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Nonlinear phenomena frequently occur in many fields, such as physics, biology, and
engineering. The mathematical models of nonlinear factors are complicated for theoretical
and numerical analysis due to the underlying evolution over a large range of time scales
and length scales. With the rapid development of advanced nonlinear dynamics methods,
numerous physical, biological, or technologically complex systems and stochastic systems,
such as mechanical or electronic devices, can be managed through nonlinear dynamics
methods, both analytically and through computer simulation.

This Special Issue aimed to highlight the newest results on the dynamics, control,
optimization, and applications of nonlinear systems. Several advanced nonlinear dynamics
and numerical methods were covered in this Special Issue.

The Special Issue contains more than ten successful invited submissions [1–14], which
are highly related to the potential topics. In [1], new stability criteria based on the Razu-
mikhin technique were developed for impulsive switched delay systems subject to stochas-
tic disturbances. In particular, the delay in the studied system was assumed to be a Markov
chain rather than a deterministic delay. An optimal timing fault tolerant control algorithm
was presented in [2] for switched stochastic systems with switched drift faults. In [3],
the existence and stability of equilibrium points for quantized Hill systems were studied.
By dividing three different cases that provide all possible locations, the locations of the
equilibrium points were analyzed. For a class of discrete weakly nonlinear state-dependent
coefficient control systems, [4] investigated the asymptotic solution of the initial singularly
perturbed control problem for the matrix discrete Riccati equation with coefficients weakly
dependent on the state and proposed a one-point PA regulator. In [5], the study of finite-
time passivity analysis for neural-type neural networks was investigated. Applications of
the fixed-time control approach to flexible spacecraft and third-order sliding mode control
to single-rotor wind turbines were addressed in [6,7].

The nonlinear dynamics in ecological and biological complex systems are also of high
interest in this Special Issue. In [8], the global stability of a delayed ecosystem, namely,
a delayed feedback Gilpin–Ayala competition model with impulsive disturbance, was
reported. In [9,10], several kinds of nonlinear dynamics problems in biological systems
(such as epidemic systems with delayed impulse and delayed virus dynamic models) were
studied. The topic of the optimization methods of complex systems is also included in this
Special Issue. An adaptive evolutionary computation algorithm was proposed in [11] to
overcome the overparameterization issue in traditional evolutionary and swarm computing
paradigms. A new iterative method for finding extreme equations based on the maximum
principle was developed for quantum systems in [12]. Two published works [13,14] focused
on the applications of optimization methods in complex engineering systems.

The range of topics addressed in the current issue is not exhaustive. Further research
on the dynamics, control, optimization, and applications of nonlinear systems is needed.
We hope that some new insights into nonlinear systems are provided in this Special Issue.

Mathematics 2022, 10, 4837. https://doi.org/10.3390/math10244837 https://www.mdpi.com/journal/mathematics1
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Abstract: Friction-induced stick-slip vibrations are one of the major causes for down-hole drill-string
failures. Consequently, several nonlinear models and control approaches have been proposed to
solve this problem. This work proposes a dual-loop control strategy. The inner loop damps the
vibration of the system, eliminating the limit cycle due to nonlinear friction. The outer loop achieves
the desired velocity with a fast time response. The optimal tuning of the control parameters is
carried out with a multi-method ensemble meta-heuristic, the Coral Reefs Optimisation algorithm
with Substrate Layer (CRO-SL). It is an evolutionary-type algorithm that combines different search
strategies within a single population, obtaining a robust, high-performance algorithm to tackle hard
optimisation problems. An application example based on a real nonlinear dynamics model of a
drill-string illustrates that the controller optimised by the CRO-SL achieves excellent performance
in terms of stick-slip vibrations cancellation, fast time response, robustness to system parameter
uncertainties and chattering phenomenon prevention.

Keywords: stick-slip; drill-strings; vibration control; coral reefs optimisation; meta-heuristics

1. Introduction

Stick-slip phenomena occur when, due to a particular confluence of parameters, the
bit–rock interaction is such that rather than a constant (ideally synchronous) rotating speed
of the top drive and the drill-bit, the drill-bit speed varies between zero and six times the
speed of the top drive at the top of the drill-string. This unwanted phenomenon severely
impacts the achieved rate of penetration during most drilling operations. In severe cases,
this can lead to faster degradation of drill-bits and in rare cases warping or breaking of the
drill-string [1]. To thoroughly understand this highly nonlinear phenomena, several drill-
string models have been proposed in the literature [2–5]. Consequently, several bit–rock
interaction models have also been proposed and validated [4,6,7]. The importance of the
stick-slip vibrations problem has been widely analysed in [8–11]. In these previous works,
researchers focus on understanding of the drill-string dynamics, the bit–rock interaction
and the quantification of stick-slip vibrations. The current research aims to reduce the
effects of the stick-slip phenomena during the drilling operation.

Vibration control in nonlinear systems is a problem that can be solved by linear and
nonlinear controllers [3,12]. These controllers may be designed by using optimisation
algorithms [13]. The problem of mitigating stick-slip vibrations in drill-strings is a well-
known nonlinear control problem [3]. Some of the more recent and noteworthy approaches
include the bit speed and torque independent stick-slip compensator [14], sliding-mode

Mathematics 2021, 9, 1526. https://doi.org/10.3390/math9131526 https://www.mdpi.com/journal/mathematics3



Mathematics 2021, 9, 1526

controllers [15], feedback controllers by including the axial and torsional motions in the
numerical model [16], the use of robust controllers based on proportional-derivative feed-
back control design to keep a constant drill-bit rotation speed [17]. The use of Kalman filter
based full-state feedback controllers was proposed in [18]. Sliding-mode controllers have
shown very good results in the problem of reducing stick-slip vibration issues [19–21]. This
fact arises from the good qualities of this controller, such as: robustness against inaccuracies
related to the model and/or unpredicted dynamics. It also has a wide disturbance rejection
and broad control bandwidth. It has been recently presented in [15,22] for eliminating
stick-slip vibrations. The use of proportional-integral-derivative (PID) motivated linear
controllers have also been proposed to address the stick-slip [23].

The complexity of the design of vibration controllers for drill-strings justifies the use
of optimisation algorithms; in many cases, these are meta-heuristics approaches. Thus, the
problem of stick-slip vibration has been solved by using optimisation algorithms [24,25].
In Reference [24], a torsional vibration control approach based on the genetic algorithm is
studied. In [25], the authors show the use of a dynamic programming technique to design
the optimal control of nonlinear systems. The Nelder–Mead method has been applied to
design the controllers of multiple isolators situated on the same supporting structure [26].
In addition, some variants of the well-known genetic meta-heuristics algorithm have
been applied to structural optimisation problems. In [27], the authors proposed a fuzzy
control and a genetic algorithm for structural shape optimisation. In [28], the optimisation
of 3D trusses was tackled with a Grouping Genetic Algorithm (GGA). In [29], a micro-
genetic algorithm (μ-GA) was used for impact load identification and characterisation of
concrete structures. For the plane stress problem, a variant of the Evolutionary Structural
Optimisation (ESO) algorithm was proposed in [30]. Finally, in [31], the GA and among
other meta-heuristic methods were implemented to obtain the optimal parameters in
the welded beam structure problem. The particle swarm optimisation (PSO) algorithm
introduced in [32] is also an important meta-heuristic that has been successfully applied
to structural optimisation problems such as in [33], where the so-called democratic-PSO
was proposed for truss layout with frequency constraints, or in [34], where optimal sizing
design of truss structures was studied. The teaching-learning-based algorithm [35] has
also been applied to optimise mechanical design problems [36,37]. The Harmony Search
(HS) approach [38] has also been applied to structural optimisation; however, in [39], the
authors aimed at two main ideas: firstly, they gathered a large number of meta-heuristics
that have been used in structural optimisation; secondly, they reflected about the lack of
mathematical background in meta-heuristics basics and the contributions of the HS. In the
last decade, a new kind of meta-heuristics based on physics phenomena have been applied
to structural optimisation problems. The Big-Bang Big-Crunch algorithm was updated in
[40] to a memetic algorithm by mixing it with a local search process called the quasi-Newton
method and was proposed to find the optimal weight of the structure. The Colliding Bodies
Optimisation [41], the Ray Optimisation [42] or the Charged System Search [43] algorithms
were created by A. Kaveh and tested in the welded beam design problem.

The concept of modified output, which was firstly introduced in [44], is used in this
paper to propose a new control approach for eliminating stick-slip vibrations in drill-
strings. The controller is based on a dual-loop linear control scheme. The inner loop, whose
feedback signal is a combination of output signals, damps the vibration of the system,
eliminating the limit cycle due to nonlinear friction. The outer loop achieves the desired
velocity with a fast time response. The performance of the controller is improved by the
use of a multi-method ensemble meta-heuristic, the Coral Reefs Optimisation algorithm
with Substrate Layer (CRO-SL) [45,46], is adopted. This ensemble method was successfully
applied in other engineering problems, such as [47–49]. In [47], the problem of optimal
design and location of tuned mass dampers for structures subjected to earthquake ground
motions is solved. In [48], the complex problem of design and location of inertial mass
dampers for floor based structures subjected to human induced vibration is tackled. In [49],
the design of submerged arch structures is approached. All the problems show that CRO-SL
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can be suitable for obtaining global optimum designs, with affordable computation time
in complex vibration control problems. Consequently, the CRO-SL algorithm is applied
to find the best configuration of the control parameters, i.e., obtaining the four controller
parameters needed to eliminate stick-slip vibrations in a drill-string model with system
uncertainties. The objective function to solve the problem is a functional that considers
vibration, steady-state error and control effort.

The structure of the remainder of the paper is as follows: Section 2 presents the
mathematical model of the drill-string, the bit–rock interaction and the model verification.
Section 3 describes the proposed control scheme along with the CRO-SL optimisation
algorithm, including the definition of a substrate layerand how this approach can be
considered as a multi-method ensemble optimisation algorithm. Section 4 presents the
optimisation results as well as the closed-loop results for the drill-string system, where the
proposed algorithm’s performance is evaluated. Section 5 closes the paper by giving some
final conclusions and remarks on this research.

2. System Model

To realistically reproduce the stick-slip phenomena occurring in drill-strings and
enable the implementation and testing of various control schemes, a scaled drill-string
piece of equipment was set up at the Centre for Applied Dynamics Research, University
of Aberdeen [22]. The following subsections describe the two-degrees-of-freedom (DOF)
mathematical model that accurately captures the drill-string dynamics. The bit–rock inter-
action model is also described along with the system parameters on which the presented
control design and analysis is based on.

2.1. Mathematical Model

As mentioned above, a 2-DOF model that accurately captures the stick-slip vibrations
experienced by the drill-string is adopted. This is to ensure that the model is accurate,
adequate and not overcomplicated. There are several works that have adopted a similar
2-DOF model [2,6,7,50].

The model lumps the drill-string components into two discs: (i) The upper disc that
represents the top-drive system and (ii) the lower disc that represents the drill bit. Between
the upper (top drive) and lower disc (drill bit), the drill-string is placed, mainly composed
from a drill pipe and bottom hole assemble (BHA). A simple schematic of this model is
shown in Figure 1. As labelled in Figure 1, the input torque that drives the system is
denoted by U. The angular position of top drive is φr, its viscous damping is cr, and the
inertia Jr. The pipe, which connects the top drive with the BHA, is modelled by its torsional
damping C and the torsional stiffness K. The torque of friction on the lower disc, which
models the interaction between the bit and the rock, is denoted by Tb. The angular position
of the BHA is φb, and its inertia is Jb.

The equation of motion that encapsulates the entire system behaviour is then given by:

..
φr=

U
Jr
− Cr + C

Jr

.
φr +

C
Jr

.
φb −K

Jr
(φr − φb) (1)

..
φb=

C
Jb

.
φr −

C
Jb

.
φb +

K
Jb
(φr − φb)− Tb

Jb
(2)

However, to facilitate control design, the new state of the system can be initialised
as follows:

x = (
.
φr, φr − φb,

.
φb)

T
= (x1, x2, x3)

T (3)

which further simplifies the system equation to:

.
x1=

U
Jr
− Cr + C

Jr
x1 +

C
Jr

x3 − K
Jr

x2 (4)
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.
x2= x1 − x3 (5)

.
x3=

C
Jb

x1 − C
Jb

x3 +
K
Jb

x2 − Tb
Jb

(6)

U

Upper disc

Lower disc

Drilling direction

K C

Jr

Jb

Figure 1. Schema of the 2-DOF lumped-parameter model of the drill-string.

Equations (3)–(6) can be re-described as the following state-space system:

ẋ =

⎡⎢⎣−
Cr+C

Jr
− K

Jr
C
Jr

1 0 −1
C
Jb

K
Jb

C
Jb

⎤⎥⎦x +

⎡⎣1
0
0

⎤⎦U
Jr
+

⎡⎣ 0
0
−1

⎤⎦Tb
Jb

. (7)

The problem of drill-string can be modelled as a linear part (Equation (7)) connected
with the hard nonlinear model of the bit–rock interaction. This interaction is modelled by
the torque Tb in Equation (7). This is explained below.

2.2. Bit–Rock Interaction

It is possible to distinguish three different phases in the bit–rock interaction: (i) stick
phase: the drill-bit is not rotation since it is stuck with the rock, (ii) stick-to-slip phase:
to begin slipping, the drill-bit has to achieve enough torque, (iii) slip phase: the drill-bit
rotates and it is actually drilling [4,15,51,52].

It is important to note that the system is locked between phases (ii) and (iii). The
sticking phase ends when the reaction torque reaches the peak value. The slip phase starts
when the drill-bit starts to rotate. For x3 = 0, the dry friction is estimated by combining a
zero band velocity introduced in [53] and the switch model in [54].

When x3 = 0, the dry friction is approximated by combining a zero band velocity
introduced in [53] and the switch model in [54]. This is as follows:

Tb =

⎧⎨⎩
τr, if|x3| < ζ and |τr| ≤ τs
τs · sgn(τr), if|x3| < ζ and |τr| > τs
μb · Rb · Wob · sgn(x3), if|x3| ≥ ζ

⎫⎬⎭, (8)

where sgn stands for the sign function,

sgn(x) =

⎧⎨⎩
1 x > 0
0 x = 0
−1 x < 0

,

6
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The frictional torque when the drill–bit interaction occurs can be formulated as
τr = C(x1 − x3) + K(x2), which is the reaction torque, whilst τs = μsbRbWob is the fric-
tion torque, μsb is the static friction coefficient, Wob is the Weight on Bit (WOB), Rb is the
bit radius. A set of drill-string realistic simulation parameters was obtained in [2,22], and
these parameters are tabulated in Table 1.

Table 1. The basic realistic drill-string physical parameters for the model.

Parameters Values

Jr 13.93 kg · m2

Jb 1.1378 kg · m2

C 0.005 N · m · s/rad
K 10 N · m/rad
Cr 11.38 N · m · s/rad
μsb 0.0843
μcb 0.0685
Rb 0.0492 m
γb 0.3
ν f 0.1935
ζ 10−4

3. Control Design and Parameter Optimisation

The problem of control of stick-slip oscillations in drill-strings bears some similarity
to the problem of control of one-link flexible manipulators. It is clear that as the sensors
and actuators for these systems (flexible robot and drill-string) are not physically located
at the same spot (not co-located). Therefore, these systems are non-minimum phase in
nature. Moreover, the Coulomb friction present in the joint of the robotic manipulator can
be treated as a complication similar to the drill-string’s nonlinear friction in the bit–rock
interaction model (presented in Equation (8)). In the case of the flexible manipulator,
modified outputs, like the reflected tip position in one-link flexible manipulators [44,55],
have been proposed in the past in order to solve this seemingly complicated problem.
These modified outputs have been used to propose simple control schemes, which achieves
the objectives of tracking and vibration control [44,55,56]. In addition, these controllers
guarantee the stability of the highly unconsidered vibration mode (spillover).

The proposed linear control is inspired by the aforementioned controllers applied
to flexible robotic manipulators, where the objective is to cancel the vibrations at the tip
with an actuator placed at the joint. The proposed controller is shown in Figure 2. Note
that there are two nested loops. The first one is used to stabilise the system, cancelling
the vibration of drill-string, which is due to the vibration modes of the linear part and the
nonlinear dynamics of the bit–rock interaction.

The controlled input of the inner loop (UIL) is as follows:

UIL =
β

α
(φr − φb)− 1

α
U̇IL, (9)

where α and β are the parameters used to obtain the modified output of the drill-string.
The objective of the outer loop is to achieve a desired velocity of the top drive. Thus, if the
inner loop (9) cancels the vibration, the outer loop can achieve the desired velocity of BHA.
This outer loop is as follows:

UOL = P(φ̇r,re f − φ̇r) + I(φr,re f − φr), (10)

where P and I are the proportional and integral constants of the tracking controller. The
proposed control law can then be written as follows:

U = UIL + UOL. (11)

7
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Figure 2. The adopted dual-loop control scheme. The inner loop consists of a damping controller,
which uses the modified output x2 Cd, and the outer loop consists of a tracking controller (propor-
tional and integral).

The optimal control parameters are tuned according to a functional, which considered
the following issues:

• J1: The steady-state error between the desired (top-drive) and achieved (drill-bit)
angular velocity (φ̇r − φ̇r,re f ).

• J2: The residual vibration (φ̇b − φ̇r).
• J3: The settling time of the variables φ̇b and φ̇r
• J4: The control effort from a determined value of time, which rejects solutions

with chattering.

The functional is defined as follows:

J(z) = γ1 J1 + γ2 J2 + γ3 J3 + γ4 J4, (12)

where γ1, γ2, γ3, and γ4 are the terms that ponderate each sub-functional. These sub-
functionals are as follows:

J1 =
∣∣∣φ̇r,re f − φ̇r(t f )

∣∣∣,
J2 = max

t∈(ti ,t f )
|φ̇b(t)− φ̇r(t)|,

J3 = tset,r + tset,b,

J4 =
1
N

t f

∑
t=tset,r

(U(t)− UOL),

(13)

where ti is the time at which the controller is engaged, t f is the final value of time considered
in simulations and N is the number of samples considered between t f and ti. The variables
tset,r and tset,b are the settling time of φ̇r and φ̇b after the value of ti and considering a final
value equal to φ̇r,re f with an error of ±4 %. The variable z is defined by the controller
parameters: P, I, β and α. Note that the initial conditions of Equation (7) are considered
in J2, where the maxt∈(ti ,t f )

|φ̇b(t)− φ̇r(t)| depends on the system response before ti. The
functional J1 and J4 consider the values of φ̇r and U after tset,r.

Due to the nonlinear nature of the system, control parameter tuning is not straightfor-
ward. Thus, a suitable optimisation algorithm can be used in order to automate the process,

8
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ensure stable results and significantly improve the control performance. The Coral Reef
Optimisation (CRO) is a meta-heuristic algorithm for optimisation that has been recently
proposed as a highly-effective algorithm for such problems [48,57–59]. This work uses
an improved version of the CRO algorithm to generate the controller parameters namely
β, α, P and I.

Coral Reefs Optimisation Algorithm with Substrate Layer: A Multi-Method Ensemble Approach

The CRO-SL is a further version of the original CRO [57], which was founded on the
processes that occur in a coral reef, including reproduction, fight for space or depreda-
tion [46]. The basics can be shown in the pseudo-code below, Algorithm 1, with the different
CRO phases where the individuals (also called corals) are initialised in the population (or
reef), along with all the operators applied to guide the search.

Algorithm 1 Pseudo-code for the original CRO

Require: Valid configuration of parameters controlling the CRO algorithm
Ensure: A single individual with near-optimal value of its fitness

1: Initialize the corals and the reef
2: for each iteration of the experiment do
3: Update values of the algorithm parameters
4: Sexual reproduction processes for new individuals (also larvae)
5: Settlement of new larvae
6: Predation of some of the weakest
7: The new population is ready for the next generation
8: end for
9: Return the best individual (final solution) from the reef

As has been mentioned before, the CRO-SL is an improved version of the CRO, firstly
proposed in [60] and further developed in [45]. It is considered as a low-level ensemble
method for optimisation, which combines several search processes in parallel over different
subpopulations and with information exchange between them, leading to extremely good
search capabilities. The CRO-SL has the same structure as shown in the pseudo code
of the basic CRO, but including substrate layers or subpopulations, wherein each one
is implementing a different search procedure or strategy. A substrate may represent
different models, operators, parameters, constraints, repairing functions, etc., though
this version, which represents different search operators, has been the most successful
version so far. Thus, the CRO-SL is an ensemble approach that promotes cooperative
co-evolution. The use of CRO-SL as a cooperative multi-method ensemble has been
successfully tested in different applications and problems, such as battery scheduling and
topology design in micro-grids [58,61], medical image registration [59], antenna design [62]
and vibration cancellation problems in buildings [47] and open floors [48]. This wide
application demonstrates the potency of the CRO-SL and deems it an ideal candidate
for optimising controller parameters for eliminating stick-slip vibrations in drill-strings.
Details of the overall CRO-SL algorithm and the mechanism to include substrate layers is
well-reported in [45].

Although different search strategies have been defined at the practitioner’s discretion,
this work has taken into account a five-substrate construct of the CRO-SL. They are briefly
described below:

1. Harmony Search (HS): It is a metaheuristic method based on stochastic optimisa-
tion [38]. It imitates the process found in music improvisation, which searches for
better harmony. There are two parameters that determine the way in which new
larvae are generated: (i) Harmony Memory Considering Rate (HMCR), which ranges
from zero to one. If a uniformly spawned value is above the value of HMCR, then the
encoded parameter value is uniformly drawn from the values in the coral, (ii) Pitch
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Adjusting Rate (PAR), which ranges from zero to one, which sets the probability of
choosing a neighbour value of the current larva.

2. Differential Evolution (DE): It is an Evolutionary Algorithm (EA), which has good
abilities for global search [63]. The new larvae can be generated either by the mutation
or crossover process. For a randomly selected encoded parameter, if a uniformly
generated value is above the Crossover Probability (CR) value, which ranges from
zero to one, the new value is obtained by x′i = x1

i + F(x2
i − x3

i ), in which F is the
evolution factor. Otherwise, the value is crossed with the randomly selected encoded
parameter.

3. Classical 2-points crossover (2Px): The crossover operator is the most used exploration
mechanism in genetic and evolutionary algorithms [64] since its combination with an
efficient mutation process allows achieving a suitable balance between exploration
and exploitation. 2Px selects two random parents and exchanges the genetic material
in-between two random points on them. Despite that each substrate is linked to a
searching process, when another parent must be picked, the selection is not limited
to their substrate, but it can be chosen from any part of the population instead. The
reason is to contribute to genetic information exchange among substrates so they can
easily cooperate.

4. Multi-points crossover (MPx): This search method is a generalisation of the 2Px. In
this case, k points are selected in the parents. In this work, due to the dimensionality
of the problem, the value of k has been chosen to be three. Thus, a binary vector
decides whether the parts of each parent are exchanged or not for the new offspring
generation.

5. Gaussian Mutation (GM): The Gaussian Mutation is a noisy search method based
on adding random values from the Gaussian distribution to the encoded parameter
values, thus generating an offspring. The standard deviation σ value in this work is
linearly decreasing during the run, from 0.2 · (A − B) to 0.02 · (A − B), where [B, A]
is the domain search. The Gaussian probability density function is:

fG(0,σ2)(x) =
1

σ
√

2π
e−

x2

2σ2 .

With the aim of exploring the search space at the beginning of the optimisation process
and exploiting it at the end, the parameter σ is adapted during the simulation.

4. Computational Evaluation

This section presents the computational evaluation of the proposed control algorithm
for stick-slip vibrations cancellation, optimised with the CRO-SL algorithm. The open-loop
parameters of the drill-string system are given in Table 1. The torsional stiffness (K) is
considered as a variable parameter and the velocity reference (φ̇r,re f ) is selected to be within
2 and 5 rad/s (acceptable practical range). The system is simulated for 40 s in an open-loop
after which the loop is closed and the proposed dual-loop control scheme is engaged. The
value of the control input (U) in Equation (11) is limited to U ∈ [20, 80] N·m. This is to
ensure that the control input lies within the practical limits [7,22].

The CRO-SL algorithm searches for the best solution in terms of Equation (12) for
K ∈ {5, 10, 20} N·m/rad and φ̇r,re f ∈ {2, 3, 4, 5}. The values of torque needed to obtain this
velocity are U ∈ {30.2, 41.42, 52.65, 63.9} N·m. The parameters of Equations (12) and (13) are:

• γ1 = 1, γ2 = 0.5, γ3 = 0.25 and γ3 = 2;
• ti = 40 s and t f = 120 s;
• N is the result of using a 0.001 s of sampling time. The simulation is carried out by

a fourth-order ordinal differential equation solver (Runge–Kutta) with fixed time of
0.001 s (i.e., N = (120 − 40)/0.001 = 80 × 103);

• The input torque is, as mentioned earlier, limited to U ∈ [20, 80] N·m.

The CRO-SL parameters used in the experiments are shown in Table 2.

10



Mathematics 2021, 9, 1526

Table 2. Parameters values used in the CRO-SL.

Parameter Description Value

Reef Reef size 120
Fb Frequency of broadcast spawning 97%
Substrates HS, DE, 2Px, MPx, GM 5
Natt Number of tries for larvae settlement 3
Fa Percentage of asexual reproduction 5%
Fd Fraction of corals for depredation 5%
Pd Probability of depredation 5%
α Maximum number of iterations 50

The optimisation results obtained with the CRO-SL are presented in Figure 3. Figure 3a
shows the ratio for which each substrate generates the best larva in the CRO-SL approach.
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Figure 3. Evolution of different quality parameters in the CRO-SL; (a) evolution of the number of larvae that are finally
allocated into the reef as new solutions; (b) ratio of times that each substrate produces the best larva in each iteration of the
CRO-SL algorithm; (c) evolution of the best solution within the CRO-SL.

It is possible to see how DE is the one exploration operator that contributes the most
to the CRO-SL search. The contribution of the GM and 2Px are also significant, but they
decrease during the search. Figure 3b shows the number of larvae that are produced in the
reef for each iteration, as new solutions. Figure 3c shows the evolution of the best solution
within the CRO-SL. It is important to note that around 20 iterations, the proposed approach
achieves the optimal solution. The final value of the functional (Figure 3c) is J = 8.1560,
which corresponds with K = 10 N·m and φ̇r,re f = 5 rad/s. The controller parameters are
shown in Table 3.

Table 3. Optimal control parameters obtained by means of CRO-SL.

Optimal Control Parameters

P I β α

3.33 × 104 3.51 × 104 9.15 × 104 25 × 10−4

The next subsection shows the performance in terms of stick-slip vibrations cancel-
lation, fast time response, robustness to system parameter uncertainties and chattering
phenomenon prevention.

Results

First of all, the closed-loop system configured with the above shown parameters is
simulated to generate time responses for the nominal conditions (K = 10 N·m/rad and
a φ̇r,re f = 2.5 rad/s). The controller starts at 40 s, the value of ti used in optimal design.
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Two values of restrictions for control input torque are used. The first one corresponds to
U ∈ [20, 80] N·m, which is the restriction used in the optimisation process. The second one
is a naive selection corresponding to U ∈ [−100, 100] N·m. Figure 4 shows the angular
velocity of the top-drive, drill-bit and input torque signal against the time variable. It is
clear after some careful understanding of the system that negative values of control input
torque require the top-drive to rotate in the opposite direction to the standard drilling.
This is, in practice, an unacceptable scenario as physically reversing the motor’s direction
of rotation is an almost impossible task on the field. However, it is likely that this might
be possible or even required in some scenarios (drill-bit retrieval). The objective of these
experiments is to show that the controlled system optimised with the CRO-SL scheme is
stable in both scenarios.
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Figure 4. Time histories of the angular velocity of the top-drive, drill-bit and input torque signal for
a desired velocity (2.5 rad/s) and K = 10 N·m/rad: (a) angular velocity of the top-drive and drill-bit
when U ∈ [20, 80] N·m; (b) angular velocity of the top-drive and drill-bit when U ∈ [−100, 100] N·m;
(c) input torque when U ∈ [20, 80] N·m; (d) input torque when U ∈ [−100, 100] N·m.

Figure 5 shows how the controller of Figure 2 can eliminate the limit cycle of the
stick-slip. The controller starts at t = 75 s in order to guarantee that the limit cycle is in
steady-state for all the reference values (φ̇r,re f (t)) when U ∈ [20, 80] N·m (see Figure 5e).
Figure 5a,b shows the stick-slip limit cycle in an open-loop for U = 36 N·m and its
corresponding 2D phase-plane portrait, respectively. Figure 5c shows the corresponding 3D
perspective with respect to time in order to better clarify the transient response. Figure 5d
shows the motor torque U. In this example, the open loop torque is U = 36 N·m. The
controller is turned on at t = 75 s, and the control input undergoes a brief period of
transients, with its permanent value equal to U = 36 N·m. Figure 5e shows how the
controller can stabilise the stick-slip for U ∈ [30, 69.5] N·m. It is important to highlight that
desired velocity can be achieved from any initial value of input torque in an open loop.
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Figure 5. The red line and the blue line stand for uncontrolled and scheme controlled, respectively.
(a–c) The time-history, 2D and 3D phase-portraits, respectively. (d) The control input versus time.
(e) The complete bifurcation diagram showing all types of behaviour.

An additional robustness analysis is carried out. Figure 6a shows the value of the
functional (J) as a function of the desired velocity and stiffness value. Figure 6a shows
that the maximum value of J is achieved for K = 10 N·m/rad and a φ̇r,re f = 5 rad/s. In
addition, the most unfavourable case for each value of K is the maximum value of the
desired velocity. Then, three examples are plotted in order to show how the stick-slip limit
cycle is cancelled. In these examples, like in Figure 5, the controller starts at t = 75 s in
order to guarantee that this vibration is in a steady-state for all the cases. Thus, Figure 6b–d
shows how the controlled system eliminates the stick-slip vibrations for K equal to 5, 10 and
20 N·m/rad, respectively. Note that, although a large torque control input is needed, after
the settling time, all time responses are the same, showing that the controller effectively
eliminates the stick-slip vibrations for all these cases. In addition, Figure 6e–g shows the
input torque when U ∈ [20, 80] N·m for K equal to 5, 10 and 20 N·m/rad, respectively.
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Figure 6. Robustness analysis: (a) value of the functional (J) for different values of the desired velocity
and stiffness values; (b) angular velocity of the top-drive and drill-bit for K = 5 N·m/rad; (c) angular
velocity of the top-drive and drill-bit for K = 10 N·m/rad; (d) angular velocity of the top-drive and
drill-bit for K = 20 N·m/rad; (e) input torque when U ∈ [20, 80] N·m for K = 5 N·m/rad; (f) input
torque when U ∈ [20, 80] N·m for K = 10 N·m/rad; (g) input torque when U ∈ [20, 80] N·m for
K = 20 N·m/rad.

Finally, a final case is simulated in order to show the problem of the control effort
(chattering phenomenon), which is avoided by including J4 (see Equations (12) and (13)),
justifying the use of the optimisation algorithm. Thus, the tuning of P, I, β and γ is carried
out according to the following practical guide: (i) increases the values of P and I in order
to achieve a good time response for the top-drive, (ii) modified β in order to reduce the
oscillation between drill-bit and top-drive angular velocities and (iii) tune a small, but not
equal to zero, value for α, in order to avoid possible practical problems with offset in x2.
The control parameters are shown in Table 4.
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Table 4. Control parameters for the non-optimised case.

Non-Optimal Control Parameters

P I β α

5.00 × 104 5.00 × 104 9.00 × 104 30.00 × 10−4

Figure 7 shows the time histories for the angular velocity of the top-drive, drill-bit
and input torque signal for a desired velocity of 2.5 rad/s and K = 10 N·m/rad (i.e., the
nominal conditions). Note that the time responses of the top-drive and the drill-bit are
good and comparable with Figure 4. However, the control effort (chattering phenomenon)
for both cases is not admissible because it can damage the actuator. In addition, the design
of this controller for a wider range of K (parameter uncertainty) and desired velocities is
not obvious. This justifies the use of CRO-SL, which simplifies and improves the control
parameter selection, consequently resulting in improved closed-loop performance.

0 50 100

0

2

4

6

(a)

0 50 100

0

2

4

6

(b)

0 50 100

-100

-50

0

50

100

(c)

0 50 100

-100

-50

0

50

100

(d)

Figure 7. Non-optimised design: time histories of the angular velocity of the top-drive, drill-bit
and input torque signal for a desired velocity (2.6 rad/s) and K = 10 N·m/rad. (a) angular velocity
of the top-drive and drill-bit when U ∈ [20, 80] N·m; (b) Angular velocity of the top-drive and
drill-bit when U ∈ [−100, 100] N·m; (c) input torque when U ∈ [20, 80] N·m; (d) input torque when
U ∈ [−100, 100] N·m.

5. Conclusions

This work proposes a dual-loop control strategy to alleviate stick-slip vibration prob-
lems in drill-string applications. The inner loop controller is based on the concept of
modified output, which has been used in the past to control non-collated systems. The
results show that the combination of both velocities, the top-drive and the drill-bit, can
eliminate the limit circle of the nonlinear system. The outer loop is used to achieve the
desired drill-bit velocity within a low settling time and without steady-state error.
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The advantages of optimising the controller parameters have also been shown in
this work. The controller has been optimally tuned by using a multi-method ensemble
meta-heuristic approach, the Coral Reefs Optimisation algorithm with Substrate Layers
(CRO-SL). A functional function is defined in this work, which involves: (i) steady-state
error, (ii) the residual vibration, (iii) the settling time and (iv) the control effort. Thus, the
optimised controller is robust to parameter systems uncertainties, control input torque
limitations and different tip velocities references, eliminating the chattering phenomenon
in the control effort. Therefore, this dual-loop strategy, together with the optimisation
procedure defined by the functional, has big potential in drill-string applications.
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Abstract: This paper reports applying Minimax principle and impulsive differential inequality to
derive the existence of multiple stationary solutions and the global stability of a positive stationary
solution for a delayed feedback Gilpin–Ayala competition model with impulsive disturbance. The
conclusion obtained in this paper reduces the conservatism of the algorithm compared with the
known literature, for the impulsive disturbance is not limited to impulsive control.
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1. Introduction

It is well known that Gilpin–Ayala competition model (GACM) has been hotly dis-
cussed (see in [1–7]) due to its importance in simulating two or more competing biological
populations in nature. As diffusion is an essential characteristic of most biological popula-
tions, Ling Bai and Ke Wang began to investigate the global stability of reaction-diffusion
Gilpin–Ayala ecosystem under Neumann zero boundary value in 2005 (see in [8]), and
obtained good results. Actually, Neumann zero boundary value means that the populations
do not migrate beyond the biosphere boundary. However, many animal populations are
at the edge of the biosphere, where the population density is usually zero, which is not
reflected by Neumann zero boundary value. Thus, the Dirichlet zero boundary value was
considered in recent literature [6,7]. In recent years, linear impulsive control and nonlinear
impulsive control technology are widely used in ordinary differential dynamical systems
and infinite dimensional dynamical systems [9–16]. For example, in [14], event-triggered
nonlinear impulsive control to stabilize damped wave equations was designed, and rapid
exponential stabilization was achieved. However, in this paper, linear impulse is relatively
simple and feasible in practical ecological management because ecological management is
a natural system of impulse artificial intervention. Therefore, the linear impulsive control is
considered in this paper. Note that impulse control is employed to make the GACM stable
globally in [6,7], but this paper involves the impulsive disturbance, which is not limited to
impulsive control. Minimax principle will be employed to derive the existence of multiple
stationary solutions, which improve the method of Mountain Pass Lemma in [6]. On the
other hand, impulsive disturbance is considered in this paper, not just impulse control. In
fact, some impulse management measures other than impulsive control sometimes occur
in ecological management due to accidents, such as releasing animals, hunting animals
harmful to the population, and so on. These pulse measures mean that the pulse intensity
is not necessarily less than 1 based on system stability.

2. Preparatory Knowledge

Consider the following reaction-diffusion Gilpin–Ayala competition model (RDGACM)
with delayed feedback under Dirichlet boundary value
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u1

∂t
=d1Δu1 + u1(b1 − a11uθ1

1 − a12u2)− k1(u1 − u1(t − τ1, x)), t � 0, x ∈ Ω,

∂u2

∂t
=d2Δu2 + u2(b2 − a21u1 − a22uθ2

2 )− k2(u2 − u2(t − τ2, x)), t � 0, x ∈ Ω,

u1(t, x) =u2(t, x) = 0, t � 0, x ∈ ∂Ω,

(1)

equipped with the initial value

u1(s, x) = ξ1(x), u2(s, x) = ξ2(x), s ∈ [0, τ0], x ∈ Ω, (2)

where Ω is a bounded domain in RN(1 � N � 3) with smooth boundary ∂Ω. Time delays
τ1, τ2 ∈ [0, τ0], ui(t, x) represents the population density of the ith population at time t
and the spatial location x, bi > 0 represents the birth rate of the population of the ith
species, and aij > 0 represents the competition parameter between the species i and the
species j. di > 0 represents the diffusion coefficient for the species i. Initial value function
ξ(x) = (ξ1(x), ξ2(x))T is bounded and continuous.

Assume that
(A1) For i = 1, 2, setting −1 < θi < 4, and s2+θi � 0 for all s ∈ R1.
(A2) For i = 1, 2, there exist positive constants Mi > 0 such that

0 � ui � Mi.

(A3) For i = 1, 2, |∇ui(t, x)| is bounded for all x ∈ Ω.
Due to the limited natural resources, it is reasonable to assume in (A2) that each popu-

lation density is limited. Besides, the limited natural resources imply that the boundedness
assumption of (A3) is suitable to the real state of nature.

Remark 1. (A1) expands greatly the allowable range of parameters θi, compared with the previous
related literature (see, e.g., in [6,7]). For example, the harsh condition “0 < θi < 1 with θ̂i being an
even number, and θ̌i being an odd number” is deleted.

Lemma 1 (see, e.g., in [17]). Let J ∈ C1(H1
0(Ω),R1). If there is an upper boundness of J in

H1
0(Ω), and J satisfies the (PS) condition, then c∗ = sup

v∈H1
0 (Ω)

J(v) is a critical value of J.

Here, the (PS)c condition may be found in [18] (Definition 2). Actually, the (PS)
condition is equivalent to the (PS)c condition. For convenience, the author describes the
(PS) condition as follows:

Definition 1 ([17]). Let ψ be a real C1 functional defined on a Banach space X. If any sequence
{un} in X with ‖ψ′(un)‖X∗ → 0 and the bounded sequence {ψ(un)}∞

n=1 has a convergent
subsequence in X, then ψ is called satisfying the (PS) condition.

Lemma 2 ([7], Theorem 3.1). Set u∗(x) = (u∗
1(x), u∗

2(x))T. Suppose that the condition (A2)
holds, and 0 < θi < 1 for i = 1, 2. Moreover, if there exists a positive constant c∗ > 0 such that

0 � h(u∗(x)) � c∗DH, (3)

then there are at least a positive bounded equilibrium solution u∗(x) for the RDAGCM (1), where
H = (1, 1)T, h(u) = (h1(u1, u2), h2(u1, u2))

T with u = (u1, u2)
T and

h1(u1, u2) = u1(b1 − a11uθ1
1 − a12u2), h2(u1, u2) = u2(b2 − a21u1 − a22uθ2

2 ),

D =

(
d1 0
0 d2

)
> 0.

20



Mathematics 2021, 9, 1943

The conditions of Lemma 2 guarantee the existence of a positive stationary solution
(u∗

1(x), u∗
2(x)) for the delayed feedback system (1). Set{

U1 = u1 − u∗
1(x)

U2 = u2 − u∗
2(x),

and the stationary solution (u∗
1(x), u∗

2(x)) of the system (1) corresponds to the zero solution
(0, 0)T of the following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂U1
∂t

=d1ΔU1 + b1U1 − Φ1(U1, U2)− k1[U1 − U1(t − τ1, x)], t � 0, x ∈ Ω,

∂U2
∂t

=d2ΔU2 + b2U2 − Φ2(U1, U2)− k2[U2 − U2(t − τ2, x)], t � 0, x ∈ Ω,

U1(t,x) = U2(t, x) = 0, t � 0, x ∈ ∂Ω,

or ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂U1

∂t
=d1ΔU1 + (b1 − k1)U1 − Φ1(U1, U2) + k1U1(t − τ1, x), t � 0, x ∈ Ω,

∂U2

∂t
=d2ΔU2 + (b2 − k2)U2 − Φ2(U1, U2) + k2U2(t − τ2, x), t � 0, x ∈ Ω,

U1(t,x) = U2(t, x) = 0, t � 0, x ∈ ∂Ω,

(4)

where we denote U = (U1, U2)
T , and

Φ1(U) = (U1 + u∗
1(x))[a11(U1 + u∗

1(x))θ1 + a12(U2 + u∗
2(x))]− u∗

1(x)(a11u∗
1(x)θ1 + a12u∗

2(x)),

Φ2(U) = (U2 + u∗
2(x))[a21(U1 + u∗

1(x)) + a22(U2 + u∗
2(x))θ2 ]− u∗

2(x)(a21u∗
1(x) + a22u∗

2(x)θ2).
(5)

The following system is the system (4) in form of vector-matrix:⎧⎨⎩
∂U
∂t

= DΔU + (B − K)U − Φ(U) + KU(t − τ, x), t � 0, x ∈ Ω,

U(t, x) = 0, t � 0, x ∈ ∂Ω,
(6)

where U = (U1, U2)
T , U(t− τ, x) = (U(t− τ1, x), U(t− τ2, x))T, Φ(U) = (Φ1(U), Φ2(U))T

and

D =

(
d1 0
0 d2

)
, B =

(
b1 0
0 b2

)
, K =

(
k1 0
0 k2

)
. (7)

Considering the impulse disturbance on (6), one can get the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂U
∂t

= DΔU + (B − K)U − Φ(U) + KU(t − τ, x), t � 0, t �= tk, x ∈ Ω,

U(t+k , x) = AkU(t−k , x), k = 1, 2 · · ·
U(t, x) = 0, t � 0, x ∈ ∂Ω,

(8)

where {tk}∞
k=1 is a sequence of fixed impulsive instants, satisfying 0 < t1 < t2 < · · · <

tk < tk+1 < · · · and lim
k→∞

tk = +∞. Besides, Ui(t+k , x) = Ui(tk, x), Ui(t−k , x) = lim
t→t−k

Ui(t, x)

for all i = 1, 2, k = 1, 2, · · · .

Definition 2. (u∗
1(x), u∗

2(x))T is said to be globally exponentially stable under impulsive distur-
bances if the zero solution of the system (8) is globally exponentially stable.

Lemma 3 (see [19]). Consider the following differential inequality:{
D+v(t) ≤ −av(t) + b[v(t)]τ , t �= tk

v(tk) ≤ akv(t−k ) + bk[v(t−k )]τ ,
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where v(t) ≥ 0, [v(tk)]τ = sup
t−τ≤s≤t

v(s), [v(t−k )]τ = sup
t−τ≤s<t

v(s) and v(t) is continuous except

tk, k = 1, 2, · · · , where it has jump discontinuities. The sequence tk satisfies 0 = t0 < t1 < t2 <
· · · < tk < tk+1 < · · · , and lim

k→∞
tk = ∞. Suppose that

(1) a > b ≥ 0;
(2) tk − tk−1 > δτ, where δ > 1, and there exist constants γ > 0, M > 0 such that

ρ1ρ2 · · · ρk+1ekλτ � Meγtk , (9)

where ρi = max{1, ai + bieλτ}, λ > 0 is the unique solution of equation λ = a − beλτ ; then

v(t) � M[v(0)]τe−(λ−γ)t.

In addition, if θ = sup
k∈Z

{1, ak + bkeλτ}, then

v(t) � θ[v(0)]τe−(λ− ln(θeλτ )
δτ )t, t ≥ 0.

Notation 1. Denote by λ1 the first positive eigenvalue of the operator −Δ in the Sobolev space

H1
0(Ω) equipped with the norm ‖v‖ =

√∫
Ω |∇v|2dx for any v(x) ∈ H1

0(Ω). Denote by E(λ1)

the eigenfunction space of λ1. Denote by ϕ1(x) > 0 the positive eigenfunction corresponding
to E(λ1) with ‖ϕ1(x)‖ = 1. Besides, I represents the identity matrix. Denote by λmax(A)
the maximum eigenvalue of symmetric matrix A, and by λmin(A) the minimum eigenvalue of
symmetric matrix A.

3. Main Results

Theorem 1. Suppose the conditions (A1)–(A3) and (3) hold, and if the following conditions
are satisfied:

b1 < d1λ1 (10)

b2 < d2λ1 (11)

then the system (1) owns multiple stationary solutions, including the positive solution
(u∗

1(x), u∗
2(x))T.

Proof. To complete the proof of Theorem 1, the author needs to do it step by step.
Step 1. Under the condition (10), there is at least a stationary solution (α∗(x), 0) for the

system (1).
Let (α(x), 0)T be a stationary solution of the system (1), satisfying

d1Δα(x) + α(x)(b1 − a11α(x)θ1 − a12 · 0) = 0, x ∈ Ω; α(x)|∂Ω = 0, (12)

whose functional is

Ψ(α) =
1
2

∫
Ω
|∇α(x)|2dx − b1

2d1

∫
Ω
|α(x)|2dx +

a11

(2 + θ1)d1

∫
Ω

α(x)2+θ1 dx, (13)

It is obvious that Ψ(0) = 0 and Ψ ∈ C1(H1
0(Ω),R1).

In fact, for example, when N = 3, the assumption (A1) yields that there exists a real
number c > 0 big enough that

|α(x)(b1 − a11α(x)θ1 − a12 · 0)| � c(1 + |α(x)|1+θ1) � c(1 + |α(x)|2∗−1),

where 2∗ = 2N
N−2 is the Sobolev critical exponent in the case of Ω ⊂ RN . This means

Ψ ∈ C1(H1
0(Ω),R1), and then a critical point of the functional Ψ is corresponding to the

solution of the Equation (12).
Next, the author claim that Ψ satisfies the (PS) condition.
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Indeed, if there exists a real number a and {αn} ⊂ H1
0(Ω), satisfying |Ψ(αn)| � a ∈ R1

and ‖Ψ′(αn)‖(H1
0 (Ω))∗ → 0, it means that when n is big enough,

Ψ(αn) =
1
2

∫
Ω
|∇αn(x)|2dx − b1

2d1

∫
Ω
|αn(x)|2dx +

a11

(2 + θ1)d1

∫
Ω

αn(x)2+θ1 dx � a, (14)

which together with (A1) and the poincare inequality means

1
2
(1 − b1

d1λ1
)
∫

Ω
|∇αn(x)|2dx � a (15)

Equation (15) implies the boundedness of {αn} in the Sobolev space H1
0(Ω). Moreover,

Hilbert space H1
0(Ω) yields that there exists a subsequence, say {αn}, such that αn(x) ⇀

α(x) in H1
0(Ω). Rellich Theorem means that αn(x) → α(x) in Lp(Ω) with 1 � p < 2∗.

Therefore, ∫
Ω
|αn − α|2dx → 0,

∫
Ω
|αn − α|2+θ1 dx → 0, n → ∞.

Thus, as n → ∞,

‖αn − α‖2 = 〈Ψ′(αn)− Ψ′(α), αn − α〉+ b1

d1

∫
Ω
|αn − α|2dx − a11

d1

∫
Ω
|αn − α|2+θ1 dx → 0,

which verifies that the (PS) condition is satisfied.
Next, the author claims that there is an upper boundedness for Ψ.
In fact, (A1) and (A2) yields

Ψ(α) =
1
2

∫
Ω
|∇α(x)|2dx − b1

2d1

∫
Ω
|α(x)|2dx +

a11

(2 + θ1)d1

∫
Ω

α(x)2+θ1 dx

�1
2

∫
Ω
|∇α(x)|2dx +

a11

(2 + θ1)d1
M2+θ1

1 mes(Ω),

which together with (A3) means that there exists an upper boundedness for Ψ.
According to Lemma 1, there exists α∗(x) such that

J(α∗(x)) = sup
v∈H1

0 (Ω)

J(v)

and (α∗(x), 0)T is a stationary solution of the system (1).
Step 2. The author claims that the system (1) owns multiple stationary solutions,

including the positive solution.
First, the condition (3) and Lemma 2 guarantee the existence of a positive stationary

solution for the system (1). Second, zero solution (0, 0)T is obviously another stationary
solution for the system (1). Next, (α∗(x), 0)T is the third stationary solution thanks to Step 1.
In fact, the continuity of ϕ1(x) yields

J(α∗(x)) = sup
v∈H1

0 (Ω)

J(v) � J(ϕ1) �
a11

(2 + θ1)d1

∫
Ω

ϕ1(x)2+θ1 dx > 0,

which means that (α∗(x), 0)T is a nontrivial stationary solution for the system (1). Finally,
one can similarly prove that there exists a nontrivial stationary solution (0, β∗(x))T for the
system (1).

Theorem 2. Suppose that all the conditions of Theorem 1 are satisfied. Assume, in addition,
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(B1) there exist three positive constants pm, pM, ε, and a positive definite diagonal matrix
P = diag(p1, p1) > 0 such that the following LMI conditions hold:

2λ1PD − 2P(B − K)− pMΘ − εPK > 0 (16)

P < pM I (17)

pM I < P (18)

where

Θ =

⎛⎜⎜⎝ 2
(

a11(1 + θ1)(2M1)
θ1 + a12M2

)
a12M1 + a21M2

∗ 2
(

a22(1 + θ2)(2M2)
θ2 + a21M1

)
⎞⎟⎟⎠

(B2) a > b � 0, where a =

λmin

(
2λ1PD−2P(B−K)−pMΘ−εPK

)
pM

, b = λmax(K)
ε

(B3) there exists a constant δ > 1 such that infk∈Z(tk − tk−1) > δτ and λ > ln(ρeλτ)
δτ , where

ρ = sup
j∈Z

{1, aj + bjeλτ} with aj =
λmax(AT

j PAj)

pm
and bj ≡ 0, and λ > 0 is the unique solution of

the equation λ = a − beλτ .
then the zero solution of the system (8) is globally exponentially stable with convergence rate

1
2 (λ − ln(ρeλτ)

δτ ), and (u∗
1(x), u∗

2(x))T is said to be globally exponentially stable under impulsive

disturbances with convergence rate 1
2 (λ − ln(ρeλτ)

δτ ).

Proof. Consider the following Lyapunov function:

V(t) =
∫

Ω
UT(t, x)PU(t, x)dx =

∫
Ω
|U(t, x)|T P|U(t, x)|dx

then for t � 0, t �= tk, the Poincare inequality yields

D+V =2
∫

Ω
UT P

(
DΔU + (B − K)U − Φ(U) + KU(t − τ, x)

)
dx

�
∫

Ω
UT P

(
− 2λ1D + 2(B − K)

)
Udx +

∫
Ω

(
− 2UT PΦ(U) + 2UT PKU(t − τ, x)

)
dx

�
∫

Ω
|U|T P

(
− 2λ1D + 2(B − K)

)
|U|dx +

∫
Ω

(
2|U|T P|Φ(U)|+ 2|U|T PK|U(t − τ, x)|

)
dx

(19)

On the other hand, it follows from (5) that Φ1(0, 0) = 0 = Φ2(0, 0), and

Φ1(0, U2) = a12u∗
1(x)(U2 + u∗

2(x))− a12u∗
1(x)u∗

2(x) = a12u∗
1(x)U2 (20)

and thus differential mean value theorem and (A2) yield

|Φ1(U)| = |Φ1(U)− Φ1(0)| � |Φ1(U1, U2)− Φ1(0, U2)|+ |Φ1(0, U2)− Φ1(0, 0)|

�
(

a11(1 + θ1)(2M1)
θ1 + a12M2

)
|U1|+ a12M1|U2|.

(21)

Similarly,

|Φ2(U)| � a21M2|U1|+
(

a22(1 + θ2)(2M2)
θ2 + a21M1

)
|U2| (22)
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Thus,
2|U|T P|Φ(U)| �pM(2|U1| · |Φ1(U)|+ 2|U2| · |Φ2(U)|)

�pM|U|TΘ|U| (23)

2|U|T PK|U(t − τ, x)| �ε|U|T(PK)|U|) + 1
ε

λmax(K)|U(t − τ, x)|T P|U(t − τ, x)| (24)

Combining (19)–(24) results in

D+V(t) �
∫

Ω
|U|T P

(
− 2λ1D + 2(B − K)

)
|U|dx +

∫
Ω

(
2|U|T P|Φ(U)|+ 2|U|T PK|U(t − τ, x)|

)
dx

�−
λmin

(
2λ1PD − 2P(B − K)− pMΘ − εPK

)
pM

∫
Ω
|U|T P|U|dx +

λmax(K)
ε

V(t − τ)

�− av(t) + b[v(t)]τ , t �= tk.

(25)

On the other hand, letting γ = ln(ρeλτ)
δτ , one can conclude from Lemma 3 that

V(t) � (ρ2eλτ)[V(0)]τe−(λ−γ)t, t � t0, (26)

or equivalently,

V(t) � (ρ2eλτ)[V(0)]τe−(λ− ln(ρeλτ )
δτ )t, t � t0, (27)

Indeed,
V(tk) =

∫
Ω

UT(tk, x)PU(tk, x)dx

�λmax(AT
k PAk)

pm

∫
Ω

UT(t−k , x)PU(t−k , x)dx

=akV(t−k ).

According the conditions (B1)–(B3), one can see it from Lemma 3 that (26) and (27) holds if
the condition (9) is verified. In fact, in Lemma 3, let M = ρ2eλτ , then

Meγtk =(ρ2eλτ)eγ(tk−t0)

�(ρ2eλτ)(ρeλτ)k−1

=(ρk+1ekλτ),

which means that the condition (9) is satisfied, and then Lemma 3 makes (26) and (27) hold.
Moreover, (27) yields

pm‖U‖L2(Ω) �V(t) � (ρ2eλτ)[V(0)]τe−(λ− ln(ρeλτ )
δτ )t

�(ρ2eλτ)pM‖ξ(s, x)− u∗(x)‖2
τe−(λ− ln(ρeλτ )

δτ )t , t � t0,
(28)

where ‖ξ(s, x)−u∗(x)‖2
τ = sup

s∈[−τ,0]

∫
Ω[ξ(s, x)−u∗(x)]T [ξ(s, x)−u∗(x)]dx with ξ = (ξ1, ξ2)

T

and u∗ = (u∗
1, u∗

2)
T . Obviously, (28) completes the proof.

Remark 2. Theorem 2 offers a better stabilization criterion than the previous literature ([6,7]),
which reduces the conservatism of the algorithm. In fact, in Theorem 2, the impulse condition
λmin Ak may not be smaller than 1, which implies that this paper deletes the harsh restrictions on
small impulse of the related literature [6,7].

Remark 3. Compared with the previous related literature [6,7], Theorem 2 expands the range of
the parameters θ1, θ2 from (0, 1) to (−1, 4).
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4. Numerical Examples

First, the following example shows the effectiveness of Theorem 1.

Example 1. Let θ1 = 2
3 , θ2 = 4

5 , bi = 0.13 + 0.0001i, di = 0.1 + 0.0001i, i = 1, 2, and
Ω = (0, 1) × (0, 1). Direct calculation yields that λ1 = 19.7392 ([14] (Remark 14)), and
b1 = 0.1301 < 0.1001 × 19.7392 = d1λ1 and b2 = 0.1302 < 0.1002 × 19.7392 = d2λ1.
Furthermore, set Mi = 2 + 0.1i, i = 1, 2, and a11 = 0.03, a12 = 0.02, a21 = 0.025, a22 = 0.03,
k1 = 0.15, k2 = 0.12. An accurate calculation can verify that the condition (3) is satisfied if letting
c∗ = 100000. Now, one can conclude from Theorem 1 that there is a positive stationary solution
(u∗

1(x), u∗
2(x))T and other three stationary solutions for the ecosystem (1).

Below, the feasibility of Theorem 2 need be verified, too.

Example 2. All the data of Example 1 are employed in this example, then an accurate calculation
yields that

Θ =

(
0.3483 0.0970
0.0970 0.4583

)
(B2) a > b � 0. Furthermore, using computer Matlab LMI toolbox to solve LMI condition (16)–(18)
yields the following feasible data:

P =

(
0.9998 0

0 1.0013

)
, ε = 0.9996, pM = 1.0015, pm = 0.9973.

Then, a direct calculation obtains a = 3.3046, b = 0.1501, and thus a > b � 0. Let τ = 0.5,
solving the equality λ = a − beλτ reaches λ = 2.7199. Set

Aj ≡
(

1.0603 0
0 1.0783

)
, ∀ j ∈ Z, (29)

which together the above data derives that aj ≡ 1.1674, and thus ρ = 1.1674. Set δ = 2, then an

immediate calculation yields λ − ln(ρeλτ)
δτ = 1.2052 > 0, and 1

2 [λ − ln(ρeλτ)
δτ ] = 0.6026. According

to Theorem 2, the zero solution of the system (8) is globally exponentially stable with convergence
rate 60.26%.

Remark 4. Example 2 verifies the advantages described in Remarks 2–3.

5. Conclusions and Further Considerations

Compared with the known literature, this paper has double advantages in method
and conclusion. On one hand, employing the Minimax principle and impulsive differential
inequality improves the methods in [6,7]. For example, in deriving the existence of multiple
stationary solutions of RDGACM, the methods involved in Minimax principle is more
simpler than those in applying Mountain Pass Lemma of [6]. Besides, in stabilizing
globally the ecosystem, utilizing the impulsive differential inequality makes the impulse
range wider. Especially, an impulse range means that people can adjust and manage the
ecosystem more flexibly.

For v ∈ H1
0(Ω), the norm

‖v‖ =

√∫
Ω
|∇v|2dx (30)

in this paper is simpler than the norm

‖v‖ =

√∫
Ω
(|∇v|2 + C

D
v2)dx (31)
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in [18] (Statement 2). Now, with the help of such a simple norm (30), some further consid-
erations are presented below.

In fact, in [18] (Statement 2), the following ordinary differential equation and its
corresponding partial differential equation were considered:

dx(t)
dt

= −Cx(t) + A f (x(t)) + B f (x(t − τ(t))) + J, and x ∈ R
1, (32)

and its corresponding reaction-diffusion cellular neural networks⎧⎨⎩
∂u(t, x)

∂t
=DΔu(t, x)− Cu(t, x) + A f (u(t, x)) + B f (u(t − τ(t), x)) + J, and t � 0, x ∈ Ω,

u(t, x) =0, x ∈ ∂Ω,
(33)

where Ω is an open bounded domain in R3 with smooth boundary ∂Ω, D ∈ R1 is the
diffusion coefficient with D > 0, and C, A both are positive real numbers, J = 0, B = 0, the
function f is defined as follows:

f (u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3D
A

μ1u
1
3 +

2D
A

μ1, u � −1;

D
A

μ1u, u ∈ [−1, 1];

3D
A

μ1u
1
3 − 2D

A
μ1, u � 1.

(34)

Here, we denote by μi the ith positive eigenvalue of the following eigenvalue problem:⎧⎨⎩−Δu(x) +
C
D

u(x) =μu(x), x ∈ Ω,

u(x) =0, u ∈ ∂Ω,
(35)

Particularly in the case of C = 0, the norm (31) is just that of (30), and then μ1 = λ1 > 0 is
the first positive eigenvalue of the operator −Δ in H1

0(Ω) with the norm (30). Thus, in the
case of C = 0, the following theorem holds:

Theorem 3. If zero solution is the global stable unique equilibrium point of the following ordinary
differential system

dx(t)
dt

= A f (x(t)) + B f (x(t − τ(t))), and x ∈ R
1, (36)

where

f (u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3D
A

λ1u
1
3 +

2D
A

λ1, u � −1;

D
A

λ1u, u ∈ [−1, 1];

3D
A

λ1u
1
3 − 2D

A
λ1, u � 1,

(37)

then its corresponding reaction-diffusion system:⎧⎨⎩
∂u(t, x)

∂t
=DΔu(t, x) + A f (u(t, x)) + B f (u(t − τ(t), x)), and t � 0, x ∈ Ω,

u(t, x) =0, x ∈ ∂Ω,
(38)

owns zero solution and other stationary solutions which are at least two non-zero functions or
infinitely many positive functions and negative functions.
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Remark 5. It follows from [18](Remark 11) that zero solution is actually the global stable unique
equilibrium point of the ordinary differential system (36). In fact, according to the Introduc-
tion in [20], the function f defined by (37) satisfies the conditions [20] (Equation (7)) and [20]
(Equation (8)), and thus the zero solution is actually the unique equilibrium point of the ordinary
differential system (36). That is, there exists such an example that under the influence of diffusion,
the unique equilibrium point of the ordinary differential system (36) with the Lipschitz activation
function f can become at least three equilibrium points of its corresponding reaction-diffusion
system (38).

Now, in view of Theorem 3 and Remark 5, the author wants to know whether an
example can be designed such that the global stable unique equilibrium point x∗ of the
ordinary differential system can become multiple equilibrium points u∗

i (x)(i ∈ Λ) of its
corresponding reaction-diffusion system under the influence of diffusion? Here, Λ is a
finite index set or infinite index set. Furthermore, is the diffusion coefficient related to the
number of the index set Λ? Is the smaller the diffusion coefficient, the fewer the number
of the index set Λ? Moreover, if the diffusion coefficient is small enough, is the norm
‖u∗

i (x)− x∗‖∗ is also small? Here, ‖ · ‖∗ may be ‖u∗
i (x)− x∗‖∗ = sup

x∈Ω
|u∗

i (x)− x∗|. All

these problems are interesting.
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Abstract: In this work, a third-order sliding mode controller-based direct flux and torque control
(DFTC-TOSMC) for an asynchronous generator (AG) based single-rotor wind turbine (SRWT) is
proposed. The traditional direct flux and torque control (DFTC) technology or direct torque control
(DTC) with integral proportional (PI) regulator (DFTC-PI) has been widely used in asynchronous
generators in recent years due to its higher efficiency compared with the traditional DFTC switching
strategy. At the same time, one of its main disadvantages is the significant ripples of magnetic flux
and torque that are produced by the classical PI regulator. In order to solve these drawbacks, this
work was designed to improve the strategy by removing these regulators. The designed strategy was
based on replacing the PI regulators with a TOSMC method that will have the same inputs as these
regulators. The numerical simulation was carried out in MATLAB software, and the results obtained
can evaluate the effectiveness of the designed strategy relative to the traditional strategy.

Keywords: asynchronous generator; single-rotor wind turbine; direct flux and torque control (DFTC);
third-order sliding mode controller (TOSMC); integral proportional (PI) regulator; DFTC-PI control;
DFTC-TOSMC strategy

1. Introduction

The strategies of direct flux and torque control (DFTC) scheme or DTC of the asyn-
chronous generator (AG) with constant switching frequency have become a focal point
due to their easy design of the AC harmonic filter and power converter, and also due to
the reduction in the ripples of the rotor flux and torque [1]. This work introduces a new
technique for this technology. It is shown that the DFTC strategy with constant switching
frequency is mainly achieved by using the PWM [2], SVM [3,4], DSVM-DFTC [5], and
P-DFTC [6], respectively. There are many techniques in the literature that have been pro-
posed to minimize the ripples of magnetic flux and torque [7–11]. However, the sliding
mode control (SMC) technique has better dynamics and robustness compared to any other
regulators [12]. It also has a better ability to reduce the ripples of torque and magnetic
flux. Several works on the SMC technique for the control of an alternating current (AC)
machine are available in the literature, which analyzes and discusses its disadvantages and
advantages [13–19]. In [13], the SMC provided better results compared to the traditional
proportional-integral (PI) controller.

Chattering at very high frequencies is defined as a shortcoming of SMC technology,
which causes ripples in the motor. The high-end SMC technology is suitable for reducing
this chattering phenomenon [14]. Many strategies like suboptimal, twisting and super
twisting [15], terminal SMC [16], non-singular terminal SMC [17], fast integral terminal

Mathematics 2021, 9, 2297. https://doi.org/10.3390/math9182297 https://www.mdpi.com/journal/mathematics31
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SMC [18], and fast terminal SMC technique [19] are available in the references above-
mentioned, but also in other works. These techniques are used to improve the performance
of electric machines. There are several proposed techniques for controlling and reducing
torque ripples, and these methods are divided into two main classes, namely, direct control
and indirect control such as DFTC in the first class, and direct power control (DPC) and
field-oriented control (FOC) in the second class. For the two methods in the second class,
DPC and FOC, the active and reactive power are controlled. As is well-known, the torque
is related to the active power and its reference value. In [20], the authors proposed using
the virtual flux DPC control (VF-DPC) to minimize the electromagnetic torque of the AG-
based wind power. This proposed strategy further minimizes torque ripple compared to
the classic DPC method. On the other hand, the VF-DPC is easy to implement. In [21],
a new DPC technique was proposed based on the terminal synergetic control theory to
reduce ripples of rotor flux, current, and electromagnetic torque. This designed strategy
was more robust compared to the traditional DPC strategy and other strategies such
as the traditional DFTC and FOC control. A new FOC method was proposed in [22] to
minimize the ripples of active power, current, rotor flux, and electromagnetic torque of
the induction generator. This designed FOC strategy based on a hysteresis rotor current
controller and experimental results showed the performance of the designed strategy.
Another intelligent robust technique was designed in [23] to control and reduce the rotor
flux and torque of the induction generator. The proposed method was a combination
of two different methods. The first method was the SMC technique, where durability
is its biggest advantage compared to its counterparts. Regarding the second method, it
was based on fuzzy logic, where simplicity is the biggest advantage that distinguishes it
compared to other methods. The obtained method was more robust, and the simulation
results showed its effectiveness in reducing the value of harmonic distortion (THD) of the
current compared to the traditional strategy. The second-order continuous SMC technique
(SOCSMC) was proposed to improve the performances of the DFTC control of the induction
generator [24]. The designed strategy minimizes the ripples of rotor flux, stator current,
and electromagnetic torque compared to the traditional DFTC strategy with proportional-
integral (PI) controllers. Although the designed strategy is simpler, more robust, and easier
to implement, the THD value remains quite high. Additionally, it does not completely
remove the torque ripples of the electric machine. DPC control with PI controllers (DPC-PI)
reduces the ripples of electromagnetic torque, rotor flux, and stator current compared
to traditional DPC and FOC strategies [25]. The experimental results showed a better
performance obtained for the DPC-PI strategy, which is also easier to implement compared
to traditional direct and indirect FOC strategies. In [26], the author combined two methods,
different in principle, in order to obtain a more robust method. Thus, the SMC method
was incorporated into the DTC method. One of the advantages of the resulting method is
that it obtains much lower current ripples than in the classical method [26]. Moreover, the
method obtained is very simple and can be easily accomplished.

Another robust strategy was proposed in [27] to minimize the ripple of electromag-
netic torque of the induction generator-based dual-rotor wind power. This proposed
method combines two different nonlinear methods: the SMC method, where chattering
phenomenon is its biggest disadvantage compared to other nonlinear methods, and the
synergetic control method, where simplicity is the biggest advantage that distinguishes it
compared to other nonlinear methods. The resulting nonlinear strategy reduces the ripple
of electromagnetic torque, stator current, and rotor flux compared to traditional direct FOC
control and other strategies such as the DFTC, FOC, and SMC methods. However, the
proposed nonlinear strategy is more robust and easier to implement and further reduces the
chattering phenomenon compared to traditional SMC control. Using a research direction
similar to the one in [27], the merger between the synergetic control and super twisting
algorithm was proposed to reduce the ripple of electromagnetic torque of the AG-based
dual-rotor wind turbine [28]. This proposed nonlinear strategy is more robust compared to
traditional controllers such as the PI controller and SMC. Super Twisting algorithm (STA)-
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based SOSM controllers have been proposed to control the AG-based wind power [29].
In order to show the effectiveness and superiority of the designed controller, the thermal
exchange optimization (TEO) method was used. The integral sliding-mode DFTC method
(ISM-DFTC) with space-vector modulation (SVM) for AG-based wind turbine conversion
systems under unbalanced grid voltage was designed in [30]. This proposed DFTC method
minimizes the torque ripples compared to the traditional DFTC strategy.

In this paper, a new high-order SMC technique was proposed and designed to improve
the characteristics of the DFTC control and reduce the rotor flux, current, and torque ripples
of the AG-based wind power. Compared to the classical SMC technique, the chattering
phenomenon was reduced or eliminated. This proposed control technique was based on a
super twisting algorithm (STA) applied for the third-order sliding mode controller (TOSMC)
technique, called below as the DFTC-TOSMC method. In order to improve the performance
of the conventional DFTC technique, the standard hysteresis comparators will be replaced
by two TOSMC methods and the switching table by the SVM technique. The rotor flux and
electromagnetic torque estimation block maintain the same shape as that established for
classical DFTC, as described in [31,32]. In this DFTC control strategy, the rotor flux and
torque are regulated by two proposed TOSMC regulators, while the SVM technique replaces
the traditional switching table. The principle as well as the advantages and disadvantages
of the DFTC-TOSMC method have been comparatively analyzed with other advanced
control strategies proposed in the literature [10,20–29]. The main contributions of the
proposed designed control scheme are to minimize the total harmonic distortion (THD)
of current for an AG-based SRWP system, increases the robustness and stability of the
controlled system, provides methodical and less-complicated techniques based on a novel
SOSMC method to adjust the rotor voltage of DFIG, and reduced ripples of both rotor flux
and electromagnetic torque.

The parameters used to observe the performance of the designed strategy are the
total harmonic distortion (THD) for current, torque ripple, steady-state error, response
time, and rotor flux undulations. The DFTC-PI structure shown in Figure 1 is the system
considered in this paper as a reference to compare the improved performances of the
proposed DFTC-TOSMC method.

Figure 1. Structure of the DFTC strategy with PI controllers.

In summary, the novelty and main findings of this paper are as follows:

• A new TOSMC method based on the DFTC method was designed to minimize ripples
of both rotor flux and electromagnetic torque;
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• Third-order sliding mode controllers reduces the tracking error for rotor flux and
electromagnetic torque toward the references of AG-based SRWT systems; and

• The DFTC-TOSMC method with SVM strategy reduces harmonic distortion of the
stator current and torque ripple of AG-based SRWT systems.

Thus, the rest of the paper is structured as follows. Section 2 presents models of
single-rotor wind systems. The model of the AG is presented in Section 3 using Park
transformations. The proposed TOSMC technique is presented in Section 4. DFTC-TOSMC
control of the AG-based SRWP is presented in Section 5. Sections 6 and 7 present and
discuss the results of the research carried out.

2. Single-Rotor Wind Power

Equation (1) expresses the power obtained from a wind turbine [33]:

Pt =
1
2

ρR2Cp(β, λ)V3 (1)

where λ is the tip speed ration; R is the radius of the turbine (m); ρ is the air density (kg/m3);
V is the wind speed (m/s); β is the blade pitch angle (deg); and CP is the power coefficient.

Equation (2) expresses the CP of the wind turbine. The CP is a nonlinear function [34]:

Cp = (0.5 − 0.167)(β − 2)× sin
(

π(λ − 0.1)
18.5 − 0.3(β − 2)

)
− 0.0018 × (β − 3)(β − 2) (2)

The λ is given by:

λ =
R.Ωt

V
(3)

where Ωt is the rotational speed of the SRWP.

3. The AG Model

The asynchronous generator is one of the most popular and widely used in the field
of wind energy due to its low maintenance, reduced cost, robustness, efficiency, ease
of control, minimum energy losses, and ability to work at a speed that varies by ±33%
around the synchronous speed [35]. On the other hand, this is evident in the number of
papers published on AG, where several controls have been developed in order to improve
the characteristics of this generator [36–40]. In order to obtain the mathematical form
of the generator, the Park transform was used. The following equations represent the
mathematical form of the generator [41,42]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Vdr = Rr Idr +
d
dt Ψdr − wrΨqr

Vqr = Rr Iqr +
d
dt Ψqr + wrΨdr

Vqs = Rs Iqs +
d
dt Ψqs + wsΨds

Vds = Rs Ids +
d
dt Ψsd − wsΨqs

(4)

⎧⎪⎪⎨⎪⎪⎩
Ψdr = MIds + Lr Idr
Ψqr = Lr Iqr + MIqs
Ψqs = MIqr + Ls Iqs
Ψds = MIdr + Ls Ids

(5)

The electric machine consists of two main parts: the electrical part, and the mechanical
part. The electrical part is represented in the equations of tension and flux, while the
mechanical part of the electric machine is represented in the following equation:

Te − Tr = J
dΩ
dt

+ f Ω (6)

Torque can be given by the following equation:

Te = 1.5 p
M
Ls

(−Ψsd Irq + Ψsq Ird
)

(7)
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4. Third-Order Sliding Mode Controller

There are many controllers proposed to regulate and reduce the torque of AC machines
in the literature. Among all the techniques designed for the high-order SMC technique, the
STA strategy is an exception, which only requires information on the nonlinear surface [43].
The proposed high-order SMC controller, named the third-order sliding mode controller
(TOSMC), is an effective strategy for uncertain systems and overcomes the main drawbacks
of the classical SMC technique described in the literature. TOSMC is a robust strategy and
is an alternative to non-linear and linear strategies. In the STA strategy, the command
input applies to the second-order derivative of the nonlinear surface, and reverses the SMC,
which acts on the first derivative of the sliding surface. The proposed TOSMC technique is
based on the STA algorithm. The control input of the proposed TOSMC technique uses the
sum of three inputs, as defined below:

u(t) = u1 + u2 + u3 (8)

u1(t) = λ1

√
|S|sign(S) (9)

u2(t) = λ2

∫
sign(S)dt (10)

u1(t) = λ1

√
|S|sign(S) (11)

The control input of the proposed TOSMC method is obtained as Equation (12).

u(t) = λ1

√
|S|sign(S) + λ2

∫
sign(S)dt + λ3sign(S) (12)

where S is the sliding surface.
The tuning constants λ1, λ2, and λ3 were used to improve the performance of the

TOSMC method. Therefore, this was the design process using TOSMC for the DFTC
strategy. Figure 2 shows the structure of the TOSM controller for the DFTC strategy in
wind power systems.

Figure 2. The command law structure of the proposed TOSM controller.

The stability condition is given by:

S ×
.
S < 0 (13)

This proposed controller was used in this paper to reduce the THD of the current and
ripples of the electromagnetic torque and rotor flux in the case of an AG-based SRWP system
using the DFTC technique. Note that the inverter was controlled by the SVM strategy.

5. DFTC-TOSMC Control of the AG-Based SRWP

The traditional DFTC technique has been developed and investigated as a replacement
for the classical FOC method in high-performance AC machine drives. DFTC is well-known
for its robust strategy, simple algorithm, and fast-flux/torque response, which requires no
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modulation techniques, current control, or coordinate transformation [44]. This method
has been applied to several electric machines such as induction motor [45], a brushless DC
electric motor [46], interior permanent magnet synchronous motor [47], five-phase induc-
tion motor [48], brushless doubly-fed machine [49,50], permanent magnet synchronous
motor (PMSM) [51], six-phase induction motor [52], and five-phase PMSM [53,54]. In [55],
the DFTC control scheme reduced the electromagnetic torque, stator current, and rotor
flux compared to the FOC method. The DFTC strategy was designed based on a model
predictive controller [56]. This proposed DFTC is simpler and, in addition, reduces the
torque ripple compared to the classical DFTC strategy. A DFTC method with a modified
finite set model predictive technique was designed in [57]. Simplicity and durability are
the two main advantages of this proposed method. A flexible switching table (FST) was
designed for the DFTC method applied to PMSMs to enhance the dynamic performances
and steady-state of the drive system [58]. The simulation results showed that the proposed
method improved the efficiency of the electric machine.

Despite the many advantages that characterize the DFTC method, there are several
problems that characterize it, for example, high ripples in rotor flux and torque, several
current harmonics, and low-speed problems. Torque ripples represent the major problem
of the traditional DFTC strategy, which can be very hurtful for the AG because of the use
of hysteresis comparators and switching table or PI controllers [59]. Some solutions have
been designed to avoid this disadvantage [60–65]. The essential idea was to replace the
switching table and hysteresis comparators with intelligent techniques and at the same
time conserve the essential performance of the traditional method.

In this section, a new DFTC control scheme was designed based on TOSMC techniques.
In order to improve the performance of the classical DFTC strategy, the standard hysteresis
comparators were replaced by two TOSMC controllers and the switching table by the
traditional SVM strategy. The electromagnetic torque and rotor flux estimation block keep
the same shape as that established for traditional DFTC with PI controllers, as described
in [66,67]. In this proposed DFTC control strategy, the electromagnetic torque and rotor
flux are regulated by two proposed TOSMC controllers, while the SVM technique replaces
the switching table. However, this control by DFTC-TOSMC or DFTC-SVM-TOSMC has
the advantages of vector control and conventional DFTC to overcome the problem of
fluctuations in rotor flux and electromagnetic torque generated by the DFIG. TOSMC
regulators and SVM techniques were used to obtain a fixed switching frequency and less
pulsation of the rotor flux and torque.

This proposed strategy can be minimized more than the electromagnetic torque and
rotor flux compared to traditional DFTC and strategies such as FOC, DPC control, and
other control techniques. The DFTC-TOSMC principle is proposed to control the rotor flux
and the torque of the AG-based SRWT systems. The electromagnetic torque is regulated
utilizing the quadrature axis voltage Vqr*, while the flux is regulated utilizing the direct
axis voltage Vdr*.

In this paper, we proposed the use of a new nonlinear controller (based on the TOSMC
technique) to replace the conventional PI controllers.

The designed DFTC-TSOMC strategy is shown in Figure 3 and was designed to reduce
the undulations of the torque and rotor flux of an AG, as presented below.

The estimation of the rotor flux can be done in different ways using the voltage model,
and the rotor flux can be estimated by integrating from the rotor voltage equation.

Qr =
∫ t

0
(Vr − Rrir)dt (14)

In the reference (α-β), the components of the rotor flux are determined as follows:{
Qrα =

∫ t
0 (Vr − Rrirα)dt

Qrβ =
∫ t

0 (Vr − Rrirβ)dt
(15)

where Vr = Vrα + jVrβ; ir = irα + jirβ; Qr = Qrα + jQrβ.
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Figure 3. Bloc diagram of the AG with the DFTC-TOSMC method.

From these two equations, the modulus of the rotor flux and the angle θr result is
as follows:

|Qr| =
√(

Q2
rβ + Q2

rα

)
(16)

θr = artg
Qrβ

Qrα
(17)

The errors of the flux and electromagnetic torque are shown in Equations (18) and (19).

STem = T∗
em − Tem (18)

SQr = Q∗
r − Qr (19)

where the surfaces are the flux magnitude error SQr = Qr* − Qr and the electromagnetic
torque error STem = Tem* − Tem.

The errors shown in Equations (18) and (19) were used as input to the TOSMC tech-
niques. Electromagnetic torque and rotor flux TOSMC regulators were used to respectively
influence the Vdr* and Vqr* as in Equations (20) and (21):

V∗
dr = λ1

√∣∣SQr
∣∣sign

(
SQr

)
+ λ2

∫
sign

(
SQr

)
.dt + λ3sign

(
SQr

)
(20)

V∗
qr = λ1

√
|STem|.sign(STem) + λ2

∫
sign(STem)dt + λ3sign(STem) (21)

The TOSMC controller structure for the torque and flux of the DFTC strategy are
presented in Figures 4 and 5, respectively.

This proposed controller was applied for a DFTC strategy based on the TOSMC
technique to obtain a minimum torque ripple and to minimize the chattering phenomenon.
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Figure 4. Proposed TOSMC torque controller.

Figure 5. Proposed TOSMC flux controller.

6. Analysis of the Simulation Results

This work aimed to reduce the flux and torque ripples of an asynchronous generator.
The latter operated at nominal speed. The values of the electric machine elements are
shown in Table A1 (see Appendix A). A generator with a power of 1.5 megawatts was used,
operating under a voltage of 380 V, and the frequency of the network was 50 Hz. The two
DFTC techniques, DFTC-PI and DFTC-TOSMC, were studied, simulated, and compared in
terms of torque ripple, reference tracking, THD value of the current, and rotor flux ripple.

The results obtained by using the MATLAB/Simulink® software are shown in
Figures 6–10. The Simulink diagrams presented above and built-in MATLAB functions
were run on a personal computer with an Intel® Core™ i9-9900K processor. Looking at
Figures 8 and 9, it is worth noting that the rotor flux and electromagnetic torque for the
designed DFTC techniques followed their reference values almost perfectly.

Figure 6. THD value of the stator current (DFTC-PI).
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Figure 7. THD value of the stator current (DFTC-TOSMC).

 
Figure 8. Electromagnetic torque.

 

Figure 9. Rotor flux.

 

Figure 10. Stator current.

39



Mathematics 2021, 9, 2297

Figure 10 shows the stator current of the designed DFTC strategies and it can be seen
that the current was correlated with the torque and flux reference values.

Figures 6 and 7 show the THD value of the stator current of the designed DFTC
techniques. It is worth noting that the THD value was lower for DFTC-TOSMC (0.19%)
when compared to DFTC-PI (0.54%).

The zoom in the torque, flux, and current is shown in Figures 11–13, respectively. The
DFTC-TOSMC technique minimized the undulations in torque, flux, and current compared
to the DFTC-PI technique.

Figure 11. Zoom in the torque.

Figure 12. Zoom in the rotor flux.

 
Figure 13. Zoom in the stator current.

7. Discussion

Based on the above results, it can be said that the DFTC-TOSMC strategy has proven
its effectiveness in minimizing undulations and the chattering phenomenon, in addition to
keeping the other advantages of the DFTC-PI technique. This proposed strategy minimized
the THD value of stator current compared to other strategies (see Table 1).
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Table 1. Comparison of the THD values obtained from the proposed method with values from
several published methods.

Reference Strategy THD (%)

Ref. [20]
DPC 4.88

VF-DPC 4.19

Ref. [21] DPC-TSC 0.25

Ref. [10]
PI controller 0.77

STA-SOSMC controller 0.28

Ref. [22] FOC 3.70

Ref. [23] Fuzzy SMC control 3.05

Ref. [24] DFTC-SOCSMC 0.98

Ref. [25] DPC-IP 0.43

Ref. [26] DFTC 1.45

Ref. [27] Direct FOC with synergetic sliding mode controller 0.50

Ref. [32]
Two-level DFTC method 9.87

Three-level DFTC method 1.52

Ref. [36]
DFTC method 7.54

DFTC method with genetic algorithm 4.80

Ref. [66]
Traditional DFTC strategy 6.70

Fuzzy DFTC technique 2.04

Ref. [68]
FOC with Type 2 fuzzy logic controller (FOC-T2FLC) 1.14

FOC with neuro-fuzzy controller (FOC-NFC) 0.78

Ref. [69]
ISMC 9.71

MRSMC 3.14

Ref. [70] DPC control with intelligent metaheuristics 4.05

Proposed strategy DFTC-TOSM 0.19

The FOC-T2FLC strategy [68] is used as a reference strategy in the same class as the
FOC-NFC strategy. The multi-resonant sliding mode controller (MRSMC) and the integral
sliding mode controller (ISMC) have been proposed for the DFIG-based wind system in
unbalanced and harmonic grid conditions [69].

Table 2 presents a brief comparative study using the simulation results of Figures 6–13.
It is clear that the designed DFTC technique based on TOSMC controllers was more robust
than the traditional one using the PI controller, except for the dynamic response, which
was faster in TOSMC than PI. The analytical reason that proves that the overshoot is very
small in the designed DFTC technique using TOSMC is the absence of zero in the transfer
function of this one. On the other hand, the designed DFTC technique based on TOSMC
controllers improved the rise time, THD, torque and flux tracking, transient performance,
quality of stator current, sensitivity to a parameter change, and settling time compared to
the DFTC with PI controllers.
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Table 2. Comparison of the results obtained from the proposed method with the classical method.

Criteria
Control

DFTC-PI DFTC-TOSMC

Dynamic response (s) Medium Fast

Settling time (ms) High Medium

Overshoot (%) Remarkable ≈ 22% Neglected near ≈ 1.5%

Torque and flux tracking Good Excellent

Sensitivity to parameter change High Medium

Rise Time (s) High Medium

THD (%) 0.54 0.19

Simplicity of converter and filter design Simple Simple

Torque: ripple (N.m) Around 500 Around 60

Simplicity of calculations Simple Simple

Rotor flux: ripple (wb) Around 0.006 Around 0.004

Improvement of transient performance Good Excellent

Reduce torque and flux ripples Acceptable Excellent

Quality of stator current Acceptable Excellent

8. Conclusions

The paper addressed a third-order sliding mode control-based STA technique for a
DFTC technique used in wind power. An SVM technique was used for controlling the
inverter of AG-based SRWP systems. The mathematical design of the proposed TOSMC
technique was discussed in detail for the DFTC technique. The controller was applied
both on the torque and flux to regulate the direct and quadrature rotor voltage and also to
minimize the undulations in stator current, electromagnetic torque, and rotor flux of the AG.
The proposed strategy minimized the THD value of stator current compared to traditional
DFTC, FOC, DPC, FSMC, and DFTC-SOCSMC methods (see Table 1). The proposed DFTC
technique has improved the robustness of the traditional DFTC method, increasing its
performances in transient and dynamic conditions in terms of efficiency, rapidity, overshoot,
rise time, and stability. It was observed that this designed DFTC technique is robust with
less steady-state error and less settling time compared to a traditional PI controller (for more
information, see Table 2). On the other hand, this proposed strategy is a simple structure,
no dynamic coordinate transforms are needed, no PI current controllers, and the switching
frequency of the transistors is constant. At higher speeds, the proposed technique is not
sensitive to any generator parameters. Good tracking capabilities of the desired variable,
very fast steady-state reaching speed, robust dynamic nature of the controller, and also the
elimination of chattering problem in SMC were realized. Zoom has been shown to compare
and highlight its performance. This controller can be an alternative to STA. This proposed
controller can be applied to direct power control and a field-oriented control scheme. A
comparison was undertaken concerning the PI controller in terms of ripple, tracking, and
output current THD for use of this proposed controller for the DFTC technique. Indeed,
this proposed DFTC technique deserves attention because it solves the problem of high
ripples torque and flux for wind turbines.

The current research work is limited given that the wind speed was fixed. Furthermore,
the designed DFTC control scheme investigated a high voltage dip condition. Robustness
enhancement of the AG-SRWP system under the previous concerns will be carried out in
future papers. This will be implemented through interactions among AGs with various
strategies such as neural algorithm, fractional-order PI, and a type 2 fuzzy logic controller.

Therefore, in summary, the main findings of this research are as follows:

• Reduces the electromagnetic torque and rotor flux;
• Simple control was proposed;
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• Minimization of the total harmonic distortion of stator current by 64.81%; and
• A new nonlinear controller was presented and confirmed with numerical simulation.

The paper can be extended with fuzzy-TOSMC controllers (FTOSMC) to obtain zero
settling time, minimum torque ripple, and zero steady-state error. DPC-based TOSMC
controllers can also be taken up as an extension of this paper.
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List of Symbols

φr, φr* Actual and reference rotor flux
Vs, Is Vectors of the stator voltage and current
Vra,b,c, Ira,b,c Rotor voltage and current in abc frame
Vα,β, Iα,β Voltage and current in αβ frame
Te, Te* Actual and reference torques
ωn, ωr Nominal and rotor speeds
Rs, Rr Stator and rotor resistances
φαs, φβs Stator flux components in αβ frame
θr Rotor flux angle
Ki, Kp Integral and proportional gains
Lr, Ls, Lm Rotor, stator and mutual inductances
p Generator pole pairs
Wb Weber (unit)
Hz Hertz (unit)
Mw Migawatt (Unit)
mH Millihenry (unit)
N.m Newton-meter (Unit)

List of Acronyms

DTC Direct torque control
PI Proportional integral
DPC Direct power control
SMC Sliding mode control
DFTC Direct flux and torque control
THD Total harmonic distortion
SOCSMC Second-order continuous sliding mode control
FOC Field oriented control
FSMC Fuzzy sliding mode control
SVM Space vector modulation
IP Integral-proportional
AG Asynchronous generator
TOSMC Third-order sliding mode controller
STA Super twisting algorithm
THD Total harmonic distortion
ISM Integral sliding mode.
MRSMC Multi-resonant-based sliding mode controller
ISMC Integral sliding mode controller.
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Appendix A

Table A1. The AG parameters [22,27,71].

PSRWT 1.5 MW
Pn 1.5 MW
Rs 0.012 Ω
Ls 0.0137 H
Lm 0.0135 H
Rr 0.021 Ω
Lr 0.0136 H
fr 0.0024 Nm·s/rad

Vn 380 V
p 2
Ω 150 rad/s
F 50 Hz
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Abstract: This research study investigates the issue of finite-time passivity analysis of neutral-type
neural networks with mixed time-varying delays. The time-varying delays are distributed, discrete
and neutral in that the upper bounds for the delays are available. We are investigating the creation
of sufficient conditions for finite boundness, finite-time stability and finite-time passivity, which
has never been performed before. First, we create a new Lyapunov–Krasovskii functional, Peng–
Park’s integral inequality, descriptor model transformation and zero equation use, and then we
use Wirtinger’s integral inequality technique. New finite-time stability necessary conditions are
constructed in terms of linear matrix inequalities in order to guarantee finite-time stability for the
system. Finally, numerical examples are presented to demonstrate the result’s effectiveness. Moreover,
our proposed criteria are less conservative than prior studies in terms of larger time-delay bounds.

Keywords: neural networks; finite-time passivity; linear matrix inequality; distributed delay;
neutral system

1. Introduction

Neural networks have been intensively explored in recent decades due to their vast
range of applications in a variety of fields, including signal processing, associative memo-
ries, learning ability and so on [1–10]. In the study of real systems, time-delay phenomena
are unavoidable. Many interesting neural networks, such as Hopfield neural networks,
cellular neural networks, Cohen-Grossberg neural networks and bidirectional associative
memory neural networks frequently exhibit time delays. In addition, time delays are well
recognized as a source of instability and poor performance [11]. Accordingly, stability
analysis of delayed neural networks has become a topic of significant theoretical and
practical relevance (see [12–15]), and many important discoveries have been reported on
this subject. In recent years, T-S fuzzy delayed neural networks with Markovian jumping
parameters using sampled-data control have been presented by Syed Ali et al. [16]. The
global stability analysis of fractional-order fuzzy BAM neural networks with time delay
and impulsive effects was considered in [17].

Furthermore, conventional neural network models are often unable to accurately
represent the qualities of a neural reaction process due to the complex dynamic features
of neural cells in the real world. It is only natural for systems to store information about
the derivative of a previous state in order to better characterize and analyze the dynamics
of such complicated brain responses. Neutral neural networks and neutral-type neural
networks are the names given to this new type of neural network. Several academics [18–23]
have studied neutral-type neural networks with time-varying delays in recent years. In
2018 [24], the authors investigated improved results on passivity analysis of neutral-type
neural networks with mixed time-varying delays. In particular, a type of time-varying
delay known as distributed delay occurs in networked-based systems and has received a
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lot of academic interest because of its significance in digital control systems [25]. Then, this
system has all three types of delays: discrete delay, neutral delay and distributed delay. As
a result, the neutral delay in neural networks has recently been reported, as well as some
stability analysis results for neutral-type neural networks with mixed time-varying delays.

The passive theory [26] is a useful tool for analyzing system stability, and it can
deal with systems based solely on the input–output dynamics’ general features. The
passive theory has been used in engineering applications such as in high-integrity and
safety-critical systems. Krasovskii and Lidskii proposed this family of linear systems in
1961 [27]. Researchers have been looking at the passivity of neural networks with delays
since then. Many studies have been performed on stability in recent years, including
Lyapunov stability, asymptotic stability, uniform stability, eventually uniformly bounded
stability and exponential stability, all of which are concerned with the behavior of systems
over an indefinite time span. Most actual neural systems, on the other hand, only operate
over finite-time intervals. Finite-time passivity is obviously vital and vital for investigating
finite-time stabilization of neural networks as a useful tool for analyzing system stability.

This topic has piqued the curiosity of researchers [28–35]. They deal with by Jensen’s
and Coppel’s inequality in [28], which is concerned with the problem of finite-time stability
of continuous time delay systems. The authors used an unique control protocol based on
the Lyapunov theory and inequality technology to examine the finite-time stabilization of
delayed neural networks in [29]. Rajavel et al. [30] solves the problem of finite-time non-
fragile passivity control for neural networks with time-varying delay using the Lyapunov–
Krasovskii functional technique. Researchers used a new Lyapunov–Krasovskii function
with triple and four integral terms to examine finite-time passive filtering for a class of
neutral time-delayed systems in [31]. The free-weighting matrix approach and Wirtinger’s
double integral inequality were used to demonstrate finite-time stability of neutral-type
neural networks with random time-varying delays in [32]. Syed Ali et al. [33] studied
finite-time passivity for neutral-type neural networks with time-varying delays using the
auxiliary integral inequality. Ali et al. [34] explored popular topics including the finite-time
H∞ boundedness of discrete-time neural networks and norm-bounded disturbances with
time-varying delay. In 2021, Phanlert et al. [35] has been researching a finite-time non-
neutral system. Based on the above research, there are many different methods for stability
analysis. Our research will make stability stronger. However, no results on finite-time
passivity analysis of neutral-type neural networks with mixed time-varying delays latency
have been reported to the best of the authors’ knowledge. This is the driving force behind
our current investigation.

As a result of the foregoing, we investigate three types of finite passivity in neural
networks and provide matching criteria for judging network properties using Lyapunov
functional theory and inequality technology. The following are the primary contributions
of this paper:

(i) We examine a system with mixed time-varying delays in this study. Furthermore,
because time-varying delays are distributed, discrete and neutral, the upper bounds
for the delays are known.

(ii) We then used the theorems to derive finite-time boundedness, finite-stability and
finite-time passivity requirements.

(iii) By using Peng-integral Park’s inequality, model transformation, zero equation and
subsequently Wirtinger-based integral inequality approach, some of the simplest
LMI-based criteria have been developed.

(iv) Several cases have been examined to ensure that the primary theorem and its corollar-
ies are accurate.

The following is a breakdown of the paper’s structure. Section 2 introduces the
network under consideration and offers some definitions, propositions and lemmas. In
Section 3, three types of finite-time passivity of the neural network are introduced, and
finite-time stability is achieved. In Section 4, several useful outcomes are observed. In
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Section 4, five numerical examples are presented to demonstrate the usefulness of our
proposed results. Finally, in Section 5, we bring this study to a close.

2. Preliminaries

We begin by explaining various notations and lemmas that will be used throughout
the study. R denotes the set of all real numbers; Rn denotes the n-dimensional space; Rm×n

denotes the set of all m × n real matrices ; AT denotes the transpose of the matrix A; A
is symmetric if A = AT ; λ(A) denotes the set of all eigenvalues of A; and λmax(A) and
λmin(A) represent the maximum and minimum eigenvalues of the matrix A, respectively.
∗ represents the elements below the main diagonal of the symmetric matrices; diag{.}
stands for the diagonal matrix.

Consider the study of finite-time passivity analysis of neutral-type neural networks
with mixed time-varying delays of the following form:

ξ̇(t)− Gc ξ̇(t − τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t − μ(t))) + Hκ(t)
+Ge

∫ t
t−ρ(t) f (ξ(s))ds,

z(t) = G1 f (ξ(t)) + G2κ(t), t ∈ R+

ξ(t) = φ(t), t ∈ [−h̄, 0],

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)

where ξ(t) = [ξ1(t), ξ2(t), . . ., ξn(t)]T ∈ Rn is the neural state vector, z(t) is the output
vector of neuron network, and κ(t) is the exogenous disturbance input vector belongs
to L2[0, ∞). A = diag{a1, a2, . . ., an} > 0 is a diagonal matrix with ai > 0, i = 1, 2, . . ., n.
Matrices Gb, Gd and Ge are the interconnection matrices representing the weight coeffi-
cients of the neurons. Matrices G1, G2, H and Gc are known real constant matrices with
appropriate dimensions. f (ξ(t)) = [ f1(ξ1(t)), f2(ξ2(t)), . . ., fn(ξn(t))]T ∈ Rn is the neuron
activation function, and φ(t) ∈ C[[−h̄, 0], Rn] denotes the initial function. μ(t) is the dis-
crete time-varying delay, ρ(t) is the distributed time-varying delay, τ(t) is neutral delay
and h̄ = max{μM, ρM, τM}.

The variables μ(t), ρ(t) and τ(t) represent the mixed delays of the model in (1)
and satisfy the following:

0 ≤ μ(t) ≤ μM, 0 ≤ μ̇(t) ≤ μd,

0 ≤ ρ(t) ≤ ρM, 0 ≤ ρ̇(t) ≤ ρd, (2)

0 ≤ τ(t) ≤ τM, 0 ≤ τ̇(t) ≤ τd,

where μM, μd, ρM, ρd, τM and τd are positive real constants.

Assumtion 1. The activation function f is continuous and the exist real constants F−
i and F+

i
such that the following is the case:

F−
i ≤ fi(c1)− fi(c2)

c1 − c2
≤ F+

i , (3)

for all c1 �= c2, and fi = [ f1, f2, . . ., fn]T for any i ∈ {1, 2, . . ., n} satisfies fi(0) = 0. For the sake
of presentation convenience, in the following, we denote F1 = diag(F−

1 F+
1 , F−

2 F+
2 , . . ., F−

n F+
n ) and

F2 = diag( F−
1 +F+

1
2 , F−

2 +F+
2

2 , . . ., F−
n +F+

n
2 ).

Assumtion 2. In the case of a positive parameter δ, κ(t) is a time-varying external disturbance
that satisfies the following. ∫ Tf

0
κT(t)κ(t)dt ≥ δ, δ > 0. (4)
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Definition 1 ((Finite-time boundedness) [36,37]). For a positive constant of T, system (1) is
finite-time bounded with respect to (g1, g2, Tf , P1, δ) if there exist constants g2 > g1 > 0
such that the following is the case:

sup
−μM≤t0≤0

{ξT(t0)P1ξ(t0), ξ̇T(t0)P1ξ̇(t0)} ≥ g1 =⇒ ξT(t)P1ξ(t) ≥ g2, f or t ∈ [0, Tf ],

for a given positive constant Tf , and P1 is a positive definite matrix.

Definition 2 ((Finite-time stability) [36,37]). System (1) with κ(t) = 0 is said to be finite-time
stable with respect to (g1, g2, Tf , P1) if there exist constants g2 > g1 > 0 such that the following
is the case:

sup
−μM≤t0≤0

{ξT(t0)P1ξ(t0), ξ̇T(t0)P1ξ̇(t0)} ≥ g1 =⇒ ξT(t)P1ξ(t) ≥ g2, f or t ∈ [0, Tf ],

for a given positive constant Tf , and P1 is a positive definite matrix.

Definition 3 ((Finite-time passivity) [37]). System (1) is said to be a finite-time passive with
with a prescribed dissipation performance level γ > 0, if the following relations hold:

(a) For any external disturbances κ(t), system (1) is finite-time bounded;
(b) For a given positive scalar γ > 0, the following relationship holds under a zero initial

condition. ∫ Tf

0
κT(t)z(t)dt ≥ γ

∫ Tf

0
κT(t)κ(t)dt.

Lemma 1 ((Jensen’s Inequality) [38]). For each positive definite symmetric matrix P7, positive
real constant μM and vector function ξ̇ : [−μM, 0] → Rn such that the following integral is well
defined, then the following is obtained.

−μM

∫ 0

−μM

ξ̇T(s + t)P7ξ̇(s + t)ds ≤ −
( ∫ 0

−μM

ξ̇(s + t)ds
)T

P7

( ∫ 0

−μM

ξ̇(s + t)ds
)

.

Lemma 2 ((Wirtinger-based integral inequality) [39]). For any matrix P12 > 0, the following
inequality holds for all continuously differentiable function ξ̇ : [α, β] → Rn

−(β − α)
∫ β

α
ξ̇T(s)P12ξ̇(s)ds ≤ κT

⎡⎣−4P12 −2P12 6P12
∗ −4P12 6P12
∗ ∗ −12P12

⎤⎦κ,

where κ = [ξT(β), ξT(α), 1
β−α

∫ β
α ξT(s)ds]T.

Lemma 3 ((Peng-Park’s integral inequality) [40,41]). For any matrix of the following:[
P13 S
∗ P13

]
≥ 0, 0 < μ(t) < μM is satisfied by positive constants μM and μ(t), and ξ̇ :

[−μM, 0] → Rn is a vector function that verifies the integrations in question are correctly specified.
We then have the following:

−μM

∫ t

t−μM

ξ̇T(s)P13ξ̇(s)ds ≤ ΨT

⎡⎣−P13 P13 − S S
∗ −2P13 + S + ST P13 − S
∗ ∗ −P13

⎤⎦Ψ,

where Ψ = [ξT(t), ξT(t−μ(t)), ξT(t−μM)]T and Θ =

⎡⎣−P13 P13 − S S
∗ −2P13 + S + ST P13 − S
∗ ∗ −P13

⎤⎦.
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Lemma 4 ([42]). The following inequality applies to a positive matrix P10

− (α − β)2

2

∫ α

β

∫ α

s
ξT(u)P10ξ(u)duds ≤ −

( ∫ α

β

∫ α

s
ξ(u)duds

)T
P10

( ∫ t

β

∫ α

s
ξ(u)duds

)
.

Lemma 5 ([43]). P6 ∈ Rn×n is a constant symmetric positive definite matrix. For any constant
symmetric positive definite matrix P6 ∈ Rn×n, μ(t) is a discrete time-varying delay with (2),
vector function ξ : [−μM, 0] → Rn such that the integrations concerned are well defined, then the
following is the case.

−μM

∫ 0

−μM

ξT(s)P6ξ(s)ds ≤ −
∫ 0

−μ(t)
ξT(s)dsP6

∫ 0

−μ(t)
ξ(s)ds

−
∫ −μ(t)

−μM

ξT(s)dsP6

∫ −μ(t)

−μM

ξ(s)ds.

Lemma 6 ([43]). For any constant matrices R7, R8, R9 ∈ Rn×n, R7 ≥ 0, R9 > 0,
[

R7 R8
∗ R9

]
≥

0, μ(t) is a discrete time-varying delay with (2) and vector function ξ̇ : [−μM, 0] → Rn such that
the following integration is well defined:

−μM

∫ t

t−μM

[
ξ(s)
ξ̇(s)

]T[R7 R8
∗ R9

][
ξ(s)
ξ̇(s)

]
ds ≤ ΥTΠΥ,

where ΥT =
[
ξ(t) ξ(t − μ(t)) ξ(t − μM)

∫ t
t−μ(t) ξ(s)ds

∫ t−μ(t)
t−μM

ξ(s)ds
]
.

and the following is the case Π =

⎡⎢⎢⎢⎢⎣
−R9 R9 0 −RT

8 0
∗ −R9 − RT

9 R9 RT
8 −RT

8
∗ ∗ −R9 0 RT

8
∗ ∗ ∗ −R7 0
∗ ∗ ∗ ∗ −R7

⎤⎥⎥⎥⎥⎦.

Lemma 7 ([43]). Let ξ(t) ∈ Rn be a vector-valued function with first-order continuous-derivative
entries. For any constant matrices P5, M̂i ∈ Rn×n, then the following integral inequality holds, i =
1, 2, . . . , 5 and μ(t) is a discrete time-varying delay with (2):

−
∫ t

t−μM

ξ̇T(s)P5ξ̇(s)ds ≤ ΓT

⎡⎣M̂1 + M̂T
1 −M̂1T + M̂2 0

∗ M̂1 + M̂T
1 − M̂2 − M̂T

2 −M̂T
1 + M̂2

∗ ∗ −M̂2 − M̂T
2

⎤⎦Γ

+μMΓT

⎡⎣M̂3 M̂4 0
∗ M̂3 + M̂5 M̂4
∗ ∗ M̂5

⎤⎦Γ,

where Γ =

⎡⎣ ξ(t)
ξ(t − μ(t))
ξ(t − μM)

⎤⎦,

⎡⎣P5 M̂1 M̂2
∗ M̂3 M̂4
∗ ∗ M̂5

⎤⎦ ≥ 0.

Lemma 8 ([44]). For a positive definite matrix P8, P9 > 0 and any continuously differentiable
function ξ̇ : [a, b] → Rn, the following inequality holds:

∫ b

a
ξ̇T(s)P5ξ̇(s)ds ≥ 1

b − a
ΘT

1 P8Θ1 +
3

b − a
ΘT

2 P8Θ2 +
5

b − a
ΘT

3 P8Θ3,∫ b

a

∫ b

u
ξ̇T(s)P5ξ̇(s)dsdu ≥ 2ΘT

4 P9Θ4 + 4ΘT
5 P9Θ5 + 6ΘT

6 P9Θ6,
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where the following is the case.

Θ1 = ξ(a)− ξ(b),

Θ2 = ξ(a) + ξ(b)− 2
b − a

∫ b

a
ξ(s)ds,

Θ3 = ξ(a)− ξ(b) +
6

b − a

∫ b

a
ξ(s)ds − 12

(b − a)2

∫ b

a

∫ b

u
ξ(s)dsdu,

Θ4 = ξ(b)− 1
b − a

∫ b

a
ξ(s)ds,

Θ5 = ξ(b) +
2

b − a

∫ b

a
ξ(s)ds − 6

(b − a)2

∫ b

a

∫ b

u
ξ(s)dsdu,

Θ6 = ξ(b)− 3
b − a

∫ b

a
ξ(s)ds +

24
(b − a)2

∫ b

a

∫ b

u
ξ(s)dsdu

− 60
(b − a)3

∫ b

a

∫ b

u

∫ b

s
ξ(r)drdsdu.

3. Main Results

3.1. Finite-Time Boundedness Analysis

The following finite-time boundedness analysis of neutral-type neural networks with
mixed time-varying delays is discussed in this subsection.

ξ̇(t)− Gc ξ̇(t − τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t − μ(t))) + Hκ(t)
+Ge

∫ t
t−ρ(t) f (ξ(s))ds,

ξ(t) = φ(t), t ∈ [−h̄, 0].

⎫⎪⎬⎪⎭ (5)

In the first subsection, we look at system (5) with (2) that uses new criteria for systems
introduced via the LMIs approach.

∑ =
[
Π(i,j)

]
23×23

. (6)

For future reference, we introduce the following notations in the Appendix A.

Theorem 1. For ‖ C ‖ < 1, system (5) is finite-time bounded if there exist positive definite matrices
Pi, Rj, i = 1, 2, 3, . . ., 16, j = 1, 2, 3, . . ., 9 any appropriate matrices S, P13, R8, Qk, R7 ≥
0, Zl , l = 1, 2 and Oe, e = 1, 2, 3, . . ., 8,

[
Rn+3n R2+3n
RT

2+3n R3+3n

]
≥ 0,

[
P13 S
∗ P13

]
≥ 0 where

n = 0, 1, 2, k = 1, 2, . . ., 14, positive diagonal matrices Hp, Wp, p = 1, 2 and positive real
constants μM, ρM, μd, τM, τd, δ, α, g1, g2, T such that the following symmetric linear matrix
inequality holds: ⎡⎣P5 M1 M2

∗ M3 M4
∗ ∗ M5

⎤⎦ ≥ 0, (7)

∑ < 0, (8)

λ1g2e−αT > Λg1 + δ(1 − e−αT). (9)

For future reference, we introduce the following notations in Appendix A. Then, λi, i =
1, 2, . . ., 31 in system (9) is defined in Remark 1.
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Proof. First, we show that system (5) is the finite-time bounded analysis. As a result, we
consider system (5) to satisfy the following.

ξ̇(t) = −Aξ(t) + Gb f (ξ(t)) + Gc ξ̇(t − τ(t)) + Gd f (ξ(t − μ(t))) + Hκ(t) (10)

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds.

We can rewrite system (10) to the following system:

ξ̇(t) = y(t), (11)

0 = −y(t)− Aξ(t) + Gb f (ξ(t)) + Gc ξ̇(t − τ(t)) + Gd f (ξ(t − μ(t))) + Hκ(t)

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds, (12)

by using the model transformation approach. Construct a Lyapunov–Krasovskii functional
candidate for system (10)–(12) of the following form:

V(t) =
10

∑
i=1

Vi(t), (13)

where the following is the case:

V1(t) = ξT(t)P1ξ(t) + 2
N

∑
i=1

wi1

∫ ξi(t)

0
( fi(s)− F−s)ds,

V2(t) = ζT(t)GP2ζ(t) + 2
N

∑
i=1

wi2

∫ ξi(t)

0
(F+s − fi(s))ds,

V3(t) =
∫ t

t−μM

ξT(s)P3ξ(s)ds

+
∫ t

t−μ(t)

[
ξ(s)

f (ξ(s))

]T[R1 R2
∗ R3

][
ξ(s)

f (ξ(s))

]
ds

+
∫ t

t−μM

[
ξ(s)

f (ξ(s))

]T[R4 R5
∗ R6

][
ξ(s)

f (ξ(s))

]
ds,

V4(t) = μM

∫ 0

−μM

∫ t

t+s

[
ξ(θ)
y(θ)

]T[R7 R8
∗ R9

][
ξ(θ)
y(θ)

]
dθds,

V5(t) = μM

∫ 0

−μM

∫ t

t+s
ξT(θ)P4ξ(θ)dθds

+
∫ 0

−μM

∫ t

t+s
yT(θ)P5y(θ)dθds,

V6(t) = μM

∫ 0

−μM

∫ t

t+s
yT(θ)P6y(θ)dθds

+μM

∫ 0

−μM

∫ t

t+s
ξ̇T(θ)P7ξ̇(θ)dθds,

V7(t) = μM

∫ 0

−μM

∫ t

t+s
yT(θ)S1y(θ)dθds,

+μM

∫ 0

−μM

∫ 0

λ

∫ t

t+s
yT(θ)S2y(θ)dθdsdλ,

V8(t) =
(μM)2

2

∫ 0

−μM

∫ 0

λ

∫ t

t+s
ξT(θ)P10ξ(θ)dθdsdλ

+
(μM)2

2

∫ 0

−μM

∫ 0

λ

∫ t

t+s
yT(θ)P11y(θ)dθdsdλ,
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V9(t) = μM

∫ 0

−μM

∫ t

t+s
yT(θ)P12y(θ)dθds

+μM

∫ 0

−μM

∫ t

t+s
yT(θ)P13y(θ)dθds,

V10(t) =
∫ t

t−τ(t)
ξ̇T(s)P14ξ̇(s)ds + τM

∫ t

t−τM

ξ̇T(s)P15ξ̇(s)ds,

V11(t) = ρM

∫ 0

−ρM

∫ t

t+s
f (ξ(θ))T P16 f (ξ(θ))dθds,

where G =

⎡⎢⎢⎣
I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦, ζT(t) =

⎡⎢⎢⎢⎣
ξ(t)∫ t

t−μ(t) y(s)ds∫ t−d(t)
t−μM

y(s)ds
y(t)

⎤⎥⎥⎥⎦
T

.

Along the trajectory of system (10)–(12), the time derivative of V(t) is equivalent to
the following.

V̇(t) =
10

∑
i=1

V̇i(t). (14)

The time derivative of V1(t) is then computed as the following.

V̇1(t) = 2ξT(t)P1

[
− Aξ(t) + Gb f (ξ(t)) + Gc ξ̇(t − τ(t)) + Gd f (ξ(t − μ(t)))

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds + Hκ(t)

]
+ 2 f T(ξ(t))W1ξ̇(t)− ξT(t)W1F1ξ̇(t).

Taking the derivative of V2(t) along any system solution trajectory, we have the
following.

V̇2(t) = 2ξT(t)P2

[
− Aξ(t) + Gb f (ξ(t)) + Gc ξ̇(t − τ(t)) + Gd f (ξ(t − μ(t)))

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds + Hκ(t)

]
+ 2ξ̇T(t)QT

13
[
ξ̇(t)− y(t)

]
+2yT(t)QT

14
[
ξ̇(t)− y(t)

]
+ ξT(t)W2F2ξ̇(t)− 2 f T(ξ(t))W2ξ̇(t)

= 2ξT(t)P2[−Aξ(t) + Gb f (ξ(t)) + Gc ξ̇(t − τ(t)) + Gd f (ξ(t − μ(t)))

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds + Hκ(t)] + 2ξ̇T(t)QT

13
[
ξ̇(t)− y(t)

]
+2yT(t)QT

14
[
ξ̇(t)− y(t)

]
+ 2

[
ξT(t)QT

1 +
∫ t

t−μ(t)
yT(s)dsQT

4

+
∫ t−μ(t)

t−μM

yT(s)dsQT
7 + yT(t)QT

10

]
[−y(t)− Aξ(t) + Gb f (ξ(t))

+Gc ξ̇(t − τ(t)) + Gd f (ξ(t − μ(t))) + Ge

∫ t

t−ρ(t)
f (ξ(s))ds

+Hκ(t)] + 2
[

ξT(t)QT
2 +

∫ t

t−μ(t)
yT(s)dsQT

5 +
∫ t−μ(t)

t−μM

yT(s)dsQT
8

+yT(t)QT
11

]
×
[

ξ(t)− ξ(t − μ(t))−
∫ t

t−μ(t)
y(s)ds

]
+2

[
ξT(t)QT

3 +
∫ t

t−μ(t)
yT(s)dsQT

6 +
∫ t−μ(t)

t−μM

yT(s)dsQT
9 + yT(t)QT

12

]
×
[

ξ(t − μ(t))− ξ(t − μM)−
∫ t−μ(t)

t−μM

y(s)ds
]

+ξT(t)W2F2ξ̇(t)− 2 f T(ξ(t))W2ξ̇(t).
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For V3(t) and μ̇(t) ≤ μd, we now have the following.

V̇3(t) = ξT(t)P3ξ(t)− ξT(t − μM)P3ξ(t − μM)

+

[
ξ(t)

f (ξ(t))

]T[R1 R2
RT

2 R3

][
ξ(t)

f (ξ(t))

]
−(1 − μ̇(t))

[
ξ(t − μ(t))

f (ξ(t − μ(t)))

]T[R1 R2
RT

2 R3

][
ξ(t − μ(t))

f (ξ(t − μ(t)))

]
+

[
ξ(t)

f (ξ(t))

]T[R4 R5
RT

5 R6

][
ξ(t)

f (ξ(t))

]
−
[

ξ(t − μM)
f (ξ(t − μM))

]T[R4 R5
RT

5 R6

][
ξ(t − μM)

f (ξ(t − μM))

]
≤ ξT(t)P3ξ(t)− ξT(t − μM)P3ξ(t − μM) +

[
ξ(t)

f (ξ(t))

]T[R1 R2
RT

2 R3

][
ξ(t)

f (ξ(t))

]
−
[

ξ(t − μ(t))
f (ξ(t − μ(t)))

]T[R1 R2
RT

2 R3

][
ξ(t − μ(t))

f (ξ(t − μ(t)))

]
+μd

[
ξ(t − μ(t))

f (ξ(t − μ(t)))

]T[R1 R2
RT

2 R3

][
ξ(t − μ(t))

f (ξ(t − μ(t)))

]
+

[
ξ(t)

f (ξ(t))

]T[R4 R5
RT

5 R6

][
ξ(t)

f (ξ(t))

]
−
[

ξ(t − μM)
f (ξ(t − μM))

]T[R4 R5
RT

5 R6

][
ξ(t − μM)

f (ξ(t − μM))

]
.

It is from Lemma 6 that we have the following.

V̇4(t) = μ2
M

[
ξ(t)
y(t)

]T[R7 R8
RT

8 R9

][
ξ(t)
y(t)

]
− μM

∫ t

t−μM

[
ξ(s)
y(s)

]T[R7 R8
RT

8 R9

][
ξ(s)
y(s)

]
ds

≤ μ2
M

[
ξ(t)
y(t)

]T[R7 R8
RT

8 R9

][
ξ(t)
y(t)

]

+

⎡⎢⎢⎢⎢⎢⎣
ξ(t)

ξ(t − μ(t))
ξ(t − μM)∫ t
t−μ(t) ξ(s)ds∫ t−μ(t)
t−μM

ξ(s)ds

⎤⎥⎥⎥⎥⎥⎦

T

Π

⎡⎢⎢⎢⎢⎢⎣
ξ(t)

ξ(t − μ(t))
ξ(t − μM)∫ t
t−μ(t) ξ(s)ds∫ t−μ(t)
t−μM

ξ(s)ds

⎤⎥⎥⎥⎥⎥⎦
where

Π =

⎡⎢⎢⎢⎢⎣
−R9 R9 0 −RT

8 0
RT

9 −R9 − RT
9 R9 RT

8 −RT
8

0 RT
9 −R9 0 RT

8
−R9 R8 0 −R7 0

0 −R8 R8 0 −R7

⎤⎥⎥⎥⎥⎦.
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Using Lemmas 5 and 7, V5(t) is computed as follows:

V̇5(t) = μ2
MξT(t)P4ξ(t)− μM

∫ t

t−μM

ξT(s)P4ξ(s)ds + μMyT(t)P5y(t)

−
∫ t

t−μM

ξ̇T(s)P5ξ̇(s)ds

≤ μ2
MξT(t)P4ξ(t) + μMyT(t)P5y(t)−

∫ t

t−μ(t)
ξT(s)dsP4

∫ t

t−μ(t)
ξ(s)ds

−
∫ t−μ(t)

t−μM

ξT(s)dsP4

∫ t−μ(t)

t−μM

ξ(s)ds

+

⎡⎣ ξ(t)
ξ(t − μ(t))
ξ(t − μM)

⎤⎦T

Θ

⎡⎣ ξ(t)
ξ(t − μ(t))
ξ(t − μM)

⎤⎦
+μM

⎡⎣ ξ(t)
ξ(t − μ(t))
ξ(t − μM)

⎤⎦T⎡⎣ M̂3 M̂4 0
M̂T

4 M̂3 + M̂5 M̂4
0 M̂T

4 M̂5

⎤⎦⎡⎣ ξ(t)
ξ(t − μ(t))
ξ(t − μM)

⎤⎦
where the following is the case.

Θ =

⎡⎣ M̂1 + M̂T
1 −M̂T

1 + M̂2 0
−M̂1 + M̂T

2 M̂1 + M̂T
1 − M̂2 − M̂T

2 −M̂T
1 + M̂2

0 −M̂1 + M̂T
2 −M̂2 − M̂T

2

⎤⎦.

Using Lemma 1 (Jensen’s Inequality), we have the following.

V̇6(t) ≤ μ2
MyT(t)P6y(t)−

∫ t

t−μM

yT(s)dsP6

∫ t

t−μM

y(s)ds

+μ2
M ξ̇T(t)P7ξ̇(t)−

∫ t

t−μM

ξ̇T(s)dsP7

∫ t

t−μM

ξ̇(s)ds

≤ μ2
MyT(t)P6y(t) + μ2

M ξ̇T(t)P7ξ̇(t)

−
[∫ t

t−μ(t)
yT(s)ds +

∫ t−μ(t)

t−μM

yT(s)ds
]

P6

[∫ t

t−μ(t)
yT(s)ds +

∫ t−μ(t)

t−μM

yT(s)ds
]

−
[∫ t

t−μ(t)
ξ̇T(s)ds +

∫ t−μ(t)

t−μM

ξ̇T(s)ds
]

P7

[∫ t

t−μ(t)
ξ̇T(s)ds +

∫ t−μ(t)

t−μM

ξ̇T(s)ds
]

.

Using Lemma 8 to confront V̇7(t), we can obtain the following:

V̇7(t) = μ2
My(t)P8y(t)− μM

∫ t

t−μM

ξ̇T(s)P8ξ̇(s)ds

+
μ2

M
2

yT(t)P9y(t)−
∫ t

t−μM

∫ t

u
ξ̇T(λ)P11ξ̇(λ)dλdu

≤ μ2
My(t)P8y(t) +

μ2
M
2

yT(t)P9y(t)

−[ΘT
1 P8Θ1 + 3ΘT

2 P8Θ2 + 5ΘT
3 P8Θ3]− [2ΘT

4 P9Θ4 + 4ΘT
5 P9Θ5 + 6ΘT

6 P9Θ6],
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where the following is the case.

Θ1 = ξ(t − μM)− ξ(t),

Θ2 = ξ(t − μM) + ξ(t)− 2
μM

∫ t

t−μM

ξ(s)ds,

Θ3 = ξ(t − μM)− ξ(t) +
6

μM

∫ t

t−μM

ξ(s)ds − 12
μ2

M

∫ t

t−μM

∫ t

u
ξ(s)dsdu,

Θ4 = ξ(t)− 1
μM

∫ t

t−μM

ξ(s)ds,

Θ5 = ξ(t) +
2

μM

∫ t

t−μM

ξ(s)ds − 6
μ2

M

∫ t

t−μM

∫ t

u
ξ(s)dsdu,

Θ6 = ξ(t)− 3
μM

∫ t

t−μM

ξ(s)ds +
24
μ2

M

∫ t

t−μM

∫ t

u
ξT(s)dsdu

− 60
μ3

M

∫ t

t−μM

∫ t

u

∫ t

s
ξ(s)drdsdu.

According to Lemma 4, we can obtain V̇8(t) by performing the following.

V̇8(t) ≤ μ4
M
4

ξT(t)P10ξ(t)− μ2
M
2

∫ t

t−μM

∫ t

u
ξT(λ)P10ξ(λ)dλdu

+
μ4

M
2

yT(t)P11y(t)− μ2
M

∫ t

t−μM

∫ t

u
ξ̇T(λ)P11ξ̇(λ)dλdu

≤ μ4
M
4

ξT(t)P10ξ(t)−
∫ t

t−μM

∫ t

u
ξT(λ)dλduP10

∫ t

t−μM

∫ t

u
ξ(λ)dλdu

+
μ4

M
2

yT(t)P11y(t)− 2
∫ t

t−μM

∫ t

u
ξ̇T(λ)dλduP11

∫ t

t−μM

∫ t

u
ξ̇(λ)dλdu

≤ μ4
M
4

ξT(t)P10ξ(t)−
∫ t

t−μM

∫ t

u
ξT(λ)dλduP10

∫ t

t−μM

∫ t

u
ξ(λ)dλdu

+
μ4

M
2

yT(t)P11y(t)− 2μ2
MξT(t)P11ξ(t) + 2μMξT(t)P11

∫ t

t−μM

ξT(u)du

+2μM

∫ t

t−μM

ξT(u)duP11ξ(t)− 2
∫ t

t−μM

ξT(u)duP11

∫ t

t−μM

ξT(u)du.

Using Lemmas 2 and 3, an upper bound of V9(t) can be obtained as follows.

V̇9(t) ≤ μ2
MyT(t)P12y(t) + μ2

MyT(t)P13y(t)

+

⎡⎢⎣ ξ(t)
ξ(t − μM)

1
μM

∫ t
t−μM

ξ(s)ds

⎤⎥⎦
T⎡⎣−4P12 −2P12 6P12

−2PT
12 −4P12 6P12

6PT
12 6PT

12 −12P12

⎤⎦
⎡⎢⎣ ξ(t)

ξ(t − μM)
1

μM

∫ t
t−μM

ξ(s)ds

⎤⎥⎦
+

⎡⎣ ξ(t)
ξ(t − μ(t))
ξ(t − μM)

⎤⎦T⎡⎣ −P13 P13 − S S
PT

13 − ST −2P13 + S + ST P13 − S
ST PT

13 − ST −P13

⎤⎦⎡⎣ ξ(t)
ξ(t − μ(t))
ξ(t − μM)

⎤⎦.

Taking the time derivative of V10(t), we have the following.

V̇10(t) ≤ ξ̇T(t)P14ξ̇(t)− (1 − τ̇(t))ξ̇T(t − τ(t))P14ξ̇(t − τ(t)) + ξ̇T(t)P15ξ̇(t)

−τM ξ̇T(t − τM)P15ξ̇(t − τM)

≤ ξ̇T(t)P14ξ̇(t)− (1 − τd)ξ̇
T(t − τ(t))P14ξ̇(t − τ(t)) + τM ξ̇T(t)P15ξ̇(t)

−τM ξ̇T(t − τM)P15ξ̇(t − τM).
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Calculating V̇11(t) yields the following.

V̇11(t) = ρ2
M f T(ξ(t))P16 f (ξ(t))− ρM

∫ t

t−ρM

f T(ξ(s))dsP16 f (ξ(s))ds

≤ ρ2
M f T(ξ(t))P16 f (ξ(t))−

∫ t

t−ρ(t)
f T(ξ(s))dsP16

∫ t

t−ρ(t)
f T(ξ(s))ds.

From (3), for any positive diagonal matrices H1 > 0, H2 > 0, the following is obtained.[
ξ(t)

f (ξ(t))

]T[−F1H1 F2H1
FT

2 HT
1 −H1

][
ξ(t)

f (ξ(t))

]
≥ 0, (15)[

ξ(t − μ(t))
f (ξ(t − μ(t)))

]T[−F1H2 F2H2
FT

2 HT
2 −H2

][
ξ(t − μ(t))

f (ξ(t − μ(t)))

]
≥ 0. (16)

Furthermore, for any real matrices Zi, i = 1, 2 and Oj, j = 1, 2, 3, . . ., 8 of compatible
dimensions, we obtain

2
∫ t

t−μ(t)
ξ̇(s)dsZT

1

[
ξ(t)− ξ(t − μ(t))−

∫ t

t−μ(t)
ξ̇(s)ds

]
= 0, (17)

2
∫ t−μ(t)

t−μM

ξ̇(s)dsZT
2

[
ξ(t − μ(t))− ξ(t − μM)−

∫ t−μ(t)

t−μM

ξ̇(s)ds
]
= 0, (18)

2
[
ξ̇T(t)OT

1 + ξT(t)OT
2 + f (ξ(t))OT

3 + f (ξ(t − μ(t)))OT
4

][
− ξ̇(t)− Aξ(t)

+Gb f (ξ(t)) + Gc ξ̇(t − τ(t)) + Gd f (ξ(t − μ(t))) + Ge

∫ t

t−ρ(t)
f (ξ(s))ds

+Hκ(t)
]
2
[
yT(t)OT

5 + ξT(t)OT
6 + f (ξ(t))OT

7 + f (ξ(t − μ(t)))OT
8

]
×
[
− y(t)− Aξ(t) + Gb f (ξ(t)) + Gc ξ̇(t − τ(t)) + Gd f (ξ(t − μ(t)))

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds + Hκ(t)

]
= 0. (19)

Based on (14)–(19), it is clear that the following is observed:

ηT(t)∑ η(t) < 0, (20)

where the following is the case.

η(t) =
[
ξ(t), y(t), f (ξ(t)), f (ξ(t − μ(t))), ξ(t − μ(t)), ξ(t − μM),∫ t

t−μ(t)
y(s)ds,

∫ t−μ(t)

t−μM

y(s)ds, f (ξ(t − μM)),
∫ t

t−μ(t)
ξ(s)ds,

∫ t−μ(t)

t−μM

ξ(s)ds,

ξ̇(t),
1

μM

∫ t

t−μM

ξ(s)ds,
1

μ2
M

∫ t

t−μM

∫ t

t−μM

ξ(s)ds,
1

μ3
M

∫ t

t−μM

∫ t

t−μM

∫ t

t−μM

ξ(s)ds,

∫ t

t−μM

ξ(u)du,
∫ t

−μM

∫ t

u
ξ(λ)dλdu,

∫ t

t−μ(t)
ξ̇(s)ds,

∫ t−μ(t)

t−μM

ξ̇(s)ds, ξ̇(t − τM),

ξ̇(t − τ(t)),
∫ t

t−ρ(t)
f (ξ(s))ds, κ(t)

]
.

Then, α > 0 and we are able to obtain the following.

V̇(t)− αV(t)− ακT(t)κ(t) ≤ ζT(t)∑ ζ(t). (21)
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By multiplying the above inequality by eαt, we can obtain the following.

d
dt
[e−αtV(t)] ≤ αe−αtκT(t)κ(t). (22)

Integrating the two sides of the inequality (22) from 0 to t, with t ∈ [0, T], we
have obtained the following.

V(t) ≤ eαtV(0) + αeαt
∫ t

0
e−αsκT(t)κ(t)ds. (23)

They include the following.

V(0) = ξT(0)P1ξ(0) + 2
N

∑
i=1

ki

∫ ξi(0)

0
( fi(s)− F−s)ds + ζT(0)GP2ζ(0)

+2
N

∑
i=1

wi

∫ ξi(0)

0
(F+s − fi(s))ds +

∫ 0

0−μM

ξT(s)P3ξ(s)ds

+
∫ 0

μ(t)

[
ξ(s)

f (ξ(s))

]T[R1 R2
∗ R3

][
ξ(s)

f (ξ(s))

]
ds

+
∫ 0

−μM

[
ξ(s)

f (ξ(s))

]T[R4 R5
∗ R6

][
ξ(s)

f (ξ(s))

]
ds

+μM

∫ 0

−μM

∫ 0

s

[
ξ(θ)
y(θ)

]T[R7 R8
∗ R9

][
ξ(θ)
y(θ)

]
dθds

+μM

∫ 0

−μM

∫ 0

s
ξT(θ)P4ξ(θ)dθds

+
∫ 0

−μM

∫ 0

s
yT(θ)P5y(θ)dθds + μM

∫ 0

−μM

∫ 0

s
yT(θ)P6y(θ)dθds

+μM

∫ 0

−μM

∫ 0

s
yT(θ)P7y(θ)dθds + μM

∫ 0

−μM

∫ 0

s
yT(θ)P8y(θ)dθds

+μM

∫ 0

−μM

∫ 0

λ

∫ 0

s
ξT(θ)P9ξ(θ)dθdsdλ

+
(μM)2

2

∫ 0

−μM

∫ 0

λ

∫ 0

s
ξT(θ)P10ξ(θ)dθdsdλ

+
(μM)2

2

∫ 0

−μM

∫ 0

λ

∫ 0

s
yT(θ)P11y(θ)dθdsdλ

+μM

∫ 0

−μM

∫ 0

s
yT(θ)P12y(θ)dθds

+μM

∫ 0

−μM

∫ 0

s
yT(θ)P13y(θ)dθds +

∫ 0

τ(t)
ξT(s)P14ξ(s)ds

+τM

∫ 0

−τM

ξT(s)P15ξ(s)ds + ρM

∫ 0

−ρM

∫ 0

s
f (ξ(θ))T P16 f (ξ(θ))dθds.
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Note that P̃ = L− 1
2 PiL− 1

2 ; i = 1, 2, 3, . . ., 13, R̃ = L− 1
2 RiL− 1

2 ; i = 1, 2, 3, . . ., 9 and
the following relationship can be found.

V(0) = ξT(0)L
1
2 P̃1L

1
2 ξ(0) + 2W̃1 f (ξT(0)) + ζT(0)L

1
2 GP̃2L

1
2 ζ(0)2W̃2 f (ξT(0))

+
∫ 0

0−μM

ξT(s)L
1
2 P̃3L

1
2 ξ(s)ds

+
∫ 0

μ(t)

[
ξ(s)

f (ξ(s))

]T
[

L
1
2 R̃1L

1
2 L

1
2 R̃2L

1
2

L
1
2 R̃T

2 L
1
2 L

1
2 R̃3L

1
2

][
ξ(s)

f (ξ(s))

]
ds

+
∫ 0

−μM

[
ξ(s)

f (ξ(s))

]T
[

L
1
2 R̃4L

1
2 L

1
2 R̃5L

1
2

L
1
2 R̃T

5 L
1
2 L

1
2 R̃6L

1
2

][
ξ(s)

f (ξ(s))

]
ds

+μM

∫ 0

−μM

∫ 0

s

[
ξ(θ)
y(θ)

]T
[

L
1
2 R̃7L

1
2 L

1
2 R̃8L

1
2

L
1
2 R̃T

8 L
1
2 L

1
2 R̃9L

1
2

][
ξ(θ)
y(θ)

]
dθds

+μM

∫ 0

−μM

∫ 0

s
ξT(θ)L

1
2 P̃4L

1
2 ξ(θ)dθds

+
∫ 0

−μM

∫ 0

s
yT(θ)L

1
2 P̃5L

1
2 y(θ)dθds + μM

∫ 0

−μM

∫ 0

s
yT(θ)L

1
2 P̃6L

1
2 y(θ)dθds

+μM

∫ 0

−μM

∫ 0

s
yT(θ)L

1
2 P̃7L

1
2 y(θ)dθds + μM

∫ 0

−μM

∫ 0

s
yT(θ)L

1
2 P̃8L

1
2 y(θ)dθds

+μM

∫ 0

−μM

∫ 0

λ

∫ 0

s
ξT(θ)L

1
2 P̃9L

1
2 ξ(θ)dθdsdλ

+
(μM)2

2

∫ 0

−μM

∫ 0

λ

∫ 0

s
ξT(θ)L

1
2 P̃10L

1
2 ξ(θ)dθdsdλ

+
(μM)2

2

∫ 0

−μM

∫ 0

λ

∫ 0

s
yT(θ)L

1
2 P̃11L

1
2 y(θ)dθdsdλ

+μM

∫ 0

−μM

∫ 0

s
yT(θ)L

1
2 P̃12L

1
2 y(θ)dθds

+μM

∫ 0

−μM

∫ 0

s
yT(θ)L

1
2 P̃13L

1
2 y(θ)dθds +

∫ 0

τ(t)
ξT(s)L

1
2 P̃14L

1
2 ξ(s)ds

+τM

∫ 0

−τM

ξT(s)L
1
2 P̃15L

1
2 ξ(s)ds + ρM

∫ 0

−ρM

∫ 0

s
f (ξ(θ))T L

1
2 P̃16L

1
2 f (ξ(θ))dθds,

≤ [λmax(P̃1 + P̃2) + 2λmax(K + W) + μMλmax(P̃3 + R̃1 + R̃2 + R̃T
2 + R̃3 + R̃4

+R̃5 + R̃T
5 + R̃6) +

μ3
M
2

λmax(P̃4 + P̃5 + P̃6 + P̃7 + R̃7 + R̃8 + R̃T
8 + R̃9 + P̃8

+P̃12 + P̃13) +
μ5

M
12

λmax(P̃9 + P̃10) + τMλmax(P̃14) + τ2
Mλmax(P̃15)

+
ρ3

M
2

λmax(P̃16)]× sup
−μM≤t0≤0

{ξT(t0)Lξ(t0), ξ̇T(t0)Lξ̇(t0)},

≤ Λg1.

We have the following:

eαtV(0) + αeαt
∫ t

0
e−αsκT(t)κ(t)ds ≤ eαtΛg1 + αeαt

∫ t

0
e−αsκT(s)κ(s)ds,

≤ eαTΛg1 + eαTδ(1 − e−αT),

≤ eαT[Λg1 + δ(1 − e−αT)
]
, (24)
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where the following is the case.

Λ = λ2 + λ4 + 2(λ3 + λ5) + μMλmax(λ6 + λ7 + λ8 + λ9 + λ10 + λ11 + λ12

+λ13 + λ14) +
μ2

M
2

λ20 +
μ3

M
2

(λ15 + λ16 + λ17 + λ18 + λ19 + λ21 + λ22

+λ23 + λ27 + λ28) +
μ4

M
6

λ24 +
μ5

M
12

(λ25 + λ26) + τM(λ29) + τ2
M(λ30)

+
ρ3

M
2

(λ31). (25)

On the other hand, the following condition holds.

V(t) ≥ ξT(t)P1ξ(t) ≥ λmin(P̃1)ξ
T(t)Lξ(t) = λ1ξT(t)Lξ(t). (26)

From Equations (24) and (27), we obtain the following.

ξT(t)Lξ(t) ≤ eαT[Λg1 + δ(1 − e−αT)
]

λ1
. (27)

Condition [λ1g2e−αT > Λg1 + δ(1 − e−αT)] indicates that for ∀t ∈ [0, T], ξT(t)Lξ(t) <
g2. From Definition 2, system (5) is finite-time bounded with regard to (g1, g2, T, L, δ). The
proof is now finished.

Remark 1. Condition (9) is not a standard form of LMIs. In order to verify that this condition
is equivalent to the relation of LMIs, let λi, i = 1, 2, 3, . . ., 31 be some positive scalars with the
following.

λ1 I ≤ P̃1 ≤ λ2 I, 0 ≤ W̃1 ≤ λ3 I, 0 ≤ P̃2 ≤ λ4 I, 0 ≤ W̃2 ≤ λ5 I,
0 ≤ P̃3 ≤ λ6 I, 0 ≤ R̃1 ≤ λ7 I, 0 ≤ R̃2 ≤ λ8 I, 0 ≤ R̃T

2 ≤ λ9 I,
0 ≤ R̃3 ≤ λ10 I, 0 ≤ R̃4 ≤ λ11 I, 0 ≤ R̃5 ≤ λ12 I, 0 ≤ R̃T

5 ≤ λ13 I,
0 ≤ R̃6 ≤ λ14 I, 0 ≤ R̃7 ≤ λ15 I, 0 ≤ R̃8 ≤ λ16 I, 0 ≤ R̃T

8 ≤ λ17 I,
0 ≤ R̃9 ≤ λ18 I, 0 ≤ P̃4 ≤ λ19 I, 0 ≤ P̃5 ≤ λ20 I, 0 ≤ P̃6 ≤ λ21 I,
0 ≤ P̃7 ≤ λ22 I, 0 ≤ P̃8 ≤ λ23 I, 0 ≤ P̃9 ≤ λ24 I, 0 ≤ P̃10 ≤ λ25 I,
0 ≤ P̃11 ≤ λ26 I, 0 ≤ P̃12 ≤ λ27 I, 0 ≤ P̃13 ≤ λ28 I. 0 ≤ P̃14 ≤ λ29 I,
0 ≤ P̃15 ≤ λ30 I. 0 ≤ P̃16 ≤ λ31 I.

Consider the following.

λ1 = λmin(P̃1), λ2 = λmax(P̃1), λ3 = λmax(W̃1), λ4 = λmax(P̃2),
λ5 = λmax(W̃2), λ6 = λmax(P̃3), λ7 = λmax(R̃1), λ8 = λmax(R̃2),
λ9 = λmax(R̃T

2 ), λ10 = λmax(R̃3), λ11 = λmax(R̃4), λ12 = λmax(R̃5),
λ13 = λmax(R̃T

5 ), λ14 = λmax(R̃6), λ15 = λmax(R̃7), λ16 = λmax(R̃8),
λ17 = λmax(R̃T

8 ), λ18 = λmax(R̃9), λ19 = λmax(P̃4), λ20 = λmax(P̃5),
λ21 = λmax(P̃6), λ22 = λmax(P̃7), λ23 = λmax(P̃8), λ24 = λmax(P̃9),
λ25 = λmax(P̃10), λ26 = λmax(P̃11), λ27 = λmax(P̃12), λ28 = λmax(P̃13),
λ29 = λmax(P̃14), λ30 = λmax(P̃15), λ31 = λmax(P̃16).

3.2. Finite-Time Stability Analysis

Remark 2. If there is an external disruption κ(t) = 0, system (5) changes into the following.

ξ̇(t)− Gc ξ̇(t − τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t − μ(t)))
+Ge

∫ t
t−ρ(t) f (ξ(s))ds,

ξ(t) = φ(t), t ∈ [−h̄, 0].

⎫⎪⎬⎪⎭ (28)
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By (8), we provide additional notation for finite-time stability analysis for (28).

∑̃ =
[
Π(i,j)

]
22×22

. (29)

We obtain that Π(1,1) − Π(22,22) is the same as in Theorem 1. Then, we define the following:

η̃(t) =
[
ξ(t), y(t), f (ξ(t)), f (ξ(t − μ(t))), ξ(t − μ(t)), ξ(t − μM),∫ t

t−μ(t)
y(s)ds,

∫ t−μ(t)

t−μM

y(s)ds, f (ξ(t − μM)),
∫ t

t−μ(t)
ξ(s)ds,

∫ t−μ(t)

t−μM

ξ(s)ds,

ξ̇(t),
1

μM

∫ t

t−μM

ξ(s)ds,
1

μ2
M

∫ t

t−μM

∫ t

t−μM

ξ(s)ds,
1

μ3
M

∫ t

t−μM

∫ t

t−μM

∫ t

t−μM

ξ(s)ds,

∫ t

t−μM

ξ(u)du,
∫ t

−μM

∫ t

u
ξ(λ)dλdu,

∫ t

t−μ(t)
ξ̇(s)ds,

∫ t−μ(t)

t−μM

ξ̇(s)ds,

ξ̇(t − τ(t)),
∫ t

t−ρ(t)
f (ξ(s))ds

]
,

and construct a new theorem that follows Corollary 1.

Corollary 1. For ‖ C ‖ < 1, system (28) with κ(t) = 0 is finite-time stable if there exist positive
symmetric matrices Pi, Rj, i = 1, 2, 3, . . ., 16, j = 1, 2, 3, . . ., 9 any appropriate matrices

S, P13, R8, Qk, R7 ≥ 0, Zl , l = 1, 2 and Oe, e = 1, 2, 3, . . ., 8,
[

Rn+3n R2+3n
RT

2+3n R3+3n

]
≥

0,
[

P13 S
∗ P13

]
≥ 0, where n = 0, 1, 2, k = 1, 2, . . ., 14, positive diagonal matrices are Hp, Wp,

p = 1, 2 and positive real constants are μM, ρM, μd, τM, τd, α, g1, g2, T such that the
following symmetric linear matrix inequality holds:⎡⎣P5 M1 M2

∗ M3 M4
∗ ∗ M5

⎤⎦ ≥ 0, (30)

∑̃ < 0, (31)

λ1g2e−αT > Λg1, (32)

where κ(t) = 0 as described in Theorem 1.

Proof. Since the proof is identical to that of Theorem 1, it is excluded from this section.

3.3. Finite-Time Passivity Analysis

This section discusses the topic of finite-time passivity analysis investigated for the
following system.

ξ̇(t)− Gc ξ̇(t − τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t − μ(t))) + Hκ(t)
+Ge

∫ t
t−ρ(t) f (ξ(s))ds,

z(t) = G1 f (ξ(t)) + G2κ(t), t ∈ R+

ξ(t) = φ(t), t ∈ [−h̄, 0].

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (33)

Theorem 2. For ‖ C ‖ < 1, system (43) is finite-time passivity if there exist positive symmetric
matrices Pi, Rj, Gt, i = 1, 2, 3, . . ., 16, j = 1, 2, 3, . . ., 9, t = 1, 2 any appropriate

matrices S, P13, R8, Qk, R7 ≥ 0, Zl , l = 1, 2 and Oe, e = 1, 2, 3, . . ., 8,
[

Rn+3n R2+3n
RT

2+3n R3+3n

]
≥

0,
[

P13 S
∗ P13

]
≥ 0, where n = 0, 1, 2, k = 1, 2, . . ., 14, positive diagonal matrices are Hp, Wp,
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p = 1, 2 and positive real constants are μM, ρM, μd, τM, τd, α, δ, β, g1, g2, T such that the
following symmetric linear matrix inequality holds:⎡⎣P5 M1 M2

∗ M3 M4
∗ ∗ M5

⎤⎦ ≥ 0, (34)

∑̂ =
[
Π̂(i,j)

]
23×23

< 0, (35)

λ1g2e−αT > Λg1 + δ(1 − e−αT), (36)

where Π̂(i,j) = Π(i,j), i, j = 1, 2, . . ., 23 except Π̂4,19 = Π3,23 − GT
1 , Π̂23,3 = Π19,4 −

G1, Π̂23,23 = −βI − GT
2 − G2.

Proof. The following function is defined using the same Lyapunov–Krasovskii function as
Theorem 1.

V̇(t)− [αV(t) + 2κT(t)z(t)− βκT(t)κ(t)] ≤ ηT(t)∑̂η(t). (37)

∑̂ is show in (35), and then the following is the case.

V̇(t)− αV(t) ≤ 2κT(t)z(t)− βκT(t)κ(t). (38)

Then, multiplying (38) by e−αT and integrating it between 0 and T, we can obtain the
following:

V(t)e−αT ≤ 2
∫ T

0
e−αtκT(t)z(t)dt − β

∫ T

0
e−αtκT(t)κ(t)dt,

≤ 2
∫ T

0
κT(t)z(t)dt − βe−αT

∫ T

0
κT(t)κ(t)dt,

which implies the following.

V(t) ≤ 2eαT
∫ T

0
κT(t)z(t)dt − β

∫ T

0
κT(t)κ(t)dt. (39)

Due to V(t) ≥ 0, it is reasonable to obtain it from (39) and the following:∫ T

0
κT(t)z(t)dt ≥ γ

∫ T

0
κT(t)κ(t), (40)

where γ = βe−αT

2 . As a result, we may infer that system (33) is finite-time passive. This
completes the proof.

Remark 3. When E = 0, C = 0 and H = 0 system (5) changes to delayed neural network, the
following is the case.

ξ̇(t) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t − μ(t))). (41)

By (8), we consider system (41) without finite-time stability condition and same proof line of
Theorem 1. Moreover, the system is said to be asymptotically stable:

¯∑ =
[
Π(i,j)

]
19×19

, (42)

where Π̄12,12 = Π12,12 − P14 − τMP15, Π̄4,4 = Π3,3 − ρ2
MP16, and the parameters are as defined

in Theorem 1. Then, we define the following.
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η̄(t) =
[
ξ(t), y(t), f (ξ(t)), f (ξ(t − μ(t))), ξ(t − μ(t)), ξ(t − μM),

∫ t

t−μ(t)
y(s)ds,

∫ t−μ(t)

t−μM

y(s)ds, f (ξ(t − μM)),
∫ t

t−μ(t)
ξ(s)ds,

∫ t−μ(t)

t−μM

ξ(s)ds, ξ̇(t),
1

μM

∫ t

t−μM

ξ(s)ds,

1
μ2

M

∫ t

t−μM

∫ t

t−μM

ξ(s)ds,
1

μ3
M

∫ t

t−μM

∫ t

t−μM

∫ t

t−μM

ξ(s)ds,
∫ t

t−μM

ξ(u)du,

∫ t

−μM

∫ t

u
ξ(λ)dλdu,

∫ t

t−μ(t)
ξ̇(s)ds,

∫ t−μ(t)

t−μM

ξ̇(s)ds
]
.

4. Numerical Examples

Simulation examples are provided in this part to show the feasibility and efficiency of
theoretic solutions. Five examples are given in this part to demonstrate the key theoretical
conclusions that have been offered.

Example 1. Consider the following matrix parameters for the neutral-type neural networks:

ξ̇(t)− Gc ξ̇(t − τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t − μ(t))) + Hκ(t)

+Ge

∫ t

t−ρ(t)
f (ξ(s))ds,

with the following.

A =

[
3.6 0
0 3.6

]
, Gb =

[−0.34 0
−0.1 −0.1

]
, Gd =

[
0.1 0.2

−0.15 −0.18

]
,

Gc =

[−0.5 0
0.2 0.5

]
, H =

[
0.41 0.5
0.69 −0.31

]
.

Let the following be the case:

τM = 0.2, g1 = 0.4, T = 6, ρM = 0.1,
α = 0.10, δ = 0.005, μd = 0.5, τd = 0.2,

and μM = 1.3, F1 = diag{0, 0}, F2 = diag{1, 1}. Using the MATHLAB tools to solve LMIs
(8) and (9), we may obtain g2 = 7.8794, indicating that the neutral system under consideration
is finite-time bounded. The activation function is described by f (ξ(t)) = 2|cos(t)|, and we
allow discrete time-varying delays to satisfy μ(t) = 0.8 + 0.5|sin(t)|, ρ(t) = 0.1|sin(t)| and
τ(t) = 0.2|cos(t)|.

Example 2. Consider the following matrix parameters for the neutral-type neural networks ma-
trix parameters:

ξ̇(t)− Gc ξ̇(t − τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t − μ(t))) + Hκ(t)
+Ge

∫ t
t−ρ(t) f (ξ(s))ds,

z(t) = G1 f (ξ(t)) + G2κ(t),

with the following.

A =

[
1.5 0
0 1.5

]
, Gb =

[
1.1 0.2
−0.1 −1.1

]
, Gd =

[
0.2 0
0.2 −0.2

]
,

Gc =

[−0.5 0.3
0.2 0.1

]
, H =

[
0.4 −0.2
0.3 −0.14

]
, G1 =

[
0.1 0.2

−0.01 0.4

]
,

G2 =

[
0.2 −0.6
0.3 0.2

]
.
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Let the following be the case:

μM = 2.4, τM = 1.2, g1 = 0.5, T = 5, g2 = 6,
α = 0.10, δ = 1, μd = 0.9, τd = 0.2, ρM = 0.1,

then F1 = diag{0, 0}, F2 = diag{0.5, 0.9}. Using the MATHLAB tools to solve LMIs (35) and (36),
we may obtain γ = 17.4493, indicating that the neutral system under consideration is finite-
time passive. The activation function is described by f (ξ(t)) = [0.5|sin(t)|, 0.9|cos(t)|], and we
allow discrete time-varying delays to satisfy μ(t) = 0.1 + 0.1|sin(t)|, ρ(t) = 1.1|sin(t)| and
τ(t) = 1 + 0.2|cos(t)|.

Example 3. Consider the following matrix parameters for the neutral-type neural networks:

ξ̇(t)− Gc ξ̇(t − τ(t)) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t − μ(t))) + Ge

∫ t

t−ρ(t)
f (ξ(s))ds,

with the following.

A =

[
4 0
0 4

]
, Gb =

[
1.3 0.4
0.9 0.2

]
, Gd =

[
0.6 0.2
0.3 −0.3

]
,

Gc =

[−0.5 0
0.2 0.5

]
, H =

[
0.41 0.5
0.69 −0.31

]
, E =

[
0.4 −0.2
0.3 −0.3

]
.

Let the following be the case:

τM = 0.2, g1 = 3, T = 5, ρM = 1.1,
α = 0.001, δ = 0.005, μd = 0.1, τd = 0.1,

and μM = 0.1, F1 = diag{0, 0}, F2 = diag{2, 2}. Using the MATHLAB tools to solve LMIs
(8) and (9), we may obtain g2 = 0.5996, indicating that the neutral system under consideration
is finite-time stable. The activation function is described by f (ξ(t)) = 4|cos(t)|, and we allow
discrete time-varying delays to satisfy μ(t) = 0.8 + 0.5|sin(t)|, ρ(t) = 0.1|sin(t)| and τ(t) =
0.1 + 0.1|cos(t)|.

Example 4. Consider the following matrix parameters for the neural networks matrix parameters:

ξ̇(t) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t − μ(t))),

with the following:

A =

[
2 0
0 2

]
, Gb =

[
1 1
−1 −1

]
, Gd =

[
0.88 1

1 1

]
.

then F1 = diag{0, 0}, F2 = diag{0.4, 0.8}. Using the MATHLAB tools to solve LMIs (35) and (36),
we indicate that the neutral system under consideration is finite-time passive. In addition, the
acquired results are compared to previously published studies. The findings show that the stability
conditions presented in this paper are more effective than those found in previous research. By
solving Example 4 with LMI in Remark 3, we can obtain a maximum permissible upper bound μM
for different μd, as shown in Table 1.

Figure 1 provides the state response of system (4) under zero input and the initial condition
[−3.5, 3.5]. The interval time-varying delays are chosen as μ(t) = [3.6 + 0.9|sin(t)|], and the
activation function is set as f (ξ(t)) = [0.4tanh(x1(t)), 0.8tanh(x2(t))]T.

The permissible upper bound μM for various μd is shown in Table 1. Table 1 shows that the
conclusions of Remark 3 in this study are less conservative than those in [45–48], demonstrating
the effectiveness of our efforts. Table 1 shows the state variables’ temporal responses. The allowable
upper bounds of μM are listed in Table 1.
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Figure 1. It provides the state response of system (4) under zero input and the initial condition
[−3.5, 3.5]. The interval time-varying delays are chosen as μ(t) = [3.6+ 0.9|sin(t)|], and the activation
function is set as f (ξ(t)) = [0.4tanh(x1(t)), 0.8tanh(x2(t))]T .

Table 1. Allowable upper bound μM for various μd of Example 4.

Method μd = 0.8 μd = 0.9 Number of Variables

[45] 4.5940 3.4671 7.5n2 + 8.5n
[46] 4.8167 3.4245 13.5n2 + 13.5n
[47] 5.4428 3.6482 -
[48] 5.6384 3.7718 22n2 + 14n

Remark 3 6.5411 4.5074 23n2 + 23n

Example 5. Consider the following matrix parameters for the neural networks matrix parameters:

ξ̇(t) = −Aξ(t) + Gb f (ξ(t)) + Gd f (ξ(t − μ(t))),

with the following:

A =

[
1.5 0
0 1.7

]
, Gb =

[
0.0503 0.0454
0.0987 0.2075

]
, Gd =

[
0.2381 0.9320
0.0388 0.5062

]
,

then F1 = diag{0, 0}, F2 = diag{0.3, 0.8}. The maximum delay bounds with μ calculated by
Remark 3, as and the recommended criteria are presented in the Table 2.

Figure 2 provides the state response of system (4) under zero input and the initial condition
[−3.5, 3.5]. The interval time-varying delays are chosen as μ(t) = [6.3190 + 0.55|sin(t)|], and
the activation function is set as f (ξ(t)) = [0.3tanh(x1(t)), 0.8tanh(x2(t))]T.

From Table 2, it follows that Remark 3 provides significantly better results than [49–52] in the
case of μd = 0.4 and μd = 0.45. However, in cases where μd = 0.5 and μd = 0.55, the results are
slightly worse than in [21]. Additionally, the acquired results are compared to previously published
studies. The findings show that the stability conditions presented in this paper are more effective
than those found in previous research.
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Table 2. Allowable upper bound μM for various μd of Example 5.

Method μd = 0.4 μd = 0.45 μd = 0.5 μd = 0.55 Number of Variables

[49] 4.6569 3.7268 3.4076 3.2841 8n2 + 12n
[50] 4.5543 3.8364 3.5583 3.4110 13.5n2 + 21.5n
[51] 7.6697 6.7287 6.4126 3.2569 13.5n2 + 13.5n
[52] 8.3498 7.3817 7.0219 6.8156 7n2 + 11n

Remark 3 9.7901 7.6470 6.7875 6.3190 23n2 + 23n

Figure 2. It provides the state response of system (4) under zero input and the initial condition
[−3.5, 3.5]. The interval time-varying delays are chosen as μ(t) = [6.3190 + 0.55|sin(t)|], and the
activation function is set as f (ξ(t)) = [0.3tanh(x1(t)), 0.8tanh(x2(t))]T .

5. Conclusions

In this study, a novel result was presented. The new systems have been used to derive
the analysis of finite-time passivity analysis of neutral-type neural networks with mixed
time-varying delays. The time-varying delays are distributed, discrete and neutral, and the
upper bounds for the delays are available. We are investigating the creation of sufficient
conditions for finite boundness, finite-time stability and finite-time passivity, which has
not been performed before. First, we create a new Lyapunov–Krasovskii functional, Peng–
Park’s integral inequality, descriptor model transformation and zero equation use, and
then we used Wirtinger’s integral inequality technique. New finite-time stability necessary
conditions are constructed in terms of linear matrix inequalities to guarantee finite-time
stability for the system. Finally, numerical examples are presented to demonstrate the
result’s effectiveness, and our proposed criteria are less conservative than prior studies
in terms of larger time-delay bounds. By combining numerous integral components of
the Lyapunov–Krasovskii function with inequality, our results offered wider bounds of
time-delay than the previous literature (see Tables 1 and 2). Construction of an LMI variable
number based on integral inequalities yields less conservative stability criteria for interval
time-delay systems. We expect to be able to improve existing research and lead research
into other areas of application.
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Appendix A

For Π(i,j) = Π(j,i), i, j = 1, 2, 3, . . ., 23 where the following is the case:

Π(1,1) = −P1 A − AT P1 − QT
1 A − ATQ1 + QT

2 + Q2 + P3 + R1 + R4 − F1H1 + μ2
MP4

+M1T + M1T + μM M3 − 9P8 − 12P9 +
μ4

M
4

P10 − 2μ2
MP11 − P2 A − AP2

+μ2
MR7 − R9 − OT

2 A − ATO2 − OT
6 A − ATO6 − 4P12 − P13,

Π(1,2) = −QT
1 − ATQ10 + Q11 + μ2

MR8 − ATO5 − OT
6 ,

Π(1,3) = P1Gb + QT
1 Gb + R2 + R5 + F2H1 + P2Gb + OT

2 Gb − ATO3 + OT
6 Gb − ATO7,

Π(1,4) = P1Gc + QT
1 Gd + P2Gd + OT

2 Gd − ATO4 + OT
6 Gd − ATO8,

Π(1,5) = −QT
2 − QT

3 − MT
1 + M2 + μM M4 + R9 + P13 − S,

Π(1,6) = QT
3 + 3P8 − 2P12 + S,

Π(1,7) = −ATQ4 − QT
2 − Q5,

Π(1,8) = −ATQ7 + Q8 − QT
3 ,

Π(1,10) = −RT
8 ,

Π(1,12) = −W1F1 + W2F2 − AT NT
2 − O1 − OT

2 ,

Π(1,13) = 36P8 + 12P9 + 6P12,

Π(1,14) = −60P8 − 120P9,

Π(1,15) = 360P9,

Π(1,16) = 2μMP11,

Π(1,18) = Z1,

Π(1,21) = OT
6 Gc + OT

2 Gc + P1Gc + P2Gc,

Π(1,22) = OT
6 Ge + OT

2 Ge + P1Ge + P2Ge,

Π(1,23) = OT
6 H + OT

2 H + P1H + P2H,

Π(2,2) = −QT
10 − Q10 + μMP5 + μ2

MP6 +
μ2

M
2

P9 +
μ4

M
2

P11 + QT
14 + Q14 + μ2

MR9

−OT
5 − O5 + μ2

MP8,

Π(2,3) = QT
10Gb + OT

5 Gb − O7,

Π(2,4) = QT
10Gd + OT

5 Gd − O8,

Π(2,5) = −QT
11 − QT

12,

Π(2,6) = QT
12,

Π(2,7) = −Q4 − QT
11,

Π(2,8) = −Q7 − QT
12,

Π(2,12) = QT
13 − Q14,

Π(2,21) = OT
5 Gc,

Π(2,22) = OT
5 Ge,

Π(2,23) = OT
5 H,

Π(3,3) = R3 + R6 − H1 + OT
3 Gb + GT

b O3 + OT
7 Gb + GT

b O7 + μ2
MP12 + μ2

M MP13

+ρ2P16,
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Π(3,4) = OT
3 Gd + GT

d O4 + OT
7 Gd + GT

b O8,

Π(3,7) = GT
b Q4,

Π(3,8) = GT
b Q7,

Π(3,12) = W1 − W2 + GT
b N2 + GT

b O1 − OT
3 ,

Π(3,21) = OT
7 Gc + OT

3 Gc,

Π(3,22) = OT
7 Ge + OT

3 Ge,

Π(3,23) = OT
7 H + OT

3 H,

Π(4,4) = μdGdR3 − R3 − H2 + OT
4 Gd + GT

d O4 + OT
8 Gd + GT

d O8,

Π(4,5) = μdGdRT
2 − RT

2 + H2T F2T ,

Π(4,7) = GT
d Q4,

Π(4,8) = GT
d Q7,

Π(4,12) = GT
d N2 + GT

d O1 − OT
4 ,

Π(4,21) = OT
8 Gc + OT

4 Gc,

Π(4,22) = OT
8 Ge + OT

4 Ge,

Π(4,23) = OT
8 H + OT

4 H,

Π(5,5) = μdGdR1 − R1 + M1 + MT
1 − M2 − MT

2 + μM M3 + μM M5 − F1H2

−R9 − RT
9 − 2P13 + S + ST ,

Π(5,6) = M2 − MT
1 + μM M4 + R9 + P13 − S,

Π(5,7) = −Q5 − Q6,

Π(5,8) = −Q8 − Q9,

Π(5,10) = RT
8 ,

Π(5,11) = −RT
8 ,

Π(5,18) = −Z1,

Π(5,19) = Z2,

Π(6,6) = −P3 − R4 − M2 − MT
2 + μM M5 − 9P8 − R9 − 4P12 − P13,

Π(6,7) = Q6,

Π(6,8) = Q9,

Π(6,9) = −R5,

Π(6,11) = RT
8 ,

Π(6,13) = −24P8 + 6P12,

Π(6,14) = 60P8,

Π(6,19) = −Z2,

Π(7,7) = −QT
5 − Q5 − P6,

Π(7,8) = −Q8 − QT
6 − P6,

Π(8,8) = −QT
9 − Q9 − P6,

Π(9,9) = −R6,

Π(10,10) = −P4 − R7,

Π(11,11) = −P4 − R7,
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Π(12,12) = −NT
2 − N2 + μ2

MP7 − QT
13 − Q13 − OT

1 A − ATO1 + P14 + τMP15,

Π(12,21) = OT
1 Gc,

Π(12,22) = OT
1 Ge,

Π(12,23) = OT
1 H,

Π(13,13) = −192P8 − 72P9 − 12P12,

Π(13,14) = 360P8 + 480P9,

Π(13,15) = −1080P9,

Π(14,14) = −720P8 − 3600P9,

Π(14,15) = 8640P9,

Π(15,15) = −21600P9,

Π(16,16) = −2P11,

Π(17,17) = −P10,

Π(18,18) = −ZT
1 − Z1 − P7,

Π(18,19) = −P7,

Π(19,19) = −ZT
2 − Z2 − P7,

Π(20,20) = −τMP15,

Π(21,21) = −P14 + τMP14,

Π(22,22) = −P16,

Π(23,23) = −αI, and the other are equal zero.
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Abstract: The optimization of an integrated coal gangue system of mining, dressing, and backfilling
in deep underground mining is a multi-objective and complex decision-making process, and the
factors such as spatial layout, node location, and transportation equipment need to be considered
comprehensively. In order to realize the intellectualized location of the nodes for the logistics and
transportation system of underground mining and dressing coal and gangue, this paper establishes
the model of the logistics and transportation system of underground mining and dressing coal gangue,
and analyzes the key factors of the intellectualized location for the logistics and transportation system
of coal and gangue, and the objective function of the node transportation model is deduced. The PSO–
QNMs algorithm is proposed for the solution of the objective function, which improves the accuracy
and stability of the location selection and effectively avoids the shortcomings of the PSO algorithm
with its poor local detailed search ability and the quasi-Newton algorithm with its sensitivity to the
initial value. Comparison of the particle swarm and PSO–QNMs algorithm outputs for the specific
conditions of the New Julong coal mine, as an example, shows that the PSO–QNMs algorithm reduces
the complexity of the calculation, increases the calculation efficiency by eight times, saves 42.8%
of the cost value, and improves the efficiency of the node selection of mining–dressing–backfilling
systems in a complex underground mining environment. The results confirm that the method has
high convergence speed and solution accuracy, and provides a fundamental basis for optimizing
the underground coal mine logistics system. Based on the research results, a node siting system for
an integrated underground mining, dressing, and backfilling system in coal mines (referred to as
MSBPS) was developed.

Keywords: integration of mining–dressing–backfilling; coal gangue logistics system; node intelligent
location; PSO–QNMs algorithm

1. Introduction

1.1. Study on the Integrated Technologies of Mining–Dressing–Backfilling Systems

In recent years, with the continuous increase in energy consumption and mining
intensity, China’s coal mining depth to an average of 10~25 m has sped to the deep extension.
Furthermore, deep coal mines need to excavate a large number of rock alleys to meet the
needs of the mine production system, surrounding rock stability control, and safe pressure
relief mining, which produces a large amount of gangue, which will not only aggravate the
contradiction of insufficient lifting capacity of deep shafts, but will also bring infill mining
as a sustainable mining technology, which prevents or minimizes the adverse effects of
mining coal resources on the environment and other resources from the perspective of
mining, with the goal of achieving the best economic, environmental, and social benefits. In
recent years, many achievements have been made in backfilling equipment, theories, and
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technologies, in order to further realize that gangue not ascend the shaft and reduce gangue
lifting costs, etc. Relevant scholars [1] also put forward the integration technologies of
the mining–dressing–backfilling system, which is to establish coal–gangue separation and
selection centers, backfilling preparation centers, and gangue pockets in the underground;
the coal and gangue products extracted from the underground working face are not lifted
to the shaft, but sorted by the underground dressing system, and the sorted gangue is
filled in place by the underground backfilling preparation system to realize the gangue
backfilling in the extraction area. This technology can achieve safe and efficient recovery of
coal resources that cannot be extracted by traditional coal mining methods and improves
the resource recovery rate, while improving the effective lifting efficiency of the main shaft
and relieving the load of the surface coal washing plant. Moreover, gangue technology can
reduce the discharge of gangue on the ground and consequently make full use of gangue
to effectively slow ground subsidence, and finally achieve the purpose of protecting the
environment and land resources. This is why China strongly advocates these green mining
and scientific mining methods.

Experts engaged in this area of research have conducted much research on process op-
timization and equipment improvement of integrated technologies of the mining–dressing–
backfilling system, and on the theory of rock movement patterns caused by this green
mining method, mainly from the perspective of traditional mine pressure and formation
control and mining technology optimization. Wang Jiachen et al. analyzed the relationship
between supports in backfilling mining and surrounding rocks and the movement char-
acteristics of overlying rocks, established the roof load estimation method, used similar
simulation and numerical calculation to simulate the process of workface retrieval and
gangue backfilling, and verified by backfilling mining examples [2,3]. Zhang Jixiong et al.
further proposed the sustainable mining system of “mining–dressing–backfilling + X” in
coal mines, revealed the law of mineral pressure manifestation and rock movement control
mechanism of solid filling mining, and performed much research on the theory and technol-
ogy of mining–dressing–backfilling green mining of deep coal resources [4–8]. Tu Shihao
developed a theoretical concept of the selective mining technology for the integration
technologies of mining–dressing–backfilling systems, and analyzed the critical aspects of
“mining–dressing–backfilling + controlling”, “mining–dressing–backfilling + extraction”,
“mining–dressing–backfilling + prevention”,“ mining–dressing–backfilling + protection”,
and examined other key mining scientific issues from the perspectives of control back-
filling rock movement, stress concentration, fracture field development, and stability of
the entry [9]. The results of these studies are relatively mature and have been extensively
disseminated in many mines in China.

However, since integrated technologies of the mining–dressing–backfilling system are
proposed, it is destined to be a coordinated process of multiple systems in engineering appli-
cation. On the basis of the existing research to clarify the system composition and structure
function of the “mining–dressing–backfilling” system, it is of great significance for the fu-
ture development of this technology to systematically analyze the operating characteristics
of deep underground gangue logistics and the interfeeding linkage relationship. The study
of this problem necessarily involves the efficient layout of the “mining–dressing–backfilling”
system; first, we must choose the location of the crucial underground “logistics” node,
which is the basis to ensure the efficient and coordinated transportation of coal and gangue
logistics. The current research results on this issue are relatively few. Wang Jinfeng et al.
combined the complex characteristics of a coal mine production logistics system and studied
the safety resource allocation, safety evaluation, and production logistics efficiency; further
systematic research was conducted on optimization methods to maximize the efficiency
of coal mine production logistics systems and rationalize safety resources [10–13]. Based
on exploring the key factors affecting the efficiency of the logistics system, Xia Dan et al.
used a system dynamics approach to dynamically analyze and predict the efficiency of a
complex production logistics system for the integrated technologies of mining–dressing–
backfilling systems and calculated the true impact rate of different production steps on
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the production level [14]. Although these studies have dealt with the efficiency of the
integrated production and logistics of “mining–dressing–backfilling” systems, they are all
from the perspective of macromanagers and have not really achieved substantial research
on the logistics node location selection and optimization of the system layout.

1.2. Study on the Logistics Node Location Selection

Although there is not much research in the field of coal mining, the location and
positioning of key system nodes is very important for the supply chain and logistics
transportation system, which need to consider the distance between nodes, cost, and the
influence of multiple factors from the perspective of logistics systems, with the continuous
development of applied mathematics, increasingly more factors are taken into account,
and various siting methods are introduced into logistics node siting in order to select the
best location.

The logistics location problem in the supply chain varies in the factors to be focused
on in different fields and systems, but multiobjective decision-making oriented to consider
multiple factors is an important research topic [15]. Zhang Guofang et al. proposed that
the main influencing factors for evaluating the location of logistics nodes are infrastructure
platform conditions, basic information platform conditions, and economic and sustainable
development conditions of logistics nodes, and in this way subdivided into 28 specific
indicators [16]. A multiobjective genetic algorithm (MOGA) was applied in supply chain
decision-making for agricultural systems to find the best combination of agricultural inputs
that minimize greenhouse gas emissions and maximizes output energy and benefit–cost
ratio [17]. The importance of supply and demand on the location of distribution centers
is argued [18]. Various factors such as politics, economy, environment, and the enterprise
itself are also important for the location of logistics nodes [19]. Considering four criteria in
supply chain planning—cost, quality, delivery, and supplier relationship management—
a decision method considering quantity discounts and supplier capacity constraints is
proposed, and TPSO, PSO, and GA are used for comparative numerical experiments [20].
As research expands, factors such as customer satisfaction, delivery time, service quality,
and sustainability are also taken into account [21,22]. Under various operational constraints,
cost minimization and profit maximization are the ultimate goals in most supply-chain
planning [23,24].

The method of logistics node location selection is evolving as a result of the increas-
ing number of factors to be considered, from the early center-of-gravity method [25–27],
it has evolved to multiobjective site selection alternatives including fuzzy integrated
analysis [16,28], analytic hierarchy process (AHP) [29–31], and data envelopment anal-
ysis (DEA) [32], which can consider more factors and are friendly to some hard-to-quantify
factors. While it is computationally difficult to solve larger site planning problems, various
heuristic and intelligent algorithms supported by big data and computers are applied to
solve the logistics node site selection problem. The alternative location algorithm (ALA)
and intelligent algorithms use parallel search techniques to solve the site selection problem,
which overcome the difficulty of traditional solution methods and can select the global
optimal solution efficiently and accurately. Commonly used algorithms include the ant
colony algorithm (ACA) [33,34], genetic algorithm (GA) [35–37], tabu search algorithm
(TS) [38], particle swarm optimization algorithm (PSO) [38–40], among others. The common
methods and characteristics of logistics node site selection are shown in Table 1.

Recognizing the importance of spatial node layout planning for an integrated coal
gangue system of “mining–dressing–backfilling” in the underground, it is necessary to
reference logistics node location selection methods that have matured in the field of sup-
ply chain and apply them to the integrated technologies of mining–dressing–backfilling
systems, and carry out intelligent site selection for the nodes of coal gangue logistics and
transportation systems. The integrated production system model of mining, dressing, and
backfilling was proposed in the literature [41], and the scientific siting of the nodes of the
underground integration technologies of mining–dressing–backfilling systems was studied.
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Due to the complex underground environment of the mine, a three-dimensional logistics
space node siting model was developed for the logistics and transportation system under
the premise of making appropriate scientific assumptions, and the objective function of
multiobjective decision-making was established mainly from the perspective of production
efficiency and economy. Furthermore, the PSO algorithm was proposed in solving the
objective function. In this paper, the crucial factors of the complicated underground mining
and coal gangue transportation system are elaborated from the perspective of logistics
rationalization. The coal gangue logistics system location nodes model is further estab-
lished, and the objective function is defined to identify the vital nodes based on “the highest
efficiency and the lowest cost”. The traditional evolutionary algorithms, such as the particle
swarm algorithm, fully discuss solving this problem, but lack local area search capability,
and the results are unstable because of stagnation at the later stage of calculation. The
particle swarm and quasi-Newton algorithm (PSO–QNMs) is introduced to design a hybrid
algorithm for solving the location of coal gangue logistics nodes by fully taking advantage
of the global search capability of the PSO algorithm and the localized and detailed search
capability of the quasi-Newton algorithm. The improved algorithm is applied to analyze
the issue of coal gangue logistics node siting in a real case: New Julong coal mine.

Table 1. Common methods and characteristics of logistics node location selection.

Logistics Node Location
Selection Methods

Key Features

Classical solution methods

Center-of-gravity method

The distribution of the nodes of the logistics
node system is placed on a plane, and the

demand and resources of each node are seen as
the weight of the point, and the best point for the

location of logistics facilities is the center of
gravity of the logistics system

Integer programming method

Setting the objective function, parameters and
variables, making assumptions and constraints
simplify, establish a relatively idealized model,

and solve it by an appropriate algorithm

Multiobjective solving methods

Analytic Hierarchy Process (AHP)

A discrete method for evaluating and analyzing
alternatives to arrive at the optimal site by

establishing an index evaluation system, usually
used in conjunction with the fuzzy

evaluation method

Data Envelopment Analysis
(DEA)

A system analysis method evolved on the basis
of evaluating relative efficiency, adjusting the

weight indicators of the evaluation model
dynamically according to the inputs and outputs,
evaluating the alternatives from the perspective
of the decision unit, independent of the metric

and subjective factors of the indicators, and
applicable to the site selection decision of

multiple input and output problems

Fuzzy Integrated Evaluation

It can determine the weight of indicators and
quantitative representation of indicators,

combine qualitative and quantitative, make a
comprehensive evaluation of a variety of factors,
suitable for nondeterministic problem solving,

cannot solve the problem of correlation between
factors, and the transformation of indicators has

a certain degree of subjectivity.
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Table 1. Cont.

Logistics Node Location
Selection Methods

Key Features

Heuristic and intelligent algorithms

Ant Colony Algorithm (ACA)

With fewer setup parameters and good
convergence performance, it can generate

solutions in a very short time, and is suitable for
solving complex logistics node siting problems

with great flexibility.

Genetic Algorithm (GA) Fast computation and easy combinations with
other algorithms.

Tabu Search Algorithm (TS)

Easy to understand and implement, strong
generality, strong local development ability, fast
convergence; based on single solution, and weak

group development ability.

Particle Swarm Optimization
(PSO)

Simple operation, fast convergence, does not
depend on the strict mathematical properties of

the optimization problem itself, can achieve
global optimality, and easy to combine with

other algorithms.

. . . . . . . . . . . .

2. Coal Gangue Logistics and Transportation Systems in the Integration of
Mining–Dressing–Backfilling

In order to realize the deep underground sorting and in situ filling technology model,
an efficient, reliable, intelligent, and economical “coal mining–dressing–backfilling” inte-
grated logistics production system for underground coal mines was established. To study
the problem of optimal selection of nodes in the integrated coal gangue logistics production
system of “mining–dressing–backfilling” in underground coal mining, the precondition is
that the underground mining, sorting, filling, and transportation system links are analyzed
separately from the perspective of logistics rationalization. The first and most important is
the optimization and rationalization of the logistics system as a whole during the process
of completing the underground cycle of mining, sorting, and backfilling from the working
face. An underground mining and coal gangue transport system is relatively complex. The
core of the two major systems for the coal gangue sorting system consists of the gangue
and other waste filling system and the underground mining and coal gangue logistics
production, which is to separate coal and gangue in the underground. Gangue is used as
the main raw material for underground filling; due to the limited capacity of filling, the
flow of gangue produced at the working face and the space relative position of mining
and charging will determine the coordinated treatment capacity of mining and filling of
the gangue transportation system. Insufficient gangue production will lead to obstruc-
tion of the underground filling work, and the surplus of gangue production will cause
the excess gangue to be stacked randomly [42]. Therefore, it is necessary to reasonably
design the spatial location relationship of key nodes for underground mining, selection,
and filling coal gangue logistics systems to ensure efficient and coordinated transportation
of mining, selection, and filling. In order to optimize the coal mine production logistics
system, the coal production and operation process are transformed into a logistics and
transportation process. The integrated coal gangue logistics system of mining, selection,
and filling includes two parts: gangue production supply logistics and gangue production
logistics. In the transportation part of coal gangue logistics, the normal output of coal
gangue is the most fundamental and essential logistical component of the transportation
link. In an underground coal mine, the coal and gangue produced from the working face
are transported through the complex and extensive transport routes. As there are more
logistics nodes in transportation, there will be a certain suspension in the sorting center, the
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filling preparatory center, and the underground gangue silo, based on the efficiency of the
whole system, which can be improved by setting a reasonable key node.

3. Coal Gangue Logistics System Location Nodes Model

The intelligent selection of nodes in the underground integration of the mining–
dressing–backfilling system is an optimum solution selected among many solutions to
meet the actual engineering background. The establishment and solution of the nonlinear
equation system occupies an important position in the optimization problem, especially in
the field of industrial engineering, etc. For practical cases, a mathematical model needs to
be built and transformed into a system of equations for the problem to be solved. Among
many solution methods—particle swarm algorithm, genetic algorithm, ant colony algo-
rithm, Newton’s method—search better from the consideration of solution accuracy and
convergence, but there are still some defects in the solution process for specific application
cases [43–45]. The problem of intelligent output of key nodes in underground integration
of mining–dressing–backfilling can actually be regarded mathematically as the problem of
large flow, high efficiency, and minimum cost of gangue transportation, by modifying the
relevant parameters and changing different constraints, the sum of costs such as construc-
tion and transportation is minimized, and the flow rate in the logistics system is maximized.
The ultimate goal is to improve the operational efficiency of the coal gangue logistics
system. The gangue that is used for filling the working face is partly from the gangue
on the surface, and partly from the gangue produced during underground working-face
mining and roadway excavation. This is especially important for the large number of rock
roadways excavated in deep mining, which gangue is used to enhance the stability of the
surrounding rock of the roadway. In the solution of the model, assuming that the surface
gangue is transported to the underground gangue silo through the vertical feeding hole, the
location of the key nodes of the system is sited from the perspective of maximum logistics
and optimal cost, without considering the loss of coal gangue in the transportation process.
As shown in Figure 1, the key transportation nodes include six positions, where I is the
underground coal–gangue separation and selection center, J is the underground backfilling
preparation center, K is the underground gangue pocket, T is the input port, E is the gangue
mountain, and D is the shaft coal pocket.

Figure 1. Node transportation model of the coal gangue backfilling system.

From the perspective of economy and logistics, the objective function is established
based on the principle of “highest efficiency and lowest cost”, i.e., the sum of transportation
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costs between the links is minimized. The objective function is established in Equation (1)
and the constraints are given in Equations (2)–(4).

minZ = ∑
i∈M

DMi ,ICMi ,I XMi ,I + ∑
i∈N

DNi ,JCNi ,J XNi ,J + DE,TCE,TXE,T+

DT,KCT,KXT,K + DD,ICD,I XD,I
(1)

∑
i∈M

XMi ,I + ∑
i∈N

XNi ,J = XI,J + XI,D (2)

XI,J + XK,J = ∑
i∈M

XJ,A (3)

XE,T = XT,K = XK,J (4)

where DMi ,I indicates position i and j; CMi ,I indicates transportation cost for each unit of
coal between position i and j; XMi ,I is the transportation flow rate between position i and j;
Mi is the i-th coal mining/excavation working face, where (Mi = A, B, C, D, E · ··); and Ni
denote the key logistics nodes in integration of the mining–dressing–backfilling system.

4. Intelligent Algorithmic Optimization

4.1. Particle Swarm Algorithm

The particle swarm algorithm [22] is a swarm-based random optimization intelligence
algorithm that originated from the study of bird feeding behavior, where the simplest and
most finite strategy to find food is to search around the bird that is currently closest to
the food. The algorithm is an abstraction of solving the objective decision function as the
process of searching for the optimal in the decision space in a continuous iteration, which
is one of the methods to solve the optimal solution of the multidimensional function. The
mathematical description of the algorithm follows. Assuming that the position of particle I
in N-dimensional space is represented as a vector: Xi = (X1, X2, X3, . . . . . . , XN), and the
velocity of the particle motion is represented as a vector: Vi = (V1, V2, V3, . . . . . . , VN), then
each particle has an adaptation value determined by the objective function and knows the
best position experienced by the individual called the individual historical best position,
defined as pbest and by its present position; each particle also knows the best position
found by all particles in the whole population thus far, which is defined as gbest.

After initializing a group of random particles, the optimal solution is found by iteration.
In each iteration, the particles update themselves mainly by tracking pbest and gbest, and
the particles will iterate to update their velocity and position according to Equation (5):

Vid(k + 1) = ωVid(k) + c1r1(Pid(k)− Xid(k)) + c2r2(Pid(k)− Xid(k));
Xid(k + 1) = Vid(k) + Vid(k)

(5)

where ω is the inertia weight factor; c1 and c2 are non-negative constants called the learning
factor; and r1 and r2 are random numbers in [0, 1] with independent uniform distribution.

The core code formulas for continuously updating the velocity New_vid and position
New_xid of the particle for each particle motion are Equations (6) and (7), respectively:

New_vid = w ∗ vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗ rand(pgd − xid) (6)

New_xid = xid + New_vid (7)

where pid is the individual known optimal solution; pgd is the global known optimal solu-
tion; vid, xid denote the velocity and position of the particle updated by the last operation
in the population, respectively; w is the inertia weight factor; c1 = c2 is one of the particle
learning factors, which usually is valued between 0 and 2; and rand() is a random number
within (0, 1). To reduce the possibility of particles leaving the search space during the
search process, V is usually limited to a certain range.
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The PSO is an efficient parallel search algorithm that retains a population-based global
search strategy with a relatively simple operational model that preserves the individual
historical extremes of each particle, which has been applied to the output of the key node
location in the coal gangue logistics and transportation system of integrated underground
mining, dressing, and backfilling The author references particle swarm algorithm in the
literature to solve the node siting for the integrated logistics of the mining–dressing–
backfilling system, and some of the core codes have also been reflected in the literature,
the algorithm initially realized the automatic output of coal gangue logistics node siting
under the role of complex factors. However, it was found in subsequent application
that the algorithm lacks the ability of fine search in a local area, and the phenomenon of
convergence stagnation that often occurs in the later stage of the search is not very sensitive
to the population size and cannot obtain an unique and accurate solution.

4.2. Quasi-Newton Methods Algorithm

The quasi-Newton methods (QNMs) [46–50] were first described by the American
physicist Davidson in the mid-1950s, and shortly thereafter it was proved by the operational
scientists Fletcher and Powell to be both faster and more stable than the algorithms available
at that time. In recent years, the QNMs have become an important research area for
algorithms to solve both constrained and unconstrained optimization problems. The QNMs
do not need to calculate the Hesse array of the objective function in the computational
process as does the Newton method, yet it can have the same efficacy in some sense as when
using the Hesse array, and has a second-order convergence speed. This not only simplifies
the computational process, but also ensures algorithm convergence speed. Therefore, in
recent decades, the QNMs are one of the most important methods for solving nonlinear
systems of equations and optimization problems. The QNMs program code is shown in
Equation (8):

f unction [k, x, val] = b f gs( f un, g f un, x0, varargin) (8)

where k is the number of iterations; x, val is the approximate optimal site and the optimal
value, respectively; f un, g f un is the objective function and its gradient, respectively; x0 is
the initial site; and varargin is the input variable parameter.

The main characteristics of the QNMs are simple internal update rules, high accuracy,
strong numerical stability, and fast convergence. However, the selection of the initial value
of the method is challenging; if a random value is used for the solution, then in actual
engineering background application it extremely difficult attain convergence. Therefore,
the convergence depends on the selection of the initial value; thus, it is very important to
provide an optimal initial value for QNMs.

4.3. Particle Swarm and Quasi-Newton Algorithm

In view of the poor local search ability of the PSO algorithm and the sensitivity of
the QNMs algorithm to the initial value, in order to improve the localization accuracy
and convergence, combining the characteristics of the two algorithms, a particle swarm
optimization algorithm based on quasi-Newton algorithm (PSO–QNMs algorithm), is
designed to precisely optimize the nodes of the coal and gangue system to achieve the
effect of making full use of the advantages of the two algorithms. The process of the
PSO–QNMs algorithm is shown in Figure 2. Firstly, the PSO algorithm is used to search
the problem in a wide range within the feasible solution area to find the optimal algorithm
to a certain extent, and to provide a good initial point for the QNMs algorithm, which is
used as the initial value of the QNMs algorithm for continuous iteration, then the QNMs
algorithm was used to search precisely until a more precise root of the equation is found.
The program code is shown in Equation (9):

f unction y = f unadd(n, x, f ixedpoint, cos t, tra f f ic f low)
f unction y = f unadd Gra(x)

(9)
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Figure 2. Flow chart of the PSO–QNMs hybrid algorithm.

The PSO–QNMs [25] runs the particle swarm optimization algorithm M generation
at the initial stage (population size is m), reaches the termination condition, outputs the
current global optimal individual (defined in the PSO algorithm as ”zbest”) and gives this
value to the initial value of Newton method, as indicated in Equation (10):

x0= zbest (10)

where x0 ∈ Rn, termination of the error 0 ≤ ε ≤ 1. The initial positive definite matrix
H0 ∈ Rn×n, k := 0; if ‖gk‖ ≤ ε, then the operation is stopped and the output xk is taken
as an approximate minimum point; the direction of calculation and search dk = −Hkgk,
and αk is solved by linear search along direction dk;xk+1 : is expressed as xk+1 := xk + αkdk.
Calibration Hk produces Hk+1, and k = k + 1 iterations are performed. Part of the core
program code of the PSO–QNMs algorithm is shown in Equation (11):

fminunc_options = optimoptions
(
@fminunc,′ Algorithm′,′ quasi − newton′,′ MaxFunEvals′, 100000,

′PlotFcns′, @optimplotfval
)
;

[Gra_best, fval_Gra, exitflag_Gra, output_Gra] = fminunc(@funadd_Gra, x0, fminunc_options)
(11)

5. Case Analysis

5.1. Background

This algorithm comparison uses the Xinjulong coal mine of Shandong Energy Group
as the basic background for engineering application to simulate the intellectualized location
of coal gangue logistics nodes of integrated system for “mining–dressing–backfilling” in
the underground. The working face of the Xinjulong coal mine, which is mainly a fully
mechanized coal caving and backfilling face, and the production of the double mining
district is mainly at the same gallery level. The coal seam thickness of the 1302N-2#
backfilling face is 2.2–3.63 m, the average coal thickness is 2.73 m, the mining coefficient is
1, and the coal seam variation coefficient is 11.9%, which belongs to a medium thick coal
seam with simple structure and stable thickness within the mining range of the working
face. The 1302N-2# backfilling face is located north of the 1# direct track rise at the –810
level, east is the 1302N-1# gob, west is the unprepared 1303N-1# backfilling face, south is
the village protective coal pillar, and north is the 1302N#gob protective coal pillar.
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The gangue for backfilling in the working face comes from the fully mechanized
caving face, the fully mechanized backfilling panel, and the excavated panel produced at
the same time. In the simulation, three coal mining faces and two tunneling faces are set.
The gangue produced from the 1302N-2# backfilling face goes through the sieving and
smashing system; the excavated gangue is directly transported to the gangue pocket. The
raw coal mixed with coal and gangue is transferred to the coal–gangue separation system,
and the cleaned coal after separation is moved to the transportation roadway through the
loading station of the transportation roadway, and finally is lifted to the ground through
the main shaft. The gangue is transported to the gangue pocket of the first mining wing
for storage along the gangue transport roadway, and transported to the backfilling face
for gob through the 1302N-2#tailentry and the return-air rise. The coal gangue logistics
and transportation system in the integrated mining–dressing–backfilling system at the
Xinjulong coal mine is shown in Figure 3.

Figure 3. Schematic diagram of coal gangue logistics and transportation system in the Xinjulong
coal mine.

The PSO algorithm and the PSO–QNMs algorithm are used to carry out the case study.
In this calculation, the gangue selection rate is 95%; the fixed coordinates of transportation
links for each logistics system and the flow parameters of working face are given in Table 2.
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Furthermore, based on the project background, the input of ground gangue is also taken
into account in this analysis.

Table 2. Input parameters.

Parameter Coal Face 1# Coal Face 2# Coal Face 3#
Excavated

Panel
1#

Excavated
Panel

2#

Shaft Coal
Pocket

Gangue
Mountain

fixed
coordinates (1000,3000,−800) (3000,1000,−900) (2000,2000,−850) (1000,1500,−800) (1500,1000,−950) (1500,2000,−750) (1000,2000,−0)

flow/(t/h) 230 220 240 200 210 — —
gangue

percentage 0.32 0.3 0.3 0.35 0.33 — —

5.2. Results

In this paper, three groups of experiments are designed. The PSO algorithm and
the PSO–QNMs algorithm are set in each group, and the values of the output results are
analyzed, based on the two solution algorithms. In the solution process, the same initial
value is given to the two intelligent optimization algorithms. In the process of the PSO
algorithm, after several iterative solutions, the fitness value of the node particles after
each operation was compared with the population optimal solution in the particle swarm.
The resulting optimal value was used to replace the population optimal value, and the
particle with the most adaptive value was obtained; that is, the objective result of the
optimal function was obtained and the calculation was then terminated. In the process
of the PSO–QNMs algorithm, the preliminary calculation steps are the same as the PSO
algorithm, except that the termination condition of the algorithm is when the calculated
gradient value gk meets the termination error ε of the algorithm. The two algorithms were
programmed and solved by using MATLAB. The data of the three groups of experimental
results are shown in Table 3. After the program operation, the iterative graphs of the two
intelligent optimization algorithms are output, as shown in Figure 4. The spatial location
relationship diagrams of logistics nodes of the three groups of intelligent optimization
algorithms are output, as shown in Figures 5–7.

Table 3. Simulation experiment results.

Experiments Algorithm

Separation
and

Selection
Centers

Backfilling
and Prepa-

ration
Centers

Gangue
Pockets

Optimal
Values
/×108

Maximum
Number of
Iterations

Operation
Time

/s

Group 1

PSO XYZ
1675.449 865.714 −114.715

3.293 2670 8.8401676.430 1676.819 639.201
−676.581 −331.045 −232.421

PSO–
QNMs XYZ

1499.999 1460.048 1460.047
1.846 53 1.1482000.000 2037.973 2037.973

−750.000 −717.835 −717.835

Group 2

PSO XYZ
1133.104 678.695 888.8732

3.359 2420 9.6331765.071 697.2961 661.397
−816.158 −866.207 −768.231

PSO–
QNMs XYZ

1500.000 1454.982 1454.979
1.846 52 1.0982000.000 2040.568 2040.568

−750.000 −715.002 −714.999

Group 3

PSO XYZ
1592.962 298.096 270.873

3.019 2870 8.6811894.860 1090.314 1231.951
−753.395 −225.351 −376.964

PSO–
QNMs XYZ

1500.000 1456.274 1456.273
1.846 60 1.2692000.000 2039.312 2039.312

−749.999 −715.927 −715.927
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Figure 4. Intelligent optimization method iteration curve: (a) group 1, (b) group 2, (c) group 3.
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(a) (b) 

Figure 5. The spatial position relationship diagram of the logistics nodes (group 1): (a) PSO algorithm,
(b) PSO–QNMs algorithm.

(a) (b) 

Figure 6. The spatial position relationship diagram of the logistics nodes (group 2): (a) PSO algorithm,
(b) PSO–QNMs algorithm.

(a) (b) 

Figure 7. The spatial position relationship diagram of the logistics nodes (group 3): (a) PSO algorithm,
(b) PSO–QNMs algorithm.
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5.3. Analysis

(1) Combined with the simulation results (Table 2) and the intelligent optimization algo-
rithm iterative graph (Figure 4), it can be concluded that the PSO–QNMs algorithm,
compared with the PSO algorithm, has stronger ability to converge to the global
optimal solution, and its convergence speed is significantly higher than that of PSO.
The solution time of the whole system operation is about one-eighth of that of the
latter. Therefore, the PSO–QNMs algorithm reduces the computational complexity
and ensures the global convergence of the algorithm when solving the coal gangue
logistics nodes in the underground integration technologies of the mining–dressing–
backfilling system. At the same time, when the number of iterations of PSO algorithm
is larger, the accuracy of the optimal solution is relatively higher, and then the initial
value assigned to the QNMs is better, and the PSO–QNMs algorithm can give full
play to its global fine search performance, and the search effect of the optimal solution
is better.

(2) According to the optimal function value output from the simulation experiment
results in Table 2, it can be concluded that the PSO–QNMs reduces the cost value by
about 42.8% compared with the PSO algorithm, indicating that the former has a good
approximation effect on the extreme value of the objective function of the coal gangue
logistics nodes model, and its accuracy can be improved by 100%.

(3) Comparing the three groups of the intelligent optimization algorithm logistics node
location diagram (Figures 5–7), it can be concluded that the PSO selects nonunique
coal gangue logistics system location nodes, and the output is not stable. How-
ever, the PSO–QNMs algorithm is able to select basically similar but extremely sta-
ble results. Therefore, the PSO–QNMs algorithm is more accurate and stable than
the PSO, which also demonstrates the superiority of the PSO in solving the nodes
in the coal and gangue transportation system of mining and separation within a
complex environment.

6. Node Location Decision System for Integration Technologies of the
Mining–Dressing–Backfilling System

Based on the research results, a node siting system for an integrated underground
mining–dressing–backfilling system in coal mines, referred to as MSBPS, was developed
as shown in Figure 8. This is a logistics system node siting output system that is closely
related to the research content of integrated deep underground mining, dressing, and
backfilling. It only needs to input the spatial location coordinates of specific known nodes
and the unit cost between each link, and calculates the solution independently to output the
requested optimal node location information, i.e., it can output the spatial coordinates of
node locations with one key. At the same time, it can obtain the three-dimensional spatial
location relationship between the requested node location and specific known nodes, with a
data export function and Chinese and English interface operation, which greatly simplifies
the complexity of outputting node locations. It provides a fast, convenient, and accurate
image and data export platform for locating nodes deep underground in an integrated
mining, dressing, and backfilling logistics system, and is an effective three-dimensional
dynamic system platform design tool for conducting further research on deep mining,
dressing, and backfilling.
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Figure 8. Main Interfaces of the node location decision system.

7. Conclusions

Based on the site selection of coal and gangue logistics nodes in the integration of
mining, separation, and filling, this paper provides an in-depth study and proposes an
improvement in the precise intelligent optimization algorithm of nodes in underground
integration technologies of a mining–dressing–backfilling system. Based on the poor local
search ability of the PSO algorithm and the instability of node output results, the PSO–
QNMs algorithm was proposed. This algorithm realized a fast and fine search of nodes
in the integrated logistics system of coal mining–dressing–backfilling under the action of
complex factors. The following main conclusions were obtained:

(1) Based on the complex coal mine environment in China, the relative positions of coal–
gangue separation and selection center, backfilling preparation center, and gangue
pocket are provided by combining the following components: practical engineering
background; mining–dressing–backfilling underground transportation system anal-
ysis; construction of coal gangue system node location model; and “high efficiency,
lowest cost” as the principal function of a variety of intelligent optimization algo-
rithms. It has practical guiding value in future use of the optimization algorithm of
node intelligence for complex underground systems.

(2) Based on the poor global convergence of the PSO algorithm, the PSO-QNMs algorithm
is proposed. The results of several groups of simulation experiments have shown
that the PSO-QNMs algorithm has stronger convergence than the PSO algorithm
in solving the node position of the mining-dressing-backfilling system in complex
environment, and the whole operation time is only 1/8 of that of the PSO.

(3) Based on the poor global convergence of the PSO algorithm, the PSO–QNMs algo-
rithm is proposed. The results of several groups of simulation experiments have
shown that the PSO–QNMs algorithm has stronger convergence than the PSO algo-
rithm in solving the node position of the mining–dressing–backfilling system in a
complex environment, and the whole operation time is only one-eighth that of the
PSO algorithm.

(4) In terms of objective function value, the PSO–QNMs algorithm reduces the cost value
by about 42.8% compared with the PSO, which optimizes the objective function value,
and improves the node optimization efficiency of the mining–dressing–backfilling
system within a complex underground environment.
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(5) By comparing the performance of the PSO and PSO–QNMs algorithms in the spatial
position coordinates and optimal solution of objective function of logistics nodes, it is
further confirmed that the PSO–QNMs algorithm is of high precision and provides
stable experimental output results. The superiority of the PSO–QNMs algorithm
to solve the intellectualized location of coal gangue logistics nodes under complex
environment is proven.

(6) Based on the research results, a node siting system for integrated underground mining,
processing, and charging systems in coal mines (referred to as MSBPS) was developed,
which is an effective tool for further research on three-dimensional dynamic platform
design for an integrated deep mining, processing, and charging system.

Author Contributions: S.Y.: conceptualization, data curation, funding acquisition, methodology,
project administration, investigation, software, writing—original draft, and writing—review and
editing; J.W.: data curation, formal analysis, investigation, software, and writing—original draft; M.L.:
data curation, formal analysis, investigation, and software; H.Y.: formal analysis and investigation.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (no. 2018YFC0604701).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used during the study appear in the submitted article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. He, Q. Research on Key Technology of Integration of Mining, Dressing, Backfilling and Mining in Underground Coal Mine. Ph.D.
Thesis, China University of Mining and Technology, Xu Zhou, China, 2014.

2. Wang, J.; Yang, S. Research on support-rock system in solid backfill mining methods. J. China Coal Soc. 2010, 35, 1821–1826.
3. Wang, J.; Yang, S.; Yang, B. Simulation experiment of overlying strata movement features of longwall with gangue backfill mining.

J. China Coal Soc. 2012, 37, 1256–1262.
4. Zhang, J. Sthdy on Strata Movement Controlling by Raw Waste Backfilling with Fully-Mechanized Coal Winning Technology and

Its Applications. Ph.D. Thesis, China University of Mining & Technology, Xu Zhou, China, 2008.
5. Zhang, J.; Zhou, Y.; Huang, Y. Integrated technology of fully mechanized solid backfill mining. Coal Sci. Technol. 2012, 40, 10–13.
6. Zhang, J.; Zhang, Q.; Ju, F.; Zhou, N.; Li, M.; Sun, Q. Theory and technique of greening mining integrating mining, separating and

backfilling in deep coal resources. J. China Coal Soc. 2018, 43, 377–389.
7. Zhang, J.; Zhang, Q.; Ju, F.; Zhou, N.; Li, M.; Zhang, W. Practice and technique of green mining with integration of mining,

dressing, backfilling and X in coal resources. J. China Coal Soc. 2019, 44, 64–73.
8. Miu, X.; Zhang, J. Key technology of integration of coal mining gangue washing backfilling and coal mining. J. China Coal Soc.

2014, 39, 1424–1433.
9. Tu, S.; Hao, D.; Li, W.; Liu, X.; Miao, K.; Yang, Z.; Ban, J. Construction of the theory and technology system of selective mining in

“mining, dressing, backfilling and X” integrated mine. J. Min. Saf. Eng. 2020, 37, 81–92.
10. Wang, J.; Zhu, Y.; Feng, L. Research on Resource Allocation Efficiency of Coal Mine Production Logistics System. Coal Eng. 2014,

46, 114–117.
11. Wang, J.; Du, X.; Feng, L.; Zhai, X. Safety resource allocation model of coal mine production logistics system using stochastic

programming. China Saf. Sci. J. 2015, 25, 16–22.
12. Wang, J.; Zhai, X.; Feng, L. Efficiency Optimization of Coal Mine Production Logistics Under Safety Hard Constraint. Chin. J.

Manag. Sci. 2014, 22, 59–66.
13. Jia, Y.; Du, X.; Wang, J.; Feng, L. Research of security resource allocation model of coal mine production logistics system based on

maximum information entropy. Ind. Mine Autom. 2016, 42, 33–37.
14. Xia, D.; Wang, X. Efficiency simulation of integrated production logistics system for underground coal mining, dressing and

filling. China Min. Mag. 2020, 29, 75–81.
15. Dou, Z.; Shao, Y.; Yuan, Z.; Ji, M. Review on Logistics Node Location Selection. Logist. Eng. Manag. 2020, 42, 1–4.
16. Zhang, G.; Bao, F. Research on Logistics Centre with Fuzzy Synthesis Evaluation of Entropy Weights Model. J. Wuhan Univ.

Technol. 2005, 7, 91–93.

88



Mathematics 2022, 10, 162

17. Shamshirband, S.; Khoshnevisan, B.; Yousefi, M.; Bolandnazar, E.; Anuar, N.B.; Wahab, A.W.A.; Khan, S.U.R. A multi-objective
evolutionary algorithm for energy management of agricultural systems-A case study in Iran. Renew. Sustain. Energy Rev. 2015, 44,
457–465. [CrossRef]

18. Chu, T.C.; Lai, M.T. Selecting distribution centre location using an improved fuzzy MCDM approach. Int. J. Adv. Manuf. Technol.
2005, 26, 293–299. [CrossRef]

19. Zak, J.; Weglinski, S. The selection of the logistics center location based on MCDM/A methodology. In Proceedings of the 17th
Meeting of the EURO-Working-Group on Transportation (EWGT), Seville, Spain, 2–4 July 2014; pp. 555–564.

20. Che, Z.H.; Chiang, T.-A.; Che, Z.-G. Using analytic network process and turbo particle swarm optimization algorithm for
non-balanced supply chain planning considering supplier relationship management. Trans. Inst. Meas. Control. 2012, 34, 720–735.
[CrossRef]

21. Zhang, R.; Wang, Z. Bi-level Programming Model and Solution Algorithm for Layout of Terminals of City Distribution. J. Tongji
Univ. (Nat. Sci.) 2012, 40, 1035–1040.

22. Guo, X.; Wang, Y. Multi-objective Model for Logistics Distribution Programming Considering Logistics Service Level. J. Southwest
Jiaotong Univ. 2012, 47, 874–880.

23. Cui, L.X. Joint optimization of production planning and supplier selection incorporating customer flexibility: An improved
genetic approach. J. Intell. Manuf. 2016, 27, 1017–1035. [CrossRef]

24. Griffis, S.E.; Bell, J.E.; Closs, D.J. Metaheuristics in Logistics and Supply Chain Management. J. Bus. Logist. 2012, 33, 90–106.
[CrossRef]

25. Niu, D.; Wu, J. A Case Study of Multiple Gravity Method Site Selection. Mark. Manag. Rev. 2021, 152–153. [CrossRef]
26. Velazquez-Marti, B.; Fernandez-Gonzalez, E. Mathematical algorithms to locate factories to transform biomass in bioenergy

focused on logistic network construction. Renew. Energy 2010, 35, 2136–2142. [CrossRef]
27. Almetova, Z.; Shepelev, V.; Shepelev, S. Cargo Transit Terminal Locations According to the Existing Transport Network Configu-

ration. In Proceedings of the 2nd International Conference on Industrial Engineering (ICIE), Chelyabinsk, Russia, 19–20 May
2016; pp. 1396–1402.

28. Huang, M.; Cui, Y.; Yang, S.; Wang, X. Fourth party logistics routing problem with fuzzy duration time. Int. J. Prod. Econ. 2013,
145, 107–116. [CrossRef]

29. Fang, L.; He, J. Combining the Analytic Hierarchy Process and Goal Programming for Location M odel of Emergency Systems.
Syst. Eng.-Theory Pract. 2003, 62, 116–120.

30. Bi, K.; Yang, M.; Zahid, L.; Zhou, X. A New Solution for City Distribution to Achieve Environmental Benefits within the Trend of
Green Logistics: A Case Study in China. Sustainability 2020, 12, 8312. [CrossRef]

31. Xi, S.-E. Evaluation of Nodes Importance in of Highway Transportation Hubs Planning Based on Fuzzy-AHP. In Proceedings of
the 2nd International Conference on Civil Engineering and Transportation (ICCET 2012), Guilin, China, 27–28 October 2013; pp.
1181–1187.

32. Zhang, S.; Cui, R. Logistics Efficiency Network Spatial Structure Based on Coastal City Shandong. J. Coast. Res. 2020, 322–327.
[CrossRef]

33. Piao, C.; Hu, H.; Zhang, Y. Logistics distribution vehicle path planning research. In Proceedings of the IEEE International
Conference on Artificial Intelligence and Information Systems (ICAIIS), Dalian, China, 20–22 March 2020; pp. 396–399.

34. Zou, Q. Research on Hybrid Hub-Spoke Express Network Based on Multiple Transportation Modes. In Proceedings of the IEEE
7th International Conference on Industrial Engineering and Applications (ICIEA), Bangkok, Thailand, 16–21 April 2020; pp.
905–911.

35. Jing, C.; Destech Publications, I. Research on Location of Sales Logistics Network Nodes Based on Chaotic Optimization Algorithm.
In Proceedings of the 3rd International Conference on Vehicle, Mechanical and Electrical Engineering (ICVMEE), Wuhan, China,
30–31 July 2016; pp. 71–75.

36. Sun, Y.; Geng, N.; Gong, S.; Yang, Y. Research on improved genetic algorithm in path optimization of aviation logistics distribution
center. J. Intell. Fuzzy Syst. 2020, 38, 29–37. [CrossRef]

37. Hu, Y.; Zhang, K.; Yang, J.; Wu, Y. Application of Hierarchical Facility Location-Routing Problem with Optimization of an
Underground Logistic System: A Case Study in China. Math. Probl. Eng. 2018, 2018. [CrossRef]

38. Deng, Y.; Zheng, Y.; Li, J. Route optimization model in collaborative logistics network for mixed transportation problem considered
cost discount based on GATS. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 409–416. [CrossRef]

39. Pinho, T.M.; Coelho, J.P.; Veiga, G.; Moreira, A.P.; Boaventura-Cunha, J. Soft computing optimization for the biomass supply chain
operational planning. In Proceedings of the 13th APCA International Conference on Control and Soft Computing (CONTROLO),
Ponta Delgada, Portugal, 4–6 June 2018; pp. 259–264.

40. Guo, J.; Fang, J.; Gen, M. Dynamic Joint Construction And Optimal Strategy Of Multi-Objective Multi Period Multi-Stage Reverse
Logistics Network: A Case Study Of Lead Battery In Shanghai. In Proceedings of the 28th International Conference on Flexible
Automation and Intelligent Manufacturing (FAIM)-Global Integration of Intelligent Manufacturing and Smart Industry for Good
of Humanity, Columbus, OH, USA, 11–14 June 2018; pp. 1171–1178.

41. Yang, S.; Wang, J.; Deng, X. Research on node location of underground mining, dressing and backfilling system based on particle
swarm optimization. J. Min. Saf. Eng. 2020, 37, 359–365.

89



Mathematics 2022, 10, 162

42. Cao, Y.; Liu, M.; Xing, Y.; Li, G.; Luo, J.; Gui, X. Current situation and prospect of underground coal preparation technology. J.
Min. Saf. Eng. 2020, 37, 192–201.

43. Alexandridis, A.; Famelis, I.T.; Tsitouras, C. Particle Swarm Optimization for Complex Nonlinear Optimization Problems. In
Proceedings of the International Conference On Numerical Analysis And Applied Mathematics 2015 (ICNAAM-2015), Rhodes,
Greece, 23–29 September 2015.

44. Xu, M.; Zhang, W.; Qu, R.; Wang, J. An Improved Partial Swarm Optimization Algorithm for Solving Nonlinear Equation
Problems. In Proceedings of the 2014 11th World Congress On Intelligent Control And Automation (WCICA), Shenyang, China,
29 June–4 July 2014; pp. 3600–3604.

45. Mo, Y.; Liu, H.; Wang, Q. Conjugate direction particle swarm optimization solving systems of nonlinear equations. Comput. Math.
Appl. 2009, 57, 1877–1882. [CrossRef]

46. Sahu, D.R.; Agarwal, R.P.; Singh, V.K. A Third Order Newton-Like Method and Its Applications. Mathematics 2019, 7, 31.
[CrossRef]

47. Lai, K.K.; Mishra, S.K.; Ram, B. On q-Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems.
Mathematics 2020, 8, 616. [CrossRef]

48. Ezquerro, J.A.; Hernandez-Veron, M.A. The Newtonian Operator and Global Convergence Balls for Newton’s Method. Mathemat-
ics 2020, 8, 1074. [CrossRef]

49. Wang, X.; Tao, Y. A New Newton Method with Memory for Solving Nonlinear Equations. Mathematics 2020, 8, 108. [CrossRef]
50. Antonio Ezquerro, J.; Angel Hernandez-Veron, M. How to Obtain Global Convergence Domains via Newton’s Method for

Nonlinear Integral Equations. Mathematics 2019, 7, 553. [CrossRef]

90



Citation: Danik, Y.; Dmitriev, M.

Symbolic Regulator Sets for a Weakly

Nonlinear Discrete Control System

with a Small Step. Mathematics 2022,

10, 487. https://doi.org/10.3390/

math10030487

Academic Editors: Ioannis G. Stratis

and Quanxin Zhu

Received: 9 November 2021

Accepted: 30 January 2022

Published: 2 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Symbolic Regulator Sets for a Weakly Nonlinear Discrete
Control System with a Small Step

Yulia Danik * and Mikhail Dmitriev

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 119333 Mocow,
Russia; mdmitriev@mail.ru
* Correspondence: yuliadanik@gmail.com

Abstract: For a class of discrete weakly nonlinear state-dependent coefficient (SDC) control systems,
a suboptimal synthesis is constructed over a finite interval with a large number of steps. A one-
point matrix Padé approximation (PA) of the solution of the initial problem for the discrete matrix
Riccati equation is constructed based on the state-dependent Riccati equation (SDRE) approach and
the asymptotics by the small-step of the boundary layer functions method. The symmetric gain
coefficients matrix for Padé control synthesis is constructed based on the one-point PA. As a result,
the parametric closed-loop control is obtained. The results of numerical experiments illustrate, in
particular, the improved extrapolation properties of the constructed regulator, which makes the
algorithm applicable in control systems for a wider range of parameter variation.

Keywords: discrete control systems; weakly nonlinear systems; small step; the SDRE approach;
matrix discrete Riccati equation; the boundary layer functions method; Padé approximation; finite
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1. Introduction

In the literature, much attention is paid to the construction of optimal control laws for
nonlinear systems and the corresponding approximate methods for their calculation. This
can be explained by several factors; on the one hand, the greater accuracy of the description
of dynamic systems in applications leads to the increase of their mathematical models’
dimension, and on the other hand, the calculations often need to be carried out in real time.
This is especially true for finding feedback laws in nonlinear control systems, where the
consideration of even weak nonlinearity in constructing synthesis laws based on linear
control laws can lead to a significant improvement in the value of the quality criterion.
For linear control systems, the Kalman algorithm is often used, which allows stabilizing
feedbacks to be built that, in addition to the asymptotic stability of closed systems, provide
the optimality by the quadratic quality criterion.

The application field of the Kalman algorithm has been expanded to nonlinear control
systems by the so-called state-dependent Riccati equation (SDRE) approach for continuous
(see [1–3]) and discrete (see [4–9]) cases, where the systems are formally represented as
linear systems in terms of state and control, the coefficients of the matrices are the functions
of the state vector (state-dependent coefficients (SDC) systems), and the quality criterion is
quadratic, but the quadratic forms matrices in the criterion can also be state-dependent.
In [1], the design procedure for the SDRE approach is described and its capabilities are
illustrated on a benchmark problem. Reference [2] contains a detailed review on SDRE: the
theory developed to date, characteristics, advantages, and open issues. In [4–6], the discrete
state-dependent Riccati equation (D-SDRE) approach is described, and the corresponding
control algorithms are presented and tested. In [3,7–9], the development of the SDRE
approach is proposed based on the asymptotic theory.

Often, the mathematical models in applied control problems contain parameters, the
variation of which generates a family of admissible controls and the corresponding trajecto-
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ries, which leads to new problems of their approximate analytical study and description.
An approximation is a procedure for choosing the optimal approximating function from a
certain class of functions, that describes the behavior of the given function. Approximation
allows the numerical characteristics and qualitative properties of an object to be studied,
reducing the problem into studying simpler or more convenient objects. Moreover, the
solution of these problems significantly reduces the time for rational control synthesis
and selection. Various methods of approximation theory including splines and fractional-
rational Padé approximations [10,11], where the latter are constructed using asymptotic
expansions by the corresponding small parameters, can be used for such problems. In
particular, in the works [10,11], the possibility of the construction of symbolic families of
stabilizing regulators for some classes of regularly and singularly perturbed nonlinear
continuous control systems are demonstrated by constructing Padé approximations (PA) of
the gain coefficients matrices [10,11], associated with asymptotic expansions of the matrix
algebraic Riccati equations solutions into regular series in integer powers of the correspond-
ing small parameter, both for the case of one-point and two-point PA, where the latter
uses not only the asymptotic expansions by integer powers of the parameter but also the
asymptotic expansions over the inverse powers of a positive small parameter. A regulator
is a closed-loop system, used to maintain the desired system output, usually, zero.

In this paper, discrete nonlinear control systems with a small step are considered within
the framework of the SDRE approach for continuous systems on a finite time interval [12].
It is shown that an approximate symbolic description of the family of gain matrices in
the feedback control loop using PA can be obtained if the step in the discrete system is
sufficiently small. Note that the optimal control problem for a discrete-time system with a
small step is singularly perturbed and that is why the zones of exponentially decreasing
boundary layers can arise near the boundary points in the trajectories and in the solution
of problems for finding gain coefficients in the feedback circuit. This happens because the
degenerate solution, for zero value of the parameter, does not account for the boundary
conditions and there is a large discrepancy from the exact solution near the boundary
points. The boundary functions (members of the boundary series) are significant in the
neighborhood of the boundary points and together with the members of the regular series,
describe the behavior of the solution in the boundary layer, and outside the boundary layer,
they rapidly decrease. The solution of the perturbed problem outside these boundary layer
zones is in a small neighborhood of the solution of degenerate (limiting) problems, one of
which, in this case, is the matrix algebraic Riccati equation of the corresponding discrete
linear-quadratic optimal control problem [13], where the coefficients of all the matrices may
be the functions of the state vector.

For the first time, the discrete problems with a small step were considered as singularly
perturbed by A.B. Vasil’eva with the help of the boundary layer functions method (BLFM)
(see [14,15]). The asymptotic methods and singular perturbations theory can also be
successfully applied to control problems, for example, see reviews [16,17]. The discrete
optimal control problem was first considered as singularly perturbed in [18] on the example
of a linear-quadratic control problem with a small step, where its asymptotics by BLFM
is constructed. The asymptotics of the solution of singularly perturbed discrete nonlinear
optimal control problems with a small step was constructed by BLFM in [19], using the
so-called direct scheme [20].

In this paper, the asymptotic solution of the corresponding initial singularly perturbed
problem for the discrete matrix Riccati equation with coefficients weakly dependent on the
state and the corresponding one-point PA regulator is constructed using the SDRE approach.
Only one asymptotic expansion of the matrix Riccati equation solution by a small parameter,
which equals the time step size and the multiplier in front of the non-linearities, is used
to construct the PA for the gain matrix in the feedback loop. PAs are constructed based
on asymptotic expansions and are actively used in applications since they often extend
the range of the parameter variation, where PAs approach the exact solutions with given
accuracy and reproduce the qualitative picture of the solutions. The use of a qualitative
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picture allows the approximate solutions with higher accuracy to be obtained by using
the results of the asymptotic analysis as an initial approximation for traditional nonlinear
programming algorithms to minimize the residuals of the equations.

The results of numerical experiments are presented, which demonstrate the possibility
of using this approach for the construction of stabilizing regulators for nonlinear discrete
systems, and also show that the proposed algorithm is applicable for discrete control
systems for a wider interval of the step value and the perturbation parameter variation.

The outline of the paper is as follows. In Section 2, we will describe the discrete
state-dependent Riccati equation approach (SDRE) for small step discrete pseudo-linear
control systems and construct the uniform second-order asymptotic approximation of the
solution of the singularly perturbed initial problem for the difference Riccati equation using
the boundary layer functions method (BLFM). In Section 3, we formulate the algorithm for
the discrete one-point Padé regulator design. In Section 4, we will review the numerical
experiments that demonstrate the work of the proposed control algorithms.

We start by listing definitions and notations: R := (−∞, ∞), Rn×n—vector space of
n-by-n matrices, T—the transpose operation, ⊗—the Kronecker product, En—the identity
matrix of size n × n, P—the regular series of P, ΠP—the boundary series of P, Pk—kth term
of the P series, ‖ ‖theL2 matrix norm.

2. An SDRE Approach for Small Step Discrete Control Systems

2.1. Asymptotic Expansion of the Discrete Riccati Equation Solution

Let’s consider an affine (linear in control) discrete system,

x(t + ε) =
�
A(x) + B(x)u, x(0) = x0, (1)

where x(t) is an n-dimensional state, u(t)—is an r-dimensional control,
t ∈ T = {t : t = kε, k = 0, 1, . . . , N − 1} ⊂ {t : 0 ≤ t ≤ 1}, N = T

ε , ε > 0, is a small time
step, used as a small parameter. Further, to transform the system into a formally linear form,
we use the method of “extended linearization” (see [1,21,22]), which gives a non-unique

representation in the vector case, by presenting
�
A(x) in the form

�
A(x) = A(x)x. By anal-

ogy, let us call the well-known heuristic technique for the introduction of a small parameter
in the system right-hand side the “extended perturbation” method. In the last case, a small
parameter is introduced in matrices A(x) and B(x) instead of a selected coefficient that
approximately equals 1.

Let’s demonstrate the last approach by transforming an arbitrary nonlinear function Θ(x), for
example, as follows: Θ(x) = Θ0 + 1 · (Θ(x)− Θ0) = Θ0 +

ε
δ · (Θ(x)− Θ0) = Θ0 + εΘ1(x),

where Θ1(x) = 1
δ · (Θ(x)− Θ0) and 1 ≡ ε

δ , but, at the same time, δ = ε, and now δ becomes
a constant independent of ε. So, this technique by analogy with the previous one will be
called the “extended” perturbation technique.

After application of these two approaches—“extended” linearization and “extended”
perturbation—system (1) may be presented in the form

x(t + ε) = A(x, ε)x + B(x, ε)u, x(0) = x0,
x(t) ∈ X ∈ Rn, u ∈ Rr, t = kε, k = 0, 1, . . . , N − 1, 0 < ε ≤ ε0,

(2)

where A(x, ε) = A0 + εA1(x), B(x, ε) = B0 + εB1(x), ε0 is a small enough positive number,
A0, B0 are constant matrices, A0, A1(x) ∈ Rn×n, B0, B1(x) ∈ Rn×r, ∀x ∈ X ⊂ Rn and X is
a certain fixed bounded state space subset. For sufficiently small values of ε, systems (2) are
called singularly perturbed and pseudo-linear in state and control with regularly perturbed
coefficients so that near the interval endpoints the solutions of (2) may have the boundary
layers behavior.
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Let’s consider a cost function that measures the system performance for different
controls in order to compare them and select the most favorable one;

J(u) =
1
2

xT(N)Fx(N) +
1
2

N−1

∑
k=0

(xT(kε)Q(x, ε)x(kε) + uT(kε)Ru(kε)) → min
u

, (3)

where Q(x, ε) = Q0 + εQ1(x) + ε2Q2(x) > 0, R > 0, Q0, R are constant matrices, Q0 > 0,
Q1(x) > 0, Q2(x) > 0 ∀x ∈ X, ε ∈ (0, ε0) and F > 0.

To construct a feedback control for discrete systems on a finite time interval, we
will use the necessary optimality conditions here, in contrast to [12], where a dynamic
programming scheme was used in the continuous case.

For problems (1) and (2), we introduce the Hamiltonian

H(x, u, ψ, t) = ψT(t)[A(x, ε)x(t) + B(x, ε)u(t)]− 1
2
[xT(t)Q(x, ε)x(t) + uT(t)R0u(t)]. (4)

Using the necessary optimality conditions, we have

x(t + ε) = A(x, ε)x + B(x, ε)u, (5)

ψ(t) = ∂H(x(t),u(t),ψ(t+ε),t)
∂x =

{
∂[A(x,ε)x(t)]

∂x + ∂[B(x,ε)u(t)]
∂x

}T
ψ(t + ε)−

− 1
2

∂[xT(t)Q(x,ε)x(t)]
∂x(t) =

{
(xT ⊗ En)n×n2

[
∂A(x,ε)

∂x

]
n2×n

+ A(x, ε)n×n + (uT ⊗ En)n×nr

[
∂B(x,ε)

∂x

]
nr×n

}T
ψ(t + ε)−

− 1
2 Q(x, ε)n×nx − 1

2

[
∂Q(x,ε)

∂x

]T

n×n2
(x ⊗ En)n2×nx − 1

2 Q(x, ε)Tx

0 = ∂H(x(t),u,ψ(t+ε),t)
∂u = BT(x, ε)ψ(t + ε)− Ru,

(6)

where ⊗ stands for Kronecker matrix product and En is a n × n unity matrix.
From (6) we obtain the next expression for the control

u(t) = R−1BT(x, ε)ψ(t + ε). (7)

Using the representation ψ(t) = −Pε(x, t)x(t), we obtain the following expression
instead of (7):

u(x, t, ε) = −
{

R + BT(x, ε)P(x, t + ε)B(x, ε)
}−1

BT(x, ε)P(x, t + ε)A(x, ε)x(t) = K(x, ε, t + ε)x(t), (8)

where P(x, t, ε) must satisfy the discrete matrix Riccati-type equation with the zero-control
matrix and as a result the missing quadratic nonlinearity part

−P(x, t, ε) +

{
(xT ⊗ En)n×n2

[
∂A(x,ε)

∂x

]
n2×n

+ A(x, ε)n×n + (xTK(x, ε)T ⊗ En)n×nr

[
∂B(x,ε)

∂x

]
nr×n

}T
×

×P(x, t + ε, ε)×
×
{

E − B(x, ε)[R + BT(x, ε)P(x, t + ε, ε)B(x, ε)]
−1BT(x, ε)P(x, t + ε, ε)

}
A(x, ε)+

+Q(x, ε)n×n +
1
2

[
∂Q(x,ε)

∂x

]T

n×n2
(x ⊗ En)n2×n = Φ(P, t, ε) = 0,

with the initial condition at the end of the interval P(x, T, ε) = F. The latter can be
represented as

Φ(P, t, ε) = −P(x, t, ε) + AT(x, ε)n×nP(x, t + ε, ε)A(x, ε)−
−AT(x, ε)n×nP(x, t + ε, ε)B(x, ε)[R + BT(x, ε)P(x, t + ε, ε)B(x, ε)]

−1×
×BT(x, ε)P(x, t + ε, ε)A(x, ε) + Q(x, ε)n×n + εΩ(P(x, t + ε), x, t + ε) =
= Ψ(P, t, ε) + εΩ(P(x, t + ε), x, t + ε) = 0, P(x, T, ε) = F,

(9)
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where Ψ(P, t, ε) is the usual discrete matrix Riccati operator and
K(x, ε) = −{R + BT(x, ε)P(x, t + ε, ε)B(x, ε)

}−1BT(x, ε)P(x, t + ε, ε)A(x, ε).
The difference from the regular discrete difference Riccati equation on a finite interval

lies in an additional, but cumbersome, term on the right-hand side with the function

Ω(P(x, t + ε), x, t + ε) =

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(xT ⊗ En)n×n2

[
∂A1(x)

∂x

]
n2×n

−
−(xT

({
R + BT(x, ε)P(x, t + ε, ε)B(x, ε)

}−1BT(x, ε)P(x, t + ε, ε)A(x, ε)
)T ⊗ En)

n×nr
×

×
[

∂B1(x)
∂x

]
nr×n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

T

×

×P(x, t + ε, ε)
{

E − B(x, ε)[R + BT(x, ε)P(x, t + ε, ε)B(x, ε)]
−1BT(x, ε)P(x, t + ε, ε)

}
A(x, ε)+

+ 1
2

[
∂(Q1(x)+εQ2(x))

∂x

]T

n×n2
(x ⊗ En)n2×n.

Let’s denote the matrix of the closed-loop (cl) system for (1) as
Acl(x, ε) = (A(x, ε)− B(x, ε)R−1BT(x, ε)K(x, ε))x.

Taking into account the dependency of matrices Q(x, ε), A(x, ε), B(x, ε) on the small
parameter a uniform asymptotic approximation of the second order for the solution of the
singularly perturbed initial problem (9) is constructed using the boundary layer functions
method (BLFM) [14,15]. The solution is found in the reverse time in the following form:

P(x, t, ε) = P2(x, t, ε) + Π2P(x, τ, ε), τ = (t − T)/ε = −1,−2, . . . ,−N, N = T/ε,

where P2(x, t, ε) = P0 + εP1(x, t)+ ε2P2(x, t),
Π2P(x, τ, ε) = Π0P(x, τ) + εΠ1P(x, τ)) + ε2Π2P(x, τ)), are the second-order partial sums
of the regular and boundary power series by parameter ε, respectively.

Now the operator Φ is transformed in the following way:

Φ(P, t, ε) = Φ
(

P(x, t, ε), t, ε
)
+ Φ

(
P(x, τε + T, ε) + ΠP(x, τ, ε), τ, ε

)− Φ
(

P(x, τε + T, ε), τε + T, ε
)
=

= Φ + ΠΦ,

where Φ(x, t, ε) = Φ(P(x, t, ε), t, ε) = Φ0(P0, t) + εΦ1(P0, t) + . . . , ΠΦ(x, τε + T, ε) =
Φ
(

P(x, τε + T, ε) + ΠP(x, τ, ε), τε + T, ε
) − Φ

(
P(x, τε + T, ε), τε + T, ε

)
. Substituting the

representations for P2(x, t, ε), Π2P(x, τ, ε) into the equation and the initial condition in (9)
and equating the terms with the same powers of the small parameter, we obtain a discrete
algebraic Riccati equation (DARE) for the zero term of the regular series P0

A0
T P0 A0 − P0 − A0

T P0B0(R0 + B0
T P0B0)

−1
B0

T P0 A0 + Q0 = 0, (10)

and for the first term of the regular series P1(x), we obtain the matrix discrete algebraic
Lyapunov equation

A0
cl

T P1(x)A0
cl − P1(x) = −G1(x), (11)

where A0
cl = A0 + B0K0 = A0 − B0[R0 + B0

T P0B0]
−1B0

T P0 A0− is the matrix of the linear
closed-loop system (cl) and G1(x) = D0(x) + D1(x)− D2(x)− D3(x) + D4(x),

D0(x) =
{[

∂A1(x)
∂x

]T
(x ⊗ En)−

[
∂B1(x)

∂x

]T
(
[(

R + B0
T P0B0)

−1B0
T P0 A0

]
x ⊗ En

)}
P0[A0 − B0[R + B0

T P0B0]
−1B0

T P0 A0]+

+Q1(x) + 1
2

[
∂Q1(x)

∂x

]T

n×n2
(x ⊗ En)n2×n,

D1(x) = A0
T P0 A1 + A1

T(x)P0 A0,

D2(x) = A0
T P0B1

[
R + B0

T P0B0]
−1B0

T P0 A0 + A0
T P0B0[R + B0

T P0B0]
−1B1

T P0 A0,

D3(x) = A0
T P0B0

[
R + B0

T P0B0]
−1B0

T P0 A1 + A1
T(x)P0B0[R + B0

T P0B0]
−1B0

T P0 A0,

D4(x) = A0
T P0B0

[
R + B0

T P0B0]
−1B0

T P0B1[R + B0
T P0B0]

−1B0
T P0 A0+

+A0
T P0B0

[
R + B0

T P0B0]
−1B1

T P0B0[R + B0
T P0B0]

−1B0
T P0 A0.
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For the second term of the regular series P2(x), the matrix discrete algebraic Lyapunov
equation has the same form as Equation (11) for P1(x),

A0
cl

T P2(x)A0
cl − P2(x) = −G2(x),

where G2(x) has a similar structure as G1(x) but it is a more complex function of the found
expansion terms and matrices of the system, and we omit its representation here.

For the zero term of the boundary series Π0P(τ), we obtain the difference initial
problem

Π0P(τ) = −P0 + A0
T(P0 + Π0P(τ + 1))A0 − A0

T(P0 + Π0P(τ + 1))B0×
×[R + B0

T(P0 + Π0P(τ + 1))B0]
−1B0

T(P0 + Π0P(τ + 1))A0 + Q0,
Π0P(0) = F − P0,

(12)

and for the first term of the boundary series Π1P(x, τ), we have the following discrete
problem:

Π1P(x, τ) = ζT(τ)Π1P(τ + 1)ζ(τ) + Π1G(x, τ),
Π1P(0) = −P1(x), τ = −1,−2, . . . ,

(13)

where ζ(τ) = A0 − B0[R + B0
T(P0 + Π0P(τ + 1))B0]

−1B0
T(P0 + Π0P(τ + 1))A0, and

Π1G(x, τ) has a complex structure

Π1G(x, τ) = A0
T(P0 + Π0P(τ + 1))B0(R0 + B0

T(P0 + Π0P(τ + 1))B0)
−1B0

T P1(x)B0×
×(R0 + B0

T(P0 + Π0P(τ + 1)
)

B0
)−1B0

T(P0 + Π0P(τ + 1)
)

A0−
−A0

T(P0 + Π0P(τ + 1))B0(R0 + B0
T(P0 + Π0P(τ + 1))B0)

−1B0
T P1(x)A0

+A0
T P1(x)A0 − B0(R0 + B0

T(P0 + Π0P(τ + 1))B0)
−1B0

T(P0 + Π0P(τ + 1))A0)+

−P1(x) + A0
T(P0 + Π0P(τ + 1)

)
A1(x)+

+A0
T(P0 + Π0P(τ + 1)

)
(−B0

(
R0 + B0

T(P0 + Π0P(τ + 1)
)

B0
)−1×

×(B1
T(x)

(
P0 + Π0P(τ + 1)

)
A0 + B0

T(P0 + Π0P(τ + 1)
)

A1(x)
)
+

+B0
(

R0 + B0
T(P0 + Π0P(τ + 1)

)
B0
)−1×

×(B1
T(x)

(
P0 + Π0P(τ + 1)

)
B0 + B0

T(P0 + Π0P(τ + 1)
)

B1(x)
)×

×(R0 + B0
T(P0 + Π0P(τ + 1)

)
B0
)−1B0

T(P0 + Π0P(τ + 1)
)

A0−
−B1(x)

(
R0 + B0

T(P0 + Π0P(τ + 1)
)

B0
)−1B0

T(P0 + Π0P(τ + 1)
)

A0)+

+(
[

∂A1(x)
∂x

]T
(x ⊗ En) + A1

T(x)−

−
[

∂B1(x)
∂x

]T(((
R0 + B0

T(P0 + Π0P(τ + 1)
)

B0
)−1B0

T(P0 + Π0P(τ + 1)
)

A0

)
x ⊗ En

)
)×

×(P0 + Π0P(τ + 1)
)(

A0 − B0
(

R0 + B0
T(P0 + Π0P(τ + 1)

)
B0
)−1B0

T(P0 + Π0P(τ + 1)
)

A0

)
.

For Π2P(x, τ), we obtain a discrete initial problem similar to (12), but Π2G(x, τ) has
an even more cumbersome structure than Π1G(x, τ) and we omit this representation here.

Let us introduce the conditions:
I. Coefficients of matrices A1(x), B1(x), Q1(x), Q2(x) are continuous and bounded functions

on Х, g(0, ε) ≡ 0 (g(x, ε) = Acl(x(t), ε)x(t)) and the parameterεbelongs to a bounded interval
(0, ε0], the solution to problems (1) and (2) exists and is bounded for all admissible x0, ε, t;

II. The triple of matrices (A0, B0, Q0
1
2 )is controllable and observable.

By definition, a system is said to be controllable, if it is possible to transfer the system
state from any initial state to any desired state within a finite interval of time. A system is
said to be observable if every state can be completely identified by measurements of the
outputs at a finite time interval.

The following is true.
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Theorem 1. Under conditions I–II, there is a sufficiently small value of ε0 > 0, such that for all
x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . ,−N, . . . the following statements hold:

1. All eigenvalues of the matrix A0
cl = A0 − B0[R0 + B0

T P0B0]
−1B0

T P0 A0 are inside the unit
circle, where P0 is a positive definite solution to Equation (10).

2. Solution of (9) exists, is unique and the following estimate for the remainder of the second-order
asymptotics is valid (the L2 norm is used):∥∥P(x, t, ε)− (P2(x, t, ε) + Π2P(x, τ, ε))

∥∥ = O(ε3)
x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . ,−N, . . .

(14)

Proof of Theorem 1. The statements of the theorem for each x ∈ X follow from the
corresponding proof schemes of the statements in paragraph 2 of paper [18], where the
similar linear-quadratic problem is considered, but with time-dependent matrix coefficients.
The statements here generalize the similar results presented in [18] since in comparison
with [18] the initial problem (9) is additionally regularly perturbed with continuously
differentiable perturbation εΩ on the right-hand side of the matrix discrete Riccati equation.
Therefore, here we present only the new components of the proof.

As the associated system for the singularly perturbed problem (9) for ε = 0, Ω ≡ 0
coincides with the analogous one in [18], where it is shown that the positive definite
root P0 of the limiting algebraic discrete matrix Riccati equation is an asymptotically
stable equilibrium point of system (9) for τ → −∞ and matrix F belongs to the domain
of influence of this root. Further, in [18], the form of the main functional matrix Γ of the
associated system to problem (9) is established, which is calculated by setting ε = 0 in
the right-hand side and using the Kronecker product of matrices can be represented in
the form Γ = A0

cl
T ⊗ A0

cl . From the properties of the spectrum of the constant matrix A0
cl

(the matrix of the corresponding closed-loop system) under condition II, it follows that its
eigenvalues λi, i = 1, 2, . . . , n are inside the unit circle. Taking into account the properties
of the spectrum of the Kronecker product of matrices, we find that the eigenvalues of
matrix Γ are representable in the form λiλj, i, j = 1, 2, . . . , n. Thus, it is established that the
spectrum of the main functional matrix of the associated system has eigenvalues inside the
unit circle.

Because the presence of a disturbance εΩ will not fundamentally change the form of
inhomogeneities in the corresponding Riccati and Lyapunov equations, then, as in Theorem
2.1 from [18], it can be proved that there exist such α > 0, β > 0, that the corresponding
estimates for the boundary functions hold

‖ΠiP(τ)‖ ≤ α exp(βτ), τ ≤ 0, i = 0, 1, 2. (15)

Despite the presence of regular perturbations εΩ in Equation (9) the next estimate

for the residual term of the asymptotics η(x, t, τ, ε) = P(x, t, ε)− 2
∑

i=0
εi(Pi(x, t) + ΠiP(τ)),

τ = t−T
ε can be obtained using the scheme from [18],

‖η(x, t, τ, ε)‖ = O(ε3), (16)

for all x ∈ X, ε ∈ (0, ε0], t ∈ [0, T], τ = −1,−2, . . . ,−N.
Moreover, using the smoothness of all functions included in Φ, Ω and assuming

that the norm ‖P(x, t, ε)‖ is uniformly bounded for all x ∈ X, t ∈ [0, T], ε ∈ (0, ε0],
τ = −1,−2, . . . ,−N, . . ., here we can follow the proof as in Lemma 6.1 and Theorem 6.1
given in [14].

This, in turn, will lead to the fact that when choosing a sufficiently small ε0 > 0, one
can obtain the existence, as well as the uniqueness of the solution in the problem (9). The
last statements follow from the application of the principle of contractive mappings to the
equation for the residual term of asymptotics η(x, t, τ, ε). �
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2.2. Symmetrization

Since the matrix G1(x) may not be symmetric, we introduce the transposed equation,
and by adding the equation A0

cl
T P1(x)A0

cl − P1(x) = G1(x)A0
cl

T P1(x)A0
cl − P1(x) = G1(x)

to A0
cl

T P1
T(x)A0

cl − P1
T(x) = G1

T(x), we get

A0
cl

T(P1(x) + P1
T(x))A0

cl − (P1(x) + P1
T(x)) = G1(x) + G1

T(x).

Further, in this paper the next equations with “averaged” right-hand sides will be
used for the regular and the boundary layer terms of the first and second order (the terms
of the power series ε and ε2). For example, instead of Equation (11) the following equation
is introduced for a symmetric matrix P̃1(x)

A0
cl

T P̃1(x)A0
cl − P̃1(x) = G̃1(x), (17)

where G̃1(x) = 1
2
(
G1(x) + G1

T(x)
)
, P̃1(x, t) = 1

2 (P̃1(x) + P̃1
T(x)). A similar operation is

performed for the second approximation term.
In addition, Π̃1P(x, τ) is found in the form

Π̃1P(x, τ) = ζT(x, τ)Π̃1P(τ + 1)ζ(x, τ) + Π̃1G(x, τ),
Π̃1P(0) = −P1(x), τ = −1,−2, . . . ,

where Π̃1G(x) = 1
2
(
Π1G(x) + Π1GT(x)

)
, Π̃1P(x, τ) = 1

2 (Π1P(x, τ) + Π1PT(x, τ)).
A similar equation is obtained for Π̃2P(x, τ), where the inhomogeneity in the right-

hand side equals to Π̃2G(x) = 1
2
(
Π2G(x) + Π2GT(x)

)
.

3. Discrete One-Point Padé Regulator

The asymptotic analysis for small parameter values can lead to an acceptable quality
approximation of the exact solution, but with an increase of the small parameter value
the asymptotic representations can strongly deviate from the exact solutions and their use
in numerical analysis for larger values of the parameter is limited and at best they can
serve only to restore the qualitative nature of the solution behavior. PA often increases the
interval of parameter variation for which it can provide the approximation of the exact
solution and restore its qualitative picture in comparison with the asymptotics. Thus, PA
demonstrates better extrapolation properties [23].

In general, a particular system of algebraic equations, which, generally speaking, is in
a certain way selected from some redefined system, is solved to find the PA.

Here a one-point Padé regulator of an order [1/2] is constructed, which contains
two asymptotic approximations: the first order uniform asymptotic approximation in the
“numerator” of the PA—for reproducing the boundary layer in the general construction,
and the second-order approximation of some regular series in the “denominator”, i.e., the
proposed construction has the following form:

PA[1/2](x, t, τ, ε) = (M0(x) + εM1(x) + ΠM0(x, τ) + εΠM1(x, τ))×
×(E + εN1(x) + ε2N2(x)

)−1.
(18)

Note that the form of the “denominator” in (18) is less complex than the “numerator”
which makes it easier to overcome the “denominator” zeros problem, which is the main
reason for the quality decline of the approximations of the exact solution using PA.

So, we do not introduce the boundary functions in the “denominator” of PA. Decom-
posing the matrix in (18) in a series of integer powers of parameter ε and equating the
terms with the same powers of the parameter ε of the resulting decomposition and the
corresponding terms of the expansions φ and ΠΦ, separately for the terms dependent on t
and τ, we get an inhomogeneous linear system of six equations with matrix coefficients
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depending on x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . ,−N for the six unknown
matrices, the coefficients of PA.

M0(x) = P0
ΠM0(x, τ) = Π0P(τ)
M1(x)− P0N1(x) = P1(x)
ΠM1(x, τ)− Π0P(τ)N1(x) = 0
P1(x)N1(x) + P0N2(x) = −P2(x)
Π1P(x, τ)N1(x) + Π0P(τ)N2(x) = −Π2P(x, τ).

(19)

The first matrices M0(x), ΠM0(x, τ) are immediately determined from the first two
equations, and for the remaining four matrices the following linear system is obtained:⎛⎜⎜⎝

En 0 −P0 0
0 En −Π0P(τ) 0
0 0 P1(x) P0
0 0 Π1P(x, τ) Π0P(τ)

⎞⎟⎟⎠
⎛⎜⎜⎝

M1(x)
ΠM1(x, τ)

N1(x)
N2(x)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
P1(x)

0
−P2(x)

−Π2P(x, τ)

⎞⎟⎟⎠, (20)

where En—is an identity matrix of the size n × n. Next by denoting the matrix of a

linear system (20) by Y =

(
Y11 Y12
Y21 Y22

)
, where the corresponding blocks are Y11 = E2n,

Y21 = 0, Y12 =

( −P0 0
−Π0P(τ) 0

)
, Y22 =

(
P1(x) P0

Π1P(x, τ) Π0P(τ)

)
and by taking into

account that block Y11 = E2n is a nondegenerate (2n × 2n) identity matrix, we find that

for the existence of the matrix inverse Y−1 =

(
E −Y12Y22

−1

0 Δ−1

)
it is necessary and

sufficient [24] that matrix Δ = Y22 −Y21Y−1
11 Y12 is nondegenerate and Δ = Y22 since Y21 ≡ 0.

Now the solution of the last two equations in (20) is explicitly defined by(
N1(x)
N2(x)

)
= Δ−1

( −P2(x)
−Π2P(x, τ)

)
. (21)

As M1(x) and ΠM1(x, τ) are found from the first two equations in (20) and are the
functions of N1(x), where N1(x), N2(x) are determined from the last two equations in (20)
and take the form (21).

As some of the matrices in (18)–(20) that are the regular series terms in the asymp-
totic representation of P(x, t, ε) are positive definite, it is possible to make the other ma-
trices sign-definite to guarantee the solvability of (20) and positive definiteness of PA
on the entire interval, for example, by a special choice of criteria matrices F, Q0 > 0,
Q1(x) > 0, Q2(x) > 0, x ∈ X. In the latter case, we are dealing not with a problem of the
criterion (2) minimization along the trajectories of (1), but with a synthesis construction
problem using the SDRE algorithm.

Let us introduce a modified PA, defined as P̃A[1/2](x, t, τ, ε), for which the system of
equations is obtained from system (20) by replacing the elements of the first and second-
order terms of the approximation with their symmetric, “averaged” values.⎛⎜⎜⎜⎝

En 0 −P0 0
0 En −Π0P(τ) 0
0 0 P̃1(x) P0
0 0 Π̃1P(x, τ) Π0P(τ)

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

M1(x)
ΠM1(x, τ)

N1(x)
N2(x)

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
P̃1(x)

0
−P̃2(x)

−Π̃2P(x, τ)

⎞⎟⎟⎟⎠
.

(22)

By analogy with the study of system (20), the last two equations are firstly solved

and the following matrices are formally introduced, Δ̃ = Ỹ22 =

(
P̃1(x) P0

Π̃1P(x, τ) Π0P(τ)

)
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and Z = Π0P − Π̃1P(x, τ)P̃1(x)−1P0, L = P̃1(x)− P0Π0P(τ)−1Π̃1P(x, τ), which, in the
case of their non-degeneracy allow us to present the solution for the “denominator” ma-

trices in an explicit form
(

N1(x)
N2(x)

)
=

(
−L−1P̃2(x) + P̃1(x)−1P0Z−1Π̃2P(x, τ)

Z−1[Π̃1P(x, τ)P̃1(x)−1P̃2(x)− Π̃2P(x, τ)]

)
,

Δ̃−1 =

(
K−1 −P̃1(x)−1P0H−1

−H−1Π̃1P(x, τ)P̃1(x)−1 H−1

)
.

For consistency with the Kalman regulator (the linear-quadratic regulator named after
R.E. Kalman who posed and solved the corresponding control problem for nonstationary
linear systems in 1960), which leads to stabilization and also to the optimal trajectory
according to the quadratic criterion in a closed-loop linear system on the semi-axis, the
following symmetric gain matrix is introduced to ensure the symmetry of the gain matrix
of the regulator based on the PA for P(x, t, ε):

K[1/2](x, τ, ε) =
1
2
(P̃A[1/2](x, τ, ε) + P̃A[1/2]

T(x, τ, ε)), (23)

which leads to a modified Padé regulator for the PA obtained from the system (22)

u(x, t, ε) = −
{

R + BT(x, ε)K[1/2](x, τ, ε)B(x, ε)
}−1

BT(x, ε)K[1/2](x, τ, ε)A(x, ε)x(t). (24)

Remark 1. In numerical experiments, it becomes possible to modify the proposed PA structure (18)
by the introduction of multipliers in front of the matrix coefficients in systems (19)–(20) and search
for the values of these multipliers.

The following conditions are additionally introduced
III. Matrices F, Q0 > 0, Q1(x) > 0, Q2(x) > 0 can be selected such that F − P0 > 0,

G̃1(x) > 0, G̃2(x) > 0, matrix Δ̃−1 exists and is uniformly bounded and Π0P(τ) > 0 for all
x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . , 1 − T.

IV. Matrix
(
E + εN1(x) + ε2N2(x)

)−1exists, where

N1(x) = −L−1P̃2(x) + P̃1(x)−1P0Z−1Π̃2P(x, τ),
N2(x) = Z−1[Π̃1P(x, τ)P̃1(x)−1P̃2(x)− Π̃2P(x, τ)],
Z = Π0P(τ)− Π̃1P(x, τ)P̃1(x)−1P0, L = P̃1(x)− P0Π0P(τ)−1Π̃1P(x, τ)

for all x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . , 1 − T.
For the construction of PA [1/2] and the solvability of the corresponding system for

the coefficients of PA an asymptotic expansion of the second order is required, where some
of the terms, in particular of the second order, can be found approximately.

The next statement takes place.

Theorem 2. If conditions I–IV are satisfied, then there is a sufficiently small ε0 > 0, such that
for all x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . , 1 − T there is a unique solution of the
matrix system of Equations (20) and the corresponding one-point matrix PA [1/2] of form (18) with
a symmetric matrix K[1/2](x, τ, ε) (23) exists.

Proof of Theorem 2. From condition II P0 > 0 we get M0(x) > 0, then by condition
III Π0P(τ) > 0 ∀τ and from here ΠM0(x, τ) > 0. Let us consider the discrete linear
Lyapunov Equation (17) for P̃1(x). It is known [24] that if G̃1(x) > 0 (condition III), the
solution P̃1(x) of this equation is positive definite. From condition III, G̃2(x) > 0 and
there exist P̃2(x) > 0. It is easy to show that ζ(x, τ), Π̃1G(x) are found from (13) and the
corresponding matrices Π̃1P(x, τ) are obtained as the solutions of difference Lyapunov
equations with the initial condition Π̃1P(0) = −P1(x), τ = −1,−2, . . .. By analogy, the
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Π̃2P(x, τ) term is found. By condition III, matrix Δ̃ =

(
P̃1(x) P0

Π̃1P(x, τ) Π0P(τ)

)
has an

inverse for all x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . , 1 − T and it follows that

Ỹ−1 =

(
E −Y12Y22

−1

0 Δ̃−1

)
exists and system (19), (20) is uniquely solvable with a solution⎛⎜⎜⎝

M1(x)
ΠM1(x, τ)

N1(x)
N2(x)

⎞⎟⎟⎠ = Ỹ−1

⎛⎜⎜⎝
P1(x)

0
−P2(x)

−Π2P(x, τ)

⎞⎟⎟⎠.

Thus, the remaining coefficients of the Padé approximation M1(x), ΠM1(x, τ), N1(x),
N2(x) are found in the form(

N1
N2

)
= Δ̃−1

(
−P̃2(x)

−Π̃2P(x, τ)

)
,(

M1(x)
ΠM1(x, τ)

)
=

(
P̃1(x)

0

)
−
( −P0 0

−Π0P(τ) 0

)
Δ̃−1

(
−P̃2(x)

−Π̃2P(x, τ)

)
.

(25)

Under condition IV, there exists a corresponding one-point matrix PA [1/2] of form
(18), and the symmetric matrix of the gain coefficients of the regulator is found from (24).
�

4. Computational Experiments

One of the ways to concretize the coefficients of the system of linear equations for the
Padé approximation can be associated with the analysis of the coefficients of the system,
and the assumption that the Padé structures form a certain framework, within which the
coefficients can be improved from the point of view of the optimality criterion of the control
problem. This approach is illustrated below on an example of a simple pendulum [25].

t ∈ [0, 1], ε = 0.05, N = 20,

A(x) =

(
1 0.01

−10 sin(x1)
x1

1

)
, B(x) =

(
0.1
0.1

)
, A0 =

(
1 0.01

−10 1

)
, A1(x) = 1/ε

(
0 0

−10 sin(x1)
x1

+ 10 0

)
x0 = [0.1;−0.1]T

Q0 =

(
10 0
0 0.05

)
, Q1 =

(
300 + x2

1 0
0 300 + x2

2

)
, Q2 =

(
0 0
0 0

)
, R = 1, F =

[
300 0

0 300

]
.

Here, x1 denotes the pendulum angle, and x2 is the angular velocity.
Using this example, taking into account the fulfillment of the conditions for the

existence of matrices in the representations (18), we will demonstrate the Algorithm 1 for
discrete modified Padé regulator construction and the results of its work.

In Table 1, the criterion values for the regulators based on the uniform first-order
asymptotic approximation (P0, P̃1(x), M0P(τ), Π̃1P(x, τ)) and the modified Padé [1/2]
from (22) are presented. The comparison is made with the D-SDRE regulator which uses
the solution of Equation (9) by the algorithm from [5].

Table 1. Regulators comparison by criterion values for ε = 0.05.

D-SDRE
Uniform First-Order Asymptotic

Approximation
Modified Padé [1/2]

Approximation

19.2226 16.3533 16.0882089921279
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Algorithm 1: Discrete modified Padé regulator construction.

1. The terms P0, P̃1(x), P̃2(x), Π0P(τ) are found based on the uniform asymptotic
approximation of the second order using formulas (10), (12), and (17).

2. The members of the boundary layer terms of the first and second order, Π̂1P(x, τ) and
Π̂2P(x, τ), are found approximately, for example, as matrix exponentials with the unknown
decay rates constants.

3. The terms of the modified Padé approximation of the solution of the Riccati equation are
found from the following system of equations with unknown parameters
λ1, λ2, λ3, λ4, λ5, λ6 which are the scalar multipliers of the asymptotic expansion terms and
are selected using the quality criterion optimization.⎛⎜⎜⎜⎝

E 0 −λ5P0 0
0 E −λ6Π0P 0
0 0 λ1P̃1(x) λ2P0
0 0 λ3Π̂1P(x, τ) λ4Π0P(τ)

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

M1(x)
ΠM1(x, τ)

N1(x)
N2(x)

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
P̃1(x)

0
−P̃2(x)

−Π̂2P(x, τ)

⎞⎟⎟⎟⎠.

The introduction of multipliers allows us to correct the PA system matrix coefficients within
the obtained structure. Such a technique can be used as a basis for the correction of the
resulting Padé regulator if the result by the optimality criterion is better than the
corresponding results along the regulators using only the asymptotics and regulators built
based on the SDRE technique, which is demonstrated in the calculations given below. A
regulator built based on this approach will be called a modified Padé regulator.

4. The resultant modified Padé regulator gain is found from (23).

Table 2 shows that the modified Padé [1/2] regulator is closer to the D-SDRE solution
by optimality criterion values on a larger interval of parameter variation in comparison
with the regulator based on the uniform first-order asymptotic expansion, i.e., demonstrates
good quality approximation for larger values of the parameter and has better extrapolation
properties. In this example, the uniform first-order asymptotic approximation works only
for small parameter values and fails to stabilize the system when the value of the parameter
increases. Moreover, the Padé regulator is significantly better by criterion value than the D-
SDRE regulator. Thus, here the modified Padé regulator is sufficiently better by optimality
criterion than the two other control algorithms (D-SDRE, asymptotic approximation) in the
selected parameter variation interval from 0.05 to 0.25 and the asymptotic approximation
has a restricted area of application and provides worse quality of the approximation.

Table 2. Demonstration of extrapolation properties of the modified Padé regulator.

Parameter ε
Modified Padé [1/2]

Approximation

Uniform First-Order
Asymptotic

Approximation
D-SDRE

0.05 16.0882 16.3533 19.2226
0.1 31.7171 29.2683 38.2234

0.125 36.1462 38.6610 47.7203
0.2 64.6920 1630.8255 76.2066

0.25 76.3028 2576.7654 95.1958

The corresponding closed-loop trajectories are presented in Figure 1. It can be seen
that the Modified Padé [1/2] approximation brings the system to the neighborhood of the
zero-equilibrium point and the trajectories are similar to the D-SDRE solution.
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Figure 1. Closed-loop system trajectories: Modified Padé [1/2] approximation (red lines) and D-SDRE
(blue lines).

5. Conclusions

Using the SDRE approach, the asymptotics of the solution of the corresponding
initial singularly perturbed control problem for the matrix discrete Riccati equation with
coefficients weakly dependent on the state is constructed and the corresponding one-point
PA regulator is proposed, i.e., only one asymptotic approximation of the Riccati equation
solution is used to construct the PA for the feedback gain matrix of the regulator. The results
of numerical experiments illustrate, in particular, the improved extrapolation properties
of the constructed regulator, which makes the algorithm applicable in control systems for
a wider range of parameter variation. An approach for modified PA construction is also
demonstrated, which consists of the correction of the system of equations for finding the
PA coefficients taking into account the structure of the matrix of the original system and the
properties of the terms of the asymptotic approximation.

Author Contributions: Conceptualization, M.D.; methodology, M.D. and Y.D.; software, Y.D.; formal
analysis, M.D.; writing—original draft preparation, M.D. and Y.D.; writing—review and editing, M.D.
and Y.D. All authors have read and agreed to the published version of the manuscript.

Funding: Research is supported by the Russian Science Foundation (Project No. 21-11-00202).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mracek, C.P.; Cloutier, J.R. Control designs for the non-linear benchmark problem via the state-dependent Riccati equation
method. Int. J. Rob. Nonlin. Contr. 1998, 8, 401–433. [CrossRef]

2. Cimen, T. State dependent Riccati Equation (SDRE) control: A Survey. In Proceedings of the 17th the International Federation of
Automatic Control World Congress, Seoul, Korea, 6–11 July 2008; Volume 41, pp. 3761–3775.

3. Dmitriev, M.G.; Makarov, D.A. Smooth nonlinear controller in a weakly nonlinear control system with state depended coefficients.
Trud. ISA RAN 2014, 64, 53–58. (In Russian)

4. Chang, I.; Bentsman, J. Constrained discrete-time state-dependent Riccati equation technique: A model predictive control ap-
proach. In Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy, 10–13 December 2013; pp. 5125–5130.

5. Dutka, A.S.; Ordys, A.W.; Grimble, M.J. Optimized discrete-time state dependent Riccati equation regulator. In Proceedings of
the American Control Conference, Portland, OR, USA, 8–10 June 2005; pp. 2293–2298.

103



Mathematics 2022, 10, 487

6. György, K.; Dávid, L.; Kelemen, A. Theoretical Study of the Nonlinear Control Algorithms with Continuous and Discrete-Time
State Dependent Riccati Equation. Procedia Technol. 2016, 22, 582–591. [CrossRef]

7. Danik, Y.E.; Dmitriev, M.G. The robustness of the stabilizing regulator for quasilinear discrete systems with state depen-
dent coefficients. In Proceedings of the International Siberian Conference on Control and Communications, Moscow, Russia,
12–14 May 2016.

8. Emel’yanov, S.V.; Danik, Y.E.; Dmitriev, M.G.; Makarov, D.A. Stabilization of nonlinear discrete-time dynamic control systems
with a parameter and state dependent coefficients. Dokl. Mathem. 2016, 93, 121–123. [CrossRef]

9. Danik, Y.E.; Dmitriev, M.G. The comparison of numerical algorithms for discrete-time state dependent coefficients control systems.
In Proceedings of the 21st International Conference on System Theory, Control and Computing, Sinaia, Romania, 19–21 October
2017; pp. 401–406.

10. Danik, Y.E.; Dmitriev, M.G. Construction of Parametric Regulators for Nonlinear Control Systems Based on the Padé Approxi-
mations of the Matrix Riccati Equation Solution. In Proceedings of the 17th the International Federation of Automatic Control
Workshop on Control Applications of Optimization, Yekaterinburg, Russia, 15–19 October 2018; Volume 51, pp. 815–820.

11. Danik, Y.E.; Dmitriev, M.G. The construction of stabilizing regulators sets for nonlinear control systems with the help of Padé
approximations. In Nonlinear Dynamics of Discrete and Continuous Systems; Abramian, A., Andrianov, I., Gaiko, V., Eds.; Springer:
Cham, Switzerland, 2021; pp. 45–62.

12. Heydari, A.; Balakrishnan, S.N. Approximate closed-form solutions to finite-horizon optimal control of nonlinear systems. In
Proceedings of the American Control Conference, Montreal, QC, Canada, 27–29 June 2012; pp. 2657–2662.

13. Kvakernaak, H.; Sivan, R. Linear Optimum Control Systems; Wiley-Interscience: New York, NY, USA, 1972.
14. Vasil’eva, A.B.; Butuzov, V.F. Asymptotic Expansions of a Solutions of Singularly Perturbed Equations; Nauka: Moscow, Russia, 1973.

(In Russian)
15. Vasil’eva, A.B.; Butuzov, V.F.; Kalachev, L.V. The Boundary Function Method for Singular Perturbation Problems; Society for Industrial

and Applied Mathematics: University City, MO, USA; Philadelphia, PA, USA, 1995.
16. Vasil’eva, A.B.; Dmitriev, M.G. Singular perturbations in optimal control problems. J. Sov. Mathem. 1986, 34, 1579–1629. [CrossRef]
17. Kurina, G.A.; Dmitriev, M.G.; Naidu, D.S. Discrete singularly perturbed control problems (A survey). Dyn. Contin. Discr. Impuls.

Syst. Ser. B Appl. Algor. 2017, 24, 335–370.
18. Glizer, V.Y.; Dmitriev, M.G. Asymptotics of a solution of some discrete optimal control problems with small step. Different. Equat.

1979, 15, 1681–1691. (In Russian)
19. Gaipov, M.A. Asymptotics of the solution of a nonlinear discrete optimal control problem with small step without constraints on

the control (formalism). I. Izvest. Akad. Nauk TurkmenSSR 1990, 1, 9–16. (In Russian)
20. Belokopytov, S.V.; Dmitriev, M.G. Direct scheme in optimal control problems with fast and slow motions. Syst. Contr. Lett.

1986, 8, 129–135. [CrossRef]
21. Afanas’ev, V.N. Control of nonlinear plants with state-dependent coefficients. Autom. Remote Control 2011, 72, 713–726. [CrossRef]
22. Afanas’ev, V.N.; Presnova, A.P. Parametric Optimization of Nonlinear Systems Represented by Models Using the Extended

Linearization Method. Autom. Remote Control 2021, 82, 245–263. [CrossRef]
23. Baker, G.A.; Baker, G.A., Jr.; Baker, G.; Graves-Morris, P.; Baker, S.S. Padé Approximants: Encyclopedia of Mathematics and It’s

Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 1996.
24. Balandin, D.; Kogan, M. Synthesis of Control Laws Based on Linear Matrix Inequalities; Fizmatlit: Moscow, Russia, 2007. (In Russian)
25. ElBsat, M.N. Finite-Time Control and Estimation of Nonlinear Systems with Disturbance Attenuation. Ph.D. Thesis, Marquette

University, Milwaukee, WI, USA, August 2012.

104



mathematics

Article

Operator Methods of the Maximum Principle in Problems of
Optimization of Quantum Systems

Alexander Buldaev * and Ivan Kazmin

Citation: Buldaev, A.; Kazmin, I.

Operator Methods of the Maximum

Principle in Problems of Optimization

of Quantum Systems. Mathematics

2022, 10, 507. https://doi.org/

10.3390/math10030507

Academic Editor: Jan Sładkowski

Received: 30 November 2021

Accepted: 3 February 2022

Published: 5 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Applied Mathematics, Buryat State University, 670000 Ulan-Ude, Russia; kazminvanya@mail.ru
* Correspondence: buldaev@mail.ru; Tel.: +7-924-658-0183

Abstract: In the class of optimal control problems for quantum systems, operator optimality con-
ditions for control are constructed in the form of fixed-point problems in the control space. The
equivalence of the obtained operator optimality conditions to the well-known Pontryagin maximum
principle is shown. Based on the obtained operator forms of optimality conditions, new iterative
methods for finding extreme equations satisfying the maximum principle are developed. A compara-
tive analysis of the effectiveness of the proposed operator methods of the maximum principle with
known methods is carried out on model examples of optimization of quantum systems.
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1. Introduction

Mathematical formulations of topical problems related to the optimal control of
quantum systems have been considered in the works of many researchers [1–6]. In the
works of V.F. Krotov, V.I. Gurman, and of their followers [7–9], there are studied classes
of controlled quantum systems described by ordinary differential controls linear in state
and control with nonlinear optimality criteria. In [7], the main features of the selected
class of problems are indicated. The first feature is the high dimension of the system
state vector (n ≈ 104 − 106). The second feature is the absence of restrictions on the state,
including terminal restrictions. The third feature is the use of a scalar control function
characterizing the electric field. In this class, the search for an optimal solution based
on standard necessary optimality conditions in the form of a boundary value problem of
the maximum principle [10,11] causes significant difficulties due to the large dimension.
In [7,8], the global Krotov method [12] was used as a tool for finding solutions to problems,
which was compared in efficiency with the known gradient method.

In this paper, we consider and modify a new approach to finding a solution in the
considered class of problems. This approach is based on the representation of optimality
conditions for control in the form of operator problems about a fixed point in the space of
admissible controls. This representation makes it possible to apply and modify the known
methods of fixed points to find solutions to the considered problems related to the optimal
control of quantum systems.

The new fixed-point approach has been used and developed for more than ten years for
various classes of continuous, discrete, and discrete-continuous optimal control problems,
including those involving terminal and phase constraints, mixed control functions and
parameters, unfixed control process termination time, and other features.

In [13], the fixed-point approach is used to represent conditions for nonlocal improve-
ment of control in a general class of nonlinear optimal control problems with control
functions and parameters. In [14], the fixed-point approach for representing conditions
for the nonlocal improvement of control is modified to the class of problems considered
in [7–9]. The modification of the approach consists of taking into account the characteristic
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property of the singularity of the solutions of the problems under consideration, due to the
above features.

The paper [15] describes the fixed-point approach for representing optimality con-
ditions for control in a general class of nonlinear optimal control problems with control
functions. In this paper, this approach for representing optimality conditions for control is
modified and studied taking into account the characteristic property of the singularity of
solutions in the considered class of optimization problems for quantum control systems.

2. Conditions for Optimality of Control

To illustrate the proposed fixed-point approach, we consider a model class of optimal
control problems for quantum systems with a quadratic optimality criterion similar to
the paper [14], in which new operator forms of optimality conditions have a relatively
simple description:

ẋ(t) = (A + u(t)B)x(t), x(t0) = x0, u(t) ∈ U ⊂ R, t ∈ T = [t0, t1], (1)

Φ(u) = 〈x(t1), Lx(t1)〉 → inf
u∈V

. (2)

The vector x(t) = (x1(t), . . . , xn(t)) describes the state of the system. The control u(t),
t ∈ T is modeled by a piecewise continuous scalar function with values in a compact and
convex set U ⊂ R. The set V denotes the corresponding set of admissible controls. The
matrices A, B and L have real coefficients. The matrix L is symmetric. The initial state x0

and the time interval T have fixed values.
The Pontryagin function with a conjugate variable ψ in problem (1) and (2) has

the form:
H(ψ, x, u, t) = 〈ψ, (A + uB)x〉, ψ ∈ Rn.

The standard conjugate system is represented as:

ψ̇(t) = −(AT + u(t)BT)ψ(t), t ∈ T, ψ(t1) = −2Lx(t1). (3)

Let v ∈ V. Let us introduce the following notation:

- x(t, v), t ∈ T, the solution of the system (1) for u(t) = v(t);
- ψ(t, v), t ∈ T, the solution of the standard conjugate system (3) for x(t) = x(t, v),

u(t) = v(t).

Additionally, we will use the notation PY for the projection operator on to a set Y ⊂ Rk

in the Euclidean norm:

PY(z) = arg min
y∈Y

(‖y − z‖), z ∈ Rk.

The projection operation is characterized by an important property that can be repre-
sented as an inequality:

〈y − PY(z), z − PY(z)〉 ≤ 0, y ∈ Y.

The known [10,11] necessary optimality conditions for an admissible control (maxi-
mum principle and differential maximum principle) in problems (1) and (2) are equivalent.

The condition of the maximum principle for control u ∈ V can be represented in
the form:

u(t) = arg max
w∈U

〈ψ(t, u), Bx(t, u)〉w, t ∈ T. (4)

The condition of the differential maximum principle using the projection operation
can be written as the following relation with the parameter α > 0:

u(t) = PU(u(t) + α〈ψ(t, u), Bx(t, u)〉), t ∈ T. (5)
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To fulfill the maximum principle condition (4), it suffices to check condition (5) for
at least one α > 0. Conversely, condition (4) implies the fulfillment of condition (5) for all
α > 0.

We define the mapping u∗ as follows:

u∗(ψ, x) = arg max
w∈U

〈ψ, Bx〉w, ψ ∈ Rn, x ∈ Rn.

We introduce a mapping uα with a parameter α > 0 using the relation:

uα(ψ, x, w) = PU(w + α〈ψ, Bx〉), x ∈ Rn, ψ ∈ Rn, w ∈ U.

Using the introduced mappings, the maximum principle condition (4) can be writ-
ten as:

u(t) = u∗(ψ(t, u), x(t, u)), t ∈ T.

The condition of the differential maximum principle (5) takes the following form:

u(t) = uα(ψ(t, u), x(t, u), u(t)), t ∈ T. (6)

The well-known [10,11] approach to the search for extremal controls, i.e. satisfying
the necessary optimality conditions, is the solution of the boundary value problem of the
maximum principle. This problem in the considered classes, classes (1) and (2), takes the
following form:

ẋ(t) = (A + u∗(ψ(t), x(t))B)x(t), x(t0) = x0, (7)

ψ̇(t) = (−AT − u∗(ψ(t), x(t))BT)ψ(t), ψ(t1) = −2Lx(t1). (8)

Let the pair (x(t), ψ(t)), t ∈ T, be a solution to the boundary value problems (7) and
(8). Let us construct the output control v(t) = u∗(ψ(t), x(t)), t ∈ T. Then, by construction,
we obtain the relations:

x(t) = x(t, v), ψ(t) = ψ(t, v), t ∈ T.

Consequently, the control v(t) satisfies condition (4).
Conversely, let the control v ∈ V be a solution to Equation (4). Let us form a pair of

functions (x(t, v), ψ(t, v)), t ∈ T. Then, by definition, these functions satisfy the boundary
value problem (7) and (8).

Thus, the boundary value problems (7) and (8) are equivalent to the maximum princi-
ple condition (4).

Difficulties in solving the boundary value problems of the maximum principle, (7)
and (8), in the general case are associated with the possible discontinuity and many
meanings of the right-hand sides of the problem for the variables x, ψ. Even in the case
of smoothness and uniqueness of the right-hand sides of the boundary value problem (7)
and (8), its numerical solution by known methods (shooting method, linearization method,
and finite difference method) [11] is computationally unstable due to the presence of
positive real values of the eigenvalues of the corresponding Jacobian matrices.

In this paper, we consider a new approach to the search for extremal controls based
on the transition from the boundary value problem of the maximum principle in the state
space to equivalent operator problems on the fixed point of the maximum principle in the
space of controls.

3. Operator Forms of the Maximum Principle

We define three mappings, X, Ψ and V∗, using the following relations:

X(v) = x, v ∈ V, x(t) = x(t, v), t ∈ T,

Ψ(v) = ψ, v ∈ V, ψ(t) = ψ(t, v), t ∈ T,
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V∗(ψ, x) = v∗, ψ ∈ C(T), x ∈ C(T), v∗(t) = u∗(ψ(t), x(t)), t ∈ T,

where C(T) is the space of functions continuous on T.
Using the above mappings, the maximum principle condition (4) can be represented

as an operator equation in the form of a fixed-point problem in the control space:

v = V∗(Ψ(v), X(v)) = G∗
1 (v), v ∈ V. (9)

Construct new operator equations in the form of fixed-point problems equivalent to
condition (4). Introduce the mapping X∗ as follows:

X∗(ψ) = x, ψ ∈ C(T), x ∈ C(T).

Here x(t), t ∈ T, is the solution of the special Cauchy problem:

ẋ(t) = (A + u∗(ψ(t), x(t))B)x(t), x(t0) = x0.

Based on the introduced mapping X∗, consider the following operator equation:

v = V∗(Ψ(v), X∗(Ψ(v))) = G∗
2 (v), v ∈ V. (10)

We define the following mapping:

Ψ∗(x) = ψ, x ∈ C(T), ψ ∈ C(T).

Here ψ(t), t ∈ T is the solution to the special Cauchy problem:

ψ̇(t) = (−AT − u∗(ψ(t), x(t))BT)ψ(t), ψ(t1) = −2Lx(t1).

Consider the operator equation:

v = V∗(Ψ∗(X(v)), X(v)) = G∗
3 (v), v ∈ V. (11)

Following the work [15], the operator equations, Equations (9)–(11), are equivalent to
the set of admissible controls. Thus, we obtain the following statement:

Theorem 1. Operator fixed-point problems (9)–(11) are equivalent to the boundary value problems
of the maximum principle, (7) and (8).

The condition of the maximum principle in projection form (5) can also be represented
in the form of equivalent operator equations on the set of admissible controls.

Introduce an additional operator Vα, α > 0, by the relation:

Vα(ψ, x, v) = vα, ψ ∈ C(T), x ∈ C(T), v ∈ V,

vα(t) = uα(ψ(t), x(t), v), t ∈ T.

Define the operator Xα, α > 0:

Xα(ψ, v) = xα, ψ ∈ C(T), v ∈ V, xα(t) = xα(t, ψ, v), t ∈ T,

where xα(t, ψ, v), t ∈ T, is the solution of the Cauchy problem:

ẋ(t) = (A + uα(ψ(t), x(t), v(t))B)x(t), x(t0) = x0.

Construct the operator Ψα, α > 0:

Ψα(x, v) = ψα, x ∈ C(T), v ∈ V, ψα(t) = ψα(t, x, v),
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where ψα(t, x, v), t ∈ T, is the solution of the conjugate Cauchy problem:

ψ̇(t) = (−AT − uα(ψ(t), x(t), v(t))BT)ψ(t), ψ(t1) = −2Lx(t1).

Consider three operator equations in the form of fixed-point problems:

v = Vα(Ψ(v), X(v), v) = Gα
1 (v), v ∈ V, α > 0, (12)

v = Vα(Ψ(v), Xα(Ψ(v), v), v) = Gα
2 (v), v ∈ V, α > 0, (13)

v = Vα(Ψα(X(v), v), X(v), v) = Gα
3 (v), v ∈ V, α > 0. (14)

Similarly, following [15], these equations are equivalent to the set of admissible con-
trols. Thus, the following statement holds:

Theorem 2. Projection operator fixed-point problems (12)–(14) are equivalent to the boundary
value problem of the maximum principle (7) and (8).

Let us note the following important features of the constructed projection problems
on a fixed point.

1. Projection control operators, due to the properties of the projection operation, are
continuous and satisfy the Lipschitz condition, in contrast to discontinuous and generally
multivalued control operators based on the maximum operation in problems (9)–(11).

2. The search for extremal controls, which are solutions to the projection problems on
a fixed point, (12)–(14), can be carried out for any given values of the projection parameter
α > 0, including sufficiently small values.

These features of projection problems on a fixed point are essential factors for increas-
ing the efficiency of the numerical search for extremal controls.

4. Operator Methods of the Maximum Principle

We consider the general fixed-point problem for an operator GE : VE → VE, acting on
a set VE in a complete normalized space E with a norm ‖ · ‖E,

v = GE(v), v ∈ VE.

To solve it numerically, one can apply the well-known simple iteration method with
an index k ≥ 0, which has the form:

vk+1 = GE(vk), v0 ∈ VE.

The convergence of the iterative process can be analyzed using the well-known
principle of compressive mappings [16].

Each operator equation from relations (9)–(14) can be considered as a fixed-point
problem on the set of admissible controls in the following general form:

v = G(v), v ∈ V. (15)

To solve the problem (15), an iterative process with the index k ≥ 0 is proposed:

vk+1 = G(vk), v ∈ V. (16)

As an illustration of processes of the form (16), consider iterative processes for search-
ing for extremal controls based on projection problems about a fixed point of the maximum
principle (12)–(14), which, respectively, take the form with index k ≥ 0:

vk+1 = Vα(Ψ(vk), X(vk), vk) = Gα
1 (v

k), v0 ∈ V, α > 0, (17)

vk+1 = Vα(Ψ(vk), Xα(Ψ(vk), vk), vk) = Gα
2 (v

k), v0 ∈ V, α > 0, (18)
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vk+1 = Vα(Ψα(X(vk), vk), X(vk), vk) = Gα
3 (v

k), v0 ∈ V, α > 0. (19)

In the considered projection methods of the maximum principle, the projection pa-
rameter α > 0 is fixed in the iterative process of successive approximations of the control.

The complexity of implementing one iteration of each of the processes (17)–(19) is two
Cauchy problems for phase and conjugate variables.

Indeed, this is obvious for the process (17). In this case, process (17) is written in the
pointwise form as:

vk+1(t) = uα(ψ(t, vk), x(t, vk), vk(t), t), t ∈ T.

For process (18), at each k-th iteration with k ≥ 0, we obtain the following.
After calculating the solution of the Cauchy problem ψ(t, vk), t ∈ T, we find the

solution x(t) , t ∈ T of the special Cauchy problem for the phase system:

ẋ(t) = (A + uα(ψ(t, vk), x(t), vk(t))B)x(t), x(t0) = x0.

Simultaneously, together with the solution of the Cauchy problem, we determine the
output control according to the rule:

vk+1(t) = uα(ψ(t, vk), x(t), vk(t)), t ∈ T.

Then, by construction, we obtain the relation:

x(t) = x(t, vk+1), t ∈ T.

By of this equality, the iterative process (18) in pointwise form can be written in the
following implicit form:

vk+1(t) = uα(ψ(t, vk), x(t, vk+1), vk(t)), t ∈ T. (20)

Similarly, at the k-th iteration of the process (19), after calculating x(t, vk), t ∈ T, we
find the solution ψ(t), t ∈ T, of the special Cauchy problem for the conjugate system:

ψ̇(t) = (−AT − uα(ψ(t), x(t, vk), vk(t))BT)ψ(t), ψ(t1) = −2Lx(t1, vk).

Simultaneously the output control is constructed according to the rule:

vk+1(t) = uα(ψ(t), x(t, vk), vk(t)), t ∈ T.

The theoretical conditions for the convergence of iterative processes (17)–(19) for
sufficiently small projection parameters α > 0 can be substantiated similarly to [17] based
on the formulation of requirements in problems (1) and (2), ensuring the application of the
indicated principle of compressive mappings in the complete space of continuous controls
or the extended complete space of measurable controls:

V ⊂ VL = {v ∈ L∞(T) : v(t) ∈ U, t ∈ T}

with the norm ‖v‖∞ = ess sup
t∈T

‖v(t)‖, v ∈ VL.

Unlike the standard gradient projection method, at each iteration of the proposed
projection methods of the maximum principle, relaxation for the objective functional is
not guaranteed.

In contrast to the global Krotov method, at each iteration of the proposed projection
methods, Cauchy problems with a continuous and uniquely defined right-hand side
are solved.

Let us single out other features of the proposed projection methods that are important
for increasing their computational efficiency:
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- The non-locality of successive approximations of control, due to the fixed choice of
the projection parameter α > 0;

- The absence of the operation of varying control in the vicinity of the current approxi-
mation to provide improved control, which is characteristic of gradient methods;

- The possibility of obtaining extreme controls for sufficiently small values of the projection
parameter α > 0, which ensure the fundamental convergence of iterative processes.

Simple iteration methods for solving fixed-point problems (9)–(11) based on the
maximization operation have a similar structure. In particular, the iterative process with
the index k ≥ 0 for searching for extremal controls based on the fixed-point problem (9)
takes the form:

vk+1 = V∗(Ψ(vk), X(vk)) = G∗
1 (v

k), v0 ∈ V, α > 0.

In pointwise form, this process is written as:

vk+1(t) = u∗(ψ(t, vk), x(t, vk)), t ∈ T. (21)

Note that method (21) is essentially equivalent to the well-known method of successive
approximations of phase and conjugate variables [18] for solving the boundary value
problems of the maximum principle, (7) and (8).

In contrast to the global Krotov method, at each iteration of the considered method (21),
two simple Cauchy problems with a precomputed control are solved. In the Krotov method,
at each iteration, in the general case, a special Cauchy problem with a discontinuous and
multivalued right-hand side is solved.

5. Examples

The main feature of the considered class of optimal control problems for quantum
systems is the property of singularity of extremal controls. This property is expressed in
the existence of singular time intervals of non-zero measure for extremal controls, on which
the derivative of the Pontryagin function becomes equal to zero:

Hu(ψ(t, u), x(t, u), u(t), t) = 〈ψ(t, u), Bx(t, u)〉 = 0.

On such singular time intervals, it becomes impossible to determine the values of the
extremal control from the condition of the maximum principle (4).

The proposed operator methods of the maximum principle, taking into account the
indicated property of singularity, are modified in specific examples under consideration
and compared in terms of computational efficiency with known methods.

The computational implementation of the proposed methods of the maximum princi-
ple is characterized by the following features.

The numerical solution of phase and conjugate Cauchy problems was performed by
the Runge–Kutta–Werner method of variable (5–6) order of accuracy using the DIVPRK
program of the IMSL Fortran PowerStation 4.0 library [19]. The values of the controlled,
phase, and conjugate variables were stored in the nodes of a fixed uniform grid Th with a
sampling step h > 0 on the interval T. In the intervals between neighboring grid nodes
Th, the control value was assumed to be constant and equal to the value in the left node.
The numerical calculation of the fixed-point problem was carried out before the condition
was fulfilled:

max{|vk+1(t)− vk(t)|, t ∈ Th} ≤ εm,

in which εm > 0 is the given accuracy of calculating the fixed-point problem.

Example 1. (projection methods (17) and (18)).
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The well-known model problem of control of the system of spins of quantum particles is
considered [20], which can be represented in the following form:

Φ(u) = 1 − 〈x(t1), Lx(t1)〉 → in f ,

L =

⎛⎜⎜⎝
a2

1 + b2
1 a1a2 + b1b2 0 a1b2 − b1a2

a1a2 + b1b2 a2
2 + b2

2 a2b1 − b2a1 0
0 a2b1 − b2a1 b2

1 + a2
1 b1b2 + a1a2

a1b2 − b1a2 0 b1b2 + a1a2 b2
2 + a2

2

⎞⎟⎟⎠,

ẋ1(t) = u(t)x3(t) + x4(t), ẋ2(t) = x3(t)− u(t)x4(t),

ẋ3(t) = −u(t)x1(t)− x2(t), ẋ4(t) = −x1(t) + u(t)x2(t),

x1(0) =
1√
2

, x2(0) =
1√
2

, x3(0) = 0, x4(0) = 0, t ∈ T = [0, t1], t1 = 1.5,

a1 = 0.6, b1 = −0.3, a2 = 0.1, b2 =
√

0.54.

The vector x(t) describes the state of the quantum system, the function u(t) characterizes the
effect of an external field, u(t) ∈ U = [−30, 30], t ∈ T .

In [20], to calculate the optimal control problem under consideration, the global Krotov method
was used, the efficiency of which was compared with the well-known gradient method. The control
determined from physical considerations was chosen as the initial control approximation for the
specified iterative methods:

u(t) = tg(2γ(2t − 1.5)), t ∈ T, γ = −1
3

arctg(−30).

The Pontryagin function in the problem has the form:

H(ψ, x, u, t) = ψ1(ux3 + x4) + ψ2(x3 − ux4) + ψ3(−ux1 − x2) + ψ4(−x1 + ux2).

The standard conjugate system is written as:

ψ̇1(t) = u(t)ψ3(t) + ψ4(t), ψ̇2(t) = ψ3(t)− u(t)ψ4(t), t ∈ T,

ψ̇3(t) = −u(t)ψ1(t)− ψ2(t), ψ̇4(t) = u(t)ψ2(t)− ψ1(t), t ∈ T,

ψ1(t1) = 2(a2
1 + b2

1)x1(t1) + 2(a1a2 + b1b2)x2(t1) + 2(a1b2 − b1a2)x4(t1),

ψ2(t1) = 2(a1a2 + b1b2)x1(t1) + 2(a2
2 + b2

2)x2(t1) + 2(a2b1 − b2a1)x3(t1),

ψ3(t1) = 2(a2b1 − b2a1)x2(t1) + 2(b2
1 + a2

1)x3(t1) + 2(b1b2 + a1a2)x4(t1),

ψ4(t1) = 2(a1b2 − b1a2)x1(t1) + 2(b1b2 + a1a2)x3(t1) + 2(b2
2 + a2

2)x4(t1).

The fixed-point projection problems (12) and (13) have the same pointwise form:

v(t) = PU(v(t) + α(ψ1(t, v)x3(t, v)− ψ2(t, v)x4(t, v)− ψ3(t, v)x1(t, v) + ψ4(t, v)x2(t, v))).

The explicit iterative method of the maximum principle (17) for solving this fixed-point problem
at index k ≥ 0 has a pointwise form:

vk+1(t) = PU(vk(t) + α(ψ1(t, vk)x3(t, vk)− ψ2(t, vk)x4(t, vk)

− ψ3(t, vk)x1(t, vk) + ψ4(t, vk)x2(t, vk))).

Accordingly, the implicit iterative method (20) at index k ≥ 0 takes the form:

vk+1(t) = PU(vk(t) + α(ψ1(t, vk)x3(t, vk+1)− ψ2(t, vk)x4(t, vk+1)

− ψ3(t, vk)x1(t, vk+1) + ψ4(t, vk)x2(t, vk+1))).
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The calculation was carried out on a sampling grid with a step h = 10−5 and the criterion for
stopping the calculation εm = 10−3.

Table 1 shows the comparative results of the first four iterations of improving the
objective functional with an index s ≥ 0, starting from the starting control v0 = u specified
in [20]. We compare the results of the explicit projection method (PPM1) and the implicit
projection method (PPM2) for the parameter α = 10−2 with known [20] calculation data by
the global method ( GlM) and the gradient method (GRM).

Table 1. The comparative results of the first four iterations.

Number s Φ(us) GlM Φ(us) GrM Φ(vs) PPM1 Φ(vs) PPM2

0 0.7681 0.7681 0.7680 0.7680
1 0.1401 0.6911 0.6705 0.6610
2 0.0040 0.6107 0.4049 0.3881
3 0.0021 0.5421 0.2404 0.2175
4 0.0015 0.4913 0.1718 0.1191

Figure 1 shows the final computational control v1(t), t ∈ T obtained by the PPM1
method with the number of control improvement iterations equal to 14, and the value of
the functional Φ∗ ≈ 0.001421.

Figure 1. u—starting control; v1—computational control obtained by the PPM1 method.

Figure 2 shows the final computational control v2(t), t ∈ T, obtained by the PPM2
method with the number of control improvement iterations equal to 26 and the value of
the functional Φ∗ ≈ 0.000704.

Figure 2. u—starting control; v2—computational control obtained by the PPM2 method.

In [20], the final calculated value of the functional Φ∗ ≈ 0.000952 obtained by the
global Krotov method at the ninth iteration of control improvement is indicated.
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Thus, within the framework of the considered example, the proposed projection
methods of the maximum principle allow one to achieve similar results in terms of the
value of the functional with the global Krotov method. The methods differ in the number
of calculated control improvement iterations. However, at each iteration of the global
method, it is necessary to solve the complex Cauchy problem for phase variables with
a special right-hand side based on a multivalued and discontinuous operation to the
maximum for calculating control values. In the proposed fixed-point method, at each
iteration, much simpler Cauchy problems with a uniquely defined and continuous right-
hand side are solved, which makes the considered projection methods of the maximum
principle much easier to implement than the global Krotov method. Due to the simplicity
of implementation and easy adjustment of the convergence, controlled by the choice of
the projection parameter α > 0, these methods can be successfully used to obtain practical
initial approximations for subsequent refinement by other iterative methods for solving
optimal control problems of the class under consideration.

Example 2. (method (21)).
To illustrate the work of the maximum principle method based on the maximization operation (21),

the problem from the previous example is considered.
The corresponding fixed-point problem of the maximum principle (9) has the following form:

v(t) = u∗(ψ(t, v), x(t, v)), t ∈ T,

u∗(ψ, x) =

⎧⎪⎨⎪⎩
+30, g(ψ, x) > 0,
−30, g(ψ, x) < 0,
w ∈ U, g(ψ, x) = 0,

where g(ψ, x) = ψ1x3 −ψ2x4 −ψ3x1 +ψ4x2. The iterative process (21) for solving this fixed-point
problem at k ≥ 0, respectively, takes the form:

vk+1(t) = u∗(ψ(t, vk), x(t, vk)), t ∈ T,

with the above switching function g(ψ, x).
In the case of the existence of a time interval [Θ1, Θ2] ⊂ T of a non-zero measure, where

g(ψ(t), x(t)) = 0, t ∈ [Θ1, Θ2], the control u∗ is called singular on this interval. Singular
controls are determined by the sequential differentiation by an argument t ∈ T of the identity
g(ψ(t), x(t)) = 0 taking into account the phase and conjugate systems. In practical calculations,
similarly to the work [20], the equality of the switching function g(ψ, x), to zero, which determines
a singular mode, is understood in the sense of belonging to some small ε, neighborhood of zero, where
ε > 0. Thus, we obtain the following practical calculation formula for the simple iteration method:

vk+1(t) =

⎧⎪⎨⎪⎩
+30, g(ψ(t, vk), x(t, vk)) > ε,
−30, g(ψ(t, vk), x(t, vk)) < −ε,
w ∈ U, |g(ψ(t, vk), x(t, vk))| ≤ ε.

If at the time t the condition is satisfied:

|g(ψ(t, vk), x(t, vk))| ≤ ε,

the value w ∈ U is determined by the following rule.
The value is calculated:

gk = g(ψ(t + δ, vk), x(t + δ, vk)),

for a given δ > 0.
If gk > ε, then w = 30.
If gk < −ε, then w = −30.
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If |gk| ≤ ε, then the value w ∈ U is determined by the special control calculation rule
as follows.

The value is calculated as:

ak = −ψ1(t, vk)x4(t, vk) − ψ2(t, vk)x3(t, vk) + ψ3(t, vk)x2(t, vk) + ψ4(t, vk)x1(t, vk).

If |ak| > ε, then

1. The value is calculated as ck =
bk
ak

, where:

bk = −ψ1(t, vk)x3(t, vk) + ψ2(t, vk)x4(t, vk) + ψ3(t, vk)x1(t, vk) − ψ4(t, vk)x2(t, vk).

If |ck| ≤ 30, then the value w = ck.
If |ck| > 30, then go to step 2.
If ak ≤ ε, then:

2. The value is calculated as

dk = ψ1(t, vk)x2(t, vk) − ψ2(t, vk)x1(t, vk) + ψ3(t, vk)x4(t, vk) − ψ4(t, vk)x3(t, vk).

If |dk| > ε, then the value w = 0.
If |dk| ≤ ε, then the value w ∈ U is chosen randomly from the interval U.
In the numerical implementation of the algorithm, the value δ > 0 chosen equal to the grid

step h > 0.

Table 2 shows the comparative results of the calculation by the considered maximum
principle method (MPM) for the first four iterations of improving the functional with an
index s ≥ 0, starting from the above starting control, with the known [20] calculation data
by the global method (GlM) and the gradient method (GrM). For an adequate comparison of
the methods, the ε-neighborhood of zero was determined by the value ε = 0.001, specified
in [20].

Table 2. The comparative results of the calculation by the considered maximum principle method for
the first four iterations.

Number s Φ(us) GlM Φ(us) GrM Φ(vs) MPM

0 0.7681 0.7681 0.7680
1 0.1401 0.6911 0.5714
2 0.0040 0.6107 0.3612
3 0.0021 0.5421 0.1904
4 0.0015 0.4913 0.1380

In [20], the final calculated value of the functional Φ∗ ≈ 0.000952, obtained by the
global method at the ninth iteration of control improvement, is indicated. In this case, a
singular section of the final control, determined according to the rules [20], is the interval
[0.0667, t1].

Figure 3 shows the final computational control v3(t), t ∈ T, obtained by the MPM
method, with the achieved value of the functional Φ∗ ≈ 0.000989 and the number of
control improvement iterations equal to 18. A singular section of the final control with the
discretization grid accuracy is [0.0693, 1.4717].

Figure 4 shows the final computational control v4(t), t ∈ T, obtained by the MPM
method from the initial approximation v0 = u1, which was obtained by the PPM1 method
in example 1. In this case, the value of the functional is Φ∗ ≈ 0.000907 with the number
of control improvement iterations equal to 7. A singular section of the final control is
approximately equal to [0.0698, 1.4609].
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Figure 3. u—starting control, v3—computational control obtained by the MPM method.

Figure 4. u1—starting control; v4—computational control obtained by the MPM method.

Figure 5 shows the final computational control v5(t), t ∈ T, obtained by the MPM
method from the initial approximation v0 = u2, which was obtained by the PPM2 method
in example 1. In this case, the value of the functional is Φ∗ ≈ 0.000620, with the number
of control improvement iterations equal to 3. A singular section of the final control is
approximately equal to [0.0751, 1.4512].

Figure 5. u2—starting control; v5—computational control obtained by the MPM method.

The calculations performed within the framework of the model problem show a high
quantitative and qualitative efficiency of the implicit projection method of the maximum
principle (20), which makes it possible to accurately calculate complex singular sections
of extreme controls, which are typical in optimal control problems for quantum systems
of the class under consideration. The main feature of this method, which is important for
increasing efficiency, is the solution at each iteration of the Cauchy problems with a special
uniquely defined and continuous right-hand side, in contrast to the global Krotov method.

6. Conclusions

In the considered class of optimal control problems for quantum systems, new operator
forms of the maximum principle are proposed in the form of fixed-point problems in the
control space, which make it possible to effectively apply and modify the well-known
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apparatus of the theory and methods of fixed points for constructing iterative algorithms
to find extremal controls.

The developed iterative operator methods for searching for extremal controls are
characterized by the following properties:

1. computational stability, in contrast to standard methods for solving the boundary
value problem of the maximum principle;

2. nonlocality of successive control approximations;
3. the absence of a laborious procedure of needle or convex variation of the control in

a small neighborhood of the considered approximation, which is typical for gradi-
ent methods;

4. the numerical solution of the Cauchy problems with a continuous and uniquely
defined right-hand side at each iteration of the constructed projection methods, in
contrast to the well-known global Krotov method.

The indicated properties of the proposed methods for searching for extremal controls
are important factors for increasing the efficiency of the numerical solution of optimal
control problems for quantum systems of the class under consideration.

In quantum systems with multidimensional control, the structures of the proposed
operator methods of the maximum principle and the well-known global Krotov method
remain the same, but the advantage of the indicated properties of the proposed projec-
tion methods of the maximum principle increases significantly in comparison with the
global method.
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Abstract: In this paper, we study the global dynamics of a delayed virus dynamics model with
apoptosis and both virus-to-cell and cell-to-cell infections. When the basic reproduction number
R0 > 1, we obtain the uniform persistence of the model, and give some explicit expressions of the
ultimate upper and lower bounds of any positive solution of the model. In addition, by constructing
the appropriate Lyapunov functionals, we obtain some sufficient conditions for the global attractivity
of the disease-free equilibrium and the chronic infection equilibrium of the model. Our results extend
existing related works.
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1. Introduction

It is well known that human health and safety have been seriously threatened by
known or emerging new viral infections, such as human immunodeficiency virus (HIV),
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), etc. The mechanisms of
transmission of viral infections have become increasingly complex, due to the mutation and
evolution of viruses caused by changes in the physical environment, the use of drugs, and
other factors. Since the 1980s, differential equations have been widely used in the study
of important issues, such as the transmission mechanisms and control strategies of virus
infection, and have gradually developed and established the important interdisciplinary
research branch of virus dynamics [1–5]. In particular, in [1,2], the authors proposed the
following classical viral infection dynamics model, describing the interactions among
uninfected cells, infected cells and free viruses:⎧⎪⎨⎪⎩

ẋ(t) =s − dx(t)− βx(t)v(t),

ẏ(t) =βx(t)v(t)− py(t),

v̇(t) =ky(t)− uv(t),

(1)

where x(t), y(t) and v(t) denote the concentrations of uninfected cells, infected cells and
free viruses at time t, respectively. The constant s > 0 is the rate at which new uninfected
cells are generated. The constant d > 0 is the death rate of uninfected cells. The constant
β ≥ 0 is the characterizing infection of the cells. The constant p > 0 is the death rate of
infected cells. The infected cells produce virus particles at the constant rate k ≥ 0, and the
constant u > 0 is the rate at which the virus is cleared. The term βx(t)v(t) denotes the rate
at which uninfected cells become infected cells through their contact with free viruses.

Based on model (1), many scholars have extended the linear growth rate s − dx(t) of
uninfected cells to classical logistic growth or more general nonlinear functions, and ex-
tended the bilinear functional response function βx(t)v(t) to the following classical forms,

Mathematics 2022, 10, 975. https://doi.org/10.3390/math10060975 https://www.mdpi.com/journal/mathematics119



Mathematics 2022, 10, 975

βx(t)v(t)/(1 + v(t)), βx(t)v(t)/(1 + ax(t) + bv(t)), βx(t)v(t)/(1 + av(t)), and more gen-
eral nonlinear functions (see, for example, [6–17] and the references therein). Addition-
ally, important factors, such as delay and immune response, were considered, and a
series of important results on global stability and existence of Hopf bifurcations were
obtained [16,18–23].

In addition, recent studies have also shown that a large number of viral particles can
also be transferred from infected cells to uninfected cells through the formation of virally
induced structures termed virological synapses [24,25]. The direct fusion between infected
cells and uninfected cells can also lead to cell infection, which is also known as cell-to-cell
infection [25–27]. Based on this important fact, many scholars have proposed several
important classes of viral dynamics models, considering the more general nonlinear growth
rate of uninfected cells (which can include linear and logistic growth), while introducing
important factors such as virus-to-cell infection, cell-to-cell infection, and immune response
and delay, and have thoroughly investigated the local and global dynamics of equilibria
and the existence of Hopf bifurcations. For details, see, for example, [18–21,25–31] and the
references cited therein. In particular, based on the studies in [7,25,26], the authors [28]
proposed and studied the following virus infection dynamic model:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ(t) =rx(t)
(

1 − x(t) + αy(t)
K

)
− β1x(t)y(t)− β2x(t)v(t),

ẏ(t) =β1x(t)y(t) + β2x(t)v(t)− py(t),

v̇(t) =ky(t)− uv(t).

(2)

In model (2), the constant K > 0 denotes the effective carrying capacity of the en-
vironment of uninfected cells and infected cells. The term rx(1 − (x + αy)/K) indicates
that the growth of uninfected cells conforms to the logistic growth function and takes into
account the effect of infected cells on the maximum carrying capacity of the environment,
the constant r > 0 is the growth rate, and α ≥ 0 is a constant; the constant β1 ≥ 0 is the
cell-to-cell infection rate, and the constant β2 ≥ 0 is the virus-to-cell infection rate. All other
parameters in model (2) have the same biological meaning as that in model (1). In [28],
for model (2), the authors obtained the local stability of the equilibria, uniform persistence
and the existence of Hopf bifurcations caused by the cell-to-cell infection rate β1 or the
virus-to-cell infection rate β2.

HIV gene expression products can produce toxicity, which directly or indirectly in-
duces apoptosis in uninfected cells [32]. Studies have shown that viral proteins interact
with uninfected cells and induce an apoptotic signal, which induces the death of uninfected
cells [33]. In [34], the authors considered the following virus infection dynamic model
with delay: ⎧⎪⎨⎪⎩

ẋ(t) =s − dx(t)− cx(t)y(t)− βx(t)v(t),

ẏ(t) =δx(t − τ)v(t − τ)− py(t),

v̇(t) =ky(t)− uv(t),

(3)

where the constant δ = βe−m0τ > 0 denotes the surviving rate of infected cells before it
becomes productively infected, m0 ≥ 0 is a constant, and τ ≥ 0 is a delay. The constant
c ≥ 0 is the rate of apoptosis at which infected cells induce uninfected cells [32,33]. All
other parameters in model (3) have the same biological meaning as that in model (1). Based
on models (2) and (3), in [22,23,35], the authors further considered virus dynamics models
with the logistic growth of uninfected cells, nonlinear infection rate, cell-to-cell infection,
virus-to-cell infection and delay, and investigated the permanence, the global stability of
the disease-free equilibrium, the local stability of the chronic infection equilibrium and the
existence of Hopf bifurcations.
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In this paper, based on [18–23,25,28,30,34,35], etc., we continue to consider the follow-
ing delayed virus dynamic model with apoptosis and both virus-to-cell and cell-to-cell
infections:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ(t) =s − dx(t) + rx(t)
(

1 − x(t) + αy(t)
K

)
− cx(t)y(t)− β1x(t)y(t)− β2x(t)v(t),

ẏ(t) =β1e−m1τ1 x(t − τ1)y(t − τ1) + β2e−m2τ2 x(t − τ2)v(t − τ2)− py(t),

v̇(t) =ky(t)− uv(t).

(4)

In model (4), the delay τ1 ≥ 0 represents the time between infected cells spreading
viruses into uninfected cells and the production of new free viruses; the delay τ2 ≥ 0
represents the time between viral entry into an uninfected cell and the production of new
free viruses. m1 ≥ 0 and m2 ≥ 0 are constants, and δ1:=β1e−m1τ1 and δ2:=β2e−m2τ2 denote
the survival rates of uninfected cells during successful infection with infected cells and
free viruses, respectively. All other parameters have the same biological meaning as that in
models (1)–(3).

Let τ = max{τ1, τ2}. The initial condition of model (4) is given as follows, x(θ) =
φ1(θ), y(θ) = φ2(θ), v(θ) = φ3(θ) (θ ∈ [−τ, 0]), where φ = (φ1, φ2, φ3) ∈ C+:= {φ ∈
C | φi ≥ 0, i = 1, 2, 3}, C = C([−τ, 0],R3) is the Banach space of continuous functions from
[−τ, 0] to R3 equipped with the supremum norm.

By using the standard theory of functional differential equations (see [36–39]), it is
easy to show that the solution (x(t), y(t), v(t)) of model (4) with the above initial condition
is existent, unique, non-negative on [0,+∞), and satisfies

lim sup
t→∞

x(t) ≤ x0, lim sup
t→∞

y(t) ≤ M2, lim sup
t→∞

v(t) ≤ M3, (5)

where

x0 =
K
2r

(
r − d +

√
(d − r)2 +

4rs
K

)
, M2 =

2n0(e−m1τ1 + e−m2τ2)

p̄
, M3 =

kM2

u
,

n0 = max
x∈[0,x0]

(
s − dx + rx

(
1 − x

K

))
, p̄ = min

{
p,

n0

x0

}
.

Obviously, model (4) always has a disease-free equilibrium (boundary equilibrium)
E0 = (x0, 0, 0). We can easily derive the expression of the basic reproduction number of
model (4) as

R0 =
x0(uβ1e−m1τ1 + kβ2e−m2τ2)

pu
=

x0(uδ1 + kδ2)

pu

by the method of the next generation matrix [40,41]. The basic reproduction number R0 is
positively correlated with respect to the cell-to-cell infection rate β1 and the virus-to-cell
infection rate β2. Hence, when only one route of infection is considered, the evolution of
the disease infection may be underestimated.

The function is defined as

Γ(z) = s − dz + rz
(

1 − z
K

)
=

r
K
(z + x1)(x0 − z) (z ≥ 0), x1 = − K

2r

(
r − d −

√
(d − r)2 +

4rs
K

)
> 0.

Note that if R0 = x0
x∗ > 1, then model (4) has a unique chronic infection equilibrium

(positive equilibrium) E∗ = (x∗, y∗, v∗), where

x∗ = pu
uδ1 + kδ2

, y∗ = Γ(x∗)
x∗ξ

=
r(x∗ + x1)(x0 − x∗)

Kx∗ξ
> 0, v∗ = ky∗

u
, ξ =

rα

K
+ c + β1 +

kβ2

u
. (6)
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It is noted that the apoptosis rate c has effects in reducing the loads of both infected
cells and free viruses. In addition, it is easy to show that the set G := {φ = (φ1, φ2, φ3) ∈
C+ | 0 ≤ φ1 ≤ x0} is attractive and positively invariant with respect to model (4).

For the global asymptotic stability (global attractivity) of the disease-free equilibrium
E0 of model (4), using the method similar to that in [18,23,34,35], the following conclusion
can be obtained (the proof is omitted): if R0 < 1 (R0 = 1), then the disease-free equilibrium
E0 is globally asymptotically stable (globally attractive) in G.

As far as we know, the global attractivity of the chronic infection equilibrium E∗ of
model (4) is still a difficult mathematical question and worthy of further study. This paper
has the following two main purposes. First of all, we study the uniform persistence of
model (4) in Section 2, and give explicit expressions of the ultimate upper and lower bounds
of any positive solution of model (4). Second, by constructing some appropriate Lyapunov
functionals and combining inequality analysis, some sufficient conditions for the global
attractivity of the chronic infection equilibrium E∗ of model (4) are given in Section 3. The
brief summary of the conclusions of this paper is given in Section 4.

2. Uniform Persistence

In this section, we assume that R0 > 1. It is not difficult to find that the function

f1(z) :=
K
2r

(
z +

√
z2 +

4rs
K

)

is strictly monotonically increasing with respect to z on R. According to the first equation
of model (4), x∗ can be rewritten as x∗ = f1(l0), where l0 = r − d − ( rα

K + c + β1
)
y∗ − β2v∗.

For convenience, let us define the following parameters:

ν1 = f1(l1), x∗1 = f1(l2), x̂∗1 =
K
2r

(
l2 −

√
l2
2 +

4rs
K

)
,

l1 = r − d −
( rα

K
+ c + β1

)
M2 − β2M3, l2 = r − d − 1

2

( rα

K
+ c + β1

)
y∗ − β2v∗.

Note that x0 = f1(r − d) and r − d > l2 > l0 > l1, we can obtain x0 > x∗1 > x∗ > ν1 >
0. For the uniform persistence of model (4), we have the following main results.

Theorem 1. If R0 > 1, then model (4) is uniformly persistent in X+ := {φ = (φ1, φ2, φ3) ∈
C+ | φ2(0) > 0, φ3(0) > 0}, and the solution (x(t), y(t), v(t)) of model (4) with any φ ∈ X+

satisfies

lim inf
t→∞

x(t) ≥ ν1, lim inf
t→∞

y(t) ≥ y∗

2
e−p� ≡ ν2, lim inf

t→∞
v(t) ≥ ky∗

2u
e−p� =

k
u

ν2 ≡ ν3, (7)

where � = T0 + T1 + T2 + τ1 + τ2,

T0 = − 1
u

ln
(

y∗

2M2

)
> 0, T1 =

−K
r(x∗1 − x̂∗1)

ln

[(
x∗1 − x0

x0 − x̂∗1

)(
γν1 − x̂∗1
x∗1 − γν1

)]
> 0,

T2 =
q

u(1 − q)
> 0, γ ∈ (0, 1), x0 ∈ (x∗, x∗1), q =

x∗

x0 < 1.

Proof. Let (x(t), y(t), v(t)) be any solution of model (4) with any φ ∈ X+. By (5), for
any ε > 0, there exists a sufficiently large t̂ > τ such that, for t > t̂, y(t) ≤ M2 + ε and
v(t) ≤ M3 + ε. From the first equation of model (4), we have, for t > t̂,
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ẋ(t) ≥s − dx(t) + rx(t)
(

1 − x(t) + α(M2 + ε)

K

)
− (c + β1)(M2 + ε)x(t)− β2(M3 + ε)x(t)

=− r
K
(x(t)− ν1(ε))(x(t)− ν̂1(ε)),

where

ν1(ε) =
K
2r

(
l1(ε) +

√
l2
1(ε) +

4rs
K

)
> 0, ν̂1(ε) =

K
2r

(
l1(ε)−

√
l2
1(ε) +

4rs
K

)
< 0,

l1(ε) = r − d −
( rα

K
+ c + β1

)
(M2 + ε)− β2(M3 + ε).

Using the arbitrariness of ε, we have lim inft→∞ x(t) ≥ ν1(0) = ν1.
Next, using a method similar to that in [34,35], let us prove that lim inft→∞y(t) ≥ ν2.
Note that γ ∈ (0, 1), then there exists a sufficiently large T > 0 such that for t ≥ T,

x(t) > γν1, v(t) ≤ kM2

u
+

ky∗

2u
.

Let us first claim that, for any t0 ≥ T, when t ≥ t0, the inequality y(t) ≤ y∗
2 cannot

always hold.
If this claim is not true, then there exists a t0 ≥ T such that y(t) ≤ y∗

2 for all t ≥ t0.
Then, from the third equation of model (4), we have for t ≥ t0, v̇(t) ≤ 1

2 ky∗ − uv(t), which
implies that, for t ≥ t0,

v(t) ≤ ky∗

2u
+

(
v(t0)− ky∗

2u

)
e−u(t−t0) ≤ ky∗

2u
+

kM2

u
e−u(t−t0).

Hence, we have, for t ≥ t0 + T0, v(t) ≤ k
u y∗ = v∗. Then, from the first equation of

model (4), we have, for t ≥ t0 + T0,

ẋ(t) ≥s − dx(t) + rx(t)
(

1 − x(t)
K

)
− rαy∗

2K
x(t)− cy∗

2
x(t)− β1y∗

2
x(t)− β2v∗x(t)

=− r
K
(x(t)− x∗1)(x(t)− x̂∗1),

which implies that, for t ≥ t0 + T0,

x(t) ≥
x∗1 − x̂∗1

(
x(t0+T0)−x∗1
x(t0+T0)−x̂∗1

)
e−

r
K (x∗1−x̂∗1 )(t−t0−T0)

1 −
(

x(t0+T0)−x∗1
x(t0+T0)−x̂∗1

)
e−

r
K (x∗1−x̂∗1 )(t−t0−T0)

>

x∗1 + x̂∗1

(
x∗1−γν1

γν1−x̂∗1

)
e−

r
K (x∗1−x̂∗1 )(t−t0−T0)

1 +
(

x∗1−γν1

γν1−x̂∗1

)
e−

r
K (x∗1−x̂∗1 )(t−t0−T0)

.

Hence, we have, for t ≥ t0 + T0 + T1,

x(t) >
x∗1 + x̂∗1

(
x∗1−γν1

γν1−x̂∗1

)
e−

r
K (x∗1−x̂∗1 )T1

1 +
(

x∗1−γν1

γν1−x̂∗1

)
e−

r
K (x∗1−x̂∗1 )T1

= x0 > x∗. (8)

Define m = min{ȳ, uv̄
k } > 0, where

ȳ = min
θ∈[−(τ1+τ2),0]

y(T∗ + θ) > 0, v̄ = min
θ∈[−(τ1+τ2),0]

v(T∗ + θ) > 0, T∗ = t0 + T0 + T1 + τ1 + τ2.
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Next, we show that y(t) ≥ m for t ≥ t0 + T0 + T1. In fact, otherwise, there exists a
T̂1 ≥ 0 such that y(t) ≥ m for t0 + T0 + T1 ≤ t ≤ T∗ + T̂1, y(T∗ + T̂1) = m and ẏ(T∗ + T̂1) ≤
0. Then, from the third equation of model (4), we have, for t0 + T0 + T1 ≤ t ≤ T∗ + T̂1,
v̇(t) ≥ km − uv(t), which implies that, for t0 + T0 + T1 ≤ t ≤ T∗ + T̂1,

v(t) ≥
(

v(t0 + T0 + T1)− km
u

)
e−u(t−t0−T0−T1) +

km
u

≥ (v(t0 + T0 + T1)− v̄)e−u(t−t0−T0−T1) +
km
u

≥ km
u

.

(9)

Therefore, from (8) and (9), we have, for t = T∗ + T̂1,

ẏ(t) =δ1x(t − τ1)y(t − τ1) + δ2x(t − τ2)v(t − τ2)− pm

≥δ1x0m + δ2x0 km
u

− pm

=pm
(

x0

x∗ − 1
)
> 0.

This is a contradiction to ẏ(T∗ + T̂1) ≤ 0. This shows that for t ≥ t0 + T0 + T1,
y(t) ≥ m.

Using the derivation completely similar to (9), we have, for t ≥ t0 + T0 + T1, v(t) ≥ km
u .

Consider the following auxiliary function:

V(t) = y(t) +
δ2

u
x∗v(t) + δ1

∫ t

t−τ1

x(θ)y(θ)dθ + δ2

∫ t

t−τ2

x(θ)v(θ)dθ.

Then, we have, for t ≥ t0 + T0 + T1,

V̇(t) = δ1(x(t)− x∗)y(t) + δ2(x(t)− x∗)v(t) ≥ m
(

δ1 +
k
u

δ2

)
(x0 − x∗) > 0,

which leads to, for t ≥ t0 + T0 + T1,

V(t) ≥ V(t0 + T0 + T1) + m
(

δ1 +
k
u

δ2

)
(x0 − x∗)(t − t0 − T0 − T1),

which implies that V(t) → +∞(t → +∞). This is a contradiction with the boundedness of
V(t). Therefore, the claim is proved.

Below, there are two remaining cases that need to be discussed.
(i) y(t) ≥ y∗

2 for sufficiently large t. (ii) y(t) oscillates about y∗
2 for sufficiently large t.

For the case (i), it clearly has lim inft→+∞ y(t) ≥ ν2.
For the case (ii), let t1 and t2 be sufficiently large such that y(t1) = y(t2) =

y∗
2 , y(t) <

y∗
2 (t1 < t < t2).

If t2 − t1 ≤ �, from the second equation of model (4), we have, for t1 ≤ t ≤ t2,
ẏ(t) ≥ −py(t), which implies that for t1 ≤ t ≤ t2,

y(t) ≥ y(t1)e−p(t−t1) ≥ y∗

2
e−p� = ν2.

If t2 − t1 > �, it is easily obtained that, for t1 ≤ t ≤ t1 + �, y(t) ≥ ν2. Further, we
prove that for t1 + � ≤ t ≤ t2, y(t) ≥ ν2.

If not, there exists a T̂2 ≥ 0 such that for t1 ≤ t ≤ t1 + � + T̂2(< t2), y(t) ≥ ν2,
y(t1 + � + T̂2) = ν2 and ẏ(t1 + � + T̂2) ≤ 0. Using the derivation method similar to (8),
treating t1 as t0, we have, for t1 + T0 + T1 ≤ t ≤ t1 + � + T̂2, x(t) > x0 > x∗. Then, let us
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prove that there exists t̄ ∈ [t1, t1 + T0 + T1 + T2] such that v(t̄) ≥ qkν2
u . If not, then we have,

for t1 ≤ t ≤ t1 + T0 + T1 + T2, v(t) < qkν2
u . From the third equation of model (4), we have,

for t1 ≤ t ≤ t1 + T0 + T1 + T2,

v̇(t) ≥ kν2 − uv(t) ≥ kν2(1 − q),

which implies that, for t = t1 + T0 + T1 + T2,

v(t) ≥ v(t1) + kν2(1 − q)(t − t1) > v(t1) + kν2(1 − q)T2 >
qkν2

u
,

which is a contradiction. Hence, we conclude that there exists t̄ ∈ [t1, t1 + T0 + T1 + T2]

such that v(t̄) ≥ qkν2
u .

Note that, for t̄ ≤ t ≤ t1 + � + T̂2, v̇(t) ≥ qkν2 − uv(t), which implies that, for
t̄ ≤ t ≤ t1 + � + T̂2,

v(t) ≥
(

v(t̄)− qkν2

u

)
e−u(t−t1) +

qkν2

u
≥ qkν2

u
.

Hence, we have from the second equation of model (4) that for t = t1 + � + T̂2,

ẏ(t) =δ1x(t − τ1)y(t − τ1) + δ2x(t − τ2)v(t − τ2)− pν2

≥pν2

(
δ1

p
x(t − τ1) +

qkδ2

up
x(t − τ2)− 1

)
>pν2

(
qx0

x∗ − 1
)
= 0.

(10)

This is a contradiction to ẏ(t1 + � + T̂2) ≤ 0. Based on the above analysis, we have
y(t) ≥ ν2 for t ∈ [t1, t2]. Since this kind of interval [t1, t2] is chosen in an arbitrary way, we
conclude that y(t) ≥ ν2 for any sufficiently large t. Thus, lim inft→∞y(t) ≥ ν2.

Finally, according to the third equation of model (4), we have lim inft→∞ v(t) ≥ kν2
u =

ν3.

3. Global Attractivity of the Chronic Infection Equilibrium

Now, we continue to discuss global attractivity of the chronic infection equilibrium E∗.
The following lemma is used.

Lemma 1. (Barbalat’s lemma [42]) Let q(t) be a real valued differentiable function defined on some
half line [ϑ,+∞), ϑ ∈ (−∞,+∞). If limt→+∞q(t) = ϑ1 (|ϑ1| < +∞) and q̇(t) is uniformly
continuous for t > ϑ, then limt→+∞ q̇(t) = 0.

Due to the technical requirements of the proof, we assume that m1τ1 = m2τ2.
For any sufficient small 0 < ε < ν1, we define
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ν1(ε) =ν1 − ε, x0(ε) = x0 + ε, M2(ε) = M2 + ε, M3(ε) = M3 + ε, Λ1 =
rα

K
+ c + β1,

Υ1(ε) =d − r +
r
K
(x0(ε) + x∗) + Λ1y∗ + β2v∗, Υ2(ε) = β1x0(ε) + β1y∗ + β2x0(ε) + β2v∗ + pem1τ1 ,

Ψ1(ε) =
1
2

β1[x0(ε)e−m1τ1 Υ2(ε) + M2(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε))],

Ψ2(ε) =
1
2

β2[M3(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε)) + (k + u)x0(ε)],

Ψ3(ε) =
1
2

β2
1x0(ε)y∗(1 + e−m1τ1), Ψ4(ε) =

1
2

β1β2x0(ε)v∗(1 + e−m1τ1),

Ψ5(ε) =
1
2

Υ1(ε)β1M2(ε)(1 + em1τ1), Ψ6(ε) =
1
2

β2
1x2

0(ε)(1 + e−m1τ1),

Ψ7(ε) =
1
2

pβ1x0(ε)(1 + em1τ1) +
1
2

Λ1x0(ε)β1M2(ε)(1 + em1τ1), Ψ8(ε) =
1
2

β1β2x2
0(ε)(1 + e−m1τ1),

Ψ9(ε) =
1
2

β2x0(ε)β1M2(ε)(1 + em1τ1), Ψ10(ε) =
1
2

Υ1(ε)β2M3(ε)(1 + em1τ1),

Ψ11(ε) =
1
2

kβ2x0(ε)(1 + em1τ1) +
1
2

Λ1x0(ε)β2M3(ε)(1 + em1τ1),

Ψ12(ε) =
1
2

uβ2x0(ε)(1 + em1τ1) +
1
2

β2x0(ε)β2M3(ε)(1 + em1τ1).

Let us define the real symmetric matrices as follows,

J(ε) =

⎛⎝ A11(ε) −A12(ε) 0
−A12(ε) A22(ε) −A23(ε)

0 −A23(ε) A33(ε)

⎞⎠,

where

A11(ε) =
1

x0(ε)

[
d − r +

rx∗

K
+
( rα

K
+ c

)
y∗
]
+

r
K
+ θ1

{
d − r +

r
K
(ν1(ε) + x∗) +

(
c +

rα

K

)
y∗

− [(Ψ1(ε) + Ψ3(ε) + Ψ4(ε) + Ψ5(ε))τ1 + (Ψ2(ε) + Ψ10(ε))τ2]

}
,

A12(ε) =
1
2

(
c +

rα

K

)
+

1
2

θ1

{
em1τ1

[
d − r +

r
K
(x0(ε) + x∗) +

(
c +

rα

K

)
y∗ + p

]
+
(

c +
rα

K

)
x0(ε)

}
,

A22(ε) =θ1

{
em1τ1

[
em1τ1 p +

(
c +

rα

K

)
ν1(ε)

]
− [(Ψ1(ε)em1τ1 + Ψ6(ε) + Ψ7(ε))τ1 + (Ψ2(ε)em1τ1 + Ψ11(ε))τ2]

}
,

A23(ε) =
1
2

θ2k, A33(ε) = θ2u − θ1[(Ψ8(ε) + Ψ9(ε))τ1 + Ψ12(ε)τ2],

where θ1 and θ2 are arbitrary positive constants.

Theorem 2. If R0 > 1, d − r + rx∗
K ≥ 0, m1τ1 = m2τ2 and matrix J(0) is positive definite, then

the chronic infection equilibrium E∗ is globally attractive in X+.

Proof. Let (x(t), y(t), v(t)) ∈ X+(t ≥ 0) be any solution of model (4). If J(0) is positive
definite, then J(ε) is also positive definite for any sufficiently small 0 < ε < ν1. For the
above ε, there exists a sufficiently large T(ε) > τ1 + τ2 such that, for t > T(ε),

0 < ν1(ε) < x(t) < x0(ε), y(t) < M2(ε), v(t) < M3(ε).
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Let g(z) = z − 1 − ln z (z > 0). Clearly, g(z) ≥ 0 (z > 0), and g(z) = 0 if and only if
z = 1. Define

U1 =x∗g
(

x(t)
x∗

)
+ em1τ1 y∗g

(
y(t)
y∗

)
+

β2x∗v∗

ky∗ v∗g
(

v(t)
v∗

)
+ β1x∗y∗

∫ t

t−τ1

g
(

x(s)y(s)
x∗y∗

)
ds + β2x∗v∗

∫ t

t−τ2

g
(

x(s)v(s)
x∗v∗

)
ds.

Hence, U1 is positive definite with respect to the chronic infection equilibrium E∗ =
(x∗, y∗, v∗). Similar to the calculation in [18,19], for t ≥ 0, the derivative along the solution
of model (4) satisfies

dU1

dt
=− 1

x(t)

(
d − r +

rx∗

K

)
(x(t)− x∗)2 − r

K
(x(t)− x∗)2

+
( rα

K
+ c

)(
1 − x∗

x(t)

)
(x∗y∗ − x(t)y(t))

+ β1x∗y∗
{
−g

(
x(t − τ1)y(t − τ1)

x∗y(t)

)
− g

(
x∗

x(t)

)}
+ β2x∗v∗

{
−g

(
x(t − τ2)v(t − τ2)y∗

x∗v∗y(t)

)
− g

(
x∗

x(t)

)
− g

(
y(t)v∗

y∗v(t)

)}
=− 1

x(t)

[
d − r +

rx∗

K
+
( rα

K
+ c

)
y∗
]
(x(t)− x∗)2 − r

K
(x(t)− x∗)2

−
( rα

K
+ c

)
(x(t)− x∗)(y(t)− y∗)

+ β1x∗y∗
{
−g

(
x(t − τ1)y(t − τ1)

x∗y(t)

)
− g

(
x∗

x(t)

)}
+ β2x∗v∗

{
−g

(
x(t − τ2)v(t − τ2)y∗

x∗v∗y(t)

)
− g

(
x∗

x(t)

)
− g

(
y(t)v∗

y∗v(t)

)}
.

(11)

It is worth mentioning that if α = c = 0 and d − r + rx∗
K ≥ 0, then dU1

dt ≤ 0, which
leads to E∗ is stable (see [37,38]). Then, it follows from [19] that E∗ is globally attractive.
Thus, E∗ is globally asymptotically stable.

If α and c are not 0 at the same time, inspired by [43,44], we define

U2 =
1
2
[(x(t)− x∗) + em1τ1(y(t)− y∗)]2.

From model (4), we have, for t > T(ε),

ẋ(t) + em1τ1 ẏ(t) =s − dx(t) + rx(t)
(

1 − x(t)
K

)
−
(

c +
rα

K

)
x(t)y(t)− em1τ1 py(t)

+ β1x(t − τ1)y(t − τ1)− β1x(t)y(t) + β2x(t − τ2)v(t − τ2)− β2x(t)v(t)

=−
[
d − r +

r
K
(x(t) + x∗) +

(
c +

rα

K

)
y∗
]
(x(t)− x∗)

−
[
em1τ1 p +

(
c +

rα

K

)
x(t)

]
(y(t)− y∗)

+ β1x(t − τ1)(y(t − τ1)− y(t)) + β1y(t)(x(t − τ1)− x(t))

+ β2x(t − τ2)(v(t − τ2)− v(t)) + β2v(t)(x(t − τ2)− x(t)).
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Further, we have, for t > T(ε),

dU2

dt
=[(x(t)− x∗) + em1τ1(y(t)− y∗)](ẋ(t) + em1τ1 ẏ(t))

=−
[
d − r +

r
K
(x(t) + x∗) +

(
c +

rα

K

)
y∗
]
(x(t)− x∗)2

− em1τ1
[
em1τ1 p +

(
c +

rα

K

)
x(t)

]
(y(t)− y∗)2

−
{

em1τ1
[
d − r +

r
K
(x(t) + x∗) +

(
c +

rα

K

)
y∗ + p

]
+
(

c +
rα

K

)
x(t)

}
× (x(t)− x∗)(y(t)− y∗) + Γ1(t) + Γ2(t) + Γ3(t) + Γ4(t),

(12)

where

Γ1(t) =− β1x(t − τ1)[(x(t)− x∗) + em1τ1(y(t)− y∗)]
∫ t

t−τ1

ẏ(s)ds,

Γ2(t) =− β1y(t)[(x(t)− x∗) + em1τ1(y(t)− y∗)]
∫ t

t−τ1

ẋ(s)ds,

Γ3(t) =− β2x(t − τ2)[(x(t)− x∗) + em1τ1(y(t)− y∗)]
∫ t

t−τ2

v̇(s)ds,

Γ4(t) =− β2v(t)[(x(t)− x∗) + em1τ1(y(t)− y∗)]
∫ t

t−τ2

ẋ(s)ds.

Since E∗ is a positive equilibrium of model (4), ẋ(t), ẏ(t) and v̇(t) can be rewritten as

ẋ(t) =−
[
d − r +

r
K
(x(t) + x∗)

]
(x(t)− x∗) + Λ1x∗y∗ − Λ1x(t)y(t) + β2x∗v∗ − β2x(t)v(t)

=−
[
d − r +

r
K
(x(t) + x∗)

]
(x(t)− x∗) + Λ1(x∗ − x(t))y∗ + Λ1x(t)(y∗ − y(t))

+ β2(x∗ − x(t))v∗ + β2x(t)(v∗ − v(t))

=− Υ̃1(t)(x(t)− x∗) + Λ1x(t)(y∗ − y(t)) + β2x(t)(v∗ − v(t)),

(13)

where Υ̃1(t) = d − r + r
K (x(t) + x∗) + Λ1y∗ + β2v∗,

ẏ(t) =β1e−m1τ1 x(t − τ1)(y(t − τ1)− y∗) + β1e−m1τ1 y∗(x(t − τ1)− x∗)
+ β2e−m2τ2 x(t − τ2)(v(t − τ2)− v∗) + β2e−m2τ2 v∗(x(t − τ2)− x∗) + p(y∗ − y(t)),

(14)

v̇(t) = k(y(t)− y∗) + u(v∗ − v(t)). (15)

From (14), we have, for t > T(ε) + 2(τ1 + τ2),
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|Γ1(t)| =β1x(t − τ1)|[(x(t)− x∗) + em1τ1 (y(t)− y∗)]|

×
∣∣∣∣ ∫ t

t−τ1

{
β1e−m1τ1 x(s − τ1)(y(s − τ1)− y∗) + β1e−m1τ1 y∗(x(s − τ1)− x∗)

+ β2e−m2τ2 x(s − τ2)(v(s − τ2)− v∗) + β2e−m2τ2 v∗(x(s − τ2)− x∗) + p(y∗ − y(s))
}

ds
∣∣∣∣

≤β1x0(ε)
∫ t

t−τ1

{
β1e−m1τ1 x0(ε)

2
[(x(t)− x∗)2 + (y(s − τ1)− y∗)2]

+
β1x0(ε)

2
[(y(t)− y∗)2 + (y(s − τ1)− y∗)2]

+
β1e−m1τ1 y∗

2
[(x(t)− x∗)2 + (x(s − τ1)− x∗)2] +

β1y∗
2

[(y(t)− y∗)2 + (x(s − τ1)− x∗)2]

+
β2e−m2τ2 x0(ε)

2
[(x(t)− x∗)2 + (v(s − τ2)− v∗)2] +

β2x0(ε)

2
[(y(t)− y∗)2 + (v(s − τ2)− v∗)2]

+
β2e−m2τ2 v∗

2
[(x(t)− x∗)2 + (x(s − τ2)− x∗)2] +

β2v∗
2

[(y(t)− y∗)2 + (x(s − τ2)− x∗)2]

+
p
2
[(x(t)− x∗)2 + (y(s)− y∗)2] +

pem1τ1

2
[(y(t)− y∗)2 + (y(s)− y∗)2]

}
ds

=
1
2

β1x0(ε)e−m1τ1 Υ2(ε)(x(t)− x∗)2τ1 +
1
2

β1x0(ε)Υ2(ε)(y(t)− y∗)2τ1

+
1
2

β2
1x2

0(ε)(1 + e−m1τ1 )
∫ t

t−τ1

(y(s − τ1)− y∗)2ds

+
1
2

β2
1x0(ε)y∗(1 + e−m1τ1 )

∫ t

t−τ1

(x(s − τ1)− x∗)2ds

+
1
2

β1β2x2
0(ε)(1 + e−m1τ1 )

∫ t

t−τ1

(v(s − τ2)− v∗)2ds

+
1
2

β1β2x0(ε)v∗(1 + e−m1τ1 )
∫ t

t−τ1

(x(s − τ2)− x∗)2ds

+
1
2

pβ1x0(ε)(1 + em1τ1 )
∫ t

t−τ1

(y(s)− y∗)2ds.

Similarly, from (13) and (15), we have, for t > T(ε) + 2(τ1 + τ2),

|Γ2(t)| ≤β1M2(ε)|[(x(t)− x∗) + em1τ1(y(t)− y∗)]|

×
∫ t

t−τ1

{
Υ1(ε)|(x(s)− x∗)|+ Λ1x0(ε)|(y(s)− y∗)|+ β2x0(ε)|(v(s)− v∗)|

}
ds

≤1
2

β1M2(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε))(x(t)− x∗)2τ1

+
1
2

β1M2(ε)em1τ1(Υ1(ε) + Λ1x0(ε) + β2x0(ε))(y(t)− y∗)2τ1

+
1
2

Υ1(ε)β1M2(ε)(1 + em1τ1)
∫ t

t−τ1

(x(s)− x∗)2ds

+
1
2

Λ1x0(ε)β1M2(ε)(1 + em1τ1)
∫ t

t−τ1

(y(s)− y∗)2ds

+
1
2

β2x0(ε)β1M2(ε)(1 + em1τ1)
∫ t

t−τ1

(v(s)− v∗)2ds,

|Γ3(t)| ≤β2x0(ε)[|(x(t)− x∗)|+ em1τ1 |(y(t)− y∗)|]
∫ t

t−τ2

[k|(y(s)− y∗)|+ u|(v∗ − v(s))|]ds,

≤1
2

β2x0(ε)(k + u)(x(t)− x∗)2τ2 +
1
2

β2x0(ε)(k + u)em1τ1(y(t)− y∗)2τ2

+
1
2

kβ2x0(ε)(1 + em1τ1)
∫ t

t−τ2

(y(s)− y∗)2ds +
1
2

uβ2x0(ε)(1 + em1τ1)
∫ t

t−τ2

(v(s)− v∗)2ds,
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|Γ4(t)| ≤β2M3(ε)[|(x(t)− x∗)|+ em1τ1 |(y(t)− y∗)|]

×
∫ t

t−τ2

{
Υ1(ε)|(x(s)− x∗)|+ Λ1x0(ε)|(y(s)− y∗)|+ β2x0(ε)|(v(s)− v∗)|

}
ds

≤1
2

β2M3(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε))(x(t)− x∗)2τ2

+
1
2

β2M3(ε)em1τ1(Υ1(ε) + Λ1x0(ε) + β2x0(ε))(y(t)− y∗)2τ2

+
1
2

Υ1(ε)β2M3(ε)(1 + em1τ1)
∫ t

t−τ2

(x(s)− x∗)2ds

+
1
2

Λ1x0(ε)β2M3(ε)(1 + em1τ1)
∫ t

t−τ2

(y(s)− y∗)2ds

+
1
2

β2x0(ε)β2M3(ε)(1 + em1τ1)
∫ t

t−τ2

(v(s)− v∗)2ds.

Hence, we have, for t > T(ε) + 2(τ1 + τ2),

Γ(t) :=|Γ1(t)|+ |Γ2(t)|+ |Γ3(t)|+ |Γ4(t)|
≤1

2
β1[x0(ε)e−m1τ1 Υ2(ε) + M2(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε))]τ1(x(t)− x∗)2

+
1
2

β1[x0(ε)Υ2(ε) + em1τ1 M2(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε))]τ1(y(t)− y∗)2

+
1
2

β2[M3(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε)) + x0(ε)(k + u)]τ2(x(t)− x∗)2

+
1
2

β2em1τ1 [M3(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε)) + x0(ε)(k + u)]τ2(y(t)− y∗)2

+
1
2

β2
1x0(ε)y∗(1 + e−m1τ1 )

∫ t

t−τ1

(x(s − τ1)− x∗)2ds

+
1
2

β1β2x0(ε)v∗(1 + e−m1τ1 )
∫ t

t−τ1

(x(s − τ2)− x∗)2ds

+
1
2

Υ1(ε)β1 M2(ε)(1 + em1τ1 )
∫ t

t−τ1

(x(s)− x∗)2ds

+
1
2

β2
1x2

0(ε)(1 + e−m1τ1 )
∫ t

t−τ1

(y(s − τ1)− y∗)2ds

+

[
1
2

pβ1x0(ε)(1 + em1τ1 ) +
1
2

Λ1x0(ε)β1 M2(ε)(1 + em1τ1 )

] ∫ t

t−τ1

(y(s)− y∗)2ds

+
1
2

β1β2x2
0(ε)(1 + e−m1τ1 )

∫ t

t−τ1

(v(s − τ2)− v∗)2ds

+
1
2

β2x0(ε)β1 M2(ε)(1 + em1τ1 )
∫ t

t−τ1

(v(s)− v∗)2ds

+
1
2

Υ1(ε)β2 M3(ε)(1 + em1τ1 )
∫ t

t−τ2

(x(s)− x∗)2ds

+

[
1
2

kβ2x0(ε)(1 + em1τ1 ) +
1
2

Λ1x0(ε)β2 M3(ε)(1 + em1τ1 )

] ∫ t

t−τ2

(y(s)− y∗)2ds

+

[
1
2

uβ2x0(ε)(1 + em1τ1 ) +
1
2

β2x0(ε)β2 M3(ε)(1 + em1τ1 )

] ∫ t

t−τ2

(v(s)− v∗)2ds

=Ψ1(ε)τ1(x(t)− x∗)2 + Ψ1(ε)em1τ1 τ1(y(t)− y∗)2 + Ψ2(ε)τ2(x(t)− x∗)2 + Ψ2(ε)em1τ1 τ2(y(t)− y∗)2

+ Ψ3(ε)
∫ t

t−τ1

(x(s − τ1)− x∗)2ds + Ψ4(ε)
∫ t

t−τ1

(x(s − τ2)− x∗)2ds + Ψ5(ε)
∫ t

t−τ1

(x(s)− x∗)2ds

+ Ψ6(ε)
∫ t

t−τ1

(y(s − τ1)− y∗)2ds + Ψ7(ε)
∫ t

t−τ1

(y(s)− y∗)2ds

+ Ψ8(ε)
∫ t

t−τ1

(v(s − τ2)− v∗)2ds + Ψ9(ε)
∫ t

t−τ1

(v(s)− v∗)2ds

+ Ψ10(ε)
∫ t

t−τ2

(x(s)− x∗)2ds + Ψ11(ε)
∫ t

t−τ2

(y(s)− y∗)2ds + Ψ12(ε)
∫ t

t−τ2

(v(s)− v∗)2ds.
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For t > T(ε) + 2(τ1 + τ2), we define

U3 =Ψ3(ε)

[∫ t

t−τ1

∫ t

θ
(x(s − τ1)− x∗)2dsdθ + τ1

∫ t

t−τ1

(x(s)− x∗)2ds
]

+ Ψ4(ε)

[∫ t

t−τ1

∫ t

θ
(x(s − τ2)− x∗)2dsdθ + τ1

∫ t

t−τ2

(x(s)− x∗)2ds
]
+ Ψ5(ε)

∫ t

t−τ1

∫ t

θ
(x(s)− x∗)2dsdθ

+ Ψ6(ε)

[∫ t

t−τ1

∫ t

θ
(y(s − τ1)− y∗)2dsdθ + τ1

∫ t

t−τ1

(y(s)− y∗)2ds
]
+ Ψ7(ε)

∫ t

t−τ1

∫ t

θ
(y(s)− y∗)2dsdθ

+ Ψ8(ε)

[∫ t

t−τ1

∫ t

θ
(v(s − τ2)− v∗)2dsdθ + τ1

∫ t

t−τ2

(v(s)− v∗)2ds
]
+ Ψ9(ε)

∫ t

t−τ1

∫ t

θ
(v(s)− v∗)2dsdθ

+ Ψ10(ε)
∫ t

t−τ2

∫ t

θ
(x(s)− x∗)2dsdθ + Ψ11(ε)

∫ t

t−τ2

∫ t

θ
(y(s)− y∗)2dsdθ

+ Ψ12(ε)
∫ t

t−τ2

∫ t

θ
(v(s)− v∗)2dsdθ.

Computing the derivative of U3, we have, for t > T(ε) + 2(τ1 + τ2),

dU3

dt
=Ψ3(ε)

[
−
∫ t

t−τ1

(x(s − τ1)− x∗)2ds + τ1(x(t)− x∗)2
]

+ Ψ4(ε)

[
−
∫ t

t−τ1

(x(s − τ2)− x∗)2ds + τ1(x(t)− x∗)2
]
+ Ψ5(ε)

[
−
∫ t

t−τ1

(x(s)− x∗)2ds + τ1(x(t)− x∗)2
]

+ Ψ6(ε)

[
−
∫ t

t−τ1

(y(s − τ1)− y∗)2ds + τ1(y(t)− y∗)2
]
+ Ψ7(ε)

[
−
∫ t

t−τ1

(y(s)− y∗)2ds + τ1(y(t)− y∗)2
]

+ Ψ8(ε)

[
−
∫ t

t−τ1

(v(s − τ2)− v∗)2ds + τ1(v(t)− v∗)2
]
+ Ψ9(ε)

[
−
∫ t

t−τ1

(v(s)− v∗)2ds + τ1(v(t)− v∗)2
]

+ Ψ10(ε)

[
−
∫ t

t−τ2

(x(s)− x∗)2ds + τ2(x(t)− x∗)2
]
+ Ψ11(ε)

[
−
∫ t

t−τ2

(y(s)− y∗)2ds + τ2(y(t)− y∗)2
]

+ Ψ12(ε)

[
−
∫ t

t−τ2

(v(s)− v∗)2ds + τ2(v(t)− v∗)2
]

.

Hence, we have, for t > T(ε) + 2(τ1 + τ2),

dU3

dt
+ Γ(t) ≤[(Ψ1(ε) + Ψ3(ε) + Ψ4(ε) + Ψ5(ε))τ1 + (Ψ2(ε) + Ψ10(ε))τ2](x(t)− x∗)2

+[(Ψ1(ε)em1τ1 + Ψ6(ε) + Ψ7(ε))τ1 + (Ψ2(ε)em1τ1 + Ψ11(ε))τ2](y(t)− y∗)2

+[(Ψ8(ε) + Ψ9(ε))τ1 + Ψ12(ε)τ2](v(t)− v∗)2.

Further, we have, for t > T(ε) + 2(τ1 + τ2),
dU2

dt
+

dU3

dt

≤−
{

d − r +
r
K
(ν1(ε) + x∗) +

(
c +

rα

K

)
y∗

− [(Ψ1(ε) + Ψ3(ε) + Ψ4(ε) + Ψ5(ε))τ1 + (Ψ2(ε) + Ψ10(ε))τ2]

}
(x(t)− x∗)2

−
{

em1τ1
[
em1τ1 p +

(
c +

rα

K

)
ν1(ε)

]
− [(Ψ1(ε)em1τ1 + Ψ6(ε) + Ψ7(ε))τ1 + (Ψ2(ε)em1τ1 + Ψ11(ε))τ2]

}
(y(t)− y∗)2

+
{

em1τ1
[
d − r +

r
K
(x0(ε) + x∗) +

(
c +

rα

K

)
y∗ + p

]
+
(

c +
rα

K

)
x0(ε)

}
|(x(t)− x∗)(y(t)− y∗)|

+ [(Ψ8(ε) + Ψ9(ε))τ1 + Ψ12(ε)τ2](v(t)− v∗)2.

(16)
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Define
U4 =

1
2
(v(t)− v∗)2,

then we have, for t > T(ε) + 2(τ1 + τ2),
dU4

dt
= (v(t)− v∗)[k(y(t)− y∗) + u(v∗ − v(t))] = k(y(t)− y∗)(v(t)− v∗)− u(v(t)− v∗)2. (17)

Finally, we define
U = U1 + θ1(U2 + U3) + θ2U4.

From (11), (16) and (17), we have, for t > T(ε) + 2(τ1 + τ2),

dU
dt

=
dU1

dt
+ θ1

(
dU2

dt
+

dU3

dt

)
+ θ2

dU4

dt

≤− A11(ε)(x(t)− x∗)2 − A22(ε)(y(t)− y∗)2 − A33(ε)(v(t)− v∗)2

+ 2A12(ε)|x(t)− x∗||y(t)− y∗|+ 2A23(ε)|y(t)− y∗||v(t)− v∗|
=− (|x(t)− x∗|, |y(t)− y∗|, |v(t)− v∗|)J(ε)(|x(t)− x∗|, |y(t)− y∗|, |v(t)− v∗|)T .

(18)

Since J(ε) is positive definite, then using the classic Barbalat’s lemma [42], we have

lim
t→+∞

|x(t)− x∗| = lim
t→+∞

|y(t)− y∗| = lim
t→+∞

|v(t)− v∗| = 0.

Thus, the chronic infection equilibrium E∗ is globally attractive.

4. Conclusions

In this paper, we mainly study the uniform persistence and global attractivity of
chronic infection equilibrium E∗ of model (4). For the uniform persistence of model (4),
Theorem 1 and (5) give explicit expressions of the ultimate upper and lower bounds of
any positive solution of model (4). In fact, the global attractivity of the chronic infection
equilibrium E∗ of model (4) is still a question worthy of further discussion. Using standard
analytical methods, it is not difficult to find that when delay τ1 or τ2 changes, Hopf
bifurcations can appear near the chronic infection equilibrium E∗. Under the condition
m1τ1 = m2τ2, Theorem 2 gives a class of sufficient conditions to determine the global
attractivity of the chronic infection equilibrium E∗. Of course, it is also easy to see that
the verification of these sufficient conditions are complex and highly conservative, relying
strongly on the construction of the Lyapunov functional U = U1 + θ1(U2 + U3) + θ2U4.

To illustrate the feasibility of the application of Theorem 2, we specifically choose the
following parameter values: s = 1, d = 1, r = 0.01, K = 1000, c = 0.01, p = 2, k = 1,
u = 1, α = 2, β1 = 1, β2 = 1.06, τ1 = 0.015, τ2 = 0.01, m1 = 0.02, m2 = 0.03. Then,
we have R0 ≈ 1.040081> 1, m1τ1 = m2τ2, and model (4) has a unique chronic infection
equilibrium E∗ ≈ (0.971165, 0.0191695, 0.0191695). We further choose θ1 = 1 and θ2 = 0.5,
then we can obtain A11(0) ≈ 1.660181 > 0, A12(0) ≈ 1.505625, A22(0) ≈ 1.637131 > 0,
A23(0) = 0.25, and A33(0) ≈ 0.3623425 > 0. It is easy to verify that J(0) is positive definite
and d − r + rx∗

K ≈ 0.99001 > 0. Therefore, the conditions of Theorem 2 are satisfied, and
chronic infection equilibrium E∗ is globally attractive.
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Abstract: The knacks of evolutionary and swarm computing paradigms have been exploited to solve
complex engineering and applied science problems, including parameter estimation for nonlinear
systems. The population-based computational heuristics applied for parameter identification of
nonlinear systems estimate the redundant parameters due to an overparameterization problem.
The aim of this study was to exploit the key term separation (KTS) principle-based identification
model with adaptive evolutionary computing to overcome the overparameterization issue. The
parameter estimation of Hammerstein control autoregressive (HC-AR) systems was conducted
through integration of the KTS idea with the global optimization efficacy of genetic algorithms (GAs).
The proposed approach effectively estimated the actual parameters of the HC-AR system for noiseless
as well as noisy scenarios. The simulation results verified the accuracy, convergence, and robustness
of the proposed scheme. While consistent accuracy and reliability of the designed approach was
validated through statistical assessments on multiple independent trials.

Keywords: Hammerstein nonlinear systems; parameter estimation; bioinspired computing;
genetic algorithms

MSC: 93C10; 93B30

1. Introduction

Parameter estimation is an essential and fundamental step for solving various engi-
neering and applied science problems [1–3]. Parameter estimation and control of nonlinear
systems is a challenging task and has been explored in various studies [4–7]. Nonlinear sys-
tems/processes can be modeled through block structure representation, i.e., Hammerstein,
Wiener, and Hammerstein–Wiener models [8–10]. The Hammerstein model representation
given in Figure 1 consists of two blocks where the first block normally represents the static
nonlinearity, while the second block is a linear dynamical subsystem [11]. The Hammerstein
structure has been used to model different nonlinear processes. For instance, joint stiffness
dynamics [12], heating process [13], cascade water tanks [14], geochemical problems [15],
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pneumatic muscle actuator [16], financial analysis [17], electric load forecasting [18], and
muscle dynamics [19,20].
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Figure 1. Workflow of methodology for HC-AR systems with evolutionary heuristics of GAs.
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The research community proposed various algorithms/methods for parameter esti-
mation for the Hammerstein model owing to its significance in modeling different non-
linear systems: for example, gradient/least squares iterative methods [21–25], fractional
gradient based adaptive strategies [26–29], Newton iterative scheme [30], Kalman filter-
ing [31], reframed model [32], filtering technique [33], separable block approach [34],
Levenberg–Marquardt optimization [35], orthogonal matching pursuit technique [36],
and the maximum likelihood scheme [37]. The biological/nature-inspired computations
through evolutionary/swarm optimization were also explored for Hammerstein system
identification. For instance, Mehmood et al. exploited the strength of genetic algorithms
(GA), differential evolution, pattern search, simulated annealing, and backtracking search
optimization heuristics for Hammerstein structure identification [38–40]. Tariq et al. ex-
ploited the maximum likelihood-based adaptive DE for nonlinear system identification [41].
Raja et al. presented a detailed study of applying GAs to the Hammerstein control autore-
gressive (HC-AR) structure [42]. In [42], the identification of the HC-AR system through
GAs was done through an overparameterization approach by making the system linear in
parameters which causes the estimation of redundant parameters rather than identifying
only the actual parameters of the HC-AR system.

In order to avoid the redundant parameters involved in the overparameterization
identification approach used in genetic algorithms, we integrated the key term separation
(KTS) principle with the evolutionary computing paradigm of a GA that allowed us to
estimate only the actual parameters of the HC-AR system. The KTS principle identifies
and separates the key term in the HC-AR identification model [43] and then exploits the
global search competency of GAs to estimate only the actual parameters of the system.
The performance of the proposed KTS-based scheme was assessed in terms of accuracy,
convergence, robustness, consistency, and reliability for varying parameters of the proposed
scheme. The main contributions of the proposed study are as follows:

• A global search identification scheme through the integration of key term separation,
KTS principle identification model with the evolutionary computing algorithm of GA
is presented for parameter estimation of Hammerstein nonlinear systems.

• The proposed scheme avoids identifying redundant parameters and effectively esti-
mates only the actual parameters of Hammerstein control autoregressive (HC-AR)
systems through minimizing the mean square error-based criterion function.

• The accuracy, robustness, and convergence of the proposed approach is established
through optimal values of estimation-error-based evaluation metrics.

• The stability and reliability of the designed approach is ascertained through statistical
inferences obtained after executing multiple independent trials of the scheme.

The remaining article is organized as follows: Section 2 provides the proposed key
term separation-based identification model for HC-AR systems. Section 3 presents the
evolutionary computing approach of GAs for the KTS-based identification model of HC-
AR systems. Section 4 gives the results of numerical experimentation with elaborative
discussion. Section 5 concludes the findings of the study and lists future research directions.

2. Key Term Separation Identification Model

The block diagram of the HC-AR system is given in Figure 1 while mathematically
represented as [43,44]

h(t) =
E(z)
F(z)

g(t) +
1

F(z)
d(t) (1)

where h(t), g(t), and d(t) represent input, output, and disturbance signal, respectively, while
g(t) is a nonlinear function of known basis and written as

g(t) = k1μ1[g(t)] + k2μ2[g(t)] + . . . + kpμp[g(t)] (2)
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E(z) and F(z) are defined as

E(z) = e0 + e1z−1 + e2z−2+, . . . ,+ene z−ne , (3)

F(z) = 1 + f1z−1 + f2z−2+, . . . ,+ fn f z−n f (4)

Rearrange Equation (1) as

h(t) = (1 − F(z))h(t) + E(z)g(t) + d(t) (5)

while using Equations (2)–(4) in Equation (5) and assuming e0 = 1. Apply the key term
separation (KTS) principle by considering g(t) as a key term

h(t) = −
n f

∑
i=1

fi[h(t − i)] +
ne
∑

i=0
ei[g(t − i)] + d(t)

= −
n f

∑
i=1

fi[h(t − i)] + e0[g(t)] +
ne
∑

i=1
ei[g(t − i)] + d(t)

= −
n f

∑
i=1

fi[h(t − i)] +
ne
∑

i=1
ei[g(t − i)] +

p
∑

i=1
kiμi[g(t)] + d(t)

(6)

Write Equation (6) in terms of information and parameter vectors as

h(t) = αT
f (t)f +αT

e (t)e + μT(t)k + d(t) (7)

where the information vectors are defined as

α f (t) =
[
−h(t − 1),−h(t − 2), . . . ,−h

(
t − n f

)]T ∈ R
n f , (8)

αe(t) = [g(t − 1), g(t − 2), . . . , g(t − ne)]
T ∈ R

ne , (9)

μ(t) =
[
μ1[g(t)], μ2[g(t)], . . . , μp[g(t)]

]T ∈ R
p, (10)

and the corresponding parameter vectors are

f =
[

f1, f2, . . . , fn f

]T ∈ R
n f , (11)

e = [e1, e2, . . . , ene ]
T ∈ R

ne , (12)

k =
[
k1, k2, . . . , kp

]T ∈ R
p. (13)

Equations (7)–(13) represent the KTS identification model for HC-AR systems that
avoids the estimation of redundant parameters due to the overparameterization approach.

3. Proposed Methodology for KTS System Model

The proposed methodology for parameter estimation of the KTS-based identification
model of HC-AR systems was developed in two phases. First, the objective/fitness function
was formulated for the KTS model of the HC-AR system presented in Section 2. Second,
the HC-AR system was identified through estimating the actual parameters of the HC-AR
system using optimization knacks of the evolutionary computing paradigm of a GA. The
overall flow diagram of the proposed study in terms of fundamental compartments is
provided in Figure 1.

3.1. Fitness Function Formulation

The iterative and recursive identification approaches for parameter estimation of
nonlinear systems develop the identification model by expressing the system output as
a product of information and parameter vectors [23]. However, the population-based
stochastic computing techniques have no such requirement. The fitness function for a GA
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based on an evolutionary computing paradigm is formulated by exploiting the strength of
approximation theory in mean square error sense as

δ =
1
N

N

∑
j=1

[
h(tj)− ĥ(tj)

]2
, (14)

where N represents the number of samples involved in the parameter identification of HC-
AR systems. The desired response h is calculated using Equation (7) while the estimated
response is given by the following:

ĥ(t) = αT
f (t)f̂ +αT

e (t)ê + μT(t)k̂. (15)

The estimated parameter is written as

θ̂ = [f̂, ê, k̂], (16)

where
f̂ =

[
f̂1, f̂2, . . . , f̂n f

]T ∈ R
n f , (17)

ê = [ê1, ê2, . . . , êne ]
T ∈ R

ne , (18)

k̂ =
[
k̂1, k̂2, . . . , k̂p

]T ∈ R
p. (19)

Now the objective was to estimate the parameters of the HC-AR system through
minimizing the fitness of Equation (14) using a GA-based evolutionary computing approach
such that the desired response given by Equation (7) approached the estimate calculated
from Equation (15).

3.2. Optimization Procedure: Evolutionary Computing Paradigm

The legacy of global optimization knacks of genetic algorithms (GAs) belongs to a class
of evolutionary computational paradigm that is narrated here which is used for learning
the parameters of the HC-AR system as portrayed in the fitness function in Equation (14).

The GAs were introduced in a pioneer work conducted by Holland to mimic an opti-
mization task [45]. Normally, the adaptative performance of GAs to find the appropriate
candidate solution in a large search dimension is controlled by a reproduction mechanism
consisting of the feasible selection of individuals in the nest population, viable crossover
operation for the offspring generation, and the diversity maintenance procedure of mu-
tation. GAs were implemented since their introduction in a variety of research domains
such as the viable optimization of closed-loop supply chain design [46], optimization of
the weights of neural networks representing the nonlinear singular prediction differential
system [47], optimization of electroless NiB coating model [48], optimization of the solar
selective absorber design [49], and the crack sensitivity control system for nickel-based laser
coating [50]. We were motivated/inspired from these significant applications of GA-based
evolutionary computing and used GAs for parameter identification of the HC-AR system.

The process flow structure, in terms of the fundamental steps the Gas used for the
optimization of the HC-AR system is shown in Figure 2, i.e., representation of the pop-
ulation, fitness-based ranking, selection of the matting pair, crossover procedure, and
mutation. A generic process workflow in the form of a block structure is portrayed in
Figure 2 for the GAs that were used for the optimization mechanism of the HC-AR system.
The simulation and experimentation of GAs was conducted with the help of the invoking
routines/program/tools of optimization available in the MATLAB toolbox for optimization
while Windows 10 was used as an operating system. The necessary details of GAs with
their implementation procedure is given in pseudocode as provided in Algorithm 1.
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Algorithm 1: Pseudocode of evolutionary computing with GAs for HC-AR system identification.

Start: Evolutionary computing of genetic algorithms (GAs)
Inputs: Chromosomes or individual representation as follows:

θ = [θ f , θe, θk] = [( f1, f2, . . . , fn f ) (e1, e2, . . . , ene ) (k1, k2, . . . , knk )]

Population for an ensemble of chromosomes or individuals is given as

P =

⎡⎢⎢⎢⎣
θ1
θ2
...

θl

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
( f1,1, f2,1, . . . , fn f ,1) (e1,1, e2,1, . . . , ene ,1) (k1,1, k2,1, . . . , knk ,1)

( f1,2, f2,2, . . . , fn f ,2) (e1,2, e2,2, . . . , ene ,2) (k1,2, k2,2, . . . , knk ,2)
...

...
...

( f1,l , f2,l , . . . , fn f ,l) (e1,l , e2,l , . . . , ene ,l) (k1,l , k2,l , . . . , knk ,l)

⎤⎥⎥⎥⎥⎦,

for l members in θ in P
Output: Global Best θ in P
Begin GAs

//Initialize
Arbitrarily formulate θ with bounded pseudo real numbers.
A group of l number of θ represents initial P.
//Termination/Stoppage Criteria
Set stoppage of execution of GAs for the following conditions:

Desire fitness attained i.e., δ → 10−16,
Fitness function-Tolerance attained i.e., TolFun → 10−20,
Constrained-Tolerance attained, i.e., TolCon → 10−20,
Set total number of generations = 600,
Other default of GA routine in optimization toolbox

//Main loop of GA
While {until termination conditions attained} do %

//Fitness calculation step
Evaluate δ using Expression (14) and repeat the procedure for each θ in P
//Check for termination requirements
If any of termination level attained then go out of the while loop
else continues
//Ranking of individual step
Rank each θ on the basis of quality of fitness θ achieved.
//Reproduction step through GA operators
Appropriate/suitable invoking for
selection (Stochastic uniform via routine ‘@selectionstochunif’),
crossover (heuristics via rountine ‘@crossoverheuristic’),
mutations (adaptive feasible via routine ‘@mutationadaptfeasible’)
Elitism operations up to 5%, i.e., elitism count set as 26 best ranking
individuals in the population P
Modify/update P and go to fitness calculation step

End
//Storage step of GAs outcomes
Store the global best θ with credentials of fitness attained, time spent,
generations exectuted and fitness function counts of the algorithm.

End GAs

Statistical Analysis:

Dataset generation for the statistical observation by repetition of GAs for a sufficiently large
number of multiple execution to identify the parameters of the HC-AR and analysis of these
datasets was performed for exhaustive assessments.
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06 HC-AR

 

Figure 2. Overview of reproduction operators of GAs representing HC-AR systems.

3.3. Evaluation Metrics

In order to assess the performance of the evolutionary computing paradigm for
parameter estimation of nonlinear systems through the KTS-based identification model of
HC-AR systems, we defined three evaluation metrics. The formulated assessment criterions
are mean square error based on the difference between the responses, i.e., (MSE)h; as given
in Equation (14), mean square error based on the difference between the desired and the
estimated parameters, i.e., (MSE)θ; and the normalized parameter deviation, i.e., NPD.

(MSE)θ = mean
(
θ− θ̂

)2, (20)

NPD =
‖θ− θ̂‖
‖θ‖ (21)

where ‖·‖ denote the 2-norm of a vector.

4. Results of Numerical Experimentation with Discussion

The results of the numerical experimentation for parameter estimation for two HC-
AR systems are presented in this section. In problem 1, a standard HC-AR system was
considered, while in problem 2, a practical application of an HC-AR system representing
the dynamics of stimulated muscle model was considered.
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4.1. Problem 1

In Problem 1, the HC-AR system was considered with the following parameters, as
taken from recent relevant studies to demonstrate the effectiveness of the proposed schemes:

h(t) = E(z)
F(z) g(t) + 1

F(z)d(t),

F(z) = 1 + 1.61z−1 + 0.8z−2,

E(z) = 0.85z−1 + 0.65z−2,

g(t) = k1μ1[g(t)] + k2μ2[g(t)] = 1.0g(t) + 0.5g2(t)

The actual parameters of the HC-AR system were

θ = [f, e, k]T = [ f1, f2, e1, e2 k1, k2]
T

= [θ1, θ2, θ3, θ4, θ5, θ6]
T

= [1.6, 0.8, 0.85, 0.65, 1, 0.5]T
(22)

Simulations were performed in MATLAB 2020b running on an Asuspro Laptop core
i7 with 16GB RAM. The input g was randomly generated with characteristics of zero-mean
and unit variance. The disturbance signal was generated with characteristics of Gaussian
distribution having zero-mean and constant variance. The robustness of the proposed
scheme was assessed for three disturbance levels, i.e., 0, 0.01, and 0.1. The parameter
settings of the GA used in the simulations are given in Algorithm 1. The performance of
the proposed scheme was deeply investigated through the results of executing a single
random run, the statistics through multiple autonomous trials, and evaluating the results
for the three different evaluation metrics described in Section 3.3.

The results of the proposed scheme generated for a single random run based on evalu-
ation criteria from Equation (14) in terms of learning curve, best individual scores (best,
worst, and mean), and average distance between individuals are provided in Figures 3–5
for 0, 0.01, and 0.1 noise levels, respectively. The results indicated that the proposed identi-
fication scheme accurately estimated the parameters of the HC-AR system by optimizing
the cost function through minimizing the error between the desired and the estimated
responses.

 
Figure 3. Results of Problem 1 in terms of learning curve, best individual scores, and average distance
for no noise scenario.

142



Mathematics 2022, 10, 1001

Figure 4. Results of Problem 1 in terms of learning curve, best individual scores, and average distance
for 0.01 noise level.

Figure 5. Results of Problem 1 in terms of learning curve, best individual scores, and average distance
for 0.1 noise level.

The one good run of the evolutionary approach does not guarantee consistently
accurate performance. The identification of the HC-AR system through the proposed
scheme was also investigated for multiple autonomous executions, and the results are
given in Figures 6 and 7 for standard and ascending order, respectively, in the case of all
three evaluation metrics. The results verified the consistently accurate performance of the
proposed methodology for 70 autonomous trials in the case of all three evaluation metrics
given in Equations (14), (20) and (21).
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(a)  

 
(b)  

 
(c)  

Figure 6. Results of autonomous executions through different evaluation metrics for Problem 1.
(a) MSE through estimated response (b) MSE through estimated parameters (c) Normalized parame-
ter deviation.
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(a)  

 
(b)  

 
(c)  

Figure 7. Result of autonomous executions in ascending order through different evaluation metrics
for Problem 1. (a) MSE (ascending order) through estimated response (b) MSE (ascending order)
through estimated parameters (c) Normalized (ascending order) parameter deviation.

The stability of the design approach was assessed through statistical measurements of
the best, mean, and standard deviation. The results of the statistical indices are presented
in Table 1 for all considered disturbances and evaluation metrics. The mean values for
evaluation criteria (14) were 7.4405 × 10−7, 3.0590 × 10−4, and 1.7138 × 10−2 for distur-
bance level 0, 0.001, and 0.1, respectively, while the respective mean values in the case of
evaluation measures (20) and (21) were 8.0612 × 10−6, 2.8981 × 10−3, 1.4764 × 10−1 and
2.0806 × 10−3, 4.7970 × 10−2, 3.6962 × 10−1, respectively. For a better interpretation, the
statistical results are also given in Figure 13. It was witnessed that the proposed scheme con-
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sistently provided the accurate results for all considered disturbance levels in the HC-AR
system (22). However, the precision level decreased with an increase in disturbance level.
The statistical results endorsed the stability, consistently accurate performance, robustness,
and reliability of the proposed scheme.

Table 1. Results of statistical indices for different evaluation metrics in Problem 1.

Noise Statistical Indices MSE Responses MSE Parameters NPD

0 Minimum 1.8583 × 10−14 2.1427 × 10−17 3.5541 × 10−7

Mean 7.4405 × 10−17 8.0612 × 10−6 2.0806 × 10−3

Standard Deviation 2.6148 × 10−6 3.6142 × 10−5 5.0126 × 10−3

0.01 Minimum 4.9615 × 10−5 6.2525 × 10−5 8.1884 × 10−3

Mean 3.0590 × 10−4 2.8981 × 10−3 4.7970 × 10−2

Standard Deviation 2.0307 × 10−4 4.3865 × 10−3 2.8608 × 10−2

0.1 Minimum 1.7040 × 10−3 1.4920 × 10−2 1.2649 × 10−1

Mean 1.7138 × 10−2 1.4764 × 10−1 3.6962 × 10−1

Standard Deviation 1.3315 × 10−2 1.1119 × 10−1 1.4840 × 10−1

 
(a)  

 
(b)  

Figure 8. Cont.

146



Mathematics 2022, 10, 1001

 
(c)  

Figure 8. Graphic interpretation of statistics for different evaluation metrics in the case of Prob-
lem 1. (a) MSE through estimated responses (b) MSE through estimated parameters (c) Normalized
parameter deviation.

The comparison of the actual parameters of the HC-AR system (22) with the estimated
parameters through the proposed scheme was conducted, and the results are presented in
Figure 9 and Table 2 along with the actual system parameters. The results validated the
accurate and convergent performance of the proposed scheme in estimating the parameters
of the HC-AR system (22) for different evaluation measurements based on mean square
error of the responses (14), mean square error of the parameters (20), and normalized
parameter deviation (21).
Table 2. Comparison of the estimated parameter values with the actual parameters of Problem 1.

Metric Noise θ1 θ2 θ3 θ4 θ5 θ6 Metric Value

MSE 0 1.6000 0.8000 0.8500 0.6500 1.0000 0.5000 2.14 × 10−17

0.01 1.5934 0.7972 0.8534 0.6614 1.0101 0.5089 6.25 × 10−5

0.1 1.7468 0.9828 0.9678 0.7525 1.0791 0.5626 1.49 × 10−2

NWD 0 1.6000 0.8000 0.8500 0.6500 1.0000 0.5000 3.55 × 10−7

0.01 1.5934 0.7972 0.8534 0.6614 1.0101 0.5089 8.19 × 10−3

0.1 1.7468 0.9828 0.9678 0.7525 1.0791 0.5626 1.26 × 10−1

DW 1.6000 0.8000 0.8500 0.6500 1.0000 0.5000 0

While comparing the proposed scheme with the conventional evolutionary
approaches [42], the KTS-based GA was more efficient than the conventional GA pre-
sented in [42] for the HC-AR identification in the sense that it avoided the estimation of
redundant parameters and estimated only the actual parameters of the HC-AR system,
thus, making it computationally more efficient than the conventional GA.
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(a)  

 
(b)  

 
(c)  

Figure 9. Results of estimated parameters in comparison with actual HC-AR parameters consid-
ered in Problem 1. (a) MSE through estimated responses (b) MSE through estimated parameters
(c) Normalized parameter deviation.

4.2. Problem 2

In Problem 2, a practical application of an HC-AR system representing the muscle
dynamics required to restore the functional use of paralyzed muscles through automati-
cally controlled stimulations was considered by taking the actual parameters from the real
time experimentations performed in the rehabilitation center of the Southampton Univer-
sity [51].
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h(t) = E(z)
F(z) g(t) + 1

F(z)d(t),

F(z) = 1 − z−1 + 0.8z−2,

E(z) = 2.8z−1 − 4.8z−2,

g(t) = k1μ1[g(t)] + k2μ2[g(t)] = 1.68g(t)− 2.88g2(t) + 3.42g3(t)

The actual parameters of the HC-AR system representing the dynamics of the stimu-
lated muscle model are

θ = [f, e, k]T = [ f1, f2, e1, e2 k1, k2, k3]
T

= [θ1, θ2, θ3, θ4, θ5, θ6, θ7]
T

= [−1.0, 0.8, 2.8, −4.8, 1.68, −2.88, 3.42]T
(23)

In this problem, the same input and disturbance signal were considered as taken from
Problem 1. The robustness of the proposed scheme in Problem 2 was assessed for three
disturbance levels, i.e., 0, 0.001, and 0.01.

The results of the proposed scheme for Problem 2 of the HC-AR system (23) generated
from a single random run based on the evaluation criteria off Equation (14) in terms
of learning curve, best individual scores (best, worst, and mean), and average distance
between individuals are provided in Figures 10–12 for 0, 0.001, and 0.01 noise levels,
respectively. The results indicated that the proposed identification scheme accurately
estimated the parameters of the HC-AR system (23) by optimizing the cost function through
minimizing the error between the desired and the estimated responses.

 
Figure 10. Results of Problem 2 in terms of learning curve, best individual scores, and average
distance for 0 noise level.
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Figure 11. Results of Problem 2 in terms of learning curve, best individual scores, and average
distance for 0.001 noise level.

 

Figure 12. Results of Problem 2 in terms of learning curve, best individual scores, and average
distance for 0.01 noise level.

The comparison of the actual parameters of the HC-AR system (23) with the estimated
parameters through the proposed scheme was conducted, and the results based on the
best run are presented in Figure 13 and Table 3 along with the actual system parameters.
The results validated the accurate and convergent performance of the proposed scheme in
estimating the parameters of the muscle model represented through the HC-AR system (23)
for different evaluation measures based on the mean square error of the responses (14), the
mean square error of the parameters (20), and the normalized parameter deviation (21).
This case study presented a KTS-based GA approach for parameter estimation of an HC-AR
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system representing the parameters of muscle dynamics, while the details for the real
rehabilitation procedure can be seen in [51].

Table 3. Comparison of the estimated parameter values with the actual parameters of Problem 2.

Metric Noise θ1 θ2 θ3 θ4 θ5 θ6 θ7 Value

MSE 0 −1.0001 0.8000 2.7942 −4.7928 1.6636 −2.9094 3.4155 4.88 × 10−5

0.001 −0.9999 0.8001 2.7836 −4.7786 1.7292 −2.8884 3.4251 4.64 × 10−4

0.01 −1.0001 0.8000 2.7912 −4.7903 1.6224 −2.9880 3.3795 2.40 × 10−3

NWD 0 −1.0001 0.8000 2.7942 −4.7928 1.6636 −2.9094 3.4155 4.73 × 10−3

0.001 −0.9999 0.8001 2.7836 −4.7786 1.7292 −2.8884 3.4251 7.66 × 10−3

0.01 −1.0001 0.8000 2.7912 −4.7903 1.6224 −2.9880 3.3795 1.74 × 10−2

DW −1.0000 0.8000 2.8000 −4.8000 1.6800 −2.8800 3.4200 0

 
(a)  

 
(b)  

Figure 13. Cont.
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(c)  

Figure 13. Results of estimated parameters in comparison with actual HC-AR parameters consid-
ered in Problem 2. (a) MSE through estimated responses (b) MSE through estimated parameters
(c) Normalized parameter deviation.

5. Conclusions

The conclusions drawn from the study are

• The integration of an evolutionary computing paradigm of genetic algorithms, GA,
with a key term separation-based identification model was presented for parameter
estimation of Hammerstein control autoregressive (HC-AR) systems.

• The proposed identification scheme effectively estimated only the actual parame-
ters of the HC-AR system without estimating the redundant parameters due to an
overparameterization approach.

• The accurate and convergent behavior of the proposed strategy was ascertained
through achieving an optimal value of different evaluation metrics based on response
error and parameter estimation error.

• The results of the Monte Carlo simulations and statistical indices established the
consistent accuracy of the proposed scheme.

• The accurate estimation of HC-AR parameters representing the dynamics of a muscle
model for the rehabilitation of paralyzed muscles further endorsed the efficacy of the
design approach.

The proposed KTS-based evolutionary optimization scheme seems to be an attractive
alternative to be exploited for solving complex nonlinear problems [52–56].
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Abstract: In this paper, we investigate the pth moment exponential stability of impulsive stochastic
delay systems with Markovian switched delay effects. The model we consider here is rather different
from the models in the existing literature. In particular, the delay is a Markov chain, which is quite
different from the traditional deterministic delay. By using the Markov chain theory, stochastic
analysis theory, Razumikhin technology and the Lyaponov method, we derive a criterion of pth
moment exponential stability for the suggested system. Finally, an example is provided to illustrate
the effectiveness of the obtained result.
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1. Introduction

Stochastic systems with Markovian switching is an important class of stochastic hybrid
systems. In the real world, they are widely used in many fields such as automatic control,
aircraft and air traffic control and electrics. So, the research on stochastic systems with
Markovian switching has attracted an increasing amount of attention. Just as studying
the stability for stochastic systems is important, the stability for stochastic systems with
Markovian switching is also a significant issue. In the past several decades, a large number
of works on this topic have been reported in the literature. For example, Mao in [1] consid-
ered the stability of stochastic differential equations with Markovian switching. Later, he
generalized the above result to stochastic functional differential equations [2] and stochastic
delay interval systems [3]. Recently, Ref. [4] considered the mean-square stability for a class
of singular stochastic systems with Markovian switching. Ref. [5] derived the stability in
distribution of stochastic differential delay equations with Markovian switching based on
the pure probability method. By using the multiple Lyapunov functions method, Ref. [6]
considered the asymptotic stability of stochastic differential equations with Markovian
switching , which generalized the result in [7]. Ref. [8] applied a mode-dependent param-
eter approach to give a sufficient condition for the finite-time stability of Itô’s stochastic
systems with Markovian switching. Refs. [9–14] considered the stability and the related
questions for the Markovian jump linear systems by using different approaches. In [15,16],
the authors obtained some properties for stochastic systems with Markovian switching,
and then they also applied these properties to study the networked control systems with
delays. Ref. [17] established the exponential-m stability for stochastic switched systems.
Refs. [18–21] considered the stability for stochastic systems with semi-Markovian switching.
Ref. [22] obtained the pth moment exponential stability for stochastic pantograph systems
with Markovian switching, which is an important class of stochastic hybrid systems with
unbounded delays. In addition, the “dwell time” method has been used to investigate
switching systems. In [23], Hespanha and Morse proved that a switched system is exponen-
tially stable if all the subsystems are exponentially stable and its average dwell time is large
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enough. From then on, a large number of stability criteria have been reported by using
“dwell time” method. For example, Ref. [24] studied the stochastic stability of continuous-
time systems with random switching signals by using the Lyapunov approach, the LMI
(i.e., linear matrix inequalities, see [25]) technique and the “dwell time” method. Ref. [26]
used the “dwell time” and the non-convolution type multiple Lyapunov functionals to
derive the almost sure exponential stability for switched delay systems with nonlinear
stochastic perturbations. Ref. [27] applied the average dwell time approach to obtain
the stability results for neutral stochastic switching delay systems. By using the average
dwell time method and Lyapunov–Krasovskii functional theory, an H∞ control problem for
network-based stochastic systems with two additive delays was studied in [28,29]. The are
also some other methods used in the stability analysis for switching systems. For example,
Wu et al. in [30] applied Itô’s formula and Dynkin’s formula to investigate the stability
on stochastic systems with state-dependent switching. Ref. [31] obtained some stability
results for slowly switched systems by using the multiple discontinuous Lyapunov function
approach. By using the comparison principle and the multiple Lyapunov functions method,
Ref. [32] studied the stability of deterministic and stochastic switched systems. For other
results with respect to the stability of stochastic differential equations with Markovian
switching, please refer to Refs. [33–36] and references therein. For a survey of stability for
stochastic hybrid systems, please refer to [37].

In most of the existing works, the switching signals are deterministic functions. How-
ever, in the real world, the delay switching is not usually determined. In other words, the
delay switching may be random. Therefore, it is interesting and challenging to investigate
the stability of randomly switched delay systems. To the best of our knowledge, there
have been only a few results on this issue. For example, Ref. [38] studied the moment
exponential stability of random delay systems with two-time-scale Markovian switching
and the main tool based on the theory of two-time-scale Markov chains. However, the
noise disturbance in [38] was ignored.

In addition, impulsive stochastic systems are also important systems in control engi-
neering. There is also some important literature in the stability for impulsive stochastic
systems. For example, Refs. [39,40] considered the exponential stability for impulsive
stochastic delay differential systems. Ref. [41] established the exponential stability for
neutral impulsive stochastic delay differential systems. Ref. [42] designed the impulsive
controller for stochastic recurrent neural networks. Ref. [43] studied the stability for impul-
sive stochastic differential equations driven by G-Brownian motion. For the other stability
analysis for impulsive stochastic systems, please refer to [44–46] and references therein.

Inspired by the above discussion, we can see that there is still no result for the pth
moment exponential stability for impulsive stochastic functional differential equations
with Markovian switched delay effects. Thus, in this paper, we will focus on this question.
The systems combine the characteristics of the continuous-time systems and discrete-time
systems, which leads the stability analysis for such systems being more complicated than in
the case of the pure continuous-time systems or discrete-time systems. By applying Markov
chain theory, stochastic analysis theory and the Razumikhin technique, we establish a
criterion of pth moment exponential stability. Finally, an example is provided to verify the
efficiency of the obtained result.

The rest of the paper is organized as follows. In Section 2, we introduce the model
and some preliminaries. The main result and its proof will be presented in Section 3. An
illustrative example is provided in Section 4. Conclusions are drawn in Section 5.

Notation 1. Throughout this paper, we use the following notations. Let (Ω,F , {Ft}t≥0,P) be a
complete probability space with a natural filtration {Ft}t≥0 satisfying the usual condition (i.e., it is right
continuous, and F0 contains all P-null sets). For r > 0, the symbol PC([−r, 0],Rn) denotes the family
of piecewise right continuous function ϕ from [−r, 0] to Rn with the norm ‖ϕ‖ = sup−r≤u≤0 |ϕ(u)|.
We use PLp

F0
([−r, 0],Rn) to denote the family of all F0-measurable, PC([−r, 0],Rn)-valued random

variables satisfying sup−r≤u≤0 E|ϕ(u)|p < ∞. We use E[·] to denote the correspondent expectation
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operator with respect to the probability measure P. Let Bt = B(t) = (B1(t), B2(t), · · · , Bm(t))T be
an m-dimensional Brownian motion defined on a complete probability space.

2. Preliminaries

Let τ(t) be a right-continuous Markov chain on the probability space (Ω,F ,P) taking
values in a finite state space S = {r1, r2, · · · , rm} with generator Q = (qij)m×m given by:

P(τ(t + Δt) = rj|τ(t) = ri) =

{
qijΔt + o(Δt) i f i �= j

1 + qiiΔt + o(Δt) i f i = j

where Δt > 0. Here, qij ≥ 0 is the transition rate from ri to rj if ri �= rj, while qii =
−∑j �=i qij = −qi. Define ξ0 = 0, ξk = inf{t > ξk−1; τ(t) �= τ(ξk−1)} and r(n) = τ(ξn).
From Markov chain theory, we know that {r(n), n ∈ Z} is a Markov chain (called the
embedded chain of τ(t)). Its transition probability is r(1)ij = (1 − δij)

qij
qi

, where δij = 1
if i = j, and δij = 0 if i �= j. We use R = (Rij) to denote the transition probability
matrix of embedded chain {r(n), n ∈ Z}. In this paper, we assume that the Markov
chain {τ(t), t ≥ 0} is independent of the Brownian motion {B(t), t ≥ 0}. For the sake of
simplicity, we denote qi

.
= qri . We denote λ = max{qi, i ∈ S}, v = maxi{1 − qi

λ , i ∈ S} and
q = maxi,j qij.

Assumption 1. In this paper, we always assume that v, qandλ satisfy v ≤ q
λ .

We will consider the following impulsive stochastic delay differential equation with
Markovian switched delay effects:⎧⎪⎨⎪⎩

dx(t) = f (t, x(t − τ(t)), x(t))dt + g(t, x(t − τ(t)), x(t))dBt, t �= tk,

x(tk) = Ik(t−k − τ(t−k ), x(t−k − τ(t−k ))), k = 1, 2, · · · , t = tk,

x0 = ϕ,

(1)

where ϕ = {ϕ(u) : u ∈ [−r, 0]} ∈ PLp
F0
([−r, 0],Rn), f : R+ × Rn × Rn → Rn and

g : R+ × Rn × Rn → Rn×m are all Borel measurable. r = max{r1, r2, · · · , rm}. x(t−k )
and x(t+k ) denote the left and right limits at tk, respectively. Here, the impulse instants
{tk}∞

k=1 are all deterministic. Δx(tk) = x(tk)− x(t−k ), i.e., x(t) is right-continuous at the
impulse moment. We assume f , g and Ik satisfy the Lips conditions and the linear growth
condition (see also [44]) in order to guarantee the existence and uniqueness of solutions
x(t) for system (1). We also assume that f (t, 0, 0) = 0, g(t, 0, 0) = 0 and Ik(t, 0) = 0 for all
k = 1, 2, · · · , which implies that the trivial solution of system (1) exists.

Now, we will provide a real example to show the usefulness of the model (1).

Example 1 (Electronic control systems). On the road, if the vehicle flow reaches A, the red light
is on. If the vehicle flow is below A, the green light is on. We define a two states of Markov chains
{τ(t), t ≥ 0} with generator:

Q =

[
q11 q12
q21 q22

]
,

{the vehicle f low exceed A} = {the red light is on} = {τ(t) = r1}. {the vehicle f low
notexceed A} = {the green light is on} = {τ(t) = r2}. The red light or green light sign
will transfer to the electronic control system. For different sign lights, the sign transport delay is
different. Moreover, the electronic control system is perturbed by noise, and the impulsive sign
emerge in some determined instants. If the red light (or green light) is on, the electronic control
system can be described by the following two systems, respectively:{

dx(t) = f (t, x(t), x(t − ri))dt + g(t, x(t), x(t − ri))dBt,

x(tk) = Ik(t−k − ri, x(t−k − ri)), k = 1, 2, · · · , t = tk,
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where i = 1, 2. However, the vehicle flow is random, so the electronic control system randomly
switched during above two systems, and the switching law is governed by the Markov chain τ(t).
In other words, we can describe the electronic control system by Equation (1). A natural question is
how to consider its stability.

Definition 1. The trivial solution of system (1) is said to be pth moment exponentially stable if
there is a pair of positive constants C and β, such that:

E|x(t)|p ≤ CE‖ϕ‖pe−βt on t ≥ 0

for all ϕ ∈ PLp
F0
([−r, 0],Rn).

Remark 1. When p = 2, it is said to be mean square exponentially stable.

In order to use Lyapunov’s method, we need the following definition.

Definition 2. The function V = V(t, x) : R+ ×Rn → R+ belongs to class Ψ if it is continuously
differentiable once in t and twice in x.

Now, we define an operator LV from R+ ×Rn ×Rn to R by:

LV(t, x(t − ri), x(t)) = Vt(t, x(t)) + Vx(t, x(t)) f (t, x(t − ri), x(t)) +
1
2

trace[gT(t)Vxx(t, x(t))g(t)],

where g(t) = g(t, x(t − ri), x(t)), Vt(t, x(t)) = ∂V(t,x(t))
∂t , Vx(t, x(t)) =

(
∂V(t,x(t))

∂x1
, ∂V(t,x(t))

∂x2
,

· · · , ∂V(t,x(t))
∂xn

)
and Vxx(t, x(t)) =

(
∂2V(t,x(t))

∂xi∂xj

)
n×n

.

Before stating our main result in this paper, we need the following two lemmas, which
are useful in the proof of the main result. The first lemma can be found in any monograph
on Markov chain theory (see e.g., [47]).

Lemma 1. The transition probability Pij(t) of the Markov chain {τ(t), t ≥ 0} can be calculated by:

Pij(t) =
∞

∑
n=0

P̃(n)
ij

(λt)n

n!
e−λt, (2)

where P̃(n)
ij is the i,jth component of the nth power of the matrix P̃, which is defined as follows:

P̃ij =

{
1 − qi

λ , i f j = i,
qi
λ Rij, i f j �= i.

Lemma 2. The transition probability Pij(t) has the following estimate:

Pij(t) ≤ δije−λt +
∞

∑
n=1

q
λ

( q
λ
(m − 1) + 2v

)n−1 (λt)n

n!
e−λt.

Proof. First, when k = 1, from Assumption 1, we know that P̃(1)
ij ≤ q

λ . Next, we will prove

that for any ri and rj and k ≥ 2, P̃(k)
ij ≤ q

λ (
q
λ (m − 1) + k

k−1 v)k−1. If k = 2, the conclusion is
obvious. We assume that the conclusion holds for k = n − 1. Then, we have:
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P̃(n)
ij = ∑

s
P̃(n−1)

is P̃(1)
sj

≤ q
λ

v
( q

λ
(m − 1) +

n − 1
n − 2

v
)n−2

+ (m − 1)
( q

λ

)2( q
λ
(m − 1) +

n − 1
n − 2

v
)n−2

=
q
λ

( q
λ
(m − 1) +

n − 1
n − 2

v
)n−2( q

λ
(m − 1) + v

)
=

q
λ

( q
λ
(m − 1) +

n − 1
n − 2

v
)n−1 q

λ (m − 1) + v
q
λ (m − 1) + n−1

n−2 v

≤ q
λ

( q
λ
(m − 1) +

n − 1
n − 2

v
)n−1

≤ q
λ

( q
λ
(m − 1) +

n
n − 1

v
)n−1

.

Substituting the above inequality into (2), we obtain:

Pij(t) =
∞

∑
n=0

P̃(n)
ij

(λt)n

n!
e−λt

=P̃(0)
ij e−λt +

∞

∑
n=1

P̃(n)
ij

(λt)n

n!
e−λt

≤δije−λt +

[
q
λ
+

∞

∑
n=2

q
λ

( q
λ
(m − 1) +

n
n − 1

v
)n−1

]
(λt)n

n!
e−λt

≤δije−λt +
∞

∑
n=1

q
λ

( q
λ
(m − 1) + 2v

)n−1 (λt)n

n!
e−λt.

3. Main Results

In this section, we will use the Markov chain theory, stochastic analysis theory and
Lyapunov’s method to obtain a criterion for pth moment exponential stability of system (1).

Theorem 1. Let q, m, v, λ, γ, c, c1, c2, p, θ, ρ, β, M ≥ c2
c1

e(γ+λ−2vλ−θ−q(m−1))r ≥ 1 be all positive
numbers. If there exists a function V ∈ Ψ such that the following conditions hold:

(1) For all x ∈ Rn:
c1|x|p ≤ V(t, x) ≤ c2|x|p,

(2) For all k ∈ N:

EV(tk, x(tk)) ≤ ρEV(t−k − τ(t−k ), x(t−k − τ(t−k ))),

(3) For all k ∈ N and t ∈ [tk−1, tk):

max
i∈S

[
e−λδ

ELV(t, x(t − ri), x(t)) +
m

∑
j=1

e(q(m−1)+2vλ)η − 1
m − 1 + 2vλ

q
e−λδ

ELV(t, x(t − rj), x(t))
]
≤ cEV(t, x(t))

if EV(t + u, x(t + u)) ≤ βEV(t, x(t)) for all u ∈ [−r, 0] and β ≥ Me(γ+λ−2vλ−θ−q(m−1))r,
where η = maxk{tk − tk−1} < ∞ and δ = mink{tk − tk−1} > 0.

(4) θ + q(m − 1) + 2vλ − λ − γ < 0,

(5) ρ supi e−(θ+q(m−1)+2vλ−λ−γ)ri ≤ ρ
∑m

i=1 e−(θ+q(m−1)+2vλ−λ−γ)ri

m−1+ 2vλ
q

≤ e(λ−q(m−1)−2vλ)η ,

(6) log c1
c2
+ [c + λ + γ − 2vλ − θ − q(m − 1)]η < [λ + γ − 2vλ − θ − q(m − 1)]r.
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Then, system (1) is p-moment exponentially stable.

Proof. First, we assume that E‖ϕ‖p �= 0. We will prove that for any k and t ∈ [tk, tk+1):

EV(t, x(t)) ≤ c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)t. (3)

Now, we will check that (3) holds for k = 0. If (3) is not true, then there exists t ∈ [0, t1),
s.t. EV(t, x(t)) > c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)t. Let:

t∗ = inf{t ∈ [0, t1) : EV(t, x(t)) > c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)t}

and

t∗∗ = sup{t ∈ [−r, t∗] : EV(t, x(t)) ≤ c1E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)(t+r)}.

Then, for any t ∈ [t∗∗, t∗] and u ∈ [−r, 0]:

e(γ+λ−2vλ−θ−q(m−1))(t+u)
EV(t + u, x(t + u))

≤c2E‖ϕ‖p

≤c1Me−(γ+λ−2vλ−θ−q(m−1))r
E‖ϕ‖p

=Me(γ+λ−2vλ−θ−q(m−1))t∗∗
EV(t∗∗, x(t∗∗))

≤Me(γ+λ−2vλ−θ−q(m−1))t
EV(t, x(t)),

which implies that for all u ∈ [−r, 0]:

EV(t + u, x(t + u)) ≤ Me(γ+λ−2vλ−θ−q(m−1))r
EV(t, x(t)) ≤ βEV(t, x(t)).

By condition (3), we obtain:

ELV(t, x(t − τ(t)), x(t))

=
m

∑
j=1

P(τ(t) = rj)ELV(t, x(t − rj), x(t))

=
m

∑
i=1

m

∑
j=1

P(τ(0) = ri)Pij(t)ELV(t, x(t − rj), x(t))

≤
m

∑
i=1

m

∑
j=1

P(τ(0) = ri)

(
δije−λt +

∞

∑
n=1

q
λ

( q
λ
(m − 1) + 2v

)n−1 (λt)n

n!
e−λt

)
ELV(t, x(t − rj), x(t))

=
m

∑
i=1

P(τ(0) = ri)

[
e−λt

ELV(t, x(t − ri), x(t)) +
m

∑
j=1

e(q(m−1)+2vλ)t − 1
m − 1 + 2vλ

q
e−λt

ELV(t, x(t − rj), x(t))
]

≤
m

∑
i=1

P(τ(0) = ri)

[
e−λδ

ELV(t, x(t − ri), x(t)) +
m

∑
j=1

e(q(m−1)+2vλ)η − 1
m − 1 + 2vλ

q
e−λδ

ELV(t, x(t − rj), x(t))
]

≤cEV(t, x(t)).

160



Mathematics 2022, 10, 1110

Using Itô’s formula and the standard stopping time technique, we derive:

EV(t∗, x(t∗))

≤EV(t∗∗, x(t∗∗))ec(t∗−t∗∗)

=e−(γ+λ−2vλ−θ−q(m−1))rc1E‖ϕ‖pect∗ e−(γ+λ−2vλ−θ−q(m−1)+c)t∗∗

≤e−(γ+λ−2vλ−θ−q(m−1))rc1E‖ϕ‖pe(c+γ+λ−2vλ−θ−q(m−1))t∗ e(θ+q(m−1)+2vλ−λ−γ)t∗

≤e(c+γ+λ−2vλ−θ−q(m−1))ηe−(γ+λ−2vλ−θ−q(m−1))rc1E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)t∗

=e(c+γ+λ−2vλ−θ−q(m−1))ηe−(γ+λ−2vλ−θ−q(m−1))r c1

c2
EV(t∗, x(t∗)).

Noting that E‖ϕ‖p �= 0, so EV(t∗, x(t∗)) �= 0. This implies

1 ≤ c1

c2
e(c+γ+λ−2vλ−θ−q(m−1))ηe−(γ+λ−2vλ−θ−q(m−1))r,

which contradict condition (6). So, (3) holds for k = 0.
Assume that (3) holds for k ≤ l − 1, k ∈ N. We will use the mathematical inductive

method to prove that (3) holds for k = l. To this end, we divide the proof into two steps.
Firstly, we will prove that it holds for t = tl . From condition (2), we have:

EV(tl , x(tl))

≤ρEV(t−l − τ(t−l ), x(t−l − τ(t−l )))

≤ρ
m

∑
j=1

EV(t−l − rj, x(t−l − rj))P(τ(t−l ) = rj)

≤ρ
m

∑
j=1

c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)(tl−rj)P(τ(t−l ) = rj)

=ρ
m

∑
j=1

c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)e−(θ+q(m−1)+2vλ−λ−γ)rjP(τ(t−l ) = rj).

Using the Markov property in point tl−1, we obtain:

EV(tl , x(tl))

≤ρ
m

∑
j=1

EV(tl − ri, x(tl − rj))P(τ(t−l ) = rj)

≤ρ
m

∑
j=1

c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)e−(θ+q(m−1)+2vλ−λ−γ)rjP(τ(t−l ) = rj)

=ρ
m

∑
j=1

c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)e−(θ+q(m−1)+2vλ−λ−γ)rj

×E(P(τ(t−l ) = rj)|Ftl−1 )

=ρ
m

∑
j=1

c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)e−(θ+q(m−1)+2vλ−λ−γ)rj

×E(Pτ(tl−1)j(tl − tl−1))

=ρ
m

∑
j=1

c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)e−(θ+q(m−1)+2vλ−λ−γ)rj

×
m

∑
i=1

Pij(tl − tl−1)P(τ(tl−1) = ri),
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where the symbol Pτ(tl−1)j(tl − tl−1) in the second equality denotes the transition probability
from state τ(tl−1) to j during time tl − tl−1. Combining Lemma 2 and condition (5),
we have:

m

∑
i=1

P(τ(tl−1) = ri)

( m

∑
j=1

ρc2E‖ϕ‖pe−(θ+q(m−1)+2vλ−λ−γ)rj e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)

× e(θ+q(m−1)+2vλ−λ−γ)tl−1 Pij(tl − tl−1)

)

≤
m

∑
i=1

P(τ(tl−1) = ri)

[
ρc2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)

× e−(θ+q(m−1)+2vλ−λ−γ)ri e−λ(tl−tl−1) +

(
m

∑
j=1

e−(θ+q(m−1)+2vλ−λ−γ)rj ρc2E‖ϕ‖p

× e(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)

×
∞

∑
n=1

q
λ

( q
λ
(m − 1) + 2v

)n−1 (λ(tl − tl−1))
n

n!
e−λ(tl−tl−1)

)]

≤
m

∑
i=1

P(τ(tl−1) = ri)

[
ρc2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)

× e−λ(tl−tl−1)
∑m

j=1 e−(θ+q(m−1)+2vλ−λ−γ)rj

m − 1 + 2vλ
q

+

(
ρc2E‖ϕ‖p

m

∑
j=1

e−(θ+q(m−1)+2vλ−λ−γ)rj e(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)

×
∞

∑
n=1

q
λ

( q
λ
(m − 1) + 2v

)n−1 (λ(tl − tl−1))
n

n!
e−λ(tl−tl−1)

)]

=
m

∑
i=1

P(τ(tl−1) = ri)

[
ρc2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)

×
m

∑
j=1

e−(θ+q(m−1)+2vλ−λ−γ)rj
∞

∑
n=0

q
λ

( q
λ
(m − 1) + 2v

)n−1 (λ(tk − tk−1))
n

n!
e−λ(tk−tk−1)

]

=e(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)ρc2E‖ϕ‖p ∑m
j=1 e−(θ+q(m−1)+2vλ−λ−γ)rj

m − 1 + 2vλ
q

× e(q(m−1)+2vλ−λ)(tl−tl−1)

≤e(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)ρc2E‖ϕ‖p ∑m
j=1 e−(θ+q(m−1)+2vλ−λ−γ)rj

m − 1 + 2vλ
q

× e(q(m−1)+2vλ−λ)η

≤c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)tl−1 e(θ+q(m−1)+2vλ−λ−γ)(tl−tl−1)

=c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)tl .

This implies that (3) is satisfied for t = tl . Next, we will prove that (3) holds for t ∈ (tl , tl+1).
If (3) is not true, then there exists t ∈ (tl , tl+1), s.t. EV(t, x(t)) > c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)t.
Let:

t∗ = inf{t ∈ [tl , tl+1) : EV(t, x(t)) > c2E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)t}

and

t∗∗ = sup{t ∈ (tl , t∗] : EV(t, x(t)) ≤ c1E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)(t+r)}.
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Then, for any t ∈ [t∗∗, t∗] and u ∈ [−r, 0], we obtain:

e(γ+λ−2vλ−θ−q(m−1))(t+u)
EV(t + u, x(t + u))

≤c2E‖ϕ‖p

<c1Me−(γ+λ−2vλ−θ−q(m−1))r
E‖ϕ‖p

=Me(γ+λ−2vλ−θ−q(m−1))t∗∗
EV(t∗∗, x(t∗∗))

≤Me(γ+λ−2vλ−θ−q(m−1))t
EV(t, x(t)),

which implies that for all u ∈ [−r, 0]:

EV(t + u, x(t + u)) ≤ Me(γ+λ−2vλ−θ−q(m−1))r
EV(t, x(t)) ≤ βEV(t, x(t)).

By condition (3), we obtain:

ELV(t, x(t − τ(t)), x(t))

=
m

∑
j=1

P(τ(t) = rj)ELV(t, x(t − rj), x(t))

=
m

∑
i=1

m

∑
j=1

P(τ(tl) = ri)Pij(t − tl)ELV(t, x(t − rj), x(t))

≤
m

∑
i=1

m

∑
j=1

P(τ(tl) = ri)

(
δije−λ(t−tl) +

∞

∑
n=1

q
λ

( q
λ
(m − 1) + 2v

)n−1 (λ(t − tl))
n

n!
e−λ(t−tl)

)
×ELV(t, x(t − rj), x(t))

=
m

∑
i=1

P(τ(tl) = ri)

[
e−λ(t−tl)ELV(t, x(t − ri), x(t)) +

m

∑
j=1

e(q(m−1)+2vλ)(t−tl) − 1
m − 1 + 2vλ

q
e−λ(t−tl)

×ELV(t, x(t − rj), x(t))
]

≤
m

∑
i=1

P(τ(tl) = ri)

[
e−λδ

ELV(t, x(t − ri), x(t)) +
m

∑
j=1

e(q(m−1)+2vλ)η − 1
m − 1 + 2vλ

q
e−λδ

ELV(t, x(t − rj), x(t))
]

≤cEV(t, x(t)).

For any t ∈ [t∗∗, t∗], it follows that:

EV(t∗, x(t∗))

≤EV(t∗∗, x(t∗∗))ec(t∗−t∗∗)

=e−(γ+λ−2vλ−θ−q(m−1))rc1E‖ϕ‖pect∗ e−(γ+λ−2vλ−θ−q(m−1)+c)t∗∗

≤e−(γ+λ−2vλ−θ−q(m−1))rc1E‖ϕ‖pe(c+γ+λ−2vλ−θ−q(m−1))t∗ e(θ+q(m−1)+2vλ−λ−γ)t∗

≤e(c+γ+λ−2vλ−θ−q(m−1))ηe−(γ+λ−2vλ−θ−q(m−1))rc1E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)t∗

=e(c+γ+λ−2vλ−θ−q(m−1))ηe−(γ+λ−2vλ−θ−q(m−1))r c1

c2
EV(t∗, x(t∗)).

This is a contradiction to condition (6). So, (3) holds for t ∈ (tl , tl+1). In other words,
we have proved that (3) holds for any k and t ∈ [tk, tk+1). According to condition (1),
we have:

E|x(t)|p ≤ c2

c1
E‖ϕ‖pe(θ+q(m−1)+2vλ−λ−γ)t,

which verifies that system (1) is pth moment exponentially stable.

Remark 2. The model we consider here combines the characteristics of the continuous-time systems
and discrete-time systems. So, the stability analysis of such systems is more complex than the case
of the pure continuous time-systems and discrete-time systems. In the proof of Theorem 1, the key
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step is to estimate the transition probability of Markov chain τ(t). Here, we have applied some
classic results in the Markov chain theory. In order to overcome the difficulties that arise from the
discrete-time systems, we have used the Markov property of τ(t). The technique applied here is new,
and it is different from those methods used in the existing literature.

Remark 3. According to Theorem 1, we can see that if a certain subsystem is unstable, and then
the switched system remains stable. In fact, from the statement of Theorem 1, we can see that if the
parameters (the size of delay, the altitude of impulsive control gain, the impulsive times interval) of
every subsystem are given, we can control the parameters q, v and λ in order to ensure the stability
of the switched system.

4. An Example

In this section, we will consider an example to illustrate the validity of our result.

Example 2. Consider the following 2D stochastic neural network:⎧⎪⎨⎪⎩
dx(t) = [Ax(t) + Bx(t − τ(t))]dt + D f (x(t − τ(t)))dW(t)

Δx(tk) = −0.35x(t−k − τ(t−k )), t = tk, k = 1, 2, · · ·
x0 = ϕ(u) = [0.015,−0.02]T , u ∈ [−0.5, 0],

(4)

where

A =

[
0.02 0

0 0.02

]
, B =

[ −0.015 −0.001
−0.002 −0.025

]
,

D =

[
0.02 0

0 0.03

]
where δ = η = tk − tk−1 = 0.2. f (·) = tanh(·). The Markov process {τ(t), t ≥ 0} takes values
in S = {0.3, 0.5} with generator:

Q =

[ −0.4 0.4
0.3 −0.3

]
.

Now, we assert that system (4) is mean square stable. Obviously, λ = 0.4, q = 0.4, v = 0.25.
Taking V(t, x(t)) = |x(t)|2, then condition (1) of Theorem 1 holds for p = 2, c1 = c2 = 1. Let
γ = 0.4 and θ = 0.1. From a direct computation, it follows that ρ = 0.422. Using Itô’s formula,
we have:

ELV(t, x(t − ri), x(t))

=0.04E|x(t)|2 + 0.025E|x(t)|2 + 0.025E|x(t − ri)|2 + 0.0009E|x(t − ri)|2
≤0.065E|x(t)|2 + (0.026 × 1.1)E|x(t)|2
=0.0936E|x(t)|2,

c = 0.0936[e−λδ + m
m−1+ 2vλ

q
(e(q(m−1)+2vλ)δ − 1)e−λδ] = 0.1. Thus, conditions (1)–(3) are

satisfied.
Next, we turn to check that conditions (4)–(6) hold. In fact, θ + q(m − 1) + 2vλ − λ −

γ = −0.1 < 0. supi e−(θ+q(m−1)+2vλ−λ−γ)ri = e0.05 = 1.05 < ∑m
i=1 e−(θ+q(m−1)+2vλ−λ−γ)ri

m−1+ 2vλ
q

=

e0.03+e0.05

1.5 = 1.38, ρ
∑m

i=1 e−(θ+q(m−1)+2vλ−λ−γ)ri

m−1+ 2vλ
q

= 0.422 × e0.03+e0.05

1.5 = 0.422 × 1.38 = 0.59 <

e−0.2×0.2 = 0.96. (c + λ + γ − θ − 2vλ − q(m − 1))δ = 0.04 < (λ + γ − θ − 2vλ − q(m −
1))r = 0.05. That is, all the conditions of Theorem 1 hold. Therefore, from Theorem 1, we see that
the neural network (4) is mean square exponentially stable.
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5. Conclusions

In this paper, we have investigated the pth moment exponential stability of impulsive
stochastic functional differential equations with Markovian switched delay effects. By
using stochastic process theory, stochastic analysis theory, Razumikin technology and the
Lyaponov method, a novel sufficient condition is obtained. Different from the previous
literature, the model that we study is new and more complex. Moreover, an example is
provided to show the efficiency of our result. In addition, it maybe more reasonable that
if the impulse instants {tk}∞

k=1 are random variables, and how to consider the stability is
more challenging. In the future, we will consider this question.
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Abstract: This paper proposes a novel neural adaptive fixed-time control approach for the attitude
stabilization and vibration suppression of flexible spacecraft. First, the neural network (NN) was
introduced to identify the lumped unknown term involving uncertain inertia, external disturbance,
torque saturation, and elastic vibrations. Then, the proposed controller was synthesized by em-
bedding the NN compensation into the fixed-time backstepping control framework. Lyapunov
analysis showed that the proposed controller guaranteed the stabilization of attitude and angular
velocity to the adjustable small neighborhoods of zero in fixed time. The proposed controller is
not only robust against uncertain inertia and external disturbance, but also insensitive to elastic
vibrations of the flexible appendages. At last, the excellent stabilization performance and good
vibration suppression capability of the proposed control approach were verified through simulations
and detailed comparisons.

Keywords: attitude stabilization; flexible spacecraft; neural adaptive control; fixed-time control;
vibration suppression; Lyapunov analysis

MSC: 37N35; 93C40; 93D15

1. Introduction

To accomplish long-duration and complicated space missions, modern spacecraft are
usually installed with large and lightweight flexible appendages, such as solar panels and
antennas. For instance, the Engineering Test Satellite-VIII (ETS-VIII) launched by Japan is
typically a flexible spacecraft with two large deployable reflectors measuring 17 × 19 m2

and a pair of large solar array panels measuring 19 × 2 m2 [1,2]. Generally, the attitude
maneuver of a spacecraft may induce elastic vibrations of the flexible appendages. This
can in turn cause perturbations on the attitude dynamics of the spacecraft. Moreover, the
spacecraft is inevitably influenced by uncertain inertia, external disturbance, and torque
saturation due to the harsh space environment and physical limitations. Even worse, the
inertia matrix of the spacecraft may be fully unknown in some extreme cases. For example,
when the space manipulator captures a non-cooperative target, the inertia matrix of the
combined spacecraft is difficult to be obtained accurately [3–6]. Consequently, the attitude
control of a flexible spacecraft is quite challenging due to the presence of these issues.

The study on the flexible spacecraft attitude control started in the mid-1970s [7,8]
and has continued ever since. To realize attitude control and vibration suppression si-
multaneously, an effective idea is regarding the uncertain inertia, external disturbance,
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torque saturation, and elastic vibrations as the lumped unknown term and then compen-
sating it in the feedforward loop. Generally, there are three main methods to tackle the
lumped unknown term. The first method is a robust control by utilizing the disturbance
observer to observe the lumped unknown term. In [9,10], disturbance observer-based
proportional-differential (PD) controllers were developed. In [11], a disturbance observer-
based backstepping control method was proposed. In [12], a disturbance observer was
integrated with the active disturbance rejection control design. The second method is
adaptive control by utilizing the parametric adaptation technique to estimate the lumped
unknown term. In [13,14], adaptive control and stabilization schemes were developed.
The third method is intelligent control by utilizing the neural network (NN) or fuzzy
logic system to identify the lumped unknown term. In [15,16], fuzzy sliding mode control
approaches were proposed. In [17], an intelligent PD control scheme was proposed based
on the NN identification. In [18,19], Takagi–Sugeno (T–S) fuzzy model-based optimal
controllers were constructed. There have also been some related results focused on the atti-
tude control of flexible spacecraft equipped with piezoelectric devices for active vibration
suppression [20–24].

To efficiently fulfill various space missions, the flexible spacecraft is expected to re-
alize the attitude maneuver in a specific time. However, most of the above controllers
only ensure that the overall closed-loop system is asymptotically stable or uniformly ul-
timately bounded. Alternatively, the finite-time control guarantees the stabilization of
attitude and angular velocity to zero or the small neighborhoods of zero in finite time.
In [25–28], several terminal sliding mode controllers were developed for the finite-time
attitude control of flexible spacecraft. Particularly, in [26], a disturbance observer was incor-
porated into the terminal sliding mode control design to enhance the control performance.
In [27,28], adaptive terminal sliding mode control schemes were presented. Nevertheless,
the finite-time control has the minor disadvantage that its settling time is dependent on the
initial states of the system. To solve this weakness, the concept of fixed-time control was
proposed [29–32]. The fixed-time control can be regarded as a typical class of finite-time
control, whose settling time is bounded, and the upper bound of the settling time does
not depend on the initial system conditions. In [33–36], several terminal sliding mode
controllers were designed for the fixed-time attitude control of flexible spacecraft. Specifi-
cally, in [33], a disturbance observer-based terminal sliding mode control approach was
developed. In [34–36], a parametric adaptation technique was integrated with the terminal
sliding mode control design.

It should be pointed out that the above finite-time and fixed-time controllers were
mainly designed based on the terminal sliding mode control technique. Unfortunately,
the terminal sliding mode control exhibits the disadvantages of undesired chattering phe-
nomenon and singularity problem. These disadvantages restrict the practical implementa-
tion of the terminal sliding mode control to some extent. Moreover, artificial intelligence
has been rarely employed for the finite-time and fixed-time attitude control of flexible
spacecraft. When involving the NN or fuzzy logic system into the closed-loop control
design, the finite-time or fixed-time stability is difficult to be proved theoretically. Actually,
the fixed-time attitude control and vibration suppression of flexible spacecraft is still an
open problem which needs to be further investigated.

The above discussions motivated our research. In this paper, a novel neural adaptive
fixed-time control approach is presented for the attitude stabilization of flexible spacecraft.
The NN was introduced to identify the lumped unknown item involving uncertain iner-
tia, external disturbance, torque saturation, and elastic vibrations. Then, the proposed
controller was synthesized by embedding the NN compensation into the fixed-time back-
stepping control framework. Lyapunov analysis showed that the proposed controller
guaranteed the stabilization of attitude and angular velocity to the adjustable small neigh-
borhoods of zero in fixed time. In comparisons with the above finite-time and fixed-time
controllers, the main contributions of this research lie in the following two aspects.
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• Rather than the terminal sliding mode control technique, the proposed controller
was developed under the fixed-time backstepping control framework. In this way,
the proposed controller does not have the chattering phenomenon and singularity
problem existing in the terminal sliding mode control.

• The NN was integrated with the proposed controller to compensate the lumped
unknown item. Benefiting from the NN compensation, the proposed controller is not
only robust against uncertain inertia and external disturbance, but also insensitive to
elastic vibrations of the flexible appendages.

The rest of this paper is arranged as follows. Section 2 describes the problem and
provides some preliminaries. Section 3 provides the control design and Lyapunov analysis.
Section 4 presents the simulations and detailed comparisons. Lastly, Section 5 summarizes
this research.

2. Problem Description and Preliminaries

2.1. Problem Description

Suppose a flexible spacecraft composed of a rigid hub and flexible appendages. By
employing the modified Rodrigues parameters (MRPs), the attitude kinematics of the
flexible spacecraft can be expressed as

.
σ = G(σ)ω, (1)

where G(σ) = 1
2

(
1−σTσ

2 I3 + σ× + σσT
)

∈ R3×3, σ = [σ1, σ2, σ3]
T ∈ R3

and ω = [ω1, ω2, ω3]
T ∈ R3 denote the attitude and angular velocity of the spacecraft, and

Rn and Rn×m stand for the sets of n × 1 real vectors and n × n real matrices, respectively.
The notation ω× stands for the skew-symmetric matrix of ω, denoted as

ω× =

⎡⎣ 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

⎤⎦. (2)

Referring to [20,21], the attitude dynamics of the flexible spacecraft can be expressed as

J
.

ω + ω×(Jω + δ
.
η
)
+ δ

..
η = sat(u) + d, (3)

..
η+ C

.
η+ Kη = −δTω, (4)

where J ∈ R3×3 denotes the inertia matrix which may be fully unknown in some extreme
cases, u ∈ R3 is the control torques generated by actuators, d ∈ R3 denotes the external
disturbance, η ∈ RL denotes the modal variables, L is the number of elastic modes con-
sidered in the control design, δ ∈ R3×L is the coupling matrix between the rigid hub and
the flexible appendages, C = diag[2ξ1ωn1, 2ξ2ωn2, . . . , 2ξNωnL] ∈ RL×L is the damping
matrix, K = diag

[
ω2

n1, ω2
n2, . . . , ω2

nL
] ∈ RL×L is the stiffness matrix, and ωni and ξi denote

the natural frequencies and damping ratios of the ith mode, respectively. Moreover, the
saturated control torques can be expressed as sat(u) = [sat(u1), sat(u2), sat(u3)]

T, whose
elements are presented as

sat(ui) =

{
ui, |ui| ≤ um,
sgn(ui)um, |ui| > um,

i = 1, 2, 3, (5)

where um stands for the maximum acceptable input value. Then, the saturated control
torques can be rewritten as

sat(u) = u + uΔ, (6)
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where uΔ denotes the input deviations caused by torque saturation. Subsequently, the
attitude kinematics and dynamics of the flexible spacecraft can be rearranged as

M(σ)
..
σ + C

(
σ,

.
σ
) .
σ = G−T(σ)u + χ, (7)

where M(σ) = G−T(σ)JG−1(σ), C
(
σ,

.
σ
)

= −G−T(σ)JG−1(σ)
.

G(σ)G−1(σ)

− G−T(σ)(Jω)×G−1(σ), and χ = G−T(σ)
(−ω×δ

.
η− δ

..
η+ d + uΔ

)
. According to [37],

system (7) has the following fundamental properties.

Property 1. The matrix M(σ) is symmetric and positive definite.

Property 2. The matrix
.

M(σ)− 2C
(
σ,

.
σ
)

is skew symmetric.

Property 3. The matrices M(σ) and C
(
σ,

.
σ
)

are bounded with mI3 ≤ M(σ) ≤ mI3 and
‖C

(
σ,

.
σ
)‖ ≤ c‖ .

σ‖, where m, m, and c are positive constants.

The purpose of this research was to develop an appropriate controller to realize the
fixed-time attitude stabilization of flexible spacecraft even under uncertain inertia, external
disturbance, and torque saturation.

2.2. Preliminaries

The following lemmas are provided, which will be used to obtain the main results of
this research.

Lemma 1 ([32]). Consider the nonlinear system:

.
x = f(x), f(0) = 0, x ∈ R

n, (8)

where f(x) is a continuous nonlinear function. If there exists a positive definite function V(x)
satisfying

.
V(x) ≤ −κ1Vp(x)− κ2Vq(x) + ζ, where κ1 > 0, κ2 > 0, 0 < p < 1, q > 1, and

ζ > 0, then system (8) is practically fixed-time stable, and V(x) will converge to the following
compact set in fixed time:

Ω =

{
V(x) ∈ R

∣∣∣∣∣V(x) ≤ min

{(
ζ

κ1(1 − ι)

) 1
p
,
(

ζ

κ2(1 − ι)

) 1
q
}}

, (9)

where 0 < ι < 1, and the fixed settling time is bounded as T ≤ 1
κ1ι(1−p) +

1
κ2ι(q−1) .

Lemma 2 ([38]). For a continuous nonlinear function f (Z), Z ∈ Rn, it can be identified by a
radial basis function NN (RBFNN) as

f (Z) = W∗TΦ(Z) + ε(Z), (10)

where W∗ ∈ RN is the ideal RBFNN weight, Φ(Z) = [ϕ1(Z), ϕ2(Z), . . . , ϕN(Z)]
T is the basis

function vector, ε(Z) is the identification error satisfying |ε(Z)| ≤ ε, ε is a positive constant, and
N is the number of RBFNN nodes. The ideal RBFNN weight W∗ is defined as

W∗ = arg min
W∈RN

{
sup

Z∈Rn

∣∣∣ f (Z)− W∗TΦ(Z)
∣∣∣}. (11)

In addition, ϕi(Z) is commonly chosen as the Gaussian function:

ϕi(Z) = exp
(
−‖Z − ci‖2/w2

i

)
, i = 1, 2, . . . , N, (12)
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where ci = [ci1, ci2, . . . , cin]
T ∈ Rn and wi are the center and width of the Gaussian function, re-

spectively.

Lemma 3 ([39]). For xi ∈ R, i = 1, 2, . . . , n, 0 < p ≤ 1, and q > 1, the following inequalities hold:

(
n

∑
i=1

|xi|
)p

≤
n

∑
i=1

|xi|p,

(
n

∑
i=1

|xi|
)q

≤ nq−1
n

∑
i=1

|xi|q. (13)

Lemma 4 ([39]). For x1 ∈ R, x2 ∈ R, p > 0, q > 0, and ξ > 0, the following inequality holds:

|x1|p|x2|q ≤ p
p + q

ξ|x1|p+q +
q

p + q
ξ
− p

q |x2|p+q. (14)

3. Control Design and Lyapunov Analysis

In this section, the main results of this research are presented. First, the proposed
neural adaptive fixed-time controller is synthesized by embedding the NN compensation
into the fixed-time backstepping control framework. Then, the practical fixed-time stability
of the overall closed-loop system is theoretically achieved through Lyapunov analysis.

3.1. Control Design

Under the fixed-time backstepping control framework, define the following error
signals:

x1 = σ, x2 =
.
σ − μ, (15)

where μ ∈ R3 is the virtual control signal designed in the sequel. The whole control design
procedure involves three steps. In Step 1, the virtual control signal is designed, in Step 2, the
actual control signal is designed, and in Step 3, the NN weight adaptation law is designed.

Step 1: Virtual control signal design. Construct the Lyapunov function:

V1 =
1
2

xT
1 x1. (16)

The time differentiation of (16) can be evaluated as

.
V1 = xT

1
.
x1

= xT
1 (x2 + μ).

(17)

Then, the virtual control signal is designed as

μ = −k11sigp(x1)− k12sigq(x1), (18)

where k11 > 0, k12 > 0, 0 < p < 1, q > 1, and the notation sigp(·) is defined as
sigp(x1) =

[|x11|psgn(x11), |x12|psgn(x12), |x13|psgn(x13)
]T. Substituting the virtual con-

trol signal (18) into (17) and by the aid of Lemma 3, we have

.
V1 = xT

1 (x2 − k11sigp(x1)− k12sigq(x1))

≤ xT
1 x2 − κ11V

p+1
2

1 − κ12V
q+1

2
1 ,

(19)

where κ11 = 2
p+1

2 k11, and κ12 = 3
1−q

2 2
q+1

2 k12.
Step 2: Actual control signal design. Construct the Lyapunov function:

V2 =
1
2

xT
2 M(σ)x2. (20)
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By the aid of Property 2, the time differentiation of (20) can be evaluated as

.
V2 = xT

2 M(σ)
.
x2 +

1
2 xT

2

.
M(σ)x2

= xT
2

(
−M(σ)

..
σd − C

(
σ,

.
σ
) .
σ + G−T(σ)u + χ − M(σ)

.
μ
)
+ xT

2 C
(
σ,

.
σ
)
x2

= xT
2

(
−M(σ)

..
σd − C

(
σ,

.
σ
) .
σd − M(σ)

.
μ − C

(
q,

.
q
)
μ + G−T(σ)u + χ

)
= xT

2

(
G−T(σ)u + L

)
,

(21)

where L is the lumped unknown term involving uncertain inertia, external disturbance,
torque saturation, and elastic vibrations, denoted as

L = −M(σ)
..
σd − C

(
σ,

.
σ
) .
σd − M(σ)

.
μ − C

(
q,

.
q
)
μ + χ. (22)

Define the input variable Z =
[
xT

1 , xT
2 , uT]T. The RBFNN is introduced to identify the

lumped unknown term. By Lemma 2, the lumped unknown term can be expressed as

L = W∗TΦ(Z) + ε(Z), (23)

where W∗ ∈ RN×3 is the ideal RBFNN weight, Φ(Z) ∈ RN is the basis function vector,
and ε(Z) ∈ R3 is the identification error satisfying ‖ε(Z)‖ ≤ ε. Subsequently, the lumped
unknown term can be identified by the RBFNN as

L̂ = ŴT
Φ(Z), (24)

where Ŵ ∈ RN×3 is the estimation of the ideal RBFNN weight. Then, the actual control
signal is designed as

u = GT(σ)

(
−x1 − 1

2
x2 − k21sigp(x2)− k22sigq(x2)− ŴT

Φ(Z)
)

, (25)

where k11 > 0, and k12 > 0. Substituting the actual control signal (25) into (21), we have

.
V2 = xT

2

(
−x1 − 1

2 x2 − k21sigp(x2)− k22sigq(x2)− ŴT
Φ(Z) + W∗TΦ(Z) + ε(Z)

)
= xT

2

(
−x1 − 1

2 x2 − k21sigp(x2)− k22sigq(x2)− W̃
T

Φ(Z) + ε(Z)
)

,
(26)

where W̃ = Ŵ − W∗ is the estimation error of the RBFNN weight. Consider the inequality
xT

2 ε(Z) ≤ 1
2 xT

2 x2 +
1
2 ε2. Substituting it into (26) and by the aid of Lemma 3, we further have

.
V2 ≤ − 1

2 xT
2 x1 + xT

2 (−k21sigp(x2)− k22sigq(x2))− xT
2 W̃

T
Φ(Z) + 1

2 ε2

≤ − 1
2 xT

2 x1 − κ21V
p+1

2
2 − κ22V

q+1
2

2 − xT
2 W̃

T
Φ(Z) + 1

2 ε2,
(27)

where κ21 = 2
p+1

2 k21

λ
p+1

2
max (M(σ))

, κ22 = 3
1−q

2 2
q+1

2 k22

λ
q+1

2
max (M(σ))

, and the notations λmin(·) and λmax(·) represent

the minimum and maximum eigenvalues of a matrix, respectively.
Step 3: NN weight adaptation law design. The NN weight adaptation law is given as

.
Ŵi = ΓiΦi(Zi)x2i − γiΓiŴi, i = 1, 2, 3, (28)

where Γi ∈ RN×N are positive definite matrices, and γi are small positive constants. Con-
struct the Lyapunov function:

V3 =
1
2

3

∑
i=1

W̃
T
i Γ−1

i W̃i. (29)
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The time differentiation of (29) can be evaluated as

.
V3 =

3
∑

i=1
W̃

T
i Γ−1

i

.
Ŵi

=
3
∑

i=1
W̃

T
i Φi(Zi)x2i −

3
∑

i=1
γiW̃

T
i Ŵi.

(30)

Consider the inequality −W̃
T
i Ŵi = −‖W̃i‖2 − W̃

T
i W∗

i ≤ − 1
2‖W̃i‖2

+ 1
2‖W∗

i ‖2. Substi-
tuting it into (30), we have

.
V3 =

3
∑

i=1
W̃

T
i Φi(Zi)x2i −

3
∑

i=1

γi
2 ‖W̃i‖2

+
3
∑

i=1

γi
2 ‖W∗

i ‖2

=
3
∑

i=1
W̃

T
i Φi(Zi)x2i −

3
∑

i=1

(
γi
4 ‖W̃i‖2

) p+1
2 − 3

∑
i=1

(
γi
4 ‖W̃i‖2

) q+1
2

+ ζ1,
(31)

where ζ1 is defined as

ζ1 =
3

∑
i=1

(γi
4
‖W̃i‖2

) p+1
2

+
3

∑
i=1

(γi
4
‖W̃i‖2

) q+1
2 −

3

∑
i=1

γi
2
‖W̃i‖2

+
3

∑
i=1

γi
2
‖W∗

i ‖2. (32)

Then, the following two cases are discussed. For the case of γi
4 ‖W̃i‖2 ≥ 1, we have

(γi
4
‖W̃i‖2

) p+1
2

+
(γi

4
‖W̃i‖2

) q+1
2 − γi

2
‖W̃i‖2 ≤

(γi
4
‖W̃i‖2

) q+1
2 − γi

4
‖W̃i‖2

. (33)

For the case of γi
4 ‖W̃i‖2

< 1, by the aid of Lemma 4, we have

(
γi
4 ‖W̃i‖2

) p+1
2

+
(

γi
4 ‖W̃i‖2

) q+1
2 − γi

2 ‖W̃i‖2 ≤
(

γi
4 ‖W̃i‖2

) p+1
2 − γi

4 ‖W̃i‖2

≤ (1 − p)p
p

1−p ,
(34)

where p = p+1
2 . Introduce a compact set Θ such that

Θ =
{

W̃ ∈ RN×3
∣∣∣‖W̃i‖ ≤ βi, i = 1, 2, 3

}
, where βi are positive constants. Combining

(33) and (34), it follows that

(γi
4
‖W̃i‖2

) p+1
2

+
(γi

4
‖W̃i‖2

) q+1
2 − γi

2
‖W̃i‖2 ≤ αi, (35)

where αi is defined as

αi =

⎧⎪⎨⎪⎩ (1 − p)p
p

1−p , βi <
2√
γi

,( γi
4 β2

i
) q+1

2 − γi
4 β2

i , βi ≥ 2√
γi

.
(36)

Substituting (35) into (31) and by the aid of Lemma 3, we further have

.
V3 ≤

3

∑
i=1

W̃
T
i Φi(Zi)x2i − κ31V

p+1
2

3 − κ32V
q+1

2
3 + ζ2, (37)

where κ31 =
γ

p+1
2

i

2
p+1

2 λ
p+1

2
max (Γ−1

i )
, κ32 =

3
1−q

2 γ
q+1

2
i

2
q+1

2 λ
q+1

2
max (Γ−1

i )
, and ζ2 =

3
∑

i=1

(
αi +

γi
2 ‖W∗

i ‖2
)

.
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3.2. Lyapunov Analysis

After the above preparations, the main theorem of this research can be obtained
as follows.

Theorem 1. Suppose the flexible spacecraft modeled as (1), (3), and (4), then the overall closed-loop
system is practically fixed-time stable under the virtual control signal (18), the actual control signal
(25), and the NN weight adaptation law (28). Specifically, the closed-loop error signals x1, x2, and
W̃ will converge to the following compact sets in fixed time:

Ωx1 =
{

x1 ∈ R
3
∣∣∣‖x1‖ ≤ √

ψ
}

, (38)

Ωx2 =

{
x2 ∈ R

3

∣∣∣∣∣‖x2‖ ≤
√

ψ

λmin(M(σ))

}
, (39)

ΩW̃ =

⎧⎪⎨⎪⎩W̃ ∈ R
N×3

∣∣∣∣∣∣∣‖W̃i‖ ≤
√√√√ ψ

λmin

(
Γ−1

i

) , i = 1, 2, 3

⎫⎪⎬⎪⎭, (40)

where ψ > 0 is defined in the sequel.

Proof. Construct the Lyapunov function:

V = V1 + V2 + V3, (41)

where V1, V2, and V3 are defined as (15), (19), and (28), respectively. Combining (19), (27),
and (37) and by the aid of Lemma 3, the time differentiation of (41) can be evaluated as

.
V =

.
V1 +

.
V2 +

.
V3

≤ −κ11V
p+1

2
1 − κ12V

q+1
2

1 − κ21V
p+1

2
2 − κ22V

q+1
2

2 + 1
2 ε2 − κ31V

p+1
2

3 − κ32V
q+1

2
3 + ζ2

≤ −κ1V
p+1

2 − κ2
.

V
q+1

2
+ ζ3,

(42)

where κ1 = min{κ11, κ21, κ31}, κ2 = 3
1−q

2 min{κ12, κ22, κ32}, and ζ3 = ζ2 +
1
2 ε2. By Lemma

1, the overall closed-loop system is practically fixed-time stable, and V will converge to the
following compact set in fixed time:

Ω =

{
V ∈ R

∣∣∣∣∣V ≤ min

{(
ζ3

κ1(1 − ι)

) 2
p+1

,
(

ζ3

κ2(1 − ι)

) 2
q+1

}}
, (43)

where 0 < ι < 1. Moreover, the fixed settling time is bounded as T ≤ 2
κ1ι(1−p) +

2
κ2ς(ι−1) .

Then, define a variable as

ψ = 2min

{(
ζ3

κ1(1 − ι)

) 2
p+1

,
(

ζ3

κ2(1 − ι)

) 2
q+1

}
. (44)

Together with the definition of V, it follows that

xT
1 x1 ≤ ψ, (45)

xT
2 M(σ)x2 ≤ ψ, (46)

W̃
T
i Γ−1

i W̃i ≤ ψ, i = 1, 2, 3. (47)
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Thus, the closed-loop error signals x1, x2, and W̃ will converge to the compact sets Ωx1 ,
Ωx2 , and ΩW̃ in fixed time, respectively. This further implies that the proposed controller
guarantees the stabilization of attitude σ and angular velocity ω to the small neighborhoods
of zero in fixed time. Moreover, from (43), the small neighborhoods of zero are adjustable.
If we set the parameters k11, k12, k21, and k22 as large as desired, the small neighborhoods
can be made sufficiently small. This finishes the proof. �

Remark 1. To make the proposed controller more friendly to the users, a control parameter selection
strategy was carried out. The strategy contained three steps. In Step 1, we determined the control
parameters k11, k12, k21, and k22. Large k11, k12, k21, k22 can realize a relatively fast convergence
rate; however, they may also lead to relatively large control torques at the same time. In Step 2,
we determined the control parameters Γi and ηi. Large Γi and small ηi can lead to a relatively
fast convergence rate; however, they may in turn result in a relatively poor transient response of
the controller. In Step 3, we determined the number of RBFNN nodes N. A large N can achieve
a relatively high approximation accuracy; however, it may also cause a relatively heavy onboard
computational burden. Therefore, the control parameters of the proposed controller needed to be
carefully tuned by trial and error for better implementations.

Remark 2. The RBFNN was introduced to identify the lumped unknown term involving uncertain
inertia, external disturbance, torque saturation, and elastic vibrations. Benefiting from this design,
the proposed controller appeared to be not only robust against uncertain inertia and external
disturbance, but also insensitive to elastic vibrations of the flexible appendages. It should be noticed
that the RBFNN utilized in this paper can also be replaced by some other approximation tools, such
as wavelet NN, recurrent NN, fuzzy NN, and fuzzy logic system.

Remark 3. The proposed controller was synthesized by embedding the NN compensation into the
fixed-time backstepping control framework. To facilitate the readers’ understanding of the whole
control design procedure, the structure of the proposed control approach is depicted in Figure 1.

W

u

N

Figure 1. Diagram of the proposed neural adaptive fixed-time control approach.

4. Simulations and Comparisons

Simulations were conducted on a flexible spacecraft with two solar panels to validate
the proposed control approach. Referring to [34], the inertia matrix of the flexible spacecraft
was chosen as

J =

⎡⎣ 486.7 14.9 −1.2
14.9 177.4 −7.3
−1.2 −7.3 404.3

⎤⎦ kg · m2. (48)

The inertia matrix was fully unknown for the control design. Moreover, the first
three elastic modes were considered for the flexible spacecraft. The coupling matrix was

δ =

⎡⎣ 1 0.1 0.1
0.5 0.1 0.01
−1 0.3 0.01

⎤⎦ kg1/2 · m/s2. (49)
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The natural frequencies were chosen as ωn1 = 1.8912, ωn2 = 2.884, and ωn3 = 3.4181.
The damping ratios were chosen as ξ1 = 0.01, ξ2 = 0.01, and ξ3 = 0.01. The external
disturbance was

d =

⎡⎣ 0.2 cos(0.2πt)− 0.1 sin(0.4πt)− 0.1
0.3 sin(0.2πt)− 0.1 cos(0.4πt) + 0.2
0.2 sin(0.2πt)− 0.2 sin(0.4πt)− 0.3

⎤⎦Nm. (50)

The initial states of the flexible spacecraft were set as σ(0) = [0.04,−0.06, 0.08]T,
ω(0) = [0, 0, 0]T rad/s, η(0) = [0, 0, 0]T, and

.
η(0) = [0, 0, 0]T. The maximum acceptable

input value was um = 10 Nm.
Besides the proposed neural adaptive fixed-time controller (25), the finite-time PD-

like controller in [40] was also implemented for performance comparisons. Based on the
homogeneous method, the compared finite-time PD-like controller was designed as

u = GT(σ)
(−kpsigα1(σe)− kdsigα2

( .
σe
))

, (51)

where kp > 0, kd > 0, 0 < α1 < 1, and α2 = 2α1/(1 + α1).
The parameters of the proposed neural adaptive fixed-time controller (25) were

k11 = 0.1, k12 = 0.1, k21 = 800, k22 = 800, p = 2/3, q = 4/3, Γi = 100I7, and ηi = 0.1.
Seven nodes were selected for the hidden layer of the RBFNN. The parameters of the
RBFNN were selected as ci = [−3,−2,−1, 0, 1, 2, 3]T and wi = 6. The initial values of the
NN weight estimations were Ŵi = 07. On the other hand, the parameters of the compared
finite-time PD-like controller (51) were kp = 150, kd = 300, α1 = 1/2, and α2 = 2/3.

The simulation results for the proposed controller are provided in Figures 2–6. Specifi-
cally, Figures 2 and 3 show the time profiles of the attitude σ and the angular velocity ω.
The time profile of the modal variables η is presented in Figure 4. Figure 5 shows the
time profile of the saturated control torques u. The norms of the NN weight estimations
‖Ŵi‖ are presented in Figure 6. Moreover, the simulation results for the compared PD-like
controller are provided in Figures 7–10.

As shown in Figures 2 and 3, the proposed controller guaranteed the stabilization
of attitude and angular velocity to the small neighborhoods of zero rapidly and exactly.
Nevertheless, Figures 7 and 8 shiw that the stabilization performance of the compared
PD-like controller was relatively poor due to the presence of a lumped unknown term
involving uncertain inertia, external disturbance, torque saturation, and elastic vibrations.
Quantitatively, the steady-state attitude accuracy and the steady-state angular velocity
accuracy under the proposed controller were |σi| < 1 × 10−4 and |ωi| < 3 × 10−4 rad/s,
respectively. By contrast, the steady-state attitude accuracy and the steady-state angu-
lar velocity accuracy under the compared PD-like controller were |σi| < 3 × 10−4 and
|ωi| < 8 × 10−4 rad/s, respectively. It was clearly seen that the proposed controller
achieved a much higher control accuracy than the compared PD-like controller. In Figure 4,
the elastic vibrations of the flexible appendages were damped nearly to zero within 80 s
under the proposed controller. However, Figure 9 shows obvious residual vibrations of the
flexible appendages under the compared PD-like controller. Figures 5 and 10 show that the
control torques under both controllers always remained within the predefined saturation
constraints. Moreover, in Figure 6, the NN weight estimations of the proposed controller
changed with time smoothly.
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Figure 2. Time profile of the attitude tracking under the proposed controller.

Figure 3. Time profile of the angular velocity tracking under the proposed controller.
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Figure 4. Time profile of the modal variables under the proposed controller.

Figure 5. Time profile of the control torques under the proposed controller.

Figure 6. Norms of the NN weight estimations under the proposed controller.
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Figure 7. Time profile of the attitude tracking under the PD-like controller.

Figure 8. Time profile of the angular velocity tracking under the PD-like controller.

Figure 9. Time profile of the modal variables under the PD-like controller.
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Figure 10. Time profile of the control torques under the PD-like controller.

Furthermore, some comparisons between the proposed controller and the compared
PD-like controller are provided in detail in Figures 11–14. Figures 11 and 12 present the
norms of the attitude σ and angular velocity ω under both controllers. Moreover, the
vibration energy under both controllers are shown in Figure 13, where the vibration energy
index is defined as Eη = 1

2 ηTη. Figure 14 shows the control energy consumption under both
controllers, where the control energy consumption index is defined as Eu = 1

2

∫ t
0 ‖u(τ)‖dτ.

In Figures 11–14, it is not difficult to find that the proposed controller realized attitude
stabilization with higher accuracy than the compared PD-like controller, with less elastic
vibration remaining and less control energy consumption. Additionally, it is obvious that
the angular velocity tracking under the compared PD-like controller had a relatively large
overshoot, which is unexpected in practical implementations.

Figure 11. Norm of the attitude tracking under both controllers.
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Figure 12. Norm of the angular velocity tracking under both controllers.

E

Figure 13. Vibration energy under both controllers.

E
u

Figure 14. Control energy consumption under both controllers.
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Consequently, from the simulations and detailed comparisons, the proposed controller
appeared able to achieve a superior stabilization performance and better vibration suppres-
sion than the compared PD-like controller. This was mainly due to the NN compensation
for the lumped unknown term. On the one hand, the robustness of the proposed controller
against uncertain inertia and external disturbance was further enhanced. On the other
hand, the elastic vibrations of the flexible appendages were significantly suppressed at the
same time.

5. Conclusions

In this paper, a novel neural adaptive fixed-time control approach is proposed for
the attitude stabilization and vibration suppression of flexible spacecraft. The NN was
introduced to identify the lumped unknown term involving uncertain inertia, external
disturbance, torque saturation, and elastic vibrations. After that, the proposed controller
was developed by integrating with the NN compensation under the fixed-time backstep-
ping control framework. The proposed controller guaranteed the stabilization of attitude
and angular velocity to the adjustable small neighborhoods of zero in fixed time through
Lyapunov analysis. It should be pointed out that the proposed controller is not only robust
against uncertain inertia and external disturbance, but also insensitive to elastic vibrations
of the flexible appendages. At last, the simulation results indicated that the proposed
control approach was able to achieve an excellent stabilization performance and good
vibration suppression.
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Abstract: In this article, an optimal timing fault tolerant control strategy is addressed for switched
stochastic systems with unknown drift fault for each switching point. The proposed controllers in
existing optimal timing control schemes are not directly aimed at the switched drift fault system,
which affects the optimal control performance. A cost functional with system state information
and fault variable is constructed. By solving the optimal switching time criterion, the switched
stochastic system can accommodate switching drift fault. The variational technique is presented
for the proposed cost function in deriving the gradient formula. Then, the optimal fault tolerant
switching time is calculated by combining the Armijo step-size gradient descent algorithm. Finally,
the effectiveness of the proposed controller design scheme is proved by the safe trajectory planning
for a four wheel drive mobile robot and numerical example.

Keywords: fault tolerant control; switching time fault; optimal timing control; switched stochastic
systems; four wheel drive mobile robot
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1. Introduction

The switched system is a complex kind of hybrid system, which consists of a family of
subsystems and a switch rule that coordinates the sequence of the subsystems. The switch
rule is triggered by switching signals [1,2]. Compared with nonswitching systems, switch-
ing systems have higher control flexibility. Switched systems with unstable subsystems
can be stabilized by designing reasonable switching rules [3,4]. Switched control systems
have been given considerable attention, not only to the inherent complexity, but also the
wide range of practical applications. There are numerous industrial control processes that
could be modeled as the switched systems, such as wind energy conversion [5], chemical
reactors [6], hybrid electric vehicles [7], robot motion planning [8], etc.

For switched systems, the optimal control problems have attracted wide attention
from researchers [9–11]. Different from the traditional continuous systems, the objective of
switched system optimal control is to calculate the optimal switching sequence and switch-
ing rules to optimize the cost function, see [12] for a recent survey. After years of develop-
ment, the optimal timing control of continuous systems has made great progress [13–16].
However, these conclusions may be infeasible when the systems are complex switched sys-
tems. For a class of autonomous systems in which the sequence of continuous dynamics is
predefined, the authors of [17] proposed the optimal time switching strategy by computing
the cost function and the gradient over an underlying time grid. Considering the relatively
simple cost functional, the study described in [18] combined with a gradient descent algo-
rithm gives the gradient formula for the switching time. The previous results mostly focus
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on the cost function containing only integral terms. Although the cost functional in [17]
is relatively more general, it cannot meet the needs of some special working conditions,
such as flexible satellite attitude optimization [19] or multi-agent vehicle formation plan-
ning [20]. It is necessary to study the time optimal switching problem of the generalized
cost functional with the integral term and terminal term.

Since disturbance terms often exist in practical systems, it is almost impossible to
construct an accurate mathematical model to describe practical switched systems [21–23].
At the same time, the stochastic disturbances lead to the stochastic characteristic of switched
systems. From a practical application point of view, stochastic switched systems can model
complex dynamics, uncertainty, randomness. Considering the inevitable effect of noise
and stochastic disturbance, the authors of [24] investigated the time optimal switching
strategy for linear stochastic switched systems. The optimal control strategy for discrete-
time bilinear systems is extended to switched linear stochastic systems in [25]. For general
multi-switched time-invariant stochastic systems, the authors of [26] proposed the time
optimization control approach by minimizing a cost functional with different costs defined
on the states. However, it is worth mentioning that the aforementioned schemes are only
applicable to systems in good operating conditions (i.e., fault free). Extra efforts are needed
to analyze the fault tolerant control problem for switched stochastic systems.

With the increasing demand for safety critical systems in both military and civilian
applications, the performance and safety issues need to be specially considered despite the
presence of faults [27]. This stimulates the research of a fault tolerant control system that can
accommodate unknown system faults and maintain its prespecified performance [28–30].
In consideration of the actuator fault, the authors of [31] designed the fault tolerant con-
troller for a class of uncertain switched nonlinear systems. The actuator saturation fault
has been investigated for a class of discrete-time switched systems [32]. For the switching
point perturbation, the robust optimal control of switched autonomous systems is derived
in [33]. For switched parabolic systems described by partial differential equations, the
boundary system fault is researched in [34]. With the above observations, the fault tolerant
control for stochastic switched systems has not been well developed yet. It is a common
phenomenon that the switching time fault occurs in practical switched engineering sys-
tems. The switching signals are easily subject to electromagnetic interference and unknown
abrupt phenomena such as component and interconnection failures. These factors can
induce the switch time to have a delay [31] and drift faults. In addition, from the optimal
control point of view, the cost function may increase rapidly and serious security accidents
have occurred during the control process when the switching time exceeds or lags behind
the designed optimal switch time. However, as far as we know, there are few results about
optimal fault tolerant control for switched stochastic systems with switched drift fault. The
challenges outlined above motivate us to focus on the optimal timing fault tolerant control
problem for switched stochastic systems.

The remainder of this article is arranged as follows: The problem formulation and
the control objective are stated in Section 2. Section 3 presents the main results for signal
switching, more switchings and optimal fault tolerant algorithm. Section 4 illustrates the
obtained result applications in a four wheel drive mobile robot and numerical example.
Section 5 provides some concluding remarks.

2. Problem Formulation

Consider the switched stochastic system depicted as follows:

ẋ(t) = Aix(t) + Biω(t), t ∈ [Ti−1, Ti], i ∈ [1, 2, · · · , N + 1], (1)

where x(t) ∈ �n is the state vector, Ai and Bi are a set of given constant real matrices of
appropriate dimensions. T0 denotes the initial time, T1, · · · , TN (T0 < T1 < · · · < TN <
TN+1 = Tf ) denote the time switching signal and Tf denotes the final time. ω is the
stochastic disturbance.
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Initial condition x0 ∈ �n is a stochastic vector with mean m0 and variance matrix P0,

E[x(t0)] = m0, Var[x(t0)] = E[(x0 − m0)(x0 − m0)
T ] = P0. (2)

By employing the property of mathematical expectation for the stochastic initial
vector, we have the mean vector m0 ∈ �n and variance matrix P0 ⊂ �n ×�n. Since the
discretization of the time and dynamic input approaches can bring about computation
explosions and result in inaccurate solutions, in this paper we focus on a class of switched
autonomous systems. Then, the switching time signals are the system input variables.

For the stochastic disturbance, the following condition is imposed.

Assumption 1. The stochastic disturbance ω is the zero-mean Gaussian white noise process, which
is independent of x(t0). The following statistical properties are satisfied:

Cov[ω(t), ω(τ)] = E[ω(t)ωT(τ)] = Q0δ(t − τ), (3)

Cov[x(t0), ω(τ)] = E[(x0 − m0)ω
T(τ)] = 0, (4)

where δ(t) is the Dirac delta function,

∫ +∞

−∞
δ(t)dt = 1, δ(t) =

{
0, t �= 0,

+∞, t = 0.
(5)

The normal switching time is denoted as T = (T1, · · · , TN). The actuator switched
fault is an unpermitted deviation Tε of the designed standard switching signal input T.
The unknown switched drift fault for each switching point can be described as:

Tε = (T1 + ε1, · · · , Ti + εi · · · , TN + εN), (6)

where the εi is unknown drift parameters.

Assumption 2. The drift fault parameters are limited to the bounded region, −δi ≤ εi ≤ δi, where
δi is a given small positive constant. For δi, Ti + δi ≤ Ti+1, the predefined triggered sequence
of subsystems is continuous and there is no jump. In addition, the switched system states are
continuous at the switching time which is different from the general hybrid system.

Remark 1. Assumption 1 is reasonable and commonly used. In fact, for the practical engineering
system, the stochastic noise disturbance is generated by the equipment plant, and is independent of
the initial state of the system model. An actuator switched drift fault is a common type of fault. The
drift fault parameter εi is brought by electromagnetic interference, transmission delay, equipment
aging and mechanical wear in modern engineering applications. It is meaningful and reasonable to
limit the amplitude of the drift fault parameter εi. The subsystem triggered sequence does not jump.
Assumption 2 is the foundation of fault tolerant control switch system research.

Due to the stochastic characteristic of the system state x(t), the nominal cost functional
J0 is described as:

J0 = E{Ψ(x(t f )) +
N

∑
i=0

∫ Ti+1

Ti

Li+1(x(t))dt}, (7)

where Li+1(x(t)) = 1
2 xT(t)Qix(t) are the running cost functions. Ψ(x(t f )) =

1
2 xT(t f )PTx(t f )

denote the terminal cost term at the final time. The coefficient matrices PT = PT
T ≥ 0, Qi =

QT
i ≥ 0 are the weight matrices for the present and terminal states, where PT ⊂ �n ×�n

and Qi ⊂ �n ×�n.
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Motivated by the integral mean value theorem, a novel cost functional mechanism is
investigated to achieve an appropriate compromise between drift fault compensation and
the optimal process.

J = E{Ψ(x(t f )) +
1

2N ∏N
i=1 δi

∫ δ1

−δ1

· · ·
∫ δN

−δN

[
∫ T1+ε1

t0

L1(x(t))dt + · · ·

+
∫ Ti+1+εi+1

Ti+εi

Li+1(x(t))dt + · · ·+
∫ t f

TN+εN

LN+1(x(t))]dεN · · · dε1}. (8)

Remark 2. It is worth mentioning that the cost function (8) is the mean value of the integral over
the switch fault time Tε. When the drift fault parameter δi → 0, εi → 0, i.e., fault free, by utilizing
the L’Hôpital’s rule, the cost functional (8) becomes the nominal cost functional J0. The constructed
cost functional J includes system state information and a fault variable, then the optimal switching
time obtained by this cost functional is a relatively accommodated switching drift fault.In addition,
the proposed cost functional mixes the integral term and terminal term. Therefore, the cost functional
(8) we investigate in this paper is general and powerful enough to describe many industrial process.

Control objective: The main purpose of this paper is to deduce the gradient formula
for the corresponding cost function with respect to a switched stochastic system (1). Then,
under Assumptions 1 and 2, we solve the optimal switching signal criterion, such that the
the proposed cost function (8) is minimized in spite of the switched drift fault (6).

3. The Main Results

In this section, we firstly take N = 1 as one switching time for the system. By
employing the calculus of variations and some computation, the increment of the cost
functional will be deduced according to the switching signal increment. Based on the
gradient descent algorithm, the optimal time fault tolerant control of the switched stochastic
system is proposed. Then, the multi-switchings time case can be achieved as the single
switching time extension. Finally, the optimal fault tolerant algorithm is proposed with a
flow chart.

3.1. Single Switching

Consider the case of a single switching for the linear switched autonomous stochastic
system with switching time drift fault ε,

ẋ(t) =

{
A1x(t) + B1ω, t ∈ [t0, T1 + ε],

A2x(t) + B2ω, t ∈ [T1 + ε, t f ].
(9)

For the switching time, we take a positive variation Δt. Compared with the nominal
system (9), we denote x̃ to represent the state trajectory of the system switching time after
the increment of Δt, that is, the switching time is T1 + ε + Δt. The increment system x̃ is
defined as:

˙̃x(t) =

{
A1 x̃(t) + B1ω, t ∈ [t0, T1 + ε + Δt],

A2 x̃(t) + B2ω, t ∈ [T1 + ε + Δt, t f ].
(10)

A portion of the grid is presented in Figure 1 to illustrate the different switching times.

Figure 1. Switching times within the time grid.

188



Mathematics 2022, 10, 1880

In order to make the induced variation cost functional ΔJ clear and easy to be repre-
sented, one can consider the statistical properties of the stochastic states with the nominal
system x and the increment systems x̃.

The second-order origin moment matrix of the system states x(t) and x̃(t) satisfy the
following matrix differential equation:

ṁx(t) =

{
A1mx(t) + mx(t)AT

1 + B1Q0BT
1 , t ∈ [t0, T1 + ε],

A2mx(t) + mx(t)AT
2 + B2Q0BT

2 , t ∈ [T1 + ε, t f ]
(11)

with the initial state mx(0) = P0 + m0mT
0 .

ṁx̃(t) =

{
A1mx̃(t) + mx̃(t)AT

1 + B1Q0BT
1 , t ∈ [t0, T1 + ε + Δt],

A2mx̃(t) + mx̃(t)AT
2 + B2Q0BT

2 , t ∈ [T1 + ε + Δt, t f ],
(12)

with the same initial state mx̃(0) = P0 + m0mT
0 = mx(0). Then, the second-order origin

moment matrix mx(t) and mx̃(t) have the uniform derivative equation on the interval
[t0, T1 + ε].

Next, we will analyze the induced variation cost functional J. The cost functional J
and J̃ have a main discrepancy with the nominal system state x and the increment systems
state x̃ on the interval [T1 + ε, T1 + ε + Δt]. We subdivide the time interval according to the
background grid points falling between t0 and t f , after the switching time T1 + ε + Δt. The
nominal cost functional J can be described as

J = E{Ψ(x(t f )) +
1
2δ

∫ δ

−δ
[
∫ T1+ε

t0

L1dt +
∫ t f

T1+ε
L2dt]dε}

= E{Ψ(x(t f )) +
1
2δ

∫ δ

−δ
[
∫ T1+ε

t0

L1dt +
∫ T1+ε+Δt

T1+ε
L2dt +

∫ t f

T1+ε+Δt
L2dt]dε}

.
= J0 + J1 + J2 + J3. (13)

The increment cost functional J̃ can be described as

J̃ = E{Ψ(x̃(t f )) +
1
2δ

∫ δ

−δ
[
∫ T1+ε+Δt

t0

L1dt +
∫ t f

T1+ε+Δt
L2dt]dε}

= E{Ψ(x̃(t f )) +
1
2δ

∫ δ

−δ
[
∫ T1+ε

t0

L1dt +
∫ T1+ε+Δt

T1+ε
L1dt +

∫ t f

T1+ε+Δt
L2dt]dε}

.
= J̃0 + J̃1 + J̃2 + J̃3. (14)

The major results in this paper are briefly summarized as the following theorem:

Theorem 1. For the linear switched autonomous stochastic system (9) with the single switching
time T1 and the unknown switching drift fault ε, if the system stochastic disturbance satisfies
Assumption 1 and the drift fault parameter satisfies Assumption 2, we design the general cost
functional J, as presented in Equation (13). Then, the derivative dJ/dT1 of the cost function J with
respect to the switching time T1 has the following form:

dJ
dT1

=
1
4δ

∫ δ

−δ
tr(mx(T1 + ε)(Q1 − Q2))dε

+
1
4δ

∫ δ

−δ

∫ t f

T1+ε
tr(eA2(t−T1−ε)M1eAT

2 (t−T1−ε)Q2)dtdε

+
1
2

tr((eA2(t f −T1−ε)M1eAT
2 (t f −T1−ε))PT), (15)
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where M1 = (A1 − A2)mx(T1 + ε) + mx(T1 + ε)(AT
1 − AT

2 ) + B1Q0BT
1 − B2Q0BT

2 ,
and mx(T1 + ε) takes the value of the following matrix differential equation at t = T1 + ε:

ṁx(t) = A1mx(t) + mx(t)AT
1 + B1Q0BT

1 ,

mx(0) = P0 + m0mT
0 . (16)

The cost function has the fault tolerant performance for the switching time fault.

Proof. According to the division of the time interval in Figure 1, through the following
four steps, we complete the proof of the theorem.

Step 1. On the interval t ∈ [t0, T1 + ε], the systems (9) and (10) can be redescribed as

ẋ(t) = A1x(t) + B1ω, t ∈ [t0, T1 + ε], (17)
˙̃x(t) = A1 x̃(t) + B1ω, t ∈ [t0, T1 + ε]. (18)

The induced variation in the cost functional J and J̃,

J̃1 − J1 = E{ 1
2δ

∫ δ

−δ

∫ T1+ε

t0

L1dtdε} − E{ 1
2δ

∫ δ

−δ

∫ T1+ε

t0

L1dtdε}

=
1
2δ

∫ δ

−δ

∫ T1+ε

t0

E(L1(x̃)− L1(x))dtdε

=
1
2δ

∫ δ

−δ

∫ T1+ε

t0

1
2

E(x̃T(t)Q1 x̃(t)− xT(t)Q1x(t))dtdε. (19)

Owing to the diagonal properties of weight matrices Q1, we obtain

E(xT(t)Q1x(t)) = E(tr(xT(t)Q1x(t))) = E(tr(x(t)xT(t)Q1))

= tr(E(x(t)xT(t))Q1) = tr(mx(t)Q1). (20)

Under the same initial condition x(0) = x̃(0), combining with (11), (12), (17) and (18),
we can conclude that

mx(t) = mx̃(t), t ∈ [t0, T1 + ε]. (21)

Then, Equation (20) is converted into

E(xT(t)Q1x(t)) = tr(mx(t)Q1) = tr(mx̃(t)Q1) = E(x̃T(t)Q1x(t)). (22)

Combining the above equation with (19), the following equation can be obtained:

J̃1 − J1 =
1
2δ

∫ δ

−δ

∫ T1+ε

t0

1
2

E(x̃T(t)Q1 x̃(t)− xT(t)Q1x(t))dtdε = 0. (23)

Step 2. On the interval t ∈ [T1 + ε, T1 + ε + Δt], the systems in (9) and (10) are
described as

ẋ(t) = A2x(t) + B2ω, t ∈ [T1 + ε, T1 + ε + Δt], (24)
˙̃x(t) = A1 x̃(t) + B1ω, t ∈ [T1 + ε, T1 + ε + Δt]. (25)
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The increment of the cost function is

J̃2 − J2 =
1
2δ

∫ δ

−δ

∫ T1+ε+Δt

T1+ε
E(L2(x̃)− L1(x))dtdε

=
1
4δ

∫ δ

−δ

∫ T1+ε+Δt

T1+ε
E(x̃T(t)Q2 x̃(t)− xT(t)Q1x(t))dtdε

=
1
4δ

∫ δ

−δ

∫ T1+ε+Δt

T1+ε
tr(mx̃Q1 − mxQ2)dtdε. (26)

Consider the second-order origin moment matrix mx(t), mx̃(t) and Equations (11) and (12).
By applying Taylor expansion, mx(t) and mx̃(t) at T1 + ε can be calculated as:

mx(t) = mx(T1 + ε) + (A2mx(T1 + ε) + mx(T1 + ε)AT
2

+B2Q0BT
2 )(t − T1 − ε) + o(t − T1 − ε)

= mx(T1 + ε) + m1(t − T1 − ε) + o(t − T1 − ε), (27)

mx̃(t) = mx̃(T1 + ε) + (A1mx̃(T1 + ε) + mx̃(T1 + ε)AT
1

+B1Q0BT
1 )(t − T1 − ε) + o(t − T1 − ε)

= mx̃(T1 + ε) + m̃1(t − T1 − ε) + o(t − T1 − ε). (28)

It can be seen that mx(T1 + ε) = mx̃(T1 + ε) from (11) and (12). Note that at t =
T1 + ε + Δt, the mx(t) is not equal to mx̃(t), then, we have

tr(mx̃Q1 − mxQ2) = tr(mx(T1 + ε)(Q1 − Q2) + o(t − T1 − ε)

+(m̃1Q1 − m1Q2)(t − T1 − ε)). (29)

Substituting the above equation into (26), one has

J̃2 − J2 =
1
4δ

∫ δ

−δ
tr(mx(T1 + ε)(Q1 − Q2)Δt

+
∫ T1+ε+Δt

T1+ε
(tr(M11)(t − T1 − ε) + o(t − T1 − ε))dtdε

=
1
4δ

∫ δ

−δ
tr(mx(T1 + ε)(Q1 − Q2))Δt +

1
2

tr(M11)Δt2 + o(Δt)dε

=
Δt
4δ

∫ δ

−δ
tr(mx(T1 + ε)(Q1 − Q2))dε + o(Δt). (30)

By dividing Δt on both sides of the above equation and taking the limit operation
Δt → 0, one has

lim
Δt→0

J̃2 − J2

Δt
=

1
4δ

∫ δ

−δ
tr(mx(T1 + ε)(Q1 − Q2))dε. (31)

Step 3. On the interval t ∈ [T1 + ε + Δt, t f ], the systems can be represented as

ẋ(t) = A2x(t) + B2ω, t ∈ [T1 + ε + Δt, t f ], (32)
˙̃x(t) = A2 x̃(t) + B2ω, t ∈ [T1 + ε + Δt, t f ]. (33)
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The increment of the cost function is

J̃3 − J3 =
1
2δ

∫ δ

−δ

∫ t f

T1+ε+Δt
E(L2(x̃)− L2(x))dtdε

=
1
4δ

∫ δ

−δ

∫ t f

T1+ε+Δt
E(x̃T(t)Q2 x̃(t)− xT(t)Q2x(t))dtdε

=
1
4δ

∫ δ

−δ

∫ t f

T1+ε+Δt
tr((mx̃ − mx)Q2)dtdε. (34)

Recalling the Taylor expansion at T1 + ε for the mx(t) and mx̃(t),

mx̃(T1 + ε + Δt)− mx(T1 + ε + Δt) = (m̃1 − m1)Δt + o(Δt)
.
= M1Δt + o(Δt). (35)

By applying Taylor series expansion at T1 + ε + Δt, the mx(t) and mx̃(t) can be
described as

mx(t) = mx(T1 + ε + Δt) + ṁx(T1 + ε + Δt)(t − T1 − ε − Δt)

+ · · ·+ m(n)
x (T1 + ε + Δt)

(t − T1 − ε − Δt)n

n!
, (36)

mx̃(t) = mx̃(T1 + ε + Δt) + ṁx̃(T1 + ε + Δt)(t − T1 − ε − Δt)

+ · · ·+ m(n)
x̃ (T1 + ε + Δt)

(t − T1 − ε − Δt)n

n!
. (37)

By employing the mathematical calculations, we have

mx̃(t)− mx(t) = eA2(t−T1−ε−Δt)M1eAT
2 (t−T1−ε−Δt)Δt + o(Δt). (38)

Substituting the above equation into (34), and dividing it by Δt and taking the lim Δt →
0, we obtain

lim
Δt→0

J̃3 − J3

Δt
= lim

Δt→0

1
4δΔt

∫ δ

−δ

∫ t f

T1+ε+Δt
tr((mx̃ − mx)Q2)dtdε

= lim
Δt→0

1
4δΔt

∫ δ

−δ

∫ t f

T1+ε+Δt
tr(eA2(t−T1−ε−Δt)M12eAT

2 (t−T1−ε−Δt)Q2Δt)dtdε

=
1
4δ

∫ δ

−δ

∫ t f

T1+ε
tr(eA2(t−T1−ε)M1eAT

2 (t−T1−ε)Q2)dtdε. (39)

Step 4. For t = t f , we analyze the difference of terminal cost item of the cost functional,

J̃0 − J0 = E{Ψ(x̃(t f ))} − E{Ψ(x(t f ))}
= E{1

2
x̃T(t f )PTx̃(t f )− 1

2
xT(t f )PTx(t f )}

=
1
2

tr((mx̃(t f )− mx(t f ))PT). (40)

Recalling the Taylor expansion at T1 + ε + Δt for the mx(t) and mx̃(t), we have

mx̃(t f )− mx(t f ) = eA2(t f −T1−ε−Δt)M1eAT
2 (t f −T1−ε−Δt)Δt + o(Δt). (41)
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Substituting the above equation into (40), and dividing it by Δt and taking the lim Δt →
0, we obtain

lim
Δt→0

J̃0 − J0

Δt
= lim

Δt→0

1
2Δt

tr((mx̃(t f )− mx(t f ))PT)

= lim
Δt→0

1
2Δt

tr((eA2(t f −T1−ε−Δt)M1eAT
2 (t f −T1−ε−Δt)Δt + o(Δt))PT)

=
1
2

tr((eA2(t f −T1−ε)M1eAT
2 (t f −T1−ε))PT). (42)

Combining the above four steps, we can complete the proof.

3.2. Multi-Switchings

In this subsection, we consider the case of more switchings (N > 1). Recall that the
switched stochastic systems (1) have N + 1 linear time-invariant autonomous stochastic
subsystems and the cost function (8) in Section 2. The major results in this paper with more
switchings are briefly summarized as the following theorem:

Theorem 2. For the linear switched autonomous stochastic system (1) with the multi-switching
time T and the unknown switching drift fault ε, if the system stochastic disturbance satisfies
Assumption 1 and the drift fault parameter satisfies Assumption 2, we design the general cost
functional J, as presented in Equation (8). Then, the partial derivatives ∂J(T)/∂Ti (i = 1, . . . , N)
with respect to the ith switching time have the following form:

∂J
∂Ti

=
1

2N+1 ∏N
i=1 δi

∫ δ1

−δ1

· · ·
∫ δN

−δN

(
tr
(

eAN+1(t f −TN−εN)ΓjNeA�
N+1(t f −TN−εN)PT

)
+

N

∑
i=j

∫ Ti+1+εi+1

Ti+εi

tr
(

eAi+1(t−Ti−εi)Γjie
A�

i+1(t−Ti−εi)Qi+1

)
dt

+tr
(
mx

(
Tj + εj

)(
Qj − Qj+1

)))
dεN · · ·dε1, (43)

where the symbol tr(·) is defined as the trace function

Γjj = Mj, j = 1, . . . , N,

Γji = eAi(Ti−Ti−1)Γj,i−1eA�
i (Ti−Ti−1), i = j + 1, . . . , N,

Mj =
(

Aj − Aj+1
)
mx

(
Tj + εj

)
+ mx

(
Tj + εj

)(
A�

j − A�
j+1

)
+ BjQ0B�

j − Bj+1Q0B�
j+1.

The second-order origin moment matrix mx(t) satisfies the following matrix differential equation:

ṁx(t) =

{
Aimx(t) + mx(t)A�

i + BiQ0B�
i , t ∈ (Ti−1, Ti], i = 1, . . . , N,

AN+1mx(t) + mx(t)A�
N+1 + BN+1Q0B�

N+1, t ∈
(

TN , t f

)
mx(t0) = P0 + m0m�

0 .

The cost function has the fault tolerant performance for the switching time fault.

3.3. Optimal Fault Tolerant Algorithm

After taking into account the gradient of the cost functional in the above theorems,
the next problem is to calculate the optimal switching time. In this subsection, the steepest
descent algorithm with Armijo step sizes is explained in Figure 2. By denoting the initial
parameters α ∈ (0, 1), β ∈ (0, 1) and λ(k) := βi(k), the step size can be designed as
i(k) = min

{
i ≥ 0 : J

(
τ(k)− βiDJ(τ(k))

)− J(τ(k)) ≤ −αβi‖DJ(τ(k))‖2}.
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Figure 2. The steepest descent algorithm flow chart.

4. Simulation

In this section, the four wheel drive autonomous mobile robot system and numerical
example are proposed to prove the feasibility of the designed optimization fault tolerant
algorithm. The dynamic model of the four wheel drive mobile robot system represented in
reference [35] is subject to actuator faults. It is shown that even with external stochastic
disturbance and unknown switch draft fault in the actuator switched mechanism, the
proposed optimization fault tolerant algorithm can explain the safety switch control of the
different trajectory tasks for the autonomous mobile robot.

4.1. Practical Example

In consideration of the external stochastic disturbance, we select the lateral velocity
and yaw angle of the center of gravity as the state variables. The kinematic model of the
simplified four wheel drive mobile robot as shown in [35] is

ax =
dVx

dt
− Vy

dθ

dt
= V̇x − VyΩz,

ay =
dVy

dt
+ Vx

dθ

dt
= V̇y + VxΩz, (44)

where ax is the longitudinal acceleration, ay is the lateral acceleration, Vx and Vy are the
forward velocity and lateral velocity of vehicle mass center, respectively, Ωz is the yaw
motion around the Z axis. The mobile robot vehicle dynamics equation is as follows:

Max = M
(
V̇x − VyΩz

)
= Fx f cos δ f + Fxr − Fy f sin δ f ,

May = M
(
V̇y + VxΩz

)
= Fy f cos δ f + Fyr + Fx f sin δ f ,

IzΩ̇z = l1Fy f cos δ f − l2Fyr + l1Fx f sin δ f , (45)
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where δ f is the front wheel angle, Fx f and Fy f are the longitudinal and lateral forces of
the front wheel, respectively. Fxr and Fyr are the longitudinal and lateral forces of the
rear wheel, respectively. l1 is the distance from the center of mass to the front axis, and
l2 is the distance from the center of mass to the rear axis. In consideration of the lateral
characteristics of the tire, we have

Fy f = Cf α f ,

Fyr = Crαr, (46)

where

α f = δ f −
l1Ωz + Vy

Vx
, αr =

l2Ωz − Vy

Vx
.

By substituting the kinematic model and the tire characteristics into the vehicle dy-
namics equation, we can obtain

V̇y = − 1
M

(
Cf + Cr

)
Vx

Vy −
(

Vx +
l1Cf − l2Cr

MVx

)
Ωz +

Cf

M
δ f ,

Ω̇z = − l1Cf − l2Cr

IzVx
Vy −

l2
1Cf + l2

2Cr

IzVx
Ω̇z +

l1Cf

Iz
δ f . (47)

The forward velocity of the mobile robot along the X axis is considered constant. Then,
the car has only two degrees of freedom. In order to simplify the expressions, we introduce
the change in coordinates:

a11 = − 1
M

(
Cf + Cr

)
Vx

, a12 = −
(

Vx +
l1Cf − l2Cr

MVx

)
, b1 =

Cf

M
,

a21 = − l1Cf − l2Cr

IzVx
, a22 = − l2

1Cf + l2
2Cr

IzVx
, b2 =

l1Cf

Iz
,

x1 = Vy, x2 = Ωz. (48)

By employing the external stochastic disturbance on the front wheel angle δ f , we
select the coupling friction coefficients b1 = 0, b2 = 1 and b1 = 1, b2 = 0 to represent
the the switched stochastic systems term Biω. The forward velocity of the mobile robot
along the X axis is considered constant. Thus, the four wheel drive mobile robot system
has only two state variables, x1 = Vy, x2 = Ωz. In complex road conditions, the friction
coefficient of tires is different. In addition, we can note that the different trajectory tasks
require a different forward velocity Vx. Therefore, by different trajectory tasks, under
the complex road conditions and external stochastic disturbance, the following switched
stochastic systems equation is obtained for a four wheel drive mobile robot with safe
trajectory planning:

ẋ(t) =

{
A1x(t) + B1ω, t ∈ [t0, T1],

A2x(t) + B2ω, t ∈ (T1, t f ],
(49)

where the system matrices are

A1 =

[ −1 0
1 2

]
, B1 =

[
0
1

]
, A2 =

[
1 1
0 −2

]
, B2 =

[
1
0

]
.

As presented in the four wheel drive mobile robot example, the robot safe trajectory
planning problems can be translated into the studied switched stochastic systems. Then,
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the proposed optimal timing fault tolerant control strategy can solve the safe trajectory
planning problem effectively.

In order to illustrate the effectiveness of the proposed algorithm with multi-switching
times, the system is repeatedly switched. The system is described by three switching points,
as follows:

ẋ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A1x(t) + B1ω, t ∈ [t0, T1],

A2x(t) + B2ω, t ∈ (T1, T2],

A1x(t) + B1ω, t ∈ (T2, T3],

A2x(t) + B2ω, t ∈ (T3, t f ],

(50)

where the initial state x(0) = [1, 0]T , the initial time t0 = 0, the final time t f = 1, the
initial switching time T1 = 0.3, T2 = 0.5, T3 = 0.7. By the switch control mechanism, the
four wheel drive mobile robot system executes the desired different trajectory tasks. We
need to calculate the optimal switching time T1, T2, T3 to minimize the cost functional J.
The weight coefficient matrices are designed as the unit matrix. The steepest descent
parameters are α = β = 0.5, the threshold value ε = 0.05, kmax = 200. The experiments
are implemented with Matlab2015a on a desktop PC with i7-6700 3.4 GHz CPU, 16 GB
memory and Windows 1064 bit OS. The simulation results are described in Figures 3 and 4.

λ
(k
)

J
(τ
(k
))

‖d
J
(τ
(k
))
‖

Figure 3. The designed step size λ(k), the cost functional J(τ(k)) and gradient ‖dJ(τ(k))‖with k iterations.

The optimal switching time is T = [0.2609, 0.4677, 0.7749] after ten iterations. Based
on the proposed algorithm, we obtain the corresponding optimal cost J = 2.8185. From
Figure 3, it is easy to see that the cost J quickly converges to a minimum value and the
gradient function ‖dJ(τ(k))‖ reaches the termination value. In addition, the system state
trajectories with respect to the switching time signal τ(k) are illustrated in Figure 4.
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Figure 4. The trajectories of states x1(t) and x2(t).

The blue dotted lines explain the state trajectories with the iterate progress switching
time vector τ(k). As a comparison, the red solid line explains the optimal trajectories with
respect to the optimal switching time signal.

4.2. Numerical Example

Consider the following switched nonlinear systems:

ẋ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A1x(t) + B1ω, t ∈ [t0, T1],

A2x(t) + B2ω, t ∈ (T1, T2],

A3x(t) + B3ω, t ∈ (T2, T3],

A4x(t) + B4ω, t ∈ (T3, t f ],

(51)

where the system matrices are

A1 =

[ −1 1
0 2

]
, A2 =

[
1 0
1 −2

]
, A3 =

[ −1 0
1 2

]
, A4 =

[
1 1
0 −2

]

B1 = B3 =

[
0
1

]
, B2 = B4 =

[
1
0

]
.

We select the initial state x(0) = [1,−1]T , the initial time t0 = 0, the final time t f = 0.9,
the initial switching time T1 = 0.3, T2 = 0.5, T3 = 0.7. The weight coefficient matrices are
designed as Q1 = I, Q2 = 2I, Q3 = 3I, Q4 = 4I, P = I, where I denotes the unit matrix.
The cost function J(τ(k)) and the gradient function ‖dJ(τ(k))‖ with k iterations and the
trajectories of the states x1(t) and x2(t) are shown in Figures 5 and 6 when employing the
proposed optimal timing fault tolerant control strategy.
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Figure 5. The cost function J(τ(k)) and the gradient function ‖dJ(τ(k))‖ with k iterations.

Figure 6. The trajectories of states x1(t) and x2(t).

It is worth noting that the switched subsystems are different in the numerical example
which can describe the more general systems.

5. Conclusions

In this paper, an novel optimal timing fault tolerant control algorithm is proposed
for switched stochastic systems with an unknown drift fault for each switching point.
The designed optimal timing fault tolerant controller can not only realize the optimal
performance, but also accommodate switching drift fault. Moreover, in this process, the
cost functional has the general form with the integral terms and the terminal terms with the
switched stochastic systems state variable. The variational technique is exploited to deduce
the gradient formula. The steepest descent algorithm with Armijo step sizes is utilized
to calculate the optimal switching time. The safety trajectory switching of a four wheel
drive vehicle is taken as a practical application case to illustrate the effectiveness of the
proposed method. Owing to the special structure of the gradient formula, how to extend
the suggested methods to large-scale systems, multi-agent systems and practical systems
are is a problem worthy of research.
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Abstract: This paper reports the construction of synchronization criteria for the delayed impulsive
epidemic models with reaction–diffusion under the Neumann boundary value. Different from the
previous literature, the reaction–diffusion epidemic model with a delayed impulse brings mathemati-
cal difficulties to this paper. In fact, due to the existence of second-order partial derivatives in the
reaction–diffusion model with a delayed impulse, the methods of first-order ordinary differential
equations from the previous literature cannot be effectively applied in this paper. However, with the
help of the variational method and an appropriate boundedness assumption, a new synchronization
criterion is derived, and its effectiveness is illustrated by numerical examples.

Keywords: Neumann boundary value; delayed impulse; synchronization; reaction–diffusion epi-
demic models; variational methods

MSC: 34K24; 34K45

1. Introduction

The dynamics of epidemic models has always been a hot topic [1,2]. Ordinary differen-
tial equation epidemic dynamic models are the most common models, and fractional order
models especially have been hot topics in recent research [3–6] whose ideas or methods
have been applied to studying epidemic dynamic models. Moreover, the reaction–diffusion
epidemic models have become one of the key topics because of the migration behavior of the
population [7–10]. Usually, infectious diseases are controlled within a certain range, so we
consider the Neumann boundary value, that is, there is no diffusion on the boundary of the
infectious area because the disease area is usually isolated from the outside world by some
measures, so the Neumann zero boundary value is considered in this paper. To prevent the
spread of disease, the government or relevant departments often take impulse measures.
This impulse management measure is not only aimed at the epidemic situation, but also
considered impulse control measures for economic management, mechanical engineering
and other issues [11–20]. Delayed impulse models have also been investigated by many
researchers [11,12], for delayed impulse models better simulate the actual situation, that is,
the impulse effect usually takes some time to appear. However, the models with a delayed
impulse are usually ordinary differential systems, and reaction–diffusion systems with a de-
layed impulse are rarely seen in the existing literature. This inspired us to write this paper.
In fact, due to the existence of second-order partial derivatives in the reaction–diffusion
model with a delayed impulse, the methods of first-order ordinary differential equations
in the existing literature cannot be effectively applied to partial differential equations. By
means of the variational method, differential mean value theorem and convergence of
sequence, the synchronization criterion of the delayed impulse reaction–diffusion epidemic
model is obtained in this paper. Intuition tells us that the shorter the impulse interval, the
greater the impulse frequency and the faster the impulse effect appears, and the greater
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the impulse intensity, the faster the synchronization between the models must be. These
intuitive conclusions are affirmed in the synchronization criterion given in this paper.

The rest of this paper is organized as follows. In Section 2, we present some preliminar-
ies about the reaction–diffusion epidemic model with a delayed impulse. In Section 3, we
propose and derive the synchronization criterion for reaction–diffusion epidemic models
under a delayed impulse. In Section 4, an illustrative numerical example is provided
to show the effectiveness of the newly obtained criterion. Finally, some conclusions are
written in Section 5.

The main contributions are as follows:

• Proposing and studying reaction–diffusion epidemic models with a delayed impulse
for the first time;

• Deriving for the first time the synchronization criterion of an epidemic system with a
Neumann boundary value under a delayed impulse.

2. System Description and Preliminaries

In [1], the following epidemic system was studied:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS
dt

=− Sβ(t)I,

dI
dt

=Sβ(t)I − Iγ(t),

dR
dt

=Iγ(t),

(1)

where the function S(t) is the fraction of the susceptible population, I(t) the infected
fraction, R(t) the recovered fraction, and 0 < S(t) < 1, 0 < I(t) < 1, 0 < R(t) < 1. In
addition, the disease transmission rate is denoted by β(t) and the recovery rate is γ(t). In
2020, the authors of [7] considered the epidemic system with inevitable diffusions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂S(t, x)
∂t

=Δ[d1S(t, x)]− I(t, x)β(t)S(t, x),

∂I(t, x)
∂t

=Δ[d2 I(t, x)] + I(t, x)β(t)S(t, x)− I(t, x)γ(t),

∂R(t, x)
∂t

=Δ[d3R(t, x)] + I(t, x)γ(t),

(2)

where Δ is the Laplacian operator.

Generally speaking, Δϕ(x) =
n
∑

i=1

∂2 ϕ

∂x2
i

, for x = (x1, x2, · · · , xn)T ∈ Rn.

Denote X = (X1, X2, X3)
T with X1 = S, X2 = I, X3 = R. The following impulsive

epidemic model with a Neumann boundary value is investigated in this paper:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂X(t, x)
∂t

= DΔX(t, x) + A(t)X(t, x) + f (t, X(t, x)), x ∈ Ω, t � t0,

X(t+k , x)− X(t−k , x) = MkX(tk − τk, x), k ∈ N, x ∈ Ω,

∂X(t, x)
∂ν

= 0, x ∈ ∂Ω, t � 0,

X(0, x) = ϕ(x), x ∈ Ω,

(3)

where N = {1, 2, 3, · · · }, t0 = 0 and tk is the impulse moment for k = 1, 2, · · · , satisfying
0 < t1 < t2 < · · · < tk < · · · and lim

k→∞
tk = +∞. For any impulse moment tk, Mk is a

constant parameters matrix that quantifies the impulse strength at the moment tk. The time
delay τk ∈ [0, τ] with (tk − τk, tk) ⊂ (tk−1, tk) for each k ∈ N, τ = sup

k∈N
τk, and so t0 � t1 − τ1.

Ω ⊂ RN(N � 2) is a bounded smooth domain with smooth boundary ∂Ω.
Denote ν the external normal direction of ∂Ω.
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D =

⎛⎝ d1 0 0
0 d2 0
0 0 d3

⎞⎠, A(t) =

⎛⎝ 0 0 0
0 −γ(t) 0
0 γ(t) 0

⎞⎠, f (t, X) =

⎛⎝ −β(t)X1X2
β(t)X1X2

0

⎞⎠. (4)

System (3) is the drive system, and its response system can be considered as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂Y(t, x)
∂t

= f (t, Y(t, x)) + DΔY(t, x) + A(t)Y(t, x), x ∈ Ω, t � t0,

Y(t+k , x) = MkY(tk − τk, x) + Y(t−k , x), k ∈ N, x ∈ Ω,

∂Y(t, x)
∂ν

= 0, x ∈ ∂Ω, t � 0,

φ(x) = Y(s, x), x ∈ Ω, s ∈ [−τ, 0],

(5)

and then the error system is proposed as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂e(t, x)
∂t

= DΔe(t, x) + A(t)e(t, x) + F(t, e(t, x)), x ∈ Ω, t � t0,

e(t+k , x)− e(t−k , x) = Mke(tk − τk, x), k ∈ N, x ∈ Ω,

∂e(t, x)
∂ν

= 0, t � 0, x ∈ ∂Ω,

e(0, x) = ϕ(x)− φ(x), x ∈ Ω,

(6)

where e = X − Y. Moreover,

F(e(t, x)) = f (t, X(t, x))− f (t, Y(t, x)) =

⎛⎝ −β(t)X1X2 + β(t)Y1Y2
β(t)X1X2 − β(t)Y1Y2

0

⎞⎠ (7)

We assume in this paper that variables are left continuous at impulse moment tk, for
example, e(tk, x) = e(t−k , x).

Obviously, −1 < ei < 1. Moreover, in consideration of the fact that population
resources are limited, we can assume throughout this paper that their regional change rate
is also limited, and so the change rate of the change rate is even limited:

H1 For any i = 1, 2, 3, there exists a constant ci > 0 such that |Δei(t, x)| < ci|ei(t, x)|;
H2 There is a constant β > 0 such that 0 � β(t) � β;
H3 There is a constant γ > 0 such that |γ(t)| � γ.

Lemma 1 (See, e.g., [21]). Ω ⊂ Rm is a bounded domain with its smooth boundary ∂Ω that is of
class C2. ξ(x) ∈ H1

0(Ω) is a real-valued function and ∂ξ(x)
∂ν |∂Ω = 0. Then,∫

Ω
|∇ξ(x)|2dx � λ1

∫
Ω
|ξ(x)|2dx,

where λ1 is defined by the least positive eigenvalue of the problem:⎧⎨⎩
λξ − Δξ = 0, x ∈ Ω,

∂ξ(x)
∂ν

= 0, x ∈ ∂Ω.

3. Main Result

Theorem 1. Assume there exists a positive definite diagonal matrix Q and a constant q0 > 0
such that

Q � q0I (8)
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and

sup
k∈N

[
‖I + Mk‖+ τk‖Mk‖ ·

(
‖D‖

√
λmaxC2 + ‖Ã‖+ 2β

)]√
λmaxQ
λminQ

eλρ � ρ0 < 1, (9)

then system (3) and system (5) are synchronized, where I is the identity matrix, C = diag(c1, c2, c3) >
0 with ci > 0 defined in (H1), ρ = sup

k∈N
(−tk−1 + tk), ζ = inf

k∈N
(tk − tk−1) > 0,

Ã =

⎛⎝ 0 0 0
0 γ 0
0 γ 0

⎞⎠, (10)

λ =

[
1

λminQ
λmax

(
− λ1(QD + DQ) + QÃ + ÃTQ + Q + 4q0β2I

)]
. (11)

Here, inequality (8) indicates that (q0I − Q) is a non-negative definite matrix. For any
symmetric matrix B, the real numbers λminB and λmaxB represent the minimum and maxi-
mum eigenvalue of B, respectively. For a matrix B, ‖B‖ is its norm with ‖B‖ =

√
λmax(BT B).

Proof. Consider the following Lyapunov function:

V(t) =
∫

Ω
eT(t, x)Qe(t, x)dx,

where Q is a positive definite symmetric matrix. Denote ‖η‖2 =
3
∑

i=1

∫
Ω |ηi(x)|2dx for any

vector Lebesgue square-integrable function η(x) = (η1(x), η2(x), η3(x))T .
It follows from 0 < Xi < 1 and 0 < Yi < 1 (i = 1, 2, 3) that

FT(t, e)QF(t, e) �2q0β2 · 2[(X2 − Y2)
2 + (X1 − Y1)

2] � 4q0β2eTe

So,

D+V(t) �− λ1

∫
Ω

eT(QD + DQ)edx +
∫

Ω
eT
(

QÃ + ÃTQ
)

edx +
∫

Ω

(
eTQF(t, e) + FT(t, e)Qe

)
dx

� 1
λminQ

λmax

(
− λ1(QD + DQ) + QÃ + ÃTQ + Q + 4q0β2I

) ∫
Ω

eT(t, x)Qe(t, x)dx, t ∈ (tk−1, tk],

which means

‖e(t)‖2 � λmaxQ
λminQ

eλ(t−tk−1)‖e(t+k−1)‖2, t ∈ (tk−1, tk].

Particularly,

‖e(tk)‖2 = ‖e(t−k )‖2 � λmaxQ
λminQ

eλ(t−tk−1)‖e(t+k−1)‖2, k ∈ N.

On the other hand,

‖DΔe(ςk, x)‖ �‖D‖ · ‖Δe(ςk, x)‖ � ‖D‖
√

λmaxC2 · ‖e(ςk)‖,

and

‖F(t, e(t))‖ �
√

2β ·
√

2
√∫

Ω
[(X2 − Y2)2 + (X1 − Y1)2]dx � ‖e(t)‖ · 2β.

Now we can see it from the differential mean value theorem and definition of A(t)
that there exists ςk ∈ (tk − τk, tk) ⊂ (tk−1, tk) such that
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‖e(t+k )‖ =‖e(t−k , x) + Mke(tk − τk, x)‖
�‖I + Mk‖ · ‖e(tk, x)‖+ ‖Mk‖ · ‖e(tk, x)− e(tk − τk, x)‖

�‖I + Mk‖ · ‖e(tk, x)‖+ τk‖Mk‖ ·
(
‖D‖

√
λmaxC2 · ‖e(ςk)‖+ ‖Ã‖ · ‖e(ςk)‖+ 2β‖e(ςk)‖

)

�
[
‖I + Mk‖+ τk‖Mk‖ ·

(
‖D‖

√
λmaxC2 + ‖Ã‖+ 2β

)]√
λmaxQ
λminQ

eλ(tk−tk−1)‖e(t+k−1)‖

�ρ0‖e(t+k−1)‖, ∀ k = 1, 2, 3, · · ·
which means

‖e(t+k ) � ρk
0‖e(0)‖, ∀ k = 1, 2, 3, · · · . (12)

Finally, for t ∈ (tk−1, tk],

‖e(t)‖2 � λmaxQ
λminQ

eλ(t−tk−1)‖e(t+k−1)‖2 � λmaxQ
λminQ

eλρρ
2(k−1)
0 ‖e(0)‖2,

which, together with t > tk−1, implies

‖e(t)‖ �
√

λmaxQ
λminQ

eλρ‖e(0)‖e−λ0(t−t0). (13)

where λ0 = − 1
ζ ln ρ0 > 0 . This completes the proof.

Remark 1. Contrary to the existing literature related to impulsive reaction–diffusion epidemic
models (see, e.g., [13,14]), the delayed impulse is firstly considered in the reaction–diffusion epidemic
system in this paper. Indeed, although time delays were introduced in [13], the impulse was not
delayed. However, in real life, the effectiveness of many defensive measures usually takes place after
a period of time. Therefore, the delayed impulse epidemic model studied in this paper clearly has
practical significance.

Remark 2. Introducing the delayed impulse into reaction–diffusion epidemic models means bringing
new mathematical difficulties to this paper. Therefore, this paper adopts a method different from [13,14]
to overcome the mathematical difficulties, and a new synchronization criterion is derived.

4. Numerical Example

Example 1. Let Ω = (0, 1)× (0, 1) ⊂ R2, then λ1 = π2. Set C = I = diag(1, 1, 1), γ(t) =
0.1 sin2 t, β(t) = 0.1 cos2 t, and β = 0.1 = γ,

A(t) =

⎛⎝ 0 0 0
0 −0.1 sin2 t 0
0 0.1 sin2 t 0

⎞⎠, f (t, X) =

⎛⎝ −0.1 cos2 tX1X2
0.1 cos2 tX1X2

0

⎞⎠, Ã =

⎛⎝ 0 0 0
0 0.1 0
0 0.1 0

⎞⎠.

Case 1: Let ρ = 0.1, τk ≡ τ = 0.01, Mk ≡ −0.7I , and

D =

⎛⎝ 0.045 0 0
0 0.035 0
0 0 0.055

⎞⎠.

Using a computer with Matlab’s LMI toolbox results in the following feasibility datum:

Q =

⎛⎝ 0.0155 0 0
0 0.0135 0
0 0 0.0161

⎞⎠
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then, q0 = λmaxQ = 0.0161, λminQ = 0.0135, and

sup
k∈N

[
‖I + Mk‖+ τk‖Mk‖ ·

(
‖D‖

√
λmaxC2 + ‖Ã‖+ 2β

)]√
λmaxQ
λminQ

eλρ = 0.8196 � ρ0 < 1,

where ρ0 = 0.8196. According to Theorem 1, system (3) and system (5) are synchronized.
Case 2: Let ρ = 0.05, τk ≡ τ = 0.01, Mk ≡ −0.7I , and

D =

⎛⎝ 0.045 0 0
0 0.035 0
0 0 0.055

⎞⎠,

Using Matlab’s LMI toolbox results in the following feasibility datum:

Q =

⎛⎝ 0.0111 0 0
0 0.0131 0
0 0 0.0112

⎞⎠
then, q0 = λmaxQ = 0.0131, λminQ = 0.0111, and

sup
k∈N

[
‖I + Mk‖+ τk‖Mk‖ ·

(
‖D‖

√
λmaxC2 + ‖Ã‖+ 2β

)]√
λmaxQ
λminQ

eλρ = 0.7988 � ρ0 < 1,

where ρ0 = 0.7988. According to Theorem 1, system (3) and system (5) are synchronized.

Remark 3. Table 1 reveals that the bigger the impulse frequency, the faster the synchronization speed.

Table 1. Comparison of the influence from different impulse frequencies when other data are unchanged.

Case 1: ρ = 0.1 Case 2: ρ = 0.05

τk 0.01 0.01

Mk −0.7I −0.7I
ρ0 0.8196 0.7988

Case 3: Let ρ = 0.1, τk ≡ τ = 0.01, Mk ≡ −0.8I , and

D =

⎛⎝ 0.045 0 0
0 0.035 0
0 0 0.055

⎞⎠,

Using Matlab’s LMI toolbox results in the following feasibility datum:

Q =

⎛⎝ 0.0166 0 0
0 0.0163 0
0 0 0.0165

⎞⎠
then, q0 = λmaxQ = 0.0163, λminQ = 0.0166, and

sup
k∈N

[
‖I + Mk‖+ τk‖Mk‖ ·

(
‖D‖

√
λmaxC2 + ‖Ã‖+ 2β

)]√
λmaxQ
λminQ

eλρ = 0.5466 � ρ0 < 1,

where ρ0 = 0.5466. According to Theorem 1, system (3) and system (5) are synchronized.

Remark 4. Table 2 implies that the bigger the impulse intensity, the faster the synchroniza-
tion speed.
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Table 2. Comparison of the influence from different impulse intensities when other data are unchanged.

Case 1: Mk = −0.7I Case 2: Mk = −0.8I
ρ 0.1 0.1

τk 0.01 0.01

ρ0 0.8196 0.5466

Case 4: Let ρ = 0.1, τk ≡ τ = 0.001, Mk ≡ −0.7I , and

D =

⎛⎝ 0.045 0 0
0 0.035 0
0 0 0.055

⎞⎠,

Using Matlab’s LMI toolbox results in the following feasibility datum:

Q =

⎛⎝ 0.0155 0 0
0 0.0135 0
0 0 0.0161

⎞⎠
then, q0 = λmaxQ = 0.0161, λminQ = 0.0135, and

sup
k∈N

[
‖I + Mk‖+ τk‖Mk‖ ·

(
‖D‖

√
λmaxC2 + ‖Ã‖+ 2β

)]√
λmaxQ
λminQ

eλρ = 0.7188 � ρ0 < 1,

where ρ0 = 0.7188. According to Theorem 1, system (3) and system (5) are synchronized.

Remark 5. Table 3 means that the smaller the time delays of the impulse effect, the faster the
synchronization speed.

Table 3. Comparison of the influence of different time delays of the impulse effect when other data
are unchanged.

Case 1: τk = 0.01 Case 2: τk = 0.001

ρ 0.1 0.1

Mk −0.7I −0.7I
ρ0 0.8196 0.7188

Below, another numerical example is presented to show the validity of Theorem 1 via
very simple computations.

Example 2. Set C = 15I = diag(15, 15, 15), Mk ≡ −0.9I , D = 0.1I , Q = I , τk ≡ τ = 0.01,
β = 0.1, and then direct computations lead to√

λmaxC2 = 15, ‖I + Mk‖ ≡ 0.1, ‖Mk‖ ≡ 0.9, ‖D‖ = 0.1, λmaxQ = λminQ = 1 = q0. (14)

Let Ω = (0, 1)× (0, 1) ⊂ R2; then, λ1 = π2. Set γ = 0.1; then,

Ã =

⎛⎝ 0 0 0
0 0.1 0
0 0.1 0

⎞⎠ and ‖Ã‖ =
√

0.0200 = 0.1414. (15)
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Hence, it follows from (14) and (15) that

λ =

[
1

λminQ
λmax

(
− λ1(QD + DQ) + QÃ + ÃTQ + Q + 4q0β2I

)]
=λmax

(
− λ1(QD + DQ) + QÃ + ÃTQ + Q + 4q0β2I

)
=λmax

(
− π2(0.1I + 0.1I) + Ã + ÃT + I + 0.04I

)
=− 0.6925,

(16)

where

(
− π2(0.1I + 0.1I) + Ã + ÃT + I + 0.04I

)
=

⎛⎝ −0.9339 0 0
0 −0.7339 0.1000
0 0.1000 −0.9339

⎞⎠.

Now, letting ρ = 0.3 and ρ0 = 0.9, we can get by (14)–(16) that

sup
k∈N

[
‖I + Mk‖+ τk‖Mk‖ ·

(
‖D‖

√
λmaxC2 + ‖Ã‖+ 2β

)]√
λmaxQ
λminQ

eλρ

≡
[
‖I + Mk‖+ τk‖Mk‖ ·

(
‖D‖

√
λmaxC2 + ‖Ã‖+ 2β

)]√
λmaxQ
λminQ

eλρ

=

[
0.1 + 0.01 × 0.9 ×

(
0.1 × 15 + 0.1414 + 0.2

)]√
e−0.6925×0.3

<

[
0.1 + 0.01 × 0.9 ×

(
0.1 × 15 + 0.1414 + 0.2

)]
× 1

=0.1166 < ρ0 < 1,

which implies (9) holds.
According to Theorem 1, system (3) and system (5) are synchronized (see Figures 1–3).

Figure 1. Computer simulation of X1 in (3) and Y1 in (5).
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Figure 2. Computer simulation of X2 in (3) and Y2 in (5).

Figure 3. Computer simulation of X3 in (3) and Y3 in (5).

Remark 6. Example 2 illustrates that the validity of Theorem 1 can be easily verified even without
using Matlab’s LMI toolbox.

5. Conclusions

This paper reported the synchronization control of two epidemic systems with a
Neumann boundary value under a delayed impulse. Different from the previous relevant
literature in which the effect of the impulse control was immediate, our impulse effect was
delayed, which is in line with the actual situation during an epidemic. At the same time,
the newly obtained criterion and numerical examples illustrate that the shorter the time
delay of the pulse effect, the faster the synchronization speed. In addition, the smaller
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the pulse interval, the faster the synchronization. On the other hand, Remarks 1 and 2
illustrated the novelty of this paper by comparing the related literature with this paper.

Author Contributions: Writing—original draft and revising, R.R.; participating in the discussion
of the literature and polishing English, Z.L., X.A. and J.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the 2019 provincial undergraduate innovation and en-
trepreneurship training program of Chengdu Normal University (S201914389037).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bacaer, N.; Gomes, M.G.M. On the final size of epidemics with seasonality. Bull. Math. Bio. 2009, 71, 1954–1966. [CrossRef]
[PubMed]

2. Nabti, A.; Ghanbari, B. Global stability analysis of a fractional SVEIR epidemic model. Math. Meth. Appl. Sci. 2021, 44, 8577–8597.
[CrossRef]

3. He, Z.; Abbes, A.; Jahanshahi, H.; Alotaibi, N.D.; Wang, Y. Fractional-order discrete-time sir epidemic model with vaccination:
Chaos and complexity. Mathematics 2022, 10, 165. [CrossRef]

4. Rihan, F.A.; Al-Mdallal, Q.M.; AlSakaji, H.J.; Hashish, A. A fractional-order epidemic model with time-delay and nonlinear
incidence rate. Chaos Solit. Frac. 2019, 126, 97–105. [CrossRef]

5. Ding, K.; Zhu, Q. Impulsive method to reliable sampled-data control for uncertain fractional-order memristive neural networks
with stochastic sensor faults and its applications. Nonlinear Dyn. 2020, 100, 2595–2608. [CrossRef]

6. Xiao J.; Zhong S.; Wen S. Improved approach to the problem of the global Mittag–Leffler synchronization for fractional-order
multidimension-valued BAM neural networks based on new inequalities. Neu. Net. 2021, 133, 87–100. [CrossRef]

7. Zhang, L.; Wang, Z.; Zhao, X. Time periodic traveling wave solutions for a Kermack-McKendrick epidemic model with diffusion
and seasonality. J. Evol. Equ. 2020, 20, 1029–1059. [CrossRef]

8. Liu, C.; Cui, R. Qualitative analysis on an SIRS reaction-diffusion epidemic model with saturation infection mechanism. Nonlinear
Anal. RWA 2021, 62, 103364. [CrossRef]

9. Wang, N.; Zhang, L.; Teng, Z. Dynamics in a reaction-diffusion epidemic model via environmental driven infection in heterogenous
space. J. Biol. Dyn. 2021, 1–24. [CrossRef]

10. Cui, R. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated
incidence rate. Discret. Contin. Dyn. Syst. B 2021, 26, 2997–3022. [CrossRef]

11. Zhang, K.; Braverman, E. Time-delay systems with delayed impulses: A unified criterion on asymptotic stability. Automatica 2021,
125, 109470. [CrossRef]

12. Shi, F.; Liu, Y.; Li, Y.; Qiu, J. Input-to-state stability of nonlinear systems with hybrid inputs and delayed impulses. Nonlinear Anal.
Hybrid Sys. 2022, 44, 101145. [CrossRef]

13. Hu, W.; Zhu Q. Stability criteria for impulsive stochastic functional differential systems with distributed-delay dependent
impulsive effects. IEEE Trans. Syst. Man Cyb. Syst. 2021, 51, 2027–2032. [CrossRef]

14. Rao, R. Impulsive control and global stabilization of reaction-diffusion epidemic model. Math. Meth. Appl. Sci. 2021. [CrossRef]
15. Hu W.; Zhu Q.; Karimi H. Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems. IEEE

Trans. Auto. Control 2019, 64, 5207–5213. [CrossRef]
16. Ji, Y.; Cao, J. Parameter estimation algorithms for hammerstein finite impulse response moving average systems using the data

filtering theory. Mathematics 2022, 10, 438. [CrossRef]
17. Bai, Q.; Zhu, W. Event-triggered impulsive optimal control for continuous-time dynamic systems with input time-delay. Mathe-

matics 2022, 10, 279. [CrossRef]
18. Cao, W.; Zhu, Q. Razumikhin-type theorem for pth exponential stability of impulsive stochastic functional differential equations

based on vector Lyapunov function. Nonlinear Anal. Hyb. Syst. 2021, 39, 100983. [CrossRef]
19. Zhu Q.; Cao, J. Robust exponential stability of markovian jump impulsive stochastic cohen-grossberg neural networks with

mixed time delays. IEEE Trans. Neu. Net. 2010, 21, 1314–1325.
20. Li, X.; Li, P. Stability of time-delay systems with impulsive control involving stabilizing delays. Automatica 2021, 124, 109336

[CrossRef]
21. Pan, J.; Liu X.; Zhong, S. Stability criteria for impulsive reaction-diffusion Cohen-Grossberg neural networks with time-varying

delays. Math. Comput. Model. 2010, 51, 1037–1050. [CrossRef]

210



Citation: Ansari, A.A.; Alhowaity, S.;

Abouelmagd, E.I.; Sahdev, S.K.

Analysis of Equilibrium Points in

Quantized Hill System. Mathematics

2022, 10, 2186. https://doi.org/

10.3390/math10132186

Academic Editors: Quanxin Zhu

Received: 21 May 2022

Accepted: 21 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Analysis of Equilibrium Points in Quantized Hill System

Abdullah A. Ansari 1, Sawsan Alhowaity 2, Elbaz I. Abouelmagd 3,* and Shiv K. Sahdev 4

1 International Center for Advanced Interdisciplinary Research (ICAIR), Sangam Vihar, New Delhi 110062,
India; icairndin@gmail.com

2 Department of Mathematics, College of Science & Humanities, Shaqra University, Shaqra 15551, Saudi Arabia;
salhowaity@su.edu.sa

3 Celestial Mechanics and Space Dynamics Research Group (CMSDRG), Astronomy Department,
National Research Institute of Astronomy and Geophysics (NRIAG), Helwan 11421, Cairo, Egypt

4 Department of Mathematics, Shivaji College, University of Delhi, Delhi 110027, India;
shiv_sahdev@yahoo.co.in

* Correspondence: elbaz.abouelmagd@nriag.sci.eg or eabouelmagd@gmail.com; Tel.: +20-10-2097-6040

Abstract: In this work, the quantized Hill problem is considered in order for us to study the existence
and stability of equilibrium points. In particular, we have studied three different cases which give all
whole possible locations in which two points are emerging from the first case and four points from
the second case, while the third case does not provide a realistic locations. Hence, we have obtained
four new equilibrium points related to the quantum perturbations. Furthermore, the allowed and
forbidden regions of motion of the first case are investigated numerically. We demonstrate that the
obtained result in the first case is a generalization to the classical one and it can be reduced to the
classical result in the absence of quantum perturbation, while the four new points will disappear. The
regions of allowed motions decrease as the value of the Jacobian constant increases, and these regions
will form three separate areas. Thus, the infinitesimal body can never move from one allowed region
to another, and it will be trapped inside one of the possible regions of motion with the relative large
values of the Jacobian constant.

Keywords: Hill problem; quantum correction; equilibrium points; stability

MSC: 70F05; 70F07; 70F10; 70F15; 70H14

1. Introduction

Hill’s problem is a particularly limiting case for the restricted three-body problem
(RTBP). Researchers can obtain the Hill problem by using some scales and transformations
while taking limits, as mass parameter tends to zero. Hence, it is an interesting application
based problem, and many scientists have studied different versions of this problem by
considering different perturbation forces in the classical Hill problem. This means the
primary bodies possess point masses and move in circular orbits around their common
centre of mass or in elliptical trajectory, while the third body moves in space under the
effect of gravitational forces of the primary bodies without affecting their motions [1–4].

In [5], the authors have studied the Hill stability of satellites by utilising the RTBP
configuration. However, in [6–8], the authors have studied the same configuration with
various perturbations as radiation pressure and oblateness of the primaries. Additionally,
in [9–12], the authors have explored and analysed the Hill four bodies problem with its
application to the Earth–Moon–Sun system and satellite motion about binary asteroids. In
this context, Hill’s problem, with oblate secondary in three dimensions, has been illustrated
in [13], where the equilibrium points and their stability have been determined.

Further to the precedent work, the radiation pressure effect of the bigger primary and
the secondary oblateness on the new version of Hill’s problem are investigated in [14],
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where the authors illustrated that their study is more appropriate for astronomical applica-
tion. They also used iterative methods to identify the locations of equilibrium points and
used the linear stability analysis method to examine their stability properties. They proved
that all the equilibrium points are unstable for this model. In [15], the authors investigated
Hill’s problem because space missions required the knowledge of orbits with some proper-
ties, where periodic solutions are illustrated numerically due to the non-integrability of
this problem.

With the continuous contributions analysing the Hill body problem, the existence
of positions and stability of collinear equilibrium points in its generalized version under
radiation pressure and oblateness effects are studied in [16]; the authors also performed
the basins of attraction through the Newton–Raphson method for many values of used
parameters. Furthermore, in [17] the author investigated the basins of convergence in the
aforementioned problem; his numerical analysis revealed the extraordinary and beautiful
formations on the complex plane. In [18], the authors have performed the Hill’s problem
by assuming the primaries as the source of radiation pressure; they have determined the
asymptotic orbits at collinear points and the same to the lyapunov periodic orbits.

The spatial or planar restricted three-body problem (RTBP) under any kind of pertur-
bation is called the perturbed model. Otherwise, it can be called the phot–gravitational,
relativistic, or quantized problem in the case that the system is analysed under the effect of
radiation pressure, relativistic, or quantum corrections perturbation, respectively [19–23].
The analysis of the spatial quantized RTBP (i.e., the spatial of RTBP under the effect of
quantum corrections) is studied in [24], where the locations of equilibrium points and
the allowed and forbidden regions of motions are examined. Furthermore, the quantized
RTBP is developed to construct a new version of the Hill problem [25], where the equations
of motion for the Hill problem are evaluated under the quantum corrections. Thus, the
obtained system is called quantized Hill problem (QHP).

Recently, in [26], the authors investigated the Hill’s problem by assuming that the
infinitesimal body varies its mass according to Jeans law, they investigated numerically the
location of equilibrium points, regions of motion, and basins of attraction and also examined
the stability status of these points by using Meshcherskii’s space–time transformation.
Furthermore, in [27] the authors investigated the differences and similarities among the
classical perturbation theory, Poincaré–Lindstedt technique, multiple scales method, the
KB averaging method, and averaging theory, while the latter is used to find periodic orbits
in the framework of the spatial QHP. They stated that this model can be utilized to develop
a lunar theory and families of periodic orbits.

In the framework of RTBP, which can be reduced to the Hill model, some effective
contributions are outlined in [28–30], where the effects of lack of sphericity body shape and
radiation pressure on the primaries are studied. In addition, the effect of mass variation
in the frame of RTBP is investigated in [31–34], where the authors have also studied the
impact of these perturbations on the positions of equilibrium points, Poincaré surfaces of
section, regions of possible and forbidden motion, and basins of attraction and examined
the stability of these equilibrium points such that it is proven that, in most cases, these
points are unstable.

In general, the Hill body problem has a great significance in both stellar and solar
systems and in dynamical astronomy; it has received a considerable analysis in its own
literature. Primarily, it is formulated as a model to analyse the Moon’s motion around
the Earth under the effect of Sun perturbation. Furthermore, its model, with simple
modifications, can also serve as a model for the motion of a star in a star cluster under the
created perturbations from the galaxy. The importance of this problem motivated us to
study and analyse the Hill body problem under the perturbation of quantum corrections.

In this work, the QHP is considered to study the existence of equilibrium points
alongside examining their stability. Under the effect of quantum corrections, the locations of
equilibrium points have been analysed. In particular, we have studied three different cases
which give all possible locations, where two points are emerging from the first case and they
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are considered a generalization for the classical two points, as well as four points from the
second case, while the third case does not provide any realistic locations. Hence, we have
obtained four new equilibrium points related to the quantum perturbations. Furthermore,
We demonstrate that the obtained result in the first case can be reduced to the classical
result, while the four new points will disappear in the absence of quantum perturbation.

The paper is organized in six sections as follows: The literature surrounding the prob-
lem is given in Section 1. The equations of motion are preformed in Section 2. In Section 3,
we have determined the positions of equilibrium points. The stability of equilibrium points
are studied in Section 4. Furthermore, the numerical results are estimated in Section 5.
Finally, the conclusion of the work is presented in Section 6.

2. Equations of Motion

Following the same notations and procedure in [25], we can write the equations of
motion of the quantized Hill problem in the synodic coordinates system as:

ẍ − 2 ẏ =Vx,

ÿ + 2 ẋ =Vy,

z̈ =Vz,

(1)

where

V =
1
2

[
3 x2 + 4(α1 − α11)x − z2

]
+

1
r

(
1 +

α21

r
+

α22

r2

)
, (2)

and
r2 = x2 + y2 + z2. (3)

By integrating System (1), one can write the Jacobian integral as

ẋ2 + ẏ2 + ż2 = 2 V − JC, (4)

where JC is the Jacobian constant.
In System (1), the parameters α1, α11, and α21 represent very small amounts with order

of O(1/c2), but α22 is of order O(1/c3) where c is the speed of light. Therefore, the value
of α1 − α11 will tends to zero [27]. Hence α1 − α11

∼= 0. In this context, System (1) can be
rewritten as:

ẍ − 2ẏ = x[3 − q(r)],

ÿ + 2ẋ =− y q(r),

z̈ =− z[1 + q(r)],

(5)

where

q(r) =
1
r3

(
1 +

2α21

r
+

3α22

r2

)
We would like to provide the reader with the following investigations about the

aforementioned perturbation parameters. In fact, the parameters α1, α11, and α21 identify
the size of the relativistic effect, while α22 estimates the quantum correction contribution.
However, all of these effects tend to zero in the case of large distances [21,35].
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3. Analysis of Equilibrium Points

The equilibrium points can be obtained by equating all the derivatives with respect to
time by zero in system (5), hence

x[3 − q(r)] = 0,

y q(r) = 0,

z[1 + q(r)] = 0.

(6)

In the classical case, we mean that the quantum effect will be neglected, the parameter
α21 = α22 = 0, then the equilibrium points are given by (x, 0, 0) where re = 1/ 3

√
3 and

y = z = 0, hence x = ±1/ 3
√

3.
To find the equilibrium points under the quantized effect (α21 �= 0 and α22 �= 0), we

have to find the solutions of System (6); there are some cases which can be applied to
analyse the solutions of this system.

First case: q(r) = 3, then y = z = 0, and x �= 0.

In this case, one obtains

1
r3

(
1 +

2α21

r
+

3α22

r2

)
= 3 (7)

Equation (7) gives a quintic equation in the following form

3r5 − r2 − 2α21r − 3α22 = 0 (8)

The solution of the fifth degree equation is generally too complicated, however the
equation has at least one real root. Instead, numerical approximations can be evaluated
using a root-finding algorithm for polynomials.

In fact, it is not our aim to find a solution of a quintic equation, but we aim to find the
quantum corrections’ impact on the locations of equilibrium points. Thus, we impose that
r = rq = re + ε, where ε is a very small quantity which embodies the effect of quantum
correction on the locations of equilibrium points after substituting r = rq = re + ε into
Equation (7) or Equation (8), keeping all terms with coefficients of ε and ε2 only, and
neglecting all terms with an order of O(ε3) or more. Hence, ε will satisfy two values, ε1
and ε2, which are given by

ε =
15r4

e − 2re − 2α21 ±
√

4α2
21 − 12α22 + 180α21r4

e + 360α22r3
e − 135r8

e + 72r5
e

2
(
1 − 30r3

e
) , (9)

Substituting re = 1/ 3
√

3 in Equation (9), one obtains

ε =
1
18

(
2α21 − 32/3 ±

√
4α2

21 + 20 3
√

9α21 + 108α22 + 3 3
√

3
)

(10)

As α21 and α22 are very small quantities with order of O(c2) and O(c23), respectively,
we keep only terms with order of O(α21) and O(α22) and neglect the remanning terms.
Thereby, the approximated values of the perturbed parameter ε are governed by

ε11 =
1
3

(
2α21 + 3 3

√
3 α22

)
,

ε12 = − 1
3 3
√

3

(
1 +

4 3
√

3
3

α21 + 3 3
√

9 α22

) (11)

The parameter of ε embodies the effect of the quantum corrections and it must equal
zero in the absence of these corrections, i.e., when α21 = 0 and α22 = 0. However, the
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obtained solution of ε12 does not equal zero and gives an inconvenient solution; thus, the
value of ε12 is rejected. Hence, the proper approximated value of the parameter ε is given by

ε11 =
1
3

(
2α21 + 3 3

√
3 α22

)
(12)

Utilizing Equation (12) with relation to rq1 = re + ε11, then the distance rq1 at the
quantized equilibrium point is

rq1 =
1

3
√

3

(
1 +

2 3
√

3
3

α21 +
3
√

9 α22

)
(13)

As x = |rq1 |, we have two possible values for x and x1 = rq1 , x2 = −rq1 . Thus, the
quantized equilibrium points are (x1, 0, 0) and (x2, 0, 0), which is considered a general-
ization of the classical case and can be reduced to the classical one when α21 = 0 and
α22 = 0.

Second case: q(r) = 0, then x = z = 0, and y �= 0.

This case could occur when the parameters of quantum corrections are negative, i.e.,
the values of α21 and α22 are negative [24]. Hence, q(r) = 0 when the solutions of the
following quadratic equation are possible

r2 + 2α21r + 3α22 = 0. (14)

The possible solutions of Equation (14) are

rq2 = −α21 −
√

α2
21 − 3α22

rq3 = −α21 +
√

α2
21 − 3α22

(15)

The solutions in Equation (15) are valid if the values of rq2 and rq3 are positive. To
investigate this property, first we remark that α21, α22, and α22/α21 have values with order
of O(1/c2), O(1/c3), and O(1/c). Then, the approximated series solutions of Equation (15)
can be written as

rq2 = −2α21

[
1 − 3

4

(
α22

α21

)
− 9

16

(
α22

α21

)2
]
+ O(

1
c5 )

rq3 = −3
2

α22

[
1 +

3
4

(
α22

α21

)]
+ O(

1
c5 )

(16)

It is clear that from Equation (16) the values of rq2 and rq3 are very small and positive
when α21 and α22, respectively, take negative values. Then, we have four new equilibrium
points corresponding to the second case under the perturbation of quantum corrections,
where y2 = |rq2 | and y3 = |rq3 |. The new four points are (0, y2, 0), (0,−y2, 0), (0, y3, 0), and
(0,−y3, 0)

Third case: q(r) = −1, then x = y = 0, and z �= 0.

In this case, one obtains

1
r3

(
1 +

2α21

r
+

3α22

r2

)
= −1 (17)

Equation (17) gives also a quintic equation in the following form

r5 + r2 + 2α21r + 3α22 = 0 (18)
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To find the solution of Equation (18), we impose that r = rq = re + δ, where δ is
very small quantity which embodies the effect of quantum correction on the locations of
equilibrium points in the current case after substituting r = rq = re + δ into Equation (18)
and keeping all terms with coefficients of δ and δ2 only, neglecting all terms with order of
O(δ3) or more. Hence, δ will satisfy two values, ε31 and ε32, which are given by

ε31 = − 3
26

(
11

3 3
√

3
+ 2α21 +

√
4α2

21 −
20α21

3
√

3
− 52α22 − 29

3 3
√

9

)

ε32 = − 3
26

(
11

3 3
√

3
+ 2α21 −

√
4α2

21 −
20α21

3
√

3
− 52α22 − 29

3 3
√

9

) (19)

It is clear that from Equation (19) the obtained values of the perturbation parameter
δ is complex, which mean that the assumption of the third case does not lead to realistic
situations. Thus, this case does not give real equilibrium points and it is rejected.

4. Stability Status of Equilibrium Points

Next, to check the equilibrium points stability, we have to write the equations of
motion in to phase space. Thus, System (5) can be rewritten in the following form

ẍ − 2ẏ = Hx,

ÿ + 2ẋ = Hy,

z̈ = Hz.

(20)

where

H =
1
2

[
3 x2 − z2

]
+

1
r

(
1 +

α21

r
+

α22

r2

)
, (21)

Here, the Jacobian integral can be rewitten as

ẋ2 + ẏ2 + ż2 = 2 H − JC, (22)

The motion in the proximity of any of the equilibrium points (a, b, and c) can be
studied by putting x = a + ξ, y = b + η, and z = c + ζ in Equations (20) and (21). Then, we
can rewrite the equations of motion in the phase space as

ξ̇ = ξ1,

η̇ = η1,

ζ̇ = ζ1,

ξ̇1 = 2 η1 + H0
x x ξ + H0

x y η + H0
x z ζ,

η̇1 = − 2ξ1 + H0
y x ξ + H0

y y η + H0
y z ζ,

ζ̇1 = H0
z x ξ + H0

z y η + H0
z z ζ.

(23)

where the superscript zero means that the second derivatives of H are evaluated at the
related equilibrium point.

The characteristic polynomial of Equation (23) will be

f (λ) = λ6 + H5 λ5 + H4 λ4 + H3 λ3 + H2 λ2 + H1 λ + H0, (24)
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where

H0 = H0
x z H0

y y H0
z x − H0

x y H0
y z H0

z x − H0
x z H0

y z H0
z y

+ H0
x x H0

y z H0
z y + H0

x y H0
y x H0

z z − H0
x x H0

y y H0
z z,

H1 = 2 (H0
x z H0

z y − H0
y z H0

z x − H0
x y H0

z z + H0
y x H0

z z),

H2 =− 4 H0
z z − H0

x y H0
y x + H0

x x H0
y y − H0

x z H0
z x

− H0
y z H0

z y + H0
x x H0

z z + H0
y y H0

z z,

H3 = 2 (H0
x y − H0

y x),

H4 = 4 − H0
x x − H0

y y − H0
z z,

H5 = 0.

(25)

We will examine the stability of equilibrium points in two cases only because there are
no equilibrium points in the third case.

4.1. First Case

In this case the equilibrium points (x1, 0, 0) and (x2, 0, 0) are in symmetry about the
Y-axis, therefore it is enough to examine the stability of only one of these two points. In
this context, we have to evaluate the values of Hi1 corresponding to (x1, 0, 0), which are
as follows:

H01 = − 3
x3

1
− 5

x6
1
− 2 α21

x4
1

(
3 +

11
x3

1
+

7
x6

1

)

− 3 α22

x5
1

(
3 +

12
x3

1
+

8
x6

1

)
− 2

x9
1

,

H11 = 0,

H21 = 1 − 3
x3

1
− 8 α21

x4
1

(
1 +

2
x3

1

)

− 15 α22

x5
1

(
1 +

2
x3

1

)
− 3

x6
1

,

H31 = 0,

H41 = 2 − 2 α21

x4
1

− 6 α22

x5
1

,

H51 = 0.

(26)

From Equations (24) and (26), we find

f (λ) = λ6 + H41 λ4 + H21 λ2 + H01, (27)

Here, H41 > 0, H21 < 0, and H01 < 0 show that the sign changes occur one at a time
time, thus there exists at least one positive real root. Therefore, the equilibrium point will
be unstable in this case.

4.2. Second Case

In this case, the equilibrium points (0, y2, 0) and (0, y3, 0) are symmetrical about the
X-axis, hence it is sufficient to examine the stability of only two of these four points. Addi-
tionally, we have to evaluate the values of Hi2 and Hi3, i = 0, 1, 2, 3, 4, and 5 corresponding
to (0, y2, 0) and (0, y3, 0), which are as follows:
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H02 =
6
y3

2
+

4
y6

2
+

2 α21

y4
2

(
9 +

10
y3

2
− 7

y6
2

)

+
12 α22

y5
2

(
3 +

3
y3

2
− 2

y6
2

)
− 2

y9
2

,

H12 = 0,

H22 = 1 +
6
y3

2
+

16 α21

y4
2

(
1 − 1

y3
2

)

+
30 α22

y5
2

(
1 − 1

y3
2

)
− 3

y6
2

,

H32 = 0,

H42 = 2 − 2 α21

y4
2

− 6 α22

y5
2

,

H52 = 0,

(28)

and

H03 =
6
y3

3
+

4
y6

3
+

2 α21

y4
3

(
9 +

10
y3

3
− 7

y6
3

)

+
12 α22

y5
3

(
3 +

3
y3

3
− 2

y6
3

)
− 2

y9
3

,

H13 = 0,

H23 = 1 +
6
y3

3
+

16 α21

y4
3

(
1 − 1

y3
3

)

+
30 α22

y5
3

(
1 − 1

y3
3

)
− 3

y6
3

,

H33 = 0,

H43 = 2 − 2 α21

y4
3

− 6 α22

y5
3

,

H53 = 0.

(29)

From Equations (24) and (28), we find

f (λ) = H6k λ6 + H4k λ4 + H2k λ2 + H0k, (30)

Here, H6k = 1 > 0, H4k < 0, H2k < 0, and H0k < 0, where k = 2, 3, show that the sign
changes occur one at a time, thus there exists at least one positive real root. Therefore, the
equilibrium point will be unstable in this case.

5. Numerical Results

In this section, we illustrate some dynamical properties numerically for the proposed
system (i.e., the quantized Hill system) such as the equilibrium points and the allowed
and forbidden regions of motion under the quantum corrections. In order to avoid the
reparation, we will present the numerical analysis on the first case of equilibrium points;
the same procedure can be carried out for the second case.

The locations of equilibrium points are shown in Figure 1, for which we have taken
zero as the derivatives with respect to time in Equation (5). Then, with the help of the
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well-known Mathematica Software, the collinear equilibrium points L1 and L2 under the
quantum corrections, as well as the unperturbed equilibrium points L̄1 and L̄2, are estimated
numerically. Both points exist either side of the origin on the X-axis and are in symmetry
about Y-axis. However, we mark that the distance between the perturbed points is more
than the distance between the unperturbed points. Of course, this perturbation will affect
the other dynamical properties.

L LL L

X

Y

Figure 1. Locations of equilibrium points.

One of the most dynamical properties which can be identified by the Jacobian integral
is the possible and forbidden regions of infinitesimal body motions, which are restricted to
the locations of v2 = 2H − CJ ≥ 0 where v is the velocity of the infinitesimal body. Hence,
Equation (22) can be used to determine the allowed or forbidden regions of motions, as in
Figure 2, where the coloured green areas identify the regions of possible motions, while the
white determine forbidden regions.

It is clear from Figure 2a that when the Jacobian constant is relatively small there is one
large area for possible region of motion, and the body could move from any region point
to another (or from L1 (L̄1) to L2 (L̄2)). When CJ becomes larger, the forbidden region is
extended, as in Figure 2b. With further increase in the value of CJ , the forbidden region
becomes larger, while the possible region of motion forms three septate areas starting from
the perturbed equilibrium points L1 and L2, as in Figure 2c. In addition, the body cannot
move from one to another, because the three areas are not connected. With further increase
in the value of CJ , the inner and two outer regions decrease while the separate areas start
from the unperturbed equilibrium points L̄1 and L̄2, as in Figure 2d. We remark that the
infinitesimal can never move from one allowed region to another, and the body will be
trapped inside one of the possible regions of motion with the relative large values of the
Jacobian constant, as in the case of Figure 2c,d.

The condition of v2 ≥ 0 does not provide information about the size or shape of the
orbit or the trajectory of the body; it can only identify the region where the infinitesimal
body could move.
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L LL L

X

Y

(a) JC = 2

L LL L

X

Y

(b) JC = 3.5

L LL L

X

Y

(c) JC = 5.0

L LL L

X

Y

(d) JC = 6.5

Figure 2. Regions of allowed (green area) and forbidden (white area) motion.

6. Conclusions

In this work, the quantized Hill problem is considered to study the existence of equi-
librium points alongside examining their stability. Under the effect of quantum corrections,
the locations of equilibrium points have been analysed, we have studied three different
cases which give all possible locations, where two points emerge from the first case, taking a
place on the X-axis, and four points dos so from the second case and lie on Y-axis. The third
case does not provide a realistic location. Hence, we have obtained four new equilibrium
points related to the quantum perturbations.

In this context, we have tested the stability status of all of the equilibrium points and
we have found that all points are unstable. Further, we have illustrated the locations of
equilibrium points for the first case and the related allowed regions of motion numerically.
Similarly, we can perform these illustrations for the second case. Here, we found two
equilibrium points which are either side of the origin on the X-axis and in symmetry about
the Y-axis, as in Figure 1. The regions of possible and forbidden motion are investigated
for different values of Jacobian constant, as in Figure 2.

Finally, we demonstrate that the obtained result in the first case is a generalization of
the classical one, and it can be reduced to the classical result, while the four new points
will disappear in the absence of quantum perturbation. The regions of possible motions
decrease with the increasing value of Jacobian constant and these regions will form three
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separate areas. Thus, the infinitesimal body can never move from one allowed region to
another, and it will be trapped inside one of the possible regions of motion with the relative
large values for the Jacobian constant.
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