stock was prepared from a 10 mg/mL stock
solution by diluting to 200 μg/mL with nuclease-free water. Stock solutions and working stocks were
stored at 4 ◦C wrapped in aluminum foil to protect from light. The wells were then read in a Synergy
fluorescent plate reader using the following settings: (plate type) 96 well plate; (set temperature)
setpoint 30 ◦C, preheat before moving to next step; (shake) double orbital 30 s, frequency 180 cpm;
(read) fluorescence endpoint, 352 nm excitation, 461 nm emission, bottom optics, gain 100, Xenon flash
light source, high lamp energy, normal read speed, 100 ms delay, 10 measurements/data point. Three
reaction wells of sample or standard were performed for each sample or standard. The concentration
of the samples was determined based on the average of the three standard calibration curves.

Appendix A.2. Glycogen, After Del Don et al. [39]

Anthrone reagent was prepared fresh daily according to Herbert et al. [99] and stored at 4 ◦C.
Frozen cell pellet (−80 ◦C) was thawed and divided into three equal parts by mass in 2-mL Eppendorf
tubes, approximately 0.5 mg dry weight. Each aliquot was re-suspended in 200 μL 2% sodium sulfate
(w/v). Eppendorf tubes were sealed with parafilm and heated for 10 min at 70 ◦C in a block heater.
After heating, 1 mL methanol was added to each tube and vortexed to co-precipitate glycogen and
sodium sulfate. The precipitate was pelleted by centrifuging for 15 s at 10,000 rpm. The precipitate
was washed with 1 mL methanol, until the pellet was white, to remove impurities. Pellets were then
re-suspended in 1 mL reverse osmosis water and transferred to clean glass test tubes and placed on ice
to chill. 5 mL of ice-cold anthrone reagent was added to each test tube. After adding reagent, tubes
were chilled on ice for 5 min, vortexed gently to homogenize the solution, and transferred to a boiling
water bath for 10 min. Tubes were then returned to ice for 5–10 min until cool, vortexed gently to mix
contents, and absorbance at 625 nm was read with a Genysys spectrophotometer using a reagent blank.
A glucose standard curve (10–190 μg/mL) was treated identically with anthrone reagent.

For total carbohydrate quantitation, the cell pellet aliquot was re-suspended in 1 mL reverse
osmosis water and transferred to a clean glass test tube, and the anthrone procedure detailed above was
followed. For quantitation of other cellular carbohydrates, the residual methanol from the extraction
and washings were collected in an aluminum pan and evaporated, re-suspended in 1 mL reverse
osmosis water, and the anthrone procedure detailed above was followed.
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Appendix A.3. Lipid, After Bligh and Dyer [40]

Frozen cell pellet (10 mg) was re-suspended to 0.6 mL using Milli-Q water in a 15-mL
polypropylene centrifuge tube. Chloroform (0.75 mL) and methanol (1.5 mL) were sequentially added,
adhering to the 1:2:0.8 chloroform:methanol:water volume ratio recommended by Bligh and Dyer.
The mixture was vortexed 15 min at speed setting 3 using a VWR vortex mixer. Chloroform (0.75 mL)
and Milli-Q water (0.75 mL) were sequentially added, vortexing 10–15 seconds at speed setting 7 after
each addition. Upon centrifugation (4000 rpm, 15 min, 20 ◦C), the lower chloroform phase, containing
lipids, chlorophyll, and pigments, was transferred via micropipette to an aluminum pan that had
been pre-dried at room temperature and pre-weighed. The liquid was evaporated in a fume hood
and weighed at three different time intervals following evaporation. Weights were measured with
a Mettler Toledo MT5 microbalance with accuracy to 0.001 mg and recorded as an average of three
measurements. It was noted that chloroform may leach compounds from polypropylene materials;
thus a blank reaction using 0.6 mL Milli-Q water was used and its weight was subtracted from the
biological sample weight.

Appendix A.4. Protein and Amino Acid Distribution, After Henderson et al. [39]

Amount approximately equivalent to 3 mg of frozen cell pellet was transferred to borosilicate
HPLC vials with PTFE/silicone caps. 50 μL 6 M HCl per mg biomass was added to each vial. The vials
were tightly capped and hydrolyzed at 105 ◦C for 24 h using a block heater. After 24 h, the samples
were then neutralized with 6 M NaOH to pH 7.0 and filtered with 0.22 μm PES spin filter in microfuge
for 5 min at 10,000 rpm. Samples were then placed at −80 ◦C to freeze before lyophilizing for 24 h
(VirTis benchtop lyophilizer). After lyophilization samples were placed at −80 ◦C until HPLC analysis.
HPLC analysis was performed according to the following protocol validated and published by Agilent
Technologies [41] using an Agilent 1100 HPLC equipped with fluorescence detector. Borate buffer was
0.4 N borate, pH 10.2 with NaOH; o-phthalaldehyde (OPA) reagent, 9-fluorenylmethylchloroformate
(FMOC) reagent, and amino acid standards were obtained from Agilent. OPA and FMOC reagents
were replaced daily in amber vials. Upon opening a vial of reagent, analyses were performed within
10 days. Solvent A was 40 mM sodium phosphate buffer (using 1:1 ratio of NaH2PO4 and Na2HPO4),
pH 7.8 with NaOH, 0.2 μm filtered. Solvent B was 45:45:10 acetonitrile:methanol:water (v/v/v), 0.2 μm
filtered. The pump rate was 1 mL/min, 47 min per injection, with gradient settings as follows:

Time (Min) % Solvent B

0 0
3.8 0

36.2 57
37.2 100
44.6 100
46.4 0
47 0

The flow rate was halved and the timing was doubled from the procedure reported in the Agilent
technical note to improve resolution and reduce wear on equipment. The column thermostat was set
at 40 ◦C, and the autosampler thermostat was set at 4 ◦C. The fluorescence detector settings were as
followed, to switch from OPA- to FMOC-derivatized amino acids:

Time (Min) Ex/Em (nm) PMT Gain

0 340/450 10
30 266/305 9
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The injection program was as follows:

Step Instruction

Step 1 Draw 2.5 μL from vial 1 (borate buffer)
Step 2 Draw 0.5 μL from sample
Step 3 Mix 3 μL in air, max speed, 2×
Step 4 Wait 0.5 min
Step 5 Draw 0 μL from vial 2 (needle wash)
Step 6 Draw 0.5 μL from vial 3 (OPA)
Step 7 Mix 3.5 μL in air, max speed, 6×
Step 8 Draw 0 μL from vial 2 (needle wash)
Step 9 Draw 0.5 μL from vial 4 (FMOC)
Step 10 Mix 4 μL in air, max speed, 6×
Step 11 Draw 32 μL from vial 5 (water)
Step 12 Mix 18 μL in air, max speed, 2×
Step 13 Inject

Auxiliary settings Drawspeed = 200 μL/min
Ejectspeed = 600 μL/min
Draw position = 0.0 mm

The integration parameters for collecting the data were set according to the following parameters.

Parameter Value

Slope Sensitivity 1
Peak Width 0.04
Area Reject 1

Height Reject 0.4
Shoulders OFF

Appendix A.5. RNA, After Benthin et al. [43]

Samples were thawed and washed three times with 3 mL 0.7 M HClO4 for degradation of cell
walls, vortexing to re-suspend in between washing and centrifuging at 4000 rpm for 10 min at 4 ◦C.
The pellet was then re-suspended in 3 mL 0.3 M KOH to lyse the cells and was incubated in a 37 ◦C
water bath for 1 h, shaking at 15-min intervals. After 1 h, samples were cooled and 1 mL 3 M HClO4

was added for neutralization. The solution was centrifuged at the same specifications as before, and
the supernatant was poured off into a new centrifuge tube. The pellet was washed twice with 4 mL
0.5 M HClO4, centrifuged, and supernatant added to the new tube. 0.5 M HClO4 extracts the RNA,
while DNA, which is stable even in strong alkali, and protein, which does not solubilize in the alkali,
remain in the precipitate. The collection of extracts was made up to a volume of 15 mL by adding 3
mL 0.5 M HClO4 and was centrifuged once more to remove any non-visible precipitates of KClO4.
Upon final centrifugation, absorbance was measured at 260 nm against a 0.5 M HClO4 blank using
disposable UV cuvettes rated to 220 nm. Linearity of the spectrophotometer was confirmed within
that range by successively diluting the sample twice with 0.5 M HClO4 and confirming a linear fit to
the three measured absorbances at 260 nm. Calculation of RNA quantity was performed by assuming
1 unit of absorbance at 260 nm corresponds to 38 μg/mL RNA on average [100].
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Appendix B. Supplemental Figures

Figure A1. BP-1 amino acid distribution. Correlation between the predicted amino acid distribution
(based on protein-coding gene sequences) and the experimentally measured distribution. Cysteine,
methionine, and tryptophan are excluded from the correlation due to degradation during hydrolysis of
the biomass samples to extract the protein. The equation of the best-fit linear trendline is y = 0.79x + 1.29
with R2 = 0.79.

(a) (b)

(c) (d)

Figure A2. Cont.
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(e) (f)

Figure A2. Computational analysis of nutrient availability and O2/CO2 competition at RuBisCO in

cyanobacterium BP-1. (a) Nitrogen availability. O2/CO2 competition (mol O2 (mol CO2)−1 consumed
at RuBisCO) as a function of nitrogen investment (nitrogen atoms per EFM) for biomass-producing
EFMs. The tradeoff curve defining competitive strategies between O2/CO2 competition and nitrogen
limitation was divided into three distinct phenotypic regions based on byproduct secretion, labeled
accordingly (intensity of shading increases with increasing stress levels). Points in the plot area are
representative of 1,430,252 EFMs. (b) Iron availability. O2/CO2 competition (mol O2 (mol CO2)−1

consumed at RuBisCO) as a function of iron investment (iron atoms per EFM, considering only
photosynthetic and central metabolism reactions) for biomass-producing EFMs. The tradeoff curve
defining competitive strategies between O2/CO2 competition and iron limitation was divided into two
distinct phenotypic regions based on byproduct secretion, labeled accordingly (intensity of shading
increases with increasing stress levels). Color scale represents the photon absorption at PSII relative to
PSI for EFMs on the tradeoff curve (mol photons absorbed at PSII (mol photons absorbed at PSI)−1).
Each point represents a unique EFM. Modeled biomass production did not include maintenance energy
requirements. Points in the plot area are representative of 4,615,500 EFMs. (c,d) Heterotrophic biomass
yield per BP-1 biomass (Cmol Cmol−1) is presented as a function of O2/CO2 competition at RuBisCO
(mol O2 (mol CO2)−1 consumed) for the EFMs forming the optimal tradeoffs with nitrogen and iron
availability, respectively. (e,f) Presence of a heterotroph lowers net O2 production per Cmol BP-1
biomass as a function of O2/CO2 competition (mol O2 (mol CO2)−1 consumed) for the EFMs forming
the optimal tradeoffs with nitrogen and iron availability, respectively, which reduces O2 inhibition.
The distinct phenotypic regions defined by the tradeoff between O2/CO2 competition and nutrient
availability stress are labeled according to byproduct secretion patterns as in panels (a,b).

Figure A3. Analysis of influence of nitrogen source on photon requirement. Comparison of the impact
of various nitrogen sources on the theoretical specific photon absorption rate necessary for biomass
production. Photon absorption rates (mol photons absorbed (g CDW)−1 h−1) were calculated using the
BP-1 experimentally measured biomass composition. Ammonia is a completely reduced form of nitrogen,
whereas and molecular nitrogen and nitrate are less reduced forms and require successively more energy for
reduction to be assimilated into biomass, causing an increase in the specific photon absorption rate. Nitrate
serves as the most effective sink for excess electrons from the photosynthetic electron transport chain.
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Appendix C. Supplemental Tables

Table A1. Experimentally measured amino acid distribution from OPA/FMOC derivatization and HPLC
fluorescence detection. Amino acids are abbreviated according to IUPAC 1-letter convention; average
mole percent of two separately hydrolyzed samples and percent relative standard deviation are reported.

Amino Acid Mole % % RSD

Q/E 13.1 0.16
N/D 10.1 0.07

L 9.4 0.08
A 9.2 0.24
R 8.5 0.96
V 6.1 0.97
I 5.4 0.29
G 5.0 0.02
F 4.9 0.15
T 4.9 0.07
K 4.5 1.96
Y 4.1 0.01
S 4.0 0.08
P 3.4 1.21
H 1.5 0.14

Table A2. Upregulated BP-1 genes under high versus low irradiance conditions (2000 versus 200 μmol
photons m−2 s−1) [33] involved in photosystem II (PSII), carbon-concentrating mechanism (CCM),
Calvin cycle carbon fixation, glycolysis, TCA cycle, oxidative phosphorylation (OP), and nitrate and
sulfate uptake and assimilation. For each pathway, upregulated genes are listed in the left column with
corresponding fold change in the right column.

PSII CCM Calvin Glycolysis

psbA3 42.0 ccmK1 2.5 gap2 5.3 eno 4.6
psbP 4.3 ccmK2 2.1 gapA 4.5 gap2 5.3
psbX 3.3 ccmK3 2.6 glpX 6.6 gapA 4.5
psbQ 2.7 ccmM 2.5 pgk 2.1 gmpA 6.4
psb29 2.6 tlr0311 2.4 prkB 13.4 gpmI 5.4
psb32 4.1 rpiA 16.2 pfkA 2.3

tpiA 5.2 pgk 2.1
pyk 3.5
tpiA 5.2

TCA OP Nitrate Sulfate

acnB 2.2 atpC 2.2 narM 2.3 cysA 2.5
fumC 3.2 atpD 5.2 nirA 3.4 cysC1 3.9
gltA 4.7 atpE 2.2 ntcB 4.9 cysH 4.6
idh3 6.3 atpF 2.9 nrtA 2.2 cysQ 3.1
sdhC 2.0 atpG 3.2 nrtD 2.5 met3 8.5

atpH 2.8 tll1357 3.1
cydB 3.6
ndh 2.0

ndhA 6.3
ndhB 4.4
ndhC 6.1

ndhD3 13.2
ndhE 4.7
ndhF3 2.4
ndhG 3.0
ndhH 2.2
ndhI 4.9
ndhJ 6.6
ndhK 3.1
ndhL 4.9
ndhM 13.1
ndhN 9.8
ppa 3.6

sdhC 2.0
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Appendix D. Nitrogen and Iron Limitation

Nitrogen is a major component of protein but is often scarce in the environment [101].
Ecologically competitive acclimation to increased O2/CO2 competition as a function of pathway
nitrogen requirement is shown in Figure A2a in Appendix B; the tradeoff surface defines three
phenotypic regions according to byproduct secretion. The EFM at the lower left corner of the
plot represents nitrogen-limited cyanobacterial growth under low O2/CO2 competition; byproduct
secretion is predicted even at the lowest nitrogen stress. With increasing O2/CO2 competition and
nitrogen investment, BP-1 is predicted to secrete a number of reduced carbon compounds along the
tradeoff surface, including acetate, formate, glycolate, and under the highest stress, the amino acid
alanine. Production of byproducts is predicted to achieve the most efficient nitrogen utilization
while simultaneously minimizing O2/CO2 competition. EFMs on the nitrogen tradeoff surface
exclusively use the C2 photorespiration cycle whereas the glycerate pathway is not used (Figure A2a
in Appendix B), similar to the result for irradiance-induced stress in Figure 3a. Also similar to the
result for irradiance-induced stress, relative PSII/PSI photon absorption increases along the tradeoff
surface, with greater relative photon absorption at PSII at higher O2/CO2 competition and higher
nitrogen investment (Figure A2a in Appendix B).

Biologically available iron is often limiting in microbial habitats due to low solubility, which is
exacerbated at elevated pH [102]. Figure A2b in Appendix B predicts acclimation to increased O2/CO2

competition as a function of pathway iron investment. Two phenotypic regions of byproduct secretion
were defined by the tradeoff surface, including combinations of ethanol, formate, and acetate, and
finally alanine under the highest stress. Under low iron, relative PSII/PSI photon absorption decreases
along the tradeoff surface as O2/CO2 competition and iron investment increase, showing a reversed
trend compared with irradiance-induced stress and nitrogen investment. Analogous to the result for
irradiance-induced stress in Figure 3a, the C2 cycle is the predominant photorespiration strategy as
O2/CO2 competition increases. At low O2/CO2 competition, the relative PSII/PSI photon absorption
is nearly twice that at high O2/CO2 competition (the scale shows greater variability than the scale
for light stress or nitrogen investment in Figures 3a and A3a) and again indicates higher gross O2

and ATP production. Additionally, as compared to the tradeoff surface in Figure 3a, the responses to
nitrogen and iron limitation are less robust; fewer suboptimal pathways exist in close proximity to the
tradeoff surface.

Appendix E. Biomass Yield Comparison

The physiological light response experiments allowed for comparison of photon costs for
synthesizing BP-1 biomass with results reported in previously published studies for Cyanothece sp.
ATCC 51142 and the green alga Chlamydomonas reinhardtii [30,103]. This comparison is of interest
because experimental photon requirement values are relatively uncommon. The photon cost per
biomass for BP-1 was about three times higher than the costs for these two organisms. This result
may be due to the thermophilic nature of the organism and/or higher maintenance costs incurred
by alkaline habitats. The nonlinear increase observed in the overall experimental photon absorption
rate as growth rate increases (Figure 5) may correspond to increased cellular stress with higher
maintenance energy requirements or greater thermal dissipation at higher irradiances. For example,
higher irradiance may necessitate increased repair of photosystem proteins or a greater proportion of
light may be lost to inefficiency [88]. These experiments and simulations demonstrate the wide range
of irradiances under which BP-1 is capable of growing, stimulating interest in the metabolic strategies
microbes such as this thermophilic cyanobacterium use to manage the daily fluctuations in irradiance
and the accompanying stresses.
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Abstract: Using experimental data obtained from in vitro bioaugmentation studies of a sand filter
community of 13 bacterial species, we develop an individual-based model representing the in silico
counterpart of this synthetic microbial community. We assess the inter-species interactions, first by
identifying strain identity effects in the data then by synthesizing these effects into a competition
structure for our model. Pairwise competition outcomes are determined based on interaction effects in
terms of functionality. We also consider non-deterministic competition, where winning probabilities
are assigned based on the relative intrinsic competitiveness of each strain. Our model is able to
reproduce the key qualitative dynamics observed in in vitro experiments with similar synthetic sand
filter communities. Simulation outcomes can be explained based on the underlying competition
structures and the resulting spatial dynamics. Our results highlight the importance of community
diversity and in particular evenness in stabilizing the community dynamics, allowing us to study
the establishment and development of these communities, and thereby illustrate the potential of
the individual-based modelling approach for addressing microbial ecological theories related to
synthetic communities.

Keywords: individual-based model; invasion; bioaugmentation; engineered community

1. Introduction

1.1. Background

The composition, establishment and functional maintenance of any ecosystem are largely
driven by the interactions between individuals [1], and microbial communities are no exception [2].
The fundamental basis of all studies of interactions between cell populations are synthetic co-culture
systems: experimental set-ups where “two or more different populations of cells are grown with
some degree of contact between them” [3]. Synthetic co-cultures have gained particular interest
from microbiologists in recent years due to their reduced complexity and increased controllability,
which favours them over more complex natural systems for examining ecological theories [4] and also
for more specific industrial, medical and environmental applications such as industrial fermentation
and the production of chemical compounds [5].

A more specific application of co-cultures is bioaugmentation, where the biomass in soil or water
treatment plants is altered by the addition of certain microbial strains that have been selected for
their ability to degrade specific chemical compounds [6]. From a microbial ecological perspective,
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bioaugmentation represents a kind of microbial invasion process, where the strains introduced to
augment resident community functionality are the invaders. For example, during the treatment
of drinking water, the common groundwater pollutant 2,6-dichlorobenzamide (2,6-BAM) must be
removed below a threshold concentration of 0.1 μg L−1 to meet the EU Directive on Drinking Water [7].
However, the endogenous microbial communities in the sand filters (SFs) of such drinking water
treatment plants are not capable of achieving sufficient BAM removal to respect this threshold [8].
Therefore, bioaugmentation of SFs has been proposed as an alternative strategy, by the addition of
a specialized BAM mineralizer such as Aminobacter sp. MSH1 [9]. However, studies of this type of
bioaugmentation of drinking water ecosystems rarely address how exactly the pesticide degrader
interacts with the resident community, and other such fundamental ecological questions [10].

In Vandermaesen et al. [11], the authors hypothesize that the establishment of MSH1 and its
subsequent BAM mineralization in SFs depend not only on exploitative competition effects, but also
on other features such as interactions with resident community members. Therefore, the BAM
mineralization activity of MSH1 was evaluated in sand microcosms in the presence of a selection of the
13 sand filter isolates (SFIs) described in Vandermaesen et al. [11]. Synthetic microbial communities of
MSH1 combined with SFIs were subjected to an initial competition phase. Subsequently, BAM was
added and the kinetics of BAM mineralization was evaluated as a measure of bioaugmentation success.

To characterize the interactions between resident community members, co-cultures of various
combinations of SFIs with MSH1 were inoculated, and their mineralization kinetics was followed.
However, given the total number of strains in the community, it is practically impossible to
experimentally study all possible co-culture combinations. In such cases, mathematical modelling is
becoming more and more appreciated as a tool for identifying possible co-cultures of interest [12–15].

1.2. Motivation and Scope

We use an individual-based modelling approach to construct the in silico counterpart of the
in vitro synthetic community used in the experiments of Vandermaesen et al. [11], with the goal
of qualitatively reproducing the observed dynamics. Due to their inherent flexibility and ability
to reproduce complex system-level behaviour by capturing the interactions between individuals,
individual-based models (IBMs) have proven useful for addressing fundamental microbial ecology
questions, such as our questions related to fundamental interactions between invader and resident
community members. Other examples include IBM studies of the evolution of cooperative behaviour
in microbial communities [16] and the role of spatial aggregation in maintaining cooperation between
cross-feeding microbial strains [17]. However, such models are typically restricted to only a few species,
hence our model of 13 species would be an outlier in this respect [4].

Previous results with synthetic microbial communities with similar characteristics in terms
of diversity and composition [18] and also for this particular synthetic community of MSH1 and
13 SFIs [11], highlighted the importance of the initial competition phase (before the addition of BAM)
where all 13 SFIs are inoculated in the co-culture. Competition between the SFIs results in extinctions,
leading to a stable subcommunity of reduced richness. It is this subcommunity that is present at
the moment of the BAM spike and during the subsequent mineralization period that determines the
bioaugmentation success. We aim to retrieve this behaviour with our modelling approach.

For this purpose, we make use of the data obtained from the Vandermaesen et al. experiments [11]
(described in Section 2) to model the competitive interactions between individual microbes. We then
present the results of inferring the strain interactions (Section 3.1), incorporating this information
in an IBM (Section 3.2), as well as the results of the in silico experiments it is subsequently
employed for (Section 3.3). In the final section, we summarize the conclusions of the modelling
and simulation studies.
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2. Materials and Methods

In this section, we summarize the experimental set-up and procedure used by Vandermaesen et al. [11]
to obtain the dataset used for the modelling and simulation studies presented in this paper.

2.1. Experimental Set-Up

The hypothesis of this in vitro study was that the establishment of MSH1 and its subsequent
BAM mineralization in SFs depend on interactions with and between resident community members.
Therefore, the BAM mineralization activity of MSH1 was evaluated in sand microcosm co-cultures
in the presence of different combinations of 13 SFIs. Synthetic microbial communities of MSH1
combined with SFIs were co-cultured, then BAM was added and the kinetics of BAM mineralization
was evaluated as a measure of bioaugmentation success.

2.1.1. Bacterial Strains

The specific variant of the BAM mineralizing Aminobacter sp. MSH1 [9] used in this study,
MSH1-GFP, was fluorescently tagged. The 13 SFIs used were isolated from SF material from two
drinking water treatment plants [11]: Acidovorax sp. S9, Undibacterium sp. S22, Brachybacterium sp. S51,
Mesorhizobium sp. S158, Acidovorax sp. S164, Rhodococcus sp. K27, Acidovorax sp. K52, Aeromonas sp. K62,
Paucibacter sp. K67, Pelomonas sp. K89, Rhodoferax sp. K112, Rhodoferax sp. K129, and Piscinibacter sp. K169.
None of the selected SFIs were capable of BAM mineralization, avoiding any confounding effects with
the BAM mineralization performance of MSH1.

2.1.2. Microcosm Set-Up

Microcosms were created in deep 96-well plates, containing sterile sand in every well. MSH1
and SFIs were cultured and prepared as described in Vandermaesen et al. [11] and combined in
synthetic communities in such a way that the number of cells of every strain was 107 cells/mL.
Since each community included MSH1, the total richness of a community RT is given by RT = RSFI + 1,
where RSFI is the number of SFIs present. In addition to all combinations of individual SFI with MSH1
(13 combinations at RSFI = 1), all 78 different pair combinations of two SFIs with MSH1 (RSFI = 2)
were tested.

Sodium acetate was provided as the only carbon source at a concentration of 150 μg L−1 in MMO
medium (MMO + Ac). Assuming that 50% of acetate-C is actually assimilated, this corresponds to
an AOC (assimilable organic carbon) concentration of 22 μg C /L, which is within the range of AOC
values in drinking water ecosystems (20–100 μg C /L) [19]. Of every synthetic community, 100 μL
was inoculated in the sand microcosms. A reference microcosm inoculated with 100 μL MSH1 at
107 cells/mL (RSFI = 0) was included in every deep well plate. In addition, to account for abiotic
14CO2 production, one negative control (RT = 0) was included, containing sand amended with 100 μL
MMO + Ac. All synthetic communities and controls were replicated four times. No 14CO2 production
was observed in the abiotic control. The plates were sealed and incubated at 20 °C for 7 days.

After this initial competition phase, all wells were spiked with 5000 counts per minute 14C-BAM,
dissolved in 5 μL MMO, which corresponds to a final BAM concentration of 150 μg L−1. BAM
mineralization was then followed for approximately 130 h by trapping the produced 14CO2 with
Ca(OH)2. Trapped 14CO2 radioactivity was quantified by digital autoradiography. The cumulative
percentage 14CO2 was plotted relative to the total amount of 14C added as a function of the incubation
time, and hence cumulative mineralization curves were obtained.

2.2. Modelling of Mineralization Kinetics

To describe the kinetics of BAM mineralization, the modified Gompertz model [20] was used.
This model is one of the most commonly used microbial growth models [21], and is given by
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P = A exp
(
− exp

(μ e
A

(λ − ct) + 1
))

(1)

where P (%) is the percentage mineralization at time t (h), A (%) is the total extent of mineralization
after the exponential mineralization phase, λ (% h−1) is the lag time, c (% h−1) is the endogenous
mineralization rate, and μ (% h−1) is the maximum mineralization rate constant. The modified
Gompertz model differs from the standard Gompertz model [20] in that its parameters each have a
biological meaning.

The Gompertz parameters of the cumulative mineralization curves were determined by least
squares curve fitting, using the Trust-Region-Reflective algorithm [22,23], at a termination tolerance
of 10−14 and allowing at most 2 × 105 function evaluations and 3 × 105 iterations. Initial parameter
estimates were set at 30, 5, 0.1, and 2 for A, μ, c, and λ, respectively [24]. This was implemented
using Matlab R2012b (Mathworks, Natick, MA, USA). All values of c were zero or close to, and were
hence excluded.

2.3. Description of the Dataset

From the experimental set-up described in Section 2.1, we obtained a dataset representing
13 monocultures (the individual strains) and 78 co-cultures (the pair combinations). For each of
these 91 conditions, we have two types of mineralization data. First, a cumulative BAM mineralization
time series consisting of achieved mineralization values at 13 time points, from t = 0 h to t = 130 h.
There are four biological replicates of each time series, except where some outliers were removed as
indicated in Vandermaesen et al. [11]. In total, 21 out of 364 time series were removed. After removal
of these outliers, no condition had less than three replicates. The second data type consists of the fitted
Gompertz parameters λ, μ and A describing the mineralization kinetics, namely one set of parameters
per time series.

3. Results and Discussion

3.1. Assessing Strain Interactions

The experiments of Vandermaesen et al. [11] focused on bioaugmentation success and therefore
collected data related to BAM mineralization and MSH1 survival. The data related to the SFIs
themselves are their monoculture growth curves and their monoculture survival curves on acetate
(see Appendix A). These data can give us an idea of how the SFIs grow and persist in isolation, and on
this basis Vandermaesen et al. [11] classified the strains according to their “intrinsic competitiveness”,
a classification that we can use as an additional feature of the strains. However, these data do not
give us any information about how the SFIs may interact, and in particular compete, when they are
inoculated together in co-culture.

The information we do have regarding the interactions between SFIs is indirect. From the
differences in mineralization parameters between the different co-culture combinations, we can
infer when there are interaction effects occurring between strains, by comparing the mineralization
performances of MSH1 alone, in co-culture with individual SFIs, and in co-culture with both strains.
The mineralization performance was studied using the Gompertz model (see Section 2.2 for details).
This model has four parameters: the lag time λ, the maximum mineralization rate μ, the total extent of
mineralization A, and the endogenous mineralization rate c.

To study the strain interaction effects, we focus on two of these parameters: the lag time λ and
the maximum mineralization rate μ. These two parameters have been highlighted as key to the
success of bioaugmentation strategies and are more strongly linked with both positive and negative
mineralization effects than the other mineralization parameters [25].
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3.1.1. Identifying Strain Identity Effects

Since each synthetic community included MSH1, the total richness of a community RT is given by
RT = RSFI + 1, where RSFI is the number of SFIs present. In addition to all combinations of individual
SFIs with MSH1 (13 combinations at RSFI = 1), all 78 different pair combinations of two SFIs with
MSH1 (RSFI = 2) were tested (further details given in Section 2). The 13 SFIs are assigned the following
labels: S9, S22, S51, S158, S164, K27, K52, K62, K67, K89, K112, K129, and K169.

Previous studies have also used growth model parameters to identify different growth behaviours
between microbial species, for example through the use of regression models [26]. We employ
a statistical test known as the pairwise Tukey test [27] to compare values of the lag time λ and
mineralization rate μ across different RSFI levels. With this test it is possible to evaluate whether values
of λ or μ observed for a specific synthetic community are significantly different from the respective
parameter values observed for a different community.

The Tukey test statistic is z = mA−mB
SE

, where mA and mB are the respective means of the
observations of two populations being compared, and SE is the data’s standard error [28]. The null
hypothesis of the test is that the means are from the same population. The test statistic is then compared
to a critical test statistic value zcrit which is obtained from the studentized range distribution [29]. If z
is larger than zcrit, then the null hypothesis is rejected and it is concluded that the two populations
are significantly different. Tests were performed at the 95% significance level, using Mathematica
(version 11.0, Wolfram Research, Champaign, IL, USA).

Two types of tests were conducted. First, we compared values of λ or μ for RSFI = 1 communities
against RSFI = 0 (i.e., MSH1 alone) as a benchmark population. To determine the sign of the change,
we consider the biological interpretation of a positive or beneficial change in these parameters. For the
lag time λ, a decrease in this parameter is considered a positive effect while an increase is considered a
negative effect. For the mineralization rate μ, the opposite is true.

The second type of test required selecting one of the SFIs as the focal strain. The test then compared
values of λ or μ for the RSFI = 2 communities including this focal strain, against the values of λ or μ for
the corresponding RSFI = 1 community for the non-focal strain. For example, when S9 was the focal
strain of the test and the parameter under consideration was λ, we selected all RSFI = 2 communities
containing S9. One such community contained S9, S22 and MSH1. We then compared the values of λ

of this community against the values of λ of the community containing S22 and MSH1. This allowed
us to conclude if in this case there were significant differences in lag time due to the inclusion of S9.
This analysis was repeated for every strain other than the focal strain.

This test was done 13 times for each parameter, so that each of the strains was used once as the
focal strain. The results of these tests are collected in the tables shown in Figures 1 and 2. In these
tables, each row collects the results of Tukey tests with a particular focal strain, e.g., the first row shows
the results of tests where S9 was the focal strain, and the columns indicate the other strains being
tested for interaction effects with S9.

3.1.2. Building the Competition Structures

Using the information gathered in Figures 1 and 2, we represented the competition occurring
between the SFIs using so-called tournament matrices. Such a matrix M for s species has dimensions
s× s. If the species represented by row i outcompetes the species represented by column j, then Mij = 1.
On the other hand, if the species represented by row i is outcompeted by the species represented by
column j, we have Mij = −1. If i = j, then Mij = 0. Using the information in Figures 1 and 2, we can
compile such a tournament or competition matrix. The question remains how precisely to do so.

We have two possibilities: to merge the information about the lag time λ and mineralization
rate μ interaction effects, or to treat the parameters separately. The latter option is justified by
considering that the parameters represent different biological attributes and different underlying
processes [25]. This is most noticeable in their opposing effects on mineralization performance in
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particular; an increased parameter λ is considered a negative effect while an increased parameter μ is
considered a positive effect.

S9 S22 S51 S158 S164 K27 K52 K62 K67 K89 K112 K129 K169

S9 + 0 + + 0 + + + + + + -
S22 + - + + 0 + 0 + 0 + + -
S51 0 - 0 0 - 0 - 0 - 0 - -
S158 + + 0 + 0 + + + + + + -
S164 + + 0 + 0 + + + + + + -
K27 0 0 - 0 0 0 - 0 - 0 - -
K52 + + 0 + + 0 + + + + + -
K62 + 0 - + + - + + 0 + 0 -
K67 + + 0 + + 0 + + + + + -
K89 + 0 - + + - + 0 + + 0 -
K112 + + 0 + + 0 + + + + + 0

K129 + + - + + - + 0 + 0 + -
K169 - - - - - - - - - - 0 -

Figure 1. Tukey test results for the lag time λ. Each row collects the results of Tukey tests with
a particular focal strain, the columns then indicate the strains that were tested for interaction effects with
it. The entry in cell (i, j) indicates the difference (if any) between the RSFI = 2 community containing
species i and species j, and the control RSFI = 0 community: “+” indicates the RSFI = 2 parameter
values were significantly larger than the RSFI = 0 values, “–” indicates they were significantly
smaller, and “0” indicates no significant difference. The background colour of cell (i, j) indicates
the difference (if any) between the RSFI = 2 community containing species i and species j, and
the RSFI = 1 community containing species j: green indicates the RSFI = 2 parameter values were
significantly smaller than the RSFI = 1 values, red indicates they were significantly larger, and no
colour indicates no significant difference.

S9 S22 S51 S158 S164 K27 K52 K62 K67 K89 K112 K129 K169

S9 - 0 - - 0 - - - - - - 0

S22 - 0 - - - - - - - - - 0

S51 0 0 - - 0 - - - - - 0 0

S158 - - - - - - - - - - - 0

S164 - - - - - - - - - - - -
K27 0 - 0 - - - 0 - 0 - 0 0

K52 - - - - - - - - - - - 0

K62 - - - - - 0 - - - - 0 0

K67 - - - - - - - - - - - 0

K89 - - - - - 0 - - - - 0 0

K112 - - - - - - - - - - - 0

K129 - - 0 - - 0 - 0 - 0 - 0

K169 0 0 0 0 - 0 0 0 0 0 0 0

Figure 2. Tukey test results for the mineralization rate μ. Each row collects the results of Tukey tests with
a particular focal strain, the columns then indicate the strains that were tested for interaction effects with
it. The entry in cell (i, j) indicates the difference (if any) between the RSFI = 2 community containing
species i and species j, and the control RSFI = 0 community: “+” indicates the RSFI = 2 parameter
values were significantly larger than the RSFI = 0 values, “–” indicates they were significantly
smaller, and “0” indicates no significant difference. The background colour of cell (i, j) indicates
the difference (if any) between the RSFI = 2 community containing species i and species j, and
the RSFI = 1 community containing species j: green indicates the RSFI = 2 parameter values were
significantly larger than the RSFI = 1 values, red indicates they were significantly smaller, and no
colour indicates no significant difference.
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This approach results in two competition matrices, the first based on lag time λ interaction effects,
and the second based on mineralization rate μ interaction effects. We look in Figure 1 (λ interaction
effects) or Figure 2 (μ interaction effects) for pairs of SFIs that appear to interact with each other,
and check what kind of interaction appears to be taking place: is it positive or negative with respect to
each of the SFIs?

This corresponds in Figures 1 and 2 to both the cell entries and the cell background colours.
The cell entries indicate which kind of difference (if any) exists between the control community and
the RSFI = 2 community containing the particular species corresponding to the cell row and column.
These relationships can be positive, negative, or not significant. The cell background colours indicate
the difference (if any) between the RSFI = 1 community containing the species corresponding to the
cell column, and the RSFI = 2 community containing the particular species corresponding to the cell
row and column. These relationships can also be positive, negative, or not significant.

We then obtain the following matrices representing competition between the SFIs. When considering
interactions based on lag time λ effects, the matrix reads:

Mλ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 0 0 0 0 0 1 0

0 0 0 −1 1 0 0 0 0 0 1 1 0

−1 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 1 0 0 1 0 0 1 1 0

0 −1 0 −1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 1 0

0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 0 0 −1 0

−1 −1 0 −1 −1 0 −1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

When considering interactions based on mineralization rate μ effects, the matrix has the form:

Mμ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 1 0 1 0

0 −1 0 0 0 0 0 −1 0 −1 0 1 −1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 1 0 1 0

0 0 0 −1 1 0 −1 0 1 0 1 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 −1

0 0 0 −1 1 0 −1 0 0 0 0 0 0

0 −1 0 0 0 0 0 −1 0 0 0 −1 0

0 0 0 −1 −1 0 −1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)
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An additional extension of our modelling approach that will bring it closer to reality is to also
consider non-deterministic competition. Deterministic competition assumes that, if the competition
structure specifies that A beats B, this will always occur: it will never be possible for B to beat A.
This is reflected in the competition matrices Mλ and Mμ, which contain only 1’s (implying certain
victory), −1’s (certain defeat) and 0’s (no competition). But this is not always realistic [30–32]. Variation
between individuals can result in an individual of species A that is a particularly weak competitor,
and an individual of species B that is a particularly strong competitor. If these two specific individuals
meet, the outcome of the competition can be in doubt. It may be more realistic to specify a so-called
winning probability [33,34]: the probability that A beats B. Including a winning probability allows for
different competition outcomes to occur, and the value of the winning probability allows us to account
for the relative strengths of the individuals.

Therefore we will also consider non-deterministic competition between the SFIs, not only in terms
of its effects on the diversity and stability of the community (and possible subcommunity), but in
comparison with the same effects due to deterministic competition. Our immediate question is then
how to assign the winning probabilities to the different pairwise competitions.

Using data related to the SFIs’ monoculture growth and survival curves, Vandermaesen et al. [11]
classified the “intrinsic competitiveness” of the SFIs and on this basis grouped them into strong,
intermediate and weak competitors. Using this information, we can assign winning probabilities to
each pairwise competition based on the relative differences in intrinsic competitiveness between the
two strains. For example, competition between a weak intrinsic competitor and a strong intrinsic
competitor will most likely result in the success of the latter. It should also be clear that this winning
probability should be higher than the winning probability assigned to an intermediate intrinsic
competitor when faced with a weak intrinsic competitor. Using this approach, we replace the 1’s
and −1’s populating our matrices Mλ and Mμ with rational numbers of absolute value less than 1,
corresponding to the appropriate winning probability.

Using this approach, we obtain the following matrices representing non-deterministic competition.
When considering interactions based on lag time λ effects, the matrix has the form:

M∗
λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0.9 0.9 0 0 0 0 0 0 0 0.9 0

0 0 0 −0.9 0.7 0 0 0 0 0 0.7 0.7 0

−0.9 0 0 0 0 0 0 0 0 0 0 0 0

−0.9 0.9 0 0 0.9 0 0 0.9 0 0 0.9 0.9 0

0 −0.7 0 −0.9 0 0 0 0 0 0 0 0.9 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −0.9 0 0 0 0 0 0 0 0.9 0

0 0 0 −0.9 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 −0.7 0 −0.9 0 0 0 0 0 0 0 −0.6 0

−0.9 −0.7 0 −0.9 −0.9 0 −0.9 0 0 0 0.6 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

When considering interactions based on mineralization rate μ effects, the matrix has the form:
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M∗
μ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −0.9 0.7 0 0 0 0 0 0.7 0 0

0 0 0 0 0 0 −0.9 0 0 0 0 0 0

0 0.9 0 0 0 0 0 0.9 0 0.9 0 0.9 0

0 −0.7 0 0 0 0 0 −0.7 0 −0.6 0 0.9 −0.7

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.9 0 0 0 0 0.9 0 0.9 0 0.9 0

0 0 0 −0.9 0.7 0 −0.9 0 0.7 0 0.7 0 0

0 0 0 0 0 0 0 −0.7 0 0 0 0 −0.7

0 0 0 −0.9 0.6 0 −0.9 0 0 0 0 0 0

0 −0.7 0 0 0 0 0 −0.7 0 0 0 −0.6 0

0 0 0 −0.9 −0.9 0 −0.9 0 0 0 0.6 0 0

0 0 0 0 0.7 0 0 0 0.7 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

3.2. Constructing the Individual-Based Model

To understand how the different competition structures affect the dynamics of the system,
we consider the in silico counterpart of the synthetic community of 13 SFIs. We model this community
using an individual-based approach, which we describe using an established standard protocol known
as the ODD protocol [35].

3.2.1. Overview

Purpose

The aim of the model is to study how more realistic competition structures affect the in silico
dynamics, particularly in terms of community diversity and stability, and investigate whether this
approach can qualitatively reproduce the dynamics observed in similar in vitro studies, namely a
stable and persisting subcommunity.

State Variables and Scales

The model is a two-dimensional representation of an experimental domain divided into a regular
grid of size L × L = N, and populated by a community of 13 SFIs. We assign to each strain a numerical
label between one and 13, in the order given in Section 3.1.1: S9, S22, S51, S158, S164, K27, K52, K62, K67,
K89, K112, K129, K169. Each grid site is either occupied by a single individual, or is empty. Individuals
are characterized by two state variables: grid position (x, y) and species identity s ∈ {1, . . . , 13}.

Process Overview

We consider an in silico microbial community that is initially placed on the grid with a random
spatial distribution. The community’s initial species abundance distribution is completely even,
to mimic the in vitro experimental set-up.

An individual can interact with its nearest neighbours, defined as those individuals in its von
Neumann neighbourhood (the four grid cells with which it shares an edge). Three possible interactions
can occur, representing the key demographic processes: reproduction, competition and mobility.

Reproduction can occur when an individual is located adjacent to an empty grid site, which is
then filled with a new individual of the same species. In order to provide a form of mobility,
all individuals can exchange their position with a nearest neighbour or move to a neighbouring
empty site. Competition can occur between two neighbouring individuals that do not represent the
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same species. The outcome of the competition event is determined by the governing competition
matrix; the defeated individual is removed from the grid and the grid site becomes empty.

Scheduling

The IBM proceeds using a modified version of the Gillespie algorithm [36], to determine which
interaction occurs at each time step and calculate the interaction outcome. The algorithm iterates over
the following steps:

(1) Set time to t = 0 and set the event rate constants:

(a) reproduction with rate constant μ

(b) competition with rate constant σ

(c) mobility with rate constant ε

(2) Calculate the overall rate of events r = μ + σ + ε

(3) Select an individual at random
(4) Select one of the focal individual’s nearest neighbours at random
(5) Select an interaction event with the following probabilities, by drawing a random number from

the interval [0, r]:

(a) reproduction with probability μ
r

(b) competition with probability σ
r

(c) mobility with probability ε
r

(6) Execute the selected interaction event on the selected individual (if permitted) and determine the
outcome according to the governing rules:

(a) reproduction occurs deterministically (it is always carried out if possible)
(b) mobility occurs deterministically
(c) competition can occur:

i. deterministically: the winner is determined by the appropriate entry (being 1 or
−1) in the competition matrix Mλ or Mμ

ii. non-deterministically: a random number rc is drawn from the unit interval and
compared to the appropriate winning probability Mij in the competition matrix
M∗

λ or M∗
μ, where species i and species j are competing.

If Mij > 0:

• species i wins the competitive event if rc < Mij

• species j wins the competitive event if rc > Mij

If Mij < 0:

• species i wins the competitive event if rc > |Mij|
• species j wins the competitive event if rc < |Mij|

(7) Update the grid according to the outcome of step 6
(8) Update the time to t = t + 1
(9) Return to step 3 and continue until t = tend

This procedure is repeated for a specified number of generations, where a generation is defined
as the number of steps required for each cell to be the subject of on average one interaction.
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3.2.2. Design Concepts

• Emergence: the spatial patterns and population-level dynamics of the community emerge
naturally from the interactions occurring between individuals.

• Competition based on pairwise interaction effects: the competition scheme is constructed based
on pairwise interaction effects, encoded in a competition matrix.

• Non-deterministic competition: In addition to deterministic competition, we also investigate
the effects of non-deterministic competition, where the victor of any competition event is not
predetermined but is instead stochastic.

• Interactions: individuals interact with each other and their environment by reproducing if located
next to an empty site, exchanging sites with their neighbours, or competing with their neighbours.

• Stochasticity: the stochasticity in the model arises from the initial spatial distribution of the
grid; the interactions between individuals and the environment (reproduction); the interactions
between individuals (mobility, competition); and from the non-deterministic competition.

• Sensing: if selected for reproduction, individuals can sense whether their selected neighbouring
site is empty; if so, they will reproduce. If the site is occupied by an individual, no reproduction
will occur.

• Observation: the data collected from the IBM includes the population count of each species,
the community evenness and diversity, the spatial distribution of individuals, and their time to
extinction. These are tracked for each time step.

3.2.3. Details

Initialization

The model is initialized with a random spatial distribution of individuals and empty sites. Initially,
a certain proportion of grid sites is left empty; thus the system is initially below carrying capacity.
The initial species abundance distribution is completely even, as is the typical approach in similar
modelling studies [37–39]. Aside from the input variables, all other parameters used to initialize the
model are fixed for all simulations, and are shown in Table 1. Note in particular that the mobility
rate constant ε is set below the system’s critical mobility rate, above which extinctions are certain due
to the interactions between individuals being insufficiently localized. It has been shown for models
of this type that coexistence of all species is only possible when mobility remains low and therefore
individuals can only interact over small spatial scales (in our case, with their nearest neighbours) [40].

Table 1. Parameters of the individual-based model of 13 SFIs.

Parameter Description Value

L Grid side length 200
ø Initial proportion of empty sites 0.1
μ Reproduction rate constant 1
σ Competition rate constant 1
ε Mobility rate constant 4.25
T Number of generations evolved 1000

3.2.4. Input

The model’s input is the competition matrix. There are four different matrices:

(i) Mλ: deterministic competition based on λ interaction effects (Matrix (2))
(ii) Mμ: deterministic competition based on μ interaction effects (Matrix (3))
(iii) M∗

λ: non-deterministic competition based on λ interaction effects (Matrix (4))
(iv) M∗

μ: non-deterministic competition based on μ interaction effects (Matrix (5))

For each of these initial settings, we run 200 replicate simulations.
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3.3. In Silico Community Dynamics

3.3.1. Richness

To study the effects of the different types of competition on the diversity of the in silico
synthetic community, we first examine the richness effects, by determining the number of surviving
species after 1000 generations to see what levels of richness are maintained under the different
competition structures.

In Figure 3, we show the probability of observing a certain species richness after 1000 generations.
for deterministic and non-deterministic competition based on lag time λ interaction effects. With this
competition structure, we observe monocultures very rarely in the deterministic case, and never in
the non-deterministic case. We find final richness levels as high as eight (deterministic case) or nine
species (non-deterministic case). In the deterministic case, approximately 70% of simulations result in
communities of five or six species, and the same for the non-deterministic case. The distribution of
final richness is more skewed towards higher richness values for the non-deterministic case, indicating
a stabilizing effect on the dynamics in terms of fewer extinctions and thus higher richness, an effect
observed in other modelling studies comparing deterministic and non-deterministic effects [31].
This effect is not surprising, since non-deterministic competition results in fewer prey extinctions and
more predator extinctions compared to deterministic competition, and thus decreasing extinction
probabilities of the most vulnerable species.
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Figure 3. Probability of observing a particular species richness after 1000 generations for
(a) deterministic and (b) non-deterministic competition based on λ effects. Probabilities calculated
from 200 replicates.

The distribution of final richness for deterministic and non-deterministic competition based on
mineralization rate μ interaction effects (Figure 4) is again more skewed towards higher richness
values for the non-deterministic case, indicating a stabilizing effect on the dynamics in terms of fewer
extinctions and thus higher richness. Additionally, higher richness levels are observed compared to the
case of competition based on λ interaction effects. No monocultures are ever observed for competition
based on μ interaction effects, and in fact community richness never drops below four (deterministic
case) or five species (non-deterministic case). In the deterministic case, approximately 95% of
simulations result in communities of five or six species, in the non-deterministic case approximately
95% of simulations result in communities of five, six or seven species.

Thus, in both cases (λ and μ interaction effects), we find similar behaviour in terms of community
richness as was observed for the in vitro synthetic community of Vandermaesen et al. [11], namely the
establishment of a stable community of reduced richness compared to the initial inoculation of 13 SFIs.

The increased in silico community diversity in the case of competition based on mineralization
rate μ interaction effects, compared to lag time λ effects, can be ascribed to a more balanced competition
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structure in the former case, and more specifically its relatively higher intransitivity. A competition
structure is transitive if the constituent species can be ranked in a strict competitive hierarchy, and hence
intransitivity refers to the lack of such a strict hierarchy [41]. This characteristic can be quantified for
example using a measure of relative intransitivity proposed by Laird and Schamp [42], denoted by
RI . This index takes values in the unit interval, with larger values corresponding to more intransitive
competition structures. Using this index, we find that Matrix Mμ is more intransitive than Matrix Mλ,
with a relative intransitivity of RI = 0.83 compared to RI = 0.80, respectively.
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Figure 4. Probability of observing a particular species richness after 1000 generations for
(a) deterministic and (b) non-deterministic competition based on μ effects. Probabilities calculated
from 200 replicates.

3.3.2. Diversity

After observing the richness effects due to the different forms of competition, we now consider
community diversity. We do so using the Leinster-Cobbold diversity index [43], an effective number
index that also includes a sensitivity parameter q that determines how much weight is assigned to
rare or common species. For q < 1, more weight is given to rare species (q = 0 corresponds to species
richness), while for q > 1 more weight is given to common species. All species are weighed equally by
their proportions for q = 1 [43].

For each of the four competition matrices, we calculate the Leinster-Cobbold diversity index over
time, for different values of q, so that we may gather information about the composition and balance
of the communities, as well as their changes in diversity as the different simulations evolve.

In Figure 5 we show the average Leinster-Cobbold diversity over time for deterministic and
non-deterministic competition based on lag time λ interaction effects, for varying values of the
sensitivity parameter q. With different values of q, we can infer changes in species richness (for low
values of q), evenness (for high values of q) and diversity (for q = 1). Hence we calculate the diversity
profiles for q ∈ {0, 1, 20}.

Initially, the community undergoes a sharp drop in evenness (seen in differences between the two
curves for q > 0 relative to the q = 0 curve), while richness is maintained at its initial level. The time
to the first species extinction is roughly similar for all replicates, namely around 250 generations.
This period represents the time required for spiral spatial structures to begin to form (see Section 3.3.3),
and the first species to be entirely surrounded by its predator(s) and killed off. Following the first
extinction, others follow as they are enabled by the spatial structures as the species have aggregated
sufficiently to begin to chase each other around the grid.

The q = 1 and q = 20 curves approach each other late in the simulation time, indicating that
relatively high evenness is maintained for significant periods of time. However, the higher order
diversities are significantly less than the zero order diversity (richness), indicating that in the later
stages of the in silico experiments, multiple species continue to coexist but these communities are
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quite uneven, in agreement with the dynamics of the in vitro synthetic community [11]. Finally, we
again observe a stabilizing effect when considering non-deterministic rather than deterministic in
silico competition, in terms of time to first extinction and final community diversity.
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Figure 5. Mean diversity profiles (Leinster-Cobbold index) for q ∈ {0, 1, 20}, for (a) deterministic
and (b) non-deterministic emergent competition based on λ effects. Mean and standard deviation
calculated from 200 replicates.

In Figure 6, we compare the changes in diversity for communities subject to deterministic and
non-deterministic competition based on mineralization rate μ interaction effects. Diversity is higher
here than for the two previous competition matrices, for all values of q. Additionally, the communities
are more even. Notably, in Figure 6 the q = 1 and q = 20 curves never overlap, indicating higher
levels of evenness compared to the previous competition matrices which resulted in converging curves.
This can also be inferred by the smaller distance between the q = 0 curve and the q > 0 curves in
Figure 6, which indicates relatively more species coexisting in relatively more even communities.
The minor stabilizing effect of non-deterministic competition compared to deterministic competition
can also be observed in terms of diversity maintenance and time to first extinction.
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Figure 6. Mean diversity profiles (Leinster-Cobbold index) for q ∈ {0, 1, 20}, for (a) deterministic
and (b) non-deterministic emergent competition based on μ effects. Mean and standard deviation
calculated from 200 replicates.
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3.3.3. Spatial Structures

These diversity effects, and the spatial dynamics underlying them, can also be observed in Figure 7,
where we show two representative examples of the grid configuration at T = 1000 generations for
non-deterministic competition based on lag time λ (Figure 7a) or mineralization rate μ (Figure 7b)
interaction effects. As was observed in Figures 5 and 6, competition based on the former results in more
uneven communities than competition based on the latter. In the former case, sufficient species are
present in sufficient numbers to form the spiral patterns characteristic of this type of individual-based
models, which have been shown to help maintain coexistence [40]. These patterns also qualitatively
resemble those observed in in vitro experiments where a similar synthetic community of SFIs was
co-cultured with MSH1 in the presence of BAM [18]. The spiral formations also enable spatial refuges,
which have been observed to support species coexistence by allowing vulnerable species to persist
at low but still significant levels [44]. Such refuges can be observed for example in Figure 7b for
multiple species.

(a) (b)

"S9" "S22" "S51" "S158" "S164" "K27" "K52"

"K62" "K67" "K89" "K112" "K129" "K169"

Figure 7. Examples of in silico communities at T = 1000 generations with emergent non-deterministic
competition based on (a) λ effects, and (b) μ effects.

3.3.4. Community Composition

Having studied community diversity effects, we can now turn our attention to the composition of
these persisting subcommunities. In Figure 8, we show the persistence probability for each SFI for
deterministic and non-deterministic competition based on lag time λ interaction effects. The results
reflect the dynamics illustrated in Figure 7a: S9 is the dominant strain, but it is a member of a subgroup
of SFIs that are present in the majority of the simulations. This is unsurprising, since S9 was the
strongest competitor in the two competition structures based on λ interaction effects (Mλ and M∗

λ)
and thus it is the dominant SFI in the persisting subcommunity, which we recall is quite uneven
(see e.g., Figures 5 and 7). In more than 80% of the simulations, we observe the same SFIs persisting
together: S9, K67, K169, K27 and K89. This is true for both the deterministic and non-deterministic
competition cases.

Thus our model is able to qualitatively reproduce the in vitro dynamics of a persisting smaller
subcommunity [11]. These dynamics have also been observed for communities of microbial species [18]
as well as for communities of higher organisms [45,46].
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Figure 8. Probability of finding each strain in the community after 1000 generations) for (a) deterministic
and (b) non-deterministic emergent competition based on λ effects.

Another subgroup of persisting SFIs is found for deterministic and non-deterministic competition
based on mineralization rate μ interaction effects (Figure 9), once again matching qualitatively the
dynamics observed in in vitro synthetic communities. The members of this subgroup are not entirely
the same as for Figure 8. Instead we find K169, K52, S158, K27 and S9 coexisting in more than 80%
of the simulations. The strains in the persisting subcommunity are also more equal in terms of their
persistence probabilities (and hence their extinction probabilities) than was the case for competition
based on λ interaction effects (Figure 8). These SFIs are also more equally matched in terms of their
competitive strengths (see Mμ and M∗

μ). These factors result in these subcommunities being able to
maintain significantly higher evenness levels than the other competition structures, as we noted when
studying the diversity of these communities (Figure 6). The partial overlap in membership of the
persisting subcommunities in the λ and μ cases may be ascribed to the fact that the dominance of a
particularly adept competitor may be reflected in both the growth parameters under consideration.

S5
18 K1

2
K9
6
K5
26 S4

5
S2
2
K1
7
K5
52 S6 K2

7
S5
49 K4

2
K5
16

0.

0.2

0.8

0.1

0.9

5.

Strain

Pe
rs
is
te
nc
e
pr
ob
ab
ili
ty

S5
1
S8
K
S2
1K 96

2
92
54 91

1
S5
7
S2
21 S1

7 9K
92
68 S6

1
S2
5K

0.

0.1

0.4

0.5

0.8

2.

9train

Pe
rs
is
te
nc
e
pr
ob
ab
ili
ty

(a) (b)

Figure 9. Probability of finding each strain in the community after 1000 generations) for (a) deterministic
and (b) non-deterministic emergent competition based on μ effects.

Finally, we examine extinctions in our different communities. We have seen that extinctions
are frequent, but generally limited to the same set of SFIs. In Figure 10, we show the average
time to extinction for each SFI, for deterministic and non-deterministic competition based on
lag time λ interaction effects. We note again that these are slightly longer for non-deterministic
competition compared to deterministic competition, and always occur after an initial period of
spiral formation (~300 generations). One strain, K129, collapses to extinction not long after spiral
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formation has commenced; this strain is the weakest in both competition structures. After it disappears,
there is another lapse before extinctions recommence and thereafter proceed fairly regularly until the
community is reduced to the persisting uneven subcommunity dominated by S9 (which never suffers
any extinctions) and the other strains in small proportions.
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Figure 10. Mean time to extinction per strain for (a) deterministic and (b) non-deterministic emergent
competition based on λ effects. Blue labels indicate strains for which no extinctions occurred. Means
calculated from 200 replicates.

For deterministic and non-deterministic competition based on mineralization rate μ interaction
effects (Figure 11), we notice a reduction in extinction times compared to competition based on lag
time λ interaction effects. This may seem counterintuitive given that we have already observed these
communities to be more stable, however the key point is that fewer species go extinct. Those that do
collapse to extinction do so more quickly, but this does not affect the stability of the persisting
subcommunity. Now S9 is not the only SFI to never suffer extinctions, but it is joined by the
other members of the persisting subcommunity (S158, K52 and K169), again indicating that this
subcommunity is more even and thus more stable than in the cases of competition based on λ

interaction effects.
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Figure 11. Mean time to extinction per strain for (a) deterministic and (b) non-deterministic emergent
competition based on μ effects. Blue labels indicate strains for which no extinctions occurred. Means
calculated from 200 replicates.

4. Conclusions

We have studied the in silico counterpart of an in vitro synthetic community of 13 SFIs in co-cultures
of varying richness with MSH1. These SFIs had been selected based on their potential for improving
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the BAM mineralization performance of MSH1 for bioaugmentation applications. We developed an
IBM representing the in silico counterpart of this synthetic community, where competition structures
were constructed based on pairwise competition outcomes, using data related to lag time λ and
mineralization rate μ interaction effects in terms of mineralization performance.

Our model was able to recover the qualitative dynamics observed in in vitro experiments with
similar synthetic sand filter communities: the majority of the community collapsing to extinction
and a subcommunity persisting [11,18]. The memberships of these subcommunities were consistent,
and their presence could be explained based on their attributes as represented in the competition
matrices. The simulation outcomes were explained based on the underlying competition structures
(notably by their intransitivity) and the resulting spatial dynamics. Our results highlight the importance
of diversity and in particular evenness in stabilizing the community dynamics, in agreement with
previous experimental results [47,48].

This work therefore serves as a proof-of-concept for using IBMs as in silico counterparts of in vitro
synthetic communities, as we were able to find a qualitative agreement between the in silico and in
vitro dynamics, despite the in vitro experiments not being expressly designed for modelling purposes.
For example, it would also be informative for this purpose to examine in more detail the interactions
between the SFIs, not just in terms of effects on BAM mineralization. This could be done, for example,
by tracking the growth and survival of SFIs in pairwise co-cultures. Despite this, our model was able
to retrieve the qualitative in vitro dynamics, allowing us to interrogate their development, and thereby
illustrating the potential of this modelling approach for addressing ecological theories relating to
synthetic communities.
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Figure A1. SFI monoculture growth curves on acetate [11].
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Abstract: In a previous study, the two nitrifying functions (ammonia oxidizing bacteria (AOB) or
nitrite-oxidizing bacteria (NOB)) of a nitrification reactor—operated continuously over 525 days
with varying inputs—were assigned using a mathematical modeling approach together with the
monitoring of bacterial phylotypes. Based on these theoretical identifications, we develop here a
chemostat model that does not explicitly include only the resources’ dynamics (different forms of
soluble nitrogen) but also explicitly takes into account microbial inter- and intra-species interactions
for the four dominant phylotypes detected in the chemostat. A comparison of the models obtained
with and without interactions has shown that such interactions permit the coexistence of two
competing ammonium-oxidizing bacteria and two competing nitrite-oxidizing bacteria in competition
for ammonium and nitrite, respectively. These interactions are analyzed and discussed.

Keywords: competitive exclusion principle; microbial interactions; nitrifying bacteria; coexistence;
chemostat models; ecosystem functions

1. Introduction

The well-known “competitive exclusion” principle states that, at equilibrium, the number of
coexisting competing species cannot exceed the number of growth-limiting resources available to
them [1,2]. However, in natural systems, the number of coexisting species often exceeds the number
of limiting resources [3]. This phenomenon is often referred to as the “paradox of the plankton” [4].
Theoretical and experimental studies of a chemostat with time-invariant operating conditions have
shown that two microbial populations in competition for a single substrate cannot coexist: the
slower-growing species in the given operating conditions will be washed out [5]. In such a case,
coexistence is predicted theoretically for discrete values of the chemostat dilution rate only when the
curves of the specific growth rate, as a function of limiting nutrient concentration, cross. The dilution
rate must have exactly the value at which the specific growth rates of the two populations in the
chemostat are equal. However, this type of coexistence is structurally unstable and cannot be realized
in practice because of random fluctuations in the chemostat dilution rate and in the physico-chemical
parameters. To bridge the gap between mathematical theory and real life, a variety of mathematical
models have been developed over recent decades. In all such models, assumptions about the idealized
chemostat have been modified (cf. for instance [6–10]). Some studies have relied on non-equilibrium
conditions to promote species diversity by preventing competitive equilibrium. One such example
is the variability in resource supply ratios: when nutrients were supplied to the chemostat in pulses,
oscillations in the abundance of species prevented the establishment of competitive equilibrium
and permitted the coexistence of a greater number of species than the number of growth-limiting
resources [11,12]. In the same way, some studies have explained coexistence in chemostats by the
heterogeneity of the medium or by variations in solid retention times [8] while others have considered
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that more than one single resource is available [13]. However, only very few studies related to
the chemostat have pointed out that microbial interactions other than competition can also lead to
steady-state coexistence. When such a situation was considered, only direct interactions based on the
approach called Generalized Lotka–Volterra equations were used and no consideration was given to
resources (cf., for instance [14] for a recent study). In particular, for Lotka–Volterra models, it has been
established that coexistence is possible when intra-specific competition is greater than inter-specific
competition. The ecological mechanism behind this result is that the self-limiting growth of the most
competitive species leaves some resource available for other less competitive species. While some
progress has been made towards integrating positive interactions into contemporary theory [15–17],
competition and predation still dominate ecological thinking about interspecific interaction [18–20].
The fact is that, to allow coexistence in mass-balance models, it is either necessary (i) to consider
identical kinetics parameters for all species (which is actually what we could call a “singular case” and
which would have, as a consequence, the observation of exactly the same dynamic behavior for all
species) or (ii) to add direct interaction terms between species concentrations as in the Lotka–Volterra
model, in addition to the dependence with respect to resource concentrations.

Recently, interest in the study of species interactions has been renewed regarding the modern
high-throughput molecular techniques available: together with modeling, they appear as a very
promising way of investigating how ecosystems function. Available models are based on network
theory and statistical data analysis [21]. However, these proposed models usually do not consider
resources and only describe, statically, species interactions within the ecosystem of interest.

Roughly speaking, all the available models could be classified as either Biodiversity-Equivalent
or Functionally-Equivalent. Biodiversity-Equivalent Models (BEM) aim to provide models able to
explain/predict/simulate biodiversity, typically as species interacting together within a microbial
ecosystem; while Functionally-Equivalent Models (FEM) are designed to predict function performances
of an ecosystem. The classic chemostat model is typically a FEM while the neutral model could be
classified as a BEM. Very few microbial-ecosystem models available in the literature have been designed
to integrate both diversity and functional considerations. In [22–24], such models were proposed for
anaerobic digestion. However, both hypothesize that the different biomasses are only in competition
for the substrate and do not include terms involving direct interactions: thus, unless the growth
functions are identical, the competitive exclusion principle applies and only one species will survive if
the system is simulated for a long enough period of time [25]. In addition, like other studies published
in the fields of ecology or mathematics, these studies remain essentially theoretical and were not
confronted to data (cf., for instance [26,27]).

The aim of the model proposed in the present paper is to include both diversity and functional
considerations and to validate such a model on data obtained within real experiments. More specifically,
we present here a modification of the classic model of a chemostat. It is based on Lotka–Voltera
equations and takes into account biotic interactions which can occur between species in a microbial
community (i.e., which represent inter- and intra-species interactions). Not only does this model
integrate states of more than one species per function (number of biological reactions) but it also
integrates the dynamics of available resources. This model was confronted to data obtained from a
nitrifying chemostat operated for two years under time-varying inputs. Notice, however, that for
technical reasons related to the parameter identification step, only the signs and the order of magnitude
of interaction terms between species could be obtained and not their precise values (we will come back
in detail on this important point in Section 2.5).

Nitrification is an aerobic two-step microbial process (thus involving only two “functions”) in
which ammonium is oxidized to nitrate by two distinct groups of chemolithoautotrophic bacteria.
Aerobic ammonium-oxidizing bacteria (AOB) first oxidize ammonium to nitrite and then aerobic
nitrite-oxidizing bacteria (NOB) oxidize the nitrite to nitrate [28,29]. During the two year experiments
used in the present study, both functional measurements (i.e., concentrations in ammonium, nitrite and
nitrate concentrations) and population measurements (i.e., total biomass concentration and relative
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abundances) of the bacteria present in the chemostat were made by Single Strand Conformation
Polymorphism. In a previous work, using an original mathematical approach, a functional community
assignation (i.e., in AOB or NOB community) was performed for each phylotype detected in the
chemostat [30,31]. In the present work, a microbial interaction model is optimized on the kinetics of
the two most abundant phylotypes of each functional community. In this way, we obtain a virtual
web of interactions linking four different species present in the nitrifying community. The results
obtained in this way show that the web of interactions can prevent competitive exclusion and can
explain the coexistence of the phylotypes as observed through the available measurements realized on
the nitrifying chemostat as predicted in [26,27].

2. Materials and Methods

2.1. Nitrifying Chemostat Conditions

The experimental set-up operated over two years consisted of two continuously-mixed 6.5 L
(working volume) all-glass chemostats inoculated beforehand with activated sludge from the municipal
sewage treatment plant of Coursan (Aude, France). The air flow-rate was maximum in order to
ensure good fluidization and provide enough oxygen which was never limiting for the nitrification
process; the pH was measured and maintained at around 7 by the automatic addition of an alkaline
solution. Both chemostats were fed with a synthetic mineral medium composed of ammonium
sulfate (its concentration varying from 0.5 to 2 g·L−1) as the nitrogen source, complemented with a
mineral solution.

2.2. Microbial Community Measurements

During the experiments which lasted 525 days, two kinds of population measurements were made:
the first was the determination of the total biomass present in the chemostats; the second consisted
of the determination by Single Strand Conformation Polymorphism (SSCP) of the abundances of the
different species contained in the total biomass. Except for some well-identified periods, the experiment
was run in duplicate and both chemostats behaved similarly. For this reason, in the present study we
concentrate on the results obtained from only one device (the chemostat denoted as “chemostat B”
in [31]). The main results of this monitoring—on average over the 525 days of experiments—were
(i) 40% of the total biomass was represented by the most abundant AOB; (ii) the most abundant NOB
represented less than 10% of the total biomass; (iii) the two most abundant AOB and the two most
abundant NOB represented more than 55% of the total biomass.

2.3. Model Development

The model developed in this study is based on mass balance equations for a conventional,
completely-mixed chemostat initiated from the pioneering work of Monod and of Novick and Szilard
(cf. [32,33]). It is described by the following set of differential equations:{ .

X = (μ(S(t))− D(t))X(t)
.
S = (Sin(t)− S(t))D(t)− 1

Yμ(S(t))X(t)
(1)

where the dot above a letter stands for the time-derivative, S and X represent the concentrations of
nutrient (or substrate) and biomass, respectively. Sin denotes the concentration of the nutrient in the
input flow, with dilution rate D. The function μ(S(t)) is the growth rate of the population and the yield
factor is Y. Thereafter, to simplify the notations, the time-dependence of variables is often omitted.
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This standard dynamic model of a chemostat can be extended easily to a 2-step nitrifying
bioprocess as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

.
XA = (μA(S1)− D)XA.
XB = (μB(S2)− D)XB.

S1 = (Sin − S1)D − 1
YA

μA(S1)XA
.
S2 = −S2D + 1

YA
μA(S1)XA − 1

YB
μB(S2)XB

.
S3 = −S3D + 1

YB
μB(S2)XB

, (2)

where XA and XB represent the concentrations of AOB and NOB respectively, while μA(S1) and μB(S2)

are the growth rates of XA and XB, respectively. As suggested in [31], they are supposed to be Monod
functions and are thus written as μA(S1) = μmax1

S1
S1+Ks1

and μB(S2) = μmax2
S2

S2+Ks2
.

From this point onwards, this model will be referred to as “model #1”. This nitrifying chemostat
model can then be modified as follows to take into account microbial interactions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
Xi

∣∣∣
i=1..nA+nB

=

[
μi(.)

(
1 +

j=nA+nB

∑
j=1

aijXj

)
− D

]
Xi

.
S1 = (Sin − S1)D − 1

YA

i=nA
∑

i=1

[
μi(S1)

(
1 +

j=nA+nB
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[
μi(S2)

(
1 +

j=nA+nB

∑
j=1

aijXj

)
Xi

]
, (3)

where aij represents the influence of the species j on the growth rate of species i. This influence can be
positive, negative or nil according to the sign and the value of aij.

From this point onwards, this last model, including intra- and interspecific interaction terms,
will be referred to as “model #2”. This interaction coefficient structure (aij) corresponds to that of
the well-known Lotka–Volterra model which is a widely used model in general ecology. Our model
differs from the classic Lotka–Volterra model in that it is coupled to a mass-balance model (the classic
chemostat model) which includes resource dynamics. Because linear systems are easier to identify,
using a linear “species by species” relationship allows a simpler way of predicting species interactions.
However, in doing so, the influence of resource density is neglected. An example of the use of such an
interaction coefficient structure to describe microbial interactions within a cheese microbial community
is given in [34]. It should also be noted that, for a given species j, the interaction terms are assumed
to be constant. We are aware that this assumption may be questionable from a purely biological
point of view. However, as explained in the next section, only the sign of interactions will finally be
characterized. Said differently, we rather characterize the distributions in which these parameters live,
instead of their precise values.

2.4. Identification of the Parameters of Microbial Interaction

The parameters of model #1, optimized to match experimental data in [31] are recalled in Table 1.

Table 1. Parameters of model #1 (adapted from [31]).

μmax1 (1/day) Ks1 (mg/L) YA μmax2 (1/day) Ks2 (mg/L) YB

0.81 0.17 0.26 0.26 0.16 0.01

The identification of microbial interactions was done with the help of the model #2 described by
Equation (3). To do so, we have kept only the two major species of each group: recall the four most
abundant phylotypes (two AOBs and two NOBs) represented about 55% of total biomass. In order to
ensure a viable compromise between the complexity of the model (notably the number of parameters to
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be identified) and the capability of optimization algorithms to converge within a reasonable computing
time, only two phylotypes in competition for one of the two substrates S1 or S2, were studied for each
of the two nitrifying functions, thus considering only four species in total.

Considering the model described by Equation (3) with nA = nB = 2, there still remains a large
number of parameters to be identified (interaction parameters between the four considered species,
that is to say 16 parameters, plus the degrees of freedom of the kinetics, representing eight additional
parameters, thus a total of 24 parameters). To minimize this number, we adopt, in the present
study, a kind of “neutral” hypothesis in considering that within a function, all the species exhibit
identical kinetics and that the only difference in growth was due to their interaction. This assumption
can be justified taking into account the following arguments. Without interactions, considering the
same growth rates for either AOBs or NOBs, all species would exhibit exactly the same dynamics:
their coexistence would be “guaranteed” (of course assuming that initial biomass concentrations are
nonzero). However, it is not what is observed in practice (cf. the data we use from [31]: we will
come back on these data later on but it will be clearly shown that the dynamics of AOB1 and AOB2,
and of NOB1 and NOB2, are significantly different). Now, with different growth rates and again
no interactions, the competitive exclusion principle applies and coexistence is simply not possible.
Again, it is actually not what is observed in practice. In other terms, the kinetics associated with each
species—the rate at which species i consumes its main limiting resource— should be considered to be
modulated by interactions.

Referring to model #2 and assuming we assign i = 1 and 2 for AOB1 and AOB2, respectively, and
i = 3 and 4 for NOB1 and NOB2, respectively, we have:

μ1(S1) = μ2(S1) andμ3(S2) = μ4(S2) (4)

Thus, instead of 24, we are now left with 20 parameters needing identification. Using model #1 as
a “provider” of data (by simulation) for model #2, the identification of the interaction parameters of
model #2 can now be framed in terms of an optimization problem, as follows: find the parameters
of μi|i=1..4 under the constraints (4) and the interaction parameters aij such that the outputs of model
#2 match the simulated outputs of model #1 (S1, S2, S3 and XT = XA + XB = AOB1 + AOB2 + NOB1 +
NOB2). This optimization problem can be reformulated as follows: find the parameters of μi|i=1..4
under the constraints (4) and the interaction parameters aij in the model #2 such that:

(μA(S1(t))− D(t))XA(t)|model#1

=
i=nA

∑
i=1

[
μi(S1(t))

(
1 +

j=nA+nB

∑
j=1

aijXj(t)

)
Xi(t)

]
−D(t)(X1(t) + X2(t))|model#2

(5)

and
(μB(S2(t))− D(t))XB(t)|model#1

=
i=nA+nB

∑
i=nA+1

[
μi(S2(t))

(
1 +

j=nA+nB

∑
j=1

aijXj(t)

)
Xi(t)

]
−D(t)(X3(t) + X4(t))|model#2

(6)

To insist on the fact that these constraints must hold for all t, we included the time-dependance
of variables. For this problem, we used the Sum of Square Residuals (SSR) criterion consisting of
the sum of the squared difference of the terms on the left and the terms on the right in the previous
expressions—(5) and (6)—over the considered 525 days of experiments.

To solve this problem, we adopted a Monte-Carlo-like approach (cf. Appendix A):
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• First, we randomly ran 2000 optimizations (using more did not improve the results (i.e., did
not enable us to further decrease the final confidence intervals computed for each identified
parameter) with different initial conditions for the parameters to be estimated (all unknown
parameters in the right-hand terms of the above equations). In other terms, we identified all the
parameters with different initial conditions 2000 times;

• In a second step, we have proceeded to a statistical analysis of the results, keeping only the
best sets of optimized parameters that are the sets for which the SSR was, at most, 5% greater
than the best solution over the 2000 optimizations. Instead of keeping only the best one, we
proceeded in this way for two reasons: (i) The problem to be solved is complex, notably because
the model is nonlinear and the number of unknowns is high. Thus, we did not necessarily obtain
the same parameter values for each of the 2000 optimizations. In other words, the problem we
consider here is said to be “non-identifiable”. It means that, given the structure of the model
considered, a unique set of parameters cannot be found from the available data. In other words,
there exist “hidden relationships” between parameters—possibly nonlinear—which prevent the
optimization algorithm from converging towards a unique global minimum and, consequently,
from delivering a unique set of optimized parameters (cf. for instance [35] or [36] for more
information about this concept); (ii) in the results, either the parameters are centered around
0 with a large standard deviation (indicating either no interaction between the corresponding
species or an undetermined interaction) or the signs of the identified interactions are always the
same whatever the sets of optimized parameters considered and, thus, the proposed statistical
analysis of the results to obtain qualitative insights about microbial interactions in the ecosystem
is considered without considering precise parameter values. In the sequel, this procedure will be
referred to as a “Monte-Carlo-like” approach;

• Finally, following the procedure described above, 520 sets of optimized parameters over the 2000 runs
were kept and analyzed. The results are presented and discussed in the following sections.

2.5. Remarks

• An important question that may arise is the following: Why are outputs of the model #1 used
in the optimization problem (in the evaluation of the left-hand terms of (5) and (6)) rather than
experimental data available in [31]? The essential reason is that experimental data are corrupted
by noise. It is well known in system identification that, by definition, noise is not informative.
Since the problem posed here is very sensitive to data (recall, in particular, that the problem
is non-identifiable), it is better to use noise-free data [35,36]. Here, completely noise-free data
generated with the simulation of model #1 (itself optimized with respect to real data in Dumont’s
work, cf. [31]) were used instead of using real data.

• As noted before, the sum of the four species considered within model #2 represented on average
about 55% of the total biomass in the experiments published in [31]. For practical purposes,
before proceeding to parameter identification, the relative abundances of these four species
were re-normalized in such a way that their sum equaled the total biomass as measured in the
experiments. In other words, considering that model #2 (which describes the dynamics of four
species) is equivalent to saying that the two biological reactions involved are now only attributable
to these four species and that the remaining detected species (41 − 4 = 37 in the data considered
over the 525 days of experiments) are simply ignored.

• Finally, another question that may be posed is related to the parameter identification results.
One may ask whether a solution to the optimization problem should be to fix all interaction
parameters to zero or not. In fact, this solution cannot give a better fit than any other because there
is no reason to have XA = X1 + X2 and XB = X3 + X4. In other terms, individual concentrations of
the four AOBs and NOB species are taken explicitly into account in the criterion used to fit model
#2 parameters while only the total biomass concentration was considered in the optimization
criterion to optimize model #1 parameters. Since the criterions are different, model parameters
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(i.e., interaction terms) are tuned so that the differences between the two sides of Equations (5)
and (6) are minimized.

A schematic representation of the procedure followed in this study is presented in the appendix.

3. Results

3.1. Coexistence of 2 + 2 Species on 1 + 1 Growth-Limiting Resources by Microbial Interaction

The distribution of the parameter values (interactions and kinetics parameters) over the
520 optimized parameter sets are plotted in Figure 1a–e. As shown in these figures, most parameters
are randomly distributed around mean values following Gaussian-like distributions while others
present bimodal distributions. In addition, even if their precise values are not informative (for the
identifiability reasons we mentioned above), it should be noted that the intervals in which the mean
values of the kinetics parameters (cf. distributions in Figure 1e and mean values reported in Table 2)
live appear to be in accordance with those reported in the literature (cf. [37]).

Table 2. Kinetics parameters of model #2.

μmax1 (1/day) Ks1 (mg/L) μmax2 (1/day) Ks2 (mg/L)

0.828 0.147 0.18 0.026
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Figure 1. Distributions of the optimized interaction parameters for model #2 after Monte-Carlo-like
optimization: (a) a11 to a14; (b) a21 to a24; (c) a31 to a34; (d) a41 to a44 and for the two ammonia oxidizing
bacteria (AOB) and nitrite-oxidizing bacteria (NOB) of model #2 (e) μmax1, μmax2, Ks1 and Ks2.

82



Processes 2016, 4, 51

Tables 2 and 3 present the mean values for the microbial interaction parameters together with the
kinetics parameters identified.

Table 3. Mean values of interaction parameters of model #2 (“B” stands for “bimodal distribution”,
the sign of the interaction being specified by B/+ or B/−).

a11 a12 a13 a14 a21 a22 a23 a24

−0.087 ~0 −0.697 4.815 ~0 0.476 0.995 −6.362

a31 a32 a33 a34 a41 a42 a43 a44

B/+ B/+ B/− −1.225 B/− −0.351 −0.837 B/+

Concerning its main outputs, the interaction model presents a very good fit with the simulated
data obtained from model #1 (cf. Figure 2).

Figure 2. Simulations of main outputs of models #1 and #2 in appropriate concentration units (obtained
with the mean values of the optimized parameters given in Table 1 for model#1 and Table 4 for model
#2, the mean values over the 520 values were used as well for parameters with bimodal distributions).
XA, XB, S1 (a negative part for the y-axis was considered for clarity), S2 and S3 concentrations from
the top to the bottom, predictions of model #1 in red crosses, predictions of model #2 in green where
XA = X1 + X2 and XB = X3 + X4.

As explained in the Materials and Methods section, we can compare the experimental data and
the predictions for the dynamics of AOB1, AOB2, NOB1 and NOB2 that can be simulated using model
#2. However, notice that the behavior over time of these species, e.g., the concentrations of these
species, may vary depending on the sets of interaction and kinetics parameters identified. Indeed,
recall that the best 520 parameter sets have been kept for the statistical analysis of results. All permit a
good fit with the outputs of both models #1 and #2 (otherwise, they would not have been kept after the
parameter identification process) while predicting different individual behavior for the two AOB and
the two NOB species. In other words, the set of optimized parameters is not unique and one may only
compare simulations of model#2 using a particular set of parameters among the 520 sets that have
been kept for the statistical analysis. Such a specific set is given in Table 4.
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Table 4. A particular set of optimized parameters taken randomly from the final optimized
parameter sets.

μmax1 (1/day) Ks1 (mg/L) μmax2 (1/day) Ks2 (mg/L)

0.81 0.17 0.26 0.016

The predictions of model #2 using this specific set of parameters together with the experimental
data presented in [31], are plotted in Figure 3. Because of the uncertainty of measurements, it is clear
that only the qualitative behavior of these simulation results should be considered within the context
of the actual work.

Figure 3. Simulations of model #2 (with the optimized set parameters given in Table 4) and
measurements of species abundances for AOB1, AOB2, NOB1 and NOB2 (which correspond to peaks
38, 35, 5 and 9 from [31], respectively).

Whatever the species considered, it should be noted that the models with interactions always
better fitted data than the predictions of the same models in which interactions were fixed at 0. This
result can easily be understood given that a model with more tuning parameters than another should
be able to deliver better predictions. In addition, from an ecological point of view, when microbial
interactions are not considered (fixed to 0), the model does not allow the coexistence of 2 + 2 species on
1 + 1 growth-limiting resources as predicted by the theory of the chemostat. Yet this coexistence was
observed in practice (cf. the measurements of species abundances reported in [31] or in Figure 3 here
above). The divergence between experimental data and estimates of the models between t = 375 days
and t = 430 days for the AOB2 can be explained by a washout of the chemostat in reaction to the
increase in the flow rate made on t = 337 days which was already mentioned in [31].

3.2. Web of Microbial Interactions

On the basis of the identified microbial interactions model, we can build a web of microbial
interactions linking the different phylotypes with their mean values as reported in Table 3.

Over the network of 16 interactions contained in the model #2, six are positive and eight are
negative (cf. Figure 4). Only two almost-null interactions emerge. Concerning interactions between
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both AOB, neither competition nor facilitation was highlighted. However, strong intra-specific
facilitation appears for the second AOB with a22 = +0.47. These two ammonium-oxidizing phylotypes
exercise interactions of both facilitation and competition with both of the nitrite-oxidizing phylotypes.
However, a stronger, mostly negative interaction (a24 = −6.36, a34 = −1.23 and a14 = +4.81) of all
bacteria with NOB2 is to be noted which seems to be compensated for by a strong intra-specific
relationship of NOB2 with itself (a44 = +3.26/Bimodal distribution). Concerning interactions
between the two nitrite-oxidizing phylotypes, NOB1 imposes a high negative interaction on NOB2
(a34 = −1.23) while NOB2 forces a moderately negative relationship on NOB1 (a43 = −0.84). A moderate
intra-specific competition appears for NOB1 (a33 = −0.18/Bimodal distribution) whereas a high
intra-specific facilitation appears for NOB2 (a44 = +3.26). Concerning the type of interactions which
maintain NOB in relation to AOB, a supplementary “balanced structure” appears. Indeed, if we
take into account only the signs of interaction, there are as many positive as negative interactions.
Whereas NOB1 presents fairly positive interactions with AOBs (a31 = +0.44 and a32 = +0.11/Bimodal
distributions), NOB2 seems to interact rather negatively with AOBs (a41 = −0.67/Bimodal distribution
and a42 = −0.35).

The actual results underline positive interactions only from AOB1 to NOB2 and AOB2 to NOB1
(cf. Figure 4). However, in the same time, negative interactions were observed between AOB1/NOB1
and AOB2/NOB2. In addition, competition was not observed between AOBs, whereas there was
strong competition between NOBs.

Figure 4. Interaction web (based on the statistical analysis of the signs of interactions). +, − and 0
correspond to positive, negative and neutral interactions, respectively. The size of bacteria “oval greys”
and the thickness of lines indicate the trends of the bacterial abundances and the levels of interaction
(based on the mean values reported in Table 3), respectively.

4. Discussion

Monitoring over two years the population and functioning of a nitrifying chemostat under
time-varying environmental conditions highlighted the coexistence of numerous species in a culture
fed with ammonium as the nitrogen source. The data acquired indicate that, throughout the period of
the study, there occurred rapid, significant shifts in the structure of bacterial population. A comparison
with the experimental data of the two proposed models—with and without microbial interactions—has
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shown that microbial interactions lead to the coexistence of a greater number of species than predicted
by the classical chemostat model in which the competitive exclusion principle applies. In macrosystem
ecology, several models have been presented that represent intra- and inter-species interactions in
food webs (cf. [15]). The most frequently-used model is the multispecies Lotka–Volterra. For a given
species, it is based on a linear relationship between its growth rate parameters and the population of
each member of the community. For instance, with respect to real data, this model has been used to
describe microbial interactions within a cheese microbial community [34]. In the present study, we
combined this interaction coefficient structure (aij) with a classic model of a nitrifying chemostat. To the
best of our knowledge, it is one of the first models of microbial ecosystems which tries (i) to integrate
the dynamics of several interacting bacterial in the chemostat and (ii) tunes its parameters to match
data together with the modeling of functions (here, nitritation and nitratation). To date, the prime
focus of predator–prey models has been applied to models describing food webs in which non-trophic
interactions, such as competition, facilitation and biotic disturbance, have been largely ignored [15].
Because food web models focus—by their very nature—exclusively on trophic interactions, they
assume implicitly that predation is the most important process regulating community structure and
dynamics. Moreover, while models of complex food webs incorporate only competition among species,
they generally ignore any form of resource competition among the species (cf. [38,39]). This can be
explained by the fact that, in food webs, nutrients flow via trophic links and, for this reason, trophic
interactions have a fundamental character due to the principle of mass conservation.

Concerning the “competitive exclusion principle” (i.e., the “paradox of the plankton”), a variety
of mathematical models have been proposed over recent decades, as underlined in the introduction.
However, once again, intra- as well as inter-specific interactions have not been taken into consideration
and in all such models, the assumptions about an idealized chemostat have been modified to permit
coexistence [10]. Some studies have relied on non-equilibrium conditions to promote species diversity
by preventing competitive exclusion. Examples include variability in resource supply ratios. When
nutrients were supplied to the chemostat in pulses, oscillations in the abundance of species prevented
competitive equilibrium from occurring and led to the coexistence of a greater number of species
than the number of growth-limiting resources (cf. [11,12]). The only recent theoretical study that
does not contradict the competitive exclusion principle and, at the same time, permits what has
been called “practical coexistence” with neither variations in the environment nor any interaction
through species or foodweb is [25]. In this study, it is the diversity itself—which is considered to
be high, as observed in most microbial natural ecosystems—which creates the conditions under
which the system can allow species coexistence over an arbitrarily long period of time as long as
growth rate functions for each species are close enough. Their conclusions were that possibly we
observe ecosystems that are never close to an equilibrium. Some other studies explain coexistence in a
chemostat by variation in solid retention times [8]. Only a very small number of studies have taken
an interest in microbial interactions. In [10], Hebeler et al. explained coexistence in the chemostat
as a result of metabolic by-products. In their study, they found experimental evidence for a specific
metabolic property of Staphylococcus aureus which produced acetate (a by-product). In a mixed
culture, this can have an activating effect (as a secondary substrate) as well as an inhibiting effect
(by reducing pH) on the other species. In [12], it is shown, using a modeling study, that the number
of coexisting species may exceed the number of limiting resources when internal system feedbacks
induce oscillations and chaos. This occurs if the species displace each other in a cyclic fashion.
However, this can be considered as a very rare phenomenon—for not saying singular—since it requires
a very precise parameterization of the parameters of community members [7]. Nevertheless, few
authors have considered interactions empirically and directly in microbial ecology, even though a long
history of experimental and theoretical ecology has elucidated how predation interacts with other
non-trophic processes—including interference competition, facilitation, disturbance, environmental
stress, productivity and recruitment—to regulate species distribution and abundance (cf. [40,41]).
Finally, the microbial interaction model proposed here makes it possible to obtain a virtual web of
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interactions linking the main species present in the ecosystem of interest. It appears that we have
underlined a “balanced interacting-structure model” in the sense that there are as many positive as
negative interactions in the virtual web.

The experiments reported in [31] in the chemostat clearly show the coexistence of bacteria
performing the same function (41 phylotypes observed) for a long period (525 days). These results can
be compared to those presented in [42]. These authors considered a two-competitor/one prey model
and explained the coexistence of the two competitors by density-dependent mortality for one of the
two species. The interaction web also shows preferential “couples” or “pairs” of micro-organisms
(AOB1/NOB2 and AOB2/NOB1) that are not “interchangeable” (AOB1/NOB1 and AOB2/NOB2)
and which exhibit negative interactions. With a model built at a population level, it is obviously very
difficult to interpret biologically direct interaction terms aij. However, an example of a configuration in
which such interactions could develop is as follows. Consider—for some unknown reason—that AOB1
and NOB1, on the one hand, and AO2 and NOB2, on the other hand, develop specific interactions
(for instance in forming ”bi- specific” flocs). Because of their proximity, AOB1 and NOB1 (resp. AOB2
and NOB2) could develop specific biotic interactions while each pair would now be in competition
with the other. If such an explanation remains highly speculative, it is not inconceivable that such
interactions are developing in a complex natural ecosystem.

There is no competition for NH4+ between AOBs. Unfortunately, some interactions, such as
NOB2/NOB2, as well as the low abundance of NOBs compared to AOBs, often underlined in the
literature, cannot be explained.

In conclusion, we developed a new model of nitrifying chemostat to study the interactions
within two functional groups of four species: two AOBs and two NOBs. The network of virtual
interactions obtained can explain the coexistence of these 2 + 2 species on 1 + 1 growth-limiting
resources. Of the perspectives deriving from this work, one could design other more complete models
including multiple functional groups of organisms, such as nitrifying and denitrifying heterotrophs,
phosphorus-accumulating organisms, etc. In addition, this study focused on the effects of interactions
within a single trophic level (bacteria). Effects of the presence of higher trophic levels, for instance
predation by virus or protozoa, could also be considered. However, in all these cases, a number of
issues, including the identification of a large number of model parameters, need to be dealt with from
a theoretical viewpoint before such more complicated models can be developed.
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Appendix A

Procedure followed for the identification of the virtual interaction web.
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Figure A1. Identification procedure.
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Abstract: The process of oxygenic photosynthesis is robust and ubiquitous, relying centrally on input
of light, carbon dioxide, and water, which in many environments are all abundantly available, and
from which are produced, principally, oxygen and reduced organic carbon. However, photosynthetic
machinery can be conflicted by the simultaneous presence of carbon dioxide and oxygen through
a process sometimes called photorespiration. We present here a model of phototrophy, including
competition for RuBisCO binding sites between oxygen and carbon dioxide, in a chemostat-based
microbial population. The model connects to the idea of metabolic pathways to track carbon and
degree of reduction through the system. We find decomposition of kinetics into elementary flux
modes a mathematically natural way to study synchronization of mismatched rates of photon
input and chemostat turnover. In the single species case, though total biomass is reduced by
photorespiration, protection from excess light exposures and its consequences (oxidative and redox
stress) may result. We also find the possibility that a consortium of phototrophs with heterotrophs
can recycle photorespiration byproduct into increased biomass at the cost of increase in oxidative
product (here, oxygen).

Keywords: photosynthesis; photorespiration; chemostat model; phototroph-heterotroph consortium

1. Introduction

Life on earth, in large part, has oxygenic photosynthesis at its foundation, and much of that
photosynthesis occurs in microbes. Oxygenic phototrophic microorganisms such as cyanobacteria are
common in reliably lit environments, where impinging photons provide, often, a more than sufficient
energy source even at low intensity, and carbon dioxide (or related chemical species) provides a reliable
and abundant carbon source. When the other fundamental component of photosynthesis, water, is
also available, then phototrophic based life is likely. In many cyanobacteria, nitrogen fixation can even
be supported due to the abundance of photon energy. It is perhaps surprising, then, that the process of
photosynthetic fixation of carbon dioxide into reduced carbon suitable for biosynthesis has, seemingly,
a significant inefficiency due to the competition by oxygen for inorganic carbon binding sites, here
denoted as photorespiration.

Thus, we focus on processing of inorganic carbon, i.e., carbon fixation, a central component of
oxygenic phototrophy, and on its principle byproduct, molecular oxygen. Oxygenic phototrophy uses
photon energy to extract electrons from water and eventually apply those electrons to fix inorganic
carbon, while, in the process, oxygen is produced: electron source (effectively here, water and light)
feeds electron sink (inorganic carbon) while producing oxidative byproduct (molecular oxygen).

Processes 2017, 5, 11 91 www.mdpi.com/journal/processes
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Implicit to this assembly line is the need for extracellular, macroscale transfer of inorganic carbon and
of oxygen. Rates of macroscale transport (advective and/or diffusive) are largely beyond the control of
individual cells and thus oxygen concentration may serve as a signal of transport limitation, triggering
photorespiration. High photon flux can be an even further aggravating factor if transport of inorganic
carbon into the photosynthesizing machinery cannot keep pace.

Nevertheless, the oxygenic phototrophic “business model” is generally robust and capable
of being largely self sufficient. Strikingly, however, phototrophic organisms are often found in
multispecies consortia together with heterotrophs. It is not immediately clear why this should be
the case, as competition for resources, e.g., space or nutrients, is possible, and it seems that oxygenic
phototrophs might be expected to be able to outcompete heterotrophic neighbors for those resources.
Even so, multispecies communities are observed including in environments where heterotrophs might
not be able to persist on their own [1]. Further, there are at least some examples of communities where
resident phototrophs lack critical anabolic capabilities and must instead rely on nearby organisms
to supply them [2]. Here, we explore the possible utility of interaction via organic/inorganic carbon
exchange. Note there are other possible advantages in adding a heterotroph to the autotroph
community. For example, heterotroph-induced oxygen usage or moderation of variation in redox
potential may mitigate transport limitation.

The models presented here, both for single species (an oxygenic phototroph we call cyanobacteria)
as well as for a combined two species system (cyanobacteria plus a generic heterotroph) are based in
a chemostat platform. The chemostat serves as a simple and convenient way to mimic an environment
where, over long times, nutrient inflow and byproduct outflow occur at rates determined by external
environmental factors. From this viewpoint, a chemostat is a natural choice here due to its simplicity
and also the steady oligotrophic environment it models, and thus hopefully is a reasonable bridge
between abstract modeling and empirical observations.

In fact, comparison of population models with population scale observations has a well established
methodology in microbial ecology. Of late, however, rapidly increasing use of molecular level
technology (e.g., high throughput sequencing) has dramatically changed the nature and scale of these
observations. As a result, in principle and increasingly also in practice, detailed data describing
microbial capability and function is available. This information can and should potentially be
used to understand how microbes exploit and alter their environment. There is a substantial gap,
however, between molecular behavior at the cellular microscale and emergent community function
at the population macroscale. Intermediate between the two, progress is being made in translating
genomics information into models of cell dynamics [3]. Annotation of gene sequences into so-called
wiring diagrams is becoming increasingly reliable and automatable. These diagrams encode cell
physiology along with regulatory machinery and are accompanied by an intimidating list of unknown
rate constants. However, gene encoded functions relevant to metabolic processes are naturally
organized into gene pathways [4–6], and then, under the often reasonable assumption of steady
state, balance of influx and outflux through these pathways makes choice of individual reaction rates
within any particular pathway unnecessary, replaceable instead by a single flux through that entire
path. Regulatory function can be characterized as a management of resource allocation between
different paths and then modeled by imposing optimality criteria on that allocation [7,8]. The result is
an enormous simplification: cell function is now characterized by only a limited number of rates of
cellular inflow and outflow of substrates and byproducts together with an optimization principle to
divide them between available metabolic pathways.

Still, there are two significant though not unrelated requirements for use of such analyses.
First, despite the reduction, there remain, generally, many available and redundant metabolic flux
pathways encoded by any one genome and so, as mentioned, some principle is necessary in order
to decide how flux is to be distributed between those pathways. Second, also as mentioned, rates of
substrate flow into the cell and byproduct flow out of the cell need to be characterized. The first of
these issues couples to the second which then couples to the environment in which the cell and its
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community find themselves [9]. Conversely, though quantities on the large environmental scale are
oftened characterized by concentrations, from this point of view it seems, rather, that fluxes are natural
quantities at the cell scale. Thus, beyond the immediate aim of studying photorespiration, a further
goal of this study is to suggest ways to match models at cell and population levels.

2. Materials and Methods

2.1. Model Description

We study productivity of two interacting species, one a photoautotroph with cell density P̂1(t) and
the other a heterotroph with cell density P̂2(t), both of which are growing in a well mixed chemostat
with dilution rate D [10], exposed to photon influx, see Figure 1. For simplicity, we neglect transport
across the chemostat-air interface or suppose that such an interface does not exist, and let external
inflow and outflow of dissolved quantities be governed by the chemostat dilution rate D. Conversely,
since our aim is to study possible mutualistic or commensal effects over long times, we do not include
diel light variation effects, considering them, for such purposes, to be relatively short time phenomena
that can also be averaged out.

Figure 1. Chemostat diagram: photoautotrophic (P1) and heterotrophic (P2) microbial communities
interact in a well mixed tank, exposed to light, with constant and equal inflow and outflow. Dissolved
inorganic carbon (IC, inflow concentration IC0), organic carbon (OC, inflow concentration zero),
and oxygen (O2, inflow concentration O2,0) are also mixed throughout the tank, and in the inflow.
Transport across any fluid-air interface is neglected for simplicity.

A central element of the model is the tracking of carbon flow through a microbial communtiy.
As such it is convenient to measure all carbon carrying quantities in terms of carbon moles
(Cmoles), e.g., to measure phototroph and heterotroph populations by the total moles of carbon
they incorporate. We assume here, for convenience only, that cell sizes and densities are similar,
i.e., that the total carbon moles per microbial cell, denoted c, is a constant and is the same constant
for both phototrophs and heterotrophs. To convert populations from units of cells/volume to
units of Cmoles/volume, we change to P1(t) = cP̂1(t) and P2(t) = cP̂2(t), both with units
Cmoles/volume. In addition, we measure both dissolved component densities IC(t) (pooled inorganic
carbon, Cmoles/volume), OC(t) (organic carbon, Cmoles/volume) in Cmoles, and O2(t) (oxygen,
molecular oxygen moles/volume) in moles of molecular oxygen. In computations, we use liters as
volume units. It is assumed that oxygen concentrations always remain sufficiently low so that oxygen
remains in solution and a gas phase does not occur. Note that we use the notation O2 both to denote
molecular oxygen and its concentration. Inorganic carbon in solution, IC(t), consists of aqueous CO2
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and related dissolved forms, notably aqueous bicarbonate HCO−
3 ; we do not distinguish between

the forms here, though phototrophs generally do. Organic carbon here is supposed for specificity to
consist of glycolic acid C2H4O3, a byproduct of photorespiration. Note that the term photorespiration
has been used in the literature to designate a number of different mechanisms that, effectively, oxidize
photosynthetically fixed carbon [11]. We consider here only one of those mechanisms, namely oxygenic
activity of RuBisCO (ribulose bisphosphate carboxylase) secretion from the cell of partially oxidized
organic carbon in the form of glycolic acid. For brevity, however, we will use the umbrella label
photorespiration for this single type.

For purposes of tracking carbon, we could, as is commonly done in microbial population
models, also include a microbial species Q1(t) (Cmoles/volume) consisting of inactive photoautotroph
biomaterial damaged (or killed/lysed) due to oxidative stress or in some other manner, as well as
a similar heterotroph damage species Q2(t) (Cmoles/volume). For simplicity and clarity, however,
we include oxidative damage only through its direct effect on photosynthetic machinery. Note, though,
that as a result, importance of oxidative damage and its amelioration are, if anything, likely
underestimated in the later results.

The general form of the equations used here for a chemostat with photon flux ν are

d
dt

P1 = (ηg1(IC, O2; ν)− D)P1, (1)

d
dt

P2 = (g2(OC, O2)− D)P2, (2)

d
dt

IC = −Y−1
P1,IC g1(IC, O2; ν)P1 + y−1

P2,IC g2(OC, O2)P2 + D(IC0 − IC), (3)

d
dt

OC = Y−1
IC,OC (1 − η)g1(IC, O2; ν)P1 − y−1

P2,OC g2(OC, O2)P2 − D OC, (4)

d
dt

O2 = ((Y−1
IC,O2

− Y−1
OC,O2

(1 − η))g1(IC, O2; ν))P1

−y−1
P2,O2

g2(OC, O2)P2 + D(O2,0 − O2), (5)

where the various subscripted Yα,β’s (associated with P1) and yα,β’s (associated with P2) are yield
coefficients, all of which are fixed by stoichiometry, with units of Cmoles of α per Cmoles of β or moles
of O2. The parameters k1 and k2 indicate specific rates of deactivation of active biomaterial and could
be functions of O2. The function η = η(IC, O2) is related to photorespiration, and will be defined later.
Terms containing rate g1 are involved in the photobiosynthesis and/or photorespiration pathways and
terms containing rate g2 are involved in the heterotrophic biosynthesis pathway. All internal metabolic
rates are fixed by the three pathway (phototroph biosynthesis, photorespiration, and heterotroph
biosynthesis) rates so that they need not be parameterized in detail except through the single rate
functions g1 and g2 together with branching parameter η: this is a consequence of the powerful
assumption of short timescale equilibration of metabolic pathways [6]. For easy reference, see Tables 1
and 2. Details for individual terms in (1)–(5) will be provided below.

Table 1. State variables (left) and key environmental parameters (right) for system (1)–(5).

STATE QUANTITIES KEY ENVIRONMENTAL PARAMETERS

Symbol Description Units Symbol Description Units

P1 Phototroph Concentration Cmol·L−1 D Dilution Rate s−1

P2 Heterotroph Concentration Cmol·L−1 ν Photon Flux μE m−2·s−1

IC Inorganic Carbon Concentration Cmol·L−1 IC0 Inflow IC Conc. Cmol·L−1

OC Organic Carbon Concentration Cmol·L−1

O2 Oxygen Concentration Omol·L−1 O2,0 Inflow O2 Conc. Omol·L−1
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Table 2. State variables (left) and key environmental parameters (right) for system (1)–(5).

RATE FUNCTIONS YIELD PARAMETERS

Symbol Description Units Symbol Description Reference

η Photorespiration Branching Function –

g1

Photosynthesis Rate
s−1 Yα,β Phototroph Yields α per βPhotobiosynthesis Rate = ηg1 see Section 2.3.1

Photorespiration rate = (1 − η)g1

g2 Heterotroph Biosynthesis Rate s−1 yα,β Heterotroph Yields α per β see Section 2.4

The system energy is supplied through the photon flux ν which serves to drive carbon
reduction through photosynthesis. We assume that microbe populations are sufficiently sparse in
the chemostat so that no significant shading occurs, though one could introduce a shaded photon
flux νshade = νshade(ν, P1, P2, Q1, Q2) (note that even in the case of shading, all microbes effectively
receive the same photon flux over time due to the well mixed assumption). The other environmental
conditions included are the dissolved concentrations IC, OC, and O2. Inorganic carbon and oxygen
flow into the chemostat at concentrations IC0 and O2,0, respectively. Exchange of O2 and CO2 with the
atmosphere is neglected but inclusion would not be expected to change qualitative conclusions. The
inflow is assumed to be free of organic carbon. Note that non-negative initial conditions are required
for all quantities but have only transient influence, on a D−1 time scale, except/unless P1(0) = 0
(in which case P1(t) = 0 for all t) or P2(0) = 0 (in which case P2(t) = 0 for all t). Hence, later, we will
ignore transients and study steady states.

Photosynthesis drives ecology through conversion of photons to chemical energy (photons power
ADP → ATP, say) but also, and possibly more importantly, through production of reducing power,
referred to here as electrons. In fact, we will not consider energy production and, rather, implicitly
track electrons through degree of reduction (see Appendix A) as the more important quantity. A key
step in oxygenic photosynthesis is the splitting of H2O into, for our purposes, a combination of O2

and reducing power. Oxygen’s importance goes beyond its role as reactant; it also is an important
contributor to degree of reduction balance of the entire oxygenic photosynthesizing system. In fact,
in the model presented here, oxygen is the only explicit quantity with negative degree of reduction and
hence, by proxy, its concentration is central to community redox state and hence to community function.

2.2. Metabolic Pathways

From an engineering point of view, organism metabolics operate somewhat like chemical
processing networks so that they and implicitly resulting ecological interactions, are conveniently
represented in terms of what are called metabolic pathways, chains of reactions that convert external
substrates into external byproducts (though cycles of internal reactions might also be considered
as pathways). Organisms themselves might be viewed as collections of such reaction chains,
interacting with each other while producing fluxes at rates which must be consistent with external flux
constraints. For example, in the case of a simple chemostat, external inflow and outflow fluxes are
set by dilution rate D. While we look here to adopt the point of view of organism metabolisms
as collections of pathways, at the same time we want a simple system able to illustrate basic
principles of a phototroph-heterotroph interactions. Thus, while detailed metabolic models exist
including for cyanobacteria [12–15] as well as for communities [16,17], we reduce system metabolics to
the interaction of three particular pathways: photosynthesis-driven biosynthesis, photorespiration
(in a restricted sense as previously noted) in the phototrophs, and aerobic respiration-driven
heterotrophic biosynthesis. Community function is determined by the rates at which these pathways
operate; the environment, through chemostat inflow and outflow, constrains community function by
constraining these rates, though the community, specifically here the photoautotrophic cyanobacteria,
have some freedom to choose them.
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There are two specific rate functions in system (1)–(5): rate of carbon fixation g1(IC, O2; ν) of the
photoautotrophs via the photosynthesis/photorespiration pathways and rate of growth g2(IC, O2)

of heterotrophs via a pathway for catabolysis of available organic carbon. In addition, there is
a branching parameter η which determines percent of fixed carbon going to photoautotroph growth
versus photorespiration. Between the three g1, g2, and η, the rates of the three pathways are determined.
In balance, there are essentially two types of constraints: (1) cellular inflow rates of photons and
inorganic carbon, with photosynthesis determined by the minimum rate of the two, as well as (2) system
inflows and outflows determined by the chemostat dilution rate D. Cells must be able to synchronize
system rates, dilution rate here, to direct pathway inputs, photon and inorganic carbon in the case of
photosynthesis, and oxygen and organic carbon in the case of heterotrophic anabolysis. In principle,
cellular outflow rates for pathway products may also constrain, but we suppose here, for the particular
pathways studied, that these rates are essentially free.

Relation to Pathway Analysis

Metabolic network analysis of a system of m metabolites with internal concentrations ci, 1 ≤ i ≤ m,
and n reactions with rates vj(c1, c2, . . . , cm), 1 ≤ j ≤ n, starts from a metabolic map that can be
represented by a set of equations of the form

dci
dt

= ∑
j

Nijvj

where Nij is a stoichiometric coefficient, possibly negative, for production of metabolite i via reaction
j. A rate vj can be determined as a function of the concentrations ci and is parameterized by rate
constants. These rate constants are often unknown, but if steady state is assumed then the problem
reduces to characterization of the null space

Nv = 0 (6)

of the m × n stoichiometric matrix N in a useful way by somehow identifying important pathway
vectors v from this null space. (Precisely, a pathway consists of the reactions corresponding to non-zero
entries in a pathway vector v; a pathway vector encodes the flux through each of those reactions.)
Note that knowledge of rate constants is unnecessary to solve the steady state Equation (6) and thus
also unnecessary to determine pathway vectors, though steady state internal concentrations ci cannot
be computed without these rate constants.

One objective here is to proceed a further step by connecting internal metabolic activity, as encoded
by those distinguished pathways, to community dynamics, e.g., connecting information extracted
from (6) to the community model, as stated in (1)–(5). To do so, we use the (significantly) reduced
metabolic maps as shown in Figure 2, explained in detail later. The interiors of the dashed domains
in Figure 2 correspond to the interiors of the circled objects P1 and P2 of Figure 1. Circled objects in
Figure 2 are generalized metabolites and arrowed curves are generalized reactions. Metabolites that are
associated with reactions exiting a dashed domain are “seen” by the environment and hence explicitly
tracked in the model (1)–(5); other metabolites are internal (in this case, only electrons e) so not directly
observed in the environment and thus not explicit in the model, i.e., do not have tracking equations.
Interior dynamics are assumed to be at quasi-steady state, that is, are able to quickly equilibrate to
time on the community interaction time scale. Later, we will suppose a third, longer time scale on
which the community also reaches steady state.
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Figure 2. Reduced metabolic maps for phototrophic population (P1, left) and heterotrophic
population (P2, right) corresponding to the model used in Equations (1)–(5). The dashed curves
represent boundaries between cell insides and outsides. Circled quantities correspond to metabolites
(in a generalized sense): IC = inorganic carbon, O2 = oxygen, P1 = phototrophic biomass,
P2 = heterotrophic biomass, OC = organic carbon, and label e stands for electrons, see Section 2.3.1.
Arrows correspond to reactions (in a generalized sense). Some of the reaction rates are labeled. Note
that quantities P1 and P2 are turned into new cells. Also note that this representation of phototrophs
can be viewed as the “insides” of P1 in Figure 1 and, similarly, the representation of heterotrophs can
be viewed as the “insides” of P2 in the same figure.

We do not construct here the stoichiometric matrix corresponding to the metabolic network
in Figure 2, but rather proceed directly to its elementary flux modes [6] which mathematically are,
where reversible reactions are not present as is the case here, non-negative solutions of (6) for which
no other non-negative solution containing a proper subset of non-zero entries exists. That is, an
elementary flux mode is, roughly, a realizable pathway through the metabolic network that does
not contain within itself any smaller realizable pathways. Non-negative linear combinations of
the complete list of all elementary flux modes of a given network generate all allowable solutions
of (6). For the system in Figure 2, there are three elementary modes, see Figure 3, corresponding to
(1) biomass production and (2) photorespiration in the phototrophs and to (3) biomass production
in the heterotrophs. All realizable steady states of the system can be uniquely written as positive
combinations of these three elementary modes.

Figure 3. Elementary flux modes for metabolic maps in Figure 2. Left and center modes
are phototrophic biosynthesis and photorespiration, right mode is heterotrophic biosynthesis.
The phototrophic biosynthesis mode takes as inputs extracellular inorganic carbon and photons
and produces as outputs extracellular oxygen and new biomass. The photorespiration mode also takes
as inputs extracellular inorganic carbon and photons but produces extracellular oxygen and organic
carbon. The heterotrophic biosynthesis mode takes as inputs extracellular oxygen and organic carbon
and produces as outputs extracellular inorganic carbon and new biomass.
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The metabolic state of the two population of microbes is thus described by the rates of the three
elementary modes. These rates are determined by the flux rates into cells of mode inputs and out
of cells of mode outputs, all of which generally depend on external concentrations of those inputs
and outputs. Note that, for a given mode, setting any one of the input or output rates determines
all reaction rates through the entire mode due to stoichiometric constraints and the steady state
assumption. Hence, though many individual reactions are involved, each with its own rate constant,
the three modes can be described by only three rates in total (one for each).

It should be noted that, for the sake of simplicity, we in fact compromise flux mode balance in one
respect: flux balance through the phototroph electron compartment (circled e in Figure 2. left) is not
explicitly enforced in the carbon limited case when the supply of inorganic carbon is insufficient to
match the electron supply. Instead, in that particular case, some excess electrons are removed from
the system. However, we keep track of their flux implicitly through photoinhibition – those excess
electrons effectively combine with biomass and oxygen to remove some biomass. To maintain explicit
flux balance, we would need to track them say to reaction with reactive oxygen species or wherever
else they may go. As we implicitly suppose that such products leave the system, explicit tracking
would complicate the model without advantage, as particular mechanisms of excess electron removal
and damage are not the principle focus here.

The two phototroph modes operate in parallel and hence compete directly, in a sense, for inputs
(inorganic carbon and photons). They operate in series with the single heterotroph mode and interact
with it indirectly through external concentrations of dissolved quantities. In the case of a chemostat
with dilution rate D, transport in and out of the chemostat of all quantities also proceeds at rate D.
It must thus necessarily be the case that biosynthesis modes also operate at rate D (or else at rate 0)
placing two constraints on mode rates. Hence we have one remaining condition determined, that of
photorespiration. From there, concentrations of external quantities are determined by consistency with
mode rates. These external concentrations effectively determine steady state biomass concentrations.

2.3. Photosynthesis

Microbial oxygenic photosynthesis can be divided into two steps, the light reaction followed by
the dark reaction (also called the Calvin cycle), so named because photons are involved only in the
first step [11]. The entire process uses energy from incoming photons to split H2O producing O2 and
electrons, which, in the form NADPH, are used to fix CO2. The light reaction, which is the oxygenic
step, can be summarized for our purposes by

2H2O + 8 photons −→ 4H+ + 4 electrons + O2 (7)

and the dark reaction, the carbon fixation step, can be summarized, again for our purposes, by

CO2 +
1
2
(1 − η)O2 + ω electrons −→ ηCH1.7O0.5N0.2 + (1 − η)CH2O1.5, (8)

with both formulas balanced for carbon and degree of reduction (and only carbon and degree of
reduction, for simplicity). Note that the dark reaction also consumes energy in the form of ATP, which
may also be of importance for cellular energy balances, but ATP cycling is not considered here. Model
parameters associated with (7)-(8) are described in Table 3.

The division into two steps as formulated by (7) and (8) has important consequences. In particular,
at least within the formulation of the model, the light reaction is governed by photon supply (H2O being
assumed to be abundant) whereas the dark reaction rate is determined by both output rate of the light
reaction (in electrons) as well in inflow rate of inorganic carbon. Hence, effectively, the carbon fixation
rate function g1 is determined by the rate at which the dark reaction proceeds, which may be slower
than that of the light reaction in the case of limiting CO2 (or, for us, IC). If so, the excess electrons
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effectively recombine with oxygen or some other oxidant, but may cause inhibition of photosynthesis
in the process.

A second point of note is that photosynthesis as formulated by (7) and (8) is divided into two
separate pathways weighted by the branching function η, with 0 ≤ η ≤ 1. The valuation η = 1
corresponds to all fixed carbon being used for a growth pathway, while η < 1 indicates that some
of the fixed carbon is instead allocated to a pathway that results in secretion of organic carbon from
the cell (with η = 0 corresponding to all fixed carbon going to the secretion pathway, though this
outcome would not allow a viable population). Within the model presented here, there are seemingly
two apparent advantages to η < 1 over η = 1: first, η < 1 results in consumption of oxygen, see (8),
which may alleviate effects of oxygen oversupply, and second, η < 1 results in secreted organic carbon
which can be used to supply a population of heterotrophs which in turn produce inorganic carbon as
a byproduct. These points are discussed in more detail below, but note that we suppose here that the
value of η is subject to control by cyanobacterial cells themselves. Hence it may be that η is in some
way regulated through an optimization process.

2.3.1. Carbon Fixation

The righthand side of (8) consists of two types of fixed organic carbon, each produced as
a consequence of Calvin cycle reactions, a carboxylase reaction and an oxygenase reaction. That is,
formula (8) actually combines contributions from two pathways: production of CH1.7O0.5N0.2 via
biosynthesis, weighted by η, and production of CH2O1.5 via photorespiration, weighted by 1 − η.

New biomass is approximated as CH1.7O0.5N0.2 [18]. In actuality, the dark reaction only produces
a precursor (glyceraldehyde 3-phosphate) and biosynthesis is completed elsewhere, but for purposes
of electron balance, it is convenient to use the biomass proxy formula CH1.7O0.5N0.2 as the ultimate
biomass output, see the source term in (1). CH2O1.5 (carbon-normalized glycolate) is a soluble
byproduct of photorespiration and is assumed to be excreted from the cell; we track its concentration
in the chemostat as the quantity OC(t), see (4). Recall that, for purposes of representation in terms of
carbon moles, all carbon compounds are normalized so that the number of carbon atoms is one.

Given the branching function η, described and parameterized below, then

ω = ω(η) = 4.7η + 5(1 − η) = 5 − 0.3η (9)

is the electron demand (emole/Cmole), the number of moles of electrons needed to fix a mole of
inorganic carbon (ω is related to carbon-oxygen-demand, a quantity sometimes used in engineering
applications). We use degree of reduction 4.7 for CH1.7O0.5N0.2 (autotroph) and degree of reduction
3.0 for CH2O1.5, see Appendix A. The coefficient in (9) of (1 − η) is 5 rather than 3, though 3 is the
degree of reduction of CH2O1.5, because the left-hand side term (1/2)(1 − η)O2 in (8), with degree of
reduction −2(1 − η), effectively transfers to the righthand side for purposes of computing electron
demand. For reference, note that the yield coefficients of moles of molecular oxygen per fixed Cmole
are computed from (7) and (8) to be

Y−1
IC,O2

=
ω(η)

4
,

Y−1
OC,O2

=
1
2

,

with rates proportional to g1P1, see the righthand side of (5). The coefficient of the first term in the
righthand side of (5),

f (η) = Y−1
IC,O2

− Y−1
OC,O2

(1 − η) =
3
4
+

17
40

η, (10)

indicates the net yield of oxygen moles per mole of photosynthetically fixed carbon and is important in
the results presented here. Note that by varying η between 0 (all fixed carbon goes to excreted, soluble
carbon) and 1 (all fixed carbon goes to new biomass), organisms vary oxygen production by about
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60%. Of course, this should be understood as at best a rough estimate, since the presented model
greatly simplifies the true biochemistry, but nevertheless the variation is potentially significant. At the
same time, electron demand is much less sensitive, varying only by about 6% as η varies between 0
and 1, so it might seem that photorespiration provides a means to reduce oxygen production without
significantly reducing capacity to process the photosynthetically driven electron stream.

Electrons are not normally free in solution but, rather, are transported by carrier compounds,
particularly NADP+/NADPH, and passed along through redox reactions [19]. As a convenience,
though, we account for electrons directly rather than track NADP+ and NADPH. Note that in
each reaction Cmoles and degree of reduction (see Appendix A) are balanced as the key governing
quantities. Other reaction components, e.g., N, are considered of secondary importance and are
not balanced. Doing so would require introduction of more reactions, obscuring the main points.
For example, protons are in excess and can be assumed to be buffered by the aqueous environment
through mechanisms not of direct importance to the modeling aims here. Note in passing, though, that
in some instances growth is limited by availability of quantities other than those tracked here, e.g., by
limitation in fixed nitrogen. We suppose that this is not the case here.

Reactions (7) and (8) together comprise the photosynthesis and photorespiration pathways
(which branch from each other in the dark reaction step), with CH1.7O0.5N0.2 being the output of
the photobiosynthesis pathway and CH2O1.5 the output of the photorespiration pathway. Excess
molecular oxygen is also an output of both. An emphasis on rate rather than concentration is key and
all internal reaction rates are effectively slaved to rates of inflow and outflow to/from the cell. The only
other needed parameters are the stoichiometric ones, which are known from the pathway descriptions,
in this case (7) and (8). Hence it is important to characterize governing rates, particularly those that
have limiting or other important roles. The principle inputs of interest to photosynthesis are photons
and CO2 (water is plentiful at least in a chemostat) and growth rate is limited by the lesser availability
of the two. We assume that the principle bottleneck for CO2 inflow is transport (more specifically, here,
transport of inorganic carbon – recall that we do not distinguish between inorganic carbon species)
from outside the cell to the photosynthetic machinery inside. As is commonly practice, e.g., [20],
we approximate this transport rate by a Michaelis-Menten function of the form

δ(IC) = rIC
IC

KIC + IC
(time−1) (11)

where rIC and KIC are, respectively, maximal transport rate and half-saturation of cross-membrane
transport, see Appendix B. There are a number of mechanisms cells can use to influence transport,
notably carbon capturing and active transporters [11,21]. From our point of view, carbon capturing
effects can, roughly, be replaced by decrease in the inverse specificity factor γ1 defined below, and active
transporters can influence parameters rIC and KIC. Ultimately transport rate of inorganic carbon into
cells over time is limited by concentrations outside of the cell and, more particularly, transport rates of
inorganic carbon into and out of the local environment.

Rate δ then needs to be compared to the rate at which the dark reaction (8) can use the electrons to
match with the inflowing inorganic carbon. The light reaction (7) provides that electron supply. Photons
flow through the chemostat with constant flux ν (photons/area·time) set externally as a parameter,
but in actuality enter photosynthesis machinery at an effective rate νeff = Aαν (photons/cell·time)
where A is cell cross-section (area/cell) and 0 ≤ α ≤ 1 is an efficiency factor (unitless), see Appendix
B. The parameter alpha accounts for photons that impact the cell but do not result in oxygen and
electron production, either because they do not enter the photosynthetic process at all or because
their end impact is shunted to non-photochemical quenching precesses such as Mehler reactions.
These latter mechanisms may have other outcomes such as ATP generation which are supposed here to
be non-limiting (though can have negative impacts at high enough levels) so are not considered. Note
that alpha can be scaled into nu, so changing efficiency is equivalent, in the model, to changing light
intensity. Note that α in fact measures of the efficiency of the process of electrons impacting the cell all
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the way to production of electrons and reductant, and in principle may be a function of conditions such
as photon flux, oxygen concentration, etc., though we do not try to model these effects here. The light
reaction component of photosynthesis then produces electrons at rate Yννeff (electrons/cell·time),
with yield Yν = 1/2 electron/photon. Electron production rate by the light reaction, per Cmole of
biomass, is thus

e =
Yννeff

c
=

Aαν

2c
(emole/Cmole · time) (12)

(recall that c is the number of Cmoles per cell). The dark reaction then processes these electrons
together with inorganic carbon. Note however, from (8) and (9), that this processing depends on
the division of output between biomass and soluble inorganic production. Hence the rate at which
electrons are actually consumed by the dark reaction (at least if inorganic carbon supply is not limited)
is

ε =
e
ω

(time−1), (13)

which can be understood as the maximum rate at which photon flux can drive carbon fixation through
combined photobiosynthesis and photorespiration.

In fact, reduction of inorganic carbon proceeds by matching, in a sense, incoming inorganic carbon
with incoming electrons, with rates set by δ(IC) and ε, respectively. Since δ(IC) 	= ε in general, then in
fact reduction can proceed at best at rate min(δ, ε). In the spirit of rate-based modeling, we suppose
this minimum to largely govern the actual reduction rate, so that photosynthesis rate, more particularly,
the dark reaction rate, is

g1(IC, O2; ν) =

{
ε ε − δ ≤ 0 (light limited)
δI ε − δ > 0 (carbon limited)

(14)

where I = I(ε − δ, O2) is a photoinhibition function, defined below, of excess electrons should there be
any. Note that O2 dependence in g1 arises from O2 dependence in ω and I.

Table 3. Key photosynthesis-related functions and parameters.

Symbol Description Units Definition

A Average cell cross-sectional area μm2 Appendix B
c Carbon moles per cell Cmole/cell Appendix B
e Electron production rate by the light reaction emole/Cmole·s Equation (12)
f Net oxygen per photosynthetically fixed carbon Omole/Cmole Equation (10)
I Photoinhibition function – Equation (15)
α photosynthesis efficiency factor – Equation (12)

γ1 inverse specificity factor Cmole/Omole Equation (16)
γ2 excess electron capacity s/Omole Equation (15)
ε Maximum electron consumption rate 1/s Equation (13)
η RuBisCO inorganic carbon binding probability – Equation (16)
ν environmental photon flux μE/m2·s –
ω Electron demand: emoles needed to fix a cmole emole/Cmole Equation (9)

2.3.2. Photoinhibition and Oxidative Stress

In the case that ε > δ, i.e., the rate of the normalized electron production is greater than the
rate of inorganic carbon inflow, excess electron production can lead to inhibition of photosynthesis
machinery and other apparatus via saturation of electron transport structure and consequent formation
of harmful radical oxygen species as well as other undesirable effects [11,22]. These effects have been
modeled with an inhibition function [23,24] which allows for removal of excess electrons without
detriment, to a point, after which reduction in growth rate occurs [22,25]. These inhibition models,
however, are generally functions only of photon flux rate and not, for example, dependent on IC and
O2 concentrations or transport rates, though such dependence is likely important, at very least through
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any mismatch of electron production rate with inflow rate of electron donors, and is certainly central
to the model presented here. Thus, we define a photoinhibition function to take account of electron-IC
mismatch of the form

I(ε − δ, O2) =

{
1 ε − δ ≤ 0
(1 + γ−2

2 (ε − δ)2O2
2)

−1 ε − δ > 0
(15)

where γ2 is an excess capacity coefficient. (Note, from (14) that only the ε − δ > 0 definition is
relevant.) The quadratic dependencies on O2 and ε − δ are ad hoc forms meant to model the capacity
for cells to avoid or repair damage of small mismatches; small values of ε − δ and O2 do not result in
significant net damage whereas large values might. The parameter γ2 is chosen to provide a reasonable
high light/oxygen cutoff on growth. As a consequence of the degree of arbitrariness in form and
parameterization of I, we avoid conclusions which would appear to rely on its particulars beyond
a general tendency to inhibit growth in carbon limited conditions.

We note here that at moderately high concentrations O2 � 5 · 10−4 Omoles/L, oxygen may come
out of solution, providing effectively a method for limiting effects of oxygen stress. Such critical
oxygen concentrations are not reached in computations shown here, but can occur at environmentally
reasonable light intensities in some situations.

2.3.3. Photorespiration

A key step in dark reaction carbon fixation is binding of CO2 to the enzyme RuBisCO. However,
as it happens, O2 competes for the same binding site as CO2, and when a molecule of O2 does in fact
bind then glycolate (CH2O1.5, degree of reduction +3) is produced in the stead of further reduced
biomaterial (CH1.7O0.5N0.2, degree of reduction +4.7 for phototrophs). We refer to this process as
photorespiration (though as noted earlier, photorespiration can be used as an umbrella term for
a number of re-oxidixing processes). We denote the probability of CO2 binding to RuBisCO by η, with

η =
acIC

acIC + aoO2
=

1

1 + γ1
O2
IC

(16)

where ac, ao are binding affinities and γ1, the ratio of those affinities, is the inverse specificity factor
(with respect to IC versus O2). Recall that we confuse inorganic carbon concentration IC here with
CO2 concentration, supposing that inorganic carbon in forms other than CO2 can readily be converted
into CO2 via carbonic anhydrase enzymes.

Effectively, η is a branching function of O2 and IC that determines how much photosynthetic
product goes to synthesis of new biomaterial and how much to synthesis of soluble, excretable, organic
carbon. Phototrophs may have a degree of control over the value of η either directly through the
structure of RuBisCO itself [26,27] or through indirect machinery such as carbon capture mechanisms,
so we treat γ1 as a tunable parameter and study effects of its variation.

The purpose of photorespiration (oxygenase activity of RuBisCO, to be precise), if there is one,
is uncertain. It is sometimes argued to be wasteful, e.g., [20], and possibly a relic of early earth history
when levels of CO2 were much higher than today, and levels of O2 lower, so that the the ratio O2/CO2

was presumably small. However, observations suggest it is not superfluous [28] and the orders of
magnitude variability of γ across different species [11,26,27] suggests that there may be selective
pressure at work. Photorespiration diverts carbon fixing power away from new biomass, but also note
in fact the following: though glycolate has a lower degree of reduction (+3) than biomaterial (+4.7),
its production requires 1/2 O2 mole per Cmole of glycolate and hence, balancing electrons, also removes
an additional two electrons per glycolate. Thus, effectively, each Cmole of glycolate produced removes
5 electron moles from the system, more than the 4.7 electron moles removed per Cmole of biomaterial
produced. Thus photorespiration serves to reduce electron pressure, particularly when oxygen pressure
is high. At the same time, oxygen pressure is reduced. Also, photorespiration produces a supply of

102



Processes 2017, 5, 11

dissolved, reduced organic carbon, allowing the possibility of supplying a heterotroph population.
Hence, accidental or not, photorespiration may have significant effects on population dynamics.

2.3.4. Fixation Stability

As a technical point that will be repeatably useful below but also seems reasonable biologically,
we impose the condition

ηICg1,O2 − ηO2 g1,IC ≥ 0 (17)

(with subscripts IC and O2 denoting partial derivatives with respect to those quantities)) which, with
η as in (16), reduces to IC g1,IC ≥ −O2 g1,O2 . (In fact we will only really require (17) to hold at steady
state.) This condition can be appreciated through linearization of the carbon fixation process applied
to inorganic carbon and oxygen, i.e., linearization of the subsystem

d
dt

IC = −Y−1
P1,IC g1(IC, O2; ν)P1

d
dt

O2 = f (η)g1(IC, O2; ν)P1

around a state (P1, IC, O2), with associated Jacobian matrix

J =

(
−Y−1

P1,IC g1,ICP1 −Y−1
P1,IC g1,O2P1

( f g1)ICP1 ( f g1)O2P1

)
.

The eigenvalues of J have non-positive real part as long as derivatives with respect to IC are
non-negative, derivatives with respect to O2 are non-positive, and condition (17) holds. In the case
that (17) is false, then J has an unstable eigendirection that corresponds to an instability in the fixation
process: a simultaneous increase in IC and O2 levels can lead to simultaneous decrease in net fixation
rate and in photorespiration, thus further amplifying IC and O2 levels, etc. Such dynamics are
unsustainable. Equivalently, it can be seen that, if (17) is false, then an increment in available inorganic
carbon actually reduces photosynthesis rate, see Appendix C.

Condition (17) is satisfied for reasonable choices of η and g1, with one caveat, see below. We divide
into two cases based on (14). In the light limited regime,

ηICg1,O2 − ηO2 g1,IC = ηICεO2 − ηO2 εIC = 0,

satisfying (17). In the carbon limited regime

ηICg1,O2 − ηO2 g1,IC = ηIC(δI)O2 − ηO2(δI)IC = ηICδIO2 − ηO2(δI)IC (18)

The first term on the far right hand side is generically non-positive, while the second is generically
non-negative. Note the key controlling function, IO2, indicates the rate at which increasing oxygen
levels increases oxidative stress; only if this rate is too large can (18) be negative. Otherwise, fixation
stability condition (17) also holds in the carbon limited regime.

2.4. Heterotrophic Biosynthesis

The third pathway in the model system is a simplified heterotrophic anabolysis described by

2CH2O1.5 + 0.475O2 −→ CH1.7O0.5N0.2 + CO2, (19)

with stoichiometry constrained to balance carbon and degree of reduction (using degree of reduction
of (CH1.7O0.5N0.2) = +4.1 for heterotrophs, see Appendix A). As with the photosynthesis pathway,
oxygen and nitrogen are not balanced; to do so would require introduction to the model of new
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details of secondary interest. Note that the stoichiometry determines yield coefficients yP2,OC = 1/2,
yP2,O2 = 4/1.9, and yP2,IC = 1 in Equations (3)–(5).

Reaction (19) indicates that organic carbon in the form of glycolate is further reduced to
biomaterial. The increased degree of reduction is accomplished by sacrificing some of the glycolate for
its electrons, a portion of which go to biomaterial and a portion of which are shunted off to carbon
dioxide to maintain carbon balance.

The rate at which (19) proceeds is given by g2(OC, O2) as

g2(OC) = rh min
(

OC
KOC + OC

,
O2

KO2 + O2

)
, (20)

based on the assumption that the rate of biosynthesis is controlled by the minimum rate at which
biosynthesis components can be transported to biosynthesis machinery. Note as well that as a result of
reaction (19), a source term for P2 appears in (2) and sink terms for OC and O2, appear in (4) and (5).

2.5. Equations

Pathway stoichiometry can now be incorporated into Equations (1)–(5). Yields Yα,β parameterize
autotroph pathways (and damage) and yields yα,β parameterize the heterotroph pathway (and damage).
In units of Cmoles and oxygen moles, YP1,Q1 = yP2,Q2 = 1 (see Section 2.3.2), YP1,IC = 1 (see Section 2.3).
Also, yP2,IC = 1, yP2,OC = 1/2 (see Section 2.4), and YIC,OC = YOC,O2 = 2 (see Section 2.3.3). Altogether

d
dt

P1 = (ηg1(IC, O2; ν)− D)P1, (21)

d
dt

P2 = (g2(OC, O2)− D)P2, (22)

d
dt

IC = −g1(IC, O2; ν)P1 + g2(OC, O2)P2 + D(IC0 − IC), (23)

d
dt

OC = (1 − η)g1(IC, O2; ν)P1 − 2g2(OC, O2)P2 − D OC, (24)

d
dt

O2 =

(
3
4
+

17
40

η

)
g1(IC, O2; ν)P1 − 1.9

4
g2(OC, O2)P2 + D(O2,0 − O2). (25)

We track two key quantities, carbon and electrons, through the system. Set

C = P1 + P2 + IC + OC

to be total Cmole concentration in the chemostat to obtain

d
dt

C = D(IC0 − C), (26)

with solution C(t) = IC0 + C(0)e−Dt. So, after a chemostat turnover time D−1 or so, C(t) approaches
the constant value C = IC0, the inflow Cmole concentration, to exponentially small error in time.
Effectively, thus, the chemostat conserves total Cmoles. Similarly, set the total degree of reduction
(DoR) of the system to be

DoR = (4.7 emole/Cmole)P1 + (4.1 emole/Cmole)P2

+(0.0 emole/Cmole)IC + (3.0 emole/Cmole)OC − (4.0 emole/mole)O2,

Note that
d
dt

DoR = −D(4O2,0 + DoR), (27)
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with solution DoR(t) = −4O2,0 + DoR(0)e−Dt, and thus, after a chemostat turnover time or so,
DoR(t) = −4O2,0, the degree of reduction of the inflow, to exponentially small error in time. Hence,
effectively, the chemostat conserves DoR.

In a chemostat, degree of reduction (at least as calculated here) is dictated by the inflow
environment, since all reactions conserve it in detailed balance and since all material flows out
of the chemostat at the same rate. This contrasts with a biofilm or sparged system where insoluble,
soluble, and volatile material may leave the system at different rates. Note that a biofilm can thus have
some local control over DoR.

3. Results

3.1. Single Species Chemostat Community

To begin, we consider first the case of a chemostat community of phototrophs only,
i.e., P2(t) = P2(0) = 0. Note that the complementary case of a community of heterotrophs only,
i.e., P1(t) = P1(0) = 0, is not sustainable: P1 = 0 has the consequence that soluble organic carbon OC
is not produced which results in OC(t) → 0 which, in turn, results in g2(t) → 0 and hence, from (2),
P2(t) → 0.

In the phototrophic (only) community case, Equations (21)–(25) reduce to

d
dt

IC = −g1P1 + D(IC0 − IC), (28)

d
dt

OC = (1 − η)g1P1 − DOC, (29)

d
dt

O2 = f (η)g1P1 + D(O2,0 − O2) (30)

d
dt

P1 = (ηg1 − D)P1, (31)

with f (η) = 3/4 + (17/40)η being the net yield of oxygen per carbon fixed, see (10). The coefficients
3/4 and 17/40 arise from degree of reduction details. Note that the equation order has been changed
from earlier; the population equation is now listed after the chemical concentration equations for
reasons of convenience in the following. The first term in (28) measures usage rate of inorganic
carbon in photosynthesis, which produces new biomass (first term of (31)) and soluble organic carbon
(first term of (29)) as well as oxygen, some of which is consumed, however, in the production of soluble
organic carbon (first term of (30)). Terms involving D measure rates of wash in or out of the chemostat.
Note that organic carbon (OC) decouples from the other quantities— the dynamics of IC, O2, and
P1 are all independent of OC. Hence, system (28)–(31) is effectively three dimensional. We keep OC,
though, because of its importance in the two species community dynamics to follow, and also because
of its place in conservation of carbon and of degree of reduction.

3.1.1. Steady States

Our interest is in the role of photorespiration in long time community behavior. As is often the
case in chemostat models, long time behavior reduces here to the study of steady state solutions.
Equations (28)–(31) have two possible types of steady states: (1) the washout solution P1(t) = 0 with
IC(t) = IC0, OC(t) = 0, and O2(t) = O2,0, which exists for all parameter choices though is not always
stable, and (2) the viable solution P1(t) = P∗

1 > 0 with IC(t) = IC∗, OC(t) = OC∗, and O2(t) = O∗
2.

For a viable solution, (31) requires that

η(IC, O2)g1(IC, O2) = D (32)

have a nonnegative solution (IC∗, O∗
2) indicating that biomass production rate balance with washout.

Also, by combining Equations (28) and (30), a second equation,
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f (η)(IC0 − IC) = O2 − O2,0 (33)

is obtained relating IC∗ and O∗
2. Equation (33), an equilibrium relationship constraining the ratio of

surplus O2 to IC deficit, is a consequence of carbon fixation stoichiometry combined with degree
of reduction balance. If (32) and (33) can be solved with non-negative values IC∗ and O∗

2 then the
remainder of a viable state steady state is given by

P∗
1 = η(IC0 − IC∗), (34)

OC∗ = (1 − η)(IC0 − IC∗), (35)

using (28) and (29).
Thus, existence and uniqueness of viable solutions reduces to existence and uniqueness of

solutions to (32) and (33). This appears to provide two conditions for viability; in fact, though, (32)
and (33) can be solved under the single condition that η(IC0, O2)g1(IC0, O2) = D has a solution with
O2 > O2,0, that is, under the condition that the organism-free (P1 = 0, IC = IC0) chemostat is capable
of supporting growth under its given dilution rate D and ambient oxygen level O2.0. For the particular
choices of g1, f , and η made here, either one or no viable solutions exist, depending on choice of
environmental conditions IC0, O2,0, and D. See Appendix C for details.

3.1.2. Stability of Steady States

To characterize stability, we add a small pertubation to a steady state solution and then watch
ensuing dynamics. We summarize results here; see Appendix D for details. Generally, any component
of a perturbation to a steady state that introduces excess or deficient total carbon or degree of
reduction is washed out of the system on the chemostat turnover time scale D−1. Thus understanding
perturbation dynamics of the four dimensional system (28)–(31) reduces to understanding dynamics
on a two dimensional subsystem, in fact a system that can be interpreted as the phototroph flux mode
space and is spanned by the vectors

EFM1 =

⎛⎜⎜⎜⎝
−1

0
4.7/4

1

⎞⎟⎟⎟⎠ , EFM2 =

⎛⎜⎜⎜⎝
−1

1
3/4

0

⎞⎟⎟⎟⎠ ,

that encode the two phototroph elementary flux modes. Recall Figure 3: perturbation of the
viable steady state by increasing or decreasing flux through the photosynthesis-driven biosynthesis
mode corresponds to perturbation of the viable steady state solution in the direction EFM1

(one Cmole biomass and 4.7/4 Omoles produced per Cmole inorganic carbon consumed) and, likewise,
perturbation of the viable steady state by increasing or decreasing flux through the photorespiration
mode corresponds to perturbation of the viable steady state solution in the direction EFM2 (one Cmole
organic carbon and 3/4 Omoles produced per Cmole inorganic carbon consumed). Stability in this
flux mode space will be discussed for particular steady states below.

Washout State (One Species System). The washout state (P1 = 0) is stable or unstable depending
on sign of the quantity λ = η(IC0, O2,0)g1(IC0, O2,0)− D. If negative then the steady state is stable,
i.e., phototrophs cannot invade, while is positive, then invasion can occur. Note that λ is the net
intrinsic biomass production rate at inflow conditions. When a small quantity of phototrophs are
added to the system, in the unstable case λ > 0 dynamics of the linearized system effectively reduce
to exponential growth on the one dimensional space η EFM1 + (1 − η) EFM2, indicating that the
linearized growth dynamics occurs, as to be expected, as a combination of the photosynthesis mode
and the photorespiration mode weighted by the branching parameter η(IC0, O2,0).

Viable State (One Species System). For the viable state (P1 > 0), dynamics are again
characterized by the basis formed by the two mode vectors EFM1 and EFM2 and in this case are
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always stable (i.e., perturbations decay) under the assumptions that derivatives with respect to IC
are non-negative, derivatives with respect to O2 are non-positive, and condition (17) holds. That is,
the viable state is stable under the conditions that we consider biologically reasonable.

3.1.3. Viability and Light-Limited Ranges

We suppose that the RuBisCO inverse specificity factor γ1, see Section 2.3.3, is subject to some
influence by the organism itself, at least adaptively if not through direct regulation, leading to some
control over the branching function η. Recall

η =
1

1 + γ1
O2
IC

(36)

and note that γ1 = 0 would correspond to the extreme of η = 1 (all fixed carbon goes to biosynthesis)
and that γ1 = ∞ would correspond to η = 0 (all fixed carbon goes to photorespiration). Increasing
inverse specificity γ1 corresponds to increasing, relatively speaking, RuBisCO oxygen affinity and
hence increasing photorespiration rates. So then which factors might determine, or at least influence,
the value of γ1?

We show in Appendix E that, for the single species solution as described above (including the
assumption (17)), the choice γ1 = 0 is favored in the following sense: for any fixed, positive value
of γ1 and the resulting steady state population P∗

1(γ1) > 0, it is in fact the case that (d/dγ1)P∗
1 < 0.

That is, the autotroph population decreases with increasing inverse specificity factor, see, e.g., Figure 4,
left panel, for example. Hence, as a larger affinity factor corresponds to increased photorespiration,
in the single species, static chemostat environment the autotrophs are always disadvantaged by
photorespiration in terms of total biomass.

However, maximizing biomass is not necessarily the only consideration. Another important factor
might be viability range—solar light intensity varies significantly over the course of a day (or a year)
so that capacity to efficiently function over a wide range of photon flux intensities may also be valuable.
High light can cause damage and hence require extra resources, and thus is desirable to avoid or
mitigate. In this context, non-zero inverse specificity has competing impacts. First, larger inverse
specificity increases, per unit inorganic carbon, the usage of photosynthetically generated electrons
and oxygen, thus decreasing rate of damage. Second, larger inverse specificity diverts more fixed
carbon from biomass, thus decreasing growth rate. Note though that decreased growth rate leads to
reduced population biomass and hence increased available inorganic carbon—a smaller population
can be a healthier one. Altogether, then, photorespiration can be expected to shift upwards in both
the lower and upper photon intensity viability bounds. To understand how, see Figure 4 right panel,
a central result of this study, which presents results of a number of solutions of the steady state
Equations (32)–(35). Computations used parameters as described in Appendix B and in the caption.

Minimum Photon Flux. The lower-most curve in Figure 4, right panel, shows, as a function of
γ1, the minimum photon flux necessary for a viable population. This curve was computed analytically
by using condition (32) to determine photon flux ν as a function of γ1 at ambient inorganic carbon and
oxygen levels IC=IC0 and O2=O2,0, the limiting viability concentrations. (It was also checked against a
numerical computation of minimum ν for viability as a function of γ1.) Its form is easily understood in
terms of the non-dimensional number γ1O2,0/IC0 which measures the ratio of likelihoods of O2 versus
IC RuBisCO binding in relation to ambient or near-ambient conditions, The ambient ratio O2,0/IC0 we
use is 0.05 Omole/Cmole, i.e., 20 times more inorganic carbon than oxygen as measured in carbon
and oxygen moles. Thus, for γ1 less than approximately 20 Cmole/Omole, binding site competition is
unimportant at ambient conditions and hence no penalty, at least with respect to minimum photon flux
for viability, is paid. However, as γ1 increases beyond 20, the minimum photon flux rapidly increases,
see Figure 4, right panel.
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Figure 4. Plots of various steady state quantities arising from solutions of (32)–(35) as functions
of inverse specificity γ1 (Cmoles/Omoles) with D = 10−4 s−1, and other fixed parameters are as
described in Appendix B. Increasing γ1 corresponds to increasing importance of photorespiration.
Left. Steady state biomass P∗

1 (in Cmoles/L) versus inverse specificity γ1, with ν = 50 μE. Biomass
decreases monotonically with increasing inverse specificity. The kink at γ1 ∼= 10−2 occurs where
the steady state transitions from carbon limitation to light limitation. Right. Solid curve (bottom):
minimum photon intensity ν (μE) for population viability as a function of inverse specificity γ1. Solid
curve (top): maximum photon intensity for population viability as a function of inverse specificity
γ1. Dashed curve: boundary photon intensity separating light-limiting conditions (below the curve)
from carbon limiting conditions (above the curve). Horizontal dotted line: boundary photon intensity
asymptote (in large inverse specificity limit). Vertical dotted line (left): the inverse specificity value
γ1 = IC1/O2,1 beyond which the light-limiting range significantly expands. Vertical dotted line (right):
the inverse specificity value γ1 = IC0/O2,0 below which photorespiration does not significantly reduce
the minimum range of light intensities that allow population viability. Note that, for larger γ1, steady
state biomass drops off, see left plot. Note that for the chosen set of parameters, washout occurs beyond
inverse specificity of approximately 230 Cmoles/Omoles for all light intensities. Measured values of
inverse specificity in a variety of organisms lie in the approximate range 10−2–100 [11,26,27], delimited
in the plot by the thick bars.

To summarize, the bottom solid curve in Figure 4, right panel, is important in that it shows
minimum photon intensity for community viability as a function of γ1. This curve is, roughly,
described by two parameters: (1) the photon intensity at γ1 = 0, which is determined by details of
photosynthesis rate function g1 as well as choice of chemostat turnover rate D, and more importantly
(2) the value of γ1 = IC0/O2,0 (right-most dotted vertical line) above which significant increase in
photon intensity is required for viability.

A similar discussion applies for the upper-most curve in Figure 4, right panel, which shows
as a function of γ1 the maximum photon flux allowable for a viable population. Again, IC ∼= IC0,
O2 ∼= O2,0, at the viability boundary so that the viability photon flux upper bound is only weakly
dependent on γ1 for γ1O2,0/IC0 noticeably less than 1, i.e., γ1 noticeably less than about 20
Cmole/Omole.

Light-Limited to Carbon-Limited Transition. The dashed curve in Figure 4, right panel,
computed numerically, measures as a function of inverse specificity the boundary light intensity
between light-limited (region below the curve) and carbon-limited (region above the curve) intensities.
In the carbon-limited region, i.e., where photons are sufficiently abundant so that photosynthesis
is limited by access to inorganic carbon rather than light, excess electrons are present leading to
photoinhibition (recall (14)). The cross-over from light limitation to carbon limitation occurs when
ε = δ, i.e., when electron production rate as measured in capability to process inorganic carbon is
equal to cellular inflow rate for inorganic carbon. The right asymptote (γ1 → max(γ1)), shown as
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the horizontal line in Figure 4 is well approximated by setting γ1 = ∞ and solving ε = δ at IC = IC0,
O2 = O2,0, the viability values. More importantly„ though, we can understand the small γ1 behavior of
this curve as follows. If γ1 = 0 then η = 1 so g1 = D and thus D = g1 = ε = δ which, upon solving
for IC and O2, results in values IC1, O2,1, the γ1 = 0 boundary concentrations. When γ1O2,1/IC1 is
significantly less than one, i.e., γ1 noticeably less than IC1/O2,1 photorespiration remains relatively
insignificant at cross-over and hence cross-over is only weakly dependent on γ1. For the parameters
used here, IC1/O2,1

∼= 8 · 10−4, see left-most vertical dotted line in Figure 4, right panel. For larger
values of γ1, the range of light-limiting photon intensities expands significantly.

Summary. We summarize Figure 4, right panel, as follows.

• Setting γ1 = 0, i.e., turning photorespiration off entirely, results in only a single light intensity
with a viable, non carbon-limited steady state population. However, at ambient O2 and IC
concentration levels, competition for RuBisCO binding is insignificant for inverse specificities
γ1 < IC0/O2,0. Hence, from the point of view of population viability at least, there is no penalty
for allowing RuBisCO oxygenase activity over this inverse specificity range.

• On the other hand, inverse specificities such that IC1/O2,1 < γ1 result in significantly enlarged
light-limited intensity range, so that large enough inverse specificities may have some advantage.

• Assembled, the inverse specificity interval

IC1

O2,1
< γ1 <

IC0

O2,0
,

for parameters used here (based on best approximations in comparison to known data) agrees
well with measured values of inverse specificity [11,26,27].

It should be noted that while the upper bound IC0/O2,0 is a function of ambient IC and O2 levels
and is thus is somewhat context-independent at least in the absence of other organisms, the lower
bound IC1/O2,1 does depend on specifics of the system like dilution rate D and hence may vary
under different conditions. More particularly, IC1 is found by equating δ = D. For δ as defined here,
the resulting concentration IC1 is given by

IC1 =
D

rIC − D
KIC. (37)

Generally speaking, though, the solution of δ = D will result in a value of IC1 as a function of some
external rate of transport of IC in comparison to internal, cellular transport mechanisms. Given IC1

then O2,1 is determined stoichiometrically from (33). Hence the ratio IC1/O2,1 is essentially determined
by properties of transport of IC to RuBisCO (relative to the rate of transport of IC into the system),
with increased rates corresponding to smaller ratio and hence larger favorable inverse specificity range.
Carbon concentration mechanisms, though not included here, might have a similar impact.

Altogether, then, the model suggests that there is possible advantage in the form of redox and
oxygen stress control by allowing photorespiration with inverse specificity within the range (37),
the lower bound of which is under some internal control. In particular, an expanded range of
light-limiting photon intensities may result. This may be important as, typically, photon flux varies
considerably over time. (It should be noted that our observation is based on steady state results in
a time-independent model, though it seems possible that the idea extends to periodically varying
systems.) Note that increased photorespiration results in reduced biomass, which may be considered
a disadvantage. However, it is in part because of reduced biomass that the range of light-limiting
photon intensities increases, as reduction in biomass is accompanied by increase in IC availability.

From the point of view of flux mode modeling, photorespiration provides a sort of rate
synchronization mechanism; biosynthesis (left mode in Figure 3) is required to produce biomass, i.e.,
P1, at rate dictated by chemostat dilution while photon input is independently, and likely conflictingly,
determined by photon inflow rate, both of which are not controlled by the phototrophs themselves
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(IC input rate can be controlled by the organisms including through varying total biomass). Biomass
production rate must match chemostat dilution rate, however, so if the dilution and photon inflow
rates differ then, in the absence of a photorespiration mode, excess electrons will be produced leading
to damage. Presence of a photorespiration mode (center mode in Figure 3), however, allows some of
those excess electrons to be shunted away in the form of reduced OC.

Note that biology-related parameters vary in value between different cyanobacterial species and
even within the same species under different environmental conditions, e.g., [29]. We do not see
this variability as a critical problem here, however, as our aim is to explore qualitative behavior of
community interactions as inverse specificity varies from low (low photorespiration levels) to high
(high photorespiration levels), regardless of parameter choices. The forms of the curves in Figure 4 are
expected to hold under reasonable choices. In particular we are least confident about choices related
excess electron damage, effecting mostly height of the top solid curve, Figure 4 right, and photon usage
efficiency, effecting mostly height of the horizontal dotted curve Figure 4 right. The left vertical dotted
curve in Figure 4 right, which indicates the approximate value of γ1 above which photorespiration is
significant, is dependent on properties of inflow of inorganic carbon about which we are also relatively
uncertain, but because of the log scale used is unlikely, in our view, to move a lot under reasonable
choice of parameters.

3.2. Two Species Community

Having explored the effects of photorespiration on steady state phototroph behavior in the one
species model, we now add a second species, a heterotroph, in order to see if its addition, despite the
resulting (indirect) competition for carbon, can in fact lead to an increase in phototroph steady state
biomass. Heterotrophs offer two apparent direct benefits to phototrophs: (1) they use oxygen, thus
reducing oxidative stress, and (2) they produce carbon dioxide, thus increasing the local inorganic
carbon pool. The price paid is that the cyanobacteria must feed these heterotrophs as they cannot
utilize inorganic carbon as a food source. Photorespiration provides a means to do so through
production and secretion of soluble organic carbon, thus perhaps providing an additional advantage
to its existence. Further, though secretion of organic carbon comes at the price of reduced production
of new cyanobacterial biomass, doing so via photorespiration also provides additional control of redox
balance through lowering net degree of reduction of the fixed carbon. In this section, then, we consider
these combined effects, focusing on steady state cyanobacterial biomass as a metric.

The equations for the two species community are as in (21)–(25), rewritten as

d
dt

IC = −g1(IC, O2; ν)P1 + g2(OC, O2)P2 + D(IC0 − IC), (38)

d
dt

OC = (1 − η)g1(IC, O2; ν)P1 − 2g2(OC, O2)P2 − D OC, (39)

d
dt

O2 =

(
3
4
+

17
40

η

)
g1(IC, O2; ν)P1 − 1.9

4
g2(OC, O2)P2 + D(O2,0 − O2), (40)

d
dt

P1 = (ηg1(IC, O2; ν)− D)P1, (41)

d
dt

P2 = (g2(OC, O2)− D)P2. (42)

These equations are the same as the single species ones (28)–(31) except with the addition of
source/sink terms proportional to g2P2 in each of (38)–(40) as well as the new Equation (42) describing
heterotroph biomass. In effect we are adding the third elementary flux mode, recall Figure 3, into the
system, with all of its component reactions occuring at rate g2.
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3.2.1. Steady States and Stability

Equations (38)–(42) have three types of steady state solutions: the washout solution with
P1 = P2 = 0, the single species solution with P1 > 0, P2 = 0, and the coexistence solution P1, P2 > 0.
Note that a fourth type of steady state with P1 = 0, P2 > 0 is not possible; if P1 = 0 then the
heterotrophs will be washed out of the system. We consider first the washout and single species
states, each with P2 = 0, and report results of stability analysis here, again referring to Appendix D for
details. The coexistence steady state, with P2 > 0, is explored numerically later. Note that if P2 = 0
then (38)–(41) reduce, essentially, to (28)–(31), so that steady states for the washout and single species
systems are the same as previously (with the addition that P2 = 0).

Generally, as before, any component of a perturbation to a steady state that introduces excess or
deficient total carbon or degree of reduction is washed out of the system on the chemostat turnover
time scale D−1. Thus, understanding perturbation dynamics of the five dimensional system (38)–(41)
reduces to understanding dynamics on a three dimensional subsystem, now spanned by all three of
the elementary flux modes, given in vector form by

EFM1 =

⎛⎜⎜⎜⎜⎜⎝
−1

0
4.7/4

1
0

⎞⎟⎟⎟⎟⎟⎠ , EFM2 =

⎛⎜⎜⎜⎜⎜⎝
−1

1
3/4

0
0

⎞⎟⎟⎟⎟⎟⎠ , EFM3 =

⎛⎜⎜⎜⎜⎜⎝
1

−2
−1.9/4

0
1

⎞⎟⎟⎟⎟⎟⎠ ,

see Figure 3. Perturbation by increasing or decreasing flux through the photosynthesis-driven
biosynthesis mode corresponds to perturbation in the direction EFM1 (one Cmole biomass and
4.7/4 Omoles produced per Cmole inorganic carbon consumed) and perturbation by increasing or
decreasing flux through the photorespiration mode corresponds to perturbation in the direction EFM2

(one Cmole organic carbon and 3/4 Omoles produced per Cmole inorganic carbon consumed). The
new vector EFM3 corresponds to perturbation that increases or decreases flux through the heterotroph
biosynthesis mode (one Cmole biomass and 1 Cmole inorganic carbon produced per two Cmoles
organic carbon and 1.9/4 Omoles consumed).

Washout State (Two Species System). The two species washout state (P1 = P2 = 0) is, as in the
one species washout case, unstable if λ = ηg1 − D is positive and stable if λ is negative. As before, λ is
the net intrinsic phototroph biomass production rate at inflow conditions. Also as before, when a small
quantity of phototorphs are added to the system, in the unstable case λ > 0, dynamics of the linearized
system effectively reduce to exponential growth on the one dimensional space η EFM1 + (1− η) EFM2,
indicating that the linearized growth dynamics occurs, as to be expected, as a combination of the
photosynthesis mode and the photorespiration mode weighted by the branching parameter η(IC0, O2,0).
Note that the heterotroph cannot invade as it requires an already established population of phototrophs
(with corresponding finite supply of organic carbon) before it can become viable.

Single Species State: Invasion (Two Species System). We consider for several purposes the
single species state (P1 > 0, P2 = 0). Note that this solution is identical to that in the single species
case as discussed in Section 3.1.2 and Appendix C except with the additional component P∗

2 = 0.
We assume that this state is linearly stable to perturbations that do not introduce heterotrophs and ask
what happens if a small amount of heterotrophs are added. In other words, how does the otherwise
stable heterotroph-free system respond to a perturbation including heterotrophs? This is the invasion
problem. In the case that invasion occurs, obviously there is some benefit from the phototrophic
population to the invading, heterotrophs as they cannot survive in the chemostat by themselves. Linear
analysis can provide some information on the specifics of this advantage.

A key observation here is that the five dimensional system (38)–(42) essentially reduces to the
single species, four dimensional one (28)–(31) when P2 = 0. In this four dimensional reduced system,
dynamics of the single species state are stable, so that the full invasion dynamics are effectively
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restricted to a complementary one dimensional space. This space is necessarily a linear combination
of the three mode vectors EFM1, EFM2, and EFM3. Notably, in the case of large g2(OC∗, O∗

2),
instability dynamics are dominated by the heterotrophic growth mode EFM3. When growth is
not as dominant, the role of phototroph flux modes in maintaining carbon and DoR balance is more
evident. The governing quantity is λ = g2 − D; if λ > 0 then heterotroph invasion occurs, and if λ < 0
then heterotrophs are unable to invade.

An interesting question here is whether perturbations that include introduction of heterotrophs,
i.e., positive perturbation of P2, result in both successful invasion of heterotrophs as well as,
simultaneously, increase in phototroph biomass. We consider this question in the case of large
g2(OC∗, O∗

2), see Appendix F for details. Note that, as dynamics are dominantly in the direction
of EFM3, then the P1 component of the perturbation dynamics is small. It is, however, positive
as in this case the intuition that addition of heterotrophs, at least initially, increases inorganic
carbon concentration and decreases oxygen concentration is correct. Hence, the immediate effects of
heterotroph invasion on the phototrophs are mildly positive. Of course, the more important question
is of long time effects, which will be considered next.

3.2.2. Two Species Consortium Steady State

We rely on numerical computations to investigate two species steady states. Parameters are as
used previously for single species computations with the addition of parameters connected to the
heterotrophic biomass mode, see again Appendix B. See Figure 5 for a typical numerical comparison
of the single species steady state biomass (as in Figure 4, left panel) and two species steady state
biomasses, as functions of inverse specificity. As in Figure 4 left panel, photon intensity is held at a fixed
represntative level of 50 μE. For the parameters chosen, steady state conditions are carbon-limited for
inverse specificity smaller than, approximately, 10−2, and light-limited for larger inverse specificity.
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Figure 5. Steady state biomass (Cmoles/L) versus inverse specificity γ1 (Cmoles/Omoles). Increasing
γ1 corresponds to increasing importance of photorespiration. D = 10−4 s−1, and other fixed parameters
are as described in Appendix B and in Figure 4. Solid: steady state biomass P∗

1, single species community
(P2 = 0). Dashed: steady state biomass P∗

1, two species community. Dotted: steady state biomass
P∗

2, two species community. The kinks at γ1 ∼= 10−2 occur where the steady state transitions from
carbon-limitation to light-limitation. Note that steady state phototroph biomass increases with addition
of heterotrophs.
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Note that phototroph biomass is larger in the two species community than in the one species
community for all values of inverse specificity that allow a viable population. This can be understood
as resulting from reconversion of some of the dissolved organic carbon back to inorganic form through
heterotroph respiration, recall (19), where it is available for photosynthesis, as opposed to the single
species system where all dissolved organic carbon is flushed from the chemostat. Increase in biomass
is most noticeable in the interval corresponding to actual measured environmental values of γ1 where,
in the model results, light is limiting and heterotroph biomass is largest.

Intuition might suggest that introduction of heterotrophs into a phototoph population would
result in increase in IC and decrease in O2, both as a consequence of respiration. And indeed, such
may initially be the case, see the invasion discussion above. However, for later times numerics suggest
otherwise near steady state. Dissolved carbon and oxygen, for the same computation, are shown
in Figure 6, left and middle respectively. Dissolved inorganic carbon levels are similar for both one
and two species communities, with consequently matching protection from photorespiration against
high light intensity in both communities. The similarity as well in inorganic carbon concentrations
is a consequence of the steady state rate constraint ηg1 = D, see (41); in the small γ1 carbon limited
regime, η ∼= 1 so IC is determined by δ = g1

∼= D independent of presence or absence of heterotrophs,
while in the light limited regime for relatively large γ1 heterotroph population is low so has little effect
and in the light regime with relatively low γ1, g1 is largely independent of IC and O2 so that η must
be approximately constant, again independently of presence or absence of heterotrophs, see Figure 6
right panel. Note that ∣∣∣∣ ηIC

ηO2

∣∣∣∣ = ∣∣∣∣O2

IC

∣∣∣∣ .
so that in this range, η sensitivity to change in IC is much larger than sensitivity to change in O2. Hence
steady state IC is largely unchanged between the one and two species communities. Dissolved organic
carbon, however, is largely absent from the two species community, in contrast to the single species
one, as organic carbon is limiting for heterotroph biomass production at all values of inverse specificity
and thus is depleted in the two species community. This is perhaps the most dramatic change in
chemical environment between the one species and two species environments.
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Figure 6. Steady state values versus inverse specificity γ1 (Cmoles/Omoles) corresponding to the
computations shown in Figure 5. Left: carbon concentrations (Cmoles/L) with (solid) single species
community inorganic carbon IC, (dash) two species community inorganic carbon IC, (dash-dot) single
species community organic carbon OC, (dot) two species community organic carbon OC. Middle:
oxygen concentrations (Omoles/L) with (solid) single species community oxygen O2 (dash) two
species community oxygen O2. Right: branching function probability η for (solid) the one species
community and (dash) the two species community.

Interestingly, oxygen concentration levels are actually somewhat higher for the two species
community, see Figure 6 middle panel, despite oxygen usage via heterotroph respiration. Higher
oxygen concentrations can be understood to be a consequence of carbon fixation—increase in reduced
carbon in the form of biomass and hence increase in net degree of reduction DoR must be balanced
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by something. In this model, the only possibility is oxygen. Thus, oxygen concentration increases
if biomass does so. This is a generally applicable observation: photosynthetically fixed carbon will
be accompanied by more material with low degree of reduction. In an ideal chemostat environment,
this balance must be maintained. In other environments, biofilms for example, it may be possible for
byproducts like excess oxygen to be transported out of the system while fixed carbon in the form of
biomass remains behind.

Note that, in the two species community, as virtually all dissolved carbon goes to biomass for
smaller values of γ1, then in fact two species oxygen levels are approximately independent of inverse
specificity γ1 and this remains so up until the point that γ1 becomes sufficiently large that significant
amounts of inorganic carbon go unutilized. Only then does oxygen concentration significantly decrease
as a function of γ1, though it always remains larger than the corresponding concentration in the one
species community.

4. Discussion

The one species model. We observe, in the model, that photorespiration shunts reduced carbon
away from biomass production and into dissolved, secreted organic carbon, resulting, at least in
a single species oxygenic phototroph population, in three principle effects:

1. decrease in population biomass,
2. increase in population light tolerance,
3. and decrease in oxygen concentration.

The first two are connected through inorganic carbon concentrations: decrease in population
results in decrease in inorganic carbon demand resulting in increase in inorganic carbon concentration
resulting in reduced inorganic carbon limitation at high light intensities. Decrease in oxygen
occurs for two reasons: (1) reduced phototrophic biomass results in reduced oxygen production,
and (2) photorespiration product is less reduced than biomaterial, so its production results in less
oxygen as a consequence of degree of reduction balance.

The increase in light tolerance and decrease in oxygen concentration suggests an advantage to
photorespiration. However, reduction in population size suggests the possibility of fitness deficit in
comparison to a population that does not photorespire. We have not modeled such a competition here.
However, it should be noted that we impose constant light intensity, and that it is not clear what effects
variable light intensity, particularly transient peaks in intensity, might have on a competition of two
species, one of which grows more efficiently in low light conditions and the other of which is better
protected in high light conditions.

In our set-up, RuBisCO oxygenase activity (which we identify with photorespiration) can serve
as a differential of sorts able to synchronize influx of photons with influx of inorganic carbon.
Using estimates of parameters, we find an interval of values of the inverse specificity γ1 which,
on the one hand, result in population levels for which, over an increased range of photon intensities,
light is limiting but also for which, on the other hand, biomass synthesis is not excessively quenched to
the point of reducing the photon intensity range of viability. Though biomass is decreased, the increase
in range of “healthy” light intensities might suggest more resilience to light intensity variations, i.e.,
increased ecological structural stability [30]. The upper bound on γ1 is related to background inorganic
carbon and oxygen concentrations (IC0 and O2,0 here) and thus may be relatively independent of
model details. The lower bound on γ1 is related to organismal transport rates for inorganic carbon and
is perhaps more model dependent, though also allows the possibility of organismal control. In any
case, the optimal interval we find for inverse specificities seems to be consistent with measured values
over a range of organisms.

The two species model. A steady source of photorespiration-derived organic carbon begs the
introduction of a heterotroph population to consume it, so we also modeled a phototroph-heterotroph
consortium. Obviously, the heterotroph population benefits from the interaction as it cannot survive in
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the model chemostat without the organic carbon supplied by the phototrophs. The phototrophs, on
the other hand, retain their added tolerance to light intensity but see three principle new effects:

1. biomass increase,
2. reduction in dissolved organic carbon,
3. and oxygen concentration increase.

Biomass increase occurs because of increased inorganic carbon availability as a consequence of
heterotroph respiration. Note that organic carbon, here glycolate, could have inhibitory effects, so its
consumption by heterotrophs might also potentially increase growth rates, though this effect has not
been included in the model. Increase in oxygen concentration is somewhat surprising as heterotrophs
consume oxygen during respiration, but occurs again as a consequence of reduction balance: overall
increase in reduced biomass must be balanced within the model by increase in oxygen. More directly,
the increase in phototroph biomass leads to increased oxygen production. This may be, at least to
an extent, an artifact of model simplicity. A more complex model could retain reduction balance
through oxidized material other than oxygen. Also, simplicity of the chemostat itself requires that all
material be washed out at the same rate whether reduce or oxidized. A more complex system might
do otherwise, for example removing dissolved oxygen (e.g., gas sparging that removes O2) faster than
particulate biomass (e.g., biomass fixed in a biofilm).

The phototroph-heterotroph consortium is a more efficient consumer of inorganic carbon than the
photorespiring phototroph population alone, and presence of organic carbon suggests that heterotrophs
could be expected to join a photorespiring phototroph population. Hence, it may be that the question
of competing photorespiring vs. non-photorespiring phototrophs may be the wrong one. Rather,
non-photorespiring phototrophs should be asked to compete against a combined photorespiring
phototroph-heterotroph consortium.

Connecting flux mode models to population scale models. Mathematically and physically, rates
are natural quantities at the flux mode level whereas concentrations, including biomass, are natural at
the population and environmental level. We find here that rate functions (in the population model)
serve to translate cell scale flux modes into the larger scale population level, where they then determine
external concentrations in combination with large scale transport constraints. Flux modes themselves
naturally appear, mathematically, in near-steady state dynamics and are relatable to eigenvectors which
in turn are natural structures for dynamics. The process of converting flux modes to rate functions is
in principle automatable and should be a part of the overall program of extracting information from
’omics data.

Conversely, the mathematical issues involved in the inverse process of determining how large
scale effects influence flux mode regulation are interesting ones and only addressed indirectly here.
Generally speaking, microbial communities can have metabolic capabilities available to organisms and
to the overall community. This raises the question—how can these capabilities be best deployed to
utilize available resources? Rate and stoichiometric constraints still apply, and steady states or, more
generally, asymptotic states, can be computed though likely not in a unique way. However, there may
be many branching type parameters over which the community has at least some control. Optimality
becomes a question of distribution of resource flow (here carbon and electrons) between available
pathways in the most efficient manner. Even in the system studied here, with a small number of well
defined pathways and a relatively simple physical environment, the effects of that environment on
pathway optimization are subtle and influential. The environment imposes rates at steady state and it
also determines response to perturbation. These constraints as well as those arising from community
ecology may easily be overlooked without considering the physical context of the biological system.
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Appendix A. Degree of Reduction

Degree of reduction of an atom or molecule is, roughly, the number of electrons that atom or
molecule is apt to give away in a chemical reaction [31]. We use degree of reduction (DoR) here,
essentially, as a convenient proxy for redox potential. Degree of reduction is computed using the
values DoR(C) = +4, DoR(H) = +1, DoR(O) = −2. For nitrogen, we use DoR(N) = 0 for
cyanobacteria (assuming nitrogen is extracted from N2) and, effectively, DoR(N) = −3 for heterotrophs
(assuming nitrogen is extracted from an organic source) [18]. This dichotomy for N is somewhat at
odds with the definition given just above, but maintains consistency of degree of reduction balance by
accounting for differences in biomaterial formation as explained below.

Degree of reduction for a molecule is estimated by summing degree of reduction of that molecule’s
individual atoms. Then the degrees of reduction for inorganic carbon (assumed of the form carbon
dioxide CO2), organic carbon (assumed of the form glycolate CH2O1.5) and biomass (assumed for both
autotrophs and heterotrophs to be of the form CH1.7O0.5N0.2) are estimated to be

DoR(CO2) = +0

DoR(CH2O1.5) = +3

DoR(CH1.7O0.5N0.2) = +4.7 (autotroph)

DoR(CH1.7O0.5N0.2) = +4.1 (heterotroph)

These are computed simply by adding values of the component atoms, though the nitrogen
contribution introduces a small complication. Note that electrons have degree of reduction +1. Also
note that, although the degree of reduction of glycolate is +3, in the context of the simplified model
used here of photorespiration, (1/2)O2 is removed from the system for each photorespiration reaction
with the context that the degree of reduction of the entire system is increased by +2. Hence, effectively,
formation of a unit of CH2O1.5 has the effect of changing the overall cell degree of reduction by +5.
Biomass, represented by CN1.7O0.5N0.2, comes with a DoR value of 4.7 computed on the basis of
construction from molecular oxygen, hydrogen, carbon dioxide, and also molecular nitrogen (N2),
indicating that 4.7 moles of electrons are required to synthesize a mole of biomass, roughly. However,
assuming heterotrophs are able to use an organic source of hydrogen, e.g., ammonia, rather than
molecular nitrogen, then only approximately 4.1 electron moles are needed per biomass mole.

Appendix B. Parameter Estimation

Carbon moles per cell. We apply the following estimates for microbial cells:

wet mass/volume ∼= 1.1 × 106g/m3,

volume/cell ∼= 5 × 10−18m3,

dry Cmass/wet mass ∼= 1/10,

where the last estimates carbon as comprising 10% of cells by mass. Using the fact that the mass of
1 carbon mole (Cmole) is 12 g, then the conversion parameter c = Cmoles per cell can be approximated
to be

c =
(

Cmole
dry Cmass

)(
dry Cmass
wet mass

)(
wet mass

cell volume

)(
cell volume

cell

)
∼= 4.6 × 10−14 Cmole/cell.

Effective photon absorption rate. Approximating the volume of a cyanobacterial cell as a cylinder
of radius 1 μm and length 4 μm, and assuming the cylinder to be randomly oriented with respect
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to the direction of light (or, alternatively, supposing light to be well scattered), then A, the average
cross-sectional area exposed to light, is

A ∼= (cylinder width)(average cylinder projected length)

= (1 μm)
∫ π/2

−π/2
�(θ)P(θ)dθ

= (1 μm)
∫ π/2

−π/2
(4 cos θ μm)(cos θ)/2dθ

= π μm2

where �(θ) = 4 cos θ μm is the projected length of a cylinder of length 4 μm and angle θ from
transverse, and P(θ) = (1/2) cos θ is the probability of angle θ. This approximation underestimates
slightly the contribution from the cylinder cap at the end of the cylinder pointing towards the light and
overestimates slightly the contribution from the other cap. Note that assuming a cylindrical geometry
(as opposed to a spherical one) may be an effective strategy to reduce light exposure in some situations.

Inorganic carbon transport parameters. We use values for Synechocystis sp. PCC6803, based on
CO2 and HCO−

3 uptake rate and half-saturations from [32] which reported the values of maximum
inorganic carbon transport rate VIC

∼= 391 micromoles per milligram of chlorophyll per hour and
approximately 1.03 × 10−9 milligrams chlorophyll per cell (Synechocystis) [32]. Converting, then,
we obtain

VIC
∼= 391

μmol CO2

mg Chl h

=
391 × 1.03 × 10−9

3600
μmol IC

cell s

= 1.12 × 10−16 Cmol
cell s

.

Then

rIC =
Vtrans

c

=
1.12 × 10−16

4 × 10−14
1
s

= 2.80 × 10−3 1
s

.

Also, from [32], KIC
∼= 8.0× 10−5 in Cmoles. Note, perhaps as another indicator of the importance

of community interactions and local environment, there is wide variation in mechanisms for inorganic
carbon transport even among cyanobacteria [33], so that these parameters can be expected to vary
between species.

Other parameters. Other parameter values used for numerics are tabulated below, together
with literature references when appropriate. Yield parameters are fixed by stoichiometric
and similar considerations. Inflow concentrations are estimated using Henry’s law at standard
atmospheric conditions. The true value of the photosynthetic efficiency parameter α is uncertain
(though photosynthetic efficiencies have been estimated at the community level, e.g., [34], it is
somewhat unclear how to translate to the cellular level) so we set α = 1. Note that α can effectively be
scaled into the photon flux, which is treated as an independent variable for computational purposes,
so does not have independent effect on qualitative conclusions. Inflow concentrations IC0, OC0,
and O2,0 representative of environmental conditions are chosen. Background concentrations of these
quantities can vary from one environment to another, but results are fairly insensitive to reasonable
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variations. Photon flux is given in terms of microeinsteins with 1 microeinstein = 1 μE = 10−6 moles
of photons.

Symbol Name Unit Value Reference

γ1 Inverse specificity Cmol·Omol−1 0.01–1 [11,26,27]
γ2 Excess elec. rate capacity s−1 – –
rh Maximal transport rate s−1 0.0225 Measured

rtrans Maximal transport rate s−1 1.24 × 10−3 [32]
Ktrans Half saturation Cmol·L−1 3 × 10−6 [29]
KO2 Half saturation Omol L−1 8.1253 × 10−10 [35,36]
Koc Half saturation Cmol·L−1 4.6022 [37]
ν Photon flux μE·m−2·s−1 0–2000 [38]
α Efficiency - 1 –

IC0 Inflow IC concentration Cmol·L−1 2.6 × 10−4 –
OC0 Inflow OC concentration Cmol·L−1 0 –
O2,0 Inflow O2 concentration Omol·L−1 1.3 × 10−5 –

D Chemostat turnover rate s−1 various –

Yic Yield Cmol·cell−1 z Yield
Yoc Yield Cmol·cell−1 z Yield
Yo21 Yield Omol·ph−1 1/8 Yield
Yo22 Yield Omol·cell−1 z/2 Yield
Yo23 Yield Omol·cell−1 1.9 z/4 Yield
Yo24 Yield Omol·electron−1 z/4 Yield

Ylight Yield Electron·ph−1 1/2 Yield

Appendix C. Existence and Uniqueness of Single Species Viable State Solutions

First we show that Equations (28)–(31) either have a unique steady state solution (IC∗, OC∗, O∗
2, P∗

1)

with IC∗, OC∗, O∗
2 ≥ 0 and P∗

1 > 0 (a viable solution) or no steady state solution with P∗
1 > 0 at all,

depending on choice of parameters IC0, O2,0 and D. The argument depends on the forms of rate
function g1(IC, O2) and branching function η(IC, O2). Specific forms for η and g1 are supplied in (14)
and (16), but for generality we will only require here that

1. η and g1 are smooth.
2. Monotonicity in O2: for fixed value of IC, g1(IC, O2) is monotonically non-increasing in O2 with

values decreasing from g1(IC, 0) to 0 as O2 varies from 0 to ∞, and η(IC, O2) is monotonically
decreasing in O2 with values decreasing from 1 to 0 as O2 varies from 0 to ∞. Roughly
speaking, increasing oxygen concentration if anything inhibits photosynthesis and always shifts
photosynthetic product from biosynthesis to photorespiration.

3. Monotonicity in IC: for fixed value of O2, g1(IC, O2) is monotonically non-decreasing in IC
with values increasing from 0 to g1(IC0, O2) as IC varies from 0 to IC0, and η(IC, O2) is
monotonically increasing in IC with values increasing from 0 to η(IC0, O2) as IC varies from 0
to IC0. (In fact, η should tend to 1 as IC → ∞). Roughly speaking, increasing inorganic carbon
concentration if anything promotes photosynthesis and always shifts photosynthetic product
from photorespiration to biosynthesis.

4. Fixation stability: we assume that condition (17), namely ηICg1,O2 − ηO2 g1,IC ≥ 0, holds.
5. Note as well that the function f (η) is necessarily a linear function with parameterization

determined by stoichiometry and degree of reduction values. In fact, for the particular choices we
use, f (η) = (3/4) + (17/40)η, however we here need only suppose that f (η) = a + bη for some
a, b > 0.
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We consider Equations (28)–(31) in steady state, i.e.,

0 = −g1P1 + D(IC0 − IC), (A1)

0 = (1 − η)g1P1 − DOC, (A2)

0 = f (η)g1P1 + D(O2,0 − O2), (A3)

0 = (ηg1 − D)P1, (A4)

A viable steady state requires that equation

η(IC, O2)g1(IC, O2) = D (A5)

have a nonnegative solution (IC∗, O∗
2). By combining Equations (28) and (30), a second equation,

f (η)(IC0 − IC) = O2 − O2,0, (A6)

is obtained relating IC and O2. As a consequence of Cmole conservation, see (26), it is evident that the
steady state value IC∗ is bounded from above by IC0, i.e., 0 ≤ IC∗ ≤ IC0. Note that (A6) has a unique
positive solution O2(IC) for each value IC in the interval [0, IC0], with in fact O2(IC) ≥ O2,0. Hence,
any viable solution (IC∗, O∗

2) to Equations (A5) and (A6) must lie in the infinite half-strip solvability
region 0 ≤ IC∗ < IC0, O∗

2 ≥ O2,0. (If IC∗ = IC0, then, from (A1), necessarily P∗
1 = 0). In the case

that (A5) and (A6) have a solution (IC∗, O∗
2), then P∗

1 and OC∗ can be recovered as

P∗
1 = η(IC0 − IC∗), (A7)

OC∗ = (1 − η)(IC0 − IC∗),

with η evaluated at (IC∗, O∗
2). Thus, the problem essentially reduces to solving (A5) and (A6) for IC

and O2.
Note that, as a consequence of monotonicity and smoothness, the maximum value of g1 for

O2 ≥ 0 and 0 ≤ IC ≤ IC0 is g1(IC0, 0). Recalling 0 ≤ η ≤ 1, if D > g1(IC0, 0) then (A5) has no solution.
If D ≤ g1(IC0, 0) then, under the assumptions made on g1 and η, there is a value 0 < ÎC ≤ IC0 with
g1(ÎC, 0) = D, η(ÎC, 0) = 1, and (A5) has a one parameter set of solutions (IC, O2) = (IC, h(IC))

over ÎC ≤ IC ≤ IC0 where h is non-decreasing with h(ÎC) = 0. Since ∇(ηg1), by the requirements
above, lies in the fourth quadrant (IC component is positive, O2 component is negative) then the
tangent to the curve (IC, h(IC)) in the increasing IC direction lies in the first quadrant. Also, since
η(IC0, O2)g1(IC0, O2) = D has a finite solution, then the curve (IC, h(IC)) appears as one of the forms
in Figure A1. If this curve has no segment in the half-strip solvability region (lower curve), then there
is no viable solution. Conversely, if there is a segment in the solvability region (upper curve), then we
will show that, under the above requirements, there is a unique viable solution.
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Figure A1. Two different possible curves (IC, h(IC)), where η(IC, hIC)g1(IC, hIC) = D. The upper
curve, which intersects the half-strip 0 ≤ IC < IC0, O2 ≥ O2,0, allows a viable solution; the lower curve
does not.

Consider lines of the form
C(IC0 − IC) = O2 − O2,0, (A8)

cf. (A6), where C is a constant within the range fmin ≤ C ≤ fmax, with fmin = f (min(a + bη)) = f (a),
fmax = f (max(a + bη)) = f (a + b). These are lines with slopes −C and O2-intercepts (0, O2,0 + CIC0)

that all intersect at the single point (IC0, O2,0), see Figure A2. Note that lines with larger C have larger
O2-intercept than lines with smaller C, i.e., lines move upward with increasing C. In the case that
the curve (IC, h(IC)) intersects the viable region, then it must also intersect each of the lines (A8)
exactly once. Since the lines correspond to f |η=0 running to f |η=1, then there must be at least one
intersection point where both (A5) and (A6) are simultaneously satisfied. Each such point provides a
solution (IC∗, O∗

2).

Figure A2. Illustration of the intersection of allowable lines of the form C(IC0 − IC) = O2 − O2,0 with
the curve (IC, h(IC)) on which ηg1 = D is satisfied.

It is not clear that such a solution (IC∗, OC∗) would be unique in general. However, stability
requirement (4) above is sufficient to guarantee uniqueness, argued as follows. The lines (A8)
correspond to increasing η moving from bottom to top. Under the given requirements above,
requirement (4) in particular, we claim that the value of η is non-increasing along the curve (IC, h(IC))
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in the increasing IC direction. That is, when moving along the curve (IC, h(IC)) in the increasing IC
direction, the left-hand side of (A6) decreases and the right-hand side increases. Hence there can be no
more than one intersection point where both (A5) and (A6) are simultaneously satisfied.

Proof of claim. First, note that ∇η, ∇g1, and ∇(ηg1) all lie in the fourth quadrant of the (IC,O2) plane.
Further, the normal to the ηg1 = D, i.e., to the curve (IC, h(IC)), given by ∇(ηg1) = η∇g1 + g1∇η

is a positive linear combination of ∇g1 and ∇η, so in fact lies between ∇g1 and ∇η, see Figure A3.
Stability requirement ηICg1,O2 − ηO2 g1,IC ≥ 0 guarantees that the geometry of the three gradient
vectors is as in Figure A3 (as opposed to the one where ∇η and ∇g1 are exchanged), except in the
equality case ηICg1,O2 − ηO2 g1,IC = 0 in which case all three vectors are parallel. This shows that the
directional derivative of η is non-positive along the curve (IC, h(IC)) in the increasing IC direction,
as was claimed. Note, further, that η is constant if ηICg1,O2 − ηO2 g1,IC = 0 and strictly decreasing if
ηICg1,O2 − ηO2 g1,IC > 0.

As a side remark, reversing the geometry in Figure A3 (where ∇η and ∇g1 are exchanged)
would result in a situation such that photosynthesis rate g1 actually decreases with increasing IC.
The unlikeliness of such behavior provides another intuition for the necessity of the fixation stability
condition (17).

Figure A3. Under requirement (4), the vectors ∇(ηg1), ∇g1, and ∇η are oriented relative to each other
as shown.

Appendix D. Linearization and Stability

We consider here stability of steady states of the chemostat system, beginning with the single
species community model (28)–(31), which has two possible steady states, namely washout (P1(t) = 0)

and viable (P1(t) = P∗
1 > 0). Writing IC(t) = IC∗ +

∼
IC(t), OC(t) = OC∗ +

∼
OC(t), O2(t) = O∗

2 +
∼
O2(t),

P1(t) = P∗
1 +

∼
P1(t), where tilded quantities are small perturbations to steady state values, then

system (28)–(31) linearizes to

d
dt

⎛⎜⎜⎜⎜⎜⎝
∼
IC(t)
∼

OC(t)
∼
O2(t)∼
P1(t)

⎞⎟⎟⎟⎟⎟⎠ = J(1)(IC∗, OC∗, O∗
2, P∗

1)

⎛⎜⎜⎜⎜⎜⎝
∼
IC(t)
∼

OC(t)
∼
O2(t)∼
P1(t)

⎞⎟⎟⎟⎟⎟⎠ (A9)
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with

J(1) =

⎛⎜⎜⎜⎝
−g1,ICP1 − D 0 −g1,O2 P1 −g1

((1 − η)g1),ICP1 −D ((1 − η)g1),O2 P1 (1 − η)g1

( f (η)g1),ICP1 0 ( f (η)g1),O2 P1 − D f (η)g1

(ηg1),ICP1 0 (ηg1),O2 P1 ηg1 − D

⎞⎟⎟⎟⎠ , (A10)

all quantities evaluated at the steady state solution.
From (26) and (27)

d
dt

⎛⎝ ∼
C
∼

DoR

⎞⎠ =
d
dt

⎛⎝ ∼
IC +

∼
OC +

∼
P1

3
∼

OC − 4
∼
O2 + 4.7

∼
P1

⎞⎠ =

(
1 1 0 1
0 3 −4 4.7

)
d
dt

⎛⎜⎜⎜⎜⎜⎝
∼
IC
∼

OC
∼
O2∼
P1

⎞⎟⎟⎟⎟⎟⎠ = −D

⎛⎝ ∼
C
∼

DoR

⎞⎠

Hence, for any perturbation, its component normal to the null space of

A =

(
1 1 0 1
0 3 −4 4.7

)
(A11)

is damped (eventually) as e−Dt. That is, excess or deficience in the initial perturbation of total carbon
and degree of reduction is removed from the system through outflow on the chemostat turnover time
scale. In fact, the row vectors of A are eigenvectors of the transpose of J(1) with eigenvalue −D and so
−D is a multiplicity 2 (at least) eigenvalue of J(1). Note, thus, that we can therefore characterize the
dynamics described by the four dimensional system (A9) if we can characterize the dynamics on a two

dimensional subspace consisting of the null space of A, i.e., the subspace defined by
∼
C = 0,

∼
DoR = 0

(no net perturbation of total carbon or degree of reduction).
In fact, the null space of A can be interpreted as the phototroph flux mode space and is spanned

by the vectors

EFM1 =

⎛⎜⎜⎜⎝
−1

0
4.7/4

1

⎞⎟⎟⎟⎠ , EFM2 =

⎛⎜⎜⎜⎝
−1

1
3/4

0

⎞⎟⎟⎟⎠ ,

that encode the two phototroph elementary flux modes, recall Figure 3, with vector entries describing
changes to concentrations of the corresponding external quantities. Perturbation of the viable
steady state by increasing or decreasing flux through the photosynthesis-driven biosynthesis mode
corresponds to perturbation of the viable steady state solution in the direction EFM1 (one Cmole
biomass and 4.7/4 Omoles produced per Cmole inorganic carbon consumed) and, likewise,
perturbation of the viable steady state by increasing or decreasing flux through the photorespiration
mode corresponds to perturbation of the viable steady state solution in the direction EFM2 (one Cmole
organic carbon and 3/4 Omoles produced per Cmole inorganic carbon consumed).

The two eigenvalues of J(1)|P1>0 that correspond to eigenvectors in the null space of A are given by

λ2,3 =
1
2
((( f g1)O2 − g1,IC)P1 − 2D + ηg1) (A12)

±1
2

[
((( f g1)O2 − g1,IC)P1 + ηg1)

2 − (4ηIC − 3ηO2)g2
1P1 − 17

10
(ηICg1,O2 − ηICg1,O2)g1P1

]1/2

and will be discussed for particular steady states below.
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Washout State (One Species System). For the washout state (P1 = 0), (A10) becomes

J(1)|P1=0 =

⎛⎜⎜⎜⎝
−D 0 0 −g1

0 −D 0 (1 − η)g1

0 0 −D f (η)g1

0 0 0 ηg1 − D

⎞⎟⎟⎟⎠ (A13)

with g1 and η evaluated at IC = IC0 and O2 = O2,0. Note that (A13) has eigenvalues λ1 = −D < 0
with multiplicity 3 and λ2 = ηg1 − D, seen directly or by setting P1 = 0 in (A13). Hence the washout
state is stable if λ2 < 0 and unstable if λ2 > 0. Note that λ2 = η(IC0, O2,0)g1(IC0, O2,0)− D is the net
intrinsic biomass production rate at inflow conditions.

The eigenspaces for (A13) are

E0
1 = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

1
0
0
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
0
1
0

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ , E0

2 = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

−1
1 − η

f (η)
η

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

with η = η(IC0, O2,0), where superscript 0 indicates the washout state, and subscript j indicates
eigenvalue λj. Perturbations of dissolved chemical concentrationss only, i.e., perturbations contained
in the eigenspace E0

1, decay at rate D since they are simply washed out of the chemostat. We can
call E0

1 the washout space. When a small quantity of cyanobacteria are added to the system, in the
unstable case λ2 > 0, dynamics of the linearized system thus effectively reduce to exponential
growth on the one dimensional space E0

2, with P1, OC, and O2 growing and IC decaying, in relative
ratios as indicated by the entries of the eigenvector v2 for λ2, where v2 is the basis vector shown
above for R0

2. Thus, the resulting invasion of cyanobacteria is accompanied by decrease in inorganic
carbon concentration and increase in organic carbon and oxygen concentrations. Note that eigenvector
v2 = η EFM1 + (1 − η) EFM2, indicating that the linearized growth dynamics occurs, as to be expected,
as a combination of the photosynthesis mode and the photorespiration mode weighted by the
branching parameter η(IC0, O2,0).

Viable State (One Species System). For the viable state (P1 > 0),

J(1)|P1>0 =

⎛⎜⎜⎜⎝
−g1,ICP1 − D 0 −g1,O2 P1 −g1

((1 − η)g1),ICP1 −D ((1 − η)g1),O2 P1 (1 − η)g1

( f (η)g1),ICP1 0 ( f (η)g1),O2 P1 − D f (η)g1

(ηg1),ICP1 0 (ηg1),O2 P1 ηg1 − D

⎞⎟⎟⎟⎠ (A14)

is evaluated at the viable state values of IC, O2, and P1. J(1)|P1>0 has λ1 = −D as a multiplicity 2
eigenvalue with

E1
1 = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

0
1
0
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
−g1η,O2

0
g1η,IC

(g1,ICη,O2 − g1,O2 η,IC)P1

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

where superscript 1 refers to the viable state and subscript 1 to eigenvalue λ1. As noted previously,
dynamics of (A9) include the null space of A, recall (A11), as an invariant region, with components
of the solution outside of this region damped at rate e−Dt. Note that E1

1 ∩ null(A) = {0}; E1
1 can be

considered to be the washout space. Decomposing J(1)|P1>0 = K(1)|P1>0 − DI where K(1)|P1>0 can be
regarded as the kinetics portion of J(1)|P1>0, note that eigenspace E1

1 is the null space of K(1)|P1>0 and
can hence be interpreted as the space of community-level kinetically neutral perturbations.
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Dynamics in the null space of A are characterized by the basis formed by the two mode vectors
EFM1 and EFM2 as well as the two eigenvalues (A13). Using the viable state condition ηg1 = D,
(A13) reduces to

λ2,3 =
1
2
((( f g1)O2 − g1,IC)P1 − D)

±1
2

[
((( f g1)O2 − g1,IC)P1 + D)2 − (4ηIC − 3ηO2)g2

1P1 − 17
10

(ηICg1,O2 − ηICg1,O2)g1P1

]1/2

Note that the real parts of both λ1 and λ2 are negative under the assumptions that derivatives
with respect to IC are non-negative, derivatives with respect to O2 are non-positive, and condition (17)
holds, i.e., the viable state, when it exists, is stable under the conditions that we consider
biologically reasonable.

Next we present stability analyses for steady states of the two species system (38)–(42), which
has three types of steady state solutions: the washout solution with P1 = P2 = 0, the single species
solution with P1 > 0, P2 = 0, and the coexistence solution P1, P2 > 0. We present stability analyses
only for the washout and single species states. (The coexistence steady state was explored numerically
instead). Note that if P2 = 0 then (38)–(41) reduce, essentially, to (28)–(31), so that steady states for the
washout and single species systems are the same as previously (with the addition that P2 = 0), though
their stability status in principle might be different. System (38)–(41) linearizes to

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∼
IC(t)
∼

OC(t)
∼
O2(t)∼
P1(t)∼
P2(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= J(2)(IC∗, OC∗, O∗

2, P∗
1, P∗

2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∼
IC(t)
∼

OC(t)
∼
O2(t)∼
P1(t)∼
P2(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A15)

In the cases under consideration of steady state solutions with P∗
2 = 0, the Jacobian matrix takes

the form

J(2) =

⎛⎜⎜⎜⎜⎜⎝
−g1,ICP1 − D 0 −g1,O2 P1 −g1 g2

((1 − η)g1),ICP1 −D ((1 − η)g1),O2 P1 (1 − η)g1 −2g2

( f (η)g1),ICP1 0 ( f (η)g1),O2 P1 − D f (η)g1 − 1.9
4 g2

(ηg1),ICP1 0 (ηg1),O2 P1 ηg1 − D 0
0 0 0 0 g2 − D

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
J(1)

g2

−2g2

− 1.9
4 g2

0
0 0 0 0 g2 − D

⎞⎟⎟⎟⎟⎟⎠
Much of our stability results for the one species case are still of use here. Note that J(2) shares

the same eigenvalues (and multiplicities) as J(1) with the addition of an extra eigenvalue g2 − D.
Eigenvectors of J(1) are also eigenvectors of J(2), corresponding to the same eigenvalues, with a 0 in
the fifth component corresponding to P2 concentration perturbations. The only remaining item to be
determined is the eigenvector corresponding to the new eigenvalue g2 − D.
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Proceeding as in the one species case, from (26) and (27)

d
dt

⎛⎝ ∼
C
∼

DoR

⎞⎠ =
d
dt

⎛⎝ ∼
IC +

∼
OC +

∼
P1 +

∼
P2

3
∼

OC − 4
∼
O2 + 4.7

∼
P1 + 4.1

∼
P1

⎞⎠

=

(
1 1 0 1 1
0 3 −4 4.7 4.1

)
d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∼
IC
∼

OC
∼
O2∼
P1∼
P2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −D

⎛⎝ ∼
C
∼

DoR

⎞⎠

Hence, for any perturbation, its component normal to the null space of

B =

(
1 1 0 1 1
0 3 −4 4.7 4.1

)
(A16)

is damped (eventually) as e−Dt, that is, excess or deficience in the initial perturbation of total carbon
and degree of reduction is removed from the system through outflow on the chemostat turnover
time scale. Note again, thus, that we can therefore characterize the dynamics described by the five
dimensional system (A15) if we can characterize the dynamics on a three dimensional subspace

consisting of the null space of B, i.e., the subspace defined by
∼
C = 0,

∼
DoR = 0 (no net perturbation of

total carbon or degree of reduction).
Continuing to proceed as before, we note that the null space of B can be interpreted as the two

species flux mode space and is spanned by the vectors

EFM1 =

⎛⎜⎜⎜⎜⎜⎝
−1

0
4.7/4

1
0

⎞⎟⎟⎟⎟⎟⎠ , EFM2 =

⎛⎜⎜⎜⎜⎜⎝
−1

1
3/4

0
0

⎞⎟⎟⎟⎟⎟⎠ , EFM3 =

⎛⎜⎜⎜⎜⎜⎝
1

−2
−1.9/4

0
1

⎞⎟⎟⎟⎟⎟⎠ ,

that encode the effect of the three elementary flux modes shown in Figure 3 on external concentrations.
As before, perturbation by increasing or decreasing flux through the photosynthesis-driven
biosynthesis mode corresponds to perturbation in the direction EFM1 (one Cmole biomass and
4.7/4 Omoles produced per Cmole inorganic carbon consumed) and perturbation by increasing or
decreasing flux through the photorespiration mode corresponds to perturbation in the direction EFM2

(one Cmole organic carbon and 3/4 Omoles produced per Cmole inorganic carbon consumed). The new
vector EFM3 corresponds to perturbation that increases or decreases flux through the heterotroph
biosynthesis mode (one Cmole biomass and 1 Cmole inorganic carbon produced per two Cmoles
organic carbon and 1.9/4 Omoles consumed).

Washout State (Two Species System). For the two species washout state (P1 = P2 = 0) along
with IC = IC0, OC = 0, O2 = O2,0,

J(2)|P1,P2=0 =

⎛⎜⎜⎜⎜⎜⎝
−D 0 0 −g1 0

0 −D 0 (1 − η)g1 0
0 0 −D f (η)g1 0
0 0 0 ηg1 − D 0
0 0 0 0 −D

⎞⎟⎟⎟⎟⎟⎠ (A17)
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(note from (20) that g2|OC=0 = 0) with g1 and η evaluated at IC = IC0, OC = 0, O2 = O2,0.
Note that (A17) has, in common with (A13), eigenvalues λ1 = −D < 0 (with multiplicity 4)
and λ2 = ηg1 − D. Hence, again, the washout state is stable if λ2 < 0 and unstable if λ2 > 0.
The eigenspaces for (A17) are

E0
1 = span

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
0
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, E0

2 = span

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
−1

1 − η

f (η)
η

0

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Perturbations without introduction of phototrophs decay at rate −D. As before, when a small
quantity of phototrophs are added to the system, in the unstable case, dynamics effectively reduce to
exponential growth on the one dimensional space E0

2, with P1, OC, and O2 growing and IC decaying,
in relative ratios as indicated by the entries of the eigenvector for λ2. Note in particular that the
P2-component of the λ2-eigenvector is zero, indicating that the heterotroph is unable to invade. That is,
the heterotroph requires an already established population of phototrophs (with corresponding finite
supply of organic carbon) before it can become viable. Note as before that λ2-eigenvector can be
written η EFM1 + (1 − η) EFM2, indicating again that the linearized growth dynamics occurs as
a combination of the photosynthesis mode and the photorespiration mode weighted by the branching
parameter η(IC0, O2,0).

Single Species State: Invasion (Two Species System). The Jacobian matrix for the base steady
state is

J(2) =

⎛⎜⎜⎜⎜⎜⎝
J(1)|P1>0

g2

−2g2

− 1.9
4 g2

0
0 0 0 0 g2 − D

⎞⎟⎟⎟⎟⎟⎠ (A18)

where J(1)|P1>0 is as given in (A14) and, in addition, g2 is evaluated at OC∗ and O∗
2. As previously, the

eigenvalues of J(1)|P1>0 are also eigenvalues of J(2) with identical eigenspaces, except with zeros in the
new, fifth component of the two species system corresponding to perturbations in the P2 component.

Hence the dynamics in those eigenspaces are independent of perturbation to
∼
P2, and, by assumption,

the dynamics on those eigenspaces are stable. The new eigenvalue is λ4 = g2 − D with eigenspace
E1

4 = span{v4}, where v4 	= 0 satisfied J(2)v4 = λ4v4. Note that v4 is necessarily a linear combination
of the three mode vectors EFM1, EFM2, and EFM3. It is easily seen in the case of large g2(OC∗, O∗

2)

that v4
∼= EFM3, that is, the instability dynamics are dominated by the heterotrophic growth mode.

When growth is not as dominant, the relative role of phototroph flux modes in maintaining carbon
and DoR balance is more significant.

Appendix E. Optimization in the Single Species Chemostat With Respect to Affinity

We consider a unique, viable solution (IC∗, OC∗, O∗
2, P∗

1) to Equations (A1)–(A4), under the
assumptions of Appendix C, as a function of affinity parameter γ1. In particular, we show that
(d/dγ1) P∗

1 < 0 for γ1 > 0, i.e., steady state biomass increases with decreasing γ1 To do so, we compute
the variation with respect to γ1 of the solution to Equations (A5) and (A6). In particular, perturbing
γ1 → γ1 + Δγ1, then perturbed quantities IC∗ + ˜IC Δγ1 and O∗

2 + Õ2 Δγ1 satisfy, to linear order,(
A B
C D

)(
ĨC
Õ2

)
=

(
E
F

)
, (A19)
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where

A = (ηg1)
∗
,IC,

B = (ηg1)
∗
,O2

,

C = f ′(η∗)η∗
,IC(IC0 − IC∗)− f (η∗),

D = f ′(η∗)η∗
,O2

(IC0 − IC∗)− 1,

E = −η∗
,γ1

g∗1
F = − f ′(η∗)η∗

,γ1
(IC0 − IC∗).

Here, superscript ∗ corresponds to evaluation at IC=IC∗, O2=O∗
2.

System (A19) has solution(
ĨC
Õ2

)
=

1
AD − BC

(
DE − BF
AF − CE

)
. (A20)

Computing,

AD − BC = (η∗
,O2

g1,IC − η∗
,ICg1,O2 ) f ′(η∗)η∗(IC0 − IC) + g∗1( f (η∗)η∗

,O2
− η∗

,IC) + η∗( f (η∗)g∗1,O2
− g∗1,IC)

which, assuming stability condition (17), is strictly negative. Hence, (A20) is the unique solution
to (A19).

To compute the variation of P̃1, we take the the variation of Equation (A7) and, using
solution (A20), obtain after some computation

d
dγ1

P∗
1 = (η∗

,γ1
+ η∗

,ICIC∗
,γ1

+ η∗
,O2

O∗
2,γ1

)(IC0 − IC∗)− η∗IC∗
,γ1

= −η∗η∗
,γ1

IC0 − IC∗

AD − BC

(
g∗1,IC − 3

4
g∗1,O2

+
g∗1

IC∗ − IC0

)
< 0,

as was to be shown.

Appendix F. Invasion Eigenvector

The eigenvector v4 for the invasion dynamics matrix (A18) can be computed from row reducing
the equation J(2) − λ4 I = 0, leading to the diagonal system (solvable by back-substitution) for
v4 = (ic, oc, o2, p1, p2)

0 = (g1,ICP∗
1 + g2)ic + g1,O2P∗

1o2 + g1 p1 + g2 p2

0 = (((1 + η)g1)ICP∗
1 + 2g2)ic + g2oc + ((1 + η)g1)O2 o2 + (1 + η)g1 p1

0 = ((Fg1)ICP1 − (19/40)g2)ic + ((Fg1)O2 P∗
1 − g2)o2 + Fg1 p1

0 =

(
(ηg1)ICP∗

1 +
g2 − ηg1

Fg1
((Fg1)ICP∗

1 − (19/40)g2)

)
ic

+

(
(ηg1)O2 P∗

1 +
g2 − ηg1

Fg1
((Fg1)O2P∗

1 − (19/40)g2)

)
o2

with F = (11/40) + (17/40)η and all quantities evaluated at the steady state values IC∗, OC∗, O∗
2, P∗

1,
as well as P∗

2 = 0. Recall that all non-differentiated quantities are non-negative, that all derivatives
with respect to IC are non-negative (with g1,IC strictly positive) and all derivatives with respect to O2

are non-positive, and that, evaluated at the starred quantities, ηg1 = D.
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If the eigenvalue g2 − D > 0, with g2 evaluated at steady state values, then the phototroph-only
steady state is unstable to perturbations along eigenvector v. The case g∗2 � D = η∗g∗1
(with η∗ = η(IC∗, O∗

2), g∗1 = g1(IC∗, O∗
2), g∗2 = g2(OC∗, O∗

2)), i.e., heterotroph growth time scale short
in comparison to washout time, is informative. Expanding all quantities in powers of η∗g∗1/g∗2 , e.g.,

IC(t) = IC(0)(t) +
η∗g∗1

g∗2
IC(1)(t) +

(
η∗g∗1

g∗2

)2
IC(2)(t) + . . . ,

and similarly for OC, O2, P1, and P2, we can apply standard asymptotic methods to approximate
solutions order by order. To leading order, we find

OC(0) = −2IC(0)

O(0)
2 = −19

40
IC(0)

P(0)
1 = 0

P(0)
2 = IC(0)

Note that during the transient period of the initial invasion, intuition for heterotroph benefit to
phototrophs holds: introduction of heterotrophs, i.e., P(0)

2 > 0, results in increase in inorganic carbon
concentration, i.e., IC(0) > 0, and decrease in organic carbon and oxygen concentrations, i.e., OC(0),
O(0)

2 < 0. Note that these perturbations are consistent with the stoichiometry of EFM3, and that there
is no effect of phototroph population at this order, a consequence of the g∗2 � η∗g∗1 asymptotics, but at
the next order,

P(1)
1 =

(
(η∗g∗1)IC − 19

40
(η∗g∗1)O2

)
P∗

1
η∗g∗1

P(0)
2 .

so that P(1)
1 is positive if P(0)

2 > 0, i.e., phototroph population biomass increases with introduction of
heterotrophs in the transitory invasion period.
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Abstract: The gut microbiome is a highly complex microbial community that strongly impacts
human health and disease. The two dominant phyla in healthy humans are Bacteroidetes and
Firmicutes, with minor phyla such as Proteobacteria having elevated abundances in various disease
states. While the gut microbiome has been widely studied, relatively little is known about the
role of interspecies interactions in promoting microbiome stability and function. We developed a
biofilm metabolic model of a very simple gut microbiome community consisting of a representative
bacteroidete (Bacteroides thetaiotaomicron), firmicute (Faecalibacterium prausnitzii) and proteobacterium
(Escherichia coli) to investigate the putative role of metabolic byproduct cross feeding between species
on community stability, robustness and flexibility. The model predicted coexistence of the three
species only if four essential cross-feeding relationships were present. We found that cross feeding
allowed coexistence to be robustly maintained for large variations in biofilm thickness and nutrient
levels. However, the model predicted that community composition and short chain fatty acid levels
could be strongly affected only over small ranges of byproduct uptake rates, indicating a possible
lack of flexibility in our cross-feeding mechanism. Our model predictions provide new insights
into the impact of byproduct cross feeding and yield experimentally testable hypotheses about gut
microbiome community stability.

Keywords: microbial communities; biofilm consortia; gut microbiome; cross feeding; metabolic
modeling; biofilm modeling

1. Introduction

Natural microbial communities typically form biofilms in which different species compete for
and efficiently utilize available nutrients [1–5]. The presence of spatial heterogeneity within biofilms
plays an essential role in the evolution and function of microbial species [2,6–9] and has profound
effects on biofilm formation and development [5,10–12]. Concentration gradients in key nutrients
due to limited diffusion can establish metabolic niches within the biofilm which produce spatial
variations in biomass density [13] and partitioning of species [14]. With their inherent chemical
gradients, biofilms can provide niches for both fast and slow growing organisms, a design feature
thought to be critical to the stability of naturally occurring systems. Microbes residing in multispecies
biofilms exhibit phenotypes distinct from planktonic growth. For instance, these immobilized bacteria
can tolerate antimicrobial agent concentrations 10,000-fold higher than the same microbes grown
planktonically [15,16]. Biofilm communities are often compared to tissues found in higher eukaryotic
organisms based on the large number of cell types involved, the complex interactions between cells,
the ability of cells to self-organize into three-dimensional structures and the emergent properties of the
integrated systems.
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Natural communities have evolved to exploit the native metabolic capabilities of each species
and are highly adaptive to changes in their environments. Adaption is achieved through a variety of
mechanisms, including cross feeding of metabolites synthesized by one species to support the growth
of another species [17–20]. These cross-feeding relationships are a result of metabolic specialization
and establish a food web within the community that maximizes utilization of available resources.
When combined with the biofilm mode of growth and associated diffusional limitations, cross
feeding establishes local metabolic niches that allow otherwise slower growing species to coexist
with faster growing species and is hypothesized to stabilize the community against environmental
perturbations [21–24]. The spatial partitioning of metabolism and physical immobilization by secreted
polymers make biofilm cultures distinct from planktonic cultures grown in well-mixed environments
where coexistence is not possible unless the species have the same growth rate.

The Human Microbiome Project was launched in 2008 with the goal of developing improved
understanding of the human microbiome and its role in human health and disease [25]. To date, the
most widely studied system is the gut microbiome due to its critical role in food metabolism [26–28],
profound influence on the immune system [29,30] and suspected role in a wide variety of diseases
including gut infections [31], inflammatory bowel and Crohn’s diseases [32,33], obesity [34],
diabetes [35], cardiovascular disease [36], rheumatoid arthritis [37], colorectal cancer [38] and even
depression [39]. The human gut microbiome is a highly complex multispecies system thought to consist
of at approximately 1800 genera and 15,000–36,000 species of microbes [40]. The two dominant phyla
in healthy humans are Firmicutes and Bacteroidetes, which comprise more than 90% of the community.
Other important but much less prevalent phyla are Proteobacteria, Actinobacteria, Euryarchaeota and
Verrucomicrobia as well as Eukaryota such as fungi. A critical metabolic function of the gut microbiota
is to convert dietary fiber into short-chain fatty acids (SCFAs) that can be absorbed by the host intestine
as an energy source. The key SFCAs acetate, propionate and butyrate are commonly present in an
approximate 60:20:20 molar ratio [41].

Gut microbiome function is usually robust to dietary changes and other perturbations that
alter species composition and SCFA synthesis. Correspondingly, metagenomic studies have shown
wide variations in microbiota diversity and composition within healthy human populations [42].
However, large perturbations in susceptible individuals can result in long-term microbiome alteration.
Many diseases are associated with the gut flora being perturbed from their normal state through a
poorly understood process known as dysbiosis [26,43]. For example, Clostridium difficile infections are
often attributed to the use of broad spectrum antibiotics that inadvertently alter microbiota diversity
and species composition, thereby reducing colonization resistance to pathogen invasion [44,45].
The role of species interactions in maintaining healthy community function or promoting dysbiosis are
poorly understood. Despite some recent progress [46–48], the types of species interactions required
for stable community dynamics in biofilm communities where nutrient gradients provide niches for
different metabolic lifestyles have not been elucidated.

While foundational to the vast majority of microbial life on the planet, the basic design principles
of cross-feeding microbial biofilms remain poorly understood due largely to the complexity of
naturally occurring systems [1,5]. Synthetic microbial communities comprised of a smaller number
of well characterized and genetically manipulable organisms are tractable alternatives to natural
systems [49–51]. In principle, these synthetic communities can be designed to capture the most
salient features of the corresponding natural communities while offering the capability to manipulate
individual species metabolism and cross-feeding interactions. However, few comprehensive studies
of metabolite cross feeding in synthetic biofilm communities are available in the literature [50,52].
Quantitative understanding of the relationships between metabolite cross feeding, spatial arrangement,
metabolic rates and community metabolism is critical to systematically analyze and rationally
manipulate biofilm communities associated with the human gut and other microbiomes.

In this study, we developed a biofilm metabolic model of a very simple bacterial
community consisting of a representative bacteroidete (Bacteroides thetaiotaomicron), firmicute
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(Faecalibacterium prausnitzii) and proteobacterium (Escherichia coli) as an in silico surrogate for the
human gut microbiome. The model was used to investigate differences between single and multispecies
biofilms, to discover putative cross-feeding relationships between biofilm species, to determine
which cross-feeding relationships were essential for species coexistence, to examine robustness
of the cross-feeding community to biofilm and environmental perturbations and to explore the
flexibility of the cross-feeding strategy with respect to SCFA synthesis. The model generated new
and experimentally testable hypotheses about the role of byproduct cross feeding in the stability and
function of the human gut microbiome.

2. Results

2.1. Metabolic Analysis of Single Species Biofilms

We first performed flux balance analysis (FBA) with the genome-scale metabolic reconstruction of
each species to determine the secreted byproducts to be included in biofilm metabolic models. Nutrient
uptake rates were specified as 10 mmol/gDW/h for glucose and 1 mmol/gDW/h for the three amino
acids (methionine, serine, tryptophan) essential for F. prausnitzii in silico growth. The FBA results for
planktonic growth can be qualitatively summarized as follows (Figure 1):

• B. thetaiotaomicron: high fluxes of acetate and CO2 and a low flux of propionate
• F. prausnitzii: high fluxes of butyrate, CO2, formate and lactate
• E. coli: high fluxes of acetate, ethanol and formate and a very low flux of succinate

Figure 1. Secreted byproducts predicted by metabolic reconstructions and biofilm metabolic models of
the three individual species. The same byproducts were predicted for planktonic and biofilm growth
with the exception of B. thetaiotaomicron, for which CO2 was produced only planktonically and succinate
was produced only in the biofilm.
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These secreted byproducts were included as extracellular metabolites in single species biofilms
to further characterize byproducts possibly cross fed in the three species biofilm community. Single
species biofilm simulations were performed assuming a fixed biofilm thickness of 40 μm, bulk
nutrient concentrations of 5 mmol/L glucose and 0.5 mmol/L each amino acid, and initial conditions
corresponding to a spatially uniform biomass concentration of 10 g/L. Due to the lack of available data
on species-specific uptake kinetics for glucose and the three amino acids, each species was assigned
the same uptake parameters (see Materials and Methods). Dynamic simulations were run for 300 h to
ensure that a steady-state solution was obtained for each species.

Figure 2 shows steady-state spatial profiles of the biomass concentration, growth rates, nutrient
concentrations and byproduct concentrations for each single species biofilm. B. thetaiotaomicron
produced the highest biomass concentration throughout the biofilm due to its relatively high growth
rate in the nutrient rich region near the biofilm–stool interface (z = 0 μm). The biomass concentration
exhibited a strong spatial dependence due to biomass removal by erosion at the same interface.
The nutrient concentrations also showed spatial variations due to cellular consumption and diffusion
limited transport through the biofilm. The primary metabolic byproducts of B. thetaiotaomicron were
predicted to be acetate and succinate with propionate produced at relatively low levels. The CO2

synthesized planktonically was replaced by succinate in the biofilm environment. Byproduct
concentrations were almost constant throughout the biofilm due to diffusion and removal at the
two boundaries. The second fastest growing species E. coli produced acetate, ethanol and formate
as primary byproducts and succinate as a very minor byproduct. F. prausnitzii produced the least
biomass despite having the highest growth rate in the nutrient lean region near the colon–biofilm
interface (z = 40 μm). The primary metabolic byproducts of F. prausnitzii were butyrate, CO2, formate
and lactate, as predicted planktonically.

Figure 2. Steady-state spatial profiles predicted by single species biofilm models. Units are
g/L for biomass, h−1 for growth rate and mmol/L for the other variables. Species: BT denotes
B. thetaiotaomicron, FP denotes F. prausnitzii and EC denotes E. coli.
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2.2. Predicting Cross-Feeding Relationships in the Multispecies Biofilm

A biofilm metabolic model was constructed for the three species community comprised
of B. thetaiotaomicron, F. prausnitzii and E. coli. Initial simulations were aimed at discovering
putative cross-feeding relationships without any a priori assumptions concerning the nature of
these relationships. Therefore, we allowed each species to uptake any available byproduct (acetate,
butyrate, CO2, ethanol, formate, lactate, propionate, succinate) to increase its local growth rate in the
biofilm. Butyrate uptake was excluded for B. thetaiotaomicron and ethanol and propionate uptakes
were excluded from F. prausnitzii because these models lacked the necessary exchange fluxes. Due to
the lack of data on species-specific uptake kinetics for the eight byproducts, each species was assigned
the same uptake parameters (see Materials and Methods). As with the single species, the multispecies
biofilm simulations were performed with a fixed thickness of 40 μm and bulk nutrient concentrations
of 5 mmol/L glucose and 0.5 mmol/L each amino acid. The initial conditions corresponded to spatially
uniform biomass concentrations of 10 g/L for each species.

Initial simulations showed that B. thetaiotaomicron failed to synthesize propionate in the
multispecies biofilm despite producing this SCFA as an isolated species (see Figure 2). Because
the B. thetaiotaomicron reconstruction predicted synthesis of succinate rather than propionate for
sufficiently large CO2 uptake rates, we excluded CO2 uptake for B. thetaiotaomicron to favor propionate
synthesis. Figure 3A shows time profiles of the biomass, nutrient and byproduct concentrations in
the middle of the biofilm (z = 20 μm) over the first 200 h of simulation. Corresponding profiles of the
species growth, uptake and secretion rates are shown in Figure 3B. Interestingly, F. prausnitzii produced
substantially more biomass than E. coli at the low nutritional conditions that quickly developed in the
biofilm interior. Butyrate, CO2 and formate were predicted to be present at high concentrations, while
the remaining five byproducts were synthesized at much lower levels.

Predicted cross-feeding relationships were identified from the byproduct secretion and uptake
fluxes in Figure 3B. The following relationships were observed:

• Acetate: produced by B. thetaiotaomicron and E. coli; consumed by F. prausnitzii
• CO2: produced by F. prausnitzii and B. thetaiotaomicron; consumed by E. coli and F. prausnitzii
• Ethanol: produced by E. coli; consumed by B. thetaiotaomicron
• Formate: produced by E. coli and F. prausnitzii; consumed by F. prausnitzii
• Lactate: produced by F. prausnitzii; consumed by B. thetaiotaomicron and E. coli
• Succinate: produced by B. thetaiotaomicron and E. coli; consumed by E. coli

Based on the flux patterns in Figure 3B, some of these cross-feeding relationships appeared to
be more important than others. The acetate, ethanol and succinate cross-feeding relationships were
characterized by relatively large, sustained exchange fluxes. By contrast, lactate cross-feeding fluxes
were relatively large only over the first 20 h. The CO2 uptake fluxes were small but sustained over
the entire simulation. Formate uptake by F. prausnitzii was small and occurred only for the first 10 h.
The cross-feeding patterns between the three species are summarized in Figure 4 with putative formate
cross feeding neglected due to its presumed insignificance.
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Figure 3. Time profiles predicted in the middle of the multispecies biofilm with byproduct cross
feeding. (A) Biomass, nutrient and byproduct concentrations. Units are g/L for biomass and mmol/L
for the nutrients and byproducts; (B) Species growth, uptake and secretion rates. Units are h−1 for
the growth rate and mmol/gDW/h for the other rates. Uptake rates are negative and secretion rates
are positive. Amino acids: Met denotes methionine, Ser denotes serine and Trp denotes tryptophan.
Byproducts: Ace denotes acetate, But denotes butyrate, Eth denotes ethanol, Frm denotes formate,
Lac denotes lactate, Prp denotes propionate and Suc denotes succinate.
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Figure 4. Byproduct cross-feeding patterns identified from the species uptake and secretion fluxes in
Figure 3B. Formate cross feeding has been omitted due to its small magnitude and duration.

2.3. Establishing Species Coexistence in the Multispecies Biofilm

The previous dynamic simulation was performed over a short time horizon of 200 h that was
insufficient to determine if the three species would coexist over long time periods as would be required
for proper microbiome function. Therefore, we repeated the multispecies simulation over a much
longer time horizon of 10,000 h to determine if the three species community was stable. While
B. thetaiotaomicron and F. prausnitzii were able to coexist, E. coli was eliminated because its biomass
generation through growth was exceeded by its biomass removal at the biofilm–stool boundary due
to erosion. To achieve coexistence of the three species, the ATP maintenance value in the E. coli
reconstruction was decreased from the nominal value of 8.43 to 6.75 mmol ATP/gDW/h. We justified
this modification by noting that the actual gut environment is considerably more complex than reflected
in our model and that the presence of unmodeled nutrients could enhance E. coli growth relative to
the other two species. The new ATP maintenance value of 6.75 mmol ATP/gDW/h was chosen such
that the E. coli abundance averaged across the biofilm was within the range reported for healthy gut
microbiomes, as discussed below.

Figure 5A shows steady-state concentration profiles for the three species and their byproducts.
Corresponding profiles of the species growth rates and the byproduct uptake and secretion rates are
shown in Figure 5B. The reduced E. coli ATP maintenance value allowed all three species to stably
coexist. When averaged across the biofilm, the model predicted a total biomass concentration of 182 g/L
comprised of 53.9% B. thetaiotaomicron, 32.8% F. prausnitzii and 13.3% E. coli. These values are within
the large range of biomass concentrations reported for other types of bacterial biofilms [13] and the
ratio of Bacteroidetes–Firmicutes–Proteobacteria reported for healthy gut microbiomes [53]. The model
achieved coexistence by a careful balance of species growth rates across the biofilm. B. thetaiotaomicron
was predicted to have the highest growth rates in the nutrient rich region near the biofilm–stool
interface, while F. prausnitzii growth was favored in the nutrient lean region near the colon–biofilm
interface. Unlike the other two species, E. coli was not predicted to establish a particular spatial niche
that favored its metabolism but rather produced sufficiently large growth rates over the entire biofilm
to remain competitive.

The byproduct cross-feeding relationships depicted in Figure 4 also were observed in the stable
community. As before, the most important relationships appeared to be: (1) F. prausnitzii consumption
of acetate and succinate produced by B. thetaiotaomicron and E. coli; and (2) B. thetaiotaomicron
consumption of ethanol produced by E. coli. Cross feeding of CO2, formate and lactate appeared to
be less important based on the small uptake rates of these byproducts. As expected, cross feeding
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of butyrate and propionate were not predicted. The model predicted a spatially averaged SCFA
concentration of 75 mmol/L comprised of 2% acetate, 10% propionate and 89% butyrate, which was
much less acetate, much more butyrate and less propionate than commonly reported in experimental
studies [54]. Because B. thetaiotaomicron synthesizes both acetate and propionate and F. prausnitzii
converts acetate to butyrate, these results suggest that the ratio of the B. thetaiotaomicron and F. prausnitzii
was too low or that the SCFA synthesis rates were not properly balanced. While the ATP maintenance
value of each species could have been adjusted to alter the SCFA composition, we left these values
unchanged since this study was focused on community stability not SCFA synthesis.

Figure 5. Steady-state spatial profiles predicted by the multispecies biofilm model with reduced E. coli
ATP maintenance. (A) Biomass and byproduct concentrations. Units are g/L for biomass and mmol/L
for the byproducts; (B) Species growth rates and byproduct uptake and secretion rates. Units are h−1

for growth rates and mmol/gDW/h for the other rates.

The previous simulations demonstrated that the three species cross-feeding community was stable
over long time periods with steady-state species compositions within experimentally determined
ranges for healthy gut microbiomes. When cross feeding was eliminated by removing all byproduct
uptakes from the model, the steady state consisted of just E. coli (Figure S1). This result demonstrated
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that byproduct cross feeding was necessary as well as sufficient for community stability. Furthermore,
biofilm simulations performed for all three possible combinations of two species predicted that the
B. thetaiotaomicron–F. prausnitzii and B. thetaiotaomicron–E. coli combinations would result in species
coexistence (Figure S2). By contrast, F. prausnitzii was unable to compete with E. coli, demonstrating
that B. thetaiotaomicron was necessary for F. prausnitzii to coexist in the presence of E. coli.

2.4. Identifying Cross-Feeding Relationships Essential for Community Stability

Given that byproduct cross feeding was required for community stability in both two species
and three species biofilms, we sought to determine which specific cross-feeding relationships were
required for species coexistence. Based on the relatively large magnitudes of the associated uptake
fluxes, we hypothesized that acetate, ethanol and succinate cross feeding were sufficient for community
stability while CO2, formate and lactate cross feeding were unnecessary. This hypothesis was tested by
eliminating all byproducts uptakes in the three species community except acetate and succinate by
F. prausnitzii and ethanol by B. thetaiotaomicron. We found that the community was stable with almost
the same average species abundances as predicted when all cross-feeding relationships were allowed:
53.8% B. thetaiotaomicron, 32.6% F. prausnitzii and 13.6% E. coli. These results were attributed to the
species growth rate profiles being virtually unchanged when CO2, formate and lactate cross feeding
were eliminated.

We performed additional simulations to better understand the impact of acetate, ethanol and
succinate cross feeding on community stability and species abundances. The following cross-feeding
scenarios were investigated:

1. Nominal case: acetate and succinate produced by B. thetaiotaomicron and E. coli consumed by
F. prausnitzii; ethanol produced by E. coli consumed by B. thetaiotaomicron

2. Nominal case without acetate consumption by F. prausnitzii
3. Nominal case without succinate consumption by F. prausnitzii
4. Nominal case without ethanol consumption by B. thetaiotaomicron
5. Nominal case without F. prausnitzii consumption of acetate produced by B. thetaiotaomicron
6. Nominal case without F. prausnitzii consumption of succinate produced by B. thetaiotaomicron
7. Nominal case without F. prausnitzii consumption of acetate produced by E. coli
8. Nominal case without F. prausnitzii consumption of succinate produced by E. coli
9. No cross feeding

These nine cross-feeding scenarios produced six distinct biofilm behaviors as shown in Figure 6.
The nominal case with acetate, ethanol and succinate cross feeding resulted in coexistence of the
three species (first row). The same solution was predicted when F. prausnitzii was not allowed to
consume succinate produced by E. coli, demonstrating that this specific cross-feeding relationship
was unimportant. When acetate consumption by F. prausnitzii was removed, F. prausnitzii was
eliminated due to its substantially reduced growth rate (second row). The same solution was obtained
either when F. prausnitzii was not allowed to consume any succinate or when F. prausnitzii was not
allowed to consume just succinate produced by B. thetaiotaomicron. These results demonstrated that
F. prausnitzii consumption of acetate and of B. thetaiotaomicron derived succinate were essential for
community stability.

B. thetaiotaomicron was completely eliminated and F. prausnitzii was almost entirely eliminated
when ethanol consumption by B. thetaiotaomicron was removed (third row). This cascade effect
was initiated by reduced B. thetaiotaomicron growth, which resulted in less succinate being available
to support F. prausnitzii growth. While community stability was maintained when F. prausnitzii
was not allowed to consume acetate produced by B. thetaiotaomicron, the reduced growth of
F. prausnitzii resulted in substantially increased abundances of B. thetaiotaomicron and E. coli (fourth row).
A similar but much less pronounced effect was predicted when F. prausnitzii was not allowed to
consume acetate produced by E. coli (fifth row). These results demonstrate that acetate cross feeding
from either B. thetaiotaomicron or E. coli was required to maintain species coexistence. When all
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cross feeding was removed, both B. thetaiotaomicron and F. prausnitzii were eliminated due to their
dependence on cross-fed byproducts for growth enhancement (sixth row). All these results are
summarized schematically in Figure 7.

Figure 6. Steady-state biomass concentration (left) and growth rate (right) spatial profiles predicted
with different cross-feeding relationships. Each row represents a different cross-feeding pattern. Row 1:
Scenario 1. The same results were obtained for scenario 8. Row 2: Scenario 2. The same results were
obtained for scenarios 3 and 6. Row 3: Scenario 4. Row 4: Scenario 5. Row 5: Scenario 7. Row 6:
Scenario 9. Units are g/L for biomass and h−1 for growth rates. The average species abundances across
the biofilm are shown for each case.

Figure 7. Effect of key cross-feeding relationships on community stability. Solid lines
represent relationships required for stability: F. prausnitzii consumption of succinate produced by
B. thetaiotaomicron, F. prausnitzii consumption of acetate produced by either B. thetaiotaomicron or E. coli,
and B. thetaiotaomicron consumption of ethanol produced by E. coli. Dashed lines represent relationships
that are not required for stability but may impact species abundances.
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2.5. Robustness of the Cross-Feeding Strategy

The previous results demonstrated that cross feeding produced coexistence of the three species for
the nominal conditions investigated. We performed additional simulations to investigate robustness
of the cross-feeding mechanism to changes in biofilm and environmental conditions by varying the
biofilm thickness and bulk nutrient concentrations, respectively. In this context, robustness was
defined as the ability of the system to maintain community stability with small changes in the species
abundances as would be expected for proper microbiome function.

Five thicknesses (L = 20, 30, 40, 50, 60 μm) were simulated at the nominal nutrient concentrations
of 5 mmol/L glucose and 0.5 mmol/L each amino acid. The initial conditions corresponded to
spatially uniform biomass concentrations of 10 g/L for each species. The three species community
was predicted to be stable for all thicknesses except L = 20 μm (Figure 8), where B. thetaiotaomicron
eliminated the other two species due to relatively high nutrient concentrations across the biofilm.
For the other four thicknesses, the species abundances were predicted to remain within small ranges:
B. thetaiotaomicron: 53.9%-59.6%; F. prausnitzii: 31.2%-32.8%; E. coli: 8.6%-13.3%. The F. prausnitzii
abundance range was particularly small, while B. thetaiotaomicron abundance slightly decreased when
E. coli abundance increased. By contrast, the average biomass concentration across the biofilm exhibited
a strong decreasing trend as the thickness increased due to the lack of nutrients in the biofilm interior.

B. thetaiotaomicron F. prausnitzii E. coli

Figure 8. Effect of the biofilm thickness L on the adundance of each species and the total biomass
concentration averaged across the biofilm.

We also performed simulations for six different nutrient levels. The community remained
stable with small variations in the species abundances for all cases except the highest nutrient levels,
where F. prausnitzii was eliminated due to its reduced competitiveness in nutrient rich environments
(Figure S3). These results further demonstrate the robustness of the putative cross-feeding strategy.

2.6. Flexibility of the Cross-Feeding Strategy

Our last set of simulations addressed the issue of system flexibility with respect to function rather
than just species abundances. In this context, flexibility was defined as the ability of the community to
adjust its SCFA production profile to meet different host demands by adjusting byproduct uptake rates.
Due to their dominant effects on community stability, acetate and succinate uptakes by F. prausnitzii
and ethanol uptake by B. thetaiotaomicron were modulated to examine their effects on total SCFA
production and the split between acetate, propionate and butyrate. The relative levels of these SFCAs
are known to vary substantially [54], and the regulation of byproduct uptake rates is one plausible
mechanism the community might employ to achieve different production profiles. For each uptake
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rate, the range of maximum uptake rate vmax values over which the SCFA profiles was most sensitive
was located by trial-and-error simulations.

First, the vmax value for F. prausnitzii acetate uptake was investigated. Our model predicted
that the SCFA profile was most sensitive over a vmax range of 6.25–7.00 mmol/gDW/h (Figure 9).
Smaller vmax values resulted in F. prausnitzii being wiped out due to insufficient growth, while larger
values produced similar results to those obtained with the nominal value vmax = 10 mmol/gDW/h.
As vmax was increased over the sensitive range, the F. prausnitzii abundance increased, the acetate level
decreased, the propionate level remained almost constant, the butyrate level increased and the total
SCFA concentration decreased. The SCFA profile was predicted to be particularly sensitive over the
vmax range of 6.25–6.50 mmol/gDW/h, where the acetate level dropped from 68% to 26% and the
butyrate level increased from 20% to 65% due to the substantial increase in F. prausnitzii abundance.

B. thetaiotaomicron F. prausnitzii E. coli

Figure 9. Effect of the F. prausnitzii maximum acetate uptake rate vmax on (A) species abundances and
(B) acetate, propionate and butyrate levels and the total SCFA concentration.

Qualitatively similar predictions were obtained when the F. prausnitzii maximum succinate uptake
rate was modulated (Figure S4). The primary effect was to alter the F. prausnitzii abundance. When the
B. thetaiotaomicron maximum ethanol uptake rate was modulated, all three species abundances were
strongly affected (Figure S5). Collectively, these predictions suggested that the split between acetate
and butyrate could be strongly modulated through all three cross-feeding mechanisms, while the
propionate level could be more weakly affected through ethanol cross feeding. However, individual
SCFA levels were predicted to be strongly impacted only over small ranges of vmax values, suggesting
a lack of flexibility in the putative byproduct cross-feeding strategy with respect to SCFA modulation.

3. Discussion

A major challenge when developing in vitro models of natural microbial communities is to
establish culture conditions that allow coexistence of the participating species [55]. Well-mixed
suspension cultures have the disadvantage that species with widely differing growth rates cannot be
co-cultured without engineering artificial dependencies such as amino acid cross feeding between
the species [56]. Natural microbial communities have evolved numerous mechanisms for ensuring
species coexistence, most notably the biofilm mode of growth. Spatial metabolite gradients within
biofilms can allow otherwise slower growing species to establish metabolic niches favorable for
their growth [21–24]. Cross feeding of secreted metabolic byproducts is another mechanism used
by microbial communities to enhance the competitiveness of slower growing species and achieve
community stability [17–20]. The development of in vitro systems to investigate the interplay of species
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metabolism, biofilm gradients and metabolite cross feeding has the potential to provide new insights
into the stability and function of natural microbial communities. In turn, in silico modeling tools
are needed to guide in vitro system design and to computationally interrogate difficult-to-measure
behaviors such as metabolite cross feeding and long-term stability.

In this study, we developed an in silico metabolic model of a very simple community consisting
of the commensal human gut microbes Bacteroides thetaiotaomicron, Faecalibacterium prausnitzii and
Escherichia coli. These species were chosen as well studied representatives of the three most prevalent
phyla (Bacteroidetes, Firmicutes, Proteobacteria) in the healthy gut microbiome and due to the
availability of curated metabolic reconstructions. While the precise spatial organization of gut microbes
is currently unknown, the structure likely includes biofilm growth associated with host mucosa and
epithelial tissue [57]. Indeed the literature provides substantial support for the hypothesis that some
gut microbes organize into spatially structured multispecies biofilms [58,59]. We performed single
species flux balance analysis and biofilm simulations to investigate the growth characteristic and
byproduct secretion patterns of the three isolated species. The models predicted widely varying
individual species growth rates as a function of position in the biofilm and the secretion of eight
primary byproducts that served as putative cross-fed metabolites in multispecies simulations: acetate,
butyrate, CO2, ethanol, formate, lactate, propionate and succinate. The predicted byproducts secreted
by each species were in agreement with experimental observations [60–62].

We developed a general computational strategy to identify putative cross-feeding relationships in
multispecies biofilms that required no a priori assumptions about these relationships. Each species
was allowed to consume every available byproduct to increase its local growth rate within the
biofilm. The method provided an experimentally inaccessible picture of byproduct secretion and
consumption patterns with complete temporal and spatial resolution. When applied to the three
species gut microbiome system, we identified eleven distinct cross-feeding relationships involving
six different byproducts (see Figure 4). To our knowledge, none of these relationships have been
directly demonstrated through co-culture experiments with the participating species. However, the
two acetate cross-feeding relationships were expected due to the demonstrated abilities of both
B. thetaiotaomicron [60] and E. coli [62] to secrete acetate and of F. prausnitzii to consume acetate [61].

Byproduct cross feeding alone was not sufficient to achieve long-term community stability
as reflected by coexistence of the three species. However, we determined that a small decrease
in the non-growth associated ATP maintenance parameter in the E. coli metabolic reconstruction
resulted in community stability. We justified this parameter change by noting that unmodeled
nutrients in the gut environment could enhance E. coli growth relative to the other two species.
The predicted abundances of 54% B. thetaiotaomicron, 33% F. prausnitzii and 13% E. coli were
consistent with experimental studies on the prevalence of species from the Bacteroidetes, Firmicutes
and Proteobacteria phyla, respectively, in the healthy human gut microbiome [53]. While the
E. coli abundance was tuned with the ATP parameter, the relative amounts of B. thetaiotaomicron
and F. prausnitzii were natural outcomes of the model. When all cross feeding was eliminated,
the favorable metabolic niches for B. thetaiotaomicron in the nutrient rich region and F. prausnitzii
in the nutrient lean region were eliminated and E. coli wiped out the other two species. Collectively,
these results demonstrated that both biofilm formation and byproduct cross feeding were necessary
for community stability. Cross-feeding simulations with all three combinations of two species systems
showed that only the F. prausnitzii–E. coli was unstable, suggesting that F. prausnitzii coexistence in
the three species community was dependent on the presence of B. thetaiotaomicron. These predictions
on community stability and species abundances are experimentally testable through biofilm culture
experiments with two- and three-species systems.

We hypothesized that community stability could be maintained with only a small subset of
the putative cross-feeding relationships: acetate and succinate consumption by F. prausnitzii and
ethanol consumption by B. thetaiotaomicron. Multispecies biofilm simulations validated this hypothesis
and further predicted a negligible change in the three species abundances with the elimination of
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CO2, formate and lactate cross feeding. Additional simulations were performed to determine the
necessity of acetate, ethanol and succinate cross feeding on community stability and their impact on
species abundances. These simulations predicted that the following relationships were necessary and
sufficient for stability: (1) F. prausnitzii uptake of acetate produced by either B. thetaiotaomicron or E. coli;
(2) F. prausnitzii uptake of succinate produced by B. thetaiotaomicron; and (3) B. thetaiotaomicron uptake of
ethanol produced by E. coli (see Figure 7). The differential impact of F. prausnitzii acetate and succinate
uptakes was attributed to the small succinate production rates of E. coli. F. prausnitzii uptake of acetate
produced by B. thetaiotaomicron was the only relationship eliminated that maintained community
stability while substantially altering the species abundances. In principle, these model predictions
could be tested experimentally by metabolically engineering the individual species to eliminate specific
byproduct secretion and uptake capabilities. Such mutants are readily generated for E. coli [63], while
the necessary genetic engineering tools are under developed for B. thetaiotaomicron [64].

An essential capability of the gut microbiome is adaptation to widely varying nutritional
environments while avoiding community instability that results in dysbiosis [65]. We performed
biofilm simulations with the essential cross-feeding relationships for changes in the biofilm thickness
and nutrient levels to ensure that species coexistence was not an artifact of the specific conditions
chosen (see Table 1) but rather was a robust property of the cross-fed community. The in silico
community showed a high level of robustness to variations in the biofilm thickness of 30–60 μm
and nutrient levels of 1–10 mmol/L glucose and 0.1–1 mmol/L each amino acid (methionine, serine,
tryptophan). Over these ranges, the community was predicted to be stable and species abundances
varies less than 6% for B. thetaiotaomicron, 8% for F. prausnitzii and 9% for E. coli. As would be expected,
system robustness was not a global property and outside these ranges the community could be
destabilized. Biofilms of thickness 20 μm were predicted to consist of only B. thetaiotaomicron due to its
higher growth rate under nutrient rich conditions, while high nutrient levels of 20 mmol/L glucose
and 2 mmol/L each amino acid resulted in extinction of F. prausnitzii due to its lower growth rate under
nutrient rich conditions. Because dysbiosis is commonly associated with reductions in Bacteroidetes
(e.g., B. thetaiotaomicron) and Firmicutes (e.g., F. prausnitzii) abundances and increases in Proteobacteria
(e.g., E. coli) abundance [53], these results suggest that the in silico community captures the inherent
robustness of the considerably more complex gut microbiome. Our model predictions could be tested
through in vitro experiments by varying media concentrations and measuring species abundances as a
function of biofilm development time.

A primary function of the gut microbiome is to convert dietary nutrients to short chain fatty
acids (SCFAs), which are absorbed in the large intestine and used as an energy source by the human
host [28]. The relative levels of the primary SCFAs acetate, propionate and butyrate have been
shown to vary substantially depending on the prevailing state of the gut environment and of the
host [54]. We hypothesized that modulation of cross-feeding relationships between species could be
one possible strategy the microbiome employs to flexibly alter SCFA synthesis profiles to meet host
needs. To examine the efficacy of this putative strategy, we performed simulations by altering the
maximum uptake rate vmax associated with the three key cross-feeding relationships: acetate and
succinate uptake by F. prausnitzii and ethanol uptake by B. thetaiotaomicron. The model predicted
that species abundances and SCFA levels could be substantially altered only over a small range
of each vmax value. The split between acetate and butyrate could be strongly modulated through
all three cross-feeding relationships, while the propionate level could be weakly affected through
ethanol cross feeding. Given the small predicted ranges of vmax values which impacted SCFA levels,
we concluded that modulation of cross-feeding relationships might not be a very flexible strategy for
altering SCFA profiles.

Our multispecies biofilm metabolic model represents an initial step towards predicting the impact
of metabolite spatial gradients and cross feeding on the human gut microbiome. A possible limitation
of this first generation model is the lack of byproduct consumption by E. coli, which renders the growth
of E. coli largely independent of the other two species except for nutrient competition. Our initial
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hypothesis was that lactate produced by F. prausnitzii would be an important carbon source for
E. coli. However, the model predicted that this cross-feeding relationship had a negligible impact on
community behavior. Based on our simulation results, we hypothesize that the impact of a particular
cross-feeding relationship is partially dependent on the abundances of the two species exchanging
the byproduct. This hypothesis would rationalize why all three essential cross-feeding relationships
involved B. thetaiotaomicron, the species with the highest abundance, and the two most impactful
cross-feeding relationships involved F. prausnitzii, the species with the second highest abundance.
Our simulations were designed to mimic the healthy gut microbiome, where Proteobacteria is a
minority phylum compared to Bacteroidetes and Firmicutes. Dysbiosis associated with disease states
such as inflammatory bowel disease are characterized by a dramatic decrease in Bacteroidetes and
increase in Proteobacteria while Firmicutes are not as strongly affected [53]. In this case, the impact
of lactate cross feeding between F. prausnitzii and E. coli may be predicted to be substantially more
important while the effect of cross-feeding relationships predicted to be important for the healthy
microbiome may be less significant. We are currently working with experimental collaborators to
establish an in vitro model of the three species biofilm community to test this hypothesis as well as
other in silico predictions generated by our model.

4. Materials and Methods

4.1. Multispecies Biofilm Model Formulation

The multispecies biofilm metabolic model was formulated following our previously published
approach [66,67]. For the sake of brevity, the formulation is only briefly reviewed here with an
emphasis on the novel features introduced for the gut microbiome model. We utilized genome-scale
metabolic reconstructions for the commensal gut bacteria B. thetaiotaomicron [60], F. prausnitzii [61] and
E. coli [62] to model individual species metabolism. A synthetic media was created by combining all
the in silico nutrient requirements of the three bacteria assuming that growth was limited only by the
primary carbon source glucose and three amino acids (methionine, serine, tryptophan) essential for
F. prausnitzii.

The local concentration of each nutrient, byproduct and species biomass within the biofilm was
calculated from transport equations written for the extracellular environment. One-dimensional
diffusion in the axial direction of the biofilm was assumed to be the dominant transport mechanism
(Figure 10). Therefore, each variable changed as a function of time t and space z over a fixed biofilm
thickness L. The biomass equation for each species had the form,

∂Xi
∂t

= μiXi + DX,i
∂2Xi
∂z2 (1)

where Xi(z, t) is the local biomass concentration (g/L) of species i, μi(z, t) is the local growth rate (h−1)
calculated from the metabolic reconstruction and DX,i is a biomass diffusion coefficient. Boundary
conditions were imposed to represent zero biomass flux at the intestine–biofilm boundary (z = L) and
biomass removal by continuous erosion [68] at the biofilm–stool interface (z = 0),

∂Xi(L, t)
∂z

= 0, −DX,i
∂Xi(0, t)

∂z
= kX,i[Xb,i(0)− Xi(0, t)] (2)

where kX,i is a biomass mass transfer coefficient and Xb,i(0) is the bulk planktonic concentration of
species i in the stool, which was assumed to be zero for simplicity. Given that the biofilm thickness
was assumed to be constant, the incorporation of slow biomass diffusion through the biofilm and
transport into the planktonic stool population provided a reasonable mechanism to ensure that biomass
generation would be balanced by biomass removal such that steady-state solutions could be obtained
for mature biofilms.
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Figure 10. Schematic representation of the multispecies biofilm. Nutrients diffuse into the biofilm at the
biofilm–stool boundary and unconsumed nutrients diffuse out of the biofilm at the intestine–biofilm
boundary. Short-chair fatty acids (SCFAs) and organic acids (OAs) synthesized by the three bacteria
diffuse through the biofilm and are removed at both boundaries. Biomass slowly diffuses through
biofilm and is removed at the biofilm–stool boundary according to a continuous erosion mechanism.

The nutrient transport equations had the form,

∂Ni
∂t

=
n=3

∑
j=1

vi,jXj + DN,i
∂2Ni
∂z2 (3)

where Ni(z, t) is the local concentration of nutrient i (glucose, methionine, serine, tryptophan),
vi,j(z, t) is the uptake flux (mmol/gDW/h) of nutrient i by species j calculated from the metabolic
reconstruction, DN,i is a nutrient diffusion coefficient and n = 3 is the number of species. Boundary
conditions were imposed such that unconsumed nutrients could be removed from either boundary,

− DN,i
∂Ni(0, t)

∂z
= kN,i[Nb,i(0)− Ni(0, t)], −DN,i

∂Ni(L, t)
∂z

= kN,i[Nb,i(L)− Ni(L, t)] (4)

where kN,i is a nutrient mass transfer coefficient, and Nb,i(0) and Nb,i(L) are bulk concentrations of
nutrient i, which were assumed to be zero at both boundaries for simplicity.

The byproduct transport equations and boundary conditions had a similar form,

∂Pi
∂t

=
n=3

∑
j=1

vi,jXj + DP,i
∂2Pi
∂z2 (5)

− DP,i
∂Pi(0, t)

∂z
= kP,i[Pb,i(0)− Pi(0, t)], −DP,i

∂Pi(L, t)
∂z

= kP,i[Pb,i(L)− Pi(L, t)] (6)

where Pi(z, t) is the local concentration (mmol/L) of byproduct i (acetate, butyrate, CO2, ethanol,
formate, lactate, propionate, succinate), DP,i is a byproduct diffusion coefficient, kP,i is a byproduct
mass transfer coefficient, Pb,i(0) and Pb,i(L) are bulk concentrations of byproduct i, which were
assumed to be zero at both boundaries for simplicity. The exchange flux vi,j(z, t) (mmol/gDW/h) of
product i from species j was positive if the byproduct was secreted and negative if the byproduct
was consumed.
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Each species was allowed to consume glucose, the three amino acids and the eight metabolic
byproducts to maximized its growth rate. Uptake kinetics for each nutrient and byproduct were
assumed to follow Michaelis–Menten kinetics:

vi =
vmax,iSi

Km,i + Si
(7)

where Si(z, t) is the local extracellular concentration (mmol/L) of substrate i (includes nutrients and
byproducts) and vmax,i and Km,i are Michaelis–Menten constants. The calculated local uptake rates
vi(z, t) (mmol/gDW/h) were imposed as transport bounds in the linear program used to solve the
metabolic reconstructions. Butyrate uptake was excluded for B. thetaiotaomicron and ethanol and
propionate uptakes were excluded from F. prausnitzii because the associated reconstructions lacked the
necessary exchange fluxes.

4.2. Model Parameterization and Solution

Nominal parameter values utilized in the multispecies biofilm model (1)–(7) are shown in Table 1.
We used order-of-magnitude estimates of most parameters due to the lack of relevant data in the
literature. For the same reason, we generally assigned the same parameter values to each species and
to each metabolite rather than attempt to determine species and metabolite specific values. The biofilm
thickness L and the nutrient/byproduct diffusion coefficients DN and DP were chosen within published
ranges [13,69]. Nutrients were supplied at the biofilm–stool interface (z = 0) and removed from the
intestine–biofilm interface (z = L) assuming zero bulk concentrations Nb(L). The stool nutrient
concentrations Nb(0) and the nutrient mass transfer coefficients kN were tuned to achieve sufficient
nutrient levels within the biofilm to sustain growth. Byproducts were removed from both interfaces
assuming zero bulk concentrations Pb(0) and Pb(L). The byproduct mass transfer coefficients kP were
tuned to achieve organic acid and SCFA concentrations within published ranges [54].

The biomass diffusion coefficients were specified to be approximately four orders-of-magnitude
less than the metabolite values to reflect very slow movement of cells towards the biofilm–stool
boundary due to unmodeled biofilm expansion. Biomass was removed at this boundary assuming
negligible planktonic biomass concentrations Xb(0) to model a continuous erosion mechanism [68].
The biomass mass transfer coefficients kX(0) were tuned such that steady-state, mature biofilms
would have biomass concentrations within published ranges [13]. Due to the lack of experimentally
determined values for B. thetaiotaomicron and F. prausnitzii, glucose and amino acid maximum uptake
rates vmax reported for E. coli [70] were used for all three species. All byproducts were assumed to
have the same vmax values as glucose. Furthermore, all nutrients and byproducts were assumed
to have the same Michaelis–Menten constants Km as reported for glucose uptake in E. coli [70].
Planktonic experiments could be conducted to estimate these uptake kinetic parameters, although
different parameter values may be appropriate under biofilm conditions. Each dynamic simulation
was performed with an initial condition corresponding to a steady-state solution with spatially
homogeneous biomass concentrations X(z, 0) and spatially varying nutrient concentrations N(z, 0) and
byproduct concentrations P(z, 0) consistent with the specified X(z, 0). For each simulation, we found
that the final solution was independent of the initial condition for all initial conditions investigated.
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Table 1. Nominal parameter values for the multispecies biofilm model. For parameters that
vary at the two biofilm boundaries, “0” denotes the biofilm–stool interface and ”L” denotes the
intestine–biofilm interface.

Symbol Parameter Value Units Source

L Biofilm thickness 40 μm [13]
DX Biomass diffusion coefficients 1 × 10−10 cm2/s Specified

kX(0) Biomass mass transfer coefficients 1 × 10−7 cm/s Specified
Xb(0) Biomass bulk concentrations 0 g/L Specified

DN Nutrient diffusion coefficients 2 × 10−6 cm2/s [69]
kN Nutrient mass transfer coefficients 2 × 10−4 cm/s Specified

Nb(0) Glucose bulk concentration 5 mmol/L Specified
Amino acid bulk concentrations 0.5 mmol/L Specified

Nb(L) Glucose bulk concentration 0 mmol/L Specified
Amino acid bulk concentrations 0 mmol/L Specified

DP Byproduct diffusion coefficients 2 × 10−6 cm2/s [69]
kP Byproduct mass transfer coefficients 5 × 10−6 cm/s Specified

Pb(0) Byproduct bulk concentrations 0 mmol/L Specified
Pb(L) Byproduct bulk concentrations 0 mmol/L Specified
vmax Glucose maximum uptake rate 10 mmol/gDW/h [70]

Amino acid maximum uptake rates 1 mmol/gDW/h [70]
Byproduct maximum uptake rates 10 mmol/gDW/h Specified

Km Michaelis–Menten constants 0.5 mmol/L [70]
X(z, 0) Initial biomass concentrations 10 g/L Specified

The parameterized biofilm model consisted of a coupled set of nonlinear partial differential
equations (PDEs) with embedded linear programs (LPs). Following our previously published
approach [66,67], the spatial domain was discretized to convert each PDE into a large set of coupled
ordinary differential equations (ODEs). Both diffusion terms and first-order derivatives required to
implement boundary conditions were approximated by second-order central difference formulas.
Spatial discretization was performed with N = 25 node points to achieve a suitable compromise
between model complexity and numerical efficiency. The discretized model consisted of 375 nonlinear
ODEs describing the time evolution of the biomass, nutrient and byproduct concentrations at the
node points.

The ODE model with embedded LPs was solved using the MATLAB code DFBAlab [71].
To overcome the possibility of alternative optima in the LP problems, the DFBAlab algorithm
uses lexicographic optimization to achieve unique exchange fluxes and ensure a well defined
dynamical model. We specified the lexicographic optimization objectives as shown in Table 2.
The primary objective for each species was maximum growth, while the lower level objectives
were ordered according to the following rules: (1) secretion of experimentally observed byproducts:
B. thetaiotaomicron (acetate, propionate, succinate, CO2) [60], F. prausnitzii (butyrate, formate, lactate,
CO2) [61], E. coli (acetate, ethanol, formate, lactate, succinate, CO2) [62]; (2) uptake of putative
cross-fed byproducts: B. thetaiotaomicron (ethanol, formate, lactate), F. prausnitzii (acetate, succinate),
E. coli (butyrate, propionate); and (3) uptake of supplied nutrients (glucose, methionine, serine,
tryptophan). All objectives were specified as maximization, which translated to maximization of
secretion fluxes due to their positivity and minimization of uptake fluxes due to their negativity.
In some cases, the objectives within a particular group were ordered to generate specific byproduct
uptake and secretion patterns. For B. thetaiotaomicron, succinate secretion was placed above
propionate secretion to obtain a mixture of these two byproducts instead of only propionate
and lactate was placed as the highest ranked byproduct uptake so lactate uptake was observed.
For F. prausnitzii, lactate was placed as the highest ranked secretion so lactate secretion was observed.
The B. thetaiotaomicron model had only 11 objectives due to the lack of butyrate uptake, while the
F. prausnitzii model had only 10 objectives due to the lack of ethanol and propionate uptakes.
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Table 2. Lexicographic optimization objectives.

Level B. thetaiotaomicron F. prausnitzii E. coli

1 Biomass Biomass Biomass
2 Acetate Lactate Acetate
3 Succinate Butyrate Ethanol
4 Propionate Formate Formate
5 CO2 CO2 Lactate
6 Lactate Acetate Succinate
7 Ethanol Succinate CO2
8 Formate Glucose Butyrate
9 Glucose Methionine Propionate

10 Methionine Serine Glucose
11 Serine Tryptophan Methionine
12 Tryptophan Not specified Serine
13 Not specified Not specified Tryptophan

Due to the use of lexicographic optimization, 36 LPs were solved at each node point. Therefore,
the complete discretized model consisted of 375 ODEs and 900 LPs. We used Gurobi 6.0 for LP
solution, the stiff MATLAB solver ode15s for ODE integration and DFBAlab running in MATLAB
8.5 (R2015a). DFBAlab is freely available for both education and nonprofit research purposes from
https://yoric.mit.edu/dfbalab. The MATLAB simulation codes for the multispecies biofilm model can
be downloaded from www.ecs.umass.edu/che/henson_group/downloads.html.

Supplementary Materials: The following are available online at www.mdpi.com/2227-9717/5/1/13/s1.
Figure S1: Time profiles predicted in the middle of the multispecies biofilm without byproduct crossfeeding. Units
are g/L for biomass, h−1 for growth rates and mmol/L for the byproducts. Figure S2: Steady-state spatial profiles
predicted by two species biofilm models. (A) B. thetaiotaomicron–F. prausnitzii biofilm. (B) B. thetaiotaomicron–E. coli
biofilm. (C) F. prausnitzii–E. coli biofilm. Units are g/L for biomass and h−1 for growth. Figure S3: Effect of the
bulk nutrient concentrations on the abundance of each species and the total biomass concentration averaged
across the biofilm. Glc denotes glucose and AA denotes each amino acid. Figure S4: Effect of the F. prausnitzii
maximum succinate uptake rate vmax on (A) species abundances and (B) acetate, propionate and butyrate levels
and the total SCFA concentration. Figure S5: Effect of the B. thetaiotaomicron maximum ethanol uptake rate vmax
on (A) species abundances and (B) acetate, propionate and butyrate levels and the total SCFA concentration.
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Abbreviations

The following abbreviations are used in this manuscript:

AA Amino acid
Ace Acetate
BT B. thetaiotaomicron
But Butyrate
FBA Flux balance analysis
EC E. coli
Eth Ethanol
FP F. prausnitzii
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Frm Formate
Glc Glucose
Lac Lactate
LP Linear program
Met Methionine
OA Organic acid
ODE Ordinary differential equation
PDE Partial differential equation
Prp Propionate
Ser Serine
SFCA Short chain fatty acid
Suc Succinate
Trp Tryptophan
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Abstract: The pennate diatom Phaeodactylum tricornutum is a model organism able to synthesize
industrially-relevant molecules. Commercial-scale cultivation currently requires large monocultures,
prone to bio-contamination. However, little is known about the identity of the invading organisms.
To reduce the complexity of natural systems, we systematically investigated the microbiome of
non-axenic P. tricornutum cultures from a culture collection in reproducible experiments. The results
revealed a dynamic bacterial community that developed differently in “complete” and “minimal”
media conditions. In complete media, we observed an accelerated “culture crash”, indicating
a more stable culture in minimal media. The identification of only four bacterial families as major
players within the microbiome suggests specific roles depending on environmental conditions.
From our results we propose a network of putative interactions between P. tricornutum and these
main bacterial factions. We demonstrate that, even with rather sparse data, a mathematical model can
be reconstructed that qualitatively reproduces the observed population dynamics, thus indicating
that our hypotheses regarding the molecular interactions are in agreement with experimental data.
Whereas the model in its current state is only qualitative, we argue that it serves as a starting point to
develop quantitative and predictive mathematical models, which may guide experimental efforts to
synthetically construct and monitor stable communities required for robust upscaling strategies.

Keywords: microbial communities; host-microbe interactions; mathematical modelling; diatoms;
synthetic ecology; algal biotechnology

1. Introduction

Microalgae are photosynthesis-driven cells able to store light energy by converting carbon
dioxide into carbohydrates, lipids, proteins, and other cellular components with potential biofuel,
food, feed, and pharmaceutical and nutraceutical applications [1]. Novel applications also include
the use of microalgae as an alternative sustainable development tool [2]. One such microalgae is
the pennate diatom Phaeodactylum tricornutum that is able to synthesize a number of industrially
relevant molecules applicable in: aquaculture as feed in e.g., bivalve, echinoderm, crustacean and
fish hatcheries [3,4]; as biomass for biofuels [5,6]; pharmaceuticals and nutraceuticals [5,7–9];
and nanotechnology [10], and bioremediation industries [11]. To fully exploit the industrial
potential of microalgal-derived products, substantial quantities of microalgal biomass is required,
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preferably obtained while maintaining low production costs. This is achieved by implementation of
large-scale cultivation methods such as open raceway ponds and photobioreactors. The majority of
conventional cultivation methods rely on keeping monocultures of the desired species, particularly if
the final product is a bioactive molecule for human consumption [12]. Photobioreactors are closed
systems that allow for the production of monoseptic cultures, fully isolated from potential
contamination if cultivation protocols are followed correctly [13]. However, high operational costs
of photobioreactors might not be sustainable. Another option is open raceway ponds, which are
simple open-air cultivation systems that have been in use since the 1950s [1]. They are highly
susceptible to contamination, and unless the desired species is a halophile or thermophile [14], it is
hard to maintain monocultures. Irrespective of the cultivation method, the establishment of unwanted
organisms such as amoeba, ciliates, rotifers, bacteria, viruses, and other photosynthetic organisms in
microalgal cultures, is a serious obstacle for large-scale microalgae cultivation [15,16]. Although much
research is carried out in the field of microalgal culture upscaling, very little is known about the true
identity and characteristics of these invading organisms, responsible for microalgal culture “crashes”
which lead to loss of biomass, and therefore, loss of revenue.

Microalgae are not found in monoculture in nature and it is not surprising that imposing such an
artificial environment results in unstable large-scale cultures. By understanding rather than attempting
to push out these micro-invaders, potential alternatives such as “synthetic ecology” as novel scaling
up techniques should be explored [17]. This concept is based on the Competitive Exclusion Principle,
or Gause’s Law, which states that two species competing for the same natural resource scarcely ever
occupy a similar niche [18,19]. By “synthesizing” a community of organisms that fills every niche in
the ecosystem of the microalgal culture and support, rather than harm, the growth of the phototroph,
we would automatically optimize the utilization of nutrients and prevent the establishment of other
potentially harmful organisms [17]. In order for synthetic ecology to be a legitimate contender as
a novel scaling up technique, a greater understanding of species-specific interactions is required,
starting with the bacterial faction, which are present in all of the Earths’ biomes [20], and arguably
the key players in maintaining balance within a system. Theoretical ecology employs mathematical
models to study the emergent patterns in ecosystems dynamics [21]. Because of the many industrial
applications of microbial communities, current research has shown great interest in improving
our understanding of such systems [22]. In particular, mathematical models and interdisciplinary
approaches are fundamental to understanding the crucial underlying mechanisms that regulate
community dynamics [23,24]. Since the same system can be inspected at different spatio-temporal
scales and at a different degree of complexity, it is important to select the most suitable method to
describe the biological phenomena under study in mathematical terms [25]. The first ecosystem models
at the population-scale date back to the 1920s with the well-known Lotka-Volterra (LV) predator-prey
model [26,27]. Since then, LV models have been extensively used to represent cooperation/competition
population dynamics with a system of ordinary differential equations (ODEs). In generalized LV
models (gLV) the system includes an arbitrary number of co-existing organisms and they directly
represent positive/negative pairwise interactions as fixed parameters [28]. Today, a gLV model can
be developed by inferring a co-occurrence network from a time series of metagenomics data [29].
This however requires a reasonable number of time resolved metagenomics data and will provide
information on direct, one-on-one interactions only.

Diatoms and bacteria have co-evolved for more than 200 million years [30], and their co-existence
is most likely based on a “biological barter trade system”, where substances such as trace metals,
vitamins, and nutrients (nitrate, phosphate, silicate, carbon) are exchanged. In this work, we built on
previous research that investigated algae-bacterial interactions including Provasoli’s work from 1958
where he suggested that bacteria can enhance the growth of algae [31], and subsequent species-specific
studies that further corroborated his initial idea [32–35]. We first characterized the relative composition
of the bacterial community in non-axenic P. tricornutum cultivated in the presence and absence of
trace metals, vitamins and sodium metasilicate at different time points. Secondly, using critical
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peer-reviewed literature we defined the most likely functional roles of the bacterial factions and
constructed a putative interaction network. Lastly, from the derived putative network of interactions,
we built an ODE model with modified Verhulst equations [36] for microbial growth that included the
direct effect of nutrient availability. Mortality rates were also introduced as dependent on specific
bactericidal substances. The qualitative mathematical model, with parameters fitted to the available
experimental data, served as a proof-of-concept that data as obtained here is sufficient to reconstruct a
theoretical model that (a) reproduces the experimental observations, thus demonstrating consistency of
our assumptions, and (b) allows for testing different hypotheses regarding the nature of the metabolic
interactions underlying the ecosystem dynamics. It therefore represents a starting point to gain a
deeper understanding of the principles of microbial community dynamics by an iterative experimental
and theoretical approach.

2. Materials and Methods

2.1. Strains and Culture Conditions

All P. tricornutum strains were obtained from the Culture Collection of Algae and Protozoa (CCAP)
based in Oban, Scotland [37]. All cultures were obtained non-axenic. Based on previous experimental
evidence [38], the P. tricornutum strain CCAP1052/1B displayed optimal growth in 5L cultures.
P. tricornutum was cultured in Guillard’s medium for diatoms (F/2 + Si) in filtered natural seawater
chemically sterilised using sodium hypochlorite and sodium thiosulphate pentahydrate. P. tricornutum
was grown in two media conditions; (1) complete F/2 medium containing sources of nitrogen (NaNO3)
and phosphorus (NaH2PO4·2H2O), as well as trace metals and vitamins with the addition of sodium
metasilicate, as per Guillard and Ryther 1962 [39] and Guillard 1975 [40], and (2) minimal media
which contained just sources of nitrogen (NaNO3) and phosphorus (NaH2PO4·2H2O) at the same
concentration as in the F/2 medium recipe. All cultures were grown in hanging 5L polyethylene
bags with a “V” shaped bottom prepared using a heat sealer (Supplementary Figure S1). All cultures
had a modified aeration system provided by a 10 mL pipette attached to the main pressurised air
supply via 0.2 μm sterile air filters. Cultures were kept at 18–20 ◦C and 24 h light at an average of
132.3 μmol m−2 s−1. All cultures, irrespective of media condition, were inoculated with 250 mL from
the same 5L stock culture of actively growing non-axenic P. tricornutum.

2.2. Growth Measurements

Growth was monitored every 24 to 48 h using a light microscope and carrying out cell counts
of each culture in quadruplicate. During the cell counts the ratios of the four different morphotypes
(oval, fusiform, triradiate and cruciform) were recorded, and descriptions of each culture noted.
Samples of each culture were subsequently taken using a sterile 10 mL syringe and placed in 50 mL
Falcon centrifuge tubes and placed in a −20 ◦C freezer.

2.3. Genomic DNA Extraction

All samples from days 1, 8, 15, and 22 were thawed in a water bath set at 25 ◦C. As per de Gouvion
Saint Cyr et al. [41], samples were centrifuged for 5 min at 2000 x g to gather the P. tricornutum in
the pellet while particles such as debris, other organisms, bacteria, and soluble substances remain
in the supernatant. Because the bacteria might be attached to the P. tricornutum cells in the pellet,
the pellet was washed with deionised water and then centrifuged for 5 min at 2000× g. This was
repeated twice to ensure that majority of the bacteria attached to the pellet were released and were
included in the community analysis. Genomic DNA extraction was carried out in the Aquaculture and
Fisheries Development Centre, University College Cork. Mo Bio’s PowerWater R© DNA Isolation Kit
(MO BIO Laboratories, Inc., Carlsbad, CA, USA, catalogue No. 14900-100-NF) was utilized to carry
out the genomic DNA extraction. Presence of gDNA was detected by running a 1% agarose-ethidium
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bromide gel with 72 wells. The samples were sent on dry ice to Heinrich Heine University, Düsseldorf,
for the V6 16S sequencing.

2.4. Barcoded 16S-V6-Next Generation Sequencing

Ion TorrentTM barcoded Next Generation Sequencing protocol (Thermo Fischer Scientific Inc.,
Waltham, MA, USA) was used to sequence the bacterial gDNA [42,43]. Amplification of the V6 hyper
variable region of 16S rRNA with forward and reverse primers (Supplementary Table S1) was carried
out. Ion ReporterTM software (Thermo Fischer Scientific Inc., Waltham, MA, USA) assembled all the
raw sequencing data and sorted all the reads using the unique sample-specific barcode sequences and
removed them from the reads. The outcome was raw FASTQ files which were ready for analysis using
bioinformatics tools.

2.5. Bioinformatics Analysis

A total of 87,077,374 reads were identified. The smallest sample was just over 1 million reads;
the largest sample was just under 10 million reads. The sequencing data was subjected to a pipeline
adapted and modified from Pylro et al. [44]. Primers were trimmed with fastq-mcf (version 1.04.807) [45],
the resulting sequences were quality filterted and clustered into OTUs with usearch (version 8.0.1517;
32Bit-opensource) [46,47]. Taxonomy assignment was done by QIIME (version 1.9.0) [48] with the
implemented uclust classifier based on 97% sequence identity to the reference 16S sequences from SILVA
111 database [49]. Statistical analyses were performed in R [50]. The complete protocol containing all
processing steps is available on GitHub (see Supplementary Materials).

2.6. Mathematical Model

Starting from our understanding of the organism-to-organism interactions, we developed
a dynamic model consisting of 13 ordinary differential equations (ODEs) and including 56 (55 free)
parameters (see Appendix B.1). The model was built from the following working hypotheses:

(1) the growth rate γ of each population followed a standard Verhulst equation [36] parametrized
with a carrying capacity and scaled by Monod-type terms [51] that describe the dependency on
(micro)nutrients. These terms are in practice positive scaling factors <1.

(2) the mortality rate of each population was inversely proportional to (1 + γ), to account for the fact
that cells during replication (high growth rate) were healthier;

(3) additional contributions to population mortality was given by the presence in the environment
of noxious elements like bactericidal substances;

(4) changes in metabolite concentrations are in general directly proportional to the growth γ of the
consumers and producers;

(5) in the event of micronutrient scarcity (Iron and Vitamins in our model), P. tricornutum will secrete
more organic carbons favored by those bacteria able to provide the needed micronutrients.

The initial conditions for simulations are different between minimal and complete media:

(1) the initial quantity of Iron and Vitamins is 10 times higher in complete media;
(2) the initial quantity of P. tricornutum biomass is matched to the first data point.

The parameters were fitted separately in minimal and complete media using a genetic
algorithm [52] which was run in different steps to optimise the fit of P. tricornutum growth and/or the
bacteria relative abundances to the experimental data in evolving system conditions (see Appendix B.2
and Supplementary Material 2). The model was written in Python (Python Software Foundation,
https://www.python.org/) and is available on GitHub with instructions and scripts for running (see
Supplementary Materials).
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3. Results

3.1. Characteristics of Phaeodactylum tricornutum Growth

The media composition was shown to have a significant effect on the growth characteristics of
P. tricornutum. P. tricornutum cultivated in minimal media exhibited a statistically significantly (p = 0.042,
unpaired Wilcoxon signed rank) higher cell density (11.2× 106 cells/mL) when compared to cultivation
in complete media (9.3 × 106 cells/mL). The growth rates during the exponential phase in both cultures
were μcomplete = 0.43± 0.07 d−1 and μminimal = 0.51± 0.04 d−1 respectively. In contrast, the death rates
when the cultures “crash” are δcomplete = 0.09 ± 0.02 d−1 and δminimal = 0.08 ± 0.04 d−1 respectively.

3.2. Bacterial Community Profile of Phaeodactylum tricornutum Cultures

Bacterial gDNA analysis showed that most of the operational taxonomic units (OTUs) could be
assigned to the genera level (Supplementary Figure S2). Of the 9727 OTUs identified, 8109 corresponded
to known sequences in the SILVA database (v.118) [49]. The OTU abundance at the phylum level showed
that 99.97% of all OTUs belonged to Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes
(Figure 1a). A comparison of the number of individual reads to the number of unique OTUs showed
that the high number of reads per phyla was not the result of a single OTU (Supplementary Figure S3).
OTUs with hits to known 16S P. tricornutum sequences were discarded.

Rarefaction curves were used to evaluate the alpha diversity in the different media conditions
as well as at the different time points (Supplementary Figure S4). Species richness in both minimal
and complete media was ∼3000. Species richness over time remained between ∼2400 and ∼2600,
with reduced species richness (∼1300) on day 8 (both minimal and complete media) possibly due
to elevated levels of 16S P. tricornutum chloroplast reads which had to be omitted. Greatest species
richness (∼3000) was shown on day 22. All datasets showed a diminished increase in the number
of unique species as the sample size increased, confirming adequate species richness in all culture
conditions. To compare the species composition between the different samples (days/media) we used
a non-metric multidimensional scaling (NMDS) function based on generalized UniFrac distances [53].
This allowed us to characterize the relationship between the particular samples on a visual level by
displaying the information contained in the distance matrix. Therefore, similar samples would be
placed together in an N-dimensional space. Here we observed a clear gradient of similarity between the
bacterial samples from the different time points. The ordination based on the sampling day indicated
that the bacterial community was dynamic with a clear divergence visible between day 1 and the
other three sampling days. Interestingly the similarity between the different time samples showed the
evolving processes of the community over time (overlaps between day 8 with day 15 and day 15 with
day 22) and the recovery to the original one (overlap day 22 and day 1) (Figure 1b).

The existence of one dominant family at each investigated time point was a particularly interesting
observation. In minimal media (Figure 2a), the lag phase of P. tricornutum growth was dominated
by Pseudoalteromonadaceae (85%). However, during the log phase, a wide diversity of bacterial
families was observed, with members of the Alteromonadaceae family (21%) beginning to dominate.
During the stationary phase, a clear dominance of Alteromonadaceae species (55%) in the community
was observed. The decline phase, however, showed the Pseudomonadaceae (39%) as a dominant family,
with Pseudoalteromonadaceae species (37%) increasing in abundance again. In complete media
(Figure 2b), the lag phase was also dominated by Pseudoalteromonadaceae (63%). During the log phase,
50% of the community was composed of members of the Flavobacteriaceae family, with the other
50% distributed among a number of different families. Flavobacteriaceae (46%) remained high in
abundance during the stationary phase, with Pseudoalteromonadaceae species (44%) beginning to
increase in abundance again. As for minimal media, Pseudoalteromonadaceae (57%) showed a clear
dominance of the community during the decline phase.
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Figure 1. (a) Distribution of Operational Taxonomic Unit (OTU) abundance (LOG scaled) within phyla
from complete data set. The bins marked with asterisks (*) correspond to 99.97% of all which belong to
Proteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. (b) Ordination plot of bacterial community
in the two media conditions for all sampling points. Triangles and circles correspond to minimal
media and complete media conditions, respectively. Blue represents day 1. Red day 8. Green day 15.
Black day 22. The ellipses correspond to the 99% confidence interval to each group centroid.

An adapted version of PermanovaG was used to carry out permutational multivariate analysis of
variance using multiple distance matrices which were previously calculated based on the generalized
UniFrac distance [53]. The significance for the test was assessed by 5000 permutations. The results of
the PermanovaG tests support the NMDS ordination, confirming a statistically significant effect in the
bacterial community profile at the different sampling points and in the two media conditions whereas
no significant effect was found in the experimental replicates (Figure A1).
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Figure 2. Bacterial community profile of P. tricornutum (CCAP 1052/1B) over a 36 day period in culture
conditions: (a) minimal media; (b) complete media. The growth curves are partitioned into lag (green),
log (blue), stationary (red), and decline (yellow) phases. The abundance (%) of the “Top Ten” bacterial
families (corresponding colors described in the key) is depicted in pie charts on days 1, 8, 15 and 22 in
both media conditions.

3.3. Effect of Temporal Evolution and Media Composition on the Bacterial Community Profile

We compared the bacterial community profiles over time and in the different media conditions at
the family level to avoid diluting the signal of the less abundant genera. Supplementary Figures S5
and S6 show no dynamical difference within the genera that cannot be observed at the family level.
By investigating the bacterial community dynamics at the family level, we also included taxonomical
information that is unavailable at the genus level. The families over-represented in all samples were
Pseudoalteromonadaceae, Alteromonadaceae, Flavobacteriaceae and Pseudomonadaceae. Figure 2
illustrates the temporal evolution of the bacterial community in both minimal and complete media
with a unique composition at each time point. A remarkable feature is that at all investigated time
points there exist one or two dominant families.

In complete media, members of the Pseudoalteromonadaceae family were highly abundant
when P. tricornutum cell densities were low (63% and 57% on day 1 and day 22, respectively).
Flavobacteriaceae species dominated (50%) when the P. tricornutum culture was growing exponentially
(day 8). Day 15, when P. tricornutum cell densities were at their highest, showed co-dominance of both
Flavobacteriaceae (46%) and Pseudoalteromonadaceae (44%).

In minimal media, members of the Pseudoalteromonadaceae family were highly abundant when
P. tricornutum cell densities were low. On day 22 Pseudomonadaceae (39%) and Pseudoalteromonadaceae
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(37%) were both overrepresented. When the P. tricornutum culture was in its exponential growth phase
(day 8), a cluster of Families dominated; namely Alteromonadaceae (21%), Pseudoalteromonadaceae
(20%), Pseudomonadaceae (18%), Halomonadaceae (15%) and Flavobacteriaceae (9%). When the cell
density of P. tricornutum peaked (day 15), the Alteromonadaceae species took over (55%).

The bacterial communities within the two media conditions on day 1 were more closely
related than the communities on days 8 and 15 (see Supplementary Table S2 for generalized
UniFrac distances). As the cultures begin to “crash” (day 22), the bacterial communities in the two
media conditions increased in similarity again. In general, the main families identified showed a distinct
pattern of disappearance and regeneration within the bacterial community. In the complete media,
Pseudoalteromonadaceae species started at 63% (day 1), dropped in abundance to 7% (day 8) then
recovered to 57% (day 22). Flavobacteriaceae species, in complete media, started at 4.5% (day 1),
increased in abundance to 50% (day 8), and then fell back to 8% (day 22). In the minimal media,
Alteromonadaceae species had an abundance of only 1% (day 1), peaked at 55% (day 15), and decreased
down to 18% (day 22).

3.4. Network of Putative Interactions between Phaeodactylum tricornutum and Identified Bacterial Families

The putative roles of each of the dominant families are illustrated in Figure 3. Based on an
extensive literature review, five metabolites were identified as playing a crucial role in the interactions
between P. tricornutum and the identified bacterial families. These are: bactericidal metabolites; iron;
vitamins; dissolved organic carbons; dissolved organic phosphates.

• Bactericidal metabolites. Several species of the Pseudoalteromonadaceae family have been reported
to possess bactericidal effects [54]. This ability to suppress the growth of competing bacteria
could explain the dominance of Pseudoalteromonadaceae in almost all cultures irrespective of
media composition. P. tricornutum also demonstrates bactericidal properties by excreting fatty
acids (such as eicosapentaenoic acid or EPA), nucleotides, peptides, and pigment derivatives [55].

• Iron. Iron acquisition is essential for biological processes such as photosynthesis, respiration and
nitrogen fixation. Bacteria produce and excrete siderophores, which scavenge iron. Diatoms are
not known to produce siderophores, but genome sequence analyses identified the presence
of a gene orthologue of a bacterial ferrichrome binding protein that suggests the possibility
of iron (III)-siderophore utilization by P. tricornutum [56,57]. Furthermore, it was shown that
P. tricornutum was able to uptake siderophores ferrioxamines B and E [58].

• Vitamins. Prokaryotes are thought to be the main producers of B vitamins [59,60]. Although
P. tricornutum does not require cobalamin, thiamine and biotin [61], production of organic
compounds such as EPA can be considerably enhanced by the bioavailability of co-factors such
as cobalamin [62]. This provides the basis for potential mutualistic interactions. For example,
Alteromonadales, dominant in our cultures, are thought to be capable of producing B vitamins [63].

• Dissolved Organic Carbon (DOC). It is estimated that up to 50% of carbon fixed via
phytoplankton-mediated photosynthesis is utilized by marine bacteria [64], mainly as DOC
compounds, defined as the organic material <0.7 μm in size [65]. DOC from diatoms originates
either from live cells or recently lysed or grazed cells, which determines the type of DOCs
available, and therefore are likely to influence the bacterial consortia associated with the
diatom [30].

• Dissolved Organic Phosphate (DOP). Both diatoms and bacteria primarily utilize orthophosphate as
a source of phosphorus. However, to access phosphate from DOP compounds, both diatoms and
bacteria developed mechanisms to release orthophosphate (PO3−

4 ) from DOP. The mechanism is
not species-specific, which consequently means the “free” orthophosphates can be acquired by
any organism [66].
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Figure 3. Network of putative interactions between Phaeodactylum tricornutum and identified bacterial
families. The dotted grey line depicts the “phycosphere”; a term coined by Bell and Mitchell in 1972 as
an aquatic equivalent of the “rhizosphere”, denoting the region extending outwards from the algal cell
in which bacterial growth is stimulated by extracellular products of the alga [67].

3.5. Mathematical Model Simulations

Based on the network of putative interactions between diatoms, bacteria, and the environment,
we constructed a dynamic mathematical model, based on generalized Verhulst growth-laws [36]
extended with Monod-type terms [51] to reflect the dependencies on metabolites (see Materials
and Methods and Appendix B.1). Figure 4 presents results of the model simulations after the
model parameters were fitted to the data in minimal and complete media conditions, respectively
(see Appendix B.1). Experimental data are superimposed. The top panel shows biomasses of the five
organisms (data available only for the diatom), the bottom panel shows relative bacteria abundance
versus time (individual biomass divided by total bacterial biomass). Because of the qualitative nature of
the model, units are arbitrary. The figures show that the model is able to reproduce the main features of
the bacterial community dynamics, such as the disappearance and return of Pseudoalteromonadaceae
in complete media and the peak of Alteromonadaceae at the end of the exponential growth phase of
P. tricornutum in minimal media. Supplementary Figure S7b and S7d show the dynamics of metabolite
concentrations, for which no data are available.

Due to the large number of free parameters, the fit was certainly not unique. Supplementary
Material 2 presents additional checks we performed on the parameter fitting procedures. The parameter
space could be in principle reduced to 43 free parameters, but this did not change the results. It was not
possible to find a unique parameter set valid in both minimal and complete media conditions. This is
however consistent with the fact that the model was not constructed to capture effects like metabolic
re-adjustments, something that would be observed e.g., as a different parameter value for growth
rate or metabolite consumption. With the data available, it was not possible to make any quantitative
statements about the actual interaction parameters, neither could it be assumed that simulation results
are of general validity. Despite these limitations, the model did represent a possible configuration of
diatom-bacteria-environment interactions, which was in agreement with the experimentally observed
bacterial dynamics.
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(a)

(b)

Figure 4. Simulation results (lines) and experimental data (squares) for communities of P. tricornutum (D),
Pseudoalteromonadaceae (PA), Flavobacteriaceae (F), Alteromonadaceae (A) and Pseudomonadaceae
(P) in (a) minimal media and (b) complete media conditions. The top panel shows the biomass time
course (arbitrary units) for the five organisms and the rescaled data points (squares) for the P. tricornutum.
The bottom panel shows the variations in relative abundances of the four bacteria (single bacteria
biomass/total bacteria biomass) over time and the three sets of data points from the sequencing analysis
(the first data point is used as starting condition at time 0). Also shown in the bottom plot (dotted line,
right y-axis) is the total bacterial biomass in arbitrary units.

In order to test the stability of the bacterial community and how it supports the growth of
P. tricornutum we ran simulations using the same set of parameters (either minimal or complete media
conditions) and varied the initial community composition removing one bacteria per simulation.
In complete media the simulated growth of P. tricornutum still fit the experimental data, rather
independently from the bacterial community (Figure 5). Also under axenic conditions, diatom growth
was predicted to be largely unperturbed. This situation was different in minimal media. While under
these conditions diatom growth was also unaffected upon removal of the three bacterial families
Pseudoalteromonadaceae, Flavobacteriaceae and Pseudomonadaceae, removing Alteromonadaceae
from the community resulted in the total absence of P. tricornutum growth (Figure 6). This behavior
was expected from the hypothesized central role of Alteromonadaceae in supplying the diatom with
micronutrients. Surprisingly, the removal of a single bacteria from the community in both media
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conditions still gave, in general, a good fit of the (recomputed) relative abundances, except when
removing Alteromonadaceae in minimal media (as direct consequence of what stated previously) and
when removing Pseudoalteromonadaceae in both media conditions. This hinted to a relevant role of
Pseudoalteromonadaceae in regulating the community composition through its predatory strategy
of releasing bactericidal substances. Finally, the community composition at the last time point was
overall better captured. This suggests that the mathematical model consistently captured the general
interactions leading one bacterial family to dominate over the others on the long term.

(a) (b)

(c) (d)

Figure 5. Reduced community simulation results (lines) and experimental data (squares)
for communities of P. tricornutum (D), Pseudoalteromonadaceae (PA), Flavobacteriaceae (F),
Alteromonadaceae (A) and Pseudomonadaceae (P) in complete media conditions. Simulations are run
removing from the bacterial community one member: (a) PA; (b) F; (c) P; (d) A. The top panel shows
the biomass time course (arbitrary units) for the four organisms and the rescaled data points (squares)
for the P. tricornutum. The bottom panel shows the variations in relative abundances of the three
bacteria (single bacteria biomass/total bacteria biomass) over time and the three sets of data points
from the sequencing analysis (the first data point is used as starting condition at time 0). Also shown in
the bottom plot (dotted line, right y-axis) is the total bacterial biomass in arbitrary units.
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(a) (b)

(c) (d)

Figure 6. Reduced community simulation results (lines) and experimental data (squares) for communities
of P. tricornutum (D), Pseudoalteromonadaceae (PA), Flavobacteriaceae (F), Alteromonadaceae (A) and
Pseudomonadaceae (P) in minimal media conditions. Simulations are run removing from the bacterial
community one member: (a) PA; (b) F; (c) P; (d) A. The top panel shows the biomass time course
(arbitrary units) for the four organisms and the rescaled data points (squares) for the P. tricornutum.
The bottom panel shows the variations in relative abundances of the three bacteria (single bacteria
biomass/total bacteria biomass) over time and the three sets of data points from the sequencing analysis
(the first data point is used as starting condition at time 0). Also shown in the bottom plot (dotted line,
right y-axis) is the total bacterial biomass in arbitrary units.

4. Discussion

In nature, P. tricornutum does not exist as an isolated entity. In fact, it is part of a complex ecosystem
whose complete network of interactions with both its environment and other organisms remains
poorly understood. Microbial ecosystems are of high interest for a wide range of applications in fields,
such as medicine, renewable energy, and agriculture. Within the scope of this project, the complexity
of a natural, variable system was reduced by investigating the batch growth of non-axenic laboratory
strains of P. tricornutum from a culture collection. The cultivation method we developed was designed
to compromise between highly controlled small-scale laboratory conditions and a large-scale industrial
set-up. The bacterial community was characterized and the community dynamics investigated in
two conditions: minimal and complete media. The data was then complimented with an extensive
study of existing, peer-reviewed literature to identify the putative role of the dominant bacterial
families associated with P. tricornutum. We then validated the derived network of interactions by
developing a mathematical model which could reproduce the observed dynamics. The presented
approach, integrating experiments, bioinformatics and mathematical modeling, illustrates a possible
way towards the development of a monitoring pipeline for non-axenic microalgae cultures.
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4.1. Experimental Observation of the Dynamics of the Bacterial Community Associated to
Phaeodactylum tricornutum

The growth dynamics of P. tricornutum in the two media conditions showed an accelerated “culture
crash” in the complete media compared to the minimal media, which indicated a more stable culture
in the minimal media (Figure 2). This also suggested that non-axenic cultures of P. tricornutum might
not require expensive trace metals and vitamins for optimal growth under the conditions provide,
an observation crucial to the large-scale industrial cultivation of P. tricornutum as this would drastically
decrease the production costs. Simultaneously, the dynamics of the bacterial community revealed that
the community in the minimal media increased in complexity over time. The link between ecosystem
complexity and stability based on theoretical and experimental data has been debated by ecologists for
over half a century [68–71]. Our observations are in agreement with more recent hypotheses indicating
that diversity generally increases the stability of an ecosystem [72].

4.2. Literature-Based Assessment of the Putative Role of Each Bacterial Family

The bioinformatics analysis of bacterial gDNA abundance showed clear dominance of four bacterial
families: Pseudoalteromonadaceae, Alteromonadaceae, Flavobacteriaceae and Pseudomonadaceae.
These bacteria were over-represented in all samples and their relative abundances showed different
temporal dynamics among the two P. tricornutum growth conditions. In order to understand the
putative functional role of these bacteria an extensive study of peer-reviewed literature was carried out.

Pseudoalteromonadaceae. Members of Pseudoalteromonadaceae family have been isolated
from coastal, open and deep-sea waters, sediments, marine invertebrates, as well as marine fish
and algae [73]. The Pseudoalteromonadaceae family has three genera, namely Pseudoalteromonas,
Algicola and Psychrosphaera [74]. Several species of Pseudoalteromonadaceae are reported to possess
antibiotic properties with bactericidal effects [54]. For example, concentrated supernatant of a marine
bacterium Pseudoalteromonas sp. strain A28 contained various enzymes including proteases, DNAses,
cellulases, and amylases, capable of causing the lysis of the diatom Skeletonema costatum [75].
Species of Pseudoalteromonadaceae are also capable of producing cold-adapted enzymes [76–81].
Pseudoalteromonadaceae species can produce extracellular polymeric substances allowing them
to colonise surfaces, enhancing nutrient uptake whilst limiting diffusion of particular substances
across the cell membrane [82]. The ability of Pseudoalteromonadaceae species to suppress the
growth of competing bacteria could explain the dominance of Pseudoalteromonadaceae in almost
all cultures irrespective of media composition, particularly when P. tricornutum abundance is limited
(Figure 2, days 1 and 22). P. tricornutum on the other hand, may protect other bacterial community
members from the bacteriolytic ability of Pseudoalteromonadaceae by producing specific antibacterial
compounds themselves. Desbois et al. showed that P. tricornutum excreted bacteriolytic fatty acids
such as eicosapentaenoic acid (EPA; 20:5n-3), nucleotides, peptides, and pigment derivatives that can
eliminate unwanted competition for nutrients such as organic phosphates from certain bacteria [55].

Alteromonadaceae. The Alteromonadaceae family consists of 16 (yet annotated) named genera
found predominantly in marine environments [74]. Members of this family were isolated from
nutrient-rich environments such as coastal, open, and deep-sea waters, sediments, marine invertebrates
and vertebrates, algae, and temperate and Antarctic marine environments [83]. They are able to utilize
a vast array of compounds as carbon sources; from glucose to glycerol [74]. Members of this family
are known siderophore producers [57,84,85]. Greek for “iron carrier”, siderophores are a group
of iron scavengers that act by chelating iron (III) that are produced and excreted by bacteria, and
some cyanobacteria, which then reuptake the siderophores with bound iron (III) via outer-membrane
transporters that are siderophore-specific [86]. Most bioactive trace metals, including iron, exist at
nanomolar to picomolar concentrations in our oceans, approximately one-millionth of the intracellular
concentration in diatoms [87,88]. No trace metals, including iron (III), were provided to minimal
media cultures. However, natural seawater may contain minute traces of bioactive trace metals.
The high abundance of Alteromonadaceae in the minimal media suggests a potential supportive role in
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sequestering traces of iron (III) that may be present in the sterile natural seawater to the P. tricornutum
(Figure 2). This is further supported by the very low level of Alteromonadaceae in the complete media
(11% in complete media compared to 55% in minimal media, both on day 15) where the culture has
been supplied with 11.7 μM of iron (III) chloride hexahydrate.

Flavobacteriaceae. Flavobacteriaceae are members of the Bacteroidetes phylum and include over
120 genera found in soil, sediments and seawater (see [89] for further references). Flavobacteriaceae
belong within the Cytophaga-Flavobacterium cluster which has been shown to account for more than 10%
of the total bacterial community in coastal and offshore waters [90–92]. Members of Flavobacteriaceae
can proficiently degrade various biopolymers such as cellulose, chitin and pectin [93,94]. They were
shown to be omnipresent during phytoplankton blooms, and their preference for consuming more
complex polymers rather than monomers suggests an active role in the processing of organic matter
during these blooms [95,96]. Although the exact mechanisms behind them are not perfectly understood,
algal blooms are a consequence of exponential growth of phytoplankton [97]. In this respect, the phase
of exponential growth of P. tricornutum in complete media, when our results showed highest abundance
of Flavobacteriaceae, is the artificial equivalent of an algal bloom of P. tricornutum (Figure 2). In the
minimal media, the abundance of Flavobacteriaceae remains very low; at its maximum on day 8 it only
accounts for 9% of the total bacterial community. Members of the Flavobacteriaceae family could be
more demanding than other bacteria that require lower nutrient levels to thrive.

Pseudomonadaceae. Pseudomonadaceae are an extraordinarily diverse family of bacteria found
in almost all habitats on Earth; in soils, freshwater as well as marine environments, as well as plant
and animal-associated pathogens [98]. Species from the Pseudomonas genus are the best studied of
the Pseudomonadaceae family, whose sheer genetic diversity explains the ability to thrive in such
a wide range of environments [99]. Marine isolates from the Pseudomonas genus have been shown
to produce a wide range of bioactive compounds, many of which exhibit antibacterial as well as
antiviral properties (see [100] for further references). Our results, indeed show an elevated level of
Pseudomonadaceae OTUs evident on day 22 of the complete media cultures, and on days 8 and 22 of
the minimal media cultures. The increased presence of Pseudomonadaceae when the P. tricornutum
culture has “crashed” could be attributed to its ability to produce antibacterial compounds allowing
members of this family to begin to thrive in the community through inhibition of its competitors.
Given its exceptional genetic diversity, and thus, its metabolic versatility, allows for members of
Pseudomonadaceae to be truly saprophytic; providing a hypothetical explanation of its abundance we
could measure when the P. tricornutum cultures crash (Figure 2, day 22 in both media conditions).

4.3. Putative Network of Interactions and Validation with a Qualitative Mathematical Model

The literature review work revealed interesting insights into the possible metabolic exchanges going
on and allowed to infer interaction links among P. tricornutum and its associated bacterial community.
We critically considered which metabolites were most relevant for survival (organic carbons for the
bacteria, iron, vitamins and phosphates for the diatom) and which ones could play a role in competition
and predation among the microbes (bactericidal metabolites). From these considerations we designed
a putative network of interactions that was then translated into a mathematical model. In particular we
chose, besides the five microbes’ biomasses, a total of eight metabolites as the variables that directly
and specifically influence the interactions among the different organisms. These were: four different
possible sources of organic carbons, each preferred by a different bacterial family [30]; two bactericidal
substances, one produced by Pseudoalteromonadaceae and affecting all other bacteria [54], the other
produced by P. tricornutum and targeting specifically Pseudoalteromonadaceae [55]; vitamins produced
by Alteromonadaceae and needed by P. tricornutum [63]; bio-available iron that is chelated by
Alteromonadaceae and efficiently absorbed by P. tricornutum [57]. For the scope of the model, we ignored
other free iron forms that can be uptaken by all bacteria as well as phosphates that are not species-specific
and are present in both minimal and complete media.
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Direct metabolic exchanges are known to be central in microbial community interactions [101],
but usually population dynamics models like gLV [28] do not include this information. This work,
therefore, modified the standard formulation of the Verhulst equation [36] for bacterial growth to
include organism-to-organism interactions depending on the production/consumption of metabolites,
modeled as Monod-type terms [51]. Nutrients availability can indeed drastically change the
“metabolic state” of an organism, inducing a reprogramming of resource allocation to face nutrient
scarcity [102]. This was shown at the gene expression level for example for Escherichia coli [103] and
Shewanella oneidensis [104] grown in minimal and rich media condition. Micronutrients can as well
affect microbial gene expression, as is for example the case with vitamin B12, whose presence induces
the expression of the cofactor-dependent methionine synthase enzyme METH, while in its absence the
cofactor-independent methionine synthase enzyme METE is expressed [105]. An ODE model at the
population level cannot, of course, capture mechanisms such as metabolic shifts caused by changes
in the environment such as the supplementation of minimal or complete media [25]. Therefore, we
did not expect to find a unique set of parameters for the model in the two conditions. However,
the parameters fitted to the data of P. tricornutum with four bacterial families still provide good fits
in simulations with altered community composition. Even though the parameter values could not
directly be interpreted biologically, we could use the simulation results on metabolites dynamics
(an information absent in data) to speculate about the reason for the lower cell count of P. tricornutum
in complete media with respect to minimal media (Supplementary Material 3). In minimal media,
Alteromonadaceae maintained constant iron levels and the fitted values for parameters characterizing
P. tricornutum’s sensitivity to micronutrients levels were significantly lower. This would suggest a key
role of Alteromonadaceae in supporting P. tricornutum growth combined with the diatom’s adaptation
to scarce micronutrients availability.

Considering the limited information that can be extracted from the current experimental
data available, the model we proposed is purely qualitative and provides a proof-of-concept
that a quantitative model can, in principle, be constructed if dedicated experiments are designed
for calibration. The current qualitative model provides therefore a preliminary validation of our
putative network of interactions, and serves as motivation for further research bringing the model to
a quantitative, predictive level. Indeed, starting with systematic measurements of model parameters
in co-cultivation experiments, the simulations can gain predictive power and become a powerful tool
towards the goal of synthetic community design and control.

5. Conclusions and Outlook

This study demonstrated that the bacterial community associated with non-axenic laboratory
strains of P. tricornutum is not randomly assembled but follows dynamics that can be reproduced.
We postulate that a role within the community can be filled by a number of bacterial species capable
of carrying out a certain function (guilds) rather by one specific species of bacteria. Which bacteria
fill the role is dependent upon the environmental characteristics and the prevailing needs of the
community as a whole at any given time. Unfilled niches will be seized by bacteria with the ideal
metabolic functionality. The absence of certain micronutrients creates a new niche that can be filled by
a certain unique bacterial faction. Further work is necessary to explore the hypotheses postulated and
to further develop the qualitative mathematical model to understand the specific community roles
and the ecological niches. In the context of fundamental research, one approach would be to carry
out systematic time-resolved omics studies, which provide a holistic view of the genes (genomics)
and metabolites (metabolomics) in a specific biological sample in a non-targeted and non-biased
manner [106], and use them to develop an “expanded gLV” mathematical model where the species
specific interaction terms depend on the metabolite concentrations. This would allow to derive
a network of interactions independent of a priori hypotheses, and thus represent a significant step
forward in understanding community dynamics based on metabolic exchanges. In the context of
industrial scale-up, systematic co-culture experiments with culturable members of the bacterial families
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of interest, chosen based on desired functional roles, could be used to parametrize a mathematical
model like the one we presented and develop it into a powerful predictive tool for culture monitoring.
For example, samplings assessing the community composition can be used to predict the harvesting
point and avoid “culture crash”. The development of novel co-cultivation strategies for scale-up is
extremely relevant for pharma- and nutraceutical, as well as animal feed industries. Therefore there
will be increasing interest in further research into co-cultivation approaches and in general in the field
of synthetic ecology.

Supplementary Materials: The bioinformatics analysis steps are available online at https://github.com/QTB-
HHU/16SV6-Sequence-Analysis.git. The mathematical model in python with instructions to run simulations
is available online at https://github.com/QTB-HHU/communityODE. The following are available online at
www.mdpi.com/2227-9717/5/4/77/s1, Supplementary Material 1 contains Figures S1-S6 and Tables S1-S2,
relative to the experimental data analysis. Supplementary Material 2 contains additional checks performed for
parameter fitting of the mathematical model (Tables S7-S11). Supplementary Material 3 presents a speculative
interpretation of the simulation results (Figures S7-S8 and Table S12).
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Appendix A. Data Analysis
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Figure A1. Beta diversity. A modified version of PermanovaG was used to carry out permutational
multivariate analysis of variance using multiple distance matrices. The distance matrices [24 × 24]
were previously calculated based on the generalized UniFrac distance [53], weighted UniFrac and
unweighted UniFrac [107] distance. The significance for the test was assessed by 5000 permutations.
(a) shows no significant effect between the replicates (p-value of 0.4384). (b) shows a significant effect
for the time variable (p-value of 0.001). (c) shows also shows a significant effect for the medium variable
(p-value of 0.007).
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Appendix B. Mathematical Model Additional Material

The mathematical model is a system of 13 ODEs describing the variation in time of the populations
(cell counts) of

• P. tricornutum (D);
• Pseudoalteromonadaceae (PA);
• Flavobacteriaceae (F);
• Alteromonadaceae (A);
• Pseudomonadaceae (P);

and the production and consumption of the metabolites we consider as mainly contributing to drive
the community dynamics:

• the dissolved organic carbons of preference for PA and A (DOCPA and DOCA, respectively);
• the complex polymers (COP) consumed by F;
• generic vitamins (Vit) and iron (Fe) needed by D and produced by A;
• bactericidial molecules (EPA and Bac, produced by D and by PA respectively);
• the dissolved organic matter (DOM).

The model has 55 unknown free parameters:

• 5 carrying capacities CC;
• 34 maximal rates v;
• 15 Monod-type coefficients K;
• the fraction of DOCA-dependent growth of A, εDOCA .

Appendix B.1. ODEs System

Five ODEs describe the variation in time of the populations of organism O, with γO and δO being
its growth and death rate:

dD
dt

= γDD − δDD (A1)

dPA
dt

= γPAPA − δPAPA (A2)

dF
dt

= γFF − δFF (A3)

dA
dt

= γA A − δA A (A4)

dP
dt

= γPP − δPP (A5)

Eight ODEs describe the variation in time of the metabolites J, with vprod/cons(O)
J being the

maximal production/consumption rate of J by organism O:

dVit
dt

= vprod(A)
Vit γA A − vcons(D)

Vit γDD (A6)

dFe
dt

= vprod(A)
Fe γA A − vcons(D)

Fe γDD (A7)

dDOCPA
dt

= vprod(D)
DOCPA

γDD − vcons(PA)
DOCPA

γPAPA (A8)

dDOCA
dt

= (vprod(D)
DOCA

+ φ)γDD − vcons(A)
DOCA

γA A (A9)
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dCOP
dt

= (vprod(D)
COP + ψ)γDD − vcons(F)

COP γFF (A10)

dEPA
dt

= vprod(D)
EPA γDD − vdeg

EPAEPA (A11)

dBac
dt

= vprod(PA)
Bac γPAPA − vdeg

Bac Bac (A12)

dDOM
dt

= vprod(D)
DOM δDD − vcons(A)

DOM γA A − vcons(P)
DOM γPP (A13)

φ and ψ are additional terms for DOCA and COP production respectively (see Appendix B.1.1). vdeg
J is

the degradation rate of the bactericidal substances. Organism O growth and death rates depend
in general on carrying capacity CCO, maximal rates vO

γ/δ and on metabolites concentrations J with

Monod-type coefficient KO
J and eventually maximal rates vO

J :

γD = vD
γ · Vit

Vit + KD
Vit

Fe
Fe + KD

Fe
(1 − D

CCD ) (A14)

δD = vD
δ

1
1 + γD (A15)

γPA = vPA
γ

DOCPA
DOCPA + KDOCPA

(1 − PA
CCPA ) (A16)

δPA = vPA
δ (1 +

vPA
EPA · EPA

EPA + KEPA
)

1
1 + γPA (A17)

γF = vF
γ

COP
COP + KCOP

(1 − F
CCF ) (A18)

δF = vF
δ (1 +

vF
Bac · Bac

Bac + KF
Bac

)
1

1 + γF (A19)

γA = γA
DOCA

+ γA
DOM (A20)

γA
DOCA

= vA
γ

εDOCA · DOCA

DOCA + KA
DOCA

(1 − A
CCA ) (A21)

γA
DOM = vA

γ

(1 − εDOCA) · DOM
DOM + KA

DOM
(1 − A

CCA ) (A22)

δA = vA
δ (1 +

vA
Bac · Bac

Bac + KA
Bac

)
1

1 + γA (A23)

γP = vP
γ

DOM
DOM + KP

DOM
(1 − P

CCP ) (A24)

δP = vP
δ (1 +

vP
Bac · Bac

Bac + KP
Bac

)
1

1 + γP (A25)

For example in Equation (A14), describing the growth rate of the diatom, the Verhulst growth
equation dD/dt = vD

γ (1−D/CCD) describes a standard logistic growth, while adding the Monod-type
coefficients of the form X/(X + KX) introduce a dependency on the micronutrients Vit and Fe,
in practice scaling down the effective growth rate if micronutrients are scarce. In the case of A,
where growth is thought to be sustained by two different complementary nutrients, the final growth γ

can be represented as the sum of two terms γA
DOCA

and γA
DOM (Equations (A21) and (A22)), with the

parameter 0 < εDOCA < 1.

Appendix B.1.1. DOCA and COP Production

When D is grown in minimal media conditions, the emergence of A is observed over F. From this
observation we hypothesise that D can produce extra organic carbons for either A or F depending
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on the scarcicity of micronutrients to favor the growth of A if more Vit or Fe is needed. We model
the production of DOCA and COP (Equations (A9) and (A10)) introducing the functions φ and ψ

defined as:

φ = vD
DOCACOP · (1 − ξ) (A26)

ψ = vD
DOCACOP · ξ (A27)

ξ =
Vit4

Vit4 + K′D
Vit

Fe4

Fe4 + K′D
Fe

(A28)

where vD
DOCACOP is the maximal additional production rate and 0 < ξ < 1 depends on Vit and Fe with

fourth order Hill equations terms parametrised with K
′D
Vit and K

′D
Fe (see Figure A2).

(a) (b)

Figure A2. Example for DOCA ((a), 1 − ξ) and COP ((b), ξ) additional production rates dependent on
Vit and Fe availability in the media. Here K

′D
Vit = 0.1, K

′D
Fe = 0.5.

Appendix B.2. Parameter Fitting

The model has 56 parameters, of which 55 are free parameters (see Table A1). Being a qualitative
model, we do not aim at interpreting the absolute parameter values in a biological sense.

Table A1. Total number of parameters for each parameter set. The dependent parameter is
εDOM = 1 − εDOCA in the sub-set of A parameters P(A).

Parameter Sub-Set P(D) P(PA) P(A) P(F) P(P) Degradation

Sub-set size 15 9 14 8 8 2

The available data that can be used to fit the model parameters are the diatom biomass growth
in two media conditions and four time points with bacteria relative abundances again in two
media conditions. We can therefore fit the diatom biomass D evolution and the four relative bacteria i
abundances Bi/ ∑j Bj time-course.

We implement as general strategy a genetic algorithm, where an “individual” i is a full set of
56 parameters Pi, a “population” is an ensemble of parameter sets {Pi}, a population at a certain
evolution step is a “generation” and “evolution” goes as:

(1) the first generation {Pi}0 is populated by extracting the parameters from random uniform
distributions within user-chosen ranges;

(2) for each Pi the ODE system is solved and a fitness score (see Appendix B.2.1) is computed;
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(3) the most fit 10% individuals are retained as parents for the next generation;
(4) the remaining individuals have a probability p = 0.05 to be also selected as parents;
(5) parents are crossed to obtain enough children to reach the original population size;
(6) crossing means randomly pick a parameter sub-set from one parent or the other;
(7) each children has a probability p = 0.3 to randomly mutate one parameter;
(8) the process is repeated from step 2. until generation {Pi}Gmax .

Appendix B.2.1. Fitness Score

Fitness scores are computed in a different way when fitting the diatom growth or the bacteria
relative abundances. When fitting to the diatom biomass data we compute the score as a simple
euclidean distance:

s =
√

∑
t
(xt − Xt)2 (A29)

where the sum over time extends over 22 time points, xt is the D biomass at time t and Xt is the biomass
data at time t. The lower s, the better the fit. This score definition works well to fit the measurements of
diatom biomass, but presents a big problem when used with bacteria relative abundances. A relative
abundance is a number between 0 and 1, and we observe high variations including bacteria population
going from very close to 0 to high abundance. Having only three time points to fit (the first 16S
measurement is used as initial point), it can happen that constantly low abundant population are kept
by the algorithm. We therefore define for the fit of bacteria relative abundances the following score:

s = ∑
t

√
∑
o

(
1 − e

rot−Rot
rot
)2 (A30)

where the sum over time extends over 3 time points and the sum over organisms over the
4 bacterial species, rot is the relative abundance from the ODEs system solution for organism o
at time t and Rot is it the corresponding experimental relative abundance. This score definition allows
to penalize the event of population extinction: when r is 0, the exponential term is 0 and the score is 1,
while when r = R the exponential term is 1 and the score is 0.

Table A2. Datasets used to fit diatom growth in minimal and complete media (MM and CM respectively).
Time is scaled (1/3 of a day) to fit reasonably the growth phases (lag-log-exp-decay) using
parameters O(1). For the same reason cell counts are scaled to bring the lower count close to 0,
but not feature-scaled to avoid loosing information on differences among MM and CM conditions.
Only average values, and not experimental errors, are taken into account.

T 8 16 40 48 64 72 104 112 120 128 152

MM 0.004 0.021 0.133 0.325 0.820 1.012 1.121 1.187 1.192 1.233 1.209
CM 0.050 0.044 0.162 0.605 0.733 0.919 1.037 1.099 1.134 1.108 0.859

T 168 176 184 208 216 232 240 248 264 272 288

MM 1.104 1.096 0.951 1.015 0.965 0.851 0.869 0.704 0.481 0.504 0.394
CM 0.821 0.844 0.624 0.682 0.624 0.556 0.535 0.478 0.199 0.282 0.303

Table A3. Relative abundances of the four bacterial families at three intermediate time points (days 8, 15
and 22). The abundances were scaled from the experimental values (where more families were present)
to add to unity.

Complete Media Minimal Media

t PA F A P PA F A P

64 0.101 0.724 0.159 0.014 0.294 0.132 0.308 0.264
120 0.453 0.474 0.061 0.010 0.351 0.031 0.585 0.031
176 0.600 0.084 0.189 0.126 0.385 0.020 0.187 0.406

173



Processes 2017, 5, 77

Appendix B.2.2. Results of the Genetic Algorithm

The chosen population size is 200 and the algorithm stops either after non significant increase in
fitness or at generation number 50. The algorithm can be run to fit six scenarios:

• D-MM: D Biomass in Minimal Media;
• D-CM: D Biomass in Complete Media;
• B-MM: Bacteria relative abundances in Minimal Media;
• B-CM: Bacteria relative abundances in Complete Media;
• D*B-MM: D Biomass and Bacteria relative abundances in Minimal Media;
• D*B-CM: D Biomass and Bacteria relative abundances in Complete Media;

For D-type fits, the fitness score of Equation (A29) is used. For B-type fits, the fitness score of
Equation (A30) is used. For D*B-type fits, the fitness score is the product of the two scores. We will
refer to D-fit, B-fit and D*B-fit in the following if media is not to be specified.

Considering the fact that a simple ODE model cannot capture metabolic readjustment, we do not
expect to obtain the same parameters for CM and MM conditions. The fitting is therefore performed
separately in the two conditions and in the following steps:

1. B-fit is run 20 times varying all 55 parameters in O(1) ranges
2. The parameters from the best B-fits are kept (PMM1 and PCM1)
3. After checking the effect of varying the different parameters sets, different variation ranges are

chosen to perform refits
4. D*B-CM is run 5 times varying P(D, deg)CM1 ± 50%, P(A, F, P)CM1 ± 20%, P(PA)CM1 ± 10%
5. D*B-MM is run 5 times varying PMM1 ± 50%, and the best parameters are kept (PMM2)
6. D*B-MM is run again 5 times varying P(D)MM2 ± 5%, P(A, F, P, PA, deg)MM2 ± 80%

The last rounds of fitting were run on different sets of parameters considered equally good.
The final parameter sets P are presented in Table A4.

Table A4. Final parameter sets used for simulation in CM (PCM) and MM (PMM). Also reported are
the overall average and standard deviation values from all the last rounds of fitting.

PCM μ(PCM) σ(PCM) PMM μ(PMM) σ(PMM)

KA
Bac 0.562780 0.476829 0.235751 0.23821 0.281329 0.257813

KA
DOCA

0.463690 0.249183 0.152283 0.02253 0.332969 0.365116

KA
DOM 1.043490 0.526842 0.339699 0.82552 0.671145 0.475618

vA
Bac 1.884690 1.433304 0.495578 0.94702 1.085873 0.889537

CCA 1.230920 1.112280 0.351905 2.74047 1.564099 0.668637

vA
δ 0.036310 0.067159 0.085177 0.01697 0.058289 0.113161

vcons(A)
DOCA

0.504220 0.504324 0.149340 1.30073 0.806015 0.315439

εDOCA 0.204470 0.464587 0.226651 0.99257 0.670187 0.250496

vcons(A)
DOM 0.186340 0.493623 0.298676 0.74598 0.349684 0.246408

εDOM 0.795530 0.508826 0.229097 0.00743 0.323377 0.248408

vprod(A)
DOM 0.030470 0.052871 0.094576 0.06702 0.130514 0.176652

vprod(A)
Fe 0.134290 0.118939 0.028298 0.19948 0.206115 0.091565

vA
γ 0.329520 0.434683 0.340005 0.34841 1.037434 0.510106

vprod(A)
Vit 0.954240 0.644251 0.317607 1.09226 1.241136 0.618984

vdeg
Bac 0.108110 0.409152 0.213390 0.07769 0.263422 0.330743

vdeg
EPA 0.350050 0.373353 0.117858 0.57995 0.784058 0.412260
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Table A4. Cont.

PCM μ(PCM) σ(PCM) PMM μ(PMM) σ(PMM)

KD
Fe 0.488680 0.583597 0.358354 0.02979 0.124157 0.134217

K
′D
Fe 1.199730 1.048777 0.343732 0.33321 0.486298 0.256807

KD
Vit 0.844900 0.645544 0.226955 0.46274 0.346839 0.088571

K
′D
Vit 0.469600 0.903463 0.501364 0.09782 0.339058 0.356208

vD
DOCACOP 0.314330 0.853140 0.557108 0.36480 0.546552 0.330353

CCD 1.875200 1.584920 0.515701 1.57897 1.427444 0.420945

vprod(D)
COP 1.005110 1.268507 0.463020 0.70666 0.736754 0.370734

vD
δ 0.007180 0.016960 0.051891 0.00681 0.013765 0.049375

vprod(D)
DOCA

1.770740 0.987437 0.490546 1.65657 1.350378 0.421454

vprod(D)
DOCPA

1.055270 0.990547 0.415673 0.83897 1.081959 0.591094

vprod(D)
DOM 0.135980 0.653181 0.351953 0.54133 0.565364 0.231813

vprod(D)
EPA 1.214350 0.899207 0.360058 1.28659 1.070999 0.478554

vcons(D)
Fe 0.665740 0.755699 0.241111 0.31684 0.363974 0.099207

vD
γ 0.194310 0.200395 0.069030 0.52737 0.562459 0.149546

vcons(D)
Vit 0.367880 0.566566 0.416514 1.78450 0.909564 0.404000

KF
Bac 0.936420 0.583317 0.263447 0.16731 0.299761 0.198921

KCOP 0.477700 0.588674 0.234155 0.74525 0.451922 0.315203

vF
Bac 0.184360 0.311845 0.105780 0.23234 1.237169 1.012458

CCF 1.351050 1.206888 0.384417 0.54187 1.074951 0.758107

vcons(F)
COP 0.139320 0.175972 0.045416 0.57005 0.330531 0.127086

vF
δ 0.382820 0.318181 0.144775 0.18005 0.200895 0.150824

vprod(F)
DOM 0.092860 0.080066 0.074871 0.00984 0.135875 0.283818

vF
γ 0.765450 0.726578 0.223690 1.50156 0.888556 0.545041

KP
Bac 0.020100 0.148399 0.132143 0.16823 0.326145 0.294570

KP
DOM 0.609800 0.560853 0.171693 1.12080 0.688621 0.413129

vP
Bac 1.009740 1.238831 0.430709 2.11081 1.419892 0.958683

CCP 1.301320 1.277678 0.407513 1.17750 2.585117 0.869802

vP
δ 0.020440 0.069033 0.167148 0.01591 0.036821 0.150349

vcons(P)
DOM 0.698330 0.523151 0.203572 0.17625 0.124345 0.136063

vprod(P)
DOM 0.195450 0.189091 0.103414 0.03107 0.116528 0.203261

vP
γ 0.820720 0.440066 0.249502 0.57938 0.527859 0.284980

KDOCPA 0.245720 0.351941 0.221873 0.42128 0.564689 0.489764

KEPA 0.755570 0.541606 0.297743 0.05329 0.404319 0.414359

vPA
EPA 1.577050 1.484135 0.474372 2.65508 1.368551 0.892632

vprod(PA)
Bac 0.819580 0.848959 0.264185 0.28618 0.568550 0.438164

CCPA 0.995130 1.029216 0.323852 1.28138 1.477045 0.533872

vPA
δ 0.221040 0.284309 0.181709 0.01861 0.052638 0.102986

vcons(PA)
DOCPA

0.236820 0.254966 0.144860 0.41130 0.249994 0.182493

vprod(PA)
DOM 0.130620 0.110548 0.125387 0.01816 0.108930 0.154334

vPA
γ 0.327430 0.468045 0.287832 0.12769 0.350329 0.210662
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Appendix B.2.3. Sanity Checks of the Parameter Fits

The parameters of the algorithm were chosen to obtain a satisfactory convergence of the fit
(Figure A3).

(a) (b)

Figure A3. Distribution of fitness scores in populations over generations for the genetic algorithm runs
chosen to perform the last fitting iteration in minimal (a) and complete (b) media conditions.

We checked the effect of varying the parameters δA, vcons(A)
DOCA

and vprod(A)
Fe (the only bacterial

parameters observed to influence the biomass growth curve in CM) by ±10% and ±50%. The diatom
growth is almost insensitive to these variations in CM (Figure A4), while it shows greater effects in
MM (Figure A5).

(a) (b) (c)

(d) (e) (f)

Figure A4. Diatom growth in CM simulation results. The parameters δA, vcons(A)
DOCA

and vprod(A)
Fe ,

are varied by ±10% ((a–c) respectively) and by ±50% ((d–f) respectively).
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(a) (b) (c)

(d) (e) (f)

Figure A5. Diatom growth in MM simulation results. The parameters δA, vcons(A)
DOCA

and vprod(A)
Fe ,

are varied by ±10% ((a–c) respectively) and by ±50% ((d–f) respectively).

Parameter profiling shows that the algorithm correctly converges towards local minima and
that in general those minima are rather stable to perturbation p ± 50%. Figure A6 shows examples
of the most unstable profiles from this first set of fits. Additional information is provided in the
Supplementary Material 2.

(a) (b)

Figure A6. Cont.
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(c) (d)

Figure A6. Profiling of the parameters vcons(D)
Fe in CM (a) and MM (c) and γD in CM (b) and MM (d).

The red line shows the value chosen by the fit.
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Abstract: Microbial Fuel Cells (MFCs) represent a still relatively new technology for liquid organic
waste treatment and simultaneous recovery of energy and resources. Although the technology is
quite appealing due its potential benefits, its practical application is still hampered by several
drawbacks, such as systems instability (especially when attempting to scale-up reactors from
laboratory prototypes), internally competing microbial reactions, and limited power generation.
This paper is an attempt to address some of the issues related to MFC application in wastewater
treatment with a simulation model. Reactor configuration, operational schemes, electrochemical
and microbiological characterization, optimization methods and modelling strategies were reviewed
and have been included in a mathematical simulation model written with a multidisciplinary,
multi-perspective approach, considering the possibility of feeding real substrates to an MFC system
while dealing with a complex microbiological population. The conclusions drawn herein can be of
practical interest for all MFC researchers dealing with domestic or industrial wastewater treatment.

Keywords: microbial fuel cells; biolectrochemical systems; mathematical model; heterotrophic
bacteria; methanogenic archaea; exoelectrogenic bacteria; complex substrate

1. Introduction

Depletion of fossil fuel reserves and global warming concerns make it necessary to develop
alternative, climate-neutral technologies for energy production; not just employing traditional
renewable sources (solar, wind, etc.), but also tapping into non-conventional ones, such as wastes of
different origin, to achieve established targets [1,2]. Renewable bioenergy from wastes, presenting a
neutral or even negative carbon footprint, is also viewed as one of the ways to alleviate the climate
change crisis [3–5]. In this context, a specific research track, concerning Microbial Electrochemical
Technologies (METs), has been pursued by scientists for the last couple of decades [6–8]. METs in their
generality represent a technology concerned with the recovery of energy and resources from waste
streams [9], and comprise various sub-systems, targeted to different objectives, including microbial fuel
cells (MFCs). These are a class of bioelectrochemical systems that directly transform the chemical energy
contained in bioconvertible organic matter substrates into electrical energy, exploiting the biocatalytic
effect of specific electroactive bacteria (EAB), acting on one or both reactions of substrate oxidation
and oxidant reduction, composing a classical redox reaction [7,8]. When wastewater containing
organic matter is used as anode fuel, a MFC effectively removes the latter, while recovering energy,
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leading to the future possibility of designing energy-producing wastewater treatment plants (WWTPs),
or Water and Resource Recovery Facilities (WRRFs), as the new terminology is starting to denote
such installations. It has, in fact, been estimated that urban wastewater contains more than 9 times
the amount of energy currently consumed to treat it with state-of-the-art processing technology [10],
while the best current treatment technologies allow the recovery of 1/4th to 1/3rd, at most, of that
energy. MFCs could be one of the new technologies to increase that fraction, with applications for
almost all types of different liquid wastes [11–14].

Bioelectrochemical systems may also have other useful environmental applications: if such
processes were applied in their “inverse” configuration, usually referred to as Microbial Electrolytic
Cells (MECs), with which they share the general design and basic processes, they could achieve,
for example, autotrophic denitrification of contaminated groundwater by externally supplying an
adequate voltage to the system [15,16]. Additionally, in this case, these processes turn out to be
particularly efficient from an energetic point of view, with lower specific energy consumption that
other currently used denitrification systems [17,18].

Practical full-scale MFC application in WRRF design has been long delayed by the instability of
full-scale engineered systems, low achieved power densities and output voltages practically achievable
so far. Several practical issues remain to be solved before MFC systems could be deemed ready for
full-scale applications; among them, reduction of the systems’ internal resistance, which would
allow higher substrate-electricity conversion rates, cathode technology improvements, efficient,
scalable, design, and reduction of electrochemical losses. Undesirable anodic side-reactions, such as
methanogenesis, aerobic or anoxic respiration by competitive microorganisms, represent some of the
drawbacks of the process, and also need structural address, even though they can be partly limited
by appropriate operational strategies [19–21]. Deeper process understanding and its mathematical
reproducibility can also play an important role in the quest for improvement of this technology.

Since the mid-90s, researchers have attempted to simulate the bioelectrochemical activity of MFCs,
as summarized in Table 1. This table does not consider applications of soft simulation methods such
as genetic programming (GP), artificial intelligence (AI), fuzzy logic and neural networks, which are
sometimes used as an alternative for deterministic mathematical modeling of complex physical
non-linear systems, such as a MFCs [22] or conventional-technology WWTPs [23,24].

Zhang and Halme [25] proposed a simple model based on a single anodic population and focused
on the generated power in relationship to substrate concentration and cathodic-chamber mediator.
Later, models by Kato Marcus et al. [26] were developed, neglecting the contribution of the mediator,
but considering a complex bacterial population composed by exoelectrogen and non-exoelectrogen
species. In the same year, Picioreanu et al. [27] proposed a 3-dimensional model considering both
adhese and suspended microorganisms. Zheng et al. [28] developed a dual-chamber MFC model
that simulated transient conditions, including cathodic compartment reactions, while Pinto et al. [29]
published a 2-population, anodic dynamic model representing the competition between exoelectrogens
and methanogens. Later, Oliveira et al. [30] proposed a steady-state MFC model, focusing on the
effect of some parameters such as: cell temperature, substrate concentration, biofilm thickness and
current density.

In order to develop an enhanced model capable of describing complex bacterial communities
such as those present in a MFC, as well as the complexity of feed substrates, the Pinto model [26] was
integrated with the ASM2d model [31]. The resulting model, an improvement of a previous work [32],
is herein discussed, together with its application to longer series of MFC operational data. Results are
discussed, confirming the good performance of the new model.
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Table 1. Summary of published MFC models.

Model Compartment Mediator Species Time Resolution Space Resolution

Zhang e Halme,1995 [25] Anodic Yes Single Dynamic 1D
Kato Marcus et al., 2007 [26] Anodic No Multiple Dynamic 1D

Oliveira et al., 2013 [30] Anodic/cathodic No Single Steady st. 1D
Picioreanu et al., 2007 [27] Anodic Yes Multiple Dynamic 3D

Zheng et al., 2010 [28] Anodic/cathodic No Single Dynamic/Steady st. 1D
Pinto et al., 2010 [29] Anodic Yes multiple Dynamic 1D

Capodaglio et al., 2015 [32] Anodic Yes Multiple Dynamic 1D

2. MFC Integrated Model

Fuel cells are devices performing a combustion reaction without resorting to thermal processes,
thus achieving direct conversion of chemical energy (of a generic “fuel”, or “substrate”) into electrical
energy, through the mediation of exoelectrogenic bacteria that act as catalysers of the half-reaction of
substrate oxidation [8,33]. The first evidence of this phenomenon was discovered in 1911 by Potter [33],
but very few practical advances were achieved in the field until the first patent of mediator-less MFCs,
dated 1999 [34].

The process’ working principle relies on splitting the semireactions of oxidation and reduction
that make up a typical redox reaction, allowing them to occur in two different compartments: in the
anodic compartment, exoelectrogen bacteria catalyse substrate oxidation and transfer the electrons,
released from cellular respiratory chain, to an electrode (i.e., anode). Electrons flow through an external
electric circuit towards the cathodic compartment, where they reduce the terminal electron acceptor
(TEA, usually oxygen) [35]. For each electron released at the anode, an H+ ion must reach the cathode
through the electrolytic in the cell, in order to internally close the circuit and reestablish neutrality.
Electrons and protons thus react with oxygen at the cathode, generating H2O [36].

The maximum current that can be produced by a MFC depends on the actual rate of substrate
biodegradation, whereas maximum theoretical cell voltage (also called electromotive force, or emf )
depends on Gibbs’ free energy of the overall reaction, and can be calculated as the difference between
the standard reduction potentials of the cathodic oxidant (oxygen) and the chosen anodic substrate,
as described by Heijnen [37]. Since the cell’s emf is a thermodynamic value that does not take into
account any internal losses [36], measured current experimental values are always substantially lower
than theoretical ones.

2.1. Model Assumptions

The model herein presented is based on the work by Pinto et al. [29], and the authors’ previous
work [32]; it is, as shown in Table 1, a dynamic, 1-dimensional (completely mixed), multi-species model.
Recently, model results have also been tested against a full, separate MFC hydrodynamic study,
showing good correlation with experimental observations [38].

The model considers the presence of two distinct microbial populations in the anodic chamber:
exoelectrogen (a.k.a. anodophilic bacteria) and methanogenic microorganisms co-existing in competition
for available substrate, as observed in previous studies [39]. It is known that methanogens compete
with anodophiles for substrate, thus reducing power generation and overall coulombic efficiency (CE)
of the cell. The presence of an endogenous mediator, either in reduced or oxidized form, is responsible
for the extracellular electronic transfer by exoelectrogenic bacteria. It is assumed that these adhere to
the anode as a biofilm, while methanogens can either be suspended or adhese. The model also assumed
that dynamics at the cathode’s end are non-limiting, and thus not considered for simulation purposes
(Figure 1).

This model therefore describes:
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-substrate (Sa) oxidation to CO2 by exoelectrogen bacteria (Xa), with reduction of the mediator:

(Mox → Mred) (1)

where Mox and Mred represent the oxidized and reduced mediator, respectively.

-mediator reoxydation, with release of free electrons and protons:

Mred → Mox + e− + H+ (2)

-methane and carbon dioxide production by methanogens:

Sa → CH4 + CO2 (3)

where Sa is the substrate, expressed by mass balance Equations (4)–(6):

dSa

dt
= −qaxa − qmxm + D(Sa0 − Sa) (4)

dxa

dt
= μaxa − Kd,axa − αaDxa (5)

dxm

dt
= μmxm − Kd,mxm − αmDxm (6)

where D = 1/(HRTanode) [t − 1]; qa, qm substrate conversion rates for exoelectrogens and methanogens;
μa, μm Monod-type growth rates, and Kda, αa bacterial endogenous decay and washout
coefficients, respectively.

Figure 1. The initial conceptual model.
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Monod kinetics are assumed for bacteria; specifically, exoelectrogens’ growth is limited by both
substrate (acetate) and oxidized mediator concentrations, while methanogens’ only by acetate’s.
The Pinto model assumes that biomass growth occurs in two phases: growth, during which there is no
microorganism dispersion/washout (αa = 0); and steady state, where a dynamic equilibrium between
growth, endogenous decay and washout is established. An internal “switch” in the model converts
between operating phases, depending on process conditions. Total mediator concentration (in reduced
and oxidized forms) is assumed constant in the system.

Since one of the most important aspects characterizing MFC performance is the electric current
produced, this is calculated from the cell’s tension through Ohm’s First Law:

Ecell = IMFCRext (7)

where Ecell is the cell’s tension, Rext the external resistance and IMFC the current flowing between anode
and cathode of the MFC.

The electromotive force (Equation (8)) is considered equal to the Open Circuit Voltage of the cell
(EOCV), neglecting activation losses:

IMFC =
(EOCV − ηconc)

(Rext + Rint)

(
Mred

ε + Mred

)
(8)

where ηconc is the overpotential linked with concentrations, Rint is the internal resistance of the cell.
While competing methane production Qa is calculated proportionally to acetate uptake through a

specific yield coefficient, YCH4:
Qa = YCH4qmXmV (9)

2.2. Model Modification

While the Pinto model represents the ongoing competition between exoelectrogens and
methanogens in the anodic chamber, at the same time it completely neglects other species
(e.g., heterotrophs) that could be present in the cell, as well (Figure 2). Furthermore, the model
considers acetate as the only substrate present, while, in reality, the composition of the incoming
substrate will have a much more complex composition (Figure 3). In order to compensate for the above
mentioned shortcomings, it was therefore decided to modify the model, by integrating in its structure
specific elements of the well-known ASM2d model [32].

Figure 2. Schematics of the interaction between exoelectrogems (Xa), methanogens (Xm) and
heterotrophs (Xh) populations in a MFC as represented in the modified integrated model. The reactions
outside the shaded areas (unconnected) are not represented in the model.

The latter was designed to simulate the processes normally occurring in traditional activated
sludge facilities, and considers basic substrate measured as COD (Chemical Oxygen Demand),
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although in diverse fractions, such as particulate (X) and soluble (S), as follows: Sf soluble substrate that
can be fermented to Sa (acetate); inert soluble and particulate substrate, Si and Xi; slowly degradable
particulate, Xs; soluble nitrogenous, SNO3, and ammonia, SNH4 matter. Ammonia and nitrogenous
matter, as well as the influence of alkalinity and oxygen inhibition were, for the moment, neglected.

Figure 3. Results of experimental wastewater characterization over time.

Although, in theory, heterotrophic, autothrophic (nitrifiers) and phosphate-accumulating bacteria
can all be present in wastewater treatment plants, the sole presence of heterotrophs was herein
considered since, due to their characteristics, they are more likely to be actually present in a MFC’s
anodic chamber. The model as is, is therefore not applicable to MECs, but efforts are ongoing to
study future changes appropriate to also representing this type of configuration and related processes.
All degradation processes in ASM2d are represented by Monod-type kinetics:

dSa

dt
= − 1

YH
ρ7XH + ρ8XH (10)

dXS
dt

= −ρ2XH − ρ3XH + (1 − fXI)ρ9 (11)

dSNH4

dt
= υNH4(ρ2 + ρ3)XH (12)

dSI
dt

= fSI(ρ2 + ρ3)XH (13)

dXH
dt

= ρ6XH + ρ7XH − ρ9 (14)

dS f

dt
= (1 − fSI)(ρ2 + ρ3)XH − 1

YH
ρ6XH − ρ8XH (15)

dXI
dt

= fXIρ9 (16)

dSNO3

dt
= − 1 − YH

2.86 YH
(ρ6 + ρ7)XH (17)

dSN2

dt
=

1 − YH
2.86 YH

(ρ6 + ρ7)XH (18)

where the ρi coefficients contained in Equations (10)–(18) are described in Table 2.
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Table 2. Definition of the equations’ coefficients.

Coefficient Descriptive Equation

ρ1 Kh
SO2

KO2+SO2

Xs
XH

Kx,s+
Xs
XH

ρ2 KhηNO3,i
KO2

KO2+SO2

SNO3
KNO3+SNO3

Xs
XH

KX,S+
XS
XH

ρ3 Khη f e
KO2

KO2+SO2

KNO3
KNO3+SNO3

Xs
XH

KX,S+
XS
XH

Table 2. Cont.

Coefficient Descriptive Equation

ρ4 μh
SO2

KO2+SO2

Sf
K f +Sf

S f
S f +Sa

SNH4
KNH4+SNH4

Salk
Kalk+Salk

ρ5 μh
SO2

KO2+SO2

Sa
Ka+Sa

Sa
S f +Sa

SNH4
KNH4+SNH4

Salk
Kalk+Salk

ρ6 μhηNO3
KO2

KO2+SO2

SNO3
KNO3+SNO3

Sf
K f +Sf

S f
S f +Sa

SNH4
KNH4+SNH4

Salk
Kalk+Salk

ρ7 μhηNO3
KO2

KO2+SO2

SNO3
KNO3+SNO3

Sa
Ka+Sa

Sa
S f +Sa

SNH4
KNH4+SNH4

Salk
Kalk+Salk

ρ8 q f e
KO2

KO2+SO2

KNO3
KNO3+SNO3

Sf
K f +Sf

Sa
S f +Sa

Salk
Kalk+Salk

ρ9 bhXH

Integrating appropriately the above equations yields:

-a combined equation (from Equations (4)–(10)) describing Sa.

dSa

dt
= −qaxa − qmxm + D(Sa0 − Sa)− 1

YH
ρ7XH + ρ8XH (19)

-an equation in Sf, including the influent term for all COD components (Sa, Si, Sf, Xi, Xs):

dS f

dt
= (1 − fSI)(ρ2 + ρ3)XH − 1

YH
ρ6XH − ρ8XH + D

(
S f 0 − S f

)
(20)

-an equation representing the lysis component for all microorganisms in the Xs and Xi mass
balances, with addition of the washout coefficient for heterotrophs:

dXH
dt

= ρ6XH + ρ7XH − ρ9 − αhDxh (21)

The effect of aerobic activity of heterotrophs has also been included in the model, by considering
a small influent oxygen concentration (SO2 = 2 mg/L), and diffusive oxygen transfer from the
cathode to the anodic chamber through the ion exchange membrane, by means of an oxygen mass
balance equation:

dSO2

dt
=

(
1 − 1

YH

)
(ρ4XH + ρ5XH) + D(SO20 − SO2) (22)

Also, in the integrated model, the dynamic formulas of internal resistance (Rint), and Open Circuit
Voltage (EOCV) are included, in order to better correlate their values with the actual concentration
of exoelectrogens estimated at any time in the cell (in the original model, these were represented as
constant values to be declared as initial conditions).
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Rint = Rmin + (Rmax − Rmin)e−KrXa (23)

EOCV = Emin + (Emax − Emin)e−K−1
r X−1

a (24)

The resulting, integrated MFC model was then implemented in the MATLAB environment,
and the representative differential equations solved by means of the MATLAB “ode23t” function.

It is clear that, by neglecting the presence of some entire components of the possible bacterial
population of the cells, the increased bacterial community complexity of these system is partly lost,
as well as some of the interrelated relationships among organisms that make it almost impossible to
individually study the individual exoenergetic properties of each strain. In addition to exoelectrogen
(a.k.a. anodophilic bacteria) and methanogenic microorganisms co-existing in competition for available
substrate, an actual MFC would also contain nitrifiers, P-accumulating organisms, and others.
Development of structured microbial communities within a cell’s anode shows significant advantages
compared to pure communities in the treatment of complex organic matter matrices, such as,
for example, urban wastewater. In the model under present configuration, a direct competition
among methanoges and anodophiles is represented (Figures 1 and 2). Even though both species
contribute to the abatement of organic matter in the system, one does that by transforming it into
methane and CO2, the other into CO2 and electrons, harvested at the cathode. As the design purpose
of MFCs is actually to directly generate electric energy from the wastewater’s organic matter, the
former reaction is actually an undesirable by-product of poorly controllable circumstances, although it
contributes to the organic matter removal efficiency of the system.

3. Results

The model was applied to the observations gathered from an intensely monitored, dual chamber,
laboratory MFC with anodic volume of 0.42 L, continuously fed with swine wastewater at 1.5 L/day,
operating in steady state at 21 ◦C for a prolonged period (over 110 days). The time series of the influent
substrate (and its components) used for this purpose was previously shown in Figure 3. Following
current modeling practice, a reduced subset of these data (30 days) was used to initially calibrate
the integrated model. Initially, some available literature-reported parameter values were selected.
If these were not available, “reasonable” best estimates (educated guesses from previous experience)
were used. A Least Squares estimation method was subsequently applied to determine more fitting
values based on those obtained from a different subset of experimental observations to verify the model.
The results thus obtained from the present version of the model yield a much better representation of
the original data, and are thus believed to be more representative of actual cell behavior than those
obtained in the authors’ previous work [32].

Once calibrated and verified, the integrated model was used to simulate the temporal trend of
system’s variables over time. Figure 4 shows the predicted behavior of exoelectrogen, methanogen
and heterotropic populations in the MFC. After day 53 (when a steady decrease in COD load),
exoelectrogens grow more rapidly than other groups, reaching a concentration of about 250 mg/L,
against methanogens decreasing by half, and heterotroph concentrations remaining stable. A high
concentration of exoelectrogenic biomass allows a higher production of electric current, from 4.4 mA
during the previous period to 8.9 mA, when the organic load is lower (Figure 5). All the above results
are in general agreement with the experimental observed trends of actual MFC electricity behavior,
although some improvement in microbial population predictions of yield and development is still
necessary, as there appears to be a lag of about 10 days between observed and predicted current
maxima and minima, most likely linked to the dynamics of anodophiles and methanogens in the
anodic cell volume and/or the yield coefficients of the former in the model.

Figure 6 shows predicted methane production over time. The simulated values agree well with
actual measurements and with methanogenic population present in the system in time, showing also a
good correlation (r = 0.92, according to Pearson) between simulated and measured values. This good
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correlation fit indicates that, in all likelihood, the differential between observed and predicted current
productions is actually due in part to misestimated yield coefficients of the anodophile population,
or to hydrodynamic factors in the anodic compartments.

Figure 7 shows the behavior of experimental and simulated soluble COD; results from the model
showed a high level of correlation with measured ones (r = 0.94), while simulated data were still
not fully convincing for total COD (data not shown), probably due to physical filtration effects of
the granular graphite filling the anodic cell, trapping some of the small organic particulates. In the
soluble COD case, however, maxima and minima of measured and simulated data are appropriately
synchronous, showing that this organic matter removal is appropriately represented by the model.

Figure 4. Predicted development of microbial populations in time.

Figure 5. Simulated vs. observed current production by the cell.
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Figure 6. Methane production rate over time.

Figure 7. Simulation and observed soluble COD over time.

4. Discussion

Development of an integrated MFC description model based on deeper process understanding
and allowing its mathematical reproducibility could play an important role in the quest for MFC
technology improvement and industrialization, in the same way already observed for other types of
similar processes [40]. The model herein presented is a small step forward in this effort, as it combines
an existing model specifically developed for this type of system, but limited by the possibility of
simulating only dual-component microbiodomes and mono-component (synthetic) substrate with a
more general microbial population model. However, wastewater treatment by MFCs is characterized
by several, simultaneous, multi-phase heterogeneous phenomena (e.g., biochemical reactions in
the biofilm, electrochemical reactions at the electrodes, hydrodynamics of the bulk liquid, membrane
polarization, etc.), that make development of a truly comprehensive mathematical model difficult
(Figure 8). The proposed model considers an additional microbial component (heterotrophs) and
the possibility of simulating complex substrates, including their intermediate transformations and
interaction with microorganisms (Figure 2). It can therefore be considered a step forward, although not
the final step, in the realization of a more complete MFC simulation model (Figure 8).
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Figure 8. Integration of multiple models for comprehensive description of MFCs (redrawn from [41]).

When operating with complex substrate (i.e., other than acetate or glucose-media) applications,
it could be of major interest to focus on microbial populations and organic matter dynamics within
the anode chamber (or nitrogen dynamics in the cathode chamber) of the cell. In these conditions,
MFCs show a much more complex microbiome than those operated with synthetic wastewater.
These populations can show either syntrophic or competing behaviors. For example, heterotrophs
could cut down complex, slowly biodegradable organic substrates, providing easily biodegradable
molecules to EABs for electricity generation. In contrast, presence of methanogens could generate
side-reaction compounds (i.e., methane) and reduce both coulombic and energy efficiencies of MFCs.
Some of these phenomena are represented in the current model, but at the moment they can only be
empirically controlled with external stimuli [21] in a reactive fashion. The model could be improved
with appropriate algorithms representing the effects of implementable interventions. The present
model also assumes completely mixed cells behavior. In view of system up-scaling, the influence of
internal cell hydrodynamics (presence of shortcircuits, dead volumes, etc.) could become extremely
relevant. For this reason, the model should be integrated with a hydrodynamic module, in order to
better characterize and simulate overall cell performance; this could be obtained both by using
computational fluid dynamics (CFD) [42] or tracer tests to assess the equivalent hydrodynamic
configuration of a cell [43–45].

5. Conclusions

An integrated, dynamic, multi-species model for a completely mixed MFC is presented. The model
was obtained by combining the Pinto model of an acetate-fed MFC, with the ASM2d activated sludge
model, representing biological treatment systems fed by complex substrates. Hence, the presence of
various microorganism species (exoelectrogens, methanogens and heterotrophs), feeding on a complex
influent substrate, was able to be represented, and different methabolic processes simulated. The model
was implemented on a MATLAB platform; its equations, solved by a numerical solutor, allowed the
reproduction of the growth dynamics of microorganisms, organic matter degradation, current and
methane production within a MFC. Monitoring observations from a MFC laboratory system operating
for about four months were used to calibrate the model, and to compare results obtained from the
simulations. Further validation from similar MFC systems, fed with different organic substrates is,
however, necessary.
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The model could be used to simulate scaled-up systems with the same physical configuration,
keeping in mind, however, that the influence of the physical configuration and effects of these
bioelectrochemical processes is far from being completely understood and replicable.
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Abstract: Lignocellulose is an abundant and renewable resource that holds great promise for
sustainable bioprocessing. However, unpretreated lignocellulose is recalcitrant to direct utilization
by most microbes. Current methods to overcome this barrier include expensive pretreatment
steps to liberate cellulose and hemicellulose from lignin. Anaerobic gut fungi possess complex
cellulolytic machinery specifically evolved to decompose crude lignocellulose, but they are not
yet genetically tractable and have not been employed in industrial bioprocesses. Here, we aim to
exploit the biomass-degrading abilities of anaerobic fungi by pairing them with another organism
that can convert the fermentable sugars generated from hydrolysis into bioproducts. By combining
experiments measuring the amount of excess fermentable sugars released by the fungal enzymes
acting on crude lignocellulose, and a novel dynamic flux balance analysis algorithm, we screened
potential consortia partners by qualitative suitability. Microbial growth simulations reveal that the
fungus Anaeromyces robustus is most suited to pair with either the bacterium Clostridia ljungdahlii
or the methanogen Methanosarcina barkeri—both organisms also found in the rumen microbiome.
By capitalizing on simulations to screen six alternative organisms, valuable experimental time is
saved towards identifying stable consortium members. This approach is also readily generalizable to
larger systems and allows one to rationally select partner microbes for formation of stable consortia
with non-model microbes like anaerobic fungi.

Keywords: anaerobic fungi; in silico modeling; microbial consortia; dynamic flux balance analysis;
non-model organism; lignocellulose

1. Introduction

Modern biotechnology is well poised to take advantage of the current shift towards a
more sustainable chemical industry [1]. Harnessing the estimated 1.3 billion tons of energy rich,
lignocellulosic agricultural waste generated world wide each year is a promising avenue towards this
goal [2]. However, extracting cellulose (40–50%) and hemicellulose (20–40%) from raw plant biomass
has proven to be challenging due to the high lignin content of the substrate [3]. Current industrial
techniques used to overcome this barrier include physical, chemical and biological treatment (e.g.,
milling, acid hydrolysis and enzyme treatment, respectively) [4].

Biological conversion attempts to exploit natural mechanisms to produce chemicals from
lignocellulose. Currently, two competing alternatives are being investigated: consolidated
bioprocessing and microbial consortia approaches [5]. The former seeks to engineer a single organism
to both degrade biomass and produce a high value commodity chemical [6]. The latter seeks to
leverage specialist organisms to split the associated metabolic burden between them [7]. Exploiting
the natural degradation powers of non-model fungi could prove beneficial in this endeavor.
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Currently, fungal enzymes from a handful of organisms, e.g., Trichoderma reesei or Aspergillus sp.,
are utilized on an industrial scale to break down plant biomass [8]. A recent report illustrates the
utility of developing consortia between a cellulose degrader like T. reesei and the model bacterium
Escherichia coli [9]. A potential drawback of this pairing is that T. reesei encodes for the smallest diversity
of cellulolytic enzymes of any fungus capable of plant cell wall degradation [10]. This could necessitate
the addition of (expensive) beta-glucosidases, to convert cellobiose to glucose, in some applications.
It is hypothesized that under-explored fungal clades, like Neocallimastigomycota, coud offer substantial
benefits in this regard [11].

Anaerobic gut fungi, in the phylum Neocallimastigomycota, found in the gastrointestinal tract of
ruminants, have been shown to be prodigious degraders of plant biomass [12]. Moreover, they possess
the highest diversity of lignocellulolytic enzymes, largely untapped, within the fungal kingdom [13].
These organisms play a pivotal role in the digestion of plant biomass in herbivores, due to the
physical and chemical way in which they degrade plant biomass [14]. Recent work highlights the
bounty of biotechnological applications of these fungi [15]. Given that these organisms typically
thrive in consortia, it is desirable to emulate nature to unlock their potential for bioconversion of
unpretreated lignocellulose.

However, these organisms are under-studied, and the mechanisms that promote the formation
of stable microbial consortia with anaerobic fungi are unknown. Given the wealth of omics-related
data available, we speculate that model driven design could elucidate some of these questions [11].
Indeed, model driven analysis has successfully been used to study anaerobic organisms [16]. Necessary
components for such analyses are accurate genome-scale models of anaerobic gut fungi and their
consortia partners. While a full genome-scale model of the gut fungi is still under active development,
it is possible to narrow the field in search of potential consortia partners by making use of extant high
quality genome-scale models to highlight mechanisms of interaction that would promote microbial
partnership and consortium stability.

In this work, we present a marriage of experimental and computational tools used to identify
suitable consortia partners for anaerobic gut fungi. Given the vast number of potential candidates,
it is infeasible to experimentally test all combinations. Instead, we filter microbes by simulation to
test their compatibility in silico. As a first approximation, we assume no interaction between the
organisms in consortia: the excess fermentable sugars released by fungal hydrolysis of plant biomass,
measured experimentally, is available for consumption regardless of the identity of the partner microbe.
By predicting the growth rate and waste production of the partner, we can rank order microbes by the
likelihood that they would stably co-exist with the gut fungi over the course of active fungal growth in
a batch bioreactor. This is a valuable tool to reduce the number of costly and time-consuming wet-lab
experiments necessary to identify suitable partners for anaerobic gut fungal-based consortia. Finally,
we introduce a novel dynamic flux balance analysis algorithm specifically developed for this task.

2. Materials and Methods

2.1. Strains and Culture Conditions

Three isolated anaerobic gut fungi were investigated in this work: Neocallimastix californiae,
Anaeromyces robustus and a previously uncharacterized fungus Neocallimastix sp. S1 (confirmed by
ITS sequencing, see the Supplementary Materials). Anaerobic conditions, as described in [17], were
maintained for all experiments. Starter cultures for each experiment were grown on complex media [17],
with reed canary grass used as a substrate, in 75 mL serum bottles. After four days of growth, these
cultures were used to start experiments by inoculating 4 mL from them into the experiment serum
bottles. Gas accumulation in the head space of the starter cultures was vented daily. All experiments
were conducted in triplicate using 40 mL of M2 media [18] loaded with 2 g of corn stover grass, (4 mm
particle size) supplied by the USDA-ARS research center (Madison, WI, USA), in 75 mL serum bottles.
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2.2. Growth and Metabolite Measurements

Fungal growth was monitored by measuring pressure in the head space of the serum bottles twice
daily, approximately 12 h apart [19]. Cultures that accumulated significantly more pressure than a
control set, without the carbon source corn stover, were deemed to be growing. The gaseous product is
primarily composed of hydrogen and carbon dioxide. After the pressure was measured, and prior
to venting, 0.2 mL of media was sampled for sugar concentration analysis on a high performance
liquid chromatography (HPLC) device. Samples were stored at −20 ◦C for batch-wise analysis. After
thawing the samples at room temperature, they were centrifuged for 5 min at 21,000 × g. By avoiding
the pellet, 100 μL was transfered to HPLC vials containing 100 μL de-ionized, 0.45 μm filtered water
(1:1 dilution). Subsequently, 20 μL of each sample was run on an Agilent 1260 Infinity HPLC (Agilent,
Santa Clara, CA, USA) using a Bio-Rad Aminex HPX-87P column (Part No. 1250098, Bio-Rad, Hercules,
CA, USA) with inline filter (Part No. 5067-1551, Agilent, Santa Clara, CA, USA), Bio-rad Micro-Guard
De-Ashing column (Part No. 1250118, Bio-Rad, Hercules, CA, USA), and Bio-Rad Micro-Guard CarboP
column (Part No. 1250119, Bio-Rad, Hercules, CA, USA) in the following orientation: inline filter →
De-Ashing → CarboP → HPX-87P columns. Samples were run with water acting as the mobile phase
at a flow rate of 0.6 mL/min and column temperature of 60 ◦C. Signals were detected using a refractive
index detector (RID) with a temperature set point of 40 ◦C. HPLC standards were created in triplicate
for cellobiose, glucose, fructose, xylose and arabinose at 5 g/L, 1 g/L, and 0.1 g/L concentrations
in M2. The concentration of each sugar was measured by subtracting the RID signal from a blank
M2 sample.

2.3. Evaluation and Selection of Model Organisms

The BIGG database is an online repository of curated genome-scale metabolic models [20].
Currently (Accessed December 2017) the database consists of 84 models from a wide diversity of
organisms. We hypothesized that the higher level of understanding implied by these models may
be leveraged into the formation of stable consortia with the relatively understudied anaerobic fungi.
The first step in identifying possible consortia partners is to screen the modeled organisms by three
criteria: (1) is the organism an obligate aerobe, (2) is the organism pathogenic and (3) is the organism
obviously incompatible with the anaerobic fungi? If any of these criteria were positive, the model
was discarded. For example, Helicobacter pylori is a modeled pathogen and is therefore excluded.
In addition, Thermotoga maritima is a modeled hyperthermophilic bacterium; it cannot be co-cultured
with the anaerobic fungi and is immediately discarded as a potential consortia partner. By filtering all
84 potential models, we are left with six possible partners, shown in Table 1.

Table 1. Genome-scale models of potential consortia partners for the un-modeled anaerobic gut fungi
used in this work.

Organism Notes Reference

Clostridium ljungdahlii str. 13528 Bacterium, obligate anaerobe, acetogen [21]
Escherichia coli str. K-12 substr. MG1655 Bacterium, facultative anaerobe [22]

Escherichia coli str. ZSC113 Bacterium, facultative anaerobe, glucose deficient [23]
Lactococcus lactis subsp. cremoris MG1363 Bacterium, facultative anaerobe [24]

Methanosarcina barkeri str. Fusaro Methanogen, obligate anaerobe [25]
Saccharomyces cerevisiae S288C Fungus, facultative anaerobe [26]

2.4. Dynamic Flux Balance Analysis Formulation

Flux balance analysis (FBA) is a widely used computational tool that simplifies and recasts the
metabolic reaction network of a cell into a linear program by making use of a genome-scale model [27].
Central to FBA is the assumption of metabolic steady state, dx

dt = Sv = 0. The space of fluxes, v, that
satisfy the mass balance implied by the stoichiometric matrix, S, is reduced by assuming that the cell
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strives to maximize an empirically defined biomass objective function, μ (v), subject to additional
flux constraints, vmin ≤ v ≤ vmax. Typically, FBA is applied to systems in a steady state; this poses
a problem for modeling anaerobic gut fungi because no continuous reactor has been developed for
them yet.

Dynamic flux balance analysis (dFBA) is a well-established tool used to extend FBA to dynamic
settings [28]. It relies on the assumption that intra-cellular dynamics are much faster than extra-cellular
dynamics. This allows one to discretize time and apply classical FBA at each time step. The resultant
fluxes are then used to update the biomass (X), external substrate (s), and product (p), concentrations
by integrating

dX
dt

= μX,

ds

dt
= vsX,

dp

dt
= vpX,

(1)

where μ, vs and vp are the growth rate, substrate and product fluxes, respectively. These are then used
to update the flux constraints,

vmin (s, P) ≤ v ≤ vmax (s, P) , (2)

used in the FBA algorithm for the next time step [29]. dFBA has been successfully applied to
mono-culture [30,31] and community [32,33] modeling.

An inherent weakness of FBA, and by extension dFBA, is the non-uniquess of the fluxes that
maximize the cellular growth rate [34]. Sampling from the space of optimal fluxes is feasible for FBA
applications because the computational cost is paid only once (typically a mixed integer linear program
needs to be solved [35]). For dFBA applications, this is prohibitively expensive due to the iterative
nature of the algorithm. However, it is well recognized that non-uniqueness of the fluxes can pose
problems when integrating Equation (1).

Techniques developed to deal with this problem typically involve hierarchal optimization,
subsequent to the biomass maximization, to constrain the fluxes further. One possibility is to
maximize the growth rate and then sequentially optimize each external flux using the previous
optimization problem as a constraint in the current one [36,37]. This method effectively deals with the
non-uniqueness problem but requires additional assumptions per external flux. These assumptions
can dramatically affect the results of the simulation but seem to be a problem only when modeling
multiple species [37].

An alternative method is to perform only a single secondary optimization subsequent to the
biomass maximization, in the hope that this constrains the fluxes sufficiently to ameliorate the
non-uniqueness issue when performing the integration of Equation (1). An example of this approach
is to minimize the absolute fluxes, based on the principle of maximum enzyme efficiency [38].
The drawback with this approach is that it requires the solution of a quadratic program (QP) at
each time step. For larger models, this can be computationally expensive.

We chose to keep the imposition of additional assumptions on the modeled systems to a minimum
because the work is exploratory in nature. Therefore, we combine aspects of [37] with the single
secondary optimization approach. In our case, the secondary optimization seeks to ensure that the
derivative change of each modeled flux is minimized between each time step. The rationale for this
is that over small time steps the flux is unlikely to jump suddenly. Therefore, at each time step, the
following procedure is followed:
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1. The flux bounds, Equation (2), are updated. Typically, Michaelis–Menten kinetics are
assumed [39]. Since detailed expression for glucose and xylose uptake rates are not known
for all the organisms, we assumed, for comparative fairness,

vmin, glucose = max

(
vmax

Glc ,−G + Δt f produced
G

ΔtXmglucose

)
,

vmax, glucose = 0,

vmin, xylose = max

(
vmax

Xyl ,−Z + Δt f produced
Z

ΔtXmxylose

1
1 + G

0.005

)
,

vmax, xylose = 0,

(3)

where f produced
G , f produced

Z are the fluxes of glucose and xylose produced by the extracellular
enzymes, G, Z are the current concentrations of glucose and xylose, and mglucose, mxylose are
the respective molar masses. The glucose inhibition term ensures that glucose is preferentially
metabolized before xylose [32]. The maximum flux constants, vmax

Glc and vmax
Xyl , were taken from

literature and are supplied in Section 2.5. See the Supplement for motivation of the derivation of
Equation (3).

2. A linear program feasibility problem,

min
s1 ,s2

N

∑
i=1

s1,i + s2,i (where N is the number of fluxes),

s.t. Sv + s1 − s2 = b (where b is typically the zero vector in this context),

vmin ≤ v ≤ vmax,

0 ≤ s1,i, s2,i ∀i ∈ [1, . . . , N] ,

(4)

is solved to ensure that the genome-scale model is feasible for steps 3 and 4. This problem is
solved for the “relaxation variables” s1 and s2 (see [36] for justification).

3. A standard FBA linear program (LP) is solved to determine the optimal growth rate of the
organism given the constraints of step 1. This problem,

max
v

μ(v),

s.t. Sv + s1 − s2 = b,

vmin ≤ v ≤ vmax,

(5)

is solved for the unique optimal growth rate μ∗. Given μ∗ from Equation (5), it is possible to
solve for the organism biomass concentration by using dX

dt = μ∗X for at least one time step into
the future.

4. A secondary LP,

min
v

∑
i

γi for i ∈ M,

s.t. Sv + s1 − s2 = b,

vmin ≤ v ≤ vmax,

μ(v) = μ∗,

− γi ≤ 1 − vt−1,i

vt−1,i − vt−2,i
− vt,i

vt−1,i − vt−2,i
≤ γi for i ∈ M,

(6)
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is solved to ensure that the resultant fluxes used to integrate Equation (1) are sufficiently
smooth. Here, M is the index set of all modeled substrates and products. A full derivation
of Equation (6) is given in the Supplement. Briefly, the objective function asserts that

∑i

∣∣∣1 − dvi
dt t/

dvi
dt t−1

∣∣∣ ∀ i ∈ M is minimized, where the flux derivative at time t, dvi
dt t, is

approximated to first order.
5. Using an integration scheme of choice, e.g., backward Euler, the full dynamic profile of the system

may be iteratively simulated. If products are being generated at each time step, Equation (1)
needs to include those fluxes as well.

The primary benefit of Equation (6) is that there is only a single secondary LP imposed on the
system. From a computational point of view, this is very desirable compared to the other existing
algorithms that solve either a QP or multiple sequential LPs.

2.5. Simulation Parameters

All simulations restricted the oxygen flux into the system to zero. It was assumed that the gas
produced by the fungi is 90% carbon dioxide and 10% hydrogen on a mole basis. This is in line with
previous experimental observations. The maximum glucose and xylose uptake flux constraints, shown
in Equation (3), were taken from the papers introducing the models (see Table 1 for the references).
These are summarized in Table 2.

Table 2. Glucose and xylose maximum uptake rates.

Organism vGlc

[
mmol
gDWh

]
vXyl

[
mmol
gDWh

]
Clostridium ljungdahlii str. 13528 5 5

Escherichia coli str. K-12 substr. MG1655 10.5 6
Escherichia coli str. ZSC113 0 6

Lactococcus lactis subsp. cremoris MG1363 14.5 0
Methanosarcina barkeri str. Fusaro 0 0

Saccharomyces cerevisiae S288C 6.44 0

Note that M. barkeri does not consume glucose or xylose. Instead, it autotrophically metabolizes
hydrogen and carbon dioxide into methane. The maximum hydrogen uptake rate was set at
vH2 = 41.5

[
mmol
gDWh

]
, and the maximum carbon dioxide uptake rate was unbounded [25]. All products

P produced by the fungi, e.g., sugar and gas (in the form of pressure accumulation) were assumed to
follow the logistic function,

P(t) =
k1

1 + e−k2(t−k3)
, (7)

where the constants were fit to experimental data. Henry’s law was used to model the concentration of
dissolved gases (hydrogen, carbon dioxide and methane) in the liquid fraction given the gas pressure.
A backward Euler scheme was used to integrate Equation (1) with a time step of 0.1 h. The initial
conditions for all the substrates and products consumed and produced by the partner microbes were
assumed to be zero. The initial biomass concentration was assumed to be 1 mg/L.

3. Results and Discussion

Both experimental and computational data were gathered to evaluate the organisms listed in
Table 1 for their ability to form stable consortia with anaerobic gut fungi. Batch growth experiments
were used to model the rate of sugar release from the raw plant biomass during fungal digestion, as well
as the gas accumulation profile. This sheds light on the ability of the fungi to accommodate another
organism, likely through nutritional linkage of primary metabolites. Computational experiments were
then used to predict growth rates and waste generation of a model partner microbe, given the excess
fermentable products determined via the batch experiments.
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3.1. Anaerobic Fungi Release an Assortment of Products to Enable Consortia Formation

Figure 1 shows the experimentally observed sugar release and gas production profiles over time
of the three anaerobic fungi we investigated. It can be seen that A. robustus produced the highest
concentration of soluble sugars and the next to highest accumulated pressure. In accordance with
the variance between culture replicates, N. californiae displayed more erratic growth. This behavior is
uncharacteristic of the fungus when cultured in complex media. We speculate that the M2 defined
minimal media was a contributing factor to this phenomenon. Neocallimastix sp. S1 performed between
the other two fungi in terms of stability and sugar/gas production.

(a) (b)

(c)

Figure 1. Anaerobic gut fungi release excess sugars for microbial partnership during growth on
corn stover. The solid black line denotes the profile of the accumulated pressure. Other colors
represent distinct fermentable sugars generated during growth, as indicated. The vertical bars are
standard deviations of errors for each triplicate measurement. (a) N. californiae; (b) Neocallimastix sp. S1;
(c) A. robustus.

Based on these data, we selected A. robustus as the best candidate for consortia experiments that
combine anaerobic fungi with model microbes due to the more stable sugar and gas production rates.
Constants used to model substrate production rates for glucose, xylose and pressure accumulation
were fit to Equation (7) using A. robustus data, as shown in Table 3.
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Table 3. Glucose, xylose and gas production rate constants fit to Equation (7) for A. robustus.

Product k1 (g/L/h or psi/h) k2 (1/h) k3 (h)

Glucose 1.39 0.05 148.17
Xylose 0.53 0.05 150.41

Pressure 75.04 0.06 76.51

For completeness, we compare the measured gut fungal net specific growth rates found in M2
defined media, used here, with that of complex media (see Table 4). Predictably, the growth rates are
lower in minimal defined media. A. robustus consistently outperforms the other fungi when grown on
corn stover. The superior growth characteristics of A. robustus further motivate its selection as the gut
fungus to investigate in greater depth.

Table 4. Anaerobic gut fungi growth rates in defined media compared to rich media.

Organism Growth Rate in M2 (1/h) Growth rate in MC [15] (1/h)

N. californiae 0.029 0.046
A. robustus 0.033 0.065

Neocallimastix sp. S1 0.027 No data

3.2. Dynamic Simulations Predict Consortia Partner Feasibility

By making use of the dFBA algorithm introduced in Section 2.4, and using the experimental
data of A. robustus to fit Equation (7) for both glucose and xylose separately, we can simulate the
growth of the co-cultured partner organisms listed in Table 1 dynamically. We chose to focus only
on glucose and xylose utilization at this stage of modeling because more is known about the relative
preference of each sugar in microbial metabolism [40]. The two classes, fermentable sugar consuming
heterotrophs, and hydrogen/carbon dioxide consuming autotrophs, of possible consortia partners
were treated separately.

3.2.1. Heterotroph Partnership with Anaerobic Fungi

As suggested by Equation (3), we assumed, for simplicity, that only glucose and xylose are capable
of being fermented by each organism under analysis. Furthermore, we assumed that glucose would
be consumed preferentially to xylose whenever possible. Figure 2 illustrates the output of the dFBA
algorithm when pairing the anaerobic bacterium C. ljungdahlii with the gut fungus A. robustus. Similar
results are available for the other organisms of Table 1 in the Supplement.

C. ljungdahlii can metabolize both glucose and xylose; this is reflected in the sequential utilization
of the substrates in the simulated time course. To determine the effective average growth rate, we fit
dX
dt = eμt to the simulated biomass output. The fit indicated that μ ≈ 0.08 1/h. The growth rate is the

primary criterion we used to determine suitability for consortia with the gut fungi. We hypothesized
that an optimal pairing would occur if the growth rates of the organisms are similar. This would reduce
the risk of them out-competing each other. Inter-cellular communication, another pivotal component
of consortia, is neglected at this stage of analysis, as it requires detailed experimental data to model.

Each modeled organism is also capable of producing metabolic by-products, e.g., ethanol, acetate
and formate, that are known to inhibit microbial growth. We also recorded the final concentration of
each compound as a secondary criteria to ascertain compatibility with the fungi. The summarized
characteristics of each organism, simulated to pair with A. robustus, are shown in Table 5.
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Figure 2. Dynamic simulation of C. ljungdahlii shows that it consumes all the excess sugars released by
A. robustus. The vertical red line indicates the point where both sugars were depleted. Even though the
fungal enzymes continuously release sugars, the rate at which they release them is exactly equal to
the consumption rate beyond the vertical red line. Simulation artifacts cause the growth to continue
linearly beyond this point. All the simulations assume an inoculation time at 72 h into the experiment.
This allows the slower-growing gut fungi to establish themselves and produce fermentable products
prior to the start of the co-culture.

Table 5. Growth rate and end point metabolic by-product concentrations produced by each partner
microbe assuming inoculation after 72 h of fungal growth. The end point concentrations are taken
when the fermentable substrates were depleted for each organism.

Organism Growth Rate (1/h) Ethanol (g/L) Acetate (g/L) Formate (g/L)

C. ljungdahlii 0.08 0 0.35 0
E. coli MG1655 0.17 0.02 0.02 0.03
E. coli ZSC113 0.04 0.01 0.02 0.03

L. lactis 0.04 0.13 0.32 0.51
S. cerevisiae 0.12 0.02 0 0

The models predicted that both S. cerevisiae and E. coli MG1655 have a significantly higher
growth rate than A. robustus. This suggests that maintaining population stability could be difficult
for these co-cultures if paired with anaerobic fungi [41]. While L. lactis has a comparable growth
rate to A. robustus, it is unable to metabolize xylose; therefore, it would directly compete for glucose.
Additionally, L. lactis produces a wide spectrum of metabolic by-products (ethanol, acetate and formate)
at relatively high concentrations; this lessens its attractiveness as a consortia partner. The glucose
deficient E. coli strain ZSC113 also has a comparable growth rate but produces less metabolic waste
products. Additionally, it is genetically amenable to engineering [42]—this suggests that it could be
a favorable organism for consortia formation. Finally, C. ljungdahlii is also a competitive choice for
consortia. While its growth rate is higher than A. robustus, it is not in the range of S. cerevisiae and
E. coli MG1655. C. ljungdahlii can ferment a wide range of sugars as well as autotrophically consume
hydrogen (not modeled); this suggests that the organism can take full advantage of the fungal products.
Recently, genetic engineering tools have become available for C. ljungdahlii, further increasing its
viability as a consortia partner.
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3.2.2. Autotroph Partnership with Anaerobic Fungi

While the organisms shown in Section 3.2.1 utilized the fermentable sugars released by the
gut fungal enzymes as their carbon source (or preferred carbon source in the case of C. ljungdahlii),
M. barkeri, a methanogen, metabolizes carbon dioxide and hydrogen. It is well known that methanogens
are natural consortia partners of gut fungi due to their symbiotic relationship [43]. Methanogens
consume the hydrogen gas, a likely growth inhibitor, produced by an intracellular organelle of the
fungi called the hydrogenosome [44]. Furthermore, it has been shown that methanogens co-cultured
with gut fungi significantly increase their cellulolytic efficiency [45].

Figure 3 illustrates the simulated growth profile of M. barkeri. Negligible quantities of ethanol,
acetate and formate are produced, while hydrogen is almost completely consumed. The effective
growth rate is 0.03 1/h. Since the gas produced by the fungi drive their growth, it is not surprising
that their growth rates are similar.

Figure 3. Computationally predicted growth profile of M. barkeri biomass accumulation over time
shows a strong dependence on the fungal metabolic by-products. Hydrogen and carbon dioxide,
produced by the fungi, are consumed by the methanogen. Simultaneous inoculation is assumed
because the microbes do not compete for their preferred carbon source. All gas concentrations are
in mmol/L.

M. barkeri is also an attractive candidate for synthetic gut fungal consortia due to the mutualism
exhibited by the pairing of fungi and methanogens in nature [46]. The recent development of genetic
technology to manipulate Methanosarcina suggests that the pairing is also feasible for bioproduction [47].
Finally, given the low levels of by-products generated by M. barkeri, it is plausible to consider
tri-cultures of A. robustus, M. barkeri and another microbe, like C. ljungdahlii. Such a system would
be, theoretically, minimally negatively interactive due to the reduced substrate competition. This is a
desirable property for community stability.

The benefit of using the dFBA, to screen for consortia partners, is that it is readily generalizable to
higher order systems. Known interactions can easily be accounted for, and quantitative predictions of
by-product generation can be used to evaluate partner suitability (cf. qualitative literature surveys).
The simulation approach is particularly useful for non-model organisms, like anaerobic fungi, because
growth rate predictions in their unique culture conditions are not often readily available.

Experimental validation of these predictions will take the form of community composition
tracking and by-product generation monitoring. The latter technique is particularly applicable to
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the anaerobic fungi because it is one of the few non-invasive methods that can be used to measure
growth in gut fungal systems [19]. For example, in the case of the A. robustus and M. barkeri pairing,
the methane, carbon dioxide and hydrogen production over time, compared to the mono-cultures, will
indicate the success of the co-culture. Similar indirect measurements could be used to validate the
other predictions. However, these detailed experiments are beyond the scope of the current work.

4. Conclusions

To assess the suitability of each organism in Table 1 to form stable microbial consortia with
anaerobic fungi, the identities and contributions of both the gut fungus and partner microbe need to be
justified. In this work, experiments were used to select an anaerobic fungus and simulations, making
the least number of assumptions, were used to screen possible consortia partners.

The experimental results of Section 3.1 indicate that A. robustus is a more desirable building block
for consortia (or even mono-cultures) compared to other strains tested here—both in terms of higher
growth rates on corn stover (see Table 4) as well as enzyme effectiveness at releasing fermentable
sugars (see Figure 1). Barring the generation of unknown inhibitory agents, it should be prioritized for
further experimentation.

M. barkeri, a methanogen, is a natural consortia partner for gut fungi [45]. This is clear from the
similar growth rates to A. robustus and consumption of hydrogen, a known inhibitor of fungal growth.
Additionally, it produces minimal by-products that could retard fungal growth. C. ljungdahlii and
E. coli ZSC113 are also potentially suitable consortia partners. On the other hand, L. lactis, S. cerevisiae
and E. coli MG1655 were all ruled out due to their by-product generation or significantly higher growth
rates. We introduced a novel dFBA algorithm that is computationally efficient and that does not impose
many extra assumptions on the system. Making use of computational tools, such as this, to reduce the
number of costly and time-consuming experiments is a boon to developing and designing scalable
synthetic biosystems [48].

Moreover, building predictive models of consortia systems can be critical to fully leveraging the
inherent capabilities of micro-organisms as it allows engineers additional insight into the mechanics of
these complex systems [49]. Fully unlocking the inherent capabilities of non-model organisms, like
anaerobic gut fungi, will require novel tools to inexpensively generate and test hypotheses. Current
consortia analysis techniques typically assume that the identities of the partner microbes are known
and that they are modeled. This work provides a framework that can be used to rationally select the
them even if some of the microbes are not modeled.

Supplementary Materials: The Supplement is available online at www.mdpi.com/2227-9717/6/1/7/s1.
The Supplement contains additional derivations used in the formulation of our dFBA algorithm as well as
additional simulation results of the other organisms listed in Table 1.
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Abstract: Biofilms are spatially-structured communities of different microbes, which have a
huge impact on both ecosystems and human life. Mathematical models are powerful tools for
understanding the function and evolution of biofilms as diverse communities. In this article, we give
a review of some recently-developed models focusing on the interactions of different species within a
biofilm, the evolution of biofilm due to genetic and environmental causes and factors that affect the
structure of a biofilm.

Keywords: biofilm; mathematical modeling; gene; community

1. Introduction

Despite the common view of microbes in their free state, pure culture planktonic growth is rarely
how microbes exist in nature. Instead, most microbial species in nature live in the form of biofilms,
which are described as a multicellular consortium of microbial cells that are attached to a surface and
encased in a self-secreted, extracellular polymeric matrix [1,2]. Biofilms are usually heterogeneous in
both their spatial structures and component species and interact with the surrounding environment in
a complicated way.

Microbial biofilms are ubiquitous in both natural and industrial settings, and bacteria living in a
biofilm often behave very differently from their planktonic counterpart. Bacteria inside a biofilm are
usually more resistant to antimicrobial agents [3] and usually possess big competitive advantage over
bacteria growing in suspension. This means that it is often difficult to remove biofilms efficiently.

Biofilms can cause many severe problems, such as chronic infections, food contamination and
equipment damage due to bio-fouling. Biofilms can also be used for good and constructive purposes,
such as waste water treatment, heavy metal removal from hazardous waste sites, biofuel production
and microbial fuel cells. From a neutral point of view, since much of the microbial biomass appears
in the form of biofilm and due to their ability to produce and consume organic materials, the biofilm
communities also have a big impact on the global ecosystem and geochemical system.

In order to promote good biofilms and prevent bad biofilms, it is important to understand
the mechanisms for biofilm formation, growth and its removal. The development of a biofilm is a
complicated process affected by many biological, physical and chemical factors, and understanding it
requires both experimental and modeling efforts. Experiments provide directly-measured qualitative
or quantitative data of biofilm properties that are of interest, such as cell counts, cell viability, biofilm
morphology and EPS structure, nutrient profile, as well as genetic information. A mathematical model
translates the conceptual understanding of the biofilm system into mathematical terms, usually by
combining the important processes involved, but omitting the less important ones, and the solutions
(either analytical or numerical) are obtained by using available mathematical or statistical tools. Since a
model can connect different processes and assess their relative importance, modeling results can help
us to understand the biofilm system, facilitate experimental design and make predictions that can be
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tested by experiments. In this sense, progresses made in experimental and modeling research always
promote the development of each other.

Mathematical modeling of biofilm started in the 1970s with models studying substrate utilization
and mass transport in a homogeneous slab of biofilm [4,5]. In the 1980s, models including multispecies
and the non-uniform distribution of different biomass types started to emerge [6,7], but they were
still primarily for one space dimension and steady-state growth dynamics. Starting in the 1990s
and up to today, aided by the fast advancement in computing power and better understanding of
biofilms through experimental data, multidimensional, multispecies, multisubstrate models are being
developed to incorporate realistic biofilm morphology, biofilm mechanics, interactions between biofilm
and the environment and interactions between different species within a biofilm, as well as various
time scales involved in biofilm-related processes [8–12].

There is a rich literature on the review of mathematical models for biofilms. A few representative
ones are listed below.

The IWAtask group gives an excellent review of mathematical modeling of biofilms [13]. The book
explains the basic steps in creating a mathematical model, emphasizes that the “golden rule” of
modeling is that “a model should be as simple as possible, and only as complex as needed” and presents
the model derivation based on mass conservation in detail. Models are classified into analytical models
(A), Pseudo-Analytic models (PA), Numerical one-dimensional (N1) and multi-dimensional Numerical
models (N2 and N3). The features, definitions and equations, as well as the application of each type
of model are discussed. The performances of all models for solving three characteristic benchmark
problems are compared, which help identify the trade-offs inherent to using different types of models.
The book also points out the significance of the definitions and units of model parameters.

Klapper and Dockery [14] discuss how macroscale physical factors might influence the
composition, structure and function of ecosystems within microbial communities from the modeling
perspective and emphasizes that despite its difficulty and complexity, it is important to include the
physical, chemical and biological processes at a variety of time and length scales in the model to fully
understand the physiology and ecology of the microbial communities. Specific modeling aspects
discussed include quorum sensing, growth, mechanics and antimicrobial tolerance mechanisms.

Wang and Zhang [15] give a chronological review of some biofilm models developed from the
1980s to the early 2000s. Based on their dimensionality, the way in which diffusion is treated and the
complexity in terms of the incorporation of the physics, chemistry and biological effects, models are
classified into four main categories: one-dimensional continuum models, diffusion-limited aggregate
models, continuum-discrete diffusion models and biofilm-fluid coupled models.

In recent years, fast advancement in experimental technologies, such as microscopy and
high-throughput sequencing, has provided an abundance of data at both the genetic and community
level and helped researchers to understand biofilms much better. In particular, it is a common belief
that biofilms should be viewed as spatially-structured communities of microbes, and the structure
and function of the communities are determined by both the surrounding environment and the
local interactions between different species within biofilms via complex metabolic networks [16–20].
To understand biofilms as a diverse community and the evolution of different species and its genetic
causes, mathematical modeling again serves as a powerful tool. Experimental data with a high level
of detail provide both opportunities and challenges for researchers working on biofilm modeling.
On the one hand, there are more data available to improve conceptual understanding of biofilm and
to compare with model predictions; on the other hand, more sophisticated models are demanded
in order to accommodate the data. Song et al. [21] give a methodological review on mathematical
modeling of microbial community dynamics. Widder et al. [22] address the challenges in building
predictive models for understanding the function and dynamics of Microbial Communities (MCs).
Several specific examples where model-experiment integration has already resulted in important
insights into MC function and structure are discussed. These include inferring species interactions
from proximal data, predicting species interactions using stoichiometric models and kinetic models for
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community dynamics. The conclusion is that addressing this challenge requires close coordination of
experimental data collection and method development with mathematical model building.

In this article, we review some recent mathematical models that focus on studying biofilms as a
diverse community. The rest of the article is organized as follows. Section 2 discusses the genetic basis
for biofilm development based on experimental results and its mathematical modeling with emphasis
on the models based on the idea of Quorum Sensing (QS); Section 3 discusses models based on Flux
Balance Analysis (FBA) and stoichiometry; Section 4 discusses models based on statistical inference;
Section 5 discusses models with novel growth kinetics and the ability to resolve the complex spatial
structure of biofilm. Table 1 gives a brief overview of the models discussed in the article.

Table 1. Summary of biofilm models discussed in the article. QS, Quorum Sensing; FBA, Flux Balance
Analysis; IbM, Individual-based Model.

Model Category Specific Models/Mathematical Tools Biofilm Aspects Modeled

gene-centric model biofilm structure, genetic composition
Genetic modeling trait-based model species interaction, ecosystem diversity

QS model species interaction, biofilm structure

FBA model constraint species interaction,
optimization problem biofilm structure

Statistical inference model similarity-based method, species interaction,
regression-based method community stability

biofilm structure,
Kinetic growth model IbM continuum model interaction with environment,

mechanical property

2. Modeling the Genetic Basis of Biofilm Development

Costerton et al. [3] pointed out that biofilms consist of microcolonies on a surface and that
within these microcolonies, the bacteria have developed into organized communities with functional
heterogeneity. Clinical characteristics of biofilm infections are discussed, and multiple mechanisms
of biofilm resistance to antimicrobial agents are proposed. Furthermore, P. aeruginosa and the
chronic lung infections it causes in most patients afflicted with the recessive genetic disease Cystic
Fibrosis (CF) are used as a model to reveal information about the molecular and genetic basis
of biofilm development. There is evidence [23,24] showing that during the attachment phase of
biofilm development, the transcription of specific genes (such as the genes required for the synthesis
of the extracellular polysaccharide) is activated. Research on quorum sensing in Gram-negative
bacteria [25,26] has shown that acyl homoserine lactone signals are produced by individual bacterial
cells. At a critical cell density, these signals can accumulate and trigger the expression of specific
sets of genes. Detachment and dispersal of planktonic cells from biofilms could also have a genetic
basis. It has been suggested that increased expression of the alginate lyase in the mucoid strain of
P. aeruginosa led to alginate degradation and increased cell detachment [27,28]. Antibiotic therapy
in patients colonized with P. aeruginosa often gives a measure of relief from symptoms, but fails to
cure the basic ongoing infection [29,30]. One interpretation of this is that the antibiotics act on the
planktonic cells that are shed by the biofilms, but cannot eliminate the antibiotic-resistant sessile biofilm
communities, and the microcolonies of sessile bacteria in the lung act as niduses for the spread of the
infection [31,32]. The conclusion from [3] is that the effective control of biofilm infections will require
a concerted effort to develop therapeutic agents that target the biofilm phenotype and community
signaling-based agents that prevent the formation, or promote the detachment, of biofilms.

Monds and O’Toole [33] give a critical review of the causal basis of biofilm formation and its
molecular underpinnings. It discusses the concept of biofilm formation as a developmental process
by evaluating experimental data and concludes that the developmental model of biofilm formation
must be approached as a model in need of further validation, rather than coveted as a robust platform
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on which to base scientific inference. Here, the definition of developmental process is a “series of
stable and meta-stable changes in the form and function of a cell, where those changes are part of the
normal life cycle of the cell” according to [34]. Furthermore, the molecular requirement implicit in
a developmental process is that a series of hierarchically-ordered genetic elements control temporal
transition through the developmental pathway in response to specific cues. The review starts with
the origin of the developmental model of biofilm formation as an analogy with Myxococcus xanthus
fruiting-body formation [35], then provides some unequivocal support for the developmental model,
including both structural transitions occurring during biofilm formation [36] and various phenotypes
with biofilm-specific properties, such as increased antibiotic tolerance [37]. After that, two specific case
studies are presented as evidence that bacteria have evolved genetic pathways that serve to directly
link environmental cues to the regulation of stage-specific transitions in biofilm formation. One case
is that low extracellular phosphate blocks microcolony formation by Pseudomonas fluorescens [38,39];
the other case is intracellular iron as a signal for biofilm maturation [40,41]. However, there is still
lack of success in uncovering comprehensive genetic programs specific for the regulation of biofilm
development [42,43]. Moreover, the development model also requires that groups of biofilm pathways
are connected in a hierarchically-ordered genetic network, and there are causal links between form and
function. Folkesson et al. [44] provide valuable evidence in this direction by showing that Escherichia coli
biofilms formed by F-plasmid-containing cells were more structured and had increased tolerance
to colistin relative to cells without the F-plasmids, but it is still not possible to say that pathways
controlling the structural development of an E. coli biofilm are directly coupled with pathways for
the formation of a subpopulation of cells with increased tolerance to colistin. Next, two examples
are used to demonstrate biofilms as multicellular organisms with functional differentiation and
alternative cell fates. The first one by Klausen et al. [45] investigated differential roles for motile
and non-motile subpopulations in determining the topology (mushroom-like or flat) of P. aeruginosa
biofilms. Burrows [46] gave a thorough review on the twitching motility of P. aeruginosa through
Type IV pili (T4P) structure and function. The second one [47] examined the spatiotemporal patterns
of cell-specific gene expression in B. subtilis biofilms and indicated that different cell types vary in
abundance and location in the biofilm over time. Finally, an alternative experimental model for biofilm
formation based on the ecological adaptation of individuals was proposed by Klausen et al. [48]. In this
experiment, deterministic responses are integrated with stochastic interactions with the environment
to shape biofilm form and function, where biofilm evolution has been driven by the selection for
individual competitiveness in complex and dynamic environments.

Many models have been proposed to describe the genetic processes that regulate biofilm
development, and a few representative ones are discussed below.

Reed et al. [49] proposed the gene-centric approach for integrating environmental genomics and
biogeochemical models. In this model, the production rate or j-th gene is given by:

Rj = Γj · FT · μj · Πs

(
Cs

Ks + Cs

)
· Πx

(
Kx

Kx + Cx

)
, (1)

where Γj is gene abundance (genes per unit volume), FT is the thermodynamic potential factor
accounting for the chemical energy available to drive the metabolism, μj is the specific growth rate,
Cs is the concentration of a reactant or nutrient s, Ks is the half-saturation constant of the reactant or
nutrient s, Cx is the concentration of inhibitor x and Kx is the half-saturation constant of inhibitor x.
Furthermore, metabolic plasticity, whereby growth via one metabolism can lead to the propagation of
functional genes associated with other metabolisms, is incorporated into the model by introducing the
following governing equation for the gene abundance:

214



Processes 2017, 5, 5

dΓi
dt

= Σj

(
ni
nj

· σij · Rj

)
− λ · Γi, (2)

where ni is the number of the i-th gene per unit mass of cells that contains this gene, σij is a probabilistic
measure of the co-occurrence of genes i and j within a genome and λ is the mortality rate constant
of a gene. Equations (1)–(2) describing the microbial community are coupled to chemical dynamics
by usual reaction equations. There are several advantages of this model: most of its parameters are
either directly measurable (μj, Ks) or easily obtained by calculation (FT); numerical solutions from
the model give gene abundances and chemical concentrations that allow direct comparisons between
model predictions and experimental results; and the metabolic plasticity could be important for
understanding the complex microbial community dynamics. Zhang et al. [50] developed a theory for
the analysis and prediction of the spatial and temporal patterns of gene and protein expression within
microbial biofilms based on similar ideas. The theory integrates the phenomena of solute reaction
and diffusion, microbial growth, mRNA or protein synthesis, biomass advection and gene transcript
or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous
spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of
planktonic cells.

Genetic changes via horizontal gene transfer often make taxonomic distinction among species
obscure; thus, sometimes, it is convenient to characterize the dynamics of microbial communities
by different traits. Trait-based models were developed based on this idea and applied for analyzing
the diversity of ecosystems. Shipley et al. [51] developed the maximum entropy (MaxEnt) model,
and Laughlin et al. [52] developed the the Traitspace model; both have been applied to predict the
relative abundance of species for plant communities. Both approaches are based on statistical methods
and are composed of three key elements: an underlying trait distribution, a performance filter defining
the fitness of traits in different environments and a projection of the performance filter along some
environmental gradient. The objective of the modeling is to estimate the relative abundance of the
some species in a given environment by incorporating information about individual-level functional
traits. The MaxEnt model tends to overestimate the relative abundance of species since it maximizes
the evenness of their distribution. On the other hand, the Traitspace model tends to underestimate
the relative abundance of species since it is based on Bayesian theory and predicts a low probability
of abundances for functional groups that do not pass through environmental filters. Though the
trait-based models have not be widely adopted for modeling of the biofilm yet, it is certainly promising
to apply the methodology to study biofilm as a microbial community. For example, Lennon et al. [53]
have found that certain traits are related to the biofilm-producing capability of strains and identified
functional groups of microorganisms that will help predict the structure and functioning of microbial
communities under contrasting soil moisture regimes. Furthermore, current biofilm models can
provide accurate predictions of the environmental gradients inside the biofilm, which can be used as
the input of the trait-based models.

Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population
density [54–56]. Quorum sensing bacteria produce and release chemical signal molecules called
autoinducers, and the concentrations of autoinducers increase as the cell density increases. Once the
concentration of an autoinducer reaches a threshold, an alteration in gene expression is triggered.
Recent research on many different bacterial species has shown that quorum sensing systems play an
important role in regulating the expression of genes involved in biofilm formation, biofilm maturation,
biofilm dispersal and detachment [57–59]. Naturally, modeling of QS is an important part of the
general effort in modeling the genetic processes involved in biofilm development. Ward [60] gives a
good review of early mathematical modeling of QS.

The modeling of QS starts with a circuit describing the gene regulation involved in the QS
system, which is usually given by a schematic diagram showing all of the genes, autoinducers
and the corresponding positive and negative interactions. For example, the las and rhl systems in
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P. aeruginosa [61] are extensively studied. James et al. [62] and Dockery and Keener [63] pioneered the
work on modeling QS at the molecular level. These early QS models use a system of coupled Ordinary
Differential Equations (ODEs) to describe the dynamics of the intracellular concentrations of genes
(or proteins), autoinducers and substrates, where the reaction kinetics are carefully designed to reflect
the interactions within the QS system. Due to their simple forms, these models can be investigated
by both numerical and analytical tools, and results suggest that QS works as a biochemical switch
between two stable steady states of the system, one with low levels of autoinducer and one with high
levels of autoinducer.

The signal production in QS in biofilm can be affected by many physical, chemical and biological
factors [64]. Examples include diffusion of nutrients and QS molecules inside the biofilm and
mass transfer affected by the hydrodynamics of the bulk fluid and biofilm structure. For example,
Kirisits et al. [65] studied the influence of the hydrodynamic environment on QS in a P. aeruginosa
biofilm and concluded that the amount of biofilm biomass required for full QS induction of the
population increases as the flow rate increases.

These more advanced QS models use either the continuum approach with Partial Differential
Equations (PDEs) or the individual-based approach, both capable of capturing the spatial structure of
the biofilm and its interaction with the surrounding environment, to study the effect of QS on either
the biofilm structure or interactions among species within a biofilm. A continuum model involving QS
will be discussed in Section 5, and here, we describe the work of Nadell et al. [66], which implemented
detailed simulations using individual-based modeling methods [67–69] to investigate evolutionary
competitions between strains that differ in their polymer production and quorum-sensing phenotypes.
It is known that EPS secretion in the process of biofilm formation is under quorum-sensing control
in a number of bacterial model systems in very different ways. For example, P. aeruginosa activates
EPS production at high cell density [70]. In contrast, V. cholerae initiates EPS secretion after attaching
to a surface and losing flagellar activity, but halts EPS secretion once it reaches its high cell density
quorum-sensing threshold [71]. The model presented in [66] focuses on three strains with the following
behavior: (1) no polymer secretion and no quorum sensing (EPS−); (2) constitutive polymer secretion
and no quorum sensing (EPS+); and (3) polymer secretion under negative quorum-sensing control,
such that EPS secretion stops at high cell density (QS+). Cells consume substrate according to their
strain-specific metabolism kinetics and produce additional biomass; all cells secrete an autoinducer
without cost and at a constant rate, and QS+ cells synthesize EPS only when the local autoinducer
concentration is below the quorum-sensing threshold concentration, which is represented by a single
dimensionless parameter. Results from Nadell et al. [66] suggest that QS+ cells have a competitive
advantage over EPS+, but only for a limited time window. In contrast, QS+ cells suffer an initial
disadvantage due to a lower growth rate when competing with EPS− cells, then rapidly ascend
to a majority in the biofilm and remain there indefinitely. In addition, the QS+ strain can invade
populations composed mostly of either EPS+ or EPS− cells, but not vice versa. The importance of the
work in [66] is that it provides an evolutionary model that can be used to make predictions on the
evolution of specific biological outcomes based on the biological constraints, and these predictions can
be tested by experiments. In particular, it predicts that pathogenic strains, such as V. cholerae, selected
for rapid colonization of, and efficient dispersal from, human hosts or other temporary environments,
will exhibit negative quorum-sensing-regulated EPS production. In contrast, upregulation of EPS
secretion at high cell density, which focuses resource investment into sustained local competitive ability,
is more likely to be favored for organisms occupying specific niches long term, such as P. aeruginosa in
chronic infections.

Mathematical tools used for modeling genetic processes related to biofilm include differential
equations, statistical methods and individual-based approaches. These models usually enjoy success,
but face challenges at the same time. For example, it is challenging to apply the gene-centric model
to complex ecological systems since it is not easy to obtain associations between functional genes
and reactions. Among many models for studying QS in biofilm systems, most of them focus on
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upregulation and downregulation of certain genes, and only a few emphasize the effect of QS on
biofilm structure, function and its interaction with the environment, which leaves much room for
model improvement.

3. Models Based on Flux Balance Analysis and Stoichiometry

Interactions of different species within a biofilm are closely related to the substrate consumption
and metabolite exchange, and mathematical models based on FBA are excellent tools for predicting
these interactions.

Early work in this direction involves the synthesis of metabolic pathways. Seressiotis and
Bailey [72] developed a computer software system for metabolic pathway synthesis, which can be used
to identify biochemical pathways, to predict on a qualitative basis the effects of adding or deleting
enzymatic activities to or from the cellular environment, to classify pathways with respect to cellular
objectives and to extract information about metabolic regulation. Mavrovouniotis et al. [73] extended
the work in [72] by including stoichiometric constraints. Schilling et al. [74] gave a review on the
development of computer-aided algorithms for the synthesis of metabolic pathways and explained the
important algebraic concepts used in pathway analysis, such as null space and convex cone.

Orth et al. [75] covered the theoretical basis of FBA and provide several practical examples
and a software toolbox for performing the calculations. Figure 1 from [75] explains the conceptual
basis of FBA as a constraint optimization problem. In FBA, metabolic reactions are represented as
a stoichiometric matrix (S) of size m × n. Each row of S represents one unique compound (for a
system with m compounds), and each column represents one reaction (n reactions). The entry Sij of
S is the stoichiometric coefficient denoting the number of moles of the i-th compound formed in the
j-th reaction. The coefficient is positive if the metabolite is produced, negative if the metabolite is
consumed and zero if the metabolite does not participate in a particular reaction. The flux through
all of the reactions in a network is represented by the vector v of length n, and the concentrations of
all metabolites are represented by the vector x of length m. The system of mass balance equations at
steady state (dx/dt = 0) gives a set of equality constraints Sv = 0. Each reaction also has upper
and lower bounds, which gives a set of inequality constraints on the flux components, namely
ai < vi < bi, 1 ≤ i ≤ n. FBA seeks to maximize or minimize an objective function Z = cTv, which
can be any linear combination of fluxes, where c is a vector of weights indicating how much each
reaction (such as the biomass reaction when simulating maximum growth) contributes to the objective
function. The constraint optimization problem is usually solved by linear programming. It is important
to note that the stoichiometric matrix S can be directly constructed from knowledge of an organism’s
metabolic genotype, which in turn can be efficiently determined from the results of genome annotation.

Figure 1. The conceptual basis of FBA as constraint-based modeling. Reprinted from [75] with
permission from Nature Publishing Group.
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Models based on FBA are used to study the role of interspecies exchange of metabolites in
determining the spatiotemporal dynamics of microbial communities. Harcombe et al. [76] developed
a model that integrates dynamic Flux Balance Analysis (dFBA) [77] with diffusion on a lattice and
applied it to engineered communities. Simulations from the model predict the species ratio to which a
two-species (E. coli/S. enterica) mutualistic consortium converges, the equilibrium composition of an
engineered three-member (E. coli/S. enterica/M. extorquens AM1) community and the beneficial effect of
a competitor in spatially-structured mutualism. All predictions are confirmed by experimental results.
The strength of the model is highlighted by the fact that it requires very few free parameters and no a
priori assumptions on whether or how species would interact.

Phalak et al. [78] developed a model to investigate the multispecies metabolism of a biofilm
consortium comprised of two common chronic wound isolates: the aerobe P. aeruginosa and the
facultative anaerobe S. aureus. The model combines genome-scale metabolic reconstructions for growth
rates via FBA and partial differential equations for metabolite diffusion and provides both temporal
and spatial predictions with genome-scale resolution. In particular, the two-species system was
predicted to support a maximum biofilm thickness much greater than P. aeruginosa alone, but slightly
less than S. aureus alone, suggesting an antagonistic metabolic effect of P. aeruginosa on S. aureus.

Sigurdsson et al. [79] used a systems biology approach to identify candidate drug targets for
biofilm-associated P. aeruginosa. This study employed the published reconstruction of P. aeruginosa
iMO1056 [80] and used FBA to simulate different medium and oxygen conditions. The effect of
single and double gene deletion on bacterial growth in planktonic and biofilm-like environmental
conditions was investigated. Condition-dependent genes were found that could be used to slow
growth specifically in biofilm-associated P. aeruginosa. In particular, eight gene pairs were found to
be synthetically lethal in oxygen-limited environments, and these gene sets may serve as metabolic
drug targets to combat biofilm-associated P. aeruginosa. Results from [79] show that FBA can be used
to determine key metabolic differences between planktonic and biofilm colonies and shed light on
searching for novel drug targets.

The application of models based on FBA in studying biofilm as a microbial community is very
promising, but also challenging. In particular, efficient and standardized methods are necessary for
generating reliable stoichiometric models when a large number of species is involved. Furthermore,
it is important to develop mathematical tools that can effectively incorporate omics-based metabolic
pathway information into kinetic functions, which can be used directly in kinetic growth models.
The cybernetic approach developed by Song et al. sheds some light on future research in this direction,
and a review of this approach is given by [81].

4. Models Based on Statistical Inference

Species within a biofilm rarely live in isolation; instead, they often coexist and have complex
interactions that affect the community structure and function [82–84]. The types of interactions
include win-win (mutualism), win-zero (commensalism), win-lose (predation , parasitism), zero-lose
(amensalism) and lose-lose (competition). Community-wide information on microbial interactions
can be obtained using statistical inference based on correlations between taxon abundances from
high-throughput sequence data [85,86].

Faust and Raes [87] reviewed strategies to construct community models from abundance
data and use the models to predict the outcome of community alterations and the effects of
perturbations. The prediction of microbial association networks from abundance data is known
as the network inference problem [88]. The network inference methods can be classified into two
categories: the similarity-based methods, which predict pairwise relationships, and the regression- and
rule-based methods, which predict complex relationships. Figure 2 from [87] explains the principle
of similarity- and regression-based network inference. Network inference starts from an incidence
or an abundance matrix. Pairwise scores between two taxa are then computed using a suitable
similarity or distance measure, and relationships involving more than two taxa are detected by either
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multiple regression or association rule mining [89]. Then, a random score distribution is generated by
repeating the scoring step, and the P-value is computed to measure the significance of the predicted
relationship. Finally, taxon pairs with P-values below a given threshold are visualized as a network.
Inferred networks can be considered as static models of microbial communities, which describes the
community status at a particular time. However, time series data obtained by network inference
methods can provide important input (such as growth rates or interaction strengths) for dynamic
models of microbial interactions; see [90] for modeling of cheese fermentation community interactions
with generalized Lotka–Volterra equations. Network inference has several strengths. It is generic;
it can integrate different data types; and it can identify community properties that are encoded
in the network structure. However, network inference also suffers from several pitfalls, such as
normalization, similarity measure biases, the choice of appropriate null models and multiple testing
issues. Despite these pitfalls, network inference is a versatile tool for studying microbial interactions,
can be used to build dynamic models that can predict community stability, alternative stable states
and microbial succession and ultimately shed light on the manipulation of microbial communities to
enhance the abundances of beneficial species and to suppress harmful ones.

Figure 2. Principle of similarity- and regression-based network inference. Reprinted from [87] with
permission from Nature Publishing Group.

Faust et al. [91] applied an ensemble method based on multiple similarity measures [92] in
combination with Generalized Boosted Linear Models (GBLMs) [93] to taxonomic marker (16S rRNA
gene) profiles of the Human Microbiome Project (HMP) cohort [94], resulting in a global network of
3005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout
the human microbiome. Analysis of the network revealed strong organization of the human microbiota
into body area niches, mostly among closely-related individual body sites representing microbial
habitats. For example, Fusobacterium species can bridge organisms in the development and maturation
of oral biofilms by co-aggregation through physical contact, allowing a more complex use of resources,
such as sugars and proteins. The approach in [91] provides a starting point for future mechanistic
studies of the microbial ecology of the human microbiome.

Widder et al. [95] investigated the effect of features inherent to fluvial networks on the structure
and function of biofilm communities in these ecosystems by combining co-occurrence analyses of
biofilms based on pyrosequencing profiling and a probabilistic hydrological model. Co-occurrence
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networks were constructed using 454 pyrosequencing data of the 16S rRNA gene from benthic biofilms
from 114 streams of the pre-alpine Ybbs catchment. Results suggested that hydrological disturbance
and metacommunity dynamics affect the co-occurrence patterns of benthic biofilm communities in
fluvial networks. In particular, the removal of gatekeepers disproportionately contributed to network
fragmentation. This study provides a linkage between the biofilm communities and flow dynamics
across fluvial networks, which are important for understanding the whole ecosystem processes.

Although network inference methods can uncover previously-unknown interactions, they still
require validation by experimental data, which could be challenging. Some of these interactions could
be indirect, such as bacteria modifying their environments via the secretion of metabolically-costly
proteins and metabolites [96]. Since these indirect interactions usually happen on larger spatial scales
than direct interactions, it is very important to develop non-invasive spatially-resolved experimental
techniques to collect structure and population data.

5. Kinetic Growth Models and Spatial Heterogeneity

Kinetic models predict growth rates of different species within a biofilm based on the
concentrations of growth-limiting nutrients and species-dependent parameters, such as maximum
growth rate. Probably the most widely-used kinetic model is the Michaelis–Menten (or Monod) kinetic
model [97] with the growth rate μ given by:

μ = μmax
S

KS + S
(3)

where μmax is the maximum growth rate, S is the concentration of the growth-limiting nutrient and
KS is the half-saturation constant. The formula given by (3) can be readily generalized to cases with
more than one limiting nutrient [13] by multiplying the contribution from each nutrient together
(Si/(KSi + Si) for the i-th nutrient), but usually, μmax and KSi are considered constants. Under
the nutrient-saturation condition, (3) can be approximated by the zero order kinetics, where μ is
independent of S (μ = μmax). Under the very low nutrient condition, (3) can be approximated by the
first order kinetics, where μ is proportional to S (μ = μmax · S). These two approximations provide
convenient mathematical bounds on the Monod kinetic forms and have the advantages of allowing
analytic solutions [50] to the model equations for simple scenarios (ODE model or 1D in space).

The success of the kinetic models depends crucially both on their particular formula and parameter
values. Since the formula is often empirical and the parameter values are usually measured from
pure and mixed cultures growing in laboratory reactors, they may miss important factors of the
growth kinetics in the biofilm community developed in the natural environment, and their application
may require validation. Recently, new kinetic models have been developed to address this problem.
Quéméner and Bouchez [98] and Jin et al. [99] developed kinetic models with thermodynamics
included. The model proposed in [98] is based on the theory of Boltzmann statistics and builds
a relationship between microbial growth rate and available energy, thus connecting microbial
population dynamics to the thermodynamic driving forces of the surrounding ecosystem. The work
in [99] modified the Monod kinetics by a thermodynamic potential factor, which accounts for the
chemical energy available from the reaction (acetate oxidation and sulfate reduction in this case) and
evaluated the feasibility of applying experimentally-obtained parameters to the natural environment.
The results suggest that some parameters, such as maximum growth rate, can be applied directly to
the environment; but others, such as half-saturation constants, should be determined using data from
the environment of interest. Bonachela et al. [100] relaxed the requirement that the maximum nutrient
uptake rate be a constant; instead, the maximum uptake rate was assumed to increase monotonically as
the external nutrient concentration decreases. The model predicts larger uptake and growth rates than
the standard Monod kinetic, which explains the ability of marine microbes to persist under extreme
nutrient limitation.
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Biofilms usually have a complex spatial structure, which contributes to their distinctive properties,
such as strong antibiotic resistance and diverse population (niches for different species). Mathematical
models designated for characterizing the spatial structure of biofilms include Individual-based Models
(IbMs) [8,67], continuum models [101,102] and hybrid models [9], which combine both. For IbMs,
biofilms are represented as a collection of individual microbes (usually hard spheres) whose growth and
movement are determined by a set of rules depending on the local environment, such as the availability
of nutrients and space. Results from IbMs usually provide more detailed information and are generally
considered superior for studying interactions at the microbe level. Continuum models represent the
biomass by functions depending continuously on time and space, and these functions are governed
by differential equations derived by using physical, chemical and biological principles. Continuum
models allow both numerical solutions obtained using readily-available numerical methods and
theoretical analysis of the qualitative behavior of the solutions, such as stability [103], and they are
often considered more applicable at larger spatial scales.

Recently, models incorporating novel features have been successfully applied to study biofilms
as a microbial community. Below, we discuss an individual-based model and a continuum
model, respectively.

Storck et al. [104] developed an individual-based, mass-spring modeling framework to study
the effect of cell properties on the structure of biofilms. In this model, cells are represented by a
collection of particles connected by springs, which allows variable morphology (e.g., cocci, bacilli
and filaments). Three types of structures are considered: the primary structure, which defines the
shape of individual cells; the secondary structure, which defines microbial assemblies related by filial
links between immediate siblings; and the tertiary structure, which defines non-filial cell-cell and
cell-substratum links, such as sticking and anchoring connections. Forces acted on the cells include
both elastic force from the springs they are attached to and DLVOforce (combination of the van der
Waals and electrostatic force). Simulation results of the growth of rod-shaped cells on a planar surface
suggest that the biofilm may grow as a monolayer if there are no anchoring and filial links; the
biofilm can be much thicker and much less spread if there are cell-substratum anchoring; and with
filial links, but no anchoring to the substratum, a biofilm with an irregular shape (less circularity) is
more likely to develop. Simulation results of the activated sludge floc structure suggest that in the
floc with filament branching, the filaments are shorter than that of a floc made of straight filaments
growing at a similar rate, therefore resulting in greater floc density and attenuating the bulking
tendency of filamentous sludge. Furthermore, simulated flocs with spherical floc formers (in contrast
to rod-shaped floc formers) were less dense, since the denser packing of spherical cells in a colony
leads to a smaller cluster volume, which lowers the chance to encounter a filament former. These
simulations demonstrate the close relationship between the fundamental controlling mechanisms,
such as the intracellular, intercellular and cell-substratum links, and the diverse biofilm structures.

Emerenini et al. [105] developed a continuum model that includes biofilm growth, production of
quorum sensing molecules, cell dispersal triggered by quorum sensing molecules and reattachment
of cells. In this model, two distinct cell types are considered: the sessile cells in the biofilm and
the motile cells, which can move into and in the liquid phase. The volume fraction of sessile
cells and EPS is denoted by M; the motile cell density is denoted by N; and the concentrations
of growth-controlling nutrients and autoinducers are denoted by C and A, respectively. Dispersal of
cells from the biofilm is controlled by the local autoinducer concentration through Hill kinetics with
switching threshold τ and maximum dispersal rate η1. Re-attachment of cells in the biofilm is controlled
by the local biofilm density M through Monod kinetics with maximum rate η2. The autoinducer
production rate is controlled by the local autoinducer concentration, which implicitly represents
the switch between down- and up-regulated cells. The governing equations for M, N, C, A are
reaction-diffusion-type equations with density-dependent (M) diffusion coefficients. Simulation
results suggest that single quorum sensing-based mechanism can explain both periodic dispersal in
discrete events and continuous dispersal, depending on the value of switching threshold parameter
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τ. For smaller values of τ, the switching threshold is reached quickly, leading to a rapid dispersal
of the biomass before the biofilm can grow into a large size. After the first dispersal event, the
biofilm population starts growing again, and the autoinducer concentration increases again, resulting
in an almost periodic pattern of discrete dispersal events. For bigger values of τ, it takes a much
longer time to reach the switching threshold, and the biofilm develops into a stronger colony before
the onset of dispersal. Release of cells from the biofilm into the liquid phase appears continuous,
and the biofilm population reaches a plateau. Simulation also suggests that re-attachment of dispersed
cells is negligible. The study in [105] indicated that important properties, such as biofilm mass and
thickness, can be modified by changing the QS threshold and dispersal rates, and the systems can
change between continuous and oscillating behavior. The findings can also help to optimize treatment
strategies. For example, promoting quorum sensing can enhance cell dispersal and limit biofilm
thickness, which could increase the efficacy of antibiotic treatment, since planktonic cells are generally
assumed to be more vulnerable to antibiotic treatment.

IbMs have the obvious strength of describing the detailed biofilm structure and interactions at
the cell level, and the forces between individual particles can be derived from first principles. On the
other hand, IbMs also suffer the drawback of high computational cost, especially when the goal is
to model a biofilm containing a very large number of cells. Therefore, it is important to use efficient
numerical methods in the implementation of IbMs, and parallel computing is often the choice [106].
The continuum models can often be analyzed using well-established differential equation theory,
and there are many numerical packages available for solving the corresponding discretized system of
algebraic equations. However, continuum models often depend on some empirical formula; examples
include the effective diffusion coefficient of nutrients inside the biofilm and the constitutive equation
for the stress-strain relation when modeling the biofilm as a viscoelastic fluid, and derivation of such a
formula is often nontrivial.

6. Conclusions

We present a review of some recently-developed mathematical models that focus on studying
biofilms as diverse communities. Despite obvious overlapping, these models are categorized based
on their principal methodologies, such as trait-based models, QS, FBA, statistical inference and
spatially-resolved models with specific growth kinetics. There are some important topics that have
been left out, such as models incorporating stochasticity and evolutionary game theory.

Even though currently-available models can describe many aspects of biofilms accurately, it still
remains a challenge to build models that can predict the overall behavior of biofilms as complex and
evolving communities. First, time scales involved in biofilm-related processes can vary in as many as
ten orders of magnitude, ranging from the fast scale for fluid dynamics to the slow scale for biofilm
growth, which is an obvious challenge for modeling. To address this, it is often necessary to assume
equilibrium in the fast processes or a quasi-static biofilm profile, depending on the problem of interest.
Second, fast advancement in the experimental technologies has provided an abundance of omics data
at both the genetic and community level, and many community-scale models have been proposed to
describe the interaction between biology, chemistry and physics inside biofilms. However, there is still
the lack of a systematic approach to link the observational data to the community-level understanding,
namely to tie system kinetics to omics data in a tractable and general way by translating omics to
rate functions at the cellular level. The method based on the FBA approach is very promising in
this direction. Third, long-term challenges for modeling biofilm as an MC include the necessity to
incorporated evolutionary processes, social evolution and bacterial strategies, community assembly
and historical contingency, as well as the importance of spatial structure. Addressing these challenges
would inevitably require an integrated approach that not only selectively combines multiple relevant
models by adding their strengths, but also combines modeling effort and experimental findings.
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Abstract: With our growing understanding of the impact of microbial communities, understanding
how such communities function has become a priority. The influence of microbial communities is
widespread. Human-associated microbiota impacts health, environmental microbes determine
ecosystem sustainability, and microbe-driven industrial processes are expanding. This broad
range of applications has led to a wide range of approaches to analyze and describe microbial
communities. In particular, theoretical work based on mathematical modeling has been a steady
source of inspiration for explaining and predicting microbial community processes. Here, we survey
some of the modeling approaches used in different contexts. We promote classifying different
approaches using a unified platform, and encourage cataloging the findings in a database. We believe
that the synergy emerging from a coherent collection facilitates a better understanding of important
processes that determine microbial community functions. We emphasize the importance of close
collaboration between theoreticians and experimentalists in formulating, classifying, and improving
models of microbial communities.

Keywords: microbial communities; mathematical modeling; community ecology; interspecies
interactions; mechanistic modeling; phenomenological modeling

1. Introduction

Biology traditionally investigates the complex, unique, case-particular phenomenology of the
natural living world. This focus on exceptional instances has inadvertently limited the efforts, or
perhaps the desire, compared to other scientific disciplines, to identify general and overarching
principles. Throughout the history of modern science, interactions between the abstract, generalized
way of Mathematics, and the detailed, case-oriented way of Biology have been of a tumultuous
nature. Despite this history of mismatch in perspectives, the importance and potential impact of works
merging these disciplines are broadly accepted.

Microbes are among the primary forces that have shaped life on Earth. In the context of biological
research, microbiology has historically emerged as an overarching common ground among life-science
disciplines. Microbes are ubiquitous; they are therefore an object of interest for research ranging from
detailed organ-specific physiology to large-scale ecological issues. Microbiology also harbors a proven
potential to direct and propel technical and conceptual proceedings in a variety of contexts (biomedical,
agricultural, and industrial, among others) and has been central to the development of many of the most
essential experimental tools in modern biology (from PCR [1] to CRISPR [2–4]), and for constructing
miniature models of ecological and evolutionary processes [5–12]. Microbiology was among the first
biological disciplines to embrace an interdisciplinary approach through the research by Esty and Meyer
on Clostridium botulinum, in 1922 [13]. In their work, the dynamics of bacterial population growth
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were described on a semi-logarithmic scale in relation to the environmental temperature. The work
is still employed to this day in the monitoring of food safety during the canning process. It is, to the
best of our knowledge, among the first examples of how mathematics can effectively be an accessory
to biology and produce highly impactful science. It is our belief that rapid progress is facilitated
when theorists and microbiologists systematically coordinate their efforts, and we will argue our point
approaching several topics that we believe to be of interest to theorists and experimentalists, both in
Academia and in Industry.

This paper is divided into two main parts. The first part introduces a brief classification of
mathematical models. It is meant as a brief overview of some of the models that have effectively
complemented experimental research in the field of microbiology, and highlights where the efforts of
theorists have focused so far. A section is also dedicated to the history of the modeling of the rumen
bacterial community, which is a striking example of how complementation with mathematics can
advance research in microbiology.

The second part discusses the philosophical differences that underlie how experimental research
is approached by biologists and physicists, and how these differences often hamper interdisciplinary
cooperation in the process of model development. We will advocate for research applicability as
the focus around which experimentalists and theorists can more easily set aside their differences
and effectively coordinate their efforts, especially in the process of microbial community assembly.
The outstanding issue of model validation is also discussed. Finally, we speculate the potential impact
of a unified catalog of modeling approaches in microbiology to make modeling more accessible to
experimentalists and to inspire future research directions.

2. Background: Past Experiences in Modeling Microbes in Communities

2.1. Mathematical Modeling of Microbial Assemblies: An Overview

A mathematical model is defined as an equation, or a set of equations, that attempts to explain
instances of reality in a simplified manner, utilizing only a system’s most pertinent properties [14].
A scientific theory is founded when a mechanistic explanation is given for a set of observed natural
phenomena. In the physical sciences, hypotheses are often converted into mathematical statements,
and models are assimilated into the experimental process. In biology, however, theory is rarely the
ground on which hypotheses are formulated, and mathematical models are oftentimes developed as
the aftermath of a mass of data [15,16].

For instance, Pearson and colleagues developed a theoretical framework for the theory of
evolution [17], Lotka & Volterra produced models for theoretical ecology that described competition
and prey-predation [18], and Kermack & McKendrick created some of the first epidemiological
mathematical models [19]. Such efforts, and many others of their kind, have been instrumental in
advancing their respective fields [16]. Nonetheless, the development of new mathematical models
in biology is often treated with skepticism. This skepticism is in part instigated by an uncertainty in
the usefulness of a new modeling framework. Does the framework capture the crucial aspects of the
biology? Does it address the important questions faced by researchers in the field? Is the model simple
enough to inspire insights into important processes? Is the model general or is it specific to the details
and nuances of a particular biological phenomenon? These questions naturally arise when studying
microbial communities as well, and reflect the intrinsic trade-offs of each modeling framework as
discussed below.

Thornley and France [20] outlined the basic principles of modeling, classifying models as:
(1) dynamic or static; (2) deterministic or stochastic; and (3) mechanistic or empirical [15,20].
These categories are not mutually exclusive, and published models are often of a hybrid nature [20].
In the rest of this section, we will describe examples of methodologies that have been applied to
microbiology. We will also illustrate the chronological progression of modeling, from basic input-output
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(empirical) to more comprehensive mechanistic models, by describing the advances made in modeling
anaerobic fermentation by rumen bacterial communities.

2.1.1. Metabolic Models

The foundation of the metabolic model is an interconnected network of potential reactions leading
to the outputs/products of interest. Genome sequencing data allow researchers to determine an
organism’s metabolic potential [21]. Whenever genomic data is attainable for a species of concern,
annotation of the pathways can outline a comprehensive metabolic network eventually refined by the
addition of biochemical data from the literature [22]. The resolution of the model can range from a
single metabolic pathway [23] to the whole primary metabolism [24]. Stoichiometric data applicable to
the previously established gene products/reactions are then assimilated into the model. The resulting
stoichiometric matrices relate the flux rates of enzymatically-driven reactions to time derivatives
of metabolic concentrations [21]. This type of model can then be used for Flux Balance Analysis
(FBA) [21] and allows investigators to correlate a genotype to its phenotype (in an individual cell or in
a community) through the derivation of metabolic fluxes [25–27].

Under-determination is a common issue that arises in initial metabolic models. When a model
contains more reactions than metabolites, the observed outputs are not enough to fully constrain
the model parameters. In order to rectify under-determination, biological constraints representing
realistic cellular limitations are often imposed [28]. These constraints include, but are not limited to:
physiochemical, spatial, topological, environmental, and regulatory [21].

Once stoichiometric data and related constraints are overlaid onto a metabolic network, FBA can
aid in understanding how metabolic fluxes contribute to cellular physiology. FBA applies linear
optimization techniques in order to determine the resulting steady-state fluxes [21]. Frequently applied
objectives include: the maximum growth rate, maximum biomass production, and minimization
of nutrient uptake. No single objective likely describes the flux states of a biological system in all
environmental conditions. Therefore, meaningful objectives must be determined for each modeling
scenario [21,29]. For example, Schuetz and colleagues tested a constraint-based stoichiometric model
for Escherichia coli in six different environmental conditions and identified two objectives that described
the fluxes in all conditions tested [29].

2.1.2. Kinetic Models

Initial descriptions of complex microbial communities utilized coarse-grained ‘black-box’
approaches (limited to inputs and outputs, with no intermediate mechanisms included). Black-box
approaches apply empirical parameters to describe the basic kinetic function of community
dynamics [30]. In general, kinetic models describe the growth of bacterial cultures through the
use of empirically-derived equations that incorporate the concentration of the limiting substrate and
the growth (or uptake) rates corresponding to that concentration [31]. Monod and Michaelis-Menten
equations are two commonly-used kinetic equations expressing cell growth and substrate uptake,
respectively, based on a single growth-limiting substrate and enzyme-catalyzed uptake [25,32].
Empirically-derived equations are useful for predicting the rate of an enzymatically-driven
process when substrates are abundant and end-product concentrations are constant. However,
unlike in a model, a biological system often contains low concentrations of a substrate,
and end-products can accumulate, thus inhibiting the reaction; this aspect is not taken into account by
Michaelis-Menten-based models which treat every reaction as irreversible.

In order to rectify the limitations of these equations, Hoh and colleagues designed a kinetic
model which takes into consideration rate-limiting factors and thermodynamic theory [33]. The model
requires the following assumptions: (1) a reaction that has reached equilibrium cannot proceed
in any direction due to the lack of a driving force (change in Gibbs free energy); (2) a reaction
that is only slightly displaced from its equilibrium will proceed at a reduced rate compared to a
reaction that is further away from equilibrium; (3) the model is free of any additional empirically
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measured parameters, excluding the organism-specific reaction rates incorporated into the original
Michaelis-Menten kinetic equations.

2.1.3. Spatial Models

Metabolic and kinetic models describe many of the major factors that drive microbial community
dynamics (growth rate, substrate uptake, and metabolite production). In comparison, spatial
considerations have received relatively little attention, mostly to keep the models simple. However,
there are many microbial systems for which these factors are essential in defining the dynamics within
a community [34]. Microbes often exist in complex, spatially structured communities such as biofilms.
In this type of association, spatial features cannot be neglected.

The first efforts to develop a microbial biofilm model revolved around growth balance [35].
These types of models were initially one-dimensional and incorporated reaction-diffusion equations
for nutrients and other cell-produced compounds [35,36]. In time, models have increased in dimension
(2D and 3D) and have made use of individual-based modeling (IBM) [37,38] to more concisely
describe the heterogeneous behavior commonly observed within a biofilm [35,39]. Although growth
remains the primary focus of many biofilm models, other factors such as quorum sensing [35,40] and
biofilm mechanics [35,41] have also been represented. To elucidate the features of a microbial biofilm
model, the 3D simulation of a biofilm on porous media [42–44] or in unsaturated soil [45] has been
considered. In both cases, the focus is on the effect that biofilms have on the hydraulic properties
of soil. Graf von der Schulenburg et al. [42] modeled the velocity, pressure, nutrient concentration,
and biomass distribution of a biofilm using a biofilm IBM previously established for a 2D model [46],
complemented by parameters for fluid velocity, pressure, and solute concentration. Complementary
to this work, Rosenzweig et al. [45] developed a channel-network model to describe the effect that
biofilm spatial distribution has on soil hydraulic properties. Essential parameters that have been
considered are time-dependent flow, substrate transport, and biofilm growth under various soil
saturation conditions [45]. Simpler models of spatial structure have also been used to capture how
the organization of cells influences range expansion [47,48], intercellular interactions [49,50], or access
to environmental resources [51,52]. Even without invoking details such as biofilm mechanics, cell
adhesion, or cell differentiation, these models were still useful in teaching us about how spatial
structure might affect microbial communities.

2.1.4. Microbial Population Models

Population level modeling efforts have been thoroughly summarized in a recent review [34].
Here, we mention their salient traits.

Population modeling is based on one of two alternative approaches: bottom-up or top-down.
In bottom-up approaches, the lower level is described in order to predict the outcome at the
higher level. As an example, an IBM may characterize a microbial system using individual
interactions/characterization [53,54]; these individuals can be single cells, species, or groups of
microbes within a particular spatial and/or temporal context. Population level information emerges as
a natural byproduct of the IBM’s description [34]. IBMs are inherently more complex and case-specific,
but offer highly descriptive predictions and are more suitable for modeling heterogeneity.

Conversely, top-down approaches, such as the use of Population Level Models (PLMs), describe
population level changes. In contrast to IBMs, time and space are often considered continuous.
PLMs can be based on either ordinary differential equations (ODEs) or partial differential equations
(PDEs), depending on the spatial structure requirements of the model [55,56]. ODEs are most often
applied and assume that the environmental space is homogenous. However, if spatial structure is
a required aspect of the model, different ODEs can be assigned to each different ‘compartment’
(e.g., spatial compartment, species compartment, phenotype compartment). By assessing each
compartment according to its own parameters, it allows for a more accurate assessment. In general,
PLMs are simpler models with fewer input requirements leading to significantly easier analyses [34].
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2.2. Empirical and Mechanistic Models: From Observations to General Principles

Computational models can also be categorized as either empirical (phenomenological) or
mechanistic. Empirical models fit a set of parameters (with a presumed relationship) to the
experimental data relevant to the particular system of interest [15,57]. Empirical models (also called
“reverse” models [58]) thus often have narrow applicability and offer limited explanatory power outside
their “training” scope. However, they are more manageable than their mechanistic counterparts and
often prove useful in driving the experimental branch of studies on complex microbial systems by
providing a trajectory for developing hypotheses [59]. At large, empirical modeling methodologies
follow an iterative cycle of development, utilization, and refinement, which entails the continual input
of experimental data followed by further regression analyses [15,17,60]. Thus, a model can evolve from
a simplified to an increasingly more complex product as more data are acquired and incorporated.

A mechanistic model (also called a “forward” model [58]) is derived from assumed or known
principles of nature and not from a set of experimental data [15]. A mechanistic model with
well-founded principles is a powerful tool applicable to studies beyond the scope of its original
dataset. In the 20th century, the advent of molecular biology lifted the curtain on the mechanisms
underlying many biological processes, granting a new level of depth to phenomenological data [61–64].
Today, biologists advance into the unprecedented age of ‘big data’. Many current modeling efforts
have shifted to methodologies that allow for the incorporation of such data; FBA in community scale
metabolic models is a good example [65].

2.3. Modeling Microbial Anaerobic Fermentation in the Rumen

Empirical and mechanistic models are distinct in many of their general characteristics. However,
as a model develops over the years, this distinction blurs. Nascent models often begin as simple
phenomenological descriptions of a microbial system; however, as knowledge of the system
accumulates and gets refined, by incorporating more data (genetic, kinetic, etc.), the model gradually
shifts towards a mechanistic semblance. A good example of this process is the mathematical modeling
of anaerobic fermentation by the rumen microbial community.

The ruminal microbiota is a complex system, deeply intertwined with the health of its host [66,67].
In order to establish how an animal’s diet affects its ability to produce milk, gain mass, or generate
offspring, scientists must first elucidate how usable nutrients, such as volatile fatty acids (VFA),
are produced within the rumen. The three main VFAs (acetate, propionate, and butyric acid),
produced through the microbial fermentation of carbohydrates, are the primary sources of energy
for ruminants. In order to characterize the relationship between diet/feed components and their
respective fermentation products, many scientists have turned to modeling.

Early empirical models: In 1989, a publication by the National Research Council characterizing
the nutrient requirements of dairy cattle, incorporated mathematical equations into the Cornell Net
Carbohydrate and Protein System (CNCPS) to account for varying microbial growth yields [60,68].
The methods set forth by Murphy and colleagues applied to anaerobic fermentative communities
within the rumen, and enabled investigators to directly relate fermentation products to diet
composition [68]. Murphy et al. based their model on mathematical equations first established by
Koong et al. [69] for sheep feeding on white clover; and like Koong, this model utilized stoichiometric
measurements of major metabolic pathways in order to determine relative concentrations of VFAs,
methane, and carbon dioxide in the presence of various digestible feed fractions [68,70].

Refining the assumptions on conversion efficiency: Although these initial models provided a
framework for understanding the role of microbial communities in ruminant nutrition, their strictly
empirical inputs left them unreliable for feeds that differed significantly from the ones used to derive
the stoichiometric coefficients [70]. In response, a more dynamic model proposed by Argyle and
Baldwin [71] incorporated equations allowing for the adjustment of the stoichiometric coefficients
depending on the ruminant pH. This led to more reliable predictions for all energy sources and resulted
in the overall improvement in model performance [60].
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In parallel to the dynamic model proposed by Argyle and Baldwin [71], other modifications
were being made that addressed a number of inconsistencies found between simulated and observed
data due to overgeneralized metabolizable energy (ME) terms. Up to this point, modeling techniques
applied to anaerobic fermentation and rumen microbial communities relied on constant efficiencies
of ME, i.e., the efficiency of conversion (from catabolically-produced compounds to body/milk fat,
for example) was assumed to be the same for all products. However, research has shown that the
efficiency of conversion varied between individual nutrients, which leads to discrepancies between
modeled and experimental outcomes [60]. For instance, the conversion efficiency for acetate is 78–80%,
while the efficiency for VFAs is a significantly higher 95–97% [60].

Incorporating thermodynamic considerations: According to the second law of thermodynamics,
a reaction will not proceed if the reactants are limited compared to the products [70]. More recently,
thermodynamics has been assimilated into both metabolic and kinetic models of the anaerobic
fermentation of microbial communities [28,72]. In the rumen, the concentration of many reactants
(i.e., glucose) is oftentimes low. Thus, the incorporation of thermodynamic considerations is essential
for achieving a precise characterization of low-abundance compounds. The aforementioned work by
Hoh [33] made a significant contribution in this direction.

Furthermore, a dynamic model for glucose fermentation was developed by Kohn and Boston [70]
in which the efficiency of glucose fermentation is established for each metabolite individually
(56% efficiency for acetate, propionate, and butyrate; 70% efficiency for methane), and the initial
concentrations of metabolites are set to physiologically relevant levels. This model also incorporates
an ionophore effect by considering how acid production leads to increased energy expenditure by the
bacteria in order to maintain internal ion concentrations. In order to determine conversion efficiencies,
the Gibbs free energy maximum efficiency (threshold free energy), the point at which the reaction
is as close to equilibrium as it can possibly get, is calculated for each metabolite. By considering the
threshold free energy for each individual end-product, the model increased the simulation accuracy by
eliminating unfavorable forward reactions at points of equilibrium. To further enhance the accuracy of
the model, continual infusion of glucose is simulated into the system, while VFAs and methane are
removed at a constant fractional rate to better reflect what occurs within the rumen. The result of such
a model is a mechanistic explanation for previously observed conflicts between the modeling results
and the experimental data.

Current diet evaluations for dairy cattle are still based on ME (i.e., net energy), and lack any
consideration for VFAs and their effect on energy allocation [66]. However, Ellis and colleagues [73]
demonstrated that taking a more mechanistic approach proves to be more accurate than the currently
utilized energy evaluations for agricultural animals. The biggest challenge in building a model more
reflective of experimental data is the implicit inaccuracy in VFA concentration predictions and how
this relates to the chemical compounds within various ruminant feeds.

Incorporating meta-omic data, a step towards causality: Although the incorporation of ‘omics’
data (i.e., genomic, metagenomics, transcriptomic, proteomic) into rumen microbial models remains
somewhat uncommon, a number of studies have queried genomic and metagenomic data to better
understand the rumen microbial community [74]. For example, microbiologists have sought to unveil
the microbes, and their associated enzymatic repertoires, responsible for fiber degradation in the
rumen. To do this, the genomes of established fibrolytic organisms, such as Fibrobacter succinogenes
and Ruminococcus albus, were screened for their fiber degradation potential [74–77]. These studies
provided insight into the genetic potential of the rumen microbial community, and also facilitated the
use of plant lignin manipulation techniques to improve the efficiency of fiber digestion in ruminants.
Such studies are regarded as great contributions to our understanding of the mechanisms behind
ruminant fiber degradation, which could be further improved through metagenomic analyses of the
rumen community [74].

The concepts that stemmed from these works have some degree of universality in microbiology,
and have been applied to other communities, including biotechnological systems such as wastewater
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treatment, bioremediation, organic acid biosynthesis, etc. In an attempt to improve upon current
fermentation mixed-culture models, Rodriguez and colleagues [78] developed a mechanistic model
in which product formation, thermodynamic, and pH considerations are incorporated. The authors
argue that since bioreactors operate at or near thermodynamic equilibrium, the microbial diversity of
the system can be neglected. Therefore, in this model, the culture is treated as a single microbe capable
of catalyzing most major fermentation pathways resulting in ethanol, weak organic acid, hydrogen,
biomass, and CO2 outputs. The model is built upon a metabolic network of the major reactions for
glucose fermentation, and is constrained by thermodynamic considerations (i.e., change in Gibbs free
energy). The bioenergetics of the system are also considered in terms of both pH and the intracellular
concentration of acidic compounds.

3. Reaching out across Disciplines

3.1. Our Message for Theorists: There May Be No Elegant Solution

In this section, we reach out to theorists who are willing to approach, or have already approached,
the field of microbiology. This is a time in science when multidisciplinary efforts are encouraged,
and rightly so. Biology needs the support of physicists, chemists, mathematicians, and all others
willing to research the living world. This is especially true for microbiology, a discipline currently
under the spotlight, on the verge of being the focus of many research projects. After all, there is a
general feeling that this may well be the “Microbial Century” [79].

It has recently been stated [80] that, in modern biology, impending issues that need prompt
intervention are the fragmentation of life sciences and the lack of coordination among research
endeavors. In this context, we believe that, if not smoothly integrated into the research effort,
the modeling of microbial communities may just add another partition to the ensemble. Our lab
is made of theorists and experimentalists. To us, it is very evident how different the approaches to
research can be for professionals with different backgrounds. This distance is often rooted in deep
differences, almost deontological, on what is an insightful scientific question, and on what would be a
satisfactory answer to that question. Nevertheless, this distance must be bridged. The contribution of
theorists to microbiology is sorely needed. Biologists often cannot have the competence to critically
take part in the formulation of a mathematical model, or even critically evaluate the work of those who
develop mathematical models. To them, mathematics is still alienating and unfamiliar. Microbiologists
are no exception: they are experimentalists by formation and, maybe more importantly, vocation.
The bench biologists will often have a hard time in fully understanding a mathematical model, which
to their eyes may appear non-intuitive and off-target in relation to their immediate research needs.
This is not a novel issue. J.D. Murray has written about the importance of “easing” biologists into
mathematics in his seminal textbook: Mathematical Biology: An introduction [81]: “The best models
show how a process works and then predict what may follow. If these are not already obvious to the
biologists and the predictions turn out to be right, then you will have the biologists’ attention. ( . . . )
The use of esoteric mathematics arrogantly applied to biological problems by mathematicians who
know little about the real biology, together with unsubstantiated claims as to how important those
theories are, do little to promote the interdisciplinary involvement which is so essential”. Theoretical
modeling should be smoothly integrated in the process of microbiological research, lest biologists may
feel their discipline is being usurped from them. Less dramatically, they may simply acknowledge
and accept that certain modeling-oriented research directions, while within the microbiology field,
will just be out of their area of expertise. Over time, this may lead to an extreme specialization
and fragmentation of research competencies. This happens already in many branches of biology
(physiology or cancer research come to mind) where experts’ focus on specifics hardly leaves any
room for employing mathematical models that are based on general principles. We thus run the risk of
severing any exchange between experimentalists and theorists.
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The living world is recalcitrant to be framed in a synthetic mathematical representation.
The physicist or mathematician eager to contribute to this representation will have to resist the
understandable temptation of approaching biology as they would thermodynamics, or electrical
engineering. Biology is not an exact science or, at least, if there is exactness to it, our current
knowledge is not yet in the condition of appreciating it (i.e., data will be noisy). Professional exchange
between biologists and other groups of researchers has always had a love/hate nature; this has
been especially true with physicists. In 1993, W. Daniel Hillis [82] efficiently surmised the clash
between these two categories of scientists, a conflict deeply rooted in the founding principles and
practices of their respective disciplines. Hillis pointed out that Biology is not endowed with the
power of prediction, and even the synthesis of Darwinian evolution theory gives its best at describing
phenomena, not so much at predicting them: “Biologists are annoyed when they sense that physicists
blame this on biologists themselves, rather than on the inherent difficulty of the subject matter. ( . . . )
Biological systems are multi-causal, poorly partitionable and, let’s face it, messy. Biological systems
have a beauty of their own, but often it is a beauty of complexity and richness, rather than the stark
simple reductionist elegance of physics.” Indeed.

Experimentalists broadly accept that evolution is the only way through which biology makes
sense (T. Dobzhansky [83]), and theorists may find that evolution has nothing to do with “stark
simple reductionist elegance.” It actually piles up “un-elegant” outcomes by the score. Evolution
does not walk the line of extraordinary, efficient solutions. It is the progressive adaptation of fallible
living systems along flickering environmental conditions. It is the struggle of the living in coping
with their environment through progressive adaptation, based on and constrained by preexistent
anatomical structures, in no small part driven by chance. It is a work of tinkering and make-do [84].
Photosynthesis, the pillar of many trophic chains on this planet in the last 400 million years, is a
good example. The photosynthetic process, despite hundreds of millions of years of evolution, is still
running on very low general efficiency rates: about 2–3% of the overall exploitable light energy [85].
Yet, Mother Nature kept her job whereas no engineer could have.

The mathematician/physicist that plans on tackling biology must keep these aspects in mind,
and be ready to accept that sometimes there may be no elegance to be sought, no essentiality to be
spotted. Of course, that is not to say that there are no simple general principles in Biology. Sometimes
finding a simple description is a matter of perspective. Take central limit theorem as an example.
A simple description may adequately represent the combined effects of many random unknown causes.
However, finding a simple model that captures important features of interest is far from trivial amid
the chaos of messy biological mechanisms. The history of encounters with non-intuitive, complex
systems has made biologists suspicious of simple models. To say it with Hillis [82]: “Physicists have
learned the lesson that a very simple theory of what is going on is often correct. Biologists have learned
the opposite lesson: simple mathematical theories of biology are usually wrong.”

3.2. What Experimental Microbiologists Need from Theorists: A Focus on Applications

Even though the details of specific research would be different from case to case, we believe that
the following thought process, in mentioning shared features among many questions of interest, will be
relevant to other researchers. As microbiologists, we often intend to employ bacteria to address a
real-life issue, which could be of biomedical, environmental, or industrial concern. Essentially, we want
one or more bacterial strains to employ their genetic potential for our contingent need.

This is, for instance, what currently happens in our lab: we intend to address a well-known
environmental issue, specifically, the mycotoxin contamination of food commodities. Mycotoxins
are fungal secondary metabolites of an unclear biological purpose [86], responsible for a vast array
of pathologies (including cancer) when eaten and assimilated by mammals [87]. Mycotoxins are
highly present in cereals and dairy products, exceptionally stable even at extreme environmental
conditions, and very hard to denature without aggressive, chemical means. The burden of mycotoxin
contamination may amount yearly to billions of dollars both for industrial and medical issues [88].
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From scientific literature, and general wishful thinking, we expect that there must be a way to
effectively tackle mycotoxin contamination through bioremediation by bacteria. We could identify
a list of different strains up to the task. Also, from the literature, we know that different kinds of
mycotoxins will often co-occur on the same substrate [89]. We are thus interested in devising a
viable, efficient microbial community capable of degrading mycotoxins in the specific environmental
conditions of the food production chain. In a nutshell, we are in no different predicament than most
applied microbiology labs: we want to craft a community to address a specific issue. Microbiology
harbors immense potential for application in all areas of biological research. Simplifying their diversity
in form, these applications may oftentimes be categorized as no more than two main processes: the
production or degradation of chemical compounds. In this context, what use could experimentalists
have for a mathematical model?

It is our opinion that theorists need to focus on the mechanisms that will allow experimentalists
to tinker with the potential of microbes, prioritizing the experimental outcome over the mechanistic
insight that makes such an outcome possible. That is not to say that mechanistic insight is unnecessary.
Mechanistic insight is the essence of real knowledge, but it is also a massive undertaking. In complex
systems (i.e., in the real world), true mechanistic insight might be at the moment beyond our technical,
or even intellectual, possibilities. This is of course not a certainty, but pursuing such an ambitious goal
headlong may not be wise.

The main current challenge of modeling microbial communities is that it is unclear how much
knowledge about the mechanisms is required to give us enough predictive power for functions of
interest. The current trajectory of approaches is based on identifying and characterizing the activities
of individual species (traditionally in monoculture assays), and then combining them to form a model
of the community. Is such an approach necessary? We don’t know. Is it sufficient? Unclear. A strictly
mechanistic approach requires the modeler to incorporate known processes into the model, hoping
that, if this is at all achievable, the formalization of such models explains how a community of different
members functions. The achievement would be enormous and laudable, but could prove unrealistic
and, to some extent, unnecessary. It is more pragmatic to only focus on the product we are interested in,
often a specific community function or property, such as the rate of degradation of an environmental
toxin, or the coexistence of community members. Modelers would be speaking the language of most
biologists if they focused their efforts for the sake of experimental application. Applicability is what
drives most experimentalists. In turn, experimentalists can help modelers in their search for the
“proper level of abstraction” by focusing on specific communities with well-defined functions and
relative characterizing traits. An understanding of the founding principles, and its mathematical
synthesis, will come through the synthesis of well-characterized particular cases. But even if not,
we would still be endowed with well-characterized particular cases.

3.3. What Theorists Need from Experimental Microbiologists: Data, Possibly in a Specific Form

In the general spirit of establishing a coordinated effort in microbiology, we believe it would be
useful to encourage biologists to make their raw data of published work available in an open database.
This would be similar to how next generation sequencing raw data are required to be available on
public domains for other researchers to access them. This would give modelers the chance to find
the mathematical rationale behind works that have independently achieved experimental success.
In doing so, they will be able to provide opinions on what future experiments they believe would
be insightful to refine the different aspects of the model. This in turn will allow coordination with
biologists to further develop our understanding of the observed systems.

There may even be a specific journal dedicated to publishing mathematical modeling papers
based on data coming from past experimental publications of applicative relevance and insight. In 2015,
Quincey Justman wrote an editorial on Cell Systems to introduce Math | Bio [90], a novel journal
founded on a very intriguing premise: to publish papers containing no data, but rather a mathematical
argument. Justman is inspired by John J. Hopfield’s paper on kinetic proofreading, published in
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1974 in PNAS, at a time when, Justman argues, interesting ideas were enough to deserve publication.
Math | Bio aims to throw ideas into the fray for biologists to pick them up and test them, if they feel
they are insightful and potentially game-changing. We find this idea to be very precious and farsighted.
In a much more trivial manner, it could be reversed and applied to microbiology research. In many
instances, data is already available (and expanding) for researchers to be put into a mathematical
framework. If modelers “adopted” a laboratory or a specific research topic, they might give new
insight to published experimental results and, at the same time, provide unexpected inputs on future
directions. Even though modeling is part of the current research activities in our lab, we would still
love to be “adopted” to facilitate this process.

3.4. Microbial Communities Assembly: An Opportunity for Theorists and Experimentalists to Work Together

To show how research applicability could drive cooperation between theorists and
experimentalists, we believe community assembly is fertile ground. In devising experimental research
built around applicability, one of the first decisions to make is whether to focus on optimizing a
single species for the function of interest, or employ a community of multiple species. Single species
have the advantage of being easier to identify and handle in a laboratory environment. Additionally,
using a single species makes processes such as artificial selection and data analysis more expedited
and easily interpretable. After all, the complications of culturing communities are vast and, sometimes,
hardly addressable. Cultivability is a constant issue in microbiology and, in the economy of a natural
community, the loss of significant, unculturable strains can largely hamper the desired community
function in controlled experimental conditions. Thus, the process of modeling itself, which often
relies heavily on data acquired under controlled and monitored conditions, is made easier in in vitro
conditions. Nonetheless, we believe that the successful cultivation of a community, even the most
essential, is the premise for the most interesting research. From a purely speculative standpoint, the
study of community-driven traits (inter-specific cross-talk, microenvironment modifications, ecological
interactions) is among the most intriguing topics for present day microbiologists; also, in terms
of the application potential of the findings to come, a community, once established and applied
for the purpose of bioremediation/biosynthesis/biomedical needs, is likely to be more reluctant to
perturbations than any species taken singularly.

To make an exemplificative argument, if we value bioremediators in terms of the genes they
bear, we can consider the community as a scaffold that harbors a wide inventory of genetic potential,
much wider than what a single-species bioremediator could. Being able to craft stable communities
will thus grant much more potential in terms of the amplitude of applicability, and such is the general
indication that comes from recent experimental findings [91]. Moreover, a more in-depth formalization
of the principles underlying community assembly has been deemed essential by researchers that
focus on the highly intriguing field of Synthetic Ecology. We quote from Johnson et al. [92]: “A deeper
understanding of the biochemical causes of metabolic specialization could serve as a foundation for
the field of synthetic ecology, where the objective would be to rationally engineer the assembly of a
microbial community to perform a desired biotransformation.”

3.4.1. An Intriguing First Step: Coexistence Theory

In this theoretical context, it is important to point out general concepts around which the process
of mathematically describing community assembly would revolve. We believe a clear outline can
be found in the principles that constitute the coexistence theory. Coexistence theory is a theoretical
framework of concepts that describe and formalize principles that allow a community to retain or lose
its identity. In other words, it describes the forces behind coexistence (not surprisingly) and provides
insight on how to achieve a successful assembly of communities. It can thus be of great use for the
general purpose of most microbiologists.

As outlined by HilleRisLambers et al. [93], the main concepts relative to community assembly are
not numerous, and coexistence is described as depending on niche and fitness differences.
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1. Relative fitness differences: outline the outcome of competition among species in the absence of
stabilizing differences.

2. Stabilizing niche differences: when a species is self-limited by the environmental context rather
than by competitors. It is a force in favor of community diversity.

3. Competitive exclusion: happens when relative fitness differences are stronger than stabilizing
forces, and the relatively less fit disappears from the community over time.

4. Stable coexistence: Diversity is sustained and stable over time. Stabilizing forces play a greater
role than fitness differences.

The task in hand is to experimentally examine which of these processes apply to a particular
case of interest and how. Currently, there might not be enough precedence to formulate a systematic
protocol for identifying and characterizing the impact of these factors. Nonetheless, as more instances
are being examined, we see a hopeful perspective in a future not too far away. Minty’s validated model
on cross-regnum consortia for isobutanol production, or Zuroff’s work on a community for ethanol
production from cellulose, are examples notable in their thoroughness [94–97].

3.4.2. The Outstanding Issue of Model Verification

The task of verifying what models are suitable for representing microbial communities,
while challenging, is absolutely necessary. Without this verification and refinement step, the cloud of
doubt about the relevance of models will keep experimentalists suspicious of all modeling results.

There are still many open questions about the validity or relevance of common assumptions used
in modeling microbial communities. As an example, consider the use of Lotka-Volterra (L-V) models
for simulating microbial communities. Being the most popular platform for modeling communities,
L-V models abstract all the interactions between species into pairwise fitness effects [98–101]. This is
motivated by the historical precedence of community studies on prey-predation food webs [102–104] or
plant-pollinator mutualisms [105–107]. The relative success of L-V models in the past to represent such
communities has established this platform as the go-to model for ecological networks. Additionally,
the mathematical tractability of the model gave it a central role in theoretical studies of community
stability [99,100,108–110]. This further secured the position of L-V models in theoretical ecology.
When simulating microbial communities, this history has been used as justification to extend the same
modeling framework to represent microbial interactions. However, pairwise fitness models may not
always accurately capture common situations in which multiple diverse interactions are present or
when compounds mediating the interactions are shared among multiple species [111]. Identifying
and recognizing such limitations allow us to use the very useful L-V modeling platform when it is
applicable. We thus advocate for dedicated research to clarify the limitations and range of applicability
of common modeling platforms.

Another fundamental assumption in almost all community modeling frameworks is the additivity
assumption [111]. For simplicity, it is often assumed that in communities, the effects exerted on an
individual or a population by different factors can be superimposed in an additive manner. There are
of course many examples to the contrary. The presence of non-additive effects in fact has been widely
recognized in ecological modeling under the umbrella of indirect interactions, nonlinear interactions,
or higher-order interactions [101,112–114]. Researchers have even rigorously examined whether or not
additivity assumption holds for examples in the utilization of resources from the environment [115,116].
Several studies on the combined effects of antibiotics have also shown synergy (or antagonism) between
them, showing inhibition effects stronger (or weaker) than what is expected based on an additive
model [117–124]. Nevertheless, when it comes to modeling communities, because the extent and
prevalence of deviations from additivity is not established, models almost unanimously drop back to
assuming additivity. Systematic work is needed in this area to clarify when and under what conditions
such an assumption is acceptable.
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Performing the necessary work to support and justify model assumptions requires not just the
will of researchers, but also the support of the community, including peers, publishers, and funding
agencies. Exploring uncharted territories and coming up with new hypotheses using a theoretical
platform sounds more exciting, and is often rewarded and recognized as being innovative. This bias
comes at a cost: the necessary steps of verifying the basic assumptions of such models are considered
“less exciting.” The unfortunate outcome of this trend is that a body of theoretical work will
develop, without a clear understanding of the conditions under which those findings are relevant.
In turn, when experimental data outside the range of applicability of such models deviate from
predictions, it will be considered a failure of the theory, widening the divide between theoreticians
and experimentalists.

We believe it is time to give the field of model-verification the attention it deserves. Groundwork
verification efforts should be treated as independent research contributions on their own, rather than
side-notes. There are examples in other fields, where the importance of such groundwork efforts
has been recognized. A notable recent example is the reproducibility project in cancer biology to
evaluate the reproducibility of previous reports [125–127]. Support from researchers, funding agencies,
and publishers in this case shows an exemplary instance in which the scientific community is rallying
behind a necessary groundwork. The field of microbial community modeling can certainly benefit
from a similar attitude.

3.5. Compiling What Is Known, Clarifying the Assumptions, and Making Models Accessible

When experimentalists devise a novel research plan, it goes through a phase of information
gathering that precedes the formalization of the details of the research. In this context, we believe the
mathematical model would ideally be of assistance in between the preliminary process of information
gathering and the beginning of the experimental phase itself: a good model would outline what
variables of the system are more likely to be influential, which is invaluable information. Screening
prior research to identify such a model, even if it existed, is not a streamlined process, and surprisingly
so. After all, wouldn’t it be easier for experimentalists, in deciding what model would be most
appropriate for their system, to refer to previous reports and studies in related, well characterized,
even if not similar, situations? Unfortunately, a database of microbial interactions and previous
modeling efforts currently does not exist, to the best of our knowledge.

Models are most often based on phenomenological data pertaining to a specific biological process,
and focus on a single instance within that process: they are hardly approached by researchers not
already within that specific field. Proceedings in microbiology, as previously stated, are relevant to
many disparate scientific disciplines. Nonetheless, at present, it is normal to assume that a hypothetical
model based on a set of microbiological data relevant, for instances, to the field of Transfusion
Medicine, is unlikely to be of interest to an environmental engineer interested in bacteria-mediated
wastewater management. Yet, if the process under investigation is general enough (dynamics of
microbial cell diffusion, for instances), one cannot decidedly rule out a fruitful cross-disciplinary
cooperation. To make a more specific example, albeit outside the field of microbiology, a model that
described fungal hyphal development, distilled to its essence, could more generally be viewed as
a model describing the growth of apically polarized cells. As has already been observed [128,129],
this implies that the mechanics relevant to hyphal growth could also be descriptive of neuronal
outgrowth: neurons are de facto apically polarized cells. Pointing out that, in the right context, hyphal
development can be representative of neuronal development is no trivial intuition. In doing so,
researchers in the field have essentially observed that Mycology and Neuroscience may happen to
cross paths, and we believe that mathematical analysis would be the main way to substantiate this link.
Finding a mathematical synthesis for this and other kindred observations is also our best bet towards
the mechanistic description of nature. At present, poor communication across disciplines is holding
everyone back. If we facilitate the process of bringing together professionally distant researchers,
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we will probably find ourselves with similar observations. We may even find our example of the link
between Transfusion Medicine and Environmental Engineering not to be so far-fetched.

If there was a public platform that collected works on modeling biology (i.e., works that attempt to
distill phenomena to their essence), and that platform could intuitively be browsed by experimentalists,
the situation may change. The platform would be a tool where mathematical models are uploaded,
along with their respective publication. It would require the participation of both modelers and
experimental biologists. The role of modelers would be to upload their work clearly stating the
purpose for which the model was developed. They would also be required to provide a user-friendly
graphical user interface (GUI), bearing in mind that an experimentalist with very little experience
in programming and mathematical analysis is their target user. The user would be put in the
condition to easily identify, through the GUI, the variables included and the entity of their effect
on the model output.

The key aspect would be to make the model approachable through different research queries of
interest to the broadest spectrum of researchers. Models should be sorted through the main processes
they describe, the outputs for which they were devised, and with all the variables included. Examples
of processes could be: diffusion, cell growth, cell-cell interaction, motility, mutation, biotransformation,
and artificial or natural selection, etc. Examples of variables could be: temperature, pH, oxygen
concentration, species involved, culture conditions (liquid culture or agar plate), resource availability
(rich, minimal, or restrictive, medium), etc. All these elements should also be catalogued by the
widest number of biologically relevant terms they could represent in a variety of biological contexts:
metabolite diffusion in one context could equate to disease spread in a different context.

Resorting to this platform would be advantageous for both theorists and experimentalists.
For theorists: It would be a rare opportunity to unleash their models in the wilderness of research

for other scientists to test them, as they may be representative of more than the one biological context
that they originally described. We believe this would be a precious shortcut to make the cross-context
(mechanistic) traits of the model emerge, and would facilitate the identification and formalization of
the relations among those contexts. At the cost of the supplementary work of providing a user-friendly
GUI for their models, theorists would have a lot to gain and nothing to lose from this initiative.

For experimentalists: The experimentalist would approach the platform in search of inspiration in
devising his/her experimental plan, gaining insight on which approach is more likely to be successful.
After all, examining collected instances in one place offers synergy for interpreting the observations
and uncovering patterns. The biologist will have the opportunity to get in touch with one or more
publications of models that have dealt with the more (if applicable) similar conditions and premises
of his/her own system, and receive a conceptual synthesis of which variables led to which results,
gathering some guidance on how to proceed for his/her experiments.

We believe the literature harbors a plethora of models that can be useful to researchers in other
fields, but those researchers may never become aware of the existence of such models. A lot is to be
gained by facilitating and encouraging communication through the lens of mathematical representation.
Actively pursuing the identification of common mechanisms across the different branches of biology
holds great potential for life sciences in general, and microbiology in particular.

4. Conclusions and Final Remarks

To summarize, we believe that the great potential harbored by microbes can be unleashed through
a close collaboration between theoreticians and experimentalists. Mathematical modeling is the
vehicle towards this objective that requires investment and cooperation by both sides. Here, we have
compiled suggestions to facilitate this cooperation between researchers from different backgrounds
and disciplines. These suggestions come from experiencing interdisciplinary research within our
own lab. In our opinion, there is a need to be aware of the differences among researchers from
different disciplines, their outlooks, and their interests. To collaborate and cooperate, we need
to make adjustments to accommodate these difference. A theoretician may have to balance the

240



Processes 2017, 5, 53

generality-realism trade-off and focus on functions and properties of practical applicability to
experimentalists. An experimentalist, in turn, may have to adjust their experiments to collect and
compile the data in a form that will be readily usable by theoreticians. Communications is key in
this bilateral exchange and compromise. We advocate for practices that facilitate this communication:
we encourage experimentalists to compile an easily accessible database of their data for theoreticians
and encourage theoreticians to make their modeling frameworks welcoming to experimentalists.
Finally, we propose a coordinated effort by the scientific community to lower the barriers between
disciplines by focusing on processes and commonalities, built around the common language of
mathematical modeling. The outcome will be a better understanding and an elevated intuition
of microbial processes for both theoreticians and experimentalists, with a tremendous impact on
applications from human health to industrial biotransformation to ecosystem sustainability.
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Abstract: Microorganisms in nature form diverse communities that dynamically change in structure
and function in response to environmental variations. As a complex adaptive system, microbial
communities show higher-order properties that are not present in individual microbes, but arise
from their interactions. Predictive mathematical models not only help to understand the underlying
principles of the dynamics and emergent properties of natural and synthetic microbial communities,
but also provide key knowledge required for engineering them. In this article, we provide an
overview of mathematical tools that include not only current mainstream approaches, but also
less traditional approaches that, in our opinion, can be potentially useful. We discuss a broad
range of methods ranging from low-resolution supra-organismal to high-resolution individual-based
modeling. Particularly, we highlight the integrative approaches that synergistically combine disparate
methods. In conclusion, we provide our outlook for the key aspects that should be further developed
to move microbial community modeling towards greater predictive power.

Keywords: microbial communities; mathematical models; dynamics; integrative
modeling approaches

1. Introduction

Microbes are virtually ubiquitous on earth; they can be found in almost all aquatic and terrestrial
environments, and are associated with all species of plants and animals. By some estimates, the total
microbial biomass in the biosphere may nearly equal that of higher plants [1]. Microorganisms have a
profound impact upon natural and engineered ecosystems, serving as key catalysis of biogeochemical
reactions which are needed to sustain a robust and diverse biosphere. At a time in human history
when the Earth appears to undergo a rapid change in climate, understanding the control mechanisms
whereby microbial communities determine ecosystem function is particularly relevant.

The role of microorganisms is significant also in human health and disease. With approximately
16 million humans dying from infectious diseases each year [2], there is an increasing appreciation
for the role of the “human microbiome” in conditions ranging from metabolic diseases [3], aging [4],
and central nervous system disorders [5]. Microorganisms also play key role in a variety of industrial
processes, including food production, mining, pulp and paper processing, and waste water treatment,
as well as energy, biomaterials, and drug manufacturing [6].

Nonetheless, it is less appreciated that, in virtually in all of these settings, microbes do not function
in isolation but rather as members of communities. Microbial communities are defined as multi-species
assemblages, in which organisms live together in a contiguous environment and interact with each
other [7]. Their complexity may range from dozens of “species” in extreme environments [8], to many
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hundreds (for example, on specific habitats on humans [9]) to tens of thousands per gram of soil [10].
Such complexity constitutes a major challenge for studying the relationships between the physiological
behavior of individual species and ensuing interactions, which give rise to higher-order properties
such as stability, productivity, and resiliency.

In the analysis of microbial communities, important challenges include quantification of fluxes
through pathways for nutrient resource and energy, identification of interactions of populations with
each other and their environment, and inference of system’s higher-order properties. For example,
metabolic diversity and functional redundancy are thought to increase robustness to environmental
perturbations, as extreme conditions are less likely to kill all species performing a particular ecological
function. However, there is less understanding of the mechanisms that maintain diversity in microbial
communities [11], which ostensibly are a key to the functional stability of the inhabited ecosystem.

This perspective suggests that microbial communities can be considered “complex adaptive
systems”. That is, they are comprised of a network of spatially distributed agents that respond
concurrently to the actions of others. The coherent behavior of the system then can arise from a variety
of interactions between agents as well as with their local environment. Microbial populations and
communities often exhibit much larger changes in biomass, composition, and activity than do plant and
animal populations. These complex, nonequilibrium dynamics are driven by the temporal frequency
of changes in both important environmental factors, the physiological responses of individual cells,
and also the interactions among cells. The characteristic time for these processes can vary over 9 orders
of magnitude from an enzymatic reaction to seasonal community succession (Figure 1). Systems with
this level of complexity require simulation models to codify our current level of understanding of
system dynamics. In the literature, there are a variety of mathematical approaches. In general, the
level of complexity and details of models would be determined based on the goal of simulation and
the time and length scales of target systems. Thus, the suitable choice of a framework requires the
correct understanding of the strength and limitation in its application.

 

Figure 1. Characteristic time and length scales for various biological processes.

In this article, we review various mathematical approaches developed for simulating microbial
community dynamics. While a number of published studies have offered insightful perspectives on
this subject (e.g., [12–18]), the present review is unique in the following aspects. First, instead of being
confined to specific applications, we cover a wide range of frameworks developed for modeling diverse
systems such as biofilms, biogeochemical cycling (in soil or ocean), human microbiota, biotechnology
processes, etc. Second, this review is focused on comparatively understanding methodologies. Thus, we
discuss the structural characteristics of various frameworks including top-down methods, bottom-up
formulations, and their integration. Third, beyond the frameworks most frequently used for microbial
community modeling, our discussion extends to those that are less common but potentially useful; the
latter include population balance models, thermodynamically-based models, and cybernetic modeling
approaches. Finally, we provide a systematic understanding of various modeling frameworks by
classifying them according to modeling units and the ability to describe heterogeneity. Thus, we
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organize this article as follows. After providing brief backgrounds (Section 2), we discuss different
forms of modeling frameworks: Supra-organismal approaches (Section 3), population-based models
(Section 4), formulations to account for spatial and population heterogeneity (Section 5), and advanced
simulations based on model integration (Section 6).

Despite their usefulness, some mathematical methods could not be included in this review. To say
a few, they include (i) tools for studying the processes and factors controlling microbial colonization
and community assembly on a macro-scale (e.g., the approach by Stegen et al. [19]) and (ii) models for
simulating cell-to-cell communication (such as quorum sensing) on a micro-scale (e.g., as described
in [20]).

2. Background Information

Before embarking on a detailed discussion of individual approaches, we define modeling units for
classifying models into different categories and symbolic notations to be used throughout this article.

2.1. Modeling Units and Model Classification

Modeling units represent the basic entities that are modeled as interacting with each other within
the microbial communities and their environment (or host). Predicted outcomes of interactions between
the modeling units are community-level functions and properties. In this regard, we may call modeling
units as “interacting units”. Depending on the choice of these units, the community dynamics can be
simulated at different resolutions. Below, we address various modeling units commonly used in the
literature: Individual cells, species (or taxa), functional guilds, or the community as a whole.

At a coarse level, some researchers have chosen the microbial community as a modeling unit,
whereby a microbial community is treated as a supra-organism (or also called super-organism)
performing various functions. From this angle, the microbial community can be viewed as a collection
of genes and reactions, rather than a set of distinct species; consequently, models based on this concept
describe the dynamics of microbial communities in terms of interactions between genes/reactions,
rather than between species. The same abstraction has been used in comparative metagenome analyses
that examine the entire set of genes of the community without identifying the gene’s species of
origin [21].

More frequently, the dynamics of microbial communities have been simulated in terms of
interactions between species (or taxa), whose functions can be distinct or redundant each other.
Work in this area has been accelerated by the capacity to determine community composition and
species abundance using advanced metagenomics and bioinformatics techniques. Many researchers
take advantage of these species or taxa-level information for modeling. Alternatively, a group of
species that possess functional similarities can be taken as the modeling unit. Metabolic functions of
species are similar in each functional guild, but distinct from those of other groups. For example, in
biogeochemical modeling based on this concept, functional guilds represent various metabolic groups
associated with distinct electron donors and acceptors, e.g., catabolizers of polysaccharides, proteins,
and monomeric organic C, and respiratory guilds of different types.

Emergent properties of microbial communities would be best studied by considering interactions
at a single-cell level. Taking individual cells as the modeling units is justified considering that internal
states and phenotypic traits of individual bacterial cells can be highly heterogeneous in populations,
even in isogenic ones [22]. For example, a recent experimental study [23] showed that the internal state
(i.e., the level of internally stored nutrients) of cells can vary significantly in a population.

In summary, supra-organismal approaches take the whole community as the modeling unit that
interacts with environment. In population-based approaches, species (or taxa)/functional guilds are
taken as interacting units. Variation in the population can be accounted for by using more rigorous
frameworks such as population balance model (PBM) [24] and individual-based model (IbM) [25]. The
most pronounced difference between them is that PBMs treat each population as a continuous phase,
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while IbM describes it as a collection of discrete particles. Figure 2 shows a broad classification of
mathematical models based on the modeling (or interacting) units addressed above.

Figure 2. Classification of community models depending on interacting units. Individual shapes
represent independent interacting units. Variance of state and functions across interacting units is
represented by different colors. Color gradient in population balance model implies the heterogeneity
in states and functions within the interacting unit. Representation of microbial communities using a
fish shape is inspired by Scheffer et al. [26].

2.2. Mathematical Notations

For a systematic discussion, we define symbolic notations that are consistently used
across different mathematical models. Notations unlisted below will be explained individually,
wherever appropriate.

Vectors and matrices:

• c = [c1, c2, . . . ,cI]: The vector of concentration of J extracellular metabolites (such as substrates
and produced metabolites) in environment

• rk = [r1,k, r2,k, . . . ,rJk,k]: The vector of Jk fluxes (or reaction rates) for species k
• Sk: (I’k × Jk) Stoichiometric matrix of species k
• x = [x1, x1, . . . ,xK]: The vector of relative abundance or biomass concentration of K species

Indices:

• I = [1,2, . . . ,I]: Indices of I metabolites in environment
• I‘k = [1,2, . . . ,I’k] Indices of I’k intracellular metabolites for species k
• Jk = [1,2, . . . ,Jk] Indices of Jk fluxes for species k
• K = [1,2, . . . ,K]: Indices of K species

Scalars:

• Yi,k: The yield of metabolite i for species k
• Yx,k: The biomass yield of species k
• μk: The growth rate of species k
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3. Supra-Organismal Approaches

Supra-organismal approaches focus on the interactions of the whole community with the
environment without considering cell boundaries. These models have been applied to many domains
of life [27] including insect colonies and viruses, as well as microbial species, and are particularly
applicable for the analysis of large-scale complex communities, such as those found in human, soil,
and marine microbiomes, the number of whose member species is tremendous. An important
advantage of taking supra-organismal approaches is that diverse modeling approaches developed
for analyzing single organisms are readily applicable [28], which include stoichiometric [29,30] and
dynamic modeling frameworks [31,32], as discussed below.

3.1. Stoichiometric Model-Based Analysis

A metabolic network contains a set of metabolites, their physical transport (into and out of
an organism or a cell), and intracellular enzymatic biochemical conversions. The network can be
represented as a graph that shows the connection of all metabolites (nodes) through reactions (links or
arrows) or as a list of mass balance equations around metabolites (see Figure 3 as a tutorial example).

 
Figure 3. Graphical and mathematical representations of metabolic reactions occurring in a cell.

At steady state, the mass balances of intracellular metabolites (i.e., m1 and m2 in Figure 3) are
given as a set of algebraic equation as follows (Figure 3):

Sr = 0 (1)

Where S is the (I’ × J) stoichiometric coefficient matrix and r is the column vector of J fluxes. Without
loss of generality, we assume that

0,jr j J

(by splitting reversible reactions into irreversible pairs). Together, the mass balances given in Equation
(1) along with appropriate flux bounds are called stoichiometric models. Metabolic network models
are often represented in a standard format called the Systems Biology Markup Language (SBML).

As I’ < J in general, the solution vectors r satisfying Equation (1) form a convex polyhedral
cone in a flux space (thus, called flux cone). Using stoichiometric model-based methods such as flux
balance analysis (FBA) [29] and elementary mode (EM) analysis [30], it is possible to estimate a specific
metabolic state of an organism through the identification of relevant metabolic pathways presumably
active in a given steady state. Figure 4 shows how FBA and EM analysis perform differently. FBA
assumes metabolism in a single microbe to be represented by an optimal pathway that maximizes the
production of biomass (or any other metabolites including ATP). FBA obtains an optimal pathway
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by solving a linear programming (LP) problem subject to Equation (1) and inequality flux bounds.
On the other hand, EM analysis identifies edge vectors (i.e., EMs) of the flux cone because convex
combinations of all edge vectors can represent any feasible solutions within or on the cone. The full set
of EMs is simultaneously computed using nullspace-based methods (e.g., [33]), but it is also possible to
sequentially enumerate them using mixed integer linear programming (MILP) [34], a standard method
for solving optimization problems in which some of the variables are constrained to be integers. Recent
advances in numerical implementations [35,36] led to the computation of up to millions of EMs. A
minimal set of EMs that represents a specific metabolic state can systematically be chosen using the
methods reported in [37,38]. Nonhomogeneous constraints can be accounted for not only in FBA
calculations, but also in EM analysis [39].

 

Figure 4. A schematic illustrating the concept of flux balance analysis (FBA) and elementary mode
(EM) analysis.

Stoichiometric modeling approaches addressed above can be applied for the analysis of a microbial
community based on the supra-organismal concept if a metabolic network is reconstructed for the
whole community. A community-level metabolic network can be reconstructed as described by
Greenblum et al. [40] in their in silico study of the human gut microbiome. Using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database, metagenomic sequence reads were annotated to identify
enzymes, the entire set of which found in any sample was then used to construct community-level
metabolic networks for different conditions. While they focused on topological analysis as the resulting
networks were noisy and inaccurate, community-level networks obtained as such are readily amenable
to stoichiometric model-based analyses such as FBA or EM analysis.

Taffs et al. [41] provided an example of analyzing a community-level network based on EM
analysis. The community considered therein contains three functional guilds, including unicellular
cyanobacteria related to Synechococcus spp., filamentous anoxygenic phototrophs related to Chloroflexus
and Roseiflexus spp., and sulfate-reducing bacteria. As individual networks for guilds were previously
available, the community-level network was generated by superimposing them. This method (named
as a pooled approach) formulating a set of functional guilds as a single network was compared
with two other (i.e., compartmentalized and nested) approaches that consider individual networks
separately. While the latter two approaches allow more detailed analysis on a microbial community by
providing information on inter-guild interactions, the pooled approach is also useful for initial and
exploratory analyses of complex or poorly understood communities as addressed by the authors.

3.2. Metabolic Function-Based Dynamic Modeling

Stoichiometric analysis of metabolic networks helps to estimate the flux distribution within
the community in a given environment. Simulation of the dynamic response of the community to
environmental variations requires the use of modeling frameworks that dynamically adjust to the
environment. For example, one would develop an adaptive model of a supra-organism based on
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primary metabolic functions performed by the community without knowing who provide those
capabilities. A metabolic network of the community can be constructed with a focus on those primary
metabolic functions catalyzed by a set of functional genes of interest (Figure 5).

 

Figure 5. Function-based dynamic modeling.

For the toy system considered in Figure 5, the dynamics of the community as a supra-organism
can then be modeled as follows:

3

,
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x j j
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dx x Y r
dt (2)
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i j j
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dc x Y r i
dt (3)

Where Yx,j and Yi,j denote the yields of biomass and extracellular metabolite ci through rj By
focusing on a small number of key metabolic functions only, this approach reduces the difficulty of
model identification generally arising when one considers a detailed structure of a metabolic network.

Along this line, Reed et al. [42] recently presented a gene-centric approach where they accounted
for the dependence of reactions rj’s on the level of functional genes, including the dynamic response of
the function of each respective gene. That is, in the above above example,
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j j j

j j

c
r k e j
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E j j
j j

de c
k e j

dt K c
 

(5)

Where ej represents the abundance of functional gene that catalyzes rj and λ denotes the mortality
rate constant of a gene. In the case study of nitrogen cycling in the Arabian Sea, they developed a model
based on eight functional genes associated with various metabolic functions such as aerobic respiration,
nitrate reduction, nitrite reduction, dissimilatory nitrite reduction to ammonium, sulfate reduction,
sulfide oxidation (coupled to nitrate reduction), aerobic sulfide oxidation, aerobic ammonia oxidation,
anaerobic ammonium oxidation, and aerobic nitrite oxidation. Biomass yields were estimated from
thermodynamic energy information, while stoichiometric coefficients of other metabolites were
determined from elemental and electron balances.
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It is challenging to apply the functional gene-centric approach to complex ecological systems
containing diverse sets of electron donors and acceptors that represent alternative choices for
exploitation by microbial communities. Their competitive relationship is often shown as a sequential
consumption pattern. In many cases, including Reed et al., those patterns are simulated by designing
the kinetics of rj’s as complex forms and/or additionally considering inhibition terms, but the
incorporation of cellular regulatory actions would facilitate model development in a more systematic
way. In this regard, while not applied yet, the cybernetic approach developed by Ramkrishna and
coworkers [43] is well suited for simulating the community dynamics based on functional gene-centric
approach. The cybernetic approach hypothesizes that cellular metabolism is optimally regulated to
achieve a certain objective function that is related to actual rates rather than yields. Based on optimal
control theory, the cybernetic approach then provides accurate predictions of cellular responses
to environmental and genetic perturbations, without relying on mechanistic details of regulation
(see [44–49] for examples of cybernetic modeling).

The successful application of the gene-centric approach addressed above requires known
associations between functional genes and reactions. This can be a limitation because some
of potentially important functions may be missed due to metagenomic coverage. Nevertheless,
the dynamic simulation of microbial communities based on a supra-organismal concept is an
attractive alternative when it becomes difficult to perform the full dynamics analysis at an individual
species level.

4. Population-Based Models

Most commonly, the microbial community dynamics have been simulated at the level of individual
populations of species or guilds. In these population-based modeling approaches, the internal states
and phenotypic functions are assumed to be homogeneous across cells within each population. One of
the main issues therein is how to account for interspecies (inter-guild) interactions in a direct or indirect
(i.e., through environment) way for the prediction of community structure and functions. This section
presents (i) static methods for inferring interspecies interactions and (ii) approaches for predicting
community structure in a given condition and its dynamic change in response to perturbations. For
the sake of simplicity, we confine our discussion to well-mixed environments. The issue of spatial
heterogeneity is handled in a follow-up section.

4.1. Inference of Microbial Interactions

In a community, microbes may exert a positive, negative, or neutral impact on each other. The
positive (negative) impact of the species A on the species B implies that B grows better (worse) in
the presence of A. The relationships between species can be bidirectional, if the impact is mutually
positive (mutualism if obligatory, or synergism if nonobligatory), mutually negative (competition), or
positive on one side but negative on the other (antagonism); unidirectional, if the impact on one of the
two is neutral, regardless of whether the impact on the other is positive (commensalism) or negative
(amensalism); non-directional, if the impact on each other is negligible or insignificant (neutralism)
(Table 1) [50]. Neutralism is rarely found in natural microbial communities [51].

254



Processes 2014, 2, 711–752

Table 1. Forms of microbial interactions: The positive, negative, and neutral impact of one species on
another is represented by ⊕, �, and �, respectively.

Relation Examples

Bidirectional

Mutualism or
synergism ⊕⊕

Biofilm formation to confer antibiotic resistance to
the community members [52,53]
Syntropy (or cross-feeding): Hydrogen transfer
between sulfate reducers and methanogens [54]

Competition �� Species with similar niches: Paramecium aurelia and
Paramecium caudatum [55]

Antagonism ⊕� Predation: Ciliates feeding on bacteria [50]
Parasitism: Bacteria and bacteriophages [50]

Unidirectional
Commensalism ⊕�

Acetobacter oxydans oxidizing mannitol to produce
fructose, which is used by other species such as
Saccharomyces carlsbergensis that can metabolize
fructose, but cannot mannitol
(http://www.eoearth.org/view/article/171918/)
Mycobacterium vaccae metabolizing cyclohexane to
cyclohexanol, which is subsequently used by
Pseudomonas species
(http://www.eoearth.org/view/article/171918/)

Amensalism ��
Lactobacilli producing acids that lower the pH of the
surrounding environment [50]
The bread mold Penicillium secreting penicillin that
kills bacteria [56]

Non-directional Neutralism ��
Growth of yogurt starter strains of Streptococcus and
Lactobacillus in a chemostat [51]: The populations of
these strains do not change much regardless of
whether cultured separately or together

The nonrandom co-occurrence patterns of species observed in ecosystems may be interpreted
that the community structure is shaped primarily by microbial interactions [57]. Basic microbial
relationships can be studied by comparing the growth rates (or biomass concentrations) from
individual-growth and co-growth environments, respectively. Experimental identification is often
ineffective, however, due to the difficulty in isolating individual organisms for axenic growth
experiments. Alternatively, we may use theoretical tools such as network inference methods or
metabolic network analyses.

4.1.1. Network Inference

Advanced metagenomics and bioinformatics techniques allow for the identification of member
species in the community and estimates of their relative abundances and functional capabilities [58].
“Shotgun” methods survey genomic content of a microbial community directly from the natural
environment, without having to isolate individual species for lab cultivation. Sequence data can be
segregated into bins representing distinct Operational Taxonomic Units (OTU), which may mean
an individual organism or species, or a group that shares a certain set of observed characters.
Two classes of binning processes include similarity-based (or align-based) and composition-based
strategies [59]. Similarity-based binning searches for sequence similarities between samples and
reference genomes in existing public databases. Composition-based methods cluster metagenomic
sequences into different bins using intrinsic, organism-specific characters of the DNA sequence, such
as GC content, dinucleotide frequencies, and codon usage bias. Bins can be analyzed to provide
information about community composition and member abundances. In some case, near-complete
genomic information can be recovered for some member populations.

Microbial relationships can be inferred from species abundance data. Based on the traditional
perceptions, we may refer to the relationship of a pair of organisms as competitive (or negative) if their
abundances across samples are anti-correlated despite they share environmental niches; as cooperative
(or positive) if they show similar abundance pattern. The network of microbial associations can be
predicted in a systematic way using the techniques termed as network inference. Similarity-based
methods infer pairwise relationships by analyzing the co-occurrence/exclusion patterns of two
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species based on similarity scores. More complex interactions between more than two species can be
captured using other techniques such as regression-based and rule-based methods. Regression-based
methods represent the abundance of a certain species as a function of the abundances of other species.
Rule-based methods initially enumerate all logically possible rules for the coexistence/exclusion of
species as supported by presence-absence data sets. Only significant rules are retained through the
subsequent filtering processes. Faust and Raes [50] provides an excellent review on this subject.

The identified relationships between the member species can be represented as a (microbial
association) network composed of nodes (or vertices) and links (or edges). Nodes and links represent
species (or taxa) and their interactions, respectively. The relationships between species are often
asymmetric, i.e., the presence of one species can impact on the population of another, but not vice
versa. The direction and strength of microbial interaction can be represented by an arrow and its
thickness, respectively. Environmental variables can also be incorporated into the network by treating
them as additional species. This expanded network reveals the relationship between species and
environmental traits. For example, consistent co-occurrence between certain species and nutrients
(e.g., nitrites and nitrates) indicates the involvement of specific microbes in biogeochemical cycles [60].

Like other robust networks (including World Wide Web, protein-protein interactions, cellular
metabolic systems, and human social networks), microbial association networks are scale-free [50].
The scale-free network is characterized by a majority of species with only a few links (i.e., low-degree
nodes) and a few hub species with many links (i.e., high-degree nodes). The degree distribution
of a scale-free network follows a power law, a semi-log plot of which gives a straight line [61,62].
Scale-free networks are robust against random deletion of nodes, but this tolerance comes at the cost
of extreme vulnerability to targeted removal of hubs [63]. This implies that a microbial community
may malfunction when losing a hub species, but may perform normally after the loss of a functionally
less-connected species. A group of species that are densely connected with each other may be
interpreted as having overlapping niches [50]. An interesting and unresolved issue is the ecological
role of hub and non-hub species.

Using the methods addressed above, microbial relationships can be systematically inferred from
species abundance data. Microbial associations derived as such are condition-specific, meaning
that information on microbial relationship obtained from one condition may not valid in another
condition, as the structure and properties of microbial association networks can significantly be
changed according to environmental conditions. Also, they do not provide biological reasons why
certain species interact in a specific way while others do not. To gain a more mechanistic understanding,
we need physiology-based tools such as the ones described in the following.

4.1.2. Stoichiometric Modeling of Multiple Species

Stoichiometric metabolic network-based analyses not only provide mechanistic insights on species
interactions with each other and with their environment, but also estimate flux distributions within
individual species and the community. Stoichiometric model-based analysis discussed in Section 3.1
can be used to model individual species/taxa in microbial communities. Figure 6 summarizes the
process of developing a stoichiometric model for a multispecies system.
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Figure 6. Procedures of developing a stoichiometric model for a simple microbial consortium.
The metabolic networks and stoichiometric models for individual species are reconstructed based
on species-level genes assigned through the binning process. The size of the resulting community
stoichiometric model is increasing in proportion to the number of species.

In the pioneering work by Stoylar et al. [64], FBA was applied to analyze syntrophic relationship
between sulfate-reducing bacteria (Desulfovibrio vulgaris) and methanogens (Methanococcus maripaludis).
The community metabolic network combines individual species networks by treating them as
internal compartments. They estimated interspecies metabolite flows, together with intracellular flux
distributions in each organism by maximizing the weighted sum of species biomasses. Freilich et al. [65]
used the method of Stoylar et al. [64] to predict metabolic interactions between two species for the
6903 pair-wise combinations of 118 genome-scale metabolic models of bacteria. They compared the
biomass production rates between co-growth (CG) and sum of individual growth (SIG) to classify the
interactions as competitive (if CG < SIG), cooperative (if CG > SIG), or neutral (if CG ≈ SIG). They also
determined winners and losers for competitive pairs and givers and takers for cooperative pairs, along
with the level of competition and cooperation.

Klitgord and Segre [66] extended the method by Stoylar et al. (by artificially introducing additional
compartment that represents environment shared by different species) to explore interspecies
metabolite exchanges for various pairwise combinations of seven bacterial species. Their algorithm
not only recapitulated known cross-feeding interactions, but also discovered new sets of metabolites
potentially exchanged. They also showed how to computationally identify culture media that lead
to commensalism or mutualism for a given set of organisms. Wintermute and Silver [67] developed
a computational framework based on the minimization of metabolic adjustment (MOMA) [68] to
investigate the interactions in synthetic pairs of 46 Escherichia coli auxotrophs. As a result, they observed
synergism in 17% of 1035 computationally identified pairs. Beyond microbial consortia, these joint
stoichiometric modeling techniques have also been applied to simulate metabolic interactions between
different organs in human [69] or between different cell types in an organ [70].

FBA-based formulation was applied to microbial communities under the name of community
flux balance analysis (cFBA) [71]. Zomorrodi and Maranas [72] proposed a generalized computational
platform for implementing cFBA. Their framework termed OptCom formulates a bi-level optimization
problem where both community-level and individual cell-level objectives are maximized/minimized.
Metabolic fluxes are estimated from the tradeoffs of those objective functions at individual species
and whole community levels. Experimental data for the community (such as composition) and
organisms (such as uptake rate), if available, can be incorporated to improve the quality of predictions.
Zomorrodi et al. [73] recently developed a dynamic version of OptCom (called d-OptCom), which we
discuss in Section 6.3.

The compartmentalized approach of Taffs et al. [41] used the same type of expanded networks
(i.e., containing individual networks as compartments) for the EM analysis. The computational burden
significantly increases, however, as the number of EMs undergoes combinatorial explosion with the
network size. Thus, they alternatively suggested the nested approach, which first analyzes each of
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individual networks (which is computationally less demanding), and subsequently, examines the
potential interactions between individual networks based on ecologically relevant pathways.

It will be difficult to extend metabolic network-based analysis to complex ecological systems
containing lots of uncharacterized species, whose genetic and metabolic information are not well
known. Analysis of an expanded community network constructed by combining genome-scale
networks of individual species becomes also computationally demanding when the number of species
is significantly large. This is true with the LP-based cFBA as the expanded number of reactions leads
to huge memory requirement. While the current practice of these bottom-up analyses is therefore
limited to simple consortia composed of a few species/guilds, their extension to more complex
systems will be feasible in the future with the rapid progress of metaomics technologies and related
experimental/computational methods.

4.2. Nonlinear Regression Models

In general, the dynamics of microbial communities are simulated using differential equation-based
models. However, if one’s interest is to predict how microbes are assembled in a given environment and
how the community composition changes across different conditions, non-differential equation-based
approaches would also be useful. One approach along this line is to develop algebraic relationships
between species abundances and environmental conditions using nonlinear regression techniques.
Abundance of each species in the community can then be formulated either as a function of
environmental variables only or in terms of both environmental factors and the abundance of
other species.

Suppose that we have collected sets of species abundance data across different locations
characterized with specific environmental traits. Alternatively, we may gather data on the temporal
change of microbial community composition (at a fixed location) driven by seasonal climate variations.
These data provide an opportunity to build a predictive model that combines species occurrence (or
abundance) and environmental conditions. In the case that mechanistic information on microbial
assemblage in response to external stimulations is unknown or difficult to collect, the relationship
between species and environmental factors can be established through nonlinear algebraic equations.
That is, for the community composed of K members, the abundance of the Kth member (xk) may then
be represented as follows:

xk = fa,k(c,p), k = 1, . . . , K (6)

where the vectors c and p denote environmental variables and parameters. Once the functional forms
of fa,k’s and the set of parameters p are suitably identified, it becomes possible to predict species
abundance in a new condition by providing environmental factors therein. Bioclimatic models often
use this approach to predict the species abundance as a function of environmental conditions and its
variation across a landscape, and are also called different names including ecological niche models
and species distribution models [74].

Larsen et al. [75] proposed an extended form by incorporating biotic interactions, i.e.,

, ( , , ; ), 1, ,k a k kx f x k Kx c p x
(7)

Here, the abundance of species k is described as being dependent on the abundances of other
species, as well as environmental factors. They reported improved predictions of community structure
in comparison to the cases excluding biotic interactions.

In general, sufficiently large datasets may be required to develop nonlinear regression models.
Major challenges in developing them such as the one in Equation (7) include (i) the handling of a
large number of potential interactions between species and environmental factors, which will be
more problematic for complex communities; and (ii) the suitable formulation of nonlinear regression
equations for each species. To focus on key interspecies reactions, the methods discussed in Section 4.1
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(i.e., network inference and/or stoichiometric model analyses) would be critically useful. The design
of appropriate functional forms can be facilitated by the use of specially designed software package
such as Eureqa developed by Schmidt and Lipson [76]. Given sets of experimental data, Eureqa is able
to identify the simplest form of a mathematical function that can best describe their correlation using
symbolic regression method.

4.3. Thermodynamically-Based Models

Thermodynamically-based models potentially provide more mechanistic predictions on the
change of community structure across conditions. Most researchers are familiar with the use of kinetic
approaches, but thermodynamic modeling differs in the following several ways. Kinetics deals with
absolute concentrations, while thermodynamics deals with relative concentrations. In kinetic models,
time is modeled parametrically while in thermodynamic models, time can sometimes be modeled
non-parametrically; that is, under certain assumptions thermodynamics can provide information on
the rank order of reactions as they occur in time.

In most applications of thermodynamics to mixed microbial systems (including biorefineries,
water systems, marine systems and biogeochemical remediation sites), the focus has been to
predict or understand product formation without explicitly modeling all details of the chemical
transformations that lie between initial environmental compounds and oxidized metabolites excreted
by the environment. This is a task that thermodynamics is well suited for, since the thermodynamic
functions of free energy and entropy are state variables whose values are independent of the path taken
between initial reactants and final products. Biogeochemists, for example, typically use databases
of geochemical reactions to model geochemical processes. Since biological oxidation and reduction
can also occur, it makes sense to supplement databases of geochemical reactions with reactions
mediated by microbial communities. Istok et al. [77] supplemented tables of geochemical reactions
with thermodynamic-based growth equations of microbes and then predicted laboratory and field
interventions for the bioreduction of uranium. Likewise, Larowe et al. [78] used thermodynamic
modeling to evaluate and compare the driving forces responsible for microbial anaerobic methane
oxidation across representative marine ecological sites and different consortia. The analysis showed
that consortia with significant coupling to sulfate-reducing organisms have sufficient thermodynamic
driving forces for methane oxidation.

The ability to predict product yields from models is also an important goal for biotechnology
applications. Rodriguez et al. [79] used thermodynamically-based models to predict product yields
from glucose fermentation in mixed cultures. While the nature of the modeling did not distinguish
boundaries between individual species, the approach differed from those mentioned above in that
intermediate reactions of metabolism were modeled and not just summary reactions. This approach is
becoming popular for modeling situations in which only a metagenome is available.

The modeling of metabolism in detail for communities of organisms using thermodynamics is
increasing and it is worthwhile to elaborate on the methods and assumptions used in these models.
For an isolated reaction

1

1

k
k

A B  
(8)

the relationship between thermodynamics and flux has been inferred to be [80],

1

1

log JG RT
J (9)

where G, R, and T denote Gibbs free energy, ideal gas constant, and temperature, and J+1 and J−1 are
forward and reverse flux values of the reaction as defined below, i.e.,
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Some authors appreciate that this stated relationship is an approximation based on reversibility
and the validity of the use of Equation (9) depends on the context in which it is used. If one assigns
flux values based on an experimentally or computationally determined free energy change,
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RTJ e
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(11)

then one is using the assumption of detailed balance. This relationship is only strictly valid at
equilibrium for an isolated system. Even for an individual reaction with no change in free energy
in a coupled reaction system at non-equilbrium, there is no physical requirement for the reaction to
obey detailed balance. Likewise, if one assigns free energy values based on observed fluxes from a
non-equilibrium system using Equation (9), then the calculated free energy values will not be correct.

Even though the relationship does not strictly hold for non-equilibrium systems, the assumption
of detailed balance can be a useful tool if used carefully. A case in point, Noor et al. [81] have used
Equation (11) as a framework for evaluating flux statistics at individual reactions. They pointed
out that reactions near equilibrium act as kinetic bottlenecks in pathways that are overall far from
equilibrium. This is a valid use of the assumption of detailed balance in that reactions at equilibrium
in an otherwise nonequilibrium system are those for which the assumption is not severe.

Another widely used thermodynamic concept in metabolic modeling, whether single
organisms [82] or communities of organisms [83], is entropy production. In flux-based modeling,
entropy production is used as a constraint to reduce the solution space to a set of reactions that are
more likely to be feasible ones. Using the net flux of a reaction, for example Jnet = J+1 − J−1 in the
example above, the constraints are generally stated as,

JnetΔG ≤ 0 (12)

The concept is that that entropy production for a spontaneous process must be positive, or
analogously as stated above that the rate of free energy production must be nonpositive. Strictly
speaking, while the concept that entropy production for a spontaneous process must be positive is
correct, we know from statistical mechanics that it applies to the overall process and not necessarily to
individual reactions. Fluctuations that decrease entropy production are well known and are an active
area of research. Nevertheless, just as in the case of Equation (11), the assumption that Equation (12)
applies to individual reactions can be a useful tool when used with care.

The concept of thermodynamics as the basis for natural selection has considerable theoretical and
empirical justifications [84–89], and consequently modeling approaches have been developed that use
maximum entropy production as either an optimization goal or simulation master equation. Zhu et al.
have developed a flux-based approach that uses entropy production as the optimization goal [82].
While several flux-based applications include constraints based on Equations (9) to (12), this approach
selects the thermodynamically most optimal solution as the most likely one.

Taking this concept a step further, new methods have been reported [90,91] that use statistical
thermodynamics directly to solve a thermodynamic master equation similar to the kinetic master
equation approach developed by Gillespie [92] and others. The kinetic master equation is a stochastic
equation giving the probability of a state as a function of time. In the thermodynamic master equation,
if the rates of the reactions are such that the system is thermodynamically optimal, then time can be
modeled non-parametrically (e.g., rank ordering of time-dependent reactions). The master equation is
based on an open system with the probabilities of individual reactions being determined by changes
in the chemical potentials. The advantage of this approach over a flux-based approach that contains
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thermodynamic constraints is that approximations such as Equations (9) to (12) are not required
and metabolite concentrations and energy requirements of pathways can be determined directly.
The caveat, as mentioned above, is that if one does not have rate constants to work with, then
some applications may need to assume that the rates of the reactions are such that the system is
thermodynamically optimal.

4.4. Trait-Based Modeling

While species are considered the most natural units to describe the diversity and dynamics of
microbial communities, taxonomic or phylogenetic distinction among species can become obscure
as microorganisms often undergo rapid genetic changes through gene loss and gene acquisition via
horizontal gene transfer. Thus, trait-based ecology characterizes organisms in terms of their functional
properties by mapping organism-based information into a functional space [93]. The dynamics of
microbial communities is then analyzed by focusing on the traits as the entities that mediate the
microbial interactions with each other and the environment. Microbes can be classified by various
traits such as morphological, behavioral, and biochemical similarities. The trait-based classification
is thus taxon independent, i.e., it may lead to the combination of different species as the same group
or the separation of the same species (if traits vary therein) into different groups. As modeling units,
therefore, trait-based models often take a group of organisms (such as functional guilds) that share
similar traits. The direct link of biological traits to environments makes trait-based models widely
applicable to modeling behavior of a variety of living organisms in ecosystems [94].

Trait-based models have been used for the steady state and dynamic analyses of diverse
ecosystems. For example, this methodology was used to predict the relative abundance of species
for plant community assemblies in given environmental conditions. The review by Laughlin and
Laughlin [95] is an excellent source regarding this subject. They compared two frameworks: The
maximum entropy (Maxent) model (or Community Assembly by Trait Selection, CATS) [96,97] and
the Traitspace model [98]. In both approaches, the community-level trait is represented as the sum of
individual species trait. This generally leads to underdetermined systems with more unknowns (i.e.,
abundances) than equations (i.e., algebraic relations of traits between the community and individual
species). The Maxent model estimates the relative abundance of species by maximizing the evenness
(quantified as the entropy function) of their distribution. Thus, the Maxent solution has a tendency
of broadening the distribution of species abundance. In contrast, the Traitspace that is based on
Bayesian theory predicts an extremely low probability of abundances for functional groups that do
not pass through so-called environmental filters. Thus, the resulting Traitspace solution contains a
minimal number of species for a given condition. These approaches were used for the analysis of
plant community assembly, but the concepts per se are interesting enough to be applicable to microbial
communities as well.

Trait-based dynamic models, which consist of differential equations that represent the rates of
change of nutrients, organic matter pools, populations of functional guilds, etc., have been applied to
large-scale ecosystems, e.g., for studying ocean or subsurface biogeochemistry. In situations where
phenotypic traits are distinct among functional guilds, the change of community composition in time
can be predicted from the following population growth equations for K functional guilds, i.e.,

, , 1, ,k
k x k k

dx x Y r k K
dt (13)

Where rk denotes the nutrient uptake rate of functional guild k and Yx,krk means its growth rate.
Note that the reaction rate rk is a function of environmental variables, implying that Equation (13)
describes species interactions as being made through the environment by competing for the nutrients
or cooperating through metabolite exchanges. Balances of environmental variables are basically the
same as Equation (3), i.e.,
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Along this line, Jin and Roden [99] developed a biogeochemical model of batch sediment slurry
to examine the influence of metabolic degradation of ethanol on the chemistry of anoxic subsurface
environment. They grouped microorganisms into eight functional groups based on their metabolic
capability of utilizing electron donors (ethanol and its intermediate products including acetate and H2)
and acceptors (such as nitrate, ferric iron, sulfate, and bicarbonate). Thy then modeled twelve redox
reactions that could contribute to ethanol degradation as being catalyzed by specific functional groups.

Bouskill et al. [100] introduced a microbial community trait-based modeling framework
(MicroTrait) to study the nitrification (i.e., the process of oxidizing ammonia to nitrite and then nitrate)
in the microbe-mediated nitrogen cycle. They simulated the nitrification process based on the eleven
functional guilds: Seven Betaproteobacterial ammonia oxidizing bacteria (AOB), three nitrite-oxidizing
bacteria (NOB), and one ammonia-oxidizing archaea (AOA). The model was then used to predict
the diversity of nitrifying functional guilds and the rates of ammonia oxidation and nitrous oxide
production across a range of environmental conditions.

4.5. Lotka-Volterra Model

The use of Lotka-Volterra (LV) type of models is an interesting alternative to simulate microbial
population dynamics. The model was initially proposed by Lotka to analyze the predator-prey
dynamics, while Volterra independently investigated the equations to explain oscillations in fish
populations in the Adriatic. In addition to animal ecology, this model has been used to characterize
the microbial population dynamics resulting from competitive and mutualistic interactions [101]. The
generalized LV (gLV) equations are able to describe various possible relationships between arbitrary
numbers of species. The gLV model represents the population growth dynamics of species k as follows:

1
, 1, ,

K
k

k k kk k
k

dx x a x k K
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Where akk’ denotes the interaction strength between species k and k’. Unlike trait-based models
discussed in the previous section, the gLV model directly considers the impact of the presence of
other species on the growth of a certain species. The coefficients aij can be positive or negative or zero
depending on the relationship between the two species. One the other hand, the gLV model above
does not consider indirect species interactions through metabolite sharing or exchange.

Recently, the gLV equations were used to investigate microbial interactions in the human gut
(e.g., [102,103]) and in a cheese microbial community [104]. In the study of the dynamics of intestinal
microbiome structure, Stein et al. [103] extended the gLV equations by adding additional term
describing the effect of environmental variations, i.e.,
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where the last term on the right hand side of Equation (16) represents the impact of external
variations on the growth of species k.

4.6. Evolutionary Game Theory

Classical game theory analyzes situations where the success of one’s choice (i.e., strategy) is
influenced by the choices of other players. Fundamentally, this strategic game requires the players to
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make optimal choices by rationally analyzing all probable outcomes that would result from different
combinations of strategies. A typical example for such strategic games is the prisoner’s dilemma.
This concept of rationality has been used for the analysis of economic and social systems.

Without relying on the rationality of players, evolutionary game theory founded by the work of
Maynard Smith and others [105] simulates the dynamic evolution of a certain strategy in a competing
population, and evaluates how good it is. The success of a strategy is not only determined by its own
quality, but also determined by the frequency (i.e., relative abundance) of other competing strategies
in the population. This frequency-dependent selection concept implies that the fitness landscape is
altered as the population structure and member abundance change with time [106].

Selection dynamics are typically represented using the following replicator equation, i.e.,

, ( ) ( ) , 1, ,k
k g k g

dx x f f k K
dt

x x  
(17)

Where xk is the frequency or relative abundance of species k, fg,k is the fitness of species k, and f g

is the average fitness represented as follows:
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Equation (17) implies that the relative abundance of species k increases (decreases) if its fitness
fk(x) is greater (less) than the average fitness of the population f g(x). Interestingly, the replicator
equation is mathematically equivalent to the gLV equation: A replicator equation with n strategies can
be transformed into a gLV equation with n − 1 species [105].

To provide an understanding of how evolutionary game-theoretic models are formulated, we
consider a simple game between two strategies–say A and B. Figure 7 shows how fitness functions for
players A and B, and the average fitness can be represented from the payoff matrix. The four entries
in the payoff matrix are interpreted as follows: The player A gets payoff cAA when playing against A
and cAB when playing against B; the player B gets payoff cBA when playing against A and cBB when
playing against B.

 

Figure 7. A simple game between players A and B: In evolutionary game theory, payoff is equated
with fitness.

As the summation of frequencies is unity, the substitution of xB with (1 – xA) leads the replicator
equation given in Equation (17) as the following single nonlinear differential equation, i.e.,

1 1A
A A A A B A

dx x x d x d x
dt (19)

Where dA(≡cAB – cAB) and dB(≡cBA – cAA) denote the relative benefit of A playing against B and the
relative benefit of B playing against A, respectively. Five different scenarios were discussed depending
on dA and dB [105,107]: (i) A dominates B if dA > 0 and dB <0 (harmony); (ii) B dominates A if dA < 0 and
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dB >0 (prisoner’s dilemma); (iii) A and B are bistable if dA < 0 and dB <0 (coordination); (iv) A and B
stably coexist if dA > 0 and dB >0 (snowdrift); and finally (v) A and B are neutral if dA = dB = 0. Following
a similar idea, diverse dynamics of simple microbial consortia can be systematically analyzed.

The analysis of interactions between the wild type and mutant Saccharomyces cerevisiae strains
growing on sucrose studied by Gore et al. [27] provides a real biological example. As the yeast cannot
assimilate disaccharides, sucrose should be hydrolyzed into monosaccharides (such as glucose and
fructose) by invertase, which is produced from the wild type strain at a certain cost, but not from
the mutant. Only a fraction of the hydrolyzed monosaccharides (i.e., 1%) are assimilated into the
wild type cell and most of them diffuse away (i.e., cooperative behavior). Taking advantage of the
invertase production from wild type strains, mutant strains grow on monosaccharides without paying
any cost (i.e., behavior as a cheater). Contrary to our intuition, two strains coexist over a wide range of
conditions as observed in well-mixed culture experiments. The relationship of these cooperators and
cheaters was analyzed using snowdrift game theory. While the fitness fg,k is formulated most often as
a linear function of xk, Gore et al. formulated them as a nonlinear function based on the experimentally
observed concave dependence of the growth rate on glucose concentration, i.e.,
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A A

B A

f x c

f x
(20)

where players A and B denote the cooperator (i.e., wild type yeast) and the cheater (i.e., mutant),
respectively, ε is the efficiency of capturing monosacchrides by A, c means the cost for the production
of invertase, and the exponent α is a parameter dictating the degree of nonlinearity (which was
experimentally determined as 0.15 therein). A phase diagram on the space of c and ε generated by the
nonlinear formulation given in Equation (20) clearly showed the domain of coexistence of two strains,
which was not detected when typical linear fitness functions were used. Figure 8 provides the payoff
matrix, from which linear and nonlinear fitness functions are derived.

 

Figure 8. Linear and nonlinear fitness functions derivable from the payoff matrix for the system
considered by Gore et al. [27].

Synthetic fungal-bacterial consortium that shows cooperator-cheater dynamics as studied by
Minty et al. [108] using kinetics modeling and experiments may offer itself as another good example
that could be analyzed in a similar fashion. While it is not straightforward how to design payoff matrix
and fitness functions for given microbial communities as exemplified above, evolutionary game theory
is a promising mathematical framework that is able to describe the richness of biological reality.

5. Tools for Simulating Heterogeneity

The frameworks dealt with in the foregoing sections are population-level models which are
formulated as a set of ordinary differential equations (ODEs) based on two major assumptions: (1) well
mixed populations or spatial homogeneity (i.e., cells and environmental variables are uniformly
distributed in space) and (2) homogeneity in cellular state within each population of species (or guilds)
(i.e., internal state of cells in the same population is identical). These assumptions are invalid in
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most cases because, in reality, cells are exposed to different local concentrations of environmental
variables (such as nutrients, temperature, light, pH, etc.) and these environmental gradients often
lead to the non-uniform distribution of cell’s internal states and their location in space. Even in
well-mixed conditions, individual cells in a population can be distinct with respect to their phenotypic
functions (e.g., growth rate) or internal (e.g., metabolic and genetic) states. Well-mixed population-level
models cannot address such variation among cells over the spatial and internal state space, which
should be simulated using more sophisticated frameworks based on partial differential equations
(PDEs). This section therefore focuses on those frameworks that can suitably model heterogeneity in
cell populations.

5.1. Simulation of Spatial Heterogeneity Using Population-Based Models

Spatial distribution of cells is often described in relation to their ability to move through the space.
Cellular motion can be modeled as random and/or directed motions. Random motion of cells is a
Brownian motion-like process, while directed or purposeful motion driven by environmental cues is
called taxis (derived from the Greek tassein meaning “to arrange” but used to imply “movement” in
biology [109]). Various types of taxis are observed depending on the source of environmental stimulus,
e.g., chemotaxis (chemical signal), phototaxis (light), geotaxis (gravitational force), and aerotaxis (air).
Chemotaxis, for example, denotes the motion towards spatial regions of high or low concentration of a
certain chemical. When cells move toward the source of the signal, the type of motion and the signal
are called positive motion and attractant, respectively; in the opposite case, called negative motion and
repellent [110].

For microbial communities distributing along one-dimensional space, the population equation of
species k that account for both random and chemotactic motions can be given in the following form
(known as Keller-Segel model of chemotaxis [111]), i.e.,

1 1 1 1
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Where z1 is a spatial coordinate, αk and βk are the motility coefficient and chemotactic coefficient
of species k, respectively, and S is the concentration of a signal chemical. In the Keller-Segel model of
chemotaxis, βk is generally considered as a function of xk and S. The three terms on the right hand side
of Equation (21) represent growth rate, random motion, and chemotactic motion. The plus sign on
the second term means that cells diffuse toward locations of lower population density. Depending on
the sign of βk, the third term may represent positive chemotaxis and S is the chemoattractant, if βk >
0; negative chemotaxis and chemorepellent, if βk < 0. The growth rate μk depends on environmental
variables ci’s (including S), the balance of which is also written over space and time as follows:
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Equations (21) and (22) can be generalized into a three-dimensional form by considering the
change of variables across other spatial directions z2 and z3. In principle, dynamic models discussed
earlier (including supra-organism models and trait-based models) can be reformulated using PDEs as
in Equations (21) and (22) to simulate the change of the population density in space as well as time.

5.2. Individual-Based Modeling

Population heterogeneity can rigorously be investigated using individual-based models (IbMs)
(also known as entity- or agent-based models). IbMs view individual cells as discrete autonomous
entities that interact with each other as well as with the continuous surrounding phase. Thus, it is
common that IbMs jointly model physical transport of nutrients (and other environmental variables,
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e.g., temperature and light intensity), along with behaviors of each individual cell such as uptake,
secretion, growth, reproduction, etc. The discrete phase of individual cells and the continuous
environmental phase are coupled by hybrid simulation techniques, e.g., based on Eulerian-Lagrangian
approaches [25].

While there is an overlap, IbMs differ from cellular automaton (CA): CA approaches are based on
the spatial grids with a focus on predicting geometric patterns formed from the local interactions; on
the other hand, IbMs account for individual diversity (in the spatial grids) to predict their collective
behavior [112]. An underlying view of IbMs (and also CA) is that higher-level, global, and complex
properties of a whole population emerge from the lower-level, local, and simple interactions of
individual entities. While the traditional application of IbMs in ecology is mostly for modeling higher
tropic organisms (such as animals), they have been increasingly used for microbes as well.

As an obvious advantage, IbMs can introduce the details of microbial behavior and interactions
at an individual cell level. For example, IbMs can incorporate the motility of cells that includes both
active motion (such as chemotaxis of bacterial using flagella or migration of phytoplankton using
buoyancy control) and passive motion by advection (e.g., in activated sludge wastewater treatment
plants) or diffusion. Accounting for different forms of cellular interactions is another merit. These
include not only indirect interactions through environment such as competition for nutrients and
cooperation by sharing metabolites, but also more direct cell-to-cell interactions such as shoving,
predation, and self-shading [25].

As a drawback, simulation of IbMs is computationally demanding, particularly when one models
microbial communities composed of a considerably large number of cells. Consequently, modelers
often reduce the details contained within the description of microbial behavior (e.g., see [113]). Two
basic approaches to reduce the computational burden are i) confinement of computational domain
to a small representative space and ii) the use of the super-individuals concept. For example, one
can reduce the number of cells for simulation by focusing on a small area of a biofilm or a lake.
The scale-up to a large space based on this approach becomes difficult when spatial heterogeneity
in systems is significant. Currently, IbMs for microbial communities are confined to scales of
micrometers to centimeters [114]. Alternatively, one can simulate based on super-individuals which
represent a group of individual cells [26]. An arising issue is then how to consistently define
super-individuals for a given system under study because defining super-individuals to contain
a large number of cells will eventually weaken the intrinsic strength of IbMs that are able to account
for the dynamics of every individual cell. Along with these methods, the development of efficient
numerical schemes and implementation frameworks is essential. As a promising example, Kang
et al. [115] reported a significant reduction in computational time (from a week to an hour) by the
use of an efficient parallel computation scheme. As building community models based on the IbM
framework is not straightforward, it is also of great importance to develop efficient simulation tools
that require only moderate programming efforts. In this regard, the use of those tools such as
iDynoMICS [116] (replacement of BacSim [117]) and Biocellion (http://biocellion.com/) will facilitate
rigorous simulation of microbial community dynamics based on IbM frameworks.

5.3. Population Balance Modeling

Population balance models (PBMs) consider the distribution of cell populations over internal
space, as well as external space [118]. Thus, cells are discriminated by their internal and external
coordinates. The external coordinate of a cell indicates its physical location as represented by
z ≡ (z1,z2,z3), while the internal coordinate z’ ≡ (z’1, . . . ,z’z’) denotes those (other than location)
that characterize traits of cells. Internal states of cells most frequently considered in PBMs include
the variables such as cell mass, age, and morphology that should be specified to determine birth and
death processes or the rate of change of certain variables of interest [118]. For bacterial population
reproducing via binary fission, simulation of the dynamic change of the number of cells required
defining cell age as an internal state due to its influence on the birth rate. An example for a morphology
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parameter is the location of nuclei within the cell because cell division occurs when a divided nucleus
in the interior of the cell migrates to the cell’s boundary.

A general mathematical form of PBMs is represented as a partial integro-differential equation
as follows:

, , , , , , , , ,p z p z pf t f t f t h t
t

z z Z z z Z z z z z c
(23)

Where f (z,z’,t) is the population density, h(z,z’,y,t)is the rate of net generation of cells, and z  

and z  
denote partial divergence operators. In general, the above equation is solved by coupling

to the conservation equation of environmental variables as shown in Equation (22). In conditions
where cells are uniformly distributed in space and characterized only by an internal state z’, the PBM
reduces to

( , ) ( , , ) ( , ) ( , , )p pf z t Z z c t f z t h z c t
t z (24)

The conservation equation of environmental variable y is given as follows:

0
( ) ( , , ) ( , )p

dc k z Z z c t f z t dz
dt (25)

Equation (25) relates the reduction of the concentration of c with the total growth of cells using
the growth rate parameter k(z’).

For modeling a microbial community, the above formulation can be rewritten by expanding
Equation (24) for K species, i.e.,

, ,( , ) ( , , ) ( , ) ( , , ), 1, ,p k p k kf z t Z z c t f z t h z c t k K
t z

 
(26)

No change is required for Equation (25).
In general, the solution of PBMs is obtained by numerically solving a large set of ordinary

differential equations obtained by discretizing the derivative and integral terms. It was pointed out
that computational burden increases if the intracellular state of cells should be specified by a number
of high dimensional vectors (e.g., concentrations of intracellular metabolites) [119]. Most commonly,
however, PBMs consider only a single internal state (such as cell age or cell mass). With appropriate
formulation, therefore, PBMs can be considered as an alternative to IbMs in simulating population
heterogeneity. In advanced simulations, stochastic events such as gene regulatory processes were
incorporated into PBMs. For example, Shu et al. [120] applied the PBM framework to investigate the
effect of bistability of cells (represented as two distinct levels of PrG protein concentration) on biomodal
distributions of the population. Spatial heterogeneity can also be accounted for through coupling
PBMs with a reactive-transport model, e.g., using computational fluid dynamics (CFD) [121]. Despite
such usefulness, modelers have yet to actively expand the scope of PBMs to microbial communities as
a tool for simulating interspecies interactions.

6. Integrative Modeling Strategies

While we discussed various mathematical frameworks so far, a single approach alone
cannot comprehensively describe the dynamic nature of microbial communities. For example,
constraint-based approaches such as cFBA can simulate interspecies metabolic interactions, but they

267



Processes 2014, 2, 711–752

cannot predict interactions under dynamic environmental conditions. Conversely, gLV models are
able to simulate community dynamics well but do not provide direct mechanistic interpretations
on the microbial interactions that vary in space and time. In this regard, synergistic integration of
different mathematical tools appears to be a promising strategy. Integrative use of more than two
approaches can be attempted at three different levels: (i) information feedback; (ii) indirect coupling;
and (iii) direct coupling. Information feedback is the weakest form of integration, through which one
can take advantage of information generated from different approaches without coupling in order to
facilitate model development. Indirect coupling implies that the dynamic simulation of a model uses
the outputs of another model that are previously generated through independent simulations; on the
other hand, in direct coupling, different modeling frameworks are merged into an expanded single
platform. This section provides examples of the current practices of integrative modeling approaches.

6.1. Information Feedback

Information on interspecies interactions can be obtained either from network inference methods
(Section 4.1.1), stoichiometric model-based metabolic network analysis (Section Section 4.1.2), or
transporter analysis. These approaches are complementary as they provide the same output
(i.e., microbial interactions) at different levels from diverse sources (i.e., species abundance data,
genome-scale metabolic networks, as well as transporter genes/proteins). For example, stoichiometric
modeling may serve as a tool not only for confirming known cross-feeding links, but also for potentially
identifying new interactions that are not easily detected by species abundance data or transporter
analysis alone [66]. While the use of metabolic network models would be limited to relatively simple
consortia as addressed earlier, their interactive use with network inference and transporter analysis
for identifying microbial interactions is an example of information feedback. Figure 9 shows how
the development of predictive models such as nonlinear regression (Section 4.2), gLV model (Section
Section 4.5), and evolutionary game theory (Section 4.6) can benefit from information on microbial
links identified as such.

A prior knowledge of interspecies interactions helps to structure those models properly. For
example, if a microbial association network identifies the link between two species (say, A and B)
through a third one (say, C), the gLV model is able to simulate such indirect interaction between them
by formulating the population growth equation of species A (or B) to contain the A-C pair (or B-C
pair), but not the A-B (or B-A) pair. Such information also helps to avoid overparameterization (i.e., a
situation where many of the parameters cannot accurately be determined due to the lack of data) by
focusing on the key interspecies interactions.

Figure 9. The use of network analysis tools for the construction of predictive models and the
feedback loop for the subsequent revision through model validation processes. Solid arrows represent
information flows. The dotted arrow indicates that nonlinear regression can be used as a tool for
network inference.
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The validity of pre-identified interspecies interactions is assessed through the comparison of
model predictions with species abundance data collected across samples. Model validation provides
an opportunity to revise a microbial association network. Due to this loop between analysis tools and
predictive models, the overall process of model development is also seen as the integrative approach
based on information feedback. The development of a nonlinear regression model by Larsen et al. [75]
can serve as an excellent example for this type of integration. The process of developing a gLV model
through the construction of microbial association network was explained in Faust and Raes [50].

6.2. Indirect Coupling

Model integration is referred to indirect coupling if the outputs obtained from the “independent”
simulation of one framework are fed into another model during its simulation. A good example is the
integration of a genome-scale network with a reactive transport model by Sheibe et al. [122] for the study
of in situ uranium bioremediation by Geobacter species (i.e., Geobacter sulfurreducens). In this system
considering a single organism, they repeatedly ran FBA to generate a look-up table that provides the
nutrient uptake and growth rates in various possible environmental conditions. Then, the resulting
look-up table was referenced at every time step and every grid cell throughout the dynamic simulation
of a reactive-transport model. The prediction of condition-specific biomass yield was predicted using
FBA by constraining the uptake rates of the three nutrients (acetate, Fe (III), and NH4) that limit the
species growth. In order to generate a look-up table, they chose 10 different concentration levels of
these key nutrients, and for each of 1000 combinations, they performed FBA. Consequently, they could
successfully predict acetate concentration and U (VI) reduction rates in a field trial of in situ uranium
bioremediation. Obviously, this indirect coupling results in reduced computation time in comparison
to direct coupling that runs both FBA and reactive-transport simulation for their interaction at every
time step. As environmental conditions were discretized over coarse meshes, interpolation within
the look-up table is required to get the rates between pre-specified conditions. While performing this
interpolation process at every time step/grid will be time-consuming, particularly in case of field-scale
simulations, one can minimize the look-up table by containing the fluxes of key metabolites only,
instead of the full flux vector. Figure 10 illustrates the concept of indirect coupling between FBA and a
reactive-transport model. In principle, the same approach can be applied to microbial communities,
although the look-up table generation using cFBA and the interpolation would require substantially
higher computational power.

269



Processes 2014, 2, 711–752

 
Figure 10. Indirect coupling between a reactive-transport model with FBA for the dynamic simulation
of a single organism growth. One should first generate a look-up table through the repeated running
of FBA with a large number of different sets of nutrient uptake rates (which is 1000 in total in this
example) generated by discretizing the range of each uptake (top). During the dynamic simulation
of the reactive-transport model, the growth rate and metabolite production rates are updated at each
time/location from the look-up table (bottom).

The integration of FBA with dynamic modeling can be considered in a much simpler
context—well-mixed conditions—using the framework called dynamic FBA (dFBA) [123]. In
a study of bioprocesses that produce bioethanol from glucose and xylose, Hanly and Henson
modeled simple consortia composed of two organisms that are (i) non-interacting [124] and
(ii) indirectly interacting [125]. The non-interacting consortium was composed of wild-type S.
cerevisiae that consumes glucose only and mutated E. coli capable of consuming xylose alone. The
indirectly interacting model included (wild-type) S. cerevisiae and Pichia stipites (also known as
Scheffersomyces stipitis) that consume both glucose and xylose. In the latter, there were two types
of competition–interspecies and intraspecies. While interspecies competition for glucose could be
described simply by Michaelis-Menton kinetics, the authors had to incorporate glucose inhibition
to describe intraspecies competition between the consumptions of glucose and xylose in P. stipitis
(Figure 11). dFBA has also been used in other applications, e.g., for exploring bacterial diversity and
their metabolic interactions [126]. In balanced growth conditions where uptake rates change in time but
the biomass (and other metabolites) yield from a substrate is constant, the dFBA can be implemented
as a form of indirect coupling by referring to the pre-calculation of an FBA solution, without having to
solve the LP problem at every time step.
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Figure 11. Uptake kinetics for the dynamic FBA (dFBA) simulation of the dynamics of non-interacting
(left) and indirectly interacting (right) consortia. Glc and Xyl denote the concentrations of glucose and
xylose, respectively. For the sake of simplicity, product (i.e., ethanol) inhibition term is neglected.

Modeling microbial consortia using indirect coupling can also be done by integrating EM analysis
with a dynamic framework such as cybernetic models. The framework called hybrid cybernetic
model (HCM) [127,128] identifies a relevant subset of EMs as metabolic options for accommodating
the metabolic shift in individual species. Geng et al. [129] applied HCM to model a situation where
the culture medium contains four sugars (i.e., glucose, xylose, mannose, and galactose) which are
competitively consumed by three yeast strains (i.e., S. cerevisiae, P. stipitis, and Kluyveromyces marxianus).
Consumption patterns of these sugars vary depending on the organism. S. cerevisiae consumes glucose,
mannose, and galactose, but not xylose. Among three hexoses fermentable by S. cerevisiae, galactose is
the least preferred substrate, while glucose and mannose are preferably consumed. On the other hand,
P. stipitis and K. marxianus ferment all four sugars, the consumption of which starts with the pair of
glucose and mannose, followed by the pair of xylose and galactose. Without having to incorporate
empirical inhibition terms, the competitive consumption of four sugars by each organism was modeled
in a simpler form based on the cybernetic control variables (Figure 12).

The integration of dynamic population-based models (e.g., gLV model) with cFBA would be
another possible form of indirect coupling, yet we could not find an appropriate example in the
literature. As an input, cFBA requires information of species abundance, the dynamic change of which
can be provided from the independent simulation of a gLV model. Thus, this integration enables
the prediction of the change of flux distributions at each time step within individual species and the
community. These predictions are beyond the level achievable using gLV model or cFBA alone.
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Figure 12. Uptake kinetics for the hybrid cybernetic model (HCM) simulation of the consortia composed
of three yeast strains (Saccharomyces cerevisiae, Pichia stipitis, and Kluyveromyces marxianus) growing on
four different carbon sources. Glc, Man, Gal, and Xyl denote the concentrations of glucose, mannose,
galactose, and xylose, respectively. The symbols e and v represent enzyme level and its activity. For the
sake of simplicity, self-substrate inhibition term is neglected.

6.3. Direct Coupling

In complex systems containing multiple interacting species and many constraining environmental
variables, simulation of microbial community dynamics using look-up tables to indirectly couple
FBAs and dynamic models will become unattractive. Fang et al. [130], therefore, applied a “direct”
coupling of a genome-scale metabolic network with a reactive-transport model. A reactive-transport
model dynamically interacts with FBA at each time step to obtain reaction rates required for solving
differential equations (Figure 13).

 

Figure 13. Implementation of direct coupling between FBA and a reactive-transport model.

In contrast to dFBA-based approaches which assume quasi-steady state on intracellular
metabolites, King et al. [131] coupled a reactive transport model with a dynamic model of intracellular
kinetics based on a simplified network. Resat et al. [113] also considered intracellular dynamics (using
an even simpler network) to describe the cellular dynamics using an IbM framework (similar to
BacSim [117]). An IbM was directly coupled with a three dimensional reactive-transport model.

Direct coupling examples addressed above were focused on a single organism, while
Resat et al. [113] also considered the simulation of two species. The framework developed by
Zhuang et al. [132], on the other hand, demonstrated the extended application of dFBA to ecological
settings. Instead of directly obtaining substrate uptake rate as determined by kinetic equations, they use
kinetic equations as upper bounds of uptake rates [133]. To simulate the dynamic change of Rhodoferax
and Geobacter species, which are acetate oxidizing Fe (III)-reducers competing in anoxic subsurface
environments, they identified uptake kinetics for metabolites that affect the growth of species, including
acetate, ammonia, and Fe (III) for two species and imposed them as upper bounds in respective
FBA implementations. They termed this method as the Dynamic Multispecies Metabolic Modeling
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(DyMMM) framework. The same method has also been applied to the community of Geobacter and
sulfate-reducing bacteria (7SRBs) [134]. Figure 14 shows the procedures of implementing DyMMM.

Figure 14. Implementation of the Dynamic Multispecies Metabolic Modeling (DyMMM) framework
proposed by Zhuang et al. [132] for the dynamic simulation of microbial consortia.

Zomorrodi et al. [73] proposed a general framework for the dynamic simulation of microbial
community by extending OptCom. In contrast to DyMMM that considers a community-level objective
alone, d-OptCom solves a bi-level optimization problem for which both species- and community-level
objectives should be specified. d-OptCom also considers uptake kinetics as upper bounds of
fluxes, similarly to DyMMM. If species-level objectives are eliminated from the bi-level optimization
formulation, the structure between d-OptCom and DyMMM becomes similar while the former solves
nonlinear dynamic programming based on an implicit Euler discretization.

7. Summary and Recommendations

So far, we have discussed various forms of mathematical models useful for the analysis and
prediction of microbial community dynamics. Table 2 summarizes typical sets of experimental data (or
information) for model identification, and inputs and outputs for simulation.
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Based on the work of Song et al. [31], we provide general guidelines for the selection of an
appropriate modeling framework (among various candidates) for a given problem. Above all, the
choice of a specific model should be based on modeling goals, which can be (i) understanding the
characteristics of microbial association under specific settings; (ii) predicting their dynamics in new
conditions; (iii) controlling microbial communities to perform desirable functions, or all of them. Then,
one may initially consider a couple of candidate frameworks (or more) that could potentially meet
modeling goals. For this purpose, it is important to have a sound understanding of the simulation
scope of modeling frameworks, for example as summarized in Table 2. Another recommendation is
to minimize the complexity of model structure. Therefore, following the principle of Occam’s razor,
one would prefer the simplest model (i.e., with the smallest number of parameters and variables) in
case that all candidate models perform similarly in data-fitting. Information theoretic tools enable a
systematic, quantitative comparison of candidate models in this regard. Statistical merits often used for
such comparison include Akiake Information Criterion (AIC) [135] and Bayesian Information Criterion
(BIC) [136].

8. Conclusions and Outlook

Considering the complexity of microbial communities, it is not surprising to find a vast number
of mathematical tools and frameworks in the literature. The successful application of models will
depend on many factors: (i) how flexibly they incorporate computational and experimental tools to
improve their predictive power; (ii) how effectively they resolve the problems of academic, industrial,
and social interest; and (iii) how significantly they outperform rival models. While one may prefer a
specific model to others, it is advantageous to take an integrative approach that selectively combines
multiple relevant methods, as discussed in the foregoing section.

Other than the strength of model integration, there are other specific issues that need to be
considered in the future modeling efforts. First, while the PBM is a popular framework used
for modeling particulate systems, its application to microbial communities is rare. Unless a large
number of internal state variables need to be considered for modeling, PBM’s capability to describe
population heterogeneity at a reasonable computational cost offers an attractive compromise between
population-based models and IbMs. Second, despite the potentially significant role in determining the
member interactions and the overall community behavior, the consideration of dynamic metabolic
shifts in individual species is limited in current modeling practices. Incorporation of this feature
into modeling will make it possible to reveal even richer behavior of microbial communities in
response to environmental perturbations as adaptive complex systems. While empirical rules are
conceivable for this purpose, mechanistic description of metabolic shift will allow for more realistic
predictions across different conditions. In this regard, the incorporation of the cybernetic control laws
into population-based models or IbMs is a possible route along the line. Third, ability to leverage
increasingly available meta-omics data (e.g., transcriptomic, proteomic, metabolomics data) within the
context of community models will improve the prediction accuracy. Finally, an important challenge
for the modeling of microbial communities is the ability to encompass different scales. Microbial
communities are multiscale systems: The results of microbial community activity at the fine scale
can have profound effects on the physical and chemical characteristics at the macroscopic level of an
aquatic or terrestrial ecosystem, or a human being. Multiscale modeling has been restricted, however,
in practical efforts.

Despite these challenges, the predictive power of microbial community models will grow along
with rapid advancement in experimental and computational technologies. Therefore, mathematical
models in the future are expected to provide a more profound understanding of microbial community
dynamics with an ultimate aim to engineering them.
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The authors wish to make the following correction to this paper [1]. Due to mislabeling, replace:

Figure 3. Graphical and mathematical representations of metabolic reactions occurring in a cell.

With the following:

Figure 3. Graphical and mathematical representations of metabolic reactions occurring in a cell.
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The authors apologize for any inconvenience caused to the readers by these changes.
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