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Preface to "Microbial Community Modeling;:
Prediction of Microbial Interactions and
Community Dynamics”

Microbial communities are complex adaptive systems. Understanding them requires mathematical
models that enable the reliable prediction of community structures and functions in response to
environmental perturbations. Due to the wide span of temporal and spatial scales and the level
of complexity in microbial communities, the scope of modeling is extremely broad, ranging from
molecular-level understanding to global-scale simulation. Thus, microbial community modeling may
be considered a topic so broadly scoped that it cannot be fully covered in a single volume. Indeed, there
is a great diversity of methodological concepts and ideas in studying the microbiome. However,
researchers may rightly use mathematical models as a platform to integrate multifarious experimental
data and observations in order to arrive at a fundamental understanding of the microbial interactions
that link community dynamics and environment. With that common point of convergence in mind,
this book represents an edition of a special issue of Processes that collected papers presenting novel
modeling approaches for both simple and complex communities. Together, they demonstrate
the strength of mathematical modeling as a tool for addressing advanced science questions in this
field.

Hyun-Seob Song
Special Issue Editor
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Special Issue: Microbial Community Modeling;:
Prediction of Microbial Interactions and
Community Dynamics

Hyun-Seob Song
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hyunseob.song@pnnl.gov

Received: 20 April 2018; Accepted: 20 April 2018; Published: 24 April 2018

Microbial communities are networks of species, the interaction structure of which dynamically
reorganizes in a varying environment. Even in a static condition, community dynamics are often
difficult to predict due to highly nonlinear interspecies interactions. Understanding the fundamental
principles of microbial interactions is therefore key for predicting and harnessing community function
and properties. As extensively reviewed previously, mathematical models and computational methods
that can predictively link interactions to community behaviors are indispensable tools for achieving
this goal [1].

This Special Issue of Processes collects eleven papers from lead scientists and researchers
active in the area, under the topic “Microbial Community Modeling: Prediction of Microbial
Interactions and Community Dynamics”. The collected papers cover various topics of interest: (1) two
review /opinion papers discussing recent advances in biofilm modeling [2] and specific issues for
successful collaboration between experimentalists and theorists [3]; (2) one paper on the dynamics of
complex environmental communities [4]; (3) six papers dealing with fundamental aspects of microbial
interactions and stability in model communities [5-10]; and (4) two papers on the development and
utilization of microbial consortia for biotechnology applications [11,12].

The paper by Graham and Stegen [4] serves as a good example to show how mathematical
modeling and simulation techniques can be useful for addressing fundamental ecological questions,
for example, compositional and functional shifts in environmental communities under the influence
of deterministic (such as selection) versus stochastic (such as dispersal) processes. Their model
reveals that, under given postulates, dispersal can increase the proportion of maladapted taxa, which in
turn decreases community-performed biogeochemical function.

Understanding microbial interactions in ecological communities can be greatly facilitated
by studying model consortia of tractable complexity. Based on a relatively simple metabolic
network structure, El Moustaid et al. [8] develop a dynamic model of a phototroph-heterotroph
consortium to provide new insights into the role of oxygenic phototroph reactions in interspecies
metabolic coupling. The study by Beck et al. [5] addresses more complex aspects of phototrophy, such as
metabolic acclimation to stresses of irradiance, O, and nutrients, through a comprehensive pathway
analysis of the developed genome-scale metabolic network of a cyanobacterium. Their prediction of
the shifts in growth efficiency, photosystem utilization and photorespiration is consistent with the
experimental data.

Microbial interactions can significantly affect stability in communities (such as coexistence and
resistance to invasion). For a nitrifying consortium composed of two ammonia-oxidizing bacteria
and two nitrite-oxidizing bacteria growing in a chemostat, Dumont et al. [7] show that interspecies
interactions enable the coexistence of the four species on two limiting nutrients. Henson and Phalak [9]
investigate the effect of interspecies interactions on stability in a more mechanistic way by developing
a genome-scale community metabolic network model. For a model community composed of three
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species that represent Bacteriodetes, Firmicutes and Proteobactera in the gut microbiome, they identify
four essential cross-feeding relationships enabling the coexistence of the three species. Moejes et al. [10]
investigate the effect of culture media on community dynamics and stability. For a community
composed of one microalgae and four bacterial species, they reveal that the community growth is
more stable in minimal media than in complex media, as indicated by an accelerated culture crash in
the latter. The developed dynamic model may serve as a monitoring tool with industrial applications,
for example, for predicting harvesting time before a crash occurs. In the case study of a bioaugmented
sand filter community, Daly et al. [6] extends the discussion to a spatially heterogeneous environment.
Using an individual-based model accounting for interspecies competition (both deterministic and
non-deterministic), they reproduce experimentally observed community dynamics and, further, reveal
that community diversity (particularly evenness) promotes stability.

Examples showing the direct application of mathematical models for practical applications
include the work by Wilken et al. [12] and by Capodaglio et al. [11] With an aim toward constructing
consortia converting lignocellulose to valuable bioproducts, Wilken et al. use dynamic flux
balance analysis to screen fermenting bacterial partners to pair with a given anaerobic fungus that
possesses cellulolytic machinery. Consequently, they identify two candidate organisms found in the
rumen microbiome. Capodaglio et al. provide a mathematical model for microbial fuel cells, which are
drawing increased attention due to the capability of simultaneous waste treatment and energy recovery.
Their work presents a microbial community model as a key component for reliable simulations of such
complex systems.

The need to develop reliable mathematical models of microbial communities for both fundamental
and applied science will keep increasing. A mechanistic understanding of interspecies interaction
principles and the link to community function and properties will remain a key issue for
predictive modeling. State-of the-art examples of microbial community modeling presented in this
Special Issue may serve as valuable references for future research in this direction.
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Abstract: Ecological mechanisms influence relationships among microbial communities, which
in turn impact biogeochemistry. In particular, microbial communities are assembled by deterministic
(e.g., selection) and stochastic (e.g., dispersal) processes, and the relative balance of these two process
types is hypothesized to alter the influence of microbial communities over biogeochemical function.
We used an ecological simulation model to evaluate this hypothesis, defining biogeochemical
function generically to represent any biogeochemical reaction of interest. We assembled receiving
communities under different levels of dispersal from a source community that was assembled purely
by selection. The dispersal scenarios ranged from no dispersal (i.e., selection-only) to dispersal
rates high enough to overwhelm selection (i.e., homogenizing dispersal). We used an aggregate
measure of community fitness to infer a given community’s biogeochemical function relative
to other communities. We also used ecological null models to further link the relative influence
of deterministic assembly to function. We found that increasing rates of dispersal decrease
biogeochemical function by increasing the proportion of maladapted taxa in a local community. Niche
breadth was also a key determinant of biogeochemical function, suggesting a tradeoff between the
function of generalist and specialist species. Finally, we show that microbial assembly processes exert
greater influence over biogeochemical function when there is variation in the relative contributions
of dispersal and selection among communities. Taken together, our results highlight the influence
of spatial processes on biogeochemical function and indicate the need to account for such effects
in models that aim to predict biogeochemical function under future environmental scenarios.

Keywords: stochastic; deterministic; microbial ecology; simulation; null model; ecosystem function

1. Introduction

Recent attempts to link microbial communities and environmental biogeochemistry have yielded
mixed results [1-6], leading researchers to propose the inclusion of community assembly mechanisms
such as dispersal and selection in our understanding of biogeochemistry [2,7-9]. Although much
work has examined how assembly processes influence the maintenance of diversity and other
ecosystem-level processes in macrobial systems [10-13], our comprehension of how these processes
influence microbially-mediated biogeochemical cycles is still nascent [2,8,14]. Thus, there is a need
to discern the circumstances under which knowledge on assembly processes is valuable for predicting
biogeochemical function.

Community assembly processes collectively operate through space and time to determine
microbial community composition [3,7,14,15]. They fall into two predominate categories that can
be summarized as influenced (i.e., deterministic) or uninfluenced (i.e., stochastic) by biotic and abiotic
environmental conditions. Stochastic processes can be further classified into dispersal, evolutionary
diversification, and ecological drift, while determinism is largely dictated by selection [7,16]. We refer

Processes 2017, 5, 65 4 www.mdpi.com/journal /processes
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readers to a recent review article for a more nuanced understanding of deterministic influences
on dispersal and of stochastic influences on selection, which are not discussed here [17]. Experimental
research has shown unpredictable relationships between microbial diversity and biogeochemical
function (generically defined here to represent any biogeochemical reaction of interest), leading
to the hypothesis that differences in community assembly history—and thus the relative contributions
of stochastic and deterministic processes—drives relationships between microbial community structure
and biogeochemical function [8,9].

Dispersal in particular may vary the relationship between community structure and
biogeochemical function [7]. Both positive and negative associations between dispersal and community
function have been hypothesized (reviewed in [18]). The ‘portfolio effect’ argues for enhanced
community functioning under high levels of dispersal, proposing that high diversity communities
are more likely to contain more beneficial species properties on average than lower diversity
communities [19,20]. Additionally, if dispersal increases biodiversity, there should be a greater chance
that the community can occupy more niche space (i.e., niche complementarity), reducing direct
competition and increasing function [21].

Alternatively, dispersal may decrease community-level biogeochemical function [7,22]. High rates
of dispersal can add organisms to a microbial community that are not well-suited to local environmental
conditions (i.e., mass effect or source-sink dynamics [23,24]). Maladapted individuals may invest
more in cell maintenance to survive as opposed to investing in cellular machinery associated
with biogeochemical reactions needed to obtain energy for growth and reproduction. In this
case, the community’s ability to drive biogeochemical reactions may be depressed. For instance,
pH [25] and salinity [26,27] are widely considered strong regulators of microbial community
structure. If microorganisms are well adapted to and disperse from a moderate pH or salinity
environment to a more extreme environment, they may be maladapted and have to expend energy
to express traits that maintain neutral internal pH (e.g., H+ pumps) or maintain cellular water
content (e.g., osmotic stress factors). These cell maintenance activities detract from the energy
available to transform biogeochemical constituents and may suppress overall community rates
of biogeochemical function. In contrast, locally adapted species would putatively have more efficient
mechanisms for cell maintenance in the local environment and be able to allocate more energy for
catalyzing biogeochemical reactions.

These dispersal effects also interact with local selective pressures and the physiological ability
of organisms to function across a range of environments to collectively influence biogeochemical
function in uncertain ways. Here, we propose that (1) communities more influenced by dispersal
are composed of species that are less well adapted to the local environment and, in turn,
that (2) dispersal-based assembly processes decrease biogeochemical function (Figure 1). Our aim
is to formalize these hypotheses and provide a simulation-based demonstration of how dispersal-based
assembly can influence function. To do so, we employ an ecological simulation model to explicitly
represent dispersal and selection-based processes, and we leverage ecological null models that
have a long history of use in inferring assembly processes [28]. We link the resulting communities
to biogeochemical function through organismal fitness. In our conceptualization, biogeochemical
function is a generic representation, and thus, our results can be applied to any process of interest.
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Figure 1. We propose a conceptual model in which dispersal-based assembly processes decrease
biogeochemical function. Purple organisms in this figure represent all species that are well-adapted
to and are thus good competitors in a given environment. Yellow and green organisms represent
all species that are less adapted to the environment than purple organisms. While not displayed
for simplicity, we conceptualize multiple species within each color. We acknowledge that the
environment influences microbial community composition through effects of both abiotic (e.g., resource
availability) and biotic (e.g., competition and predator-prey interactions) factors. We use the term
‘selective filter” to indicate influences of both factors on an organism’s fitness [29]. (A) In a community
structured entirely by determinism, selective filtering restricts community composition to species
that are well-adapted to prevailing conditions, resulting in enhanced biogeochemical function.
(B) In communities with moderate stochasticity (here, moderate rates of dispersal), there is an increase
in the abundance of maladapted organisms in the community. In turn, the community is less efficient
and exhibits lower biogeochemical function. (C) Under high levels of stochasticity (here, high rates
of dispersal), a large portion of community members are maladapted, resulting in the lowest rates
of biogeochemical function.

2. Materials and Methods

All simulations, null models, statistical analyses, and graphics were completed in R software
(https:/ /cran.r-project.org/). The simulation model consisted of two parts and was followed
by statistical analysis. The model builds upon previous work by Stegen, Hulbert, Graham,
and others [2,14,15,30-33]. Relative to this previous work, the model used here is unique in connecting
evolutionary diversification, variation in the relative influences of dispersal and selection, null models
to infer those influences, and biogeochemical function. Previous models have addressed some subset
of those features (e.g., connecting evolutionary processes with stochastic and deterministic ecology),
but as far as we are aware, previous studies have not integrated all features examined here.

A central purpose of the simulation model was to vary the influences of community assembly
processes. Previously developed null models (see below) were used to identify parameter combinations
that provided a range of scenarios across which the relative balance among community assembly
processes varied. As such, parameter values were selected to generate conceptual outcomes needed
to evaluate the relationship between assembly processes and biogeochemical function. Specific
parameter values do not, therefore, reflect conditions in any particular ecosystem. Likewise, the model
reflects a general timescale across which there are (1) large numbers of birth/death events such that
community composition closely tracks environmentally-imposed differences in organismal fitness,
and/or (2) opportunities for significant immigration into local communities via dispersal. The model’s
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spatial scale is also a general representation that depends on the rate at which individual cells can
move through space in a given environment. Therefore, the model’s spatial and temporal scales
depend on the environment of interest and may be short (e.g., microaggregates in unsaturated soils
or communities with fast generation times) or long (e.g., stream biofilms influenced by hydrologic
transport across long distances or communities with long generation times). One hundred replicates
were run for each parameter combination in the simulation model.

2.1. Regional Species Pool Simulation

First, a regional species was constructed following the protocol outlined in Stegen et al. [15].
Regional species pools were constructed by simulating diversification in which entirely new species
arise through mutations in the environmental optima of ancestral organisms. Environmental
optima evolve along an arbitrary continuum from 0 to 1, following a Brownian process. Regional
species pools reach equilibria according to the constraints described by Stegen et al. [15] and
Hurlbert and Stegen [30] and summarized here: (1) we define a maximum number of total
individuals in the pool (2 million) such that the population size of a given species declines with
an increasing number of species, and (2) the probability of extinction for a given species increases
as its population size decreases according to a negative exponential function [population extinction
probability o exp(—0.001 x population size)].

The evolution of a regional species pool was initiated from a single ancestor with a randomly
chosen environmental optimum (initially comprising all two million individuals in the population).
Mutation probability was set as 1.00 x 107°. A descendant’s environmental optimum deviated from its
ancestor by a quantity selected from a Gaussian distribution with mean 0 and standard deviation 0.2.
Following mutation, population sizes were reduced evenly such that the total number of individuals
remained at two million. The simulation was run for 250 time steps, which was sufficient to reach
equilibrium species richness.

2.2. Community Assembly

The model’s second component assembled four local communities from the regional species
pool according to scenarios conceptualized to test our hypotheses. In the model, both selection and
dispersal are probabilistic. Selection is based on the difference between species environmental optima
and local environmental conditions, while dispersal is unrelated to environmental conditions.

Species were drawn from the regional species pool to generate a source community under
weak selection and three receiving communities with no dispersal, moderate dispersal, and high
dispersal in which organismal niche breadth (n, 0.0075 to 0.175) and environmental conditions
(E, 0.05 to 0.95) were allowed to vary across simulations. A simplifying assumption of the model
was that all organisms in a simulation had equivalent niche breadth. The purpose of this assumption
was to examine tradeoffs between communities comprised of high-functioning, specialist organisms
vs. those comprised of lower-functioning, generalist species. Our intent was to simulate communities
across a gradient in the degree of specialization (i.e., niche breadth). This allowed for an evaluation
of the influence of niche breadth on the relationship between assembly processes and biogeochemical
function. All communities had 100 species and 10,000 individuals, drawn probabilistically from the
regional species pool. To define species presence/absence in each community, we drew 100 species
without replacement from the regional species pool based on selection probabilities described below.
In turn, we drew 10,000 individuals with replacement into those 100 species using the same selection
probabilities. Selection probabilities (P) of each species from the regional pool were set by a Gaussian
function with variance # (reflecting niche breadth) and the deviation (d) of each species environmental
optimum from the local environment per the following equation:

P = e D)



Processes 2017, 5, 65

This equation represents the probability of an individual from a given species surviving in a given
environment—and thus the strength of selection for or against it—as directly related to three factors:
(1) its own environmental optimum, (2) the simulated environment in which it finds itself, and (3) its
niche breadth.

For assembly of the source community, we used one niche breadth (n) for all simulations, which
was the maximum value used for receiving communities (0.175). This value represents generalist
organisms, which allows for assembly of species representing a broader range of environmental
optima than when niches are narrow. The environmental conditions in the source community were
also set to a single value using the following procedure: we generated 10 regional species pools and
combined species abundances and environmental optima from these pools to generate one aggregate
pool representative of the probable distributions of environmental optima yielded by our simulations.
We set the environmental optimum of the source community to one end of this spectrum (5th percentile)
to allow for comparisons with receiving communities that had the same or larger environmental values.
This allowed us to study emergent behavior across a broad range of environmental differences between
the source and receiving communities.

For receiving communities, we allowed the environmental conditions and niche breadth to vary
across simulations. Environmental conditions ranged from 0.05 to 0.95 by intervals of 0.04736842
to yield 20 conditions. Environmental conditions were static within each simulation. Niche
breadth ranged from 0.0075 to 0.175 by 0.008815789 to yield 20 conditions. Receiving communities
were assembled under all possible combinations of environmental conditions and niche breadths.
Communities for the selection-only case (i.e., no dispersal from the source community) were assembled
based only on the selection probabilities as defined by Equation (1), using the same approach as for
the assembly of the source community. For moderate and homogenizing dispersal, we modified
selection probabilities to incorporate species dispersing from the source community as defined by the
following equation:

Pdisp =P+ 0~05(SsuurceD) 2

where Py, is the selection probability of a given species accounting for dispersal, Ssource is the
abundance of that species in the source community, and D a parameter reflecting dispersal rate.
This equation alters the selection probability without dispersal (Equation (1) with an exponential
modifier that enhances the probability of selection for species that are abundant in the source
community. Parameter D was set to 1 for moderate dispersal and 2 for homogenizing dispersal.
All possible communities were simulated with 100 replicate regional species pools such that all
possible combination of parameters were used once with each regional species pool.

Equation (2) simplifies dispersal as a probabilistic function without regard to phylogeny, although
we acknowledge that the ability of organisms to disperse is not phylogenetically random in natural
settings [17]. In our view of community assembly (and in our simulation model), both selection
and dispersal are probabilistic. Selection is based on the difference between species environmental
optima and local environmental conditions, while dispersal is unrelated to environmental conditions.
In this view, the word ‘deterministic’ indicates that the environment determines the probability
of drawing a given species into a local community, even though assembly is still probabilistic. Likewise,
the word ‘stochastic” indicates that the random movement of organisms is the only factor influencing
local community assembly. Future studies should build upon this work to examine the influence
of phylogenetically-structured dispersal probabilities in affecting biogeochemical function.

Our estimation of biogeochemical function is meant to be illustrative and is not associated
with any specific reaction. Given this perspective, we make a simplifying conceptual assumption
that individuals well-fit to their environment generate higher rates of biogeochemical function than
maladapted individuals. The motivation for this assumption is that individuals that are maladapted
to a given environmental condition will have to use a larger portion of available energy to maintain
their physiological state than well-adapted organisms. In turn, maladapted organisms can invest less
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in the production of enzymes needed to carry out biogeochemical reactions, thereby leading to lower
biogeochemical rates.

In our model, selection probability of a given species in a given environment (Equation (1))
defines how adapted an individual of that species is to its local environment. This leads to another
simplifying assumption: the contribution of an individual to the overall biogeochemical rate (B)
is directly proportional to how well adapted it is to the local environment such that the contribution
of each individual is a linear function of its selection probability within a given environment.
The biogeochemical contribution of each species is therefore found by multiplying its selection
probability by its abundance. To find the total biogeochemical rate for each community, we then
summed across all species in a community. Biogeochemical function for each community was thus

calculated as:
100

B = Z lliPi (3)
i=1

where B is the biogeochemical function for a given community and 4; and P; are the abundance
and probability of selection for species i, respectively (note there were 100 species within each
community). An inherent result of this calculation is that simulations with smaller niche breadth have
higher maximum selection probabilities (see Equation (1)), which can lead to higher biogeochemical
function, relative to simulations with larger niche breadth. Our formulation therefore assumes higher
biogeochemical function for specialist organisms, but only if they are well adapted to their local
environment. This assumption reflects a tradeoff between the breadth of environments an individual
can persist in and the maximum fitness of an individual in any one environment (discussed in [34]).

2.3. Ecological Inferences Using Null Models

Following the assembly of communities, the relative influences of stochasticity (i.e.,
dispersal-based) and determinism (i.e., selection) in structuring communities were estimated using
a null modeling approach previous described in Stegen et al. [15,31]. We refer the reader to these earlier
publications for full details and provide only a summary of the major elements of the null modeling
approach here. The composition of each receiving community was compared to an associated source
community that was assembled from the same regional species pool. We first estimated pairwise
phylogenetic turnover between a given pair of communities. This was done by calculating the
abundance-weighted 3-mean-nearest-taxon-distance (3MNTD) [35,36]. A null model was then run
999 times. In each iteration of the null model, species names were moved randomly across the
tips of the regional pool phylogeny. This breaks phylogenetic relationships among taxa observed
in each community. Using the resulting (randomized) phylogenetic relationships, we re-calculated
phylogenetic turnover between the pair of communities and refer to this as BMNTD,,;;;. Running the
null model 999 times generated a distribution of BMNTD,,,,; values. We then compared the observed
BMNTD to the mean of the BMNTD,,; distribution and normalized this difference by the standard
deviation of the BMNTD,,,;; distribution. The difference between PMNTD and the BMNTD,,,;
distribution was therefore measured in units of standard deviations and is referred to as the f-nearest
taxon index (BNTI) [32]. Values of BNTI that are <—2 or >+2 are deemed significant in the sense
that observed BMNTD deviated significantly from the BMNTD,,,;; distribution. The SMNTD,;
distribution is what’s expected when community assembly is not strongly influenced by deterministic
ecological selection. Significant deviation from this distribution therefore indicates that selective
pressures are very similar (BNTI < —2) or very different (BNTI > +2) between the two communities
being compared. Following the convention of Dini-Andreote et al. [37] we refer to PNTI <—2
as indicating homogeneous selection (i.e., significantly less turnover than expected due to consistent
selective pressures) and BNTI > +2 as indicating variable selection (i.e., significantly more turnover
than expected due to divergent selective pressures). Inferences from BNTI have previously been
shown to be robust [15]. This method has also been used extensively across a broad range of systems
(e.g., [2,14,38-40]) and is described in detail in previous work [32].
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2.4. Statistical Analysis

We analyzed differences in model outputs using standard statistical approaches. We calculated
the alpha diversity of each source and receiving community using the Inverse Simpson Index [41,42]
in the R package ‘vegan’ [43]. Differences in alpha diversity across communities were evaluated with
one-way ANOVA followed by post-hoc Tukey’s HSD tests. We used pairwise Kolmogorov-Smirnov
tests to compare distributions of species optima between simulations (distributions were non-normal).
To compare biogeochemical function of the three dispersal cases, we used one-way ANOVA followed
by post-hoc Tukey’s HSD tests. We also analyzed how biogeochemical function changed as the
environmental difference between source and receiving communities increased; this was done using
quadratic regressions due to non-linearity in the relationships. We also compared the influence
of dispersal on biogeochemical function across different niche breadths. This was done by first finding
the ratio of function in selection-only communities to function in associated homogenizing dispersal
communities. Ratios were calculated by comparing communities assembled from the same regional
species pool and with identical environmental condition and niche breadth. The resulting distributions
of ratios were compared across different niche breadths using one-way ANOVA followed by post-hoc
Tukey’s HSD tests. To evaluate the relationship between the relative influence of dispersal-based
assembly (inferred from the value of BNTI) and biogeochemical function, correlations between 3NTI
and biogeochemical function were assessed with linear regression. In most studies BNTI values are
not independent of each other such that statistical significance requires a permutation-based method
such as a Mantel test. Here, each NTI estimate is independent whereby standard statistical methods
that assume independence are appropriate.

3. Results and Discussion

As ecosystem process models become more sophisticated (e.g., [44—46]), there is a need to improve
these models by better understanding the linkages among community assembly processes and
ecosystem function. Here, we used an ecological simulation model to highlight the importance
of dispersal-based microbial community assembly for biogeochemical function. Our results suggest
that incorporating assembly processes into ecosystem models may improve model predictions
of biogeochemical function under future environmental conditions.

3.1. Microbial Community Composition in Response to Dispersal

We found that diversity was highest when both dispersal and selection influenced community
structure (Figure 2). In communities assembled with moderate to broad niches, intermediate amounts
of dispersal led to the highest diversity (Figure 2A,B). These moderate-dispersal communities were
characterized by distributions of environmental optima (across species and individuals) that did not
match the source or selection-only distributions, and instead reflect an influence of both dispersal
from the source and local selection (Figure 3B,D,F). Both moderate- and homogenizing-dispersal
cases exhibited higher diversity than source or selection-only communities (Figure 2A,B). We note
that the slight differences in diversity between source and selection-only communities were due
to environmental conditions in source communities being defined at one end of the environmental
spectrum. This edge-effect truncated its distribution of species environmental optima, causing
the distribution to be right skewed (Figure 3A,C,E). Our results suggest a conceptual parallel
to Connell’s [47] Intermediate Disturbance Hypothesis, whereby intermediate levels of dispersal
lead to the highest overall diversity, but only when niche breadth is broad enough to allow for strong
contributions from both dispersal and selection (Figure 2).
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Figure 2. Alpha diversity (inverse Simpson Index) of communities assembled under wide ((A) niche
breadth = 0.175), moderate ((B) niche breadth = 0.086842105), and narrow ((C) niche breadth = 0.0075),
niches in the mid-point environment (0.476315789). Upper and lower hinges of the box plots represent
the 75th and 25th percentiles and whiskers represent 1.5 times the 75th and 25th percentiles, respectively.
Colors coincide with labels on the x-axis.

A B
< W Selection-only
0| B Moderate Dispersal
B Homogenizing Dispersal
> o O Source
2
= ©
)
a N4 /_\ <4
— / / \ o M
O+ o4 S
T T T T T T T T T T
C D
<
|
> M
2
= ©
)
a N <
- 7« N ﬁ‘\
o \ o b\’\(\’\\ _
T T T T T T T T T
E F
<
|
>4
2
= ©
)
a N B <t
oV &_ o ,/\/M

000204060810 000204060810
Environmental Optimum Environmental Optimum

Figure 3. Kernel density of species optima are shown under wide ((A,B) niche breadth = 0.175),
moderate ((C,D) niche breadth = 0.086842105), and narrow ((E,F) niche breadth = 0.0075) niches in the
mid-point environment (0.476315789, vertical black line). Column 1 displays distributions of species
optima without accounting for abundances. Column 2 displays distributions of individuals” optima.
Distributions for the source community and its environment condition (vertical line) are displayed
in gray. The same communities were selected as examples to generate Figures 2 and 3.
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With the narrowest niche breadths (Figure 2C), we observed a distinct pattern of diversity relative
to broader niche breadths (Figure 2A,B). Diversity in moderate-dispersal cases decreased substantially
as niche breadth narrowed, indicating that moderate levels of dispersal can be overwhelmed when local
selective pressures are strong. In contrast, homogenizing dispersal cases maintained consistent levels
of diversity across niche breadths and displayed distributions of environmental optima that tracked
those of the source community (Figure 3). Diversity in selection-only cases was greatest under the
narrowest niche breadth. This was due to only very well-adapted species being part of the community,
which led to high abundance across all species in those communities (Figure 3F). For selection-only
communities, broader niche breadths resulted in more species with low abundances, and thus lower
diversity (cf. black lines in Figure 3B,D,F).

3.2. Dispersal, Microbial Community Composition, and Biogeochemical Function

We found that microbial community assembly history altered the degree to which organisms
within a community were adapted to their local environment. Given our assumption of the connection
between the degree of adaptation and biogeochemical function (see Methods), assembly history was
therefore found to have an indirect effect on biogeochemical function. The environmental optima
of taxa in selection-only communities more closely matched their simulated environmental conditions
compared to communities assembled with dispersal (Figure 3, 1st column, p < 0.001). When niche
breadth was broad (Figure 3A), species” environmental optima were distributed around the simulated
environment under all dispersal cases. However, as niche breadth decreased (Figure 3C,E), the species
distribution of selection-only cases tightened around the simulated environment, with moderate
and homogenizing dispersal cases having a wider distribution than the selection-only case. These
disparities were maintained when accounting for species abundances (Figure 3B,D,F), in which
selection-only communities had unimodal distributions separate from the source community, while
moderate and homogenizing dispersal communities had distributions ranging from unimodal
to multi-modal, depending on niche breadth. Dispersal from the source therefore resulted in significant
numbers of individuals having large deviations between their environmental optima and the
local environmental condition. The large number of maladapted individuals in communities
experiencing dispersal from the source resulted in selection-only communities having the highest rates
of biogeochemical function, on average, regardless of the simulated environment (Figure 4, p < 0.0001).

In natural systems, microbial community compositional differences can be due to competitive
dynamics that select for organisms based on their niche optima [48,49] and to immigration of new
taxa from the regional species pool [7,32,50]. Strong local selective pressures can lead to more fit
species and enhanced biogeochemistry [7]. Due to the lack of immigrating maladapted species in the
selection-only simulations, biogeochemical rates were maintained regardless of the difference between
source and receiving community environments. This indicates that biogeochemical function can
be enhanced by species adaptation to local conditions. Indeed, a plethora of literature demonstrates
that environmental features such as pH [25], nutrients [51], and salinity [26,27] impact microbial
community structure and biogeochemical function, and our results indicate that the linkage between
community structure and function is due to microbial adaptation to local conditions.

Our results also indicate that when immigrating microorganisms are derived from environments
that differ from the receiving community (e.g., dispersal across steep geochemical gradients),
biogeochemical function may be suppressed. When we included dispersal from a source community,
greater differences between the source and receiving communities led to decreases in biogeochemical
function in the receiving communities (Figure 4B, p < 0.0001), and this effect became more pronounced
as the rate of dispersal increased. Natural systems are influenced by some combination of dispersal
and selection and our results indicate that function is maximized when dispersal is minimized and
selection is maximized.
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Figure 4. (A) Biogeochemical function across dispersal cases. Upper and lower hinges of the box
plot represent the 75th and 25th percentiles and whiskers represent 1.5 times the 75th and 25th
percentiles, respectively. Different letters indicate statistically significant differences in mean values.
(B) Biogeochemical function across environmental conditions in receiving communities (vertical axis
is the same as in panel A). In the selection-only case (black), biogeochemical function did not vary
with environmental condition such that no regression line is drawn. With moderate (blue) and
homogenizing (red) dispersal, biogeochemical maxima occurred when the receiving community’s
environmental condition aligned with the environmental optima of species in the source community
(compare to Figure 3). For these two cases, quadratic regression was used and resulting models are
shown as solid lines (statistics provided).

Dispersal had the greatest influence on biogeochemical function when niche breadth was
narrow (Figure 5). The biogeochemical function of selection-only communities in comparison
to homogenizing-dispersal communities was greatest under the narrowest niche breadth (0.0075) and
rapidly decreased when transitioning to broader niche breadths. Selection-only communities simulated
with narrow niches are comprised of specialist species that can generate high biogeochemical rates
and that are well adapted to their local environment. Increasing niche breadth results in the assembly
of species with a broader range of environmental optima and that generate lower biogeochemical
rates even if their environmental optimum matches the environmental condition (see Methods for
a discussion of this assumed trade-off). Thus, high rates of dispersal combined with narrow niche
breadth causes replacement of high-functioning specialist organisms with maladapted taxa, thereby
significantly reducing community-level biogeochemical function. When niche breadth is broader,
immigrating organisms replace lower-functioning organisms (i.e., generalists), resulting in a smaller
decreased in community biogeochemical function. We note that our model does not represent
dispersal-competition tradeoffs [19], nor does it explicitly represent organismal interactions; exploring
the influence of these features would be an interesting extension of the model presented here.
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Figure 5. The ratio of biogeochemical function in selection-only cases to homogenizing dispersal cases
across five niche breadths that span the entire parameter range (0.0075 to 0.175). Each column represents
all replicates across all environments for a given niche breadth. Different letters indicate statistically
significant differences in mean values. Upper and lower hinges of the box plots represent the 75th and
25th percentiles and whiskers represent 1.5 times the 75th and 25th percentiles, respectively.

Regardless of dispersal, simulations with broader niche breadth led to lower rates
of biogeochemical function, supporting a tradeoff between communities comprised of specialist vs.
generalist species [52-54]. Previous work in microbial systems has posited life-history tradeoffs
between specialist vs. generalist species, whereby specialists expend more energy to establish their
niches but function at higher levels once established [55]. Specialist species have also been found
to be more sensitive to changes in the environment due to strong adaptation to their local environment,
with generalists being more resilient to change [56-59]. While we do not address temporal dynamics
in our model, the separation of biogeochemical function based on niche breadth indicates a central
role for the balance of specialist vs. generalist microorganisms within a community in determining
function, regardless of prevailing environmental conditions.

3.3. Impact of Assembly Processes on Biogeochemical Function

We also observed that niche breadth within the receiving community was a key parameter
in dictating biogeochemical function when environmental conditions (and thus selective pressures)
differed between source and receiving communities. In cases without dispersal, biogeochemical
function was dictated entirely by niche breadth regardless of differences in selective environments
(as inferred from BNTI) between source and receiving communities (Figure 6A,D). Selective pressures
in the selection-only receiving communities were most dissimilar to the source community (BNTI > 2)
in simulations with both narrow niche breadth and environmental conditions that were very
different from the source community (Figure 6A). This relationship was also apparent (but weaker)
in simulations with an intermediate amount of dispersal (Figure 6B). In receiving communities with
high rates of dispersal, stochasticity (I BNTII < 2) was the dominant process regardless of niche
breadth or environmental condition in the receiving community (Figure 6C).
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Figure 6. Interpolated contour plots showing average BNTI (A-C) and biogeochemical function
(D-F) for each dispersal case across all parameter combinations. Interpolations are based
on parameter combinations at each of 20 evenly spaced values across each axis. Values of BNTI
that are further from 0 indicate increasing influences of deterministic assembly (and decreasing
stochasticity). (A,D) depict selection-only communities; (B,E) depict moderate dispersal communities;
and (C,F) depict homogenizing dispersal communities.

Across the full parameter space defined by niche breadth and environmental condition, cases with
moderate and homogenizing dispersal were generally characterized by a dominance of stochasticity
(Figure 6B,C). This increase in stochasticity relative to selection-only cases corresponded to decreased
biogeochemical function. This was particularly true as the environment diverged from the source
community (Figure 6D-F). Biogeochemical function in these cases was also negatively correlated
to niche breadth (i.e., highest under narrow niche breadths), revealing higher functioning of specialist
organisms regardless of assembly processes.

Given these apparent associations between assembly processes and biogeochemical function,
we directly examined differences in relationships between BNTI and biogeochemical function across
a range of environments and niche breadths (Figure 7). Our results suggest that microbial assembly
processes may exert the most influence over biogeochemical function when there is significant
variation in the relative contributions of deterministic and stochastic processes among communities.
We found the strongest relationships between SNTI and function when environmental conditions
were dissimilar to the source community, regardless of niche breadth (Figure 7G-I). NTI had the
greatest range in these scenarios, reflecting substantial variation in the contribution of stochastic
and deterministic processes. By contrast, scenarios with environments more similar to the source
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environment had little variation in assembly processes and no relationship between BNTI and
biogeochemical function (Figure 7A-F).
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Figure 7. Relationship between BNTI and biogeochemical function across different niche breadths
(columns) and different environmental conditions of the receiving communities (rows). (A-C), (D-F),
and (G-I) depict environmental conditions similar, moderately different, and very dissimilar to that
of the source community, respectively. (A,D,G), (B,EH), and (CF,1I) respectively show narrow,
moderate, and wide niche breadths. Values of BNTI that are further from 0 indicate increasing
influences of deterministic assembly (and decreasing stochasticity). Horizontal gray lines indicate
significance thresholds of —2 and +2. Relationships were evaluated with linear regression; fitted models
are shown as black lines and statistics are provided on each panel. Panels without regression models
had non-significant (p > 0.05) relationships. Note that the vertical axis is scaled the same across panels,
but the horizontal axis is not. Black, blue, and red symbols indicate selection-only, moderate dispersal,
and homogenizing dispersal scenarios, respectively.

Variation in the balance of stochastic and deterministic assembly processes is prevalent in natural
systems [2,7,16,38], as most ecosystems experience spatially and/or temporally variable rates
of dispersal. For example, hydrologic connectivity facilitates microbial dispersal and differs with
physical matrix structure in soils and sediments. We therefore pose that variation in FNTI may
be an effective tool for predicting biogeochemical function when biotic and abiotic conditions lead
to a mixture of stochastic and deterministic assembly processes. Natural systems have repeatedly
shown such a mixture, and previous field observations have revealed connections between BNTI
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and biogeochemical function [2,14,60]. These outcomes support our model-based inference that
BNTI—as a proxy for assembly processes—offers a practical means to inform models that represent
the effects of ecological processes on biogeochemical function.

While our results suggest that maladapted immigrating organisms decrease biogeochemical
function, it is important to note that stochasticity may offer buffering capacity that maintains
or increases biogeochemical function relative to well-adapted deterministic communities in the
context of future environmental perturbations not simulated with the static environmental conditions
inour model [56]. Stochastic spatial processes, such as dispersal, may lead to coexistence
of species with different environmental optima resulting in a community that can rapidly adapt
to changing environment conditions and maintain biogeochemical function in the face of perturbation.
Researchers have long demonstrated positive relationships between biodiversity and ecosystem
function in both macrobial [61,62] and microbial [63-65] systems, and new work has highlighted
the role of stochasticity in maintaining this connection [66]. Conversely, a lack of stochasticity may
result in species so specialized to a given environment that they are vulnerable to environmental
change [56]. While these communities would putatively exhibit high rates of biogeochemical function
under stable environmental conditions, their function would plummet in response to perturbation,
akin to observations of a tradeoff between function and vulnerability in plant communities [21,67].

3.4. Implications for Ecosystem Models

The cumulative impacts of ecological processes through time and how they relate
to ecosystem-level processes is an emerging research frontier in ecosystem science [2,44,52,68,69].
We reveal how dispersal-based community assembly can decrease adaptation to local environments
and, in turn, decrease biogeochemical function. Our modelling approach demonstrates plausible
outcomes of microbial assembly processes on ecosystem functioning, and integrating this knowledge
with factors such as historical abiotic conditions, competitive dynamics, and life-history traits could
substantially improve ecosystem model predictions.

Previous work by Hawkes and Keitt [52] laid a theoretical foundation for incorporating
time-integrated ecological processes into predictions of biogeochemical function. They demonstrate
that community-level microbial functions are the accretion of individual life-histories that determine
population growth, composition, and fitness. However, they acknowledge their exclusion of dispersal
processes from their models and do not explicitly consider dispersal in their analysis. Hawkes
and Keitt [52] therefore provide a baseline for future research and call for a holistic understanding
of historical processes on microbial function, with a particular emphasis on the underlying mechanisms
generating these trends. Our work enhances this framework by demonstrating that community
assembly processes are integral to knowledge of biogeochemical function in natural systems.

Microbially-explicit models (e.g., MIMICS, MEND) are rapidly becoming more sophisticated and
are readily amenable to modules that represent ecological assembly processes [70,71]. As models begin
to consider microbial ecology, there is a need to decipher linkages among spatiotemporal microbial
processes and ecosystem-level biogeochemical function. We propose that new microbially-explicit
models should go beyond microbial mechanisms at a given point in time or space, and building
upon the foundation laid by Hawkes and Keitt [52], incorporate ecological dynamics that operate
across longer time scales to influence biogeochemical function. Although there are many available
avenues to merge modelling efforts in microbial ecology and ecosystem science, there is little debate
that integrated models will increase the accuracy of predictions in novel future environments.

4. Conclusions

We demonstrate the influence of ecological assembly processes on biogeochemical function.
Specifically, we show that dispersal can increase the abundance of maladapted organisms
in a community, and in turn, decrease biogeochemical function. This impact is strongest when
organismal niche breadth is narrow. We also pose that the explanatory power of microbial assembly
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processes on biogeochemical function is greatest when there is variation in the contributions
of dispersal and selection across a collection of local communities within a broader system of interest.
While our work is an encouraging advancement in understanding relationships between ecology and
biogeochemistry, a key next step is incorporating assembly processes into emerging model frameworks
that explicitly represent microbes and that mechanistically represent biogeochemical reactions.
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Abstract: Metabolic acclimation to photosynthesis-associated stresses was examined in the
thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 using integrated computational and
photobioreactor analyses. A genome-enabled metabolic model, complete with measured biomass
composition, was analyzed using ecological resource allocation theory to predict and interpret
metabolic acclimation to irradiance, O, and nutrient stresses. Reduced growth efficiency, shifts in
photosystem utilization, changes in photorespiration strategies, and differing byproduct secretion
patterns were predicted to occur along culturing stress gradients. These predictions were compared
with photobioreactor physiological data and previously published transcriptomic data and found
to be highly consistent with observations, providing a systems-based rationale for the culture
phenotypes. The analysis also indicated that cyanobacterial stress acclimation strategies created
niches for heterotrophic organisms and that heterotrophic activity could enhance cyanobacterial stress
tolerance by removing inhibitory metabolic byproducts. This study provides mechanistic insight
into stress acclimation strategies in photoautotrophs and establishes a framework for predicting,
designing, and engineering both axenic and photoautotrophic-heterotrophic systems as a function of
controllable parameters.

Keywords: cross-feeding; cyanobacteria; elementary flux mode analysis; irradiance; resource
allocation; RuBisCO; stress acclimation

1. Introduction

Environmental stresses dictate competitive ecological strategies impacting nutrient and energy
flows from the scale of individual cells to ecosystems [1,2]. Cyanobacteria are significant drivers
of global nutrient and energy flows, accounting for ~10% of global primary productivity [3] and
forming essential links in carbon and nitrogen biogeochemical cycles [4]. Cyanobacteria are also used
in wastewater treatment and as bioprocess catalysts for bioproduction of specialty chemicals [5,6].
Cyanobacteria are deeply rooted in the tree of life and have adapted competitively to common stressors
associated with photosynthesis and are model organisms for examining metabolic acclimation to
these stresses.

Photoinhibition is a broad term encompassing different types of photosynthesis-associated
stresses including photo-damage by excitation, damage by reactive oxygen species (ROS), and
high localized O, concentrations [7]. Cyanobacteria can mitigate photo-damage by downregulating
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synthesis of photosystems, as well as adjusting relative photon absorption at photosystems I and
II (PSI, PSII) to modulate ATP and NADPH regeneration (PSII extracts electrons from water which
can be used in conjunction with PSI to regenerate NADPH and ATP, while PSI operating alone
recycles electrons to regenerate ATP only; see Figure 1) [8]. High excitation can lead to oxidative
damage at the photosystems and/or a highly reduced electron transport chain, which may also lead to
cellular oxidative damage via ROS. Acclimation strategies include directing excess electrons toward
alternative biochemical routes, such as reduction of O; (by either cellular respiration or the water-water
cycle (photoreduction of O, to water)) or secretion of reduced carbon byproducts. High rates of
oxygenic photosynthesis can also lead to locally high O, levels [9,10], and environments with high
concentrations of O, relative to CO, can cause additional metabolic stress. Ribulose-1,5-bisphosphate
carboxylase oxygenase (RuBisCO) is a dual-functioning enzyme which can react with either CO, or
O;. When RuBisCO reacts with O,, 2-phosphoglycolate is produced, which is either secreted as the
inhibitory compound glycolate or catabolized using one of three photorespiration pathways found in
cyanobacteria [11]. Cyanobacteria have evolved mechanisms to reduce O, consumption at RuBisCO,
including species-specific enzymes with varying affinities for CO, and O,, as well as expression of
carboxysomes to increase the relative CO, concentration in the vicinity of RuBisCO [12,13].

NADP~ Cytosol ADP
+H™ NADPH ADP

; +P. ATP
2 hy Cytosol ;
\ 4H
" psI
“oe
“ . \2 hv .
H,0 %0, 2hv 4H 4 H
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(a) (b)
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0,

RuBP 2 PGA RuBP PGA +PG = Glycolate
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(0 (d)

Figure 1. Light and dark reactions of photosynthesis. The role of photosystems I and II (PSI and
PSII) in linear (a) and cyclic (b) photosynthesis and their relation to production of O, and regeneration
of NADPH and ATP. Linear photosynthesis produces O, and regenerates both ATP and NADPH,
whereas cyclic photosynthesis does not produce O, and regenerates ATP only. In the dark reactions, the
bifunctional RuBisCO enzyme can incorporate inorganic carbon into biomass via the Calvin cycle (c) or
can react with O; (d), resulting in a toxic byproduct and reducing incorporation of carbon into biomass.
Abbreviations: hv, photons (photosynthetically active radiation); PQ, plastoquinone/plastoquinol;
Cyt bef, cytochrome bgf; PC, plastocyanin; ENR, ferredoxin-NADP* reductase; Fd, ferredoxin; RuBP,
ribulose-1,5-bisphosphate; PGA, 3-phosphoglycerate; PG, 2-phosphoglycolate.

Stoichiometric modeling of metabolism enables prediction and interpretation of system-wide

properties of complex metabolic networks, including community-level networks [14-20]. These
systems biology approaches, such as flux balance analysis (FBA) and elementary flux mode
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analysis (EFMA), use genomic and physiological data to inform the construction of computational
representations of metabolism. The application of a steady state assumption simplifies the
mass-balanced metabolic reactions into a series of solvable linear equations, reducing the need
for difficult-to-measure, condition-dependent enzyme kinetic parameters [16]. Whereas FBA uses
objective functions such as biomass production to predict an optimal flux distribution under a specific
set of conditions, EFMA calculates the complete set of minimal pathways (elementary flux modes,
EFMs) through a metabolic network using steady state, reaction reversibility, and indecomposability
constraints. Non-negative linear combinations of EFMs define the entire phenotypic solution space of
a steady state metabolic network using a single simulation and can be used to examine all possible
physiologies in an unbiased manner [19,21]. Similarities and differences in the output of EFMA
versus other stoichiometric modeling techniques can be found in the review by Trinh et al. [19].
The enumerated EFMs can be evaluated by resource allocation theory, which quantitatively assesses
the computational phenotypic space according to tradeoffs in consumption of different resources for
the production of bioproducts [22-26]. Previous stoichiometric modeling studies of cyanobacterial
metabolism have examined the occurrence of photorespiration as well as irradiance and carbon
limitations [27-30].

The presented study analyzes metabolic acclimation to photosynthesis-associated stresses
in the thermophilic, non-diazotrophic unicellular cyanobacterium Thermosynechococcus elongatus
BP-1 (hereafter BP-1) and the formation of heterotrophic niches. BP-1 was isolated from the
alkaline (pH 8.6) Beppu hot springs in Japan where temperatures range from 50-65 °C [31,32].
BP-1 is a major primary producer in its native hot springs where it often grows in bacterial
mat communities with heterotrophs and is subject to high irradiance, high O, and low nutrient
availability stresses. The objectives of this study were to (i) identify ecologically relevant acclimation
strategies to high irradiance, O,/CO; competition at RuBisCO, and nutrient limitation at varying
degrees using a computational BP-1 stoichiometric model and EFMA combined with resource
allocation theory, (ii) analyze BP-1 acclimation to high irradiance through controlled photobioreactors,
(iii) compare general computational predictions to specific photobioreactor observations to interpret
BP-1 acclimation strategies, and (iv) examine the impact of stress acclimation strategies on the ability
of BP-1 to interact with heterotrophic partners. The presented study contributes to the understanding
of cyanobacterial metabolism by examining specific photorespiration pathways, relative photon
absorption of the photosystems, and byproduct secretion profiles under simultaneous stress conditions
of high irradiance and O,/CO, competition at RuBisCO, as well as by predicting cross-feeding
photoautotrophic-heterotrophic interactions. The computational resource allocation-based modeling
integrated with photobioreactor observations provides a rational basis for interpreting natural
cyanobacterial behavior and a framework for controlling cyanobacteria for bioprocess applications.

2. Materials and Methods

2.1. Photobioreactor Culturing

T. elongatus BP-1 cultures were grown using modified BG-11 (mBG-11) medium [33,34], containing
17.6 mM NaNO3, 0.304 mM MgSO,-7H,0, 0.175 mM KH;,POy, 0.245 mM CaCl,-2H,0, 0.0028 mM
NayEDTA, and 0.0144 mM FeCl3. A trace metal supplement was added (1 mL/L), comprised of
46.254 mM H3BO3, 9.146 mM MnCl,-4H,0, 0.772 mM ZnSO4-7H;0, 1.611 mM Nay;MoO4-2H,0,
0.316 mM CuSO,-5H,0, and 0.170 mM Co(NO3),-6H,O. Inoculum cultures of BP-1 were initiated
from frozen stocks into 150-mL sealed serum bottles filled with 50 mL mBG-11 amended with 15 mM
sodium bicarbonate and adjusted to pH 7.5 under N headspace containing 10% CO,.

Photobioreactors were operated as turbidostats as described in Bernstein et al. [33], similar to
Bernstein et al. and Melnicki et al. [35,36]. Reactors were inoculated with exponentially growing
inoculum culture to ODy3ppm = 0.01. All cultures were grown under continuous light of varying
irradiances at 52 °C, pH 7.5, and were continuously sparged at 4 L min~! with a 98% N, and 2%
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CO; gas mixture. Incident and transmitted scalar irradiances were measured and used to adjust
the turbidostat growth rate. The specific optical cross section (o, m? (g CDW)~!, CDW, cell dry
weight) was determined according to a previously described method using a light diffuser and
spectrophotometer [37]. The specific photon absorption rate was calculated by multiplying the specific
optical cross section by the incident irradiance.

2.2. Biomass Composition Determination

Macromolecular composition was analyzed from turbidostat biomass samples (pelleted and frozen
at Pacific Northwest National Laboratory and then shipped to Montana State University for subsequent
analysis) according to the following procedures. DNA was quantified from alkali-lysed solutions with
Hoechst 33258 fluorescent dye [38]. Glycogen was quantified by co-precipitation with sodium sulfate
and detection with anthrone [39]. Lipids were quantified gravimetrically via chloroform-methanol
extraction [40]. Total protein and amino acid distribution were quantified with HPLC fluorescence
detection using o-phthalaldehyde (OPA) and 9-fluorenylmethylchloroformate (FMOC) derivatizations
of acid-hydrolyzed protein [41]. Cysteine, methionine, and tryptophan were degraded, and asparagine
and glutamine were converted to aspartate and glutamate, respectively, during hydrolysis [42];
therefore, abundances were predicted from protein-coding gene codon usage. RNA was quantified
by lysis with potassium hydroxide, extraction into cold perchloric acid, and measurement of UV
absorbance at 260 nm [43]. Appendix A contains detailed protocols for each method.

2.3. Model Construction

The metabolic network model for BP-1 was constructed in CellNetAnalyzer [44,45] from the
annotated genome [46] with the aid of MetaCyc, KEGG, BRENDA, and NCBI databases [47-49].
Reversible exchange reactions were defined for protons and water. Irreversible exchange reactions
defined bicarbonate, magnesium, nitrate, phosphate, photons, and sulfate as possible substrates and
O,, acetate, alanine, ethanol, formate, glycolate, lactate, pyruvate, and sucrose as possible byproducts.
Biomass was also defined as a product.

Macromolecular synthesis reactions were defined for nucleic acids, glycogen (most common
form of cyanobacterial carbohydrate storage [50]), lipid, and protein. Synthesis reactions utilized two
phosphate bonds per nucleic acid monomer, one phosphate bond per glycogen monomer, and four
phosphate bonds per protein monomer [51]. Nucleotide distributions were set based on percent GC
content of the genome for DNA and nucleotide sequence of the rRNA genes for RNA. Fatty acid
distribution was assigned based on literature values of fatty acid chain and lipid types measured
for BP-1 [52-54]. The amino acid distribution was set using the experimentally measured values
in the current study. Macromolecular composition (DNA, glycogen, lipid (including chlorophyll),
protein, and RNA) was determined experimentally in the current study (see Section 2.2) and used to
set the molar coefficients in the biomass synthesis reaction, normalized to 1 kg dry biomass (File S1 in
the Supplementary Materials). Chlorophyll was also included in biomass synthesis using the mass
fraction measured for Synechococcus sp. PCC 7002 [29], and the lipid mass fraction was adjusted
to reflect the proportion of chlorophyll. The biomass composition was converted into an electron
requirement using degree of reduction (moles of electrons per mole of carbon) calculations [55] with the
assumption that each biosynthetic electron requires two photons (one absorbed at each PSII and PSI).
Degree of reduction was calculated with respect to nitrate as a nitrogen source. To estimate photons
necessary for ATP regeneration, the phosphate bond requirement for polymerization of monomers
into macromolecules was converted into a photon requirement via a stoichiometry of four photons per
phosphate bond (one photon absorbed at PSI per proton pumped, with four protons translocated per
ATP molecule synthesized). Photon and proton stoichiometries remain active areas of research, and this
estimate is recognized as an upper bound considering linear photosynthesis without a Q-cycle [56,57].

All reactions were balanced for elements, charge, and electrons. Thermodynamic considerations
were built into the model via reaction reversibilities, based on data from BRENDA [49]; in the
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event that data for bacterial species were not available from BRENDA, thermodynamic calculations
were performed with eQuilibrator (http:/ /equilibrator.weizmann.ac.il/) to determine physiological
reversibility, using a product concentration three orders of magnitude greater than the reactant
concentration [58,59]. Nitrogen requirements were determined for each reaction by summing the
number of nitrogen atoms specified by the enzyme amino acid sequences. Iron requirements were
determined for central carbon metabolism and photosynthesis reactions based on metal requirements
of similar cyanobacterial species in BRENDA [49]. For instances of missing or conflicting information
in the database, literature values compiled for oxygenic photoautotrophs were used [60]. A one-to-one
(minimal resource investment) correspondence of enzyme to reaction was used to calculate the total
cost per EFM, as it has previously been shown to provide a good approximation of flux distributions in
Escherichia coli [23,24]. EFMs were enumerated using EFMtool [61]. Resource allocation analysis (cost
assessment) of the resulting EFMs was performed with MATLAB and Python. The metabolic model
with supporting details and CellNetAnalyzer metabolite and reaction input, SBML model version, and
documented analysis routines can be found in the Supplementary Materials (Files S1-54).

3. Results

3.1. Computational BP-1 Metabolic Model and Photobioreactor Biomass Composition Measurement

The BP-1 computational metabolic model was constructed from the annotated genome [46].
Genetic potential was mapped to enzymes and metabolic reactions which encompassed photosynthesis,
central metabolism, and biosynthetic reactions leading to biomass production according to a defined
macromolecular composition reaction. Transport reactions were defined for nutrient uptake and
product secretion. Subsequent EFMA resulted in a description of the phenotypic space spanning
the range of possible nutrient uptake and product secretion rates, which could then be analyzed for
ecologically relevant stress acclimation strategies. The model accounted for 334 metabolism-associated
genes which were mapped to 279 metabolites and 284 reactions (File S1 in the Supplementary Materials).
Photons were assumed to be within the spectrum of photosynthetically active radiation (PAR;
400-700 nm). A stoichiometrically balanced schematic demonstrating operation of the photosynthetic
electron transport chain (linear and cyclic photosynthesis) and carbon flow in the model is shown
in Figure 1. Nutrient substrates for the model were selected in alignment with the photobioreactor
culturing medium. Bicarbonate was modeled as the sole carbon source based on culturing pH while
interconversion with CO, was modeled via the carboxysomal carbonic anhydrase enzyme, and nitrate
was modeled as the sole nitrogen source. Two of the three photorespiration pathways possible in
cyanobacteria [11] were identified in BP-1, namely, the C2 cycle and the glycerate pathway. A variety
of organic byproducts (Table 1) were considered based on previous genomic analysis of BP-1 [62] and
culturing studies of related unicellular cyanobacteria [63,64]. Secretion of several different amino acids
has been observed in BP-1 and related species [33,63,64]; alanine was included as a representative
amino acid byproduct in the current model, closely linked to central metabolism.

Biomass composition impacts growth and byproducts [65], making appropriate composition
parameters important for computational growth predictions. BP-1 macromolecular biomass
composition was determined analytically from continuous culture samples and was used to
parameterize the model growth reactions. The major measured macromolecule classes (DNA, glycogen,
lipid (including chlorophyll), protein, and RNA) summed to 98.1% of cell dry weight (Table 2); the
remaining 1.9% was assumed to be ash. Protein and lipid/chlorophyll comprised the largest mass
fractions of biomass, accounting for 62.0% and 17.4%, respectively. Since protein comprises the largest
fraction of biomass, amino acid monomer distribution was also determined analytically (Table A1l in
Appendix C) and used to parameterize the model reaction for protein synthesis. A strong correlation
was observed between the measured amino acid distribution and the distribution predicted from
protein-coding gene sequences (Figure Al in Appendix B).
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Table 1. T. elongatus BP-1 metabolic model inputs and outputs, including potential reduced carbon
byproducts, with corresponding degree of reduction.

Compound Formula Charge Degree of Reduction
Carbon dioxide CO, 0 0
Inputs Water H,O 0 0
Photons NA NA NA
Nitrate NO3 -1 —8/-5/0
Molecular oxygen O, 0 —4
Biomass CHl.éNO,ZOOBPO,Ol 50.005 —0.7 43/5.0/6.12
Acetate CoH30, -1 4
Alanine C3H;NO, 0 4/5/6.72
Ethanol C,HgO 0 6
Outputs Formate CHO, -1 2
Glycolate CyH303 -1 3
Lactate C3H505 -1 4
Pyruvate C3H30;5 -1 3.3
Sucrose C12H22011 0 4

@ Degree of reduction calculated with respect to ammonia /molecular nitrogen/ nitrate. NA, not applicable.

Table 2. Experimentally determined T. elongatus BP-1 biomass composition from turbidostat biomass

samples grown under an irradiance of 2000 mol photons m 2 s~ 1.

Macromolecule Mass Percent Extraction Method/Analytical Method
DNA 0.4 Alkaline lysis/Hoechst 33258 fluorescence
Glvcogen 20 Sodium sulfate

yeos ' co-precipitation/Anthrone detection

Lipid (including chlorophyll) 17.4 Chloroform-methanol /Gravimetric
. Hydrochloric acid hydrolysis/OPA,
Protein 62.0 FMOC derivatization
RNA 163 Alkaline lysis, perchloric acid/UV
absorbance
Total 98.1

3.2. Computational Analysis of Stress Acclimation

The computational BP-1 metabolic model was decomposed into 4,636,498 unique EFMs using
EFMtool [61], with ~99.5% producing biomass. Each EFM, as well as any non-negative linear
combination of multiple EFMs, represented a mathematically feasible phenotype and possible stress
acclimation strategy. Competitive stress acclimation strategies were identified using ecological resource
allocation theory. Resource allocation theory analyzes the amount of catabolic or anabolic resource
required to synthesize a cellular product, often biomass. Minimizing the requirement of a limiting
resource represents a competitive, cost-effective phenotype and is hypothesized to be a probable
cellular strategy selected by evolution. When two or more resources are considered simultaneously,
a multi-dimensional tradeoff surface is created that quantifies the utilization relationship between
the limiting resources [22-25]. Biomass-producing EFMs were ranked quantitatively based on
efficiency of resource use for biomass production under simulated environmental stresses including
high irradiance, O,/CO, competition at RuBisCO, and limited availability of dissolved inorganic
carbon (DIC) as well as nitrogen or iron. The tradeoff between optimal use of two resources was
quantified by simultaneously minimizing the cost of biomass production under two different stress
factors. Similar methods have been applied to extend FBA to account for biosynthetic costs [26],
but enumeration of complete EFMs combined with resource allocation theory allows exploration of
the entire phenotypic space.
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3.2.1. Irradiance and Photosynthetic Electron Flow

Photosynthetic electron flow was examined as a function of irradiance-induced stress to interpret
relationships between photon absorption and photocatalytic water oxidation. Net O, production
per carbon mole (Cmol) biomass produced was plotted as a function of photons absorbed per Cmol
biomass produced, a metric of irradiance-induced stress (Figure 2). Each net O, molecule is the
byproduct of four photosynthetically derived electrons extracted from water and requires eight
total photons absorbed [66]; this relationship is reflected in the slope of the upper boundary of the
phenotypic cone. Photons absorbed at PSI during cyclic photosynthesis are decoupled from O,
production. Growth phenotypes were analyzed for the ability to direct electrons toward either biomass
or reduced byproducts. The EFMs along the lowest boundary of the phenotypic cone in Figure 2
represented growth where all electrons were directed to biomass and no reduced byproducts were
secreted, extending up to ~80 mol photons absorbed per Cmol biomass produced. Net O, production
(~1.53 mol O, per Cmol biomass) at the lowest boundary corresponds to the biomass degree of
reduction, ~6.1 mol electrons available to reduce O, per Cmol biomass (Table 1). EFMs with higher net
O, production directed electrons to reduced carbon byproducts, such as formate or acetate.
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Figure 2. Computational analysis of irradiance and photosynthetic electron flow in cyanobacterium
T. elongatus BP-1. Net O, production (net mol O, evolved (Cmol biomass produced)’l) is
plotted as a function of photon absorption (mol photons absorbed (Cmol biomass produced)™!)
for biomass-producing EFMs. Each point represents a unique EFM. The slope of the upper boundary
of the phenotypic cone indicates maximum net moles of O, produced per mole of photons absorbed
(eight photons required per molecule O, evolved; theoretical minimum quantum requirement).
No byproducts were secreted on the lower boundary of the phenotypic cone minimizing net O,
production per biomass produced; net O, production along this boundary was a direct result of
electrons incorporated into biomass; secreted reduced carbon byproducts were predicted throughout
the remaining phenotypic space. Color scale represents the photon absorption at PSII relative to PSI for
each EFM (mol photons absorbed at PSII (mol photons absorbed at PSI)~1). Relative contribution of
PSII was predicted to increase as photon absorption increased. Less than 1% of the EFMs had a PSII/PSI
ratio greater than 6 (with maximal value of 20) and were excluded from the plot to represent a more
feasible phenotypic space [67-69]. Modeled biomass production did not include maintenance energy
requirements. Points in the plot area shown are representative of 4,371,798 EFMs.

Biomass-producing EFMs were assessed for photon absorption at PSII relative to PSI to quantify
the contribution of the two photosystems to photosynthetic electron flow (Figure 2, shaded color bar).
A value less than one indicated elevated cyclic photosynthesis, a value greater than one indicated
elevated operation of PSII independent of linear photosynthesis (i.e., reduction of O, through either
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cellular respiration or the water-water cycle), and a value equal to one indicated linear photosynthesis
or, alternatively, equivalent cyclic photosynthesis and O, reduction. Figure 1 provides greater detail on
cyclic and linear photosynthesis. An increase in photon absorption at PSII at a fixed net O, production
indicated greater gross production of O,, which was consumed by cellular respiration and/or the
water-water cycle. In general, photon absorption at PSII relative to PSI was predicted to increase
as irradiance-induced stress increased (Figure 2), indicating a greater contribution of PSII to photon
absorption at high irradiance.

3.2.2. Irradiance, High O, and Nutrient Limitation

Computational BP-1 growth phenotypes were interrogated for stress acclimation strategies under
a range of relative O, to DIC concentrations, represented by O,/CO, competition at RuBisCO
(Figure 3a). The tradeoff curve simultaneously minimizes the cost of biomass production under
0,/CO; competition (moles O, per mole CO, consumed at RuBisCO) and irradiance-induced stress;
EFMs on the tradeoff curve (or non-negative linear combinations thereof) represent optimal predicted
growth phenotypes under the combined stresses. Photorespiration, as opposed to secretion of glycolate,
was predicted as an essential process on the tradeoff curve except at zero O,/CO, competition,
and utilization of photorespiration reactions increased with increasing stress. Utilization of the C2
photorespiration cycle was predicted to increase along the tradeoff curve, whereas use of the glycerate
pathway remained minimal. Photon absorption at PSII relative to PSI was also predicted to increase
along the tradeoff curve. Neither cellular respiration nor the water-water cycle was active along the
tradeoff curve, indicating that all photosynthetically derived electrons were directed to either biomass
or reduced carbon byproducts. The tradeoff curve was divided into four phenotypic zones based on
the suite of byproducts predicted. Zone 1 phenotypes did not secrete reduced byproducts, but as
0,/CO; competition at RuBisCO increased, more energy from photons was required to mediate the
stress as indicated by higher photon absorption per biomass. At high O,/CO, competition (~0.8 mol
O, (mol CO,) 1), byproduct secretion represented the most resource-efficient acclimation strategy
under the combined stresses. Byproduct synthesis effectively consumed photosynthetically derived
electrons at the expense of fixed DIC and, conditionally, reduced nitrogen, as seen in the transition in
byproducts produced along the tradeoff curve. Formate was predicted to be the most resource-efficient
byproduct (zone 2 phenotypes), followed by combinations of formate and amino acids, represented in
the model as alanine (zone 3 phenotypes), and acetate and amino acids (zone 4 phenotypes). Secretion
of glycolate was not the most competitive use of metabolic potential under the considered stresses.
Net O; production of the tradeoff curve EFMs quantified the fraction of electrons directed to biomass
and reduced byproducts as a function of stress acclimation (Figure 3b). A nonlinear increase in net O,
production per Cmol biomass was predicted; the increase in net O, production correlated with the
secretion of reduced byproducts (formate, acetate, and/or alanine).

In addition to DIC, nitrogen and iron are essential anabolic resources and place constraints on
cellular functions such as growth or ATP regeneration [70]. Acclimation to nitrogen- or iron-limited
growth, assessed by investment into enzymes, was analyzed in conjunction with O, /CO, competition
(Figure A2a,b in Appendix B). Increasing O, /CO, competition at RuBisCO necessitated an increase
in nitrogen and iron investments into metabolic enzymes due to the requirement to process
2-phosphoglycolate. Tradeoff curve analysis of simultaneous acclimation to O,/CO, competition
and nutrient limitation showed trends similar to those predicted under irradiance-induced stress
in Figure 3a, and amino acid secretion was again predicted at the highest resource limitation
stress. However, under nitrogen limitation, reduced byproduct secretion was required for the most
competitive phenotypes over the entire range of resource-limited growth. BP-1 metabolism was
predicted to be less robust to nitrogen-limited stress than irradiance-induced stress as indicated by
relatively fewer suboptimal EFMs near the tradeoff curve (Figure A2a in Appendix B). Additional
details on nitrogen and iron limitation are found in Appendix D. While the majority of EFMs produced
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biomass, energy-producing EFMs (not producing biomass) also showed similar optimal byproducts
under irradiance-induced stress and O, /CO, competition (data not shown).
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Figure 3. Computational analysis of irradiance-induced stress and O/CO; competition at
RuBisCO in cyanobacterium T. elongatus BP-1. (a) O,/CO, competition at RubisCO (mol
0, (mol CO,)~! consumed) as a function of photon absorption (mol photons absorbed (Cmol
biomass produced) ') for biomass-producing EFMs are plotted. Each point represents a unique
EEM. The tradeoff curve defining competitive strategies between O,/CO, competition and
irradiance-induced stress was divided into four distinct phenotypic regions based on byproduct
secretion behavior, labeled accordingly (intensity of shading increases with increasing stress). The
maximum amount of O, per CO, consumption at RuBisCO that can be sustained is two to one.
Consumption of two O, molecules followed by photorespiration recycles 2-phosphoglycolate to
regenerate the ribulose-1,5-bisphosphate precursor, but loses the single molecule of CO, that
was consumed and thus cannot support biomass production. Points in the plot area shown are
representative of 4,457,199 EFMs. (b) Net O, production (net mol O, evolved (Cmol biomass
produced)’l) as a function of photon absorption (mol photons absorbed (Cmol biomass produced)’l)
for biomass-producing EFMs are plotted. Colored points indicate net O, production of EFMs on the
tradeoff curve in (a). Color scale represents the photon absorption at PSII relative to PSI (mol photons
absorbed at PSII (mol photons absorbed at PSI)~1). Modeled biomass production did not include
maintenance energy requirements. Points in the plot area shown are representative of 4,355,094 EFMs.

3.3. Comparison of Computational Predictions with Photobioreactor Physiological Data

The optimal predicted growth phenotypes identified along the tradeoff curve (Figure 3a) were
compared with data from turbidostat culturing experiments. Irradiance levels altered both specific
growth rate and biomass yield during cultivation. Specific growth rates ranged from 0.06-0.29 h~! at
irradiances varying from 200-2000 pmol photons m~2 s~ (Figure 4a). Specific growth rates increased
linearly as a function of incident irradiance below 500 pmol photons m~2 s~!. Above 500 pmol photons
m~2 571, irradiance became saturating, possibly inhibitory, and specific growth rate approached
a maximum at 1800-2000 pumol photons m~2 s~!. Conversely, biomass yield per photon absorbed
had a maximum at low irradiance (200-300 pmol photons m~2 s~ 1) and decreased nonlinearly as a
function of incident irradiance (Figure 4b). Irradiance-induced stress at 2000 umol photons m2s71
reduced the biomass production efficiency by more than 50% compared to low irradiance conditions.
The decrease in biomass per photon yield is consistent with predicted acclimation strategies, as is the
nonlinear relationship between stress and biomass growth efficiency (Figure 3).
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Figure 4. Photobioreactor impact of irradiance on specific growth rate and biomass production
efficiency in T. elongatus BP-1 continuous culture. (a) Photobioreactor measurement of BP-1 specific
growth rate (g CDW (g CDW)~! h™1) as a function of incident irradiance (umol photons m~2 s~ 1).
CDW, cell dry weight. (b) Photobioreactor measurement of BP-1 biomass yield (g CDW (mol photons
absorbed) 1) as a function of incident irradiance (mol photons m~2 s~ 1).

BP-1 maintenance energy requirements were estimated by analyzing specific photon absorption
rate as a function of specific growth rate (Figure 5). The non-growth associated maintenance energy
requirement (0.16 mol photons (g CDW)~! h~1) was estimated by extrapolating the specific photon
absorption rate data to a zero growth rate. Photon requirements for growth can be partitioned into the
cellular energy required to (1) reduce nutrients such as DIC and nitrate into biomass monomers and
(2) polymerize monomers into macromolecules. The photon requirement to reduce nutrient substrates,
including bicarbonate and nitrate, to biomass monomers was calculated using the experimentally
measured biomass composition. Macromolecular synthesis reactions in the model incorporated the
energy cost of phosphate bonds required to polymerize monomers.

Photon requirement per Cmol biomass increased nonlinearly at higher growth rates (Figure 5),
which corresponded to higher incident irradiance and represented successively increasing
irradiance-induced stress and reduced biomass production efficiency. The difference between the
photon requirement for biomass and the experimentally measured photon requirement is hypothesized
to be the photon requirement for growth-associated maintenance energy, including tasks such as
general protein repair, enzyme turnover, and maintenance of gradients, or other drains such as
non-photochemical quenching of absorbed photons [8,71-73]. Additionally, the repair and recycling
of PSII due to increased photoinactivation at high irradiance requires a large investment of nitrogen
and poses a significant limitation on growth [74,75]. The implications of nitrogen source degree of
reduction were also factored into maintenance energy calculations. A comparison of the effects
of different nitrogen sources on the photon requirement is shown in Figure A3 in Appendix B.
Molecular nitrogen and ammonia required fewer photons per biomass since they are more reduced
than nitrate. Nitrate may be a preferred nitrogen source for photoautotrophs under high irradiance
conditions, likely because it represents a possible sink for electrons which can buffer over-reduced
photosynthetic machinery.
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Figure 5. Growth rate-dependent photon absorption rate and maintenance energy in cyanobacterium
T. elongatus BP-1. Specific photon absorption rate (mol photons absorbed (g CDW)~! h™1) is plotted as
a function of specific growth rate (g CDW (g CDW)~! h™1) for experimental BP-1 turbidostat cultures
(black circles). Specific photon absorption rate is dependent on specific growth rate (i) according to
the equation 0.16¢”#7" determined from an exponential regression of the photobioreactor data. The
non-growth associated maintenance energy requirement was extrapolated from a specific growth rate of
zero (light blue line). Measured photon absorption rates are contrasted with calculated requirements for
biomass synthesis, including polymerization (dark blue line). CDW, cell dry weight.

3.4. Comparison of Computational Predictions with Photobioreactor Transcriptomic Data

The optimal predicted growth phenotypes identified along the tradeoff curve (Figure 3a) were
compared with previously published BP-1 transcriptomic data [33]. The transcriptomic data were
analyzed for differentially expressed genes (two-fold or greater difference) between high and low
irradiance conditions (2000 versus 200 umol photons m~2 s~1). A change in expression of two-fold
or greater was observed for 1147 genes. Differentially expressed genes were examined according
to metabolic pathways and compared with the pathways utilized in the predicted optimal stress
acclimation phenotypes. Consistencies and inconsistencies between predicted and observed metabolic
functionalities were grouped into six categories (Table 3) and are discussed in detail below.

Table 3. Comparison between computational predictions of stress acclimations and previously
published photobioreactor gene expression data under high versus low irradiance conditions [33].
Metabolic functionalities were predicted from competitive pathways along the optimal tradeoff curve
for irradiance-induced stress and O,/CO, competition (Figure 3a), and observations were made
from gene expression data comparing change in transcripts from high to low irradiance (2000 versus
200 umol photons m~2s1)[33].

Prediction Observation
1. Photosystem o Increased PSII photon absorption o Upregulation of PSII-associated genes
contribution relative to PSI o No change in PSl-associated genes

e Use of photorespiration
2. Photorespiration e Increase in photorespiration with higher
pathways 0,/CO; competition
o Primarily C2 cycle, minimal glycerate
pathway usage

e Transcription of photorespiration genes
o Upregulation of C2 cycle genes

o No change in glycerate pathway genes

® Production of reduced byproductse o Upregulation of formate, acetate, and sucrose
3. Byproduct secretion Formate and acetate production synthesis genes

e Amino acid (alanine) secretion at o Upregulation of amino acid synthesis

highest stress pathway and transporter genes
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Table 3. Cont.

Prediction Observation
4. Glycolysis . Increas.ed use of lower portion of ° Upregglahon of genes in lower portion of
glycolysis glycolysis
5. TCA cycle « No change in TCA cycle use . Upregulatlon of TCA cycle genes leading to
synthesis of a-ketoglutarate
. e Increased nitrate uptake in pathways o Upregulation of nitrate uptake and
6. Nitrate and sulfate that secrete amino acid byproducts assimilation genes

assimilation o Upregulation of sulfate uptake and

® No change in sulfate uptake RN
assimilation genes

3.4.1. Photosynthesis, Photorespiration, and Byproducts

The predicted increase in photon absorption at PSII relative to PSI (Figure 3a) was reflected
in the transcriptomic data [33] showing upregulation of genes coding for several PSII subunit and
repair genes but no upregulation of PSI-associated genes (Table A2 in Appendix C). The increase in
transcript level could be due to increased photon absorption, or it could reflect an increased turnover
of PSII, which has been reported during culturing at high irradiance [74,75]. A relative increase in
photon absorption at PSII would suggest an increased relative contribution of PSII to photosynthetic
electron flow under irradiance-induced stress. Photorespiration was a predicted strategy under high
irradiance and O,/CO, competition, corresponding to upregulation of photorespiration pathway
genes observed in the transcriptomic data [33]. Predicted pathways indicated preferential utilization
of the C2 photorespiration cycle as opposed to the glycerate pathway, and transcriptomic data [33]
indicated upregulation of C2 cycle genes with no change in expression of glycerate pathway genes
(Figure 6). Byproduct secretion was predicted as a competitive strategy at high irradiance and O, /CO,
competition. Irradiance, nitrogen investment, and iron investment analyses in conjunction with
0,/CO; competition all predicted amino acid secretion as a resource-efficient strategy at the highest
combined stress conditions (Figures 3a and A2). These predictions corresponded with observations
of upregulated genes for synthesis pathways of organic compounds such as acetate and formate
(Figure 6), as well as for more than 50 amino acid synthesis pathway and transporter genes (Table A3
in Appendix C). Altogether, these parallels with the transcriptomic data [33] suggest increased electron
flow into the system, increased photorespiration, and reprocessing of salvaged carbon into other
byproducts with greater degree of reduction (Table 1) at higher irradiance.

3.4.2. Central Metabolism and Nutrient Assimilation

Several glycolysis genes were observed to be upregulated under high irradiance conditions [33],
primarily genes involved in the lower portion of glycolysis after glyceraldehyde-3-phosphate
(glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase,
enolase, and pyruvate kinase) (Table A2 in Appendix C). Tradeoff curve analysis of the EFMs under
high irradiance and O, /CO, competition predicted that utilization of the reactions catalyzed by these
enzymes increased with increasing stress except for glyceraldehyde-3-phosphate dehydrogenase. Both
glyceraldehyde-3-phosphate and 3-phosphoglycerate intersect the Calvin cycle and glycolysis; thus,
increased use of the lower portion of glycolysis suggested funneling of glyceraldehyde-3-phosphate
from the Calvin cycle into glycolysis to produce pyruvate, which may be used to synthesize byproducts
such as formate, acetate, and amino acids. Several TCA cycle genes were also observed to be
upregulated under high irradiance conditions, predominantly genes catalyzing reactions up to the
synthesis of a-ketoglutarate, from which several amino acids are synthesized (Table A2 in Appendix C).
Tradeoff curve analysis of the EFMs under high irradiance and O,/CO, competition predicted no
change in utilization of any TCA cycle reactions. The BP-1 model utilized alanine as a representative
amino acid which could be secreted as a byproduct; alanine is synthesized via pyruvate. However,
if the computational model was modified to allow secretion of amino acids that are synthesized via
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TCA cycle intermediates, such as glutamate, it would lead to predictions of increases in some TCA
cycle fluxes.
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Figure 6.  Cyanobacterium T. elongatus BP-1 photorespiration and byproduct secretion
pathways with transcriptomic data measured under high versus low irradiance. Genome-based
photorespiration routes (C2 cycle, dark blue, and glycerate pathway, light blue) and byproduct
secretion pathways included in the BP-1 model are illustrated. Green circles represent upregulated
gene expression measured under high irradiance (2000 versus 200 umol photons m~2 s~ 1), and red
circles represent downregulated gene expression, previously measured in [33]. Numbers indicate fold
change for each gene. Enzymes coded in Roman numerals are: i, ribulose-1,5-bisphosphate carboxylase
oxygenase; ii, phosphoglycolate phosphatase; iii, glycolate oxidase; iv, glyoxylate carboligase; v,
tartronate semialdehyde reductase; vi, glycine transaminase; vii, serine hydroxymethyltransferase; viii,
serine-glyoxylate transaminase; ix, glycerate dehydrogenase; x, glycerate 3-kinase; xi, acetaldehyde
dehydrogenase; xii, alcohol dehydrogenase; xiii, succinate-semialdehyde dehydrogenase; xiv,
acetyl-CoA synthetase; xv, pyruvate dehydrogenase; xvi, formate acetyltransferase; xvii, lactate
dehydrogenase; xviii, alanine dehydrogenase; xix, sucrose phosphate synthase and sucrose phosphate
phosphatase; xx, formyltetrahydrofolate deformylase. Other abbreviations: akg, x-ketoglutarate.

Finally, the transcriptomic data [33] showed upregulation of genes involved in both nitrate and
sulfate uptake and assimilation under high irradiance conditions (Table A2 in Appendix C). Tradeoff
curve analysis of the EFMs under high irradiance and O, /CO, competition predicted increased use of
the nitrate uptake reaction for strategies that secreted amino acids; conversely, no change in use of
the sulfate uptake reaction was predicted. Reduction of nitrate to ammonia for amino acid synthesis
represents an effective strategy for using excess electrons from the photosynthetic electron transport
chain, consuming 8 moles of electrons per mole of nitrate reduced. Thus, at high irradiance and O,
production, secretion of amino acids represents an economical stress acclimation strategy. Similarly,
sulfate reduction also consumes 8 moles of electrons per mole of sulfate reduced to hydrogen sulfide,
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which is used in synthesis of cysteine and methionine. Permitting secretion of cysteine or methionine in
the computational model would lead to predictions of increased sulfate uptake. Altogether, comparison
of the predicted competitive strategies with transcriptomic data under high irradiance (Table 3)
suggests overall consistency of the computational model with photobioreactor observations.

3.5. Stress Acclimation and Photoautotrophic-Heterotrophic Interactions

BP-1 acclimation to a variety of culturing stresses was predicted to result in secretion of
reduced carbon byproducts including organic acids and amino acids (Figures 3a and A2ab;
illustrated in Figure 7a). These byproducts represent a nutritional niche for heterotrophs.
Photoautotrophic-heterotrophic cross-feeding could represent a mutually beneficial mechanism for
buffering a photoautotroph from environmental stresses. Consumption of reduced carbon byproducts
by the heterotroph would relieve potential inhibitory organic acid stress, as well as maximize the
efficiency of total resource usage by the community (illustrated in Figure 7b). Cross-feeding of
byproducts could also promote growth of the photoautotroph through consumption of O, by an aerobic
heterotroph, thus decreasing local O, concentrations and lowering O, /CO, competition. The amount
of heterotroph able to be supported by secreted byproducts was predicted as a function of stress
using published heterotrophic biomass per byproduct yields [76-82] (Figure 7c, see File S5 in the
Supplementary Materials for calculations). The predicted amount of heterotrophic biomass that can be
supported by BP-1 through cross-feeding of byproducts increased as stress increased due to higher
byproduct yields at higher stress levels, as well as the varying heterotrophic biomass yields on different
byproducts (Table A4 in Appendix C). The cross-feeding was also predicted to reduce local O, levels,
which was calculated based on heterotrophic biomass O, requirements (Figure 7d, File S5 in the
Supplementary Materials).

The predicted ratio of heterotroph to photoautotroph as a function of stress acclimation
was compared to published photobioreactor co-culture data of BP-1 with the aerobic heterotroph
Meiothermus ruber strain A [33]. Experiments reported heterotroph to photoautotroph ratios of
~1:10 [33]. This ratio, with some variation accounting for cell size differences between the two
populations, falls within the range of heterotroph to photoautotroph ratios predicted at modest
culturing stress (Figure 7c). These predictions considered autotrophic-heterotrophic interactions based
on secreted carbon and not necessarily nitrogen source. Additional analysis of potential cross-feeding
based on nitrogen or iron limitation can be found in Appendix B (Figure A2c—f).
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Figure 7. Byproduct secretion generates a heterotrophic niche and stimulates a mutually beneficial
relationship. (a) Cyanobacterium BP-1 produces O, and reduced carbon compounds as metabolic
byproducts during environmental stress, both of which are inhibitory to BP-1 growth. (b) The presence
of reduced byproducts and O, forms a nutritional niche for heterotrophic organisms, which relieves
inhibition for BP-1. () Heterotrophic biomass yield per BP-1 biomass (Cmol Cmol ') is presented
as a function of O,/CO, competition at RuBisCO (mol O, (mol CO,)~! consumed) for the EFMs
forming the optimal tradeoff with irradiance-induced stress. (d) Presence of a heterotroph lowers net
O, production per Cmol BP-1 biomass as a function of O,/CO, competition (mol O, (mol CO,)~ !
consumed) for the EFMs forming the optimal tradeoff with irradiance-induced stress, which reduces
O; inhibition. The distinct phenotypic regions defined by the tradeoff between O, /CO, competition
and irradiance-induced stress are labeled according to byproduct secretion patterns as in Figure 3a.

4. Discussion

Computational modeling was integrated with photobioreactor analyses to identify and interpret,
from a systems perspective, the inferred mechanisms that underpin cyanobacterial acclimation to
irradiance-associated stress. The combined results of this study show how different cyanobacterial
systems, such as the photosynthetic apparatus and central carbon metabolism, can respond to
environmentally induced stresses. Photobioreactor steady state growth of BP-1 showed decreased
biomass production efficiency at high irradiance (Figure 4b), indicating that electrons were partitioned
into non-biomass-producing alternative metabolic routes. Examination of transcriptomic data [33]
comparing high to low irradiance conditions identified upregulation of genes involved in PSII
operation, photorespiration, organic acid synthesis, and amino acid synthesis, among other pathways
(Figure 6, Tables A2 and A3). Interrogation of BP-1 metabolic pathways with EFMA and resource
allocation theory under conditions of high irradiance, high O,, and limited nutrient availability
provided a theoretical explanation for utilization of these pathways. Evolution has selected phenotypes
which allocate limiting resources competitively. The origin of the stresses is the imbalance in resource
acquisition which is manifested as a resource limitation. Acclimation to the resource stresses resulted
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in the secretion of reduced byproducts in a behavior analogous to classic overflow metabolism in
heterotrophs. The byproduct-secreting phenotypes represent a competitive and economical response
to the stress [1]. It is worth noting that photobioreactor observations and computational predictions
for BP-1 are in general agreement with the transcriptional patterns and physiological trends observed
in the closely related Synechococcus sp. PCC 7002 [83]. The predicted byproduct secretion profiles
furthermore control nutrient niches for proximal heterotrophic partners (Figure 7). In some cases,
heterotrophic consumption of the byproducts represents a mutually beneficial interaction in that
byproduct removal prevents accumulation of byproducts to a degree that represents an additional
stress. This mutually beneficial interaction template likely plays a significant role in the many reported
occurrences of photoautotrophic-heterotrophic consortia [84-86]. In fact, cross-feeding between BP-1
and the aerobic heterotroph M. ruber strain A has been both predicted by genome-scale modeling and
observed in a laboratory setting [14,33].

The computational analyses investigated several metabolic acclimations to photosynthesis-
associated stresses that apply broadly to photoautotrophs, including photosystem utilization and
photorespiration strategies, the nature of reduced carbon byproducts, and the severity of O,/CO,
competition at RuBisCO. PSII was predicted to increase in photon absorption relative to PSI as
irradiance increased (Figure 3), supported by transcriptomic data [33] (Tables 3 and A2). Increased
relative photon absorption of PSII under higher irradiance is also reported in the literature from
studies with the mesophilic cyanobacterium Synechocystis sp. PCC 6803 and is hypothesized to aid in
reducing overall electron transport [68]. Additionally, increased utilization of the C2 photorespiration
cycle at high irradiances may intersect with byproduct secretion strategies and contribute to amino
acid synthesis as a resource-efficient strategy at high irradiances. Photorespiration permits salvage
of carbon from unusable RuBisCO oxygenation byproducts; this carbon may be directed toward
other byproduct pathways. The C2 photorespiration cycle requires more enzymatic steps and thus
more biosynthetic resources (e.g., nitrogen) than the glycerate pathway, but links into glycine-serine
interconversion and amino acid synthesis pathways.

Formate is the least reduced organic byproduct considered in the model (Table 1). It is predicted
to be a more competitive byproduct secretion strategy at intermediate irradiance-induced stress
and O,/CO, competition, releasing a minimal quantity of electrons in the form of reduced carbon
byproducts and retaining the remaining electrons for biomass (Figure 3). Alanine is predicted to be
a competitive byproduct at high stress levels due to its high degree of reduction (Table 1). At high
electron load (supported by high rates of oxygenic photosynthesis) and high O, /CO, competition,
alanine synthesis consumes more electrons per Cmol, resulting in a more efficient redox sink (Figure 3).
Alanine was selected in this study as a representative amino acid; however, amino acids with higher
nitrogen content, such as arginine, histidine, or lysine, would serve as even more effective electron
sinks when nitrate is the nitrogen source. Genes involved in synthesis pathways for several amino
acids beside alanine (Table A3 in Appendix C) were identified as upregulated under high irradiance
conditions in the transcriptomic data [33]. Additionally, qualitative measurements from BP-1 steady
state cultures have previously identified a variety of amino acids in the extracellular environment,
including glutamate, isoleucine, leucine, lysine, phenylalanine, serine, threonine, and valine [33].

Experimental assessment of O, /CO, competition and actual concentrations of O, and CO, at the
active site of RuBisCO in vivo is challenging. The specificity factor, a kinetic constant describing the
relative affinity of RuBisCO for CO, versus O (v./v, = SF|[CO,]/[02]) [87], has been measured for
a variety of phototrophs and is typically obtained from enzyme extracts. Falkowski and Raven [88]
compiled a list of specificity factors from a variety of organisms, including cyanobacteria, algae, and
plants, and estimated v, /v, ratios under assumptions of air equilibrium at 25 °C. These experimental
estimates were compared with the predicted v,/v. values from the BP-1 model irradiance tradeoff
curve (Figure 8a(A)). The variation in values within and among different types of organisms highlights
the diversity of RuBisCO enzyme properties, which organisms are thought to have optimized over time
based on different selective pressures [89,90]. However, the experimental estimates do not account for
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the optimal temperature environment of the organism, the confounding influence of photosynthetic O,
evolution, or effects of the carbon-concentrating mechanism, which may also be influenced by pH [91].

The specificity factor can be used to convert predicted O,/CO, competition values to local
relative O, /CO; concentrations around RuBisCO [87], thereby permitting extension of stoichiometric
modeling into the kinetic realm. Equivalent relative O, /CO, competition values convert to different
relative concentrations depending upon the magnitude of the specificity factor. Values for mesophilic
cyanobacteria range from 45 to 70, and higher plants have an average value around 100 [87].
Figure 8a(B-D) shows the effect of varying the specificity factor on the O,/CO, concentrations
necessary to achieve the predicted v,/v. values along the irradiance tradeoff curve in Figure 3a;
relative concentrations are lowered with a smaller specificity factor and raised with a higher
specificity factor. A higher specificity factor indicates a greater tolerance to stress from O,/CO,
competition. In vivo measurements of oxygenation and carboxylation rates are sparse in the literature,
particularly for microbial species; Taffs et al. [20] calculated a range of 3-7% oxygenation based on
measurements of extracellularly secreted glycolate [92], but these values are likely an underestimate
considering glycolate may be salvaged through the complete photorespiration pathway rather than
excreted (Figure 3). Isotopic labeling studies of cyanobacteria also provide experimental data, but
extrapolation of v./v, ratios should be exercised with caution. Studies have shown operation of
photorespiration even under high CO, (5%) conditions [93]. Another study has presented both
modeling and experimental validation of the necessity of photorespiration even under saturating
CO; conditions, positing that high CO, stimulates high photosynthetic rates to provide adequate
energy for carbon fixation, which thereby leads to increased O, production levels [94]. Additionally,
elevated temperatures have been shown to enhance oxygenation due to both changes in the specificity
of RuBisCO and the different solubilities of O, and CO, [95] (Figure 8b). Experimental data on
v/ vc. values is variable and dependent on the conditions under which the measurements were
made. However, an environmental scenario with low O,/CO, ratios may indicate that greater
priority is placed on minimizing O,/CO, competition than on minimizing photon absorption cost
particularly under high irradiance conditions, e.g., O, /CO; competition is a stronger driver of stress
acclimation. Byproduct production and existence of heterotrophic partners is observed in experimental
cyanobacterial systems, suggesting that byproduct production is an effective strategy for managing
electrons from excess photon absorption. Instead, the cell may be simultaneously optimizing for other
stresses such as biosynthetic nutrient investment like nitrogen or iron (Figure A2).

The systems-level analysis provided by this study indicated that the suite of metabolic carbon
and electron sinks (i.e., secreted byproducts and biomass) is dependent upon environmental
stressors. Pathway utilization and resource investments were co-dependent upon irradiance,
0,/CO; competition at RuBisCO, and DIC, nitrogen, and iron levels. These results provided novel
insight into ecologically competitive metabolic strategies that cyanobacteria use to acclimate to
environmental conditions. Physiological and transcriptomic [33] data paralleled the predictions,
providing an additional level of support to the stoichiometric modeling predictions. It is noted
that the stoichiometric model does not account for kinetic constraints, regulatory effects, or other
aspects of thermodynamics beside reaction reversibilities [97,98], which may account for some of
the differences between predictions and data and represents an avenue for further development.
Finally, analysis of predicted optimal growth phenotypes was extended to make inferences about the
nature of photoautotrophic-heterotrophic interactions and provide a theoretical basis for examining
community composition. Taken holistically, this work presents a synergistic experimental and
theoretical approach for understanding metabolic acclimation and provides a new level of insight
into how different cyanobacterial systems, such as the photosynthetic apparatus and central carbon
metabolism, coordinate and respond to environmental stresses that influence resource allocation.
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Figure 8. Comparison of computational and experimental O,/CO, competition and concentrations
at RuBisCO. (a) Predicted O, /CO, competition values (mol O, (mol CO,)~! consumed at RuBisCO)
from the irradiance tradeoff curve in Figure 3a are shown in gray (A). Experimental O, /CO, values for a
variety of organisms calculated at air equilibrium and 25 °C [88] are overlaid in color. Predicted O, /CO,
competition values (gray points) were converted to relative O, /CO, concentrations around RuBisCO
by multiplying by the specificity factor (SF). The experimentally measured SF for BP-1 of 82 [87] was
used for conversion in (B). Experimental data points from Falkowski and Raven (colored points) were
converted to O, /CO, concentrations via the respective SF of each organism [88]. Comparison of
the BP-1 SF with lower and higher SF values is visualized using a lower SF of 41 (representative of
Synechococcus sp.) (C) and a higher SF of 129 (representative of a red alga) (D). A lower SF indicates that
lower relative O, /CO; concentrations result in higher O, /CO, competition ratios, whereas a higher SF
indicates that an organism is more tolerant of higher relative O, /CO, concentrations. (b) Temperature
affects the relative propensity of RuBisCO for oxygenation. Dashed and dotted blue curves represent O,
and CO, concentrations in aqueous phase at equilibrium with atmospheric concentrations, calculated
using Henry’s law constants from Sander [96]. The black curve represents the ratio of the [O;] to [CO;,]
curves, showing that the relative proportion of O, increases with elevated temperature. Calculations
are provided in File S6.
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Appendix A. Biomass Composition Analytical Methods

Appendix A.1. DNA, After Downs and Wilfinger [38]

50 uL of frozen cell pellet equivalent to approximately 1.5 mg of biomass (dry weight) was
re-suspended in 50 pL of alkali extraction solution (1 N NH4OH, 0.2% Triton X-100 with nuclease-free
water) in 2-mL Eppendorf tubes. Tubes were incubated at 37 °C for 10 min in a block heater.
After 10 min, samples were diluted to 2 mL total volume with assay buffer (100 mM NaCl, 10 mM
EDTA, 10 mM Tris, pH 7.0 with HCI, nuclease-free water) and transferred to 15-mL Falcon tubes
for centrifugation (2500 x g, 30 min, 4 °C). Calf thymus DNA standards were prepared by making a
DNA stock solution in nuclease-free water about 300 p1g/mL (stored at 4 °C). Exact concentration was
measured with a NanoDrop 1000 spectrophotometer. The standard solution was diluted to a working
stock of 100 ng/mL with standard buffer (assay buffer containing the same concentration of alkali
extraction solution as the diluted samples (100 mM NaCl, 10 mM EDTA, 10 mM Tris, pH 7.0 with HCI,
0.025 N NH4OH, 0.005% Triton X-100)). The DNA working stock was then diluted into a standard series
with standard buffer (1-5 pg/mL). 50 uL of sample or standard were added to a black polystyrene
96-well plate with clear bottom (Corning 3603). 295 pL of Hoechst working reagent was added to each
well. Hoechst working reagent was prepared fresh daily from an intermediate stock of 200 pg/mL by
diluting to 1 pug/mL with assay buffer. The intermediate stock was prepared from a 10 mg/mL stock
solution by diluting to 200 g/ mL with nuclease-free water. Stock solutions and working stocks were
stored at 4 °C wrapped in aluminum foil to protect from light. The wells were then read in a Synergy
fluorescent plate reader using the following settings: (plate type) 96 well plate; (set temperature)
setpoint 30 °C, preheat before moving to next step; (shake) double orbital 30 s, frequency 180 cpm;
(read) fluorescence endpoint, 352 nm excitation, 461 nm emission, bottom optics, gain 100, Xenon flash
light source, high lamp energy, normal read speed, 100 ms delay, 10 measurements/data point. Three
reaction wells of sample or standard were performed for each sample or standard. The concentration
of the samples was determined based on the average of the three standard calibration curves.

Appendix A.2. Glycogen, After Del Don et al. [39]

Anthrone reagent was prepared fresh daily according to Herbert et al. [99] and stored at 4 °C.
Frozen cell pellet (—80 °C) was thawed and divided into three equal parts by mass in 2-mL Eppendorf
tubes, approximately 0.5 mg dry weight. Each aliquot was re-suspended in 200 uL 2% sodium sulfate
(w/v). Eppendorf tubes were sealed with parafilm and heated for 10 min at 70 °C in a block heater.
After heating, 1 mL methanol was added to each tube and vortexed to co-precipitate glycogen and
sodium sulfate. The precipitate was pelleted by centrifuging for 15 s at 10,000 rpm. The precipitate
was washed with 1 mL methanol, until the pellet was white, to remove impurities. Pellets were then
re-suspended in 1 mL reverse osmosis water and transferred to clean glass test tubes and placed on ice
to chill. 5 mL of ice-cold anthrone reagent was added to each test tube. After adding reagent, tubes
were chilled on ice for 5 min, vortexed gently to homogenize the solution, and transferred to a boiling
water bath for 10 min. Tubes were then returned to ice for 5-10 min until cool, vortexed gently to mix
contents, and absorbance at 625 nm was read with a Genysys spectrophotometer using a reagent blank.
A glucose standard curve (10-190 ug/mL) was treated identically with anthrone reagent.

For total carbohydrate quantitation, the cell pellet aliquot was re-suspended in 1 mL reverse
osmosis water and transferred to a clean glass test tube, and the anthrone procedure detailed above was
followed. For quantitation of other cellular carbohydrates, the residual methanol from the extraction
and washings were collected in an aluminum pan and evaporated, re-suspended in 1 mL reverse
osmosis water, and the anthrone procedure detailed above was followed.
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Appendix A.3. Lipid, After Bligh and Dyer [40]

Frozen cell pellet (10 mg) was re-suspended to 0.6 mL using Milli-Q water in a 15-mL
polypropylene centrifuge tube. Chloroform (0.75 mL) and methanol (1.5 mL) were sequentially added,
adhering to the 1:2:0.8 chloroform:methanol:water volume ratio recommended by Bligh and Dyer.
The mixture was vortexed 15 min at speed setting 3 using a VWR vortex mixer. Chloroform (0.75 mL)
and Milli-Q water (0.75 mL) were sequentially added, vortexing 10-15 seconds at speed setting 7 after
each addition. Upon centrifugation (4000 rpm, 15 min, 20 °C), the lower chloroform phase, containing
lipids, chlorophyll, and pigments, was transferred via micropipette to an aluminum pan that had
been pre-dried at room temperature and pre-weighed. The liquid was evaporated in a fume hood
and weighed at three different time intervals following evaporation. Weights were measured with
a Mettler Toledo MT5 microbalance with accuracy to 0.001 mg and recorded as an average of three
measurements. It was noted that chloroform may leach compounds from polypropylene materials;
thus a blank reaction using 0.6 mL Milli-Q water was used and its weight was subtracted from the
biological sample weight.

Appendix A.4. Protein and Amino Acid Distribution, After Henderson et al. [39]

Amount approximately equivalent to 3 mg of frozen cell pellet was transferred to borosilicate
HPLC vials with PTFE/silicone caps. 50 uL. 6 M HCI per mg biomass was added to each vial. The vials
were tightly capped and hydrolyzed at 105 °C for 24 h using a block heater. After 24 h, the samples
were then neutralized with 6 M NaOH to pH 7.0 and filtered with 0.22 um PES spin filter in microfuge
for 5 min at 10,000 rpm. Samples were then placed at —80 °C to freeze before lyophilizing for 24 h
(VirTis benchtop lyophilizer). After lyophilization samples were placed at —80 °C until HPLC analysis.
HPLC analysis was performed according to the following protocol validated and published by Agilent
Technologies [41] using an Agilent 1100 HPLC equipped with fluorescence detector. Borate buffer was
0.4 N borate, pH 10.2 with NaOH; o-phthalaldehyde (OPA) reagent, 9-fluorenylmethylchloroformate
(FMOC) reagent, and amino acid standards were obtained from Agilent. OPA and FMOC reagents
were replaced daily in amber vials. Upon opening a vial of reagent, analyses were performed within
10 days. Solvent A was 40 mM sodium phosphate buffer (using 1:1 ratio of NaH,PO, and Na,HPOy),
pH 7.8 with NaOH, 0.2 pm filtered. Solvent B was 45:45:10 acetonitrile:methanol:water (v/v/v), 0.2 um
filtered. The pump rate was 1 mL/min, 47 min per injection, with gradient settings as follows:

Time (Min) % Solvent B
0 0
3.8 0
36.2 57
37.2 100
44.6 100
46.4 0
47 0

The flow rate was halved and the timing was doubled from the procedure reported in the Agilent
technical note to improve resolution and reduce wear on equipment. The column thermostat was set
at 40 °C, and the autosampler thermostat was set at 4 °C. The fluorescence detector settings were as
followed, to switch from OPA- to FMOC-derivatized amino acids:

Time (Min) Ex/Em (nm) PMT Gain
0 340/450 10
30 266/305 9
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The injection program was as follows:

Step Instruction
Step 1 Draw 2.5 pL from vial 1 (borate buffer)
Step 2 Draw 0.5 uL from sample
Step 3 Mix 3 uL in air, max speed, 2
Step 4 Wait 0.5 min
Step 5 Draw 0 pL from vial 2 (needle wash)
Step 6 Draw 0.5 pL from vial 3 (OPA)
Step 7 Mix 3.5 pL in air, max speed, 6 x
Step 8 Draw 0 pL from vial 2 (needle wash)
Step 9 Draw 0.5 pL from vial 4 (FMOC)
Step 10 Mix 4 pL in air, max speed, 6%
Step 11 Draw 32 pL from vial 5 (water)
Step 12 Mix 18 puL in air, max speed, 2x
Step 13 Inject
Auxiliary settings Drawspeed = 200 pL/min

Ejectspeed = 600 uL/min
Draw position = 0.0 mm

The integration parameters for collecting the data were set according to the following parameters.

Parameter Value
Slope Sensitivity 1
Peak Width 0.04
Area Reject 1
Height Reject 04
Shoulders OFF

Appendix A.5. RNA, After Benthin et al. [43]

Samples were thawed and washed three times with 3 mL 0.7 M HCIO, for degradation of cell
walls, vortexing to re-suspend in between washing and centrifuging at 4000 rpm for 10 min at 4 °C.
The pellet was then re-suspended in 3 mL 0.3 M KOH to lyse the cells and was incubated in a 37 °C
water bath for 1 h, shaking at 15-min intervals. After 1 h, samples were cooled and 1 mL 3 M HCIO4
was added for neutralization. The solution was centrifuged at the same specifications as before, and
the supernatant was poured off into a new centrifuge tube. The pellet was washed twice with 4 mL
0.5 M HCIOy, centrifuged, and supernatant added to the new tube. 0.5 M HCIO, extracts the RNA,
while DNA, which is stable even in strong alkali, and protein, which does not solubilize in the alkali,
remain in the precipitate. The collection of extracts was made up to a volume of 15 mL by adding 3
mL 0.5 M HCIO, and was centrifuged once more to remove any non-visible precipitates of KClOy.
Upon final centrifugation, absorbance was measured at 260 nm against a 0.5 M HCIOy4 blank using
disposable UV cuvettes rated to 220 nm. Linearity of the spectrophotometer was confirmed within
that range by successively diluting the sample twice with 0.5 M HCIOy4 and confirming a linear fit to
the three measured absorbances at 260 nm. Calculation of RNA quantity was performed by assuming
1 unit of absorbance at 260 nm corresponds to 38 ug/mL RNA on average [100].

42



Processes 2017, 5, 32

Appendix B. Supplemental Figures
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Figure Al. BP-1 amino acid distribution. Correlation between the predicted amino acid distribution
(based on protein-coding gene sequences) and the experimentally measured distribution. Cysteine,
methionine, and tryptophan are excluded from the correlation due to degradation during hydrolysis of
the biomass samples to extract the protein. The equation of the best-fit linear trendline is y = 0.79x + 1.29
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Figure A2. Computational analysis of nutrient availability and O,/CO; competition at RuBisCO in
cyanobacterium BP-1. (a) Nitrogen availability. O, /CO, competition (mol O, (mol CO,)~! consumed
at RuBisCO) as a function of nitrogen investment (nitrogen atoms per EFM) for biomass-producing
EFMs. The tradeoff curve defining competitive strategies between O, /CO, competition and nitrogen
limitation was divided into three distinct phenotypic regions based on byproduct secretion, labeled
accordingly (intensity of shading increases with increasing stress levels). Points in the plot area are
representative of 1,430,252 EFMs. (b) Iron availability. O,/CO, competition (mol O, (mol CO,) !
consumed at RuBisCO) as a function of iron investment (iron atoms per EFM, considering only
photosynthetic and central metabolism reactions) for biomass-producing EFMs. The tradeoff curve
defining competitive strategies between O, /CO, competition and iron limitation was divided into two
distinct phenotypic regions based on byproduct secretion, labeled accordingly (intensity of shading
increases with increasing stress levels). Color scale represents the photon absorption at PSII relative to
PSI for EFMs on the tradeoff curve (mol photons absorbed at PSII (mol photons absorbed at PSp—1.
Each point represents a unique EFM. Modeled biomass production did not include maintenance energy
requirements. Points in the plot area are representative of 4,615,500 EFMs. (c,d) Heterotrophic biomass
yield per BP-1 biomass (Cmol Cmol 1) is presented as a function of O, /CO, competition at RuBisCO
(mol O, (mol CO,)~! consumed) for the EFMs forming the optimal tradeoffs with nitrogen and iron
availability, respectively. (e,f) Presence of a heterotroph lowers net O, production per Cmol BP-1
biomass as a function of O, /CO, competition (mol O, (mol CO,)~! consumed) for the EFMs forming
the optimal tradeoffs with nitrogen and iron availability, respectively, which reduces O, inhibition.
The distinct phenotypic regions defined by the tradeoff between O, /CO, competition and nutrient
availability stress are labeled according to byproduct secretion patterns as in panels (a,b).
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Figure A3. Analysis of influence of nitrogen source on photon requirement. Comparison of the impact
of various nitrogen sources on the theoretical specific photon absorption rate necessary for biomass
production. Photon absorption rates (mol photons absorbed (g CDW)~! h™1) were calculated using the
BP-1 experimentally measured biomass composition. Ammonia is a completely reduced form of nitrogen,
whereas and molecular nitrogen and nitrate are less reduced forms and require successively more energy for
reduction to be assimilated into biomass, causing an increase in the specific photon absorption rate. Nitrate
serves as the most effective sink for excess electrons from the photosynthetic electron transport chain.
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Appendix C. Supplemental Tables

Table Al. Experimentally measured amino acid distribution from OPA /FMOC derivatization and HPLC
fluorescence detection. Amino acids are abbreviated according to IUPAC 1-letter convention; average
mole percent of two separately hydrolyzed samples and percent relative standard deviation are reported.

Amino Acid Mole % % RSD
Q/E 13.1 0.16
N/D 10.1 0.07

L 9.4 0.08
A 9.2 0.24
R 85 0.96
A% 6.1 0.97
I 54 0.29
G 5.0 0.02
F 49 0.15
T 49 0.07
K 45 1.96
Y 41 0.01
S 4.0 0.08
P 3.4 121
H 15 0.14

Table A2. Upregulated BP-1 genes under high versus low irradiance conditions (2000 versus 200 pmol
photons m~2 s~1) [33] involved in photosystem II (PSII), carbon-concentrating mechanism (CCM),
Calvin cycle carbon fixation, glycolysis, TCA cycle, oxidative phosphorylation (OP), and nitrate and
sulfate uptake and assimilation. For each pathway, upregulated genes are listed in the left column with
corresponding fold change in the right column.

PSII CCM Calvin Glycolysis
psbA3 420 ccmK1 25 gap2 53 eno 4.6
psbP 43 ccmK2 2.1 gapA 45 gap2 53
psbX 33 ccmK3 2.6 glpX 6.6 gapA 45
psbQ 2.7 ccmM 25 pgk 2.1 gmpA 6.4
psb29 2.6 tir0311 24 prkB 134 gpml 54
psb32 4.1 rpiA 16.2 pfkA 2.3
tpiA 5.2 pgk 2.1
pyk 35
tpiA 52
TCA or Nitrate Sulfate
acnB 2.2 atpC 22 narM 23 cysA 25
fumC 32 atpD 52 nirA 34 cysCl 39
gltA 47 atpE 22 ntcB 49 cysH 4.6
idh3 6.3 atpF 29 nrtA 22 cysQ 3.1
sdhC 2.0 atpG 32 nrtD 25 met3 85
atpH 2.8 t11357 3.1
cydB 3.6
ndh 20
ndhA 6.3
ndhB 44
ndhC 6.1
ndhD3 13.2
ndhE 47
ndhF3 24
ndhG 3.0
ndhH 22
ndhl 49
ndh] 6.6
ndhK 3.1
ndhL 49
ndhM 13.1
ndhN 9.8
ppa 3.6
sdhC 2.0
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Appendix D. Nitrogen and Iron Limitation

Nitrogen is a major component of protein but is often scarce in the environment [101].
Ecologically competitive acclimation to increased O,/CO, competition as a function of pathway
nitrogen requirement is shown in Figure A2a in Appendix B; the tradeoff surface defines three
phenotypic regions according to byproduct secretion. The EFM at the lower left corner of the
plot represents nitrogen-limited cyanobacterial growth under low O, /CO, competition; byproduct
secretion is predicted even at the lowest nitrogen stress. With increasing O, /CO, competition and
nitrogen investment, BP-1 is predicted to secrete a number of reduced carbon compounds along the
tradeoff surface, including acetate, formate, glycolate, and under the highest stress, the amino acid
alanine. Production of byproducts is predicted to achieve the most efficient nitrogen utilization
while simultaneously minimizing O,/CO, competition. EFMs on the nitrogen tradeoff surface
exclusively use the C2 photorespiration cycle whereas the glycerate pathway is not used (Figure A2a
in Appendix B), similar to the result for irradiance-induced stress in Figure 3a. Also similar to the
result for irradiance-induced stress, relative PSII/PSI photon absorption increases along the tradeoff
surface, with greater relative photon absorption at PSII at higher O, /CO, competition and higher
nitrogen investment (Figure A2a in Appendix B).

Biologically available iron is often limiting in microbial habitats due to low solubility, which is
exacerbated at elevated pH [102]. Figure A2b in Appendix B predicts acclimation to increased O, /CO,
competition as a function of pathway iron investment. Two phenotypic regions of byproduct secretion
were defined by the tradeoff surface, including combinations of ethanol, formate, and acetate, and
finally alanine under the highest stress. Under low iron, relative PSII/PSI photon absorption decreases
along the tradeoff surface as O, /CO, competition and iron investment increase, showing a reversed
trend compared with irradiance-induced stress and nitrogen investment. Analogous to the result for
irradiance-induced stress in Figure 3a, the C2 cycle is the predominant photorespiration strategy as
0,/CO; competition increases. At low O,/CO, competition, the relative PSII/PSI photon absorption
is nearly twice that at high O,/CO, competition (the scale shows greater variability than the scale
for light stress or nitrogen investment in Figures 3a and A3a) and again indicates higher gross O,
and ATP production. Additionally, as compared to the tradeoff surface in Figure 3a, the responses to
nitrogen and iron limitation are less robust; fewer suboptimal pathways exist in close proximity to the
tradeoff surface.

Appendix E. Biomass Yield Comparison

The physiological light response experiments allowed for comparison of photon costs for
synthesizing BP-1 biomass with results reported in previously published studies for Cyanothece sp.
ATCC 51142 and the green alga Chlamydomonas reinhardtii [30,103]. This comparison is of interest
because experimental photon requirement values are relatively uncommon. The photon cost per
biomass for BP-1 was about three times higher than the costs for these two organisms. This result
may be due to the thermophilic nature of the organism and/or higher maintenance costs incurred
by alkaline habitats. The nonlinear increase observed in the overall experimental photon absorption
rate as growth rate increases (Figure 5) may correspond to increased cellular stress with higher
maintenance energy requirements or greater thermal dissipation at higher irradiances. For example,
higher irradiance may necessitate increased repair of photosystem proteins or a greater proportion of
light may be lost to inefficiency [88]. These experiments and simulations demonstrate the wide range
of irradiances under which BP-1 is capable of growing, stimulating interest in the metabolic strategies
microbes such as this thermophilic cyanobacterium use to manage the daily fluctuations in irradiance
and the accompanying stresses.
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Abstract: Using experimental data obtained from in vitro bioaugmentation studies of a sand filter
community of 13 bacterial species, we develop an individual-based model representing the in silico
counterpart of this synthetic microbial community. We assess the inter-species interactions, first by
identifying strain identity effects in the data then by synthesizing these effects into a competition
structure for our model. Pairwise competition outcomes are determined based on interaction effects in
terms of functionality. We also consider non-deterministic competition, where winning probabilities
are assigned based on the relative intrinsic competitiveness of each strain. Our model is able to
reproduce the key qualitative dynamics observed in in vitro experiments with similar synthetic sand
filter communities. Simulation outcomes can be explained based on the underlying competition
structures and the resulting spatial dynamics. Our results highlight the importance of community
diversity and in particular evenness in stabilizing the community dynamics, allowing us to study
the establishment and development of these communities, and thereby illustrate the potential of
the individual-based modelling approach for addressing microbial ecological theories related to
synthetic communities.

Keywords: individual-based model; invasion; bioaugmentation; engineered community

1. Introduction

1.1. Background

The composition, establishment and functional maintenance of any ecosystem are largely
driven by the interactions between individuals [1], and microbial communities are no exception [2].
The fundamental basis of all studies of interactions between cell populations are synthetic co-culture
systems: experimental set-ups where “two or more different populations of cells are grown with
some degree of contact between them” [3]. Synthetic co-cultures have gained particular interest
from microbiologists in recent years due to their reduced complexity and increased controllability,
which favours them over more complex natural systems for examining ecological theories [4] and also
for more specific industrial, medical and environmental applications such as industrial fermentation
and the production of chemical compounds [5].

A more specific application of co-cultures is bioaugmentation, where the biomass in soil or water
treatment plants is altered by the addition of certain microbial strains that have been selected for
their ability to degrade specific chemical compounds [6]. From a microbial ecological perspective,
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bioaugmentation represents a kind of microbial invasion process, where the strains introduced to
augment resident community functionality are the invaders. For example, during the treatment
of drinking water, the common groundwater pollutant 2,6-dichlorobenzamide (2,6-BAM) must be
removed below a threshold concentration of 0.1 ng L~ to meet the EU Directive on Drinking Water [7].
However, the endogenous microbial communities in the sand filters (SFs) of such drinking water
treatment plants are not capable of achieving sufficient BAM removal to respect this threshold [8].
Therefore, bioaugmentation of SFs has been proposed as an alternative strategy, by the addition of
a specialized BAM mineralizer such as Aminobacter sp. MSH1 [9]. However, studies of this type of
bioaugmentation of drinking water ecosystems rarely address how exactly the pesticide degrader
interacts with the resident community, and other such fundamental ecological questions [10].

In Vandermaesen et al. [11], the authors hypothesize that the establishment of MSH1 and its
subsequent BAM mineralization in SFs depend not only on exploitative competition effects, but also
on other features such as interactions with resident community members. Therefore, the BAM
mineralization activity of MSH1 was evaluated in sand microcosms in the presence of a selection of the
13 sand filter isolates (SFIs) described in Vandermaesen et al. [11]. Synthetic microbial communities of
MSH1 combined with SFIs were subjected to an initial competition phase. Subsequently, BAM was
added and the kinetics of BAM mineralization was evaluated as a measure of bioaugmentation success.

To characterize the interactions between resident community members, co-cultures of various
combinations of SFIs with MSH1 were inoculated, and their mineralization kinetics was followed.
However, given the total number of strains in the community, it is practically impossible to
experimentally study all possible co-culture combinations. In such cases, mathematical modelling is
becoming more and more appreciated as a tool for identifying possible co-cultures of interest [12-15].

1.2. Motivation and Scope

We use an individual-based modelling approach to construct the in silico counterpart of the
in vitro synthetic community used in the experiments of Vandermaesen et al. [11], with the goal
of qualitatively reproducing the observed dynamics. Due to their inherent flexibility and ability
to reproduce complex system-level behaviour by capturing the interactions between individuals,
individual-based models (IBMs) have proven useful for addressing fundamental microbial ecology
questions, such as our questions related to fundamental interactions between invader and resident
community members. Other examples include IBM studies of the evolution of cooperative behaviour
in microbial communities [16] and the role of spatial aggregation in maintaining cooperation between
cross-feeding microbial strains [17]. However, such models are typically restricted to only a few species,
hence our model of 13 species would be an outlier in this respect [4].

Previous results with synthetic microbial communities with similar characteristics in terms
of diversity and composition [18] and also for this particular synthetic community of MSH1 and
13 SFIs [11], highlighted the importance of the initial competition phase (before the addition of BAM)
where all 13 SFIs are inoculated in the co-culture. Competition between the SFIs results in extinctions,
leading to a stable subcommunity of reduced richness. It is this subcommunity that is present at
the moment of the BAM spike and during the subsequent mineralization period that determines the
bioaugmentation success. We aim to retrieve this behaviour with our modelling approach.

For this purpose, we make use of the data obtained from the Vandermaesen et al. experiments [11]
(described in Section 2) to model the competitive interactions between individual microbes. We then
present the results of inferring the strain interactions (Section 3.1), incorporating this information
in an IBM (Section 3.2), as well as the results of the in silico experiments it is subsequently
employed for (Section 3.3). In the final section, we summarize the conclusions of the modelling
and simulation studies.
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2. Materials and Methods

In this section, we summarize the experimental set-up and procedure used by Vandermaesen et al. [11]
to obtain the dataset used for the modelling and simulation studies presented in this paper.

2.1. Experimental Set-Up

The hypothesis of this in vitro study was that the establishment of MSH1 and its subsequent
BAM mineralization in SFs depend on interactions with and between resident community members.
Therefore, the BAM mineralization activity of MSH1 was evaluated in sand microcosm co-cultures
in the presence of different combinations of 13 SFIs. Synthetic microbial communities of MSH1
combined with SFIs were co-cultured, then BAM was added and the kinetics of BAM mineralization
was evaluated as a measure of bioaugmentation success.

2.1.1. Bacterial Strains

The specific variant of the BAM mineralizing Aminobacter sp. MSH1 [9] used in this study,
MSHI1-GFP, was fluorescently tagged. The 13 SFIs used were isolated from SF material from two
drinking water treatment plants [11]: Acidovorax sp. S9, Undibacterium sp. S22, Brachybacterium sp. S51,
Mesorhizobium sp. S158, Acidovorax sp. S164, Rhodococcus sp. K27, Acidovorax sp. K52, Aeromonas sp. K62,
Paucibacter sp. K67, Pelomonas sp. K89, Rhodoferax sp. K112, Rhodoferax sp. K129, and Piscinibacter sp. K169.
None of the selected SFIs were capable of BAM mineralization, avoiding any confounding effects with
the BAM mineralization performance of MSH1.

2.1.2. Microcosm Set-Up

Microcosms were created in deep 96-well plates, containing sterile sand in every well. MSH1
and SFIs were cultured and prepared as described in Vandermaesen et al. [11] and combined in
synthetic communities in such a way that the number of cells of every strain was 107 cells/mL.
Since each community included MSHI, the total richness of a community Rt is given by Rt = Rgpr + 1,
where Rgpy is the number of SFIs present. In addition to all combinations of individual SFI with MSH1
(13 combinations at Rgpr = 1), all 78 different pair combinations of two SFIs with MSH1 (Rsp = 2)
were tested.

Sodium acetate was provided as the only carbon source at a concentration of 150 pg L' in MMO
medium (MMO + Ac). Assuming that 50% of acetate-C is actually assimilated, this corresponds to
an AOC (assimilable organic carbon) concentration of 22 ng C /L, which is within the range of AOC
values in drinking water ecosystems (20-100 pg C /L) [19]. Of every synthetic community, 100 pL
was inoculated in the sand microcosms. A reference microcosm inoculated with 100 uL MSH1 at
107 cells/mL (Rsp = 0) was included in every deep well plate. In addition, to account for abiotic
14CO, production, one negative control (Rt = 0) was included, containing sand amended with 100 uL
MMO + Ac. All synthetic communities and controls were replicated four times. No #CO, production
was observed in the abiotic control. The plates were sealed and incubated at 20 °C for 7 days.

After this initial competition phase, all wells were spiked with 5000 counts per minute *C-BAM,
dissolved in 5 upL. MMO, which corresponds to a final BAM concentration of 150 pgL~'. BAM
mineralization was then followed for approximately 130 h by trapping the produced 4CO, with
Ca(OH),. Trapped *CO;, radioactivity was quantified by digital autoradiography. The cumulative
percentage 4CO, was plotted relative to the total amount of '*C added as a function of the incubation
time, and hence cumulative mineralization curves were obtained.

2.2. Modelling of Mineralization Kinetics

To describe the kinetics of BAM mineralization, the modified Gompertz model [20] was used.
This model is one of the most commonly used microbial growth models [21], and is given by
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P=Aexp (—exp (%(A—Ct)—i—l)) (1)

where P (%) is the percentage mineralization at time ¢ (h), A (%) is the total extent of mineralization
after the exponential mineralization phase, A (% h=1) is the lag time, ¢ (% h=1) is the endogenous
mineralization rate, and  (%h~!) is the maximum mineralization rate constant. The modified
Gompertz model differs from the standard Gompertz model [20] in that its parameters each have a
biological meaning.

The Gompertz parameters of the cumulative mineralization curves were determined by least
squares curve fitting, using the Trust-Region-Reflective algorithm [22,23], at a termination tolerance
of 107! and allowing at most 2 x 10° function evaluations and 3 x 10 iterations. Initial parameter
estimates were set at 30, 5, 0.1, and 2 for A, 1, ¢, and A, respectively [24]. This was implemented
using Matlab R2012b (Mathworks, Natick, MA, USA). All values of c were zero or close to, and were
hence excluded.

2.3. Description of the Dataset

From the experimental set-up described in Section 2.1, we obtained a dataset representing
13 monocultures (the individual strains) and 78 co-cultures (the pair combinations). For each of
these 91 conditions, we have two types of mineralization data. First, a cumulative BAM mineralization
time series consisting of achieved mineralization values at 13 time points, from f = 0 h to t = 130 h.
There are four biological replicates of each time series, except where some outliers were removed as
indicated in Vandermaesen et al. [11]. In total, 21 out of 364 time series were removed. After removal
of these outliers, no condition had less than three replicates. The second data type consists of the fitted
Gompertz parameters A, y and A describing the mineralization kinetics, namely one set of parameters
per time series.

3. Results and Discussion

3.1. Assessing Strain Interactions

The experiments of Vandermaesen et al. [11] focused on bioaugmentation success and therefore
collected data related to BAM mineralization and MSH1 survival. The data related to the SFIs
themselves are their monoculture growth curves and their monoculture survival curves on acetate
(see Appendix A). These data can give us an idea of how the SFIs grow and persist in isolation, and on
this basis Vandermaesen et al. [11] classified the strains according to their “intrinsic competitiveness”,
a classification that we can use as an additional feature of the strains. However, these data do not
give us any information about how the SFIs may interact, and in particular compete, when they are
inoculated together in co-culture.

The information we do have regarding the interactions between SFIs is indirect. From the
differences in mineralization parameters between the different co-culture combinations, we can
infer when there are interaction effects occurring between strains, by comparing the mineralization
performances of MSH1 alone, in co-culture with individual SFls, and in co-culture with both strains.
The mineralization performance was studied using the Gompertz model (see Section 2.2 for details).
This model has four parameters: the lag time A, the maximum mineralization rate y, the total extent of
mineralization A, and the endogenous mineralization rate c.

To study the strain interaction effects, we focus on two of these parameters: the lag time A and
the maximum mineralization rate y1. These two parameters have been highlighted as key to the
success of bioaugmentation strategies and are more strongly linked with both positive and negative
mineralization effects than the other mineralization parameters [25].
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3.1.1. Identifying Strain Identity Effects

Since each synthetic community included MSHI, the total richness of a community Rt is given by
Rt = Rspr + 1, where Rgpy is the number of SFIs present. In addition to all combinations of individual
SFIs with MSH1 (13 combinations at Rgpy = 1), all 78 different pair combinations of two SFIs with
MSH1 (Rgpy = 2) were tested (further details given in Section 2). The 13 SFIs are assigned the following
labels: S9, S22, S51, 5158, S164, K27, K52, K62, K67, K89, K112, K129, and K169.

Previous studies have also used growth model parameters to identify different growth behaviours
between microbial species, for example through the use of regression models [26]. We employ
a statistical test known as the pairwise Tukey test [27] to compare values of the lag time A and
mineralization rate y across different Rgpy levels. With this test it is possible to evaluate whether values
of A or u observed for a specific synthetic community are significantly different from the respective
parameter values observed for a different community.

The Tukey test statistic is z = ™A-"E where m,4 and mp are the respective means of the
observations of two populations being compared, and Sg is the data’s standard error [28]. The null
hypothesis of the test is that the means are from the same population. The test statistic is then compared
to a critical test statistic value z. which is obtained from the studentized range distribution [29]. If z
is larger than z.t, then the null hypothesis is rejected and it is concluded that the two populations
are significantly different. Tests were performed at the 95% significance level, using Mathematica
(version 11.0, Wolfram Research, Champaign, IL, USA).

Two types of tests were conducted. First, we compared values of A or i for Rgp; = 1 communities
against Rgp; = 0 (i.e.,, MSHI1 alone) as a benchmark population. To determine the sign of the change,
we consider the biological interpretation of a positive or beneficial change in these parameters. For the
lag time A, a decrease in this parameter is considered a positive effect while an increase is considered a
negative effect. For the mineralization rate j, the opposite is true.

The second type of test required selecting one of the SFIs as the focal strain. The test then compared
values of A or yi for the Rgpp = 2 communities including this focal strain, against the values of A or y for
the corresponding Rsp; = 1 community for the non-focal strain. For example, when S9 was the focal
strain of the test and the parameter under consideration was A, we selected all Rgpy = 2 communities
containing S9. One such community contained S9, 522 and MSH1. We then compared the values of A
of this community against the values of A of the community containing 522 and MSH1. This allowed
us to conclude if in this case there were significant differences in lag time due to the inclusion of S9.
This analysis was repeated for every strain other than the focal strain.

This test was done 13 times for each parameter, so that each of the strains was used once as the
focal strain. The results of these tests are collected in the tables shown in Figures 1 and 2. In these
tables, each row collects the results of Tukey tests with a particular focal strain, e.g., the first row shows
the results of tests where S9 was the focal strain, and the columns indicate the other strains being
tested for interaction effects with S9.

3.1.2. Building the Competition Structures

Using the information gathered in Figures 1 and 2, we represented the competition occurring
between the SFIs using so-called tournament matrices. Such a matrix M for s species has dimensions
s x s. If the species represented by row i outcompetes the species represented by column j, then M;; = 1.
On the other hand, if the species represented by row i is outcompeted by the species represented by
column j, we have M;; = —1. If i = j, then M;; = 0. Using the information in Figures 1 and 2, we can
compile such a tournament or competition matrix. The question remains how precisely to do so.

We have two possibilities: to merge the information about the lag time A and mineralization
rate y interaction effects, or to treat the parameters separately. The latter option is justified by
considering that the parameters represent different biological attributes and different underlying
processes [25]. This is most noticeable in their opposing effects on mineralization performance in
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particular; an increased parameter A is considered a negative effect while an increased parameter y is
considered a positive effect.

S9 | S22 [ S51 | S158 | S164 | K27 | K52 | K62 | K67 | K89 | K112 [ K129 | K169

s9 + 0 + + 0 + + + + + + -
S22 | + - + + 0 + 0 + 0 + + -
s51 |0 | - o|lo|-]o]=-=|of-1]o0o - | -
S158 | + | + 0 + 0 + + + + + + -
S$164 | + | + 0 + 0 + + + + + + -
K7 |olo ] -] o 0 o] -1]o - -
Ks2 |+ |+ [ 0 + + 0 + |+ | + + + -
Ké2 |+ | 0 - + + - + + 0 + 0 -
K67 |+ | + | 0 + + 0|+ |+ + + + -
K8 |+ | 0 - + + - + 0 + + 0 -
K112+ | + | 0 + + 0|+ |+ |+ |+ + 0
K129 | + | + | - + + - |+ ]1o0o |+ ]0 + -
ko - -] - -1 -|-1-|-|-1]1-1]od9 -

Figure 1. Tukey test results for the lag time A. Each row collects the results of Tukey tests with
a particular focal strain, the columns then indicate the strains that were tested for interaction effects with
it. The entry in cell (i, j) indicates the difference (if any) between the Rgp; = 2 community containing

anz

species i and species j, and the control Rggy = 0 community: “+” indicates the Rgp = 2 parameter

“_n

values were significantly larger than the Rgpy = 0 values, indicates they were significantly
smaller, and “0” indicates no significant difference. The background colour of cell (i,]) indicates
the difference (if any) between the Rgp; = 2 community containing species i and species j, and
the Rgpr = 1 community containing species j: green indicates the Rgpy = 2 parameter values were
significantly smaller than the Rgpy = 1 values, red indicates they were significantly larger, and no

colour indicates no significant difference.
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Figure 2. Tukey test results for the mineralization rate y1. Each row collects the results of Tukey tests with
a particular focal strain, the columns then indicate the strains that were tested for interaction effects with
it. The entry in cell (7, j) indicates the difference (if any) between the Rggj = 2 community containing
species i and species j, and the control Rgp; = 0 community: “+” indicates the Rgpy = 2 parameter
values were significantly larger than the Rgsy = 0 values, “—”
smaller, and “0” indicates no significant difference. The background colour of cell (i,]) indicates

the difference (if any) between the Rgp; = 2 community containing species i and species j, and

indicates they were significantly

the Rgpy = 1 community containing species j: green indicates the Rgp; = 2 parameter values were
significantly larger than the Rgp; = 1 values, red indicates they were significantly smaller, and no
colour indicates no significant difference.
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This approach results in two competition matrices, the first based on lag time A interaction effects,
and the second based on mineralization rate y interaction effects. We look in Figure 1 (A interaction
effects) or Figure 2 (u interaction effects) for pairs of SFIs that appear to interact with each other,
and check what kind of interaction appears to be taking place: is it positive or negative with respect to
each of the SFIs?

This corresponds in Figures 1 and 2 to both the cell entries and the cell background colours.
The cell entries indicate which kind of difference (if any) exists between the control community and
the Rspy = 2 community containing the particular species corresponding to the cell row and column.
These relationships can be positive, negative, or not significant. The cell background colours indicate
the difference (if any) between the Rgp; = 1 community containing the species corresponding to the
cell column, and the Rgp; = 2 community containing the particular species corresponding to the cell
row and column. These relationships can also be positive, negative, or not significant.

We then obtain the following matrices representing competition between the SFIs. When considering
interactions based on lag time A effects, the matrix reads:

11 000000010
00-110000011 0
-1 00 000000000
-1 1 0 100 1001 1 0
0 -10-1 00000001 0
0 000 001000000
My=| 0 00-10000000T10 (2)
0 00-1000000000
0 00 000000000
0 00 000000000
0 -10-1 000 0000-10
-1-10-1-10-10001 0 0
0 000 000O0000TO0O

When considering interactions based on mineralization rate yu effects, the matrix has the form:

0000 0O 000 O0O0 O
000-1100 0O0O0O1TTO0 O
0000 OO0O-100O0O0OO0OSO O
0100 0O0OO0OT1TO0OT1TO0T1T O
0-10 0 00O -10-101 -1
0000 OOO OOOOO O
My=(0010 000 10101 3)
000-110-101010 O
0000 OO0OO-10000 -1
000-110-1000O0O0 O
0-10 0 00O —-1000-10
000-1-10-10001°0 O
0000 1T0O0 O0O1O0O0O0 O
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An additional extension of our modelling approach that will bring it closer to reality is to also
consider non-deterministic competition. Deterministic competition assumes that, if the competition
structure specifies that A beats B, this will always occur: it will never be possible for B to beat A.
This is reflected in the competition matrices M, and M,,, which contain only 1’s (implying certain
victory), —1’s (certain defeat) and 0’s (no competition). But this is not always realistic [30-32]. Variation
between individuals can result in an individual of species A that is a particularly weak competitor,
and an individual of species B that is a particularly strong competitor. If these two specific individuals
meet, the outcome of the competition can be in doubt. It may be more realistic to specify a so-called
winning probability [33,34]: the probability that A beats B. Including a winning probability allows for
different competition outcomes to occur, and the value of the winning probability allows us to account
for the relative strengths of the individuals.

Therefore we will also consider non-deterministic competition between the SFls, not only in terms
of its effects on the diversity and stability of the community (and possible subcommunity), but in
comparison with the same effects due to deterministic competition. Our immediate question is then
how to assign the winning probabilities to the different pairwise competitions.

Using data related to the SFIs” monoculture growth and survival curves, Vandermaesen et al. [11]
classified the “intrinsic competitiveness” of the SFIs and on this basis grouped them into strong,
intermediate and weak competitors. Using this information, we can assign winning probabilities to
each pairwise competition based on the relative differences in intrinsic competitiveness between the
two strains. For example, competition between a weak intrinsic competitor and a strong intrinsic
competitor will most likely result in the success of the latter. It should also be clear that this winning
probability should be higher than the winning probability assigned to an intermediate intrinsic
competitor when faced with a weak intrinsic competitor. Using this approach, we replace the 1’s
and —1’s populating our matrices M, and M, with rational numbers of absolute value less than 1,
corresponding to the appropriate winning probability.

Using this approach, we obtain the following matrices representing non-deterministic competition.
When considering interactions based on lag time A effects, the matrix has the form:

0 0 09 09 0 0 O 00 0 09 0
0 0o 0 -09 07 0 0 0 0007 07 O
-09 0 0 O 0 0 0 000O0O O O
-09 09 0 0 09 0 0 090009 09 0
0o -07 0 -09 0 0 O 000 O 09 0
0 0 0 ©0 0 0 0 000O0O O O
My = 0 o 0 -09 0 0 0 000 O0 09 0 (4)
0 o 0 -09 0 0 0 O0O0O0OO0O O O
0 0 0 ©0 0 0 0 000O0O O O
0 0 0 0 0 0 0 000 O 0
o -07 0 -09 0 0 O 000 0 —-060
-09 -07 0 =09 =090 -09 0 0006 0 O
0 0 0 0 0 0 0 000O0O O O

When considering interactions based on mineralization rate u effects, the matrix has the form:
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0 0 0 0 0 0 0 0
0 0 —09 07 0 0 0.7 0
0 0 0 O 0 0 -09 0 0 0
009 0 O 0o 0 0 09 0 09 0 09 O
0-07 0 O 0o 0 0 —-07 0 —-06 0 09 -07
0o 0 0 O 0 0 0 o 0 0 0 O 0
M;‘,z 0 0 09 0 o 0 0 09 0 09 0 09 O ®)
o o0 0 -09 07 0-09 0 07 0 07 0
0 0 0 O o 0 o0 =07 0 0 O -0.7
0o 0 0 —-09 06 0-09 0 0 O 0
0-07 0 0 o 0 0o =07 0 O —-06 0
o o0 0 -09 -090-09 0 0 0 06 0
0o 0 0 0 07 0 O 0 07 0 O 0

3.2. Constructing the Individual-Based Model

To understand how the different competition structures affect the dynamics of the system,
we consider the in silico counterpart of the synthetic community of 13 SFIs. We model this community
using an individual-based approach, which we describe using an established standard protocol known
as the ODD protocol [35].

3.2.1. Overview
Purpose

The aim of the model is to study how more realistic competition structures affect the in silico
dynamics, particularly in terms of community diversity and stability, and investigate whether this
approach can qualitatively reproduce the dynamics observed in similar in vitro studies, namely a
stable and persisting subcommunity.

State Variables and Scales

The model is a two-dimensional representation of an experimental domain divided into a regular
grid of size L x L = N, and populated by a community of 13 SFIs. We assign to each strain a numerical
label between one and 13, in the order given in Section 3.1.1: S9, S22, 551, 5158, S164, K27, K52, K62, K67,
K89, K112, K129, K169. Each grid site is either occupied by a single individual, or is empty. Individuals
are characterized by two state variables: grid position (x, y) and species identity s € {1,...,13}.

Process Overview

We consider an in silico microbial community that is initially placed on the grid with a random
spatial distribution. The community’s initial species abundance distribution is completely even,
to mimic the in vitro experimental set-up.

An individual can interact with its nearest neighbours, defined as those individuals in its von
Neumann neighbourhood (the four grid cells with which it shares an edge). Three possible interactions
can occur, representing the key demographic processes: reproduction, competition and mobility.

Reproduction can occur when an individual is located adjacent to an empty grid site, which is
then filled with a new individual of the same species. In order to provide a form of mobility,
all individuals can exchange their position with a nearest neighbour or move to a neighbouring
empty site. Competition can occur between two neighbouring individuals that do not represent the
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same species. The outcome of the competition event is determined by the governing competition
matrix; the defeated individual is removed from the grid and the grid site becomes empty.

Scheduling

The IBM proceeds using a modified version of the Gillespie algorithm [36], to determine which

interaction occurs at each time step and calculate the interaction outcome. The algorithm iterates over

the following steps:

)

@)
®G)
©
©)

(6)

@)
®)
©)

Set time to t = 0 and set the event rate constants:

(a) reproduction with rate constant y
(b) competition with rate constant ¢
(c) mobility with rate constant e

Calculate the overall rate of events r = +0 + €

Select an individual at random

Select one of the focal individual’s nearest neighbours at random

Select an interaction event with the following probabilities, by drawing a random number from
the interval [0, 7]:

(a) reproduction with probability &

(b)  competition with probability <

(c) mobility with probability ¢

Execute the selected interaction event on the selected individual (if permitted) and determine the
outcome according to the governing rules:

(a) reproduction occurs deterministically (it is always carried out if possible)
(b)  mobility occurs deterministically
(c) competition can occur:
i deterministically: the winner is determined by the appropriate entry (being 1 or

—1) in the competition matrix M) or M,

ii. non-deterministically: a random number 7. is drawn from the unit interval and
compared to the appropriate winning probability M;; in the competition matrix
M} or M;,, where species i and species j are competing.
If M,’j > 0:

*  species i wins the competitive event if r. < M;;
*  species j wins the competitive event if r. > M;;
If M,‘j < 0:

*  species i wins the competitive event if rc > |M;;|
e species j wins the competitive event if r. < [M;;]

Update the grid according to the outcome of step 6
Update the timetot =t + 1
Return to step 3 and continue until f = tqq

This procedure is repeated for a specified number of generations, where a generation is defined

as the number of steps required for each cell to be the subject of on average one interaction.
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3.2.2. Design Concepts

e  Emergence: the spatial patterns and population-level dynamics of the community emerge
naturally from the interactions occurring between individuals.

e Competition based on pairwise interaction effects: the competition scheme is constructed based
on pairwise interaction effects, encoded in a competition matrix.

e Non-deterministic competition: In addition to deterministic competition, we also investigate
the effects of non-deterministic competition, where the victor of any competition event is not
predetermined but is instead stochastic.

e Interactions: individuals interact with each other and their environment by reproducing if located
next to an empty site, exchanging sites with their neighbours, or competing with their neighbours.

®  Stochasticity: the stochasticity in the model arises from the initial spatial distribution of the
grid; the interactions between individuals and the environment (reproduction); the interactions
between individuals (mobility, competition); and from the non-deterministic competition.

*  Sensing;: if selected for reproduction, individuals can sense whether their selected neighbouring
site is empty; if so, they will reproduce. If the site is occupied by an individual, no reproduction
will occur.

e Observation: the data collected from the IBM includes the population count of each species,
the community evenness and diversity, the spatial distribution of individuals, and their time to
extinction. These are tracked for each time step.

3.2.3. Details
Initialization

The model is initialized with a random spatial distribution of individuals and empty sites. Initially,
a certain proportion of grid sites is left empty; thus the system is initially below carrying capacity.
The initial species abundance distribution is completely even, as is the typical approach in similar
modelling studies [37-39]. Aside from the input variables, all other parameters used to initialize the
model are fixed for all simulations, and are shown in Table 1. Note in particular that the mobility
rate constant € is set below the system'’s critical mobility rate, above which extinctions are certain due
to the interactions between individuals being insufficiently localized. It has been shown for models
of this type that coexistence of all species is only possible when mobility remains low and therefore
individuals can only interact over small spatial scales (in our case, with their nearest neighbours) [40].

Table 1. Parameters of the individual-based model of 13 SFIs.

Parameter Description Value
L Grid side length 200
o Initial proportion of empty sites 0.1
U Reproduction rate constant 1
[ Competition rate constant 1
€ Mobility rate constant 425
T Number of generations evolved 1000

3.2.4. Input

The model’s input is the competition matrix. There are four different matrices:
(1) M) : deterministic competition based on A interaction effects (Matrix (2))
(ii) M,,: deterministic competition based on y interaction effects (Matrix (3))
(iii) M3 : non-deterministic competition based on A interaction effects (Matrix (4))
(iv) M;: non-deterministic competition based on y interaction effects (Matrix (5))

For each of these initial settings, we run 200 replicate simulations.
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3.3. In Silico Community Dynamics

3.3.1. Richness

To study the effects of the different types of competition on the diversity of the in silico
synthetic community, we first examine the richness effects, by determining the number of surviving
species after 1000 generations to see what levels of richness are maintained under the different
competition structures.

In Figure 3, we show the probability of observing a certain species richness after 1000 generations.
for deterministic and non-deterministic competition based on lag time A interaction effects. With this
competition structure, we observe monocultures very rarely in the deterministic case, and never in
the non-deterministic case. We find final richness levels as high as eight (deterministic case) or nine
species (non-deterministic case). In the deterministic case, approximately 70% of simulations result in
communities of five or six species, and the same for the non-deterministic case. The distribution of
final richness is more skewed towards higher richness values for the non-deterministic case, indicating
a stabilizing effect on the dynamics in terms of fewer extinctions and thus higher richness, an effect
observed in other modelling studies comparing deterministic and non-deterministic effects [31].
This effect is not surprising, since non-deterministic competition results in fewer prey extinctions and
more predator extinctions compared to deterministic competition, and thus decreasing extinction
probabilities of the most vulnerable species.

T T T T T T T T T T T T T
06+ 06+
05 gl 05

> >

B oo4f =

8 ]

© ©
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Figure 3. Probability of observing a particular species richness after 1000 generations for
(a) deterministic and (b) non-deterministic competition based on A effects. Probabilities calculated
from 200 replicates.

The distribution of final richness for deterministic and non-deterministic competition based on
mineralization rate y interaction effects (Figure 4) is again more skewed towards higher richness
values for the non-deterministic case, indicating a stabilizing effect on the dynamics in terms of fewer
extinctions and thus higher richness. Additionally, higher richness levels are observed compared to the
case of competition based on A interaction effects. No monocultures are ever observed for competition
based on y interaction effects, and in fact community richness never drops below four (deterministic
case) or five species (non-deterministic case). In the deterministic case, approximately 95% of
simulations result in communities of five or six species, in the non-deterministic case approximately
95% of simulations result in communities of five, six or seven species.

Thus, in both cases (A and y interaction effects), we find similar behaviour in terms of community
richness as was observed for the in vitro synthetic community of Vandermaesen et al. [11], namely the
establishment of a stable community of reduced richness compared to the initial inoculation of 13 SFIs.

The increased in silico community diversity in the case of competition based on mineralization
rate y interaction effects, compared to lag time A effects, can be ascribed to a more balanced competition
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structure in the former case, and more specifically its relatively higher intransitivity. A competition
structure is transitive if the constituent species can be ranked in a strict competitive hierarchy, and hence
intransitivity refers to the lack of such a strict hierarchy [41]. This characteristic can be quantified for
example using a measure of relative intransitivity proposed by Laird and Schamp [42], denoted by
R;. This index takes values in the unit interval, with larger values corresponding to more intransitive
competition structures. Using this index, we find that Matrix My, is more intransitive than Matrix M},
with a relative intransitivity of R; = 0.83 compared to R; = 0.80, respectively.

0.5 1

Probability
Probability

0 2 4 6 8 10 12

Number of surviving species Number of surviving species

() (b)

Figure 4. Probability of observing a particular species richness after 1000 generations for
(a) deterministic and (b) non-deterministic competition based on y effects. Probabilities calculated
from 200 replicates.

3.3.2. Diversity

After observing the richness effects due to the different forms of competition, we now consider
community diversity. We do so using the Leinster-Cobbold diversity index [43], an effective number
index that also includes a sensitivity parameter g that determines how much weight is assigned to
rare or common species. For g < 1, more weight is given to rare species (g = 0 corresponds to species
richness), while for g > 1 more weight is given to common species. All species are weighed equally by
their proportions for g = 1 [43].

For each of the four competition matrices, we calculate the Leinster-Cobbold diversity index over
time, for different values of ¢, so that we may gather information about the composition and balance
of the communities, as well as their changes in diversity as the different simulations evolve.

In Figure 5 we show the average Leinster-Cobbold diversity over time for deterministic and
non-deterministic competition based on lag time A interaction effects, for varying values of the
sensitivity parameter 4. With different values of g, we can infer changes in species richness (for low
values of q), evenness (for high values of g) and diversity (for ¢ = 1). Hence we calculate the diversity
profiles for g € {0,1,20}.

Initially, the community undergoes a sharp drop in evenness (seen in differences between the two
curves for g > 0 relative to the g = 0 curve), while richness is maintained at its initial level. The time
to the first species extinction is roughly similar for all replicates, namely around 250 generations.
This period represents the time required for spiral spatial structures to begin to form (see Section 3.3.3),
and the first species to be entirely surrounded by its predator(s) and killed off. Following the first
extinction, others follow as they are enabled by the spatial structures as the species have aggregated
sufficiently to begin to chase each other around the grid.

The g = 1 and g = 20 curves approach each other late in the simulation time, indicating that
relatively high evenness is maintained for significant periods of time. However, the higher order
diversities are significantly less than the zero order diversity (richness), indicating that in the later
stages of the in silico experiments, multiple species continue to coexist but these communities are
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quite uneven, in agreement with the dynamics of the in vitro synthetic community [11]. Finally, we
again observe a stabilizing effect when considering non-deterministic rather than deterministic in
silico competition, in terms of time to first extinction and final community diversity.

Diversity (effective species)

Diversity (effective species)

Diversity (effective species)
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() (b)
Wg=0mg=1Mqg=20
Figure 5. Mean diversity profiles (Leinster-Cobbold index) for 4 € {0,1,20}, for (a) deterministic

and (b) non-deterministic emergent competition based on A effects. Mean and standard deviation
calculated from 200 replicates.

1000

In Figure 6, we compare the changes in diversity for communities subject to deterministic and
non-deterministic competition based on mineralization rate y interaction effects. Diversity is higher
here than for the two previous competition matrices, for all values of 4. Additionally, the communities
are more even. Notably, in Figure 6 the 4 = 1 and g = 20 curves never overlap, indicating higher
levels of evenness compared to the previous competition matrices which resulted in converging curves.
This can also be inferred by the smaller distance between the g4 = 0 curve and the g > 0 curves in
Figure 6, which indicates relatively more species coexisting in relatively more even communities.
The minor stabilizing effect of non-deterministic competition compared to deterministic competition
can also be observed in terms of diversity maintenance and time to first extinction.

Diversity (effective species)
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BWg=0 W qg=1Mmqg=20
Figure 6. Mean diversity profiles (Leinster-Cobbold index) for g € {0,1,20}, for (a) deterministic

and (b) non-deterministic emergent competition based on i effects. Mean and standard deviation
calculated from 200 replicates.
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3.3.3. Spatial Structures

These diversity effects, and the spatial dynamics underlying them, can also be observed in Figure 7,
where we show two representative examples of the grid configuration at T = 1000 generations for
non-deterministic competition based on lag time A (Figure 7a) or mineralization rate u (Figure 7b)
interaction effects. As was observed in Figures 5 and 6, competition based on the former results in more
uneven communities than competition based on the latter. In the former case, sufficient species are
present in sufficient numbers to form the spiral patterns characteristic of this type of individual-based
models, which have been shown to help maintain coexistence [40]. These patterns also qualitatively
resemble those observed in in vitro experiments where a similar synthetic community of SFIs was
co-cultured with MSH1 in the presence of BAM [18]. The spiral formations also enable spatial refuges,
which have been observed to support species coexistence by allowing vulnerable species to persist
at low but still significant levels [44]. Such refuges can be observed for example in Figure 7b for
multiple species.

(b)
B SO W "S22" W "S51" W "S158" W "S164" 1 "K27" W "K52"

"K62" W "K67" W "K89" W "K112" W "K129" "K169"

Figure 7. Examples of in silico communities at T = 1000 generations with emergent non-deterministic
competition based on (a) A effects, and (b) y effects.

3.3.4. Community Composition

Having studied community diversity effects, we can now turn our attention to the composition of
these persisting subcommunities. In Figure 8, we show the persistence probability for each SFI for
deterministic and non-deterministic competition based on lag time A interaction effects. The results
reflect the dynamics illustrated in Figure 7a: S9 is the dominant strain, but it is a member of a subgroup
of SFIs that are present in the majority of the simulations. This is unsurprising, since S9 was the
strongest competitor in the two competition structures based on A interaction effects (M, and M})
and thus it is the dominant SFI in the persisting subcommunity, which we recall is quite uneven
(see e.g., Figures 5 and 7). In more than 80% of the simulations, we observe the same SFIs persisting
together: S9, K67, K169, K27 and K89. This is true for both the deterministic and non-deterministic
competition cases.

Thus our model is able to qualitatively reproduce the in vitro dynamics of a persisting smaller
subcommunity [11]. These dynamics have also been observed for communities of microbial species [18]
as well as for communities of higher organisms [45,46].
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Figure 8. Probability of finding each strain in the community after 1000 generations) for (a) deterministic
and (b) non-deterministic emergent competition based on A effects.

Another subgroup of persisting SFIs is found for deterministic and non-deterministic competition
based on mineralization rate y interaction effects (Figure 9), once again matching qualitatively the
dynamics observed in in vitro synthetic communities. The members of this subgroup are not entirely
the same as for Figure 8. Instead we find K169, K52, 5158, K27 and S9 coexisting in more than 80%
of the simulations. The strains in the persisting subcommunity are also more equal in terms of their
persistence probabilities (and hence their extinction probabilities) than was the case for competition
based on A interaction effects (Figure 8). These SFIs are also more equally matched in terms of their
competitive strengths (see My and M})). These factors result in these subcommunities being able to
maintain significantly higher evenness levels than the other competition structures, as we noted when
studying the diversity of these communities (Figure 6). The partial overlap in membership of the
persisting subcommunities in the A and y cases may be ascribed to the fact that the dominance of a
particularly adept competitor may be reflected in both the growth parameters under consideration.
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Figure 9. Probability of finding each strain in the community after 1000 generations) for (a) deterministic
and (b) non-deterministic emergent competition based on p effects.

Finally, we examine extinctions in our different communities. We have seen that extinctions
are frequent, but generally limited to the same set of SFlIs. In Figure 10, we show the average
time to extinction for each SFI, for deterministic and non-deterministic competition based on
lag time A interaction effects. We note again that these are slightly longer for non-deterministic
competition compared to deterministic competition, and always occur after an initial period of
spiral formation (~300 generations). One strain, K129, collapses to extinction not long after spiral
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formation has commenced; this strain is the weakest in both competition structures. After it disappears,
there is another lapse before extinctions recommence and thereafter proceed fairly regularly until the
community is reduced to the persisting uneven subcommunity dominated by S9 (which never suffers
any extinctions) and the other strains in small proportions.
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Figure 10. Mean time to extinction per strain for (a) deterministic and (b) non-deterministic emergent
competition based on A effects. Blue labels indicate strains for which no extinctions occurred. Means
calculated from 200 replicates.

For deterministic and non-deterministic competition based on mineralization rate y interaction
effects (Figure 11), we notice a reduction in extinction times compared to competition based on lag
time A interaction effects. This may seem counterintuitive given that we have already observed these
communities to be more stable, however the key point is that fewer species go extinct. Those that do
collapse to extinction do so more quickly, but this does not affect the stability of the persisting
subcommunity. Now S9 is not the only SFI to never suffer extinctions, but it is joined by the
other members of the persisting subcommunity (5158, K52 and K169), again indicating that this
subcommunity is more even and thus more stable than in the cases of competition based on A
interaction effects.

5000 - 2000
900+~ 800
c c
2 100- 2 500
© ©
3 ]
5 5
o 800F G 400
200+ 100
0
I I TR I I N S Y Nt D SN A N AN N
S LGP P& @ PGPS P P GNP e O TR P
Strain 9train

(a) (b)

Figure 11. Mean time to extinction per strain for (a) deterministic and (b) non-deterministic emergent
competition based on j effects. Blue labels indicate strains for which no extinctions occurred. Means
calculated from 200 replicates.

4. Conclusions

We have studied the in silico counterpart of an in vitro synthetic community of 13 SFIs in co-cultures
of varying richness with MSH1. These SFIs had been selected based on their potential for improving
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the BAM mineralization performance of MSH1 for bioaugmentation applications. We developed an
IBM representing the in silico counterpart of this synthetic community, where competition structures
were constructed based on pairwise competition outcomes, using data related to lag time A and
mineralization rate y interaction effects in terms of mineralization performance.

Our model was able to recover the qualitative dynamics observed in in vitro experiments with
similar synthetic sand filter communities: the majority of the community collapsing to extinction
and a subcommunity persisting [11,18]. The memberships of these subcommunities were consistent,
and their presence could be explained based on their attributes as represented in the competition
matrices. The simulation outcomes were explained based on the underlying competition structures
(notably by their intransitivity) and the resulting spatial dynamics. Our results highlight the importance
of diversity and in particular evenness in stabilizing the community dynamics, in agreement with
previous experimental results [47,48].

This work therefore serves as a proof-of-concept for using IBMs as in silico counterparts of in vitro
synthetic communities, as we were able to find a qualitative agreement between the in silico and in
vitro dynamics, despite the in vitro experiments not being expressly designed for modelling purposes.
For example, it would also be informative for this purpose to examine in more detail the interactions
between the SFIs, not just in terms of effects on BAM mineralization. This could be done, for example,
by tracking the growth and survival of SFIs in pairwise co-cultures. Despite this, our model was able
to retrieve the qualitative in vitro dynamics, allowing us to interrogate their development, and thereby
illustrating the potential of this modelling approach for addressing ecological theories relating to
synthetic communities.
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Abstract: In a previous study, the two nitrifying functions (ammonia oxidizing bacteria (AOB) or
nitrite-oxidizing bacteria (NOB)) of a nitrification reactor—operated continuously over 525 days
with varying inputs—were assigned using a mathematical modeling approach together with the
monitoring of bacterial phylotypes. Based on these theoretical identifications, we develop here a
chemostat model that does not explicitly include only the resources” dynamics (different forms of
soluble nitrogen) but also explicitly takes into account microbial inter- and intra-species interactions
for the four dominant phylotypes detected in the chemostat. A comparison of the models obtained
with and without interactions has shown that such interactions permit the coexistence of two
competing ammonium-oxidizing bacteria and two competing nitrite-oxidizing bacteria in competition
for ammonium and nitrite, respectively. These interactions are analyzed and discussed.

Keywords: competitive exclusion principle; microbial interactions; nitrifying bacteria; coexistence;
chemostat models; ecosystem functions

1. Introduction

The well-known “competitive exclusion” principle states that, at equilibrium, the number of
coexisting competing species cannot exceed the number of growth-limiting resources available to
them [1,2]. However, in natural systems, the number of coexisting species often exceeds the number
of limiting resources [3]. This phenomenon is often referred to as the “paradox of the plankton” [4].
Theoretical and experimental studies of a chemostat with time-invariant operating conditions have
shown that two microbial populations in competition for a single substrate cannot coexist: the
slower-growing species in the given operating conditions will be washed out [5]. In such a case,
coexistence is predicted theoretically for discrete values of the chemostat dilution rate only when the
curves of the specific growth rate, as a function of limiting nutrient concentration, cross. The dilution
rate must have exactly the value at which the specific growth rates of the two populations in the
chemostat are equal. However, this type of coexistence is structurally unstable and cannot be realized
in practice because of random fluctuations in the chemostat dilution rate and in the physico-chemical
parameters. To bridge the gap between mathematical theory and real life, a variety of mathematical
models have been developed over recent decades. In all such models, assumptions about the idealized
chemostat have been modified (cf. for instance [6-10]). Some studies have relied on non-equilibrium
conditions to promote species diversity by preventing competitive equilibrium. One such example
is the variability in resource supply ratios: when nutrients were supplied to the chemostat in pulses,
oscillations in the abundance of species prevented the establishment of competitive equilibrium
and permitted the coexistence of a greater number of species than the number of growth-limiting
resources [11,12]. In the same way, some studies have explained coexistence in chemostats by the
heterogeneity of the medium or by variations in solid retention times [8] while others have considered
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that more than one single resource is available [13]. However, only very few studies related to
the chemostat have pointed out that microbial interactions other than competition can also lead to
steady-state coexistence. When such a situation was considered, only direct interactions based on the
approach called Generalized Lotka—Volterra equations were used and no consideration was given to
resources (cf., for instance [14] for a recent study). In particular, for Lotka—Volterra models, it has been
established that coexistence is possible when intra-specific competition is greater than inter-specific
competition. The ecological mechanism behind this result is that the self-limiting growth of the most
competitive species leaves some resource available for other less competitive species. While some
progress has been made towards integrating positive interactions into contemporary theory [15-17],
competition and predation still dominate ecological thinking about interspecific interaction [18-20].
The fact is that, to allow coexistence in mass-balance models, it is either necessary (i) to consider
identical kinetics parameters for all species (which is actually what we could call a “singular case” and
which would have, as a consequence, the observation of exactly the same dynamic behavior for all
species) or (ii) to add direct interaction terms between species concentrations as in the Lotka—Volterra
model, in addition to the dependence with respect to resource concentrations.

Recently, interest in the study of species interactions has been renewed regarding the modern
high-throughput molecular techniques available: together with modeling, they appear as a very
promising way of investigating how ecosystems function. Available models are based on network
theory and statistical data analysis [21]. However, these proposed models usually do not consider
resources and only describe, statically, species interactions within the ecosystem of interest.

Roughly speaking, all the available models could be classified as either Biodiversity-Equivalent
or Functionally-Equivalent. Biodiversity-Equivalent Models (BEM) aim to provide models able to
explain/predict/simulate biodiversity, typically as species interacting together within a microbial
ecosystem; while Functionally-Equivalent Models (FEM) are designed to predict function performances
of an ecosystem. The classic chemostat model is typically a FEM while the neutral model could be
classified as a BEM. Very few microbial-ecosystem models available in the literature have been designed
to integrate both diversity and functional considerations. In [22-24], such models were proposed for
anaerobic digestion. However, both hypothesize that the different biomasses are only in competition
for the substrate and do not include terms involving direct interactions: thus, unless the growth
functions are identical, the competitive exclusion principle applies and only one species will survive if
the system is simulated for a long enough period of time [25]. In addition, like other studies published
in the fields of ecology or mathematics, these studies remain essentially theoretical and were not
confronted to data (cf., for instance [26,27]).

The aim of the model proposed in the present paper is to include both diversity and functional
considerations and to validate such a model on data obtained within real experiments. More specifically,
we present here a modification of the classic model of a chemostat. It is based on Lotka—Voltera
equations and takes into account biotic interactions which can occur between species in a microbial
community (i.e., which represent inter- and intra-species interactions). Not only does this model
integrate states of more than one species per function (number of biological reactions) but it also
integrates the dynamics of available resources. This model was confronted to data obtained from a
nitrifying chemostat operated for two years under time-varying inputs. Notice, however, that for
technical reasons related to the parameter identification step, only the signs and the order of magnitude
of interaction terms between species could be obtained and not their precise values (we will come back
in detail on this important point in Section 2.5).

Nitrification is an aerobic two-step microbial process (thus involving only two “functions”) in
which ammonium is oxidized to nitrate by two distinct groups of chemolithoautotrophic bacteria.
Aerobic ammonium-oxidizing bacteria (AOB) first oxidize ammonium to nitrite and then aerobic
nitrite-oxidizing bacteria (NOB) oxidize the nitrite to nitrate [28,29]. During the two year experiments
used in the present study, both functional measurements (i.e., concentrations in ammonium, nitrite and
nitrate concentrations) and population measurements (i.e., total biomass concentration and relative
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abundances) of the bacteria present in the chemostat were made by Single Strand Conformation
Polymorphism. In a previous work, using an original mathematical approach, a functional community
assignation (i.e., in AOB or NOB community) was performed for each phylotype detected in the
chemostat [30,31]. In the present work, a microbial interaction model is optimized on the kinetics of
the two most abundant phylotypes of each functional community. In this way, we obtain a virtual
web of interactions linking four different species present in the nitrifying community. The results
obtained in this way show that the web of interactions can prevent competitive exclusion and can
explain the coexistence of the phylotypes as observed through the available measurements realized on
the nitrifying chemostat as predicted in [26,27].

2. Materials and Methods

2.1. Nitrifying Chemostat Conditions

The experimental set-up operated over two years consisted of two continuously-mixed 6.5 L
(working volume) all-glass chemostats inoculated beforehand with activated sludge from the municipal
sewage treatment plant of Coursan (Aude, France). The air flow-rate was maximum in order to
ensure good fluidization and provide enough oxygen which was never limiting for the nitrification
process; the pH was measured and maintained at around 7 by the automatic addition of an alkaline
solution. Both chemostats were fed with a synthetic mineral medium composed of ammonium
sulfate (its concentration varying from 0.5 to 2 g~L’1) as the nitrogen source, complemented with a
mineral solution.

2.2. Microbial Community Measurements

During the experiments which lasted 525 days, two kinds of population measurements were made:
the first was the determination of the total biomass present in the chemostats; the second consisted
of the determination by Single Strand Conformation Polymorphism (SSCP) of the abundances of the
different species contained in the total biomass. Except for some well-identified periods, the experiment
was run in duplicate and both chemostats behaved similarly. For this reason, in the present study we
concentrate on the results obtained from only one device (the chemostat denoted as “chemostat B”
in [31]). The main results of this monitoring—on average over the 525 days of experiments—were
(i) 40% of the total biomass was represented by the most abundant AOB; (ii) the most abundant NOB
represented less than 10% of the total biomass; (iii) the two most abundant AOB and the two most
abundant NOB represented more than 55% of the total biomass.

2.3. Model Development

The model developed in this study is based on mass balance equations for a conventional,
completely-mixed chemostat initiated from the pioneering work of Monod and of Novick and Szilard
(cf. [32,33]). It is described by the following set of differential equations:

N

{ X = (n(S(t)) = D(1))X(t) M

S = (Sin(t) = S())D(t) — +u(S(£))X (1)

where the dot above a letter stands for the time-derivative, S and X represent the concentrations of
nutrient (or substrate) and biomass, respectively. S;, denotes the concentration of the nutrient in the
input flow, with dilution rate D. The function p(S(#)) is the growth rate of the population and the yield
factor is Y. Thereafter, to simplify the notations, the time-dependence of variables is often omitted.

<
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This standard dynamic model of a chemostat can be extended easily to a 2-step nitrifying
bioprocess as follows:

XA = (1a(S1) —D)Xa
- Xp=(up(52) —D)Xp
S1=(Sin—$1)D - yljuA(Sl)XA , @
Sy=—$D+ v LLA(Sl)XA — v; 18(52) X
S5 = —S3D + £-1p(S2) Xp
where X4 and Xp represent the concentrations of AOB and NOB respectively, while p4(S1) and pg(Sz)
are the growth rates of X4 and Xp, respectively. As suggested in [31], they are supposed to be Monod
functions and are thus written as w4 (S1) = Hyx1 SlfrilK;l and pp(Sy) = llmastziizkn

From this point onwards, this model will be referred to as “model #1”. This nitrifying chemostat
model can then be modified as follows to take into account microbial interactions:

. J=na+ng
Xi‘i:lunAJrnB - ui(') 1 ‘§1 ﬂ‘/X X
. 1 i=ny j=na+np
S1=(Simn—51)D— Y1 'Zl wi(S1)| 1+ Z ll,]
i=

i= nA+nE j=na+ng
- . E wi(S2) | 1+ Z ;i Xj | X;

i=ns+

. 1 i=ny j=natng (3)
52 = —SZD + Y Zl Ll.i(S]) 1+ .Zl ﬂI]X] X,‘

i=

. 1 i=np+ng j= nA+nB
S3=-SD+y, L [w(S)|1+ Z ;i X;
i=ns+1

where a;; represents the influence of the species j on the growth rate of species i. This influence can be
positive, negative or nil according to the sign and the value of a;;.

From this point onwards, this last model, including intra- and interspecific interaction terms,
will be referred to as “model #2”. This interaction coefficient structure (a;) corresponds to that of
the well-known Lotka—Volterra model which is a widely used model in general ecology. Our model
differs from the classic Lotka—Volterra model in that it is coupled to a mass-balance model (the classic
chemostat model) which includes resource dynamics. Because linear systems are easier to identify,
using a linear “species by species” relationship allows a simpler way of predicting species interactions.
However, in doing so, the influence of resource density is neglected. An example of the use of such an
interaction coefficient structure to describe microbial interactions within a cheese microbial community
is given in [34]. It should also be noted that, for a given species j, the interaction terms are assumed
to be constant. We are aware that this assumption may be questionable from a purely biological
point of view. However, as explained in the next section, only the sign of interactions will finally be
characterized. Said differently, we rather characterize the distributions in which these parameters live,
instead of their precise values.

2.4. Identification of the Parameters of Microbial Interaction

The parameters of model #1, optimized to match experimental data in [31] are recalled in Table 1.

Table 1. Parameters of model #1 (adapted from [31]).

Mmax1 (llday) Ks1 (mg/L) Ya Mmax2 (llday) Ks> (mg/L) Yp
0.81 0.17 0.26 0.26 0.16 0.01

The identification of microbial interactions was done with the help of the model #2 described by
Equation (3). To do so, we have kept only the two major species of each group: recall the four most
abundant phylotypes (two AOBs and two NOBs) represented about 55% of total biomass. In order to
ensure a viable compromise between the complexity of the model (notably the number of parameters to
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be identified) and the capability of optimization algorithms to converge within a reasonable computing
time, only two phylotypes in competition for one of the two substrates S; or S;, were studied for each
of the two nitrifying functions, thus considering only four species in total.

Considering the model described by Equation (3) with 14 = np = 2, there still remains a large
number of parameters to be identified (interaction parameters between the four considered species,
that is to say 16 parameters, plus the degrees of freedom of the kinetics, representing eight additional
parameters, thus a total of 24 parameters). To minimize this number, we adopt, in the present
study, a kind of “neutral” hypothesis in considering that within a function, all the species exhibit
identical kinetics and that the only difference in growth was due to their interaction. This assumption
can be justified taking into account the following arguments. Without interactions, considering the
same growth rates for either AOBs or NOBs, all species would exhibit exactly the same dynamics:
their coexistence would be “guaranteed” (of course assuming that initial biomass concentrations are
nonzero). However, it is not what is observed in practice (cf. the data we use from [31]: we will
come back on these data later on but it will be clearly shown that the dynamics of AOB1 and AOB2,
and of NOB1 and NOB?2, are significantly different). Now, with different growth rates and again
no interactions, the competitive exclusion principle applies and coexistence is simply not possible.
Again, it is actually not what is observed in practice. In other terms, the kinetics associated with each
species—the rate at which species i consumes its main limiting resource— should be considered to be
modulated by interactions.

Referring to model #2 and assuming we assign i = 1 and 2 for AOB1 and AOB2, respectively, and
i = 3 and 4 for NOB1 and NOB?2, respectively, we have:

11(S1) = wp(S1) and p3(S2) = pa(S2) 4)

Thus, instead of 24, we are now left with 20 parameters needing identification. Using model #1 as
a “provider” of data (by simulation) for model #2, the identification of the interaction parameters of
model #2 can now be framed in terms of an optimization problem, as follows: find the parameters
of y;|;_; 4 under the constraints (4) and the interaction parameters a;; such that the outputs of model
#2 match the simulated outputs of model #1 (S, Sy, S3 and X7 = X4 + Xp = AOB; + AOB; + NOB; +
NOB,). This optimization problem can be reformulated as follows: find the parameters of 1;|;_; 4
under the constraints (4) and the interaction parameters 4;; in the model #2 such that:

(H'A(Sl(t)) - D(t))XA(t”model#l

_ ifg"j w(S1(6)) (1 +/:".Az:"3 al-jX]'(t)) X;(t) ®)
i= j=
_D(t) (Xl (t) + Xz(t)) ‘modcl#Z
and
(1 (S2(t)) — D(1)) XB(t) | mogernt
o {ui(sz(t)) (1 e aijxj(t)> Xi(t) 6)
i=n,s+1 j=1

_D(t)(X3(t) + X4(t))|madel#2

To insist on the fact that these constraints must hold for all ¢, we included the time-dependance
of variables. For this problem, we used the Sum of Square Residuals (SSR) criterion consisting of
the sum of the squared difference of the terms on the left and the terms on the right in the previous
expressions—(5) and (6)—over the considered 525 days of experiments.

To solve this problem, we adopted a Monte-Carlo-like approach (cf. Appendix A):
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2.5.

First, we randomly ran 2000 optimizations (using more did not improve the results (i.e., did
not enable us to further decrease the final confidence intervals computed for each identified
parameter) with different initial conditions for the parameters to be estimated (all unknown
parameters in the right-hand terms of the above equations). In other terms, we identified all the
parameters with different initial conditions 2000 times;

In a second step, we have proceeded to a statistical analysis of the results, keeping only the
best sets of optimized parameters that are the sets for which the SSR was, at most, 5% greater
than the best solution over the 2000 optimizations. Instead of keeping only the best one, we
proceeded in this way for two reasons: (i) The problem to be solved is complex, notably because
the model is nonlinear and the number of unknowns is high. Thus, we did not necessarily obtain
the same parameter values for each of the 2000 optimizations. In other words, the problem we
consider here is said to be “non-identifiable”. It means that, given the structure of the model
considered, a unique set of parameters cannot be found from the available data. In other words,
there exist “hidden relationships” between parameters—possibly nonlinear—which prevent the
optimization algorithm from converging towards a unique global minimum and, consequently,
from delivering a unique set of optimized parameters (cf. for instance [35] or [36] for more
information about this concept); (ii) in the results, either the parameters are centered around
0 with a large standard deviation (indicating either no interaction between the corresponding
species or an undetermined interaction) or the signs of the identified interactions are always the
same whatever the sets of optimized parameters considered and, thus, the proposed statistical
analysis of the results to obtain qualitative insights about microbial interactions in the ecosystem
is considered without considering precise parameter values. In the sequel, this procedure will be
referred to as a “Monte-Carlo-like” approach;

Finally, following the procedure described above, 520 sets of optimized parameters over the 2000 runs
were kept and analyzed. The results are presented and discussed in the following sections.

Remarks

An important question that may arise is the following: Why are outputs of the model #1 used
in the optimization problem (in the evaluation of the left-hand terms of (5) and (6)) rather than
experimental data available in [31]? The essential reason is that experimental data are corrupted
by noise. It is well known in system identification that, by definition, noise is not informative.
Since the problem posed here is very sensitive to data (recall, in particular, that the problem
is non-identifiable), it is better to use noise-free data [35,36]. Here, completely noise-free data
generated with the simulation of model #1 (itself optimized with respect to real data in Dumont’s
work, cf. [31]) were used instead of using real data.

As noted before, the sum of the four species considered within model #2 represented on average
about 55% of the total biomass in the experiments published in [31]. For practical purposes,
before proceeding to parameter identification, the relative abundances of these four species
were re-normalized in such a way that their sum equaled the total biomass as measured in the
experiments. In other words, considering that model #2 (which describes the dynamics of four
species) is equivalent to saying that the two biological reactions involved are now only attributable
to these four species and that the remaining detected species (41 — 4 = 37 in the data considered
over the 525 days of experiments) are simply ignored.

Finally, another question that may be posed is related to the parameter identification results.
One may ask whether a solution to the optimization problem should be to fix all interaction
parameters to zero or not. In fact, this solution cannot give a better fit than any other because there
is no reason to have X4 = X7 + X3 and Xp = X3 + Xy. In other terms, individual concentrations of
the four AOBs and NOB species are taken explicitly into account in the criterion used to fit model
#2 parameters while only the total biomass concentration was considered in the optimization
criterion to optimize model #1 parameters. Since the criterions are different, model parameters
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(i.e., interaction terms) are tuned so that the differences between the two sides of Equations (5)
and (6) are minimized.

A schematic representation of the procedure followed in this study is presented in the appendix.
3. Results

3.1. Coexistence of 2 + 2 Species on 1 + 1 Growth-Limiting Resources by Microbial Interaction

The distribution of the parameter values (interactions and kinetics parameters) over the
520 optimized parameter sets are plotted in Figure 1a—e. As shown in these figures, most parameters
are randomly distributed around mean values following Gaussian-like distributions while others
present bimodal distributions. In addition, even if their precise values are not informative (for the
identifiability reasons we mentioned above), it should be noted that the intervals in which the mean
values of the kinetics parameters (cf. distributions in Figure 1e and mean values reported in Table 2)
live appear to be in accordance with those reported in the literature (cf. [37]).

Table 2. Kinetics parameters of model #2.

Wmax1 (1/day) K1 (mg/L) Hmax2 (1/day) K> (mg/L)
0.828 0.147 0.18 0.026
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Figure 1. Distributions of the optimized interaction parameters for model #2 after Monte-Carlo-like
optimization: (a) a1 to a14; (b) a1 to as4; (c) a3y to azy; (d) agq to agy and for the two ammonia oxidizing
bacteria (AOB) and nitrite-oxidizing bacteria (NOB) of model #2 (e) Wyax1, Hmax2, Ks1 and Ksp.
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Tables 2 and 3 present the mean values for the microbial interaction parameters together with the
kinetics parameters identified.

Table 3. Mean values of interaction parameters of model #2 (“B” stands for “bimodal distribution”,
the sign of the interaction being specified by B/+ or B/ —).

an ar a3 a4 az a a3 az
—0.087 ~0 —0.697 4.815 ~0 0.476 0.995 —6.362

as1 as2 as3 a34 a41 a4z as3 agq

B/+ B/+ B/— —1.225 B/— —0.351 —0.837 B/+

Concerning its main outputs, the interaction model presents a very good fit with the simulated
data obtained from model #1 (cf. Figure 2).
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Figure 2. Simulations of main outputs of models #1 and #2 in appropriate concentration units (obtained
with the mean values of the optimized parameters given in Table 1 for model#1 and Table 4 for model
#2, the mean values over the 520 values were used as well for parameters with bimodal distributions).
Xa, X, S1 (a negative part for the y-axis was considered for clarity), Sp and S3 concentrations from
the top to the bottom, predictions of model #1 in red crosses, predictions of model #2 in green where
XA ZX] +X2 andXB :X3+X4‘

As explained in the Materials and Methods section, we can compare the experimental data and
the predictions for the dynamics of AOB1, AOB2, NOB1 and NOB2 that can be simulated using model
#2. However, notice that the behavior over time of these species, e.g., the concentrations of these
species, may vary depending on the sets of interaction and kinetics parameters identified. Indeed,
recall that the best 520 parameter sets have been kept for the statistical analysis of results. All permit a
good fit with the outputs of both models #1 and #2 (otherwise, they would not have been kept after the
parameter identification process) while predicting different individual behavior for the two AOB and
the two NOB species. In other words, the set of optimized parameters is not unique and one may only
compare simulations of model#2 using a particular set of parameters among the 520 sets that have
been kept for the statistical analysis. Such a specific set is given in Table 4.
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Table 4. A particular set of optimized parameters taken randomly from the final optimized
parameter sets.

Wimax1 (1/day) K1 (mg/L) Hmax2 (1/day) K2 (mg/L)
0.81 0.17 0.26 0.016

The predictions of model #2 using this specific set of parameters together with the experimental
data presented in [31], are plotted in Figure 3. Because of the uncertainty of measurements, it is clear
that only the qualitative behavior of these simulation results should be considered within the context
of the actual work.

05

AOB1

0 100 200 300 400 500 600
Time (days)

Figure 3. Simulations of model #2 (with the optimized set parameters given in Table 4) and
measurements of species abundances for AOB1, AOB2, NOB1 and NOB2 (which correspond to peaks
38, 35,5 and 9 from [31], respectively).

Whatever the species considered, it should be noted that the models with interactions always
better fitted data than the predictions of the same models in which interactions were fixed at 0. This
result can easily be understood given that a model with more tuning parameters than another should
be able to deliver better predictions. In addition, from an ecological point of view, when microbial
interactions are not considered (fixed to 0), the model does not allow the coexistence of 2 + 2 species on
1 + 1 growth-limiting resources as predicted by the theory of the chemostat. Yet this coexistence was
observed in practice (cf. the measurements of species abundances reported in [31] or in Figure 3 here
above). The divergence between experimental data and estimates of the models between t = 375 days
and f = 430 days for the AOB2 can be explained by a washout of the chemostat in reaction to the
increase in the flow rate made on t = 337 days which was already mentioned in [31].

3.2. Web of Microbial Interactions

On the basis of the identified microbial interactions model, we can build a web of microbial
interactions linking the different phylotypes with their mean values as reported in Table 3.

Over the network of 16 interactions contained in the model #2, six are positive and eight are
negative (cf. Figure 4). Only two almost-null interactions emerge. Concerning interactions between
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both AOB, neither competition nor facilitation was highlighted. However, strong intra-specific
facilitation appears for the second AOB with az; = +0.47. These two ammonium-oxidizing phylotypes
exercise interactions of both facilitation and competition with both of the nitrite-oxidizing phylotypes.
However, a stronger, mostly negative interaction (a4 = —6.36, azs = —1.23 and a4 = +4.81) of all
bacteria with NOB2 is to be noted which seems to be compensated for by a strong intra-specific
relationship of NOB2 with itself (444 = +3.26/Bimodal distribution). Concerning interactions
between the two nitrite-oxidizing phylotypes, NOB1 imposes a high negative interaction on NOB2
(a34 = —1.23) while NOB2 forces a moderately negative relationship on NOB1 (a43 = —0.84). A moderate
intra-specific competition appears for NOB1 (a3z3 = —0.18/Bimodal distribution) whereas a high
intra-specific facilitation appears for NOB2 (a44 = +3.26). Concerning the type of interactions which
maintain NOB in relation to AOB, a supplementary “balanced structure” appears. Indeed, if we
take into account only the signs of interaction, there are as many positive as negative interactions.
Whereas NOBI presents fairly positive interactions with AOBs (a31 = +0.44 and a3, = +0.11/Bimodal
distributions), NOB2 seems to interact rather negatively with AOBs (a41 = —0.67/Bimodal distribution
and a4y = —0.35).

The actual results underline positive interactions only from AOB1 to NOB2 and AOB2 to NOB1
(cf. Figure 4). However, in the same time, negative interactions were observed between AOB1/NOB1
and AOB2/NOB2. In addition, competition was not observed between AOBs, whereas there was
strong competition between NOBs.

N
+ 4 \lTQ

NOB2 NOB1

- /

AOB1 AOB2

NOB2 e NOD/
\

AOB1 <«<— AOB2

NOB2 NOB1

- /

Figure 4. Interaction web (based on the statistical analysis of the signs of interactions). +, — and 0

correspond to positive, negative and neutral interactions, respectively. The size of bacteria “oval greys”
and the thickness of lines indicate the trends of the bacterial abundances and the levels of interaction
(based on the mean values reported in Table 3), respectively.

4. Discussion

Monitoring over two years the population and functioning of a nitrifying chemostat under
time-varying environmental conditions highlighted the coexistence of numerous species in a culture
fed with ammonium as the nitrogen source. The data acquired indicate that, throughout the period of
the study, there occurred rapid, significant shifts in the structure of bacterial population. A comparison
with the experimental data of the two proposed models—with and without microbial interactions—has
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shown that microbial interactions lead to the coexistence of a greater number of species than predicted
by the classical chemostat model in which the competitive exclusion principle applies. In macrosystem
ecology, several models have been presented that represent intra- and inter-species interactions in
food webs (cf. [15]). The most frequently-used model is the multispecies Lotka—Volterra. For a given
species, it is based on a linear relationship between its growth rate parameters and the population of
each member of the community. For instance, with respect to real data, this model has been used to
describe microbial interactions within a cheese microbial community [34]. In the present study, we
combined this interaction coefficient structure (a;;) with a classic model of a nitrifying chemostat. To the
best of our knowledge, it is one of the first models of microbial ecosystems which tries (i) to integrate
the dynamics of several interacting bacterial in the chemostat and (ii) tunes its parameters to match
data together with the modeling of functions (here, nitritation and nitratation). To date, the prime
focus of predator-prey models has been applied to models describing food webs in which non-trophic
interactions, such as competition, facilitation and biotic disturbance, have been largely ignored [15].
Because food web models focus—by their very nature—exclusively on trophic interactions, they
assume implicitly that predation is the most important process regulating community structure and
dynamics. Moreover, while models of complex food webs incorporate only competition among species,
they generally ignore any form of resource competition among the species (cf. [38,39]). This can be
explained by the fact that, in food webs, nutrients flow via trophic links and, for this reason, trophic
interactions have a fundamental character due to the principle of mass conservation.

Concerning the “competitive exclusion principle” (i.e., the “paradox of the plankton”), a variety
of mathematical models have been proposed over recent decades, as underlined in the introduction.
However, once again, intra- as well as inter-specific interactions have not been taken into consideration
and in all such models, the assumptions about an idealized chemostat have been modified to permit
coexistence [10]. Some studies have relied on non-equilibrium conditions to promote species diversity
by preventing competitive exclusion. Examples include variability in resource supply ratios. When
nutrients were supplied to the chemostat in pulses, oscillations in the abundance of species prevented
competitive equilibrium from occurring and led to the coexistence of a greater number of species
than the number of growth-limiting resources (cf. [11,12]). The only recent theoretical study that
does not contradict the competitive exclusion principle and, at the same time, permits what has
been called “practical coexistence” with neither variations in the environment nor any interaction
through species or foodweb is [25]. In this study, it is the diversity itself—which is considered to
be high, as observed in most microbial natural ecosystems—which creates the conditions under
which the system can allow species coexistence over an arbitrarily long period of time as long as
growth rate functions for each species are close enough. Their conclusions were that possibly we
observe ecosystems that are never close to an equilibrium. Some other studies explain coexistence in a
chemostat by variation in solid retention times [8]. Only a very small number of studies have taken
an interest in microbial interactions. In [10], Hebeler et al. explained coexistence in the chemostat
as a result of metabolic by-products. In their study, they found experimental evidence for a specific
metabolic property of Staphylococcus aureus which produced acetate (a by-product). In a mixed
culture, this can have an activating effect (as a secondary substrate) as well as an inhibiting effect
(by reducing pH) on the other species. In [12], it is shown, using a modeling study, that the number
of coexisting species may exceed the number of limiting resources when internal system feedbacks
induce oscillations and chaos. This occurs if the species displace each other in a cyclic fashion.
However, this can be considered as a very rare phenomenon—for not saying singular—since it requires
a very precise parameterization of the parameters of community members [7]. Nevertheless, few
authors have considered interactions empirically and directly in microbial ecology, even though a long
history of experimental and theoretical ecology has elucidated how predation interacts with other
non-trophic processes—including interference competition, facilitation, disturbance, environmental
stress, productivity and recruitment—to regulate species distribution and abundance (cf. [40,41]).
Finally, the microbial interaction model proposed here makes it possible to obtain a virtual web of
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interactions linking the main species present in the ecosystem of interest. It appears that we have
underlined a “balanced interacting-structure model” in the sense that there are as many positive as
negative interactions in the virtual web.

The experiments reported in [31] in the chemostat clearly show the coexistence of bacteria
performing the same function (41 phylotypes observed) for a long period (525 days). These results can
be compared to those presented in [42]. These authors considered a two-competitor/one prey model
and explained the coexistence of the two competitors by density-dependent mortality for one of the
two species. The interaction web also shows preferential “couples” or “pairs” of micro-organisms
(AOB1/NOB2 and AOB2/NOB]1) that are not “interchangeable” (AOB1/NOB1 and AOB2/NOB2)
and which exhibit negative interactions. With a model built at a population level, it is obviously very
difficult to interpret biologically direct interaction terms a;;. However, an example of a configuration in
which such interactions could develop is as follows. Consider—for some unknown reason—that AOB1
and NOBI, on the one hand, and AO2 and NOB2, on the other hand, develop specific interactions
(for instance in forming “bi- specific” flocs). Because of their proximity, AOB1 and NOBI (resp. AOB2
and NOB2) could develop specific biotic interactions while each pair would now be in competition
with the other. If such an explanation remains highly speculative, it is not inconceivable that such
interactions are developing in a complex natural ecosystem.

There is no competition for NH4" between AOBs. Unfortunately, some interactions, such as
NOB2/NOB2, as well as the low abundance of NOBs compared to AOBs, often underlined in the
literature, cannot be explained.

In conclusion, we developed a new model of nitrifying chemostat to study the interactions
within two functional groups of four species: two AOBs and two NOBs. The network of virtual
interactions obtained can explain the coexistence of these 2 + 2 species on 1 + 1 growth-limiting
resources. Of the perspectives deriving from this work, one could design other more complete models
including multiple functional groups of organisms, such as nitrifying and denitrifying heterotrophs,
phosphorus-accumulating organisms, etc. In addition, this study focused on the effects of interactions
within a single trophic level (bacteria). Effects of the presence of higher trophic levels, for instance
predation by virus or protozoa, could also be considered. However, in all these cases, a number of
issues, including the identification of a large number of model parameters, need to be dealt with from
a theoretical viewpoint before such more complicated models can be developed.
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Appendix A

Procedure followed for the identification of the virtual interaction web.
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Step 1
Identification of the
macroscopic model #1

Model #1 which the parameters are
reported in Table 1,

Step 2
Generation of data by Set of predictions XA(t), XB(t), S1(t)
simulation to be used for the S2(t) and S3(t),

identification of model #2

Distribution of optimized kinetics and
interaction parameters of model #2
(see figure 1a to 1e) which the

) nepe means values are reported in
identification Tables 3 and 4,

Step 3
Monte-Carlo-like approach
for model #2 parameter

Step 4
Analysis of the signs of
interaction parameters

Virtual interaction web reported in
Figure 4

Figure Al. Identification procedure.
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Abstract: The process of oxygenic photosynthesis is robust and ubiquitous, relying centrally on input
of light, carbon dioxide, and water, which in many environments are all abundantly available, and
from which are produced, principally, oxygen and reduced organic carbon. However, photosynthetic
machinery can be conflicted by the simultaneous presence of carbon dioxide and oxygen through
a process sometimes called photorespiration. We present here a model of phototrophy, including
competition for RuBisCO binding sites between oxygen and carbon dioxide, in a chemostat-based
microbial population. The model connects to the idea of metabolic pathways to track carbon and
degree of reduction through the system. We find decomposition of kinetics into elementary flux
modes a mathematically natural way to study synchronization of mismatched rates of photon
input and chemostat turnover. In the single species case, though total biomass is reduced by
photorespiration, protection from excess light exposures and its consequences (oxidative and redox
stress) may result. We also find the possibility that a consortium of phototrophs with heterotrophs
can recycle photorespiration byproduct into increased biomass at the cost of increase in oxidative
product (here, oxygen).

Keywords: photosynthesis; photorespiration; chemostat model; phototroph-heterotroph consortium

1. Introduction

Life on earth, in large part, has oxygenic photosynthesis at its foundation, and much of that
photosynthesis occurs in microbes. Oxygenic phototrophic microorganisms such as cyanobacteria are
common in reliably lit environments, where impinging photons provide, often, a more than sufficient
energy source even at low intensity, and carbon dioxide (or related chemical species) provides a reliable
and abundant carbon source. When the other fundamental component of photosynthesis, water, is
also available, then phototrophic based life is likely. In many cyanobacteria, nitrogen fixation can even
be supported due to the abundance of photon energy. It is perhaps surprising, then, that the process of
photosynthetic fixation of carbon dioxide into reduced carbon suitable for biosynthesis has, seemingly,
a significant inefficiency due to the competition by oxygen for inorganic carbon binding sites, here
denoted as photorespiration.

Thus, we focus on processing of inorganic carbon, i.e., carbon fixation, a central component of
oxygenic phototrophy, and on its principle byproduct, molecular oxygen. Oxygenic phototrophy uses
photon energy to extract electrons from water and eventually apply those electrons to fix inorganic
carbon, while, in the process, oxygen is produced: electron source (effectively here, water and light)
feeds electron sink (inorganic carbon) while producing oxidative byproduct (molecular oxygen).
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Implicit to this assembly line is the need for extracellular, macroscale transfer of inorganic carbon and
of oxygen. Rates of macroscale transport (advective and/or diffusive) are largely beyond the control of
individual cells and thus oxygen concentration may serve as a signal of transport limitation, triggering
photorespiration. High photon flux can be an even further aggravating factor if transport of inorganic
carbon into the photosynthesizing machinery cannot keep pace.

Nevertheless, the oxygenic phototrophic “business model” is generally robust and capable
of being largely self sufficient. Strikingly, however, phototrophic organisms are often found in
multispecies consortia together with heterotrophs. It is not immediately clear why this should be
the case, as competition for resources, e.g., space or nutrients, is possible, and it seems that oxygenic
phototrophs might be expected to be able to outcompete heterotrophic neighbors for those resources.
Even so, multispecies communities are observed including in environments where heterotrophs might
not be able to persist on their own [1]. Further, there are at least some examples of communities where
resident phototrophs lack critical anabolic capabilities and must instead rely on nearby organisms
to supply them [2]. Here, we explore the possible utility of interaction via organic/inorganic carbon
exchange. Note there are other possible advantages in adding a heterotroph to the autotroph
community. For example, heterotroph-induced oxygen usage or moderation of variation in redox
potential may mitigate transport limitation.

The models presented here, both for single species (an oxygenic phototroph we call cyanobacteria)
as well as for a combined two species system (cyanobacteria plus a generic heterotroph) are based in
a chemostat platform. The chemostat serves as a simple and convenient way to mimic an environment
where, over long times, nutrient inflow and byproduct outflow occur at rates determined by external
environmental factors. From this viewpoint, a chemostat is a natural choice here due to its simplicity
and also the steady oligotrophic environment it models, and thus hopefully is a reasonable bridge
between abstract modeling and empirical observations.

In fact, comparison of population models with population scale observations has a well established
methodology in microbial ecology. Of late, however, rapidly increasing use of molecular level
technology (e.g., high throughput sequencing) has dramatically changed the nature and scale of these
observations. As a result, in principle and increasingly also in practice, detailed data describing
microbial capability and function is available. This information can and should potentially be
used to understand how microbes exploit and alter their environment. There is a substantial gap,
however, between molecular behavior at the cellular microscale and emergent community function
at the population macroscale. Intermediate between the two, progress is being made in translating
genomics information into models of cell dynamics [3]. Annotation of gene sequences into so-called
wiring diagrams is becoming increasingly reliable and automatable. These diagrams encode cell
physiology along with regulatory machinery and are accompanied by an intimidating list of unknown
rate constants. However, gene encoded functions relevant to metabolic processes are naturally
organized into gene pathways [4-6], and then, under the often reasonable assumption of steady
state, balance of influx and outflux through these pathways makes choice of individual reaction rates
within any particular pathway unnecessary, replaceable instead by a single flux through that entire
path. Regulatory function can be characterized as a management of resource allocation between
different paths and then modeled by imposing optimality criteria on that allocation [7,8]. The result is
an enormous simplification: cell function is now characterized by only a limited number of rates of
cellular inflow and outflow of substrates and byproducts together with an optimization principle to
divide them between available metabolic pathways.

Still, there are two significant though not unrelated requirements for use of such analyses.
First, despite the reduction, there remain, generally, many available and redundant metabolic flux
pathways encoded by any one genome and so, as mentioned, some principle is necessary in order
to decide how flux is to be distributed between those pathways. Second, also as mentioned, rates of
substrate flow into the cell and byproduct flow out of the cell need to be characterized. The first of
these issues couples to the second which then couples to the environment in which the cell and its
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community find themselves [9]. Conversely, though quantities on the large environmental scale are
oftened characterized by concentrations, from this point of view it seems, rather, that fluxes are natural
quantities at the cell scale. Thus, beyond the immediate aim of studying photorespiration, a further
goal of this study is to suggest ways to match models at cell and population levels.

2. Materials and Methods

2.1. Model Description

We study productivity of two interacting species, one a photoautotroph with cell density Py (t) and
the other a heterotroph with cell density P (t), both of which are growing in a well mixed chemostat
with dilution rate D [10], exposed to photon influx, see Figure 1. For simplicity, we neglect transport
across the chemostat-air interface or suppose that such an interface does not exist, and let external
inflow and outflow of dissolved quantities be governed by the chemostat dilution rate D. Conversely,
since our aim is to study possible mutualistic or commensal effects over long times, we do not include
diel light variation effects, considering them, for such purposes, to be relatively short time phenomena
that can also be averaged out.

Photons Photons

Inflow
IC(HOZ‘()

14 v

H*e

2

Outflow
1C,0,,0C,Pq,P;

Figure 1. Chemostat diagram: photoautotrophic (P;) and heterotrophic (P;) microbial communities
interact in a well mixed tank, exposed to light, with constant and equal inflow and outflow. Dissolved
inorganic carbon (IC, inflow concentration IC), organic carbon (OC, inflow concentration zero),
and oxygen (O, inflow concentration O, ) are also mixed throughout the tank, and in the inflow.
Transport across any fluid-air interface is neglected for simplicity.

A central element of the model is the tracking of carbon flow through a microbial communtiy.
As such it is convenient to measure all carbon carrying quantities in terms of carbon moles
(Cmoles), e.g., to measure phototroph and heterotroph populations by the total moles of carbon
they incorporate. We assume here, for convenience only, that cell sizes and densities are similar,
i.e., that the total carbon moles per microbial cell, denoted ¢, is a constant and is the same constant
for both phototrophs and heterotrophs. To convert populations from units of cells/volume to
units of Cmoles/volume, we change to Py(t) = cP;(t) and Py(t) = cPy(t), both with units
Cmoles/volume. In addition, we measure both dissolved component densities IC(t) (pooled inorganic
carbon, Cmoles/volume), OC(t) (organic carbon, Cmoles/volume) in Cmoles, and O (t) (oxygen,
molecular oxygen moles/volume) in moles of molecular oxygen. In computations, we use liters as
volume units. It is assumed that oxygen concentrations always remain sufficiently low so that oxygen
remains in solution and a gas phase does not occur. Note that we use the notation O, both to denote
molecular oxygen and its concentration. Inorganic carbon in solution, IC(t), consists of aqueous CO,
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and related dissolved forms, notably aqueous bicarbonate HCO;'; we do not distinguish between
the forms here, though phototrophs generally do. Organic carbon here is supposed for specificity to
consist of glycolic acid C,H,403, a byproduct of photorespiration. Note that the term photorespiration
has been used in the literature to designate a number of different mechanisms that, effectively, oxidize
photosynthetically fixed carbon [11]. We consider here only one of those mechanisms, namely oxygenic
activity of RuBisCO (ribulose bisphosphate carboxylase) secretion from the cell of partially oxidized
organic carbon in the form of glycolic acid. For brevity, however, we will use the umbrella label
photorespiration for this single type.

For purposes of tracking carbon, we could, as is commonly done in microbial population
models, also include a microbial species Q; (t) (Cmoles/volume) consisting of inactive photoautotroph
biomaterial damaged (or killed/lysed) due to oxidative stress or in some other manner, as well as
a similar heterotroph damage species Q> (t) (Cmoles/volume). For simplicity and clarity, however,
we include oxidative damage only through its direct effect on photosynthetic machinery. Note, though,
that as a result, importance of oxidative damage and its amelioration are, if anything, likely
underestimated in the later results.

The general form of the equations used here for a chemostat with photon flux v are

Epl = (n§1(IC,Opv) — D)Py, (1)
SP2 = (2(0C,0:) - D)Py, @
%IC = Y5 81(IC, 02;v)P1 +yp ! €2(OC, 02)Py + D(IC — IC), 3)
%OC = Yicoc (1=1)g1(IC,02;v)P1 — yp o §2(0C, 02)P, — DOC, 4)
200 = ((clo, —Yodo, (1~ M)z (IC,0p1)Py

~Ypo, 82(0C,05)P; + D(Oz9 — O2), )

where the various subscripted Y, g’s (associated with P1) and y, p's (associated with P;) are yield
coefficients, all of which are fixed by stoichiometry, with units of Cmoles of a per Cmoles of § or moles
of O,. The parameters k; and k; indicate specific rates of deactivation of active biomaterial and could
be functions of O,. The function n = 1 (IC, O,) is related to photorespiration, and will be defined later.
Terms containing rate g; are involved in the photobiosynthesis and/or photorespiration pathways and
terms containing rate g, are involved in the heterotrophic biosynthesis pathway. All internal metabolic
rates are fixed by the three pathway (phototroph biosynthesis, photorespiration, and heterotroph
biosynthesis) rates so that they need not be parameterized in detail except through the single rate
functions g1 and g, together with branching parameter #: this is a consequence of the powerful
assumption of short timescale equilibration of metabolic pathways [6]. For easy reference, see Tables 1
and 2. Details for individual terms in (1)—(5) will be provided below.

Table 1. State variables (left) and key environmental parameters (right) for system (1)—(5).

STATE QUANTITIES KEY ENVIRONMENTAL PARAMETERS
Symbol Description Units Symbol Description Units
Py Phototroph Concentration Cmol-L~! D Dilution Rate st
Py Heterotroph Concentration Cmol-L~! v Photon Flux pEm=2.s71
1C Inorganic Carbon Concentration Cmol-L~! 1Cy Inflow IC Conc. Cmol-L~!
OoC Organic Carbon Concentration ~ Cmol-L ™!
O, Oxygen Concentration Omol-L~! Oz Inflow O, Conc. Omol-L~!
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Table 2. State variables (left) and key environmental parameters (right) for system (1)—(5).

RATE FUNCTIONS YIELD PARAMETERS
Symbol Description Units  Symbol Description Reference
n Photorespiration Branching Function -
Photosynthesis Rate
el Photobiosynthesis Rate = 171 st Y5 Phototroph Yields a per B see Section 2.3.1

Photorespiration rate = (1 — 17)g1

0 Heterotroph Biosynthesis Rate s Yu,p Heterotroph Yields « per B see Section 2.4

The system energy is supplied through the photon flux v which serves to drive carbon
reduction through photosynthesis. We assume that microbe populations are sufficiently sparse in
the chemostat so that no significant shading occurs, though one could introduce a shaded photon
flux Vghade = Vshade (V. P1,P2,Q1,Q2) (note that even in the case of shading, all microbes effectively
receive the same photon flux over time due to the well mixed assumption). The other environmental
conditions included are the dissolved concentrations IC, OC, and O,. Inorganic carbon and oxygen
flow into the chemostat at concentrations ICy and O, o, respectively. Exchange of O, and CO, with the
atmosphere is neglected but inclusion would not be expected to change qualitative conclusions. The
inflow is assumed to be free of organic carbon. Note that non-negative initial conditions are required
for all quantities but have only transient influence, on a D~! time scale, except/unless P1(0) = 0
(in which case P;(t) = 0 for all t) or P»(0) = 0 (in which case P,(t) = 0 for all t). Hence, later, we will
ignore transients and study steady states.

Photosynthesis drives ecology through conversion of photons to chemical energy (photons power
ADP — ATP, say) but also, and possibly more importantly, through production of reducing power,
referred to here as electrons. In fact, we will not consider energy production and, rather, implicitly
track electrons through degree of reduction (see Appendix A) as the more important quantity. A key
step in oxygenic photosynthesis is the splitting of H,O into, for our purposes, a combination of O,
and reducing power. Oxygen’s importance goes beyond its role as reactant; it also is an important
contributor to degree of reduction balance of the entire oxygenic photosynthesizing system. In fact,
in the model presented here, oxygen is the only explicit quantity with negative degree of reduction and
hence, by proxy, its concentration is central to community redox state and hence to community function.

2.2. Metabolic Pathways

From an engineering point of view, organism metabolics operate somewhat like chemical
processing networks so that they and implicitly resulting ecological interactions, are conveniently
represented in terms of what are called metabolic pathways, chains of reactions that convert external
substrates into external byproducts (though cycles of internal reactions might also be considered
as pathways). Organisms themselves might be viewed as collections of such reaction chains,
interacting with each other while producing fluxes at rates which must be consistent with external flux
constraints. For example, in the case of a simple chemostat, external inflow and outflow fluxes are
set by dilution rate D. While we look here to adopt the point of view of organism metabolisms
as collections of pathways, at the same time we want a simple system able to illustrate basic
principles of a phototroph-heterotroph interactions. Thus, while detailed metabolic models exist
including for cyanobacteria [12-15] as well as for communities [16,17], we reduce system metabolics to
the interaction of three particular pathways: photosynthesis-driven biosynthesis, photorespiration
(in a restricted sense as previously noted) in the phototrophs, and aerobic respiration-driven
heterotrophic biosynthesis. Community function is determined by the rates at which these pathways
operate; the environment, through chemostat inflow and outflow, constrains community function by
constraining these rates, though the community, specifically here the photoautotrophic cyanobacteria,
have some freedom to choose them.
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There are two specific rate functions in system (1)-(5): rate of carbon fixation g1 (IC, Oy; v) of the
photoautotrophs via the photosynthesis/photorespiration pathways and rate of growth ¢, (IC, O,)
of heterotrophs via a pathway for catabolysis of available organic carbon. In addition, there is
a branching parameter 77 which determines percent of fixed carbon going to photoautotroph growth
versus photorespiration. Between the three g1, g», and 77, the rates of the three pathways are determined.
In balance, there are essentially two types of constraints: (1) cellular inflow rates of photons and
inorganic carbon, with photosynthesis determined by the minimum rate of the two, as well as (2) system
inflows and outflows determined by the chemostat dilution rate D. Cells must be able to synchronize
system rates, dilution rate here, to direct pathway inputs, photon and inorganic carbon in the case of
photosynthesis, and oxygen and organic carbon in the case of heterotrophic anabolysis. In principle,
cellular outflow rates for pathway products may also constrain, but we suppose here, for the particular
pathways studied, that these rates are essentially free.

Relation to Pathway Analysis

Metabolic network analysis of a system of m metabolites with internal concentrations ¢;, 1 <i < m,
and n reactions with rates v]-(cl,cz, ...,tm), 1 < j < n, starts from a metabolic map that can be
represented by a set of equations of the form

dc;
2 = LNy
]

where Nj; is a stoichiometric coefficient, possibly negative, for production of metabolite 7 via reaction
j- A rate v; can be determined as a function of the concentrations ¢; and is parameterized by rate
constants. These rate constants are often unknown, but if steady state is assumed then the problem
reduces to characterization of the null space

Nv=0 (6)

of the m x n stoichiometric matrix N in a useful way by somehow identifying important pathway
vectors v from this null space. (Precisely, a pathway consists of the reactions corresponding to non-zero
entries in a pathway vector v; a pathway vector encodes the flux through each of those reactions.)
Note that knowledge of rate constants is unnecessary to solve the steady state Equation (6) and thus
also unnecessary to determine pathway vectors, though steady state internal concentrations ¢; cannot
be computed without these rate constants.

One objective here is to proceed a further step by connecting internal metabolic activity, as encoded
by those distinguished pathways, to community dynamics, e.g., connecting information extracted
from (6) to the community model, as stated in (1)—(5). To do so, we use the (significantly) reduced
metabolic maps as shown in Figure 2, explained in detail later. The interiors of the dashed domains
in Figure 2 correspond to the interiors of the circled objects P; and P, of Figure 1. Circled objects in
Figure 2 are generalized metabolites and arrowed curves are generalized reactions. Metabolites that are
associated with reactions exiting a dashed domain are “seen” by the environment and hence explicitly
tracked in the model (1)—(5); other metabolites are internal (in this case, only electrons e) so not directly
observed in the environment and thus not explicit in the model, i.e., do not have tracking equations.
Interior dynamics are assumed to be at quasi-steady state, that is, are able to quickly equilibrate to
time on the community interaction time scale. Later, we will suppose a third, longer time scale on
which the community also reaches steady state.
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Figure 2. Reduced metabolic maps for phototrophic population (P;, left) and heterotrophic
population (P, right) corresponding to the model used in Equations (1)=(5). The dashed curves
represent boundaries between cell insides and outsides. Circled quantities correspond to metabolites
(in a generalized sense): IC = inorganic carbon, O, = oxygen, P; = phototrophic biomass,
P, = heterotrophic biomass, OC = organic carbon, and label e stands for electrons, see Section 2.3.1.
Arrows correspond to reactions (in a generalized sense). Some of the reaction rates are labeled. Note
that quantities P; and P, are turned into new cells. Also note that this representation of phototrophs
can be viewed as the “insides” of P; in Figure 1 and, similarly, the representation of heterotrophs can
be viewed as the “insides” of P, in the same figure.

We do not construct here the stoichiometric matrix corresponding to the metabolic network
in Figure 2, but rather proceed directly to its elementary flux modes [6] which mathematically are,
where reversible reactions are not present as is the case here, non-negative solutions of (6) for which
no other non-negative solution containing a proper subset of non-zero entries exists. That is, an
elementary flux mode is, roughly, a realizable pathway through the metabolic network that does
not contain within itself any smaller realizable pathways. Non-negative linear combinations of
the complete list of all elementary flux modes of a given network generate all allowable solutions
of (6). For the system in Figure 2, there are three elementary modes, see Figure 3, corresponding to
(1) biomass production and (2) photorespiration in the phototrophs and to (3) biomass production
in the heterotrophs. All realizable steady states of the system can be uniquely written as positive
combinations of these three elementary modes.

PHOTOSYNTHESIS-DRIVEN BIOSYNTHESIS PHOTORESPIRATION RESPIRATION-DRIVEN BIOSYNTHESIS

Figure 3. Elementary flux modes for metabolic maps in Figure 2. Left and center modes
are phototrophic biosynthesis and photorespiration, right mode is heterotrophic biosynthesis.
The phototrophic biosynthesis mode takes as inputs extracellular inorganic carbon and photons
and produces as outputs extracellular oxygen and new biomass. The photorespiration mode also takes
as inputs extracellular inorganic carbon and photons but produces extracellular oxygen and organic
carbon. The heterotrophic biosynthesis mode takes as inputs extracellular oxygen and organic carbon
and produces as outputs extracellular inorganic carbon and new biomass.
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The metabolic state of the two population of microbes is thus described by the rates of the three
elementary modes. These rates are determined by the flux rates into cells of mode inputs and out
of cells of mode outputs, all of which generally depend on external concentrations of those inputs
and outputs. Note that, for a given mode, setting any one of the input or output rates determines
all reaction rates through the entire mode due to stoichiometric constraints and the steady state
assumption. Hence, though many individual reactions are involved, each with its own rate constant,
the three modes can be described by only three rates in total (one for each).

It should be noted that, for the sake of simplicity, we in fact compromise flux mode balance in one
respect: flux balance through the phototroph electron compartment (circled e in Figure 2. left) is not
explicitly enforced in the carbon limited case when the supply of inorganic carbon is insufficient to
match the electron supply. Instead, in that particular case, some excess electrons are removed from
the system. However, we keep track of their flux implicitly through photoinhibition — those excess
electrons effectively combine with biomass and oxygen to remove some biomass. To maintain explicit
flux balance, we would need to track them say to reaction with reactive oxygen species or wherever
else they may go. As we implicitly suppose that such products leave the system, explicit tracking
would complicate the model without advantage, as particular mechanisms of excess electron removal
and damage are not the principle focus here.

The two phototroph modes operate in parallel and hence compete directly, in a sense, for inputs
(inorganic carbon and photons). They operate in series with the single heterotroph mode and interact
with it indirectly through external concentrations of dissolved quantities. In the case of a chemostat
with dilution rate D, transport in and out of the chemostat of all quantities also proceeds at rate D.
It must thus necessarily be the case that biosynthesis modes also operate at rate D (or else at rate 0)
placing two constraints on mode rates. Hence we have one remaining condition determined, that of
photorespiration. From there, concentrations of external quantities are determined by consistency with
mode rates. These external concentrations effectively determine steady state biomass concentrations.

2.3. Photosynthesis

Microbial oxygenic photosynthesis can be divided into two steps, the light reaction followed by
the dark reaction (also called the Calvin cycle), so named because photons are involved only in the
first step [11]. The entire process uses energy from incoming photons to split HyO producing O, and
electrons, which, in the form NADPH, are used to fix CO,. The light reaction, which is the oxygenic
step, can be summarized for our purposes by

2H,0 + 8 photons — 4H" + 4 electrons + O, )

and the dark reaction, the carbon fixation step, can be summarized, again for our purposes, by

CO, + %(1 — 7])02 + w electrons —> 11CH1‘7OOA5NOA2 + (1 — i’])CHzOl'5, (8)
with both formulas balanced for carbon and degree of reduction (and only carbon and degree of
reduction, for simplicity). Note that the dark reaction also consumes energy in the form of ATP, which
may also be of importance for cellular energy balances, but ATP cycling is not considered here. Model
parameters associated with (7)-(8) are described in Table 3.

The division into two steps as formulated by (7) and (8) has important consequences. In particular,
atleast within the formulation of the model, the light reaction is governed by photon supply (H>O being
assumed to be abundant) whereas the dark reaction rate is determined by both output rate of the light
reaction (in electrons) as well in inflow rate of inorganic carbon. Hence, effectively, the carbon fixation
rate function g is determined by the rate at which the dark reaction proceeds, which may be slower
than that of the light reaction in the case of limiting CO, (or, for us, IC). If so, the excess electrons
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effectively recombine with oxygen or some other oxidant, but may cause inhibition of photosynthesis
in the process.

A second point of note is that photosynthesis as formulated by (7) and (8) is divided into two
separate pathways weighted by the branching function 7, with 0 < 5 < 1. The valuation 7 = 1
corresponds to all fixed carbon being used for a growth pathway, while 77 < 1 indicates that some
of the fixed carbon is instead allocated to a pathway that results in secretion of organic carbon from
the cell (with 7 = 0 corresponding to all fixed carbon going to the secretion pathway, though this
outcome would not allow a viable population). Within the model presented here, there are seemingly
two apparent advantages to 17 < 1 over 57 = 1: first, < 1 results in consumption of oxygen, see (8),
which may alleviate effects of oxygen oversupply, and second, 77 < 1 results in secreted organic carbon
which can be used to supply a population of heterotrophs which in turn produce inorganic carbon as
a byproduct. These points are discussed in more detail below, but note that we suppose here that the
value of # is subject to control by cyanobacterial cells themselves. Hence it may be that # is in some
way regulated through an optimization process.

2.3.1. Carbon Fixation

The righthand side of (8) consists of two types of fixed organic carbon, each produced as
a consequence of Calvin cycle reactions, a carboxylase reaction and an oxygenase reaction. That is,
formula (8) actually combines contributions from two pathways: production of CH; 705Ny, via
biosynthesis, weighted by 7, and production of CH,O; 5 via photorespiration, weighted by 1 — 7.

New biomass is approximated as CH; 700 5N [18]. In actuality, the dark reaction only produces
a precursor (glyceraldehyde 3-phosphate) and biosynthesis is completed elsewhere, but for purposes
of electron balance, it is convenient to use the biomass proxy formula CH; 70 5Ng> as the ultimate
biomass output, see the source term in (1). CH,O;5 (carbon-normalized glycolate) is a soluble
byproduct of photorespiration and is assumed to be excreted from the cell; we track its concentration
in the chemostat as the quantity OC(t), see (4). Recall that, for purposes of representation in terms of
carbon moles, all carbon compounds are normalized so that the number of carbon atoms is one.

Given the branching function 7, described and parameterized below, then

w=w(n)=471+5(1—-1)=5-03y )

is the electron demand (emole/Cmole), the number of moles of electrons needed to fix a mole of
inorganic carbon (w is related to carbon-oxygen-demand, a quantity sometimes used in engineering
applications). We use degree of reduction 4.7 for CH; 70Oy 5N (autotroph) and degree of reduction
3.0 for CH,0; 5, see Appendix A. The coefficient in (9) of (1 — #) is 5 rather than 3, though 3 is the
degree of reduction of CH,O; 5, because the left-hand side term (1/2)(1 — 1)O; in (8), with degree of
reduction —2(1 — 1), effectively transfers to the righthand side for purposes of computing electron
demand. For reference, note that the yield coefficients of moles of molecular oxygen per fixed Cmole
are computed from (7) and (8) to be

-1 _ w(n)
YIC,OZ - 4 7
1
-1
Yoco, 2’

with rates proportional to g1P;, see the righthand side of (5). The coefficient of the first term in the
righthand side of (5),
f(n) =Yiclo, = Yoco,(1— 1) = ° H’?z (10)
O 02 1710
indicates the net yield of oxygen moles per mole of photosynthetically fixed carbon and is important in
the results presented here. Note that by varying # between 0 (all fixed carbon goes to excreted, soluble
carbon) and 1 (all fixed carbon goes to new biomass), organisms vary oxygen production by about
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60%. Of course, this should be understood as at best a rough estimate, since the presented model
greatly simplifies the true biochemistry, but nevertheless the variation is potentially significant. At the
same time, electron demand is much less sensitive, varying only by about 6% as 7 varies between 0
and 1, so it might seem that photorespiration provides a means to reduce oxygen production without
significantly reducing capacity to process the photosynthetically driven electron stream.

Electrons are not normally free in solution but, rather, are transported by carrier compounds,
particularly NADP" /NADPH, and passed along through redox reactions [19]. As a convenience,
though, we account for electrons directly rather than track NADP' and NADPH. Note that in
each reaction Cmoles and degree of reduction (see Appendix A) are balanced as the key governing
quantities. Other reaction components, e.g., N, are considered of secondary importance and are
not balanced. Doing so would require introduction of more reactions, obscuring the main points.
For example, protons are in excess and can be assumed to be buffered by the aqueous environment
through mechanisms not of direct importance to the modeling aims here. Note in passing, though, that
in some instances growth is limited by availability of quantities other than those tracked here, e.g., by
limitation in fixed nitrogen. We suppose that this is not the case here.

Reactions (7) and (8) together comprise the photosynthesis and photorespiration pathways
(which branch from each other in the dark reaction step), with CH; 705Ny > being the output of
the photobiosynthesis pathway and CH,O; 5 the output of the photorespiration pathway. Excess
molecular oxygen is also an output of both. An emphasis on rate rather than concentration is key and
all internal reaction rates are effectively slaved to rates of inflow and outflow to/from the cell. The only
other needed parameters are the stoichiometric ones, which are known from the pathway descriptions,
in this case (7) and (8). Hence it is important to characterize governing rates, particularly those that
have limiting or other important roles. The principle inputs of interest to photosynthesis are photons
and CO, (water is plentiful at least in a chemostat) and growth rate is limited by the lesser availability
of the two. We assume that the principle bottleneck for CO, inflow is transport (more specifically, here,
transport of inorganic carbon — recall that we do not distinguish between inorganic carbon species)
from outside the cell to the photosynthetic machinery inside. As is commonly practice, e.g., [20],
we approximate this transport rate by a Michaelis-Menten function of the form

IC

5(IC) = I’ICm

(time™1) (11)
where rc and Kjc are, respectively, maximal transport rate and half-saturation of cross-membrane
transport, see Appendix B. There are a number of mechanisms cells can use to influence transport,
notably carbon capturing and active transporters [11,21]. From our point of view, carbon capturing
effects can, roughly, be replaced by decrease in the inverse specificity factor v defined below, and active
transporters can influence parameters ric and Kjc. Ultimately transport rate of inorganic carbon into
cells over time is limited by concentrations outside of the cell and, more particularly, transport rates of
inorganic carbon into and out of the local environment.

Rate ¢ then needs to be compared to the rate at which the dark reaction (8) can use the electrons to
match with the inflowing inorganic carbon. The light reaction (7) provides that electron supply. Photons
flow through the chemostat with constant flux v (photons/area-time) set externally as a parameter,
but in actuality enter photosynthesis machinery at an effective rate v = Aav (photons/cell-time)
where A is cell cross-section (area/cell) and 0 < « < 1is an efficiency factor (unitless), see Appendix
B. The parameter alpha accounts for photons that impact the cell but do not result in oxygen and
electron production, either because they do not enter the photosynthetic process at all or because
their end impact is shunted to non-photochemical quenching precesses such as Mehler reactions.
These latter mechanisms may have other outcomes such as ATP generation which are supposed here to
be non-limiting (though can have negative impacts at high enough levels) so are not considered. Note
that alpha can be scaled into nu, so changing efficiency is equivalent, in the model, to changing light
intensity. Note that « in fact measures of the efficiency of the process of electrons impacting the cell all
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the way to production of electrons and reductant, and in principle may be a function of conditions such
as photon flux, oxygen concentration, etc., though we do not try to model these effects here. The light
reaction component of photosynthesis then produces electrons at rate Y, veg (electrons/cell-time),
with yield Y, = 1/2 electron/photon. Electron production rate by the light reaction, per Cmole of
biomass, is thus

Yyvesr  Aav
e= = —
c 2c

(emole/Cmole - time) (12)
(recall that c is the number of Cmoles per cell). The dark reaction then processes these electrons
together with inorganic carbon. Note however, from (8) and (9), that this processing depends on
the division of output between biomass and soluble inorganic production. Hence the rate at which
electrons are actually consumed by the dark reaction (at least if inorganic carbon supply is not limited)

1S

€= (time 1), (13)

which can be understood as the maximum rate at which photon flux can drive carbon fixation through
combined photobiosynthesis and photorespiration.

In fact, reduction of inorganic carbon proceeds by matching, in a sense, incoming inorganic carbon
with incoming electrons, with rates set by J(IC) and €, respectively. Since §(IC) # € in general, then in
fact reduction can proceed at best at rate min(4, €). In the spirit of rate-based modeling, we suppose
this minimum to largely govern the actual reduction rate, so that photosynthesis rate, more particularly,
the dark reaction rate, is

€ €—06<0 (lightlimited)

81(1C, 0ziv) = { 61 €—6>0 (carbon limited) (14)

where I = I(e — §,0,) is a photoinhibition function, defined below, of excess electrons should there be
any. Note that O, dependence in g; arises from O, dependence in w and I.

Table 3. Key photosynthesis-related functions and parameters.

Symbol Description Units Definition
A Average cell cross-sectional area um? Appendix B
c Carbon moles per cell Cmole/cell Appendix B
e Electron production rate by the light reaction ~ emole/Cmole's  Equation (12)
f Net oxygen per photosynthetically fixed carbon =~ Omole/Cmole  Equation (10)
1 Photoinhibition function - Equation (15)
o photosynthesis efficiency factor - Equation (12)
M inverse specificity factor Cmole/Omole  Equation (16)
72 excess electron capacity s/Omole Equation (15)
€ Maximum electron consumption rate 1/s Equation (13)
Ui RuBisCO inorganic carbon binding probability - Equation (16)
v environmental photon flux pE/m?:s -

w Electron demand: emoles needed to fix a cmole  emole/Cmole Equation (9)

2.3.2. Photoinhibition and Oxidative Stress

In the case that € > J, i.e., the rate of the normalized electron production is greater than the
rate of inorganic carbon inflow, excess electron production can lead to inhibition of photosynthesis
machinery and other apparatus via saturation of electron transport structure and consequent formation
of harmful radical oxygen species as well as other undesirable effects [11,22]. These effects have been
modeled with an inhibition function [23,24] which allows for removal of excess electrons without
detriment, to a point, after which reduction in growth rate occurs [22,25]. These inhibition models,
however, are generally functions only of photon flux rate and not, for example, dependent on IC and
O, concentrations or transport rates, though such dependence is likely important, at very least through
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any mismatch of electron production rate with inflow rate of electron donors, and is certainly central
to the model presented here. Thus, we define a photoinhibition function to take account of electron-IC
mismatch of the form

1 €e—0<0

1
(1+7,%(e—6)%03)"" e-6>0 (15)

I(e —03,0p) = {

where 7, is an excess capacity coefficient. (Note, from (14) that only the € —J > 0 definition is
relevant.) The quadratic dependencies on O and € — § are ad hoc forms meant to model the capacity
for cells to avoid or repair damage of small mismatches; small values of € — § and O, do not result in
significant net damage whereas large values might. The parameter 7, is chosen to provide a reasonable
high light/oxygen cutoff on growth. As a consequence of the degree of arbitrariness in form and
parameterization of I, we avoid conclusions which would appear to rely on its particulars beyond
a general tendency to inhibit growth in carbon limited conditions.

We note here that at moderately high concentrations O, > 5 - 10~* Omoles /L, oxygen may come
out of solution, providing effectively a method for limiting effects of oxygen stress. Such critical
oxygen concentrations are not reached in computations shown here, but can occur at environmentally
reasonable light intensities in some situations.

2.3.3. Photorespiration

A key step in dark reaction carbon fixation is binding of CO; to the enzyme RuBisCO. However,
as it happens, O, competes for the same binding site as CO,, and when a molecule of O; does in fact
bind then glycolate (CH,O; 5, degree of reduction +3) is produced in the stead of further reduced
biomaterial (CH; 705Ny, degree of reduction +4.7 for phototrophs). We refer to this process as
photorespiration (though as noted earlier, photorespiration can be used as an umbrella term for
a number of re-oxidixing processes). We denote the probability of CO, binding to RuBisCO by 7, with

aIC 1

= = 16
U aIC + 4,0, l+711%2 (16)

where 4., a, are binding affinities and -1, the ratio of those affinities, is the inverse specificity factor
(with respect to IC versus O,). Recall that we confuse inorganic carbon concentration IC here with
CO; concentration, supposing that inorganic carbon in forms other than CO; can readily be converted
into CO, via carbonic anhydrase enzymes.

Effectively, 57 is a branching function of O, and IC that determines how much photosynthetic
product goes to synthesis of new biomaterial and how much to synthesis of soluble, excretable, organic
carbon. Phototrophs may have a degree of control over the value of 7 either directly through the
structure of RuBisCO itself [26,27] or through indirect machinery such as carbon capture mechanisms,
so we treat 77 as a tunable parameter and study effects of its variation.

The purpose of photorespiration (oxygenase activity of RuBisCO, to be precise), if there is one,
is uncertain. It is sometimes argued to be wasteful, e.g., [20], and possibly a relic of early earth history
when levels of CO, were much higher than today, and levels of O, lower, so that the the ratio O, /CO,
was presumably small. However, observations suggest it is not superfluous [28] and the orders of
magnitude variability of 7y across different species [11,26,27] suggests that there may be selective
pressure at work. Photorespiration diverts carbon fixing power away from new biomass, but also note
in fact the following: though glycolate has a lower degree of reduction (+3) than biomaterial (44.7),
its production requires 1/2 O, mole per Cmole of glycolate and hence, balancing electrons, also removes
an additional two electrons per glycolate. Thus, effectively, each Cmole of glycolate produced removes
5 electron moles from the system, more than the 4.7 electron moles removed per Cmole of biomaterial
produced. Thus photorespiration serves to reduce electron pressure, particularly when oxygen pressure
is high. At the same time, oxygen pressure is reduced. Also, photorespiration produces a supply of
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dissolved, reduced organic carbon, allowing the possibility of supplying a heterotroph population.
Hence, accidental or not, photorespiration may have significant effects on population dynamics.

2.3.4. Fixation Stability

As a technical point that will be repeatably useful below but also seems reasonable biologically,
we impose the condition

1c81,0, — 10,81,1c = 0 17)

(with subscripts IC and O, denoting partial derivatives with respect to those quantities)) which, with
7 as in (16), reduces to IC g1 1c > —O; ¢1,0,. (In fact we will only really require (17) to hold at steady
state.) This condition can be appreciated through linearization of the carbon fixation process applied
to inorganic carbon and oxygen, i.e., linearization of the subsystem

d _

1€ = ~Yp e 1(IC, Og;v)P;
d

792 = f)si(IC05v)Py

around a state (P1,IC, O;), with associated Jacobian matrix

= _Yl;l}lcgl,ICpl _Yl;l}lcgl,OZPl .
(fg1)icP1 (fg1)o,P1

The eigenvalues of | have non-positive real part as long as derivatives with respect to IC are
non-negative, derivatives with respect to O, are non-positive, and condition (17) holds. In the case
that (17) is false, then | has an unstable eigendirection that corresponds to an instability in the fixation
process: a simultaneous increase in IC and O levels can lead to simultaneous decrease in net fixation
rate and in photorespiration, thus further amplifying IC and O, levels, etc. Such dynamics are
unsustainable. Equivalently, it can be seen that, if (17) is false, then an increment in available inorganic
carbon actually reduces photosynthesis rate, see Appendix C.

Condition (17) is satisfied for reasonable choices of 17 and g1, with one caveat, see below. We divide
into two cases based on (14). In the light limited regime,

11c81,0, — 10,81,1C = MIc€o, — No,€1c = 0,

satisfying (17). In the carbon limited regime

11c81,0, — N0,811C = Mic(61)o, — 110,(01)1c = mcdlo, — 10,(1)ic (18)

The first term on the far right hand side is generically non-positive, while the second is generically
non-negative. Note the key controlling function, Ip,, indicates the rate at which increasing oxygen
levels increases oxidative stress; only if this rate is too large can (18) be negative. Otherwise, fixation
stability condition (17) also holds in the carbon limited regime.

2.4. Heterotrophic Biosynthesis
The third pathway in the model system is a simplified heterotrophic anabolysis described by

2CH,0; 5 + 0.4750, — CH; 7005Ng.2 + CO», (19)

with stoichiometry constrained to balance carbon and degree of reduction (using degree of reduction
of (CH;.7005Np2) = +4.1 for heterotrophs, see Appendix A). As with the photosynthesis pathway,
oxygen and nitrogen are not balanced; to do so would require introduction to the model of new
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details of secondary interest. Note that the stoichiometry determines yield coefficients yp, oc = 1/2,
Yp,0, = 4/1.9,and yp, ;c = 1in Equations (3)-(5).

Reaction (19) indicates that organic carbon in the form of glycolate is further reduced to
biomaterial. The increased degree of reduction is accomplished by sacrificing some of the glycolate for
its electrons, a portion of which go to biomaterial and a portion of which are shunted off to carbon
dioxide to maintain carbon balance.

The rate at which (19) proceeds is given by ¢2(OC, O,) as

OoC O, )

, 20
Koc +OC’ Ko, + Oz 20)

22(0OC) = rj min (
based on the assumption that the rate of biosynthesis is controlled by the minimum rate at which
biosynthesis components can be transported to biosynthesis machinery. Note as well that as a result of
reaction (19), a source term for P, appears in (2) and sink terms for OC and Oy, appear in (4) and (5).

2.5. Equations

Pathway stoichiometry can now be incorporated into Equations (1)-(5). Yields Y, g parameterize
autotroph pathways (and damage) and yields y, g parameterize the heterotroph pathway (and damage).
In units of Cmoles and oxygen moles, Yp, o, = yp,Q, = 1 (see Section 2.3.2), Yp, 1c = 1 (see Section 2.3).
Also, yp,1c = 1, yp, 0c = 1/2 (see Section 2.4), and Yic,oc = Yoc,0, = 2 (see Section 2.3.3). Altogether

d
EPl = (ﬂg1 (IC, Oz,’ l/) — D)P], (21)
d
EPZ = (gz(OC, Oz) — D)Pz, (22)
d
EIC = - (IC, Oz;l/)Pl + gz(OC, Oz)Pz + D(ICO — IC), (23)
%OC = (1—1)g1(IC,Op;v)Py — 2¢,(OC,0,)P, — DOC, (24)
d 3 17 1.9
EOQ = <1 + E”) gl (IC,Oz,’V)Pl - ng(OC,Oz)Pz + D(Oz/o - Oz). (25)

We track two key quantities, carbon and electrons, through the system. Set
C=P+P,+IC+0C

to be total Cmole concentration in the chemostat to obtain

d

EC = D(ICy — C), (26)

with solution C(t) = ICy + C(0)e~P*. So, after a chemostat turnover time D~ or so, C(t) approaches
the constant value C = ICy, the inflow Cmole concentration, to exponentially small error in time.
Effectively, thus, the chemostat conserves total Cmoles. Similarly, set the total degree of reduction
(DoR) of the system to be

DoR = (4.7emole/Cmole)P; + (4.1emole/Cmole)P;
+(0.0 emole/Cmole)IC + (3.0 emole/Cmole)OC — (4.0 emole/mole)Oy,
Note that
d

SfDoR = —D(40,0 + DoR), (27)
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with solution DoR(t) = —40,9 + DoR(O)e’D t and thus, after a chemostat turnover time or so,
DoR(t) = —40,,, the degree of reduction of the inflow, to exponentially small error in time. Hence,
effectively, the chemostat conserves DoR.

In a chemostat, degree of reduction (at least as calculated here) is dictated by the inflow
environment, since all reactions conserve it in detailed balance and since all material flows out
of the chemostat at the same rate. This contrasts with a biofilm or sparged system where insoluble,
soluble, and volatile material may leave the system at different rates. Note that a biofilm can thus have
some local control over DoR.

3. Results

3.1. Single Species Chemostat Community

To begin, we consider first the case of a chemostat community of phototrophs only,
i.e., Py(t) = P»(0) = 0. Note that the complementary case of a community of heterotrophs only,
i.e., P1(t) = P1(0) = 0, is not sustainable: P; = 0 has the consequence that soluble organic carbon OC
is not produced which results in OC(t) — 0 which, in turn, results in g»(¢) — 0 and hence, from (2),
Pz(t ) — 0.

In the phototrophic (only) community case, Equations (21)—(25) reduce to

%IC = —gPy +D(IC, — IC), (28)
%oc = (1-n)gP, — DOC, (29)
%02 = f(11)§1P1+ D(Oz9 — O2) (30)
GP = (g1 -D)Py, Q)

with f(7) = 3/4 + (17/40)1 being the net yield of oxygen per carbon fixed, see (10). The coefficients
3/4 and 17/40 arise from degree of reduction details. Note that the equation order has been changed
from earlier; the population equation is now listed after the chemical concentration equations for
reasons of convenience in the following. The first term in (28) measures usage rate of inorganic
carbon in photosynthesis, which produces new biomass (first term of (31)) and soluble organic carbon
(first term of (29)) as well as oxygen, some of which is consumed, however, in the production of soluble
organic carbon (first term of (30)). Terms involving D measure rates of wash in or out of the chemostat.
Note that organic carbon (OC) decouples from the other quantities— the dynamics of IC, O,, and
Py are all independent of OC. Hence, system (28)—(31) is effectively three dimensional. We keep OC,
though, because of its importance in the two species community dynamics to follow, and also because
of its place in conservation of carbon and of degree of reduction.

3.1.1. Steady States

Our interest is in the role of photorespiration in long time community behavior. As is often the
case in chemostat models, long time behavior reduces here to the study of steady state solutions.
Equations (28)-(31) have two possible types of steady states: (1) the washout solution P; (t) = 0 with
IC(t) = ICy, OC(t) = 0, and O, (t) = Oy, which exists for all parameter choices though is not always
stable, and (2) the viable solution P1 () = P; > 0 with IC(t) = IC*, OC(t) = OC*, and O,(t) = Oj.
For a viable solution, (31) requires that

17(IC,02)81(IC,02) = D (32)

have a nonnegative solution (IC*, O3 ) indicating that biomass production rate balance with washout.
Also, by combining Equations (28) and (30), a second equation,
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f()(ICo —IC) = O — Ozp (33)

is obtained relating IC* and O3. Equation (33), an equilibrium relationship constraining the ratio of
surplus O, to IC deficit, is a consequence of carbon fixation stoichiometry combined with degree
of reduction balance. If (32) and (33) can be solved with non-negative values IC* and O; then the
remainder of a viable state steady state is given by

Py 1(ICo —1CY), (34)
oC* = (1—7y)(ICo—IC*), (35)

using (28) and (29).

Thus, existence and uniqueness of viable solutions reduces to existence and uniqueness of
solutions to (32) and (33). This appears to provide two conditions for viability; in fact, though, (32)
and (33) can be solved under the single condition that #(ICy, O2)g1 (ICo, Oz) = D has a solution with
O, > Oy, that is, under the condition that the organism-free (P; = 0, IC = ICy) chemostat is capable
of supporting growth under its given dilution rate D and ambient oxygen level O, . For the particular
choices of g1, f, and # made here, either one or no viable solutions exist, depending on choice of
environmental conditions ICy, Oy, and D. See Appendix C for details.

3.1.2. Stability of Steady States

To characterize stability, we add a small pertubation to a steady state solution and then watch
ensuing dynamics. We summarize results here; see Appendix D for details. Generally, any component
of a perturbation to a steady state that introduces excess or deficient total carbon or degree of
reduction is washed out of the system on the chemostat turnover time scale D~!. Thus understanding
perturbation dynamics of the four dimensional system (28)—(31) reduces to understanding dynamics
on a two dimensional subsystem, in fact a system that can be interpreted as the phototroph flux mode
space and is spanned by the vectors

-1 -1
0 1
EFM, = , EFM, = ,
1 47/4 2 3/4
1 0

that encode the two phototroph elementary flux modes. Recall Figure 3: perturbation of the
viable steady state by increasing or decreasing flux through the photosynthesis-driven biosynthesis
mode corresponds to perturbation of the viable steady state solution in the direction EFM;
(one Cmole biomass and 4.7 /4 Omoles produced per Cmole inorganic carbon consumed) and, likewise,
perturbation of the viable steady state by increasing or decreasing flux through the photorespiration
mode corresponds to perturbation of the viable steady state solution in the direction EFM; (one Cmole
organic carbon and 3/4 Omoles produced per Cmole inorganic carbon consumed). Stability in this
flux mode space will be discussed for particular steady states below.

Washout State (One Species System). The washout state (P; = 0) is stable or unstable depending
on sign of the quantity A = #(ICy, O2,0)g1(ICo, O2) — D. If negative then the steady state is stable,
i.e., phototrophs cannot invade, while is positive, then invasion can occur. Note that A is the net
intrinsic biomass production rate at inflow conditions. When a small quantity of phototrophs are
added to the system, in the unstable case A > 0 dynamics of the linearized system effectively reduce
to exponential growth on the one dimensional space 7 EFM; + (1 — 17) EFM,, indicating that the
linearized growth dynamics occurs, as to be expected, as a combination of the photosynthesis mode
and the photorespiration mode weighted by the branching parameter 1 (IC, Oy ).

Viable State (One Species System). For the viable state (P; > 0), dynamics are again
characterized by the basis formed by the two mode vectors EFM; and EFM; and in this case are
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always stable (i.e., perturbations decay) under the assumptions that derivatives with respect to IC
are non-negative, derivatives with respect to O, are non-positive, and condition (17) holds. That is,
the viable state is stable under the conditions that we consider biologically reasonable.

3.1.3. Viability and Light-Limited Ranges

We suppose that the RuBisCO inverse specificity factor 71, see Section 2.3.3, is subject to some
influence by the organism itself, at least adaptively if not through direct regulation, leading to some
control over the branching function #. Recall

1

=0 (36)
1+7

and note that 7 = 0 would correspond to the extreme of 7 = 1 (all fixed carbon goes to biosynthesis)
and that ; = co would correspond to 77 = 0 (all fixed carbon goes to photorespiration). Increasing
inverse specificity ; corresponds to increasing, relatively speaking, RuBisCO oxygen affinity and
hence increasing photorespiration rates. So then which factors might determine, or at least influence,
the value of 1?

We show in Appendix E that, for the single species solution as described above (including the
assumption (17)), the choice 1 = 0 is favored in the following sense: for any fixed, positive value
of 71 and the resulting steady state population P} (y1) > 0, it is in fact the case that (d/dy1)P; < 0.
That is, the autotroph population decreases with increasing inverse specificity factor, see, e.g., Figure 4,
left panel, for example. Hence, as a larger affinity factor corresponds to increased photorespiration,
in the single species, static chemostat environment the autotrophs are always disadvantaged by
photorespiration in terms of total biomass.

However, maximizing biomass is not necessarily the only consideration. Another important factor
might be viability range—solar light intensity varies significantly over the course of a day (or a year)
so that capacity to efficiently function over a wide range of photon flux intensities may also be valuable.
High light can cause damage and hence require extra resources, and thus is desirable to avoid or
mitigate. In this context, non-zero inverse specificity has competing impacts. First, larger inverse
specificity increases, per unit inorganic carbon, the usage of photosynthetically generated electrons
and oxygen, thus decreasing rate of damage. Second, larger inverse specificity diverts more fixed
carbon from biomass, thus decreasing growth rate. Note though that decreased growth rate leads to
reduced population biomass and hence increased available inorganic carbon—a smaller population
can be a healthier one. Altogether, then, photorespiration can be expected to shift upwards in both
the lower and upper photon intensity viability bounds. To understand how, see Figure 4 right panel,
a central result of this study, which presents results of a number of solutions of the steady state
Equations (32)—(35). Computations used parameters as described in Appendix B and in the caption.

Minimum Photon Flux. The lower-most curve in Figure 4, right panel, shows, as a function of
71, the minimum photon flux necessary for a viable population. This curve was computed analytically
by using condition (32) to determine photon flux v as a function of 1 at ambient inorganic carbon and
oxygen levels IC=ICy and O,=0,, the limiting viability concentrations. (It was also checked against a
numerical computation of minimum v for viability as a function of 7;.) Its form is easily understood in
terms of the non-dimensional number ;05 /ICy which measures the ratio of likelihoods of O, versus
IC RuBisCO binding in relation to ambient or near-ambient conditions, The ambient ratio O, /ICy we
use is 0.05 Omole/Cmole, i.e., 20 times more inorganic carbon than oxygen as measured in carbon
and oxygen moles. Thus, for 7 less than approximately 20 Cmole/Omole, binding site competition is
unimportant at ambient conditions and hence no penalty, at least with respect to minimum photon flux
for viability, is paid. However, as 1 increases beyond 20, the minimum photon flux rapidly increases,
see Figure 4, right panel.
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Figure 4. Plots of various steady state quantities arising from solutions of (32)-(35) as functions
of inverse specificity ; (Cmoles/Omoles) with D = 10~ s71, and other fixed parameters are as
described in Appendix B. Increasing 1 corresponds to increasing importance of photorespiration.
Left. Steady state biomass P (in Cmoles/L) versus inverse specificity 1, with v = 50 uE. Biomass
decreases monotonically with increasing inverse specificity. The kink at 77 = 1072 occurs where
the steady state transitions from carbon limitation to light limitation. Right. Solid curve (bottom):
minimum photon intensity v (#E) for population viability as a function of inverse specificity 1. Solid
curve (top): maximum photon intensity for population viability as a function of inverse specificity
71. Dashed curve: boundary photon intensity separating light-limiting conditions (below the curve)
from carbon limiting conditions (above the curve). Horizontal dotted line: boundary photon intensity
asymptote (in large inverse specificity limit). Vertical dotted line (left): the inverse specificity value
71 = IC; /05,1 beyond which the light-limiting range significantly expands. Vertical dotted line (right):
the inverse specificity value 1 = IC/O, 9 below which photorespiration does not significantly reduce
the minimum range of light intensities that allow population viability. Note that, for larger 71, steady
state biomass drops off, see left plot. Note that for the chosen set of parameters, washout occurs beyond
inverse specificity of approximately 230 Cmoles/Omoles for all light intensities. Measured values of
inverse specificity in a variety of organisms lie in the approximate range 10~2-10° [11,26,27], delimited
in the plot by the thick bars.

To summarize, the bottom solid curve in Figure 4, right panel, is important in that it shows
minimum photon intensity for community viability as a function of 7. This curve is, roughly,
described by two parameters: (1) the photon intensity at 3 = 0, which is determined by details of
photosynthesis rate function g; as well as choice of chemostat turnover rate D, and more importantly
(2) the value of 7 = ICy/Oy (right-most dotted vertical line) above which significant increase in
photon intensity is required for viability.

A similar discussion applies for the upper-most curve in Figure 4, right panel, which shows
as a function of 71 the maximum photon flux allowable for a viable population. Again, IC = 1Cy,
O, =2 Oy, at the viability boundary so that the viability photon flux upper bound is only weakly
dependent on 71 for 910,,/ICy noticeably less than 1, i.e., 1 noticeably less than about 20
Cmole/Omole.

Light-Limited to Carbon-Limited Transition. The dashed curve in Figure 4, right panel,
computed numerically, measures as a function of inverse specificity the boundary light intensity
between light-limited (region below the curve) and carbon-limited (region above the curve) intensities.
In the carbon-limited region, i.e., where photons are sufficiently abundant so that photosynthesis
is limited by access to inorganic carbon rather than light, excess electrons are present leading to
photoinhibition (recall (14)). The cross-over from light limitation to carbon limitation occurs when
€ = J,i.e., when electron production rate as measured in capability to process inorganic carbon is
equal to cellular inflow rate for inorganic carbon. The right asymptote (77 — max(71)), shown as
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the horizontal line in Figure 4 is well approximated by setting v; = co and solving € = § at IC = IC,
O, = Oy, the viability values. More importantly,, though, we can understand the small 7y behavior of
this curve as follows. If 71 = 0 then 77 = 1s0 g1 = D and thus D = g; = € = ¢ which, upon solving
for IC and O, results in values ICq, Oy 1, the 71 = 0 boundary concentrations. When 1051 /1C; is
significantly less than one, i.e., 1 noticeably less than IC; /O, photorespiration remains relatively
insignificant at cross-over and hence cross-over is only weakly dependent on 7;. For the parameters
used here, IC; /0,1 = 8- 107*, see left-most vertical dotted line in Figure 4, right panel. For larger
values of 71, the range of light-limiting photon intensities expands significantly.
Summary. We summarize Figure 4, right panel, as follows.

e  Setting 1 = 0, i.e., turning photorespiration off entirely, results in only a single light intensity
with a viable, non carbon-limited steady state population. However, at ambient O, and IC
concentration levels, competition for RuBisCO binding is insignificant for inverse specificities
71 < ICy/0Os,0. Hence, from the point of view of population viability at least, there is no penalty
for allowing RuBisCO oxygenase activity over this inverse specificity range.

®  On the other hand, inverse specificities such that IC; /O, < 1 result in significantly enlarged
light-limited intensity range, so that large enough inverse specificities may have some advantage.

e Assembled, the inverse specificity interval

LSRN =

e ,
021 O20
for parameters used here (based on best approximations in comparison to known data) agrees
well with measured values of inverse specificity [11,26,27].

It should be noted that while the upper bound IC( /O, is a function of ambient IC and O, levels
and is thus is somewhat context-independent at least in the absence of other organisms, the lower
bound IC;/0O;,; does depend on specifics of the system like dilution rate D and hence may vary
under different conditions. More particularly, IC; is found by equating § = D. For ¢ as defined here,
the resulting concentration IC; is given by

IC; = rICIi 5Kic. 37)
Generally speaking, though, the solution of § = D will result in a value of IC; as a function of some
external rate of transport of IC in comparison to internal, cellular transport mechanisms. Given IC;
then O, ; is determined stoichiometrically from (33). Hence the ratio IC; /O, ; is essentially determined
by properties of transport of IC to RuBisCO (relative to the rate of transport of IC into the system),
with increased rates corresponding to smaller ratio and hence larger favorable inverse specificity range.
Carbon concentration mechanisms, though not included here, might have a similar impact.
Altogether, then, the model suggests that there is possible advantage in the form of redox and
oxygen stress control by allowing photorespiration with inverse specificity within the range (37),
the lower bound of which is under some internal control. In particular, an expanded range of
light-limiting photon intensities may result. This may be important as, typically, photon flux varies
considerably over time. (It should be noted that our observation is based on steady state results in
a time-independent model, though it seems possible that the idea extends to periodically varying
systems.) Note that increased photorespiration results in reduced biomass, which may be considered
a disadvantage. However, it is in part because of reduced biomass that the range of light-limiting
photon intensities increases, as reduction in biomass is accompanied by increase in IC availability.
From the point of view of flux mode modeling, photorespiration provides a sort of rate
synchronization mechanism; biosynthesis (left mode in Figure 3) is required to produce biomass, i.e.,
Py, at rate dictated by chemostat dilution while photon input is independently, and likely conflictingly,
determined by photon inflow rate, both of which are not controlled by the phototrophs themselves
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(IC input rate can be controlled by the organisms including through varying total biomass). Biomass
production rate must match chemostat dilution rate, however, so if the dilution and photon inflow
rates differ then, in the absence of a photorespiration mode, excess electrons will be produced leading
to damage. Presence of a photorespiration mode (center mode in Figure 3), however, allows some of
those excess electrons to be shunted away in the form of reduced OC.

Note that biology-related parameters vary in value between different cyanobacterial species and
even within the same species under different environmental conditions, e.g., [29]. We do not see
this variability as a critical problem here, however, as our aim is to explore qualitative behavior of
community interactions as inverse specificity varies from low (low photorespiration levels) to high
(high photorespiration levels), regardless of parameter choices. The forms of the curves in Figure 4 are
expected to hold under reasonable choices. In particular we are least confident about choices related
excess electron damage, effecting mostly height of the top solid curve, Figure 4 right, and photon usage
efficiency, effecting mostly height of the horizontal dotted curve Figure 4 right. The left vertical dotted
curve in Figure 4 right, which indicates the approximate value of ¢; above which photorespiration is
significant, is dependent on properties of inflow of inorganic carbon about which we are also relatively
uncertain, but because of the log scale used is unlikely, in our view, to move a lot under reasonable
choice of parameters.

3.2. Two Species Community

Having explored the effects of photorespiration on steady state phototroph behavior in the one
species model, we now add a second species, a heterotroph, in order to see if its addition, despite the
resulting (indirect) competition for carbon, can in fact lead to an increase in phototroph steady state
biomass. Heterotrophs offer two apparent direct benefits to phototrophs: (1) they use oxygen, thus
reducing oxidative stress, and (2) they produce carbon dioxide, thus increasing the local inorganic
carbon pool. The price paid is that the cyanobacteria must feed these heterotrophs as they cannot
utilize inorganic carbon as a food source. Photorespiration provides a means to do so through
production and secretion of soluble organic carbon, thus perhaps providing an additional advantage
to its existence. Further, though secretion of organic carbon comes at the price of reduced production
of new cyanobacterial biomass, doing so via photorespiration also provides additional control of redox
balance through lowering net degree of reduction of the fixed carbon. In this section, then, we consider
these combined effects, focusing on steady state cyanobacterial biomass as a metric.

The equations for the two species community are as in (21)—(25), rewritten as

d
EIC = —g1 (IC, Oz;V)Pl + gz(OC, Oz)Pz + D(ICO — IC), (38)
%OC = (1 - ‘r])gl (IC, Oz;V)Pl — Zgz(OC, Oz)P2 — DOC, (39)
d 3 17 1.9
EOZ = <4 + ZOU> gl (IC, Oz;v)Pl — ng(OC, Oz)Pz + D(OZ,O — Og), (40)
d
Epl = (ng(IC, 02; ]/) — D)Pl, (41)
d
EPZ = (gz(OC, Oz) — D)Pz. (42)

These equations are the same as the single species ones (28)—(31) except with the addition of
source/sink terms proportional to ¢>P; in each of (38)-(40) as well as the new Equation (42) describing
heterotroph biomass. In effect we are adding the third elementary flux mode, recall Figure 3, into the
system, with all of its component reactions occuring at rate g».
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3.2.1. Steady States and Stability

Equations (38)-(42) have three types of steady state solutions: the washout solution with
Py = P, = 0, the single species solution with P; > 0, P, = 0, and the coexistence solution Py, P, > 0.
Note that a fourth type of steady state with P; = 0, P, > 0 is not possible; if P; = 0 then the
heterotrophs will be washed out of the system. We consider first the washout and single species
states, each with P, = 0, and report results of stability analysis here, again referring to Appendix D for
details. The coexistence steady state, with P, > 0, is explored numerically later. Note that if P, = 0
then (38)—(41) reduce, essentially, to (28)-(31), so that steady states for the washout and single species
systems are the same as previously (with the addition that P, = 0).

Generally, as before, any component of a perturbation to a steady state that introduces excess or
deficient total carbon or degree of reduction is washed out of the system on the chemostat turnover
time scale D~1. Thus, understanding perturbation dynamics of the five dimensional system (38)—(41)
reduces to understanding dynamics on a three dimensional subsystem, now spanned by all three of
the elementary flux modes, given in vector form by

-1 -1 1
0 1 -2
EFM; = | 47/4 |, EFMo= | 3/4 |, EFMy= | -19/4 |,
1 0 0
0 0 1

see Figure 3. Perturbation by increasing or decreasing flux through the photosynthesis-driven
biosynthesis mode corresponds to perturbation in the direction EFM; (one Cmole biomass and
4.7/4 Omoles produced per Cmole inorganic carbon consumed) and perturbation by increasing or
decreasing flux through the photorespiration mode corresponds to perturbation in the direction EFM,
(one Cmole organic carbon and 3/4 Omoles produced per Cmole inorganic carbon consumed). The
new vector EFM3 corresponds to perturbation that increases or decreases flux through the heterotroph
biosynthesis mode (one Cmole biomass and 1 Cmole inorganic carbon produced per two Cmoles
organic carbon and 1.9/4 Omoles consumed).

Washout State (Two Species System). The two species washout state (P; = P, = 0) is, as in the
one species washout case, unstable if A = 1y — D is positive and stable if A is negative. As before, A is
the net intrinsic phototroph biomass production rate at inflow conditions. Also as before, when a small
quantity of phototorphs are added to the system, in the unstable case A > 0, dynamics of the linearized
system effectively reduce to exponential growth on the one dimensional space 7 EFM; + (1 — 1) EFMy,
indicating that the linearized growth dynamics occurs, as to be expected, as a combination of the
photosynthesis mode and the photorespiration mode weighted by the branching parameter #7(ICy, Oz,).
Note that the heterotroph cannot invade as it requires an already established population of phototrophs
(with corresponding finite supply of organic carbon) before it can become viable.

Single Species State: Invasion (Two Species System). We consider for several purposes the
single species state (P; > 0, P, = 0). Note that this solution is identical to that in the single species
case as discussed in Section 3.1.2 and Appendix C except with the additional component P; = 0.
We assume that this state is linearly stable to perturbations that do not introduce heterotrophs and ask
what happens if a small amount of heterotrophs are added. In other words, how does the otherwise
stable heterotroph-free system respond to a perturbation including heterotrophs? This is the invasion
problem. In the case that invasion occurs, obviously there is some benefit from the phototrophic
population to the invading, heterotrophs as they cannot survive in the chemostat by themselves. Linear
analysis can provide some information on the specifics of this advantage.

A key observation here is that the five dimensional system (38)—(42) essentially reduces to the
single species, four dimensional one (28)-(31) when P, = 0. In this four dimensional reduced system,
dynamics of the single species state are stable, so that the full invasion dynamics are effectively
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restricted to a complementary one dimensional space. This space is necessarily a linear combination
of the three mode vectors EFM;, EFM,, and EFMj;. Notably, in the case of large g>(OC*,03),
instability dynamics are dominated by the heterotrophic growth mode EFM3;. When growth is
not as dominant, the role of phototroph flux modes in maintaining carbon and DoR balance is more
evident. The governing quantity is A = g» — D; if A > 0 then heterotroph invasion occurs, and if A < 0
then heterotrophs are unable to invade.

An interesting question here is whether perturbations that include introduction of heterotrophs,
i.e.,, positive perturbation of P, result in both successful invasion of heterotrophs as well as,
simultaneously, increase in phototroph biomass. We consider this question in the case of large
£2(0C*,05), see Appendix F for details. Note that, as dynamics are dominantly in the direction
of EFMj3, then the P; component of the perturbation dynamics is small. It is, however, positive
as in this case the intuition that addition of heterotrophs, at least initially, increases inorganic
carbon concentration and decreases oxygen concentration is correct. Hence, the immediate effects of
heterotroph invasion on the phototrophs are mildly positive. Of course, the more important question
is of long time effects, which will be considered next.

3.2.2. Two Species Consortium Steady State

We rely on numerical computations to investigate two species steady states. Parameters are as
used previously for single species computations with the addition of parameters connected to the
heterotrophic biomass mode, see again Appendix B. See Figure 5 for a typical numerical comparison
of the single species steady state biomass (as in Figure 4, left panel) and two species steady state
biomasses, as functions of inverse specificity. As in Figure 4 left panel, photon intensity is held at a fixed
represntative level of 50 HE. For the parameters chosen, steady state conditions are carbon-limited for
inverse specificity smaller than, approximately, 1072, and light-limited for larger inverse specificity.
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Figure 5. Steady state biomass (Cmoles/L) versus inverse specificity v, (Cmoles/Omoles). Increasing
1 corresponds to increasing importance of photorespiration. D = 10~#s~1, and other fixed parameters
are as described in Appendix B and in Figure 4. Solid: steady state biomass P}, single species community
(P = 0). Dashed: steady state biomass P}, two species community. Dotted: steady state biomass
P;, two species community. The kinks at 7 = 1072 occur where the steady state transitions from
carbon-limitation to light-limitation. Note that steady state phototroph biomass increases with addition
of heterotrophs.
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Note that phototroph biomass is larger in the two species community than in the one species
community for all values of inverse specificity that allow a viable population. This can be understood
as resulting from reconversion of some of the dissolved organic carbon back to inorganic form through
heterotroph respiration, recall (19), where it is available for photosynthesis, as opposed to the single
species system where all dissolved organic carbon is flushed from the chemostat. Increase in biomass
is most noticeable in the interval corresponding to actual measured environmental values of ; where,
in the model results, light is limiting and heterotroph biomass is largest.

Intuition might suggest that introduction of heterotrophs into a phototoph population would
result in increase in IC and decrease in Oy, both as a consequence of respiration. And indeed, such
may initially be the case, see the invasion discussion above. However, for later times numerics suggest
otherwise near steady state. Dissolved carbon and oxygen, for the same computation, are shown
in Figure 6, left and middle respectively. Dissolved inorganic carbon levels are similar for both one
and two species communities, with consequently matching protection from photorespiration against
high light intensity in both communities. The similarity as well in inorganic carbon concentrations
is a consequence of the steady state rate constraint 17g; = D, see (41); in the small y; carbon limited
regime, 77 = 1 50 IC is determined by § = g1 = D independent of presence or absence of heterotrophs,
while in the light limited regime for relatively large 71 heterotroph population is low so has little effect
and in the light regime with relatively low 71, g7 is largely independent of IC and O, so that 7 must
be approximately constant, again independently of presence or absence of heterotrophs, see Figure 6
right panel. Note that
e
10,

_1%2
T 1IC

so that in this range, 77 sensitivity to change in IC is much larger than sensitivity to change in O,. Hence
steady state IC is largely unchanged between the one and two species communities. Dissolved organic
carbon, however, is largely absent from the two species community, in contrast to the single species
one, as organic carbon is limiting for heterotroph biomass production at all values of inverse specificity
and thus is depleted in the two species community. This is perhaps the most dramatic change in
chemical environment between the one species and two species environments.

Cmoles
Omoles
Probability

0.5 -0.5 (]
102 10° 10 10?2 10°
Inverse Specificity Inverse Specificity

102 10°
Inverse Specificity

Figure 6. Steady state values versus inverse specificity 1 (Cmoles/Omoles) corresponding to the
computations shown in Figure 5. Left: carbon concentrations (Cmoles /L) with (solid) single species
community inorganic carbon IC, (dash) two species community inorganic carbon IC, (dash-dot) single
species community organic carbon OC, (dot) two species community organic carbon OC. Middle:
oxygen concentrations (Omoles/L) with (solid) single species community oxygen O, (dash) two
species community oxygen O,. Right: branching function probability # for (solid) the one species
community and (dash) the two species community.

Interestingly, oxygen concentration levels are actually somewhat higher for the two species
community, see Figure 6 middle panel, despite oxygen usage via heterotroph respiration. Higher
oxygen concentrations can be understood to be a consequence of carbon fixation—increase in reduced
carbon in the form of biomass and hence increase in net degree of reduction DoR must be balanced
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by something. In this model, the only possibility is oxygen. Thus, oxygen concentration increases
if biomass does so. This is a generally applicable observation: photosynthetically fixed carbon will
be accompanied by more material with low degree of reduction. In an ideal chemostat environment,
this balance must be maintained. In other environments, biofilms for example, it may be possible for
byproducts like excess oxygen to be transported out of the system while fixed carbon in the form of
biomass remains behind.

Note that, in the two species community, as virtually all dissolved carbon goes to biomass for
smaller values of 1, then in fact two species oxygen levels are approximately independent of inverse
specificity 7y and this remains so up until the point that 1, becomes sufficiently large that significant
amounts of inorganic carbon go unutilized. Only then does oxygen concentration significantly decrease
as a function of 73, though it always remains larger than the corresponding concentration in the one
species community.

4. Discussion

The one species model. We observe, in the model, that photorespiration shunts reduced carbon
away from biomass production and into dissolved, secreted organic carbon, resulting, at least in
a single species oxygenic phototroph population, in three principle effects:

1. decrease in population biomass,
2. increase in population light tolerance,
3. and decrease in oxygen concentration.

The first two are connected through inorganic carbon concentrations: decrease in population
results in decrease in inorganic carbon demand resulting in increase in inorganic carbon concentration
resulting in reduced inorganic carbon limitation at high light intensities. Decrease in oxygen
occurs for two reasons: (1) reduced phototrophic biomass results in reduced oxygen production,
and (2) photorespiration product is less reduced than biomaterial, so its production results in less
oxygen as a consequence of degree of reduction balance.

The increase in light tolerance and decrease in oxygen concentration suggests an advantage to
photorespiration. However, reduction in population size suggests the possibility of fitness deficit in
comparison to a population that does not photorespire. We have not modeled such a competition here.
However, it should be noted that we impose constant light intensity, and that it is not clear what effects
variable light intensity, particularly transient peaks in intensity, might have on a competition of two
species, one of which grows more efficiently in low light conditions and the other of which is better
protected in high light conditions.

In our set-up, RuBisCO oxygenase activity (which we identify with photorespiration) can serve
as a differential of sorts able to synchronize influx of photons with influx of inorganic carbon.
Using estimates of parameters, we find an interval of values of the inverse specificity ; which,
on the one hand, result in population levels for which, over an increased range of photon intensities,
light is limiting but also for which, on the other hand, biomass synthesis is not excessively quenched to
the point of reducing the photon intensity range of viability. Though biomass is decreased, the increase
in range of “healthy” light intensities might suggest more resilience to light intensity variations, i.e.,
increased ecological structural stability [30]. The upper bound on 7 is related to background inorganic
carbon and oxygen concentrations (ICy and O; here) and thus may be relatively independent of
model details. The lower bound on 1, is related to organismal transport rates for inorganic carbon and
is perhaps more model dependent, though also allows the possibility of organismal control. In any
case, the optimal interval we find for inverse specificities seems to be consistent with measured values
over a range of organisms.

The two species model. A steady source of photorespiration-derived organic carbon begs the
introduction of a heterotroph population to consume it, so we also modeled a phototroph-heterotroph
consortium. Obviously, the heterotroph population benefits from the interaction as it cannot survive in
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the model chemostat without the organic carbon supplied by the phototrophs. The phototrophs, on
the other hand, retain their added tolerance to light intensity but see three principle new effects:

1. biomass increase,
2. reduction in dissolved organic carbon,
3. and oxygen concentration increase.

Biomass increase occurs because of increased inorganic carbon availability as a consequence of
heterotroph respiration. Note that organic carbon, here glycolate, could have inhibitory effects, so its
consumption by heterotrophs might also potentially increase growth rates, though this effect has not
been included in the model. Increase in oxygen concentration is somewhat surprising as heterotrophs
consume oxygen during respiration, but occurs again as a consequence of reduction balance: overall
increase in reduced biomass must be balanced within the model by increase in oxygen. More directly,
the increase in phototroph biomass leads to increased oxygen production. This may be, at least to
an extent, an artifact of model simplicity. A more complex model could retain reduction balance
through oxidized material other than oxygen. Also, simplicity of the chemostat itself requires that all
material be washed out at the same rate whether reduce or oxidized. A more complex system might
do otherwise, for example removing dissolved oxygen (e.g., gas sparging that removes O;) faster than
particulate biomass (e.g., biomass fixed in a biofilm).

The phototroph-heterotroph consortium is a more efficient consumer of inorganic carbon than the
photorespiring phototroph population alone, and presence of organic carbon suggests that heterotrophs
could be expected to join a photorespiring phototroph population. Hence, it may be that the question
of competing photorespiring vs. non-photorespiring phototrophs may be the wrong one. Rather,
non-photorespiring phototrophs should be asked to compete against a combined photorespiring
phototroph-heterotroph consortium.

Connecting flux mode models to population scale models. Mathematically and physically, rates
are natural quantities at the flux mode level whereas concentrations, including biomass, are natural at
the population and environmental level. We find here that rate functions (in the population model)
serve to translate cell scale flux modes into the larger scale population level, where they then determine
external concentrations in combination with large scale transport constraints. Flux modes themselves
naturally appear, mathematically, in near-steady state dynamics and are relatable to eigenvectors which
in turn are natural structures for dynamics. The process of converting flux modes to rate functions is
in principle automatable and should be a part of the overall program of extracting information from
‘omics data.

Conversely, the mathematical issues involved in the inverse process of determining how large
scale effects influence flux mode regulation are interesting ones and only addressed indirectly here.
Generally speaking, microbial communities can have metabolic capabilities available to organisms and
to the overall community. This raises the question—how can these capabilities be best deployed to
utilize available resources? Rate and stoichiometric constraints still apply, and steady states or, more
generally, asymptotic states, can be computed though likely not in a unique way. However, there may
be many branching type parameters over which the community has at least some control. Optimality
becomes a question of distribution of resource flow (here carbon and electrons) between available
pathways in the most efficient manner. Even in the system studied here, with a small number of well
defined pathways and a relatively simple physical environment, the effects of that environment on
pathway optimization are subtle and influential. The environment imposes rates at steady state and it
also determines response to perturbation. These constraints as well as those arising from community
ecology may easily be overlooked without considering the physical context of the biological system.
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Appendix A. Degree of Reduction

Degree of reduction of an atom or molecule is, roughly, the number of electrons that atom or
molecule is apt to give away in a chemical reaction [31]. We use degree of reduction (DoR) here,
essentially, as a convenient proxy for redox potential. Degree of reduction is computed using the
values DoR(C) = +4, DoR(H) = +1, DoR(O) = —2. For nitrogen, we use DoR(N) = 0 for
cyanobacteria (assuming nitrogen is extracted from N») and, effectively, DoR(N) = —3 for heterotrophs
(assuming nitrogen is extracted from an organic source) [18]. This dichotomy for N is somewhat at
odds with the definition given just above, but maintains consistency of degree of reduction balance by
accounting for differences in biomaterial formation as explained below.

Degree of reduction for a molecule is estimated by summing degree of reduction of that molecule’s
individual atoms. Then the degrees of reduction for inorganic carbon (assumed of the form carbon
dioxide CO;), organic carbon (assumed of the form glycolate CH,O; 5) and biomass (assumed for both
autotrophs and heterotrophs to be of the form CH; 705Ny ) are estimated to be

DoR(CO;) = +0
DoR(CH,015) = +3

DoR(CH;7005No2) = +4.7 (autotroph)

DoR(CH;7005Np2) = +4.1 (heterotroph)

These are computed simply by adding values of the component atoms, though the nitrogen
contribution introduces a small complication. Note that electrons have degree of reduction +1. Also
note that, although the degree of reduction of glycolate is +3, in the context of the simplified model
used here of photorespiration, (1/2)O; is removed from the system for each photorespiration reaction
with the context that the degree of reduction of the entire system is increased by +2. Hence, effectively,
formation of a unit of CH,Oj 5 has the effect of changing the overall cell degree of reduction by +5.
Biomass, represented by CNy 700 5Ng2, comes with a DoR value of 4.7 computed on the basis of
construction from molecular oxygen, hydrogen, carbon dioxide, and also molecular nitrogen (N»),
indicating that 4.7 moles of electrons are required to synthesize a mole of biomass, roughly. However,
assuming heterotrophs are able to use an organic source of hydrogen, e.g., ammonia, rather than
molecular nitrogen, then only approximately 4.1 electron moles are needed per biomass mole.

Appendix B. Parameter Estimation

Carbon moles per cell. We apply the following estimates for microbial cells:

~

wet mass/volume = 1.1 x 106g/m3,
5x 107 18m?,
1/10,

12

volume/cell

Il

dry Cmass/wet mass

where the last estimates carbon as comprising 10% of cells by mass. Using the fact that the mass of
1 carbon mole (Cmole) is 12 g, then the conversion parameter ¢ = Cmoles per cell can be approximated
to be

o < Cmole ) (dry Cmass) ( wet mass ) <cell Volume) ~ 4.6 x 10 Cmole /cell.
dry Cmass wet mass cell volume cell

Effective photon absorption rate. Approximating the volume of a cyanobacterial cell as a cylinder
of radius 1 um and length 4 um, and assuming the cylinder to be randomly oriented with respect
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to the direction of light (or, alternatively, supposing light to be well scattered), then A, the average
cross-sectional area exposed to light, is

A = (cylinder width)(average cylinder projected length)

where ((0) = 4cosf® um is the projected length of a cylinder of length 4 ym and angle 6 from
transverse, and P(0) = (1/2) cos 8 is the probability of angle 6. This approximation underestimates
slightly the contribution from the cylinder cap at the end of the cylinder pointing towards the light and
overestimates slightly the contribution from the other cap. Note that assuming a cylindrical geometry
(as opposed to a spherical one) may be an effective strategy to reduce light exposure in some situations.

Inorganic carbon transport parameters. We use values for Synechocystis sp. PCC6803, based on
CO; and HCO; uptake rate and half-saturations from [32] which reported the values of maximum
inorganic carbon transport rate Vic = 391 micromoles per milligram of chlorophyll per hour and
approximately 1.03 x 10~ milligrams chlorophyll per cell (Synechocystis) [32]. Converting, then,
we obtain

1 umol CO,

mgChlh
391 x 1.03 x 10~2 ymol IC
3600 cell s

112 x 101601
cells

[l

Vic 39

Then

Virans
C

112 x 107161
4x10°4 5

2.80 x 10*3%.

rnc =

Also, from [32], Kic 22 8.0 x 1075 in Cmoles. Note, perhaps as another indicator of the importance
of community interactions and local environment, there is wide variation in mechanisms for inorganic
carbon transport even among cyanobacteria [33], so that these parameters can be expected to vary
between species.

Other parameters. Other parameter values used for numerics are tabulated below, together
with literature references when appropriate. Yield parameters are fixed by stoichiometric
and similar considerations. Inflow concentrations are estimated using Henry’s law at standard
atmospheric conditions. The true value of the photosynthetic efficiency parameter a is uncertain
(though photosynthetic efficiencies have been estimated at the community level, e.g., [34], it is
somewhat unclear how to translate to the cellular level) so we set « = 1. Note that « can effectively be
scaled into the photon flux, which is treated as an independent variable for computational purposes,
so does not have independent effect on qualitative conclusions. Inflow concentrations ICy, OCy,
and O, representative of environmental conditions are chosen. Background concentrations of these
quantities can vary from one environment to another, but results are fairly insensitive to reasonable
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variations. Photon flux is given in terms of microeinsteins with 1 microeinstein = 1 pE = 10~% moles

of photons.

Symbol Name Unit Value Reference
11 Inverse specificity Cmol-Omol T 0.01-1 [11,26,27]
T2 Excess elec. rate capacity 571 - -

[ Maximal transport rate 571 0.0225 Measured
Ttrans Maximal transport rate sl 1.24 x 1073 [32]
Ktrans Half saturation Cmol-L~! 3x10°° [29]

Ko, Half saturation Omol L! 8.1253 x 1010 [35,36]

Koe Half saturation Cmol-L~! 4.6022 [37]

v Photon flux pE-m=2.s71 0-2000 [38]

o Efficiency - 1 -

1Cy Inflow IC concentration Cmol- L™} 2.6 x 1074 -
0Cy Inflow OC concentration Cmol-L~! 0 -
Oy Inflow O, concentration Omol L1 13x107° -

D Chemostat turnover rate 51 various -

Y; Yield Cmol-cell ! z Yield

Y,e Yield Cmol-cell ! z Yield

Yon, Yield Omol-ph~! 1/8 Yield
Yo, Yield Omol-cell z/2 Yield
Yo, Yield Omol-cell ! 192z/4 Yield
Yo, Yield Omol-electron™! z/4 Yield
YViight Yield Electron-ph~1 1/2 Yield

Appendix C. Existence and Uniqueness of Single Species Viable State Solutions

First we show that Equations (28)-(31) either have a unique steady state solution (IC*, OC*, O3, P})
with IC*,0C*, 05 > 0 and P; > 0 (a viable solution) or no steady state solution with P; > 0 at all,
depending on choice of parameters ICy, O, and D. The argument depends on the forms of rate
function g1 (IC, Oy) and branching function 7 (IC, O,). Specific forms for 7 and g; are supplied in (14)
and (16), but for generality we will only require here that

1. 5 and g; are smooth.

Monotonicity in O;: for fixed value of IC, g1 (IC, O,) is monotonically non-increasing in O, with
values decreasing from g1 (IC,0) to 0 as O, varies from 0 to oo, and 7 (IC, O;) is monotonically
decreasing in O, with values decreasing from 1 to 0 as O, varies from 0 to co. Roughly
speaking, increasing oxygen concentration if anything inhibits photosynthesis and always shifts
photosynthetic product from biosynthesis to photorespiration.

3. Monotonicity in IC: for fixed value of O, g1(IC,O,) is monotonically non-decreasing in IC
with values increasing from 0 to g1(ICp,O;) as IC varies from 0 to ICy, and 5(IC,O;) is
monotonically increasing in IC with values increasing from 0 to #7(ICy, O;) as IC varies from 0
to ICy. (In fact, 7 should tend to 1 as IC — o). Roughly speaking, increasing inorganic carbon
concentration if anything promotes photosynthesis and always shifts photosynthetic product
from photorespiration to biosynthesis.

4. Fixation stability: we assume that condition (17), namely #71c€1,0, — 170,81,1c = 0, holds.

5. Note as well that the function f(7) is necessarily a linear function with parameterization
determined by stoichiometry and degree of reduction values. In fact, for the particular choices we
use, f(17) = (3/4) + (17/40)1, however we here need only suppose that f(17) = a + by for some
a,b>0.
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We consider Equations (28)—(31) in steady state, i.e.,

0 = —gP;+D(IC, —IC), (A1)
0 = (1-n)&P1—DOC, (A2)
0 = f(7)g1P1+ D(Oz0—02), (A3)
0 = (751 —D)Py, (A4)

A viable steady state requires that equation
17(IC,02)81(IC,02) = D (A5)
have a nonnegative solution (IC*, O3 ). By combining Equations (28) and (30), a second equation,
f(i1)(ICo —IC) = Oz — Oa, (A6)

is obtained relating IC and O,. As a consequence of Cmole conservation, see (26), it is evident that the
steady state value IC* is bounded from above by ICy, i.e., 0 < IC* < ICj. Note that (A6) has a unique
positive solution O,(IC) for each value IC in the interval [0,ICo], with in fact O, (IC) > O,. Hence,
any viable solution (IC*, O3) to Equations (A5) and (A6) must lie in the infinite half-strip solvability
region 0 < IC* < ICy, O; > Oyp. (If IC* = ICy, then, from (A1), necessarily P; = 0). In the case
that (A5) and (A6) have a solution (IC*, O3 ), then P; and OC* can be recovered as

P 5(ICo — IC*), (A7)
oC* = (1—y)(ICy—IC*),

with # evaluated at (IC*,O}). Thus, the problem essentially reduces to solving (A5) and (A6) for IC
and Os.

Note that, as a consequence of monotonicity and smoothness, the maximum value of g; for
Oy > 0and 0 < IC < ICj is g1 (ICy, 0). Recalling 0 < 7 < 1,if D > g1(ICp,0) then (A5) has no solution.
If D < g1(ICy,0) then, under the assumptions made on g; and 7, there is a value 0 < IC < IC, with
¢1(IC,0) = D, #(IC,0) = 1, and (A5) has a one parameter set of solutions (IC,O,) = (IC, h(IC))
over IC < IC < ICy where / is non-decreasing with h(IC) = 0. Since V(1g1), by the requirements
above, lies in the fourth quadrant (IC component is positive, O, component is negative) then the
tangent to the curve (IC, 7(IC)) in the increasing IC direction lies in the first quadrant. Also, since
17(ICo, O2)81(ICo, O2) = D has a finite solution, then the curve (IC, h(IC)) appears as one of the forms
in Figure A1. If this curve has no segment in the half-strip solvability region (lower curve), then there
is no viable solution. Conversely, if there is a segment in the solvability region (upper curve), then we
will show that, under the above requirements, there is a unique viable solution.
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0z

Oz

Ic ICy

Figure A1l. Two different possible curves (IC, h(IC)), where (IC, hIC)g; (IC, hIC) = D. The upper
curve, which intersects the half-strip 0 < IC < ICy, O, > O, , allows a viable solution; the lower curve
does not.

Consider lines of the form
C(IC) —IC) = Oy — Oqy, (A8)

cf. (A6), where C is a constant within the range fmin < C < fmax, With fmin = f(min(a + by)) = f(a),
fmax = f(max(a+by)) = f(a+Db). These are lines with slopes —C and Op-intercepts (0, Oz,9 + CICy)
that all intersect at the single point (IC, O,), see Figure A2. Note that lines with larger C have larger
Oy-intercept than lines with smaller C, i.e., lines move upward with increasing C. In the case that
the curve (IC, h(IC)) intersects the viable region, then it must also intersect each of the lines (A8)
exactly once. Since the lines correspond to f|,—o running to f|,—1, then there must be at least one
intersection point where both (A5) and (A6) are simultaneously satisfied. Each such point provides a
solution (IC*, O3).

0Oy

C(1C, — IC)
=03 =035

(Y. R ety A

---.-------—--
[
S

Ic

—
~

Figure A2. Illustration of the intersection of allowable lines of the form C(ICy — IC) = O — Oy with
the curve (IC, h(IC)) on which g1 = D is satisfied.

It is not clear that such a solution (IC*,OC*) would be unique in general. However, stability
requirement (4) above is sufficient to guarantee uniqueness, argued as follows. The lines (A8)
correspond to increasing 17 moving from bottom to top. Under the given requirements above,
requirement (4) in particular, we claim that the value of 7 is non-increasing along the curve (IC, (IC))
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in the increasing IC direction. That is, when moving along the curve (IC, h(IC)) in the increasing IC
direction, the left-hand side of (A6) decreases and the right-hand side increases. Hence there can be no
more than one intersection point where both (A5) and (A6) are simultaneously satisfied.

Proof of claim. First, note that Vi, Vg1, and V (17g1) all lie in the fourth quadrant of the (IC,O,) plane.
Further, the normal to the g1 = D, i.e., to the curve (IC, h(IC)), given by V(1g1) = #Vg1 + 1V
is a positive linear combination of Vg1 and V7, so in fact lies between Vg, and V7, see Figure A3.
Stability requirement 771cg1,0, — 70,81,1c = 0 guarantees that the geometry of the three gradient
vectors is as in Figure A3 (as opposed to the one where Vi and Vg are exchanged), except in the
equality case 171c81,0, — 170,81,1c = 0 in which case all three vectors are parallel. This shows that the
directional derivative of # is non-positive along the curve (IC, #(IC)) in the increasing IC direction,
as was claimed. Note, further, that 7 is constant if 171cg1,0, — 70,81,1c = 0 and strictly decreasing if
Mc81,0, — 10,811 > 0. [

As a side remark, reversing the geometry in Figure A3 (where V7 and Vg; are exchanged)
would result in a situation such that photosynthesis rate g actually decreases with increasing IC.
The unlikeliness of such behavior provides another intuition for the necessity of the fixation stability
condition (17).

ng =1

v;; \_(7}9'1)

Figure A3. Under requirement (4), the vectors V(17g1), Vg1, and V1 are oriented relative to each other
as shown.

Appendix D. Linearization and Stability

We consider here stability of steady states of the chemostat system, beginning with the single
species community model (28)—(31), which has two possible steady states, namely washout (P1(t) = 0)
and viable (P; () = P} > 0). Writing IC(t) = IC* +IC(£), OC(t) = OC* +OC(t), O5(t) = O} + Ox(t),
Pi(t) = Pj + IN’l(t), where tilded quantities are small perturbations to steady state values, then
system (28)—(31) linearizes to

1C(t) IC(t)
A1 0l | _ e oct o p | OCW A9
T 92(t) JeaIc, ,03,P7) gz(t) (A9)
Py(t) Py(t)
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with
—g11chh—D 0 —g10,1 —81
e (T=mg)icPhh =D (1-mg)o,r (A-=ns1 (A10)
(f(1)81) 1cP1 0 (f(n)g1)0,Pr—D f(n)g1 ’
(181)1cP1 0 (781),0,P1 ng1—D

all quantities evaluated at the steady state solution.
From (26) and (27)

IC

d( ¢\ 4 1C+oCc+P, _(1 10 1)1 o |_ ¢
dt \ por dt \ 30C - 40, + 4.7P; 0 3 —4 47 Jdi| o, DoR
Py

Hence, for any perturbation, its component normal to the null space of

11 0 1
A(o 3 —4 4.7) (ALD)

is damped (eventually) as e~P!. That is, excess or deficience in the initial perturbation of total carbon
and degree of reduction is removed from the system through outflow on the chemostat turnover time
scale. In fact, the row vectors of A are eigenvectors of the transpose of (1) with eigenvalue —D and so
—D is a multiplicity 2 (at least) eigenvalue of J(1). Note, thus, that we can therefore characterize the
dynamics described by the four dimensional system (A9) if we can characterize the dynamics on a two
dimensional subspace consisting of the null space of A, i.e., the subspace defined by C= 0, DoR = 0

(no net perturbation of total carbon or degree of reduction).
In fact, the null space of A can be interpreted as the phototroph flux mode space and is spanned

by the vectors
-1 -1
0 1
EFM; = EFM, =
! 47/4 |’ ? 3/4 |’
1 0

that encode the two phototroph elementary flux modes, recall Figure 3, with vector entries describing
changes to concentrations of the corresponding external quantities. Perturbation of the viable
steady state by increasing or decreasing flux through the photosynthesis-driven biosynthesis mode
corresponds to perturbation of the viable steady state solution in the direction EFM; (one Cmole
biomass and 4.7/4 Omoles produced per Cmole inorganic carbon consumed) and, likewise,
perturbation of the viable steady state by increasing or decreasing flux through the photorespiration
mode corresponds to perturbation of the viable steady state solution in the direction EFM; (one Cmole
organic carbon and 3/4 Omoles produced per Cmole inorganic carbon consumed).

The two eigenvalues of J(!) |p,>0 that correspond to eigenvectors in the null space of A are given by

1
As = S(((fg1)o, — g1ic)P1 — 2D +1781) (A12)
1 ) e 17 1/2
+5 (((fg1)o, — §110)P1 +181)" — (41m1c — 3110,)81P1 — 10 (Mmc81,0, — 11c81,0,)81P1

and will be discussed for particular steady states below.
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Washout State (One Species System). For the washout state (P; = 0), (A10) becomes

—-D 0 0 —81
0 -D 0 (1-n)%
0 0 -D finNs
0 0 0 yu1i—-D

JVlp—o = (A19)

with ¢1 and 5 evaluated at IC = ICy and O, = O,(. Note that (A13) has eigenvalues Ay = —D < 0
with multiplicity 3 and A, = #g1 — D, seen directly or by setting P; = 0 in (A13). Hence the washout
state is stable if A, < 0 and unstable if A, > 0. Note that A, = 17(ICo, O2,0)81(ICo, O0) — D is the net
intrinsic biomass production rate at inflow conditions.

The eigenspaces for (A13) are

1 0 0 -1
0 1 0 1—-7
EY = span , , , E% = span ,
1P 0 0 1 P f(n)
0 0 0 n

with 7 = 5(IC, Oy0), where superscript 0 indicates the washout state, and subscript j indicates
eigenvalue /\]-. Perturbations of dissolved chemical concentrationss only, i.e., perturbations contained
in the eigenspace EY, decay at rate D since they are simply washed out of the chemostat. We can
call E the washout space. When a small quantity of cyanobacteria are added to the system, in the
unstable case A, > 0, dynamics of the linearized system thus effectively reduce to exponential
growth on the one dimensional space Eg, with Py, OC, and O, growing and IC decaying, in relative
ratios as indicated by the entries of the eigenvector v, for Ay, where v; is the basis vector shown
above for R). Thus, the resulting invasion of cyanobacteria is accompanied by decrease in inorganic
carbon concentration and increase in organic carbon and oxygen concentrations. Note that eigenvector
vy = 1 EFM; + (1 — i7) EFM), indicating that the linearized growth dynamics occurs, as to be expected,
as a combination of the photosynthesis mode and the photorespiration mode weighted by the
branching parameter 1 (ICg, Oz).
Viable State (One Species System). For the viable state (P; > 0),

—81ichh—D 0 —g1,0,1 —81
(I=mgich D (1-nmg)o,r (1-mg
JUps0 = / 02 (A14
PO Fgach 0 FsoeP-D fing )
(181) 1cPr 0 (181),0,P1 181 —D
is evaluated at the viable state values of IC, O, and Py. | @ |p,>0 has Ay = —D as a multiplicity 2
eigenvalue with
0 —811,0,
1 0
E! = span ,
1P 0 g11,1c
0 (811¢1,0, — 81,0,71,10) P1

where superscript 1 refers to the viable state and subscript 1 to eigenvalue A;. As noted previously,
dynamics of (A9) include the null space of A, recall (A11), as an invariant region, with components
of the solution outside of this region damped at rate e~P!. Note that E} Nnull(A) = {0}; E! can be
considered to be the washout space. Decomposing J [p,>0 = KM |p,>0 — DI where KM |p,>0 can be
regarded as the kinetics portion of J(1) |p, >0, note that eigenspace E! is the null space of K ™ |p,>0 and
can hence be interpreted as the space of community-level kinetically neutral perturbations.
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Dynamics in the null space of A are characterized by the basis formed by the two mode vectors
EFM; and EFM,; as well as the two eigenvalues (A13). Using the viable state condition 17g1 = D,
(A13) reduces to

1
My = S(((fg1)o, — g1ic)P1 — D)
1 ) e 17 1/2
£5 | (((fg1)0, = g10c)P1 + D)” — (4imc — 310,)81P1 — E(mcgmz — 171c81,0,)81P1

Note that the real parts of both A; and A, are negative under the assumptions that derivatives
with respect to IC are non-negative, derivatives with respect to O, are non-positive, and condition (17)
holds, i.e., the viable state, when it exists, is stable under the conditions that we consider
biologically reasonable.

Next we present stability analyses for steady states of the two species system (38)—(42), which
has three types of steady state solutions: the washout solution with P; = P, = 0, the single species
solution with P; > 0, P, = 0, and the coexistence solution P1,P, > 0. We present stability analyses
only for the washout and single species states. (The coexistence steady state was explored numerically
instead). Note that if P, = 0 then (38)-(41) reduce, essentially, to (28)—(31), so that steady states for the
washout and single species systems are the same as previously (with the addition that P, = 0), though
their stability status in principle might be different. System (38)—(41) linearizes to

0 1C(t)

; oC(t ocC(t)

7| 0ar) | =7P0Ch,0C, 05, PP | Oy (t) (A15)
Py(t) Py(t)
0 Pa(t)

In the cases under consideration of steady state solutions with P; = 0, the Jacobian matrix takes
the form

—81ich =D 0 —g1,0,P1 —81 82 o3

(M=mg)ich —-D (1-m)g)oPr (1-mg —28 i) —2¢»
T =1 (fpg1)ch 0 (fNg)o,P—D flng1 —Ha | = g

(181) 1cP1 0 (181)0,P1 181 —D 0 0

0 0 0 0 $—D 0 00O $—D

Much of our stability results for the one species case are still of use here. Note that J?) shares
the same eigenvalues (and multiplicities) as J(1) with the addition of an extra eigenvalue g, — D.
Eigenvectors of /(1) are also eigenvectors of J(2), corresponding to the same eigenvalues, with a 0 in
the fifth component corresponding to P, concentration perturbations. The only remaining item to be
determined is the eigenvector corresponding to the new eigenvalue g — D.
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Proceeding as in the one species case, from (26) and (27)

4 c 4 IC +OC + Py + P,
dt \ poRr dt \ 30C — 40, + 4.7P; + 4.1P;
IC
oC ~
_(rvo0o1 oaYa| o [ ¢
“lo3 447 a1 )a| 2|7 DeR
Py
Py

Hence, for any perturbation, its component normal to the null space of

11 0 1 1
B<0 3 —4 47 4.1) (A16)

is damped (eventually) as e~*, that is, excess or deficience in the initial perturbation of total carbon
and degree of reduction is removed from the system through outflow on the chemostat turnover
time scale. Note again, thus, that we can therefore characterize the dynamics described by the five
dimensional system (A15) if we can characterize the dynarmcs on a three dimensional subspace

consisting of the null space of B, i.e., the subspace defined by C= 0, DoR = 0 (no net perturbation of
total carbon or degree of reduction).

Continuing to proceed as before, we note that the null space of B can be interpreted as the two
species flux mode space and is spanned by the vectors

-1 -1 1
0 1 -2
EFM; = | 47/4 |, EFM=| 3/4 |, EFM3=| —-19/4 |,
1 0 0
0 0 1

that encode the effect of the three elementary flux modes shown in Figure 3 on external concentrations.
As before, perturbation by increasing or decreasing flux through the photosynthesis-driven
biosynthesis mode corresponds to perturbation in the direction EFM; (one Cmole biomass and
4.7/4 Omoles produced per Cmole inorganic carbon consumed) and perturbation by increasing or
decreasing flux through the photorespiration mode corresponds to perturbation in the direction EFM,
(one Cmole organic carbon and 3/4 Omoles produced per Cmole inorganic carbon consumed). The new
vector EFM3 corresponds to perturbation that increases or decreases flux through the heterotroph
biosynthesis mode (one Cmole biomass and 1 Cmole inorganic carbon produced per two Cmoles
organic carbon and 1.9/4 Omoles consumed).

Washout State (Two Species System). For the two species washout state (P; = P, = 0) along
with IC = 1C;, OC =0,0, = 02,0,

-D 0 0 —g1 0
0 -D 0 (1-n)g O

J@Neypmo=] 0 0 =D flngr 0 (A17)
0 0 0 ng1— 0
0 0 0 0 -D
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(note from (20) that g2|oc—p = 0) with g; and 7 evaluated at IC = IC), OC =0, O» = Oap.
Note that (A17) has, in common with (A13), eigenvalues Ay = —D < 0 (with multiplicity 4)
and Ay = 7g1 — D. Hence, again, the washout state is stable if A; < 0 and unstable if A, > 0.
The eigenspaces for (A17) are

1 0 0 0 -1
0 1 0 0 1-y

E) = span O, 10, 1|, |O , Ej =span fn)
0 0 0 0 i
0 0 0 1 0

Perturbations without introduction of phototrophs decay at rate —D. As before, when a small
quantity of phototrophs are added to the system, in the unstable case, dynamics effectively reduce to
exponential growth on the one dimensional space EY, with P;, OC, and O, growing and IC decaying,
in relative ratios as indicated by the entries of the eigenvector for A;. Note in particular that the
P>-component of the Ay-eigenvector is zero, indicating that the heterotroph is unable to invade. That is,
the heterotroph requires an already established population of phototrophs (with corresponding finite
supply of organic carbon) before it can become viable. Note as before that A,-eigenvector can be
written 7 EFM; + (1 — 57) EFM,, indicating again that the linearized growth dynamics occurs as
a combination of the photosynthesis mode and the photorespiration mode weighted by the branching
parameter 77 (ICy, Oy).

Single Species State: Invasion (Two Species System). The Jacobian matrix for the base steady
state is

82
1 =282
JWp, 0 1, (A18)
0
0000 g-D

](2) —

where | @ |p,>0 is as given in (A14) and, in addition, g is evaluated at OC* and Oj. As previously, the
eigenvalues of J() |p, >0 are also eigenvalues of J@) with identical eigenspaces, except with zeros in the
new, fifth component of the two species system corresponding to perturbations in the P, component.

Hence the dynamics in those eigenspaces are independent of perturbation to P>, and, by assumption,
the dynamics on those eigenspaces are stable. The new eigenvalue is Ay = g» — D with eigenspace
Ei = span{vy }, where v4 # 0 satisfied | @)y, = A4vy. Note that vy is necessarily a linear combination
of the three mode vectors EFM;, EFM,, and EFM;. It is easily seen in the case of large ¢,(OC*,O3)
that v4 = EFM3, that is, the instability dynamics are dominated by the heterotrophic growth mode.
When growth is not as dominant, the relative role of phototroph flux modes in maintaining carbon
and DoR balance is more significant.

Appendix E. Optimization in the Single Species Chemostat With Respect to Affinity

We consider a unique, viable solution (IC*,OC*,O3,P}) to Equations (A1)-(A4), under the
assumptions of Appendix C, as a function of affinity parameter 7;. In particular, we show that
(d/dy1) Py < 0foryq > 0,ie., steady state biomass increases with decreasing 1 To do so, we compute
the variation with respect to y; of the solution to Equations (A5) and (A6). In particular, perturbing
Y1 — 71 + A7, then perturbed quantities IC* + IC Ayq and O3 + O, A1 satisfy, to linear order,

(25)(5)-(F)
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where

= (n81)1c
= (ﬂo
f' o )ic(ICo —IC*) — f(i%),
= f'(n")no,(ICy —1C*) —1,
= 7'7,71g1
= —f'(r")m}, (ICo —IC*).

Here, superscript * corresponds to evaluation at IC=IC*, 0,=053.
System (A19) has solution

- m O 0w >
I

IC 1 DE — BF
<62>_ADBC(AF—CE>' (A20)
Computing,
AD —BC = (110,811 = Mic81,0,)f (1) (ICo —1C) + &7 (f (1)1, — 1ic) + 1 (f(1*)81 0, — &11c)

which, assuming stability condition (17), is strictly negative. Hence, (A20) is the unique solution
to (A19).

To compute the variation of P, we take the the variation of Equation (A7) and, using
solution (A20), obtain after some computation

d * * *
EPT = (15, +11cIChH, +106,05,,)(IC —IC*) —7"ICY,
o % % IC071C* 3 * gik
= M AD — BC Siic— 3810, T e — @)
< 0,

as was to be shown.

Appendix F. Invasion Eigenvector

The eigenvector vy for the invasion dynamics matrix (A18) can be computed from row reducing
the equation J® — A4 = 0, leading to the diagonal system (solvable by back-substitution) for
vy = (ic,0c,02, p1, p2)

(81,1cPT + 82)ic + g1,0,P102 + g1p1 + g2p2
(((1+1)g1)1cPT + 282)ic + g20¢ + ((1+17)g1)0,02 + (1 + 17)g1p1
= ((Fg1)icP1 — (19/40)g2)ic + ((Fg1)o,P7 — 82)02 + Fg1p1

0 = <(ng1)IcP* ngg”gl((Fgl)lcPf—(19/40)g2))ic

+ ((Or9000uP; + 18 (o — (19/40)g2) ) o

with F = (11/40) + (17/40)# and all quantities evaluated at the steady state values IC*, OC*, O3, P
as well as P} = 0. Recall that all non-differentiated quantities are non-negative, that all derivatives
with respect to IC are non-negative (with g yc strictly positive) and all derivatives with respect to O,
are non-positive, and that, evaluated at the starred quantities, 77g; = D.
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If the eigenvalue g, — D > 0, with g, evaluated at steady state values, then the phototroph-only
steady state is unstable to perturbations along eigenvector v. The case g > D = p5*g]
(with * = (IC*,03), g7 = §1(IC*,03), &5 = £2(0C*,03)), i.e., heterotroph growth time scale short
in comparison to washout time, is informative. Expanding all quantities in powers of 17*¢7 /g3, e.g.,

* ok * %\ 2
1C(t) = 1CO (1) + L8114 + (M) ICO() +...,
82 8

and similarly for OC, O,, P;, and P, we can apply standard asymptotic methods to approximate
solutions order by order. To leading order, we find

oc® = _—21cl®
o — f%c@
Pl — o

P — 1

Note that during the transient period of the initial invasion, intuition for heterotroph benefit to
phototrophs holds: introduction of heterotrophs, i.e., Pgo) > 0, results in increase in inorganic carbon
concentration, i.e., IC 0 > 0, and decrease in organic carbon and oxygen concentrations, i.e., OC(O),
Ogo) < 0. Note that these perturbations are consistent with the stoichiometry of EFM3, and that there
is no effect of phototroph population at this order, a consequence of the g5 > 7*¢] asymptotics, but at

the next order,

* % 19 % % Py
Py = <(17 giic = 5501 g1)02> ek
©

so that Pg” is positive if P, > 0, i.e., phototroph population biomass increases with introduction of
heterotrophs in the transitory invasion period.
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Abstract: The gut microbiome is a highly complex microbial community that strongly impacts
human health and disease. The two dominant phyla in healthy humans are Bacteroidetes and
Firmicutes, with minor phyla such as Proteobacteria having elevated abundances in various disease
states. While the gut microbiome has been widely studied, relatively little is known about the
role of interspecies interactions in promoting microbiome stability and function. We developed a
biofilm metabolic model of a very simple gut microbiome community consisting of a representative
bacteroidete (Bacteroides thetaiotaomicron), firmicute (Faecalibacterium prausnitzii) and proteobacterium
(Escherichia coli) to investigate the putative role of metabolic byproduct cross feeding between species
on community stability, robustness and flexibility. The model predicted coexistence of the three
species only if four essential cross-feeding relationships were present. We found that cross feeding
allowed coexistence to be robustly maintained for large variations in biofilm thickness and nutrient
levels. However, the model predicted that community composition and short chain fatty acid levels
could be strongly affected only over small ranges of byproduct uptake rates, indicating a possible
lack of flexibility in our cross-feeding mechanism. Our model predictions provide new insights
into the impact of byproduct cross feeding and yield experimentally testable hypotheses about gut
microbiome community stability.

Keywords: microbial communities; biofilm consortia; gut microbiome; cross feeding; metabolic
modeling; biofilm modeling

1. Introduction

Natural microbial communities typically form biofilms in which different species compete for
and efficiently utilize available nutrients [1-5]. The presence of spatial heterogeneity within biofilms
plays an essential role in the evolution and function of microbial species [2,6-9] and has profound
effects on biofilm formation and development [5,10-12]. Concentration gradients in key nutrients
due to limited diffusion can establish metabolic niches within the biofilm which produce spatial
variations in biomass density [13] and partitioning of species [14]. With their inherent chemical
gradients, biofilms can provide niches for both fast and slow growing organisms, a design feature
thought to be critical to the stability of naturally occurring systems. Microbes residing in multispecies
biofilms exhibit phenotypes distinct from planktonic growth. For instance, these immobilized bacteria
can tolerate antimicrobial agent concentrations 10,000-fold higher than the same microbes grown
planktonically [15,16]. Biofilm communities are often compared to tissues found in higher eukaryotic
organisms based on the large number of cell types involved, the complex interactions between cells,
the ability of cells to self-organize into three-dimensional structures and the emergent properties of the
integrated systems.
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Natural communities have evolved to exploit the native metabolic capabilities of each species
and are highly adaptive to changes in their environments. Adaption is achieved through a variety of
mechanisms, including cross feeding of metabolites synthesized by one species to support the growth
of another species [17-20]. These cross-feeding relationships are a result of metabolic specialization
and establish a food web within the community that maximizes utilization of available resources.
When combined with the biofilm mode of growth and associated diffusional limitations, cross
feeding establishes local metabolic niches that allow otherwise slower growing species to coexist
with faster growing species and is hypothesized to stabilize the community against environmental
perturbations [21-24]. The spatial partitioning of metabolism and physical immobilization by secreted
polymers make biofilm cultures distinct from planktonic cultures grown in well-mixed environments
where coexistence is not possible unless the species have the same growth rate.

The Human Microbiome Project was launched in 2008 with the goal of developing improved
understanding of the human microbiome and its role in human health and disease [25]. To date, the
most widely studied system is the gut microbiome due to its critical role in food metabolism [26-28],
profound influence on the immune system [29,30] and suspected role in a wide variety of diseases
including gut infections [31], inflammatory bowel and Crohn’s diseases [32,33], obesity [34],
diabetes [35], cardiovascular disease [36], rheumatoid arthritis [37], colorectal cancer [38] and even
depression [39]. The human gut microbiome is a highly complex multispecies system thought to consist
of at approximately 1800 genera and 15,000-36,000 species of microbes [40]. The two dominant phyla
in healthy humans are Firmicutes and Bacteroidetes, which comprise more than 90% of the community.
Other important but much less prevalent phyla are Proteobacteria, Actinobacteria, Euryarchaeota and
Verrucomicrobia as well as Eukaryota such as fungi. A critical metabolic function of the gut microbiota
is to convert dietary fiber into short-chain fatty acids (SCFAs) that can be absorbed by the host intestine
as an energy source. The key SFCAs acetate, propionate and butyrate are commonly present in an
approximate 60:20:20 molar ratio [41].

Gut microbiome function is usually robust to dietary changes and other perturbations that
alter species composition and SCFA synthesis. Correspondingly, metagenomic studies have shown
wide variations in microbiota diversity and composition within healthy human populations [42].
However, large perturbations in susceptible individuals can result in long-term microbiome alteration.
Many diseases are associated with the gut flora being perturbed from their normal state through a
poorly understood process known as dysbiosis [26,43]. For example, Clostridium difficile infections are
often attributed to the use of broad spectrum antibiotics that inadvertently alter microbiota diversity
and species composition, thereby reducing colonization resistance to pathogen invasion [44,45].
The role of species interactions in maintaining healthy community function or promoting dysbiosis are
poorly understood. Despite some recent progress [46—-48], the types of species interactions required
for stable community dynamics in biofilm communities where nutrient gradients provide niches for
different metabolic lifestyles have not been elucidated.

While foundational to the vast majority of microbial life on the planet, the basic design principles
of cross-feeding microbial biofilms remain poorly understood due largely to the complexity of
naturally occurring systems [1,5]. Synthetic microbial communities comprised of a smaller number
of well characterized and genetically manipulable organisms are tractable alternatives to natural
systems [49-51]. In principle, these synthetic communities can be designed to capture the most
salient features of the corresponding natural communities while offering the capability to manipulate
individual species metabolism and cross-feeding interactions. However, few comprehensive studies
of metabolite cross feeding in synthetic biofilm communities are available in the literature [50,52].
Quantitative understanding of the relationships between metabolite cross feeding, spatial arrangement,
metabolic rates and community metabolism is critical to systematically analyze and rationally
manipulate biofilm communities associated with the human gut and other microbiomes.

In this study, we developed a biofilm metabolic model of a very simple bacterial
community consisting of a representative bacteroidete (Bacteroides thetaiotaomicron), firmicute
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(Faecalibacterium prausnitzii) and proteobacterium (Escherichia coli) as an in silico surrogate for the
human gut microbiome. The model was used to investigate differences between single and multispecies
biofilms, to discover putative cross-feeding relationships between biofilm species, to determine
which cross-feeding relationships were essential for species coexistence, to examine robustness
of the cross-feeding community to biofilm and environmental perturbations and to explore the
flexibility of the cross-feeding strategy with respect to SCFA synthesis. The model generated new
and experimentally testable hypotheses about the role of byproduct cross feeding in the stability and
function of the human gut microbiome.

2. Results
2.1. Metabolic Analysis of Single Species Biofilms

We first performed flux balance analysis (FBA) with the genome-scale metabolic reconstruction of
each species to determine the secreted byproducts to be included in biofilm metabolic models. Nutrient
uptake rates were specified as 10 mmol/gDW /h for glucose and 1 mmol/gDW /h for the three amino
acids (methionine, serine, tryptophan) essential for F. prausnitzii in silico growth. The FBA results for
planktonic growth can be qualitatively summarized as follows (Figure 1):

e B. thetaiotaomicron: high fluxes of acetate and CO, and a low flux of propionate
F. prausnitzii: high fluxes of butyrate, CO,, formate and lactate
E. coli: high fluxes of acetate, ethanol and formate and a very low flux of succinate

glucose acetate
_— e SINGLE SPECIES METABOLISM
Bacteroides .
S % propionate
4 L] Nutrients
3AAs' Bacteroidetes / . Glucose
—_— 3 amino acids: methionine, serine,
co, tryptophan
glucose - butyrate Short Chain Fatty Acids
- ) Acetate
“/ Faecalibacterium ‘\_“ formate Butyrate
| prausnitzii Propionate

3AAs\  Firmicutes  / |actate
- -~

- _

Organic Acids

e o, Acetate
r—~ Ethanol
acetate Formate

Lactate
Succinate (BT biofilm)

glucose

Escherichia coli

Proteobacteria Other Byproducts

CO, (BT planktonic)

formate
succinate
Figure 1. Secreted byproducts predicted by metabolic reconstructions and biofilm metabolic models of
the three individual species. The same byproducts were predicted for planktonic and biofilm growth

with the exception of B. thetaiotaomicron, for which CO, was produced only planktonically and succinate
was produced only in the biofilm.
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These secreted byproducts were included as extracellular metabolites in single species biofilms
to further characterize byproducts possibly cross fed in the three species biofilm community. Single
species biofilm simulations were performed assuming a fixed biofilm thickness of 40 um, bulk
nutrient concentrations of 5 mmol/L glucose and 0.5 mmol/L each amino acid, and initial conditions
corresponding to a spatially uniform biomass concentration of 10 g/L. Due to the lack of available data
on species-specific uptake kinetics for glucose and the three amino acids, each species was assigned
the same uptake parameters (see Materials and Methods). Dynamic simulations were run for 300 h to
ensure that a steady-state solution was obtained for each species.

Figure 2 shows steady-state spatial profiles of the biomass concentration, growth rates, nutrient
concentrations and byproduct concentrations for each single species biofilm. B. thetaiotaomicron
produced the highest biomass concentration throughout the biofilm due to its relatively high growth
rate in the nutrient rich region near the biofilm-stool interface (z = 0 um). The biomass concentration
exhibited a strong spatial dependence due to biomass removal by erosion at the same interface.
The nutrient concentrations also showed spatial variations due to cellular consumption and diffusion
limited transport through the biofilm. The primary metabolic byproducts of B. thetaiotaomicron were
predicted to be acetate and succinate with propionate produced at relatively low levels. The CO,
synthesized planktonically was replaced by succinate in the biofilm environment. Byproduct
concentrations were almost constant throughout the biofilm due to diffusion and removal at the
two boundaries. The second fastest growing species E. coli produced acetate, ethanol and formate
as primary byproducts and succinate as a very minor byproduct. F. prausnitzii produced the least
biomass despite having the highest growth rate in the nutrient lean region near the colon—biofilm
interface (z = 40 um). The primary metabolic byproducts of F. prausnitzii were butyrate, CO,, formate
and lactate, as predicted planktonically.

200 202 2
2 & BT 2
© FP <]
£ 100 £ 01 \ o1
k] 2 EC =
o 8 | 9]
0 O o 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
o 03 03 L 03
£ Te— o ©
s ) £ o2
S 025 - £ 02 go.
g T 8 X 2
=
= 0.2 0.1 0.1
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
100 40 40
[} 2
T o a
3 50 S20 Q 20
s} 5 (8]
< [}
0 0 ‘ ‘ ‘ 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
100 200 100
= )
2 b 2
8 50 £ 100 8 50 —
< 5 «©
w i 1
0 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
ot o 100
I T
<
S 2 § 50
g S
o 12}
0 5 : 0 5 : )
0 10 20 30 40 0 10 20 30 40
Location (micron) Location (micron)

Figure 2. Steady-state spatial profiles predicted by single species biofilm models. Units are
g/L for biomass, h~! for growth rate and mmol/L for the other variables. Species: BT denotes
B. thetaiotaomicron, FP denotes F. prausnitzii and EC denotes E. coli.
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2.2. Predicting Cross-Feeding Relationships in the Multispecies Biofilm

A Diofilm metabolic model was constructed for the three species community comprised
of B. thetaiotaomicron, F. prausnitzii and E. coli. Initial simulations were aimed at discovering
putative cross-feeding relationships without any a priori assumptions concerning the nature of
these relationships. Therefore, we allowed each species to uptake any available byproduct (acetate,
butyrate, CO,, ethanol, formate, lactate, propionate, succinate) to increase its local growth rate in the
biofilm. Butyrate uptake was excluded for B. thetaiotaomicron and ethanol and propionate uptakes
were excluded from F. prausnitzii because these models lacked the necessary exchange fluxes. Due to
the lack of data on species-specific uptake kinetics for the eight byproducts, each species was assigned
the same uptake parameters (see Materials and Methods). As with the single species, the multispecies
biofilm simulations were performed with a fixed thickness of 40 um and bulk nutrient concentrations
of 5 mmol/L glucose and 0.5 mmol/L each amino acid. The initial conditions corresponded to spatially
uniform biomass concentrations of 10 g/L for each species.

Initial simulations showed that B. thetaiotaomicron failed to synthesize propionate in the
multispecies biofilm despite producing this SCFA as an isolated species (see Figure 2). Because
the B. thetaiotaomicron reconstruction predicted synthesis of succinate rather than propionate for
sufficiently large CO, uptake rates, we excluded CO; uptake for B. thetaiotaomicron to favor propionate
synthesis. Figure 3A shows time profiles of the biomass, nutrient and byproduct concentrations in
the middle of the biofilm (z = 20 um) over the first 200 h of simulation. Corresponding profiles of the
species growth, uptake and secretion rates are shown in Figure 3B. Interestingly, F. prausnitzii produced
substantially more biomass than E. coli at the low nutritional conditions that quickly developed in the
biofilm interior. Butyrate, CO, and formate were predicted to be present at high concentrations, while
the remaining five byproducts were synthesized at much lower levels.

Predicted cross-feeding relationships were identified from the byproduct secretion and uptake
fluxes in Figure 3B. The following relationships were observed:

Acetate: produced by B. thetaiotaomicron and E. coli; consumed by F. prausnitzii

COy: produced by F. prausnitzii and B. thetaiotaomicron; consumed by E. coli and F. prausnitzii
Ethanol: produced by E. coli; consumed by B. thetaiotaomicron

Formate: produced by E. coli and F. prausnitzii; consumed by F. prausnitzii

Lactate: produced by F. prausnitzii; consumed by B. thetaiotaomicron and E. coli

Succinate: produced by B. thetaiotaomicron and E. coli; consumed by E. coli

Based on the flux patterns in Figure 3B, some of these cross-feeding relationships appeared to
be more important than others. The acetate, ethanol and succinate cross-feeding relationships were
characterized by relatively large, sustained exchange fluxes. By contrast, lactate cross-feeding fluxes
were relatively large only over the first 20 h. The CO, uptake fluxes were small but sustained over
the entire simulation. Formate uptake by F. prausnitzii was small and occurred only for the first 10 h.
The cross-feeding patterns between the three species are summarized in Figure 4 with putative formate
cross feeding neglected due to its presumed insignificance.
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Figure 3. Time profiles predicted in the middle of the multispecies biofilm with byproduct cross
feeding. (A) Biomass, nutrient and byproduct concentrations. Units are g/L for biomass and mmol/L
for the nutrients and byproducts; (B) Species growth, uptake and secretion rates. Units are h~! for
the growth rate and mmol/gDW /h for the other rates. Uptake rates are negative and secretion rates
are positive. Amino acids: Met denotes methionine, Ser denotes serine and Trp denotes tryptophan.
Byproducts: Ace denotes acetate, But denotes butyrate, Eth denotes ethanol, Frm denotes formate,
Lac denotes lactate, Prp denotes propionate and Suc denotes succinate.
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Figure 4. Byproduct cross-feeding patterns identified from the species uptake and secretion fluxes in
Figure 3B. Formate cross feeding has been omitted due to its small magnitude and duration.

2.3. Establishing Species Coexistence in the Multispecies Biofilm

The previous dynamic simulation was performed over a short time horizon of 200 h that was
insufficient to determine if the three species would coexist over long time periods as would be required
for proper microbiome function. Therefore, we repeated the multispecies simulation over a much
longer time horizon of 10,000 h to determine if the three species community was stable. While
B. thetaiotaomicron and F. prausnitzii were able to coexist, E. coli was eliminated because its biomass
generation through growth was exceeded by its biomass removal at the biofilm-stool boundary due
to erosion. To achieve coexistence of the three species, the ATP maintenance value in the E. coli
reconstruction was decreased from the nominal value of 8.43 to 6.75 mmol ATP/gDW /h. We justified
this modification by noting that the actual gut environment is considerably more complex than reflected
in our model and that the presence of unmodeled nutrients could enhance E. coli growth relative to
the other two species. The new ATP maintenance value of 6.75 mmol ATP/gDW /h was chosen such
that the E. coli abundance averaged across the biofilm was within the range reported for healthy gut
microbiomes, as discussed below.

Figure 5A shows steady-state concentration profiles for the three species and their byproducts.
Corresponding profiles of the species growth rates and the byproduct uptake and secretion rates are
shown in Figure 5B. The reduced E. coli ATP maintenance value allowed all three species to stably
coexist. When averaged across the biofilm, the model predicted a total biomass concentration of 182 g/L
comprised of 53.9% B. thetaiotaomicron, 32.8% F. prausnitzii and 13.3% E. coli. These values are within
the large range of biomass concentrations reported for other types of bacterial biofilms [13] and the
ratio of Bacteroidetes-Firmicutes-Proteobacteria reported for healthy gut microbiomes [53]. The model
achieved coexistence by a careful balance of species growth rates across the biofilm. B. thetaiotaomicron
was predicted to have the highest growth rates in the nutrient rich region near the biofilm-stool
interface, while F. prausnitzii growth was favored in the nutrient lean region near the colon-biofilm
interface. Unlike the other two species, E. coli was not predicted to establish a particular spatial niche
that favored its metabolism but rather produced sufficiently large growth rates over the entire biofilm
to remain competitive.

The byproduct cross-feeding relationships depicted in Figure 4 also were observed in the stable
community. As before, the most important relationships appeared to be: (1) F. prausnitzii consumption
of acetate and succinate produced by B. thetaiotaomicron and E. coli; and (2) B. thetaiotaomicron
consumption of ethanol produced by E. coli. Cross feeding of CO,, formate and lactate appeared to
be less important based on the small uptake rates of these byproducts. As expected, cross feeding
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of butyrate and propionate were not predicted. The model predicted a spatially averaged SCFA
concentration of 75 mmol/L comprised of 2% acetate, 10% propionate and 89% butyrate, which was
much less acetate, much more butyrate and less propionate than commonly reported in experimental
studies [54]. Because B. thetaiotaomicron synthesizes both acetate and propionate and F. prausnitzii
converts acetate to butyrate, these results suggest that the ratio of the B. thetaiotaomicron and F. prausnitzii
was too low or that the SCFA synthesis rates were not properly balanced. While the ATP maintenance
value of each species could have been adjusted to alter the SCFA composition, we left these values
unchanged since this study was focused on community stability not SCFA synthesis.
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Figure 5. Steady-state spatial profiles predicted by the multispecies biofilm model with reduced E. coli
ATP maintenance. (A) Biomass and byproduct concentrations. Units are g/L for biomass and mmol/L
for the byproducts; (B) Species growth rates and byproduct uptake and secretion rates. Units are h~?
for growth rates and mmol/gDW /h for the other rates.

The previous simulations demonstrated that the three species cross-feeding community was stable
over long time periods with steady-state species compositions within experimentally determined
ranges for healthy gut microbiomes. When cross feeding was eliminated by removing all byproduct
uptakes from the model, the steady state consisted of just E. coli (Figure S1). This result demonstrated
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that byproduct cross feeding was necessary as well as sufficient for community stability. Furthermore,
biofilm simulations performed for all three possible combinations of two species predicted that the
B. thetaiotaomicron—F. prausnitzii and B. thetaiotaomicron—E. coli combinations would result in species
coexistence (Figure S2). By contrast, F. prausnitzii was unable to compete with E. coli, demonstrating
that B. thetaiotaomicron was necessary for F. prausnitzii to coexist in the presence of E. coli.

2.4. Identifying Cross-Feeding Relationships Essential for Community Stability

Given that byproduct cross feeding was required for community stability in both two species
and three species biofilms, we sought to determine which specific cross-feeding relationships were
required for species coexistence. Based on the relatively large magnitudes of the associated uptake
fluxes, we hypothesized that acetate, ethanol and succinate cross feeding were sufficient for community
stability while CO,, formate and lactate cross feeding were unnecessary. This hypothesis was tested by
eliminating all byproducts uptakes in the three species community except acetate and succinate by
F. prausnitzii and ethanol by B. thetaiotaomicron. We found that the community was stable with almost
the same average species abundances as predicted when all cross-feeding relationships were allowed:
53.8% B. thetaiotaomicron, 32.6% F. prausnitzii and 13.6% E. coli. These results were attributed to the
species growth rate profiles being virtually unchanged when CO,, formate and lactate cross feeding
were eliminated.

We performed additional simulations to better understand the impact of acetate, ethanol and
succinate cross feeding on community stability and species abundances. The following cross-feeding
scenarios were investigated:

1. Nominal case: acetate and succinate produced by B. thetaiotaomicron and E. coli consumed by
F. prausnitzii; ethanol produced by E. coli consumed by B. thetaiotaomicron

Nominal case without acetate consumption by F. prausnitzii

Nominal case without succinate consumption by F. prausnitzii

Nominal case without ethanol consumption by B. thetaiotaomicron

Nominal case without F. prausnitzii consumption of acetate produced by B. thetaiotaomicron
Nominal case without F. prausnitzii consumption of succinate produced by B. thetaiotaomicron
Nominal case without F. prausnitzii consumption of acetate produced by E. coli

Nominal case without F. prausnitzii consumption of succinate produced by E. coli

No cross feeding

O XN T RN

These nine cross-feeding scenarios produced six distinct biofilm behaviors as shown in Figure 6.
The nominal case with acetate, ethanol and succinate cross feeding resulted in coexistence of the
three species (first row). The same solution was predicted when F. prausnitzii was not allowed to
consume succinate produced by E. coli, demonstrating that this specific cross-feeding relationship
was unimportant. When acetate consumption by F. prausnitzii was removed, F. prausnitzii was
eliminated due to its substantially reduced growth rate (second row). The same solution was obtained
either when F. prausnitzii was not allowed to consume any succinate or when F. prausnitzii was not
allowed to consume just succinate produced by B. thetaiotaomicron. These results demonstrated that
F. prausnitzii consumption of acetate and of B. thetaiotaomicron derived succinate were essential for
community stability.

B. thetaiotaomicron was completely eliminated and F. prausnitzii was almost entirely eliminated
when ethanol consumption by B. thetaiotaomicron was removed (third row). This cascade effect
was initiated by reduced B. thetaiotaomicron growth, which resulted in less succinate being available
to support F. prausnitzii growth. While community stability was maintained when F. prausnitzii
was not allowed to consume acetate produced by B. thetaiotaomicron, the reduced growth of
F. prausnitzii resulted in substantially increased abundances of B. thetaiotaomicron and E. coli (fourth row).
A similar but much less pronounced effect was predicted when F. prausnitzii was not allowed to
consume acetate produced by E. coli (fifth row). These results demonstrate that acetate cross feeding
from either B. thetaiotaomicron or E. coli was required to maintain species coexistence. When all
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cross feeding was removed, both B. thetaiotaomicron and F. prausnitzii were eliminated due to their
dependence on cross-fed byproducts for growth enhancement (sixth row). All these results are
summarized schematically in Figure 7.
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Figure 6. Steady-state biomass concentration (left) and growth rate (right) spatial profiles predicted
with different cross-feeding relationships. Each row represents a different cross-feeding pattern. Row 1:
Scenario 1. The same results were obtained for scenario 8. Row 2: Scenario 2. The same results were
obtained for scenarios 3 and 6. Row 3: Scenario 4. Row 4: Scenario 5. Row 5: Scenario 7. Row 6:
Scenario 9. Units are g/L for biomass and h~! for growth rates. The average species abundances across
the biofilm are shown for each case.
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Figure 7. Effect of key cross-feeding relationships on community stability.  Solid lines
represent relationships required for stability: F. prausnitzii consumption of succinate produced by
B. thetaiotaomicron, F. prausnitzii consumption of acetate produced by either B. thetaiotaomicron or E. coli,
and B. thetaiotaomicron consumption of ethanol produced by E. coli. Dashed lines represent relationships
that are not required for stability but may impact species abundances.
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2.5. Robustness of the Cross-Feeding Strategy

The previous results demonstrated that cross feeding produced coexistence of the three species for
the nominal conditions investigated. We performed additional simulations to investigate robustness
of the cross-feeding mechanism to changes in biofilm and environmental conditions by varying the
biofilm thickness and bulk nutrient concentrations, respectively. In this context, robustness was
defined as the ability of the system to maintain community stability with small changes in the species
abundances as would be expected for proper microbiome function.

Five thicknesses (L = 20, 30, 40, 50, 60 um) were simulated at the nominal nutrient concentrations
of 5 mmol/L glucose and 0.5 mmol/L each amino acid. The initial conditions corresponded to
spatially uniform biomass concentrations of 10 g/L for each species. The three species community
was predicted to be stable for all thicknesses except L = 20 um (Figure 8), where B. thetaiotaomicron
eliminated the other two species due to relatively high nutrient concentrations across the biofilm.
For the other four thicknesses, the species abundances were predicted to remain within small ranges:
B. thetaiotaomicron: 53.9%-59.6%; F. prausnitzii: 31.2%-32.8%; E. coli: 8.6%-13.3%. The F. prausnitzii
abundance range was particularly small, while B. thetaiotaomicron abundance slightly decreased when
E. coli abundance increased. By contrast, the average biomass concentration across the biofilm exhibited
a strong decreasing trend as the thickness increased due to the lack of nutrients in the biofilm interior.
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Figure 8. Effect of the biofilm thickness L on the adundance of each species and the total biomass
concentration averaged across the biofilm.

We also performed simulations for six different nutrient levels. The community remained
stable with small variations in the species abundances for all cases except the highest nutrient levels,
where F. prausnitzii was eliminated due to its reduced competitiveness in nutrient rich environments
(Figure S3). These results further demonstrate the robustness of the putative cross-feeding strategy.

2.6. Flexibility of the Cross-Feeding Strategy

Our last set of simulations addressed the issue of system flexibility with respect to function rather
than just species abundances. In this context, flexibility was defined as the ability of the community to
adjust its SCFA production profile to meet different host demands by adjusting byproduct uptake rates.
Due to their dominant effects on community stability, acetate and succinate uptakes by F. prausnitzii
and ethanol uptake by B. thetaiotaomicron were modulated to examine their effects on total SCFA
production and the split between acetate, propionate and butyrate. The relative levels of these SFCAs
are known to vary substantially [54], and the regulation of byproduct uptake rates is one plausible
mechanism the community might employ to achieve different production profiles. For each uptake
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rate, the range of maximum uptake rate v,y values over which the SCFA profiles was most sensitive
was located by trial-and-error simulations.

First, the vy, value for F. prausnitzii acetate uptake was investigated. Our model predicted
that the SCFA profile was most sensitive over a vy, range of 6.25-7.00 mmol/gDW /h (Figure 9).
Smaller v;,4 values resulted in F. prausnitzii being wiped out due to insufficient growth, while larger
values produced similar results to those obtained with the nominal value vy, = 10 mmol/gDW /h.
As vy Was increased over the sensitive range, the F. prausnitzii abundance increased, the acetate level
decreased, the propionate level remained almost constant, the butyrate level increased and the total
SCFA concentration decreased. The SCFA profile was predicted to be particularly sensitive over the
Umax range of 6.25-6.50 mmol/gDW /h, where the acetate level dropped from 68% to 26% and the
butyrate level increased from 20% to 65% due to the substantial increase in F. prausnitzii abundance.
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Figure 9. Effect of the F. prausnitzii maximum acetate uptake rate v,y on (A) species abundances and
(B) acetate, propionate and butyrate levels and the total SCFA concentration.

Qualitatively similar predictions were obtained when the F. prausnitzii maximum succinate uptake
rate was modulated (Figure S4). The primary effect was to alter the F. prausnitzii abundance. When the
B. thetaiotaomicron maximum ethanol uptake rate was modulated, all three species abundances were
strongly affected (Figure S5). Collectively, these predictions suggested that the split between acetate
and butyrate could be strongly modulated through all three cross-feeding mechanisms, while the
propionate level could be more weakly affected through ethanol cross feeding. However, individual
SCFA levels were predicted to be strongly impacted only over small ranges of v,,,,x Values, suggesting
a lack of flexibility in the putative byproduct cross-feeding strategy with respect to SCFA modulation.

3. Discussion

A major challenge when developing in vitro models of natural microbial communities is to
establish culture conditions that allow coexistence of the participating species [55]. Well-mixed
suspension cultures have the disadvantage that species with widely differing growth rates cannot be
co-cultured without engineering artificial dependencies such as amino acid cross feeding between
the species [56]. Natural microbial communities have evolved numerous mechanisms for ensuring
species coexistence, most notably the biofilm mode of growth. Spatial metabolite gradients within
biofilms can allow otherwise slower growing species to establish metabolic niches favorable for
their growth [21-24]. Cross feeding of secreted metabolic byproducts is another mechanism used
by microbial communities to enhance the competitiveness of slower growing species and achieve
community stability [17-20]. The development of in vitro systems to investigate the interplay of species
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metabolism, biofilm gradients and metabolite cross feeding has the potential to provide new insights
into the stability and function of natural microbial communities. In turn, in silico modeling tools
are needed to guide in vitro system design and to computationally interrogate difficult-to-measure
behaviors such as metabolite cross feeding and long-term stability.

In this study, we developed an in silico metabolic model of a very simple community consisting
of the commensal human gut microbes Bacteroides thetaiotaomicron, Faecalibacterium prausnitzii and
Escherichia coli. These species were chosen as well studied representatives of the three most prevalent
phyla (Bacteroidetes, Firmicutes, Proteobacteria) in the healthy gut microbiome and due to the
availability of curated metabolic reconstructions. While the precise spatial organization of gut microbes
is currently unknown, the structure likely includes biofilm growth associated with host mucosa and
epithelial tissue [57]. Indeed the literature provides substantial support for the hypothesis that some
gut microbes organize into spatially structured multispecies biofilms [58,59]. We performed single
species flux balance analysis and biofilm simulations to investigate the growth characteristic and
byproduct secretion patterns of the three isolated species. The models predicted widely varying
individual species growth rates as a function of position in the biofilm and the secretion of eight
primary byproducts that served as putative cross-fed metabolites in multispecies simulations: acetate,
butyrate, CO;, ethanol, formate, lactate, propionate and succinate. The predicted byproducts secreted
by each species were in agreement with experimental observations [60-62].

We developed a general computational strategy to identify putative cross-feeding relationships in
multispecies biofilms that required no a priori assumptions about these relationships. Each species
was allowed to consume every available byproduct to increase its local growth rate within the
biofilm. The method provided an experimentally inaccessible picture of byproduct secretion and
consumption patterns with complete temporal and spatial resolution. When applied to the three
species gut microbiome system, we identified eleven distinct cross-feeding relationships involving
six different byproducts (see Figure 4). To our knowledge, none of these relationships have been
directly demonstrated through co-culture experiments with the participating species. However, the
two acetate cross-feeding relationships were expected due to the demonstrated abilities of both
B. thetaiotaomicron [60] and E. coli [62] to secrete acetate and of F. prausnitzii to consume acetate [61].

Byproduct cross feeding alone was not sufficient to achieve long-term community stability
as reflected by coexistence of the three species. However, we determined that a small decrease
in the non-growth associated ATP maintenance parameter in the E. coli metabolic reconstruction
resulted in community stability. We justified this parameter change by noting that unmodeled
nutrients in the gut environment could enhance E. coli growth relative to the other two species.
The predicted abundances of 54% B. thetaiotaomicron, 33% F. prausnitzii and 13% E. coli were
consistent with experimental studies on the prevalence of species from the Bacteroidetes, Firmicutes
and Proteobacteria phyla, respectively, in the healthy human gut microbiome [53]. While the
E. coli abundance was tuned with the ATP parameter, the relative amounts of B. thetaiotaomicron
and F. prausnitzii were natural outcomes of the model. When all cross feeding was eliminated,
the favorable metabolic niches for B. thetaiotaomicron in the nutrient rich region and F. prausnitzii
in the nutrient lean region were eliminated and E. coli wiped out the other two species. Collectively,
these results demonstrated that both biofilm formation and byproduct cross feeding were necessary
for community stability. Cross-feeding simulations with all three combinations of two species systems
showed that only the F. prausnitzii-E. coli was unstable, suggesting that F. prausnitzii coexistence in
the three species community was dependent on the presence of B. thetaiotaomicron. These predictions
on community stability and species abundances are experimentally testable through biofilm culture
experiments with two- and three-species systems.

We hypothesized that community stability could be maintained with only a small subset of
the putative cross-feeding relationships: acetate and succinate consumption by F. prausnitzii and
ethanol consumption by B. thetaiotaomicron. Multispecies biofilm simulations validated this hypothesis
and further predicted a negligible change in the three species abundances with the elimination of
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CO,, formate and lactate cross feeding. Additional simulations were performed to determine the
necessity of acetate, ethanol and succinate cross feeding on community stability and their impact on
species abundances. These simulations predicted that the following relationships were necessary and
sufficient for stability: (1) F. prausnitzii uptake of acetate produced by either B. thetaiotaomicron or E. coli;
(2) F. prausnitzii uptake of succinate produced by B. thetaiotaomicron; and (3) B. thetaiotaomicron uptake of
ethanol produced by E. coli (see Figure 7). The differential impact of F. prausnitzii acetate and succinate
uptakes was attributed to the small succinate production rates of E. coli. F. prausnitzii uptake of acetate
produced by B. thetaiotaomicron was the only relationship eliminated that maintained community
stability while substantially altering the species abundances. In principle, these model predictions
could be tested experimentally by metabolically engineering the individual species to eliminate specific
byproduct secretion and uptake capabilities. Such mutants are readily generated for E. coli [63], while
the necessary genetic engineering tools are under developed for B. thetaiotaomicron [64].

An essential capability of the gut microbiome is adaptation to widely varying nutritional
environments while avoiding community instability that results in dysbiosis [65]. We performed
biofilm simulations with the essential cross-feeding relationships for changes in the biofilm thickness
and nutrient levels to ensure that species coexistence was not an artifact of the specific conditions
chosen (see Table 1) but rather was a robust property of the cross-fed community. The in silico
community showed a high level of robustness to variations in the biofilm thickness of 30-60 um
and nutrient levels of 1-10 mmol/L glucose and 0.1-1 mmol/L each amino acid (methionine, serine,
tryptophan). Over these ranges, the community was predicted to be stable and species abundances
varies less than 6% for B. thetaiotaomicron, 8% for F. prausnitzii and 9% for E. coli. As would be expected,
system robustness was not a global property and outside these ranges the community could be
destabilized. Biofilms of thickness 20 pm were predicted to consist of only B. thetaiotaomicron due to its
higher growth rate under nutrient rich conditions, while high nutrient levels of 20 mmol/L glucose
and 2 mmol/L each amino acid resulted in extinction of F. prausnitzii due to its lower growth rate under
nutrient rich conditions. Because dysbiosis is commonly associated with reductions in Bacteroidetes
(e.g., B. thetaiotaomicron) and Firmicutes (e.g., F. prausnitzii) abundances and increases in Proteobacteria
(e.g., E. coli) abundance [53], these results suggest that the in silico community captures the inherent
robustness of the considerably more complex gut microbiome. Our model predictions could be tested
through in vitro experiments by varying media concentrations and measuring species abundances as a
function of biofilm development time.

A primary function of the gut microbiome is to convert dietary nutrients to short chain fatty
acids (SCFAs), which are absorbed in the large intestine and used as an energy source by the human
host [28]. The relative levels of the primary SCFAs acetate, propionate and butyrate have been
shown to vary substantially depending on the prevailing state of the gut environment and of the
host [54]. We hypothesized that modulation of cross-feeding relationships between species could be
one possible strategy the microbiome employs to flexibly alter SCFA synthesis profiles to meet host
needs. To examine the efficacy of this putative strategy, we performed simulations by altering the
maximum uptake rate v,y associated with the three key cross-feeding relationships: acetate and
succinate uptake by F. prausnitzii and ethanol uptake by B. thetaiotaomicron. The model predicted
that species abundances and SCFA levels could be substantially altered only over a small range
of each vy4x value. The split between acetate and butyrate could be str