
Edited by

Motion Optimization and
Control of Single and Multiple
Autonomous Aerial, Land, and
Marine Robots

Reza Ghabcheloo and Antonio M. Pascoal

Printed Edition of the Special Issue Published in Sensors

www.mdpi.com/journal/sensors

Motion Optimization and Control of
Single and Multiple Autonomous
Aerial, Land, and Marine Robots

Motion Optimization and Control of
Single and Multiple Autonomous
Aerial, Land, and Marine Robots

Editors

Reza Ghabcheloo

Antonio M. Pascoal

MDPI • Basel • Beijing •Wuhan • Barcelona • Belgrade •Manchester • Tokyo • Cluj • Tianjin

Editors

Reza Ghabcheloo

Tampere University

Finland

Antonio M. Pascoal
Instituto Superior Tecnico (IST)

Portugal

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Sensors (ISSN 1424-8220) (available at: https://www.mdpi.com/journal/sensors/special issues/

Robot-Motion-Control).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-6328-2 (Hbk)

ISBN 978-3-0365-6329-9 (PDF)

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editors . vii

Reza Ghabcheloo and António Pascoal

Motion Optimization and Control of Single and Multiple Autonomous Aerial, Land, and
Marine Robots
Reprinted from: Sensors 2022, 23, 87, doi:10.3390/s23010087 . 1

Calvin Kielas-Jensen, Venanzio Cichella, Thomas Berry, Isaac Kaminer, Claire Walton
and Antonio Pascoal

Bernstein Polynomial-Based Method for Solving Optimal Trajectory Generation Problems
Reprinted from: Sensors 2022, 22, 1869, doi:10.3390/s22051869 . 7

Bahareh Sabetghadam, Rita Cunha and António Pascoal

A Distributed Algorithm for Real-Time Multi-Drone Collision-Free Trajectory Replanning
Reprinted from: Sensors 2022, 22, 1855, doi:10.3390/s22051855 . 49

Henrik Andreasson, Jonas Larsson and Stephanie Lowry

A Local Planner for Accurate Positioning for a Multiple Steer-and-Drive Unit Vehicle Using
Non-Linear Optimization
Reprinted from: Sensors 2022, 22, 2588, doi:10.3390/s22072588 . 71

Shashank Srikanth, Mithun Babu, Houman Masnavi, Arun Kumar Singh, Karl Kruusamäe

and Krishnan Madhava Krishna

Fast Adaptation of Manipulator Trajectories to Task Perturbation by Differentiating through the
Optimal Solution
Reprinted from: Sensors 2022, 22, 2995, doi:10.3390/s22082995 . 101

Lijing Tian, Zhizhuo Zhang, Change Zheng, Ye Tian, Yuchen Zhao, Zhongyu Wang and

Yihan Qin

An Improved Rapidly-Exploring Random Trees Algorithm Combining Parent Point Priority
Determination Strategy and Real-Time Optimization Strategy for Path Planning
Reprinted from: Sensors 2021, 21, 6907, doi:10.3390/s21206907 . 115

Myron Papadimitrakis, Marios Stogiannos, Haralambos Sarimveis and Alex Alexandridis

Multi-Ship Control and Collision Avoidance Using MPC and RBF-Based Trajectory Predictions
Reprinted from: Sensors 2021, 21, 6959, doi:10.3390/s21216959 . 127

Reza Oftadeh, Reza Ghabcheloo, and Jouni Mattila

Universal Path-Following of Wheeled Mobile Robots: A Closed-Form Bounded Velocity
Solution
Reprinted from: Sensors 2021, 21, 7642, doi:10.3390/s21227642 . 151

Pramod Maurya, Helio Mitio Morishita, Antonio Pascoal and A. Pedro Aguiar

A Path-Following Controller for Marine Vehicles Using a Two-Scale Inner-Outer Loop
Approach
Reprinted from: Sensors 2022, 22, 4293, doi:10.3390/s22114293 . 179

Marcelo Jacinto, Rita Cunha and António Pascoal

Chemical Spill Encircling Using a Quadrotor and Autonomous Surface Vehicles: A Distributed
Cooperative Approach
Reprinted from: Sensors 2022, 22, 2178, doi:10.3390/s22062178 . 219

v

Andrea Delbene, Marco Baglietto and Enrico Simetti

Visual Servoed Autonomous Landing of an UAV on a Catamaran in a Marine Environment
Reprinted from: Sensors 2022, 22, 3544, doi:10.3390/s22093544 . 251

Claire Walton, Isaac Kaminer, Qi Gong, Abram H. Clark and Theodoros Tsatsanifos

Defense against Adversarial Swarms with Parameter Uncertainty
Reprinted from: Sensors 2022, 22, 4773, doi:10.3390/s22134773 . 269

Tho Dang, Lionel Lapierre, Rene Zapata, Benoit Ropars and Pascal Lepinay

Over-Actuated Underwater Robots: Configuration Matrix Design and Perspectives
Reprinted from: Sensors 2021, 21, 7729, doi:10.3390/s21227729 . 287

Pan Zhao, Ziyao Guo and Naira Hovakimyan

Robust Nonlinear Tracking Control with Exponential Convergence Using Contraction Metrics
and Disturbance Estimation
Reprinted from: Sensors 2022, 22, 4743, doi:10.3390/s22134743 . 319

vi

About the Editors

Reza Ghabcheloo

Reza Ghabcheloo received his BSc degree in Electronics from the Iran University of Science

and Technology (IUST) and his MSc degree in Control Engineering from the K.N Toosi University

of Technology, Tehran, Iran in 1997 and 1999, respectively. He then received a Ph.D. in Electrical

Engineering from the Technical University of Lisbon, Portugal in 2007 with his thesis titled

“Coordinated Path Following of Multiple Autonomous Vehicles”. Important visits during his

doctoral studies included to the Dept. of Engineering Cybernetics of the Norwegian University of

Science and Technology (NTNU), Trondheim, Norway and the Naval Postgraduate School (NPS),

California, USA.

From 2007–2008, he was a postdoc researcher with the Instituto Superior Técnico, Institute

for Systems and Robotics, Lisbon, Portugal, where he conducted research on networked control

systems. He then moved to Finland as a senior researcher from 2008–2014 with the Department

of Intelligent Hydraulics and Automation of Tampere University of Technology, Finland working

within the Academy of Finland Center of Excellence on Generic Intelligent Machines. In 2015, he

started an Associate Professor position with Tampere University and, since then, has been teaching

several courses including the Fundamentals of Mobile Robots, Advanced Robotics, Electrohydraulic

Servo Systems, and Autonomous Mobile Machines. Since 2018 he has led the curriculum planning

team for Robotics in Tampere University.

He is the founder of the autonomous mobile machines research group at the Faculty of

Engineering and Natural Sciences of Tampere University. His research interests include the

intersection of robotics and working machines, optimization and machine learning, motion control,

and perception. He has published over 80 journal and conference articles in these areas. His motto

is to conduct practically relevant research rooted in solid theory. He has a strong position of trust

among the leading working machine industry, with eight of his doctoral students co-supervised by

industry partners in the field of heavy duty mobile machinery.

Antonio M. Pascoal

MSc degree in Electrical Engineering and PhD degree in Control Science from the University

of Minnesota, Minneapolis, Minnesota, USA in 1983 and 1987, respectively. He is currently a senior

researcher and Associate Professor of Control and Robotics at the Institute for Systems and Robotics

(ISR) of IST. He is the coordinator of the Thematic Line Ocean Exploration and Exploitation of

the Laboratory for Robotics and Engineering Systems (LARSyS). He was an Adjunct Scientist with

the National Institute of Oceanography, Goa, India from 2012–2014 and a Visiting Faculty with

the Department of Ocean vii Engineering, IIT Madras, under the Indian Sparc Programme, from

2018–2022. He has coordinated and participated in a large number of international projects that have

led to the design, development, and field-testing of single and multiple autonomous marine and air

vehicles and systems in cooperation with partners in India, USA, Korea, Brazil, Peru, and Europe.

He has been a member of the International Program Committees of numerous conferences on

dynamical systems and control and marine and aerial robotics. He has supervised or co-supervised

11 postdoctoral and 15 PhD students. He has published a total of 113 books, book chapters, and

peer-reviewed journal papers, and more than 260 conference papers (12,423 citations, h-index 59,

i10-index 241/ Google Scholar). He received the IEEE OES AUV Distinguished Lifetime Technical

Achievement Award in 2020.

vii

His expertise includes Dynamical Systems Theory, Marine Robotics, Navigation, Guidance, and

Control of Autonomous Vehicles, and Networked Control and Estimation with applications to air

and underwater robots.

viii

Citation: Ghabcheloo, R.; Pascoal, A.

Motion Optimization and Control of

Single and Multiple Autonomous

Aerial, Land, and Marine Robots.

Sensors 2023, 23, 87. https://doi.org/

10.3390/s23010087

Received: 14 December 2022

Accepted: 19 December 2022

Published: 22 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Editorial

Motion Optimization and Control of Single and Multiple
Autonomous Aerial, Land, and Marine Robots

Reza Ghabcheloo 1,* and António Pascoal 2

1 Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 1001, 33014 Tampere, Finland
2 Institute for Systems and Robotics (ISR), Instituto Superior Tecnico (IST), Torre Norte, Piso 8, Av. Rovisco Pais, 1,

1049-001 Lisbon, Portugal
* Correspondence: reza.ghabcheloo@tuni.fi

You always admire what you really don’t understand (Blaise Pascal)

Fast-paced developments in the fields of aerial, land, and marine robotics are steadily
paving the way for a wide spectrum of scientific and commercial applications of au-
tonomous vehicles with far-reaching societal implications. Autonomous robots equipped
with advanced sensors and manipulators afford humans the capability to operate seam-
lessly in remote and hazardous environments, as if they were extensions of our eyes and
hands. Robots have become the tools par excellence for scientists and commercial operators
to explore and monitor the state of heterogenous environments on Earth, inspect offshore
wave and energy infrastructures, monitor the growth of crops, and transport goods, among
a myriad of other activities. Groups of robots acting in cooperation have started to impact
the development of multiple system platforms for adaptive environmental sampling, search
and rescue operations in hard-to-access regions, and even coordinated image-taking in
the movie and sports industries. The types of robots used are highly heterogeneous and
cater to specific user-defined requirements for operations in the air, on land, and at sea.
Notwithstanding this diversity, they have in common a number of attributes that are key to
their capability to explore or act upon the environment with great agility while exhibiting
high levels of performance, resilience, adaptability, and safety.

It is against this backdrop of ideas that this reprint addresses fundamental problems
that are at the root of the development of a new breed of heterogenous robots that can act in
isolation or cooperatively towards the execution of a wide spectrum of mission scenarios.
Representative examples include the study of single and cooperative motion-planning
methods with a view to meeting temporal and energy constraints in the presence of robot
dynamic constraints, while taking explicitly into account the topology of the underlying
communication networks and inter-vehicle and vehicle–obstacle avoidance requisites;
the creation of safe and emergent behaviors in a distributed manner, at both the motion
planning and control levels; the incorporation of event-driven communication strategies
to try and reduce the amount of information exchanged among the different agents; the
study of new methods to solve constrained optimal control problems efficiently in a
receding horizon fashion; the development of effective techniques for adaptive and robust
control in the presence of plant model uncertainty of partially known models, especially
for safety critical systems; and the study of how advanced perception can be brought
to bear on the reformulation of the above problems in a sensor-based context, yielding
challenging questions in the area of visual and acoustic-based servoing, object tracking,
and obstacle detection and avoidance. The reprint includes a number of chapters that
focus on theoretical and practical issues pertaining to motion optimization and control,
with special emphasis on, but not limited to, single and multiple autonomous aerial, land,
and marine robots.

Sensors 2023, 23, 87. https://doi.org/10.3390/s23010087 https://www.mdpi.com/journal/sensors1

Sensors 2023, 23, 87

Kielas-Jensen et al. [1] present a method for the generation of trajectories for au-
tonomous vehicles that exploits the use of Bernstein polynomial approximations to tran-
scribe infinite-dimensional optimization problems into nonlinear programming problems.
These, in turn, can be solved efficiently using off-the-shelf optimization solvers. The main
motivation for this approach stems from the fact that Bernstein polynomials possess fa-
vorable geometric properties and yield computationally efficient algorithms that enable
a trajectory planner to efficiently evaluate and enforce constraints along the vehicles’ tra-
jectories, including maximum speed and angular rates as well as the minimum distance
between trajectories and between the vehicles and obstacles. To support the application of
the method described, an open-source toolbox called BeBOT (Bernstein/Bézier Optimal
Trajectories) is introduced that implements key operations and algorithms involving Bern-
stein polynomials. The toolbox can be used to efficiently generate feasible and collision-free
trajectories for single and multiple vehicles.

Sabetghadam et al. [2] introduce a distributed algorithm to generate collision-free
trajectories for a group of quadrotors flying through a common workspace. In the setup
adopted, each vehicle replans its trajectory, in a receding horizon manner, by solving a
small-scale optimization problem that only involves its own individual variables. A Voronoi
partitioning of space is adopted to derive local constraints that guarantee collision avoid-
ance with all neighbors for a certain time horizon. The obtained set of collision avoidance
constraints explicitly take into account the vehicle’s orientation to avoid infeasibility issues
caused by ignoring the quadrotor’s rotational motion. Moreover, the resulting constraints
can be expressed as Bézier curves and thus can be evaluated efficiently, without discretiza-
tion, to ensure that collision avoidance requirements are satisfied at any time instant, even
for an extended planning horizon. The proposed approach is validated through extensive
simulations with up to 100 drones. The results show that the proposed method has a higher
success rate at finding collision-free trajectories for large groups of drones compared to
other Voronoi diagram-based methods.

Andreasson et al. [3] describe a local planning approach for pseudo-omnidirectional
vehicles, that is, vehicles that can drive sideways and rotate in place. The local planner,
named MSD, is rooted in optimal control theory and relies on the formulation of a non-
linear optimization problem formulation that exploits the omni-motion capabilities of the
vehicle to drive the vehicle to the goal in a smooth and efficient manner while avoiding
obstacles and singularities. MSDU is designed for a real platform for mobile manipulation,
where one key function is the capability to drive in narrow and confined areas. Real-world
evaluations show that MSDU planned paths are smoother and more accurate than those
obtained with a comparable local path planner, Timed Elastic Band (TEB), with a mean
(translational, angular) error for MSDU of (0.0028 m, 0.0010 rad) compared to (0.0033 m,
0.0038 rad) for TEB. MSDU also generated paths that were consistently shorter than TEB,
with a mean (translational, angular) distance traveled of (0.6026 m, 1.6130 rad) for MSDU
compared to (0.7346 m, 3.7598 rad) for TEB.

Srikanth et al. [4] address the problem of the fast adaptation of manipulator trajectories
for task perturbations. The main objective is to deal with the fact that manipulator joint
space trajectory optimization under end-effector task constraints leads to a challenging
non-convex problem. Thus, a real-time adaptation of prior computed trajectories to per-
turbations in task constraints often becomes intractable. Existing works use the so-called
warm-starting of trajectory optimization to improve computational performance. A fun-
damentally different approach that relies on deriving analytical gradients of the optimal
solution with respect to the task constraint parameters is introduced. The proposed al-
gorithm provides near real-time adaptation of joint trajectories for a diverse class of task
perturbations, such as (i) changes in initial and final joint configurations of end-effector
orientation-constrained trajectories and (ii) changes in the end-effector goal or waypoints
under end-effector orientation constraints. These two examples are related to real-world
applications ranging from learning from demonstration to obstacle avoidance.

2

Sensors 2023, 23, 87

Tian et al. [5] offer a solution to problems that arise in path-planning strategies that
exploit the use of rapidly exploring random trees, namely long path planning time and a
large number of redundant points. To this end, an improved algorithm based on a parent
point priority determination strategy and a real-time optimization strategy is derived
to optimize rapidly exploring random tree algorithms. First, in order to shorten the
path-planning time, the parent point is determined before generating a new point, which
eliminates the complicated process of traversing the random tree to search the parent point
when generating a new point. Second, a real-time optimization strategy is combined, whose
core idea is to compare the distance of a new point, its parent point, and two ancestor
points to the target point when a new point is generated, choosing a new point that is
helpful for the growth of the random tree to reduce the number of redundant points.
Simulation results of a three-dimensional path planning showed that the success rate of the
proposed algorithm was close to 100%. Compared with the rapidly exploring random trees
algorithm, the number of points was reduced by more than 93.25%, the path planning time
was reduced by more than 91.49%, and the path length was reduced by more than 7.88%.
The IRB1410 manipulator was used as a test platform in a laboratory environment to assess
the efficacy of the new algorithm.

Papadimitrakis et al. [6] is a contribution to the field of automatic collision avoidance
for surface vessels, which has been the subject of intensive research in recent years, aiming
for the development of decision support systems to aid officers in conventional vessels,
or for the creation of autonomous vessel controllers. A multi-ship control problem is
addressed using a model predictive controller (MPC) that makes use of obstacle ship-
trajectory-prediction models that build upon the radial basis function (RBF) framework
and are trained on real AIS data sourced from an open-source database. The usage of
such sophisticated trajectory-prediction models enables the controller to correctly infer
the existence of a collision risk and apply evasive control actions in a timely manner, thus
accounting for the slow dynamics of a large vessel, such as container ships, and enhancing
the cooperation between controlled vessels. The proposed method is evaluated on a real-
life case from the Miami port area, and the generated trajectories are assessed in terms of
safety, economy, and COLREG compliance by comparison with an identical MPC controller
utilizing straight-line predictions for the obstacle vessel.

Oftadeh et al. [7] present a nonlinear and universal path-following controller for
Wheeled Mobile Robots (WMRs). In contrast to the previous algorithm, the new controller
solves the path-following problem for all common categories of holonomic and nonholo-
nomic WMRs, such as omnidirectional, unicycle, car-like, and all steerable wheels. This
generality is the consequence of a two-stage solution that separately tackles the platform
path-following constraints and the wheels’ kinematic constraints. During the first stage,
for a virtual mobile platform free from the wheels’ constraints, a strategy is developed
to drive the WMR asymptotically to the desired path. The second stage accounts for the
kinematic constraints imposed by the wheels. This is accomplished by casting the other-
wise intractable wheels’ kinematic and nonholonomic constraints in the form of explicit
proportional functions between the velocity of the platform and those of the wheels. This
result leads to a closed-form trajectory generation scheme for the asymptotic path that
constantly keeps the wheels’ steering and driving velocities within their pre-specified
bounds. Extensive experimental results on several types of WMRs, along with simulation
results for the other types, are provided to demonstrate the performance and efficacy of the
method developed.

Maurya et al. [8] tackle the problem of path following of marine vehicles along straight
lines in the presence of currents by resorting to an inner–outer control loop strategy, with
due account for the presence of currents. The inner–outer loop control structures exhibit
a fast–slow temporal scale separation that yields simple “rules of thumb” for controller
tuning. Stated intuitively, the inner-loop dynamics should be much faster than those of
the outer loop. Conceptually, the procedure described has three key advantages: (i) it
decouples the design of the inner and outer control loops, (ii) the structure of the outer-loop

3

Sensors 2023, 23, 87

controller does not require exact knowledge of the vehicle dynamics, and (iii) it affords
practitioners a very convenient method to effectively implement path-following controllers
on a wide range of vehicles. The path-following controller is designed at the kinematic outer
loop level and issues heading commands to the inner loop. The key underlying idea is to
provide a seamless implementation of path-following control algorithms on heterogeneous
vehicles, which are often equipped with heading autopilots. To this end, it is assumed that
the heading control system is characterized in terms of an input–output stability (IOS)-like
relationship without detailed knowledge of the vehicle dynamics parameters. The stability
of the combined inner–outer loops is shown formally by resorting to nonlinear control
theory, wherein the cascade and feedback systems of interest are characterized in terms of
their IOS properties. Tests with AUVs and one ASV in real-life conditions have shown the
efficacy of the path-following control structure developed.

Jacinto et al. [9] address the problem of formation control of a quadrotor and one (or
more) marine vehicles operating at the surface of the water with the end goal of encircling
the boundary of a chemical spill, enabling such vehicles to carry and release chemical
dispersants used during ocean cleanup missions to break up oil molecules. Firstly, the
mathematical models of the Medusa class of marine robots and quadrotor aircrafts are
introduced, followed by the design of single-vehicle motion controllers that allow these
vehicles to follow a parameterized path individually using Lyapunov-based techniques. At
the second stage, a distributed controller using event-triggered communications is intro-
duced, enabling the vehicles to perform a cooperative path following missions according
to a pre-defined geometric formation. In the next step, a real-time path-planning algorithm
is developed that makes use of a camera sensor, installed onboard the quadrotor. This
sensor enables the detection in the image of which pixels encode parts of a chemical spill
boundary and their use to generate and update, in real time, a set of smooth B-spline-based
paths for all the vehicles to follow cooperatively. The performance of the complete system
is evaluated by resorting to 3-D simulation software, making it possible to visually simulate
a chemical spill. Results from real water trials are also provided for parts of the system,
where two Medusa vehicles are required to perform a static lawn-mowing path following
the mission cooperatively at the surface of the water.

Delbene et al. [10] introduce a procedure for the autonomous landing of a quadrotor
on an unmanned surface vehicle in a marine environment. The relative pose and velocity of
the vehicle with respect to the quadrotor are estimated using a combination of data coming
from a vision system, which recognizes a set of fiducial markers (AprilTags) located on the
vehicle itself, and an ultrasonic sensor, to achieve further robustness during the final landing
phase. Details on the landing strategy and on the hardware and software architectures used
to implement it are provided. Software-in-the-loop tests were performed as a validation
step for the proposed algorithms; to recreate realistic conditions, the movements of the
landing platform have been replicated using data from a test in a real marine environment.
In order to provide further proof of the reliability of the vision system, a video sequence
from a manual landing of a quadrotor on the surface vehicle in a real marine environment
has been processed, and the results are presented.

Walton et al. [11] address the problem of optimal defense of a high-value unit (HVU)
against a large-scale swarm attack. Multiple models for intra-swarm cooperation strategies
are discussed, and a framework is proposed to combine the cooperative models with HVU
tracking and adversarial interaction forces. Using this setup, the problem of defending
against a swarm attack is cast in the framework of optimal control under uncertain parame-
ters. Numerical solution methods to the latter are discussed, and a consistent result for the
dual problem of this framework is derived, providing a tool for verifying computational
results. It is further shown that the dual conditions can be computed numerically, providing
further computational utility. Finally, the numerical results are applied to derive optimal
defender strategies against a 100-agent swarm attack.

Dang et al. [12] discuss important topics in the areas of over-actuated underwater
robots whose actuators are propeller thrusters. In general, the positions and orientations

4

Sensors 2023, 23, 87

of the latter follow classical configurations. This poses limitations on the capability of
the robots and does not optimize their performance in terms of energy efficiency, reac-
tivity, and versatility, especially when the robots operate in confined environments. In
order to optimize the thruster configuration designs for underwater over-actuated sys-
tems, performance indices (manipulability, energetic, reactive, and robustness indices)
are introduced. A multi-objective optimization problem is formulated and analyzed. To
deal with different objectives with different units, the goal-attainment method, which can
avoid the difficulty of choosing a weighting vector to obtain a good balance among these
objectives, was selected to solve the problem. A solution design procedure was proposed
and discussed. The efficacy efficiency of the proposed method was proven by simulations
and experimental results.

Finally, Zhao et al. [13] present a tracking controller for nonlinear systems with
matched uncertainties based on contraction metrics and disturbance estimation that pro-
vides exponential convergence guarantees. Within the proposed approach, a disturbance
estimator is derived to estimate the pointwise value of the uncertainties, with a pre-
computable estimation error bound (EEB). The estimated disturbance and the EEB are
then incorporated in a robust Riemannian energy condition to compute the control law
that guarantees exponential convergence of actual state trajectories to the desired ones.
Simulation results on aircraft and planar quadrotor systems demonstrate the efficacy of the
proposed controller, which yields better tracking performance than existing controllers for
both systems.

The editors and the authors express their sincere gratitude to the publisher and
members of the staff for their unwavering commitment and invaluable advice and encour-
agement that contributed in a very decisive manner to enriching the quality of this reprint.

To all the parents who want a future with peace for their children.
Reza Ghabcheloo

To Stephanie, Ricardo, Ana, and Madalena, the gentle pillars of my life.
António Pascoal

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kielas-Jensen, C.; Cichella, V.; Berry, T.; Kaminer, I.; Walton, C.; Pascoal, A. Bernstein Polynomial-Based Method for Solving
Optimal Trajectory Generation Problems. Sensors 2022, 22, 1869. [CrossRef] [PubMed]

2. Sabetghadam, B.; Cunha, R.; Pascoal, A. A Distributed Algorithm for Real-Time Multi-Drone Collision-Free Trajectory Replanning.
Sensors 2022, 22, 1855. [CrossRef] [PubMed]

3. Andreasson, H.; Larsson, J.; Lowry, S. A Local Planner for Accurate Positioning for a Multiple Steer-and-Drive Unit Vehicle Using
Non-Linear Optimization. Sensors 2022, 22, 2588. [CrossRef] [PubMed]

4. Srikanth, S.; Babu, M.; Masnavi, H.; Kumar Singh, A.; Kruusamäe, K.; Krishna, K.M. Fast Adaptation of Manipulator Trajectories
to Task Perturbation by Differentiating through the Optimal Solution. Sensors 2022, 22, 2995. [CrossRef] [PubMed]

5. Tian, L.; Zhang, Z.; Zheng, C.; Tian, Y.; Zhao, Y.; Wang, Z.; Qin, Y. An Improved Rapidly-Exploring Random Trees Algorithm
Combining Parent Point Priority Determination Strategy and Real-Time Optimization Strategy for Path Planning. Sensors 2021,
21, 6907. [CrossRef] [PubMed]

6. Papadimitrakis, M.; Stogiannos, M.; Sarimveis, H.; Alexandridis, A. Multi-Ship Control and Collision Avoidance Using MPC and
RBF-Based Trajectory Predictions. Sensors 2021, 21, 6959. [CrossRef] [PubMed]

7. Oftadeh, R.; Ghabcheloo, R.; Mattila, J. Universal Path-Following of Wheeled Mobile Robots: A Closed-Form Bounded Velocity
Solution. Sensors 2021, 21, 7642. [CrossRef] [PubMed]

8. Maurya, P.; Morishita, H.M.; Pascoal, A.; Aguiar, A.P. A Path-Following Controller for Marine Vehicles Using a Two-Scale
Inner-Outer Loop Approach. Sensors 2022, 22, 4293. [CrossRef] [PubMed]

9. Jacinto, M.; Cunha, R.; Pascoal, A. Chemical Spill Encircling Using a Quadrotor and Autonomous Surface Vehicles: A Distributed
Cooperative Approach. Sensors 2022, 22, 2178. [CrossRef] [PubMed]

10. Delbene, A.; Baglietto, M.; Simetti, E. Visual Servoed Autonomous Landing of an UAV on a Catamaran in a Marine Environment.
Sensors 2022, 22, 3544. [CrossRef] [PubMed]

11. Walton, C.; Kaminer, I.; Gong, Q.; Clark, A.H.; Tsatsanifos, T. Defense against Adversarial Swarms with Parameter Uncertainty.
Sensors 2022, 22, 4773. [CrossRef] [PubMed]

5

Sensors 2023, 23, 87

12. Dang, T.; Lapierre, L.; Zapata, R.; Ropars, B.; Lepinay, P. Over-Actuated Underwater Robots: Configuration Matrix Design and
Perspectives. Sensors 2021, 21, 7729. [CrossRef] [PubMed]

13. Zhao, P.; Guo, Z.; Hovakimyan, N. Robust Nonlinear Tracking Control with Exponential Convergence Using Contraction Metrics
and Disturbance Estimation. Sensors 2022, 22, 4743. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

6

Citation: Kielas-Jensen, C.; Cichella,

V.; Berry, T.; Kaminer, I.; Walton, C.;

Pascoal, A. Bernstein Polynomial-

Based Method for Solving Optimal

Trajectory Generation Problems.

Sensors 2022, 22, 1869. https://

doi.org/10.3390/s22051869

Academic Editor: Roberto Teti

Received: 6 December 2021

Accepted: 2 February 2022

Published: 27 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Bernstein Polynomial-Based Method for Solving Optimal
Trajectory Generation Problems

Calvin Kielas-Jensen 1,*, Venanzio Cichella 1, Thomas Berry 2, Isaac Kaminer 3, Claire Walton 4

and Antonio Pascoal 2

1 Cooperative Autonomous Systems (CAS) Lab, Department of Mechanical Engineering, University of Iowa,
Iowa City, IA 52242, USA; venanzio-cichella@uiowa.edu

2 Laboratory of Robotics and Engineering Systems (LARSyS), ISR/IST, University of Lisbon,
1049-001 Lisbon, Portugal; thomasdpberry@tecnico.ulisboa.pt (T.B.); antonio@isr.tecnico.ulisboa.pt (A.P.)

3 Department of Mechanical and Aerospace Engineering, Naval Postgraduate School,
Monterey, CA 93943, USA; kaminer@nps.edu

4 Department of Electrical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA;
claire.walton@utsa.edu

* Correspondence: calvin-kielas-jensen@uiowa.edu

Abstract: This paper presents a method for the generation of trajectories for autonomous system
operations. The proposed method is based on the use of Bernstein polynomial approximations to
transcribe infinite dimensional optimization problems into nonlinear programming problems. These,
in turn, can be solved using off-the-shelf optimization solvers. The main motivation for this approach
is that Bernstein polynomials possess favorable geometric properties and yield computationally
efficient algorithms that enable a trajectory planner to efficiently evaluate and enforce constraints
along the vehicles’ trajectories, including maximum speed and angular rates as well as minimum
distance between trajectories and between the vehicles and obstacles. By virtue of these properties
and algorithms, feasibility and safety constraints typically imposed on autonomous vehicle operations
can be enforced and guaranteed independently of the order of the polynomials. To support the use of
the proposed method we introduce BeBOT (Bernstein/Bézier Optimal Trajectories), an open-source
toolbox that implements the operations and algorithms for Bernstein polynomials. We show that
BeBOT can be used to efficiently generate feasible and collision-free trajectories for single and multiple
vehicles, and can be deployed for real-time safety critical applications in complex environments.

Keywords: optimal trajectory generation; Bernstein polynomials; Bézier curves; optimal control

1. Introduction

The field of autonomous guidance has exploded in the past decade. Significant progress
has been made in self driving vehicles, bringing them one step closer to reality [1]. Precision
agriculture utilizes autonomous aerial vehicles to monitor crops and spray pesticides [2], and
the development in autonomous weed pulling robots may reduce or eliminate the need for
potentially harmful pesticides [3]. Underactuated marine surface vehicles can be controlled
using a flatness-based approach [4]. Companies such as Amazon, Starship, and Zipline
have already begun making autonomous deliveries [5–7]. In fact the first autonomous aerial
vehicle has already been flown on a different planet [8]. This progress has led to high demand
for computationally efficient algorithms that may yield safe and optimal trajectories to be
planned for groups of autonomous vehicles. Our proposed method aims to accomplish these
tasks by formulating the optimal trajectory generation problem as a nonlinear programming
problem and exploiting the useful features of Bernstein polynomials.

Most techniques for planning and control of autonomous systems fall into one of
two categories: closed-loop methods or open-loop methods. Closed-loop methods, some-
times referred to as feedback or reactive methods, use the current state knowledge to

Sensors 2022, 22, 1869. https://doi.org/10.3390/s22051869 https://www.mdpi.com/journal/sensors7

Sensors 2022, 22, 1869

determine, in real time, what the next control input should be. On the other hand, open-
loop methods determine control values or compute motion trajectories out to a specified
time horizon with the use of the system’s model.

One common closed-loop technique that originally stemmed from maze solving
algorithms is the bug algorithm. The bug algorithm, e.g., [9,10], uses local knowledge of
the environment and a global goal to either follow a wall or move in a straight line towards
the goal. This algorithm can be implemented on very simple devices due to typically
requiring only two tactile sensors. However, it does not account for a vehicle’s dynamics
and constraints. Moreover, bug algorithms are non-optimal methods and cannot be used for
the execution of complex missions that require the optimization of some cost. For a review
and comparison of bug algorithms, the reader is referred to [11].

Rather than working on an agent’s positions, the velocity obstacle (VO) algorithm
uses relative velocities between the agent and obstacles to determine trajectories which will
avoid collisions. The original term velocity obstacle was presented in [12]. Variations on
the VO method include Common Velocity Obstacle [13], Nonlinear Velocity Obstacles [14],
and Generalized Velocity Obstacles [15]. Other relevant closed-loop methods use artificial
potential fields, which leverage a potential function providing attractive forces towards the
goal and repulsive forces away from obstacles [16–18].

Among the advantages of closed-loop methods are fast computation and the ability
to react to changing environments and unforeseen events. Furthermore, theoretical tools
aimed at deriving safety guarantees of closed-loop methods are fairly well developed, and
are mostly rooted in nonlinear systems analysis and robust and adaptive control. Despite
these benefits, closed-loop methods are difficult to employ for multiple vehicle teams. They
also generally lack the capability of presenting a human operator with a predicted trajectory
and act rather like a black box, which can result in a lack of trust between the operator and
the autonomous system.

In contrast to closed-loop methods, open-loop methods can generate solutions in
one-shot for the whole mission time, and are therefore able to present an operator with
an intuitive representation of the future trajectory. This representation is typically shown
as a 2D or 3D path and may also include speed, acceleration, and higher derivatives of
the vehicle’s motion. Randomized algorithms such as probabilistic roadmaps (PRMs) [19]
and rapidly exploring random trees (RRT, RRT*) [20,21] randomly sample the work space
to reduce computational complexity. PRMs randomly sample feasible regions within
the work space to construct a dense graph. A graph-based solver can then be used to
determine the optimal route. RRTs compute trajectories by using directed sampling to build
trees. This approach can find feasible solutions in situations involving both a high number
of constraints and high dimensional search spaces. Unfortunately, random sampling
algorithms may be difficult to use in real-time applications due to computational complexity
and may end up exploring regions that will not lead to a solution.

Similar to PRMs, other graph-based approaches aim to efficiently build and then search
a graph. Cell decomposition methods, e.g., [22,23], build a graph of their environment by
recursively increasing the resolution of areas of interest resulting in a few large nodes of
open space and many small nodes near obstacles. Once a graph has been built, a graph
solver can be used. A popular graph solver is the A* algorithm [24], which is an extension
of Dijkstra’s algorithm that uses a heuristic function to improve the search speed. Many
modifications to the A* algorithm also exist, such as Lifelong Planning A* [25], which
replans a path anytime an obstacle appears on the existing path and utilizes Dijkstra’s
algorithm to transition the robot from its current pose to the new path. Similarly, Anytime
Dynamic A* (ADA*) [26] iteratively decreases a suboptimality bound to improve the plan’s
optimality within a specified maximum computation time limit. Iterative approaches such
as ADA*, sometimes called “anytime” methods, compute a coarse solution and then refine
it until a computation timeout is reached. For example, Ref. [27] investigates the addition
of committed trajectories and branch-and-bound tree adaptation to the RRT* algorithm to
produce an online anytime method.

8

Sensors 2022, 22, 1869

In addition to graph-based representations of trajectories, polynomial approximation
methods can be used as well. In [28], trajectories are represented as piecewise polynomial
functions and are generated in a manner that minimizes their snap. In TrajOpt [29], a se-
quential quadratic program is solved to generate optimal polynomial trajectories while
performing continuous time collision checking.

Other open-loop methods include CHOMP [30,31], STOMP [32], and HOOP [33]. In
CHOMP, infeasible trajectories are pulled out of collisions while simultaneously smoothing
the trajectories using covariant gradient descent. STOMP adopts a similar cost function
to that found in CHOMP, but generalizes to cost functions whose gradients are not avail-
able. This is done by stochastically sampling noisy trajectories. HOOP utilizes a problem
formulation which computes vehicle trajectories in two steps. In the first step, a path
is planned quickly by considering only the vehicle’s kinematics. The second step then
refines this trajectory into a higher order piecewise polynomial using a quadratic program.
Other methods, such as WASPAS-mGqNS [34], balance the optimality of motion plans with
respect to the mission objectives against exploring unknown environments.

Open-loop methods provide useful tools for dealing with high dimensional problems
such as multiple vehicles and several constraints. They are also capable of producing
trajectories that accomplish multiple goals. However, due to the curse of dimensionality,
the computational complexity of open-loop methods grows significantly with the number
of vehicles, constraints, and goals. For the most part, motion planning methods trade
optimality and/or safety for computational speed. Our goal is to introduce a method that
mitigates this trade-off, and that provides provably safe solutions for high dimensional
problems while retaining the computational efficiency of low-order trajectory planning
algorithms. This is achieved by exploiting the useful features of Bernstein polynomials.

The Bernstein basis was originally introduced by Sergei Natanovich Bernstein (1880–
1968) in order to provide a constructive proof of Weierstrass’s theorem. Bernstein poly-
nomials were not widely used until the advent of digital computers due to their slow
convergence as function approximants. Widespread adoption eventually occurred when it
was realized that the coefficients of Bernstein polynomials could be intuitively manipulated
to change the shape of curves described by these polynomials. In the 1960s, two French
automotive engineers became interested in using this idea: Paul de Faget de Casteljau and
Pierre Étienne Bézier.

Designing complex shapes for automobile bodies by sculpting clay models proved
to be a time consuming and expensive process. To combat this, de Casteljau and Bézier
sought to develop mathematical tools that would allow designers to intuitively construct
and manipulate complex shapes. Due to de Casteljau publishing most of his research
internally at his place of employment, Bézier’s name became more widely associated
with Bernstein polynomials, frequently referred to as Bézier curves. Building on existing
research and modern technology, Bernstein polynomials provide several useful properties
for many fields.

The Bernstein basis provides numerical stability [35], as well as useful geometric prop-
erties and computationally efficient algorithms that can be used to derive and implement
efficient algorithms for the computation of trajectory bounds, trajectory extrema, minimum
temporal and spatial separation between two trajectories and between trajectories and
obstacles, and collision detection. Bernstein polynomials also allow for the representation
of continuous time trajectories using low-order approximations.

Our method for trajectory generation builds upon [36–38], where Bernstein polyno-
mials were introduced as a tool to approximate the solutions of nonlinear optimal control
problems with provable convergence guarantees. While the results concerning the conver-
gence of the Bernstein approximation method are out of the scope of the present paper,
here we focus on the design of algorithms and functions for Bernstein polynomials. These
include evaluating bounds, minimum spatial distance, collision detection, and penetration
distance. Additionally, we show how these properties can be used for trajectory generation
in realistic mission scenarios such as trajectory generation for swarms, navigating cluttered

9

Sensors 2022, 22, 1869

environments, and motion planning for vehicles operating in a Traveling Salesman mission.
For the interested reader, an open-source implementation is provided. This paper extends
the results initially presented in [39]. In particular, in [39] we focused on autonomous
vehicle trajectories representation by Bernstein polynomials, and proposed a preliminary
implementation of BeBOT for minimum distance computation and collision detection for
safe autonomous operation. In the present paper, we extend previous work by exploiting
properties and proposing algorithms for both Bernstein polynomials and rational Bernstein
polynomials. BeBOT includes an open-source Python implementation of these algorithms,
which enables the user to exploit the properties of (rational) Bernstein polynomials for tra-
jectory generation. Furthermore, we address several applications for multiple autonomous
systems and show the efficacy of BeBOT in enabling safe autonomous operations. We added
a new algorithm, the penetration algorithm, and several additional examples including
air traffic control, navigation of a cluttered environment, vehicle overtaking, 1000 vehicle
swarming, a marine vehicle example, and two examples of a vehicle routing problem.
An implementation of the examples presented in this paper is available at our GitHub
website [40] and can be customized to facilitate the toolbox’s usability.

The goal of this manuscript is to provide a general framework which can be applied
to a plethora of different systems ranging from mobile robots to manipulators. However,
we do provide several numerical examples for mobile robots and include the governing
motion equations for ease of implementation, e.g., see examples in Sections 5.1 and 5.6.

In brief, the main contributions of this article are:

1. Novel algorithms which exploit the useful properties of (rational) Bernstein polyno-
mials for use in trajectory generation.

2. Several examples implementing the aforementioned algorithms in realistic mission sce-
narios.

The paper is structured as follows. In Section 2 we introduce Bernstein polynomials
and their properties. Section 3 introduces the use of Bernstein polynomials to parameterize
2D and 3D trajectories. In Section 4 we present computationally efficient algorithms for
the computation of state and input constraints typical of trajectory generation applications.
In Section 5 we demonstrate the efficacy of these algorithms through several numerical
examples. The paper ends with Section 6, which draws some conclusions. A Python
implementation of the properties and algorithms presented, as well as the scripts used to
generate the plots and examples found throughout this paper, can be found on our GitHub
webpage [40].

In what follows, vectors are denoted by bold letters, e.g., p = [px , py]� and || · ||
denotes the Euclidean norm (or magnitude), e.g., ||p|| =

√
p2

x + p2
y.

2. Mathematical Preliminaries

The motion planning problems addressed in this work can be in general formulated as
optimal control problems. Letting the states and control inputs of the vehicles be denoted
by x(t) and u(t), respectively, the optimal motion planning problem can formally be stated
as follows:

min
x(t),u(t)

I(x(t), u(t)) = E(x(0), x(t f)) +
∫ t f

0
F(x(t), u(t))dt (1)

subject to

ẋ(t) = f (x(t), u(t)) , ∀t ∈ [0, t f], (2)

e(x(0), x(t f)) = 0 , (3)

h(x(t), u(t)) ≤ 0 , ∀t ∈ [0, t f] , (4)

10

Sensors 2022, 22, 1869

where I : Rnx ×Rnu → R, E : Rnx ×Rnx → R, F : Rnx ×Rnu → R, f : Rnx ×Rnu → Rnx ,
e : Rnx ×Rnx → Rne , and h : Rnx ×Rnu → Rnh .

Here, I defined in Equation (1) is a Bolza-type cost functional, with end point cost E
and running cost F. The constraint in Equation (2) enforces the dynamics of the vehicles
considered, Equation (3) enforces the boundary conditions, e.g., initial and final position,
speed, heading angles of the vehicles, and Equation (4) describes feasibility and mission
specific constraints, e.g., minimum and maximum speed, acceleration, collision avoidance
constraints, etc.

In previous work [36–38] we presented a discretization method to approximate state
and input by nth order Bernstein polynomials. This approximation allows us to transcribe
the optimal control problem into a non-linear programming problem, which can then be
solved by off-the-shelf optimization solvers. In particular, we show that the solution to
the non-linear programming problem converges to the solution of the original optimal
control problem as n increases. The present paper focuses on the geometric properties of
Bernstein polynomials and their implementation for computationally efficient and safe
trajectory generation. In the following, we report the properties of Bernstein polynomials
and rational Bernstein polynomials which are relevant to this paper.

An nth order Bernstein polynomial defined over an arbitrary interval [t0, t f] is given by

Cn(t) =
n

∑
i=0

Pi,nBi,n(t), t ∈ [t0, t f] , (5)

where Pi,n ∈ RD is the ith Bernstein coefficient, D is the number of dimensions, and Bi,n(t)
is the Bernstein polynomial basis defined as

Bi,n(t) =
(

n
i

)
(t− t0)

i(t f − t)n−i

(t f − t0)n ,
(

n
i

)
=

n!
i!(n− i)!

,

for all i = 0, . . . , n. Typically the dimensionality of a Bernstein polynomial, D, is either 2
or 3 for 2D or 3D spatial curves, respectively. In this case, Bernstein polynomials are often
referred to as Bézier curves and their Bernstein coefficients are known as control points.
While Bézier’s original work did not explicitly use the Bernstein basis [41,42], it was later
shown that the original formulation is equivalent to the Bernstein form polynomial [43].

An nth order rational Bernstein polynomial, Rn(t), is defined as

Rn(t) =
∑n

i=0 Pi,nwi,nBi,n(t)
∑n

i=0 wi,nBi,n(t)
, t ∈ [t0, t f], (6)

where wi,n ∈ R, i = 0, . . . , n, are referred to as weights. A list of relevant properties of
Bernstein polynomials used throughout this article can be found in Appendix A.

3. Generation of 2D and 3D Trajectories Using (Rational) Bernstein Polynomials

3.1. 2D Trajectories

Here we will examine several illustrative examples of the properties of Bernstein
polynomials and rational Bernstein polynomials in 2D. All the plots presented can be
generated using the example code available at [40].

Figures 1–9 contain several examples of 2D trajectories in the spatial domain. Two
trajectories are plotted in Figure 1 along with an obstacle. The trajectories C[1](t) and C[2](t)
are defined as in Equation (5) with t0 = 10 s and t f = 20 s where the Bernstein coefficients
are temporally equidistant. The vector of Bernstein coefficients of trajectory C[1](t) is

P
[1]
5 =

[
0 2 4 6 8 10
5 0 2 3 10 3

]
.

11

Sensors 2022, 22, 1869

The vector of Bernstein coefficients of trajectory C[2](t) is

P
[2]
5 =

[
1 3 6 8 10 12
6 9 10 11 8 8

]
.

The circular obstacle has a radius of 1 and is centered at point [3, 4]�. Figure 2
highlights the endpoints property (Property A2). Note that the trajectory C[1](t) passes
through its first and last Bernstein coefficients P

[1]
0,5 = [0, 5]� and [10, 3]�, respectively.

Likewise, the trajectory C[2](t) passes through its first and last Bernstein coefficients [1, 6]�
and [12, 8]�, respectively. The convex hull property (Property A1) is illustrated in Figure 3.

Useful operations can be efficiently performed on Bernstein polynomials by manipu-
lating only their coefficients. The de Casteljau algorithm (Property A5) allows one to split
a Bernstein polynomial into two separate polynomials. This is shown in Figure 4 where
trajectories C[1](t) and C[2](t) are split at tdiv = 15 s. Degree elevation (Property A6) is
performed on both trajectories in Figure 5. Note that in both Figures 4 and 5, the convex
hulls are more accurate than the conservative convex hulls in Figure 3. This idea will be
expanded upon in the next section.

Figure 1. Spatial representation of two Bernstein polynomial trajectories in 2D near a circular obstacle.
Trajectory C[1](t) is drawn in blue and trajectory C[2](t) is drawn in orange. The solid lines are the
polynomials and the dashed lines connect the Bernstein coefficients for convenience. Note that the
temporal aspect of the trajectories above has been omitted for clarity of presenting the geometric
properties of Bernstein polynomials.

Figure 2. Trajectories C[1](t) (blue) and C[2](t) (orange) with their endpoints highlighted in 2D.

12

Sensors 2022, 22, 1869

Figure 3. Convex hulls drawn as black dotted lines around the Bernstein coefficients of trajectories
C[1](t) (blue) and C[2](t) (orange). The dashed lines connect the control points of their correspond-
ing trajectories.

Figure 4. Trajectories C[1](t) (split into blue and green) and C[2](t) (split into orange and red) split at
tdiv = 15 s. Convex hulls are drawn around the Bernstein coefficients of the new split trajectories.

Figure 5. Convex hull drawn around the elevated Bernstein coefficients of trajectories C[1](t) (blue)
and C[2](t) (orange).

13

Sensors 2022, 22, 1869

Figure 6. Squared speed of the trajectories C[1](t) and C[2](t). A convex hull is drawn around the
Bernstein coefficients. Note that even though the coefficients may be negative, the actual curve is not.

Figure 7. Illustration of the quantity expressed in Equation (8) for trajectories C[1](t) and C[2](t).

Figure 8. Angular rates of trajectories C[1](t) and C[2](t). Note that the angular rates are rational
Bernstein polynomials.

14

Sensors 2022, 22, 1869

Figure 9. Squared distance between trajectories and the center of the circular obstacle.

Bernstein polynomials can also be used to extract useful information about the dynam-
ics of the trajectories. In Figure 6, Bernstein polynomials representing the squared speed of
trajectories C[1](t) = [x[1](t), y[1](t)]� and C[2](t) = [x[2](t), y[2](t)]� are shown along with
their corresponding coefficients and convex hulls. The squared speed is computed using
the derivative and arithmetic operation properties (Properties A3 and A7) as follows

(v[1](t))2 = (ẋ[1](t))2 + (ẏ[1](t))2

Note that the squared speed of a trajectory described by a Bernstein polynomial is also
a Bernstein polynomial.

Letting C[1](t) = [x[1](t) , y[1](t)]�, the heading angle ψ(t) of a trajectory can be
computed as

ψ[1](t) = tan−1

(
ẏ[1](t)
ẋ[1](t)

)
. (7)

Since the inverse tangent of a Bernstein polynomial is not a Bernstein polynomial, we
take the tangent of both sides of the equation, yielding

tan(ψ[1](t)) =

(
ẏ[1](t)
ẋ[1](t)

)
, (8)

which is a rational Bernstein polynomial. Figure 7 illustrates the quantity expressed in
Equation (8) computed for trajectories C[1](t) and C[2](t).

To determine the angular rate along the trajectory at any point in t ∈ [t0, t f], we can
take the derivative of the heading angle, yielding

ω[1](t) = ψ̇[1](t) =
ẋ[1](t)ÿ[1](t)− ẍ[1](t)ẏ[1](t)

(ẋ[1](t))2 + (ẏ[1](t))2
. (9)

Since the angular rate can be determined using Properties A3 and A7, it can be
represented as a rational Bernstein polynomial. The angular rates of trajectories C[1](t) and
C[2](t) are shown in Figure 8.

15

Sensors 2022, 22, 1869

Finally, the Bernstein polynomial representing the squared distance between two tra-
jectories at every point in time can be computed from

d2(t) = (x[2](t)− x[1](t))2 + (y[2](t)− y[1](t))2,

∀t ∈ [t0, t f]
(10)

The center point of a circular, static obstacle Obs(t), can be represented as a Bernstein
polynomial whose coefficients are all identical and set to the position of the obstacle, i.e.,

P[Obs] =

[
x[Obs] · · · x[Obs]

y[Obs] · · · y[Obs]

]
.

The degree of the Bernstein polynomial representing the center point of the circular ob-
stacle is equal to that of the order of the Bernstein polynomials representing the trajectories.

3.2. 3D Trajectories

We now introduce two 3D Bernstein polynomials with t0 = 10 s and t f = 20 s, where
the coefficients are equidistant in time, and illustrate their properties in Figures 10–17. The
Bernstein coefficients of trajectory C[3](t) are

P
[3]
5 =

⎡
⎣7 3 1 1 3 7

1 2 3 8 3 5
0 2 1 9 8 10

⎤
⎦,

and the Bernstein coefficients of trajectory C[4](t) are

P
[4]
5 =

⎡
⎣1 1 4 4 8 8

5 6 9 10 8 6
1 1 3 5 11 6

⎤
⎦.

These polynomials are drawn in Figure 10.

Figure 10. Two 3D Bernstein polynomial trajectories near a spherical obstacle. Trajectory C[3](t) is
drawn in blue and trajectory C[4](t) is drawn in orange.

16

Sensors 2022, 22, 1869

Similar to the 2D examples, Figures 11–14 illustrate the end points, convex hull, de
Casteljau, and elevation properties, respectively. Figures 15 and 16 show the squared speed
and squared acceleration of trajectories C[3](t) and C[4](t), respectively. These values were
computed using the derivative and arithmetic properties. Finally, Figure 17 shows the
squared Euclidean distance between the trajectories and the center of the spherical obstacle
at every point in time. The distance was found using Property A7.

Figure 11. 3D trajectories C[3](t) and C[4](t) with their endpoints highlighted.

Figure 12. 3D convex hulls drawn as transparent blue surfaces around the Bernstein coefficients of
trajectories C[3](t) and C[4](t).

17

Sensors 2022, 22, 1869

Figure 13. Trajectories C[3](t) and C[4](t) split at tdiv = 15 s. Convex hulls are drawn around the
Bernstein coefficients of the new split trajectories.

Figure 14. Convex hull drawn around the elevated Bernstein coefficients of trajectories C[3](t)
and C[4](t).

Figure 15. Squared speed of the trajectories C[3](t) and C[4](t). A convex hull is drawn around the
Bernstein coefficients. Note that even though the coefficients may be negative, the actual curve is not.

18

Sensors 2022, 22, 1869

Figure 16. Squared acceleration of the trajectories C[3](t) and C[4](t) with corresponding convex hulls.

Figure 17. Squared distances between the trajectories and then center of the spherical obstacle.

4. Algorithms for (Rational) Bernstein Polynomials

This section contains algorithms and procedures for Bernstein polynomials that make
use of the properties presented in Section 2. These functions include: evaluating bounds,
using the convex hull property to quickly find conservative bounds; evaluating extrema,
through an iterative procedure that computes a solution within a desired tolerance; mini-
mum spatial distance, applying a similar iterative procedure to find the minimum spatial
distance between two Bernstein polynomials; and collision detection, which quickly deter-
mines whether a collision may exist or does not exist.

4.1. Evaluating Bounds

Property A1 allows one to quickly establish conservative bounds on the Bernstein
polynomial. For example, given the 2D Bernstein polynomial, see Equation (5), with
coefficients given by

P5 =

[
0 1 2 3 4 5
5 0 2 5 7 5

]
,

lower and upper bounds Cmin and Cmax satisfying Cmin ≤ C(t) ≤ Cmax, ∀t ∈ [t0, t f] can be
derived using Equation (A1). Figure 18 exhibits the Bernstein polynomial (solid blue line)
given the above coefficients (orange dots connected with dashes). The most conservative
estimate of the minimum and maximum Y values of the Bernstein polynomial is given by
the coefficients with the lowest and highest Y values, respectively. The lower bound is 0

19

Sensors 2022, 22, 1869

and the upper bound is 7. As mentioned in Property A6 and Equation (A8), the Bernstein
coefficients converge to the curve as the polynomial is degree elevated. This fact can be
used to derive tighter bounds. A degree elevation of 20 results in a lower bound of 1.93 and
an upper bound of 5.89. This is a closer estimate of the actual minimum and maximum,
2.26 and 5.70, respectively (see red dotted lines and Section 4.2). Figure 18 also illustrates
degree elevations of 5, 10, and 15. Since the degree elevation matrix, see Equation (A7), is
independent of the Bernstein coefficients, a database of elevation matrices can be computed
ahead of time to produce tight estimates of the bounds at a low computational cost.

Figure 18. Bounds for Bernstein polynomials. The solid blue line is the Bernstein polynomial, the
dashed lines connect the coefficients of each different order, the black dotted line represents the convex
hull of the 5th degree Bernstein polynomial, and the red dotted lines represent the actual extrema.

4.2. Evaluating Extrema

The extrema of a Bernstein polynomial are calculated using an iterative procedure
similar to the one proposed in [44]. This is done by recursively splitting the curve and
using the Convex Hull (Property A1) to obtain an estimate within some desired tolerance.
Algorithm 1 outlines the process for determining the maximum of a Bernstein polynomial
and can easily be modified to determine the minimum of a Bernstein polynomial.

The inputs to Algorithm 1 are the Bernstein polynomial’s coefficients, P = {Pn},
Pn = [P0,n, . . . , Pn,n], an arbitrarily large negative global lower bound, α, and a desired
tolerance, ε. Note that in order to compute a reliable maximum, α ≤ min (P). In practice, α
is set to the lowest possible value that can be reliably represented in the computer.

Line 1 finds the maximum of the two endpoints of the Bernstein polynomial, where n
is the degree of the polynomial. This makes use of the End Points (Property A2). Next, we
determine the upper bound by simply finding the maximum of P . The if statement on line 3
determines whether the global lower bound should be replaced with the current lower
bound. The next if statement, line 6, will prune the current set of Bernstein coefficients.
This is valid because α always provides a lower bound on the global maximum. If the
upper bound of any subset is below α, then we know that it is impossible for any point on
that subset to be the global maximum. The final if statement, line 9, determines whether
the difference between the upper and lower bounds is within the desired tolerance and
returns the global minimum bound α if the tolerance is met.

The else statement, starting on line 11, splits the curve and then recursively calls
Algorithm 1 again. The function split() utilizes the de Casteljau algorithm (Property A5).
One of two different splitting points, tdiv, can be employed. The first option simply splits the
curve in half, i.e., tdiv = t0 +

t f−t0
2 . The second option uses the index of the largest valued

coefficient, iub = argmax(P), to determine the splitting point, i.e., tdiv = t0 + (t f − t0)
iub
n .

Algorithm 1 (and its converse) is employed to find the minimum and maximum of the
5th degree Bernstein polynomial depicted in Figure 18 (red lines). The execution time to
compute the minimum is 320 μs on a Lenovo ThinkPad laptop using an Intel Core i7-8550U,
1.80 GHz CPU. The implementation can be found in [40].

20

Sensors 2022, 22, 1869

Algorithm 1: Evaluating Maximum Value of a Bernstein Polynomial
Input :P , α, ε

1 Plb = max{P [0],P [n]}
2 Pub = max(P)
3 if Plb > α then

4 α = Plb
5 end

6 if α > Pub then

7 return α

8 end

9 if Pub − Plb < ε then

10 return α

11 else

12 PA,PB = split(P)
13 αA = Algorithm 1(PA, α, ε)
14 αB = Algorithm 1(PB, α, ε)
15 α = max(αA, αB)

16 end

17 return α

4.3. Minimum Spatial Distance

The minimum spatial distance between two Bernstein polynomials can be computed
using the method outlined in [44]. This is done by exploiting the Convex Hull property
(Property A1), the End Point Values property (Property A2), the de Casteljau Algorithm
(Property A5), and the Gilbert-Johnson-Keerthi (GJK) algorithm [45]. The latter is widely
used in computer graphics to compute the minimum distance between convex shapes.

The algorithm for the minimum spatial distance between two Bernstein polynomials
is shown in Algorithm 2. The first two inputs to the function are the sets of Bernstein
coefficients, P = {Pm} and Q = {Qn}, which define the two Bernstein polynomials in
question. The last two inputs are the global upper bound on the minimum distance, α, and
a desired tolerance ε.

The upper_bound() function on line 1 finds the furthest distance between the end
points of the two Bernstein polynomials, i.e., lower_bound(P ,Q) = max{P [0]−Q[0],P [0]
−Q[n],P [m] − Q[0],P [m] − Q[n]} where m and n are the degrees of the polynomials
represented by P and Q, respectively. This is a valid upper bound on the minimum
distance between the two polynomials due to End Point Values (Property A2).

The lower_bound() function on line 2 finds the lower bound on the distance between
the two polynomials by using the GJK algorithm. This is a valid lower bound because of
Property A1, Convex Hull. The next three if statements on lines 3, 6, and 9 are very similar
to those seen in Algorithm 1. Line 3 updates the global upper bound α if the current upper
bound is smaller. Line 6 prunes the current iteration since it is impossible the current lower
bound, lower, to be the minimum distance if it is larger than the global upper bound. Line 9
returns α if the desired tolerance is met.

The lines within the else statement split the Bernstein polynomials defined by P andQ
and recursively call Algorithm 2. Like in Algorithm 1, the first option for splitting would be
to simply split at the halfway point. The second option for splitting the curves is outlined
in [44] and uses the location at which the minimum distance occurs to choose the splitting
point. Figure 19a illustrates the minimum distance between several different Bernstein
polynomials. The code to generate this plot can be found in [40]. The execution time to
compute the minimum spatial distance is 3.29 ms on a Lenovo ThinkPad laptop using
an Intel Core i7-8550U, 1.80 GHz CPU.

21

Sensors 2022, 22, 1869

Algorithm 2: Minimum Distance Between Two Bernstein Polynomials
Input :P ,Q, α, ε

1 upper = upper_bound(P ,Q)
2 lower = lower_bound(P ,Q)
3 if upper < α then

4 α = upper
5 end

6 if α < lower then

7 return α

8 end

9 if upper− lower < ε then

10 return α

11 else

12 PA,PB = split(P)
13 QA,QB = split(Q)
14 α = min(α, Algorithm 2 (PA,QA, α))
15 α = min(α, Algorithm 2 (PA,QB, α))
16 α = min(α, Algorithm 2 (PB,QA, α))
17 α = min(α, Algorithm 2 (PB,QB, α))
18 end

19 return α

Remark 1. Note that Algorithm 2 can also be employed to compute the minimum distance between
a Bernstein polynomial and a point or a convex shape. This is shown in Figure 19b.

Figure 19. (a) Minimum distance between curves. (b) Minimum distance between a curve and a polygon.
All distances are measured to the blue curve. A red curve or polygon indicates that a collision exists.

4.4. Collision Detection

In some cases it may be desirable to quickly check the feasibility of a trajectory
rather than finding a minimum distance. The collision detection algorithm can be used
in these cases. The two major differences between the Collision Detection Algorithm and
the Minimum Distance Algorithm described previously are a modification of the GJK
algorithm and a change in the stopping criteria. Rather than having the GJK algorithm
return a minimum distance, it simply returns whether a collision has been detected (i.e.,
convex hulls intersecting). The stopping criteria is set to return the moment no collisions
are found rather than continuing iterations to meet a desired tolerance. For example,

22

Sensors 2022, 22, 1869

if the original convex hulls of two Bernstein polynomials do not intersect, the collision
detection algorithm will return no collision after the first iteration while the minimum
distance algorithm will continue to iterate until the desired tolerance is met. Therefore, this
algorithm is computationally inexpensive compared to the minimum distance algorithm,
with the drawback that it only returns a binary value (no collision or collision possible)
rather than a minimum distance.

The collision detection algorithm is shown in Algorithm 3. The inputs are the coeffi-
cients of the Bernstein polynomials being compared, P andQ, and the maximum number of
iterations max_iter. The while loop beginning on line 2 runs until it is determined that a col-
lision does not exist or until the maximum number of iterations is met. The find_collisions()
function on line 3 uses the modified GJK algorithm to determine which convex hulls from
the set P collide with those from the setQ. The if statement on line 4 checks to see whether
collisions were found. If both Pcol and Qcol are empty, then no collisions exist. If collisions
do exist then the for loops starting on lines 7 and 11 split all the convex hulls that were
found to collide and add them to the set to be checked. Note that the parent set that is split
is removed from the set of convex hulls to check. If the maximum number of iterations
is met, then the algorithm returns that a collision is possible. The execution time when
a collision is possible is 1.10 ms on a Lenovo ThinkPad laptop using an Intel Core i7-8550U,
1.80 GHz CPU. However, when a collision does not exist, the execution time is only 7.25 μs.

Algorithm 3: Collision Detection
Input :P ,Q, max_iter

1 k = 0
2 while k < max_iter do

3 Pcol ,Qcol = find_collisions(P ,Q)
4 if Pcol ∪Qcol = {} then

5 return No Collision
6 end

7 for Pi ∈ Pcol do

8 PA,PB = split(Pi)
9 P = P ∪ {PA,PB} \ Pi

10 end

11 for Qi ∈ Qcol do

12 QA,QB = split(Qi)
13 Q = Q∪ {QA,QB} \ Qi
14 end

15 k ++

16 end

17 return Collision Possible

4.5. Penetration Algorithm

If two convex shapes intersect, in order to derive information such as the penetration
depth and vector, the EPA [46] can be used. A slight modification of the EPA algorithm is
proposed here, which is referred to as the DEPA, whose objective is to find the penetration
of one convex shape relative to another along a specific direction

−→
d . The top left plot of

Figure 20 shows two shapes intersecting each other, and the remaining plots show examples
of penetration vectors, i.e., the vector

−→
d needed to move the second shape so that it no

longer intersects the first shape. The DEPA algorithm finds the shortest possible penetration
vector. The pseudocode is reported below (see Algorithm 4).

23

Sensors 2022, 22, 1869

Figure 20. Illustration of penetration.

Algorithm 4: Directed Extended Polytope Algorithm

Data:
−→
d

Data: MinkowskiDi f f erence
Data: simplex

1 ContainsOrigin(simplex);

2 A, B ← InterectingEdge(simplex, Ray(
−→
0 ,
−→
d));

3 Loop

4
−→n ← TripleProduct(

−→
AB,

−→
A ,
−→
AB);

5 C ← Support(MinkowskiDi f f erence,−→n);

6 if Parallel(
−→
C ,
−→
d) then

7
−→vec ← −→

C ;
8 return;
9 else if Equals(C,B) OR Equals(C,A) then

10 break;

11 else if Intersection(Ray(0,
−→
d), CA) then

12 B ← C;

13 else if Intersection(Ray(0,
−→
d), CB) then

14 A ← C;

15
−→vec ←Intersection(Ray(0,

−→
d), AB);

16 EndLoop

Figure 21 demonstrates the algorithm in 4 steps. The first plot shows the Minkowski
Difference of the shapes depicted in Figure 22, which contains the origin and with a triangle
simplex that contains the origin. This is the desired direction to move a polytope A (blue
polytope) of Figure 22 such that it no longer contains polytope B (beige polytope). Once the
norm of the point along the edge of the Minkowski Difference parallel to

−→
d is found, A can

then move in the same direction with the same length to no longer intersect B.

24

Sensors 2022, 22, 1869

Figure 21. Iteration of the DEPA algorithm.

Figure 22. Two intersecting polygons and resulting Minkowski Difference.

5. Numerical Examples

In this section, numerical examples using the BeBOT toolkit and Python’s Scipy
Optimization package are examined (flight tests are available at [47]). The implementation
of the following examples can be found in [40].

5.1. Dubins Car—Time Optimal

In this simple example, several trajectories for a vehicle with Dubins car dynamics are
generated to illustrate the properties of Bernstein polynomials. We let the desired trajectory
assigned to the vehicle be given by the Bernstein polynomial[

C[x]
n (t)

C[y]
n (t)

]
= Cn(t) =

n

∑
i=0

Pi,nBi,n(t), t ∈ [t0, t f]. (11)

25

Sensors 2022, 22, 1869

The square of the speed of the vehicle is a 1D Bernstein polynomial given by

v2(t) = ||Ċn(t)||2.

The heading angle is

ψ(t) = tan−1 Ċ[y]
n (t)

Ċ[x]
n (t)

, (12)

and the angular rate is a 1D rational Bernstein polynomial given by

ω(t) =
C̈[y]

n (t)Ċ[x]
n (t)− Ċ[y]

n (t)C̈[x]
n (t)

||Ċn(t)||2
. (13)

The objective at hand is to find a trajectory that arrives at a desired destination in the
minimum possible time while adhering to feasibility and safety constraints. In particular,
the trajectory generation problem is as follows:

min
Pn ,t f

t f

subject to

Cn(t0) = C0, Cn(t f) = C f ,

ψ(t0) = ψ0, ψ(t f) = ψ f

||Ċn(t0)|| = v0, ||Ċn(t f)|| = v f ,

||Ċn(t)||2 ≤ v2
max, ∀t ∈ [t0, t f]

||ψ̇(t)|| ≤ ωmax, ∀t ∈ [t0, t f]

||Cn(t)−Oi||2 ≥ d2
s , ∀t ∈ [t0, t f], i = 1, 2.

We set the initial and final position, heading, and speed to C0 = [3, 0]� m, C f =

[7, 10]� m, ψ0 = ψ f =
π
2 rad, and v0 = v f = 1 m

s . The maximum speed, maximum angular
rate, and minimum safe distance constraints are vmax = 5 m

s , ωmax = 1 rad
s , and d2

s = 1 m,
respectively. The positions of the obstacles are O1 = [3, 2]� m and O2 = [6, 7]� m.

In the problem above, the initial and final constraints for position, heading, and
speed are enforced using the End Point Values property (Property A2) together with
Equations (A2), (12) and (13). Similarly, the same property is used to enforce the initial
and final speeds and headings (see (A2)). Note that the norm squared of the speed and
of the distance between the trajectory and the obstacles can be expressed as Bernstein
polynomials (the sum, the difference, and the product between Bernstein polynomials are
also Bernstein polynomials). A similar argument can be made for the norm square of the
angular rate, which can be expressed as a rational Bernstein polynomial (see Property A7).
Thus, the maximum speed and angular rate, and collision avoidance constraints can be
enforced using the Evaluating Bounds or Evaluating Extrema procedures described in
Sections 4.1 and 4.2.

Figure 23 shows the results with n = 10. The blue curve is obtained by enforcing the
constraints using the Evaluating Bounds procedure. The optimal time of arrival at the final
destination is t f = 9.14 s. Next, we solve the same problem by enforcing the constraints
using the Evaluating Bound procedure together with Degree Elevation. Recall that by
degree elevating a Bernstein polynomial, the Bernstein coefficients converge towards the
curve. Thus, degree elevation can be used to enforce constraints with tighter bounds.
The orange and green lines show the trajectories obtained using degree elevations of
30 and 100, respectively. Degree elevation to degree 30 results in an optimal final time
t f = 7.64 s. The elevation to degree 100 provides an optimal value t f = 7.12 s. Finally,
the trajectory with smallest optimal final time, t f = 6.45 s, depicted as the red curve in

26

Sensors 2022, 22, 1869

Figure 23, is obtained by enforcing the constraints using the Evaluating Extrema algorithm
(Section 4.2). While higher degree elevations or evaluating the exact extrema can produce
more optimal trajectories, that optimality comes at the cost of additional computation time.
Using a Lenovo Thinkpad P52s with an Intel Core i7-8550U CPU with a 1.8 GHz clock and
8 GB of memory, the computation time required for no degree elevation, a degree elevation
of 30, a degree elevation of 100, and the exact extrema algorithm was 0.105 s, 0.146 s, 0.201 s,
and 0.573 s, respectively.

Figure 24 illustrates the squared speed of each example. Figure 25 shows the angular
rate of each trial. It can be seen that the vehicle correctly adheres to the speed and angular
rate constraints for each trial with the only differences being the final time and proximity
to the obstacles.

Figure 23. Time optimal trajectory for vehicle with initial and final speeds and headings, maximum
speed, maximum angular rate, and maximum safe distance constraints ranging from least to most
conservative distance estimates.

Figure 24. Plot of the squared speed constraints for each separate trial.

27

Sensors 2022, 22, 1869

Figure 25. Plot of the angular rate constraints for each separate trial.

Remark 2. The Exact Extrema function is a complex non-linear and non-smooth function. When it
is used to enforce constraints, gradient-based optimization solvers such as the one used in this work
can fail to converge to a feasible solution, especially if the initial guess is not feasible. One option is
to use an iterative procedure where (i) a feasible sub-optimal solution is obtained by enforcing the
collision avoidance constraint using the Evaluating Bounds function, and (ii) this solution is then
used as an initial guess to solve the (more accurate) problem with the Exact Extrema constraint.

5.2. Air Traffic Control—Time Optimal

In this example, we consider the problem of routing several commercial flights between
major US cities in two dimensions (i.e., constant altitude). Assuming that each flight departs
at the same time, the goal is to minimize the combined flight time of all the vehicles. Let
the position, speed, heading, and angular rate of each vehicle under consideration be
parameterized as in Section 5.1. We shall also make the assumption that the trajectories are
on a 2D plane rather than on the surface of the Earth.

The goal is to compute cumulatively time optimal trajectories subject to maximum
speed and angular velocity bounds, initial and final position, angle, and speeds. The
vehicles must also maintain a minimum safe distance between each other. This problem
can be formulated as follows:

min
Pn ,t f

m

∑
k=1

t[k]f

subject to

C
[k]
n (0) = C

[k]
0 , C

[k]
n

(
t[k]f

)
= C

[k]
f ,

ψ[k](0) = ψ
[k]
0 , ψ[k]

(
t[k]f

)
= ψ

[k]
f ,

||Ċ[k]
n (0)|| = v[k]0 , ||Ċ[k]

n

(
t[k]f

)
|| = v[k]f ,

v2
min ≤ ||Ċ[k]

n (t)||2 ≤ v2
max, ∀t ∈ [0, t[k]f],

|ψ̇[k](t)| ≤ ωmax, ∀t ∈ [0, t[k]f],

||Ci
n(t)−C

j
n(t)||2 ≥ d2

s , ∀i, j ∈ {1, . . . , m}, i
= j.

28

Sensors 2022, 22, 1869

where the superscript [k] corresponds to the kth vehicle out of m vehicles, C
[k]
0 and C

[k]
f are

the initial and final positions, ψ
[k]
0 and ψ

[k]
f are the initial and final headings, v[k]0 and v[k]f are

the initial and final speeds, vmin and vmax are the minimum and maximum speeds, ωmax is
the maximum angular velocity, ds is the minimum safe distance, and t[k]f is the final time of
the kth vehicle.

The departure cities, in vehicle order, are: San Diego, New York, Minneapolis, and
Seattle. The arrival cities, in vehicle order, are: Minneapolis, Seattle, Miami, and Denver.
The initial and final speeds are all v[k]0 = v[k]f = 205 m

s ∀k ∈ {1, . . . , m}, the initial headings

are ψ0 = [0, π, 0, 0]� rad, the final headings are ψ f = [0, π,−π
2 , 0] rad, the minimum speed

is vmin = 200 m
s , the maximum speed is vmax = 260 m

s , the maximum angular velocity is

ωmax = 3 deg
s = 0.0524 rad

s , the minimum safe distance is ds = 5 km, and the degree of the
Bernstein polynomials being used is 5.

The initial and final position constraints are enforced using the End Point Values
property (Property A2). Similarly, the same property is used to enforce the initial and final
speeds and headings (see (A2)). Note that the norm square of the speed and the norm square
of the distance between vehicles can be expressed as 1D Bernstein polynomials (the sum,
difference, and product between Bernstein polynomials are also Bernstein polynomials).
A similar argument can be made for the norm square of the angular rate, which can be
expressed as a rational Bernstein polynomial (see Property A7). Thus, the maximum speed
and angular rate, and collision avoidance constraints can be enforced using the Evaluating
Bounds or Evaluating Extrema procedures described in Sections 4.1 and 4.2.

The optimized flight plans can be seen in Figure 26. The squared speed of each vehicle
is shown in Figure 27. Note that each vehicle begins and ends with the same speed. The
vehicles never slow down less than their initial speeds which means they never reach the
minimum speed constrain, nor do the vehicles go faster than the maximum speed. In
Figure 28, the angular velocity of each vehicle is shown. The minimum and maximum
angular rate constraints are shown by the dotted lines. The vehicles’ angular rates never
approach the minimum or maximum angular rate constraints due to the large area being
covered. Finally, the squared euclidean distance between vehicles is shown in Figure 29.
As expected, the squared Euclidean distance between two vehicles never falls below the
minimum safe distance. Note that curves within the constraint plots end at different times.
This is expected since each vehicle has a different final time. The furthest time reached in
Figure 29 is less than that of the other plots because the other vehicles have already reached
their final time before the longest flight reaches its final time.

Figure 26. Commercial flight trajectories between major US cities.

29

Sensors 2022, 22, 1869

Figure 27. Verifying speed constraints for the Air Traffic Control example.

Figure 28. Verifying angular rate constraints for the Air Traffic Control example.

Figure 29. Verifying minimum safe distance constraints for the Air Traffic Control example.

30

Sensors 2022, 22, 1869

5.3. Cluttered Environment

In many real world scenarios, robots must safely traverse cluttered environments. In
this example, three aerial vehicles traveling at a constant altitude must navigate around
several obstacles while also adhering to dynamic and minimum safe distance constraints.
Let the position, speed, heading angle, and angular rate of each vehicle be defined as
in Section 5.1. The goal of this example is to compute trajectories whose arc length is
minimized subject to maximum speed constraints along with initial and final positions,
heading angles, and speeds. The vehicles should also adhere to a minimum safe distance
between each other and between obstacles. We formulate the problem as follows:

min
Pn

m

∑
i=1

n−1

∑
k=0
||P[i]

k+1,n − P
[i]
k,n|| (14)

subject to

C
[k]
n (0) = C

[k]
0 , C

[k]
n (t f) = C

[k]
f ,

ψ[k](0) = ψ
[k]
0 , ψ[k](t f) = ψ

[k]
f ,

||Ċ[k]
n (0)|| = v[k]0 , ||Ċ[k]

n (t f)|| = v[k]f ,

||Ċ[k]
n (t)||2 ≤ v2

max, ∀t ∈ [0, t f],

||C[i]
n (t)−C

[j]
n (t)||2 ≥ d2

s , ∀i, j ∈ {1, . . . , m}, i
= j,

||C[i]
n (t)−Oj||2 ≥ d2

obs, ∀t ∈ [0, t f], i ∈ {1, . . . , m},

j ∈ {1, . . . , b},

where Oj is the position of the jth obstacle out of b obstacles.
The initial positions for each vehicle, in order, are [0, 0]� m, [10, 0]� m, and [20, 0]� m.

The initial speeds are all 1 m
s and the initial heading angles are all π

2 rad. The final positions
for each vehicle are, in order, [20, 30]� m, [0, 30]� m, and [10, 30]� m. The final speeds and
final heading angles are the same as the initial speeds and heading angles. The order of
the Bernstein polynomials being used is 7, the final time is t f = 30 s, the minimum safe
distance between vehicles is ds = 1 m, the minimum safe distance between vehicles and
obstacles is dobs = 2 m, and the maximum speed is vmax = 10 m

s . The vehicles traversing
the cluttered environment can be seen in Figure 30. This experiment has been repeated in
the Cooperative Autonomous Systems (CAS) lab using three AR Drones 2.0. The flight
tests can be viewed at [47].

Figure 30. Aerial vehicles navigating a cluttered environment.

31

Sensors 2022, 22, 1869

5.4. Vehicle Overtake

Here we consider an autonomous driving example in which one vehicle attempts
to overtake another vehicle while driving around a 90◦ corner. The corner is defined
by two arcs with a center point located at [140, 0]� m. The inner track has a radius of
rinner = 125 m and the outer track has a radius of router = 140 m. To clearly distinguish the
vehicle being overtaken, it will be referred to as the opponent.

For simplicity, we consider the objective of minimizing the arc-length of the trajectory,
which can be done by minimizing the sum of the squared Euclidean norm of consecutive
control points, i.e.,

E(Pn) =
n

∑
i=1
||Pi,n − Pi−1,n||2. (15)

The desired endpoint of the vehicle is at the end of the corner. This is computed by
measuring the angle between the vehicle’s position and the end of the curve,

A(Pn) =
(

arctan 2
(

P
[y]
n,n − q[y], P

[x]
n,n − q[x]

)
− π

2

)2
, (16)

where the function arctan 2 returns an angle in the correct quadrant [48]. Given Equations (15)
and (16), we formulate the problem as

min
Pn

((1− α)E(Pn) + αA(Pn))β (17)

subject to

Cn(0) = C0, ψ(0) = ψ0, ||Ċn(0)|| = v0,

||Ċn(t)||2 ≤ v2
max, ∀t ∈ [0, t f],

|ψ̇(t)| ≤ ωmax, ∀t ∈ [0, t f],

r2
inner ≤ ||Cn(t)− q||2 ≤ r2

outer,

||Cn(t)−On(t)||2 ≥ d2
s ,

where α and β are tuning parameters. C0, ψ0, and v0 are the initial position, heading, and
speed of the vehicle, respectively. vmax and ωmax are the maximum speed and angular
rate, respectively. The predicted trajectory of the opponent is represented as the Bernstein
polynomial On(t) and the minimum safe distance to the opponent is ds. Using a sensor
such as a camera or LiDAR, one could measure the state of the opponent and then predict
its future position using a method such as the one presented in [49].

At time t = t0, when planning occurs, the position of the vehicle is [5, 0]� m, its
speed is 50 m

s , and its initial heading angle is π
2 rad. The control points of the Bernstein

polynomial representing the opponent’s trajectory are[
10 25 50 70
10 75 90 105

]
m.

The maximum speed is 65 m
s , the maximum angular rate is π

5
rad

s , and the minimum
safe distance is 3 m. The tuning parameters are α = 1− 10−6 and β = 100.

Figure 31 illustrates the optimized vehicle trajectory overtaking the opponent’s tra-
jectory. Figure 32 shows the squared speed of the vehicle along with the maximum speed
constraint. As expected, the vehicle’s speed approaches the maximum speed in order to
successfully overtake the opponent. Figure 33 shows the vehicle’s angular rate and its
upper and lower constraints. It is clear that the vehicle remains within the desired bounds.
Figure 34 shows the squared distance between the vehicle and the opponent. While the
vehicle does come close to the opponent, it is never closer than the minimum safe distance.

32

Sensors 2022, 22, 1869

Figure 31. Overtaking trajectory. The track follows a quarter circle whose center point is at q. The
inner track line has a radius of rinner and the outer track line has a radius of router.

Figure 32. Squared speed profile of the vehicle.

Figure 33. Angular rate profile of the vehicle.

33

Sensors 2022, 22, 1869

Figure 34. Squared distance between vehicle and opponent.

5.5. Swarming

This section examines two methods for generating trajectories for large groups of
autonomous aerial vehicles. The centralized method optimizes every trajectory at once. On
the other hand, the decentralized method generates trajectories one at a time and compares
them to previously generated trajectories.

The position of each vehicle in a swarm of m vehicles for the following examples is
parameterized as a 3D Bernstein polynomial, i.e.,

n

∑
i=0

P
[j]
i,nBi,n(t) = C

[j]
n (t), ∀j ∈ {1, . . . , m}, P

[j]
n ∈ R

3×n.

5.5.1. 101 Vehicle—Centralized

The centralized method optimizes the trajectories for each vehicle simultaneously. The
goal is to minimize the arc length of each trajectory. There are m vehicles with 3rd order
Bernstein polynomials representing their trajectories which are constrained to a mini-
mum safe distance between each other and initial and final positions. This is formulated
as follows:

min
Pn

m

∑
i=1

n−1

∑
k=0
||P[i]

k+1 − P
[i]
k ||,

subject to

C
[i]
n (0) = Ci

0, C
[i]
n (t f) = C

[i]
f , ∀i ∈ {1, . . . , m},

||C[i]
n (t)−C

[j]
n (t)||2 ≥ d2

s , ∀i, j ∈ {1, . . . , m}, i
= j.

The initial positions for each vehicle were chosen randomly from a 25 m× 25 m grid
at an altitude of z = 0 m. The final positions were chosen to spell out “CAS”, as seen
in Figure 35, at an altitude of z = 100 m. In the next section we significantly reduce the
number of dimensions in the optimization vector by using the decentralized approach.

34

Sensors 2022, 22, 1869

Figure 35. 101 vehicles spelling out CAS using the centralized method.

5.5.2. 101 Vehicle—Decentralized

The decentralized method iteratively computes trajectories for the ith vehicle. Each
new iteration is compared to the previously computed trajectories so that the minimum
safety distance constraint is met. The problem that is solved at each iteration is written as

min
P
[i]
n

m

∑
i=1

n−1

∑
k=0
||P[i]

k+1 − P
[i]
k ||

subject to

C
[i]
n (0) = C

[i]
0 , C

[i]
n (t f) = C

[i]
f ,

||C[i]
n (t)−C

[j]
n (t)||2 ≥ D2

s , ∀j ∈ {1, . . . , i− 1}, i > 1.

Note that the first vehicle does not need to satisfy the minimum safe distance constraint
since no trajectories have been computed before it.

The parameters used in this example were identical to that of the previous subsection.
The resulting figure has been omitted due to its similarity to Figure 35.

5.5.3. 1000 Vehicle—Decentralized

The decentralized method can be used to compute 1000 trajectories. In this example,
it is employed to generate the paths seen in Figure 36 to display the University of Iowa
Hawkeye logo. The initial points are equally dispersed at an altitude of z = 0 m on
a 100 m× 100 m grid. The final points are the pattern shown at an altitude of z = 100. The
cost function aims to maximize the temporal distance between the current ith trajectory
and the previously generated jth trajectories by taking the reciprocal of the sum of the
Bernstein coefficients of the norm squared difference, i.e.

min
P
[i]
n

1

∑i−1
j=1 P[norm,j]

, i > 1,

35

Sensors 2022, 22, 1869

subject to

C
[i]
n (0) = C

[i]
0 , C

[i]
n (t f) = C

[i]
f ,

where P[norm,j] are the Bernstein coefficients of the Bernstein polynomial representing the
squared temporal distance between the ith and jth trajectories, i.e.,

||C[i](t)−C[j](t)||2 =
n

∑
i=0

P[norm,j]Bi,n(t).

It should be noted that this formulation of cost function and constraints is used as
a proof of concept. For other possible cost function and constraint formulations, the reader
is referred to [50,51].

Figure 36. Trajectories for 1000 aerial vehicles with initial and final position and minimum safety
distance constraints.

5.6. Marine Vehicle Model

In this example, we consider a marine vehicle model known as the medusa. The
equations of motion of the medusa are as follows

ẋ = u cos ψ− v sin ψ,

ẏ = u sin ψ + v cos ψ,

ψ̇ = r.

(18)

muu̇−mvvr + duu = τu,

mvv̇ + muur + dvv = 0,

mrṙ−muvuv + drr = τr,

(19)

where x and y represent the vehicle’s position, ψ is the orientation, u (surge) and v (sway)
are the linear velocities, r is the turning rate, and τ = [τu, τr]T is the vector of forces and
torques due to thrusters/surfaces (control input).

In this example, we let the state, [x, y, ψ, u, v, r]�, and input, [τu, τr]�, be approximated
by Bernstein polynomials, and impose the vehicle’s dynamics directly through Bernstein

36

Sensors 2022, 22, 1869

polynomial differentiation. Using Property A3, the dynamics constraints given by Equa-
tions (18) and (19) reduce to a set of algebraic constraints. Additional constraints imposed
on this problem include collision avoidance and input saturation constraints. Figure 37
shows an example of motion planning for a medusa vehicle, which is required to reach
a final destination in the minimum time. Ten markers are plotted along the trajectory
(shown in blue) to represent the heading of the vehicle at that point in time. It can easily
be seen that the vehicle’s trajectory avoids the (inflated) unsafe region illustrated by the
orange circle.

Figure 37. Medusa Example.

5.7. Dynamic Routing Problem
5.7.1. Single Vehicle Case

We consider a problem where a single vehicle is supposed to visit M neighborhoods
Bi = {x ∈ R2 : ‖x − bi‖ ≤ r } in minimum time t f . Here r > 0 and the vectors bi ∈ R2,
i ∈ [1, M] represent a sequence of points of interest that has been generated by a Traveling
Salesman Problem (TSP) algorithm. Let ti denote a time instance when the vehicle’s
position satisfies Cn(ti) ∈ Bi. Then, the dynamic routing problem for a single vehicle can
be formulated as follows,
DR1

min
ti ,i∈[1,M], Pn

t f (20)

subject to

Cn(ti) ∈ Bi

ti−1 < ti < ti+1, ∀i = 2, M− 1

t1 > 0, t f > tM

‖Ċn‖∞ ≤ 1,

‖C̈n‖∞ ≤ 1,

Cn(0) = Cn(t f) = C0

37

Sensors 2022, 22, 1869

5.7.2. Numerical Solution: Single Vehicle Case

Let

Ci
n(t) =

⎧⎪⎨
⎪⎩

n

∑
k=0

Pi,kBk,n(t), t ∈ [ti−1, ti], t0 = 0, tM+1 = t f

0, o.w.

, i ∈ [1, M + 1] (21)

Define

Cn(t) =
M+1

∑
i=1

Ci
n(t) (22)

Then the numerical solution of the dynamic routing problem DR1 was obtained by
solving the optimization problem

min
ti ,i∈[1,M], Pi

n

t f (23)

subject to

‖Ci
n(ti)− bi‖ ≤ r

ti−1 < ti < ti+1, ∀i = 2, M− 1

t1 > 0, t f > tM

‖Ċn‖∞ ≤ 1,

‖C̈n‖∞ ≤ 1,

Cn(0) = Cn(t f) = C0

Ci
n(ti) = Ci+1

n (ti), i ∈ [1, M− 1]

Ċi
n(ti) = Ċi+1

n (ti) i ∈ [1, M− 1]

A simulation was performed illustrating a single agent visiting 30 neighborhoods. The
resulting trajectory is shown in Figure 38. The agent is limited to velocities of arbitrary
units ranging from −1 to 1 and is similarly limited to accelerations of arbitrary units also
from −1 to 1. The velocities and accelerations of the vehicle can be seen in Figure 39 and
Figure 40, respectively.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 38. Trajectory of a single agent visiting 30 neighborhoods. The circles with an X in their center
represent the neighborhoods and the circles along the vehicle’s trajectory represent the points at
which the vehicle makes its delivery.

38

Sensors 2022, 22, 1869

0 2 4 6 8 10 12 14

time (sec)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ve
lo

ci
tie

s

v1

v2

Figure 39. Velocity components of a single agent visiting 30 neighborhoods.

0 2 4 6 8 10 12 14

time (sec)

-1.5

-1

-0.5

0

0.5

1

1.5

co
nt

ro
l i

np
ut

s

u 1

u2

Figure 40. Acceleration components of a single agent visiting 30 neighborhoods.

5.7.3. Multiple Vehicle Case

In this case, K drones are assigned a total of K neighborhood sets to visit. Each neigh-
borhood set, Pk, consists of an equal number of neighborhoods Bij which are defined by
a set of points of interest bik ∈ R2, i.e.,

Bik = {x ∈ R2 : ‖x− bik‖ ≤ r, i ∈ [1, M], k ∈ [1, K]},

and
Pk = {B1k,, BMk, k ∈ [1, K]}.

Let t f k, k ∈ [1, K] denote the total time it takes for the kth vehicle to visit every
neighborhood in the set Pk once and let tik denote a time instance when the kth vehicle’s
position satisfies Ck

n(tik) ∈ Bik. Using this notation, we propose the following definition of
the multi-vehicle dynamic routing problem for given positive number wk and d

DR2

min
tik ,i∈[1,M],k∈[1,K], Pk

n

K

∑
k=1

wkt f k (24)

39

Sensors 2022, 22, 1869

subject to

Ck
n(tik) ∈ Bik ∈ Pk, ∀k ∈ [1, K]

ti−1,k < tik < ti+1,k, ∀i ∈ [2, M− 1], k ∈ [1, K]

t1k > 0, t f k > tMk

|C̈k
n(t)| ≤ umax, ∀t ∈ [0, t f k]

Ck
n(0) = Ck

n(t f) = Ck0, ∀k ∈ [1, K]

|Ck
n(t)−Cl

n(t)| ≥ d, k
= l, ∀t ∈ [0, max
j∈[1,K]

t f j], k ∈ [1, K], l ∈ [1, K].

Simulations were performed for a two agent and ten agent case each visiting 10 neigh-
borhoods per agent. The resulting trajectories for the two agent case are shown in Figure 41
and for the ten agent case in Figure 42.

-0.2 0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

Figure 41. Two agents visiting ten neighborhoods each.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 42. Ten agents visiting ten neighborhoods each.

40

Sensors 2022, 22, 1869

6. Conclusions

We presented a method to generate optimal trajectories by using Bernstein polyno-
mials to transcribe the problem into a nonlinear programming problem. By exploiting the
useful properties of Bernstein polynomials, our method provides computationally efficient
algorithms that can also guarantee safety in continuous time which are useful in optimiza-
tion routines. These algorithms include evaluating bounds, evaluating extrema, minimum
spatial distance between two Bernstein polynomials, minimum spatial distance between
a Bernstein polynomial and a convex polygon, collision detection, and the penetration
algorithm. We also developed an open source toolbox which makes these transcription
methods readily available in the Python programming language.

Numerical examples were provided to demonstrate the efficacy of the method. Simple
cost functions and constraints were implemented to generate trajectories for several realistic
mission scenarios including air traffic control, navigating a cluttered environment, overtak-
ing a vehicle, trajectory generation for a large swarm of vehicles, trajectory generation for
a marine vehicle, and navigation for vehicles operating in a Traveling Salesman mission.
Our formulation offers a powerful tool for users to generate optimal trajectories in real
time scenarios for single or multiple robot teams. Future work includes developing new
cost functions, exploring different optimization frameworks, and replanning trajectories to
react to a changing environment.

Author Contributions: Conceptualization, C.K.-J., V.C., I.K., A.P., C.W.; methodology, C.K.-J., V.C.,
I.K., A.P., C.W.; software, C.K.-J., T.B., I.K., C.W.; validation, C.K.-J., T.B., I.K., C.W.; investigation, C.K.-
J., V.C., I.K., A.P., C.W.; resources, V.C., I.K., A.P.; writing—original draft preparation, C.K.-J., V.C.,
I.K.; writing—review and editing, C.K.-J.; supervision, V.C., I.K., A.P., C.W.; project administration,
V.C.; funding acquisition, V.C., I.K., A.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Office of Naval Research, grants N000141912106,
N000142112091 and N0001419WX00155. Antonio Pascoal was supported by H2020-EU.1.2.2—FET
Proactive RAMONES, under Grant GA 101017808 and LARSyS-FCT under Grant UIDB/50009/2020.
Isaac Kaminer was supported by the Office of Naval Research grant N0001421WX01974.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this section we present and examine relevant properties of Bernstein polynomials
and rational Bernstein polynomials, which are used throughout the article.

Property A1. Convex Hull
Both the Bernstein polynomial, Equation (5), and the rational Bernstein polynomial (6) (pro-

vided that wi,n > 0, i = 0, . . . , n) satisfy

min
k∈{0,...,n}

Pk ≤ Cn(t) ≤ max
k∈{0,...,n}

Pk , ∀t ∈ [t0, t f]. (A1)

It follows that 2D (or 3D) Bernstein polynomials and rational Bernstein polynomials lie within
the convex hull defined by their Bernstein coefficients. An example of this property is depicted in
Figure A1, which shows a 2D Bernstein polynomial contained within its convex hull.

41

Sensors 2022, 22, 1869

Figure A1. Convex hull of a Bernstein polynomial where the solid blue line is the curve, the black dotted
line is the convex hull, and the orange points connected by dashed lines are the Bernstein coefficients.

Property A2. End Point Values
The first and last Bernstein coefficients of the Bernstein polynomial introduced in Equation (5),

as well as the rational Bernstein polynomial in Equation (6), are their endpoints, i.e.,

Cn(t0) = P0 and Cn(t f) = Pn.

Furthermore, the tangents to the curve at its first and last coefficients are the same as the
lines connecting the first and second coefficients and the penultimate and ultimate coefficients,
respectively. It follows that the first derivative of the Bernstein polynomial at the end points is
as follows

Ċn(t0) =
n

t f − t0
(P1,n − P0,n),

Ċn(t f) =
n

t f − t0
(Pn,n − Pn−1,n).

(A2)

Similarly, for a rational Bernstein polynomial we have

Ċn(t0) =
nw1

(t f − t0)w0
(P1,n − P0,n),

Ċn(t f) =
nwn−1

(t f − t0)wn
(Pn,n − Pn−1,n).

(A3)

Property A3. Derivatives
The derivative of the Bernstein polynomial introduced in Equation (5) is an (n− 1)th order

Bernstein polynomial given by

Ċn−1(t) =
n−1

∑
i=0

P′i,n−1Bi,n−1(t), (A4)

with the vector of Bernstein coefficients P′n−1 = [P′0,n−1, . . . , P′n−1,n−1] given by

P′n−1 = PnDn.

In the equation above, Dn denotes the differentiation matrix given by

42

Sensors 2022, 22, 1869

Dn =
n

t f − t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 · · · 0

1
.

...

0
. 0

...
. −1

0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n+1×n. (A5)

Remark A1. Properties A2 and A3 can be easily extended to compute higher order derivatives of
Bernstein polynomials.

Property A4. Integrals
The definite integral of a Bernstein polynomial is given by

∫ t f

t0

Cn(t)dt =
t f − t0

n + 1

n

∑
i=0

Pi,n . (A6)

Property A5. The de Casteljau Algorithm
The de Casteljau algorithm computes a Bernstein polynomial defined over an interval [t0, t f]

at any given tdiv ∈ [t0, t f]. Moreover, it can be used to split a single Bernstein polynomial into two
independent Bernstein polynomials. Given the Bernstein polynomial introduced in Equation (5)
with the vector of coefficients Pn = [P0,n , . . . , Pn,n], and a scalar tdiv ∈ [t0, t f], the Bernstein
polynomial at tdiv is computed using the following recursive relationship:

P0
i,n = Pi,n , i = 0, . . . , n ,

Pj
i,n =

t f − tdiv

t f − t0
Pj−1

i,n +
tdiv − t0

t f − t0
Pj−1

i+1,n ,

with i = 0, . . . , n − j , and j = 1, . . . , n. Then, the Bernstein polynomial evaluated at tdiv is
Cn(tdiv) = Pn

0,n . Note that the superscript here signifies an index and not an exponent. Moreover,
the Bernstein polynomial can be subdivided at tdiv into two nth order Bernstein polynomials
with coefficients

P0
0,n, P1

0,n, . . . , Pn
0,n and Pn

0,n, Pn−1
1,n , . . . , P0

n,n .

A geometric example of a 3rd order Bernstein polynomial being split at tdiv = 0.5 using the de
Casteljau is shown in Figure A2. Note that at the final iteration only a single point remains, P3

0,n,
and lies on the original curve. The points {P0

0,n, P1
0,n, P2

0,n, P3
0,n} become the Bernstein coefficients

of the left curve and the points {P3
0,n, P2

1,n, P1
2,n, P0

3,n} become the coefficients of the right curve.

Figure A2. Geometric example of the de Casteljau algorithm splitting a 2D Bernstein polynomial at
tdiv = 0.5. The original curve is defined by the Bernstein coefficients {P0

0,n, . . . , P0
3,n}, the left hand

curve is shown in red, the right hand curve is shown in blue, and the superscript corresponds to the
current iteration of the algorithm.

43

Sensors 2022, 22, 1869

Remark A2. For high order Bernstein polynomials, the exponential terms in Equation (5) can
cause overflows. The de Casteljau algorithm can be used to overcome these issues on a computer
when computing the value of a Bernstein polynomial, especially if lower bit floating point values are
to be used such as 16 or 32 bits.

Property A6. Degree Elevation
The degree of a Bernstein polynomial can be elevated by one using the following recursive

relationship

Pi,n+1 =
i

n + 1
Pi−1,n +

(
1− i

n + 1

)
Pi,n,

where P0,n+1 = P0,n and Pn+1,n+1 = Pn,n. Furthermore, any Bernstein polynomial of degree n can
be expressed as a Bernstein polynomial of degree m, m > n. The vector of coefficients of the degree
elevated Bernstein polynomial, namely Pm = [P0,m, . . . , Pm,m], can be calculated as

Pm = PnE,

where E = {ej,k} ∈ R(n+1)×(m+1) is the degree elevation matrix with elements given by

ei,i+j =
(m−n

j)(n
i)

(m
i+j)

, (A7)

where i = 0, . . . , n and j = 0, . . . , m − n, all other values in the matrix are zero, and Pn =
[P0,n, . . . , Pn,n] is the vector of Bernstein coefficients of the curve being elevated (see [52]). Because
E is conveniently independent of the coefficients, it can be computed ahead of time and stored for
efficient computation of degree elevated Bernstein polynomials. By degree elevating a Bernstein
polynomial, the coefficients converge to the polynomial, i.e.

max
i

∣∣∣∣Pi,m − Cm

(
i
m
(t f − t0) + t0

)∣∣∣∣ ≤ k
m

, (A8)

where k is a positive constant independent of m (see [53]).

Property A7. Arithmetic Operations
Arithmetic operations of Bernstein polynomials require that both curves be defined on the same

time interval [t0, t f]. In case they are not, the de Casteljau algorithm can be used to split them at
an intersecting time interval.

The sum and difference of two polynomials of the same order can be performed by simply adding
and subtracting their Bernstein coefficients, respectively. For Bernstein polynomials of different
order, the Degree Elevation (Property A6) may be used to increase the order of the lower order
Bernstein polynomial.

Given two Bernstein polynomials, Fm(t) and Gn(t), with degrees m and n, respectively, and hav-
ing Bernstein coefficients X0,m, . . . , Xm,m and Y0,n, . . . , Yn,n, the product Cm+n(t) = Fm(t)Gn(t)
is a Bernstein polynomial of degree (m + n) with coefficients Pk,m+n, k ∈ {0, . . . , m + n} given by

Pk,m+n =
min(m,k)

∑
j=max(0,k−n)

(m
j)(

n
k−j)

(m+n
k)

Xj,mYk−j,n. (A9)

The ratio between two Bernstein polynomials, Fn(t) and Gn(t), with coefficients X0,n, . . . , Xn,n
and Y0,n, . . . , Yn,n, i.e., Rn(t) = Fn(t)/Gn(t), can be expressed as a rational Bernstein polynomial
as defined in Equation (6), with coefficients and weights

Pi,n =
Xi,n

Yi,n
, wi,n = Yi,n,

respectively.

44

Sensors 2022, 22, 1869

Property A8. The de Casteljau Algorithm Extended to Rational Bernstein Polynomials
The de Casteljau algorithm can be extended to rational Bernstein polynomials (see [54]). Letting

wr
i,n(t) =

r

∑
j=0

wi+j,nBi,r(t), (A10)

we can determine a point on an nth order rational Bernstein polynomial using the recursive equation

Pr
i,n(t) =

(
t f − t
t f − t0

)
wr−1

i,n (t)
wr

i,n(t)
Pr−1

i,n (t)

+

(
t− t0

t f − t0

)
wr−1

i+1,n(t)
wr

i,n(t)
Pr−1

i+1,n(t).

(A11)

Moreover, the recursive relationship can be used to split the rational Bernstein polynomial into
two nth order rational Bernstein polynomials with weights

w0
0,n, w1

0,n, . . . , wn
0,n and wn

0,n, wn−1
1,n , . . . , w0

n,n ,

and coefficients
P0

0,n, P1
0,n, . . . , Pn

0,n and Pn
0,n, Pn−1

1,n , . . . , P0
n,n .

Property A9. Degree Elevation for Rational Bernstein Polynomials
Degree elevation can be extended to rational Bernstein polynomials (see [54]). The nth order

rational Bernstein polynomial given by Equation (6) can be rewritten as a rational Bernstein
polynomial of order n + 1 with weights

wi,n+1 =
i

n + 1
wi−1,n +

(
1− i

n + 1

)
wi,n.

where w0,n+1 = w0,n and wn+1,n+1 = wn,n, and coefficients

Pi,n+1 =

i
n+1 wi,nPi,n +

(
1− i

n+1

)
wi+1,nPi+1,n

i
n+1 wi,n +

(
1− i

n+1

)
wi+1,n

.

References

1. Milford, M.; Anthony, S.; Scheirer, W. Self-driving vehicles: Key technical challenges and progress off the road. IEEE Potentials
2019, 39, 37–45. [CrossRef]

2. Mogili, U.R.; Deepak, B. Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 2018, 133, 502–509.
[CrossRef]

3. Koerhuis, R. Odd.Bot Robot Takes on Herbicide Free Weed Elimination. 2018 . Available online: https://www.futurefarming.
com/Tools-data/Articles/2018/12/OddBot-robot-takes-on-herbicide-free-weed-elimination-375027E/ (accessed on 4 May 2020)

4. Lutz, M.; Meurer, T. Optimal Trajectory Planning and Model Predictive Control of Underactuated Marine Surface Vessels using a
Flatness-Based Approach. arXiv 2021, arXiv:2101.12730.

5. Ackerman, E. Startup Developing Autonomous Delivery Robots That Travel on Sidewalks. 2015. Available online: https://
spectrum.ieee.org/automaton/robotics/industrial-robots/starship-technologies-autonomous-ground-delivery-robots (accessed
on 4 May 2020)

6. Ackerman, E.; Koziol, M. In the Air with Zipline’s Medical Delivery Drones. 2019. Available online: https://spectrum.ieee.org/
robotics/drones/in-the-air-with-ziplines-medical-delivery-drones (accessed on 4 May 2020)

7. Lardinois, F. A First Look at Amazon’s New Delivery Drone. 2019. Available online: https://techcrunch.com/2019/06/05/a-
first-look-at-amazons-new-delivery-drone/ (accessed on 4 May 2020)

8. Johnson, A.; Hautaluoma, G. NASA’s Ingenuity Mars Helicopter Succeeds in Historic First Flight. 2021. Available online:
https://www.nasa.gov/press-release/nasa-s-ingenuity-mars-helicopter-succeeds-in-historic-first-flight (accessed on 18 June 2020).

9. Lumelsky, V.J.; Stepanov, A.A. Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of
arbitrary shape. Algorithmica 1987, 2, 403–430. [CrossRef]

45

Sensors 2022, 22, 1869

10. Kamon, I.; Rivlin, E. Sensory-based motion planning with global proofs. IEEE Trans. Robot. Autom. 1997, 13, 814–822. [CrossRef]
11. McGuire, K.; de Croon, G.; Tuyls, K. A Comparative Study of Bug Algorithms for Robot Navigation. Robot. Auton. Syst. 2019,

121, 103261. [CrossRef]
12. Fiorini, P.; Shiller, Z. Motion planning in dynamic environments using the relative velocity paradigm. In Proceedings of the IEEE

International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 560–565.
13. Abe, Y.; Yoshiki, M. Collision avoidance method for multiple autonomous mobile agents by implicit cooperation. In Proceedings

of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Expanding the Societal Role of Robotics in the
the Next Millennium (Cat. No. 01CH37180), Maui, HI, USA, 29 October–3 November 2001; Volume 3, pp. 1207–1212.

14. Large, F.; Sckhavat, S.; Shiller, Z.; Laugier, C. Using non-linear velocity obstacles to plan motions in a dynamic environment. In
Proceedings of the 7th International Conference on Control, Automation, Robotics and Vision, ICARCV 2002, Singapore, 2–5
December 2002; Volume 2, pp. 734–739.

15. Wilkie, D.; Van Den Berg, J.; Manocha, D. Generalized velocity obstacles. In Proceedings of the 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 5573–5578.

16. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Autonomous Robot Vehicles; Springer: New York,
NY, USA, 1986; pp. 396–404.

17. Chen, Y.B.; Luo, G.C.; Mei, Y.S.; Yu, J.Q.; Su, X.L. UAV path planning using artificial potential field method updated by optimal
control theory. Int. J. Syst. Sci. 2016, 47, 1407–1420. [CrossRef]

18. Orozco-Rosas, U.; Montiel, O.; Sepúlveda, R. Mobile robot path planning using membrane evolutionary artificial potential field.
Appl. Soft Comput. 2019, 77, 236–251. [CrossRef]

19. Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]

20. LaValle, S.M.; Kuffner, J.J., Jr. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
21. Karaman, S.; Frazzoli, E. Incremental sampling-based algorithms for optimal motion planning. arXiv 2010, arXiv:1005.0416.
22. Sleumer, N.; Tschichold-Gürmann, N. Exact Cell Decomposition of Arrangements Used for Path Planning in Robotics; Technical Report;

ETH Zurich, Department of Computer Science: Zurich, Switzerland, 1999; Volume 329.
23. Cai, C.; Ferrari, S. Information-driven sensor path planning by approximate cell decomposition. IEEE Trans. Syst. Man Cybern.

Part B (Cybern.) 2009, 39, 672–689.
24. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
25. Vasconcelos, J.V.R.; Brandão, A.S.; Sarcinelli-Filho, M. Real-Time Path Planning for Strategic Missions. Appl. Sci. 2020, 10, 7773.

[CrossRef]
26. Likhachev, M.; Ferguson, D.I.; Gordon, G.J.; Stentz, A.; Thrun, S. Anytime Dynamic A*: An Anytime, Replanning Algorithm. In

Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), Monterey, CA, USA, 5–10 June
2005; Volume 5, pp. 262–271.

27. Karaman, S.; Walter, M.R.; Perez, A.; Frazzoli, E.; Teller, S. Anytime motion planning using the RRT. In Proceedings of the 2011
IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1478–1483.

28. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE
International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525.

29. Schulman, J.; Ho, J.; Lee, A.X.; Awwal, I.; Bradlow, H.; Abbeel, P. Finding Locally Optimal, Collision-Free Trajectories with
Sequential Convex Optimization. In Proceedings of the Robotics: Science and Systems, Berlin, Germany, 24–28 June 2013;
Volume 9, pp. 1–10. [CrossRef]

30. Ratliff, N.; Zucker, M.; Bagnell, J.A.; Srinivasa, S. CHOMP: Gradient optimization techniques for efficient motion planning. In
Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 489–494.

31. Zucker, M.; Ratliff, N.; Dragan, A.D.; Pivtoraiko, M.; Klingensmith, M.; Dellin, C.M.; Bagnell, J.A.; Srinivasa, S.S. Chomp:
Covariant hamiltonian optimization for motion planning. Int. J. Robot. Res. 2013, 32, 1164–1193. [CrossRef]

32. Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Pastor, P.; Schaal, S. STOMP: Stochastic trajectory optimization for motion planning.
In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 4569–4574.

33. Tang, S.; Thomas, J.; Kumar, V. Hold or Take Optimal Plan (HOOP): A quadratic programming approach to multi-robot trajectory
generation. Int. J. Robot. Res. 2018, 37, 1062–1084. [CrossRef]

34. Semenas, R.; Bausys, R.; Zavadskas, E.K. A Novel Environment Exploration Strategy by m-generalised q-neutrosophic WASPAS.
Stud. Inform. Control 2021, 30, 19–28. [CrossRef]

35. Farouki, R.; Goodman, T. On the optimal stability of the Bernstein basis. Math. Comput. Am. Math. Soc. 1996, 65, 1553–1566.
[CrossRef]

36. Cichella, V.; Kaminer, I.; Walton, C.; Hovakimyan, N. Optimal Motion Planning for Differentially Flat Systems Using Bernstein
Approximation. IEEE Control Syst. Lett. 2018, 2, 181–186. [CrossRef]

37. Cichella, V.; Kaminer, I.; Walton, C.; Hovakimyan, N.; Pascoal, A. Bernstein approximation of optimal control problems. arXiv
2018, arXiv:1812.06132.

46

Sensors 2022, 22, 1869

38. Cichella, V.; Kaminer, I.; Walton, C.; Hovakimyan, N.; Pascoal, A.M. Optimal Multi-Vehicle Motion Planning using Bernstein
Approximants. IEEE Trans. Autom. Control 2020, 66, 1453–1467. [CrossRef]

39. Kielas-Jensen, C.; Cichella, V. BeBOT: Bernstein polynomial toolkit for trajectory generation. In Proceedings of the 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 3288–3293.

40. Kielas-Jensen, C.; Cichella, V. BeBOT. Available online: https://github.com/caslabuiowa/BeBOT (accessed on 21 May 2020).
41. Bézier, P. Definition numerique des courbes et surface. Automatisme 1966, 11, 625–632.
42. Bézier, P. Définition numérique des courbes et surfaces (ii). Automatisme 1967, 12, 17–21.
43. Forrest, A.R. Interactive interpolation and approximation by Bézier polynomials. Comput. J. 1972, 15, 71–79. [CrossRef]
44. Chang, J.W.; Choi, Y.K.; Kim, M.S.; Wang, W. Computation of the minimum distance between two Bézier curves/surfaces.

Comput. Graph. 2011, 35, 677–684. [CrossRef]
45. Gilbert, E.G.; Johnson, D.W.; Keerthi, S.S. A fast procedure for computing the distance between complex objects in three-

dimensional space. IEEE J. Robot. Autom. 1988, 4, 193–203. [CrossRef]
46. Van Den Bergen, G. Proximity queries and penetration depth computation on 3d game objects. In Proceedings of the Game

Developers Conference, San Jose, CA, USA, 20–24 March 2001; Volume 170.
47. Kielas-Jensen, C.; Cichella, V. Trajectory Generation Using Bernstein Polynomials (Bézier Curves). Available online: https:

//www.youtube.com/watch?v=e0SPt92W578 (accessed on 31 July 2019).
48. Programming Language C Standard; International Organization for Standardization: Geneva, Switzerland, 1999.
49. Patterson, A.; Lakshmanan, A.; Hovakimyan, N. Intent-aware probabilistic trajectory estimation for collision prediction with

uncertainty quantification. In Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, 11–13
December 2019; pp. 3827–3832.

50. Hauser, J.; Saccon, A. A barrier function method for the optimization of trajectory functionals with constraints. In Proceedings of
the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 13–15 December 2006; pp. 864–869.

51. Zhang, X.; Liniger, A.; Borrelli, F. Optimization-based collision avoidance. IEEE Trans. Control. Syst. Technol. 2020, 29, 972–983.
[CrossRef]

52. Lee, B.G.; Park, Y. Distance for Bézier curves and degree reduction. Bull. Aust. Math. Soc. 1997, 56, 507–515. [CrossRef]
53. Prautzsch, H.; Kobbelt, L. Convergence of subdivision and degree elevation. Adv. Comput. Math. 1994, 2, 143–154. [CrossRef]
54. Farin, G. Algorithms for rational Bézier curves. Comput.-Aided Des. 1983, 15, 73–77. [CrossRef]

47

Citation: Sabetghadam, B.; Cunha, R.;

Pascoal, A. A Distributed Algorithm

for Real-Time Multi-Drone

Collision-Free Trajectory Replanning.

Sensors 2022, 22, 1855. https://

doi.org/10.3390/s22051855

Academic Editor: Sašo Blažič

Received: 26 January 2022

Accepted: 24 February 2022

Published: 26 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Distributed Algorithm for Real-Time Multi-Drone
Collision-Free Trajectory Replanning

Bahareh Sabetghadam *, Rita Cunha and António Pascoal

Laboratory of Robotics and Engineering Systems (LARSyS), ISR/IST, University of Lisbon,
1649-004 Lisbon, Portugal; rita@isr.ist.utl.pt (R.C.); antonio@isr.ist.utl.pt (A.P.)
* Correspondence: bsabetghadam@isr.ist.utl.pt

Abstract: In this paper, we present a distributed algorithm to generate collision-free trajectories for a
group of quadrotors flying through a common workspace. In the setup adopted, each vehicle replans
its trajectory, in a receding horizon manner, by solving a small-scale optimization problem that only
involves its own individual variables. We adopt the Voronoi partitioning of space to derive local
constraints that guarantee collision avoidance with all neighbors for a certain time horizon. The
obtained set of collision avoidance constraints explicitly takes into account the vehicle’s orientation
to avoid infeasiblity issues caused by ignoring the quadrotor’s rotational motion. Moreover, the
resulting constraints can be expressed as Bézier curves, and thus can be evaluated efficiently, without
discretization, to ensure that collision avoidance requirements are satisfied at any time instant, even
for an extended planning horizon. The proposed approach is validated through extensive simulations
with up to 100 drones. The results show that the proposed method has a higher success rate at
finding collision-free trajectories for large groups of drones compared to other Voronoi diagram-
based methods.

Keywords: distributed trajectory generation; Voronoi diagram; multi-drone applications; real-time
replanning

1. Introduction

Trajectory generation is a key element for the execution of complex autonomous vehi-
cle missions. It can be defined as the computational problem of finding a valid trajectory
that guides a vehicle from an initial state to a given final state in an environment with static
and/or moving obstacles. In most applications, the main concern, rather than just finding
a feasible trajectory between the initial and final states, is to obtain the optimal trajectory
with respect to a certain objective function. In such a setting, trajectory generation is formu-
lated as an optimization problem with a cost function that quantifies the accomplishment
of mission goals and objectives, and different types of constraints to ensure safety and
feasibility of resulting trajectories.

With rapid advances in communication and computational technology, autonomous
vehicles continue to take part in more complex missions, and even engage in teams of collab-
orating vehicles to take on increasingly demanding tasks. This necessitates incorporating
intervehicle collision avoidance constraints in the optimization problem to guarantee that
generated trajectories for a group of vehicles sharing a common workspace are collision-
free. Therefore, for a large group of vehicles, the optimization problem would involve a
large number of constraints and decision variables, and the computational cost of solving
it centrally can be prohibitively high. To reduce the computational complexity, a multi-
tude of distributed schemes, reviewed below, have been proposed for decomposing the
optimization problem into smaller sub-problems that can be solved locally by each vehicle.
The major challenge is to ensure that local decisions do also satisfy the coupling collision
avoidance constraints. This is mainly addressed by exchanging information among the

Sensors 2022, 22, 1855. https://doi.org/10.3390/s22051855 https://www.mdpi.com/journal/sensors49

Sensors 2022, 22, 1855

vehicles on their current states, future input sequences, etc. Depending on the communica-
tion strategy, the sub-problems might be solved sequentially or concurrently, with possibly
several iterations of optimization and communication to achieve the required performance.

In [1], the collision avoidance constraint, usually expressed in terms of the two-norm
of a relative position vector, is approximated by a set of linear constraints. The sub-problem
for each vehicle is then formulated as a mixed-integer linear programming (MILP) that
includes the vehicle’s individual variables as well as variables of a subset of neighbors. This
enables cooperation among vehicles by allowing a vehicle to make feasible perturbations to
neighboring vehicles’ decisions. The sub-problems are solved sequentially by each vehicle,
and the algorithm iterates over the group of vehicles until convergence, during each cycle
of a model predictive control (MPC) scheme.

Sequential convex programming (SCP)-based methods have also been used for solving
distributed multiple vehicle trajectory generation problems [2,3]. The work in [4] addresses
the infeasiblity of intermediate problems in decoupled-SCP methods, arising from convex
approximation of collision avoidance constraints, i.e., linearizing them, and proposes
incremental SCP (iSCP), which tightens collision constraints incrementally. Compared
to sequential approaches in [5–7], that cast the trajectory of anterior vehicles as dynamic
obstacles for a posterior vehicle, the methods proposed in [1,4] result in less constrained
intermediate problem and faster convergence rate, yet, similar to most MPC-SCP-based
methods, they would require the vehicles to exchange a full representation of their decisions
to neighboring vehicles over a communication network.

The synchronous approach in [8] extends the distributed MPC (dMPC) scheme in [9]
for formation control, based on alternating direction method of multipliers (ADMM), to
problems with intervehicle collision avoidance constraints. These constraints are decoupled
using separating hyperplanes, which enforces each vehicle to stay within one half-space
of a time-varying plane over a certain time horizon. The resulting sub-problems are
solved simultaneously by vehicles, while the normal vector and offset shared between a
vehicle and a neighbor, for characterizing their separating hyperplane, are updated at each
cycle of the dMPC, using the interchanged information about generated trajectories at the
previous cycle.

In the decentralized trajectory planner proposed in [10], vehicles replan their tra-
jectories asynchronously, independent of the planning status of other vehicles. At each
iteration, a vehicle considers trajectories assigned to neighboring vehicles as constraints,
and solves an optimization problem including as decision variables the normal and offset
of planes that separate the outer polyhedral representation of its trajectory and those of
its neighbors. A check–recheck scheme is then performed to ensure that the generated
trajectory does not collide with trajectories other vehicles have committed to during the
optimization time. Therefore, to guarantee deconfliction between vehicles, the planner
requires a vehicle to broadcast its computed trajectory to its neighboring vehicles at the
end of each replanning iteration.

The on-demand approach to local collision avoidance, proposed in [11], imposes con-
straints only at specific time instances when collisions between a vehicle and its neighbors
are predicted. Predicting collisions along a time horizon, however, relies on an accurate
knowledge of the neighbors’ future actions which must be communicated at every sam-
pling time. The dMPC scheme in [12] for distributed trajectory generation is based on
this predict–avoid paradigm and an event-triggered replanning strategy, and has been
shown to result in less conservative trajectories, but at the cost of voiding the collision
avoidance guarantees for all time instances over the horizon. To capture the downwash
effect of quadrotor’s propellers, the collision avoidance constraint in [12] is modified with
a diagonal scaling matrix, which approximates the quadrotor body with a translating
ellipsoid elongated along the vertical axis, yet it ignores the quadrotor’s rotational motion.

Reciprocal velocity obstacle (RVO) and its variants have been widely used in dis-
tributed collision avoidance [13–17]. At each time step, RVO [13] builds the set of all
relative velocities, leading to a collision between a vehicle and its neighbors, and chooses a

50

Sensors 2022, 22, 1855

new constant velocity outside this set, and closest to the desired value, to avoid collisions.
Therefore, RVO requires the position and velocity information to be communicated, or
sensed, between nearby neighbors. Other variants, such as acceleration velocity obstacle
(AVO), which addresses the instantaneous change of velocity in RVO by taking into account
acceleration constraints, need further information such as acceleration to be interchanged.
Reciprocally-rotating velocity obstacle (RRVO) [18] uses rotation information to mitigate
deadlocks caused by symmetries of representing vehicles with translating discs in RVO. It
relies on the assumption that neighbors may rotate equally (or equally opposite), bounded
by a maximum value, to compute an approximation of swept areas for rotating polygon-
shaped vehicles, and uses them for constructing velocity obstacles. A new velocity and
rotation is then selected at each time step to avoid collisions.

Another approach to distributed collision avoidance is to construct the Voronoi di-
agram of the group of vehicles and generate the trajectory for each vehicle so that it is
entirely within the vehicle’s Voronoi cell [19–22]. Since Voronoi cells do not overlap, it can
be guaranteed that the generated trajectories are collision-free. To consider the physical
size of a vehicle, the modified Voronoi cell used in [23,24] retracts boundary hyperplanes of
the general Voronoi cell by a safety radius for disc-shaped vehicles. At each sampling time,
upon receiving the relative position information, trajectories are replanned to conform to
the updated Voronoi diagram. The resulting sub-problems can be solved simultaneously, in
a receding horizon manner, until the vehicles reach their final positions. The Voronoi-based
approaches only require the vehicles to know relative positions to neighboring vehicles,
and therefore are well suited to applications where vehicles only have relative position
sensing and no communication network [25].

In this paper we develop a distributed trajectory generation framework, with low
computation and communication demands, for multiple quadrotors flying in (relatively)
close proximity to each other. We specifically address the shortcomings of approximating
the drone body with a disc (or sphere) for generating feasible collision-free trajectories
for large groups of drones. A sphere model, used in most existing distributed collision
avoidance schemes, may be overly conservative in confined spaces since it invalidates
trajectories whose feasibility depends on the consideration of the flight attitude. Instead,
we model the drone body with an ellipsoid, and employ the Voronoi partitioning of space
to derive local collision avoidance constraints that take into account the drone’s real size
and orientation. The same approach can be integrated into other distributed schemes
that utilize separating hyperplanes for decoupling collision avoidance constraints. Yet
the main reason for adopting Voronoi diagram is that using time-invariant boundary
hyperplanes determined prior to solving a sub-problem, despite being more conservative,
can significantly reduce communication and computational load, allowing for higher
replanning rates. Incorporating the resulting set of constraints into sub-problems, solved
by each vehicle, allows finding collision-free trajectories for guiding a group of drones
through confined spaces by proper adjustment of attitude angles. In addition, the obtained
set of constraints can be expressed as Bézier curves, and hence can be efficiently evaluated
to guarantee that intervehicle collision avoidance requirements are met at any instant of
time even over a long planning horizon.

In the proposed synchronous distributed scheme, each vehicle uses the position
information of its neighbors, updated at each sampling time, and solves a sub-problem
to generate its trajectory inside (a subset of) its Voronoi cell towards the closest point (in
the cell) to its goal position. We present an efficient method to compute this point, which
is needed to appropriately define the terminal constraint and cost in the sub-problem. A
sequence of sub-problems are then solved in a receding-horizon manner until the vehicles
reach their goal positions. The simulation results show that the proposed method has a
higher success rate at finding collision-free trajectories for larger groups of quadrotors
compared to other Voronoi diagram-based methods. In addition, it can effectively reduce
the total flight time required to perform point-to-point maneuvers. Furthermore, the

51

Sensors 2022, 22, 1855

computation time of generating those trajectories satisfies timing constraints imposed by
real-time applications.

The rest of this paper is organized as follows: In Section 2 we formulate the optimiza-
tion sub-problem solved by each vehicle. In Section 2.1 we study the differentially flat
system describing the drone equations of motion, and parameterize trajectories with Bézier
curves. We derive the set of local collision avoidance constraints in Section 2.2, and present
an efficient algorithm for finding the closest point in a Voronoi polytope to a goal position
in Section 2.3. In Section 3 we obtain the continuity conditions between two adjacent Bézier
curve segments, and present a method for evaluating inequalities in Bézier form without
discretization. Finally, we provide simulation results in Section 4.

2. Problem Formulation

The multiple vehicle trajectory generation problem addressed in this paper can be
defined as finding optimal trajectories that act as references to guide a group of vehicles
from their initial positions to some desired final positions. The generated trajectories
should jointly minimize a cost function, corresponding to the accomplishment of mission
goals and objectives, and satisfy a set of local and coupling constraints, so that they are
dynamically-feasible and collision-free. For Nv vehicles, this problem can be formulated as
the following optimal control problem.

min
ui(.)

i∈[Nv]

∑
i∈[Nv]

J(xi(.), ui(.)) (1)

s.t. ẋi(t) = f (xi(t), ui(t)) (Dynamics)

xi(0) = xi,0 (Initial state)

xi(t f) = xi, f (Final state)

c(xi(t), xj(t)) ≤ 0 j ∈ [Nv]\{i} (collision avoidance)

xi(t) ∈ Xi (State Constraints)

ui(t) ∈ Ui (Input constraints)

where [Nv] = {1, . . . , Nv}. The cost to be minimized is the sum of the vehicles’ individual
costs, J, given by the functional,

J[ui(.)] =
∫ t f

0
L(xi, ui)dt (2)

where xi(t) ∈ Rnx and ui(t) ∈ Rnu are the state and the input vectors of the vehicle’s model
described by an ODE, and xi,0 and xi, f are the initial and final values of the state of the i-th
vehicle, respectively. Xi and Ui denote the set of admissible states and inputs for the i-th ve-
hicle derived from limits imposed by vehicle dynamics and the surrounding environment.

In order to reduce the computational complexity of solving (1) for larger Nv with
increased numbers of constraints and variables, one can divide the problem into a set of
small-scale sub-problems. Here, the sub-problems are formulated such that each involves
only a vehicle’s individual costs and constraints, and hence can be solved independently
by the vehicle. The sub-problems must include constraints to ensure that the trajectory
generated locally by a vehicle does satisfy the coupling collision avoidance constraints.

The key idea to ensure intervehicle collision avoidance is to decompose the space into
non-overlapping regions, provided by a Voronoi diagram, and generate the trajectory for
each vehicle such that it is entirely within its partition. The Voronoi diagram is updated
at each sampling time according to the relative positions of vehicles, and a sequence of
sub-problems is solved in a receding horizon manner until the vehicles reach their final
positions. For the i-th vehicle, the problem that has to be solved at the time instant tk can
be formulated as

52

Sensors 2022, 22, 1855

min
xi,k(.),ui,k(.)

J(xi,k(.), ui,k(.)) (3)

s.t. ẋi,k(t) = f (xi,k(t), ui,k(t)) (Dynamics)

xi,k(tk) = x̂i,k (Initial state)

xi,k(t) ∈ Ci,k(x̄k) (collision avoidance)

xi,k(t) ∈ Xi,k (State Constraints)

ui,k(t) ∈ Ui,k (Input constraints)

where xi,k(t) and ui,k(t) are the state and the input profiles of the vehicle over the time
interval [tk, tk + th], with th being the planning horizon, and x̂i,k denotes its state at the time
instant tk. The cost function in the above sub-problem is modified as

J[ui,k(.)] =
∫ tk+th

tk

L(xi,k, ui,k)dt + φ(xi,k(tk + th)) (4)

where the second term is added to penalize the distance, at tk + th, to the point in the
Voronoi partition that is closest to the goal position.

In the optimization problem (3), Ci,k may denote the Voronoi partition assigned to
the i-th vehicle. The Voronoi diagram is updated for each sub-problem according to the
vehicles’ configuration at each time instant tk, i.e., x̄k = {x̂j,k}j∈[Nv]. Since Voronoi partitions
are disjoint and the assigned trajectory to each vehicle for the time horizon th is contained
within its partition, it can be guaranteed that there is no collision between the trajectories
over the time interval [tk, tk + th].

The distributed trajectory generation framework is summarized in Algorithm 1. In
Section 2.2, we study the Voronoi diagram for a group of vehicles and modify Ci,k to
explicitly take into account the orientation while generating collision-free trajectories for
multiple drones.

Algorithm 1 Distributed Trajectory Generation Framework

1: k = 0
2: x̂i,0 ← Initial position of the i-th vehicle
3: repeat
4: Receive position information from neighbors
5: Broadcast own position to neighbors
6: Update Voronoi partition
7: Compute the closest point in the Voronoi partition to

the goal position � Section 2.3
8: Set the cost function (4)
9: Set the constraints � Sections 2.2 and 3.1

10: Solve the optimization sub-problem
11: until x̂i,k = xi, f .

2.1. Quadrotor Model

In this paper, the simplified quadrotor equations of motion are described by

mp̈ = mge3 + f , (5)

where p ∈ R3 is the position and m is the mass of the quadrotor. In addition, g = 9.8 m
s2 is

the gravitational acceleration, and e3 = [0 0 1]T . The first term on the right-hand side of (5)
is gravity in the zI direction, and the second term, f ∈ R3, is the thrust force aligned with
the body’s z-axis.

f = −TIzB (6)

where T ∈ R is the net thrust, IzB = RBzB = Re3 is the body frame z-axis expressed in
{I}, and R ≡ I

BR ∈ SO(3) is the rotation matrix from the body frame {B}, centered at the

53

Sensors 2022, 22, 1855

quadrotor’s center of gravity, to the fixed inertial frame {I}. For simplicity, we drop the
superscript I and consider zB = IzB. Figure 1 is a graphical representation of the quadrotor
and the associated reference frames.

Figure 1. The quadrotor reference frames.

Trajectory Parametrization

The quadrotor dynamics (5) with the four inputs is differentially flat [26], and therefore
the state and the input of the system can be expressed as functions of the flat outputs and a
finite number of its derivatives. The position vector together with the yaw angle can be
selected as flat outputs of the system. Here, p ∈ R3 is parameterized as a Bézier curve,
given by

p(τ) =
n

∑
l=0

p̄l Bl,n(τ), (7)

where p̄l ∈ R3 are the control points, Bl,n are Bernstein basis polynomials of degree n, and
τ ∈ [0, 1] is defined as

τ =
t
t f

(8)

The linear velocity, v = ṗ, and linear acceleration, a = p̈, can be expressed as para-
metric Bézier curves through the first and second derivative of p with respect to time,
yielding

v(τ) =
n−1

∑
l=0

v̄l Bl,n−1(τ)

a(τ) =
n−2

∑
l=0

āl Bl,n−2(τ) (9)

where the control points v̄l and āl are obtained as

v̄l =
n
t f

(
p̄l+1 − p̄l

)
l = 0, . . . , n− 1

āl =
n(n− 1)

t2
f

(
p̄l+2 − 2p̄l+1 + p̄l

)
l = 0, . . . , n− 2 (10)

The thrust T and rotation matrix R can also be expressed as functions of the flat output
and its derivatives. The net thrust T can be written as

T = m‖p̈− ge3‖. (11)

54

Sensors 2022, 22, 1855

Assuming that the rotation matrix R = [xB, yB, zB] is parameterized by the Z-Y-X
Euler angles λ = [φ, θ, ψ]T as

R = Rz(ψ)Ry(θ)Rx(φ), (12)

then the columns of the rotation matrix are extracted from

zB =
ge3 − p̈

‖ge3 − p̈‖ xB =
r× zB

‖r× zB‖ , yB = zB × xB (13)

where the unit vector r is defined as

r = [− sin ψ, cos ψ, 0]T (14)

The above equations declare that the vehicle’s orientation can be fully determined from
the second derivative of the trajectory and the yaw angle. As mentioned before, the yaw
angle ψ is a component of the flat output, and therefore it can be controlled independently
without affecting the trajectory generation. Using the differential flatness property of the
system, trajectories consistent with dynamics can be planned in the space of flat outputs,
where (5) is trivially satisfied and the original input and state constraints are transformed
into constraints on the flat output and its derivatives.

2.2. Collision Avoidance

In this section, we present a Voronoi diagram-based approach to decoupling inter-
vehicle collision avoidance constraints. Although the presence of obstacles, interpreted
as non-decision-making agents, is not explicitly considered here, incorporating vehicle–
obstacle collision avoidance constraints into the problem simply amounts to taking into
account the obstacles’ position when updating the Voronoi partition (step 6 of Algorithm 1).

The widely used approach in the literature to avoiding collisions with obstacles in
the environment is to model the drone body as a sphere with radius rD, and then simply
building the collision-free space, C f ree, by inflating the obstacles with a factor rD. As a result,
collision-free trajectories can be obtained by enforcing the vehicle, which is now treated
as a point in the space, to be inside C f ree [27]. Considering now the collision avoidance
between the i-th and j-th drones, the corresponding constraint can be derived similarly by

‖pi − pj‖ ≥ 2rD (15)

where ‖.‖ denotes the Euclidean distance. Ignoring the real shape and orientation of the
drone, and approximating its body with a sphere, invalidates trajectories that are feasible
upon considering the flight attitude. For this reason, the above approach might be too
conservative for trajectory generation in confined spaces and can even fail to find feasible
collision-free trajectories when multiple drones are involved.

Approximating the drone body with an ellipsoid, whose principal axes are aligned
with the body frame axes, allows considering the drone orientation while inspecting for
collisions against other vehicles. For the i-th drone, the ellipsoid, Ei, centered at the drone
position pi, is given by

Ei ≡ {p ∈ R
3|p = pi + RiΛw, ‖w‖ ≤ 1} (16)

where Λ is a 3× 3 diagonal matrix of the form

Λ =

⎡
⎣rD 0 0

0 rD 0
0 0 hD

⎤
⎦ (17)

with rD and hD being the lengths of the principle semi-major and semi-minor axes, respectively.
(See Figure 2).

55

Sensors 2022, 22, 1855

Figure 2. The quadrotor body can be represented as a sphere with radius rD (right), or an ellipsoid
aligned with the axes of the body frame (left). Approximating the drone body with an ellipsoid
allows considering the quadrotor’s rotational motion.

As proposed in [28], collision avoidance constraints for two ellipsoid-shaped drones
can be derived using separating hyperplanes. Denoting by a ∈ R3 and b ∈ R the normal
vector and offset of a hyperplane, respectively, the separating hyperplane for Ei and Ej,
defined as H ≡ {p|aTp− b = 0}, must satisfy

aTp− b ≤ 0 ∀p ∈ Ei

aTp− b > 0 ∀p ∈ Ej (18)

Since
− ‖ΛRTa‖ ≤ aT RΛw ≤ ‖ΛRTa‖ (19)

The set of inequalities (18) holds if, and only if,

aTpi − b ≥ ‖ΛRT
i a‖

aTpj − b ≤ −‖ΛRT
j a‖ (20)

Satisfying the set of constraints (20) will guarantee that there is no collision between
the two ellipsoids Ei and Ej associated with the i-th and j-th drones, respectively.

For multiple vehicle trajectory generation, collision avoidance constraints, either in
the form of the inequality constraint (15), for spheres, or the set of constraints (20), for
ellipsoids, must be incorporated in the optimization problem for each pair of vehicles. As
the number of vehicles involved in a mission grows, the resulting increase in the number of
constraints would inevitably exacerbate the computational issues of finding collision-free
trajectories in a centralized manner.

Distributed Collision Avoidance

Here, we propose a distributed approach to collision avoidance which takes into
account the shape and orientation of a drone. The presented approach uses Voronoi
partitioning of space and generates the trajectory of each vehicle such that it is entirely
within (a subset of) the vehicle’s Voronoi cell for a time interval th. Since Voronoi cells are
pairwise disjoint, and each vehicle only moves inside its Voronoi cell, intervehicle collision
avoidance is guaranteed for all future time before th.

Each Voronoi cell in an n-dimensional space is a convex polytope bounded by a number
of (n− 1)-dimensional convex polytopes. For a group of vehicles in three-dimensional
space, the general Voronoi cell of the i-th vehicle is defined as

Vi = {p ∈ R
3|pij

T(p− 1
2
(pi + pj)

) ≤ 0, ∀j ∈ [Nv]\{i}} (21)

where pij = pj − pi, and pi and pj are the position of the i-th and j-th vehicles at the current
time instant. Note that Vi is the intersection of half-spaces corresponding to hyperplanes

56

Sensors 2022, 22, 1855

with a = pij and b = 1
2 pT

ij(pi + pj). An arbitrary point in Vi is closer to the i-th vehicle than
any other vehicle [22], i.e.,

‖p− pi‖ ≤ ‖p− pj‖, ∀p ∈ Vi & j
= i (22)

The boundary of the Voronoi cell, ∂Vi, is the union of multiple faces, each of which
include points in the space that are equidistant to the i-th vehicle and a neighboring vehicle.

In order to account for the size of a vehicle, the buffered Voronoi cell (BVC) proposed
in [24] retracts the boundary of the general Voronoi cell by a safety radius, so that if the
vehicle’s center is inside the BVC, its body, approximated by a sphere of radius rD, will be
entirely within its Voronoi cell. The BVC of the i-th vehicle, denoted by V̄i, is defined as

V̄i = {p ∈ R
3| pT

ij(p−
1
2
(pj + pi)

)
+ rD‖pij‖ ≤ 0, ∀j ∈ [Nv]\{i}} (23)

It can be easily shown that BVC is a subset of the general Voronoi cell, i.e., V̄i ⊂ Vi.
In addition, for any two points p′ ∈ V̄i and q′ ∈ V̄j, ‖p′ − q′‖ ≥ 2rD holds. Therefore,
the vehicles are guaranteed to avoid collisions due to the buffer region of rD along ∂Vi.
Figure 3 shows the Voronoi diagram for 10 drones in a collision-free configuration and the
BVC for two adjacent drones.

Figure 3. (a) The Voronoi diagram for six drones in 2D space. The Voronoi boundary edges are
shown with solid black lines, and the buffered Voronoi cells are shaded in dark blue. (b) The Voronoi
diagram for 10 drones in a collision-free configuration in 3D space. The Voronoi boundary ∂V is
shaded in light blue, and the buffered Voronoi cells V̄ for two neighboring drones in the center are
shown in dark blue.

The BVC is defined based on a symmetrical approximation of the vehicle’s body with
a translating disc. In order to reduce the conservatism and avoid infeasibility issues due to
ignoring the real shape and orientation of the vehicle, we approximate the drone with an
ellipsoid (16), and bearing in mind that

RΛ2RT = r2
D I + (h2

D − r2
D)zBzT

B, (24)

57

Sensors 2022, 22, 1855

we propose Ci in problem (3) to be defined as

Ci = {(p, p̈) ∈ R
6|pT

ij
(
p− 1

2
(pj + pi)

)
+ ‖ΛRTpij‖ ≤ 0, ∀j ∈ [Nv]\{i}} (25)

If the trajectory of the i-th drone pi(t) satisfies the above set of local collision avoidance
constraints for all t ∈ [tk, tk + th], then the ellipsoid representing the drone body is within
the Voronoi cell for the entire time horizon; that is, the ellipsoid centered at pi and aligned
with the columns of Ri does not intersect the Voronoi boundary, stated mathematically

‖∂Ei − ∂Vi‖ ≥ 0 (26)

Noting that
hD‖pij‖ ≤ ‖ΛRTpij‖ ≤ rD‖pij‖, (27)

it can be induced that
V̄i(rD) ⊂ projXYZCi ⊂ V̄i(hD) ⊂ Vi (28)

where projXYZCi is the projection of Ci onto the three-dimensional subspace spanned by e1,
e2, and e3.

Therefore, incorporating (25) into the optimization problem (3) will ensure that the
generated trajectories are collision-free while alleviating infeasibility problems by taking
orientations into account. Also, since zB is fully obtained from p̈ (13), the above set of local
collision avoidance constraints can be expressed as constraints imposed on Bézier curves.
Later, we present an efficient method for evaluating inequalities in Bézier form.

2.3. Finding the Closest Point to the Goal Position

As explained above, at each time instant the Voronoi cell Vi is updated according to
the relative position of the i-th vehicle to other vehicles. The optimization problem (3) is
then solved to generate a trajectory, for a time horizon th, that guides the vehicle towards
the point in the cell closest to the goal position. This process is repeated until the vehicle
reaches its final position. At each sampling time, the closest point must be found prior
to solving the trajectory generation problem. Therefore, having an efficient scheme for
finding the closest point is critically important to avoid long computational delays between
updating the Voronoi cell and replanning the trajectory.

The point in a convex polytope that is closest to a query point q is either q itself or a
point on the boundary of the polytope. A naive way to find the closest point in a convex
polytope in a three-dimensional space, represented by P = (F,E,V), where F is the set of
faces, E is the set of edges, and V is the set of vertices, is to check the distance between
q ∈ R3 to all faces, edges, and vertices for finding the minimum. However, for complex
polytopes, the computation time is not negligible.

The geometric approach proposed in [24] for a polygon in a two-dimensional space
calculates the barycentric coordinates and an angle from the query point to the two vertices
of each edge to find the closest point. Since this approach iterates over all edges, its
computational complexity can significantly increase as the number of Voronoi neighbors
of a vehicle increases. Here, we make use of the Gilbert–Johnson–Keerthi (GJK) distance
algorithm and devise an approach that can efficiently determine whether the query point
is inside the polytope, i.e., q ∈ P, in which case the closest point is q itself. Otherwise,
the presented algorithm returns the closest feature of P to q, and the closest point can be
obtained by projecting q onto it. The proposed approach is not limited to distance queries
between a point and a polytope, and can also be used when the final constraint in (3) is
relaxed to a small box or sphere around the goal position, and used in conjunction with a
terminal cost term.

The GJK distance algorithm or simply GJK algorithm is an iterative algorithm that
relies on a support mapping function to incrementally build simplices that are closer to the
query point [29]. The algorithm has been extensively used for collision detection between

58

Sensors 2022, 22, 1855

generic convex shapes [30,31]. The original algorithm, however, can be used to compute
the minimum distance, and also the respective pair of (closest) points, between two convex
shapes [32].

In order to obtain the minimum distance between two general convex sets A and B,
GJK approximates the closest point in the Minkowski difference of the two sets, C = A− B
to the origin, denoted by ν(C), with an iterative search. At each iteration, a simplex in C is
constructed such that it is closer to the origin O than the simplex in the previous iteration.
In R3, a simplex can be a point, a line, a triangle, or a tetrahedron with 1, 2, 3, and 4 affinely
independent vertices.

GJK relies on the so-called support mappings to construct a new simplex. A support
mapping function sC(d) of the convex set C maps the vector d to a point in the set, called
the support point, according to

dTsC(d) = max{dTp; p ∈ C} (29)

At each iteration, a support point wk = sC(−νk) is added as a vertex to the cur-
rent simplex, indicated with Vk, where νk is the closest point of Vk to the origin, i.e.,
νk = ν(conv(Vk)). Vk+1 is then updated such that it only contains the smallest set of
vertices that supports νk+1 = ν(conv(Vk ∪wk)), and earlier vertices that do not back νk+1
are discarded [30].

It is proved in [30] that in each iteration the new ν is closer to the origin than the
previous one, and thus the sequence of {νk} converges to the closest point of C to the origin.
In addition, it is shown that

‖νk − ν(C)‖2 ≤ ‖νk‖2 − νT
k wk (30)

which is used to construct the terminating condition of the GJK algorithm for general
convex shapes.

The GJK algorithm, as explained above, depends heavily on the computation of νk to
test the termination condition and to determine the search direction for finding the support
point. In each iteration of the algorithm, νk must be computed with the Johnson Distance
Subalgorithm [29] or more robust alternatives such as the signed volume method in [33].
Here, we exploit unique features of polytopes and propose a faster way to evolve simplices
in the GJK algorithm without computing νk in each iteration.

For polytopes, GJK arrives at the actual ν(C) in a finite number of iterations [30]. The
pseudocode in Algorithm 2 describes the GJK distance algorithm for a polygon P. In order
to find the support point wk, we employ a search direction dk ↑↓ νk, which is updated in
each iteration of the algorithm with S1D, S2D, or S3D subroutines. To update d and V, these
subroutines, summarized in Algorithms 3–5, inspect the Voronoi regions of the simplex
for the one that contains the origin. Figure 4 shows the Voronoi regions of an m-simplex
(m = 1, 2, 3) where the origin possibly lies. Once the Voronoi region containing the origin is
found, d is determined as a vector from the associated vertex, edge, or face (of the simplex)
pointing towards the origin.

The stop criterion for the conditional loop in Algorithm 1 is also constructed using the
search direction, offered as

dT
k (wk − v1) ≤ 0 (31)

where v1 ∈ Vk. Considering that dT
k (νk − v1) = 0, we can conclude that the above criterion,

for deciding whether Vk represents the closest feature of P to the origin, is equivalent to the
stop criterion in [30] for determining whether νk s the closest point, that is

‖νk‖2 − νT
k wk ≤ 0 ←→ dT

k (wk − v1) ≤ 0 (32)

If the inequality (31) holds, then the closest feature of P to the origin can be determined
from Vk. Figure 5 shows all possible outputs of Algorithm 2, which can be a vertex, an edge,
or a face of P or a tetrahedron inside it, and ν(P) for each of the cases.

59

Sensors 2022, 22, 1855

Algorithm 2 Compute the closest point of P to the origin

1: v = “Arbitrary point in vert(P)”
2: d = −v
3: V = {v}
4: repeat
5: w = sP(d);
6: if dT(w− v1) ≤ 0 then
7: V represents the closest feature of P to O
8: return ν(V)
9: end if

10: V ← V ∪w;
11: [V, d]← CallSmD(V);1

12: until |V| = 4;
13: P contains O
14: return ν = O

1 One of the three subroutines S1D, S2D or S3D is called in accordance with |V|.

A support point of a convex polytope can also be computed efficiently. For a polytope
P, the support point is a vertex of P, i.e., sP(d) ∈ vert(P), and we can take w = sP(d)
= svert(P)(d), that is,

dTsP(d) = max{dTv; v ∈ vert(P)} (33)

Therefore, for polytopes, the support point can be uniquely determined by simply
scanning through the list of vertices for the vertex that is the most extreme in the search
direction d. Therefore, the computation time is linear in the number of vertices of P.
For complex polytopes, the vertices adjacency information and the coherence between
consecutive calls to support mapping functions can be exploited to find the support point
with almost constant time complexity [30].

Algorithm 3 Sub-routine for |V| = 2

1: function S1D({v2, v1}) 1

2: if vT
1 v12 ≥ 0 then

3: V ← {v1}
4: d ← −v1
5: else
6: V ← {v2, v1}
7: d ← −v12 × v1 × v12
8: end if
9: end function

1 The input is the ordered list of vertices, with v1 being the last added element to Vk .

60

Sensors 2022, 22, 1855

Figure 4. An m-simplex is linked to 2m+1 − 1 Voronoi regions associated with its vertices, edges,
faces, and volume. The list of 2m Voronoi regions that can possibly contain the origin is given in this
table. It should be noted that v1 is the latest vertex added to V.

Algorithm 4 Sub-routine for |V| = 3

1: function S2D ({v3, v2, v1})
2: nv3v2v1 = v12 × v13
3: if vT

1 (nv3v2v1 × v12) ≥ 0 then

4: [V, d]← S1D({v2, v1})
5: else

6: if v1
T(v13 × nv3v2v1) ≥ 0 then

7: [V, d]← S1D({v3, v1})
8: else

9: if vT
1 nv3v2v1 ≥ 0 then

10: V ← {v3, v2, v1}
11: d ← −nv3v2v1
12: else
13: V ← {v3, v2, v1}
14: d ← nv3v2v1
15: end if
16: end if
17: end if
18: end function

61

Sensors 2022, 22, 1855

Figure 5. Examples of the closest feature of a polyhedron to a query point are shown above. Once
the closest feature is obtained from Algorithm 1, the closest point, i.e., ν(P), can be determined, as
shown above.

Algorithm 5 Sub-routine for |V| = 4

1: function S3D({v4, v3, v2, v1})
2: nv3v2v1 = v12 × v13
3: if (vT

1 nv3v2v1)(v
T
14nv3v2v1) ≥ 0 then

4: [V, d]← S2D({v3, v2, v1})
5: else

6: nv4v3v1 = v13 × v14
7: if (vT

1 nv4v3v1)(v
T
12nv4v3v1)

≥ 0 then

8: [V, d]← S2D({v4, v3, v1})
9: else

10: nv4v2v1 = v12 × v14
11: if (vT

1 nv4v2v1)(v
T
13nv4v2v1) ≥ 0 then

12: [V, d]← S2D({v4, v2, v1})
13: else

14: V ← {v4, v3, v2, v1}
15: end if
16: end if
17: end if
18: end function

3. Bézier Curves

3.1. Continuity Conditions

As explained before, at each sampling time, a trajectory, expressed as a parametric
Bézier curve, is generated for the time horizon [tk, tk + th], and the trajectory for the
entire flight time [0, T] is formed by joining segments of these Bézier curves end-to-end.
The smoothness of the resulting composite trajectory must be guaranteed by enforcing
continuity at the joining points of two consecutive segments up to a certain derivative. In
the following, in order to derive conditions that address parameter continuity between
consecutive curves, we assume that the time horizon is equal to Δtk = tk+1 − tk, which is

62

Sensors 2022, 22, 1855

not necessarily the same for all sub-problems. In practice, however, the time horizon is
greater than Δtk, in which case a Bézier curve describing the segment over the time interval
[tk, tk+1] can be obtained by subdividing pk(.) at tk+1 with the de Casteljau’s algorithm. For
simplicity we drop the subscript i ∈ [Nv].

The Bézier curve describing the trajectory over the time interval [tk, tk+1] is defined as

pk(τk) =
nk

∑
l=0

p̄l,kBl,nk
(τk), (34)

Assuming that the global parameter t runs over the interval [tk, tk+1], the local param-
eter τk is related to t by

0 ≤ τk =
t− tk

tk+1 − tk
≤ 1 (35)

The parametric continuity condition, Cr, requires the r-th derivative and all lower
derivatives of two consecutive segments to be equal at the joining point. In other words,

drpk(1)
dtr =

drpk+1(0)
dtr r ∈ {0, . . . , r} (36)

Zero-order parametric continuity, C0, requires the endpoints of two consecutive curves,
pk(.) and pk+1(.), to intersect at one endpoint, that is,

pk(1) = pk+1(0) (37)

Since a Bézier curve is coincident with its control points at the two ends, i.e.,

pk(0) = p̄0,k pk(1) = p̄nk ,k, (38)

the position continuity condition (37) translates into

p̄nk ,k = p̄0,k+1 (39)

The first-order parametric continuity condition, C1, for the k-th and k + 1-th Bézier
curves, can be obtained as

Δtk+1nk(p̄nk ,k − p̄nk−1,k) =

Δtknk+1(p̄1,k+1 − p̄0,k+1) (40)

Finally, the k-th and k + 1-th Bézier curves are C2-continuous if

Δtk+1
Δtk

(p̄nk−1,k − p̄nk−2,k)

+ nk(nk+1 − 1) p̄nk−1,k + nk p̄nk ,k =

Δtk
Δtk+1

(p̄1,k+1 − p̄2,k+1)

+ nk+1(nk − 1) p̄1,k+1 + nk+1 p̄0,k+1 (41)

Higher-order parametric continuity conditions can be obtained likewise.

3.2. Evaluating Inequalities in Bézier Form

Parameterizing the trajectory with a Bézier curve converts the original infinite di-
mensional problem (3) into a semi-infinite optimization problem with a finite number of
decision variables and an infinite number of constraints. The commonly used approach to
obtaining a standard optimization problem is time gridding, which inspects satisfaction
of constraints on a finite number of points only. Although this method is straightforward,

63

Sensors 2022, 22, 1855

it cannot guarantee that constraints are satisfied over the entire time interval. Using fine
discretization can remedy this issue, but, it will increase the number of constraints as well
as the computation time. Since all constraints involved in the trajectory generation problem
addressed above can be expressed as Bézier curves, we can employ the method proposed
in [33] to recast the semi-infinite optimization problem into one that is computationally
tractable. As explained below this method exploits unique features of Bézier curves to
efficiently evaluate constraints while avoiding problems associated with time gridding.

If h(τ) can be expressed as a Bézier curve, then any inequality constraint of the form
h(τ) ≤ 0, τ ∈ [0, 1] can be replaced by a finite set of constraints on its control points. More
specifically, if h(τ) is defined as

h(τ) =
nh

∑
l=0

h̄l Bl,nh
(τ), (42)

then from the convex hull property of Bézier curves we know that

h(τ) ∈ CH(H̄) τ ∈ [0, 1] (43)

where CH(H̄) = {α0h̄0 + · · ·+ αnh h̄nh |α0 + . . . , αnh = 1, αl ≥ 0} is the convex hull defined
by the set of control points [34]. Thus, the inequality constraint h(τ) ≤ 0 holds if

h̄l ≤ 0 f or l = 0, . . . , nh. (44)

This finite set of inequality constraints can ensure that the original inequality constraint
is satisfied over the entire interval [0, 1]. However, Ineqs. (44) might be conservative due to
the existing gap between the control points h̄l and the actual curve h(τ). This problem can
be alleviated by refining the control polygon and finding closer control points to the curve
using recursive subdivision of h(τ) with the de Casteljau’s algorithm. The sequence of
control polygons generated with repeated subdivision converges to the underlying Bézier
curve [35]. Figure 6 shows a threefold subdivision of a cubic Bézier curve. Furthermore,
the de Casteljau’s algortithm allows refining the control polygon locally. Using recursive
subdivsion of h(τ) to reduce the conservatism in the finite set of constraints results in
an increase in the number of constraints; hence, a trade-off has to be made between the
computational effort and the conservatism. Nevertheless, the optimization variables remain
the same [36].

Figure 6. A cubic Bézier curve (top left) is subdivided into two Bézier curves of the same degree (top

right) using the de Casteljau’s algorithm. The control polygon generated by recursive subdivision
converges to the original Bézier curve ref. [28]. Copyright 2021 IEEE. Successive refinement of the
original control polygon after 2 (bottom left) and 3 (bottom right) subdivisions.

64

Sensors 2022, 22, 1855

4. Simulation Results

In this section, the efficacy of the proposed method for generating feasible and collision-
free trajectories in (vehicle-) dense environments are assessed through different simulation
examples. We compare the resulting trajectories to those generated with the well-studied
BVC approach. We specifically test the capability of the two methods to generate trajectories
that ensure all drones involved in a simulation example reach their final positions, and
compare the flight time, obtained with each of them, to complete point-to-point transition
missions. We also present the recorded computation time for executing the proposed
algorithm in this paper to emphasize its suitability for real-time applications.

In the simulations presented below, we assume all drones have the same size, and their
BVC (23) is defined with the safety radius rD = 0.30 m. To specify the set (25), we approxi-
mate the drone body with an oblate spheroid with Λ = diag([0.30 m, 0.30 m, 0.11 m]). In
both methods, trajectories are parameterized with Bézier curves. Upper and lower bounds
on the speed and acceleration are assumed to be ±2.3 m

s and ±7.1 m
s2 respectively. At each

replanning step, the planner finds the closest point in the updated Voronoi cell to the goal
position using the algorithm in Section 2.3. The computed point is then used to define
the terminal cost term. The first term of the cost function in all subproblems is defined as∫ 1

0 ‖p
(4)
i,k (τ)‖2dτ. The time horizon and the replanning step are also considered to be the

same for both methods. The obtained solution at the previous replanning step is used to set
the initial guess for the current sub-problem. We use FORCES Pro [37] to generate solvers
for the resulting sub-problems. The sub-problems, involving the set of control points p̄i,k
as decision variables, can be reformulated to match the supported classes of problem in
FORCES Pro. Here, all computations are executed on a single desktop computer, with
2.60 GHz i7-4510U CPU and 6.00 GB RAM; however, in practice, the resulting independent
sub-problems can be solved in parallel.

As mentioned before in the paper, in Voronoi-based methods, a vehicle only requires
the position information from its neighboring vehicles to generate its trajectory. Therefore,
they are more suitable for implementation when vehicles have limited communication
capability, and have to rely solely on onboard sensing. In reality, the position sensor noise
can impact the planner performance, yet this is more pronounced when estimating other
information, such as velocity, from noise-corrupted measurements is needed. Therefore,
Voronoi-based planners are more robust when there is no communication network. Nev-
ertheless, in the following simulations, we assume that accurate position information is
available with no delay at the replanning time.

In the first example, we consider five drones flying from their initial positions to given
final positions. This example is similar to one in [24] where a random offset is added to
break the symmetry in the drones’ initial and final configurations. Figure 7 (right) shows
collision-free trajectories generated with the distributed scheme described above, with a
replanning rate of 20 Hz. For this particular example, the resulting trajectories match those
generated with BVC with a flight time of 11.6782 s. Figure 7 (left) shows collision-free
trajectories obtained from the centralized solution, which delivers a total flight time of
9.4347 s, yet, while the central solution is obtained in 601 ms, the average computation time
for solving the sub-problems in the decentralized scheme is only 49 ms.

In the next example, we consider 18 drones switching positions in a 3 m × 5 m
× 2 m space, with a maximum speed and acceleration of ±4.7 m

s and ±9.8 m
s2 , respectively.

Figure 8a shows the initial and final configurations, and Figure 8b displays collision-free
trajectories generated with the proposed distributed scheme in the paper implemented at
10 Hz. While both methods could find collision-free trajectories for guiding the team of
drones from their initial positions to their goal positions, the flight time achieved with the
proposed method is markedly shorter than the time obtained with BVC. We also performed
a trial simulation with 34 drones in a similar configuration. Table 1 compares the success
rate and the flight time to complete the transition using BVC and the proposed method.

In the third example, we consider 100 drones flying in an 8 m× 8 m× 3.5 m space.
The initial and final positions for the drones are displayed with dot and square markers

65

Sensors 2022, 22, 1855

in Figure 9. We test both methods in 30 different trials. In each trial, final positions are
randomly assigned to drones. A trial is considered successful if all drones could reach their
final positions within the stipulated time. The proposed method with 23 successful trials
and an average total flight of 1s outperforms the BVC with only 16 completed trials. It
should be noted that using well-devised deadlock prevention strategies or loosening time
constraints can improve the success rate of both methods. Figure 9 shows collision-free
trajectories generated with the proposed method for one of the trials at different time
steps. The average computation time for solving sub-problems in this example was around
115 milliseconds. In addition, compared to the geometric algorithm in [24], the closest point
in a Voronoi cell to the goal position was obtained at least 10 times faster with the proposed
algorithm in Section 2.3. The computation time for finding the closest point, and solving
the optimization problem, depends on the number of neighboring drones (See Table 2
for recorded computation times in simulation examples with 18, 34, and 100 drones). In
most applications, with typical Voronoi diagrams, the number of boundary planes, i.e.,
the number of Voronoi neighbors, is small. Thus, the proposed distributed algorithm is
scalable to arbitrary numbers of vehicles.

Figure 7. Comparing collision-free trajectories generated with the centralized solution (left) and
the proposed decentralized approach (right) for five drones flying from their initial positions to
given final positions. While the central solution yields a shorter flight time, its computation time is
significantly longer than average time required to solve the sub-problems in the distributed method.

Figure 8. (a) Initial (left) and final (right) position configurations for 18 drones. Each drone is assigned
a unique color and a number next to it. (b) Collision−free trajectories for 18 drones switching their
positions in a 3 m× 5 m× 2 m space. The total flight time for the drones to reach their final positions
is 5.1 s using the proposed method, which is shorter than the 6.3 s flight time obtained with the BVC.

66

Sensors 2022, 22, 1855

Figure 9. Collision−free trajectories for 100 drones flying from their initial positions (dots) to
randomly specified final positions (squares) at different replanning steps.

Table 1. Comparing the number of successful trials and the average flight time achieved with the
BVC and the proposed method in the paper.

Number of Drones
BVC Proposed Method

Flight Time Completed Trials Flight Time Completed Trials

18 6.812 s 5/5 5.327 s 5/5

34 8.105 s 7/10 6.625 s 8/10

100 14.573 s 16/30 11.462 s 23/30

Table 2. Recorded computation times for finding the closest point in a Voronoi cell to the goal position
and solving the optimization problem in simulation examples with 18, 34, and 100 drones.

Number of Drones
Computation Time (ms)

Finding the Closest Point Solving the Sub-Problem

18 <0.1 77.562

34 <0.1 98.330

100 0.171 121.633

5. Conclusions

In this paper, we introduce an efficient distributed algorithm for generating collision-
free trajectories for multiple drones, taking into account their orientation. In order to avoid
substantial communication between drones, we adopt Voronoi-based space partitioning
and derive local constraints that guarantee collision avoidance with neighboring vehicles
for an entire time horizon. We leverage Bézier curve properties to ensure that the set of
collision avoidance constraints are satisfied at any time instant of the planning horizon. The
same approach can be employed to obtain local collision avoidance constraints for the cases
where the normal vector and offset of separating planes are time-varying parameters or
decision variables of sub-problems. Yet, adopting Voronoi diagram with fixed planes for an
entire planning horizon, though being conservative, results in simple, small sub-problems
allowing for the trajectories to be replanned at a higher rate. We present different simulation
results to highlight the scalability of the algorithm to large numbers of drones, and also
its capability to generate less conservative trajectories with notably shorter flight times,
compared to other Voronoi-based methods.

67

Sensors 2022, 22, 1855

Our future work includes implementation and experimental validation of the algo-
rithm for teams of drones. As we explain in the paper, at each time sample, upon receiving
(or sensing) the new position information, a vehicle must find the closest point in its Voronoi
cell to the goal position, and solve an optimization problem that uses the current state
of the vehicle as the initial condition, to generate its trajectory for a certain time horizon.
Although the time to compute the closest point is mainly negligible, the computation
time to find the optimal solution can lead to a (significant) delay between updating the
position information and executing the trajectory. Therefore, in practice, the computational
delay must be explicitly considered to avoid performance degradation (or even failure) of
the planner.

Author Contributions: Conceptualization and writing—original draft preparation, B.S.; Supervision
and writing—review and editing, R.C. and A.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was partially funded by Fundação para a Ciência e a Tecnologia and FEDER
funds through the projects UIDB/50009/2020 and LISBOA-01-0145-FEDER-031411. B. Sabetghadam
acknowledges the support of Instituto Superior Técnico through scholarship BL216/2018/IST-ID.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kuwata, Y.; How, J.P. Cooperative distributed robust trajectory optimization using receding horizon MILP. IEEE Trans. Control
Syst. Technol. 2010, 19, 423–431. [CrossRef]

2. Augugliaro, F.; Schoellig, A.P.; D’Andrea, R. Generation of collision-free trajectories for a quadrocopter fleet: A sequential
convex programming approach. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 1917–1922.

3. Morgan, D.; Chung, S.J.; Hadaegh, F.Y. Model predictive control of swarms of spacecraft using sequential convex programming. J.
Guid. Control Dyn. 2014, 37, 1725–1740. [CrossRef]

4. Chen, Y.; Cutler, M.; How, J.P. Decoupled multiagent path planning via incremental sequential convex programming. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015;
pp. 5954–5961.

5. Kuwata, Y.; Richards, A.; Schouwenaars, T.; How, J.P. Distributed robust receding horizon control for multivehicle guidance.
IEEE Trans. Control Syst. Technol. 2007, 15, 627–641. [CrossRef]

6. Chaloulos, G.; Hokayem, P.; Lygeros, J. Distributed hierarchical MPC for conflict resolution in air traffic control. In Proceedings of
the American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010; pp. 3945–3950.

7. Tedesco, F.; Raimondo, D.M.; Casavola, A.; Lygeros, J. Distributed collision avoidance for interacting vehicles: A command
governor approach. IFAC Proc. Vol. 2010, 43, 293–298. [CrossRef]

8. Van Parys, R.; Pipeleers, G. Distributed model predictive formation control with inter-vehicle collision avoidance. In Proceedings
of the 2017 11th Asian Control Conference (ASCC), Gold Coast, QLD, Australia, 17–20 December 2017; pp. 2399–2404.

9. Van Parys, R.; Pipeleers, G. Distributed MPC for multi-vehicle systems moving in formation. Robot. Auton. Syst. 2017, 97, 144–152.
[CrossRef]

10. Tordesillas, J.; How, J.P. MADER: Trajectory planner in multiagent and dynamic environments. IEEE Trans. Robot. 2021, 38,
463–476. [CrossRef]

11. Luis, C.E.; Schoellig, A.P. Trajectory generation for multiagent point-to-point transitions via distributed model predictive control.
IEEE Robot. Autom. Lett. 2019, 4, 375–382. [CrossRef]

12. Luis, C.E.; Vukosavljev, M.; Schoellig, A.P. Online trajectory generation with distributed model predictive control for multi-robot
motion planning. IEEE Robot. Autom. Lett. 2020, 5, 604–611. [CrossRef]

13. Van den Berg, J.; Lin, M.; Manocha, D. Reciprocal velocity obstacles for real-time multi-agent navigation. In Proceedings of the
IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 1928–1935.

14. Van Den Berg, J.; Guy, S.J.; Lin, M.; Manocha, D. Reciprocal n-body collision avoidance. In Robotics Research; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 3–19.

15. van den Berg, J.; Guy, S.J.; Snape, J.; Lin, M.C.; Manocha, D. rvo2 Library: Reciprocal Collision Avoidance for Real-Time
Multi-Agent Simulation. 2011. Available online: https://gamma.cs.unc.edu/RVO2/ (accessed on 24 January 2022).

68

Sensors 2022, 22, 1855

16. Alonso-Mora, J.; Breitenmoser, A.; Beardsley, P.; Siegwart, R. Reciprocal collision avoidance for multiple car-like robots. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 360–366.

17. Snape, J.; Van Den Berg, J.; Guy, S.J.; Manocha, D. The hybrid reciprocal velocity obstacle. IEEE Trans. Robot. 2011, 27, 696–706.
[CrossRef]

18. Giese, A.; Latypov, D.; Amato, N.M. Reciprocally-rotating velocity obstacles. In Proceedings of the 2014 IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3234–3241.

19. Bortoff, S.A. Path planning for UAVs. In Proceedings of the 2000 American Control Conference (ACC), Chicago, IL, USA, 28–30
June 2000; pp. 364–368.

20. Garrido, S.; Moreno, L.; Abderrahim, M.; Martin, F. Path planning for mobile robot navigation using voronoi diagram and fast
marching. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15
October 2006; pp. 2376–2381.

21. Bhattacharya, P.; Gavrilova, M.L. Roadmap-based path planning-using the voronoi diagram for a clearance-based shortest path.
IEEE Robot. Autom. Mag. 2008, 15, 58–66. [CrossRef]

22. Cortes, J.; Martinez, S.; Karatas, T.; Bullo, F. Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 2004, 20,
243–255. [CrossRef]

23. Bandyopadhyay, S.; Chung, S.J.; Hadaegh, F.Y. Probabilistic swarm guidance using optimal transport. In Proceedings of the 2014
IEEE Conference on Control Applications (CCA), Juan Les Antibes, France, 8–10 October 2014; pp. 498–505.

24. Zhou, D.; Wang, Z.; Bandyopadhyay, S.; Schwager, M. Fast, on-line collision avoidance for dynamic vehicles using buffered
voronoi cells. IEEE Robot. Autom. Lett. 2017, 2, 1047–1054. [CrossRef]

25. Senbaslar, B.; Hönig, W.; Ayanian, N. Robust trajectory execution for multi-robot teams using distributed real-time replanning. In
Distributed Autonomous Robotic Systems; Springer: Cham, Switzerland, 2019; pp. 167–181.

26. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the IEEE International
Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525.

27. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006.
28. Sabetghadam, B.; Cunha, R.; Pascoal, A. Trajectory Generation for Drones in Confined Spaces using an Ellipsoid Model of the

Body. IEEE Control Syst. Lett. 2021, 6, 1022–1027. [CrossRef]
29. Gilbert, E.G.; Johnson, D.W.; Keerthi, S.S. A fast procedure for computing the distance between complex objects in three-

dimensional space. IEEE J. Robot. Autom. 1988, 4, 193–203. [CrossRef]
30. Van Den Bergen, G. Collision Detection in Interactive 3D Environments; CRC Press: Boca Raton, FL, USA, 2003.
31. Ericson, C. Real-Time Collision Detection; CRC Press: Boca Raton, FL, USA, 2004.
32. Tereshchenko, V.; Chevokin, S.; Fisunenko, A. Algorithm for finding the domain intersection of a set of polytopes. Procedia

Comput. Sci. 2013, 18, 459–464. [CrossRef]
33. Montanari, M.; Petrinic, N.; Barbieri, E. Improving the GJK algorithm for faster and more reliable distance queries between

convex objects. ACM Trans. Graph. (Tog) 2017, 36, 1–7. [CrossRef]
34. Farouki, R.T. The Bernstein polynomial basis: A centennial retrospective. Comput. Aided Geom. Des. 2012, 29, 379–419. [CrossRef]
35. Cichella, V.; Kaminer, I.; Walton, C.; Hovakimyan, N.; Pascoal, A.M. Optimal Multivehicle Motion Planning Using Bernstein

Approximants. IEEE Trans. Autom. Control 2020, 66, 1453–1467. [CrossRef]
36. Sabetghadam, B.; Cunha, R.; Pascoal, A. Real-time Trajectory Generation for Multiple Drones using Bézier Curves. IFAC-

PapersOnLine 2020, 53, 9276–9281. [CrossRef]
37. Domahidi, A.; Jerez, J. Forces Professional; Embotech AG: Zürich, Switzerland, 2014–2019. Available online: https://embotech.

com/FORCES-Pro (accessed on 22 June 2021).

69

Citation: Andreasson, H.; Larsson, J.;

Lowry, S. A Local Planner for

Accurate Positioning for a Multiple

Steer-and-Drive Unit Vehicle Using

Non-Linear Optimization. Sensors

2022, 22, 2588. https://doi.org/

10.3390/s22072588

Academic Editor: Maysam Abbod

Received: 1 March 2022

Accepted: 24 March 2022

Published: 28 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Local Planner for Accurate Positioning for a Multiple
Steer-and-Drive Unit Vehicle Using Non-Linear Optimization

Henrik Andreasson 1,*, Jonas Larsson 2 and Stephanie Lowry 1

1 Centre for Applied Autonomous Sensor Systems (AASS), Örebro University, 701 82 Örebro, Sweden;
stephanie.lowry@oru.se

2 ABB Corporate Research, 722 26 Västerås, Sweden; jonas.larsson@se.abb.com
* Correspondence: henrik.andreasson@oru.se

Abstract: This paper presents a local planning approach that is targeted for pseudo-omnidirectional
vehicles: that is, vehicles that can drive sideways and rotate on the spot. This local planner—MSDU–is
based on optimal control and formulates a non-linear optimization problem formulation that exploits
the omni-motion capabilities of the vehicle to drive the vehicle to the goal in a smooth and efficient
manner while avoiding obstacles and singularities. MSDU is designed for a real platform for mobile
manipulation where one key function is the capability to drive in narrow and confined areas. The
real-world evaluations show that MSDU planned paths that were smoother and more accurate than a
comparable local path planner Timed Elastic Band (TEB), with a mean (translational, angular) error
for MSDU of (0.0028 m, 0.0010 rad) compared to (0.0033 m, 0.0038 rad) for TEB. MSDU also generated
paths that were consistently shorter than TEB, with a mean (translational, angular) distance traveled
of (0.6026 m, 1.6130 rad) for MSDU compared to (0.7346 m, 3.7598 rad) for TEB.

Keywords: local planning; optimal control; obstacle avoidance

1. Introduction

Omni-motion capability—the ability to drive in all directions, not just forwards—
allows greater maneuverability for mobile robots and similar platforms [1,2]. A platform
with restricted omni-motion capability must make more complex maneuvers to achieve
goal positions [1], which can be difficult to plan [3], time-consuming, and even impossible
in crowded or constrained physical environments [3]. Furthermore, greater mobile maneu-
verability allows a robot to achieve more accurate pose targets [4] which are essential for
many industrial applications.

A fully holonomic platform has maximal omni-motion capability as such a platform
can move freely in any direction [2], and fully holonomic motion can be achieved using
omnidirectional wheels such as the Mecanum (or Swedish) wheel [5]. However, there are
drawbacks to such a wheel configuration: these wheels are mechanically complex and the
wheels are sensitive to non-smooth surfaces and thus require either clean, flat floors or
complex suspension systems that ensure that the wheels are in contact with the ground [6].
For this reason, while fully holonomic systems are common in academic research [7], very
few commercial platforms exist, although an exception is the Omnibot from KUKA [8].

Alternatively to a fully holonomic platform, a platform with a wheel configuration that
uses multiple combined steer and drive wheels is an attractive option for an omni-motion
robotic platform. It is not fully holonomic, but it has many advantages: it is robust to
floor and environment conditions; it has good motion performance, with high acceleration,
deacceleration, and turning capability; and it provides accurate wheel odometry, compared
to the slip experienced by fully holonomic wheels.

However, a challenge with steerable wheels is the increased complexity in vehicle
motion control. This is due to the resulting non-holonomic nature of the vehicle motion

Sensors 2022, 22, 2588. https://doi.org/10.3390/s22072588 https://www.mdpi.com/journal/sensors71

Sensors 2022, 22, 2588

as well as the inverse kinematics equations possessing singularities. Therefore, special-
ized motion-planning algorithms are required to ensure that the robot motion planning
and control optimizes the agility and other advantages of the combined steer and drive
wheels, while ensuring that the planner produces feasible paths for the platform to follow,
and avoids singularities.

Existing local motion-planning algorithms often provide generic paths that do not
fully exploit the pseudo-omnidirectional capabilities of the platform [9] or the kinodynamic
constraints [10]. Furthermore, many local motion-planning algorithms do not inherently
handle obstacles [11], which can be critical when navigating in confined and narrow
environments. Furthermore, local motion planners often try to solve the global planning
problem, which is computationally inefficient or infeasible for long paths [10]. Alternatively,
local motion planners which do not solve the global path planning problem can cause the
platform to get stuck in local minima and fail to reach the goal position [12,13].

The contribution of this paper is a local motion planner that exploits the pseudo-
omnidirectional capabilities of the platform to generate an efficient trajectory, allow precise
positioning, and avoid singular configurations. It combines constraints from both vehicle
dynamics and obstacles observed by the robot’s perception module to ensure that the
outputted trajectories are kinodynamically feasible as well as safe from obstacle collisions.

The local motion planner is designed to integrate with a global motion planner that
provides an initial path estimate based on the robot’s internal map of the environment.
Coupling with a global planner avoids the need to address longer, time-consuming trajec-
tory optimization steps or to use additional reasoning in the framework to select a shorter
path [9], and ensures the platform avoids local minima. This global path estimate provides
waypoints as sub-goals to the local planner. The local planner then computes the best local
path and provides a control signal to the robot’s low-level controller for navigation.

The local planner—denoted Multiple Steer Drive Unit Local Planner, or MSDU—is
evaluated on a real-world robotic platform. It is demonstrated to provide more accurate
positioning than existing local planners, achieving a smaller distance from the desired goal
position in terms of both translation and angular displacement, while also taking a shorter
path (in terms of both translational and angular distance) to the goal.

2. Related Work

This paper focuses on the problem of motion planning and trajectory optimization.
The challenge of motion planning is to produce paths or trajectories for a robot to travel to
a specified goal, where a path is a curvature defined as a continuous or discretized function
and a trajectory also contains velocity information. Trajectory optimization is often difficult
as obstacles and complex robot dynamics have to be considered. The motion planner needs
to consider both kinematic and kinodynamic feasibility. A kinematically feasible output
simply means that the output paths are possible to drive: for example, the paths have
continuous curvature. A kinodynamically feasible output is one where the given velocity
and acceleration bounds on the vehicle are met.

Local motion planners that handle short-term planning with a limited horizon are
used in complex environments where obstacle avoidance is the key. One “classical” local
planner is the Dynamic Window Approach (DWA) [14], which, given a goal and current
sensory readings, searches for feasible velocities that will drive the robot towards the goal.
Another approach that is commonly used in practice is based on the Elastic-Band (EB)
planner [15]. However, these planners provides outputs that are not kinodynamically
smooth and lack a velocity profile [10]. Other approaches based on potential fields have
also been proposed [16].

The elastic band has been extended with an optimization framework TEB [9,17] and
provides a local planner that utilize optimization, which provides a trajectory that is
followed by a separate controller. TEB is designed for differential drive, car-like and
full holonomic vehicles. In [9], a set of possible local trajectories were used blending the

72

Sensors 2022, 22, 2588

difference between global and local planning. TEB-based formulations have also been
utilized for motion planning of manipulators [18].

There is a large variety of optimization-based approaches which, nowadays, are
becoming more and more popular primarily thanks to the increased computational power
available. Often the task of trajectory generation and tracking/control is separated into
two different entities [19,20]. As trajectory optimization is essentially what is solved in the
MPC scheme and for example, similar to the approach suggested here, Schoels et al. [10] is
a mixture of these two as the proposed system both generates trajectories and performs the
tracking. In general, a more complicated footprint in combination with limited dynamics
of a platform makes both the global motion planning search part as well as the trajectory
generation and tracking more difficult, hence the need to separate them.

As the output of a global planner is typically a path, we can also define approaches
that generate trajectories to reach points along the route as “path following” approaches.
A generic description of wheeled platforms and path following is described by Oftadeh
et al. [11] which also contains evaluations of a combined steer and drive platform. One
key difference here is how the controllers are coupled with the error directly between the
current pose and corresponding static path and do not rely on horizon-based optimization,
and the followed path is assumed to be free of obstacles. There are a large variety of
path-following for cars, such as lateral control, which also is formulated for 4WS4WD
(four-wheel-steering–four-wheel-driving) or 4WID (four-wheel-independent-drive) [21,22]
and often focuses on more complex dynamics and stability at higher speeds and not on
obstacle handling. Typically these car-like vehicles have a limitation on the amount of
steering each wheel can undertake [23].

How to formulate obstacle handling efficiently into an optimization framework is of
importance and is related to both how to represent the vehicle’s footprint, but also how
to represent the shape of the obstacles. Circular or ellipsoidal constraints is commonly
used [24] but other techniques using, for example, convex polygons described through
signed distance functions [10,24].

Depending on the kinematic configuration and footprint of the platform there are many
different motion planners, such as RRT [25], probabilistic roadmaps [26] and lattice-based
motion planners [19,27]. There are also many variants of the RRT planner, such as RRT* [28]
which is provably asymptotically optimal, RRT-Blossom [29] which is designed for highly
constrained environments or RRT*-UNF [30] which targets dynamic environments.

As the given platform has a rather simplistic footprint and good maneuverability, we
exploit this to have a fast Dijkstra-based global planner that is fast to compute and therefore
can be continuously re-invoked with an up-to-date representation containing dynamic and
static obstacles.

3. System Design

This section introduces the system that the MSDU Local Planner is designed to in-
tegrate with, including the robotic platform, the available sensors, the existing planning
and navigation capability and the low-level control functionality. The challenges associ-
ated with the pseudo-omnidirectional motion capabilities of the platform are presented
in Section 4, which describes the geometry and kinematics of the combined steer and
drive wheels, and how the velocity and control values can be suitably represented to
provide constraints to the optimization formulation. Section 5 then introduces the MSDU
Local Planner presented in this paper with Section 5.1 describing the formulation of the
optimization problem.

3.1. The Platform

The robotic platform used in this work is presented in Figure 1. It has four steerable
wheels located in each corner and is what is often termed as a “pseudo-omnidirectional”
platform [16].

73

Sensors 2022, 22, 2588

Figure 1. Robotic platform used in the evaluation. It has four combined steer and drive wheels
located at each corner. The onboard computer is an Intel NUC i7.

The steerable wheels in the steerable wheel research platform are an in-house design
and are based on the outrunner hub-motors design commonly used in commodified
personal e-mobility vehicles. These motors are superior when it comes to the torque-to-cost
ratio, which was utilized to realize a direct-drive (no gearbox) solution for both steering and
driving motion. High-quality motion performance is obtained using high-accuracy position
sensors and state-of-the-art motor control. The result is a compact, high-performance,
reliable and very quiet actuation module.

The vehicle control is designed to receive independent linear velocities in the 2D
plane and rotation (vx, vy, ω) . To ensure high-performance dynamics of the vehicle-motion
reference tracking, a dynamic model is used to compute feedforward torque to joints
in a prediction-closed loop correction scheme. A dedicated Kalman filter is employed
to make the vehicle control tolerant to potentially relatively low frequency and jittery
references coming from the motion planner in the transition to the high frequency real-time
system. In the tests reported in the present paper, the vehicle control system is reading the
communication bus for new references from the planner at 500 Hz.

The wheel odometry computation is designed to take advantage of the redundancy
of this specific configuration of four steerable wheels such that it selects wheels to be
included to compute the measured 2D pose based on the motion. For example, any wheel
that is close to ICR is omitted from the odometry calculation. This results in an accurate
and robust measured vehicle-speed estimation, which is communicated to the navigation
system at 500 Hz.

3.2. Steerable Wheels

The wheel configuration of multiple combined steer and drive wheels units was
selected as it can provide omni-motion capability, while also having other benefits relative
to other comparable systems:

• Payload capability. A steerable wheel is straightforward to scale in payload.
• Stability and stiffness. A steerable wheel allows stiff or no suspension, enabling a

minimum footprint for a given mobile manipulation application stiffness requirement.
• Wheel odometry. Steerable wheels enable accurate wheel odometry due to their lim-

ited slippage. For robots with more than two steerable wheels the system also has

74

Sensors 2022, 22, 2588

inherent redundancy that enables diagnostics of vehicle motion estimation based on
wheel motions.

• Robustness. Steerable wheels are relatively robust to floor and environment conditions,
and vehicle motion control is maintained even if some wheels lose floor contact,
as long as at least two wheels remain in contact with grip. The size and material of
the wheel can be chosen to suit the application; for example, a larger- or smaller-sized
wheel can be used, and the system can employ soft material for the tire to increase the
contact area if pressure in the floor contact needs to be limited.

• Motion performance. Steerable wheels are capable of high acceleration, deceleration,
and turning due to good ground grip and low steering inertia. Steerable wheels have
high scalability of speed capacity, and low vehicle-direction isotropic friction losses
or slippage.

• Flexible wheel configuration. Steerable wheels can be placed arbitrarily in the chassis for
design flexibility, and the number of wheels can be arbitrarily chosen. This flexibility
in the wheel configuration can be useful to allow for modular robot payload and
motion performance capacity.

Note that having more than two combined steer and drive wheels will provide redun-
dancy to the system that can be beneficial for better traction in general and better handling
of non-flat surfaces.

3.3. Perception

The platform is equipped with a SICK TiM571 2D LiDAR, which is used for localization,
navigation, and planning, as well as for obstacle detection. It is also used for building the
map (see Figure 8) used by the robot to perform localization, navigation, and planning.
The sensor characteristics taken from the data sheet are a systematic errors of ±60 mm and
statistical errors of ±20 mm at ranges up to max range of 25 m with 90% remission and for
10% remission up to 6 m range the statistical error is ±10 mm; however, all numbers are
typical and dependent on ambient conditions.

3.4. Localization, Navigation, and Planning System

The platform is equipped with all systems required for navigation; localization, global
planning and the proposed MSDU local planning (where MSDU stands for Multiple Steer-
And-Drive Unit) that provides the control output. All system components exist as ROS [31]
packages and the proposed local planner is compatible with the navigation stack [32].
When provided with a map of its environment, the robot can localize within its map, using
its range sensor and odometry readings. As a localization module we utilize the AMCL
package with only minor parametric changes; the motion model is set to “omni-corrected”.
The robot also has a global planner that can provide a path based on the robot’s map of
the environment and also incorporated LiDAR readings. The global planner we use is the
planner provided in the navigation stack with default parameters. The output is a path
containing a set of poses and does not contain any velocity information.

The platform footprint is encoded as two circles. One circle has an inscribed radius,
which gives the smallest opening you could drive the robot through with a specific angle,
and the second circle has a circumscribed radius which is the smallest opening you could
drive the robot through given any angle. What this shows us is that the global planner
does not fully factor in the shape of the platform and it is up to the local planner to handle
narrow passages where the opening size is between the inscribed and circumscribed radii,
as can be seen in Figure 16.

Furthermore, the global planner does not consider the full kinematics of the robot and
the generated global path is non-smooth. However, the global planner does consider the
surrounding using LiDAR data (through the local costmap) and the given map (global
costmap) to rapidly compute paths that keeps a distance from obstacles and that find plans
that are suitable from a global perspective.

75

Sensors 2022, 22, 2588

The local planner presented in this paper is designed to integrate with the global
planner and use the provided path to generate waypoints as input to the local planner,
which then formulates a control output for the low-level wheel controller. Unlike the global
planner, the local planner factors in a large number of constraints, including the kinematic
constraints of the robot and a footprint that can handle different orientation (to ensure safe
navigation through confined spaces). Furthermore, the local planner integrates real-time
information from the LiDAR sensor to guarantee that the generated control actions provide
motions that are collision free.

Figure 2 presents an overview of the different components of the system and how they
interact. As can be seen, the local planner integrates information from many components,
including the global planner and the sensor data from the LiDAR, to calculate and output a
control signal to the robot.

lidar data

local costmap

localization

odometry map goal

local planner

control output

global costmap

global planner

Figure 2. Overview of the different components of the localization, navigation and planning system
and their interactions.

4. Geometry and Kinematics of the Combined Steer and Drive Wheels

This section provides an overview of the geometry and kinematics of the combined
steer and drive wheels present on the robotic platform used in this paper. It outlines the
physical limitations on the linear and angular velocities of the wheels, which will be used
to provide the constraints for the optimization formulation in Section 5 below. Please note
that we do not consider nor model any wheel slippage.

4.1. Definitions

Let the input control signal to the platform be denoted up = (v, ω) where v = (vx, vy)
is the linear velocity (a 2D vector) and ω is the rotational velocity (a scalar). Using a 2D
world reference frame {A}, let θ denote the orientation of the platform and x, y its 2D
position (see Figure 3a). Then we have the following equations for the velocity of the
platform in the world frame:

ẋ{A} = v{A}
x

ẏ{A} = v{A}
y

θ̇{A} = ω

(1)

76

Sensors 2022, 22, 2588

y

θ

x

(x,y)

(a)

y

x
{A}

x

y

{A}
{B}

{B}

(b)

Figure 3. Platform pose and coordinate frames used. (a) The platform pose is denoted by position
(x, y) and orientation θ in a world frame; (b) the relationship between the world coordinate frame
{A} and the platform coordinate frame {B}.

We also have the platform frame {B}, which has its origin at the center of the platform.
The {B} frame is defined so that the x direction will point “forward” (see Figure 3b). If the
velocity is defined in the platform frame {B}, the resulting equations become:

ẋ{A} = v{B}
x cos(θ)− v{B}

y sin(θ)

ẏ{A} = v{B}
x sin(θ) + v{B}

y cos(θ)

θ̇{A} = ω

(2)

4.2. Wheel Configuration

On the platform there are four combined steer and drive wheels (W1...4). We denote
for each wheel Wi the velocity vi and the steering angle ϕi. The position of the wheel
p
{B}
i = (pi

x, pi
y) is given in the platform frame. The velocity vector vi is used to represent

the combination of ϕi and vi (see Figure 4).

y

x
{B}

{B}

ϕ
1

1
p

1
v

Figure 4. Wheel parameters: p1 indicates the position, v1 the velocity vector, vi = ‖vi‖ the velocity
(scalar) and ϕ1 is the steering (scalar).

4.3. The Effect of the Control Input on the Wheels

Given a control value u = (v, ω) to the platform, it is necessary is to compute the
corresponding steering angle ϕi and drive wheel velocity vi of each wheel.

We therefore seek a function f with the following property:

(ϕi, vi) = f (p{B}
i , v{B}, ω). (3)

In this formulation, v (and p) are expressed in the platform frame {B}.
Intuitively, function f consists of two different components. (1) fv which handles linear

motion and (2) fω which takes care of rotational motion. The function is a combination of
the two: “ f = fv + fω”.

77

Sensors 2022, 22, 2588

4.3.1. Linear Velocity Component fv

Firstly, assume there is only a linear control component v (and ω = 0). This would
correspond to each wheel having the same steering angle (ϕ1 = ϕ2 = ϕ3 = ϕ4), given by
the velocity vector v as:

(ϕi, vi) = f (pi, v, 0)

ϕi = atan2(vy, vx)

vi = ‖v‖
(4)

Note that: (1) the steering angle is independent on the wheels’ position p1...4, and (2)
when there is no velocity v given in this case, the steering angles ϕ1...4 can be arbitrarily set.

4.3.2. Rotational Velocity Component— fω

Now, assume that there is only a rotational velocity control component ω (and v = 0).
Given that ω
= 0 the steering angles can be computed as (see also Figure 5):

(ϕi, vi) = f (pi, 0, ω)

ϕi = atan2(pi
y, pi

x) +
π

2
vi = ω× pi

vi = ‖vi‖

(5)

where for the × computation we have assumed that ω = [0 0 ω]T and pi = [pi
x pi

y 0]T .
Note that vi is a vector (compared to vi which only is a scalar).

1
p

y

x
{B}

{B}

ϕ
1

1
v

Figure 5. Wheel 1 parameters given that v = 0, which enforces the steering wheel angle ϕ1 to make
the steering direction vector v1 to be orthogonal towards the origin of the frame.

Note that if there is a wheel located at the center of the platform frame (pi
x = pi

y = 0),
this wheel angle is not defined and could in principle be set arbitrarily; note that this point
is the Instantaneous Center of Rotation (ICR).

4.3.3. Combining Linear and Rotational Components

From the previous sections we have obtained a set of linear velocity vectors (v and
v1...4), where v originates from the linear velocity component fv and v1...4 from fω.

These velocity vectors are combined through vector summation as follows:

(ϕi, vi) = f (pi, v, ω)

ϕi = ω× pi + v

vi = ‖ω× pi + v‖
(6)

Note that if v = −ω× pi, we have the point of rotation (ICR) at pi. Note at this exact
point the wheel can in principle be set arbitrarily, however, this point is singular as small
changes to the ICR will require rapid changes to the angle ϕ. In short, this singular point
can be avoided by ensuring that the ICR point is sufficiently distant from pi.

78

Sensors 2022, 22, 2588

The ICR point is a function of the control up = (v, ω) = (vx, vy, ω) as:

ICRx = −vy

ω

ICRy =
vx

ω

(7)

Note that if there is no rotational element ω, the ICR will be at infinity.

4.4. Representing the Control Action

Taken from the previous sections we have the following ODE:

ẋ{A} = v{B}
x cos(θ)− v{B}

y sin(θ)

ẏ{A} = v{B}
y sin(θ) + v{B}

y cos(θ)

θ̇{A} = ω

(8)

We need to incorporate the different wheel configurations; that is, to add the different
wheels into the formulation. From the discussion above, there are limitations on the turning
of each wheels as well as singular points. The key question here is how can we constrain
the control to ensure that it is feasible. Equation (6) above is a function that satisfies the
property stated in Equation (3):

(ϕi, vi) = f (pi, v, ω) (9)

That is, Equation (6) computes the orientation and velocity of each wheel. However,
it is necessary to ensure that the velocity vi of each wheel is within bounds and does not
exceed a max value. Similarly there is also a limitation on the turning rate of each wheel ϕ̇i.

The first step is to find a more suitable representation of the control up that is better
aligned with the wheel configuration such as the steering angle of the wheels. Therefore
we utilize the following control variable as proposed in [33]:

up = (v, ϕ, ω) (10)

where v =
√

v2
x + v2

y and ϕ = atan2(vy, vx). In essence we change the base of the linear
velocity to contain the linear velocity direction ϕ, as well as the linear velocity along this
direction as v. As it is easy to convert between the different linear velocity representations
(vx = v sin(ϕ), vy = v cos(ϕ)) they are used interchangeably in this work.

If we now only have a linear velocity (ω = 0) each steering wheel angle is given by
ϕ, that is ϕi = ϕ for each wheels i. Given this representation we can now add limitations
on the change of the control ϕ̇ to better reflect the limitation on the change in steering
angle. One key situation is when approaching the goal: the control action must be limited,
otherwise small changes in linear velocities would require extremely large changes in
wheel steering angles ϕ̇i. Note that this is not the same problems as discussed above
regarding ICR as when ω = 0 the ICR is at the center of the platform and far from the
wheels’ locations pi.

Another benefit is that the change in linear velocity control representation is that
the linear velocity speed is separated from the orientation components. This allows a
more intuitive way of formulating an acceleration profile. Furthermore, a profile on the
change of linear direction—which is highly influential of the steering wheel angles—can be
formulated. Specifically, the following limitations are added on the control variables:

−v̇max ≤ v̇ ≤ v̇max

−ϕ̇max ≤ ϕ̇ ≤ ϕ̇max

−ω̇max ≤ ω̇ ≤ ω̇max
(11)

79

Sensors 2022, 22, 2588

Note that these are not directly connected to any physical limitation of the steer and
drive wheels. For example, the change in steering wheel angle is often fast (in the platform
used in the evaluation the changes are >20 rad/s). However, these limitations are useful
for a smooth drive characteristic.

There is also a maximum velocity limitation on the drive wheel. This limitation is also
explicitly considered and is detailed in the next section.

4.5. Limitations on the Control Action Due to Maximum Velocity of the Drive Wheels

The linear and angular velocity of the wheels are connected. Informally speaking, you
cannot both drive quickly and turn quickly at the same time, because, as with differential
drive platforms, the same wheel velocities vi are utilized to both obtain the linear velocity v

as well as the angular velocity ω of the platform. However, for a differential drive platform
the ICR point is on the line that connects the left and right wheel, while for the platform
used here the ICR can be set arbitrarily. The maximum rotational velocity a wheel can
achieve without having any linear velocity (that is the ICR is given at (0, 0)) is given by:

ωmax
i =

vmax
i
||pi|| (12)

It is clear that the rotational speed is greatly dependent on the distance between the
ICR and the wheels. For a differential driven platform with a linear velocity forward and
turning right it will be the left wheel that will reach the vmax

i boundary first. Hence it is the
wheel with the furthest distance from the ICR that will be the limitation. In principle for
the platform at hand, it would be possible to have a larger linear velocity (vx, vy) = (v, 0)
(along the x-axis) than (vx, vy) = (

√
2,
√

2) as the distance between the ICR and the wheel
furthest away is longer in the latter case.

In the proposed approach this difference is neglected and we consider a combined
linear and rotational max boundary as follows:

−ωmax ≤ ω− v
d
≤ ωmax

−ωmax ≤ ω +
v
d
≤ ωmax

(13)

where d = di = ||pi|| which is assumed to be the same distance for all wheels i. In practice,
this corresponds to always assuming the worst-case scenario where one wheel is always
the furthest possible distance away from the ICR.

5. Defining the Optimization Problem

This section outlines the non-linear optimization problem that forms the basis of the
MSDU Local Planner. The core objective of the MSDU Local Planner is to obtain a local
feasible trajectory that drives the platform towards a goal. This goal is obtained from a
global planner that is periodically updated (in the order of approx. 1 Hz). Hence, the local
plan obtained does not have to consider getting stuck despite its local nature.

We here formulate a non-linear optimization problem that will generate a feasible
trajectory. Due to the computational complexity that comes with non-linear solving, care
has to be taken to formulate an optimization problem that is fast enough to solve. This will
impact how the problem is formulated, as well as restricting the size of certain parame-
ters; for example, the look-ahead distance and the sampling resolution. On the positive
side, the non-linearity approach allows us to be much more free in how we select the
objective function.

5.1. Problem Formulation

Two different approaches are used to steer the trajectory generation by the optimiza-
tion. The first approach is to add factors into an objective function. The second is to post
constraints on the different variables. Constraints are a very powerful and intuitive way to

80

Sensors 2022, 22, 2588

steer the optimization, but can be problematic if constraints are posted that simply cannot
be satisfied. One example would be the goal pose Pgoal that we would like to arrive at.
Typically, it is not guaranteed that given other constraints on, for example, the acceleration,
velocity, and turning speed limits, that we can reach the goal. Instead, we use the distance
between the current pose and future poses to the goal pose in the objective function. If the
goal cannot be reached, that is acceptable as no constraints are violated and at the same
time the minimization of the cost function (that is, the distance to the goal) will drive the
vehicle towards the goal.

The state s consists of the vehicle pose (x, y, θ) and linear velocity, direction and angular
velocity (v, ϕ, ω) whereas the optimization control variables u are (dv, dϕ, dω). Note that the
control action up used to drive the vehicle is actually part of the state, however, we will use
an additional optimization variables of derivatives of the control values to fulfill additional
requirements such as limiting the maximum acceleration permitted; see Equation (10).

The model of the vehicle dynamics (ṡ = f (s, u)) is described as:

ẋ = v cos(ϕ) cos(θ)− v sin(ϕ) sin(θ)

ẏ = v cos(ϕ) sin(θ) + v sin(ϕ) cos(θ)

θ̇ = ω

v̇ = dv

ϕ̇ = dϕ

ω̇ = dω

(14)

Given the dynamics, we formulate a constrained optimal control problem (OCP):

minimizes,u φ(T) +
∫ T

0
l(s(t), u(t))dt

subject to s(0)= ŝ0

ṡ(t)= f (s(t), u(t)), t ∈ [0, T]

h(s(t), u(t))≤ 0, t ∈ [0, T]

d(s(t), o, c)≤ 0, t ∈ [0, T], o ∈ O, c ∈ C

(15)

where T is the horizon length in seconds, φ(T) is the terminal cost, l is the cost for
time t, ŝ0 is the initial state, f is the vehicle dynamics function (Equation (14)), h is the
path constraints containing limits on inputs u, such as max accelerations, as well as pure
state constraints on s, such as bounds on max velocities, and finally d provides a mean to
ensure collision free state poses given a set of obstacle points O as well as a set of circles
C representing the shape of the vehicle. Both the obstacle point o = [ox, oy] and the circle
c = [cx, cy, cR] are given in the vehicle frame where cR is the radius of the circle.

To solve the OCP problem defined above we discretize it into a non-linear program
(NLP) using multiple shooting [34]. The trajectory consists of vehicle states at discrete
timestamps and holds N steps covering T seconds which gives us that each increment
brings us dt = T

N seconds into the future.
The discrete decision variable is ζ = {si, ui}N

i=1, and the non-linear program is writ-
ten as:

minimizeζ φ(ζN) +
N−1

∑
k=0

l(ζk)

subject to s0= ŝ0

sk+1= F(sk, uk, dt), k = 0 . . . N − 1

h(sk, uk)≤ 0, k = 0 . . . N

d(sk, o, c)≤ 0, k = 0 . . . N, o ∈ O, c ∈ C

(16)

81

Sensors 2022, 22, 2588

where the objective function is described in Equation (19), F is the discrete model of
the dynamics (see Equation (20)), the path constraints h are given in Equations (21) and (22)
and finally the constraints to ensure collision-free motions d are described in Equation (24).

As we are primarily interested in the next control action to take, we follow the classical
model-predictive control (MPC) scheme and use the obtained decision variables ζ to extract
the next control action. Depending on inherent lag in the system, it is also possible to take
not just the first control action available but to take a future one.

Because the problem is formulated as a standard non-linear program, it can be straight-
forwardly integrated into existing non-linear solvers. In this work, the formulation was
implemented with CasADi [35] which here utilizes the Ipopt library [36] to solve the posted
non-linear problem.

The objective and constraints are discussed further in the following sections.

5.2. Inputs and Outputs

As described above we continuously receive a global plan (at approximately 1 Hz) from
which we extract the next local “goal” based on our current localization estimate, which
is also provided continuously (at 50 Hz, where the localization system runs slower and
is dependent on the translation and rotational distance, but is augmented with odometry
readings which are obtained at 50 Hz). To simplify the formulation the local goal is
converted into the robot frame {B}, which allows us to assume that we always start at pose
(0, 0, 0). The continuous sensory input (at 10 Hz) is already provided in the robot frame
{B} as the sensory setup is located on the robot itself.

The controller or the local planner is queried at 10 Hz in which the latest received plan,
localization estimate, and sensory data are used.

The output is the next control action to be executed up = (vx, vy, ω).

5.3. Objectives

As discussed above, the force that drives the robot towards the goal g = (gx, gy, gθ)
lies in the cost objective which contains the distance between the goal and each pose in the
N-step long trajectory (x, y, θ)1...N . The goal part to the objective is as:

Jgoal =
N

∑
i=1

wx
i (gx − xi)

2 + wy
i (gy − yi)

2 + wθ
i (gθ − θi)

2 (17)

where we have different weighting factors w1...N
x , w1...N

y and w1...N
θ . These weights can be

selected and tuned as needed, but in the evaluation presented in this paper all position
weights were set to be the same. It is also possible to have a lower cost on the intermediate
weights in the range (1 . . . N − 1) compared to the last terminal state weights wN . The core
idea is that we want to steer the optimization towards the goal as quickly as possible.
Additional constraints to limit the velocities and accelerations were also added as discussed
in Section 5.4 below.

Another cost relates to the magnitude of the control actions utilized. This was found
particularly important to limit the amount of turning when driving the platform close to
the goal. The cost on the decisions variables related to the derivatives of the generated
control output is defined as:

Jcontrol =
N

∑
i=1

wdv
i (dv)2 + wdϕ

i (dϕ)2 + wdω
i (dω)2 (18)

Our objective is the sum of the above and can be rewritten as:

φ(ζN) +
N−1

∑
k=0

l(ζk) =
N

∑
i=1

xT
i Qixi +

N

∑
i=1

uT
i Riui (19)

82

Sensors 2022, 22, 2588

where xi = [gx− xi, gy− yi, gθ − θi]
T and Qi together with Ri are diagonal weighting matrices.

5.4. Constraints

The constraints added relate to limitations of the vehicle, such as maximum drive
velocities, but also define harder acceleration limits to obtain a softer and smoother driving
characteristic. The cost objective defined in Section 5.3 pulls all states towards the goal,
while the constraints limit the velocity profile. The constraints are also used to handle
obstacle avoidance by the planner.

5.4.1. Velocity Profiles and Vehicle Constraints

The constraints utilized are to ensure strict boundaries as max velocities and accelera-
tions are not exceeded. Constraints are also used to ensure that the generated trajectory is
consistent; that is, that the states’ progression by applying the corresponding control action
will bring the current state to the next. In principle it would be sufficient to provide the
initial state and the generated control action to derive the trajectory, but this work utilizes a
multiple-shooting [34] approach where we keep track of the states in each iteration which
is useful as some constraints added contains state information (note that the control output
sent to the vehicle is defined in the state).

Given a control action u = [dv, dϕ, dω] the next state is computed by integrating the
vehicle dynamics f specified in Equation (14), using Runge–Kutta RK4 for the integration.
The equality constraint used to make sure the state integrated with control is consistent
with the next state sk+1 = F(sk, uk, dt) is defined by :

k1 = f (sk, uk)

k2 = f (sk + k1
dt
2

, uk)

k3 = f (sk + k2
dt
2

, uk)

k4 = f (sk + k3dt, uk)

sk+1 = sk + (k1 + 2k2 + 2k3 + k4) · dt

(20)

To limit the control actions as well as the maximum velocities, the following non-
equality constraints are added; also see Equation (11):

−dvmaxdt ≤ dv ≤ dvmaxdt

−dϕmaxdt ≤ dϕ ≤ dϕmaxdt

−dωmaxdt ≤ dω ≤ dωmaxdt

(21)

To ensure that the maximum drive velocity on each wheel is not exceeded, the follow-
ing constraints are utilized:

−ωmax ≤ ω− v/d ≤ ωmax

−ωmax ≤ ω + v/d ≤ ωmax (22)

Here, d is the distance between the centre of the platform and the wheels, which is
assumed to be the same for all wheels.

The above two sets of constraints are used on all control variables in the optimization.

5.4.2. Obstacle Constraints

As one of the objectives is to drive in confined areas it is necessary to have good spatial
resolution of obstacles. Rather than using a grid-based representation that would discretize
the environment and hence lower the available resolution, instead we use range readings
directly to have as high resolution as possible and to receive quick feedback. This requires

83

Sensors 2022, 22, 2588

that we have a good overview of the surrounding of the platform at all times. In essence,
an obstacle o = [ox, oy] is a point in 2D.

Note that the global path planner will, to a great extent, handle obstacle avoidance
while providing the global path. However, the obstacle constraints are necessary to safely
drive at close proximity to obstacles.

From the raw range readings we process the data to only extract the key LiDAR
readings. This is essential as each constraint will add additional complexity to the opti-
mization problem at hand. How the obstacle constraints are formulated is also greatly
affected by the representation used to model the platform. Due to the square shape of
the platform the orientation is essential. For example, to drive through a narrow passage
straight ahead along the x-axis, the orientation θ must be kept close to the following angles
(0, π/2, π, 3π/4) as the required width would be approximately

√
2 larger if we instead

had an orientation of π/4.
As the optimization problem can be altered on the fly, there are two different shapes

that are used. One is used for driving, and thus we want the platform to drive with a
specific forward direction, and the other is used for close-proximity driving when reaching
goals. In the first scenario we define the footprint as two circles, one slightly forward and
one slightly backwards. The front circle and back circle will stick out and make the footprint
form in a clear direction, which is the best way to pass a narrow passage. The front circle
will act as a “plow” that divides obstacles on either side. For close proximity near a goal,
we instead approximate the shape of the robot better using five circles, one center and the
remainder used to cover the corners of the platform.

To approximate the platform using only a circle would simplify the computation of
the constraint to be the following:√(

xk − ox
)2

+
(
yk − oy

)2 ≥ R

∀ o ∈ O
(23)

where R is the radius of the circle. This constraint is added both for the different states
k = 1 . . . N as well as for all obstacles o ∈ O, which gives us in total of N × |O| where |O|
is number of obstacles.

Circles that have have their centres at an offset (c = [cx, cy, cR]) also require that the
platform orientation θ is considered. These obstacle constraints are formulated as:√(

xk + cx cos(θk)− cy sin(θk)− ox

)2
+

(
yk + cx sin(θk) + cy cos(θk)− oy

)2 ≥ cR

∀ o ∈ O, ∀ c ∈ C
(24)

which gives us the total number of constraints added to be N × |O| × |C|, where |O| and
|C| is the number of obstacles and circles respectively.

One difficulty not addressed up to this point is that each obstacle o is directly derived
from sensory data and hence is subject to various sets of noise. If we are operating the robot
close to an object it might happen that in one iteration the obstacles are on the “correct” side
of the boundary, whereas in the next iteration they are not and the optimization problem
is infeasible. To handle this situation we avoid constraints using the first state variable
(k = 0) as this state is an initial condition and it is not possible to alter it in the optimization.
In principle, one could also remove collision checks on further states ahead that then could
handle larger noise values or cause the robot to back off when other dynamic entities such
as people within the collision boundaries. As the trajectory is discretized based on dt,
ignoring any step apart from k = 0 is not recommended especially if dt is large as not
all actions effect the state and its collision boundaries will be incorporated and checked.
If there is no feasible solution the vehicle is stopped; in practice this can happen if you
quickly place an obstacle into the collision constraint zone, then the vehicle will simply stay
still until this obstacle is removed.

84

Sensors 2022, 22, 2588

Another approach to handling the noisy LiDAR data would be to incorporate the
obstacle avoidance as part of the objective function. One option here would then be to
utilize sigmoid functions that give a high cost if the the obstacle is within the collision
boundary and a low one if it is not. One problem with this is that from an optimization
point of view you also want an objective that is smooth (i.e., has a nice derivative) which
from a numerical and practical point of view could be challenging. Due to this, we instead
opted for using constraints on the obstacle avoidance and we found this approach to be
more intuitive.

5.4.3. Constraints to Avoid Singularities

As described in Section 4.3.3 there is a singular configuration when the ICR is very
close to the wheel position which makes small changes in linear and angular velocities (v, ω)
to create large changes in the steering angle of that wheel. To avoid control actions that are
given in these singular regions, one option is to adopt the following set of constraints (one
for each wheel position p1...4):

||ICR− pi|| ≤ R (25)

where R is the boundary radius that the ICR should not enter. However, while this
constraints does seem to address the problem, the time complexity involved in adding
these constraints was simply not worth it compared to using a more simplistic approach.
Instead of adding this limitation into the optimization problem we can simply adjust the
corresponding command sent to the platform (or have the platform do this internally)
by adjusting the command u = (v, ω) to make sure that the above criteria ||ICR− p1...4||
holds by adjusting the control values; see Figure 6.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y
(m

)

x (m)

ICR positions

ICR
ICR boundary wheel 1
ICR boundary wheel 2
ICR boundary wheel 3
ICR boundary wheel 4

Figure 6. An example of the locations of ICR when moving around the platform, where the line
represents the the consecutive changes of ICR locations. One can see the effect of ω (Equation (7))
that a relatively large change in ICR happens when there is low rotational velocity ω. In this example,
we can see that the ICR was close to the boundary of wheel 4 (red) and probably was adjusted to stay
outside the boundary. Note that to smoothly move from pure rotational velocity to linear velocity the
ICR point has to incrementally move from the center passing in between the ICR constraint regions,
therefore it is important to make the ICR constraint region not larger than needed.

85

Sensors 2022, 22, 2588

This can be achieved quickly by first checking if the ICR is within any of the bounds.
If not the command is valid and can be directly sent to the low level controller. If it is within
any of the bounds we have the option of changing either the linear or angular velocity
component or both before sending the command. Here we adopted the approach to adjust
the linear v component and to keep the rotational velocity ω. One benefit of doing this at
a higher level compared to just sending any control commands and letting the low-level
controller handle it is that the the control values that will be used in the forward model will
be more correct. It should also be noted that the optimization problem formulated here is
to be used as a tracking-based controller as the key input is the next local goal pose, rather
than a trajectory to follow, which makes the system robust to large disturbances.

Performing the navigation task though the doorway, as depicted in Figure 16 using
ICR as constraints into the optimization had an average optimization time of 46± 29 ms
compared to 29± 3 ms if ICR were instead corrected after optimization as described in the
previous paragraph. It is worth noting the large variance which indicates that optimization
problem is rather ill-posed but yet possible to solve.

5.4.4. Initial Conditions

As mentioned above, the initial state pose is assumed to be (0, 0, 0) and the local goal
g is given in the robot frame {B} along with the extracted obstacles o1...O from LiDAR
data. One part that has not been addressed is how the remaining state variables, that from
a control perspective is actually used to command the platform at hand, are determined.
Looking at the state Equation (14), we also have the linear velocity v, the linear velocity
direction ϕ and the angular velocity ω. One key question is how to obtain and provide
these values.

As the platform is non-holonomic by nature, since there it takes some time in order to
turn the steering wheels, we cannot directly set any arbitrary ϕ value. Nor can we directly
set an arbitrary rotational velocity ω and expect an instantaneous response. One approach
could be to define that the robot always starts moving in one direction and then use this as
an initial condition, but this would limit the advantages of the platform that you can start
moving in an arbitrary direction or to start by a rotation. Instead of modeling the time taken
for the robot to rotate its wheels which corresponds to the commanded linear and angular
velocity, we at startup directly look at the feedback from the system that contains these
velocities, see Figure 7. Without doing so our internal velocity prediction step will assume
that the velocity is greater than the robot platform can deliver. When the vehicle has started
to drive we then can utilize our acceleration models used within the optimization to predict
more velocities.

As the MPC scheme to a great extent solves very similar problems from one iteration
to the next, we also utilize a “warm-start”, which is to provide the previous solution to
the optimization problem as an initial start configuration. Performing the navigation task
though the doorway as depicted in Figure 16 with warm start had an average optimization
time of 29± 3 ms compared to 34± 5 ms without warm start, a reduction of approximately
10–20%.

86

Sensors 2022, 22, 2588

-2

-1

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000 5000 6000

sp
ee

d
(ra

d/
s)

or
an

gl
e
(ra

d)

iterations

Steering angle and velocity of each wheel for one goal

Angle wheel 1
Angle wheel 2
Angle wheel 3
Angle wheel 4

Velocity wheel 1
Velocity wheel 2
Veloticy wheel 3
Velocity wheel 4

Figure 7. An example output driving from a start pose to a goal pose showing the heading and
velocity of all four steer and drive units. In the beginning, the steering wheels all have an angular
heading of zero. To allow the vehicle to start driving at an arbitrary direction, we utilize the feedback
given by the platform to ensure that all wheels are aligned before the velocity is applied. When the
vehicle has reached its goal the heading angles is set back to zero by the internal controller.

5.5. Perception

As mentioned in previous sections, the amount of constraints per added obstacles
can be rather high and depends on the footprint representation and the horizon length N.
To keep the amount of obstacle points o low we have to do some “clever” filtering of the
range data. An example on filtered data is depicted in Figure 15. At a higher level, we have
a perception system that is based on a previously built occupancy map which is overlaid
with LiDAR data. This occupancy map is used to generate the global path. As we use this
global path to extract the local path we do have some obstacle-avoidance systems in place.
The global path planner has two main parameters that are of importance. First, to simplify
the global motion planning the platform’s footprint is approximated with a circle, to allow
the robot to traverse narrow areas. The circle does not enclose the full actual footprint but
ensures that the vehicle can pass given that its orientation is suitable. The second parameter
is the distance from any object or occupied cell that will cause the planned motion to have
additional cost. Given an empty environment and a wall, this distance will ensure that the
generated plan will always keep this distance away from the wall, unless the goal is given
closer towards the wall. These two parameters ensure that the global plan finds traversable
areas in constrained areas while it makes sure that the the robot keep some distance in
areas where there is space.

From the LiDAR we get a set of range readings that can be transformed into a corre-
sponding 3D coordinate depending on sensor placement and internal parameters. Around
the yaw rotation in the robot frame, a sector is defined where the closest reading that is
considered to be an obstacle is stored (for example, readings that are sampled from the
floor or objects that are higher than the actual height of the robot are ignored). To simplify
processing the order, the sector is sorted based on the corresponding yaw angle. From this
set of sectors we would like to extract the O closest obstacles. From all sectors we choose
the closest reading as the first obstacle. It would be likely that the next closest obstacle is
from a sector close by, but instead of looking solely at the second closest we make sure that
the distance between the selected readings is at least a threshold distance apart. By doing
so we can drastically reduce the amount of obstacles while still providing a set that can
reasonably well represent the spatial layout of the environment. These obstacle readings

87

Sensors 2022, 22, 2588

will be continuously updated at the next iteration so obstacles that were filtered away
might now be visible. Another aspect is that the global plan provided will keep a path with
a distance to obstacles. The obstacles here will be used as constraint in the optimization
framework, meaning that they will only impact the control actions taken if the obstacles
are within the specified collision bounds. This requires that the obstacle is sufficiently close
to the robot.

6. Experiments and Analysis

The MSDU Local Planner was evaluated in a number of real-world experiments on the
robotic platform. The evaluation was performed in a research lab, and initially the robot
was manually driven through the environment to build a global map using the LiDAR
sensors (see Figure 8 for the created map). This map was used for planning and localiza-
tion. The map was not updated during the experiments, which took place over several
weeks, even though minor modifications occurred within the environment, with obstacles
appearing and disappearing. Nonetheless, the system was able to successfully localize
and plan.

Figure 8. The map generated by the robot and used for localization, navigation, and planning.
The robot was manually driven around the environment to create the map before the experiments
took place.

The experiments performed evaluated the efficiency and accuracy of the paths planned
by the MSDU Local Planner, and compared its performance to the TEB Local Planner [9],
a widely used local planner. Further experiments evaluated the performance of MSDU in
specific scenarios relating to particularly challenging environment aspects, such as narrow
gaps and doorways.

The first evaluation compared the paths generated by MSDU against TEB. The goal
positions were randomly generated in the environment, and the robot drove between the
goals positions using MSDUṪhe experiment was repeated using TEB.

The termination criteria used are the distance between the current pose and goal as
well as the maximum allowed velocity. If both these criteria are met the robot is considered
to have reached the goal. In order to give as fair comparison as possible, these parameters
were tweaked so that for both planners all goals were reachable within reasonable time and
without causing excessive turning in the end. It should also be noted that the TEB Local
Planner is not targeting pseudo-omnidirectional platform specifically and the parameters
used were empirically found to produce outputs that the platform at hand worked well
with. This comparison should therefore primarily be seen as a base-line of how an off-the-
shelf planner can perform.

88

Sensors 2022, 22, 2588

The generated paths were evaluated according to the following criteria:

• Accuracy: how closely did the final robot pose match the desired goal pose? To
evaluate the accuracy, the displacement (both translational and angular) between the
final robot pose and the desired goal pose was measured for each goal.

• Efficiency: how far did the robot need to travel to achieve the desired goal pose?
To evaluate this measure, the distance traveled between the robot’s start pose and
final pose was measured for each goal. Both translational and angular distance were
measured. It was decided that distance traveled was a fairer measure of efficiency
for the path planners rather than time taken, as the time taken was too dependent on
external parameters to the planners such as the maximum allowed velocity.

The localization performance was evaluated using the robot’s pre-generated map
and pose.

The experiment was performed across both “short” and “long” paths. Short paths are
particularly challenging for the local motion planners, as they have to take tighter, more
confined routes to the goal position. Here, “short” paths had a direct distance between
starting and ending positions of less than 1 m. A total of 69 short paths were tested, with a
distance normally distributed around a mean of 0.55 m, with a maximum distance of 0.98 m
and a minimum distance of 0.12 m. The longer, less challenging paths had a mean distance
between starting and ending positions of 2.9 m, with a maximum distance of 3.8 m and a
minimum distance of 2.3 m. The experiments are summarized in Table 1.

Table 1. Summary of accuracy and precision experiments.

Accuracy and
Precision

Experiments

Number of
Repetitions

Mean Distance
(m)

Max Distance
(m)

Min Distance
(m)

Long paths 20 2.9 m 2.3 m 3.8 m
Short paths 69 0.55 m 0.12 m 0.98 m

Repeatability experiments were also performed, where the robot traveled repeatedly
between two goals. The first repeatability experiment was over a long path between two
goals 2.4 m apart, while the second repeatability experiment was over a short path between
two goals 0.42 m apart. The robot traveled to each goal position 20 times. The repeatability
experiments are summarized in Table 2.

Table 2. Summary of repeatability experiments.

Repeatability Experiments Number of Repetitions Distance between Goals (m)

Long paths 20 per goal (40 total) 2.4 m
Short paths 20 per goal (40 total) 0.42 m

7. Results

This section presents the experimental evaluation of the MSDU Local Planner. Section 7.1
presents the quantitative experiments evaluating the paths generated by MSDU and TEB.
Sections 7.2 and 7.3 present qualitative descriptions of the performance of MSDU in narrow
and confined spaces. Finally, Section 7.4 provides a brief summary of the main conclusions
from the path evaluation experiments.

7.1. Accuracy and Efficiency of Planned Paths

Figure 9 presents the error (both translational and angular) between the final robot
pose and the desired goal pose for each goal, for both MSDU and TEB for “long” (2.3–3.8 m)
paths. Some key metrics are also summarized in Table 3. It can be seen (Figure 9a) that both
planners achieved a high accuracy in terms of linear position. However, MSDU typically

89

Sensors 2022, 22, 2588

has a smaller translational error than TEB: MSDU has a mean error of 0.0019 m from the
goal while TEB has a mean error of 0.0031 m from the goal position.

(a) (b)

Figure 9. Distance between final robot pose and desired goal position for the MSDU Local Planner
(black) and the TEB Local Planner (white) over long paths. (a) Translational error between the final
robot pose and the desired goal position; (b) angular error between the final robot pose and the
desired goal position.

Similar results can be seen when it comes to angular error (see Figure 9b and Table 3).
MSDU has a mean angular error of 0.0007 rad while TEB has a mean angular error of
0.0025 rad.

Table 3. Summary of performance of MSDU and TEB for long paths.

Translational Error (m) MSDU TEB

Mean (m) 0.0019 0.0031
Standard deviation (m) 0.0012 0.0019

Max (m) 0.0053 0.0078
Min (m) 0.0005 0.0006

Angular error (rad)

Mean (rad) 0.0007 0.0025
Standard deviation (rad) 0.0007 0.0029

Max (rad) 0.0031 0.0114
Min (rad) 4× 10−5 4× 10−5

Figure 10 and Table 4 present the distance traveled by the robot to the final goal
position. It can be seen that TEB consistently takes longer paths to the goal than MSDU.
This is particularly the case for angular distance, where in the worst case TEB travels
20 times the angular distance of MSDU (Goal 18).

90

Sensors 2022, 22, 2588

(a) (b)

Figure 10. Distance traveled between the starting and final robot pose for the MSDU Local Planner
(black) and the TEB Local Planner (white) over long paths. (a) Translational distance traveled
between the starting and final robot pose (b) Angular distance traveled between the starting and final
robot pose.

Table 4. Summary of distances traveled by MSDU and TEB for long paths.

Translational Distance
Traveled (m)

MSDU TEB

Mean (m) 3.0011 3.1877
Standard deviation (m) 0.4437 0.4823

Max (m) 3.8077 4.1208
Min (m) 2.3772 2.4355

Angular distance traveled
(rad)

Mean (rad) 1.1690 3.8198
Standard deviation (rad) 0.7646 1.8938

Max (rad) 2.1898 6.5075
Min (rad) 0.2373 0.7898

The results for the short paths can be seen in Figure 11 and Table 5. The first thing to
note is that the short paths are more challenging for both planners than the long paths: the
mean (translational, angular) error increases from (0.0019 m, 0.0007 rad) on the long paths
to (0.0028 m , 0.0010 rad) on the short paths for MSDU and from (0.0031 m, 0.0025 rad)
on the long paths to (0.0033 m, 0.0038 rad) on the short paths for TEB. However, MSDU
continues to outperform TEB in terms of accuracy.

For the short paths, the distance traveled to each goal pose is displayed in Figure 12 and
Table 6. The translational distance traveled is longer for the TEB in 97% of the experiments
(67 out of 69). In the cases where the translational distance traveled by TEB is shorter,
the MSDU path is no more than 1.07 times as long as the TEB path (0.51 m to 0.48 m), while
when the TEB path is longer; in the worst case it is 1.78 times as long as MSDU (0.98 m to
0.55 m).

As with the long paths, the angular distance traveled by TEB is consistently longer
than that traveled by MSDU: in the worst case TEB takes an angular distance 51 times as
long as that of MSDU (Goal 47).

These results show that the MSDU Local Planner can achieve final robot poses that
are both closer to the desired goal pose while traveling shorter distances both in terms of
translational and angular displacement.

91

Sensors 2022, 22, 2588

(a)

(b)

Figure 11. Distance between final robot pose and desired goal position for the MSDU Local Planner
(black) and the TEB Local Planner (white) over short (<1 m) paths. (a) Translational error between the
final robot pose and the desired goal position; (b) angular error between the final robot pose and the
desired goal position.

Table 5. Summary of performance of MSDU and TEB for short paths (<1 m).

Translational Error (m) MSDU TEB

Mean (m) 0.0028 0.0033
Standard deviation (m) 0.0022 0.0028

Max (m) 0.0099 0.0095
Min (m) 0.0003 0.0002

Angular error (rad)

Mean (rad) 0.0010 0.0038
Standard deviation (rad) 0.0007 0.0031

Max (rad) 0.0033 0.0142
Min (rad) 5× 10−5 1× 10−5

To understand why the distances traveled differ so much between planners, we display
a number of the trajectories taken by the robot. We display the trajectories for the first four
short goals in Figure 13. In each figure, the goal is marked by the black circle, the trajectory
planned by MSDU is displayed in black and the trajectory planned by TEB is displayed
in red. It is important to note that the trajectories, even when generally smooth, appear
to have a slightly “jagged” appearance. This does not represent the actual path of the

92

Sensors 2022, 22, 2588

robot, but is due to the localization process, where the dead-reckoning estimate based on
odometry is updated periodically by the AMCL localization process, thus creating small
apparent “jumps” in the path.

(a)

(b)

Figure 12. Distance traveled between the starting and final robot pose for the MSDU Local Planner
(black) and the TEB Local Planner (white) over short (<1 m) paths. (a) Translational distance traveled
between the starting and final robot pose; (b) angular distance traveled between the starting and final
robot pose.

Table 6. Summary of distances traveled by MSDU and TEB for short paths.

Translational Distance
Traveled (m)

MSDU TEB

Mean (m) 0.6026 0.7346
Standard deviation (m) 0.2114 0.2390

Max (m) 1.0260 1.2085
Min (m) 0.1869 0.2822

Angular distance traveled
(rad)

Mean (rad) 1.6130 3.7598
Standard deviation (rad) 0.8756 1.4064

Max (rad) 2.9687 7.5681
Min (rad) 0.1260 0.7815

93

Sensors 2022, 22, 2588

However, it is still possible to see the deviation between the paths planned by MSDU
and those planned by TEB. TEB often takes a wider, more sweeping path—as one might
see from a more car-like vehicle—and sometimes (as in the case of Goal 2) must do some
complicated corrections close to the goal. In comparison, MSDU takes a more direct path,
and very little correction occurs close to the goal.

Figure 13. Trajectories taken by the robot for each goal. The goal is denoted by the black circle.
The position of the robot using the MSDU Local Planner is displayed in black, and the robot position
by the TEB Local Planner is displayed in red. Note that discrepancy in the curves are due to the
localization update.

The repeatability of the planners is displayed in Figure 14 below, for both the long
trajectory (Figure 14a) and the short trajectory (Figure 14b). The trajectory of the robot
using MSDU is displayed in black, and the trajectory of the robot using TEB is displayed
in red. The qualitative difference between the two planners’ behavior can be clearly seen.
The quantitative comparison is presented in Tables 7 and 8. A key distinction between the
two planners is that in each case the distance MSDU travels to Goal 1 is very similar to the
distance it travels to Goal 2, while TEB takes quite different-length paths between the two
goals for the short paths. This can also be observed in Figure 14b.

94

Sensors 2022, 22, 2588

(a) (b)

Figure 14. Trajectories taken by the robot during the repeatability experiment. The trajectory of
the robot using MSDU is displayed in black, and the robot trajectory using TEB is displayed in red.
(a) Long path (2.4 m between the two goals); (b) short path (0.42 m between the two goals).

Table 7. Repeatability of performance of MSDU and TEB on long paths.

Goal Pose Error
MSDU TEB

(Mean, Std) (Mean, Std)

Goal 1 translational error (m) (0.0021, 0.0014) (0.0057, 0.0027)
Goal 2 translational error (m) (0.0027, 0.0015) (0.0030, 0.0014)

Goal 1 angular error (rad) (5× 10−4, 6× 10−4) (0.0040, 0.0025)
Goal 2 angular error (rad) (6× 10−4, 4× 10−4) (0.0034, 0.0030)

Distance Traveled

Goal 1 translational (m) (2.3971, 0.0039) (2.4384, 0.0072)
Goal 2 translational (m) (2.3960, 0.0047) (2.7068, 0.0213)

Goal 1 angular (rad) (0.4414, 0.0038) (1.9345, 0.0452)
Goal 2 angular (rad) (0.4398, 0.0050) (5.4977, 0.0399)

Table 8. Repeatability of performance of MSDU and TEB on short paths.

Goal Pose Error
MSDU TEB

(Mean, Std) (Mean, Std)

Goal 1 translational error (m) (0.0025, 0.0018) (0.0029, 0.0014)
Goal 2 translational error (m) (0.0033, 0.0018) (0.0028, 0.0017)

Goal 1 angular error (rad) (6× 10−4, 4× 10−4) (0.0035, 0.0022)
Goal 2 angular error (rad) (7× 10−4, 5× 10−4) (0.0051, 0.0042)

Distance Traveled

Goal 1 translational (m) (0.4418, 0.0087) (0.6915, 0.0241)
Goal 2 translational (m) (0.4467, 0.0087) (0.4581, 0.0079)

Goal 1 angular (rad) (1.2668, 0.0016) (5.0739, 0.0161)
Goal 2 angular (rad) (1.2663, 0.0013) (1.3190, 0.0212)

7.2. Local Planning Capabilities

To give an intuitive understanding of what types of problem the local planner can
address, and to also give some illustration regarding how obstacles are extracted and how
collision constraints are formed, we performed the following task. When the robot was
located in a doorway, we performed a 180◦ turn on the spot. As the global planner does
not have a notion of the shape of the robot, it just gave the goal location directly. However,
due to the shape of the vehicle it could not turn on the spot without causing a collision
between the robot and the door frame; instead it had to move out of the doorway and
there perform the rotation before entering the doorway again. This is a problem that the

95

Sensors 2022, 22, 2588

optimization-based local planner addressed out of the box and snapshots of this turn are
depicted in Figure 15.

Figure 15. Set of snapshots showing the capability of the local planner to do a 180◦ turn inside a narrow
doorway where there is not enough space to turn on the spot. Top left is the start configuration and
bottom right is the goal configuration. In each picture, the red arrow depicts the current goal. The green
arrows depict the future horizon states (x, y, θ)1...N. The blue circles depicts the collision circles c1...C.
The yellow squares is the extracted obstacle points o1...O. The red smaller dots are the LiDAR points.

7.3. Passing a Doorway

To illustrate the connection between the global planner and the proposed local planner
when passing through a doorway, a sequence of images are depicted in Figure 16. The local
goal orientation is computed by the directions given by the consecutive points before and
after the current local goal point.

Figure 16. Set of snapshots illustrating the interaction between the global planner (the planned path
is depicted as a black line and the goal is light-blue). The red arrow depicts the current local goal that
the proposed local planner is driving towards, the green arrows depict the future horizon states (also
see the caption in Figure 15. Due to the look ahead, the optimization allows for a smoother driven
path compared to the relatively non-smooth and jerky path provided by the global path planner.
The additional spacing between the obstacle points and the robot when there is enough space can be
seen in the top left figure as the cost utilized by the global planner (illustrated with different gray
levels) contains an additional offset. By setting this offset to at least corresponding to a single collision
radius of the platform, that the platform can be in any orientation makes the obstacle constraints
only to be active in areas where there is simply not enough space. Additionally, this additionally
safety margin is very useful as the robot would otherwise drive very close to obstacles as the obstacle
constraints do not have any other cost associated with them based on distance.

96

Sensors 2022, 22, 2588

7.4. Summary of Results

The experiments demonstrate that MSDU consistently generated paths for the vehicle
that were more accurate than those planned by TEB. Over the long paths in the experi-
mental evaluation, MSDU had a mean translational error of 0.0019 m while TEB had a
mean translational error of 0.0031 m. The mean angular error for MSDU was 0.0007 rad
compared to 0.0025 rad for TEB. Over the (more challenging) short paths, MSDU had a
mean translational error of 0.0028 m while TEB had a mean translational error of 0.0033 m.
The mean angular error for MSDU was 0.0010 rad compared to 0.0038 rad for TEB.

The MSDU paths were also shorter than the TEB paths. Over the long paths, MSDU
had a mean translational distance of 3.0011 m while TEB had a mean translational distance
of 3.1877 m. Over the short paths, MSDU had a mean translational distance of 0.6026 m
while TEB had a mean translational distance of 0.7346 m. In terms of angular distance
traveled, MSDU had a mean angular distance traveled of 1.1690 rad over the long paths and
1.6130 rad over the short paths, while TEB had a mean angular distance traveled of 3.8198
rad over the long paths and 3.7598 rad over the short paths. In the worst-case scenario the
TEB path traversed an angular distance 51 times as long as that of MSDU.

8. Conclusions

This work presents a local planner for mobile autonomous platforms with combined
steer and drive wheels. It uses a non-linear optimization formulation to handle the kine-
matic characteristics of the wheel configuration, the physical limitations of the platform,
and the obstacles in the environment, to generate a trajectory that generates smooth and
efficient paths to a goal, and achieves highly accurate goal pose positions.

The local planner is tightly integrated into a full localization, navigation and motion-
planning pipeline, and utilizes a global planner that is continuously re-executed to give
an up-to-date global feasible path with respect to the latest readings and map updates.
This enables the local planner to look exclusively at local problems and provide an online
control signal based on immediate sensor and motion data, while the global planner
resolves problems that require a broader global knowledge of the environment.

An interesting future research direction is how dynamic obstacles in the environment—
such as people, or other autonomous robots—could be managed by the system. An inter-
esting and non-trivial question to ask is in which layer of the system the management of
dynamic obstacles should be included. For example, if we obtain a prior knowledge of
typical movement in the environment then this would be suitable to use when providing
the global plan. Dynamic obstacles can also be relatively straightforwardly formulated as
constraints connected to the predicted horizon if we have a model of how these obstacles
move in the future.

In the current formulation, the actual steering wheel direction is not explicitly modeled.
It would be of interest to study how to incorporate these in an efficient way. If we can look
at the steering angle and the rate of change directly as constraint many detours taken in
the current approach, such as taking care of the ICR, would indirectly be handled. One
problem is that with a set of four steer-and-drive wheels there is a significant amount of
redundancy that is far from straightforward to put together as an optimization problem
that both gives reasonable outputs and is also sufficiently fast to solve.

Author Contributions: The individual contributions of the authors are as follows. Conceptualization,
H.A. and J.L.; methodology, validation, investigation, draft preparation and writing, H.A., S.L. and
J.L.; software and formal analysis, H.A. and S.L.; supervision, project administration and funding
acquisition, H.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by FORMAS (Swedish Research Council for Sustainable Devel-
opment), grant number 2019-02264.

Institutional Review Board Statement: Non applicable.

Informed Consent Statement: Non applicable.

97

Sensors 2022, 22, 2588

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control; Advanced Textbooks in Control and
Signal Processing; Springer: London, UK, 2010.

2. Siegwart, R.; Nourbakhsh, I.; Scaramuzza, D. Introduction to Autonomous Mobile Robots, 2nd ed.; Intelligent Robotics and
Autonomous Agents series; MIT Press: Cambridge, MA, USA, 2011.

3. Li, Z.; Canny, J. Nonholonomic Motion Planning; The Springer International Series in Engineering and Computer Science; Springer:
New York, NY, USA, 2012.

4. Kavraki, L.E.; LaValle, S.M. Motion Planning. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer International
Publishing: Cham, Switzerland, 2016; pp. 139–162. [CrossRef]

5. Ilon, B.E. Wheels for a Course Stable Selfpropelling Vehicle Movable in Any Desired Direction on the Ground or Some Other
Base. U.S. Patent 3,876,255, 8 April 1975.

6. Campion, G.; Chung, W. Wheeled Robots. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 391–410. [CrossRef]

7. Mišković, D.; Milić, L.; Čilag, A.; Berisavljević, T.; Gottscheber, A.; Raković, M. Implementation of Robots Integration in Scaled
Laboratory Environment for Factory Automation. Appl. Sci. 2022, 12, 1228. [CrossRef]

8. Sprunk, C.; Lau, B.; Pfaffz, P.; Burgard, W. Online generation of kinodynamic trajectories for non-circular omnidirectional
robots. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 72–77. [CrossRef]

9. Rösmann, C.; Hoffmann, F.; Bertram, T. Integrated online trajectory planning and optimization in distinctive topologies. Robot.
Auton. Syst. 2017, 88, 142–153. [CrossRef]

10. Schoels, T.; Palmieri, L.; Arras, K.O.; Diehl, M. An NMPC Approach using Convex Inner Approximations for Online Motion
Planning with Guaranteed Collision Avoidance. In Proceedings of the 2020 IEEE International Conference on Robotics and
Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 3574–3580. [CrossRef]

11. Oftadeh, R.; Ghabcheloo, R.; Mattila, J. Universal Path-Following of Wheeled Mobile Robots: A Closed-Form Bounded Velocity
Solution. Sensors 2021, 21, 7642. [CrossRef] [PubMed]

12. Hu, J.; Cheng, C.; Wang, C.; Zhao, C.; Pan, Q.; Liu, Z. An Improved Artificial Potential Field Method Based on DWA and Path
Optimization. In Proceedings of the 2019 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 17–19
October 2019; pp. 809–814. [CrossRef]

13. Orthey, A.; Frész, B.; Toussaint, M. Motion Planning Explorer: Visualizing Local Minima Using a Local-Minima Tree. IEEE Robot.
Autom. Lett. 2020, 5, 346–353. [CrossRef]

14. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33.
[CrossRef]

15. Quinlan, S.; Khatib, O. Elastic bands: Connecting path planning and control. In Proceedings of the IEEE International Conference
on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; Volume 2, pp. 802–807. [CrossRef]

16. Connette, C.P.; Parlitz, C.; Hagele, M.; Verl, A. Singularity avoidance for over-actuated, pseudo-omnidirectional, wheeled mobile
robots. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009;
pp. 4124–4130. [CrossRef]

17. Rösmann, C.; Feiten, W.; Woesch, T.; Hoffmann, F.; Bertram, T. Trajectory modification considering dynamic constraints of
autonomous robots. In Proceedings of the 7th German Conference on Robotics ROBOTIK 2012, Munich, Germany, 21–22 May
2012; pp. 1–6.

18. Magyar, B.; Tsiogkas, N.; Deray, J.; Pfeiffer, S.; Lane, D. Timed-Elastic Bands for Manipulation Motion Planning. IEEE Robot.
Autom. Lett. 2019, 4, 3513–3520. [CrossRef]

19. Andersson, O.; Ljungqvist, O.; Tiger, M.; Axehill, D.; Heintz, F. Receding-Horizon Lattice-Based Motion Planning with Dynamic
Obstacle Avoidance. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19
December 2018; pp. 4467–4474. [CrossRef]

20. Andreasson, H.; Saarinen, J.; Cirillo, M.; Stoyanov, T.; Lilienthal, A.J. Fast, continuous state path smoothing to improve navigation
accuracy. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30
May 2015; pp. 662–669.

21. Zhang, Z.; Yang, C.; Zhang, W.; Xu, Y.; Peng, Y.; Chi, M. Motion Control of a 4WS4WD Path-Following Vehicle: Further Studies
on Steering and Driving Models. Shock Vib. 2021, 2021, 8830841. [CrossRef]

22. Chen, J.; Shuai, Z.; Zhang, H.; Zhao, W. Path Following Control of Autonomous Four-Wheel-Independent-Drive Electric Vehicles
via Second-Order Sliding Mode and Nonlinear Disturbance Observer Techniques. IEEE Trans. Ind. Electron. 2021, 68, 2460–2469.
[CrossRef]

23. Guo, J.; Luo, Y.; Li, K. An Adaptive Hierarchical Trajectory Following Control Approach of Autonomous Four-Wheel Independent
Drive Electric Vehicles. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2482–2492. [CrossRef]

98

Sensors 2022, 22, 2588

24. Helling, S.; Roduner, C.; Meurer, T. On the Dual Implementation of Collision-Avoidance Constraints in Path-Following MPC for
Underactuated Surface Vessels. In Proceedings of the 2021 American Control Conference (ACC), New Orleans, LA, USA, 26–28
May 2021; pp. 3366–3371. [CrossRef]

25. LaValle, S.M. Rapidly-exploring random trees: A new tool for path planning. The Annual Research Report. 1998. Avaliable
online: http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf (accessed on 1 March 2022).

26. Kavraki, L.; Svestka, P.; Latombe, J.C.; Overmars, M. Probabilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]

27. Pivtoraiko, M.; Kelly, A. Fast and feasible deliberative motion planner for dynamic environments. In Proceedings of the ICRA
Workshop on Safe Navigation in Open and Dynamic Environments: Application to Autonomous Vehicles, Kobe, Japan, 12–17
May 2009.

28. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
29. Kalisiak, M.; van de Panne, M. RRT-blossom: RRT with a local flood-fill behavior. In Proceedings of the 2006 IEEE International

Conference on Robotics and Automation, 2006 (ICRA 2006), Orlando, FL, USA, 15–19 May 2006; pp. 1237–1242. [CrossRef]
30. Adiyatov, O.; Varol, H.A. A novel RRT*-based algorithm for motion planning in Dynamic environments. In Proceedings of the

2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 1416–1421.
[CrossRef]

31. Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An open-source Robot
Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009.

32. Marder-Eppstein, E.; Berger, E.; Foote, T.; Gerkey, B.; Konolige, K. The Office Marathon: Robust Navigation in an Indoor Office
Environment. In Proceedings of the International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010.

33. Connette, C.P.; Pott, A.; Hägele, M.; Verl, A.W. Control of an pseudo-omnidirectional, non-holonomic, mobile robot based on an
ICM representation in spherical coordinates. In Proceedings of the 2008 47th IEEE Conference on Decision and Control, Cancun,
Mexico, 9–11 December 2008; pp. 4976–4983.

34. Bock, H.; Plitt, K. A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems. IFAC Proc. Vol. 1984,
17, 1603–1608. [CrossRef]

35. Andersson, J.A.E.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi—A software framework for nonlinear optimization and
optimal control. Math. Program. Comput. 2019, 11, 1–36. [CrossRef]

36. Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear
programming. Math. Program. 2006, 106, 25–57. [CrossRef]

99

Citation: Srikanth, S.; Babu, M.;

Masnavi, H.; Kumar Singh, A.;

Kruusamäe, K.; Krishna, K.M. Fast

Adaptation of Manipulator

Trajectories to Task Perturbation by

Differentiating through the Optimal

Solution. Sensors 2022, 22, 2995.

https://doi.org/10.3390/s22082995

Academic Editor: Gregor Klancar

Received: 1 March 2022

Accepted: 6 April 2022

Published: 13 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Fast Adaptation of Manipulator Trajectories to Task
Perturbation by Differentiating through the Optimal Solution

Shashank Srikanth 1, Mithun Babu 1, Houman Masnavi 2, Arun Kumar Singh 2,*, Karl Kruusamäe 2

and Krishnan Madhava Krishna 1

1 Robotics Research Center, KCIS, IIIT Hyderabad, Hyderabad 500032, India; s.shashank2401@gmail.com (S.S.);
mithunbabu1141995@gmail.com (M.B.); mkrishna@iiit.ac.in (K.M.K.)

2 Institute of Technology, University of Tartu, 50090 Tartu, Estonia; houman.masnavi@ut.ee (H.M.);
karl.kruusamae@ut.ee (K.K.)

* Correspondence: arun.singh@ut.ee

Abstract: Joint space trajectory optimization under end-effector task constraints leads to a challenging
non-convex problem. Thus, a real-time adaptation of prior computed trajectories to perturbation
in task constraints often becomes intractable. Existing works use the so-called warm-starting of
trajectory optimization to improve computational performance. We present a fundamentally different
approach that relies on deriving analytical gradients of the optimal solution with respect to the task
constraint parameters. This gradient map characterizes the direction in which the prior computed
joint trajectories need to be deformed to comply with the new task constraints. Subsequently, we
develop an iterative line-search algorithm for computing the scale of deformation. Our algorithm
provides near real-time adaptation of joint trajectories for a diverse class of task perturbations, such as
(i) changes in initial and final joint configurations of end-effector orientation-constrained trajectories
and (ii) changes in end-effector goal or way-points under end-effector orientation constraints. We
relate each of these examples to real-world applications ranging from learning from demonstration
to obstacle avoidance. We also show that our algorithm produces trajectories with quality similar
to what one would obtain by solving the trajectory optimization from scratch with warm-start
initialization. Most importantly, however, our algorithm achieves a worst-case speed-up of 160x over
the latter approach.

Keywords: manipulation; task perturbation; optimization; control

1. Introduction

A change in task-specification is often unavoidable in real-world manipulation prob-
lems. For example, consider a scenario where a manipulator is handing over an object
to a human. The robot’s estimate of the goal position can change as it executes its prior
computed trajectories. Consequently, it needs to quickly adapt its joint motions to reach the
new goal position. In this paper, we model motion planning as a parametric optimization
problem wherein the task specifications are encoded in the parameters. In this context,
adaptation to a new task requires re-computing the optimal joint trajectories for the new
set of parameters. This is a computationally challenging process as the underlying cost
functions in typical manipulation tasks are highly non-linear and non-convex [1]. Existing
works leverage the so-called warm-starting technique where prior computed trajectories
are used as initialization for the optimization solvers [2]. However, our extensive experi-
mentation with off-the-shelf optimization solvers such as Scipy-SLSQP [3] show it is not
sufficient for real-time adaptation of joint trajectories to task perturbations.

1.1. Main Idea
The proposed work explores an alternate approach based on differentiating the optimal

solution with respect to the problem parameters, hereafter referred to as the Argmin differenti-

Sensors 2022, 22, 2995. https://doi.org/10.3390/s22082995 https://www.mdpi.com/journal/sensors101

Sensors 2022, 22, 2995

ation [4]. To understand this further, consider the following constrained optimization problem
over variable ξ (e.g., joint angles) and parameter vector p (e.g., end-effector position).

ξ∗(p) = arg min f (ξ, p) (1)

gi(ξ, p) ≤ 0, ∀i = 1, 2, . . . n (2)

hj(ξ, p) = 0, ∀j = 1, 2, . . . m (3)

The optimal solution ξ∗ satisfies the following Karush–Kuhn Tucker (KKT) conditions.

∇ f (ξ∗, p) + ∑
i

λi∇gi(ξ
∗, p) + ∑

j
μj∇hj(ξ

∗, p) = 0 (4a)

gi(ξ
∗, p) ≤ 0, ∀i (4b)

hj(ξ
∗, p) = 0 (4c)

λi ≥ 0, λigi(ξ
∗, p) = 0, ∀i. (4d)

The gradients in (4a) are taken with respect to ξ. The variables λi, μj are called
the Lagrange multipliers. Now, consider a scenario where the optimal solution ξ∗ for
the parameter p needs to be adapted for the perturbed set p = p + Δp. As mentioned
earlier, one possible approach is to resolve the optimization with ξ∗ as the warm-start
initialization. Alternately, for Δp with a small magnitude, an analytical perturbation model
can be constructed. To be precise, we can compute the first-order differential of the r.h.s.
of (4a)–(4d) to obtain analytical gradients in the following form [5–7].

(∇pξ∗,∇pλi,∇pμ∗i) = F(ξ∗, p, λi, μj) (5)

Multiplying the gradients with Δp gives us an analytical expression for the new
solution and Lagrange multipliers corresponding to the perturbed parameter set [7].

1.2. Contribution

Algorithmic Contribution: A critical bottleneck in using the gradient map of the
form (5) to compute perturbed solutions is that the mapping between Δp and λi is highly
discontinuous. In other words, even a small Δp can lead to large changes in the so-called
active-set of the inequality constraints. Thus it becomes necessary to develop additional
active-set prediction mechanisms [7]. In this paper, we bypass this complication by instead
focusing on the parametric optimization with only bound constraints on the variable set.
Argmin differentiation of such problems has a simpler structure, which we leverage to
develop a line-search based algorithm to incrementally adopt joint trajectories to larger
changes in the parameter/tasks. To give some example of “large perturbation”, our
algorithm can adapt the joint trajectories of Franka–Panda arm to a perturbation of up to
30 cm in the goal position. This is almost 30% of the workspace of the Franka arm.

Application Contribution: For the first time, we apply the Argmin differentiation con-
cept to the problem of joint trajectory optimization for the manipulators under end-effector
task constraints. We consider a diverse class of cost functions to handle (i) perturbations in
joint configurations or (ii) end-effector way-points in orientation-constrained end-effector
trajectories. We present an extensive benchmarking of our algorithm’s performance as a
function of the perturbation magnitude. We also show that our algorithm outperforms the
warm-start trajectory optimization approach in computation time by several orders of mag-
nitude while achieving similar quality as that measured by task residuals and smoothness
of the resulting trajectory.

1.3. Related Works

The concept of Argmin differentiation has been around for a few decades, although
often under the name of sensitivity analysis [8,9]. However, of late it has seen a resurgence,
especially in the context of end-to-end learning of control policies [10,11]. Our proposed
work is more closely related to those that use Argmin differentiation for motion planning
or feedback control. In this context, a natural application of Argmin differentiation is

102

Sensors 2022, 22, 2995

in bi-level trajectory optimization where the gradients of the optimal solution from the
lower level are propagated to optimize the cost function at the higher level. This technique
has been applied to both manipulation and navigation problems in existing works [6,12].
Alternately, Argmin differentiation can also be used for the correction of prior-computed
trajectories [7,13].

To the best of our knowledge, we are not aware of any work that uses Argmin differ-
entiation for the adaptation of task-constrained manipulator joint trajectories. The closest
to our approach is [5] that uses it to accelerate the inverse kinematics problem. Along
similar lines, [7] considers a very specific example of perturbation in the end-effector goal
position. In contrast to these two cited works, we consider a much more diverse class of
task constraints. Furthermore, our formulation also has important distinctions with [7] at
the algorithmic level. Authors in [7] use the log-barrier function for including inequality
constraints as penalties in the cost function. In contrast, we note that in the context of the
task-constrained trajectory optimization considered in this paper, the joint angle limits are
the most critical. The velocity and acceleration constraints can always be satisfied through
time-scaling based pre-processing [14]. Thus, by choosing a way-point parametrization for
the joint trajectories, we formulate the underlying optimization with just box constraints
on the joint angles. This, in turn, allows us to treat this constraint through simple projec-
tion (Line 4 in Algorithm 1) without disturbing the structure of the cost function and the
resulting Jacobian and Hessian matrices obtained by Argmin differentiation.

Algorithm 1 Line-Search Based Joint Trajectory Adaptation to Task Perturbation

1: Initialize kξ∗ as the solution for the prior parameter kp, the Hessian k∇2
ξ f (kξ, p), the

gradient ∇ξ,pi f (kξ, p), and kΔp = p− kp
2: while η > 0 do

max η (6a)

f (kξ∗(p + ηΔp), p + Δp) ≤ f (kξ∗, p + Δp) (6b)

3:

k+1ξ∗ = kξ∗ + η∇pξ∗Δkp (7)

4:

k+1ξ∗ = Project(ξlb, ξub) (8)

5: Update k+1p = ForwardRoll(k+1ξ∗)
6: Update k+1Δp = p− k+1p.
7: Update Hessian ∇2

ξ f (k+1ξ, k+1p).

8: Update Jacobian ∇ξ,p f (k+1ξ, k+1p)

9: end while

2. Proposed Approach

2.1. Symbols and Notations

We will use lower case normal font letters to represent scalars, while bold font variants
will represent vectors. Matrices are represented by upper case bold fonts. The subscript
t will be used to denote the time stamp of variables and vectors. The superscript T will
represent the transposing of a matrix.

2.2. Argmin Differentiation for Unconstrained Parametric Optimization
We consider the optimal joint trajectories to be the solution of the following bound-

constrained optimization with parameter p.

ξ∗(p) = arg min
ξ

f (ξ, p) (9a)

ξlb ≤ ξ ≤ ξub (9b)

103

Sensors 2022, 22, 2995

We are interested in computing the Jacobian of ξ∗(p) with respect to p. If we ignore
the bound-constraints for now, we can follow the approach presented in [4] to obtain them
in the following form.

∇pξ = −(∇2
ξ f (ξ, p))−1[∇ξ,p1 f (ξ, p), . . . ∇ξ,pn f (ξ, p)

]
(10)

Using (10), we can derive a local model for the optimal solution corresponding to a
perturbation Δp as

ξ∗(p) = ξ∗(p) +∇pξ∗
Δp︷ ︸︸ ︷

(p− p), (11)

Intuitively, (11) signifies a step of length Δp along the gradient direction. However,
for (11) to be valid, the step-length needs to be small. In other words, the perturbed
parameter p needs to be in the vicinity of p. Although it is difficult to mathematically
characterize the notion of “small”, in the following, we attempt a practical definition based
on the notion of optimal cost.

Definition 1. A valid |Δp| is one that satisfies the following relationship

f (ξ∗(p = p + Δp), p + Δp) ≤ f (ξ∗, p + Δp) (12)

The underlying intuition in (12) is that the perturbed solution should lead to a lower
cost for the parameter p + Δp as compared to ξ∗ for the same perturbed parameter.

2.3. Line Search and Incremental Adaption

Algorithm 1 couples the concept from the definition (11) with a basic line-search to
incrementally adapt (11) to a large Δp. The algorithm begins by initializing the optimal
solution kξ and the parameter kp with prior values for iteration k = 0. These variables are
then used to initialize the Hessian and Jacobian matrices. The core computations takes
place in line 2, wherein we compute the least amount of scaling that needs to be done
to step length kΔp = kp− p to guarantee a reduction in the cost. At line 3, we update
the optimal solution based on step-length ηkΔp obtained in line 2, followed by a simple
projection at line 4 to satisfy the minimum and maximum bounds. At line 5, we perform
the called forward roll-out of the solution to update the parameter set. For example, if the
parameter p models position of the end-effector at the final time instant of a trajectory, then
line 5 computes how close the k+1ξ∗ takes the end-effector to the perturbed goal position p.
On lines 7 and 8, we update the Hessian and the Jacobian matrices based on the updated
parameter set and optimal solution.

3. Task Constrained Joint Trajectory Optimization

This section formulates various examples of the task-constrained trajectory optimization
problem and uses the previous section’s results for optimal adaptation of joint trajectories un-
der task perturbation. To formulate the underlying costs, we adopt the way-point parametriza-
tion and represent the joint angles at time t as qt. Furthermore, we will use (xe(qt), oe(qt)) to
describe the end-effector position and orientation in terms of Euler angles, respectively.

3.1. Orientation Constrained Interpolation between Joint Configurations

The task here is to compute an interpolation trajectory between a given initial q0 and a
final joint configuration qm while maintaining a specified orientation od for the end-effector
at all times. We model it through the following cost function.

∑
t

fs(qt−k:t) +

∥∥∥∥ qt1
− q0

qtm
− qm

∥∥∥∥2

2
+ ∑

t
‖oe(qt)− od‖2

2 (13)

104

Sensors 2022, 22, 2995

The first term the cost function models smoothness in terms of joint angles from t− k
to t [15]. For example, for k = 1, the smoothness is defined as the first-order finite difference
of the joint positions at subsequent time instants. Similarly, k = 2, 3, will model higher order
smoothness through second and third-order finite differences respectively. We consider
all three finite-differences in our smoothness cost term. The second term ensures that the
interpolation trajectory is close to the given initial and final points. The final term in the
cost function maintains the required orientation of the end-effector.

We can shape (13) in the form of (9a) by defining ξ = (qt1
, qt2

, . . . qtm
). The bounds will

correspond to the maximum and minimum limits on the joint angles at each time instant.
We define the parameter set as p = (q0, qm). That is, we are interested in computing the
adaptation when either or both of q0 and qm gets perturbed.

Applications

Adaptation of ξ∗ of (13) for different q0, qm has applications in learning from demon-
stration setting where the human just provides the information about the initial and/or final
joint configuration, and the manipulator then computes a smooth interpolation trajectory
between the boundary configurations by adapting a prior computed trajectory.

Figure 1 presents an example of adaptation discussed above. The prior computed
trajectory is shown in blue. This is then adapted to two different final joint configurations.
The trajectory computed through Algorithm 1 is shown in green, while that obtained by
resolving the optimization problem (with warm-starting) is shown in red.

3.2. Orientation-Constrained Trajectories through Way-Points
The task in this example is to make the end-effector move though given way-points

while maintaining the orientation at od. Let xdt represent the desired way-point of the end-
effector at time t. Thus, we can formulate the following cost function for the current task.

∑
t

fs(qt−k:t) + ∑
t
‖oe(qt)− od‖2

2 + ∑
t
‖xe(qt)− xdt‖2

2 (14)

The first two terms in the cost function are the same as the previous example. The
changes appear in the final term which minimizes the l2 norm of the distance of the
end-effector with the desired way-point. The defintion of ξ remains the same as before.
However, the parameter set is now defined as p = (xd1 , xd2 , . . . xdm).

Application

Collision Avoidance As shown in Figure 2, a key application of the adaptation prob-
lem discussed above is in collision avoidance. A reactive planner such as [16] can provide
new via-points for the manipulator to avoid collision. Our Algorithm 1 can then use the
cost function (14) to adapt the prior trajectory shown in blue to that shown in green. For
comparison, the trajectory obtained with resolve of the trajectory optimization is shown in red.

105

Sensors 2022, 22, 2995

Figure 1. Prior trajectory shown in blue is used to adapt the joint motions to move towards two different
final joint configurations while maintaining the horizontal orientation of the end-effector at all times.

Figure 2. Collision avoidance by perturbing the mid-point of the prior computed end-effector trajectory.

Human–Robot Handover: Algorithm 1 with cost function (14) also finds application
in human–robot handover tasks. An example is shown in Figure 3, where the manipulator
adapts the prior trajectory (blue) to a new estimate of the handover position. As before,
the trajectory obtained with Algorithm 1 is shown in green, while the one shown in red
corresponds to a re-solve of the trajectory optimization with warm-start initialization.

106

Sensors 2022, 22, 2995

Figure 3. Perturbation in the final position of the end-effector.

4. Benchmarking

4.1. Implementation Details

The objective of this section is to compare the trajectories computed by Algorithm 1
with that obtained by re-solving the trajectory optimization for the perturbed parame-
ters with warm-start initialization. We consider the same three benchmarks presented
in Figures 1–3 implemented on a 7dof Franka Panda Arm, but for a diverse range of per-
turbations magnitude. For each benchmark, we created a data set of 180 trajectories by
generating random perturbations in the task parameters. For the benchmark of Figure 1,
the parameters are the joint angles, but in the following we use the forward kinematics to
derive equivalent representation for the parameters in terms of end-effector position values.

Each joint trajectory is parameterized by a 50-dimensional vector of way-points. Thus, the
underlying task constrained trajectory optimization involves a total of 350 variables. We use Scipy-
SLSQP [3] to obtain the prior trajectory and also to re-solve the trajectory optimization for the
perturbed parameters. We did our implementation in Python using Jax-Numpy [17] to compute
the necessary Jacobian and Hessian matrices. We also used the just-in-time compilation ability
of JAX to create an on-the-fly compiled version of our codes. The line-search in Algorithm 1
(line 2) was done through a parallelized search over a set of discretized η values. The entire
implementation was done on a 32 GB RAM i7-8750 desktop with RTX 2080 GPU (8GB). To foster
further research in this field and ensure reproducibility, we open-source our implementation for
review at https://rebrand.ly/argmin-planner (First released on 15 September 2020).

4.2. Quantitative Results

Orientation Metric: For this analysis, we compared the pitch and roll angles at each time
instant along trajectories obtained with Algorithm 1 and the resolving approach. Specifically,
we computed the maximum of the absolute difference (or L∞ norm) of the two orientation
trajectories. The yaw orientation in all these benchmarks was a free variable and is thus not
included in the analysis. The results are summarized in Figures 4–6. The histogram plot in
these figures are generated for the medium perturbation ranges (note the figure legends). For
the Figure 1 benchmark related to cost function (13), Figure 4 shows that all the trajectories
obtained by Algorithm 1 have L∞ norm of the orientation difference less than 0.1 rad. For the
benchmark of Figure 2, which we recall involves perturbing the via-point of the end-effector
trajectory, the histograms of Figure 5 show similar trends. All the trajectories computed by
Algorithm 1 managed a similar orientation difference. For the benchmark of Figure 3 pertaining

107

Sensors 2022, 22, 2995

to the perturbation of the final position, 69.41% of the trajectories obtained by Algorithm 1
managed to maintain a orientation difference of 0.1 rad with the resolving approach.

0.00 0.02 0.04 0.06
L∞ of Pitch Difference (rad)

0

20

40

60

80

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

L ∞
 o

f P
it

ch
 D

iff
er

en
ce

 (r
ad

) Small: 0.0 - 0.1m
Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(a) (b)

0.00 0.02 0.04 0.06 0.08
L∞ of Roll Difference (rad)

0

20

40

60

80

100

120

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.00

0.01

0.02

0.03

0.04

0.05

0.06

L ∞
 o

f R
ol

l D
iff

er
en

ce
 (r

ad
) Small: 0.0 - 0.1m

Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(c) (d)

0.000 0.001 0.002 0.003
Smoothness Cost Difference

0

20

40

60

80

100

120

140

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0e+00

5e-04

1e-03

2e-03

2e-03

Sm
oo

th
ne

ss
 C

os
t

D
iff

er
en

ce Small: 0.0 - 0.1m
Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(e) (f)

0.50 0.75 1.00 1.25 1.50 1.75
Residual Ratio of Final Config. (L∞)

0

20

40

60

80

100

120

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.86

0.89

0.92

0.95

0.98

1.01

1.04

1.07

1.10

1.13

R
es

id
ua

l R
at

io
 o

f F
in

al
 C

on
fig

. (
L ∞

)

Small: 0.0 - 0.1m
Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(g) (h)

Figure 4. Performance of Algorithm 1 for different perturbation ranges on the benchmark of Figure 1
that involves perturbing the final joint configuration (recall cost function (13)). Note that the pertur-
bation in the final joint is converted to position values by forward kinematics. The (a,c,e,g) column
shows the histogram of orientation, smoothness and task residual ratio metrics for the medium range
perturbation. The (b,d,f,h) column quantifies the metrics for different perturbation ranges.

108

Sensors 2022, 22, 2995

0.000 0.005 0.010 0.015 0.020
L∞ of Pitch Difference (rad)

0

5

10

15

20

25

30

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.000

0.005

0.010

0.015

0.020

0.025

L ∞
 o

f P
it

ch
 D

iff
er

en
ce

 (r
ad

) Small: 0.0 - 0.1m
Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(a) (b)

0.00 0.01 0.02 0.03
L∞ of Roll Difference (rad)

0

5

10

15

20

25

30

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.000

0.005

0.010

0.015

0.020

0.025

L ∞
 o

f R
ol

l D
iff

er
en

ce
 (r

ad
) Small: 0.0 - 0.1m

Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(c) (d)

0.000 0.025 0.050 0.075 0.100 0.125
Smoothness Cost Difference

0

20

40

60

80

100

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.00

0.02

0.04

0.06

0.08

0.10

Sm
oo

th
ne

ss
 C

os
t

D
iff

er
en

ce Small: 0.0 - 0.1m
Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(e) (f)

0 2 4 6 8
Residual Ratio of Via-Point. (L∞)

0

20

40

60

80

100

120

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.9

1.1

1.3

1.5

1.7

1.9

2.1

R
es

id
ua

l R
at

io
 o

f V
ia

-P
oi

nt
. (
L ∞

)

Small: 0.0 - 0.1m
Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(g) (h)

Figure 5. Performance of Algorithm 1 for different perturbation ranges on the benchmark of Figure 2
that involves perturbing the via-point of the end-effector trajectory (recall cost function (14)). The
(a,c,e,g) and (b,d,f,h) columns show similar benchmarking as those of Figure 4.

Task residuals ratio metric: For this analysis, we compare the task residual between
trajectories obtained from Algorithm 1 and the resolving approach. For example, for the
benchmark of Figure 1, we want the manipulator final configuration to be close to the specified
value (recall cost (13)) while maintaining the desired orientation at each time instant. Thus, we

109

Sensors 2022, 22, 2995

compute the L∞ residual of qt − qm for Algorithm 1 and compare it with that obtained from
the resolving approach. Now, as previously, and to be consistent with the other benchmarks, we
convert the residual of the joint angles to position values through forward kinematics. Similar
analysis follow for the other benchmarks as well. For the ease of exposition, we divide the task
residual of Algorithm 1 by that obtained with the resolving approach. A ratio greater than 1
implies that the former led to a higher task residual than the latter and vice-versa. Similarly, a
ratio closer to 1 implies that both the approaches performed equally well.

The results are again summarized in Figures 4–6. From Figure 4, we notice that 97.05%
of trajectories have a residual ratio less than 1.2. For the experiment involving via-point
perturbation in Figure 5, the performance drops to 62.50% for the same value of residual
ratio. Meanwhile, as shown in Figure 6, around 82.94% of the trajectories have a residual
ratio less than 1.2 in the case of the final position perturbation benchmark of Figure 3.

Velocity Smoothness Metric: For this analysis, we computed the difference in the
velocity smoothness cost (L2 norm of first-order finite difference) between the trajectories
obtained with Algorithm 1 and the resolving approach. The results are again summarized
in Figures 4–6. For all the benchmarks, in around 65% of the examples, the difference was
less than 0.05. This is 35% of the average smoothness cost observed across all the trajectories
from both the approaches.

Scaling with Perturbation Magnitude: The line plots in Figures 4–6 represent the first
quartile, median and the third quartile of the three metrics discussed above for different
perturbation ranges.

For the benchmark of Figure 1, trajectories from Algorithm 1 maintains an orientation
difference of less than 0.1 rad, with the trajectories of the resolving approach for perturba-
tions as large as 40 cm. The difference in smoothness cost for the same range is also small,
with the median value being in the order of 10−3. The median task residuals achieved by
Algorithm 1 is only 2% higher than that obtained by the resolving approach. For the bench-
mark of Figure 2, the performance remains same on the orientation metric, but the median
difference in smoothness cost and task residual ration increases to 0.04 and 9% for the
largest perturbation range. The benchmark of Figure 6 follows a similar trend in orientation
and smoothness metric, but performs significantly worse in task residuals. For the largest
perturbation range, Algorithm 1 leads to 50% higher median task residuals. However,
importantly, for perturbation up to 30 cm, the task residual ratio is close to 1, suggesting
that Algorithm 1 performed as well as the resolving approach for these perturbations.

Computation Time: Table 1 contrasts the average timing of our Algorithm 1 with the
approach of resolving the trajectory optimization with warm-start initialization. As can be
seen, our Argmin differentiation based approach provides a worst-case speed up of 160x
on the benchmark of Figure 3. For the rest of the benchmarks, this number varies between
500 to 1000. We believe that this massive gain in computation time offsets whatever little
performance degradation in terms of orientation, smoothness, and task residual metric that
Algorithm 1 incurs compared to re-solving the problem using warm-start. Note that the
high computation time of the re-solving approach is expected, given that we are solving
a difficult non-convex function over a long horizon of 50 steps resulting in 350 decision
variables. Even highly optimized planners like [1] show similar timings on closely related
benchmarks [18].

110

Sensors 2022, 22, 2995

0.00 0.02 0.04 0.06
L∞ of Pitch Difference (rad)

0

10

20

30

40

50

60

70

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

L ∞
 N

or
m

 o
f P

it
ch

 D
iff

er
en

ce
 (r

ad
)

Small: 0.0 - 0.1
Medium: 0.1 - 0.2
Large: 0.2 - 0.3
X-Large: 0.3 - 0.4

(a) (b)

0.000 0.025 0.050 0.075 0.100
L∞ of Roll Difference (rad)

0

10

20

30

40

50

60

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

−0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

L ∞
 N

or
m

 o
f R

ol
l D

iff
er

en
ce

 (r
ad

)

Small: 0.0 - 0.1
Medium: 0.1 - 0.2
Large: 0.2 - 0.3
X-Large: 0.3 - 0.4

(c) (d)

0.000 0.005 0.010 0.015 0.020
Smoothness Cost Difference

0

20

40

60

80

100

120

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.000

0.005

0.010

0.015

0.020

Sm
oo

th
ne

ss
 C

os
t

D
iff

er
en

ce Small: 0.0 - 0.1
Medium: 0.1 - 0.2
Large: 0.2 - 0.3
X-Large: 0.3 - 0.4

(e) (f)

0 1 2 3
Residual Ratio of Final Pos. (L∞)

0

10

20

30

40

50

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

R
es

id
ua

l R
at

io
 o

f F
in

al
 P

os
. (
L ∞

)

Small: 0.0 - 0.1
Medium: 0.1 - 0.2
Large: 0.2 - 0.3
X-Large: 0.3 - 0.4

(g) (h)

Figure 6. Performance of Algorithm 1 for different perturbation ranges on the benchmark of Figure 6
that involves perturbing the final end-effector position. (recall cost function (14)). The (a,c,e,g) and
(b,d,f,h) columns show similar benchmarking as those of Figure 4.

111

Sensors 2022, 22, 2995

Table 1. Computation times comparison between Algorithm 1 and resolving trajectory optimization
approach on three benchmarks.

SciPy-SLSQP Our Algorithm 1

Benchmarks
Wall Time

(s)

Wall Time w/o
Jacobian and

Function Evaluation
Overhead (s)

Wall Time
(s)

Final Configuration Perturbation (Figure 1) 43.91 41.09 0.039
Via Point Perturbation (Figure 2) 53.05 34.74 0.09
Final Position Perturbation (Figure 3) 35.91 29.09 0.18

5. Conclusions and Future Work

We presented a fast, near real-time algorithm for adapting joint trajectories to task per-
turbation as high as 40 cm in the end-effector position, almost half the radius of the Franka
Panda arm’s horizontal workspace used in our experiments. By consistently producing
trajectories similar to those obtained by resolving the trajectory optimization problem but
in a small fraction of a time, our Algorithm 1 opens up exciting possibilities for reactive
motion control of manipulators in applications like human–robot handover.

Our algorithm is easily extendable to other kind of manipulators. The only requirement
is that we should know the forward kinematics of the manipulator. This would allow us
to get the algebraic expressions for functions oe(q) and xe(q) in cost function (13) and (14),
respectively. In our implementation, we derived the forward kinematics and oe(q) and
xe(q) through the DH representation of the manipulator. The DH table is available for many
commercial manipulators, e.g., UR5e besides the Franka Panda Arm used in our simulation.

Our algorithm does not depend on any specific sensing modality. For example, in
collision avoidance applications, we assume that obstacle information is used by some
higher level planners that provides intermediate collision-free points to the manipulator,
which then uses the ArgMin differentiation to replan its prior trajectories.

There are several ways to improve our algorithm. First, the joint bounds can also be
included as penalties in the cost function itself, in addition to being handled by projection
(Line 11 in Algorithm 1). This would ensure that the gradient and Hessian of the optimal
cost is aware of the joint limit bounds. Second, we can consider a low dimensional polyno-
mial representation of the trajectories. For example, the joint trajectories can be represented
by a 10th order Bernstein polynomial with the coefficients acting as the variables of the
optimization problem. This would drastically reduce the computation cost of obtaining the
Hessian of the optimal cost as compared to current way-point paramaterization of the joint
trajectory that requires around 50 variables to represent one joint trajectory.

In future works, we will extend our formulation to problems with dynamic constraints,
such as torque bounds. We conjecture that by coupling the way-point parametrization
with a multiple-shooting like approach, we can retain the constraints as simple box-bounds
on the decision variables and consequently retain the computational structure of the
Algorithm 1. We are also currently evaluating our algorithm’s performance on applications
such as autonomous driving.

Author Contributions: Conceptualization, S.S., M.B., A.K.S. and K.M.K.; Methodology, S.S., M.B.,
A.K.S. and K.M.K.; Software, S.S., M.B. and H.M.; Validation, S.S., M.B. and H.M.; formal analysis, S.S.
and M.B.; investigation, S.S., M.B. and A.K.S.; resources, S.S., M.B. and A.K.S.; data curation, S.S., M.B.
and H.M.; writing—original draft preparation, A.K.S., S.S., M.B., K.K. and K.M.K.; writing—review
and editing, S.S., M.B., K.K. and K.M.K.; visualization, S.S., M.B. and H.M.; supervision, A.K.S. and
K.M.K.; project administration, A.K.S. and K.M.K.; funding acquisition, A.K.S. and K.K. All authors
have read and agreed to the published version of the manuscript.

Funding: The work was supported in part by thw European Social Fund via the “ICT programme”
measure, by grant PSG753 from the Estonian Research Council, by AI & Robotics Estonia (AIRE),

112

Sensors 2022, 22, 2995

the Estonian candidate for European Digital Innovation Hub, funded by the Ministry of Economic
Affairs and Communications in Estonia.

Data Availability Statement: Codes to reproduce the results are available at https://rebrand.ly/
argmin-planner (accessed on 1 August 2020).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Berenson, D.; Srinivasa, S.S.; Ferguson, D.; Kuffner, J.J. Manipulation planning on constraint manifolds. In Proceedings of the
2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 625–632.

2. Lembono, T.S.; Paolillo, A.; Pignat, E.; Calinon, S. Memory of motion for warm-starting trajectory optimization. IEEE Robot.
Autom. Lett. 2020, 5, 2594–2601. [CrossRef]

3. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
[PubMed]

4. Gould, S.; Fernando, B.; Cherian, A.; Anderson, P.; Cruz, R.S.; Guo, E. On differentiating parameterized argmin and argmax
problems with application to bi-level optimization. arXiv 2016, arXiv:1607.05447.

5. Hauser, K. Learning the problem-optimum map: Analysis and application to global optimization in robotics. IEEE Trans. Robot.
2016, 33, 141–152. [CrossRef]

6. Tang, G.; Sun, W.; Hauser, K. Time-Optimal Trajectory Generation for Dynamic Vehicles: A Bilevel Optimization Approach.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 7644–7650.

7. Reiter, A.; Gattringer, H.; Müller, A. Real-time computation of inexact minimum-energy trajectories using parametric sensitivities.
In Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region, Torino, Italy, 21–23 June 2017; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 174–182.

8. Geffken, S.; Büskens, C. Feasibility refinement in sequential quadratic programming using parametric sensitivity analysis. Optim.
Methods Softw. 2017, 32, 754–769. [CrossRef]

9. Pirnay, H.; López-Negrete, R.; Biegler, L.T. Optimal sensitivity based on IPOPT. Math. Program. Comput. 2012, 4, 307–331.
[CrossRef]

10. Amos, B.; Jimenez, I.; Sacks, J.; Boots, B.; Kolter, J.Z. Differentiable MPC for end-to-end planning and control. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2018; pp. 8289–8300.

11. Agrawal, A.; Barratt, S.; Boyd, S.; Stellato, B. Learning convex optimization control policies. In Proceedings of the 2nd Conference
on Learning for Dynamics and Control, PMLR, Berkeley, CA, USA, 11–12 June 2020; pp. 361–373.

12. Landry, B.; Lorenzetti, J.; Manchester, Z.; Pavone, M. Bilevel Optimization for Planning through Contact: A Semidirect Method.
arXiv 2019, arXiv:1906.04292.

13. Kalantari, H.; Mojiri, M.; Dubljevic, S.; Zamani, N. Fast l1 model predictive control based on sensitivity analysis strategy. IET
Control. Theory Appl. 2020, 14, 708–716. [CrossRef]

14. Pham, Q.C. A general, fast, and robust implementation of the time-optimal path parameterization algorithm. IEEE Trans. Robot.
2014, 30, 1533–1540. [CrossRef]

15. Toussaint, M. A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM, Gaussian Pro-
cess smoothing, optimal control, and probabilistic inference. In Geometric and Numerical Foundations of Movements; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 361–392.

16. Flacco, F.; Kröger, T.; De Luca, A.; Khatib, O. A depth space approach to human-robot collision avoidance. In Proceedings of the
2012 IEEE International Conference on Robotics and Automation, Guangzhou, China, 11–14 December 2012; pp. 338–345.

17. Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M.J.; Leary, C.; Maclaurin, D.; Wanderman-Milne, S. JAX: Composable Transforma-
tions of Python+NumPy Programs. 2018. Available online: http://github.com/google/jax (accessed on 1 August 2020).

18. Qureshi, A.H.; Dong, J.; Baig, A.; Yip, M.C. Constrained Motion Planning Networks X. arXiv 2020, arXiv:2010.08707.

113

sensors

Article

An Improved Rapidly-Exploring Random Trees Algorithm
Combining Parent Point Priority Determination Strategy and
Real-Time Optimization Strategy for Path Planning

Lijing Tian, Zhizhuo Zhang, Change Zheng *, Ye Tian, Yuchen Zhao, Zhongyu Wang and Yihan Qin

Citation: Tian, L.; Zhang, Z.; Zheng,

C.; Tian, Y.; Zhao, Y.; Wang, Z.; Qin, Y.

An Improved Rapidly-Exploring

Random Trees Algorithm Combining

Parent Point Priority Determination

Strategy and Real-Time Optimization

Strategy for Path Planning. Sensors

2021, 21, 6907. https://doi.org/

10.3390/s21206907

Academic Editor: Baochang Zhang

Received: 22 September 2021

Accepted: 14 October 2021

Published: 18 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Technology, Beijing Forestry University, Beijing 100083, China; T7190221@bjfu.edu.cn (L.T.);
zhangzhizhuo@bjfu.edu.cn (Z.Z.); tytoemail@bjfu.edu.cn (Y.T.); zhaoyuchen@bjfu.edu.cn (Y.Z.);
wangzhongyu@bjfu.edu.cn (Z.W.); linxinyi031@bjfu.edu.cn (Y.Q.)
* Correspondence: zhengchange@bjfu.edu.cn

Abstract: In order to solve the problems of long path planning time and large number of redundant
points in the rapidly-exploring random trees algorithm, this paper proposed an improved algorithm
based on the parent point priority determination strategy and the real-time optimization strategy to
optimize the rapidly-exploring random trees algorithm. First, in order to shorten the path-planning
time, the parent point is determined before generating a new point, which eliminates the complicated
process of traversing the random tree to search the parent point when generating a new point. Second,
a real-time optimization strategy is combined, whose core idea is to compare the distance of a new
point, its parent point, and two ancestor points to the target point when a new point is generated,
choosing the new point that is helpful for the growth of the random tree to reduce the number of
redundant points. Simulation results of 3-dimensional path planning showed that the success rate of
the proposed algorithm, which combines the strategy of parent point priority determination and the
strategy of real-time optimization, was close to 100%. Compared with the rapidly-exploring random
trees algorithm, the number of points was reduced by more than 93.25%, the path planning time was
reduced by more than 91.49%, and the path length was reduced by more than 7.88%. The IRB1410
manipulator was used to build a test platform in a laboratory environment. The path obtained by
the proposed algorithm enables the manipulator to safely avoid obstacles to reach the target point.
The conclusion can be made that the proposed strategy has a better performance on optimizing the
success rate, the number of points, the planning time, and the path length.

Keywords: rapidly-exploring random trees; manipulator; priority determination; real-time optimiza-
tion; path planning

1. Introduction

Whether for mobile robots such as AGV (automated guided vehicle) carts working in
automated workshops, or robotic arms such as agricultural manipulators in the field, the
core of automation for autonomous robots is path planning. Path planning is the process
of finding an obstacle-free path from an initial position to a target position in a known or
partially known environment [1].

Path planning is one of the most important research focuses of robots. Chinthaka
Premachandra et al. completed the robot’s path planning in an indoor environment
by a self-localization method through baseboard recognition and image processing [2].
Wenzhou Chen et al. used distributed sonar sensors to calculate the distance between
the receiver and the generator in real time to control the moving path of the robot [3].
Chinthaka Premachandra et al. proposed a hybrid aerial-terrestrial robot system to help
UAVs avoid obstacles during the movement [4]. Path planning algorithms can usually be
divided into three types. The first type is the bionic-based path planning algorithm [5], of
which the ant colony algorithm is a common one and has the advantages of robustness and

Sensors 2021, 21, 6907. https://doi.org/10.3390/s21206907 https://www.mdpi.com/journal/sensors115

Sensors 2021, 21, 6907

environmental adaptability, but its convergence speed is slow and very easy to fall into the
local optimum. The second type is the map-based path planning algorithm, of which the A*
algorithm (Optimal A-algorithm), with the optimal surrogate and prognostic functions, is
a commonly used one and has the advantages of heuristic search and the obtained path is
optimal, but its planning time is long and not applicable to high-dimensional space [6]. The
third type is the sampling-based path planning algorithm [7], of which the most commonly
used one is the RRT (rapidly-exploring random trees) algorithm [8]. As an efficient path-
planning method in a multi-dimensional space, the RRT algorithm uses an initial point as
the root point and generates a random extended tree by randomly sampling and adding
leaf points. When a leaf point in the random tree contains a target point or enters a target
region, a path from the initial point to the target point, consisting of tree points, can be
found in the random tree. The RRT algorithm is the most popular path planning algorithm
due to the rapidness, probabilistic completeness, and good scalability [9–13].

However, the RRT algorithm also has many disadvantages. Among the main disad-
vantages of the RRT algorithm, one is that the whole random tree needs to be traversed
to search the parent point in the process of new point generation, which consumes a lot
of computation time. The other is the large number of redundant points generated dur-
ing the path generation process. To address the above problems, this paper proposes an
improved RRT algorithm based on the PPD strategy (the strategy of parent point priority
determination) to speed up the path planning, and further optimizes the efficiency of the
algorithm by incorporating the RO strategy (real-time optimization) on this basis. The
PPD strategy would shorten the path planning time and the RO strategy would reduce
the number of redundant points. Finally, MATLAB-based three-dimensional comparison
simulation experiments were conducted, and the experimental results showed that the
proposed algorithm has a faster planning speed and can generate fewer redundant points,
which has a better performance compared with other improved algorithms.

The rest of this paper is organized as follows. Section 2 introduces the related work
and Section 3 presents the proposed RRT algorithm in three parts including the RRT
algorithm, the PPD strategy, and the RO strategy. Section 4 shows the simulation results of
the proposed algorithm in three-dimensional space and the experiments using IRB1410 in
the laboratory. In the following, a discussion is presented in Section 5. Finally, Section 6
presents the conclusions of this paper.

2. Related Work

The RRT algorithm has been widely used in the field of robot motion and path plan-
ning. However, the paths obtained are not optimal, mainly because of several aspects
such as path planning time, the number of points, and the path length. To solve these
shortcomings, many improved algorithms based on the RRT algorithm have been proposed
to promote the path-planning efficiency. LaValle and Kuffner proposed a bidirectional
extended random tree algorithm [14] that generated two random trees from the start-
ing point and the target point simultaneously, expanding them in space separately. This
algorithm used a greedy strategy to reduce the number of iterations in the path gener-
ation process. Sertac and Emilio proposed an asymptotically optimal RRT* algorithm
(an improved algorithm for progressively optimizing path length by reselecting parent
point) [15], which changed the selection of the parent point and used a cost function to
select the point with the smallest cost in the neighborhood of the extended point as the
parent point, thus reducing the cost of path generation and improving the search efficiency.
Jordan et al. borrowed the RRT-Connect (bidirectional extended random tree) algorithm
idea and proposed a bidirectional extended RRT* algorithm, namely B-RRT* (bidirectional
version of RRT*) algorithm [16]. Wang Kun et al. proposed a two-way extended RRT* algo-
rithm for heuristic search, which reduced the number of iterations to a certain extent [17].
Jordan proposed the B-RRT* algorithm [18], which used the strategy of reselecting the
parent point and rewiring two trees to speed up the algorithm convergence. Qureshi et al.
added the heuristic strategy to the B-RRT* algorithm and proposed the IB-RRT* (Intelligent

116

Sensors 2021, 21, 6907

bidirectional-RRT*) algorithm [16]. Qureshi et al. combined the artificial potential field
method with the RRT* algorithm to improve the convergence speed of the algorithm [19].
Barfoot proposed the Inform-RRT* algorithm [20] to narrow the search range and speed
up the convergence of the algorithm on the basis of obtaining feasible paths. Mashayekhi
et al. proposed the Informed-RRT*-Connect algorithm [21], which used a bidirectional
tree to quickly find the initial path before using a subset of heuristics to directly sample
to accelerate convergence, and the heuristic algorithm performed better in the improved
RRT*-Connect algorithm. While the RRT* algorithm and its improved algorithm helped to
reduce the path length, their planning times were several times longer than that of the RRT
algorithm. Although the RRT-Connect algorithm and its improved algorithm had a slight
reduction in the number of redundant points and planning time, the optimization effect
was not significant and the path length was much longer than that of the RRT algorithm.

The above improvement algorithms have different advantages. In this paper, we
focused on both the path planning time and the number of redundant points. Two different
improved strategies for each of the two aspects combined are proposed.

3. Methods

3.1. The Rapidly-Exploring Random Tree Algorithm (RRT)

The rapidly-exploring random tree algorithm is a probability-complete global path
planning algorithm that obtains path points by random sampling in the search space and
then achieving a feasible path from the start point to the goal point. The specific process is
shown in Algorithm 1.

Algorithm 1. RRT algorithm.

a. Initialize the random tree Pinit.
b. Select a random point Prand in the search space.
c. Traverse the random tree and find the closest point to Prand in the random tree, named Pparent.
d. Intercept the step length ρ along the direction from Pnear to Prand to get a new point Pnew.
e. Repeat the above steps b–d until the target point Pgoal is added to the random tree.

The random tree expansion diagram for the RRT algorithm is shown in Figure 1.
The RRT algorithm generates new points by random sampling in the workspace. In the
random tree expansion process, searching Pparent requires traversing the entire random
tree, a process that takes a lot of time when the random tree grows relatively large, which
in turn leads to a slow path-planning speed of the algorithm. The sampling method of the
RRT algorithm is highly random, which results in a large number of redundant points. For
these problems, two improved strategies are proposed in this paper.

Figure 1. Random tree expansion diagram for the RRT algorithm. The red circle indicates the starting
point and the green circle indicates the target point. Black circle indicates the path point, black solid
line indicates the path, and black dashed line with arrow indicates the current expansion direction of
the random tree. Prand denotes the randomly sampled point, Pparent denotes the parent point, and
Pnew denotes the new point.

117

Sensors 2021, 21, 6907

3.2. The Strategy of Parent Point Priority Determination (PPD)

In order to save time in traversing the whole random tree in the process of determining
the parent point, this paper proposes a strategy of parent point priority determination
to simplify this process and thus shorten the path planning time. The strategy of parent
point priority determination is an improved strategy based on the RRT algorithm, whose
core idea is to prioritize the parent point of the next new point before random sampling.
Compared with the RRT algorithm, the improved algorithm based on the PPD strategy
saves time in finding the Pparent and therefore speeds up the execution of the algorithm.
The specific process is shown in Algorithm 2, where Dnew and Dparent denote the distance
from the new point to the target point and the distance from the parent point to the target
point, respectively, which can be calculated by Equation (1).⎧⎪⎪⎨

⎪⎪⎩
Dnew =

√(
Pnew(x) − Pgoal(x)

)2
+

(
Pnew(y) − Pgoal(y)

)2

Dparent =

√(
Pparent(x) − Pgoal(x)

)2
+

(
Pparent(y) − Pgoal(y)

)2
(1)

Algorithm 2. PPD-RRT algorithm.

a. Initialize the random tree Pinit.
b. Set the point Pinit as the parent point Pparent of the next expansion.
c. Get four random points Prand1∼ Prand4 on the circumference of the circle with the parent point
Pparent as the center and the step length ρ as the radius.
d. Select the closest point to the target point in Prand1∼ Prand4 as the random point Prand.
e. Connect parent point Pparent to the random point Prand, the random point Prand is the new point
Pnew.
f. Use Equation (1) to calculate Dnew and Dparent respectively, and choose the one which is closer
to the target point as the parent point Pparent for the next expansion.
g. Repeat the above steps c–f until the target point Pgoal is added to the random tree.

The random tree expansion diagram of the improved algorithm based on the PPD strategy
is shown in Figure 2. In the process of generating new points, as the random tree becomes
larger and there are more and more points in the random tree, traversing the random tree to
search the parent point consumes a lot of computational time. In this article, the parent point is
determined before the new point is generated, which can greatly save the path-planning time,
and the larger the random tree gets, the more obvious this effect becomes.

Figure 2. Random tree expansion diagram of the improved algorithm based on the PPD strategy. The
red circle indicates the starting point, and the green circle indicates the target point. The black circle
indicates the path point, the solid black line indicates the path. and the green dashed line indicates
the distance from the point to the target point. The blue dashed line indicates the circumference of
the circle with the parent point as the center and the step length ρ as the radius, which is the random
sampling space. Prand1~Prand4 denote random sampling points, Pparent denotes parent point, and
Pnew denotes the new point.

118

Sensors 2021, 21, 6907

3.3. The Strategy of Real-Time Optimization (RO)

The improved algorithm based on the PPD strategy can greatly reduce the path plan-
ning time, but the number of path points still needs to be optimized. Therefore, a strategy
of real-time optimization was proposed in this paper. We calculated the distance Dnew be-
tween the new point and the target point, and if Dnew can satisfy both Equations (2) and (3),
the generation of the new point is considered to beneficial to the growth of the random tree.
The core idea of the real-time optimization strategy is to determine whether the new point
has a positive impact on the subsequent growth of the random tree immediately after the
new point is generated, as shown in the process of Algorithm 3. The real-time optimization
of the RO policy can effectively reduce the number of redundant points of the random tree.

Algorithm 3. PPRO-RRT algorithm.

a. Initialize the random tree Pinit.
b. Set the point Pnew by the exploration process of PPD-RRT algorithm.
c. Calculate the distance from the new point, the parent point and its two nearest ancestor points
to the target point according to Equation (2), respectively.
d. Determine whether the new point Pnew is reserved according to Equation (3), and if it is
satisfied, then it is reserved.
e. Repeat the above steps b–d until the target point Pgoal is added to the random tree.

⎧⎨
⎩ Dancestor1,2 =

√
(Pancestor1,2(x) − Pgoal(x))

2 + (Pancestor1,2(y) − Pgoal(y))
2

Dparent =
√
(Pparent(x) − Pgoal(x))

2 + (Pparent(y) − Pgoal(y))
2

(2)

(Dancestor1 > Dnew) or (Dancestor2 > Dnew) or (Dparent > Dnew) (3)

The random tree expansion diagram of the improved algorithm based on the RO
strategy is shown in Figure 3. Once a new point is generated, Equations (2) and (3) are
used to decide the point to be left. If this new point does not contribute to the growth of the
random tree, it is rejected, which avoids growing more redundant points from that point.
Therefore, the number of redundant points is greatly reduced by a real-time judgment that
prevents the generation of more redundant points.

Figure 3. Random tree expansion diagram of the improved algorithm based on the RO strategy. The
red circle indicates the starting point, and the green circle indicates the target point. The black circle
indicates the path point, the solid black line indicates the path, and the green dashed line indicates
the distance from the point to the target point. Pancestor1~Pancestor2 denote the ancestor points, Pparent

denotes the parent point, and Pnew denotes the new point.

4. Experiment and Analysis

The PPD strategy can effectively reduce the path planning time, and the RO strategy
can reduce the number of redundant points. In order to further evaluate the performance of
the PPD-RRT algorithm and the PPRO-RRT (parent point priority determination-real-time

119

Sensors 2021, 21, 6907

optimization-RRT) algorithm, we will conduct simulation experiments in 3-dimensional
space for the above improved algorithm and the existing improved algorithm to verify the
high-dimensional reliability and efficiency of the improved algorithm in this paper.

4.1. Simulation Experiments

The simulation experimental platform was configured with MATLAB 2019b, 64-bit
Windows 10, processor Inter(R) Core (TM) i7-10700F CPU @ 2.90 GHz, and 16 GB of
memory. The experimental simulation area was a 100 × 100 × 100 cube area with the
starting position [5, 5, 5] and the target position [95, 95, 95]. The experimental environment
was designated as a simple and complex one according to the number of obstacles [22].
Figures 4 and 5 show the simulation results of various algorithms in simple and complex
environments.

(a) (b)

(c) (d)

(e)

Figure 4. Paths planned by various algorithms in a simple environment. The red cube indicates
the starting position and the green cube indicates the target position. The red sphere indicates the
obstacles in the environment, the green dot indicates the points obtained by sampling during the path
planning process, the red solid line indicates the branches of the random tree, and the black solid
line indicates the feasible paths obtained. (a) RRT algorithm; (b) RRT* algorithm; (c) RRT-Connect
algorithm; (d) PPD-RRT algorithm; (e) PPRO-RRT algorithm.

120

Sensors 2021, 21, 6907

(a) (b)

(c) (d)

(e)

Figure 5. Paths planned by various algorithms in a complex environment. The red cube indicates
the starting position and the green cube indicates the target position. The red sphere indicates the
obstacles in the environment, the green dot indicates the points obtained by sampling during the path
planning process, the red solid line indicates the branches of the random tree, and the black solid
line indicates the feasible paths obtained. (a) RRT algorithm; (b) RRT* algorithm; (c) RRT-Connect
algorithm; (d) PPD-RRT algorithm; (e) PPRO-RRT algorithm.

The simulation results in Figures 4 and 5 showed that there was a significant reduction
in the number of sampling points because the PPRO-RRT algorithm incorporated the idea
of PPD and RO.

4.2. Results and Analysis

In order to avoid the influence of the randomness of the path planning algorithm on the
experimental results, each method was tested for 5000 iterations in the same environment,
and the upper limit of the number of single iterations was set to 1000. The proposed
algorithm was compared with other algorithms in terms of the success rate, the number of
path points, the path planning time, and the path length. The results of each experiment
are shown in Tables 1–4.

121

Sensors 2021, 21, 6907

Table 1. The success rate of various algorithms in two kinds of experimental environments.

RRT RRT* RRT-Connect PPD-RRT PPRO-RRT

Simple environments 5.12% 5.68% 49.70% 99.80% 100.00%
Complex environments 3.94% 4.62% 51.88% 99.48% 99.99%

Table 1 indicates the success rate of various path planning algorithms in two kinds
of experimental environments. The experimental results showed that the success rates
of the PPD-RRT and PPRO-RRT path planning algorithms were significantly higher than
those of the other algorithms. The success rates of the PPD-RRT and PPRO-RRT algorithms
were 99.80% and 100.00% in simple environments and 99.48% and 99.99% in complex
environments, respectively. The success rate improvement was significant compared with
other algorithms. The PPRO-RRT algorithm achieved success rate increases of 94.88% and
96.05% compared with the RRT algorithm; 94.32% and 95.37% compared with the RRT*
algorithm; and 50.30% and 48.11% compared with the RRT-Connect algorithm. With a set
number of iterations of 1000, the PPRO-RRT algorithm greatly enhances the success rate of
the path planning algorithm.

Table 2. The number of random tree points of various algorithms in two kinds of experimental
environments.

RRT RRT* RRT-Connect PPD-RRT PPRO-RRT

Simple environments 831 829 446 153 56
Complex environments 834 823 447 152 55

Table 2 indicates the number of random tree points obtained by various path planning
algorithms. For each of the algorithms, the number of random tree points hardly varied
with the complexity of the environment. Compared with the RRT algorithm, the number
of random tree points of the PPD-RRT algorithm was reduced by approximately 81.59%
and 81.76% in two kinds of experimental environments, and after adding the RO idea, the
number of points was reduced by about 93.25% and 93.32%. Compared to the RRT* and
RRT-Connect algorithms, the number of random tree points of the PPRO-RRT algorithm
was reduced by 93.23% and 87.42% in the simple environments and 93.23% and 87.55% in
the complex environments, respectively.

Table 3. The path planning time(s) of various algorithms in two kinds of experimental environments.

RRT RRT* RRT-Connect PPD-RRT PPRO-RRT

Simple environments 0.0240 0.0704 0.0318 0.0024 0.0017
Complex environments 0.0388 0.1318 0.0461 0.0044 0.0033

Table 3 indicates the path planning time of different algorithms in two kinds of experi-
mental environments. For each of the proposed algorithms, the path planning time was
approximately reduced by one order of magnitude. In the simple experimental environ-
ment, the path planning time of the PPD-RRT and PPRO-RRT algorithms was 90% and
92.92% shorter than that of the RRT algorithm, respectively. In the complex experimental
environment, the path planning time of the PPD-RRT and PPRO-RRT algorithms was
88.66% and 91.49% shorter than that consumed by the RRT algorithm, respectively. As the
RRT* algorithm and the RRT-Connect algorithm both require a longer path planning time
than the RRT algorithm, the PPD-RRT algorithm and the PPRO-RRT algorithm were far
superior to the RRT* algorithm and the RRT-Connect algorithm in terms of path planning
time. Compared with the RRT* and RRT-Connect algorithms, the path planning time of the
PPRO-RRT algorithm was reduced by 97.59% and 94.65% in the simple environments and
97.05% and 92.84% in the complex environments, respectively.

122

Sensors 2021, 21, 6907

Table 4. The path length [23] of various algorithms in two kinds of experimental environments.

RRT RRT* RRT-Connect PPD-RRT PPRO-RRT

Simple environments 221.42 190.15 231.34 241.95 203.96
Complex environments 225.00 195.22 240.49 237.67 202.48

Table 4 indicates the path length of the various algorithms in the two kinds of experi-
mental environments. Compared with the RRT algorithm, the path length of the PPD-RRT
algorithm became longer in two kinds of experimental environments due to the restricted
sampling area. After adding the RO idea, the path length of the PPRO-RRT algorithm was
reduced by 7.89% and 10.01% in simple environments and complex environments. While
the path length of the PPRO-RRT algorithm was longer than that of the RRT* algorithm, the
difference was not significant and was far superior to the RRT* algorithm in other aspects.
Compared with the RRT-Connect algorithm, the path length of the PPRO-RRT algorithm
was reduced by 11.84% and 15.81% in simple environments and complex environments.

From the above analysis, the PPRO-RRT algorithm can converge at a small number of
iterations, and the success rate reaches close to 100% with a set upper limit of 1000 iterations.
The PPRO-RRT algorithm saves the process of searching parent points, which greatly saves
the path planning time; the real-time judgment of whether new points should be retained
reduces the generation of more redundant points. We can conclude that the PPRO-RRT
algorithm has significant advantages over the RRT algorithm in terms of success rate,
number of points, planning time, and path length.

4.3. Experiments on the Manipulator

To demonstrate the feasibility and effectiveness of the algorithm proposed in this
paper, an experimental platform for path planning was built in a laboratory environment
using the IRB1410 robot arm. A random position (1.289 m, 0.013 m, 0.873 m) was selected
as the position of an obstacle in the manipulator workspace. In this scene, the path point
of the manipulator end-effector is obtained by the PPRO-RRT algorithm, and then the
manipulator is controlled by the program procedure from the starting point (1.241 m,
0.156 m, 0.703 m) around the obstacle to the target point (1.166 m, −0.087 m, 0.921 m), and
the sequence of the path is shown in Figure 6.

(a) (b)

Figure 6. Cont.

123

Sensors 2021, 21, 6907

(c) (d)

Figure 6. Path sequence with the PPRO-RRT algorithm in obstacle avoidance. (a–d) represent
different states of the manipulator and obstacle at each moment.

In this project, the individual joint angles of the robot arm change, as shown in Figure 7,
from which we can see that the individual joint angles change smoothly.

Figure 7. Variation of each joint angle during the process of obstacle avoidance.

5. Discussion

In this paper, simple and complex environments were chosen to verify the feasibility
of the proposed algorithm. The experimental results showed that the PPRO-RRT algorithm
had better performance in both environments than the RRT algorithm, the RRT* algorithm,
and the RRT-Connect algorithm. However, in the field conditions, the position of the
obstacles may change or there may be narrow gaps between the obstacles. The algorithm
in this paper does not fit in the above scene, which creates some limitations on the path
planning of the manipulator. Therefore, the following research will focus on enhancing the
applicability of the algorithm to a wider range of scene.

In addition, in the real environment, the manipulator may collide with the obstacle,
which is because the actual size of the manipulator needs to be considered during the

124

Sensors 2021, 21, 6907

experiment in the real scene, which would make the collision detection algorithm more
complicated and increase the running time of the algorithm. In order to simplify the
collision detection algorithm, the links of the manipulator are abstracted as lines and the
obstacle is inflated. The actual size of the manipulator is added to the obstacle so that
the complex process of collision detection is transformed into a problem of the position
relationship between a line and a sphere. Experimental results showed that with the
proposed algorithm in this paper, the manipulator could safely reach the target point from
the starting point.

6. Conclusions

In order to simplify the complex process of determining the parent point that needs to
traverse the random tree and reduce the number of redundant points in the random tree, a
PPRO-RRT algorithm, combined the PPD strategy with the RO strategy, was proposed in
this paper. The following conclusions were drawn through experiments and comparative
analysis: (1) the PPD strategy significantly speeds up path planning, and the RO strategy
reduces the number of redundant points; (2) the PPRO-RRT algorithm outperforms the
other improved RRT algorithms for both simple and complex environments; (3) the exper-
imental results by IRB1410 shows that the manipulator can safely avoid obstacles using
the PPRO-RRT algorithm. However, compared with the RRT* algorithm, the algorithm
proposed in this paper may produce longer paths and would be modified in the future in
terms of shorter path lengths. The improved algorithm in this paper is relatively unsuitable
for the scene with narrow channels. In terms of practical applications, the improved algo-
rithm in this paper can be applied to the path planning problems of intelligent vehicles,
manipulators, UAVs, etc. to speed up their path planning.

Author Contributions: Conceptualization, Z.Z. and Y.T.; Methodology, L.T., C.Z., Z.Z. and Y.T.;
Software, L.T.; Validation, L.T., Y.T. and Z.Z.; Formal analysis, L.T., Y.Z. and Z.W.; Investigation, L.T.,
Y.T. and Z.Z.; Resources, L.T. and Y.Z.; Data curation, L.T.; Writing—original draft preparation, L.T.;
Writing—review and editing, L.T., Y.Z. and Z.W.; Visualization, L.T., Y.Q. and Z.Z.; Supervision, C.Z.,
Y.T., Y.Z. and Y.Q.; Project administration, C.Z., Y.Q. and Z.W.; Funding acquisition, C.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number 31971668) and the Beijing College Students’ Innovation and Entrepreneurship Training
Program (grant s20201002114).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kavraki, L.E.; Švestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]

2. Premachandra, C.; Murakami, M.; Gohara, R.; Ninomiya, T.; Kato, K. Improving landmark detection accuracy for self-localization
through baseboard recognition. Int. J. Mach. Learn. Cybern. 2017, 8, 1815–1826. [CrossRef]

3. Chen, W.; Xu, J.; Zhao, X.; Liu, Y.; Yang, J. Separated Sonar Localization System for Indoor Robot Navigation. IEEE Trans. Ind.
Electron. 2020, 68, 6042–6052. [CrossRef]

4. Premachandra, C.; Otsuka, M.; Gohara, R.; Ninomiya, T.; Kato, K. A study on development of a hybrid aerial terrestrial robot
system for avoiding ground obstacles by flight. IEEE/CAA J. Autom. Sin. 2018, 6, 327–336. [CrossRef]

5. Luo, Q.; Wang, H.; Zheng, Y.; He, J. Research on path planning of mobile robot based on improved ant colony algorithm. Neural
Comput. Appl. 2020, 32, 1555–1566. [CrossRef]

6. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path planning for autonomous vehicles in unknown semi-structured environ-
ments. Int. J. Rob. Res. 2010, 29, 485–501. [CrossRef]

7. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Rob. Res. 2011, 30, 846–894. [CrossRef]
8. LaValle, S.M.; Kuffner, J.J. Randomized kinodynamic planning. Int. J. Rob. Res. 2001, 20, 378–400. [CrossRef]
9. Lau, B.; Sprunk, C.; Burgard, W. Kinodynamic motion planning for mobile robots using splines. In Proceedings of the 2009

IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 2427–2433.
[CrossRef]

125

Sensors 2021, 21, 6907

10. Islam, F.; Nasir, J.; Malik, U.; Ayaz, Y.; Hasan, O. RRT*-Smart: Rapid convergence implementation of RRT* towards optimal
solution. In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8
August 2012; pp. 1651–1656. [CrossRef]

11. Frazzoli, E. Incremental Random Sampling Algorithms for Optimal Motion Planning. Proc. Robot. Sci. 2010, 1–8. Available online:
http://sertac.scripts.mit.edu/web/wp-content/papercite-data/pdf/C21.pdf (accessed on 3 May 2010).

12. Du, M.; Chen, J.; Zhao, P.; Liang, H.; Xin, Y.; Mei, T. An improved RRT-based motion planner for autonomous vehicle in cluttered
environments. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China,
31 May–7 June 2014. [CrossRef]

13. Barfoot, T. Informed RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal
Heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA,
14–18 September 2014. Available online: https://www.google.com/%0Apapers3://publication/uuid/FD516565-4AD0-4704-80
9E-5EBDBC4886C9 (accessed on 13 October 2021).

14. Kuffner, J.J.; La Valle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the Proceedings
2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No. 00CH37065), San Francisco, CA, USA, 24–28 April 2000; pp. 995–1001. [CrossRef]

15. Adiyatov, O.; Varol, H.A. A novel RRT∗-based algorithm for motion planning in Dynamic environments. In Proceedings of
the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp.
1416–1421. [CrossRef]

16. Qureshi, A.H.; Ayaz, Y. Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered
environments. Rob. Auton. Syst. 2015, 68, 1–11. [CrossRef]

17. Ying, Y.; Li, Z.; Ruihong, G.; Yisa, H.; Haiyan, T.; Junxi, M. Path planning of mobile robot based on Improved RRT Algorithm. In
Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; Volume 39, pp. 4741–4746.
[CrossRef]

18. Jordan, M.; Perez, A. Optimal Bidirectional Rapidly-Exploring Random Trees; Computer Science and Artificial Intelligence
Laboratory Technical Report. 2013. Available online: https://dspace.mit.edu/bitstream/handle/1721.1/79884/MIT-CSAIL-TR-
2013-021.pdf (accessed on 15 August 2013).

19. Qureshi, A.H.; Ayaz, Y. Potential functions based sampling heuristic for optimal path planning. Auton. Robot. 2016, 40, 1079–1093.
[CrossRef]

20. Mashayekhi, R.; Idris, M.Y.I.; Anisi, M.H.; Ahmedy, I.; Ali, I. Informed RRT∗-Connect: An Asymptotically Optimal Single-Query
Path Planning Method. IEEE Access 2020, 8, 19842–19852. [CrossRef]

21. Chen, Q.; Jiang, H.; Zheng, Y. A review of fast extended random tree algorithms for robot path planning. Comput. Eng. Appl.
2019, 55, 10–17.

22. Dai, J.; Li, Z.; Li, Y.; Zhao, J. Robot path planning based on improved Informed-RRT* algorithm. J. Henan Univ. Technol. (Nat. Sci.
Ed.) 2021, 1–11. Available online: http://kns.cnki.net/kcms/detail/41.1384.n.20210608.1446.004.html (accessed on 28 June 2021).

23. Mohammed, H.; Romdhane, L.; Jaradat, M.A. RRT*N: An efficient approach to path planning in 3D for Static and Dynamic
Environments. Adv. Robot. 2020, 35, 168–180. [CrossRef]

126

sensors

Article

Multi-Ship Control and Collision Avoidance Using MPC and
RBF-Based Trajectory Predictions

Myron Papadimitrakis 1, Marios Stogiannos 1, Haralambos Sarimveis 2 and Alex Alexandridis 1,*

Citation: Papadimitrakis, M.;

Stogiannos, M.; Sarimveis, H.;

Alexandridis, A. Multi-Ship Control

and Collision Avoidance Using MPC

and RBF-Based Trajectory Predictions.

Sensors 2021, 21, 6959. https://

doi.org/10.3390/s21216959

Academic Editors: Baochang Zhang,

Reza Ghabcheloo and Antonio

M. Pascoal

Received: 3 August 2021

Accepted: 16 October 2021

Published: 20 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Electronic Engineering, University of West Attica, 12241 Aigaleo, Greece;
m.papadimitrakis@uniwa.gr (M.P.); mstogia@uniwa.gr (M.S.)

2 School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Greece;
hsarimv@central.ntua.gr

* Correspondence: alexx@uniwa.gr; Tel.: +30-210-5381571

Abstract: The field of automatic collision avoidance for surface vessels has been an active field of
research in recent years, aiming for the decision support of officers in conventional vessels, or for the
creation of autonomous vessel controllers. In this paper, the multi-ship control problem is addressed
using a model predictive controller (MPC) that makes use of obstacle ship trajectory prediction
models built on the RBF framework and is trained on real AIS data sourced from an open-source
database. The usage of such sophisticated trajectory prediction models enables the controller to
correctly infer the existence of a collision risk and apply evasive control actions in a timely manner,
thus accounting for the slow dynamics of a large vessel, such as container ships, and enhancing
the cooperation between controlled vessels. The proposed method is evaluated on a real-life case
from the Miami port area, and its generated trajectories are assessed in terms of safety, economy,
and COLREG compliance by comparison with an identical MPC controller utilizing straight-line
predictions for the obstacle vessel.

Keywords: autonomous vessels; collision avoidance; model predictive control; radial basis function
networks; trajectory optimization

1. Introduction

In the last two decades, research on automatic collision avoidance and optimal path
planning for surface vessels has intensified, driven by the ever-growing density of maritime
traffic in narrow waterways, such as gulfs, ports, and canals [1]. Motivated by the design of
autonomous surface vehicles (ASV) controllers, but also aiming for the decision support of
officers on watch in conventional vessels [2], control and optimization tools that ensure the
safety and the cost effectiveness of navigational actions are being intensively developed.
These tools are perceptive of the surrounding environment through arrays of sensors,
radars, and other positioning and communication aids. In this context, the automatic
identification system (AIS) encompasses most of the aforementioned technologies in order
to gather positioning and other vessel data. The already vast AIS comprises an ever-
expanding worldwide maritime trajectory dataset, which is made available by vessels,
port authorities, and other platforms in charge of efficient and safe maritime path planning.
Given the fact that the majority of vessel accidents are related to erroneous handling
rather than equipment failure or environmental conditions [3], these tools aim to phase out
the human officers on watch as vessel controllers, or at least augment their navigational
decision-making using optimization- and prediction-based methods.

The formulation of the trajectory optimization problem used in collision avoidance
controllers must take multiple aspects of vessel navigation into account, while being
perceptive of their surrounding environment in real time. The generation of control
actions that will result in a trajectory remaining sufficiently clear from any stationary
or moving objects is not the sole objective; an efficient controller should also ensure the

Sensors 2021, 21, 6959. https://doi.org/10.3390/s21216959 https://www.mdpi.com/journal/sensors127

Sensors 2021, 21, 6959

economy of the control actions, as well as the adherence to the collision avoidance rules,
commonly known as the COLREGs [4]. Multiple collision avoidance controllers have been
proposed that fulfil the aforementioned specifications; in [5], a hierarchical multiobjective
optimization problem is formulated, which generates an intermediate waypoint for the
controlled vessel while accounting for the good seamanship rules. In [6], a fuzzy-Bayesian
collision avoidance controller is formulated capable of addressing multiple obstacle vessels
at once. In [7], optimal trajectories for the collision avoidance problem are generated using
a B-Spline-based search algorithm. Lastly, in [8], a collision avoidance controller utilizes
a probabilistic method in order to infer the one-step-ahead position of obstacle vessels,
while also accounting for non-COLREG-compliant obstacle vessels.

In general, it has been observed that controllers that are not model-based can have
trouble incorporating crucial aspects of the trajectory optimization problem, thus compro-
mising practicality. Without a working model of the controlled vessel, its maneuvering
capabilities cannot be easily included in the formulation, and neither can the effect of
environmental conditions be quantified [9,10]. For these reasons, model predictive con-
trol (MPC) emerges as an effective control method for the problem at hand because it
utilizes a model of the plant in order to compute an optimal control trajectory based on
the predicted trajectory of other ships in the vicinity. As a framework, MPC can account
for the uncertainties of both the utilized model of the plant and the trajectory prediction
models of other ships, while also incorporating all possible control objectives (such as
navigational risk, course smoothness, or deviation from the original path) in a single
cost function. Some collision avoidance controllers based on MPC have been proposed
in the literature; a robust MPC controller utilizing straight-line obstacle vessel trajectory
predictions is proposed in [9], capable of COLREG compliance and handling of multiple
obstacles. In [11], motion planning for an autonomous vessel using a sampling-based MPC
method takes place. In [12], an MPC controller for the collision avoidance task is built
by approximating the behavior of an LQR controller, thus ensuring asymptotic stability
of the system. In [13], a neural network used to approximate the MPC response for the
generation of COLREG compliant trajectories for multi ship encounters is presented. In ad-
dition, MPC has been integrated in distributed control frameworks of multi-ship schemes;
for example, a distributed MPC scheme has been employed for a multi-vessel formation
controller with collision avoidance capabilities [14], or for the robust distributed control of
multiple vessels operating for the inter-terminal transport of containers [15].

It becomes apparent that for the scope of the collision avoidance task, information
about the future trajectories of other ships plays a central role. Prevalent in non-data driven
methodologies already used for the vessel trajectory prediction (VTP) problem is the first
principles-based modeling technique [16], carrying a number of significant shortcomings,
such as their inherent complexity, which has a greater negative impact due to the fact that
the model is usually employed multiple times within the duration of each MPC sample.
In order to simplify the solution of the employed kinematic differential equations and
facilitate the real-time prediction of future states, these types of models are usually created
using several assumptions that try to approximate real-world conditions, but also make
the final model far less accurate. Therefore, one should employ a more sophisticated,
data-driven approach for the creation of effective trajectory prediction models that are in-
cluded in MPC controllers. Machine learning has answered the call of producing highly ac-
curate models, which may be easily integrated in predictive frameworks through the use of
black-box modeling, and more specifically, artificial neural network (NN) approaches [17].
NNs employ different architectures in order to remap the original non-linear problem
to a higher-dimensional input space and approximate its dynamics utilizing standard
functions. In this context, various NN techniques have been successfully utilized in control
frameworks solving the vessel trajectory prediction problem.

Feedforward NN architectures, most commonly represented by the multilayer per-
ceptrons (MLPs), have been employed to solve the vessel trajectory prediction problem as
in [18,19], where MLP NNs are trained using the well-established backpropagation algo-

128

Sensors 2021, 21, 6959

rithm outperforming rival methodologies, i.e., linear models and Kalman filters. In [19],
a real AIS dataset gathered from the confined space of a river waterway is used to approxi-
mate the vessel dynamics in such environments. Backpropagation has been the baseline
of more efficient training methods as in [20], where different computational intelligence
approaches like differential evolution, genetic algorithms, and swarm-based techniques are
used to modify the original backpropagation algorithm in order to create more accurate
feedforward NN models. Other NN architectures, like support vector machines (SVMs),
have been employed in conjunction with computational intelligence optimization tech-
niques, i.e., the particle swarm optimization (PSO) algorithm, on AIS datasets to solve
the vessel trajectory prediction problem [21]. In most cases, the inherent abilities of NN
architectures that can meet the standard of high accuracy are limited to a one-step ahead
prediction horizon, in the sense that multi-step ahead predictions would require an ap-
proximation of unknown future states to be made and present an error enlarged through
propagation to the end of the prediction horizon. Such an error would become critically
high after a small number of steps, rendering the control framework useless.

To overcome this problem, long-term trajectory prediction approaches have been
devised with the inclusion of memory features, such as the recurrent neural networks
(RNNs), with their most notable representative, i.e., the long short-term memory (LSTM)
NNs already used in the context of the vessel trajectory prediction problem [22–25].
Besides trajectory modeling and prediction in open waters, advances have also been made
in crowded port waters as in [26], where another modification of the RNNs, namely the
bidirectional gated recurrent unit, is used to address the vessel trajectory prediction prob-
lem, outperforming standard NN methods in such scenarios. Gated recurrent units are
promising candidates for predicting the collective behavior of vessel fleets [27].

Radial basis function (RBF) networks form a unique NN architecture belonging to the
general feedforward NN category. RBFs differ from other NN architectures, having simpler
structures, employing faster training algorithms, and usually producing more accurate
models than MLPs. Within the context of vessel trajectory prediction, RBFs have been
integrated in control frameworks by approximating unknown vessel parameters [28–30].
Recently, RBFs have been applied on real AIS data in order to produce highly accurate
models for one-step and multi-step ahead predictions [31], showing their potential in being
integrated to receding horizon control methodologies.

Remarkably, in the collision avoidance research literature, there are no instances
where the multi-step-ahead trajectory prediction of moving obstacles is addressed in such
a systematic manner; usually these trajectories are either known a priori, or there are
no obstacle ships present whatsoever. An exception occurs in [9], where straight line
trajectory predictions are employed, based on estimates of current course and speed for
the moving obstacle. In this work, a multi-ship MPC controller utilizing RBF obstacle
trajectory prediction models trained using real AIS data is presented for the collision
avoidance task. The main contributions of this work are as follows: first, we introduce a
novel MPC scheme for collision avoidance control, where nonlinear data-driven models
are used to predict the trajectories of obstacle ships; to the authors’ best knowledge, this is
the first such instance in the literature. The previous state-of-the-art approach of using
straight-line obstacle trajectory predictions may have yielded satisfactory approximation
results in open sea case studies, where ships are expected to travel in a straight line, but is
of limited practical use for the cases of narrow gulfs, ports, or canals, where ships are
expected to maneuver while navigating through, thus resulting to nonlinear trajectories.
Secondly, the aforementioned nonlinear models are trained using an AIS data-driven
methodology, which, once again, constitutes an original approach in the context of vessel
collision avoidance. Using real trajectories as training data increases the practicality of the
proposed scheme, since the resulting trajectory prediction models capture the dynamics of
real vessels. The proposed method is tested in a collision avoidance case study at the Miami
port area, and its performance is illustrated by the comparison with an MPC controller

129

Sensors 2021, 21, 6959

employing straight-line obstacle prediction models, which corresponds to the current
state-of-the-art approach [9].

The paper is structured as follows. In Section 2, the AIS-data-driven methodology for
the creation of the RBF trajectory prediction models is presented. In Section 3, some prelim-
inaries on maritime collision avoidance and optimal trajectory generation are described,
and later, the proposed method is presented. In Section 4, the case study based on the port
of Miami is outlined, and the simulation results are discussed in depth. Lastly, in Section 5,
concluding remarks are made.

2. AIS-Data-Based Trajectory Prediction Models

2.1. Radial Basis Function Neural Networks

RBF NNs have been successfully employed to approximate nonlinear system dy-
namics in order to predict future system states in numerous diverse applications [32,33].
Their success can be mainly attributed to their structure, which is simpler when compared
to other NN architectures, as they comprise a single hidden layer, attached linearly to the
network output. This property not only allows for using very fast training algorithms,
but also makes RBF NNs suitable for integration in MPC schemes, as (a) it facilitates the
controller design [34], and (b) helps to solve the MPC online optimization problem in
shorter computational times [35], thus rendering such schemes applicable to systems with
fast dynamics [36]. Another property that makes RBF NNs a popular modeling method in
predictive control schemes is related to their increased approximation capabilities [37,38].
Indeed, notwithstanding their simple structure, RBF NNs have proven to be more accu-
rate in modeling various nonlinear systems when compared to other machine learning
methods, including MLPs, support vector machines (SVMs), random forests, etc. [39].
Especially within the context of the vessel modeling and control problems, RBFs have
already shown great potential in modeling unknown vessel parameters [28,29], in or-
der to create models capable to be integrated in trajectory tracking control algorithms.
Furthermore, in a recent publication [31], it has been shown that RBF NNs trained with the
fuzzy means (FM) algorithm outperform other data-driven techniques such as MLPs when
modeling vessel trajectories based on AIS data.

Training an RBF NN is a process consisting mainly of two phases. The first phase is
performed by applying a clustering technique on the training dataset in order to identify the
centerpoint and optimized parameters of a number of radially symmetric basis functions
called nodes. The incorporation of radial basis functions (e.g., Gaussian, quadratic, etc.) is
the first main difference between RBFs and other feedforward NNs. The linear combination
of these nodes produces the output prediction of the network. Finding the node weights is
the goal of the second phase, a problem trivially solved by least squares.

A typical RBF network can be seen in Figure 1. The structure comprises three distinct
layers, the first of which is the input layer and has the sole purpose of distributing the N
inputs to the L nodes of the hidden layer. The second point differentiating RBFs from other
architectures is the existence of only one hidden layer of N-dimensional nodes. In order

to produce a prediction
ˆ
y(k) given an input datapoint x(k), at first the Euclidean norm is

used to calculate the activity μl(x(k)) for every node l by using the difference between the

k-th input vector x(k) and the l-th node center
^
ul , such that

μl(x(k)) = ‖x(k)− ^
ul‖ =

√√√√ N

∑
i=1

(
xi(k)− ˆ

ui,l

)2
, k = 1, . . . , K (1)

The activity acts as input to the free parameters of each node according to the chosen
RBF. The hidden node response vector z(k) for the k-th datapoint is given by

z(k) = [g(μ1(x(k))), g(μ2(x(k))), ..., g(μL(x(k)))] (2)

130

Sensors 2021, 21, 6959

where g corresponds to the chosen activation function. Note that in this work, a thin plate
spline function is employed

g(μl(x(k))) = μ2
l (x(k)) · log μl(x(k)) (3)

due to the fact that it is an established choice as an RBF kernel producing models of high
accuracy [40], but also because there are no tunable parameters other than the actual input
to the function. Such parameters would require optimization techniques to be included
in the training process, e.g., employment of the Gaussian function would need kernel
width optimization, which is usually performed by cpu-intensive iterative algorithms or
suboptimal trial-and-error techniques.

Finally, the network’s prediction is calculated by linearly combining the hidden note
responses such that

ˆ
y(k) = z(k) ·w (4)

where w is a vector containing the node weights.

Figure 1. A typical radial basis function network structure using Gaussian RBFs.

2.2. The Fuzzy Means (Fm) Training Algorithm

For a given training dataset where Y denotes the real outputs, and after the hidden
node responses Z are formulated, the weight vector w can be trivially calculated by least
squares in matrix form

wT = YT · Z ·
(

ZT · Z
)−1

(5)

thus completing the second training phase in one easy step.
The first phase of training requires a clustering algorithm to be applied to the training

dataset, in which case the fuzzy means (FM) algorithm is a great candidate for this task [39].
Following the notation of the previous example, let us suppose a system with N normalized
input variables xi. At first, each input variable domain must be partitioned into s 1-D fuzzy
sets (FS). Each fuzzy subspace Al , where l = 1, 2, . . . , sN , is formed by the selected sN fuzzy
sets according to the respective input variable. This process creates a N-dimensional grid,
where all intersection points, also called nodes, are candidates to become RBF centerpoints.
The FM algorithm undertakes the task of selecting the appropriate candidate nodes that
will be assigned as RBF centers. To perform the selection procedure, a membership function

μ
Al (x(k)) =

{
1− dl

r(x(k)), i f dl
r(x(k)) ≤ 1

0, i f otherwise
(6)

131

Sensors 2021, 21, 6959

determines whether an input vector lies within the domain of an RBF centered around a
candidate node. In the simple case where all input variable spaces are equally partitioned,
the following distance metric can be used to assign N-dimensional spherical domains to
each candidate node

dl
r(x(k)) =

√√√√ N

∑
i=1

(
al

i,ji − xi(k)
)2

/
√

Nδa (7)

where x(k) is the k-th input vector, al
i,ji is the centerpoint of fuzzy subspace Al , and δa

is the sphere radius, which is the same for each input. The FM algorithm uses a fast
non-iterative procedure to find a subset of the subspaces, so that the final RBF NN’s hidden
layer comprises only the fuzzy sets, which sufficiently cover all training datapoints, in the
sense that each datapoint is included in at least one fuzzy set. For an in-depth description
of the FM algorithm, the reader may refer to [39].

2.3. Data Preprocessing

Best modeling practices mandate that a training dataset should be error- and noise-
free, a case that is far from truth when using data from AIS transceivers [41–45]. AIS data
are irregularly sampled and contain heavy noise, missing data, and erroneous values. Thus,
before employing any modeling technique, rigorous preprocessing is in order.

The Marine Cadastre service (www.marinecadastre.gov, accessed on 25 July 2021)
has been the source of all data used in this work. MarineCadastre.gov is a is a service
that gathers and publicly provides AIS data to marine planning initiatives. In this work,
data from all days between 1 July 2019 and 30 June 2020 have been included and filtered to
keep vessels sailing an area around the port of Miami covered by the geolocation rectangle
defined by the latitudes of 25.720◦ through 25.840◦ and the longitudes of −80.145◦ through
−80.042◦. To conform to the initial assumption of similar size and similar dynamics,
we allowed only cargo ships sailing on engine power into the dataset, further filtering the
dataset to yield a total of 180 vessels.

To address the problems of sample irregularity, noise, and erroneous values, the dataset
was resampled to 120 s, which was deemed enough to capture the high inertia dynam-
ics of large cargo ships. The interpolation technique applied on the data to perform the
resampling was the Akima piecewise cubic interpolation [46], which is quite effective on
geolocation data, performing a mild denoising as well. A heuristic that rejects very far-off
outlier values due to GPS errors was also applied. The trajectories were split in data sam-
ples, with each one containing ten consecutive vessel positions. Note that each trajectory’s
starting point should be the last point of the previous one resulting in an overlap of one
point, but this final position will be used as the model’s output, so no actual overlapping
exists within the input data. The resampling and splitting process yielded a total of about
14 k samples from 3.1 k resampled trajectories of the initial 180 vessels. Algorithm 1 depicts
the step-by-step procedure of preprocessing.

Algorithm 1 Preprocessing Stage

1: Process each entry in the common dataset so that it contains only the following: Vessel ID,
timestamp, latitude, and longitude. Reject all other information.
2: Sort dataset by vessel ID and sort each vessel data by date.
3: Apply resampling and outlier filtering on the data of each vessel to achieve a resampling of 120 s.
4: Split vessel data into trajectories containing ten consecutive vessel positions each.
5: Create final preprocessed dataset, which should contain the vessel ID and final
10-position trajectories.

2.4. Modeling Procedures

AIS transceiver equipped vessels are able to record and exchange timestamped infor-
mation, including geolocation, speed, direction, vessel identification, and specifications

132

Sensors 2021, 21, 6959

data. Vessel trajectory prediction algorithms integrated with collision avoidance techniques
can incorporate trajectory prediction models in order to identify imminent threats and
navigate safely and efficiently within heavily crowded port areas or open seas.

Let us suppose an available AIS dataset, comprising an arbitrary number of Tv trajec-
tories for a total of V vessels, where v = 1, 2, . . . , V. Let us also suppose that the included
trajectories contain an arbitrary number of Kv,t AIS messages AISmv,t

k (timestamped ge-
olocation and other data). In this work, for simplicity reasons, we employ the following
format in AIS messages

AISmv,t
k =

{
Tsv,t

k yv,t
k xv,t

k

}
(8)

where k = 1, 2, . . . , Kv,t, and Tsv,t
k denotes the message timestamp, while yv,t

k and xv,t
k are the

respective latitude and longitude contained in the k-th AIS message for the t-th trajectory of
the v-th vessel. The fact that there are unknown parameters, e.g., the state and controls of
the vessels, prohibits the use of kinematics in calculating future vessel states. Nevertheless,
the vessel dynamics exist in the information hidden within the dataset and can be extracted
and, in most cases, approximated by using a black-box modeling technique such as RBF
NNs. We can assume that a common underlying pattern exists in the dynamics of same-
size vessels executing similar maneuvers, for example, when approaching or leaving a
port, when berthing, when crossing waterway paths, etc. Thus, if a suitable dataset of
sufficient size is made available, an RBF NN can be trained to perform one-step-ahead
predictions about a vessel’s future geolocation by using past AIS messages as seen in the
following equations⎧⎨

⎩ Δ
ˆ
y

v,t

k+1

Δ
ˆ
x

v,t

k+1

⎫⎬
⎭ = RBF NN

(
AISmv,t

k . . . AISmv,t
k−N

)
(9)

ˆ
y

v,t

k+1 = yv,t
k + Δ

ˆ
y

v,t

k+1
ˆ
x

v,t

k+1 = xv,t
k + Δ

ˆ
x

v,t

k+1

(10)

where N is the number of past AIS messages given as inputs to the RBF NN.
The accuracy and simple structures of FM-trained RBF NNs make them ideal to

be integrated in multi-step-ahead predictive control formulations. Receding horizon
techniques require models of very high accuracy due to the inevitable error enlargement
through propagation. This effect appears when the incorporated model is expected to
recurrently make future predictions based on its own previous output throughout the
prediction horizon. The problem is further worsened with the increase of the prediction
horizon and can ultimately drive the control algorithm to failure. Another important
point to be noted is that the linear combination used to produce an RBF NN’s prediction
is a simple and very fast calculation, a fact that benefits model predictive control (MPC)
frameworks [36], which require an optimization problem to be solved iteratively and expect
a significant number of model predictions to be made in order to converge to the optimal
solution at each timestep.

Delta values of the last position of each sample were used as the model’s output,
while the first nine positions were the model’s input⎧⎨

⎩ Δ
ˆ
y

v,t

k+1

Δ
ˆ
x

v,t

k+1

⎫⎬
⎭ = RBF NN

(
yv,t

k xv,t
k . . . yv,t

k−8 xv,t
k−8

)
(11)

The Δ
ˆ
y

v,t

k+1 and Δ
ˆ
x

v,t

k+1 values may be added to the last input position to calculate the
final predicted vessel position. Based on the above procedure, the results of the modeling
process produced an RBF model of very high accuracy [31]. The step-by-step procedure of
the modeling stage can be seen in Algorithm 2.

133

Sensors 2021, 21, 6959

Note that the number of past inputs was determined after a trial-and-error procedure,
where several RBF models were trained using a different number of inputs. After testing
inputs in the range of 3 to 15 past vessel positions, data obtained on model performance
showed that using less than nine inputs produced models with reduced prediction accuracy,
while using more than nine inputs increased the model’s complexity without any significant
accuracy gain compared to the model using nine inputs.

Algorithm 2 Modeling Stage

1: Load final preprocessed dataset.
2 : Replace the final value of all included 10−
position trajectories with the respective delta value according to

{
Δyv,t

10
Δxv,t

10

}
=

{
yv,t

10 − yv,t
9

xv,t
10 − xv,t

9

}
,

so that each trajectory sample is in the form[
yv,t

1 xv,t
1 yv,t

2 xv,t
2 . . . yv,t

9 xv,t
9 Δyv,t Δxv,t

]
.

3: Randomly permute the trajectory samples of each vessel.
4: Split the trajectory samples of each vessel into training, validation, and testing subsets (in this
work a 50%–5%–25% percentage split is used). Do this so that all vessels contribute to all three
subsets according to the chosen splitting.
5: Merge all subset samples, e.g., all training samples of all vessels together in one single dataset
that will be used for training. Do the same for the validation and testing subsets.
6: Normalize the inputs and outputs of the training subset. Apply the normalization coefficients
to the validation and testing subsets.
7 : Apply the fuzzy means algorithm on the training and validation dataset using the nine first sets of yv,t

− xv,t values as inputs and the last set of Δyv,t − Δxv,t values as output.
8: Final model is in the form of Equation (11).

Moreover, a series of tests has been performed by the recurrent application of this
model based on a horizon of 5 timesteps for all trajectories of the testing subset, where,
at each successive timestep, the model had to use an increasing number of its own previous
predictions. As the model uses more of its past predictions, accuracy decreases due to
the enlargement of the propagated prediction error. Such a test can provide intuition
on the models’ ability to be incorporated in receding horizon predictive frameworks.
The quality metrics used for these tests were the root mean squared error (RMSE) and
the root mean squared haversine formula distance (RMSHFD). The haversine formula is
commonly used to measure great circle distances on spherical surfaces. Table 1 presents the
performance metrics obtained after the recurrent application of the chosen model in order
to make predictions for the full length of the trajectories included in the testing subset of
the training procedure. Mean RMSE values for the two outputs of the model, namely the
latitude and longitude, are provided in degrees, wherein can be seen that the error lies in
the order of 1.5 thousandth of a degree. The mean RMSHFD metric shows the respective
error margin in meters when combining the two model outputs to get the actual predicted
future vessel position for all tested trajectories. More details on the modeling procedure for
the one-step ahead models, including detailed results and comparison with other machine
learning approaches, can be found in [31].

Table 1. Performance metrics of the produced RBF NN model.

RBF NN

Latitude (y) Longitude (x)
Mean RMSE (deg) 1439·10−6 1567·10−6

Best combined RBF models
Mean RMSHFD (m) 1200

134

Sensors 2021, 21, 6959

3. MPC for Multi-Ship Collision Avoidance

3.1. Preliminaries on Maritime Collision Avoidance and Trajectory Generation

The objective of maritime collision avoidance is the generation of a risk-free trajectory
that the controlled vessel should follow. A well-defined and effective method of assessing
collision risk in the near future is the closest point of approach (CPA). Stemming from the
concept of the CPA, two metrics are defined: time to CPA (TCPA) and distance to CPA
(DCPA) (see Figure 2). A discussion regarding the quick calculation of TCPA and DCPA
using the line-of-sight (LOS) distance between the controlled vessel and the obstacle ship
is presented in [5]. These metrics depict the urgency of the collision danger of vessel i with
another vessel j as well as its magnitude, and by specifying lowest acceptable thresholds
dmin and tmin concerning the minimum DCPA and minimum TCPA, respectively, one can
construct a risk cost function, as presented in [5].

fr,ij =

⎧⎨
⎩

exp
(
a0
(
dmin − DCPA

(
Ti, Tj

)
+ tmin − TCPA

(
Ti, Tj

)))− 1, i f
DCPA

(
Ti, Tj

) ≤ dmin and TCPA
(
Ti, Tj

) ≤ tmin
0, i f otherwise

(12)

Figure 2. Illustration of the CPA metrics, as well as the LOS angle concept.

Here, a0 is a scaling parameter, and Ti denotes the trajectory matrix containing the x-y
position of the i vessel for every timestep

Ti =

⎡
⎢⎣

x1 y1
...

...
xn yn

⎤
⎥⎦. (13)

By combining TCPA and DCPA, the spatial-temporal nature of a maritime collision
risk with vessel i is successfully reflected. The physical interpretation of Equation (12) is
that a candidate trajectory with larger minimum distance from an obstacle ship occurring
at an earlier time will always be safer than a path with a smaller minimum distance and/or
earlier time of occurrence. Common values for tmin and dmin are 10 min and 0.6 nm;
because the present paper is concerned with collision avoidance in busy waterways such
as ports, a lower dmin value of 0.4 nm is used. In any case, Equation (12) can be readily
incorporated in the cost function of an MPC optimization problem formulation.

A second item in the domain of trajectory generation is efficiency. Vessels should
strive to not deviate too much from their original course when addressing a collision risk
with another vessel. The efficiency of the generated trajectory Ti for vessel i can be reflected
by calculating the sum of absolute deviations from the original trajectory TOG,i

fd,i = ‖TOG,i − Ti‖. (14)

Next, an important requirement to be fulfilled when addressing the problem of col-
lision avoidance are the COLREGs [4]. The implementation of the COLREGs restricts
the domain of possible candidate paths according to the type of encounter, for example
‘head-on,’ ‘crossing,’ and ‘overtaking.’ Head-on vessels should pass each other on the
port side, while a vessel crossing from the starboard side should be given the right of way.
A visual depiction of the encounter rules takes place in Figure 3. Multiple approaches for

135

Sensors 2021, 21, 6959

the modeling of the COLREG rules have been made in the literature [2,5,8], although these
are usually concerned with a one-step-ahead calculation. However, for the case of an
MPC controller, in order to ensure COLREG compliance for a candidate trajectory, all of
its waypoints must be taken into account. By assuming that the LOS angle is increasing
in the anti-clockwise direction, one needs to evaluate whether the LOS angles of each
sequential trajectory timestep position are increasing monotonically, in order to confirm
the compliance of the trajectory for the ‘head-on’ and ‘give-way’ situations.

Figure 3. (a) A head-on situation between two ships; (b) a crossing situation between two ships
(give-way); the orange ship must give way to the crossing ship on its starboard side.

The idea is depicted in Figure 4, where a head-on encounter between vessels i and j
occurs; here, the LOS angles for trajectory Ti monotonically increase, and therefore, it is
deemed as compliant. In contrast, the monotonically decreasing LOS angles of the T′i
trajectory confirm its non-compliance as per the COLREGs intentions. A penalty for non-
compliance of a vessel i encountering a vessel j in a ‘head-on’ or ‘give-way’ situation can
therefore be formulated,

Pij =

{
1, i f aLOSij ↘
0, i f otherwise

, (15)

where aLOSij is the LOS angle vector, calculated for each trajectory point of encountering
vessel i and the current position of encountered vessel j.

Figure 4. Head-on situation between vessels i and j; the LOS angle can be used to assess the COLREG
compliance of a candidate trajectory.

Next, the generated vessel trajectory, apart from being safe and COLREG compliant,
should also take into account the maneuvering capabilities of the controlled vessel, i.e.,
it should be guaranteed that the trajectory is technically possible to be tracked by the vessel.
The feasible search domain of the trajectory optimization problem can be constructed by
a purely geometric approach in the case of a one-step-ahead calculation, such as in [5],
where the design variables are the vessel’s next position and course. However, the extension
of this geometric approach to multiple-steps-ahead requires the application of nonlinear

136

Sensors 2021, 21, 6959

constraints that would bound every sequential vessel position with its previous one,
in order to enforce technical feasibility. For this reason, a model-based approach is preferred.
The Nomoto models constitute a class of vessel course models that are tailored for this task,
and have been widely adopted, not only for the design of collision avoidance schemes [47],
but also for path tracking controllers [48]. The 1st order linear Nomoto model is shown
as follows:

Ts
dω

dt
+ ω = Ksa. (16)

Here, ω is the angular velocity of the vessel, while a is the control input to the vessel’s
rudder. The maneuvering capabilities of the vessel are reflected by the Ts and Ks constants,
called time constants and rudder gain constants, respectively, while typical values are in the
[0.5, 2] range for both. Solving the differential Equation (16) by assuming constant rudder
angle input for a t time interval, the 1st order linear Nomoto model can be discretized
as follows [8]:

Δθ(t) = Ks a
(

t− Ts + Ts exp
(

t
Ts

))
(17)

Here, Δθ is the course change that would occur if a control input of a was applied and
held for a time period of t. By setting this time period t as the discretization interval Δt,
a course model can be used to create a discrete vessel position model as follows

θk+1 = θk−1 + Δθk(ak)
xk+1 = xk + cos(θk+1)Vk Δt
yk+1 = yk + sin(θk+1)Vk Δt

(18)

Here, θk, xk, yk is the current course, horizontal displacement, and vertical displace-
ment according to a global reference frame, respectively, while Vk is the vessel velocity.
The discretization interval Δt can be set according to the simulation resolution required.
Equation (18) constitute a discrete position model Li for the i-th vessel,

xi(k + 1) = Li(ui, xi(k)), (19)

with input vector ui =
[

a V
]

and state vector xi =
[

θ x y
]
. By evaluating the

discrete vessel position model Li for {1, 2, . . . , n} consecutive timesteps, where n the total
timesteps, a trajectory Ti can be created for the i-th vessel, as shown in Equation (13).

3.2. Collision Avoidance with Mpc and Obstacle Trajectory Prediction Models

The MPC framework has demonstrated its aptitude in handling the uncertainties and
nonlinearities of the collision avoidance problem multiple times in the literature [9,49];
however, no other works have incorporated a nonlinear data-driven obstacle trajectory
prediction model in their formulation. In MPC, the optimal moves of the controlled vessels
are calculated for multiple steps ahead by solving a constrained optimization problem,
with constraints in real time, for each controller sample time tcst. The cost function of the
optimization problem is constituted by two horizons, namely the prediction horizon hp
and the control horizon hc; the first accounts for the total discrete timesteps ahead that
the model can be evaluated, while the second for the number of timesteps that the control
variables can be modified. Given a set of controlled vessels Vc = {1, 2, . . . , Nc} and a set
of non-controlled or obstacle vessels Vo = {1, 2, . . . , No} where Nc and No are the total
number of controlled and non-controlled vessels, respectively, the optimization problem’s
cost function can be formulated as the summation of all the cost functions of the respective
controlled vessels for the kth timestep:

min
U(k)

∑i∈V Ci(Xc(k), Xo(k))

s.t. Uu ≤ U(k) ≤ Ul
N(Xc(k), Xo(k)) ≥ de
P(Xc(k), Xo(k)) = 0

(20)

137

Sensors 2021, 21, 6959

Here, U(k) is the input matrix and is created by the horizontal concatenation of the
input vectors of all controlled vessels Vc, up until the control horizon hc:

U(k) =

⎡
⎢⎣

u1(k) u1(k + 1) · · · u1(k + hc − 1)
...

. . .
...

uNc(k) uNc(k + 1) · · · uNc(k + hc − 1)

⎤
⎥⎦. (21)

Next Xc(k) and Xo(k) are the controlled and non-controlled vessel state matrices,
respectively, and are created by the horizontal concatenation of the state vectors of all con-
trolled and non-controlled vessels Vc and Vo, respectively, up to the prediction horizon hp.

Xc(k) =

⎡
⎢⎣

xc,1(k) xc,1(k + 1) · · · xc,1
(
k + hp − 1

)
...

. . .
...

xc,Nc(k) xc,Nc(k + 1) · · · xc,Nc

(
k + hp − 1

)
⎤
⎥⎦

Xo(k) =

⎡
⎢⎣

xo,1(k) xo,1(k + 1) · · · xo,1
(
k + hp − 1

)
...

. . .
...

xo,No (k) xo,No (k + 1) · · · xo,No

(
k + hp − 1

)
⎤
⎥⎦

(22)

For simplicity, because consecutive states xi(k) up to xi
(
k + hp − 1

)
constitute a single

trajectory Ti(k), one can write Xc(k) and Xo(k) as the concatenation of the trajectories of
the respective vessel sets Vc, Vo as per Equation (13):

Xc(k) =

⎡
⎢⎣

Tc,1(k)
...

Tc, Nc(k)

⎤
⎥⎦ Xo(k) =

⎡
⎢⎣

To,1(k)
...

To,No (k)

⎤
⎥⎦. (23)

Next, Ci(k) is the cost function of the i-th controlled vessel, formulated as follows:

Ci(k) = Fi(X(k)) + aGG2(Ui(k)) (24)

Here, X(k) is the vertical concatenation of the two state matrices Xc(k), Xo(k),
containing the trajectories of all vessels V = Vc

⋃
Vo

X(k) =
[

Tc,1(k) . . . Tc, Nc(k) To,1(k) . . . To,No (k)
]′. (25)

The cost function is comprised by two terms Fi and G, each concerned with the pre-
diction and control horizon, respectively. The presence of G term, weighted by the aG
parameter, encourages the smoothness of the control actions and, consequently, the gener-
ated trajectories of the controlled vessels

G(Ui(k)) =
hc−1

∑
j=1

‖Ui,j+1(k)−Ui,j(k)‖. (26)

Term Fi consolidates the collision avoidance and course keeping objectives, and is
specific to the i-th vessel

Fi(X(k)) = ar ∑
j∈V\i

(
fr,ij

2(Xi(k), Xj(k)
)) 1
|V\i| + ad fd,i

2(Xi(k)). (27)

In Equation (26), fr,ij is the collision risk between the i-th and the j-th vessel, as calcu-
lated using their respective trajectories Xi(k), Xj(k) by applying Equation (12), and fd,i is the
deviation from the original trajectory TOG, i, as expressed in Equation (14). Both terms are
weighted by the ar and ad weighting parameters, respectively. Since we are concerned with
the safety of the generated trajectory throughout the whole prediction horizon, the mean

138

Sensors 2021, 21, 6959

collision risk from all vessels in V\i is evaluated, in contrast to other approaches [5],
where only the maximum collision risk at time k is minimized. This way, all possible
collision risks are addressed and reduced simultaneously, thus avoiding the adverse possi-
bility of evading one collision risk and increasing another. Moreover, the reason that risk
avoidance is used as a control objective in Equation (27) and not as a hard optimization
constraint is to ensure that the MPC optimization problem of Equation (20) will not fail
in the case of the existence of an inescapable collision risk; as shown in Equation (12),
risk is a function of distance to CPA, meaning that the controller will continue to attempt to
maximize that distance, thus fulfilling the control intention in such an encounter. However,
in order to guarantee that collisions will be avoided, one more constraint to the MPC
optimization problem is added by setting an emergency distance de (where de < dmin);
to be more specific, the vector N contains the DCPAs of all controlled vessels Vc, which are
required to be above the emergency distance.

At this point, it must be noted that since the state matrix X(k) consolidates all vessel
trajectories, controlled and non-controlled alike, a degree of cooperation is induced between
the respective controlled vessels Vc. Lastly, returning to the optimization problem denoted
in Equation (20), the U(k) input matrix is bounded by the upper and lower matrices Uu,

Ul , respectively. The vector P contains the COLREG non-compliance penalties for the
controlled vessels Vc as calculated in Equation (15), which are required to be zero via an
equality constraint.

The next item to be addressed regarding the MPC formulation is the used model that
maps the input variables U to the state variables of the controlled vessels Xc. Here, the 1st
order linear Nomoto model is used, as described in Equation (18), with the addition of
input noise that accounts for modeling error e and environmental parameters:

xc,i(k + 1) =
ˆ
Li(ui, xc,i(k)), where i ∈ Vc

ˆ
Li(ui, xc,i(k)) = Li(ui + e(ui), xc,i(k)), where e(ui) = ui G

(
0, σ2).

(28)

Here, G is a random variable sampled from a Gaussian distribution with a standard
deviation of σ. Finally, the state matrix of the non-controlled vessels Xo(k) is assumed to be
unknown for the scope of this research, and thus, an estimation is required, based on past
positions. For this task, the RBF prediction model presented in Section 2.3 is employed for
each non-controlled vessel j, and its trajectory for the k-th timestep is estimated using its
past nine positions:

ˆ
To,j(k) = RBF

(
xo,j(k), xo,j(k− 1), . . . , xo,j(k− 9)

)
, where j ∈ Vo. (29)

Next, in order to alleviate a possible computational burden for the MPC optimization
problem, an important assumption should be made. The formulation of the control scheme
as-presented would give rise to a high-dimensional search space for the MPC optimization
problem, thus greatly hindering its effective solution. It is assumed then that all vessels
retain their initial speed, with the only controllable variable being the vessel’s rudder angle;
this way, the total number of control variables is reduced by half. This approach to the
collision avoidance problem has occurred in the literature [5], and is not simplistic for two
reasons: first, good seafaring practice dictates that course change maneuvers are preferred
over speed ones, not only because they conserve energy, but also because they better
emphasize the intentions of the vessel to outside observers, such as other vessels in the
vicinity. Second, since large container ships will be examined in the scope this case study,
their large longitudinal inertia [48] confirms the assumption that the speed remains almost
constant during the timeframe of a typical collision avoidance maneuvering scenario.

139

Sensors 2021, 21, 6959

Therefore, for the scope of this paper, the input matrix U at timestep k is formulated
as follows:

U(k) =

⎡
⎢⎣

a1(k) a1(k + 1) · · · a1(k + hc − 1)
...

. . .
...

aNc(k) aNc(k + 1) · · · aNc(k + hc − 1)

⎤
⎥⎦, (30)

where ai(k) is the rudder angle of vessel i at timestep k.
Having defined all aspects of the MPC optimization problem, a reiteration of the

challenges of the collision avoidance control problem and how they are addressed by the
controller is in order: firstly, the goal of the control design is to generate trajectories for
the controlled vessels that are risk-free (Equation (12)), smooth (Equation (26)), COLREG-
compliant (Equation (15)), and do not deviate from the original course (Equation (14)).
Possible collision risks are assessed by utilizing trajectory predictions for non-controlled
(obstacle) vessels in the vicinity. The controllable variables are the rudder angles of the
vessels (vessel speed is considered constant), while a discrete 1st order Nomoto model
(Equation (28)) is used for the modeling of the vessel dynamics, which was also infused
with a noise signal for the purpose of accounting for uncertainties and environmental
factors. The aforementioned vessel dynamics model has been compared to its higher-order
nonlinear counterparts in [50], and it was shown that vessel course inaccuracies occur
only for high yaw rates. Given the fact that the proposed collision avoidance method
is concerned with large vessels with slow dynamics, the used vessel dynamics model is
deemed adequate for the case. In addition, MPC has shown to be robust against model
uncertainties or input noise [36]. Finally, the constraints that must be adhered to when
searching for the optimal solution (Equation (20)) are the technical bounds on the controlled
variables (i.e., maximum and minimum rudder angles) and the COLREG compliance of
the result trajectory.

3.3. Control Framework

Having presented the proposed MPC controller, this section describes its integration
within a general control framework. As shown in Figure 5, the framework is comprised
by an offline and an online process. The offline process corresponds to the RBF trajectory
prediction model training, using data from a specific area of interest (for example, a port)—
naturally then, it could be undertaken by the port authority. The online process corresponds
to the real-time control of autonomous vessels in the presence of obstacle vessels in the area
of interest. The MPC collision avoidance controller, as described in Section 3.2, is integrated
here and is supplied with real time trajectory predictions of all obstacle vessels in order
to calculate the optimal control actions for the controlled vessels. Since the RBF trajectory
prediction model has been trained offline in the port authority premises, it is sensible to
place the MPC controller there too, and to communicate the computed control actions
per control timestep via a communications link with the controlled vessels. Figure 6
demonstrates this concept.

The MPC optimization problem described in Equation (20) is solved using the se-
quential quadratic programming (SQP) algorithm, which involves iterative calls to the
objective function [35]. As shown in Figure 5, the integration of the MPC controller in the
control framework requires the calculation of the obstacle vessel trajectory predictions for
every controller timestep. Therefore, two main sources of computational complexity arise:
the first is the evaluation of the RBF trajectory prediction model, which is shown to be in
the order of magnitude of milliseconds [31], meaning that multiple obstacle vessels can be
accounted for by the control scheme. The second is the solution of the optimization problem
(Equation (20)) by the SQP algorithm, which is known to converge quickly and with few
objective function calls [51]. It is concluded that a typical controller timestep duration,
comprised by the two aforementioned sources, will not exceed the order of magnitude of
seconds, which is considered reasonable given the slow dynamics of large vessels.

140

Sensors 2021, 21, 6959

Figure 5. The proposed control framework.

Figure 6. Communications within the proposed control framework.

4. Case Study

In this section, the performance of the proposed multi-ship MPC controller is assessed
using real-life obstacle ship trajectories, which were sourced and preprocessed as described
in Section 2.4. In order to underline the importance of using sophisticated trajectory predic-
tion models in the context of collision avoidance controller design, the proposed method
is compared to an MPC controller that uses straight-line predictions for the trajectories of
obstacle ships based on their current course and speed [9]. To this end, two crossing scenar-
ios are examined, while performance indicators of the generated trajectories are extracted
and discussed in detail. The simulations were coded and executed on Matlab 2020b, on a
computer with an Intel i7 processor and 16 GB RAM. The simulation sample time is 30“.
Lastly, the tuning and parameters of the methods are shown in Table 2, while the vessel
parameters are shown in Table 3.

141

Sensors 2021, 21, 6959

Table 2. MPC tuning parameters.

Parameter Description Value

tcst Controller sample time 1′
hp Control horizon 5
hc Prediction horizon 15
a0 Risk function scaling parameter 3
ar Risk term weighting parameter 1
ad Course deviation term weighting parameter 0.05
aG Control action smoothness term weighting parameter 5

Table 3. Vessel parameters.

Parameter Description Value

dmin Minimum allowable DCPA for risk calculation 750 m
de Emergency distance 200 m

tmin Minimum allowable TCPA for risk calculation 10′
Ks Rudder gain constant 0.5
Ts Rudder time constant 2

4.1. Multi-Ship Collision Avoidance Control for the Miami Port

For this case study, two controllable vessels are chosen, moving in parallel to each other
and encountering an obstacle vessel moving into the port of Miami. For the performance
evaluation of the two controllers, two scenarios are created; the first contains a head-on
encounter type, while the second an overtaking maneuver that changes into a crossing
encounter as time progresses. In the first scenario, the two controlled vessels are leaving the
port of Miami at a course of 110◦, when they encounter a single obstacle on their starboard
side, which, in turn, is looking to enter the port. In the second scenario, the two controlled
vessels are overtaking an obstacle vessel on her port side when, suddenly, she turns port-
side in order to enter the port of Miami, crossing into their intended path. The challenge
posed by the two scenarios is that the two controllable vessels should maintain a safe
distance between each other and the obstacle vessel, while also navigating smoothly
and without unnecessary deviation from their original course. It should also be noted
that the obstacle vessel is non-controllable and, therefore, follows a predetermined path,
without considering other vessels.

The response of the MPC controller utilizing straight-line prediction models (hereby re-
ferred to as ‘MPC-SLP’) for the first scenario is shown in the left column of the subfigures
within Figure 7 for the 3-, 9-, 10-, and 16.5-min timesteps. The response of the proposed
MPC controller utilizing RBF prediction models (hereby referred to as ‘MPC-RBFP’) for the
same scenario and same time instances are shown in the right column of the subfigures
within Figure 8. Next, the responses of MPC-SLP and MPC-RBFP for the second scenario
are shown in the left and right subfigure columns of Figure 8, respectively, for the 6-,
12-, 13.5-, and 17-min timesteps. In the aforementioned response figures, the red and
blue dotted lines denote the original, undisturbed trajectory for controlled vessels 1 & 2,
respectively, while the black dotted line shows the predetermined path that the obstacle
ship will follow as the simulation progresses. Next, the red and blue dashed lines denote
the trajectory that the controlled vessels intend to follow, as calculated by the current
MPC iteration, while the black dashed line shows the current trajectory prediction of the
obstacle ship, as utilized by the MPC controller. The grey dashed circles have a radius of
dmin and denote the safe ship domain for the two controlled vessels; should any vessel
enter another’s domain at any time, a collision risk arises. Lastly, the red-colored and
blue-colored rectangles mark the controlled vessels 1 & 2 positions, respectively, while the
grey rectangle marks the obstacle ship’s position; it should be noted that the markers are

142

Sensors 2021, 21, 6959

not to-scale with the real dimensions of the vessels, since they have been enlarged for
graphical convenience.

(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

Figure 7. Scenario 1. The left subfigure column refers to the MPC-SLP scheme, while the right to the MPC-RBFP scheme.
Subfigures (a1,b1) refer to time instance 3′, (a2,b2) to 9′, (a3,b3) to 10′, and finally, (a4,b4) to 16.5′.

143

Sensors 2021, 21, 6959

(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

Figure 8. Scenario 2. The left subfigure column refers to the MPC-SLP scheme, while the right to the MPC-RBFP scheme.
Subfigures (a1,b1) refer to time instance 6′, (a2,b2) to 12′, (a3,b3) to 13.5′, and finally, (a4,b4) to 17′.

4.2. Discussion

Firstly, in order to assist the discussion in this subsection, distance plots are generated
for the controlled vessels that are in closest proximity with the obstacle ship for each
scenario (see Figure 9). In addition, the performance metrics for each controller in each
scenario are shown in Table 4.

144

Sensors 2021, 21, 6959

(a1) (b1)

(a2) (b2)

Figure 9. Distance plots for scenarios 1 & 2. The left subfigure column refers to the MPC-SLP scheme, while the second to
the MPC-RBFP scheme. Note that for scenario 1 (a1,b1) and for scenario 2 (a2,b2), the MPC-SLP violates the lower limit on
distance from CPA; therefore, its trajectories are deemed unsafe.

Table 4. Performance metrics for the generated trajectories of the MPC-RBFP and MPC-SLP schemes for the two simulation
scenarios.

Scenario 1 Scenario 2

s Controlled Vessel MPC-RBFP MPC-SLP MPC-RBFP MPC-SLP

Course
deviations (1)

1 1.31·104 2.21·104 0.658·104 0.521·104

2 1.49·104 2.85·104 0.404·104 0.529·104

Control action
smoothness (2)

1 307.35 476.59 242.12 167.85
2 290.94 424.43 92.47 128.41

Risk of trajectory (3) 1 0 4.032·106 0 0
2 0 0 0 3.949·106

Cost of trajectory (4) 1 9.05·106 1.62·1013 2.63·106 1.49·106

2 2.63·106 4.15·107 8.58·105 1.55·1013

(1) As calculated by Equation (14). (2) As calculated by Equation (26). (3) As calculated by Equation (12). (4) As calculated by Equation (24).

For the head-on encounter of scenario 1, the correct trajectory prediction of the ob-
stacle ship proves vital for the success of the proposed scheme. Considering timestep 3
(see Figure 7(a1,b1)), the MPC-RBFP scheme is already applying evasive control actions,
since the correct inference of the general direction of the obstacle ship has given rise to a

145

Sensors 2021, 21, 6959

possible collision risk in the near future. In contrast, the MPC-SLP controller does not apply
any control actions yet, because, based on the straight-line prediction model that it utilizes,
the obstacle vessel will continue north and, thus, remain well clear of the controlled vessels.
For the same reason, it takes MPC-SLP another 5′ minutes in order to correctly assess the
collision risk and apply decisive control actions, but by then it is too late; by timestep 9′
(see Figure 7(a3,b3)), controlled vessel 2 reaches its CPA with the obstacle ship, with a
DCPA of 680 m for controlled vessel 2, well below the acceptable minimum distance dmin,
as shown in Figure 9(a1). In contrast, the MPC-RBFP controller generates a smooth, safe,
and consistent trajectory, owed to the correct trajectory prediction of the obstacle vessel.
Not only does it reach an acceptable DCPA of 751 m for controlled vessel 2, but it also
manages to apply consistent control actions and not significantly deviate from the original
course, as shown in Table 4.

Next, the performance of the two controllers is assessed in an overtaking/crossing
encounter in scenario 2. Here, the effect of the used trajectory prediction models is once
again eminent: At timestep 6 (see Figure 8(a1,b1)), MPC-RBFP calculates a sharp control
move to port-side for controlled vessel 1 in anticipation of the obstacle ship’s crossing
towards the port of Miami; in contrast, MPC-SLP applies a lower rate of steering for
controlled vessel 1, because the straight-line trajectory prediction places its CPA with the
obstacle ship at a later time instance. This failure to correctly place the CPAs has adverse
effects on vessel 2 trajectory too, since it is displaced unnecessarily to the left in false
anticipation of a collision risk. In addition, the obstacle ship crosses into the domain of
controlled vessel 1 (see Figure 8(a2)) once it changes course towards the Miami port at
timestep 8′. On the other hand, the MPC-RBFP scheme places controlled vessel 1 in a better
position to narrowly evade the breach of its safe domain (see Figure 8(b2)) throughout the
simulation. This performance is owed to the trajectory that the RBF model generated for the
obstacle vessel, placing its predicted CPA much closer to the real CPA for both controlled
vessels. Moreover, it should be noted that for scenario 2, unnecessary deviations from the
original course are avoided for controlled vessel 2, as indicated by the total deviation values
in Table 4. In general, the proposed method achieves a lower overall cost for the generated
trajectories, as shown in Table 4, while obtaining a certain degree of cooperation between
the two vessels, where one makes way for the other in anticipation of their upcoming
evasive maneuvers. Moreover, the results show that the proposed method exhibits robust
characteristics against environmental effects, which are modeled as input noise in the
vessel dynamic model for the scope of the simulations, while accounting for COLREGs.
Lastly, the average CPU time evaluation of the MPC calculation was recorded as 7s for
both scenarios, which is well within the allocated simulation controller timestep tcst of 60 s,
proving, in fact, that the proposed method is scalable to a greater number of controlled and
obstacle vessels.

5. Conclusions

In this paper, a multi-ship MPC controller utilizing RBF obstacle ship trajectory
prediction models trained on real AIS data is proposed for the collision avoidance task in
busy ports or waterways. The proposed method is compared to an MPC controller using
straight-line obstacle ship trajectory prediction models for a real simulation case for the
port of Miami. The simulations have shown that the incorporation of a trajectory prediction
model with a moderate degree of accuracy greatly benefits the performance of a collision
avoidance controller; this is due to the fact that a collision risk can be detected earlier and in
time, so that it can be accommodated by the slow maneuvering dynamics of larger vessels
such as container ships. Moreover, this early detection enables the planning of a more
economic trajectory for the controlled vessels and enables their better cooperation.

Author Contributions: The authors’ individual contributions, are summarized below: M.P.:
Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Software;
Validation; Writing—original draft, Writing—review and editing. M.S.: Conceptualization; Data cura-
tion; Investigation; Methodology; Software; Visualization; Writing—original draft, Writing—review

146

Sensors 2021, 21, 6959

and editing. H.S.: Conceptualization; Formal analysis; Supervision; Writing—original draft, Writing—
review and editing. A.A.: Conceptualization; Formal analysis; Funding acquisition; Methodology;
Project administration; Resources; Supervision; Writing—original draft, Writing—review and editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This research is co-financed by Greece and the European Union (European Social Fund-
ESF) through the Operational Programme «Human Resources Development, Education and Lifelong
Learning 2014–2020» in the context of the project “Cooperative distributed adaptive model predictive
control methods using computational intelligence” (MIS 5050291).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: In this work, the publicly available AIS dataset provided by the Marine
Cadastre service (www.marinecadastre.gov, accessed on 25 July 2021) has been used for trajectory
modeling purposes.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References

1. Zaman, M.B.; Kobayashi, E.; Wakabayashi, N.; Khanfir, S.; Pitana, T.; Maimun, A. Fuzzy FMEA model for risk evaluation of ship
collisions in the Malacca Strait: Based on AIS data. J. Simul. 2014, 8, 91–104. [CrossRef]

2. Zhang, J.; Zhang, D.; Yan, X.; Haugen, S.; Guedes Soares, C. A distributed anti-collision decision support formulation in multi-ship
encounter situations under COLREGs. Ocean Eng. 2015, 105, 336–348. [CrossRef]

3. Puisa, R.; Lin, L.; Bolbot, V.; Vassalos, D. Unravelling causal factors of maritime incidents and accidents. Saf. Sci. 2018, 110,
124–141. [CrossRef]

4. IMO COLREG. Convention on the International Regulations for Preventing Collisions at Sea, 1972; IMO: London, UK, 2003.
5. Hu, L.; Naeem, W.; Rajabally, E.; Watson, G.; Mills, T.; Bhuiyan, Z.; Raeburn, C.; Salter, I.; Pekcan, C. A multiobjective optimization

approach for COLREGs-Compliant path planning of autonomous surface vehicles verified on networked bridge simulators.
IEEE Trans. Intell. Transp. Syst. 2020, 21, 1167–1179. [CrossRef]

6. Perera, L.P.; Carvalho, J.P.; Guedes Soares, C. Intelligent ocean navigation and fuzzy-Bayesian decision/action formulation.
IEEE J. Ocean. Eng. 2012, 37, 204–219. [CrossRef]

7. Zhang, X.; Wang, C.; Chui, K.T.; Liu, R.W. A Real-Time Collision Avoidance Framework of MASS Based on B-Spline and Optimal
Decoupling Control. Sensors 2021, 21, 4911. [CrossRef] [PubMed]

8. Wang, T.; Wu, Q.; Zhang, J.; Wu, B.; Wang, Y. Autonomous decision-making scheme for multi-ship collision avoidance with
iterative observation and inference. Ocean Eng. 2020, 197, 106873. [CrossRef]

9. Johansen, T.A.; Perez, T.; Cristofaro, A. Ship collision avoidance and COLREGS compliance using simulation-based control
behavior selection with predictive hazard assessment. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3407–3422. [CrossRef]

10. Aguiar, A.P.; Pascoal, A.M. Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean
currents. Int. J. Control 2007, 80, 1092–1108. [CrossRef]

11. Caldwell, C.; Dunlap, D.; Collins, E. Motion planning for an autonomous Underwater Vehicle via Sampling Based Model Predic-
tive Control. In Proceedings of the Oceans 2010 MTS/IEEE Seattle, Seattle, WA, USA, 20–23 September 2010; Volume 670–671,
pp. 1370–1377.

12. Taherian, S.; Halder, K.; Dixit, S.; Fallah, S. Autonomous Collision Avoidance Using MPC with LQR-Based Weight Transformation.
Sensors 2021, 21, 4296. [CrossRef]

13. Xie, S.; Garofano, V.; Chu, X.; Negenborn, R.R. Model predictive ship collision avoidance based on Q-learning beetle swarm
antenna search and neural networks. Ocean Eng. 2019, 193, 106609. [CrossRef]

14. Chen, L.; Hopman, H.; Negenborn, R.R. Distributed model predictive control for vessel train formations of cooperative multi-
vessel systems. Transp. Res. Part C Emerg. Technol. 2018, 92, 101–118. [CrossRef]

15. Zheng, H.; Negenborn, R.R.; Lodewijks, G. Robust Distributed Predictive Control of Waterborne AGVs-A Cooperative and
Cost-Effective Approach. IEEE Trans. Cybern. 2018, 48, 2449–2461. [CrossRef]

16. Von Ellenrieder, K.D. Stable Backstepping Control of Marine Vehicles with Actuator Rate Limits and Saturation *.
IFAC-PapersOnLine 2018, 51, 262–267. [CrossRef]

17. Haykin, S. Neural Networks: A Comprehensive Foundation, 3rd ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1999; Volume 13,
ISBN 0131471392.

18. Zhou, H.; Chen, Y.; Zhang, S. Ship Trajectory Prediction Based on BP Neural Network. J. Artif. Intell. 2019, 1, 29–36. [CrossRef]

147

Sensors 2021, 21, 6959

19. Xu, T.; Liu, X.; Yang, X. Ship trajectory online prediction based on BP neural network algorithm. In Proceedings of the
Proceedings-2011 International Conference of Information Technology, Computer Engineering and Management Sciences,
ICM 2011, Penang, MY, USA, 13–14 June 2011; Volume 1, pp. 103–106.

20. Ma, S.; Liu, S.; Meng, X. Optimized BP neural network algorithm for predicting ship trajectory. In Proceedings of the 2020
IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference, ITNEC 2020, Chongqing, China,
12–14 June 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 525–532.

21. Liu, X.; He, W.; Xie, J.; Chu, X. Predicting the Trajectories of Vessels Using Machine Learning. In Proceedings of the 2020 5th
International Conference on Control, Robotics and Cybernetics, CRC 2020, Wuhan, China, 16–18 October 2020; Institute of
Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 66–70.

22. Li, W.; Zhang, C.; Ma, J.; Jia, C. Long-term vessel motion predication by modeling trajectory patterns with AIS data. In Proceedings
of the ICTIS 2019-5th International Conference on Transportation Information and Safety, Liverpool, UK, 14–17 July 2019;
Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 1389–1394.

23. Ding, M.; Su, W.; Liu, Y.; Zhang, J.; Li, J.; Wu, J. A Novel Approach on Vessel Trajectory Prediction Based on Variational LSTM.
In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications, ICAICA 2020,
Dalian, China, 27–29 June 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 206–211.

24. Tampakis, P.; Chondrodima, E.; Pikrakis, A.; Theodoridis, Y.; Pristouris, K.; Nakos, H.; Petra, E.; Dalamagas, T.; Kandiros, A.;
Markakis, G.; et al. Sea Area Monitoring and Analysis of Fishing Vessels Activity: The i4sea Big Data Platform. In Proceedings of
the Proceedings-IEEE International Conference on Mobile Data Management, Versailles, France, 30 June–3 July 2020; Institute of
Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 275–280.

25. Forti, N.; Millefiori, L.M.; Braca, P.; Willett, P. Prediction oof Vessel Trajectories from AIS Data Via Sequence-To-Sequence Recurrent
Neural Networks. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-
Proceedings, Barcelona, Spain, 4–8 May 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020;
pp. 8936–8940.

26. Wang, C.; Ren, H.; Li, H. Vessel trajectory prediction based on AIS data and bidirectional GRU. In Proceedings of the Proceedings-
2020 International Conference on Computer Vision, Image and Deep Learning, CVIDL 2020, Chongqing, China, 1–12 July 2020;
Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 260–264.

27. Tritsarolis, A.; Chondrodima, E.; Tampakis, P.; Pikrakis, A. Online Co-movement Pattern Prediction in Mobility Data. arXiv 2021,
arXiv:2102.08870.

28. Zhu, G.; Du, J.; Kao, Y. Robust adaptive neural trajectory tracking control of surface vessels under input and output constraints.
J. Frankl. Inst. 2020, 357, 8591–8610. [CrossRef]

29. Zhang, C.; Wang, C.; Wei, Y.; Wang, J. Robust trajectory tracking control for underactuated autonomous surface vessels with
uncertainty dynamics and unavailable velocities. Ocean Eng. 2020, 218, 108099. [CrossRef]

30. Li, C.; Zhao, Y.; Wang, G.; Fan, Y.; Bai, Y. Adaptive RBF neural network control for unmanned surface vessel course track-
ing. In Proceedings of the 6th International Conference on Information Science and Technology, ICIST 2016, Dalian, China,
6–8 May 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 285–290.

31. Stogiannos, M.; Papadimitrakis, M.; Sarimveis, H.; Alexandridis, A. Vessel Trajectory Prediction Using Radial Basis Function Neu-
ral Networks. In Proceedings of the 2021 IEEE 19th International Conference on Smart Technologies (EUROCON), Lviv, Ukraine,
6–8 July 2021.

32. Alexandridis, A.; Stogiannos, M.; Papaioannou, N.; Zois, E.; Sarimveis, H. An inverse neural controller based on the applicability
domain of RBF network models. Sensors 2018, 18, 315. [CrossRef]

33. Yang, Q.; Ye, Z.; Li, X.; Wei, D.; Chen, S.; Li, Z. Prediction of flight status of logistics uavs based on an information entropy radial
basis function neural network. Sensors 2021, 21, 3651. [CrossRef]

34. Bhartiya, S.; Whiteley, J.R. Factorized approach to nonlinear MPC using a radial basis function model. AIChE J. 2001, 47, 358–368.
[CrossRef]

35. Alexandridis, A.; Sarimveis, H.; Ninos, K. A Radial Basis Function network training algorithm using a non-symmetric partition
of the input space-Application to a Model Predictive Control configuration. Adv. Eng. Softw. 2011, 42, 830–837. [CrossRef]

36. Stogiannos, M.; Alexandridis, A.; Sarimveis, H. Model predictive control for systems with fast dynamics using inverse neural
models. ISA Trans. 2018, 72, 161–177. [CrossRef] [PubMed]

37. Han, H.G.; Wu, X.L.; Qiao, J.F. Real-time model predictive control using a self-organizing neural network. IEEE Trans. Neural
Netw. Learn. Syst. 2013, 24, 1425–1436. [CrossRef] [PubMed]

38. Wang, T.; Gao, H.; Qiu, J. A Combined Adaptive Neural Network and Nonlinear Model Predictive Control for Multirate
Networked Industrial Process Control. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 416–425. [CrossRef] [PubMed]

39. Alexandridis, A.; Chondrodima, E.; Giannopoulos, N.; Sarimveis, H. A fast and efficient method for training categorical radial
basis function networks. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2831–2836. [CrossRef] [PubMed]

40. Karamichailidou, D.; Kaloutsa, V.; Alexandridis, A. Wind turbine power curve modeling using radial basis function neural
networks and tabu search. Renew. Energy 2021, 163, 2137–2152. [CrossRef]

41. Tu, E.; Zhang, G.; Rachmawati, L.; Rajabally, E.; Huang, G. Bin Exploiting AIS Data for Intelligent Maritime Navigation:
A Comprehensive Survey from Data to Methodology. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1559–1582. [CrossRef]

148

Sensors 2021, 21, 6959

42. Last, P.; Bahlke, C.; Hering-Bertram, M.; Linsen, L. Comprehensive Analysis of Automatic Identification System (AIS) Data in
Regard to Vessel Movement Prediction. J. Navig. 2014, 67, 791–809. [CrossRef]

43. Zhang, L.; Meng, Q.; Xiao, Z.; Fu, X. A novel ship trajectory reconstruction approach using AIS data. Ocean Eng. 2018, 159,
165–174. [CrossRef]

44. Fu, P.; Wang, H.; Liu, K.; Hu, X.; Zhang, H. Finding Abnormal Vessel Trajectories Using Feature Learning. IEEE Access 2017, 5,
7898–7909. [CrossRef]

45. Emmens, T.; Amrit, C.; Abdi, A.; Ghosh, M. The promises and perils of Automatic Identification System data. Expert Syst. Appl.
2021, 178, 114975. [CrossRef]

46. Akima, H. A Method of Bivariate Interpolation and Smooth Surface Fitting Based on Local Procedures. Commun. ACM 1974, 17,
18–20. [CrossRef]

47. Zhang, J.; Yan, X.; Chen, X.; Sang, L.; Zhang, D. A novel approach for assistance with anti-collision decision making based on the
International Regulations for Preventing Collisions at Sea. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2012, 226, 250–259.
[CrossRef]

48. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; Wiley: Chichester, UK, 2011; ISBN 9781119991496.
49. Zheng, H.; Negenborn, R.R.; Lodewijks, G. Trajectory Tracking of Autonomous Vessels Using Model Predictive Control; IFAC:

Cape Town, South Africa, 2014; Volume 19, ISBN 9783902823625.
50. Zhu, M.; Hahn, A.; Wen, Y.Q.; Bolles, A. Identification-based simplified model of large container ships using support vector

machines and artificial bee colony algorithm. Appl. Ocean Res. 2017, 68, 249–261. [CrossRef]
51. Byrd, R.H.; Gilbert, J.C.; Nocedal, J. A trust region method based on interior point techniques for nonlinear programming.

Math. Program. Ser. B 2000, 89, 149–185. [CrossRef]

149

sensors

Article

Universal Path-Following of Wheeled Mobile Robots:
A Closed-Form Bounded Velocity Solution †

Reza Oftadeh 1,*, Reza Ghabcheloo 2 and Jouni Mattila 2

Citation: Oftadeh, R.; Ghabcheloo,

R.; Mattila, J. Universal

Path-Following of Wheeled Mobile

Robots: A Closed-Form Bounded

Velocity Solution. Sensors 2021, 21,

7642. https://doi.org/10.3390/

s21227642

Academic Editor: Subhas

Mukhopadhyay

Received: 9 October 2021

Accepted: 9 November 2021

Published: 17 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, Texas A&M University,
College Station, TX 77840, USA

2 Department of Automation Technology and Mechanical Engineering, Tampere University,
33720 Tampere, Finland; reza.ghabcheloo@tuni.fi (R.G.); jouni.mattila@tuni.fi (J.M.)

* Correspondence: reza.oftadeh@tamu.edu
† This paper is an extended version of our paper published in Oftadeh, R.; Ghabcheloo, R.; Mattila, J. A

time-optimal bounded velocity path-following controller for generic Wheeled Mobile Robots. In Proceedings
of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May
2015, pp. 676–683.

Abstract: This paper presents a nonlinear, universal, path-following controller for Wheeled Mobile
Robots (WMRs). This approach, unlike previous algorithms, solves the path-following problem for
all common categories of holonomic and nonholonomic WMRs, such as omnidirectional, unicycle,
car-like, and all steerable wheels. This generality is the consequence of a two-stage solution that
tackles separately the platform path-following and wheels’ kinematic constraints. In the first stage,
for a mobile platform divested of the wheels’ constraints, we develop a general paradigm of a
path-following controller that plans asymptotic paths from the WMR to the desired path and,
accordingly, we derive a realization of the presented paradigm. The second stage accounts for
the kinematic constraints imposed by the wheels. In this stage, we demonstrate that the designed
controller simplifies the otherwise impenetrable wheels’ kinematic and nonholonomic constraints
into explicit proportional functions between the velocity of the platform and that of the wheels. This
result enables us to derive a closed-form trajectory generation scheme for the asymptotic path that
constantly keeps the wheels’ steering and driving velocities within their corresponding, pre-specified
bounds. Extensive experimental results on several types of WMRs, along with simulation results for
the other types, are provided to demonstrate the performance and the efficacy of the method.

Keywords: wheeled mobile robots; path-following; nonholonomic constraints

1. Introduction

Wheeled Mobile Robots (WMRs) form a significant subset of Unmanned Ground
Vehicles (UGVs). The continuing demand for more advanced and autonomous UGVs
entails more reliable and higher-performance motion controllers for WMRs. The multitude
of motion controllers proposed for mobile robots, especially those with nonholonomic
constraints, may be roughly categorized into three groups [1]: point stabilization [2],
trajectory tracking [3], and path-following [4]. Typically, the path-following approach
is used under a decoupled control architectures [5], where a path-planner provides the
desired geometric path. Then, a path-following module, while considering the temporal
and other intrinsic constraints of the system, maneuvers the robot toward the planned path
and steers it so that it indefinitely follows the path.

The path-following algorithms are classified into several branches, including, but
not limited to, Optimal Control approaches [6,7], Feedback Linearizion methods [8], Line
of Sight guidance laws [9], Pure Pursuit techniques [10], and Vector Fields methods [11]
(see [12] for a thorough review). The majority of these algorithms incorporate a concept
that goes by many names, including “Virtual Target Point”, “Carrot”, and “Rabbit”. In this

Sensors 2021, 21, 7642. https://doi.org/10.3390/s21227642 https://www.mdpi.com/journal/sensors151

Sensors 2021, 21, 7642

concept, a virtual point is selected and moved along the desired path, while a tracking
controller, also called a guidance controller, makes the robot follow and converge to that
point. The differences among and between those branches mainly occur in the design of the
guidance controller, the method for selecting the virtual point, and the its motion strategy
along the path.

1.1. Related Work

This work belongs to a category of path-followers that parametrize (using the path’s
natural parameter) a virtual position for the mobile robot on the desired path. A nonlinear
guidance controller is employed for the robot to track the virtual point based on an error
space projected on the path through the path’s Serret–Frenet frame.

Early notable works in this field were conducted by [13] for the car-like WMRs,
by [14] for the unicycle types, and by [15] for both unicycles and WMRs with two steering
wheels. However, the projection scheme of this approach, which selects the path’s closest
point to the robot as the virtual point, would result in singularities that, in turn, would
impose stringent initial conditions on the system and on the drivable path curvatures. This
drawback was overcome by having the path’s natural parameter as an auxiliary state and,
therefore, deriving a control law for its progression rate along the path [16]. There have been
various extensions of the original problem, such as covering uncertainties [17], actuator
saturations [18], obstacle avoidance [19] and an extension to aerial [20], marine [21] and
articulated frame [22] vehicles. Comprehensive experimental results of some of these
algorithms have been provided by [23]. However, the majority of recent studies on the
path-following of WMRs consider only a special type of WMR: usually the unicycle type,
with some exceptions, such as [24]. Nevertheless, there is no unified solution for the
path-following of WMRs.

Aside from the general difficulties in designing a universal path-follower for WMRs,
this paper tackles several challenges in the design of motion controllers that are specific to
certain types of WMRs. Most notable is the presence of singularities, both inherently [25]
and in the representation of the configuration space [26] of WMRs with active steering
wheels. While several types of WMR possess steering wheels, those singularities are a
major issue for WMRs that utilize two or more actively steered standard wheels. Due
to their kinematic configuration, such WMRs are called nonholonomic omnidirectional
robots [27,28] or pseudo-omnidirectional robots [29,30]. They have recently gained a
significant level of popularity and are now being used in a wide range of practical fields,
including service robotics (PR2 [31], Care-O-bot [32], Rollin’ Justin [33]), space robotics
(Mars-Exo-Rover [30]), agricultural applications [34,35], among others [36].

The common way of formulating the configuration space of such WMRs is with
the notion of Instantaneous Center of Rotation (ICR) [37]. As the ICR moves closer to a
wheel axis, the driving velocity of that wheel decreases, while the curvature of the wheel’s
footprint, and, hence, its steering velocity, unboundedly increases. When the ICR coincides
with the wheel, its steering angle becomes undefined and singular. To circumvent such
singular configurations, many proposed solutions rely on numerical methods to plan
singularity-free ICR trajectories in velocity space [25]. Others treat the neighborhood of
the singularities as obstacles and solve a navigation problem [29,38]. However, in all of
those methods, considerable portions of the configuration space are avoided, thus reducing
the maneuverability of the platform. Furthermore, when the robot is required to follow a
desired path and heading profile, ICR position has already been determined and, therefore,
none of those approaches are suitable for path-following problems.

1.2. Contributions and Organization

The contributions of this paper are as follows:
• This study solves the path-following problem for all WMRs categories in which their

wheels roll without skidding. To the best knowledge of the authors, this is the first
study that coherently solves the path-following problem with this level of generality.

152

Sensors 2021, 21, 7642

• Unlike other path-followers, in this design, the control signals and the resultant vector
field of closed-loop equations of motion are linearly proportional to the base speed (In
this paper, speed exclusively refers to the magnitude of velocity vectors.). In fact,
the controller acts as a feedback path-planner that minimizes the Lyapunov function
of errors as its corresponding cost function.

• The kinematic constraints of all types of wheels are rigorously derived in their most
general form. We derive and prove sufficient conditions for a path-following con-
troller that simplify the kinematic and nonholonomic constraints into explicit relations
between the speed of the base and that of the wheels.

• Based on this framework, we present a closed-form solution for the speed of the WMR’s
base so that all the wheels’ steering and driving speeds remain within their respective
bounds. We show that the solution is time-optimal, because it provides a bang-bang
velocity profile in which, at each time step, at least one of the wheels runs at its
maximum speed.

• This solution allows WMRs with active steering wheels to get close to, and even pass,
their singular configurations by regulating the speed of the WMR and the steering
velocities of the wheels. Hence, this method expands the allowable configuration
space of such robots and allows them to exploit their whole maneuverability.

This paper is the culmination of several earlier studies presented by the authors
in [39–41]. Compared to [41], this paper has several novelties. Section 3 is new, in which
the controller in [41] is generalized into a generic parametrized form and we demonstrate
that the controller serves as an example of such generic form. Moreover, the results
of [40] are coherently included to address the singularities of WMRs with steering wheels.
The majority of the equations, especially the kinematic constraints, are derived in a more
general form and are presented in compact matrix format that is further consistent with the
formulation of WMR constraints in the literature. A new set of comprehensive experimental
and simulation results in a more complex scenario is presented, with further explanations
and remarks.

This paper is organized as follows. In Section 2, we formally define the WMR that
is the focus of this paper and define the corresponding path-following problem. Next, in
Section 3, we present the path-following solution in a parametrized generic form. In
Section 4, the variables in the parametrized model are meticulously derived and categorized
for different types of wheels and WMRs. We explain how the solution solves the problem
of singularities for WMRs with steering wheel in Section 4.3 and, finally, Section 5 covers
the implementation results and provides extensive experimental data for three types of
WMRs, and simulation results for the other two.

2. Problem Description

WMRs are classified based on the seminal work of [42] into five kinematically feasible
categories. An ordered pair (δm, δs) is assigned to each category the degree of mobility and
degree of steerability of the WMR, respectively. The number of wheels, their types, and their
arrangements determine δm, and δs and, therefore, the WMRs’ category. δm represents
the dimension of the tangent space of the configuration space, while δs corresponds to
the ability to change (steer) the basis of the tangent space by means of steering wheels.
The degree of maneuverability defined as δM = δm + δs then, analogous to degrees of
freedom for mechanism, determines the total mobility of the WMR.

2.1. WMR Architecture and Definitions

Definition 1 (WMR). The WMR considered in this paper is equipped with n wheels, which are
attached to a main body called the base. It belongs to and possesses the minimum actuated wheels
of one of those five kinematically feasible categories of WMRs, and the actuators provide velocity
and position control. Each wheel is of one of the following types: fixed wheels, standard steer-
able wheels, off-centered steerable wheels (Caster wheels), Swedish wheels. Furthermore,

153

Sensors 2021, 21, 7642

the following assumptions hold. The WMR traverses on a flat and horizontal plane. The base and
the wheels are rigid, the tires are non-deformable, their contact surface with the ground can be
approximated with a point, and there is no mechanical constraint for the steering of the steerable
wheels; hence, they are free-turn. However, we will discuss the case with limited steering angle
separately in Section 5.3.

Figure 1, depicts a schematic view of a WMR and the desired path. Additionally,
Table 1 lists the definitions of the corresponding parameters and variables. We define the
base current posture X , as

X =
[
qT θb

]T, (1)

where q is the position vector of point Q (the origin of body frame B) and θb is the heading
angle. The base linear velocity at Q is vv̂ with v being the base speed and v̂(ψv) being the
direction of the velocity as a function of the linear velocity angle ψv. Moreover, based on
Definition 1, for a general WMR, several types of wheels may be connected to the base.
As shown in Figure 1, the connection point of the ith wheel is Li and the velocity of the
wheel is viv̂i, in which vi is the driving speed and v̂i(φi) is the direction of wheels heading,
which, in turn, is a function of wheel’s steering angle φi.

The desired path Pd is a 2D and bounded-curvature regular curve on the horizontal
plane. This is defined by the vector-valued function Pd(s) : [0, Ld]→ R2, where s and Ld
are the natural parametrization (arc length) and the length of Pd, respectively. The desired
heading function θd(s) : [0, Ld]→ R of class C3 determines the base’s desired heading θd.
Similar to Equation (1), the WMR desired posture, X d, is defined as

X d =
[
PT

d θd
]T. (2)

Furthermore, the path Pa(λ) is an asymptotic path to Pd. It is defined by Pa(λ) :
[0, La] → R2, where λ and La are the natural parametrization (arc length) and length of
the path, respectively, with its tangent angle denoted by ψa. Correspondingly, the func-
tion θa(λ) : [0, Ld]→ R is an asymptotic angle from the base current heading θb, to the
desired heading θd. We will later show that Pa(λ) and θa(λ) are solutions to autonomous
differential equations with the current pose of the base as the initial conditions.

Figure 1. The desired path and the required coordinate frames.

154

Sensors 2021, 21, 7642

Table 1. Parameters and Variables.

Coordinate Frames and Their Basis
U{X̂, Ŷ} The inertial frame with its origin O
B{x̂, ŷ} The body frame attached to the WMR’s base Q
Bv{v̂, û} The base velocity coordinate frame at Q
T {t̂, n̂} The Frenet–Serret frame of the desired path, Pd, at P

Bd{x̂d, ŷd} The desired heading coordinate frame at P

Paths’ Parameters and Variables
s Natural parameter(arc length) of the desired path, Pd

κd(s) The curvature of the desired path, Pd (|κd| < κ
= ∞)
λ Natural parameter(arc length) of the asymptotic path, Pa

Position Vectors

p �
[

px py 0
]T

; the position vector of the virtual target point, P, with respect
to O

q �
[
qx qy 0

]T
; the position vector of the base, Q, with respect to O

�i The position of ith wheel attachment point, Li, to the base with respect to Q

Angles
θb The WMR’s heading angle that defines the body frame B
θd The desired heading angle; defines the frame Bd at P
ψv The angle of the base linear velocity direction, v̂
ψd The desired angle for the base linear velocity direction, v̂

ψvb � ψv − θb

ψt The tangent angle; defines the desired path tangent vector t̂
φi The ith wheel steering angle
ηi The angle between the base linear velocity vv̂ and the ith wheel position

vector, �i

Others
v̂ The direction vector of the base linear velocity at Q
v The speed of the base at Q

v̂i The direction vector of the ith wheel linear velocity
vi The driving speed of the ith wheel

ωb � θ̇b; the base angular velocity
ωv � ψ̇v; the angular rate of v̂

ωvb � ωv −ωb

2.2. Problem Formulation

As shown in Figure 1, the virtual target point on Pd is denoted as P. It is determined
by s, which is set as an auxiliary state with ṡ being its corresponding control signal. Along
with s, we define error state variables as

S = (xe, ye, θe, ψe) (3a)

S∗ = (xe, ye, θe), (3b)

155

Sensors 2021, 21, 7642

where, [
xe
ye

]
= UR

−1
T (q− p) (4a)

θe = θd − θb, (4b)

ψe = ψd(s,S∗)− ψv, (4c)

and URT , equivalent to R(ψt), is the rotation matrix from frame T to frame U . In the
above, the position error signals, xe and ye, are measured along t̂ and n̂, respectively, while
θe independently represents the heading error. The signal ψd, as a function of S∗, is the
desired heading that is determined by the controller and basically generates a suitable
approach angle to Pd(s).

The time derivation of Equations (4a) to (4c) yields to the open-loop equations of
motion

ẋe = ṡ(κd(s)ye − 1) + v cos(ψt − ψv) (5a)

ẏe = −ṡκd(s)xe − v sin(ψt − ψv) (5b)

θ̇e =
dθd
ds

ṡ−ωb (5c)

ψ̇e = ψ̇d −ωv, (5d)

in which the angular velocity of the frame B, is ωb � θ̇b and, similarly, ωv � ψ̇v. We
assemble all of the above formulations into the following definition for the WMR’s base.

Definition 2 (Base Path-Following). Base path-following error dynamics is a system with the
full states (s,S) or the reduced states (s,S∗), and with the control inputs C, which are defined as

C = (ṡ, ωb, ωv). (6)

The dynamics of this system is given by Equations (5a) to (5d), in which the base speed v is
seen as an exogenous input.

Some further notes are given here for the reduced states, S∗. For the majority of
WMRs, except a special case, it is possible to incorporate a rather simpler scheme by
dismissing ψe in (4c) as an error state (ψe = 0 ∀t), therefore controlling the base velocity
direction v̂(ψv) directly. In the reduced states S∗, ψv acts as a control signal by directly
setting ψv = ψd(s,S∗). In Section 4.2, we will detail the types of WMRs and conditions
under which the choice of S∗ is not possible.

In what follows, we formally define the problem that is the focal point of this paper.

Problem 1 (WMR Bounded Velocity Path-Following). Given the desired path Pd(s) and
heading profile θd(s) derive feedback control laws for the wheels’ driving vi and steering inputs φi
(or their rates φ̇i) such that:

(I) Path-Following: The velocity frame Bv converges and follows the tangent frame T ; that
is, error signals xe and ye, remain bounded and converge to zero (See Equation (4a)).

(II) Heading Control: The body frame B converges and follows Bd; that is, the heading error
signal θe, remains bounded and converges to zero (See (4b)).

(III) Bounded Velocity: vi and φ̇i should not exceed their corresponding predefined limits.

We solve the above problem in two stages. In the first stage, we place our focus solely
on the base path-following defined by Definition 2, its stability and features. In the second
stage, we focus on the kinematic constraints between the wheels and the base, the details
of which are given in Section 3.2. We utilize these constraints to solve sub-problems (I) and
(II) of Problem 1 by mapping the intermediary control inputs C, to the wheels’ variables.

156

Sensors 2021, 21, 7642

Furthermore, those mappings are used to solve the bounded velocity problem (sub-problem
(III)) by selecting an appropriate v that bounds the driving and steering velocities.

At first glance, this approach is solely applicable to holonomic omnidirectional WMRs
(δm = 3). However, this treatment is a rather general and we will show that, for each
category of WMRs, a proper subset of the above intermediary control sets along with a
pertinent choice of body origin Q results in a feasible solution that abides by the kinematic
limitations of that category.

3. WMR Path-Following: The Generic Form

In the following, Section 3.1 focuses on a generic form of C for the base path-following
that has some unique features. Then, in Section 3.3, those features are utilized to present a
parametrized version of the WMRs’ kinematic constraints, which, in turn, are incorporated
into a closed-form solution for Problem 1.

3.1. Base Path-Following

Proposition 1. For the base path-following system defined by Definition 2, assume that some exists
feedback control laws exist for C that render the origin of the error space asymptotically stable and
they are in the generic form of

ṡ = s′(s,S)v (7a)

ωb = κb(s,S)v (7b)

ωv = κv(s,S)v (7c)

ψd = ψd(s,S∗), (7d)

in which s′, κb, and κv are functions of only s and error states, S . Then, at any given time t ≥ 0,
the closed-loop equations of motion result in a set of differential equations for an asymptotic path
Pa(λ) and a heading θa(λ), with the initial conditions being q(t) and θb(t), respectively. In other
words, X (t), the base posture at the time t, is

X (t) =
[
PT

a (λ = 0) θa(λ = 0)
]T, (8)

and as λ increases,
[
PT

a (λ > 0) θa(λ > 0)
]T asymptotically converges toward the desired pos-

ture X d.

Proof. To prove the above proposition, notice that ||q̇|| = v and a geometric variable λ
exist, where λ̇ = v. Consequently, Equation (7a) becomes ṡ = s′λ̇. Based on the chain rule,
we have v = ds

dλ λ̇ and, hence, s′ = ds
dλ . Using the same analogy for Equations (7b) and (7c)

and substituting them into the open-loop error states (Equations (5a) to (5d)) results in

ds(λ)
dλ

= s′(s,S) (9a)

dxe(λ)

dλ
= x′e(s,S) = s′(κd(s)ye − 1) + cos(ψt − ψv) (9b)

dye(λ)

dλ
= y′e(s,S) = −s′κd(s)xe − sin(ψt − ψv) (9c)

dθe(λ)

dλ
= θ′e(s,S) =

dθd
ds

s′ − κb(s,S) (9d)

dψe(λ)

dλ
= ψ′e(s,S) = ψ′d − κv(s,S), (9e)

where,

ψ′d =
dψd
dλ

=
∂ψd
∂xe

x′e +
∂ψd
∂ye

y′e +
∂ψd
∂θe

θ′e . (10)

157

Sensors 2021, 21, 7642

The above equations provide a set of differential equations for (s,S) based on the
independent variable λ. The algebraic Equations (4a) to (4c) can be used to track the
geometric evolution of q, θb, and ψv as functions of λ, which are Pa(λ), θa(λ), and ψa(λ),
respectively, and are governed by

Pa(λ) = Pd(s(λ)) + URT (s(λ))
[

xe(λ)
ye(λ)

]
(11a)

θa(λ) = θd(s(λ))− θe(λ) (11b)

ψa(λ) = ψd(s(λ),S∗(λ))− ψe(λ). (11c)

Therefore, the differential Equations (9a) to (9e) together with the algebraic
Equations (11a) to (11c) result in a set of expressions for the asymptotic path Pa(λ) and
heading θa(λ). Notice that λ does not explicitly appear in any of the above equations;
therefore, (s(t),S(t)), the base path-following states at time t, can be associated with initial
conditions (λ = 0) of the above differential equations.

The merit of Proposition 1 is that a majority of path-following controllers in the
literature (e.g., [16,19]) cannot be written in the generic form of Equations (7a) to (7c).
Therefore, while, in those path-followers, v is an exogenous input and does not have
a direct role in the stability (as long as v ≥ vm > 0), the asymptotic path Pa cannot
be determined independently of v(t) and it is only after the assignment of the speed
profile that one can derive the asymptotic trajectory Pa(λ(t)). However, Proposition 1
enables us to determine Pa(λ) without specifying the future velocity commands by directly
integrating closed-loop equations. In other words, a path-following controller in the form
of Equations (7a) to (7d) acts as a feedback path-planner that has a certain error function as
its cost function and plans asymptotic paths from the base current posture X , toward the
desired posture X d. We provide an example for such a controller in Section 4.1.

In this paper, there is no need to solve the closed-loop differential equations. The dif-
ferentials of (s,S), obtained in the form of the above proposition, will be used for WMRs’
kinematic constraints in the next proposition. For that purpose, the higher time differenti-
ations of control signals and error states may also be written as differentials based on λ,
which are listed below for future reference.

s̈ = s′′(s,S ,S ′)v2 + s′(s,S)v̇ (12a)

ω̇b = κ′b(s,S ,S ′)v2 + κb(s,S)v̇ (12b)

ω̇v = κ′v(s,S ,S ′)v2 + κv(s,S)v̇, (12c)

where, s′′ = ds′
dλ = d2s

dλ2 , κ′b = dκb
dλ , κ′v = dκv

dλ , and

S ′ =
(

x′e, y′e, θ′e, ψ′e
)
. (13)

Finally, for the closed-loop system, we may transform BẊ and BẌ , the velocity and
acceleration of the base posture (Equation (1)) expressed in the body frame B, into

BẊ = BX ′v, BẊ ′ = BX ′′v, (14a)
BẌ = BX ′′v2 + BX ′v̇, (14b)
BX ′ =

[
cos ψvb sin ψvb κb)

]T, (14c)
BX ′′ =

[−κvb sin ψvb κvb cos ψvb κ′b
]T, (14d)

in which, ψvb�ψv − θb, and κvb�κv − κb. The above transformation facilitates the treatment
of kinematic constraints in Section 3.2.

158

Sensors 2021, 21, 7642

3.2. Wheels’ Kinematic Constraints

Figure 2 depicts a schematic view of an abstract Generalized Wheel (GW) as the ith
wheel of the WMR and its corresponding parameters. The GW represents both Swedish
wheels and normal wheels. In this sense, rsr and γ define the radius and the direction of
the small rollers’ axis, respectively; hence, for a functional Swedish wheel: γ
= π

2 and
rsr
= 0. For a normal, non-Swedish wheel, we simply set γ = π

2 and rsr = 0. The wheel
is mounted on an L-shaped rod, parametrized by off-center values: (di, ci), at the point
L′i, with B�′ i = ci

B ûi + di
B v̂i. The rod is connected to the base at the attachment point Li

by a revolute joint. As shown in the figure, φi represents the steering angle of the wheel,
and viv̂i represents its driving velocity vector, generated by the wheel’s actuator. We define
the absolute steering angle Φi and the projection matrix Ji(x̂i) as

Φi = θb + φi, (15a)

Ji(x̂i) =
[
x̂T

i x̂i.(ẑ× B�i)
]
, (15b)

in which x̂i is an arbitrary unit vector.

Figure 2. A generalized wheel and its corresponding parameters.

Moreover, for fixed and Swedish types, the steering direction B v̂i(φi), is a mechanical
design variable, and is measured for steerable types, except when it is set as the control
signal—a case that will be further explored. Table 2, for each type of wheel, lists the
required values for the GW variables and parameters. To derive the kinematic relations
for the GW, we may differentiately form the vector relation L′i = q + �i + div̂i + ciûi and
express it in the body frame to arrive at a velocity constraint between the wheel and the
base, which is

v B v̂ + ωb(ẑ× B�i) =(vi − ciΦ̇i)
B v̂i + diΦ̇i

B ûi

− rsrφ̇sr(ẑ× Bγ̂), (16)

in which φ̇sr is the angular velocity of the GW’s small rollers. The above equation can be
manipulated into scalar equations

vi âi. B v̂i = Ji(âi)
BẊ + Φ̇i âi.(ẑ× B�′ i) (17)

159

Sensors 2021, 21, 7642

where,

âi =

{
Bγ̂(γ) Swedish wheel(γ
= π

2 , rsr
= 0)
B v̂i(φi) Other types(γ = π

2 , rsr = 0)
. (18)

Equation (17) accompanied by the proper choice of âi (Equation (18)) determines
the driving velocity vi. By definition, for fixed and Swedish wheels φ̇i = 0. For the
steerable wheels, when di
= 0, φ̇i is determined by setting âi =

B ûi in Equation (17), which
eliminates the left-hand side of the equation. When B ûi.(ẑ× B�′ i) is zero (equivalent to
di = 0), setting âi =

B ûi and di = 0 in Equation (17) and differentiating from this yields:

Φ̇i Ji(
B v̂i)

BẊ + Ji(
B ûi)

BẌ = ω2
b
B ûi.B�i. (19)

Evidently, the above kinematic constraints cannot be analytically solved for a base
speed that results in specified driving and steering velocities. However, as in the following
proposition, we show that the incorporation of Proposition 1 into the kinematic constraints
yields a set of direct relationships between the base speed and wheel velocities.

Table 2. GW Parameters for each Type of Wheel.

Variable

Type
Fixed Wheel Centered Steering Wheel Caster Wheel Swedish Wheel

B v̂i(φi) Fixed Measurement or Equation (24) Measurement Fixed

di di ∈ R di = 0 di ∈ R
=0 di ∈ R

ci ci ∈ R ci ∈ R ci ∈ R ci ∈ R

γ γ = π
2 γ = π

2 γ = π
2 γ
= π

2

rsr rsr = 0 rsr = 0 rsr = 0 rsr
= 0

Proposition 2. Consider a WMR defined in Definition 1. If the WMRs intermediary control
signals C conform to the generic form, as outlined in Proposition 1, then the driving and steering
velocities of the ith wheel (1 ≤ i ≤ n) are in the form of

vi = v′i(s,S ,S ′,C ′)v (20a)

φ̇i = φ′i(s,S ,S ′,C ′)v, (20b)

in which, v′i =
dvi
dλ , φ′i =

dφi
dλ , and

C ′ =
(
s′, κb, κv

)
. (21)

Proof. We prove this proposition by constructing v′i and φ′i . This is carried out by substi-
tuting the results of Proposition 1 into the kinematic constraints and performing some alge-
braic manipulations that can be simplified to the form of Equations (20a) and (20b). Based
on Equations (7b) and (15a), we have Φ̇i = ωb + φ̇i and ωb = κbv. Therefore, the proof for
Equation (20b) is equivalent to finding an expression for Φ̇i = Φ′iv and setting φ′i = Φ′i − κb.
Clearly, Equation (20b) automatically holds for zero steering wheels (fixed and Swedish
wheels) with Φ′i = κb and φ′i = 0. For the other types, setting âi =

B ûi in Equation (17),
and substituting BẊ by BX ′v from Equation (14c), and BẌ from Equation (14b) in Equa-
tion (19), this can be rewritten in the form of Φ̇i = Φ′iv with

Φ′i=
{

d−1
i Ji(

B ûi)
BX ′ di
= 0

(Ji(
B v̂i)

BX ′)−1
(κ2

b
B ûi.B�i−Ji(

B ûi)
BX ′′) di = 0

, (22)

which proves the second relation, Equation (20b). Notice that, for di = 0, the choice
of control signals eliminates the acceleration terms from Equation (19) and simplifies it
into the form of Φ̇i = Φ′iv. In this case, the only caveat is that Ji(

B v̂i)
BX ′ in the above

160

Sensors 2021, 21, 7642

Figure 3. Schematic block diagram of the whole system.

equation may become very small, or even zero. This situation corresponds to the singularity
configuration of wheels with di = 0 that are called centered steering wheels. This situation
and its treatment is fully explained in Section 4.3. Finally, following the same paradigm,
Equation (17) can be manipulated into the form of Equation (20a) with

v′i = (âi. B v̂i)
−1

(
Ji(âi)

BX ′ + Φ′i âi.(ẑ× B�′ i)
)

, (23)

in which âi is determined by Equation (18).

Remark 1. For a WMR with centered steerable wheels (di = 0), under the reduced state model
S∗, the wheels’ steering angles φi can be set as control signals and are derived as follows. Based
on Equation (16), the steering direction is B v̂i(φi) is v B v̂ + ωb(ẑ × B�i). Therefore, for the
closed-loop system, ωb can be replaced with κbv and the steering direction becomes

B v̂i =
B v̂ + κb(ẑ× B�i)√

1 + κ2
b l2

i + 2likbsin ηi

. (24)

The major benefit of the above formulation is that it determines the proper steering direction of
the wheels, even when the robot is stopped and the base speed is zero.

3.3. WMR Path-Following

The previous proposition most importantly shows that, for the closed-loop path-
following of all WMR types, the kinematic constraints between the base and the wheels
can be reduced to proportional functions of the base speed with proportions that are only
functions of s and instant error states S . Consequently, a suitable solution to Subproblems
(I) and (II) of Problem 1 is the selection of an arbitrary v, and a C that conforms to conditions
in Proposition 1, and then using Equations (20a) and (20b) to evaluate the wheels’ driving
and steering velocities. Furthermore, to solve the Subproblem (III), instead of having an
arbitrary profile for v, Proposition 2 can be used to find instant limits for v that bound the
wheels’ velocities. Such a solution exhaustively solves Problem 1 and is formally stated
in the following Algorithm 1, with Figure 3 schematically depicting the corresponding
block diagram.

161

Sensors 2021, 21, 7642

Algorithm 1 WMR Bounded Velocity Path-Following.
Assume that the WMR possess nd driving actuators and ns steering actuators (nd + ns ≤ 2n).
The maximum driving velocity of the ith driving actuator is denoted as v(max)

i , and the
maximum steering velocity of the ith steering actuator is denoted as φ̇(max)

i . At each time
step, the control signals of wheels’ actuators is evaluated by
1. Desired Inputs: Evaluate the internal state s, by integrating the internal feedback ṡ,

and obtain the virtual target values P and θd by using Pd(s) and θd(s).
2. Error Calculation: Evaluate the error states S by using the localization feedback

(see Equations (4a) to (4c)).
3. Controller Σ: Evaluate S ′ (Equation (13)), and C ′ (Equation (21)) and, by using

the values of those signals, obtain v̂i, v′i, and φ′i of Equations (20a) and (20b) for all
the wheels.

4. Bounded Velocity: Based on Equations (20a) and (20b), there are nd + ns candidates
for v, namely, v(i), which are

v(i) =
v(max)

i
|v′i|

and v(nd+i) =
φ̇(max)

i
|φ′i |

(25)

Then, the maximum allowable base speed, denoted as v(max), is

v(max) = min
i

v(i), i ∈ {1, 2, .., nd + ns}. (26)

5. Wheels’ Control Inputs: Select a v ≤ v(max), and use vi = v′iv and φ̇i = φ′i v to
evaluate the actuators’ velocity commands (Equations (20a) and (20b)).

Note that Equations (20a) and (20b), which are used in the forth step of the above
algorithm to derive the velocity candidates, are strictly monotonic with respect to vi, and φ̇i
and so is their inverse with respect to v. Hence, applying the minimum of those m velocity
candidates results in driving and steering velocities less than or equal to the given velocity
bounds. Alternatively, at each instant, if v = v(max) is selected, then at least one of the
actuators is being driven at its maximum velocity, which renders the solution a bang-bang
control [43] for the velocity v and, therefore, for a given desired path, heading, and control
gains, the solution is time-optimal.

4. WMR Path-Following: Detailed Illustration

In this section, we provide the pertinent expressions for the parametrized controller
presented in the previous section. In Section 4.1, we present an example controller for the
base that complies with the conditions of Proposition 1, and thereby customize Algorithm
1 for WMRs based on their degree of maneuverability, δM.

4.1. Base Path-Following: The Controller

First, we define ψd(s,S∗), the desired input for ψv as

ψd(s,S∗) = ψt − σ(ye), (27)

in which, σ(ye) is a function that generates a suitable approach angle from the base to Pd(s)
and has the following features: σ(0) = 0 and yeσ(ye) > 0 ∀ye
= 0. One candidate for
σ(ye) is

σ(ye) � sin−1 k2ye

|ye|+ ε
, (28)

where 0 < k2 ≤ 1 and ε > 0.
Based on the above definition, it can be construed that, for large normal errors ye,

σ(ye) goes toward π/2 and, consequently, the base turns toward the virtual point P to
decrease the error. As ye decreases, σ(ye) moves toward zero and the base velocity turns

162

Sensors 2021, 21, 7642

toward the path tangent at P; therefore, the robot motion becomes more aligned with the
path. Evidently, larger values for k2 result in sharper turns for the robot to reach the path.

Proposition 3. The feedback control laws for signals C that are given by

ṡ = s′(s,S)v ωb = θ′b(s,S)v ωv = ψ′v(s,S)v, (29)

where,

s′(s,S) = k1xe + cos(ψt − ψv) (30a)

θ′b(s,S) = k3θe +
dθd
ds

s′ (30b)

ψ′v(s,S) = ψ′d (30c)

ψ′d = κds′ − y′e
dσ(ye)

dye
. (30d)

and k1, k3 > 0, lead the reduced error states, S∗, to asymptotically converge to zero. Moreover,
replacing Equation (30c) with

ψ′v(s,S) = κds′ − dσ(ye)

dye
y′e − κ2

e yeΔ + k4ψe (31a)

Δ =

{
sin(ψt−ψv)−sin σ(ye)

ψe
ψe
= 0

cos σ(ye) ψe = 0
, (31b)

in which κe
= 0 and k4 > 0 result in error states S asymptotically converging to zero. Conse-
quently, the origin of the error space is stable and semi-globally exponentially stable by setting
v(t)≥vm >0 ∀t.

Proof. Here, we use standard quadratic form of error signals as the Lyapunov function but
with modified control laws to make curvatures independent of speed, v. First, we provide
a proof for the case where error states are S∗, and then we extend it for the full state S .
Consider the following Lyapunov function:

V1 =
1
2

x2
e +

1
2

y2
e +

1
2

θ2
e , (32)

which is positive, definite and radially unbounded. The time differentiation of V1, along
with the solution of Equations (5a) to (5c), results in:

V̇1 = −(k1x2
e + k2

y2
e

|ye|+ ε
+ k3θ2

e) v(t) , (33)

which is negative; thus, the origin is stable. For a given d1 > 0, if v(t) ≥ vm > 0 and,
initially, |ye(t0)| < d1, it is easy to show that V̇1 < −λV1. Thus, the origin is semi-globally
exponentially stable.

To complete the proof, consider the following Lyapunov function:

V2 = V1 +
1

2κ2
e

ψ2
e . (34)

The time differentiation of V2 along the solution of Equations (5a) to (5d) results in:

V̇2 = V̇1 − k4

κ2
e

ψ2
e v(t) , (35)

which, again, is negative; therefore, the origin of the error state is stable.

163

Sensors 2021, 21, 7642

The above control laws clearly follow the generic format of Proposition 1. As men-
tioned in the above proposition, with the given control laws, the origin of S is semi-globally
exponentially stable for non-zero base speeds. The practical implication of this feature
is that the WMR may stop (v = 0) for some time during the path-following operation,
during which the states remain bounded and the path-following is naturally resumed once
the WMR starts to move and the speed is not zero anymore. Note that there are several
other functions for σ(ye) in the literature. However, while all of them result in negative
V̇, the one presented here is the one that results in a quadratic form for ye in V̇, and hence
provides exponential stability.

4.2. Customization of the Path-Following Algorithm

WMRs are classified based into five different categories on the ordered pair δ =
(δm, δs). Three of these categories possess the degree of maneuverability δM = δm + δs = 3,
and, for the other two, δM = 2. In the following, we customize Algorithm 1 based on the
WMR’s degree of maneuverability and explain the accompanying details. The results of
this section are listed in Table 3.

Table 3. Customization of the Path-Following.

δM

Param.
Error States Desired Inputs Selection of Q κb κv s′

δM = 3 S∗ Pd(s), θd(s) Arbitrary θ′b (30b) ψ′d (30d) s′ (30a)

δM = 3 S Pd(s), θd(s) Arbitrary θ′b (30b) ψ′v (31a) s′ (30a)

δM = 2 S∗ Pd(s) Not on ac
1 ψ′d (30d) ψ′d (30d) s′ (30a)

δM = 2 S Pd(s) Not on ac κb (37) ψ′v (31a) s′ (30a)

δM = 2 S Pd(s) On ac ψ′v (31a) ψ′v (31a) s′ (30a)
1 ac is the common axis of the fixed wheels.

4.2.1. WMRs with δM = 3

These types of WMRs are omnidirectional in nature, which means that they have
independent heading and linear movements. However, the holonomic type with δ = (3, 0)
provides full mobility and, hence, instantaneous velocity in any direction. The other two
categories (δ = (2, 1) and δ = (1, 2)) are steerable and nonholonomic. They are capable
of providing movement in any arbitrary direction, but only after they have steered their
wheels to the corresponding configuration. For the problem at hand, the difference between
holonomic and nonholonomic types only occurs at the beginning of the path, in which the
holonomic type may start path-following instantly, but the nonholonomic types have to
rearrange their steerable wheels. Other than this, on a smooth path and heading profile,
both types provide the same functionality.

These types of WMRs are capable of changing the direction of their base linear velocity
while the base is stationary. This can be instantly performed in the case of holonomic types
or in the case of nonholonomic types by changing the direction of the steering wheels over
time. This fact allows us to directly control ψv and have S∗ as the error states instead of S .
Consequently, for this type of WMR, the heading and linear movements are independent.
Hence, the controller’s inputs are both Pd and θd, and the body frame B is chosen arbitrarily.
For the base path-following (Definition 2) of such WMRs, s′, and κb of Proposition 1 are
s′, and θ′b given by Equations (30a) and (30b) in Section 4.1, respectively. There are two
viable options for κv. If the target states is set to be full states (s,S∗), then, as mentioned
earlier, κv should be set as ψ′d given by Equation (30d). The second option is to set (s,S) as
the target states and, therefore, κv should be evaluated using ψ′v given by Equation (31a).
Table 3 summarize these results.

164

Sensors 2021, 21, 7642

4.2.2. WMRs with δM = 2

These types of WMRs have limited mobility in their working plane, and the heading
and linear movements are dependent. They are either differential with δ = (2, 0) or carlike
with δ = (1, 1). Both categories have a set of coaxial fixed wheels. The only difference
between these categories occurs at the beginning of the path-following. The differential
type starts the path-following instantly, but the carlike type has to steer its steerable wheel
according to the start of the path. Aside from this difference, both types provide the same
functionality on a smooth path.

For such WMRs, there is no independent heading control and the progress of the base
heading, as shown in Figure 4, is linked to the position of body origin Q. Therefore, in what
follows, we strive to derive the control laws for ωb, in the form of κbv of Equation (7b),
which observes the kinematic constraints. For a kinematically feasible WMR, all the fixed
wheels are coaxial and, therefore, all ûi are on the same line, which we call this common
axis ac. To derive the constraint equations, set φ̈i = φ̇i = 0 in Equation (16), and its time
derivative, which can be rearranged into

ωb(di − B ûi.(ẑ× B�i)) =v B ûi.B v̂ (36a)

v(ωb −ωv)(v + liωb sin ηi) =(divi + vli cos ηi)ω̇b

−(div̇i + v̇li cos ηi)ωb. (36b)

From the above equations, it follows that if Q, the origin of the body frame, is not on
the common axis ac, a kinematically consistent expression for ωb may be derived based on
Equation (36a). However, when Q is placed on ac, Equation (36a) degenerates, since both
B ûi.B v̂ and di − B ûi.(ẑ× B�i) become zero and Equation (36b) should be employed. If Q
has been placed on the common axis, then the right-hand side of Equation (36b) is zero
and, in order for the constraint to be valid, ωb should be set equal to ωv at all times. In both
cases, ωb is in the form of κb(s,S)v, which are

κb =

{(
di − B ûi.(ẑ× B�i)

)−1B ûi.B v̂ Q is not on ac

κv Q is on ac.
(37)

Finally, based on Equation (36b), if Q is on the common axis of the fixed wheels ac, then
the heading is tangent to (or has a constant misalignment with) the footprint of Q, which,
in the case of path-following, is eventually ψt. In this case, the WMR is not able to instantly
provide any arbitrary ψv; hence, only the full states path-following (s,S) are possible.
Consequently, for the base path-following, s′ is evaluated using Equation (30a) and κb,
and κv are both set to be ψ′v given by Equation (31a). On the other hand, if Q is not placed on
ac then, based on Equation (37), ωb can be used to achieve any arbitrary ψv. Consequently,
both the full states’ path-following (s,S), and the reduced states’ path-following (s,S∗)
are possible. For the base path-following, s′ and κb are evaluated using Equations (30a)
and (37), respectively. κv is set to ψ′v given by Equation (31a) in the full states’ case or ψ′d
given by Equation (30d) in the case of reduced states. These results are also listed in order
in Table 3.

165

Sensors 2021, 21, 7642

Figure 4. Two WMRs with δM = 2. For the one on the left, the origin of B is on the ac and for the
one on the right, the origin is outside of ac.

4.3. Analysis of Steering Wheels Singularities

In Section 4.1, we provided a stable path-following controller for the base path-
following system defined in Definition 2. Next, we incorporated the constraints of
Section 3.2 to map the base control signals to the wheels’ velocities. The path-following
of a WMR with a stable base controller is stable if there is no singularity in the mapping
from the base onto the wheel. Hence, in this section, we elaborate on the singularities of
the mapping and how the bounded velocity path-following algorithm treats and resolves
those singularities, which specifically occurs with centered steering wheels.

As mentioned in the introduction, one way of examining the singularity of the steering
wheels is by studying the base ICR. As the ICR moves closer to a wheel axis, the driving
velocity of that wheel decreases and its steering velocity unboundedly increases. When the
ICR coincides with the wheel’s steering axis, the steering angle becomes undefined and
singular. Here, we study this situation both geometrically and analytically based on the
WMR’s path-following.

Figure 5 shows the path-following of a WMR with four steering wheels that follow a
straight line Pd, during which it rotates around itself for 2π. As shown in the magnified
area of the figure, during the operation, as the body ICR moves close to the first wheel,
the curvature of P1, which is the wheel’s footprint, increases; therefore, for the wheel to
keep up with the rest of the WMR, it has to increase its steering velocity to pass the tight
curvature. At the singularity, the ICR coincides with the steering axis, the curvature of the
wheel’s path becomes infinite and the steering direction becomes undefined. Theretofore,
geometrically, the kinematic mapping between the base and a wheel becomes singular
when a smooth path and movement toward a base result in an infinite curvature for the
wheel’s path.

In Section 3.2, for the closed-loop system, we derived the driving and steering veloci-
ties, vi and φi, in the form of v′iv and φ′i v, respectively. The curvature of Pi, the ith steering
wheel’s path, denoted as κi, becomes κi = φ′i/v′i and can be written as

κi =
κ′blicos ηi + (κv − κb)(1+likbsin ηi)

(1 + κ2
b l2

i + 2liκbsin ηi)
3
2

. (38)

The singularity occurs when the denominator of the above equation becomes zero;
that is, when sin ηi = − sgn κb and |κb| = 1/li.

166

Sensors 2021, 21, 7642

0 500 1000 1500 2000

−800
−600
−400
−200

0

200

400

600

800

1000

1200

1400

BBv

x(mm)

y
(m

m
)

P d

P 2:4

P 1
q
ICR

Figure 5. A nonholonomic omnidirectional WMR with four steering wheels following the desired
path P(d), which is a straight line, while turning around itself.

One of the significant benefits of the bounded velocity path-following presented in
Algorithm 1 is that it properly handles the steering wheels’ singularities. As the wheel
moves close to its singular configuration φ′i unboundedly increases; therefore, based on
Equation (25), that is, v(nd+i) = φ̇

(max)
i /|φ′i |, the velocity candidate v(nd+i), is reduced to limit

φ̇i to its maximum. This, in turn, leads to the reduction in the base speed v. Hence, as the
WMR moves close to its singular configuration, it reduces its speed and allows the steering
wheel to make a tight turn. Figure 6 demonstrates this procedure for the path-following
scenario depicted in Figure 5. If the WMR falls right into the singular configuration, φ′i
becomes infinity and the robot stops. At this configuration, the curvature of Pi is infinity
and the path has inward and outward tangents at the singular point. This configuration
can be seen as the start of a new path-following; the WMR reorientates its singular wheel
from the inward tangent to the outward tangent and starts a new path-following.

1 2 3 4 5 6 7 8
−15

−10

−5

0

5

−3.8

−7
0
r
a
d /

s

time(sec)

A
ng

ul
ar

V
el

oc
ity

(r
a
d /

s)

φ̇1 (Path-following with bounded velocity)
φ̇1 (Path-following without bounded velocity)

Figure 6. First wheel angular velocity φ̇1, with and without bounded velocity.

5. Experimental and Simulation Results

In this section, we demonstrate some simulation and experimental data of the pre-
sented path-following controller in action. The results are for four categoiesy of WMR.

167

Sensors 2021, 21, 7642

The experimental setup consists of two WMRs, shown in Figure 7. The robot in the left
is a four-wheel, independently steered mobile manipulator called iMoro that is a non-
holonomic omnidirectional WMR (δ = (1, 2)), also known as a two-steer. By manually
fixing the steering of the rear wheels (setting φ̇i = 0), it can also emulate the car-like type
(δ = (1, 1)). In this case, the steering of the front wheels is naturally governed by the
path-following based on the Ackerman principal. This feature was incorporated to test
the algorithm for the car-like WMRs. For the last type, the WMR to the right of Figure 7,
called LabRat, was employed, which is a differential drive mobile robot (δ = (2, 0)) and
represents the unicycle kinematics. The path-following controller, namely, the Algorithm 1,
was implemented on these WMRs in a real-time Linux environment based on [44]. This
section is divided into three case studies; each focuses on different types of WMR and
different scenarios (Videos of some of the experiments are provided in the multimedia
attachment.). Finally, we finish this section by a brief discussion on some of the restrictions
of the presented framework.

Figure 7. Experimental setups: iMoro (left): a four-wheel independently steering WMR (δ = (1, 2)),
and LabRat (right): a differential drive WMR (δ = (2, 0)) with active fixed wheels at the rear.

5.1. Case Study I: δ = (3, 0) and δ = (2, 0)

The simulation was performed on a holonomic omnidirectional WMR (δ = (3, 0)).
The WMR has the same architecture as iMoro, but the steering wheels are virtually replaced
by Swedish wheels of the same radii. Figures 8 and 9 portray the path-following scenario,
the base footprint q, and the two of the wheels’ paths for the holonomic type (simulation)
and the unicycle type (experiment using Labrat), respectively. As shown in the figures,
the desired path is smooth, but has sharp turns and, hence, large curvatures at some of its
points, which challenges the agility of the controller.

168

Sensors 2021, 21, 7642

0 1000 2000 3000

−1000

−500

0

500

1000

1500

2000

2500

x(mm)

y
(m

m
)

P d

P 2,4
q
ICR

Figure 8. Simulation: Path-following with large initial errors of a WMR with four Swedish wheels
(δ = (3, 0)). It seeks and follows the path Pd, while correcting its heading from the initial error of
−180◦ to the desired heading of 360◦ at the end of the path.

0 1000 2000 3000

−1000

−500

0

500

1000

1500

2000

2500

x(mm)

y
(m

m
)

P d

P 1,4
q
ICR

Figure 9. Experiment: Bounded velocity path-following with large initial errors for LabRat WMR
(δ = (2, 0)). It seeks and follows the path Pd while correcting its heading from the initial heading
error of −180◦ toward the path tangent angle ψt(s).

169

Sensors 2021, 21, 7642

0 5 10 15 20
−600

−400

−200

0

200

400

600

time (sec)

V
el

oc
ity

(m
m
/s
)

v1
v2
v3
v4
v

Figure 10. Simulation: Driving velocities vi, and the base speed v, for path-following of a WMR with
four Swedish wheels depicted in Figure 8.

We have intentionally set large initial errors to demonstrate the performance of the
controller. The WMR is two meters off the starting point of the path and faces away from
it (initial heading error is −180◦). For the holonomic type, independent heading control
is possible and the desired heading is 360◦ by the end of the path. Conversely, for the
unicycle type (δM = 2), independent heading control is not possible. Since the origin of the
body frame is on the common axis of the fixed wheels, the heading and the linear velocity
angle are the same. Hence, along with the base path-following, the algorithm corrects the
initial heading error and the base heading follows the tangent of the path. As shown in
the figures, the controller can maneuver the robot toward, and asymptotically onto, the
path. The maximum driving velocity was set to 600 MMmm/s and the base speed was
selected as v = v(max) given by Equation (26) in Algorithm 1. Figures 10 and 11 present the
wheels’ driving velocities vi and the base speed v, for the holonomic, and unicycle type,
respectively. As shown in the figures, the bounded velocity algorithm duly scales the base
speed so that none of the wheels exceed their maximum driving velocity.

0 5 10 15 20 25

−600

−400

−200

0

200

400

600

time (sec)

V
el

oc
ity

(m
m
/s
)

v1
v2
v

Figure 11. Experiment: Driving velocities v1 and v2, and the base speed v, for the bounded velocity
path-following of LabRat (δ = (2, 0)).

As shown in Figure 11, LabRat makes sharp turns by setting the velocities of both
wheels to their maximum values but with different signs, which implies that one is driving
forward and another is running backward. Hence, the base speed becomes almost zero and
the velocity difference leads to the angular velocity that is needed for the turn. Collectively,
these experiments demonstrate the agility of the proposed path-following algorithm to
steadily realize sharp maneuvers without relying on switching procedures.

170

Sensors 2021, 21, 7642

5.2. Case Study II: δ = (1, 2)

This case study focuses on the emulation of a manipulation task with iMoro in the
two-steer mode. As shown in Figure 12, the manipulation task consists of grasping the tip
of a T-Slot aluminum profile, which is mounted on and extended from a wheeled table.
A marker attached on the table is detected by a camera mounted on-board at the front
of iMoro. The inertial frame is set on the marker and the pose of the tip is known with
respect to the frame, while the wheeled table is placed randomly in the room. At the start,
the WMRs’ fingers are about to grasp the tip. It is desired for the WMR to start from this
configuration, follow a desired tear shaped path around the room (Figure 13) and creturn
to the exact same initial grasping configuration, which provides a means of investigating
the repeatability of the system. In this experiment, the localization module consists of
sensor fusion between vision data and wheel odometry (more information is given in [45]).

Start

End

Figure 12. Experiment: The repeatability of the path-following controller. The robot starts from the
grasping position marked by ”Start“ follows the path shown in Figure 13 and returns close to the
initial pose.

700 1400 2100 2800 3500 4200

−2500

−2000

−1500

−1000

−500

0

500

1000

1500

x(mm)

y
(m

m
)

P d
q

P 1,3

Figure 13. Experiment: The desired path and the localization feedback of the WMR, performing the
task shown in Figure 12 (The ramp image is shown for the purpose of clarity and does not represent
the exact position of the ramp).

171

Sensors 2021, 21, 7642

To investigate the effects of uncertainties and disturbances, a cable protector ramp
is placed somewhere on the path. The WMR driving up and down the ramp precipitates
temporary but heavy localization disturbances that are evident in Figure 14 between 20 s
and 30 s. Moreover, the independent desired heading is designed such that, for some time,
the marker is out of the camera’s field of view and the localization relies solely on wheel
odometry. Once the marker returns into the camera’s view, a sudden jump appears in
the localization due to the accumulated drifting of the wheels’ dead reckoning, which is
also apparent in the figure before 50 s. Since this happens close to the end of the path,
the controller has little time to correct the absolute error and bring the robot back to the
initial configuration.

0 10 20 30 40 50

−50

0

50

100

150

time (sec)

Po
si

tio
n

E
rr

or
s

(m
m

)

xe
ye

Figure 14. Experiment: Position errors in x and y directions of the inertial frame for the scenario
depicted in Figure 13. It shows the disturbances due to the robot moving on a ramp and the
localization jump due accumulated error of wheels’ dead reckoning.

The two images on the right side of Figure 12 are from a separate camera mounted
on the aluminum profile that show the position of the gripper’s fingers at the start and
end of the path-following, which attests to the successful return of the WMR to the initial
configuration with around 15 mm of final error. This is also evident in Figures 13 and 14,
which show the appearance of the errors and disturbances, and the controller’s pertinent
compensation. This experiment was repeated nine times with the ramp placed on several
different locations on the path. The WMR successfully returned to the initial grasping
configuration with the maximum error of 25 mm. Therefore, while the localization relying
on vision and wheel odometry is very noisy, the control system shows sufficient robustness
against this noise.

Another scenario using the same setup was also implemented to assess the controller’s
practical ability to bound the velocities and alleviate the singularities. In this scenario, the
robot has to follow a given path, as shown in Figure 15 that ends in the same grasping
configuration as before. However, during the path-following, the WMR is required to make
a turn around itself, which not only pushes the platform near its singular configuration
but also moves the marker out of the camera’s field of view for some time. As illustrated
in Figure 15, the turn happens somewhere near the start of the path, with the base ICR
moving closer to one of the wheels steering axis. During the turn, the vision is lost and the
accumulated error during this phase results in a localization jump once the camera can see
the marker again. However, as shown in the figure, the controller manages to compensate
for the errors and usher the robot toward the final grasping pose.

172

Sensors 2021, 21, 7642

−2100 −1400 −700 0 700 1400 2100
500

1000

1500

2000

2500

3000

3500

x(mm)

y
(m

m
)

P d
q

P 2,4

ICR

Figure 15. Experiment: Bounded velocity path-following with independent heading control of iMoro
WMR (δ = (1, 2)). It seeks and follows the path Pd while correcting its heading from its initial
heading to the desired heading of 360◦ at the end of the path.

The base speed is selected to be v = v(max) given by Equation (26) in Algorithm 1;
therefore, at least one of the wheels runs with its maximum driving or steering velocity.
Comparing Figures 16 and 17, it is clear that, most of the time, at least one of the wheels
drives with its maximum driving velocity. However, when a tight turn is needed, the
maximum velocity steadily changes from driving to steering, as shown in Figure 17. Notice
that, near the beginning of the path, iMoro moves close to its singular configuration a
couple of times, which corresponds to some of the peaks in the steering velocities. Figure 15
shows the high curvature of one of the wheels’ footprint and the closeness of the body ICR
to the wheel’s steering near the singular configuration.

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

time (sec)

V
el

oc
ity

(m
m
/s
)

v1
v2
v3
v4
v

Figure 16. Experiment: Driving velocities vi, and the base speed v, for the bounded-velocity path-
following of iMoro depicted in Figure 15. The maximum driving velocity for all the wheels (v(max)

i) are
set as 200 mm/s. The base speed is selected to be v = v(max), given by Equation (26) in Algorithm 1.

173

Sensors 2021, 21, 7642

0 5 10 15 20 25 30 35 40 45

−1.5
−1

−0.5
0

0.5

1

1.5

time (sec)

A
ng

ul
ar

V
el

oc
ity

(r
a
d /

s
)

φ̇1

φ̇2

φ̇3

φ̇1

Figure 17. Experiment: Steering velocities φ̇i for the bounded velocity path-following of iMoro
depicted in Figure 15. The maximum steering velocity for all the wheels (φ̇(max)

i) are set as 1.9 rad/s
(110 deg/s).

5.3. Case Study III: δ = (1, 1)

The last case study focuses on the path-following of car-like WMRs (δ = (1, 1)) and,
specifically, their bounded steering control. In this paper, we assumed that the steering
wheels are free-turn. This assumption can easily be alleviated for some types of WMRs.
Generally speaking, limited steering for WMRs with a degree of steerability greater than
one (δs = 2) is not favorable. This limitation greatly decreases the maneuverability of the
platform to the point that it questions the benefits of allocating extra resources to obtain a
WMR with δs > 1. For example, the independence of heading and linear motion is greatly
compromised and most of the results in the previous case study would not be possible.
However, for configurations with δs = 1, such as car-like WMRs, a limited steering range
for steering wheels is common and widely used. Therefore, in this section we present a
straightforward approach to account for bounded steering in car-like mode.

This experiment has been performed on iMoro. While the steering wheels on iMoro
are free-turn, virtual limits are set to emulate bounded steering. Figure 18 shows the
path-following of iMoro in car-like mode with three steering limits: φmax

i = {45◦, 65◦, 90◦}.
The desired path is smooth but has a very high curvature at its turning point. The derivation
of virtual bounds on control signals to achieve bounded steering is as follows. As shown
in the figure, the body frame is on the common axis of the fixed wheels. Therefore, based
on Equation (37) and the kinematic constraints of Section 3.2, the velocity constraint
vi

B v̂i = vB v̂ + ωb(ẑ× B�i) can be simplified to

B v̂i(φi) =
B v̂ + κv(ẑ× B�i)

||B v̂ + κv(ẑ× B�i)||2
. (39)

In the above equation, B v̂ is known and constant (in case of Figure 18 it is [1 0 0]T).
Replacing φi with the front wheels’ steering limit φmax

i , the above equation can be solved for
the maximum κv, namely κmax

v > 0. Therefore, the bounded control signal κ̄v that is used
to derive actuator commands can be be found by saturating the output of the controller for
κv, using

κ̄v =

{
κv |κv| ≤ κmax

v

sgn(κv)κmax
v |κv| > κmax

v
, (40)

in which sgn(x) is the sign function. Note that, for the case where the base frame is not
on the common axis of the fixed wheels, based on the first case of Equation (37), a similar
procedure can be followed to derive the corresponding bound for the desired velocity
direction B v̂(ψd). In this case, the virtual steering bounds are achieved by using the
reduced-state model S∗ and the saturated value of ψd.

174

Sensors 2021, 21, 7642

−5000 −4000 −3000 −2000 −1000 0 1000 2000

0

1000

2000

3000

4000

5000

6000 φmax
i = 90◦

φmax
i = 65◦

φmax
i = 45◦

x(mm)

y
(m

m
)

P d

P 1,3

q

Figure 18. Experiment: Path-following of iMoro in car-like mode with three steering limits:
φmax

i = {45◦, 65◦, 90◦}.

5.4. Restrictions

As presented in the results of this section, the proposed universal method navigates the
WMRs while keeping the driving and steering actuators within their velocity boundaries.
This approach is generally suitable in conjunction with a path-planner that generates
obstacle-free paths for the WMR. While this approach is capable of navigating the robot
toward the desired path, even when the errors are very large, this feature has to be used with
care with respect to the obstacles that might be present on the corrective path. Moreover,
in order to achieve higher velocity limits while performing tight maneuvers, bounding the
velocities is not enough; the accelerations should be bounded too. We have presented a
bounded acceleration solution for two-steer WMRs, such as iMoro, in [46], and are currently
extending the results to cover all types of WMRs.

6. Conclusions

In this paper, we presented a universal bounded-velocity path-following algorithm
for Wheeled Mobile Robots (WMRs) operating under the condition of pure rolling without
skidding. The solution can be applied to various types of WMRs such as car-like, differ-
ential drive, and omnidirectional. The versatility of the framework is due to the generic
representation of kinematic constraints. This representation accentuates the possibility
of having universal controllers for kinematically different WMRs. We employed these
results to derive a closed-form time-scaling solution for the base speed that keeps the
velocities of the actuators within a set of pre-specified limits. Extending this establishment,
we are currently working to enhance our solution to cover bounded accelerations, dynamic
uncertainties and employ barrier functions for obstacle avoidance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21227642/s1.

Author Contributions: The individual contributions of the authors are as follows. Investigation, for-
mal analysis, software, writing—review and editing by R.O. Conceptualization, validation, writing—
review, editing, and supervision by R.G. Supervision, project administration, and funding acquisition
by J.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work, supported by the European Union’s Seventh Framework Program under the
Marie Curie Initial Training Network, was carried out within the framework of the PURESAFE,
Preventing hUman intervention for incREased SAfety in inFrastructures Emitting ionizing radiation,
under REA grant agreement number 264336.

175

Sensors 2021, 21, 7642

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Morin, P.; Samson, C. Motion control of wheeled mobile robots. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 799–826.

2. Park, K.; Chung, H.; Lee, J.G. Point stabilization of mobile robots via state-space exact feedback linearization. Robot. Comput.-Integr.
Manuf. 2000, 16, 353–363. [CrossRef]

3. Hwang, C.L.; Wu, H.M. Trajectory tracking of a mobile robot with frictions and uncertainties using hierarchical sliding-mode
under-actuated control. IET Control Theory Appl. 2013, 7, 952–965. [CrossRef]

4. Fossen, T.; Pettersen, K.Y.; Galeazzi, R. Line-of-sight path following for Dubins paths with adaptive sideslip compensation of
drift forces. IEEE Trans. Control Syst. Technol. 2015, 23, 820–827. [CrossRef]

5. Bullo, F.; Lynch, K.M. Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems. IEEE
Trans. Robot. Autom. 2001, 17, 402–412. [CrossRef]

6. Van Loock, W.; Pipeleers, G.; Diehl, M.; De Schutter, J.; Swevers, J. Optimal Path Following for Differentially Flat Robotic Systems
Through a Geometric Problem Formulation. IEEE Trans. Robot. 2014, 30, 980–985. [CrossRef]

7. Debrouwere, F.; Van Loock, W.; Pipeleers, G.; Dinh, Q.T.; Diehl, M.; De Schutter, J.; Swevers, J. Time-optimal path following
for robots with convex–concave constraints using sequential convex programming. IEEE Trans. Robot. 2013, 29, 1485–1495.
[CrossRef]

8. Akhtar, A.; Nielsen, C.; Waslander, S.L. Path following using dynamic transverse feedback linearization for car-like robots. IEEE
Trans. Robot. 2015, 31, 269–279. [CrossRef]

9. Ambrosino, G.; Ariola, M.; Ciniglio, U.; Corraro, F.; De Lellis, E.; Pironti, A. Path generation and tracking in 3-D for UAVs. IEEE
Trans. Control Syst. Technol. 2009, 17, 980–988. [CrossRef]

10. Yamasaki, T.; Balakrishnan, S. Sliding mode-based pure pursuit guidance for unmanned aerial vehicle rendezvous and chase
with a cooperative aircraft. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2010, 224, 1057–1067. [CrossRef]

11. Nelson, D.R.; Barber, D.B.; McLain, T.W.; Beard, R.W. Vector field path following for miniature air vehicles. IEEE Trans. Robot.
2007, 23, 519–529. [CrossRef]

12. Sujit, P.; Saripalli, S.; Borges Sousa, J. Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing
unmanned aerial vehicless. IEEE Control Syst. 2014, 34, 42–59.

13. Samson, C. Time-varying feedback stabilization of car-like wheeled mobile robots. Int. J. Robot. Res. 1993, 12, 55–64. [CrossRef]
14. Aicardi, M.; Casalino, G.; Bicchi, A.; Balestrino, A. Closed loop steering of unicycle like vehicles via Lyapunov techniques. IEEE

Robot. Autom. Mag. 1995, 2, 27–35. [CrossRef]
15. Micaelli, A.; Samson, C. Trajectory Tracking for Unicycle-Type and Two-Steering-Wheels Mobile Robots; Technical Report 2097; INRIA:

Rocquencourt, France 1993.
16. Soetanto, D.; Lapierre, L.; Pascoal, A. Adaptive, non-singular path-following control of dynamic wheeled robots. In Proceedings

of the 42nd IEEE Conference on Decision and Control, Maui, HI, USA, 9–12 December 2003; Volume 2, pp. 1765–1770.
17. Lapierre, L.; Soetanto, D.; Pascoal, A. Nonsingular path following control of a unicycle in the presence of parametric modelling

uncertainties. Int. J. Robust Nonlinear Control 2006, 16, 485–503. [CrossRef]
18. Lapierre, L.; Indiverri, G. Path-Following Control of a Wheeled Robot under actuation saturation constraints. In Proceedings of

the IAV07 Conference, Toulouse, France, 3–5 September 2007.
19. Lapierre, L.; Zapata, R.; Lepinay, P. Combined path-following and obstacle avoidance control of a wheeled robot. Int. J. Robot.

Res. 2007, 26, 361–375. [CrossRef]
20. Kaminer, I.; Pascoal, A.; Xargay, E.; Hovakimyan, N.; Cao, C.; Dobrokhodov, V. Path following for small unmanned aerial vehicles

using L1 adaptive augmentation of commercial autopilots. J. Guid. Control. Dyn. 2010, 33, 550–564. [CrossRef]
21. Encarnaçao, P.; Pascoal, A. 3D path following for autonomous underwater vehicle. In Proceedings of the 39 th IEEE Conference

on Decision and Control, Sydney, NSW, Australia, 12–15 December 2000.
22. Ghabcheloo, R.; Hyvonen, M. Modeling and motion control of an articulated-frame-steering hydraulic mobile machine. In

Proceedings of the 17th Mediterranean Conference on Control and Automation (MED’09), Thessaloniki, Greece, 24–26 June 2009;
pp. 92–97.

23. Bibuli, M.; Bruzzone, G.; Caccia, M.; Lapierre, L. Path-following algorithms and experiments for an unmanned surface vehicle. J.
Field Robot. 2009, 26, 669–688. [CrossRef]

24. Kanjanawanishkul, K.; Zell, A. Path following for an omnidirectional mobile robot based on model predictive control. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’09), Kobe, Japan, 12–17 May 2009;
pp. 3341–3346.

25. Thuilot, B.; d’Aandrea Novel, B.; Micaelli, A. Modeling and feedback control of mobile robots equipped with several steering
wheels. IEEE Trans. Robot. Autom. 1996, 12, 375–390. [CrossRef]

176

Sensors 2021, 21, 7642

26. Connette, C.P.; Pott, A.; Hagele, M.; Verl, A. Control of an pseudo-omnidirectional, non-holonomic, mobile robot based on an
ICM representation in spherical coordinates. In Proceedings of the 47th IEEE Conference on Decision and Control (CDC 2008),
Cancun, Mexico, 9–11 December 2008; pp. 4976–4983.

27. Song, J.B.; Byun, K.S. Steering control algorithm for efficient drive of a mobile robot with steerable omni-directional wheels. J.
Mech. Sci. Technol. 2009, 23, 2747–2756. [CrossRef]

28. Moore, K.L.; Davidson, M.; Bahl, V.; Rich, S.; Jirgal, S. Modelling and control of a six-wheeled autonomous robot. In Proceedings
of the IEEE 2000 American Control Conference, Chicago, IL, USA, 28–30 June 2000; Volume 3, pp. 1483–1490.

29. Connette, C.; Parlitz, C.; Hägele, M.; Verl, A. Singularity avoidance for over-actuated, pseudo-omnidirectional, wheeled mobile
robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009;
pp. 4124–4130.

30. Schwesinger, U.; Pradalier, C.; Siegwart, R. A novel approach for steering wheel synchronization with velocity/acceleration
limits and mechanical constraints. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 5360–5366.

31. Cousins, S. Ros on the pr2 [ros topics]. IEEE Robot. Autom. Mag. 2010, 17, 23–25. [CrossRef]
32. Graf, B.; Reiser, U.; Hagele, M.; Mauz, K.; Klein, P. Robotic home assistant Care-O-bot® 3-product vision and innovation platform.

In Proceedings of the 2009 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), Tokyo, Japan, 23–25 November
2009; pp. 139–144.

33. Dietrich, A.; Wimbock, T.; Albu-Schaffer, A.; Hirzinger, G. Reactive Whole-Body Control: Dynamic Mobile Manipulation Using a
Large Number of Actuated Degrees of Freedom. IEEE Robot. Autom. Mag. 2012, 19, 20–33. [CrossRef]

34. Bak, T.; Jakobsen, H. Agricultural robotic platform with four wheel steering for weed detection. Biosyst. Eng. 2004, 87, 125–136.
[CrossRef]

35. Cariou, C.; Lenain, R.; Thuilot, B.; Berducat, M. Automatic guidance of a four-wheel-steering mobile robot for accurate field
operations. J. Field Robot. 2009, 26, 504–518. [CrossRef]

36. Frémy, J.; Ferland, F.; Lauria, M.; Michaud, F. Force-guidance of a compliant omnidirectional non-holonomic platform. Robot.
Auton. Syst. 2014, 62, 579–590. [CrossRef]

37. Connette, C.; Hagele, M.; Verl, A. Singularity-free state-space representation for non-holonomic, omnidirectional undercarriages
by means of coordinate switching. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 4959–4965.

38. Connette, C.; Pott, A.; Hägele, M.; Verl, A. Addressing input saturation and kinematic constraints of overactuated undercarriages
by predictive potential fields. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Taipei, Taiwan, 18–22 October 2010; pp. 4775–4781.

39. Oftadeh, R.; Aref, M.M.; Ghabcheloo, R.; Mattila, J. Bounded-velocity motion control of four wheel steered mobile robots. In
Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, NSW,
Australia, 9–12 July 2013; pp. 255–260.

40. Oftadeh, R.; Ghabcheloo, R.; Mattila, J. A novel time optimal path following controller with bounded velocities for mobile robots
with independently steerable wheels. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Tokyo, Japan, 3–7 November 2013; pp. 4845–4851.

41. Oftadeh, R.; Ghabcheloo, R.; Mattila, J. A time-optimal bounded velocity path-following controller for generic Wheeled Mobile
Robots. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30
May 2015; pp. 676–683.

42. Campion, G.; Bastin, G.; Dandrea-Novel, B. Structural properties and classification of kinematic and dynamic models of wheeled
mobile robots. IEEE Trans. Robot. Autom. 1996, 12, 47–62. [CrossRef]

43. Osmolovskii, N.; Maurer, H. Applications to Regular and Bang-Bang Control; Advances in Design and Control, Society for Industrial
and Applied Mathematics; SIAM: Philadelphia, PA, USA, 2012.

44. Oftadeh, R.; Aref, M.M.; Ghabcheloo, R.; Mattila, J. Unified framework for rapid prototyping of linux based real-time controllers
with matlab and simulink. In Proceedings of the 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM), Kaohsiung, Taiwan, 11–14 July 2012; pp. 274–279.

45. Aref, M.M.; Oftadeh, R.; Ghabcheloo, R.; Mattila, J. Real-time vision-based navigation for nonholonomic mobile robots. In
Proceedings of the 2016 IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA,
21–25 August 2016; pp. 515–522.

46. Oftadeh, R.; Ghabcheloo, R.; Mattila, J. Time Optimal Path Following with Bounded Velocities and Accelerations for Mobile
Robots with Independently Steerable Wheels. In Proceedings of the 2014 IEEE International Conference on Robotics and
Automation (ICRA), Hong Kong, China, 31 May–7 June 2014.

177

Citation: Maurya, P.; Morishita,

H.M.; Pascoal, A.; Aguiar, A.P.

A Path-Following Controller for

Marine Vehicles Using a Two-Scale

Inner-Outer Loop Approach. Sensors

2022, 22, 4293. https://doi.org/

10.3390/s22114293

Academic Editor: Baochang Zhang

Received: 31 March 2022

Accepted: 29 May 2022

Published: 5 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Path-Following Controller for Marine Vehicles Using a
Two-Scale Inner-Outer Loop Approach

Pramod Maurya 1,*, Helio Mitio Morishita 2, Antonio Pascoal 3 and A. Pedro Aguiar 4

1 CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India
2 Department of Naval Architecture and Ocean Engineering, Polytechnic School, University of São Paulo,

São Paulo Campus, São Paulo 05508-030, Brazil; hmmorish@usp.br
3 Institute for Systems and Robotics (ISR), IST, University of Lisbon, 1049-001 Lisbon, Portugal;

antonio@isr.tecnico.ulisboa.pt
4 Research Center for Systems and Technologies and Department of Electrical and Computer Engineering,

Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; pedro.aguiar@fe.up.pt
* Correspondence: maurya@nio.org

Abstract: This article addresses the problem of path following of marine vehicles along straight lines
in the presence of currents by resorting to an inner-outer control loop strategy, with due account for
the presence of currents. The inner-outer loop control structures exhibit a fast-slow temporal scale
separation that yields simple “rules of thumb” for controller tuning. Stated intuitively, the inner-loop
dynamics should be much faster than those of the outer loop. Conceptually, the procedure described
has three key advantages: (i) it decouples the design of the inner and outer control loops, (ii) the
structure of the outer-loop controller does not require exact knowledge of the vehicle dynamics,
and (iii) it provides practitioners a very convenient method to effectively implement path-following
controllers on a wide range of vehicles. The path-following controller discussed in this article
is designed at the kinematic outer loop that commands the inner loop with the desired heading
angles while the vehicle moves at an approximately constant speed. The key underlying idea is to
provide a seamless implementation of path-following control algorithms on heterogeneous vehicles,
which are often equipped with heading autopilots. To this end, we assume that the heading control
system is characterized in terms of an IOS-like relationship without detailed knowledge of vehicle
dynamics parameters. This paper quantitatively evaluates the combined inner-outer loop to obtain a
relationship for assessing the combined system’s stability. The methods used are based on nonlinear
control theory, wherein the cascade and feedback systems of interest are characterized in terms of
their IOS properties. We use the IOS small-gain theorem to obtain quantitative relationships for
controller tuning that are applicable to a broad range of marine vehicles. Tests with AUVs and one
ASV in real-life conditions have shown the efficacy of the path-following control structure developed.

Keywords: path following; inner-outer loop control; input-to-output stability; AUVs; ASVs

1. Introduction

The use of autonomous marine vehicles, including surface and underwater robots,
for various scientific and commercial applications at sea, has increased multi-fold in the
last decade. Missions of interest include, among others, bathymetric surveys, seabed
imaging, environmental monitoring, inspection of offshore critical infrastructures, and
marine archaeology studies. In most of these missions, marine vehicles are required
to follow spatial paths accurately. A representative example is the case where an AUV
(autonomous underwater vehicle) or an ASV (autonomous surface vehicle) is requested
to execute “lawn-mowing” maneuvers along desired paths in the presence of unknown
ocean currents.

We recall the crucial difference between trajectory tracking and path following. In the
latter, no explicit temporal constraints are imposed on the desired vehicle’s motion and a

Sensors 2022, 22, 4293. https://doi.org/10.3390/s22114293 https://www.mdpi.com/journal/sensors179

Sensors 2022, 22, 4293

path is planned using spatial coordinates only, along with a reference speed profile that
may depend on where the vehicle is on the path. In contrast, in trajectory tracking, space
and time explicitly define the reference coordinates for the desired vehicle’s motion, that
is, the vehicle is required to track a 3D curve parameterized in time. This strategy is only
pursued in practice when simultaneous and temporal specifications play a decisive role.
However, in the process of tracking a desired inertia trajectory, a vehicle may be required
to reach a speed with respect to the water that may either be too small, leading to the loss
of surface control authority or too high, exceeding the capability of the propulsion system
installed onboard.

A properly designed path-following control systems can naturally lead to smoother
vehicle trajectories without pushing the control signals into saturation, in contrast to what
may happen when trajectory tracking controllers are used. The fundamental limitations of
trajectory tracking can be found in [1,2]. In [2], Aguiar studied performance limitations of
trajectory tracking strategies due to unstable zero-dynamics in terms of a lower bound on
L2-norm of the tracking error even if the control effort is unlimited. It was also shown that
path following is free from such a limitation. In [3], a hybrid solution to path following and
trajectory tracking problem for underactuated vehicles was discussed for 2D and a more
general 3D space. Aguiar and Hespanha in [3] followed a supervisory control architecture
in which a switching logic is used to adapt an adequate estimator and control law from
the family of estimators and candidate control laws. Supervisory control combined with
a nonlinear Lyapunov-based tracking control was demonstrated and its robustness to
parametric modeling uncertainties was shown with examples of a hovercraft and an
AUV. Marine vehicles suffer from disturbances induced by ocean currents. The issue of
disturbances was not addressed in [3]. The path following problem in 3D for an underwater
vehicle was also described in [4], where the controller design builds on the Lyapunov
theory and resorts to back-stepping techniques, demanding the knowledge of a complete
hydrodynamic model of the vehicle.

In [5], Indiveri described a 3D kinematical solution to path following by recalling
sliding-mode control techniques. Rather than designing the control input to drive a track-
ing error to zero, the sliding mode control uses the control input to drive and keep the
state on a surface where the error has stable dynamics. However, the authors did not
address the issues related to the vehicle dynamics and described the controller only at the
kinematic level.

Pioneering work in solving the path following problem for wheeled robots has been
addressed in [6,7]. Path-following problem for a car pulling several trailers is addressed
in [8]. In [9], Altafini provided local asymptotic stability for a path of non-constant cur-
vature for a trailer vehicle. More recently, in [10], a model predictive path-following
control of a laboratory tower crane has been described to move a load along a predefined
geometric path.

It is interesting to see in [11,12] that path following is at the core of cooperative motion
control for multiple vehicles where these vehicles are supposed to follow a set of fixed
spatial paths while holding a desired formation pattern. Each vehicle is equipped with
a path-following algorithm to maneuver along its assigned spatial path, whereas a dis-
tributed control law performs the formation control by adjusting the speeds of different
vehicles. It is therefore important to emphasize the need for a reliable path-following
method that is suitable for heterogeneous vehicles with little knowledge of their dynamics.
Cooperation among multiple vehicles with a view to performing different tasks plays
a critical role in executing a number of mission scenarios [13]. The GREX project is an
example of the use of cooperative-motion control strategies involving a number of vehicles
developed by different oceanographic institutions for their needs. Figure 1 illustrates the di-
versity in the marine vehicles used for cooperation during the sea trials of the GREX project.

180

Sensors 2022, 22, 4293

Figure 1. Heterogeneous vehicle used to demonstrate cooperative motion control during GREX trails
at Sesimbra, Portugal.

The EU-funded project MORPH (FP7-ICT-2011-7 GA 288704, 2012–2016) [14] advanced
the novel concept of an underwater robotic system composed of a number of spatially
separated mobile robot-modules, carrying distinct and yet complementary resources with
path-following algorithms implemented on every vehicle. MORPH provided the foun-
dation for efficient methods to survey the underwater environment with great accuracy,
especially in situations that defy classical technology. Namely, underwater surveys over
rugged terrain and near vertical cliffs.

The WiMUST project (H2020-ICT-2014-1, 2015–2018) [15] witnessed the development
of advanced cooperative and networked control/navigation systems to enable a group of
marine robots (both on the surface and submerged) equipped with acoustic sources and
towed acoustic streamers to perform geotechnical seismic surveys in a fully automatic
manner. For the first time worldwide, a mission was performed in 2018 at sea in Sines,
Portugal, with a fleet of seven autonomous marine robots performing high-resolution 3D
sub-bottom mapping in cooperation. Every individual vehicle was required to be equipped
with a path-following algorithm.

Path-following algorithms are fundamental for these vehicles to cooperate effectively.
The straight-line path following problem for formations of multiple under-actuated marine
surface vessels is addressed in [16]. The controller used is a combination of an LOS-based
path-following controller and a nonlinear synchronization controller for the along-path
synchronization of the vessels. The synchronization controller takes into account the loss of
controllability at velocities close to zero for under-actuated vehicles. A unified analysis of
stability properties of both the cross-track error dynamics and the synchronization error
dynamics are discussed by using the tools from the theory of nonlinear cascaded systems.
For the path-following controller of each vehicle, the authors used a line-of-sight guidance
law in combination with a stabilizing heading controller. The guidance law is a function of
cross-track error and look-ahead distance [17], which is an along-track distance between
the nearest point on the track and a point that lies ahead of the vehicle. The look-ahead
distance is used as design parameter. Depending on the damping on sway motion, the
look-ahead distance can be increased or reduced to impose restrictions on the commanded
yaw rate. However, the bound on the design parameter (look-ahead distance) requires the

181

Sensors 2022, 22, 4293

knowledge of the mass matrix and damping coefficients for surge and sway dynamics of
the vehicle and the proposed controller does not take ocean currents into account.

Similar work that takes ocean currents into account is reported in [18]. The control law
proposed to drive the cross-track error to zero is the same as that reported in [16] with an
extra term which is a function of the ocean currents. The ocean currents for an individual
vehicle are estimated using an adaptation law, which solves a differential Ricatti equation
that is again a function of the mass matrix and damping coefficients.

In [19], instead of estimating the currents, the authors used an integrator similar to
the work reported in this paper. Burger et al. introduced a conditional integrator to avoid
large overshoots during the saturation of the control signal. The conditional integrator
combines the benefits of integral action and sliding-mode control. It behaves either like a
PI controller or like a sliding-mode controller, depending on the magnitude of the control
signal to avoid the chattering caused by the sliding-mode control. However, the problem
of integrator windup can also be addressed by using a smooth anti-windup scheme.

The tools used for stability analysis in [16,18,20] are similar to the one reported in this
paper, which relies on the theory of interconnected and cascaded systems. In [20], path
following problems for more general spatial paths (with constraints on their curvature) in
the presence of constant ocean currents were addressed. The authors introduced a virtual
Serret–Frenet reference frame that is anchored on and propagates along the desired path.
When the vehicle reaches the vicinity of that point, the reference is updated, requesting
the vehicle to converge to another point further on the reference path. A Luenberger-type
observer is designed to estimate the currents by measuring the relative velocity of the
vehicle w.r.t the water. The proposed guidance law is a nonlinear function of surge and
sway velocities and involves solving a quadratic function of currents, cross-track error
and look-ahead distance. The estimation of ocean currents requires the measurement of
relative velocity from an Acoustic Doppler Current Profiler (ADCP). Most surface vehicles
are equipped only with GPS and cannot measure the relative velocity of the vehicle. In
the simplified case of [20], to follow straight lines while cruising at a constant speed, the
measurement of the relative velocity was critical to estimate currents. Again, the design of
the controller requires knowledge of surge and sway dynamics.

We now shift our attention to the importance of inner-outer loop control structures. In
the field of aircraft control, path following has been addressed as dynamic and kinematic
loop control structures similar to inner and outer loop in marine vehicles. In [21], path-
following control in 3D was built on a nonlinear control strategy that is first derived at
the kinematic level, followed by the design of a L1-adaptive output-feedback control law
that effectively augments an existing autopilot and yields an inner-outer loop control
structure with guaranteed performance whereas, multiple vehicle coordination is achieved
by enforcing temporal constraints on the speed profiles of the vehicles along their paths. A
survey and analysis of algorithms for path following reported in [22] showed how inner-
outer loop-based guidance schemes are implemented in most Unmanned Air Vehicles
(UAV) where practitioners used inexpensive open-source autopilots.

There is extensive literature on the path following, displaying a vast choice of available
control laws based on linear and nonlinear techniques. Representative examples of path-
following controllers for marine vehicles can be found in [23–26]. Furthermore, in [27], the
authors described a nonlinear path-following guidance method in inner-outer loop form,
where the outer loop plays a role of a guidance scheme, generating lateral acceleration
commands, and the inner loop follows. This paper does not address the stability of the
outer loop in the presence of the inner loop. This topic was addressed in [28] with the
assumption that there is complete knowledge of the vehicle model parameters.

No reference in the literature, to the best of our knowledge, addresses the problem
of path following without prior knowledge of the inner loop dynamics. Path following is
either designed at a kinematic level only or demands complete knowledge of horizontal
plane dynamics.

182

Sensors 2022, 22, 4293

The scarcity of publications on nonlinear path following for ocean vehicles without
complete knowledge of vehicle dynamics somehow reflects the hardness of the problem
mainly due to the presence of a nonzero lateral velocity and shows the relevance of the
research topic here discussed. Motivated by the above considerations, this article addresses
the problem of path following for marine vehicles by resorting to inner-outer control
loops, with due account for the vehicle dynamics and currents. The inner-outer loop
control structures exhibit a fast-slow temporal scale separation that yields simple “rules
of thumb” for controller tuning. Stated intuitively, the inner loop dynamics should be
much faster than those of the outer loop. This qualitative result is well rooted in singular
perturbation theory [29]. Conceptually, the procedure described has three key advantages:
(i) it decouples the design of the inner and outer control loops, (ii) the structure of the
outer loop controller does not depend on the dynamics of the vehicle, and (iii) it provides
practitioners a very convenient method to effectively implement path-following controllers
on a wide range of vehicles.

The path-following controller discussed in this article is designed at the kinematic
outer loop that commands the inner loop with the desired heading angles while the
vehicle moves at an approximately constant speed. The idea is to provide a seamless
implementation of path-following control algorithms on heterogeneous vehicles that may
be pre-equipped with heading autopilots. To address this issue, we developed a novel
methodology for the design of path-following controllers for marine vehicles which uses a
simple characterization of the marine vehicle’s dynamics, in the form of input-output gains
or bandwidth-like characterization, without having to know the detailed dynamics of a
marine vehicle. This is the key contribution of this article,which is rooted in and extends
substantially the methodology described in [30]. The focus of the presentation is on AUVs;
however, the techniques can be easily extended to autonomous surface vehicles (ASVs).
The paper is organized as follows. We first discuss the nonlinear dynamics of two marine
vehicles used in experiments, followed by the formal proof of the stability of a simple
inner-loop PD controller applied to a nonlinear three-degree-of-freedom model. We then
tackle the problem of path following without considering the dynamics of the vehicle. In
Section 6.5, we consider path following for straight lines in 2D, propose an inner-outer
loop control structure for its solution, and provide the proof of the stability of the resulting
feedback control system. We describe the results of simulations and field tests performed
with real marine vehicles, summarize the main conclusions, and discuss problems that
warrant further research.

2. Notation and AUV Modeling

Depth and heading controllers are the core systems of autonomous marine. Depth
control is used to maintain the depth of an AUV at a desired value, whereas heading control
is used to steer both AUVs and ASVs along desired directions with respect to the magnetic
north. The design of such controllers varies from simple proportional-integral-derivative
(PID) and linear quadratic methods based on linearized dynamic models [31] to more
complex Lyapunov-based nonlinear control. Modeling the dynamics of a vehicle is critical
for its maneuvering, stabilization, and motion control. However, accurate modeling of
the dynamics of such vehicles is oftentimes painstaking, time consuming, and quite costly.
In [32], the hydrodynamic data required to model the Marius AUV have been determined
by full-scale tests, using a towing tank equipped with a Planar Motion Mechanism. There
are only a few test facilities of this kind which many researchers developing AUVs for
scientific needs cannot afford. To avoid such expensive and time-consuming methods of
determining the hydrodynamic coefficients, most of the users rely on semi-empirical and
analytical methods [33], together with CFD analysis. Later, the parameters of importance
in simplified models can be derived/verified by performing certain open loop maneuvers
in the water. One such example is the circular maneuver for horizontal plane models [34].
Vehicle models obtained using such techniques are necessarily simplified but, if properly
exploited, may be extremely useful in characterizing the system to be controlled in a form

183

Sensors 2022, 22, 4293

that is suitable for input-output stability analysis. A compelling example is the case where,
using nonlinear system analysis, the dynamics of a system may be characterized in terms
of parameters that play a role equivalent to static gain and bandwidth for first-order linear
systems. Such models can be used to design the controllers with a simple structure. In
what follows, the structure of a generic vehicle model that we adapt borrows from the work
of Fossen [34].

2.1. Vehicle Modeling

Following usual practice, we define two reference frames: a body-fixed reference
frame {B} in which the dynamics of the vehicle are naturally described and an earth-fixed
reference frame {I} in which the position and orientation of the vehicle are expressed (see
Figure 2). The following notation is required.

• ν1 = [u v w]T is the linear velocity of the origin of {B} with respect to {I} expressed
in {B} (i.e., body-fixed linear velocity).

• ν2 = [p q r]T is the angular velocity of {B} with respect to {I} expressed in {B} (i.e.,
body-fixed angular velocity).

• η1 = [x y z]T is the position of the origin of {B}measured in {I}.
• η2 = [φ θ ψ]T parameterizes locally the orientation of {B} with respect to {I}.

xI
xB

yIz yIzI

yByB

zB
Figure 2. Notations and reference frames for an AUV.

An arbitrary vector BV ∈ IR3 expressed in {B} can be expressed in {I} as IV =I
�B

R�BV.

An important relation for IBR (abbreviated as R) [35] is RT R = I, implying that RT = R−1

and det(R) = 1. The matrix R ∈ IR3×3 can be described locally in terms of a sequence
of 3 transformations that take {B} to {I} by rotating it sequentially about its current
z → y → x axis through the Euler angles ψ—yaw (rotation about z-axis), θ—pitch (rotation
about y-axis) and φ—roll (rotation about x-axis) [34]. The final rotation matrix from {B} to
{I} parameterized by the Euler angles η2 = [φ θ ψ]T is given by

R(η2) =

⎛
⎝cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ

⎞
⎠, (1)

where s(.) = sin(.) and c(.) = cos(.).

184

Sensors 2022, 22, 4293

2.2. Kinematics

The kinematic equations that relate body-fixed with inertial linear and angular veloci-
ties are given by

η̇1 = R(η2)ν1, (2)

η̇2 = Q(η2)ν2. (3)

The transformation of body-fixed angular velocities is performed using the transformation
matrix Q(η2) given by

Q(η2) =

⎛
⎝1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

⎞
⎠, (4)

where t(.) = tan(.). Note that Q is singular for θ = ±π/2 when using the above sequence
of Euler angles and can be avoided by using quaternions (see [34] for details). However,
for an AUV, an angle close to π/2 is practically not desirable and is avoided by design.
Thus, it is reasonable to assume that most AUVs operate with small pitch angle. Finally,
the combined 6-DOF kinematic equation can be written as[

η̇1
η̇2

]
=

[
R(η2) 0

0 Q(η2)

][
ν1
ν2

]
⇐⇒ η̇ = J(η)ν. (5)

An important relation for the derivative of a rotation matrix is given by

Ṙ(η2) = R(η2)S(ν2), (6)

where S is a skew-symmetric matrix, for an arbitrary vector u = [ux uy uz]T ∈ IR3, it takes
the form

S(u) =

⎡
⎣ 0 −uz uy

uz 0 −ux
−uy ux 0

⎤
⎦. (7)

Furthermore,

ST = −S; S(u)v = −S(v)u; S(u)v = u× v. (8)

2.3. Dynamics

With the assumptions that the center of mass of the rigid body is coincident with the
origin of {B} and {I} is an inertial frame, Newton–Euler’s laws apply in the latter frame
and the dynamic equations for translation can be written as

∑ IFRB = m
d
dt

(
Iν1

)
= m

d
dt
(Rν1) (9)

= m
dR
dt

ν1 + mR
d
dt

ν1 (10)

= mRS(ν2)ν1 + mR
d
dt

ν1 (11)

where m is the mass matrix and ∑I FRB is the sum of external forces expressed in the
inertial reference frame. The dynamic equations for an AUV are usually expressed in the
body-fixed frame for convenience, where the inertia tensor is constant and the external
forces are more easily expressed. The sum of external forces expressed in {B} is given by

185

Sensors 2022, 22, 4293

∑ R−1IFRB = mR−1RS(ν2)ν1 + mR−1R
d
dt

ν1 (12)

∑ FRB = m[ν2 × ν1 + ν̇1], (13)

where FRB are the external forces measured in {B}. Similarly, applying Newton–Euler’s
laws in {B}, the dynamic equations for rotational motion can be written as

∑ INRB =
d
dt

(
IL

)
=

d
dt
(RIRBν2) (14)

= RS(ν2)IRBν2 + RIRB
d
dt

ν2, (15)

where IRB is the moment of inertia matrix and IL is the angular momentum measured
in {I}. Now, expressing the above dynamic equations in body-fixed reference frame
{B} yields

∑ R−1INRB = R−1RS(ν2)IRBν2 + R−1RIRB
d
dt

ν2 (16)

∑ NRB = IRBν̇2 + ν2 × IRBν2, (17)

where NRB includes the external torques measured in {B}.
Combining the equations for translation and rotational motion, a simplified vectorial

representation can be written as

MRBν̇ + CRB(ν)ν = τRB, (18)

where MRB is the rigid-body inertia matrix, which in the general case, is given by

MRB =

⎡
⎣ mI3×3 −mS

(
rb

g

)
mS

(
rb

g

)
Io

⎤
⎦ (19)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 mzg −myg
0 m 0 −mzg 0 −mxg
0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Ixy Iy −Iyz
−myg mxg 0 −Izx −Izy Iz

⎤
⎥⎥⎥⎥⎥⎥⎦, (20)

and satisfies the properties

• MRB = MT
RB > 0,

• ṀRB = 06×6,

where I3×3 is the identity matrix, Io = IT
o > 0 is the inertia matrix about O, and S

(
rb

g

)
in (19) is the matrix cross-product operator.

The rigid body Coriolis and centripetal matrix CRB(ν) can always be represented in
symmetric form, i.e., CRB(ν) = CT

RB(ν) ∀ν ∈ IR6. For the given inertia matrix,

MRB = MT
RB =

[
M11 M12
M21 M22

]
> 0, (21)

where M21 = MT
12, CRB(ν) can be written as

CRB(ν) =

⎡
⎣ 03×3 −mS(ν1)−mS

(
S(ν2)rb

g

)
−mS(ν1)−mS

(
S(ν2)rb

g

)
mS

(
S(ν1)rb

g

)
− S(Ioν2)

⎤
⎦ (22)

186

Sensors 2022, 22, 4293

with S(ν1)ν1 = 0. All external forces and torques are represented as a generalized vector
τRB =

[
∑ FT

RB ∑ NT RB
]T

= [X Y Z K M N]T where [X Y Z]T are the external forces and
[K M N]T are the external torques both expressed in body {B}. To explicitly take into
account different types of external forces and torques, this vector can be decomposed as

τRB = τ + τA + τD + τR + τdist, (23)

where

• τ—control inputs (forces and torques due to thrusters/surfaces);
• τA = −MAν̇− CA(ν)ν—terms due to added masses;
• τD = −D(ν)ν—hydrodynamics terms due to lift, drag, skin friction, etc.;
• τR = −g(η)—restoring forces and torques due to the interplay between gravity and

buoyancy forces;
• τdist—terms due to external disturbances, e.g., waves, winds, etc.

Neglecting the term τdist, the final dynamic model of an AUV can be written as

[MRB + MA]ν̇ + [CRB(ν) + CA(ν)]ν + D(ν)ν + g(η) = τ (24)

⇔ Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ. (25)

3. Examples of Horizontal Plane Dynamics

3.1. 3-DOF Nonlinear Model

In what follows, we consider the horizontal plane dynamics of an underwater vehicle
with 3 degrees of freedom (surge, sway, and yaw rate). Assuming that the roll of the vehicle
is negligible and vertical and the horizontal plane dynamics are decoupled, and the {B}
frame coincides with the principal axes of inertia of the body, the corresponding nonlinear
equations of motion can be written as

muu̇−mvvr + duu = τu (26)

mvv̇ + muur + dvv = 0 (27)

mrṙ−muvuv + drr = τr (28)

with

mu = m− Xu̇ mr = Iz − Nṙ du = −Xu − X|u|u|u| (29)

mv = m−Yv̇ muv = mu −mv dv = −Yv −Y|v|v|v| (30)

dr = −Nr − N|r|v|r|, (31)

where m is the mass, Izz is the moment of inertia about the vertical axis, Xu̇, Yv̇, and Nṙ are
added mass coefficients, Xu, Yv, and Nr are linear damping coefficients, and X|u|u, Y|v|v,
and N|r|r are the nonlinear damping coefficients of the AUV model. The compact form of
these equations describing the motion of a marine vehicle which is three-plane symmetric
can be written as [36]

Mν̇ + C(ν)ν + D(ν)ν = τ, (32)

where

ν = [u v r]T, τ = [τu 0 τr]
T, (33)

M =

⎛
⎝mu 0 0

0 mv 0
0 0 mr

⎞
⎠ > 0, (34)

187

Sensors 2022, 22, 4293

C(ν) =

⎛
⎝ 0 0 −mvv

0 0 muu
mvv −muu 0

⎞
⎠, (35)

D(ν) =

⎛
⎝du 0 0

0 dv 0
0 0 dr

⎞
⎠ > 0, (36)

We shall now discuss the modeling of an underwater vehicle referring to two examples of
actual vehicles: (1) the MEDUSA vehicle in which yaw and heave motions are controlled
only by thrusters (see Figure 3), (2) Maya, a torpedo-shaped AUV where the yaw and
pitch motions are controlled using conventional rudders and fins while the vehicle cruises
propelled by a single thruster aligned with the x-axis of the body (see Figure 4). In this
model, the surge equations are not considered, and the vehicle is assumed to be cruising at
a constant speed uo [31].

Figure 3. Medusa Autonomous Marine Vehicles, developed at DSOR, IST, Lisbon.

Figure 4. The MAYA Autonomous underwater vehicle developed at NIO, Goa.

3.2. MEDUSA-Class Vehicle as an Example

The MEDUSA-class vehicles are autonomous robotic marine vehicles, capable of
working both as surface and underwater robots, developed at the Dynamical Systems

188

Sensors 2022, 22, 4293

and Ocean Robotics group (DSOR) of Instituto de Sistemas e Robótica, Instituto Superior
Técnico (ISR-IST) [37]. The MEDUSA-class AUV is a twin hull vehicle separated by 150 mm
(see Figure 3). It weighs around 17 kg, is 1 m long, and with a hull diameter of 150 mm.
The two hulls contain the batteries, onboard electronics, sensors, and the main computer
running the Robot Operating System (ROS) .

The surface operating vehicles have two thrusters placed on each side of the vehicle
at 150 mm from the center line. The forward force τu = Fs + Fp is generated as a sum of
two forces generated by starboard (Fs) and portside (Fp) thrusters and a yaw moment
τr = 0.15

(
Fs − Fp

)
. The restoring moments for the vehicle is large enough for the roll

and pitch motions to be neglected due to large separation between center of gravity and
center of buoyancy. The vehicles are not actuated in the sway axis (i.e., τv = 0) [38]. The
hydrodynamic parameters for Medusa are derived using the combination of semi-empirical
and analytical methods and experimental data in calm waters. The parameters are tabulated
in Table A1.

3.3. Maya AUV: An Example

The Maya AUV is an axis-symmetric underwater vehicle developed at the National
Institute of Oceanography (NIO), Goa, India. The Maya AUV [39] follows a low-drag hull
with a removable nose cone which carries scientific sensors (see Figures 2 and 4). It has a
single propeller for propulsion and two pairs of stern planes to control depth and heading.
The nose section can accommodate different sensors for specific missions at sea. The AUV
is equipped with an attitude and heading reference system (AHRS), a Doppler velocity log
(DVL) for navigation underwater, and GPS for surface navigation.

Based on the assumption that the complete six-degrees-of-freedom model for the AUV
can be split into two non-interacting models for the vertical and horizontal planes (see [40]),
the simplified sway and yaw dynamics at constant speed u0 are given by [36],

mv̇ + mu0r = Y (37)

Izṙ = N. (38)

For small roll and pitch angles,

ψ̇ =
sinθ

cosθ
q +

cosφ

cosθ
r ≈ r. (39)

The linear modeling of hydrodynamic damping, added mass, and rudder angle gives

Y = Yvv̇ + YRṙ + Yvv + Yrr + Yδδr (40)

N = Nvv̇ + NRṙ + Nvv + Nrr + Nδδr. (41)

The quadratic terms on damping are neglected because of limited magnitude of v and
r. The model is linearized about the nominal cruising speed of u0 = 1.2 m/s and the
linearized dynamic equations of motion for the horizontal plane represented in matrix form
is given by⎡
⎣ m−Yv̇ −Yṙ 0

−Nv̇ Iz − Nṙ 0
0 −1 1

⎤
⎦
⎡
⎣ v̇

ṙ
ψ̇

⎤
⎦+

⎡
⎣ −Yv −Yr + mu0 0
−Nv −Nr 0

0 −1 0

⎤
⎦
⎡
⎣ v

r
ψ

⎤
⎦ =

⎡
⎣ Yδ

Nδ

0

⎤
⎦δr. (42)

The vehicle parameters were estimated by resorting to analytic and semi-empirical methods
for hydrodynamic parameter estimation (see [33]), and the details of the parameters for the
MAYA AUV are given in Table A2.

4. Heading Control for a 3-DOF Nonlinear Model

In preparation for the analysis of combined guidance and control systems for a marine
vehicle in 2D, we start by obtaining a compact description of the dynamics of a closed-loop

189

Sensors 2022, 22, 4293

yaw control system. This will serve as an important step to tackle the problem of path
following. Most surface and underwater vehicles use simple Proportional-Derivative (PD)
yaw controllers, oftentimes designed using a 3-DOF model linearized about a trimming
condition with a view to steering the vehicle along a straight line at a fixed forward speed.
However, there is no formal proof of stability for the convergence of the error (between
desired and true heading) to zero when the controller is applied to a nonlinear model.
This section provides proof of convergence for a PD controller coupled with the 3-DOF
nonlinear dynamics of a Medusa Class marine vehicle, using concepts from the Lyapunov
theory. We will be later using a simple characterization of the combination of the AUV
dynamics with a heading controller, in the form input-output gains or bandwidth-like
characterization and this is a key contribution of this article. The motion of an AUV in the
horizontal plane expressed in the body-fixed frame is given in (27), and is repeated here for
the reader’s convenience:

Mν̇ + C(ν)ν + D(ν)ν = τ, (43)

where ν = [u v r]T is the state vector; τ = [τu 0 τr]T is the control vector and

M =

⎡
⎣ mu 0 0

0 mv 0
0 0 mr

⎤
⎦ > 0,

C(ν) =

⎡
⎣ 0 0 −mvv

0 0 muu
mvv −muu 0

⎤
⎦,

D(ν) =

⎡
⎣ du 0 0

0 dv 0
0 0 dr

⎤
⎦ > 0,

mu = m− Xu̇; mv = m−Yv̇; mr = Izz − Nṙ,
du = −Xu − X|u|u|u| = du1 + du2|u|,
dv = −Yv −Y|v|v|v| = dv1 + dv2|v|,
dr = −Nr − N|r|r|r| = dr1 + dr2|r|.

Considering practical issues, the following assumptions are made:

(a) The surge velocity u is much larger than the sway v so that u ≈ U is constant, where
U is the total speed of the vehicle w.r.t the fluid;

(b) The yaw rate and therefore yaw are controlled using a proportional-derivative control
law given by, i.e., τr = −Kψ̃− Kd(r− ψ̇d), where ψ̃ = ψ− ψd is the negative of the
yaw heading error, and ψd is the heading command;

(c) The dynamics of the heading is replaced by the dynamics of the heading error, i.e.,
˙̃ψ = ψ̇− ψ̇d.

Thus, taking into account assumptions (a) to (c), the mathematical model of the system
that describes, for a fixed U, the evolution of the closed-loop system under PD control, is
given by ⎡

⎣ v̇
ṙ
˙̃ψ

⎤
⎦ =

⎡
⎢⎣ − dv1

mv
−mu

mv
U 0

−mv−mu
mr

U − dr1+Kd
mr

− K
mr

0 1 0

⎤
⎥⎦

︸ ︷︷ ︸
A

⎡
⎣ v

r
ψ̃

⎤
⎦

︸ ︷︷ ︸
x

+ (44)

⎡
⎢⎣ − dv2|v|

mv
0 0

0 − dr2|r|
mr

0
0 0 0

⎤
⎥⎦

︸ ︷︷ ︸
G(x)

⎡
⎣ v

r
ψ̃

⎤
⎦+

⎡
⎢⎣ 0

Kd
mr−1

⎤
⎥⎦

︸ ︷︷ ︸
B

ψ̇d

190

Sensors 2022, 22, 4293

Equation (44) can be rewritten as:

ẋ = Ax + G(x)x + Bu, u ∈ IR (45)

for x ∈ Dx = {v, r, ψ̃ ⊂ IR3 : |v| ≤ vmax |r| ≤ rmax, |ψ̃| ≤ ψ̃max} and u ∈ Du = {u ⊂
IR : |u| ≤ umax}. Notice that Equation (45) contains linear and nonlinear terms.

5. Analysis of the Stability of the Origin

The stability analysis of the origin of the mathematical model of the system (45) is
performed considering the influence of the vehicle speed U on the eigenvalues of matrix A,
once the values for K and Kd have been defined. To analyze the stability of the origin, we
use the properties of input-to-state (ISS) and input-output stability (IOS) of the control system.
Furthermore, this analysis is important because ISS and IOS properties of the system are
based on a Lyapunov equation that involves the matrix A. In what follows, we provide
definitions of ISS and IOS and essential theorems from [29] that will be used to perform
the stability analysis of the systems considered in this paper.

5.1. Input-to-State Stability (ISS)

Consider the system
ẋ = f (x, t, u) x(t0) = x0 (46)

where x(t) ∈ IRn and u(t) ∈ IRm denotes states and the input at time t ≥ 0. The function
f : [0, ∞]× IRn × IRm → IRn is piecewise continuous in t and locally Lipschitz in x and u.
The input u(t) is a piecewise continuous, bounded function of t for all t ≥ 0.

Definition 1. The system (46) is said to be input-to-state stable (ISS) if there exists a class
KL-function β and α class K-function, such that for any initial slate x(t0) and any bounded input
u(t), the solution x(t) exists for all t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x0‖, t− t0) + γ

(
sup

t0≤τ≤t
‖u(τ)‖

)
(47)

The function γ ∈ K describes the influence of the input on the solution of the system. The function
β ∈ KL describes the transient behavior of the system [29,41].

The Lyapunov-based technique for the ISS verification gives a sufficient condition for
input-to-state stability.

Theorem 1. Let V : [0, ∞)× IRn → IR be a continuously differentiable function such that

α1(‖x‖) ≤ V(t, x) ≤ α2(‖x‖) (48)

∂v
∂t

+
∂v
∂x

f (x, t, u) ≤ −W3(x), ∀ ‖x‖ ≥ ρ(‖u‖) > 0 (49)

∀(t, x, u)ε[0, ∞) × IRm × IRn, where α1, α2 are class K∞-functions, ρ is class K-function and
W3(x) is continuous definite function on IRn. Then, the system (46) is input-to-state stable with
γ = α−1

1 o α2 o ρ.

5.2. Input-Output Stability (IOS)

To understand the notion of input-output stability, we start by considering a system H
with input u and output y. The system H is a map between two signals spaces y = H(u).
The gain γ of H measures the largest amplification from u to y, where the magnitude of
the latter is computed using appropriate function norms, see [29]. H can be a constant, a
matrix, a linear system or a nonlinear system. The gain γ of H is defined as

191

Sensors 2022, 22, 4293

γ(H) = sup
u∈Lp

‖y‖p

‖u‖p
= sup

u∈Lp

‖H(u)‖p

‖u‖p
. (50)

The system H is finite-gain bounded-input bounded-output (BIBO) if γ(H) < ∞.
The above stability concept has been extended to capture the effect of initial conditions

and possible biases in the input-output operator, yielding the concept of input-to-output
(IOS) stability. The resulting concept and main stability result, taken from [29], are briefly
summarized next. In this context, Lyapunov stability tools can be used to establish the
IOS stability of nonlinear systems represented by state models. Consider a state model
presented in (46), together with output function

y = h(x, t, u) (51)

where h : [0, ∞] × D × Du → IRq is piecewise continuous in t and continuous in (x, u),
where D ⊂ IRn is a domain that contains x = 0, and Du ⊂ IRm is a domain that contains
u = 0. The following theorem states conditions under which, following the terminology in
Khalil, a system is L-stable or a small signal is L-stable for a given choice of signal space L.
Suppose x = 0 is an equilibrium point of the unforced system

ẋ = f (t, x, 0). (52)

Theorem 2. Consider the system (46) and (51) and take r > 0 and ru > 0 such that {‖x‖ ≤ r} ⊂
D and {‖u‖ ≤ ru} ⊂ Du. Suppose that

• x = 0 is an equilibrium point of (52), and there is Lyapunov function V(t, x) that satisfies

c1‖x‖2 ≤ V(t, x) ≤ c2‖x‖2 (53)

∂v
∂t

+
∂v
∂x

f (t, x, 0) ≤ −c3‖x‖2 (54)∥∥∥∥ ∂v
∂x

∥∥∥∥ ≤ c4‖x‖ (55)

for all (t, x) ∈ [0, ∞)× D for some positive constants c1, c2, c3, and c4.
• f and h satisfy the inequalities

‖ f (t, x, u) − f (t, x, 0)‖ ≤ L‖u‖ (56)

‖h(t, x, u)‖ ≤ η1‖x‖+ η2‖u‖ (57)

for all (t, x) ∈ [0, ∞)× D× Du for some non negative constants L, η1, and η2.

Then, for each x0 with ‖x‖ ≤ r
√

c1/c2, the system (46) and (51) is small-signal finite
gain Lp-stable for each p ∈ [1, ∞]. In particular, for each u ∈ Lpe with supt0≤τ≤t‖u(t)‖ ≤
min{ru, c1c3r/(c2c4L)}, the output y(t) satisfies

‖yτ‖ ≤ γ‖uτ‖Lp
+ β (58)

for all τ ∈ [0, ∞), with

γ = η2 +
η1c2c4L

c1c3
, (59)

β = η1‖x0‖
√

c2

c1
ρ, where ρ =

{
1 i f p = ∞(2c2

c3 p
)(1/p), i f p ∈ [1, ∞)

(60)

Furthermore, if the origin is globally exponentially stable and the assumptions hold globally (with
D = IRn and Du = IRm), then, for each x0 ∈ IRn, the system (46) and (51) is finite gain Lp-stable
for each p ∈ [1, ∞].

192

Sensors 2022, 22, 4293

We refer the reader to explore [29] for details of the proof. ISS and IOS are the key
Lyapunov stability tools used further for the analysis of our system.

5.3. ISS Analysis

For ISS analysis, the system model should satisfy the following equations for a suitably
defined Lyapunov function candidate V(t, x):

α1(‖x‖) ≤ V(t, x) ≤ α2(‖x‖) (61)

∂V
∂t

+
∂V
∂x

f (t, x, u) ≤ −W3(x) ∀‖x‖ ≥ ρ(‖x‖) > 0. (62)

where in this particular case, f (t, x, u) is the right-hand side of (45). Then, the system is ISS
with, γ = α−1

1 ◦ α2 ◦ ρ (please refer to [29] for definitions and theorems mentioned from
now on).

Consider the following Lyapunov function candidate to check the ISS property of the
system, given by

V = xT Px (63)

where P is a nonsingular symmetric matrix.
Then,

λmin(P)‖x‖2 ≤ xT Px ≤ λmax(P)‖x‖2 (64)

Thus, comparing (61) with Equation (64), we conclude that

α1(‖x‖) = λmin(P)‖x‖2 (65)

α2(‖x‖) = λmax(P)‖x‖2 (66)

The derivative of V along the trajectories defined by Equation (45) is given by

V̇ = xT[A + G(x)]T P + P[A + G(x)
]
x + 2uBT Px (67)

Equation (67) can be rewritten as

V̇ = xT(AT P + PA)x + 2xT PG(x)x + 2uBT Px. (68)

The matrix product PG(x) results in

F = PG =

⎡
⎣ −p1,1d1|x1| −p1,2d2|x2| 0
−p1,2d1|x1| −p2,2d2|x2| 0
−p1,3d1|x1| −p2,3d2|x2| 0

⎤
⎦ =

⎡
⎣ f̄1,1|x1| f̄1,2|x2| 0

f̄2,1|x1| f̄2,2|x2| 0
f̄3,1|x1| f̄3,2|x2| 0

⎤
⎦ (69)

where d1 = dv2
mv

and d2 = dr2
mr

, and pij is the entry i, j of P. Inserting both the Lyapunov
equation AT P + PA = −Q and xT Fx into Equation (68) yields

V̇ =− xTQx + 2
[

f̄1,1|x1|x2
1 + f̄2,2|x2|x2

2 + (f̄2,1|x1|+ f̄1,2|x2|)x1x2 + f̄3,1|x1|x3x1

+ f̄3,2|x2|x3x2
]
+ 2uBT Px (70)

The following inequalities can be used in Equation (70):

(I) f̄1,1|x1|x2
1 ≤ 0 and f̄2,2|x2|x2

2 ≤ 0 because p1,1 ≥ 0 and p2,2 ≥ 0;

(II) x1x2 + x1x3 + x2x3 ≤ x2
1 + x2

2 + x2
3 = ‖x‖2.

This follows from the inequality (x1 − x2)
2 + (x1 − x3)

2 + (x2 − x3)
2 ≥ 0.

Taking into account inequality I in Equation (70) yields

193

Sensors 2022, 22, 4293

V̇ ≤− xTQx + 2
[|(f̄2,1|x1|+ f̄1,2|x2|)||x1x2|+ | f̄3,1||x1||x3x1|+ | f̄3,2||x2||x3x2|

]
+ 2‖u‖‖BT‖‖P‖‖x‖ (71)

Now, inserting inequality II into Equation (71) leads to

V̇ ≤ −λmin(Q)‖x‖2 + 2
[
(| f̄2,1|+ | f̄3,1|)|x1|+ (| f̄1,2|+ | f̄3,2|)|x2|

]‖x‖2 + 2‖u‖‖BT‖‖P‖‖x‖. (72)

Concisely, Equation (72) can be expressed as:

V̇ ≤ −λmin(Q)‖x‖2 + 2|F̄(x)|‖x‖2 + 2‖u‖‖BT‖‖P‖‖x‖ (73)

where
F̄(x) =

(| f̄2,1|+ | f̄3,1|
)|x1|+

(| f̄1,2|+ | f̄3,2|
)|x2|

=
[| f̄2,1|+ | f̄3,1| | f̄1,2|+ | f̄3,2| 0

]︸ ︷︷ ︸
F′

⎡
⎣ |x1|
|x2|
|x3|

⎤
⎦

︸ ︷︷ ︸
x′

= F′x′ (74)

Then, using the fact that ‖x′‖ = ‖x‖, yields

V̇ ≤ −(
λmin(Q)− 2|F̄(x)|)‖x‖2 + 2‖u‖‖BT‖‖P‖‖x‖

≤ −(
λmin(Q)− 2‖F′‖‖x′‖)‖x‖2 + 2‖u‖‖BT‖‖P‖‖x‖

≤ −(
λmin(Q)− 2‖F′‖‖x‖)‖x‖2 + 2‖u‖‖BT‖‖P‖‖x‖

(75)

Notice that for a given δ, there exists some r > 0 such that

|F̄(x)| < δ, ∀‖x‖ < r (76)

Equation (75) can be rewritten as

V̇ ≤ −(
1− θ

)[
λmin(Q)− 2δ

]‖x‖2−[
θ
(
λmin(Q)− 2δ

)‖x‖2

− 2|u|‖B‖‖P‖‖x‖] ∀ 0 < θ < 1
(77)

Then,
V̇ ≤ −(1− θ)

[
λmin(Q)− 2δ

]‖x‖2 (78)

for

δ <
λmin(Q)

2
(79)

and

‖x‖ > 2|u|‖BT‖‖P‖
θ
[
λmin(Q)− 2δ

] .

As a consequence, the system with closed-loop dynamics defined by Equation (44) is
ISS with

W3 = (1− θ)
[
λmin(Q)− 2δ

]
,

ρ =
2|u|‖BT‖‖P‖

θ
[
λmin(Q)− 2δ

] ,

and

γ =
λmax(P)
λmin(P)

2|u|‖BT‖‖P‖
θ
[
λmin(Q)− 2δ

] .

194

Sensors 2022, 22, 4293

5.4. IOS Analysis

The proof of the IOS property of the same system (represented by (44)) is based on
Theorem 2 [29]. Consider the system

ẋ = f (x, u), x(0) = x0 (80)

y = h(x) (81)

According to Theorem 2, if the system (80) and (81) satisfies the conditions shown
below, then the system is small-signal finite-gain Lp-stable for each p ∈ [1, ∞]. In particular,
for each u ∈ Lpe with sup0≤t≤τ‖u(t)‖ ≤ min{ru, c1c3r/(c2c4L)}, the output satisfies

‖yτ‖Lp ≤ γ‖uτ‖Lp + β (82)

where the parameters γ and β are given by

γ = η2 +
η1c2c4

c1c3
, (83)

and

β = η1‖x0‖
√

c2

c1
ρ, where ρ =

{
1 i f p = ∞(2c2

c3 p
)(1/p) i f p ∈ [1, ∞)

. (84)

The parameters c1, c2, c3, c4, η1, and η2 are determined from inequalities in Theorem 2.
For the particular case of the system under consideration, Equations (80) and (81) are

given as
ẋ = f (x) = Ax + G(x)x + Bu; x(0) = x0 (85)

y = h(x) = Hx (86)

where
H =

[
0 0 1

]
(87)

Thus, considering the Lyapunov function defined by Equation (63) yields the follow-
ing sequence of partial results.

• From inequality (53)

λmin(P)‖x‖2 ≤ xT Px ≤ λmax(P)‖x‖2 (88)

Thus,
c1 = λmin(P) and c2 = λmax(P)

• From inequality (54)

∂V
∂x

f (x, 0) ≤ −[
λmin(Q)− 2δ

]‖x‖2 (89)

and therefore
c3 =

[
λmin(Q)− 2δ

]
• From inequality (55)

‖∂V
∂x
‖ = 2‖xT P‖ ≤ 2λmax(P)‖x‖ (90)

Thus, c4 = 2λmax(P)

• From inequality (56)

‖ f (t, x, u)− f (t, x, 0)‖ = ‖Bu‖ ≤ ‖B‖‖u‖ (91)

195

Sensors 2022, 22, 4293

and therefore L = ‖B‖ = √
λmax(BT B).

• From inequality (57)
‖h(x)‖ ≤ ‖H‖‖x‖, (92)

we obtain that
η1 = ‖H‖ = √

λmax(HT H) and η2 = 0

From the above, the parameters γ f = γ and β f = β for the Medusa model are given by

γ f =
η1c2c4

c1c3
=
‖H‖λ2

max(P)2
√

λmax(BT B)
λmin(P)

[
λmin(Q)− 2δ

] (93)

β f = η1‖x0‖
√

c2

c1
ρ = ‖H‖‖x0‖

√
λmax(P)

λmin(P)
f or p = ∞ (94)

Remark 1. From a mathematical standpoint, the machinery adopted for the description of the
systems under study, that is, inner (dynamic) and outer (kinematic) dynamics, is rooted in their
characterization as ISS (input-to-state stable) or IOS (input-to-output stable) systems. This allows
us to use powerful tools of nonlinear stability analysis. The core mathematical characterization of
IOS and ISS hinges on the assumption that all functions involved in the description of the systems
of interest are piecewise continuous in time and locally Lipschitz in the state and input variables.
This is clearly indicated in the results on ISS described in Sections 5.1 and 5.2, as applied to the
system described by Equation (44). Clearly, all functions involved (which capture the physical
description of the vehicle) satisfy the conditions stated above. Identical comments apply to the results
on IOS described in Sections 5.3 and 5.4, as applied to the system described by Equations (85)–(87),
consisting of Equation (44) together with the trivial output function h(x) = Hx, H = [0 0 1]
described in Equations (86) and (87). Again, all functions involved satisfy the conditions stated above
(see Equation (56). In addition, h(x) satisfies the extra output-related conditions in Equation (57).

6. Path Following Problem

Equipped with the above mathematical definitions and results, we now tackle the
problem of path following. In the current setup, we design the kinematic (outer) loop
without considering the dynamic (inner) loop or by assuming the inner loop is infinitely fast,
which is not valid in practice. Moreover, the characteristics of inner loop controllers (such
as heading and speed controllers) for many vehicles are provided in very general terms
by their vendors. An example of these characteristics in a linear case is the approximate
bandwidth and input-to-output stability gain (IOS) in the case of a nonlinear system [29].
Therefore, it is required for the system engineers to design or tune the outer-loop controller
by considering these characteristics, such that the overall combined system is stable with the
desired performance. However, this step necessitates going beyond qualitative assertions
about the fast-slow temporal scale separation and quantitatively evaluating the combined
inner-outer loop to obtain a relationship for assessing the combined system’s stability. The
methods used are based on nonlinear control theory, wherein the cascade and feedback
systems of interest are characterized in terms of their IOS properties. We use the IOS
small-gain theorem to obtain quantitative relationships for best controller tuning applicable
to a broad range of marine vehicles.

The path-following controller discussed in this article is designed at the kinematic
outer-loop that commands the inner-loop with the desired heading angles while the vehicle
moves at an approximately constant speed. The idea is to provide a seamless implemen-
tation of the path-following control algorithms on the heterogeneous vehicles, which are
pre-equipped with heading autopilots. To this effect, we assume that the heading control
system is characterized only in terms of an IOS-like relationship without knowing detailed
vehicle dynamic parameters.

196

Sensors 2022, 22, 4293

6.1. Path Following: Straight Lines Problem

Figure 5 shows the path following problem for straight lines. In the figure,
{I} = {xI , yI} represents the inertial reference frame, and {B} = {xB, yB} denotes a
body reference frame fixed to the vehicle. Let us denote the position of the vehicle as vector
P expressed in {I}. We assume that the ocean current velocity represented by Vc expressed
in {I} is constant. The velocity of the vehicle expressed in {I} is given by

Ṗ = R(ψ)Vw + Vc,

where ψ is the yaw angle, Vw denotes the velocity of the vehicle with respect to the water
expressed in {B}, and R(.) is the rotation matrix from {B} to {I}, parameterized by
ψ. Equivalently,

Ṗ = R(ψ + β)[‖Vw‖ 0]T + Vc,

where β is the sideslip angle. Without any loss of generality, the straight-line path to be
followed can be assumed to be along the x-axis of the inertial reference frame {I}. The
evolution of the cross-track error e is given by

ė = sin(ψ + β)‖Vw‖+ vcy,

where vcy denotes the component of Vc along the unit vector yI . The total speed of the
vehicle is set by an equivalent speed of rotation of the stern propeller(s) and the heading of
the vehicle is controlled either by differential mode of two stern propellers or by the stern
rudders operated in common mode.

Figure 5. Marine vehicle body reference frame showing the cross-track error.

We assume that the total speed ‖Vw‖ = U > ‖Vc‖ is constant. The objective is to
command the heading angle which the vehicle can follow to drive the e to zero. In the
following section, as a first step, we design an outer-loop controller at the kinematic level
and show the convergence of the cross-track error to zero. In the second step, we include
the yaw control dynamics (inner-loop) and determine the conditions and outer-loop tuning
rules such that the complete inner-outer loop system is stable.

6.2. Path-Following Algorithm

To explain the rationale for the control law, we simplify the case by considering zero
sideslip angle (this assumption will be lifted afterwards). In this case, the error dynamics
are given by

ė = U sin(ψ) + vcy. (95)

If we consider vcy to be zero, then (95) can be re-written as

ė = Uu,

with u = sin(ψ). The choice of the control law u = −(K1/U)e would now ensure that e
converges asymptotically and exponentially to the origin. In order to compensate for a

197

Sensors 2022, 22, 4293

fixed ocean current (bias) vcy, an integral term is introduced in the virtual input u, which is
now re-rewritten as

u = − 1
U

⎛
⎝K1e + K2

t∫
0

e(τ) dτ

⎞
⎠.

As a consequence, the dynamics of e become

ė + K1e + K2

t∫
0

e(τ) dτ =0

Let

ς =

t∫
0

e(τ) dτ.

Then,

ς̈ + K1ς̇ + K2ς = 0 (96)

The gains K1 and K2 can now be chosen so as to obtain a desired natural frequency and a
desired damping factor in the above second-order system. The desired heading command
obtained from the above virtual control is written as

ψd = sin−1(σe(u)),

where σe is a differentiable saturation function [42] bounded between ±es with 0 < es < 1,
defined as

σe(�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� if |�| < es − ε
+es if � > es + ε
−es if � < −es − ε

p1(�) = −c1�2 + c2�− c3 if � ∈]es − ε, es + ε]
p2(�) = c1�2 + c2� + c3 if � ∈ [−es − ε,−es + ε[

(97)

where 0 < ε < es can be arbitrarily small, with c1 = 1
4ε , c2 = 1

2 + es
2ε , and c3 = ε2−2εes+e2

s
4ε .

The saturation function is introduced to guarantee that the argument of sin−1(.) lies in the
interval [−1,+1], see Figure 6.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Differentiable Saturation Function

-es- -es+ es- es+

Figure 6. Differentiable saturation function.

198

Sensors 2022, 22, 4293

With the introduction of integrator in the control law, it is important to have an anti-
windup mechanism in the integral term of u. Thus, the final form of the control law for ψd
involves a new definition of u and is given in terms of the operator f : e → ψd defined by

ψd = sin−1(σe(u)); u =

(
−K1e

U
− K2

U
ς

)
(98)

where ς is the output of the dynamical system faw(e) : e → ς with realization

ς̇ = e + Ka

[
−K1e

U
− K2ς

U
− σe

(
−K1e

U
− K2ς

U

)]
, (99)

and Ka is an anti-windup gain to control the integrator’s charge and discharge rate. In what
follows, we show with the help of Lyapunov-based analysis tools that using the above
control law, the cross-track error converges to zero if the actual vehicle heading ψ equals ψd.

6.3. Convergence of Cross-Track Error without the Inner Loop Dynamics

Using the control law mentioned in (98) and (99), and Ka = U
K1

, the closed-loop
kinematic equations can now be written as,

ė = Uσe

(
−K1e

U
− K2ς

U

)
+ Vyc (100)

ς̇ = −K2

K1
ς− U

K1
σe

(
−K1e

U
− K2ς

U

)
, (101)

Define the new set of variables
x1 = e

x2 = ς− K,
(102)

where K is a constant.
The equations of motion can then be written as

ẋ1 = Uσe

(
−K1x1

U
− K2x2

U
− KK2

U

)
+ Vyc (103)

ẋ2 = −K2

K1
x2 − K2

K1
K− U

K1
σe

(
−K1x1

U
− K2x2

U
− KK2

U

)
. (104)

We define another set of variables as

rly1 =
K1x1

U
+

K2x2

U
r

y2 =
K2x2

U
,

(105)

In terms of the new variables above,

ẏ1 = −K1σe

(
y1 +

KK2

U

)
+ K1

Vyc

U
+ ẏ2

ẏ2 = −K2

K1
y2 − K2

K1

KK2

U
+

K2

K1
σe

(
y1 +

KK2

U

)
, (106)

At this point, we explore an important property of the σe function defined in (97).

Property 1.

σe(Z + x)− Z = σus
ls
(x) ∀ |Z| < es,

where ls = −es − |Z| and us = es − |Z|.

199

Sensors 2022, 22, 4293

To simplify the notation, we use σ instead of σus
ls

from here on. Using this property, we
can write

σe

(
y1 +

KK2

U

)
− KK2

U
= σ(y1), ∀

∣∣∣∣KK2

U

∣∣∣∣ < es, (107)

and later in the proof, it will be evident that
∣∣∣KK2

U

∣∣∣ < es. Thus, by simplifying further, we get

ẏ1 = −K1σ(y1)− K1
KK2

U
+ K1

Vyc

U
+ ẏ2

ẏ2 =
K2

K1
σ(y1)− K2

K1
y2 (108)

Choosing V(y1, y2) =
y1∫
0

σ(η)dη + 1
2 y2

2 as a Lyapunov candidate function yields

V̇ = σ(y1)ẏ1 + y2ẏ2

= σ(y1)

[
−K1σ(y1)− K1

KK2

U
+

K1
Vyc

U
+

K2

K1
σ(y1)− K2

K1
y2

]

= −
(

K1 − K2

K1

)
σ2(y1)− K2

K1
y2

2+

σ(y1)

[
K1

Vyc

U
− K1

KK2

U

]
.

Making

K =
Vyc

K2
(109)

yields

V̇ = −
(

K1 − K2

K1

)
σ2(y1)− K2

K1
y2

2 (110)

At this point, it is reasonable to assume that the vehicle speed with respect to water is larger
than the intensity of the ocean current, that is,

U >
1
es
‖Vc‖. (111)

Using the above assumption, it is now straightforward to show that
∣∣∣KK2

U

∣∣∣ < es.
Thus,

V̇ < 0 ∀ K1 >
K2

K1
. (112)

We therefore conclude that the origin y1 = y2 = 0 is asymptotically stable. It is now trivial
to show that the cross-track error e will tend to zero and the integrator ς will charge up to
Vyc
K2

, in order to “learn” the currents as time increases.

6.4. Inner-Loop Dynamics

The key goal of this paper is to show that “identical behavior” is obtained when the
dynamics of the heading autopilot (inner loop) and the sideslip of the vehicle are taken
into account. In particular, we show that the basic structure and the simplicity of the outer-loop
control law are preserved. The theoretical machinery used to prove stability borrows from

200

Sensors 2022, 22, 4293

IOS concepts and a related small-gain theorem. See [29] for a fast-paced introduction to
the subject and [43,44] for interesting applications of control techniques that bear affinity
with inner-outer loop control structures. Here, we indicate briefly how the existence of
the heading autopilot is taken into account without having to change the structure of the
outer-loop described before. The resulting control scheme is depicted in Figure 7, where
the heading autopilot plays the role of an inner loop.

U

Figure 7. Path-following controller with two-scale inner-outer loop approach.

This section addresses explicitly the inclusion of the inner-loop dynamics, thus lifting
the assumption that the actual heading ψ equals the desired heading ψd. Let

ψ̃ = ψ− ψd

be the mismatch between actual and desired heading angles. We assume that the autopilot
characteristics can be described in very general terms as an IOS system, see [29]. In order
to understand the rationale for this characterization, notice that if the inner-loop dynamics
are linear with static gain equal to 1, then its dynamics admit a realization of the form

ẋ = Ax + Bψd

ψ = Cx

with CA−1B = 1. In this case, the coordinate transformation η = x + A−1Bψd yields
the realization

η̇ = Aη + A−1Bψ̇d

ỹ = Cη

for the operator from ψ̇ to ỹ, with ỹ = ψ̃ + β that characterizes the inner-loop dynamics,
where β is sideslip angle and the output ỹ is the sum of the heading angle and sideslip
angle. An IOS characterization of the loop can be easily derived from the above system
matrices [29]. Notice, however, that this type of description applies also to general nonlinear
systems of the form

η̇ = g(η, ψ̇d)

ỹ = h(η, ψ̇d)

and allows for a somewhat loose, yet quantifiable description of the inner-loop dynamics.
This justifies the IOS characterization of the inner loop dynamics as

‖ỹ(t)‖ ≤ γ f ‖ψ̇d(t)‖+ β f , (113)

where γ f and β f are nonnegative constants. The above characterization captures in a
rigorous mathematical framework simple physical facts about the inner-loop control sys-
tem. Namely, (i) if the time-derivative of the heading reference ψd is bounded, then the

201

Sensors 2022, 22, 4293

heading-tracking error is bounded and (ii) the dynamics of the inner-loop system can be
characterized in terms of bandwidth-like characteristics that are reflected in β f and γ f ,
see [29]. A simple exercise with a first-order system will convince the reader that as the
bandwidth of the system increases, γ f will decrease. For practical purposes, the latter
can be viewed as a “tuning knob” during the path-following controller design phase. For
analysis purposes, it is also required to ensure that not only ỹ but also the remaining
variables in the inner loop be bounded in response to ψ̇d. This fact can be easily captured
with an ISS condition of the type

‖η(t)‖ ≤ βg(‖η(0)‖, t) + γg

(
sup

t0≤τ≤t
‖ψ̇d(τ)‖

)
, (114)

for some βg ∈ KL and γg ∈ K. We have shown before that such a condition holds. At this
point, we make the key observation that the complete path-following control system can be
represented as the interconnected structure depicted in Figure 8. The latter can be further
abstracted to the scheme in Figure 9 consisting of blocks H1 : ỹ → ψ̇d and H2 : ψ̇d → ỹ, a
description of which is given next. To this effect, using the control law mentioned in (98)
and (99), the system H1 clearly admits the following representation

ė = U sin(ỹ + ψd) + vcy, (115)

ς̇ = −K2

K1
ς− U

K1
σe

(
−K1e

U
− K2ς

U

)

ψd = sin−1
(

σe

(
−K1e

U
− K2

U
ς

))
,

and H2 satisfies the IOS stability condition in (113).

U sin(.) ∫ dt ede/dt

Inner Loop Dynamics

ψd

vcy

desired heading

(.)d
dt

dψd /dt

Figure 8. IOS characterization of inner-outer loop.

Figure 9. General feedback interconnection.

202

Sensors 2022, 22, 4293

6.5. Convergence: Realistic Inner-Loop Dynamics

The proof that H1 is IOS hinges on the facts that H1 is the composition of two auxiliary
systems Ha1 : ỹ → e and Ha2 : e → ψ̇ and that both are IOS. This is done next. Expanding
Equation (115) and following the transformation of variables as mentioned in (105), the
equation of motion can be rewritten as

ẏ1 = −K1 cos ỹσe

(
y1 +

KK2

U

)
+ K1 sin ỹ cos ψd +

K1

U
Vyc + ẏ2

ẏ2 =
K2

K1

[
σe

(
y1 +

KK2

U

)
− KK2

U
− K2

K1
y2

]
,

(116)

By adding and subtracting the term K1 cos ỹ KK2
U , and by using the special property of the

function σe in (107), we can write

ẏ1 = −K1 cos ỹσ(y1) + K1 sin ỹ cos ψd +
K1

U
Vyc

− K1 cos ỹ
KK2

U
+

K2

K1
σ(y1)− K2

K1
y2

ẏ2 =
K2

K1
σ(y1)− K2

K1
y2

(117)

Choosing the same Lyapunov function as in Section 6.3 yields

V̇ = σ(y1)ẏ1 + y2ẏ2

= σ(y1)[−K1 cos ỹσ(y1) + K1 sin ỹ cos ψd

+
K1

U
Vyc − K1 cos ỹ

KK2

U
+

K2

K1
σ(y1)− K2

K1
y2

]

+ y2

[
K2

K1
σ(y1)− K2

K1
y2

]

= −K1 cos ỹσ2(y1)− K2

K1
y2

2

+ σ(y1)

[
K1 sin ỹ cos ψd +

K1

U
Vyc − K1 cos ỹ

KK2

U

]

+
K2

K1
σ2(y1)

= −
(

K1 cos ỹ− K2

K1

)
σ2(y1)− K2

K1
y2

2

+ σ(y1)

[
K1 sin ỹ cos ψd +

K1

U
Vyc − K1 cos ỹ

KK2

U

]
,

(118)

Now, substituting K from (109), we obtain

V̇ = −
(

K1 cos ỹ− K2

K1

)
σ2(y1)− K2

K1
y2

2

+ σ(y1)

[
K1 sin ỹ cos ψd +

K1

U
Vyc(1− cos ỹ)

]
.

For

K1 cos ỹ ≥ K2

K1
+ δ, with 0 < δ ≤ K1 − K2

K1
, (119)

we can further simplify the equations as

203

Sensors 2022, 22, 4293

V̇ ≤ −δσ2(y1)− K2

K1
y2

2

+ σ(y1)

[
K1 sin ỹ cos ψd +

K1

U
Vyc(1− cos ỹ)

]
,

= −δσ2(y1)− K2

K1
y2

2

+ |σ(y1)|
[
|K1 sin ỹ cos ψd|+

∣∣∣∣K1

U
Vyc

∣∣∣∣|1− cos ỹ|
]

,

= −δσ2(y1)− K2

K1
y2

2

+ |σ(y1)|K1

[∣∣∣∣Vyc

U

∣∣∣∣|1− cos ỹ|+ |sin ỹ|
]

,

= −δ(1− θ)σ2(y1)− δθσ2(y1)− K2

K1
y2

2

+ |σ(y1)|K1

[∣∣∣∣Vyc

U

∣∣∣∣|1− cos ỹ|+ |sin ỹ|
]

,

where 0 < θ < 1.
This implies that

V̇ < −δ(1− θ)σ2(y1)− K2

K1
y2

2

∀|σ(y1)| > K1

δθ

(∣∣∣∣Vyc

U

∣∣∣∣|1− cos ỹ|+ |sin ỹ|
)

.
(120)

Since
(∣∣∣Vyc

U

∣∣∣|1− cos ỹ|+ |sin ỹ|
)

is bounded by
(∣∣∣Vyc

U

∣∣∣+ 1
)
(|ỹ|), it follows that

V̇ < 0 ∀|σ(y1)| > K1

δθ

(∣∣∣∣Vyc

U

∣∣∣∣+ 1
)
|ỹ| (121)

thus showing that y = [y1 y2]
T is ISS with restriction given by (119) on the input. Thus,

from the definition of ISS, we obtain

‖y(t)‖ ≤ βl(‖y(0)‖, t) + γl

(
sup

0≤τ�t
|ỹ(τ)|

)
∀ t ≥ 0, (122)

where βl is a class KL-function, and γl is a class K-function. To show that H1 : ỹ → ψ̇d is
IOS, we start by computing ψ̇d. The control law ψd is given by

ψd = sin−1
{

σe

(
−K1e

U
− K2

U
ς

)}
. (123)

Using (105), the above can be written as

ψd = sin−1
{

σe

(
−y1 − KK2

U

)}
. (124)

Defining ξ = −y1 − KK2
U , the time derivative of ψd is given by

dψd
dt

=
dψd

dσe(ξ)

dσe(ξ)

dξ

dξ

dt

= −ẏ1
d

dξ
σe(ξ)

[
1−

{
σe

(
−y1 − KK2

U

)}2
]− 1

2

(125)

204

Sensors 2022, 22, 4293

with [
1−

{
σe

(
−y1 − KK2

U

)}2
]− 1

2

≤ η (126)

where η = 1

(1−e2
s)

1
2

.

From the definition of σe(.) , d
dξ σe(ξ) is bounded by 1. Thus, ψ̇d in (125) is bounded by

|ψ̇d| ≤ η|ẏ1|. (127)

Equipped with the above result and the one in (122), we will now show that the system H1
is IOS.

From Equation (117), we have

ẏ1 = −K1 cos ỹσ(y1) + K1 sin ỹ cos ψd +
K1

U
Vyc−

K1 cos ỹ
KK2

U
+

K2

K1
σ(y1)− K2

K1
y2.

With K =
Vyc
K2

,

ẏ1 = −K1 cos ỹσ(y1) +
K2

K1
σ(y1)− K2

K1
y2+

K1

[
sin ỹ cos ψd +

Vyc

U
(1− cos ỹ)

]
.

Taking the absolute value of both sides yields

|ẏ1| ≤
(

K1 +
K2

K1

)
|σ(y1)|+ K2

K1
|y2|+

K1

[
|sin ỹ|+ Vyc

U
|(1− cos ỹ)|

]

|ẏ1| ≤
(

K1 +
K2

K1

)
|σ(y1)|+ K2

K1
|y2|+ K1

(
1 +

Vyc

U

)
|ỹ|

Thus,

|ψ̇d| ≤ C1|σ(y1)|+ C2|y2|+ C3|ỹ|

where C1 = η
(

K1 +
K2
K1

)
, C2 = η K2

K1
, and C3 = ηK1

(
1 + Vyc

U

)
. Using the fact |y1|+ |y2| =

‖y‖1 and |σ(y1)| ≤ |y1|, we can state that

C1|σ(y1)|+ C2|y2| ≤ max(C1, C2)‖y‖1 ≤ C1‖y‖1.

Thus,

|ψ̇d| ≤ β1 + γ1|ỹ| (128)

where β1 = C1βl and γ1 = C1γl + C3 (using the conditions in Theorem 2 and
Equation (121)) is given by

γ1 = ηK1

(
Vyc

U
+ 1

)[
1
δθ

(
K1 +

K2

K1

)
+ 1

]
, (129)

with γ1 showing explicit dependence on K1, K2. In conclusion, the systems H1 and H2 are
both IOS. It can now be shown, using the small gain theorem in [29], that the interconnected
system is stable if γ1γ f < 1. This result yields a rule for the choice of gains K1, K2 (as
functions of the inner-loop dynamic parameters) so that stability is obtained. Hence, we

205

Sensors 2022, 22, 4293

show using a small gain theorem that the above interconnected system is closed-loop-stable
and all signals are bounded.

Notice that for restriction (119) to be feasible, it is important that K1 > K2
K1

. In other words, if
we choose K1 = 2ξωn and K2 = ω2

n, where ξ and ωn are damping factor and natural frequency,
respectively, then ξ > 0.5 must be used as design parameter.

6.6. An Example

Let us take a simple illustrative example, considering that the sideslip angle β is zero.
In this situation, the inner Loop (Heading control) is characterized in terms of an IOS
relationship given in (113) with ỹ = ψ̃, where ψ̃ = ψ− ψd, see (44). For such a system, it is
straightforward to show that the system is finite-gain L∞-stable, that is,

‖ψ̃‖∞ ≤ γ f ‖ψ̇d‖∞ + β f (130)

with the gain γ f given by

γ f =
2λ2

max(Q)
∥∥A−1B

∥∥
2‖C‖2

λmin(Q)
, (131)

where Q is the solution of the Lyapunov equation QA + ATQ = −I. Approximating the
inner loop as a first-order system with dynamics given by

ψ̇ = −aψ + aψd. (132)

y2 = ψ (133)

it follows that

γ f =
2(1

2a)
2

(1
2a)

(134)

γ f =
1
a

, (135)

yielding the stability condition

γ1 < a. (136)

From (129), we have

ηK1

(
Vyc

U
+ 1

)[
1
δθ

(
K1 +

K2

K1

)
+ 1

]
< a. (137)

For an inner-loop bandwidth a = 1 rad/s, using the parameters mentioned in Table 1
and equating γ1 to a, the natural frequency ωn for the outer loop should not be more than
0.095 rad/s.

Table 1. Parameters to design outer loop.

Parameters Value

Speed U 1 m/s
y-component of current Vyc 0.1 m/s
saturation es 0.8

Parameters used for with K2 = ω2
n

outer loop design and K1 = 2ξωn

damping factor ξ 0.8
δ 0.083
θ 0.99

206

Sensors 2022, 22, 4293

Thus, in terms of bandwidth-like characterization, the inner loop bandwidth should
be approximately 10 times higher than outer-loop bandwidth. The parameters δ and θ
chosen in Table 1 impose a restriction of ψ̃ < 20.7 degrees.

6.7. Relation between Outer-Loop Path Following and Using a Variable Look-Ahead Visibility
Distance Line-of-Sight Guidance

Consider a case of simple path-following controller without the integral term, such
that the control law can be written as

ψd = sin−1
(−K1e

U

)
, (138)

whereas, in the case of look-ahead distance line-of-sight guidance, the control law is given by

ψd = tan−1
(
− e

Δd

)
, (139)

where Δd is the look-ahead distance as shown in Figure 10.

yI
e

xI

Figure 10. Line-of-sight guidance using look-ahead distance.

By equating Equations (138) and (139), we get a relationship between gain K1 and the
look-ahead distance Δd as follows:

−K1e
U

= sin
(

tan−1
(
− e

Δd

))
(140)

K1 =
U(

Δ2
d + e2

) 1
2

(141)

⇒ Δd = ± 1
K1

(
U2 − K2

1e2
) 1

2 (142)

Figure 11 shows the variation of look-ahead distance with cross-track error at different
bandwidth in the above example. Notice that the look-ahead distance is a function of
cross-track error (not fixed in this setup), and increases as the gain K1 is reduced.

207

Sensors 2022, 22, 4293

-8 -6 -4 -2 0 2 4 6 8
cross track error (e)

0

2

4

6

8

10

L
o

o
k

A
h

ea
d

 D
is

ta
n

ce

d

K1=0.1

K1=0.2

K1=0.3

K1=0.4

K1=0.5

Figure 11. Look-ahead distance plotted against the cross-track error with different gains.

7. Path Following Problem: Arcs

Let Pa be the position of the vehicle (see Figure 12) in an inertial reference frame {I}
and the associated Seret–Frenet frame T defined on the curve such that its origin (Ps) is
the orthogonal projection of the point Pa onto curve; thus, e is the cross-track error with
the coordinates of vehicle (0, e) in {T}. With U as the speed of the vehicle, the kinematic
equation for the evolution of e is given by

ė = U sin(ψ− θc) (143)

where ψ is the vehicle orientation with respect to the {I}, θc is the angle of tangent at point
Ps measured from abscissa of {I}, and Rc(Ps) is the radius of curvature at {T} (see [6]).
Note that θ̇c becomes infinite when the Rc(Ps) = e, which in turn means that the vehicle is
positioned exactly at the center of the circle with radius Rc and a tangent at {T}. However,
for most of the practical applications, the reference paths to follow are curves with slowly
varying curvature, this problem is unlikely to occur.

V

cross –track
error e

xI

yTxT c

Path to be followed (C)

yI

Figure 12. Cross-track error for straight-line following.

208

Sensors 2022, 22, 4293

Following an approach similar to that in Section 6.2, the most suitable choice for the
desired heading ψd will be

ψd = sin−1
{

σe

(
−K1e

U

)}
+ θc. (144)

In order to follow a circumference, we compute at each instant the tangent to the path and
act as if we were following a straight line. The algorithm applies to the case of straight lines
and yields automatic compensation of the effect of unknown but constant currents. The
methodology does not go through for the case of general paths even if we restrict ourselves
to constant currents. Interestingly enough, as far as we know, this combined problem has
not been solved yet. In the paper, we proposed a simple extension of the method to follow
arcs of circumference that showed acceptable performance (small steady-state track error)
in simulations and real test with the Medusa vehicle (figures are explained in next section);
however, a general theoretical result is not available at this point [45].

8. Implementation and Field Test Results

The previous sections described the rationale and provided the mathematical machin-
ery required for the study of a path-following controller for marine vehicles that relies on
a two-scale inner-outer loop architecture. This approach effectively decouples the design
of the inner and outer control loops, the combination of the two being studied at a later
stage. The tools derived borrow extensively from nonlinear control theory and make use of
the ISS and IOS characterization of dynamical systems. In this context, the analysis of the
combined inner-outer loop structure is done using an appropriate small gain theorem [29].
For inner-loop controller design, the technique described in Section 4 was used, yielding a
simple proportional and derivative control law that is pervasive in heading autopilots. In
what concerns outer-loop design and stability analysis, despite the apparent complexity
of the methodology adopted, the resulting outer-loop controller lends itself to the sim-
ple implementation structure shown in Equations (98) and (99) and depicted in Figure 13,
where an anti-windup scheme is implemented using the so-called D-methodology introduced
in [46]. Clearly, the implementation of the outer-loop controller does not require intensive
computational power. We recall that the gains K1 and K2 can easily be computed by solving
the characteristic Equation (96) for a choice of natural frequency ωn, with K1 = 2ξωn and
K2 = ω2

n, where ξ is the damping factor.

∫

dt
d

aK

1K

2K

Figure 13. Implementation of the path-following algorithm using an anti-windup technique scheme
that includes the so-called D-methodology in [46].

The algorithm for path following described was implemented and fully tested with
success in three types of vehicles: the DELFIMx ASV, the MAYA AUV, and several vehicles

209

Sensors 2022, 22, 4293

of the MEDUSA class. The first is an autonomous surface vehicle that is the property of the
Instituto Superior Tecnico, Lisbon, Portugal (see Figure 14). The second is an autonomous
underwater vehicle (see Figure 15) described in Section 3.3. Implementation issues and
results of tests carried out with the MAYA AUV are briefly discussed in [45]. The algorithm
is also an part of the several MEDUSA class vehicles developed by IST, Lisbon. The results
are shown for one of the MEDUSA class marine vehicle described in Section 3.2.

Figure 14. The DELFIMx ASV.

Figure 15. The MAYA AUV.

Prior to testing the path-following algorithm on the DELFIMx ASV, simulations were
done with a full nonlinear model of the vessel. The outer-loop controller parameters were
tuned based on the bandwidth of the linearized equations of motion of the vessel about
1.6 m/s. We call attention to the fact that we did not measure the ocean current during the
sea trials of DELFIMx. However, an estimate was obtained using the difference between

210

Sensors 2022, 22, 4293

the heading and course angles of the vehicle along the straight line components of the
path. The estimated current of 0.2 m/s with direction from southwest to northeast was
introduced in the simulation to allow for a fair comparison of real and simulated data.

We include both the results of simulations and actual tests at sea. Namely,
Figures 16 and 17 show the results of simulations of a lawn-mowing maneuver for the
ASV. Figure 16 illustrates the complete maneuver, whereas Figure 17 shows the cross error
observed. The corresponding plots for real tests are shown in Figures 18 and 19, respectively.
Clearly, the results of simulations and the real data are very similar, thus confirming the
adequacy of the new method developed for path following. Notice in particular how both
in simulated and related data the cross-track error converges to approximately zero over
similar portions of the path (straight line segments), in the presence of a constant current.
The variation in the cross-track error after the convergence at 300 s and 700 s are due to the
transition from straight line to the arc and vice versa which is reflected in both simulations
and the real tests. Notice that the heading of the vehicle (represented by a the symbol of
ASV with the triangular-shaped head (see legend in Figure 18)) is different from course of
the vehicle. This shows that the algorithm has learned the ocean currents and adjusted the
heading accordingly.

0 100 200 300 400 500
y [m]

-300

-250

-200

-150

-100

-50

0

50

100

x
[m

]

Vc = 0.2 m/s

Reference track

Vehicle track

Figure 16. Simulated lawnmowing maneuver of the DELFIMx vehicle in the presence of ocean currents.

0 100 200 300 400 500 600 700 800 900 1000
Time (sec)

-5

0

5

10

15

20

25

30

35

C
ro

ss
 t

ra
ck

 e
rr

o
r

(m
)

Figure 17. Cross-track error for the simulated track.

211

Sensors 2022, 22, 4293

Figure 18. Delfimx performing a lawn-mowing maneuver in the Azores, PT.

0 100 200 300 400 500 600 700 800 900 1000
Time (sec)

-5

0

5

10

15

20

25

30

35

40

45

co
rs

s
tr

ac
k

er
ro

r
(m

)

Cross Track Error

Figure 19. Delfimx cross-track error during the real mission.

Another test was conducted using the MAYA AUV at a lake to map chlorophyll at
three different depths. The path-following algorithm used for these tests shows how the
AUV was able to follow a path in a real environment independent of the depth control. The
results are shown in Figure 20.

Figure 20. Square mission of MAYA at surface, 3 m and 5 m depth at Supa Dam, India.

The efficacy of the path following for straight lines was also shown during a real test
with a Medusa class vehicle. The vehicle’s GPS track and the reference path for the test
performed are shown in Figure 21. It can be inferred from the fact that the course angle
available from GPS and the vehicle angles were not the same that the vehicle was under

212

Sensors 2022, 22, 4293

the influence of an ocean current, see Figure 22. This figure shows clearly the role of the
integrator to “learn” the constant ocean current and offset the heading angle accordingly.

-140 -120 -100 -80 -60 -40 -20 0
y [m]

-20

-15

-10

-5

0

5

10

x
[m

]

Medusa Postion
Ref. Line

Figure 21. Medusa Vehicle performing lawnmower at Expo Site, Lisbon, Portugal.

0 100 200 300 400 500 600 700
Time (sec)

50

100

150

200

250

300

D
ir

ec
ti

o
n

 (
d

eg
)

GPS Course
Vehicle Heading

Figure 22. Heading and Course of the Medusa Vehicle Showing the effect of ocean currents.

The simulation results in Figures 23 and 24 illustrate the case where the MAYA vehicle
is requested to follow a segment of a circular path. The results show that in the presence
of currents, the vehicle follows the arc with an error (i.e., the cross-track error will not
converge to zero but to a neighborhood of zero). The convergence of the cross-track error
to a neighborhood of zero along segments of arc is also captured in the sea tests performed
by DELFIMx and MEDUSA vehicles, as shown in Figures 18 and 21.

Figure 23. Simulation result of arc following.

213

Sensors 2022, 22, 4293

Figure 24. Evolution of cross-track error during arc following.

9. Conclusions and Future Work

This paper introduced an inner-outer control structure for marine vehicle path follow-
ing in 2D, with due account for the vehicle dynamics and ocean currents. The structure is
simple to implement and provides system designers a convenient way of tuning the outer-
loop control law parameters as functions of a “bandwidth-like” characterization of the
inner loop. Stability of the complete path-following control system was proven for straight
paths, by resorting to nonlinear control theoretical tools that borrow from input-to-output
stability concepts and a related small gain theorem. The efficacy of the inner-outer control
structure adopted was shown during the rigorous tests with AUVs and ASVs at sea. These
algorithms are now integral part of many autonomous marine vehicles used at NIO and
IST. Moreover, the problem of cooperative control and navigation works on the assumption
that the single vehicle is able to follow a desired path (without any temporal constraints).

The applications of this strategy include: (i) single-vehicle path following for a number
of missions that include environmental surveying, seabed habitat mapping, and critical
infrastructures security, and (ii) cooperative path following, which aims to steer a number of
vehicles along pre-determined paths in a synchronized manner, with a view to overcoming
the limitations imposed by the use of a single vehicle, effectively allowing for ocean
exploration at unprecedented temporal and spatial scales. The method is easily extended
to fully actuated or overly actuated vehicles where, besides having the center of mass of the
vehicle follow a desired path, it is also required for the vehicle to track an arbitrary heading
reference (that is, complete pose control). An obvious desired extension (pointed out before)
is to derive a path-following controller capable of ensuring precise path following of general
paths in the presence of constant currents. We conjecture that some form of an internal
model principle should be used, which provides a good ground for future extension of the
present work, see, for example, Refs. [47–49] and the references therein.

We also remark that we have addressed explicitly the effect of unknown but constant
currents and showed how the path-following control law adopted allows for the rejection
of this type of disturbance. We did not address the impact of waves, which cause first-order
(oscillating) and second-order (drift) effects. We conjecture that the influence of waves may
be studied by modeling (as is customary in the literature) their effect as a bounded output
disturbance dw, and characterizing the closed-loop operator with input dw and output e
(cross-track error) in terms of its input-output characteristics (IOS analysis).

Author Contributions: Conceptualization, P.M. and A.P.; methodology, P.M., A.P., H.M.M. and
A.P.A.; software, P.M.; validation, P.M., A.P. and H.M.M.; formal analysis, P.M. and H.M.M.; in-
vestigation, P.M.; resources, P.M.; data curation, P.M.; writing—original draft preparation, P.M.;
writing—review and editing, P.M., A.P. and H.M.M. All authors have read and agreed to the pub-
lished version of the manuscript.

214

Sensors 2022, 22, 4293

Funding: This work has been supported by RAMONES, funded by the European Union’s Horizon
2020 research and innovation programme, under grant agreement No. 101017808 and by Fundação
para a Ciência e a Tecnologia (FCT) through LARSyS—FCT Project UIDB/50009/2020. The design
and development of “Maya” AUV was funded by Ministry of Electronics & Information Technology
(MeitY), Government of India.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are thankful to the Director CSIR—National Institute of Oceanogra-
phy, Goa for encouragement and administrative support. Colleagues from the marine instrumentation
division are acknowledged for their help during the field tests with MAYA AUV and preparation
of the manuscript. We are also grateful to Elgar Desa from NIO for his constant encouragement,
guidance, and support during the phases of design and testing of the MAYA AUV. This manuscript is
NIO’s contribution number 6928. A special word of thanks goes also to Rita Cunha, Carlos Silvestre,
Luis Sebastiao, Bruno Cardeira, and Manuel Rufino for their support in conducting test at sea using
DELFIMx and Medusa vehicles.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Vehicle Parameters

Table A1. Mass, inertia and hydrodynamics coefficients for a MEDUSA vehicle.

m = 17 kg Iz = 1 kg·m2

Xu̇ = −20 kg Yv̇ = −30 kg Nṙ = −8.69 kg·m2

Xu = −0.2 kg/s Yv = −50 kg/s Nr = −4.14 kg·m2/s
X|u|u = −25 kg/m Y|v|v = −0.01 kg/m N|r|r = −6.23 kg·m2

Table A2. Vehicle parameters of MAYA AUV.

Physical Parameters

Vehicle Speed (u0) : 1.2 m/s
Reynolds Number : 1.6692× 106

Sea Water Density(ρ) : 1025 kg/m3

Vehicle Parameters

Length
(

Lpp
)

: 1.8 m
Center of mass

(
zg

)
: 0.52× 10−2 m (w.r.t body geometric axis)

Center of Buoyancy (zb) : −0.172× 10−2 m (w.r.t body geometric axis)
Weight (W) : 53 × 9.8 kgf
Buoyancy (B) : 53.4 × 9.8 kgf

Hydrodynamic Parameters

Moments Coeff. Force Coeff.

Nr = −41.4397 kg·m2/s Yr = 70.4195 kg·m/s
Nδ = −33.8563 kg·m2/s2 Yδ = 96.3191 kg·m/s2

Nv = −29.8727 kg·m/s Yv = −204.698 kg/s
Nṙ = −41.4397 kg·m2 Yṙ = 70.4195 kg·m
Nv̇ = −29.8727 kg·m Yv̇ = −204.698 kg

215

Sensors 2022, 22, 4293

References

1. Aguiar, A.P.; Dacic, D.B.; Hespanha, J.P.; Kokotovic, P. Path-Following or Reference-Tracking? An Answer relaxing the limits
to performance. In Proceedings of the 5th IFAC Symposium on Intelligent Autonomous Vehicles (IAV), Lisbon, Portugal,
5–7 July 2004.

2. Aguiar, A.P.; Hespanha J.; Kokotovic, P. Path-Following for Non-Minimum Phase Systems Removes Performance Limitations.
IEEE Trans. Autom. Control 2005, 50, 234–239. [CrossRef]

3. Aguiar, A.P.; Hespanha, J. Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles with Parametric
Modeling Uncertainty. IEEE Trans. Autom. Control 2007, 52, 1362–1379. [CrossRef]

4. Encarnacao, P.; Pascoal, A. 3D path following for autonomous underwater vehicle. In Proceedings of the 39th IEEE Conference
on Decision and Control (Cat. No.00CH37187), Sydney, Australia, 12–15 December 2000; Volume 3, pp. 2977–2982.

5. Indiveri, G.; Zizzari, A.A. Kinematics Motion Control of an Underactuated Vehicle: A 3D Solution with Bounded Control Effort.
In Proceedings of the 2nd IFAC Workshop Navigation, Guidance and Control of Underwater Vehicles (2008), Killaloe, Ireland,
8–10 April 2008.

6. Micaelli, A.; Samson, C . Trajectory Tracking for Unicycle-Type and Two-Steering-Wheels Mobile Robots; Roberts, G.; Sutton, R., Eds.;
Technical Report 2097; INRIA: Sophia-Antipolis, France; 1993; pp. 353–386.

7. Samson, C. Path-following and time-varying feedback stabilization of a wheeled mobile robot. In Proceedings of the International
Conference on Control, Automation, Robotics and Vision (ICARCV 92), Singapore, 16–18 September 1992; pp RO-13.1.1–RO-13.1.5.

8. Samson, C. Control of Chained Systems Application to Path Following and Time-Varying Point-Stabilization of Mobile Robots.
IEEE Trans. Autom. Control 1995, 40, 64–76. [CrossRef]

9. Altafini. C.. Following a path of varying curvature as an output regulation problem. IEEE Trans. Autom. Control 2002,
47, 1551–1556. [CrossRef]

10. Böck, M.; Kugi, A. Real-time Nonlinear Model Predictive Path-Following Control of a Laboratory Tower Crane. IEEE Trans.
Control Syst. Technol. 2014, 22, 1461–1473. [CrossRef]

11. Pascoal, A.; Silvestre, C.; Oliveira, P. Vehicle and Mission Control of Single Multiple Autonomous Marine Robots. In Advances in
Unmanned Marine Vehicles; Roberts, G.; Sutton, R., Eds.; IEE Contol Engineering Series; IET: London, UK, 2006; pp. 353–386.

12. Ghabcheloo, R.; Aguiar, A.P.; Pascoal, A.C.S.; Kaminer I..; Hespanha, J. Coordinated Path-Following in the presence of
Communication Losses and Time Delays. SIAM J. Control Optim. 2009, 48, 234–265. [CrossRef]

13. Pascoal, A.; Oliveira, P.; Silvestre, C.; Sebastiao, L.; Rufino, M.; Barroso, V.; Gomes, J.; Ayela, G.; Coince, P.; Cardew, M.; et al.
Robotic ocean vehicles for marine science applications: The European ASIMOV project. In Proceedings of the OCEANS 2000
MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158), Providence, RI, USA, 11–14 September
2000; Volume1, pp. 409–415. [CrossRef]

14. Kalwa, J.; Pascoal, A.; Ridao, P.; Birk, A.; Glotzbach, T.; Brignone, L.; Bibuli, M.; Alves, J.; Silva, M. EU project MORPH: Current
Status After 3 Years of Cooperation Under and Above Water. IFAC-PapersOnLine 2015, 48, 119–124. [CrossRef]

15. Al-Khatib, H.; Antonelli, G.; Caffaz, A.; Caiti, A.; Casalino, G.; de Jong, I.B.; Duarte, H.; Indiveri, G.; Jesus, S.; Kebkal, K.; et al.
The widely scalable Mobile Underwater Sonar Technology (WiMUST) project: An overview. In Proceedings of the OCEANS
2015—Genova, Genova, Italy, 18–21 May 2015; pp. 1–5. [CrossRef]

16. Børhaug, E.; Pavlov, A.; Panteley, E.; Pettersen, K. Straight Line Path Following for Formations of Underactuated Marine Surface
Vessels. IEEE Trans. Control Syst. Technol. 2011, 19, 493–506. [CrossRef]

17. Papoulias, F.A. Bifurcation Analysis of Line of Sight Vehicle Guidance using Sliding Modes. Int. J. Bifurc. Chaos 1991, 1, 849–865.
[CrossRef]

18. Burger, M.; Pavlov, A.; Bø rhaug, E.; Pettersen, K.Y. Straight Line Path Following for Formations of Underactuated Surface Vessels
under Influence of Constant Ocean Currents. In Proceedings of the 2009 American Control Conference, St. Louis, MO, USA,
10–12 June 2009; pp. 3065–3070.

19. Burger, M.; Pavlov, A.; Pettersen, K.Y. Conditional Integrators for Path Following and Formation Control of Marine Vessels under
Constant Disturbances. In Proceedings of the 8th IFAC Conference on Manoeuvring and Control of Marine Craft, Guaruja, Brazil,
16–18 September 2009.

20. Moe, S.; Caharija, W.; Pettersen, K.; Schjolberg, I. Path following of underactuated marine surface vessels in the presence
of unknown ocean currents. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014;
pp. 3856–3861. [CrossRef]

21. Aguiar, A.P.; Pascoal, A.M.; Kaminer, I.; Dobrokhodov, V.; Hovakimyan, N.; Xargay, E.; Cao, C.; Ghabcheloo, R. Time-Coordinated
Path Following of Multiple UAVs over Time-Varying Networks using L1 Adaptation. In Proceedings of the AIAA Guidance,
Navigation and Control Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008;

22. Sujit, P.; Saripalli, S.; Borges Sousa, J. Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for
Fixed-Wing Unmanned Aerial Vehicles. IEEE Control Syst. Mag. 2014, 34, 42–59. [CrossRef]

23. Breivik, M.; Fossen, T.I. Principles of Guidance-Based Path Following in 2D and 3D. In Proceedings of the 44th IEEE Conference
on Decision and Control, Seville, Spain, 15 December 2005; pp. 627–634.

24. Breivik, M.; Subbotin, M.V.; Fossen, T.I. Guided Formation Control for Wheeled Mobile Robots. In Proceedings of the 2006 9th
International Conference on Control, Automation, Robotics and Vision, Singapore, 5–8 December 2006.

216

Sensors 2022, 22, 4293

25. Carona, R.; Aguiar, A.P. Control of Unicycle Type Robots: Tracking , Path Following and Point Stabilization. In Proceedings of
the IV Jornadas de Engineharia Electronica e Telecomunicacoes e de Computadores, Lisbon, Portugal, 20–21 November 2008;
pp. 180–185.

26. Tayebi, A.; Rachid, A. Path Following Control Law for an Industrial Mobile Robot. In Proceedings of the 1996 IEEE International
Conference on Control Applications, Dearborn, MI, USA, 15–18 September 1996; pp. 703–707.

27. Park, S.; Deyst, J.; How, J. Performance and Lyapunov Stability of a Nonlinear Path Following Guidance Method. J. Guid. Control
Dyn. 2007, 30, 1718–1728. [CrossRef]

28. Breivik, M.; Fossen, T.I. Path Following for Marine Surface Vessels. In Proceedings of the Oceans ’04 MTS/IEEE Techno-Ocean
’04 (IEEE Cat. No.04CH37600), Kobe, Japan, 9–12 November 2004; pp. 2282–2289.

29. Khalil, H.K. Nonlinear Systems, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2001.
30. Maurya, P.; Aguiar, A.P.; Pascoal, A. Marine Vehicle Path Following Using Inner-Outer Loop Control. In Proceedings of the 8th

IFAC International Conference on Manoeuvring and Control of Marine Craft, Guaruja, Brazil, 16–18 September 2009. [CrossRef]
31. Maurya, P.; Desa, E.; Pascoal, A.; Barros, E.; Navelkar, G.; Madhan, R.; Mascarenhas, A.; Prabudesai, S.; Afzalpurkar, S.; Gouveia,

A.; et al. Control of the Maya AUV in the Vertical and Horizontal Planes: Theory and Practical Results. In Proceedings of the 7th
Conference on Manoeuvring and Control of Marine Craft (MCMC2006), Lisbon, Portugal, 20–22 September 2006.

32. Aage, C.; Smitt, L. Hydrodynamic manoeuvrability data of a flatfish type AUV. In Proceedings of the Oceans Engineer-
ing for Today’s Technology and Tomorrow’s Preservation (OCEANS ’94), Brest, France, 13–16 September 1994; Volume 3,
pp. III/425–III/430. [CrossRef]

33. De barros, E.; Dantas, J.; Pascoal, A.; de Sa, E. Investigation of Normal Force and Moment Coefficients for an AUV at Nonlinear
Angle of Attack and Sideslip Range. IEEE J. Ocean. Eng. 2008, 33, 538–549. [CrossRef]

34. Fossen, T.I. Marine Control System: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles; Marine Cybernetics AS:
Trondheim, Norway, 2002.

35. Craig, J.J. Introduction to Robotics: Mechanics and Control; Includes bibliographies and index; Addison-Wesley Pub. Co.: Reading,
MA, USA, 1986.

36. Fossen, T.I. Nonlinear Modeling and Control of Underwater Vehicles. Ph.D. Thesis, Department of Engineering Cybernetics,
Norwegian University of Science and Technology, Trondheim, Norway, 1991.

37. Técnico Lisboa. MEDUSA. Available online: http://dsor.isr.ist.utl.pt/vehicles/medusa/ (accessed on 30 March 2022).
38. Abreu, P.C. Positioning and Navigation Systems for Robotic Underwater Vehicles. Master’s Thesis, Instituto Superior Tecnico,

University of Lisbon, Lisbon, Portugal, 2014,
39. Madhan, R.; Desa, E.; Prabhudesai, S.; Sebastiao, L.; Pascoal, A.; Desa, E.; Mascarenhas, A.; Maurya, P.; Navelkar, G.; Afzulpurkar,

S.; et al. Mechanical Design and Development Aspects of a Small AUV MAYA. In 7th IFAC Conference on Manoeuvring and Control
of Marine Craft; IFAC: Lisbon, Portugal, 2006; pp. 1–6.

40. Jalving, B. The NDRE-AUV Flight Control System. IEEE J. Ocean. Eng. 1994, 19. [CrossRef]
41. Sontag, E. Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 1989, 34, 435–443. [CrossRef]
42. Lopez-Araujo, D.; Zavala-Rio, A.; Fantoni, I.; Salazar, S.; Lozano, R. Global stabilization of the PVTOL aircraft with lateral force

coupling and bounded inputs. Int. J. Control 2010, 7, 1427–1441. [CrossRef]
43. Panteleyt, E.; Ortega, R. Cascaded Control of Feedback Interconnected Nonlinear Systems: Application to Robots with AC Drives.

Automatica 1997, 33, 1935–1947. [CrossRef]
44. Vanni, F. Coordinated Motion Control of Multiple Autonomous Underwater Vehicles. Master’s Thesis, Instituto Superior

{Técnico}, Lisbon, Portugal, 2007; pp. 46–50.
45. Maurya, P.; Navelkar, G.; Madhan, R.; Afzalpurkar, S.; Prabhudesai, S.; Desa, E.; Pascoal, A. Navigation and path following

guidance of the Maya AUV: From concept to practice. In Proceedings of the 2nd International Conference on Underwater System
Technology: Theory and Applications, Bali, Indonesia, 4–5 November 2008.

46. Kaminer, I.; Pascoal, A.; Khargonekar, P.; Coleman, E. A Velocity Algorithm for the Implementation of Gain-Scheduled Controllers.
Automatica 1995, 31, 1185–1191. [CrossRef]

47. Bengtsson, G. Output regulation and internal models: A frequency domain approach. Automatica 1977, 13, 333–345. [CrossRef]
48. Dorf, R.; Bishop, R. Modern Control Systems; Pearson Prentice Hall: Hoboken, NJ, USA, 2008.
49. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 1999, 9, 718–727. [CrossRef]

217

Citation: Jacinto, M.; Cunha, R.;

Pascoal, A. Chemical Spill Encircling

Using a Quadrotor and Autonomous

Surface Vehicles: A Distributed

Cooperative Approach. Sensors 2022,

22, 2178. https://doi.org/10.3390/

s22062178

Academic Editor: Maria Gabriella

Xibilia

Received: 4 February 2022

Accepted: 7 March 2022

Published: 10 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Chemical Spill Encircling Using a Quadrotor and Autonomous
Surface Vehicles: A Distributed Cooperative Approach

Marcelo Jacinto *, Rita Cunha and António Pascoal

Laboratory of Robotics and Systems in Engineering and Science (LARSyS), Instituto Superior Técnico,
University of Lisbon, 1049-001 Lisboa, Portugal; rita@isr.tecnico.ulisboa.pt (R.C.);
antonio@isr.tecnico.ulisboa.pt (A.P.)
* Correspondence: marcelo.jacinto@tecnico.ulisboa.pt

Abstract: This article addresses the problem of formation control of a quadrotor and one (or more)
marine vehicles operating at the surface of the water with the end goal of encircling the boundary of
a chemical spill, enabling such vehicles to carry and release chemical dispersants used during ocean
cleanup missions to break up oil molecules. Firstly, the mathematical models of the Medusa class of
marine robots and quadrotor aircrafts are introduced, followed by the design of single vehicle motion
controllers that allow these vehicles to follow a parameterised path individually using Lyapunov-
based techniques. At a second stage, a distributed controller using event-triggered communications
is introduced, enabling the vehicles to perform cooperative path following missions according to a
pre-defined geometric formation. In the next step, a real-time path planning algorithm is developed
that makes use of a camera sensor, installed on-board the quadrotor. This sensor enables the detection
in the image of which pixels encode parts of a chemical spill boundary and use them to generate and
update, in real time, a set of smooth B-spline-based paths for all the vehicles to follow cooperatively.
The performance of the complete system is evaluated by resorting to 3-D simulation software, making
it possible to visually simulate a chemical spill. Results from real water trials are also provided for
parts of the system, where two Medusa vehicles are required to perform a static lawn-mowing path
following mission cooperatively at the surface of the water.

Keywords: quadrotor control; autonomous surface vehicle control; cooperative path following;
online path planning; chemical spill boundary encircling

1. Introduction

The problems of perimeter detection, boundary searching, and encircling have been
widely researched topics with a variety of practical applications, ranging from the monitor-
ing of wildfire spread in forests [1], to the control and encircling of oil spills [2] and harmful
invasive algae blooms [3] at the surface of the ocean. In this paper, we will focus on the
problem of chemical spill encircling.

The two main phenomena that contribute to the transportation and spread of haz-
ardous chemicals over water, such as oil, are advection and diffusion. In the first, the
chemical is transported due to the flow of water, while the second refers to the motion of
the fluid caused by the existence of concentration gradients. One way of modelling the
flow field of the incompressible fluid is by solving iteratively the convection–diffusion
equations [4]. In the literature, many works address the problem of dynamic boundary
tracking at the surface of the ocean by proposing control schemes which require (at least
one) surface vessel to measure the concentration gradient of a hazardous contaminant.
These measurements of the chemical plume are used by potential field controllers with
the end goal of steering the robots to the boundary of the plume [5,6]. A completely dif-
ferent approach, adopted by Saldaña et al. [7], is to consider that a general environmental
boundary can be approximated by a closed curve that is slowly varying over time and that

Sensors 2022, 22, 2178. https://doi.org/10.3390/s22062178 https://www.mdpi.com/journal/sensors219

Sensors 2022, 22, 2178

can be described by a general parametric equation. In his research, the author proposes a
model for the curve described spatially by a truncated Fourier series that changes its shape
smoothly over time. To achieve this, it is assumed that a team of Autonomous Surface
Vehicles (ASVs) are distributed equally around the chemical spill, and every vehicle is
capable of taking local measurements of the boundary as it moves around it. These local
measurements are then used to update the shape of the closed curve using recursive least
squares. Although this is a very general solution to the problem, it can be argued that the
use of a truncated Fourier series to represent a path for underactuated vehicles to follow is
a rather poor choice of function, as the resulting curve can self-intersect and exhibit sub-
stantial oscillations. Moreover, it does not take into consideration the physical constraints
imposed by the vehicles. In order to lift the limitations imposed by this method, more stable
parametric curves could be considered, such as Bernstein polynomials or B-splines [8].

In recent years, there has been a massive development of and demand for Autonomous
Underwater Vehicles (AUVs), due not only to their agility when it comes to the execution
of scientific and comercial missions, but also to their low cost when compared to traditional
ships, which require an on-board crew to be operated. Additionally, there has also been
an exponential growth in demand for Unmanned Aerial Vehicles (UAVs), with a special
emphasis on multirotor systems, which usually offer high-quality camera sensors at low
market prices. Aerial vehicles can have a top-down view of the environment, making them
the tool par excellence for surveillance and maintenance missions. On the other hand,
AUVs and ASVs can be used to carry and release chemical dispersants used in cleanup
missions to break oil molecules [9]. Together, these unmanned vehicles have huge potential
to automate and reduce the cost of ocean cleanup operations.

In this paper, we address the problem of chemical spill encircling and focus on the
development of a set of control and path planning tools that allow a team of robots
constituted of a quadrotor (equipped with an onboard camera) and ASVs to detect and
encircle the dynamical boundary of a chemical spill closely, as depicted in Figure 1. In
our proposal, the quadrotor is responsible for detecting in real time the boundary of a
chemical spill in the image stream produced by its onboard camera, and producing a
path that itself and one or more ASVs are required to follow cooperatively. To achieve
this, we start by proposing a set of single-vehicle motion control laws based on non-linear
Lyapunov techniques that allow individual ASVs to follow a pre-defined parametric curve,
based on previous works by Aguiar et al. [10–12]. These control techniques are then
extended to the case of quadrotor vehicles. Borrowing from the work of N. Hung and
F. Rego [13], a distributed controller using event-triggered communications is presented,
allowing the vehicles to perform Cooperative Path Following (CPF) missions, according to
a pre-defined geometric formation. Finally, a new real-time path planning framework that
uses growing unclamped (and uniform) cubic B-splines is proposed, which fits a 2-D point
cloud generated from the drone’s image stream.

Figure 1. Cooperative path following along an environmental boundary.

A set of real experiments are performed with the Medusa class of marine vehicles [14]
(property of ISR-DSOR) to access the real-life performance of the proposed path following

220

Sensors 2022, 22, 2178

and CPF algorithms. Additionally, the complete path planning solution is evaluated
by resorting to the Gazebo 3-D simulator, PX4-SITL [15], and UUVSimulator [16], using
a dynamic model of a Medusa vehicle and an Iris quadrotor equipped with a virtual
RGB camera.

2. Preliminaries

2.1. Notation

The unit vector e3 is defined as e3 = [0, 0, 1]T . For a vector x ∈ Rn, the symbol xi

denotes the ith element of the vector. We shall use ‖x‖ =
√

xTx to denote the Euclidean
norm of a vector. The notation K � 0 is used to denote a matrix K ∈ Rn×n that is positive
semi-definite. The symbol I is used to denote the identity matrix and 1 is a vector with all
elements equal to one. The symbols �x�, x ∈ R denote the x nearest integer, �x� denotes
the floor of x, and �x� denotes the ceiling of x. The symbol R(.) is used to denote a rotation
matrix with properties RT = R−1 and det(R) = 1. The map S(·) : Rn → Rn×n, n = 2, 3
yields a skew-symmetric matrix S(x)y = x× y, ∀x, y ∈ Rn. When considering an estimator
for an unknown variable x, we use the hat nomenclature x̂ to denote its estimate and x̃
when referring to the estimation error.

2.2. Graph Theory

A weighted digraph G = G(V , E ,A) consists of a set of N vertices V = [V1, ..., VN]
T , a

set of directed edges E ⊆ V × V , and a weighted adjacency matrix A = [aij] ∈ RN×N , such
that aij > 0 if the edge that connects vertex i to j belongs to the graph, and 0 otherwise.
The set of in-neighbours of a vertex i is given by N in

i = {j ∈ V : (j, i) ∈ E}, and the set of
out-neighbours by N out

i = {j ∈ V : (i, j) ∈ E}. The in- and out-degree matrices Din and
Dout are a set of diagonal matrices defined by:

Din/out = diag(din/out
i), with din

i = ∑
j∈N in

i

aij and dout
i = ∑

j∈N out
i

aji. (1)

A graph G is undirected if communication links are unidirectional. If G is an undirected
graph, then G is also balanced, i.e., Din = Dout := D, and its Laplacian matrix L is
symmetric, positive semi-definite, and defined according to L := (D − A). In these
conditions, it is well known that L has a simple eigenvalue at zero associated with eigen
vector 1, with the remaining eigen values being positive. Moreover, L1 = 0.

Remark: With the graph definition given above, we adopt the convention that an
agent i can receive information from its neighbors in N in

i and send information to its
neighbors in N out

i .

2.3. Uniform B-Spline Curves

A 2-D B-spline curve of degree k + 1 in R2 is a piecewise polynomial function formed
by several components of degree k, defined as:

C(γ) =
n

∑
i=0

Bi,k(γ)Pi, (2)

where P = {Pi ∈ R2, i = 0, ..., n} are a set of control points and Bi,k(γ) are the B-spline basis
functions. It follows from the Cox–De Boor’s recursive algorithm, according to L. Piegl and
W. Tiller ([8], Chapter 2.2), that:

Bi,0(γ) =

{
1, if γi ≤ γ ≤ γi+1

0, otherwise
, (3)

Bi,j(γ) =
γ− γi

γi+j − γi
Bi,j−1(γ) +

γi+j+1 − γ

γi+j+1 − γi+1
Bi+1,j−1(γ), (4)

221

Sensors 2022, 22, 2178

where the index j = 0, ..., k and the values γi belong to the m-dimensional knot vector
U = {γi}m

i=0, with the number of knots related to the degree of the curve and the number
of control points by m = k + 1 + n.

For the particular case of 2-D, uniform, non-clamped cubic B-splines with n− k + 1
segments, each segment’s x- and y-coordinates of the parametric curve can be described
according to the vectorial notation [17] as follows:

Ci(γ) :=
[
Cx

i (γ) Cy
i (γ)

]T , (5)

with Cx
i (γ) and Cy

i (γ) computed according to:

Cx/y
i (γ) :=

1
6
[
(γ− i)3 (γ− i)2 (γ− i) 1

]
⎡
⎢⎢⎣
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

⎤
⎥⎥⎦

︸ ︷︷ ︸[
Bi,3(γ) Bi+1,3(γ) Bi+2,3(γ) Bi+3,3(γ)

]

⎡
⎢⎢⎢⎢⎣

Px/y
i

Px/y
i+1

Px/y
i+2

Px/y
i+3

⎤
⎥⎥⎥⎥⎦, (6)

where γ ∈ [0, n− k + 1] and i := �γ�, such that γ− i ∈ [0, 1] and each curve segment is
only defined by four distinct control points. Defining a unidimensional vector with all
control points P = [Px

0 , ..., Px
n , Py

0 , ..., Py
n]

T ∈ R2(n+1), where both x- and y-coordinates are
concatenated, and a vector of distinct curve parameters γ = [γ0, ..., γq] ∈ Rq+1 at which we
wish to evaluate our curve, C(γ) ∈ R2(q+1) is given by:

C(γ) = B(γ) · P, (7)

where B(γ) ∈ R2(q+1)×2(n+1) is a diagonal by blocks matrix, and for each line of B, only
four basis functions are different then zero and computed according to (6).

3. Vehicle Modelling

Let {U} denote an inertial reference frame and {B} a body-fixed reference frame
attached to the geometric center of mass of each vehicle, according to Figure 2.

φ

ψ

θ

φ

θ

ψ

Figure 2. Adopted reference frames for a surface vehicle (left) and a quadrotor (right).

3.1. ASV Model

The ASV vehicle is modeled as a rigid body whose motion is restricted to a 2-D plane
at the surface of the water, such that the roll and pitch angles are zero, i.e., φ = θ = 0. Let
the kinematic equations of the vehicle be given by:[

ẋ
ẏ

]
︸︷︷︸

ṗ

=

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

]
︸ ︷︷ ︸

U
B R(ψ)

[
u
v

]
︸︷︷︸

v

+

[
vcx
vcy

]
︸ ︷︷ ︸

vc

, (8)

ψ̇ = r, (9)

222

Sensors 2022, 22, 2178

where p := [x, y]T denotes the ASV position expressed in {U}, v := [u, v]T denotes the
body-velocity vector, U

B R(ψ) ∈ R2×2 denotes the rotation matrix, and v := [vcx, vcy]T

denotes the ocean current, expressed in {U} and assumed to be constant, irrotational, and
bounded. The ASV model is considered to be underactuated, with the input of the system
being given by u = [u, r]T ∈ R2.

3.2. Quadrotor Model

The kinematic equations that describe the motion of a rigid body in 3-D space can be
described by a double integrator model, according to:

p̈ := ge3 − 1
m

U
B R(θ)Te3︸ ︷︷ ︸
u

+d, (10)

where p := [x, y, z]T denotes the quadrotor’s position expressed in {U}, θ := [φ, θ, ψ]T

denotes the orientation vector of {B} expressed in {U}, and u ∈ R3 can be regarded as
the input of the system, comprising both the attitude of the vehicle and the total thrust T.
The vector d ∈ R3 represents unmeasured external disturbances, such as wind, acting on
the vehicle, assumed to be constant and bounded such that ‖d‖ ≤ dmax. The 3-D rotation
matrix adopted for the quadrotor model follows the Z-Y-X convention, and is given by:

U
B R(θ) = Rz(ψ)Ry(θ)Rx(φ). (11)

4. Path Following

The path following (PF) problem concerns the problem of making a vehicle move
along a desired path pd(γ) parameterised by a variable γ (for example, the arc-length of the
curve). The key idea is that each vehicle must approach a virtual target that moves along
the path with a desired speed profile vd(γ), according to Figure 3. Since the end goal is to
have more than one vehicle performing path following with a pre-defined inter-vehicle
formation, this speed profile is given as the sum of another single-vehicle speed profile and
an inter-vehicle coordination term, according to:

vd(γ) := vL(γ) + vcoord, with |vL(γ)| ≤ vmax
L , (12)

where vL(γ) is a desired speed profile defined only as a function of the path, vmax
L is a

pre-defined speed upper-bound, and vcoord is the speed coordination term that will be used
in Section 5 to enable the CPF behaviour. It is important to notice that the desired speed
profile vL(γ) should be the same for all the vehicles, enabling them to follow a given path
at the same rate. On the other hand, the speed coordination term vcoord will not be the same
for all vehicles and will be used to adjust the progression speed of each individual robot
based on how aligned they are with each other.

Remark 1. Speed profile vd(γ) might not correspond directly to an inertial speed, especially if the
curve is not parameterised in terms of the arc-length. Nonetheless, a relation between the inertial
speed and the desired speed profile is addressed in detail in Section 6.4.

223

Sensors 2022, 22, 2178

(a) (b)

Figure 3. Path following schematic: (a) ASV path following. (b) Quadrotor path following.

Problem 1. Given a generic vehicle (ASV or quadrotor), consider the geometric path pd(γ) :
[0, ∞] → R2/R3 for the ASV/quadrotor respectively, parameterised by a continuous variable
γ ∈ R and vd(γ, t) ∈ R a desired speed profile for a virtual target moving along the desired path.
Furthermore, consider pd(γ) to be C2 and have its first and second derivatives with respect to γ
bounded. Assume the vehicle is equipped with inner-loop controllers allowing it to track a desired
control reference ud ∈ R2/R3, assumed to be bounded, by recruiting the appropriate forces and
torques to apply to the vehicle. Design a feedback control law for the system input ud and virtual
target γ̈ such that:

• the vehicle’s position converges to a tube around the desired position that can be made arbitrarily
small, i.e., ‖p(t)− pd(γ)‖ converges to a neighbourhood of the origin;

• the speed of the virtual target moving along the path converges to the desired speed profile, i.e.,
|γ̇− vd(γ, t)| → 0 as t → ∞.

4.1. ASV Path Following

Following the approach proposed by Aguiar et al. [10–12], consider the global dif-
feomorphic coordinate transformation which expresses the position error defined in the
body-frame of the vehicle {B} as:

ep(t) := B
U R(ψ)(p(t)− pd(γ)), (13)

and let the speed-tracking error be defined as:

eγ := γ̇− vd(γ, t). (14)

With these definitions, the body-fixed position error dynamics are given by:

ėp(t) = B
U Ṙ(ψ)(p(t)− pd(γ)) +

B
U R(ψ)(ṗ(t)− ṗd(γ)). (15)

We recall that the derivative of a rotation matrix can be expressed as the product of a
skew-symmetric matrix with the transposed rotation matrix, that is:

B
U Ṙ(ψ) = −S(r)B

U R(ψ). (16)

Replacing (16) in (15) yields the position error dynamics expressed in the body-fixed
frame as:

ėp(t) = −S(r) B
U R(ψ)(p(t)− pd(γ))︸ ︷︷ ︸

ep(t)

+v + B
U R(ψ)vc︸ ︷︷ ︸

vc

−B
U R(ψ)

∂pd(γ)

∂γ
γ̇. (17)

Since there is no direct control in the sway motion, the goal is to generate surge speed
and heading rate control references. Therefore, we must make these references appear

224

Sensors 2022, 22, 2178

explicitly in the error expression. By introducing an offset δ = [0, δ]T ∈ R2 (with δ < 0) in
the standard position error, it is possible to re-write (17) as:

ėp(t) = −S(r)(ep − δ) +

[
1 0
0 −δ

]
︸ ︷︷ ︸

Δ

[
u
r

]
︸︷︷︸

u

+

[
0
v

]
+ vc − B

U R(ψ)
∂pd(γ)

∂γ
γ̇. (18)

Consider that each ASV is equipped with a Doppler Velocity Logger (DVL) capable
of providing the vehicle’s relative velocity with respect to the water v, expressed in {B},
and a Global Positioning System (GPS) unit which provides measurements of the position
of the vehicle p, expressed in {U}. To estimate the ocean current, Pascoal et al. [18] and
Sanches et al. [19] propose the use of a complementary filter. Consider the process model
given by (8) and the candidate complementary filter model described by:

F :=

{
˙̂p = k1(p− p̂) + U

B R(ψ)v + v̂c
˙̂vc = k2(p− p̂),

(19)

with k1 and k2 positive constants. The proposed complementary filter is asymptotically
stable. For a formal stability analysis of this complementary filter, refer to Pascoal et al. [18].

At this point, it is important to notice that the current velocity vc and the requested in-
put ud that are to be applied to a vehicle’s kinematic model cannot be estimated and tracked,
respectively, with infinite precision. For this reason, we define the current estimation error
and the inner-loop tracking error given by:

ṽc := vc − v̂c,

ũ := u− ud.
(20)

Consider the Proposition 1 introduced below, in which a solution to Problem 1, applied
to an ASV, is provided along with convergence guarantees in the presence of bounded
estimation and tracking errors.

Proposition 1. Consider the system described by the kinematics in (8), with the outer-loop control
laws given by:

ud := Δ−1
(
− Kpσ(ep − δ)−

[
0
v

]
− v̂c +

B
U R(ψ)

∂pd(γ)

∂γ
vd(γ, t)

)
, (21)

γ̈ := −kγeγ + v̇d(γ, t) + (ep − δ)T B
U R(ψ)

∂pd(γ)

∂γ
, (22)

where Kp � 0, kγ > 0, and σ(ep) = tanh(
∥∥ep

∥∥) ep

‖ep‖ is a saturation function. The closed-loop

system is input-to-state stable (ISS) with respect to Δũ + ṽc, and the proposed control law solves
Problem 1 for the ASV vehicle.

Proof. Appendix A.

4.2. Quadrotor Path Following

Given that the quadrotor system is modelled by a double integrator in the inertial
frame {U}, as stated in (10), consider the position and velocity errors defined in {U} as:

ep := p(t)− pd(γ), (23)

ev := ṗ− ∂pd
∂γ

vd(γ, t), (24)

225

Sensors 2022, 22, 2178

and a virtual target speed tracking error defined by (14). Consider also a new auxiliary
error z, defined as:

z := ev + K1ep, (25)

where K1 � 0 is a gain matrix. The position and velocity error dynamics can be written as:

ėp = ṗ− ∂pd
∂γ

γ̇, (26)

ėv = p̈− d
dt

(
∂pd
∂γ

vd(γ, t)
)

. (27)

Furthermore, consider the time derivative introduced in (27), the desired virtual target
speed function (12), and the virtual target speed tracking error function (14). Then, the time
derivative term introduced in (27) can be expanded as:

d
dt

(
∂pd
∂γ

vd(γ, t)
)
=

[
∂2pd
∂γ2 vd(γ, t) +

∂pd
∂γ

∂vL(γ)

∂γ︸ ︷︷ ︸
h(γ)

]
(eγ + vd(γ, t)) +

∂pd
∂γ

v̇coord(t).
(28)

Replacing (10) and (28) in (27) yields:

ėv = u + d− h(γ)(eγ + vd(γ, t))− ∂pd
∂γ

v̇coord(t). (29)

Unlike the case of the ASVs where current estimates are given by a complementary
filter, in the case of a quadrotor, a different direction is taken towards estimating distur-
bances such as wind. According to Xie and Cabecinhas et al. [20,21], straightforward
implementations of estimators can lead to windup and result in unbounded growth of
an external disturbance estimate. To avoid such problems, Xie and Cabecinhas propose
the use of a sufficiently smooth projection operator in the estimator design. Consider the
disturbance observer given by:

˙̂d := KdProj(z, d̂) = z− η1η2

2(β2 + 2βdmax)n+1d2
max

d̂, (30)

where Kd denotes a diagonal gain matrix and:

η1 =

{
(d̂

T
d̂− d2

max)
n+1, if (d̂

T
d̂− d2

max) > 0
0, otherwise,

(31)

and:

η2 = d̂
T

z +

√
(d̂

T
z)2 + ς2, (32)

where ς, β > 0 are arbitrary constants. This projection operator, first proposed in Cai
et al. [22], enjoys the useful properties:

d̃T Proj(z, d̂) ≥ d̃Tz, (33)

and: ∥∥∥d̂
∥∥∥ ≤ dmax + β, ∀t ≥ 0. (34)

Once again, consider the inner-loop tracking error and disturbance estimation error
given by:

ũ := u− ud, (35)

d̃ := d− d̂. (36)

226

Sensors 2022, 22, 2178

Proposition 2. Consider the system described by (10), the disturbance estimator dynamics given
by (30), and the inner-loop tracking error given by (35). Furthermore, consider the control law
given by:

ud := −d̂ + h(γ)vd(γ, t) +
∂pd
∂γ

v̇coord(t)− evKv − epKp, (37)

γ̈ := −kγeγ + v̇d(γ, t) + eT
p

∂pd
∂γ

+ zT
(

h(γ) + K1
∂pd
∂γ

)
, (38)

where Kp, Kv � 0, and kγ is a positive gain. For sufficiently small initial position and velocity
errors (ep, ev), and a sufficiently large separation between the time-scales of the inner and outer
loop systems, it can be guaranteed that the system error converges to a neighbourhood of zero. The
proposed control law solves Problem 1 for the quadrotor vehicle.

Remark 2. In-depth and quantitative overall stability analysis can be conducted for the inner–outer
loop control system, but this will be dependent directly on the type of inner loop adopted. This
results from the fact that the desired accelerations ud must be decoupled in a set of desired thrust
and attitude for the quadrotor to track. Given that this analysis is out of the scope of this work,
we assume that the quadrotor is equipped with a generic inner loop that is capable of keeping the
tracking error ũ small and bounded.

Proof. Appendix B.

5. Cooperative Path Following

In this section, the problem of CPF is addressed. The end goal is to have an algo-
rithm that allows one quadrotor and multiple ASVs to perform a path following mission
cooperatively, using a distributed architecture. The vehicles are required to execute their
mission according to a fixed geometric configuration. To cope with limitations imposed by
real environments where inter-vehicle communications are discrete, an Event-Triggered
Communications (ETC) mechanism is adopted, based on previous work developed by A.
Aguiar and A. Pascoal [23] and N. Hung and F. Rego [13].

Synchronisation Problem with Event-Triggered Communications

Consider a group of N ∈ R+ \ {1} autonomous vehicles/agents in a network that
can be described mathematically by a digraph G(V , E ,A), consisting of N vertices, a set
of directed edges E ⊆ V × V , where the edge εij represents the flow of information from
agent i to agent j, and a weighted adjacency matrix A = [aij] ∈ RN×N . Furthermore, each
vehicle i is able to receive information from its neighbours in N in

i and send information to
its neighbours in N out

i , i.e., G is undirected. Moreover, consider that the communication
topology of the vehicles is fixed; hence, the Laplacian L associated to G is constant. Let the
state vector of the system be composed by the path parameter of each individual vehicle
γ = [γ1, ..., γN]

T . In addition, each vehicle is equipped with the PF controllers proposed
in Section 4, and has an assigned path to follow, appropriately parameterised in order
to ensure that a given desired formation between the vehicles is met. The CPF problem
consists in designing a distributed control scheme that adjusts the speed of the vehicles such
that all path parameters γ reach a consensus. Consider the problem formulation below.

Problem 2. For each agent i, with i = 1, ..., N, derive a consensus protocol for the speed correction
term vcoord = [vcoord

1 , ..., vcoord
N]T, such that limt→∞ |γi − γj| = 0, ∀j ∈ Nin

i , and the formation
of vehicles achieves the desired speed assignment vL(γ) = [vL1, ..., vLN]

T as t → ∞.

Note that, according to the previously developed (PF) controllers, for each vehicle i,
|γ̇i − vd(γ, t)| = 0 is only guaranteed as t → ∞, as the controlled variable is γ̈i and not
γ̇i. Having this fact in mind, and assuming that the vehicles have already converged to

227

Sensors 2022, 22, 2178

their desired paths, i.e., ep ≈ 0 (and ev ≈ 0 in the case of the quadrotor), then the following
simplifying assumption can be made:

Assumption 1. The speed progression of all the virtual targets along the desired path is always
assumed to be modelled by a single integrator system, which can be expressed in vectorial form as:

γ̇ = vd(γ, t) = vL(γ) + vcoord. (39)

Let the synchronisation error vector be defined as ε = [ε1, ..., εN]
T where, for each i:

εi := ∑
j∈N in

i

aij(γi − γj), (40)

with aij elements of the weighted adjacency matrix that describes the vehicle network. This
error can also be expressed in vectorial form as:

ε := Lγ, (41)

where εi denotes the coordination error between vehicle i and its neighbours. With the
above notation, the coordination error dynamics of the multi-vehicle system are given by:

ε̇ := Lγ̇. (42)

In the work of N. Hung and F. Rego [13], the authors propose a scheme where each
agent i has a set of estimators γ̂j, j ∈ N in

i for the true state of each in-neighbour virtual
target γj. In addition, each agent i has an estimator for its own state γ̂i, which is reset
whenever vehicle i broadcasts its true state γi. The other estimators are reset whenever
agent i receives the true state from its in-neighbours j ∈ N in

i . In this work, a time-dependent
broadcast condition is adopted.

Proposition 3. Consider the distributed control law given by:

vcoord
i := −kε ∑

j∈N in
i

aij(γi − γ̂j), (43)

where kε > 0 and γ̂j is vehicle i’s estimate of vehicle j’s real virtual target value. Consider also that
the bank of estimators that each vehicle i is running is described by the dynamics equation:

˙̂γi := vL(γ̂i). (44)

At any time instant t, under negligible transmission delays, the vehicle j’s self-state estimate
γ̂j is equal to vehicle i’s estimate of γ̂j, which allows us to express the estimator dynamics using
vectorial notation as:

˙̂γ := vL(γ̂), (45)

where γ̂ = [γ̂1, ..., γ̂N]
T is the self-estimate of the virtual target of each vehicle. Let γ̃ = [γ̃1, ..., γ̃N]

T

denote the local estimation errors of each vehicle, such that γ̃ = γ− γ̂. Then, vcoord can also be
given in vectorial notation, according to:

vcoord := −kε[Dγ−Aγ̂] = −kε(ε +Aγ̃), (46)

where D is a diagonal matrix and A the graph adjacency matrix. Consider also a triggering
function used to define when to broadcast the along-path position of the virtual target of each vehicle,
defined as: {

δi(t) := |γ̃i(t)| − gi(t)
γ̃i(t) = γ̂i(t)− γi(t),

(47)

228

Sensors 2022, 22, 2178

where γ̃i(t) is the local estimation error of agent i and gi(t) is a time-dependent threshold function,
such that if the estimation error exceeds this threshold, i.e., δi(t) ≥ 0, vehicle i broadcasts its state
to the out-neighbours N out

i and resets its local estimator. Furthermore, consider gi(t) to belong to a
class of non-negative functions, given by:

gi(t) = ci + bie−αi t, (48)

with ci, bi and αi being positive constants and g(t) = [g1, ..., gN]
T being the collection of functions

gi for each individual vehicle i. Consider also that vL(γ) = vL1 + ṽL, where ṽL is a bounded and
arbitrarily small term that accounts for a transient period in which the vehicles are on different
sections of the path, with slightly different desired speed profiles. Then, under Assumption 1, the
system is ISS with respect to the error vector ε and the inputs γ̃ and ṽL.

Proof. Appendix C.

The proposed control scheme used for achieving CPF using ETC is summarised in
Algorithm 1.

Algorithm 1 Event-Triggered Communication for vehicle i (adapted from [24]).

1: At every time instant t, each vehicle i follows the procedure:
2: procedure COORDINATION AND COMMUNICATION
3: if δi(t) ≥ 0 where δi is computed using (47) and (48) then
4: Broadcast γi(t);
5: Reset the estimator γ̂i;
6: if Receive a new message from agent j ∈ N in

i then
7: Reset γ̂j(t);

8: Run the estimators according to (44);
9: Update the first order control protocol ui using (43).

Given the general distributed control scheme, we now elaborate and address a specific
formation, in the context of this work, in the sections that follow.

6. Path Planning

This section addresses the problem of generating a set of smooth and planar reference
paths for each individual vehicle to follow, with the end goal of encircling the boundary of
a chemical spill. In order to make the vehicles follow the dynamic boundary according to a
pre-defined formation (such as a triangle) multiple paths should be generated from one
reference path that encodes the boundary. Borrowing from the work of Saldaña et al. [7],
we start by presenting a rigorous mathematical definition of a dynamic boundary below.

Definition 1. A dynamic boundary is a set of planar points Ωt, such that ∀z ∈ Ωt, and for any
ξ > 0, the open disk centered at point z with radius ξ contains points of Ωt and its complement set
ΩC

t . Moreover, the dynamic boundary can be approximated by a parametric closed curve (Jordan
curve) C(γ, t) : [0, ∞]× [0, ∞] → R2, mapped by a parameter γ ∈ R

+
0 and time t ∈ R

+
0 . The

curve is continuous with no self-intersecting points, and changes smoothly with respect to both time
t and parameter γ, as depicted in Figure 4a.

Since the chemical spill boundary is assumed to be dynamic, a path planning problem
can be formulated in which a quadrotor is actively re-planning the path that the ASVs
should follow at the water surface, as the group of vehicles moves along it and more up-to-
date data is acquired by the quadrotor’s vision system. Consider, therefore, Problem 3.

Problem 3. Consider a quadrotor flying over a body of water at a pre-defined fixed altitude, equipped
with a camera sensor pointing downwards with a fixed pitch angle relative to the vehicle’s body
reference frame {B}. Consider also that the vehicle is capable of detecting the boundary of a chemical

229

Sensors 2022, 22, 2178

spill in the 2-D image provided by the camera sensor. Furthermore, one or more ASVs at the surface
of the water are required to follow a path dictated by the quadrotor, according to a pre-defined vehicle
formation. As the quadrotor detects the dynamic boundary in the image:

1. use the data provided by its navigation system to convert the pixels to a 2-D point cloud
expressed in the inertial frame {U};

2. remove outliers and perform pre-processing on the 2-D point cloud;
3. generate a smooth and planar reference path by formulating an online optimisation problem

that fits the data with open uniform B-splines;
4. send the updated path to the vehicle network;
5. make each vehicle generate an unique path for itself, capturing the pre-defined vehicle formation;
6. repeat the process.

In order to solve Problem 3, a few simplifying assumptions are made:

Assumption 2. The dynamic boundary is located at the ocean’s surface, assumed to be a 2-D plane
at ZU = 0 in the inertial frame of reference {U}.

Assumption 3. The quadrotor has a navigation system that can track the vehicle’s pose with
good accuracy.

Assumption 4. The quadrotor has a limited field of view of the environment, i.e, the camera sensor
might not be able to capture the entire chemical spill boundary, but rather sections of it, according to
Figure 4b.

Assumption 5. The detection of the pixels that encode the boundary in the image frame is a
sub-system that is assumed to be already available, such as the one proposed in [25].

(a) (b)

Figure 4. Dynamic Boundary schematic: (a) Boundary formal definition. (b) Drone’s field of view.

6.1. Planar Point Cloud Generation

The camera model adopted is characterised by: (i) a set of extrinsic parameters, which
model the conversion between coordinates expressed in the world/inertial reference frame
{U} and the camera reference frame {C}; (ii) intrinsic parameters which describe how a
set of points in {C} are represented in the image frame, according to Figure 5.

Figure 5. Camera model and reference frames.

The intrinsic parameters consist of the focal distance fd, the scale factors (sx, sy)
in the X- and Y-axis, respectively, and (cx, cy), which corresponds to the offset of the

230

Sensors 2022, 22, 2178

focal point in the image plane. These parameters can be obtained a priori by resorting
to a camera calibration process, described in detail in [26]. Combining the matrices of
intrinsic parameters K, also known as the full-rank calibration matrix, and the matrix of
external parameters C

U [R|T], and expressing the inertial frame coordinates as homogeneous
coordinates, the transformation between inertial frame and camera plane is described by:

λ

⎡
⎣x

y
1

⎤
⎦ =

⎡
⎣ fdsx 0 cx

0 fdsy cy
0 0 1

⎤
⎦
⎡
⎣1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
K

[C
U R C

UT
01×3 1

]
︸ ︷︷ ︸

C
U [R|T]

⎡
⎢⎢⎣

XU
YU
ZU
1

⎤
⎥⎥⎦, (49)

where x and y denote the coordinates in the image frame and λ is a scale factor. It is impor-
tant to mention that C

U [R|T] results from a series of successive rigid-body transformations
(rotations and translations) given by:

C
U [R|T] = C

B [R|T]BU [R|T], (50)

where B
U [R|T] denotes the conversion of coordinates expressed in the inertial frame {U} to

the quadrotor’s body frame {B}, provided by its navigation system, and C
B [R|T] is a matrix

known a priori, as the camera attached to the vehicle is assumed to be fixed. The intrinsic
and extrinsic parameters can be aggregated in a matrix Ω according to:

Ω = K · C
U [R|T]. (51)

In order to convert a given set of pixels (x, y) that encode the chemical spill boundary
in the image frame to a point cloud expressed in the inertial frame, depth information about
the scene is required. Taking into consideration Assumption 2, all the points in the inertial
frame will lie on the plane described by ZU = 0, which solves the depth requirement.
Moreover, from Assumption 3, it can be concluded that the linear system of Equation (49)
is well defined and can be inverted such that for each pixel representing the boundary of
the chemical spill, XU and YU are extracted from:

1
λ

⎡
⎣XU

YU
1

⎤
⎦ =

⎡
⎣Ω1 Ω2 Ω4

Ω5 Ω6 Ω8
Ω9 Ω10 Ω12

⎤
⎦−1⎡⎣x

y
1

⎤
⎦. (52)

Remark 3. This methodology relies heavily on the assumption that the quadrotor has a good
navigation system, since small estimation errors in the altitude of the vehicle can lead to errors of
several meters in the generated point cloud.

6.2. Pre-Processing the Planar Point Cloud

Before using the 2-D point cloud to generate a path, it is important to pre-process
the information provided in it. Consider, for instance, the example in Figure 6, where the
quadrotor produces a 2-D point cloud, representing the boundary, at an arbitrary time-
step tk. In the point cloud, some points represent the chemical spill boundary in a region
that is close to the vehicle—the region of interest, i.e., where the main cluster of points is
expected to be located (in region B). The separation between regions A and B is defined by
drawing a normal to the path at the point where the re-planning starts (defined formally in
Section 6.3.1). Some points are outliers as a result of either noisy measurements or regions
of the boundary that are not entirely captured by the field of view of the camera. The latter
can be seen as disconnected from the main cluster and should be disregarded in the path
planning process. According to Figure 6, the original path (in purple) obtained at time tk−1
should be re-planned in order to obtain a new one (in red) that better fits the main cluster
of points.

231

Sensors 2022, 22, 2178

Figure 6. Pre-processing the point cloud and re-planning schematic.

Unlike conventional motion planning problems, the main cluster of points does not
have an explicit ordering, yielding a sequence of waypoints that the vehicle should visit
sequentially in time—this information must be inferred. On the other hand, it is possible
to define explicitly where the path re-planning process starts—at a point ps := C(γs)
arbitrarily further ahead of the drone’s position on the current curve C(γ), such that
γdrone ≤ γs. Motivated by this example, and inspired by the work of Liu Y. et al. [27], the
following pre-processing steps are introduced:

• Remove unused points that are behind the point ps, i.e., points in region A;
• Order the remaining set of points and remove outliers in region B.

6.2.1. Removing Unused Points

Consider ps ∈ R2 to be the point at which the path re-planning starts. In order
to remove the points that are in region A, consider that ψs is the tangent angle to the
current path at ps. A coordinate transformation can be applied to the 2-D point cloud
X := {X l}L

l=1 ∈ R2, such that in a new reference frame, points that are behind ps (in region
A) have a negative X-coordinate. This coordinate transformation is given by:

X◦l = R(ψs) · (X l − ps), ∀l = 1, ..., L, (53)

where X◦l = [X◦x
l , X◦y

l]T . Each point X l is discarded if X◦x
l < 0. The points that belong to

set X and are not discarded, and should be saved in a new set X� := {X j}J
j=1 ∈ R2 with

J ≤ L. The pseudo-code is shown in Algorithm 2.

Algorithm 2 Remove points “behind” the re-planning point.

1: Obtain a new 2-D point cloud X := {X l}L
l=1 ∈ R2;

2: Define ps as the desired initial point for the re-planning to start;
3: Define ψs as the tangent angle to the current path at tk at ps;
4: Follow the procedure:
5: procedure REMOVE UNUSED POINTS(X, ps, ψs)
6: for l = 1, ..., L do
7: Compute X◦l according to (53);
8: if X◦x

l < 0 then
9: Discard X l ;

10: return the new set X� := {X j}J
j=1 ∈ R2 with J ≤ L.

6.2.2. Ordering a Set of Points and Removing Outliers

In order to avoid clustering outliers, reduce the point cloud to a curve-like shape,
and extract some implicit ordering from the data, Lee I. [28] proposes an algorithm that
seeks to extract a structure “as simple as possible” from the data, by resorting to an
Euclidean Minimum Spanning Tree (EMST). Consider the unordered set of points X�

obtained previously and a graph G = (V , E), such that V = {X j = (xj, yj)|j = 1, ..., J} and
E = {(X i, X j)|i, j = 1, ..., J, i
= j}. The EMST is a tree that connects all points in G with the
weight of its edges corresponding to the Euclidean distance between each pair of points,

232

Sensors 2022, 22, 2178

that can be computed according to the very popular Kruskal’s algorithm. In order to reduce
the time complexity of this process, a threshold distance NJ can be used to define whether
each pair of points is connected and a KDTree [29] can be used to compute a sparse graph
G where each point has a limited set of neighbours, as shown in Figure 7.

Figure 7. From sparse graph to an ordered list of points (example).

To remove outliers and define a coarse path to follow, Breadth First Search (BFS) can
be applied to the EMST, starting from ps. This removal of outliers from the point cloud
is crucial to avoid smaller clusters of points being considered later in the curve fitting
problem. The resulting ordered list of points that forms the path with the highest number
of points should be saved in a new ordered set X† := {Xk}K

k=1 ∈ R2. The proposed steps
are summarised in Algorithm 3.

Algorithm 3 Order a set of 2-D points.

1: Add the desired initial point for the path ps to X�;
2: Define a threshold distance for the neighbours NJ ;
3: Follow the procedure:
4: procedure ORDER POINTS(X�, NJ)
5: Construct a KDTree from X� and use NJ as a distance threshold;
6: Create a graph G with J vertices and no edges;
7: for X j, j = 1, ..., J do
8: Query the KDTree for the neighbours of X j and their euclidean distances;
9: Add the corresponding edges to the graph G;

10: Compute the MST of the graph G starting from vertex corresponding to ps;
11: Compute the path with the highest number of points, starting at ps using BFS;
12: return the new ordered set of points X† := {Xk}K

k=1 ∈ R2.

6.3. Path Generation—Approximating the Point Cloud with a Parametric Curve

In order to have a suitable representation of a path that the proposed controllers can
follow, it is a requirement to generate a curve that is smooth and at least C2. In order to
fulfil this requirement, the ordered set of points produced previously can be approximated
by non-clamped uniform cubic B-splines, composed of multiple spline segments, where
each segment is paramaterised by γ ∈ [0, 1).

6.3.1. Define the Number of Segments to Use

Consider now the ordered sequence of K points obtained via the application of Algo-
rithms 2 and 3 to the original 2-D point cloud. In order to fit the points with a parametric
curve, we are required to attribute to each point Xk ∈ R2 a corresponding γk in the target
parametric curve. This problem could be formulated as a nonlinear optimisation problem—
which is computationally demanding to solve for real-time applications. A non-optimal,
but more efficient solution, proposed by Liu M. et al. [30] for Simultaneous Localisation
and Mapping (SLAM) applications, is to consider DX to be the total distance between the
points, given by:

DX :=
K

∑
k=2
‖Xk − Xk−1‖, (54)

233

Sensors 2022, 22, 2178

and the corresponding vector of parametric values γ = [γ1, ..., γk]
T to be given by:{

γ1 = 0,

γk = γk−1 +
‖Xk−Xk−1‖

DX
γmax, k = 2, ..., K,

(55)

where γmax is the maximum parameter value of the parametric curve. For cubic B-splines,
this number depends directly on the number of control points NC that the target curve
will have, such that γmax = NC − 3. The number of control points also dictates how many
spline segments are used for the fitting problem. The optimal number of control points can
be obtained by solving yet another nonlinear optimisation problem, but due to the real-time
nature of the problem, this option is disregarded. Given that a uniform cubic B-spline must
have at least four control points to define one segment, and that a low number of sections
can under-fit a long set of points whilst a high number leads to over-fitting issues, this
number should not be a static constant either. A non-optimal yet dynamic way of defining
the number of control points NC is by taking:

NC := max

{⌊
DX
ρ

⌉
, 4

}
, (56)

with (1/ρ) > 0 being a control point’s density (tunning parameter defined a priori). A
smaller ρ leads to a higher NC. Applying this method to the previous example, and
considering NC = 7, γmax = γ11 = 4, the result in Figure 8 is obtained.

Figure 8. Ordered set of points with parametric values associated to them (example).

6.3.2. Fitting the Points with a Uniform Cubic B-Spline

For fitting the ordered set of points X† with a non-clamped uniform cubic B-spline
C(γ, P), an optimisation problem is formulated. Consider the objective function given by:

f (P) :=
K

∑
k=1
‖C(γk, P)− Xk‖2

︸ ︷︷ ︸
goal

+Fr, (57)

with:

Fr = λ
∫ γmax

0

∥∥∥∥∂C(γ, P)

∂γ

∥∥∥∥2

dγ + β
∫ γmax

0

∥∥∥∥∂2C(γ, P)

∂γ2

∥∥∥∥2

dγ︸ ︷︷ ︸
regularisation term

, (58)

where P = [Px
0 , ..., Px

Nc−1, Py
0 , ..., Py

Nc−1]
T ∈ R2Nc is the vector of control points that defines

the target curve. The first term minimises the distance between the target B-spline curve
and the set of points, whilst Fr is a regularisation term and α, γ ≥ 0 are the regularisation
variables. The integral of the L2

2 norm of the first derivative penalises the total length of
the curve, while the integral of the L2

2 norm of the second derivative penalises bends in the
path. This objective function can also be expressed using vector notation, according to:

f (P) = ‖B(γ)P− X‖2︸ ︷︷ ︸
goal

+ λPT R1P + βPT R2P︸ ︷︷ ︸
regularisation term

, (59)

234

Sensors 2022, 22, 2178

where X = [Xx
1 , ..., Xx

K, Xy
1 , ..., Xy

K] denotes the points to fit, and R1, R2 are constant matrices
that can be computed numerically (see Appendix D).

In order to define the new path, it would not suffice to discard the previously planned
curve defined after γs and minimise the objective function with respect to the control points.
To guarantee C2 continuity between the previous path and the newly planned one, linear
equality constraints should be imposed on the values of Cnew(0), Cnew′(0), and Cnew′′(0) of
the new curve. Moreover, it is a requirement to save the old curve up to γs, as it may still
be in use by other vehicles in the network.

Consider the re-planning point ps introduced previously, chosen such that it corre-
sponds to the transition between the spline segment that the virtual target of the drone is
“sitting on”, and the next segment, according to:

ps = Cold(γs) with γs = �γdrone�, (60)

where γdrone corresponds to the quadrotor’s virtual target at time instant tk. With this
choice of γs, it is possible to take advantage of the local support property of B-splines and
simplify the equality constraints of the problem, while at the same time simplifying the
storage of the curves in memory.

Considering that ps is dictated by (60), the old curve segments that are described by
parametric values such as γ ≥ γs should be discarded and replaced by a newer curve.
Since each curve segment is defined by only four control points, discarding those segments
is equivalent to removing control points with indexes i ≥ γs + 3 from the old control points
vector. This operation results in a vector given by:

Pold = [Px
0 , Px

1 , ..., Px
γs , Px

γs+1, Px
γs+2, Py

0 , Py
1 , ..., Py

γs , Py
γs+1, Py

γs+2]
T . (61)

For the particular example in Figure 9, spline 1 (in green) should be discarded given
that γdrone ∈ [0, 1); hence, γs = 1 and spline 0 are kept. To achieve this, all the control
points with indexes i ≥ 1 + 3 should be removed from the control points vector Pold, i.e.,
P4 = (Px

4 , Py
4).

Making use of the local support property once more, it is known that C2 continuity
between two consecutive cubic spline segments is guaranteed, as long as the last three
control points of the first segment coincide with the first three control points of the second
segment. A trivial way of generating a new B-spline with guarantees of C2 continuity in
the transition with the old curve, without explicitly defining equality constraints on the
derivatives of the function, is to solve the following optimisation problem:

Pnew = argmin
Pnew

f (Pnew)

subject to⎡
⎢⎢⎢⎢⎢⎢⎣

Px new
0

Px new
1

Px new
2

Py new
0

Py new
1

Py new
2

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Px
γs

Px
γs+1

Px
γs+2
Py

γs

Py
γs+1

Py
γs+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(62)

where Pnew = [Px new
0 , ..., Px new

NC−1, Py new
0 , ..., Py new

NC−1]
T is a new control points vector.

235

Sensors 2022, 22, 2178

Figure 9. Solving the optimisation problem (example).

To keep track of old and new curves, it is possible to concatenate only the new control
points vector Pnew with the old control points vector Pold, ignoring the first three control
points, i.e., Pnew

0 , Pnew
1 , and Pnew

2 , which are repeated as a result of the equality constraints
imposed by (62). Applying this methodology to the previous example, the final control
points vector is given according to Figure 10.

Figure 10. Final curve with control points concatenated (example).

These series of procedures are summarised in Algorithm 4. For the sake of simplicity,
the separation between the X- and Y-coordinates of the control points was omitted.

Algorithm 4 Fitting the points—growing a uniform cubic B-spline

1: Compute DX , γ and NC according to Equations (54), (55), and (56), respectively;
2: Consider γs = �γtk� and the original control points vector:

P =
[
P0, P1, ..., Pγs , Pγs+1, Pγs+2, Pγs+3, Pγs+4..., Pn

]T ; (63)

3: Remove control points (corresponding to splines to be re-planned) from the original
control points vector, such that:

Pold =
[
P0, P1, ..., Pγs , Pγs+1, Pγs+2

]T ; (64)

4: Solve the optimisation problem in (62) and obtain a new vector with NC control points:

Pnew =
[

Pnew
0 , Pnew

1 , Pnew
2 , ..., Pnew

NC−1

]T
,

with Pnew
0 = Pγs , Pnew

1 = Pγs+1, Pnew
2 = Pγs+2;

(65)

5: Concatenate the new vector with the old vector (ignoring the first three control points,
which are repeated):

P f inal =
[

P0, P1, ..., Pγs , Pγs+1, Pγs+2, Pnew
3 , ..., Pnew

NC−1

]T
. (66)

6.4. From 2-D Path to Vehicle Formation

To generate individual paths for each vehicle to follow, we can consider a reference
path (obtained via the application of the previous algorithms) and offset each point ac-
cording to an expression that captures a desired vehicle formation. Start by considering
a formation vector denominated μi ∈ R3 for each vehicle i, with each distance defined
in the tangential reference frame {T} to the virtual target’s position in the original curve,

236

Sensors 2022, 22, 2178

according to Figure 11. According to Xie et al. [31], it is possible to define a desired path for
each vehicle given by:

pdi(γi) = C(γi) +
U
T R(γi)μi, (67)

where pdi is the desired path for the vehicle i, C(γi) is the planned curve, and U
T R(γi) is a

rotation matrix computed according to:

U
T R(γi) = [r1(γi), r3(γi)× r1(γi), r3(γi)], (68)

with:

r1(γi) =
∂pd/∂γ

‖∂pd/∂γ‖ , with ‖∂pd/∂γ‖
= 0 r3(γi) =
rd − (rd · r1(γi))r1(γi)

‖rd − (rd · r1(γi))r1(γi)‖ , (69)

such that r1 is the tangent to the curve. Moreover, since all vehicles will only be required to
operate in a 2-D plane, a trivial definition for one of the axis of the tangential frame {T} is
rd = [0, 0, 1]T .

Figure 11. Formation vector.

A path might not be not parameterised according to the arc length and, for B-splines
in particular, each spline segment is such that γ ∈ [0, 1]. Therefore, it is commonplace to
define a constant required speed V ≤ Vmax for the vehicle and let the desired speed profile
for the virtual targets be given by:

vL(γ) =
V∥∥p′d(γ)

∥∥ . (70)

7. Implementation Details

To evaluate the performance of the proposed PF and CPF algorithms applied to marine
ASVs, real water trials were conducted at Doca dos Olivais (Lisbon, Portugal) using the
Medusa class of underactuated marine vehicles [14], shown in Figure 12. The vehicles used
in the real trials were equipped with a GPS Astech MB100, a NavQuest600 Micro DVL,
and a Vectornav VN-100T Attitude and Heading Reference System (AHRS). The operating
system used during development was Ubuntu 18.04LTS along with ROS Melodic.

Figure 12. Real Medusa vehicles at Doca dos Olivais, Lisbon (Portugal).

To analyse the performance of the proposed online path planning algorithm, a realistic
simulation environment that closely resembles the Doca dos Olivais site was developed
and incorporated into the Gazebo simulator. Given the main goal of having a fleet of
vehicles encircling a chemical spill, is was necessary to overlay a red stain mesh on top of
the ocean’s surface (Figure 13).

237

Sensors 2022, 22, 2178

Figure 13. Simulated world of Doca dos Olivais with red chemical spill in Gazebo.

For simulating the Medusa ASVs, a CAD model of the vehicles was incorporated into
the simulator (Figure 14a). The virtual vehicle was also equipped with DVL, AHRS, and
GPS sensors provided by the UUVSimulator plugin [16]. To simulate the quadrotor, the Iris
vehicle provided by the PX4 SITL Gazebo plugin [15] was used; see Figure 14b.

(a) (b)

Figure 14. Simulated vehicles in gazebo: (a) Medusa ASV. (b) Iris quadrotor with a fixed camera.

The simulated quadrotor was equipped with a virtual camera mounted 21 mm below
the vehicle’s center of mass and with a pitch angle of −45◦, pointing downwards, and
produced an image with a resolution of 640× 480 px, according to Figure 15a. Its intrinsic
parameters are given by: {

(cx, cy) = (320.5, 240.5)
(fdsx, fdsy) = (381.4, 381.4).

(71)

Given assumption 5, the detection of the boundary region between the spill and
the ocean surface was out of the scope of this work. Therefore, we resorted to OpenCV
library [32] to mask and threshold the red colours in the image feed. After this step, the
Canny edge detection algorithm was applied to the binary image to retrieve the pixels
corresponding to the boundary, according to Figure 15b. To solve the optimisation problem
proposed in Section 6.3.2, we resorted to Scipy’s SQP solver [33].

(a) (b)

Figure 15. Simulated camera feed: (a) Quadrotor’s camera output. (b) Binary image.

238

Sensors 2022, 22, 2178

The entire system architecture is shown in Figure 16. The inner-loop controls adopted
for the quadrotor were the ones already provided by PX4, while for the ASV, we resorted
to PID inner-loop controllers to steer the vehicles.

Vehicle
Network

. . .

ASV n

Quadrotor Attitude
Inner-loops

Desired Path Path
Following

Virtual Target

CPF
Controller

Quadrotor

Vehicle State

Virtual
Target

Thrust

Desired
Attitude

Coordination
Speed

ASVInner-loopsDesired Path Path
Following

CPF
Controller

ASV 1

Vehicle
StateVirtual Target

Virtual
Target

Force
and

Torque

Coordination
Speed

Camera to 2-D Point Cloud RGB image feedOnline Path Planner

Figure 16. Planning and control architecture.

8. Experimental and Simulation Results

In this section, we present some real experimental results regarding the PF and CPF
controllers applied to two Medusa ASV vehicles. In addition, realistic 3-D simulation results
are also presented for the case study where two Medusa vehicles were required to perform
a CPF mission on a pre-defined path with a quadrotor, in a leader–follower formation.
Finally, a third case study is presented, where a simulated quadrotor had to detect the
boundary of a chemical spill, and plan, in real-time, a path for both itself and a Medusa
ASV to follow cooperatively. The control gains adopted are available in Appendix E.

8.1. Cpf with ETC between 2 Medusa Vehicles (Real)

For the real trial, performed at Doca dos Olivais (Lisbon, Portugal), two Medusa
vehicles were required to perform a lawn-mowing mission cooperatively at the surface of
the water, according to Figure 17. The black vehicle (Medusa 1) was required to follow the
leader (Medusa 2) according to the formation vector μ = [−5,−5, 0]T . Both vehicles were
required to follow the path at V = 0.5m/s and communications were bi-directional.

Figure 17. Real CPF mission with 2 Medusa vehicles.

239

Sensors 2022, 22, 2178

According to the results in Figure 18a, the along-track error of Medusa 1 increases
quickly as the virtual target tries not only to minimise the distance to the vehicle but also
its distance to its neighbour’s (Medusa 2) virtual target. As the vehicles start to move, this
error starts to decrease, and according to Figure 18b, after approximately 50 s, the vehicles
align themselves according to the desired formation, approach the desired speed profile
and, as a consequence, the rate of information exchange decreases. This decrease in the
rate of communication is due to the bank of estimators for the virtual targets running in
each vehicle being able to better predict the evolution of the virtual targets.

0 50 100 150 200 250 300 350
Time [s]

0

0.5

1

1.5

2

V
irt

ua
l T

ar
ge

t

Medusa 1
Medusa 2

0 20 40 60 80 100
Time [s]

0

0.2

0.4

0.6

0.8

C
om

m
. T

rig
ge

r

Medusa 1
Medusa 2

(a) (b)

Figure 18. CPF with 2 real Medusa vehicles: (a) X–Y view. (b) Communication metrics.

8.2. Cpf with ETC between a Quadrotor and Medusa Vehicles (Simulation)

For this case study, a CPF mission was performed such that a simulated quadrotor
and two Medusa vehicles were required to perform a lawn-mowing mission, according to
Figure 19a. In this experiment, the aircraft was required to fly at a fixed altitude of 30 m;
the formation vector for Medusa 1 was given by μ1 = [−5, 5, 0]Tm, and for Medusa 2, by
μ2 = [−5,−5, 0]Tm, leading to a triangular formation with 2 ASVs side by side, behind
the quadrotor. In this experiment, there was bi-directional communication between the
pairs of vehicles: (quadrotor, Medusa 1) and (quadrotor, Medusa 2). From the results in
Figure 19b, it is observable that the vehicles converge to their desired formation at around
25 s. After this period of time, the position error converges to a neighbourhood of zero and
the virtual target speeds converge to their desired value. As a consequence, the number of
communication events between the vehicles drops as the bank of observers in each vehicle
can more accurately track the state of the virtual target of their peers.

0 5 10 15 20 25 30 35 40
Time [s]

0

10

20

30

40

P
os

iti
on

 e
rr

or
 [m

]

Medusa 1 cross track error
Medusa 1 along track error
Medusa 2 cross track error
Medusa 2 along track error
Quadrotor error norm

0 5 10 15 20 25 30 35 40 45 50
Time [s]

0

0.1

0.2

0.3

V
irt

ua
l T

ar
ge

t

Medusa 1
Quadrotor
Medusa 2

0 10 20 30 40 50 60 70 80 90 100
Time [s]

0

0.5

1

C
om

m
. T

rig
ge

r

Medusa 1
Quadrotor
Medusa 2

(a) (b)

Figure 19. CPF with simulated Iris and Medusa vehicles: (a) X–Y view. (b). Performance metrics.

240

Sensors 2022, 22, 2178

8.3. Boundary Encircling with a Quadrotor and a Medusa Vehicle (Simulation)

For the last simulated experiment, the quadrotor was required to start the same lawn-
mowing that was adopted for the mission with one Medusa ASV. As soon as a chemical
spill boundary was detected in the drone’s image stream, the quadrotor was required to
start the path planning algorithm at a rate of 1 Hz and send the most up-to-date path to
the ASV, according to Figure 20. The drone was required to follow the path at 30 m of
altitude with a desired constant speed of 0.5 m/s. Since the quadrotor was equipped with
a fixed-mounted camera, it was also required to align its yaw angle with the tangent to the
path in order not to lose sight of the boundary being followed.

Figure 20. 3-D view of simulated boundary encircling mission with Iris and Medusa vehicles.

In order to guarantee that the path further ahead could be generated for the ASV to
follow, it was desirable for the marine vehicle to follow the the quadrotor from behind, i.e.,
with a formation vector μ = [−5, 5, 0]Tm. In Figure 21a, a top-down view of the executed
mission is shown. In Figure 21b, plots of the PF errors are provided along with the norm of
the horizontal distance of each vehicle to the real boundary being followed. It is observable
that the tracking error only increased in zones where the chemical spill had a crease. This is
justified by the fact that the Medusa vehicle, when performing tight turns, was not able
to cope with its virtual target speed and slowed down, leading to sudden spikes in the
along-track error. These tracking errors were instantly compensated by the adaptive virtual
target dynamics, which attempted to minimise the distance between itself and the vehicle.
It is also observable that the norm of the distance between the marine vehicle and the
chemical spill is much lower than its aerial counterpart, with the Medusa always following
the boundary from its outskirts, due to the formation vector adopted.

(a) (b)

Figure 21. Boundary encircling with simulated Iris and Medusa vehicles: (a) X–Y view. (b) Perfor-
mance metrics.

From Figure 21b, it is also evident that the horizontal distance between the real
drone’s position and the boundary is bounded by 6m. This result is to be expected, as the

241

Sensors 2022, 22, 2178

altitude estimates are mainly provided by the simulated GPS system and small errors in
the estimated attitude, especially yaw angle, will lead to errors of several meters in the
generated 2-D point cloud. Due to the type of application at hand, and given that it is
typical to have errors of several meters in underwater scenarios, these errors are considered
within an acceptable range. In addition, the small oscillations in the boundary distance plot
result from the simulated chemical spill boundary mesh being a composition of discrete
lines which are picked up by the drone’s camera.

In Figure 22, a plot of the point cloud generated by the algorithm is shown at two
different time instants (in green), as well as the corresponding planned B-spline paths (in
blue). Note that in Figure 22a, some of the green dots further away from the vehicle were
discarded by the planning algorithm, as they were too far away from the main cluster
of points.

(a) (b)

Figure 22. Path generation (a) Time = 235 s. (b) Time = 558 s.

9. Conclusions and Future Work

This paper addressed the problem of encircling an environmental boundary caused by
a chemical spill using a team of robots composed of an aerial quadrotor and Medusa marine
vehicles. The path following problem was introduced, and a non-linear control law derived
for the ASV, exploiting the technique described in P. Aguiar and F. Vanni [10–12]. Inspired
by this control law, a new one was derived for a quadrotor following the same methodology,
with some key differences due to the nature of the aircraft. For the section that followed,
the CPF problem was formulated and a proposal to solve the problem was presented, such
that the synchronisation controller was distributed and the same for all vehicles (aerial and
marine) using event-triggered communications based on previous work by N. Hung and F.
Rego [13]. In addition, a new real-time path planning algorithm was developed that made
use of the camera sensor onboard of the quadrotor to have a local view of the boundary and
generate a point cloud expressed in the inertial frame. This data was then used to solve an
optimisation problem which generates a B-spline-based path that grows dynamically as the
drone moves along the boundary and acquires more data. The path is then shared with all
ASV vehicles in the network in real time. The proposed algorithms were implemented in
ROS, and a 3-D virtual scenario was generated, allowing for a mixture of real and simulated
results. Future work includes making the height at which the quadrotor operates dynamic
and introducing curvature limits as inequality constraints to the path planning problem, as
well as obstacle avoidance before carrying out integrated experiments with real vehicles.

242

Sensors 2022, 22, 2178

Author Contributions: The individual contributions of the authors are as follows: Conceptualisation,
software, formal analysis, investigation, writing, review, and editing by M.J.; Conceptualisation,
validation, review, editing, project administration, and funding acquisition by A.P. and R.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the H2020-INFRAIA-2017-1-two-stage EUMarineRobots-
Marine Robotics Research Infrastructure Network (Grant agreement ID: 731103), the H2020-FETPROACT-
2020-2 RAMONES-Radioactivity Monitoring in Ocean Ecosystems (Grant agreement ID: 101017808),
H2020-MSCA-RISE-2018 ECOBOTICS.SEA-Bio-inspired Technologies for a Sustainable Marine Ecosys-
tem (Grant agreement ID: 824043).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The path planning library that implements the algorithms proposed in
Section 6 is available at https://github.com/MarceloJacinto/BSplineFit (accessed on 8 March 2022).

Acknowledgments: The authors of this work would like to express a deep gratitude to Nguyen Hung,
Francisco Rego, João Quintas, and João Cruz for all the support provided during the preparation of
the results presented in this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Preposition 1

Proof. Consider the candidate Lyapunov Function given by:

V1(ep) =
1
2
(ep − δ)T(ep − δ). (A1)

Taking the first time derivative of (A1) and replacing in (17) and (14) leads to:

V̇1(ep) = (ep − δ)T
(
−S(r)(ep − δ) + Δu +

[
0
v

]

+vc − B
U R(ψ)

∂pd(γ)

∂γ

(
eγ + vd(γ, t)

))
.

(A2)

Taking into account the properties of the skew-symmetric matrix S:

(ep − δ)TS(r)(ep − δ) = 0. (A3)

Replacing (20) and (21) in V̇1 yields:

V̇1(ep) = (ep − δ)T
(

Δ(ũ + ud) +

[
0
v

]
+ ṽc + v̂c − B

U R(ψ)
∂pd(γ)

∂γ

(
eγ + vd(γ, t)

))

= −(ep − δ)TKpσ(ep − δ)− (ep − δ)T B
U R(ψ)

∂pd(γ)

∂γ
eγ + Δũ + ṽc.

(A4)

By taking a backstepping approach, consider a second candidate Lyapunov function:

V2(ep, eγ) = V1(ep) +
1
2

e2
γ. (A5)

243

Sensors 2022, 22, 2178

Taking the first derivative and replacing in the control law (22) for the virtual target,
we obtain:

V̇2(ep, eγ) =V̇1(ep) + eγ(γ̈− v̇d(γ, t))

=− (ep − δ)TKpσ(ep − δ)− kγe2
γ + Δũ + ṽc

≤− (1− θ)(ep − δ)TKpσ(ep − δ)− θ(ep − δ)TKpσ(ep − δ)

− kγ|eγ|2 +
∥∥ep − δ

∥∥‖Δũ + ṽc‖,

(A6)

where 0 < θ < 1. The term:

− θ(ep − δ)TKpσ(ep − δ) +
∥∥ep − δ

∥∥‖Δũ + ṽc‖
= −θ(ep − δ)TKp

ep − δ∥∥ep − δ
∥∥σ(

∥∥ep − δ
∥∥) + ∥∥ep − δ

∥∥‖Δũ + ṽc‖,
(A7)

will be ≤ 0 if:
θλmin(Kp)σ(

∥∥ep − δ
∥∥) ≥ ‖Δũ + ṽc‖, (A8)

which, in turn, implies that:

∥∥ep − δ
∥∥ ≥ σ−1

(
1

θλmin(Kp)
‖Δũ + ṽc‖

)
, (A9)

and:
V̇2 ≤ −(1− θ)(ep − δ)TKpσ(ep − δ)− kγ|eγ|2, (A10)

as the right side of inequality (A9) can be made arbitrarily small through the choice of the
gain matrix Kp. It follows directly from H. Khalil ([34], Theorem 4.19) that the controlled
system is ISS.

Appendix B. Proof of Preposition 2

Proof. Consider the candidate Lyapunov function given by:

V1(ep) :=
1
2

eT
p ep. (A11)

Taking the first derivative of (A11) and replacing in (24)–(26), yields:

V̇1(ep) = −eT
p K1ep + eT

p

(
z− ∂pd

∂γ
eγ

)
. (A12)

With a view to applying backstepping techniques, consider:

V2(ep, ev) := V1(ep) +
1
2

zTz. (A13)

Replacing (26), (27), and (29) in V̇2 yields:

V̇2 =− eT
p K1ep + eT

p z− eT
p

∂pd
∂γ

eγ

+ zT
(

u + d− h(γ)(eγ + vd(γ, t))− ∂pd
∂γ

v̇coord(t) + K1ev − K1
∂pd
∂γ

eγ

)
.

(A14)

By replacing (35)–(37) in the Lyapunov time derivative, it follows that:

V̇2 = −eT
p K1ep − zTK2z− eT

p
∂pd
∂γ

eγ − zT
(

h(γ) + K1
∂pd
∂γ

)
eγ + zT(ũ + d̃). (A15)

244

Sensors 2022, 22, 2178

Consider a third candidate Lyapunov, obtained by backstepping, defined as:

V3 := V2 +
1
2

e2
γ. (A16)

Taking its derivative, with respect to time, and replacing in (38), we obtain:

V̇3 = −eT
p K1ep − zTK2z− kγe2

γ + zT(ũ + d̃). (A17)

Consider one last backstepping that involves the construction of:

V4 = V3 +
1
2

d̃TK−1
d d̃. (A18)

Taking its time derivative, and taking into consideration (33):

V̇4 = −eT
p K1ep − zTK2z− kγe2

γ + d̃T(z− Proj(z, d̂))︸ ︷︷ ︸
≤0

+zTũ

≤ −W(ep, ev, eγ) + zTũ.

(A19)

Assuming that the quadrotor is equipped with a generic inner loop that is capable
of keeping the tracking error ũ small and bounded, the right side of inequality (A19)
can be made small enough such that the controlled system is stable. A more in-depth
stability analysis can be conducted for the inner–outer loop control system, but this will be
dependent directly on the type of inner loop adopted. This results from the fact that the
desired accelerations ud must be decoupled in a set of desired thrusts and attitudes for the
quadrotor to track.

In order to simplify the designed control law ud, consider the final algebraic manipulation:

u!d = −d̂ + h(γ)vd(γ, t) +
∂pd
∂γ

v̇coord(t)− K1ev − ep − K2z

= −d̂ + h(γ)vd(γ, t) +
∂pd
∂γ

v̇coord(t)− ev (K1 + K2)︸ ︷︷ ︸
Kv

−ep (I + K1K2)︸ ︷︷ ︸
Kp

.
(A20)

Appendix C. Proof of Preposition 3

Proof. Consider that:
vL(γ) = vL1 + ṽL, (A21)

where ṽL is a bounded and arbitrarily small term that accounts for a transient period in
which the vehicles are on different sections of the path, with slightly different desired
speed profiles. Replacing (39), the speed correction term proposed in (46), and (A21) in
(42) yields:

ε̇ = L(vL(γ)− kε(ε +Aγ̃))

= vL���
0

L1 + LṽL − kεL(ε +Aγ̃)

= −kεL(ε + d) with d =
ṽL

kε
+Aγ̃,

(A22)

where d is a disturbance that results from combining the terms dependent on ṽL and γ̃.
Consider the Laplacian matrix L, expressed in canonical Jordan form as:

L = VΛV−1, (A23)

245

Sensors 2022, 22, 2178

and the change of variables:
ε̄ = V−1ε. (A24)

Applying (A24) to (A22) yields:

˙̄ε = −kεΛ(ε̄ + d̄), with d̄ = V−1d. (A25)

It is possible to decompose the above equality according to the notation:[
˙̄ε1

˙̄ε2

]
=

[
0

−kεΛ2(ε̄2 + d̄2)

]
, (A26)

where the first half of the vector denotes the term that depends on the null eigenvalue of the
Laplacian, while the second term is a vector that depends only on the positive eigenvalues
of the Laplacian. Consider now the candidate Lyapunov function:

Vε̄2 =
1
2

ε̄T
2 ε̄2, (A27)

and its time derivative, given by:

V̇ε̄2 = −kε ε̄
T
2 Λ2(ε̄2 + d̄2)

= −(1− θ)kε ε̄
T
2 Λ2ε̄2 − θkε ε̄

T
2 Λ2ε̄2 − kε ε̄

T
2 Λ2d̄2,

(A28)

where 0 < θ < 1. The term:

− θkε ε̄
T
2 Λ2ε̄2 − kε ε̄

T
2 Λ2d̄2, (A29)

will be ≤ 0 if:

‖ε̄2‖ ≥ 1
θ

∥∥d̄2

∥∥, (A30)

and, therefore:
V̇ε̄2 ≤ −(1− θ)kε ε̄

T
2 Λ2ε̄2. (A31)

The term ‖γ̃‖ can be made arbitrarily small by controlling the gains that dictate the
broadcasting scheme. Moreover, the term ṽL can be dominated by a proper choice kε.
Hence, ‖d‖ can be made arbitrarily small and, thus,

∥∥d̄2
∥∥ can be as well. It follows directly

from H. Khalil ([34], Theorem 4.19) that the controlled system is ISS with respect to the
error vector ε and the inputs γ̃ and ṽL.

Appendix D. Computing the Regularisation Term Using Vectorial Notation

Consider the simplest unclamped uniform cubic B-spline with only one segment, such
that γ ∈ [0, 1] and is described by (6). Then, its first derivative C′(γ) is given by:

∂Cx/y

∂γ
(γ) =

[
γ2 γ 1 0

]︸ ︷︷ ︸
T(γ)

1
6

⎡
⎢⎢⎣

3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
M︸ ︷︷ ︸

B′(γ)

⎡
⎢⎢⎢⎢⎣

Px/y
0

Px/y
1

Px/y
2

Px/y
3

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
P

. (A32)

246

Sensors 2022, 22, 2178

Therefore, the term
∫

γ ‖C′(γ)‖2dγ is computed according to:

∫
γ

∥∥C′(γ)
∥∥2dγ =

∫
γ
(B′(γ)P)T(B′(γ)P)dγ

=
∫ 1

0
PT B′(γ)T B′(γ)Pdγ

= PT MT

[∫ 1

0
T(γ)TT(γ)dγ

]
MP.

(A33)

Further, note that:

T(γ)TT(γ) =

⎡
⎢⎢⎣

γ4 γ3 γ2 0
γ3 γ2 γ 0
γ2 γ 1 0
0 0 0 0

⎤
⎥⎥⎦ (A34)

and, as a consequence:

∫ 1

0
T(γ)TT(γ)dγ = Q =

⎡
⎢⎢⎣

1/5 1/4 1/3 0
1/4 1/3 1/2 0
1/3 1/2 1 0

0 0 0 0.

⎤
⎥⎥⎦ (A35)

Hence, for the simplest case of a single B-spline segment, it is known that:∫
γ

∥∥C′(γ)
∥∥2dγ = PT MTQM︸ ︷︷ ︸

R1

P. (A36)

The easiest way to extend this technique to a B-spline with n segments is to consider the
modified vector T(γ) = [(γ− i)2, (γ− i), 1, 0]T , where i = �γ�, according to the notation
introduced in Section 2.3. Then, since (γ− i) ∈ [0, 1], one can compute individually, for
each segment, intermediate matrices Ri

1, according to (A36). Due to the locality property of
B-splines, it is possible to “stack” these intermediate matrices to form the final matrix R1.
An analogous rationale can be applied to compute R2.

Appendix E. Controller Gains Adopted

The controller gains used to obtain the results in Section 8 are presented in Table A1.

Table A1. Controller and path planning gains.

Currents Observer (ASV) Projection Operator (Quadrotor)

k1 2.0 Kd diag(0.5, 0.5, 0.2)

k2 0.2 ς and β 10.0

Path Following (ASV) Path Following (Quadrotor)

Kp diag(0.5, 0.5) Kp diag(5.5, 5.5, 5.5)

δ −1.0 Kd diag(4.5, 4.5, 4.0)

kγ 0.5 kγ 0.5

Cooperative Path Following Path Planning

kε 1.0 NJ 0.6m

c 0.001 1/ρ 4.0

b 5.0 λ 0.05

α 1.0 β 0.01

247

Sensors 2022, 22, 2178

References

1. Casbeer, D.W.; Kingston, D.B.; Beard, R.W.; McLain, T.W. Cooperative forest fire surveillance using a team of small unmanned air
vehicles. Int. J. Syst. Sci. 2006, 37, 351–360. [CrossRef]

2. Fahad, M.; Saul, N.; Guo, Y.; Bingham, B. Robotic simulation of dynamic plume tracking by Unmanned Surface Vessels. In
Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015;
pp. 2654–2659. [CrossRef]

3. Pettersson, L.; Pozdnyakov, D. Monitoring of Harmful Algal Blooms, 1st ed.; Springer Science & Business Media: Berlin, Germany,
2013; p. 309. [CrossRef]

4. Sukhinov, A.; Chistyakov, A.; Nikitina, A.; Semenyakina, A.; Korovin, I.; Schaefer, G. Modelling of oil spill spread. In Proceedings
of the 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 13–14 May 2016;
pp. 1134–1139. [CrossRef]

5. Li, S.; Guo, Y.; Bingham, B. Multi-robot cooperative control for monitoring and tracking dynamic plumes. In Proceedings of the
2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 67–73.
[CrossRef]

6. Clark, J.; Fierro, R. Cooperative hybrid control of robotic sensors for perimeter detection and tracking. In Proceedings of the 2005,
American Control Conference, Portland, OR, USA, 8–10 June 2005; Volume 5, pp. 3500–3505. [CrossRef]

7. Saldaña, D.; Assunção, R.; Hsieh, M.A.; Campos, M.F.M.; Kumar, V. Cooperative prediction of time-varying boundaries with
a team of robots. In Proceedings of the 2017 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), Los
Angeles, CA, USA, 4–5 December 2017; pp. 9–16. [CrossRef]

8. Piegl, L.; Tiller, W. The Nurbs Book, 1 ed.; Springer Science & Business Media: Berlin, Germany, 1995; p. 646. [CrossRef]
9. International Petroleum Industry Environmental Conservation Association (IPIECA). Dispersants and Their Role in Oil Spill

Response. Volume 5. Available online: https://www.amn.pt/DCPM/Documents/DispersantsII.pdf (accessed on 8 March 2022).
10. Aguiar, A.P.; Hespanha, J.P. Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles with Parametric

Modeling Uncertainty. IEEE Trans. Autom. Control. 2007, 52, 1362–1379. [CrossRef]
11. Vanni, F.; Aguiar, A.P.; Pascoal, A.M. Cooperative path-following of underactuated autonomous marine vehicles with logic-based

communication. In Proceedings of the 2nd IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles,
Killaloe, Ireland, 8–10 April 2008; Volume 41, pp. 107–112. [CrossRef]

12. Aguiar, A.P.; Ghabcheloo, R.; Pascoal, A.M.; Silvestre, C. Coordinated Path-Following Control of Multiple Autonomous
Underwater Vehicles. In Proceedings of the Seventeenth International Offshore and Polar Engineering Conference, Lisbon,
Portugal, 1–6 July 2007; ISOPE-I-07-006.

13. Hung, N.T.; Rego, F.C.; Pascoal, A.M. Event-Triggered Communications for the Synchronization of Nonlinear Multi Agent
Systems on Weight-Balanced Digraphs. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28
June 2019; pp. 2713–2718. [CrossRef]

14. Abreu, P.; Botelho, J.; Góis, P.; Pascoal, A.; Ribeiro, J.; Ribeiro, M.; Rufino, M.; Sebastião, L.; Silva, H. The MEDUSA class of
autonomous marine vehicles and their role in EU projects. In Proceedings of the OCEANS Shanghai, Shanghai, China, 10–13
April 2016; pp. 1–10. [CrossRef]

15. Furrer, F.; Burri, M.; Achtelik, M.; Siegwart, R. Robot Operating System (ROS): The Complete Reference (Volume 1); Springer
International Publishing: Cham, Switzerland, 2016; pp. 595–625; chapter RotorS—A Modular Gazebo MAV Simulator Framework.
[CrossRef]

16. Manhães, M.; Scherer, S.A.; Voss, M.; Douat, L.R.; Rauschenbach, T. UUV Simulator: A Gazebo-based package for underwater
intervention and multi-robot simulation. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23
September 2016; pp. 1–8. [CrossRef]

17. Dey, T.K. Course 784 Notes—The Ohio State University—Lecture 7: Matrix Form for B-Spline Curves. Available online:
https://web.cse.ohio-state.edu/~dey.8/course/784/note7.pdf (accessed on 16 January 2022).

18. Pascoal, A.; Kaminer, I.; Oliveira, P. Navigation system design using time-varying complementary filters. IEEE Trans. Aerosp.
Electron. Syst. 2000, 36, 1099–1114. [CrossRef]

19. Sanches, G. Sensor-Based Formation Control of Autonomous Marine Robots. Master’s Thesis, Instituto Superior Técnico, Lisbon,
Portugal, 2015.

20. Xie, W.; Cabecinhas, D.; Cunha, R.; Silvestre, C. Robust Motion Control of an Underactuated Hovercraft. IEEE Trans. Control.
Syst. Technol. 2019, 27, 2195–2208. [CrossRef]

21. Cabecinhas, D.; Cunha, R.; Silvestre, C. A nonlinear quadrotor trajectory tracking controller with disturbance rejection. Control.
Eng. Pract. 2014, 26, 1–10. [CrossRef]

22. Cai, Z.; de Queiroz, M.; Dawson, D. A sufficiently smooth projection operator. IEEE Trans. Autom. Control. 2006, 51, 135–139.
[CrossRef]

23. Aguiar, A.P.; Pascoal, A.M. Coordinated path-following control for nonlinear systems with logic-based communication. In Pro-
ceedings of the 2007 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007; pp. 1473–1479.
[CrossRef]

24. Hung, N.T.; Pascoal, A.M. Consensus/synchronisation of networked nonlinear multiple agent systems with event-triggered
communications. Int. J. Control. 2020, 1–10. [CrossRef]

248

Sensors 2022, 22, 2178

25. Odonkor, P.; Ball, Z.; Chowdhury, S. Distributed operation of collaborating unmanned aerial vehicles for time-sensitive oil spill
mapping. Swarm Evol. Comput. 2019, 46, 52–68. [CrossRef]

26. Szeliski, R. Computer Vision: Algorithms and Applications; Springer Science & Business Media: Berlin, Germany, 2011; Volume 5.
[CrossRef]

27. Liu, Y.; Yang, H.; Wang, W. Reconstructing B-spline Curves from Point Clouds—A Tangential Flow Approach Using Least
Squares Minimization. In Proceedings of the International Conference on Shape Modeling and Applications 2005 (SMI’ 05),
Cambridge, MA, USA, 13–17 June 2005; pp. 4–12. [CrossRef]

28. Lee, I.K. Curve reconstruction from unorganized points. Comput. Aided Geom. Des. 2000, 17, 161–177. [CrossRef]
29. Bentley, J.L. Multidimensional Binary Search Trees Used for Associative Searching. Commun. ACM 1975, 18, 509–517. [CrossRef]
30. Liu, M.; Huang, S.; Dissanayake, G.; Kodagoda, S. Towards a consistent SLAM algorithm using B-Splines to represent

environments. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan,
18–22 October 2010; pp. 2065–2070. [CrossRef]

31. Xie, W.; Cabecinhas, D.; Cunha, R.; Silvestre, C. Cooperative Path Following Control of Multiple Quadcopters with Unknown
External Disturbances. IEEE Trans. Syst. Man Cybern. Syst. 2020, 52, 667–679. [CrossRef]

32. Bradski, G. The OpenCV library. Dr. Dobb’s J. Softw. Tools 2000, 120, 122–125.
33. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;

Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
[PubMed]

34. Khalil, H. Nonlinear Systems, 3rd ed.; Always Learning; Pearson Education Limited: New York, NY, USA, 2013.

249

Citation: Delbene, A.; Baglietto, M.;

Simetti, E. Visual Servoed

Autonomous Landing of an UAV on

a Catamaran in a Marine

Environment. Sensors 2022, 22, 3544.

https://doi.org/10.3390/s22093544

Academic Editors: Reza Ghabcheloo

and Antonio M. Pascoal

Received: 31 March 2022

Accepted: 4 May 2022

Published: 6 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Visual Servoed Autonomous Landing of an UAV on a
Catamaran in a Marine Environment

Andrea Delbene 1,*, Marco Baglietto 1,2 and Enrico Simetti 1,2

1 Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), Università degli
Studi di Genova, Via all’Opera Pia 13, 16145 Genoa, Italy; marco.baglietto@unige.it (M.B.);
enrico.simetti@unige.it (E.S.)

2 Interuniversity Research Center on Integrated Systems for the Marine Environment, Via all’Opera Pia 13,
16145 Genoa, Italy

* Correspondence: andrea.delbene@edu.unige.it

Abstract: This paper introduces a procedure for autonomous landing of a quadrotor on an unmanned
surface vehicle in a marine environment. The relative pose and velocity of the vehicle with respect
to the quadrotor are estimated using a combination of data coming from a vision system, which
recognizes a set of AprilTags located on the vehicle itself, and an ultrasonic sensor, to achieve further
robustness during the final landing phase. The considered software and hardware architecture is
provided, and the details about the landing procedure are presented. Software-in-the-loop tests
were performed as a validation step for the proposed algorithms; to recreate realistic conditions,
the movements of the landing platform have been replicated from data of a test in a real marine
environment. In order to provide further proof of the reliability of the vision system, a video sequence
from a manual landing of a quadrotor on the surface vehicle in a real marine environment has been
processed, and the results are presented.

Keywords: UAV; ASV; splashproof quadrotor; vision system; state machine; autonomous landing;
marine robotics; aerial robotics

1. Introduction

During the last years, unmanned aerial vehicles (UAVs) have been used in a wide vari-
ety of applications, such as in agriculture [1], civil protection [2], infrastructure, inspection
and maintenance [3], and light shows [4]. Their uses are not limited to the Earth’s surface,
but extend to space environments as well, where they could be used for ad hoc missions [5].
When considering applications in a marine environment, different types of robots can
be involved. Generally, a set of underwater and surface vehicles allow the execution of
complex tasks, such as monitoring wide areas or cooperative collaboration for a mutual
goal. For instance, in [6], an autonomous robotic team composed of underwater and surface
vehicles was considered for geotechnical survey purposes. By considering aerial agents
also, a wider variety of missions can be designed, such as the protection and security of
marine areas, or humanitarian search and rescue activities [7]. The landing of aerial agents
requires ad hoc procedures [8], and when working in complex conditions, this is often
performed by a human operator. In fact, in marine applications, the sea conditions could
alter the pose of the landing target, and could determine the success or the failure of the
landing procedure itself. Therefore, in fully autonomous missions, the landing maneuvers
of an aerial agent must be robust to difficulties and reliable.

On the basis of the previous works [9,10], we aimed to provide an efficient, reliable, and
modular solution to autonomously land a quadrotor on a catamaran in a marine environment.

1.1. Related Work

Performing an autonomous landing procedure on a platform is a complex task that
requires several steps to be achieved. In outdoor scenarios, global navigation satellite

Sensors 2022, 22, 3544. https://doi.org/10.3390/s22093544 https://www.mdpi.com/journal/sensors251

Sensors 2022, 22, 3544

system (GNSS) receivers usually provide the positions of the quadrotor and the catamaran.
Still, the data coming from GNSS are not sufficient to perform an autonomous landing,
due to their inaccuracy. Even if properly filtered [11], the accuracy and precision are not
enough for such complex and precise maneuvers. Additionally, the catamaran is subjected
to unpredictable oscillatory dynamics caused by sea behavior and weather conditions to
which the quadrotor must be able to react. For these reasons, alternative approaches have
to be taken into consideration. For instance, a video system would allow increasing the
reliability and the performance of the landing procedure. The GNSS data are used by
the quadrotor to move close to the position of the catamaran, and from there, a vision
system gives the quadrotor the relative pose of the platform on the catamaran. Computer
vision algorithms are extremely useful to close the loop when the landing platform is
in an uncertain position or it is moving [12], since they allow directly estimating the
horizontal and vertical tracking errors with respect to the target point, instead of providing
its coordinates in an absolute frame. An interesting and efficient solution was proposed
in [13], where an extended Kalman filter was developed to combine data coming from
different sensors (inertial navigation, GNSS receiver, and visual sensor) to build a navigation
system and perform a landing procedure. In [14], a solution composed of several LEDs and
an “H” sign placed on the landing platform was proposed: the LEDs give the possibility
to the unmanned aerial vehicle (UAV) of recognizing the platform from high altitudes
by using an infrared camera, and the “H” sign helps the estimation of the center of the
platform itself when the quadrotor is closer. Instead, in [15], helipads composed of different
geometric shapes (a cross, a circle, and a square) were proposed, to test the designed vision-
based autonomous landing algorithm. Experimental results have been achieved outside of
the marine environment, with a mobile robot carrying a landing platform moving on the
ground. Another solution for the estimation of the relative pose between the quadrotor
and the landing platform is the one proposed in [16], where a specific marker composed of
a series of concentric circles would allow the detection of the platform from close by.

A similar methodology is the one presented in [17], where a landing platform com-
posed of several AprilTags [18,19] with different dimensions is introduced: the larger tags
permit the detection from higher altitudes, and the smaller ones from lower altitudes. This
allows the quadrotor to constantly track the landing platform while decreasing its altitude
during the landing procedure. The choice of using AprilTags is mainly related to their
versatility and robustness [20].

1.2. Contributions

The innovation of this paper with respect to the state of art is mainly the develop-
ment of a set of software packages able to perform an autonomous landing procedure
in a sea environment, where the catamaran is subject to wave-induced oscillations. The
landing procedure is tackled by implementing a set of strategies, such as a preliminary
positioning of the drone, platform searching, horizontal tracking to keep it aligned, and
vertical compensation with respect to the landing platform. The behavior of the quadrotor
during the whole landing procedure is handled by a finite state machine: a set of states
and conditions that describe the actions the quadrotor has to perform, depending on the
data coming from different sensors. An improved landing platform composed of more tags
with respect to the past solution [9] has been designed. Simulations of autonomous land-
ing have been performed in an environment composed by several tools, such as Gazebo
(more info at: http://gazebosim.org/ last access: 30 March 2022), ROS2 (more info at:
https://docs.ros.org/en/foxy/index.html, last access: 30 March 2022), and PX4 (more
info at: https://px4.io/, last access: 30 March 2022), where the pose of the catamaran was
replicated from data coming from sea tests involving only the catamaran itself so that the
motion of the landing platform was realistic.

The proposed software architecture allows both the validation of the considered
methodology via software-in-the-loop simulations and the integration of most of those
components in the real hardware, as a preparation for tests in a real environment. To

252

Sensors 2022, 22, 3544

further validate the reliability and robustness of the onboard vision system, an onboard
video captured from a manual flight landing of the quadrotor on the catamaran has been
processed offline using the adopted vision system.

Therefore, with respect to the previous works [9,10], the contributions of the present
manuscript are:

1. A new software architecture powered by the ROS2 middleware and designed specifically
to be modular for both simulation tests and outdoor tests in a real marine environment;

2. Design and implementation of an improved landing state machine, with the addition
of a new state and the introduction of a new procedure to synchronize the position of
the quadrotor with the catamaran before the landing approach;

3. Simulations in a software-in-the-loop environment of a safe landing on a landing
platform, whose movements were replicated from the telemetry of the catamaran
recorded during outdoor tests in a marine environment;

4. Realization and integration on the catamaran of a new landing platform, with more
tags to gain better robustness during the landing procedure;

5. Validation of the vision system using the recordings of a manual landing on the
catamaran in a marine environment.

This paper is organized as follows: In Section 2, an overview of the whole system is
proposed. In Section 3, the methodology of the proposed landing procedure is detailed,
and in Section 4 the developed software/firmware architecture is presented. In Section 5,
the main results obtained in flight emulation tests are shown. Finally, some conclusions are
given in Section 6.

2. System Overview

The considered experimental system is composed mainly of two different agents, each
one with unique characteristics and features.

2.1. Catamaran

The ULISSE autonomous surface vehicle (ASV), developed by the interuniversity re-
search center for Integrated Systems for Marine Environment (ISME, University of Genova
node), is a 3 m long and 1.8 m wide catamaran, constructed in fiberglass (see Figure 1).
It was designed as a modular vehicle for various applications. When used for marine
geotechnical surveys [21] or acting as an intelligent buoy for underwater vehicles, it carries
a deck with an underwater mast with acoustic sensors. When used as a means to extend
the action range of the aerial drones, the catamaran is equipped with a dedicated landing
platform (as in Figure 1). In each hull of the catamaran, a compartment hosts batteries
(around 3.2 kWh of energy each), the hardware architecture where the control software
runs the ROS2 middleware, and a wide range of sensors (GNSS receiver, gyroscopes, ac-
celerometers, and a compass sensor) to collect ego-motion measurements. The catamaran
is provided with a roll-bar where the GNSS antenna is located, along with a 5 GHz one
for Wi-Fi communication. The catamaran is propelled by two Torqeedo Cruise 2R electric
thrusters, with electrical power of 2 kW each, which offer high maneuverability of the
vessel even at low speeds, making it very agile in cluttered areas.

253

Sensors 2022, 22, 3544

Figure 1. The ULISSE catamaran, equipped with the landing platform and the splash-proof quadrotor,
deployed in one of the tests at sea.

2.2. Quadrotor

The chosen quadrotor model is the SwellPro Splash Drone 3 (more info at:
https://swellpro.com/, last access: 30 March 2022), a drone that provides an external wa-
terproof structure specifically designed for marine applications, along with various internal
hardware components that allow performing manual flights. For the purpose of the realiza-
tion of the proposed strategy, these components were substituted to robotize the agent itself.
In particular, a Raspberry Pi Model B+ (more info at: https://www.raspberrypi.com/, last
access: 30 March 2022) was embedded, along with a Raspicam v2, to allow onboard com-
putations, and a Pixracer (more info at: https://docs.px4.io/master/en/flight_controller/
pixracer.html, last access: 30 March 2022) autopilot system containing several embedded
sensors, such as an accelerometer, a magnetometer, a gyroscope, and a barometer. The
autopilot receives the setpoints computed by the algorithm running on the Raspberry Pi,
and translates them into pulse width modulation (PWM) signals for the single motors of
the quadrotor. The quadrotor is also endowed with a GNSS receiver. An ultrasonic sensor
was included, as it is essential during the landing procedure, and so was a payload release
mechanism actuated by a servo motor, to enable the quadrotor to carry out delivery tasks
in a marine environment.

3. Methodology

The proposed landing solution is composed of different modules. Each one is de-
tailed hereafter.

3.1. Perception and Pose Estimation

The relative pose of the quadrotor with respect to the landing platform is estimated by
an onboard vision system that processes the video stream coming from the Raspicam. The
platform is equipped with a set of visually distinguishable tags, each one being different
from the others and characterized by a unique ID. The adopted vision system, named
AprilTag, is an open-source, robust, and well documented tool [18,19] that allows 3D
position and orientation computation of the considered tags with respect to the camera [20].
The use of a single tag does not guarantee its identification during the whole landing
procedure; hence, the landing platform was equipped with 13 unique AprilTags, following
a similar configuration as [17].

The tags, as shown in Figure 2, were placed in such a way as to guarantee visibility
from different distances and robustness in the landing phase. The AprilTag markers on the
outer edges are large, and thus easily recognizable at higher altitudes. The smaller internal

254

Sensors 2022, 22, 3544

ones play a crucial role in the final instants of the landing maneuver when the quadrotor is
closer to the platform, improving safety and reliability.

Figure 2. The set Sl of AprilTags of different sizes as printed on the landing platform.

The list of the detectable tags is represented by the set Sl = {1, . . . , 13}. At each
iteration of the vision system, the detected tags ID are stored in a subset Sd ⊆ Sl . For
each detected tag ID i ∈ Sd, the vision system computes a transformation matrix c

i T that
describes the position in the scene of the identified tag i with respect to the camera frame
c. In order to compute the pose of the platform center with respect to the camera for
each tag i ∈ Sl , a set of transformation matrices i

pT—i ∈ Sl describing the position of
each tag with respect to the platform center—is calibrated and computed offline. Thus, a
post-multiplication gives the needed transformation matrix:

c
pTi =

c
i T i

pT . (1)

Theoretically, each detected tag gives equally correct information. However, to im-
prove the quality of the estimation, these measures are merged and weighted by the areas
(ai) of each detected tag in the camera frame: i ∈ Sd. Thus, the weighted transforma-
tion matrix between the center of the platform and the camera on the quadrotor c

pT is
obtained by:

c
pT =

1
w ∑i∈Sd

c
pTiai , (2)

where w is the normalization term defined as:

w = ∑i∈Sd
ai . (3)

The reference error is then transformed in the inertial frame, taking into account the
quadrotor’s attitude (see Figure 3), and sent to the guidance controller, which generates the
desired commands for the autopilot.

Still, depending on sea conditions, the vertical velocity of the landing platform could
vary a lot, and the estimated vertical error using the vision system alone does not provide
a reliable measure in the final instants of the landing phase. To increase robustness, an
ultrasonic sensor pointing downward was installed on the quadrotor, providing distance
information at a limited range. More precisely, the camera provides information at 20 fps
(frames per second). The ultrasonic sensor provides information at 30 Hz, and at distances
less than 0.75 m, provides more precise and reliable data. The distance data coming
from the ultrasonic sensor are used to estimate the platform’s vertical velocity via a basic

255

Sensors 2022, 22, 3544

Kalman filter [9]. This information is merged with the estimated vertical error, as shown
in Section 3.3.

Figure 3. A representation of the different transformation matrices involved in the relative pose
estimation between the UAV and the landing platform’s center.

3.2. Horizontal Platform Tracking

One of the tasks the quadrotor has to perform during the landing procedure is hori-
zontal tracking of the platform, reducing the estimated horizontal error provided by the
camera. By defining the horizontal positions of the quadrotor and the platform as pq,xy and
pl,xy, respectively, the horizontal position error is ep,xy = pl,xy − pq,xy. A measure of this
error is taken from the onboard vision system. Thus, a PI regulator is designed to produce
position setpoints p∗q,xy:

p∗q,xy = pq,xy + KP ep,xy + KI

∫
ep,xy dt , (4)

where KP and KI are the proportional and integral gains of the controller, respectively.

3.3. Vertical Platform Compensation

Once the quadrotor is at a certain distance from the landing platform, it needs to take
care of the heave motions of the landing pad, induced by the waves. In this delicate phase,
the altitude setpoints are generated to keep the relative velocity between quadrotor and
catamaran to a specific value vdes

r,z . More in detail, a vertical target absolute velocity can be
defined as:

vdes
q,z = vdes

r,z + vl,z , (5)

where vl,z is obtained by:
vl,z = vq,z − vr,z , (6)

and vr,z is the estimation of the relative vertical velocity obtained by the above mentioned
Kalman filter. The vertical error velocity is defined as:

ev,z = vdes
q,z − vq,z . (7)

Thus, the desired vertical velocity is a proportional scale of (7) by a gain K1:

v∗q,z = vq,z + K1 ev,z . (8)

256

Sensors 2022, 22, 3544

Finally, the altitude setpoints are generated as:

p∗q,z = pq,z + K2 v∗q,z , (9)

where pq,z is the current altitude of the quadrotor, and K2 is a scale gain. Vision system data
are not used at this stage, since the ultrasonic sensor gives information at a higher frequency.

3.4. Finite State Machine

The landing phase is described by a series of connected states, whose transitions are
handled by a finite state machine. The behavior of the quadrotor is described by eight
states: initialization, searching, tracking, hovering, descending, ascending, compensation,
and landing; Figure 4 describes how the states are linked. The transitions among them are
triggered by boolean algebra operations.

Search

Init

Track

Comp

Land

Asce

DescHover

Platform Visible

Platform not Visible

Platform not Visible Aligned with Platform

Platform Tracked

Platform Lost

Vision Data not Valid

Vision Data not Valid

Vision Data back Valid

Vision Data not Valid
After a Timeout

Not Centered
OR

Platform not
Visible

Platform Tracked
AND

Centered
AND

Comp Ready

Platform Tracked
AND

Centered
AND

Ready To Land

Figure 4. The diagram of the proposed finite state machine for the autonomous landing.

Initially, the quadrotor performs the rendezvous with the catamaran. The latter sends
a stream of its GNSS position to the former, which flies to reach it. The catamaran’s
GNSS position is exploited only in the initial phase, as it can be imprecise, and would
not guarantee a robust and reliable landing, especially in cases of signal loss. When the
quadrotor reaches the area described by the received GNSS coordinates, the finite state
machine starts, whose states are detailed in the following subsections.

3.4.1. Initialization

This is the entry point of the procedure. In this state, the quadrotor reaches the starting
altitude and starts to look for the landing platform. If the landing pad is not detected, the
finite state machine changes the state to searching. Otherwise, the quadrotor places itself
in a specific position and orientation with respect to the catamaran. The basic idea is to
prevent landing from a position where the quadrotor could hit the roll-bar located on the
stern side of the catamaran (see Figure 1).

257

Sensors 2022, 22, 3544

For this purpose, as seen in Figure 5, the quadrotor is placed in front of the landing
platform, at a certain distance from the center. In detail, the desired positions p∗q,x and p∗q,y
are computed directly by:

p∗q,x = pq,x + ep,x + R sin(ψl) (10)

p∗q,y = pq,y + ep,y + R cos(ψl) , (11)

where ep,x and ep,y are the estimated horizontal error components (see Section 3.2), R
is the desired fixed distance the quadrotor has to keep from the platform, and ψl is the
catamaran’s yaw angle. To prevent further complications in the quadrotor’s movements,
its yaw is kept constant for the whole landing phase.

Figure 5. The generation of the initial relative position p∗q during the initialization phase. The
quadrotor needs to place itself in front of the catamaran, and it does that by moving around the
platform and placing at a certain distance from it.

3.4.2. Searching

If the quadrotor has no visual information about the position of the landing platform, it
enters a state where it searches for it. To this end, the quadrotor reaches a predefined altitude
and flies in circles increasing large in radius. In particular, by taking as the center point the
quadrotor’s position at the initialization time of the searching phase pq,x(t0), pq,y(t0), the
desired position of the quadrotor is defined by:

p∗q,x(t) = pq,x(t0) + R cos
(vs

R
(t− t0)

)
(12)

p∗q,y(t) = pq,y(t0) + R sin
(vs

R
(t− t0)

)
, (13)

where R is the desired radius of the first circle and vs is the desired linear velocity to be
tracked during this phase. The searching continues until the following condition is verified:

(t− t0) <
2πR

vs
. (14)

When this condition is no longer true, the parameters are updated: R is increased by
0.5 m so that the quadrotor inspects a new area while overlapping a part of the previous
one, t0 is set to the current value of t (t0 = t). By doing that, the condition returns true, and
at the next iteration, the quadrotor starts a new circle, but with an increased radius. The

258

Sensors 2022, 22, 3544

structure of the second term of (14) makes sure the quadrotor starts a new circle in the exact
instant when it finishes the first one.

Once the quadrotor detects the platform, the landing procedure begins, and the
quadrotor goes back to the initialization state. This process guarantees the success of the
action even if only the approximate position of the platform is known. If the quadrotor
loses the platform when already landing, the searching state takes also into account the last
computed vision error, so that the quadrotor centers itself in the last known position of the
catamaran to restart the search.

3.4.3. Tracking

When the quadrotor is correctly positioned with respect to the catamaran, the tracking
state is triggered, handling the reduction of the vertical and horizontal error between
the two agents. The descent of the quadrotor toward the catamaran becomes slanted; in
particular, at the time instant th indicating the moment this state starts, a slope between
its current altitude and an altitude point zmax (ideally, the maximum distance from the
platform that allows the horizontal tracking of the smaller tags) is chosen. The z reference
is computed using:

z(th) = m(th)ep,x(th) , (15)

where

m(th) = −
pq,z(th)− zmax

R sin(ψl(th))
. (16)

3.4.4. Hovering

This state handles the case when the vision data coming from the camera have not been
updated for more than a second. In that case, the quadrotor is asked to keep its position
for a certain period until the vision system is back online, sending again the required data.
Then, once the feedback is restored, the quadrotor will resume its mission.

3.4.5. Descending

This state gets triggered if the quadrotor is tracking the landing platform under a
certain threshold and for a number of consecutive frames, but its current altitude is over
the ideal horizontal maximum tracking altitude. The altitude waypoints are autonomously
adjusted by being decreased by 0.1 m at each iteration.

3.4.6. Ascending

This state gets triggered if the quadrotor has no visual contact with the landing
platform for a number of consecutive frames, and its current altitude is below the ideal
horizontal minimum tracking altitude. The altitude waypoints are autonomously adjusted
by being increased by 0.1 m at each iteration.

3.4.7. Compensation

When the quadrotor is under a certain vertical distance from the landing platform
and it is centered with respect to it, the horizontal tracking (Section 3.2) and the vertical
compensation (Section 3.3) tasks generate the position setpoints. In this state, to compensate
for the catamaran’s oscillations, the vertical position setpoints are generated using the
estimations coming from the Kalman filter and the equations reported in Section 3.3. The
measures coming from the ultrasonic sensor are the only ones used, due to their higher-
frequency updating.

3.4.8. Landing

When the quadrotor is sufficiently close to the platform and the relative velocity
between the two agents is under a certain threshold, the finite state machine enters the
landing state, where the motors of the quadrotors are shut down, allowing it to land on the

259

Sensors 2022, 22, 3544

catamaran. Due to the criticality of this decision, the altitude and velocity thresholds have
been set to very low values, to prevent crashes or mishaps.

4. Software Architecture

To process information coming from the various sensors and generate the setpoints
necessary to fulfill the assigned tasks, the quadrotor needs to be equipped with a set of
software tools communicating with each other, which were chosen strictly due to the
hardware components that were installed on the quadrotor itself, presented in Section 2.2.
An overview of the considered software architecture is presented in Figure 6.

ROS2
Workspace

PX4

Guidance
Controller

Gazebo QGround-
Control

LCM

RTPS

TCP

MAVLink

+ camera
+ ultrasonic sensor

+ sensors

Figure 6. The main blocks composing the software architecture in the ROS2 simulation environment.

4.1. Gazebo

Gazebo is software that makes it possible to simulate accurately and efficiently the dy-
namic behavior of populations of robots in complex environments. It offers an environment
where the dynamics of the quarotor are approximately simulated. This was a necessary
tool to test the developed algorithms, as an intermediate preparation for outdoor tests on
real hardware.

4.2. PX4

PX4 is open-source flight control software for quadrotors and other unmanned vehicles.
In this project, it is mainly used as a means to translate the pose setpoints coming from
ROS2 nodes into PWM signals that are directly injected into the motors.

4.3. ROS2

ROS2 is a real-time version of the more common ROS (Robot Operating System), a
set of open-access software libraries and tools for building robot applications. Its tools
allow structuring the software in different modules interacting with each other through
well defined message-based interfaces. In our study, ROS2 was used to create a workspace
composed by a set of different modules, each one implementing a different feature: from
packages collecting and processing the data coming from the camera and the ultrasonic
sensor, to the ones handling the information transfer between the PX4 and the guidance
controller. When performing a simulation, the sensors were replaced by their software
counterparts implemented in Gazebo, and ROS2 nodes retrieved the data via RTPS (real-
time publish–subscribe; see Section 4.6). Other software packages included the Kalman filter
and the vision system described in Section 3.1. The vision system node is asynchronous
and processes the compressed images coming from the camera whenever they are available
(20 fps), requiring an average computational time of ∼7.0 ms. The measured maximum

260

Sensors 2022, 22, 3544

computational time was 29.86 ms, and the minimum was 1.56 ms; it depends on the number
of visible markers. The node implementing the Kalman filter instead is synchronous with
the ultrasonic sensor’s refresh rate of 30 ms, processing the coming data in an average of
∼3.0 ms; 4.7 ms maximally and 2.0 ms minimally.

4.4. Guidance Controller

The guidance controller is a software package that implements autonomous flight
actions for the quadrotor. It is a modular open-source architecture written in C++, composed
of several modules that communicate internally and externally via a communication
protocol middleware named Lightweight Communications and Marshalling (LCM) [22].
The proposed architecture includes several macrotasks the quadrotor can perform—some
of them simple, such as take-off from a point, navigation to point, and landing on a specific
point; and others more complicated, designed for marine missions. The latter include
searching and rescuing a shipwrecked person, landing on a platform, and criticality and
failure handling. However, this paper mainly focuses on the autonomous landing on the
catamaran.

4.5. QGroundControl

QGC (QGroundControl, more info at: http://qgroundcontrol.com/, last access: 30
March 2022) is software providing a graphical interface useful for monitoring a quadrotor’s
status, full flight control, mission planning, and tuning of an autopilot system’s parameters.

4.6. RTPS

PX4-Fast RTPS Bridge (or more commonly RTPS, more info at: https://dev.px4.io/
v1.11_noredirect/en/middleware/micrortps.html , last access: 30 March 2022) is a com-
munication protocol that adds a real-time publish–subscribe (RTPS) interface to the PX4
Autopilot system, enabling the exchange messages between the various internal PX4 Au-
topilot components and ROS2 applications in real-time.

5. Emulation Results

5.1. Software-in-the-Loop Simulation

This section describes the results obtained with software-in-the-loop (SITL) tests
performed with the help of the experimental architecture introduced in Section 4. To
test the proposed methodology under realistic conditions, particularly as concerns the
motion of the landing pad, we proceeded as follows. We first recorded to a log file of the
telemetry (GNSS position and attitude) of the ULISSE catamaran executing a rendezvous
with the quadrotor. The catamaran was directed toward a point and then instructed to
hold its position. To do so, the catamaran positioned itself against the estimated direction
of the current. However, note that the effects of waves and the fact that the catamaran is
nonholonomic still induced a small lateral drift.

Then, we replicated the movement of the catamaran from the log file within the Gazebo
environment and carried out several simulations of the quadrotor landing on it. Notice that,
as the heave motion is not measurable in the real ULISSE ASV, we generated simulated
motions using the Pierson–Moskowitz spectrum. Three different log files replicating the
behavior of the catamaran were used. Over than 30 simulations have been performed; due
to the similarity of the data among the logs, the catamaran’s behavior was replicated from
the same log file for the majority of the tests. In a few of them, it happened that the quadrotor
lost visual contact with the tags on the platform; in these cases, the quadrotor restarted
the algorithm by resetting the state machine and approaching the landing pad again.
Despite these setbacks, the quadrotor was able to land successfully on the platform in each
simulation. For the sake of brevity, only the results of one simulations are reported hereafter.

Let us begin by comparing the roll and pitch references and estimated values in
Figure 7a and Figure 7b, respectively. From the figures, we can notice when the biggest
adjustments in terms of position occurred from 82 to 98 s, when the procedure started with

261

Sensors 2022, 22, 3544

the searching state. Indeed, in this simulation, the UAV did not find the platform at the
rendezvous point. Thus, the “searching” state was entered and the quadrotor started to
move around in circles. From 98 to 118 s, the quadrotor placed itself in the front of the
landing platform, to prepare for the landing. After then, before the quadrotor landed, the
generated references varied slightly, because the effort needed to keep the alignment with
the landing platform was minor. At around t = 135 s, the quadrotor successfully landed on
the platform.

(a) (b)

Figure 7. Time-wise behavior of the desired and estimated roll (a) and pitch (b) of the UAV during
the landing procedure.

The yaw reference was kept constant during the entire simulation, as it does not have
a significant influence on the landing performance. Thus, its graph is omitted here.

The data about the positions of the quadrotor and the catamaran with respect to the
starting point are depicted in Figure 8a,b. The first figure shows a bird’s eye view on the
x and y dimensions only, and the second includes all the axes. The circular movements
generated by Equations (12) and (13) during the searching state can be seen in the inter-
val (x ∈ [24, 26] m, y ∈ [8, 10] m). The instant where the radius changed was point 1
(x = 25.9 m, y = 8.9 m). In this test, the quadrotor had to perform just one complete
circle before seeing the platform at the start of the second one. The initialization phase
came afterwards, where the quadrotor had to perform some adjustments to place itself on
the bow side of the catamaran. It can be seen how the references slightly changed in the
following period: this happened because the catamaran was sliding a bit while trying to
keep its position against the sea current. More precisely, in this test the catamaran drifted
laterally at an average velocity of ∼0.21 m/s. In order to find the maximum slide veloc-
ity the catamaran can have without compromising the landing of the quadrotor, several
landing tests were performed in simulations with increasing drift velocity. The results of
these simulations show that the quadrotor is able to successfully land at a drift velocity
of up to 0.35 m/s, approximately. In Figure 8b, it can aksi be seen how the altitude of the
catamaran had oscillating behavior in the final steps of the landing procedure. In fact, the
catamaran’s heave movement is more affected by waves when it is not moving forwards.
Still, the quadrotor managed to follow the catamaran for the entire period and accomplish
the land at point 2 (x = 33.6 m, y = 10.1 m, z = 2.0 m), showing the robustness of the
proposed solution.

262

Sensors 2022, 22, 3544

(a) (b)

Figure 8. (a) Bird’s eye view of the trajectories of the UAV and of the ULISSE ASV during the
simulation. 1 indicates the position at which the search radius changed, and 2 indicates where the
final landing was accomplished. (b) A 3D representation.

Figure 9 shows how the x and y axis velocities are generated starting from the pose
references. In detail, during the searching phase from 82 to 98 s, the sum of the velocity
components is approximately constant, corresponding to the parameter vs in Equations (12)
and (13). This is not true when the quadrotor changes its circle’s radius, at 84 and 96 s. After
that, the quadrotor makes visual contact with the landing platform; thus, the generated
velocities are the ones needed to place the quadrotor appropriately for the landing.

70 75 80 85 90 95 100 105 110 115 120
seconds

-1

-0.5

0

0.5

1

1.5

2

2.5

m
/s

Velocity X Y

VelY Setpoint
VelX Estimated
VelX Setpoint
VelY Estimated

Figure 9. Time-wise behavior of the UAV’s x and y velocities and their setpoints during the whole
landing procedure.

Figure 10a shows the quadrotor’s performances on the z-axis. As the inertial frame is
a NED (north–east–down) frame, the sign of z is negative. Note the step-change reference
at around t = 118 s, stating the transition between the initialization and tracking state
(Section 3.4.3) of the landing state machine. This brings the quadrotor to a prefixed mini-
mum altitude from the landing platform, to trigger as soon as possible the switch to the
compensation state. When the quadrotor is centered with respect to the landing platform
and the Kalman filter taking data from the ultrasonic sensor gives reliable outputs, the state
is switched to the compensation one, where the quadrotor compensates for the platform’s
vertical motions (see Section 3.4.7).

263

Sensors 2022, 22, 3544

(a) (b)

Figure 10. Time-wise behavior of the absolute z position and setpoint: (a) overall simulation; (b) a
zoom of the compensation state. Notice that at t = 134 s, a high setpoint was generated to force the
UAV to freefall on top of the landing pad.

Figure 10b shows a zoom of Figure 10a. The generated references change step by
step, allowing the quadrotor to be as reactive as possible with respect to the platform’s
oscillations. The peak at around t = 134 s in Figure 10b shows the transition from the
compensation to the landing state. At that time, the z reference is set to a value (20 m) well
below the platform height above the sea, to force the UAV to set its motors to the minimum,
making it free-fall directly onto the platform. Once the Autopilot’s firmware, PX4, has
detected the landing, it automatically shuts off the motors in a few moments.

Figure 11 depicts the velocity on the z inertial axis. The generated references show
the correlation among the z position setpoints. A full video of the simulation is available
online and can be seen at: https://youtu.be/hILq4kUn9XY last access: 30 March 2022.

Figure 11. Time-wise behavior of the UAV z velocity and its setpoint during the whole landing procedure.

5.2. Vision System Validaton

To validate the pose estimation algorithm, an experimental trial where the quadrotor
was manually controlled was conducted, and the output of the UAV’s camera was recorded
at a resolution of 480p. Then, the video was replayed offline. Each frame was sent to the
pose estimation algorithm. This experiment was not conceived to test the system under
different lightning conditions. We selected a day with clear sky, as we wanted to test the
material of the landing platform, which was selected to ensure a high level of opacity, to
prevent light reflections on the markers. Note that in poor light conditions, for instance,
during the evening, at night or on a cloudy day, the landing platform should be backlit to
ensure reliable detection of the tags.

In the following, different images taken at various altitudes are presented, showing
the detection performances of the proposed algorithm. In particular, the outputs of the

264

Sensors 2022, 22, 3544

pose estimation node, i.e., the detected nodes, are shown in magenta together with the tag
identifier, on top of the same input image, to highlight the detection results.

Figure 12a depicts a situation where the distance bewtween quadrotor and catamaran
is around 6–7 m, a case similar to the initialization phase. At that distance, in the best case,
the detected tags are eight in number; the bigger tags play a fundamental role, offering
reliability and robustness in the positioning of the quadrotor. The smaller ones are instead
not recognizable yet. In Figure 12b, the quadrotor is landing on the catamaran. In a
medium-distance case like this one, the number of tags detected is higher. In fact, the
smaller ones become visible, except for the smallest one at the center, and some of the
bigger ones can be out of camera range. Tag 11, on the upper-left corner, is a little outside
of the image plane, and tag 12, in the lower-left corner, is obscured by the roll-bar’s shadow.
Finally, Figure 12c shows the instants before the landing; there, the bigger tags are almost
all not visible, whereas the smallest ones come into play to keep the quadrotor centered
with respect to landing platform.

(a) (b)

(c)

Figure 12. Detected tags at various altitudes: (a) initialization phase, high altitude; (b) tracking phase,
medium altitude; (c) compensation phase, low altitude. Each detected tag is highlighted in magenta
together with the tag identifier in blue.

These last three graphs depict additional data from the vision system. In Figure 13a,
the number of detected tags is shown, varying between 1 and 10 tags (corresponding
to Figure 12b). It can be seen that the number of detected tags was always equal to
or greater than one, assuring the continuity of the platform detection during the whole
landing procedure, confirming the performances achieved in the simulation environment.
The estimated horizontal (Figure 13b) and vertical (Figure 13c) errors with respect to
the catamaran instead are pretty consistent with the quadrotor’s flight. A video of this
emulation is available at https://youtu.be/iGNDCoQ2zaY last access: 30 March 2022. A
further comparison of the vision system’s performance in the real test and in simulations
has been performed in terms of marker detectability: it has been noticed that the smaller
markers (IDs 6, 7, 8, 9) became visible when the relative distance of quadrotor–landing
platform was approximately under 1.5 m both in simulations and in the real tests. Instead,
the bigger ones (IDs 10, 11, 12, 13) could be detected at distances up to 9.0 m in the
simulations.

265

Sensors 2022, 22, 3544

(a) (b)

(c)

Figure 13. Evolution during manual landing experiment of: (a) number of tags detected; (b) horizon-
tal error; (c) vertical error.

6. Conclusions

In this work, a procedure for the autonomous landing of a quadrotor on a catamaran
has been presented. The objective was to propose a specific, reliable, and robust archi-
tecture composed of different modules, adaptable to both simulations and tests in a real
environment. A vision system relying on AprilTags has been proposed to recognize the
landing platform; several tags have been placed on the platform itself to always assure
recognizability during the entire procedure.

A finite state machine handles the landing procedure. It is composed of different
states, each one describing a specific behavior the quadrotor has to engage.

The validity of the proposed methodology has been shown in a simulation environ-
ment. To test the landing procedure with realistic motions of the landing pad, the motion
of the ULISSE ASV was recorded at sea and then replayed within the Gazebo environment.
The proposed vision system was further verified using a pre-recorded video of a landing
performed under direct teleoperation of the quadrotor.

Author Contributions: Conceptualization, A.D., M.B. and E.S.; methodology, A.D., M.B. and E.S.;
software, A.D.; data curation, A.D.; writing—original draft preparation, A.D.; writing—review and
editing, A.D., M.B. and E.S.; visualization, A.D.; supervision, M.B. and E.S.; funding acquisition, E.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This publication was made possible by NPRP grant 10-0213-170458 from the Qatar National
Research Fund (a member of Qatar Foundation).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

266

Sensors 2022, 22, 3544

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 349.
[CrossRef]

2. Boccardo, P.; Chiabrando, F.; Dutto, F.; Tonolo, F.G.; Lingua, A. UAV Deployment Exercise for Mapping Purposes: Evaluation of
Emergency Response Applications. Sensors 2015, 15, 15717–15737. [CrossRef] [PubMed]

3. Jordan, S.; Moore, J.; Hovet, S.; Box, J.; Perry, J.; Kirsche, K.; Lewis, D.; Tse, Z.T.H. State-of-the-art technologies for UAV inspections.
IET Radar Sonar Navig. 2018, 12, 151–164. [CrossRef]

4. Huang, J.; Tian, G.; Zhang, J.; Chen, Y. On Unmanned Aerial Vehicles Light Show Systems: Algorithms, Software and Hardware.
Appl. Sci. 2021, 11, 7687. [CrossRef]

5. Sharma, M.; Gupta, A.; Gupta, S.K.; Alsamhi, S.H.; Shvetsov, A.V. Survey on Unmanned Aerial Vehicle for Mars Exploration:
Deployment Use Case. Drones 2022, 6, 4. [CrossRef]

6. Simetti, E.; Indiveri, G.; Pascoal, A.M. WiMUST: A cooperative marine robotic system for autonomous geotechnical surveys.
J. Field Robot. 2021, 38, 268–288. [CrossRef]

7. Casalino, G.; Allotta, B.; Antonelli, G.; Caiti, A.; Conte, G.; Indiveri, G.; Melchiorri, C.; Simetti, E. ISME research trends: Marine
robotics for emergencies at sea. In Proceedings of the 2016 OCEANS, Shanghai, China, 10–13 April 2016; pp. 1–5.

8. Kong, W.; Zhou, D.; Zhang, D.; Zhang, J. Vision-based autonomous landing system for unmanned aerial vehicle: A survey. In
Proceedings of the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems
(MFI), Beijing, China, 28–29 September 2014; pp. 1–8.

9. Bastianelli Naticchi, N.; Baglietto, M.; Sperindé, A.; Simetti, E.; Casalino, G. Visual Servoed Autonomous Landing on a Surface
Vessel. In Proceedings of the OCEANS 2019 MTS/IEEE, Marseille, France, 17–20 June 2019.

10. Nisticó, A.; Baglietto, M.; Simetti, E.; Casalino, G.; Sperindé, A. Marea project: UAV landing procedure on a moving and floating
platform. In Proceedings of the OCEANS 2017, Anchorage, AK, USA, 18–21 September 2017; pp. 1–10.

11. Abdelkrim, N.; Aouf, N.; Tsourdos, A.; White, B. Robust nonlinear filtering for INS/GPS UAV localization. In Proceedings of the
2008 16 th Mediterranean Conference on Control and Automation, Ajaccio, France, 25–27 June 2008; pp. 695–702.

12. Gautam, A.; Sujit, P.B.; Saripalli, S. A survey of autonomous landing techniques for UAVs. In Proceedings of the 2014 International
Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 1210–1218.

13. Yang, X.; Mejias, L.; Garratt, M. Multi sensor data fusion for UAV navigation during landing operations. In Proceedings of the
2011 Australian Conference on Robotics and Automation (ACRA), Melbourne, Australia, 7–9 December 2011; pp. 1–10.

14. Wang, L.; Bai, X. Quadrotor Autonomous Approaching and Landing on a Vessel Deck. J. Intell. Robot. Syst. 2018, 92, 125–143.
[CrossRef]

15. Falanga, D.; Zanchettin, A.; Simovic, A.; Delmerico, J.; Scaramuzza, D. Vision-based autonomous quadrotor landing on a moving
platform. In Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai,
China, 11–13 October 2017; pp. 200–207.

16. Verbandt, M.; Theys, B.; Schutter, J.D. Robust marker-tracking system for vision-based autonomous landing of VTOL UAVs.
In Proceedings of the 2014 International Micro Air Vehicle Conference and Competition (IMAV), Delft, The Netherlands,
12–15 August 2014.

17. Araar, O.; Aouf, N.; Vitanov, I. Vision Based Autonomous Landing of Multirotor UAV on Moving Platform. J. Intell. Robot. Syst.
2017, 85, 369–384. [CrossRef]

18. Olson, E.; Strom, J.; Morton, R.; Richardson, A.; Ranganathan, P.; Goeddel, R.; Bulic, M.; Crossman, J.; Marinier, R. Progress
toward multi-robot reconnaissance and the MAGIC 2010 competition. J. Field Robot. 2012, 29, 762–792. [CrossRef]

19. Mersch, D.; Crespi, A.; Keller, L. Tracking Individuals Shows Spatial Fidelity Is a Key Regulator of Ant Social Organization.
Science 2013, 340, 1090–1093. [CrossRef] [PubMed]

20. Olson, E. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the 2011 IEEE International Conference on
Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3400–3407.

21. Simetti, E.; Indiveri, G. Control oriented modeling of a twin thruster autonomous surface vehicle. Ocean Eng. 2022, 243, 110260.
[CrossRef]

22. Huang, A.; Olson, E.; Moore, D.C. Lcm: Lightweight communications and marshalling. In Proceedings of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4057–4062.

267

Citation: Walton, C.; Kaminer, I.;

Gong, Q.; Clark, A.H.; Tsatsanifos, T.

Defense against Adversarial Swarms

with Parameter Uncertainty. Sensors

2022, 22, 4773. https://doi.org/

10.3390/s22134773

Academic Editor: Carlo Alberto

Avizzano

Received: 11 April 2022

Accepted: 3 June 2022

Published: 24 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Defense against Adversarial Swarms with Parameter Uncertainty

Claire Walton 1,2,*, Isaac Kaminer 3, Qi Gong 4, Abram H. Clark 5 and Theodoros Tsatsanifos 3

1 Department of Electrical and Computer Engineering, University of Texas at San Antonio,
San Antonio, TX 78249, USA

2 Department of Mathematics, University of Texas at San Antonio, San Antonio, TX 78249, USA
3 Department of Mechanical and Aerospace Engineering, Naval Postgraduate School,

Monterey, CA 93943, USA; kaminer@nps.edu (I.K.); theodoros.tsatsanifos.gr@nps.edu (T.T.)
4 Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, CA 95064, USA;

qigong@ucsc.edu
5 Department of Physics, Naval Postgraduate School, Monterey, CA 93943, USA; abe.clark@nps.edu
* Correspondence: claire.walton@utsa.edu

Abstract: This paper addresses the problem of optimal defense of a high-value unit (HVU) against a
large-scale swarm attack. We discuss multiple models for intra-swarm cooperation strategies and
provide a framework for combining these cooperative models with HVU tracking and adversarial
interaction forces. We show that the problem of defending against a swarm attack can be cast in the
framework of uncertain parameter optimal control. We discuss numerical solution methods, then
derive a consistency result for the dual problem of this framework, providing a tool for verifying
computational results. We also show that the dual conditions can be computed numerically, providing
further computational utility. Finally, we apply these numerical results to derive optimal defender
strategies against a 100-agent swarm attack.

Keywords: optimal control; parameter uncertainty; swarming

1. Introduction

Swarms are characterized by large numbers of agents which act individually, yet
produce collective, herd-like behaviors. Implementing cooperating swarm strategies for
a large-scale swarm is a technical challenge which can be considered to be from the “in-
sider’s perspective”. It assumes inside control over the swarm’s operating algorithms.
However, as large-scale ‘swarm’ systems of autonomous systems become achievable—
such as those proposed by autonomous driving, UAV package delivery, and military
applications—interactions with swarms outside our direct control become another chal-
lenge. This generates its own “outsider’s perspective” issues.

In this paper, we look at the specific challenge of protecting an asset against an adver-
sarial swarm. Autonomous defensive agents are tasked with protected a high-value unit
(HVU) from an incoming swarm attack. The defenders do not fully know the cooperating
strategy employed by the adversarial swarm. Nevertheless, the task of the defenders is to
maximize the probability of survival of the HVU against an attack by such a swarm. This
challenge raises many issues—for instance, how to search for the swarm [1], how to observe
and infer swarm operating algorithms [2], and how to best defend against the swarm given
algorithm unknowns, and only limited, indirect control through external means. In this
paper, we restrict ourselves to the last issue. However, these problems share multiple
technical challenges. The preliminary approach we apply in this paper demonstrates some
basic methods which we hope will stimulate the development of more sophisticated tools.

For objectives achieved via external control of the swarm, several features of swarm
behavior must be characterized: capturing the dynamic nature of the swarm, tracking
the collective risk profile created by a swarm, and engaging with a swarm via dynamic
inputs, such as autonomous defenders. The many modeling layers create a challenge

Sensors 2022, 22, 4773. https://doi.org/10.3390/s22134773 https://www.mdpi.com/journal/sensors269

Sensors 2022, 22, 4773

for generating an effective response to the swarm, as model uncertainty and model error
are almost certain. In this paper, we look at several dynamic systems where the network
structure is determined by parameters. These parameters set neighborhood relations and
interaction rules. Additional parameters establish defender input and swarm risk.

We consider the generation of optimal defense strategies given uncertainty in param-
eter values. We demonstrate that small deviances in parameter values can have catas-
trophic effects on defense trajectories optimized without taking error into account. We
then demonstrate the contrasting robustness of applying an uncertain parameter optimal
control framework instead of optimizing with nominal values. The robustness against
these parameter values suggests that refined parameter knowledge may not be necessary
given appropriate computational tools. These computational tools—and the modeling of
the high-dimensional swarm itself—are expensive. To assist with this issue, we provide
dual conditions for this problem in the form of a Pontryagin minimum principle and prove
the consistency of these conditions for the numerical algorithm. These dual conditions can,
thus, be computed from the numerical solution of the computational method and provide
a tool for solution verification and parameter sensitivity analysis.

Although in this paper, optimal strategies against swarms motivate the framework
of uncertain parameter optimal control, and the subsequent development of the dual
conditions, both the framework and the dual conditions have many applications beyond
swarm defense. Optimal control with parameter uncertainty is relevant to robotics—where
parts, such as wheels, may have small size and calibration uncertainties; aerospace—where
both components and exogeneous factors, such as wind, may be modeled using parameter
uncertainty; and search and rescue—where the location of a target object can be considered
a parameter uncertainty [3,4]. It is also an instance of mean-field optimal control (which
includes this framework, but also more general probability distributions), which is finding
application in the training of neural networks [5]. The dual conditions provided in this
paper provide both a tool for verification of numerical solutions, as well as another potential
route for generating numerical solutions.

The structure of this paper is as follows. Section 2 provides examples of dynamic
swarming models and extensions for defensive interactions. Section 3 discusses optimiza-
tion challenges and describes a general uncertain parameter optimal control framework that
this problem could be addressed with. Section 4 provides a proof of the consistency of the
dual problem for this control framework, which expands on the results initially presented
in the conference paper [6]. Section 5 gives an example of numerical implementation that
demonstrates optimal defense against a large-scale swarm of 100 agents. Section 6 discusses
the results and future work.

2. Modeling Adverserial Swarms

2.1. Cooperative Swarm Models

The literature on the design of swarm strategies which produce coherent, stable
collective behavior has become vast. A quick review of the literature points to two main
trends/categories in swarm behavior design. The first relies on dynamic modeling of the
agents and potential functions to control their behavior (see [7,8] and references therein).
The second trend relates to the use of rules to describe agents’ motion and local rule-based
algorithms to control them [9,10].

We present two examples of dynamic swarming strategies from the literature. These
examples are illustrative of the forces considered in many swarming models:

• collision avoidance between swarm members;
• alignment forces between neighboring swarm members;
• stabilizing forces.

These intra-swarm goals are aggregated to provide a swarm control law, which we
will refer to as FS, to each swarm agent. Both example models in this paper share the same

270

Sensors 2022, 22, 4773

double integrator form with respect to this control law. For n swarm agents, the dynamics
are defined by

ẍi = ui. i = 1, . . . , n, (1)

ui = FS(xi, ẋi, ∀j
= i : xj, ẋj|θ). (2)

2.1.1. Example Model 1: Virtual Body Artificial Potential

In this model [11,12], swarm agents track to a virtual body (or bodies) guiding their
course, while also reacting to intra-swarm forces of collision avoidance and group cohe-
sion. The input ui is the sum of intra-swarm forces, virtual body tracking, and a velocity
dampening term. In addition, in this adversarial scenario, swarm agents are influenced
to avoid intruding defense agents. The intra-swarm force between two swarm agents has
magnitude f I and is a gradient of an artificial potential VI . Let

xij = xi − xj. (3)

The artificial potential VI depends on the distance ||xij|| between swarm agents i and
j. The artificial potential VI is defined as:

VI =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α

(
ln
(||xij||

)
+

d0

||xij||

)
, 0 < ||xij|| < d1

α

(
ln(d1) +

d0

d1

)
, ||xij|| ≥ d1

(4)

where α is a scalar control gain, and d0 and d1 are scalar constants for distance ranges. Then
the magnitude of interaction force is given by

f I =

{∇||xij ||VI , 0 < ||xij|| < d1

0, ||xij|| ≥ d1
(5)

The swarm body is guided by ‘virtual leaders’, non-corporeal reference trajectories
which lead the swarm. We assign a potential Vh on a given swarm agent i associated with
the k-th virtual leader, defined with the distance ||hik|| between the swarm agent i and
leader k. Mirroring the parameters α, d0, and d1 defining VI , we assign Vh the parameters
αh, h0, and h1. An additional dissipative force fvi is included for stability. The control law
ui for the vehicle i associated with m defenders is given by

ui = −
n

∑
j
=i
∇xi VI(xij)−

m

∑
k=1
∇xi Vh(hik) + fvi

= −
n

∑
j
=i

f I(xij)

||xij|| xij −
m

∑
k=1

fh(hik)

||hik|| hik + fvi .
(6)

2.1.2. Example Model 2: Reynolds Boid Model

In this model [8,13], for radius r, j = 1, . . . , N, define the neighbors of agent i at
position xi ∈ Rn by the set

Ni = {j|j
= i ∧ ‖xi − xj‖ < r} (7)

Swarm control is designated by three forces.
Alignment of velocity vectors:

fal = −wal

(
ẋi − 1

|Ni| ∑
j∈Ni

ẋj

)
(8)

271

Sensors 2022, 22, 4773

Cohesion of swarm:

fcoh = −wcoh

(
xi − 1

|Ni| ∑
j∈Ni

xj

)
(9)

Separation between agents:

fsep = −wsep
1
|Ni|

(
∑

j∈Ni

xj − xi

‖xi − xj‖

)
(10)

for positive constant parameters wal , wcoh, wsep.

ui = fal + fcoh + fsep (11)

2.2. Adversarial Swarm Models

The previous subsection provides several examples of inner swarm cooperative forces,
FS. In order to enable adversarial behavior and defense, these inner swarm cooperative
forces need to be supplemented by additional forces of exogenous input into the collective.
As written, the above cooperative swarming models neither respond to outside agents nor
‘attack’ (swarm towards) a specific target. We, thus, supplement the control laws above
with two additional forces. The first, we refer to as FHVU ; the goal of the swarm, in this
paper, is limited to tracking an HVU. An example of FHVU is provided in the example of
Section 5, in Equation (28).

We also supplement by an adversarial force, which we refer to as FD. The review [7]
discusses several approaches to adversarial control. Examples include containment strate-
gies modeled after dolphins [14], sheep-dogs [15,16], and birds of prey [17]. In [18], the
authors studied the interaction between two swarms, one of which could be considered
adversarial. In these examples of adversarial swarm control, the mechanism of interaction
and defense is provided through the swarm’s own pursuit and evasion responses. This
indirectly uses the swarm’s own response strategy against it—an approach which can be
termed ‘herding’.

In addition to herding reactions, one can consider more direct additional forces of
disruption, to model neutralizing swarm agents and/or physically remove them from the
swarm. One form this can take, for example, is the removal of agents from the communica-
tions network, as considered in [19]. Another approach is taken in [20], which uses survival
probabilities based on damage attrition. Defenders and the attacking swarm engage in
mutual damage attrition while the swarm also damages the HVU when in proximity to
it. Probable damage between agents is tracked as damage rates over time, where the rate
of damage is based on features such as distance between agents and angle of attack. The
damage rate at time t provides the probability of a successful ‘hit’ in time period [t, t + Δt].
The probability of agent survival can be modeled based on the aggregate number of hits
it takes to incapacitate the agent. The authors of [20] provide derivations for multiple
possibilities, such as single-shot destruction and N-shot destruction. These probabilities
take the form of ODE equations. Tracking survival probabilities thus adds an additional
state to the dynamics of each agent—a survival probability state.

We, thus, summarize a control scheme with HVU target-tracking and herding driven
by the reactive forces of collision avoidance with the defenders as the following, for HVU
states y0 and defender states yk, k = 1, . . . , K:

ui =FS(xi, ẋi, ∀j
= i : xj, ẋj|θ) ← intra-swarm

+FHVU(xi, ẋi, y0, ẏ0|θ) ← target tracking

+FD(xi, ẋi, ∀k : yk, ẏk|θ) ← herding and/or damage (12)

272

Sensors 2022, 22, 4773

Example Attrition Model: Single-Shot Destruction

From [20]: let P0(t) be the probability the HVU has survived up to time t, Pk(t),
k = 1, . . . , K, the probability defender k has survived, and Qj(t), j = 1, . . . , N the probability

swarm attacker j has survived. Let dj,k
y (xj(t), yk(t)) be the damage the defender yk inflicts

on swarm attacker xj and let dk,j
x (yk(t), xj) be the damage the swarm attacker xj inflicts on

the defender yk, with the HVU represented by k = 0.
Then the survival probabilities for attackers and defenders from single-shot destruction

are given by the coupled ODEs:{
Q̇j(t) = −Qj(t)∑K

k=1 Pk(t)d
j,k
y (xj(t), yk(t)), Qj(0) = 1

Ṗk(t) = −Pk(t)∑N
j=1 Qj(t)d

k,j
x (yk(t), xj(t)), Pk(0) = 1

for j = 1, . . . , N, k = 0 . . . , K.

3. Problem Formulation

The above models depend on a large number of parameters. The dynamic swarming
model coupled with attrition functions results in over a dozen key parameters, and many
more would result from a non-homogeneous swarm. A concern would be that this adds
too much model specificity, making optimal defense strategies lack robustness due to
sensitivity to the specific set of model parameters. This concern turns out to be justified.
When defense strategies are optimized for fixed, nominal parameter values, they display
catastrophic failure for small perturbations of certain parameters, as can be seen in Figure 1.
In fact, the plots included in Figure 1 clearly demonstrate that the sensitivity of the cost with
respect to the uncertain parameters is highly non-linear. Thus, generating robust defense
strategies requires a more sophisticated formalism introduced in the next Section 3.1.

Figure 1. Example performance of solutions calculated using nominal values when parameter value
is varied. Calculated using values in Section 5.1. Magenta dot marks the nominal value used in the
optimization problem. In the left panel, d0 is varied as the parameter; in the right panel h0 is varied.

3.1. Uncertain Parameter Optimal Control

The class of problems addressed by the computational algorithm is defined as follows:

Problem P. Determine the function pair (x, u) with x ∈ W1,∞([0, T] × Θ;Rnx), u ∈
L∞([0, T];Rnu) that minimizes the cost

J[x, u] =
∫

Θ

[
F(x(T, θ), θ)+

∫ T

0
r(x(t, θ), u(t), t, θ)dt

]
dθ (13)

273

Sensors 2022, 22, 4773

subject to the dynamics

∂x
∂t

(t, θ) = f (x(t, θ), u(t), θ), (14)

initial condition x(0, θ) = x0(θ), and the control constraint g(u(t)) ≤ 0 for all t ∈ [0, T]. The
set L∞([0, T];Rnu) is the set of all essentially bounded functions, W1,∞([0, T]×Θ;Rnx) the
Sobolev space of all essentially bounded functions with essentially bounded distributional
derivatives, and F : Rnx × Rnθ #→ R, r : Rnx × Rnu × R × Rnθ #→ R, g : Rnu #→ R

ng .
Additional conditions imposed on the state and control space and component functions are
specified in Appendix A.

In Problem P, the set Θ is the domain of a parameter θ ∈ Rnθ . The format of the cost
functional is that of the integral over Θ of a Mayer–Bolza type cost with parameter θ. This
parameter can represent a range of values for a feature of the system, such as in ensemble
control [21], or a stochastic parameter with a known probability density function.

For computation of numerical solutions, we introduce an approximation of Problem P,
referred to as Problem PM. Problem PM is created by approximating the parameter space,
Θ, with a numerical integration scheme. This numerical integration scheme is defined in
terms of a finite set of M nodes {θM

i }M
i=1 and an associated set of M weights {αM

i }M
i=1 ⊂ R

such that ∫
Θ

h(θ)dθ = lim
M→∞

M

∑
i=1

h(θM
i)αM

i . (15)

given certain function smoothness assumptions. See Appendix A Assumption A1 for
formal assumptions. Throughout the paper, M is used to denote the number of nodes used
in this approximation of parameter space.

For a given set of nodes {θM
i }M

i=1, and control u(t), let x̄M
i (t), i = 1, . . . , M, be defined

as the solution to the ODE created by the state dynamics of Problem P evaluated at θM
i :

{
dx̄M

i
dt (t) = f (x̄M

i (t), u(t), θM
i)

x̄M
i (0) = x0(θ

M
i),

i = 1, . . . , M. (16)

Let X̄M(t) = [x̄M
1 (t), . . . , x̄M

M(t)]. The system of ODEs defining X̄M has dimension
nx ×M, where nx is the dimension of the original state space and M is the number of nodes.
The numerical integration scheme for parameter space creates an approximate objective
functional, defined by:

J̄M[X̄M, u]=
M

∑
i=1

[
F
(

x̄M
i (T), θM

i

)
+

∫ T

0
r(x̄M

i (t), u(t), t, θM
i)dt

]
αM

i . (17)

In [4], the consistency of PM is proved. This is the property that, if optimal solutions to
Problem PM converge as the number of nodes M → ∞, they converge to feasible, optimal
solutions of Problem P. See [4] for detailed proof and assumptions.

3.2. Computational Efficiency

The computation time of the numerical solution to the discretized problem defined
in Equations (16) and (17) will depend on the value of M. Ideally, it should be sufficiently
small so as to allow for a fast solution. On the other hand, a value of M that is too small will
result in a solution that is not particularly useful, i.e., too far from the optimal. Naturally,
the question arises: how far is a particular solution from the optimal? One tool for assessing
this lies in computing the Hamiltonian and is addressed in Section 4.

4. Consistency of Dual Variables

The dual variables provide a method to determine the solution of an optimal control
problem or a tool to validate a numerically computed solution. For numerical schemes

274

Sensors 2022, 22, 4773

based on direct discretization of the control problem, analyzing the properties of the
dual variables and their resultant Hamiltonian may also lead to insight into the va-
lidity of an approximation scheme [22,23]. This could be especially helpful in high-
dimensional problems, such as swarming, where parsimonious discretization is crucial to
computational tractability.

Previous work shows the consistency of the primal variables in approximate Problem
PM to the original parameter uncertainty framework of Problem P. Here, we build on
that and prove the consistency of the dual problem of Problem P as well. This theoretical
contribution is diagrammed in Figure 2. The consistency of the dual problem in parameter
space enables approximate computation of the Hamiltonian from numerical solutions.

Figure 2. Diagram of primal and dual relations for parameter uncertainty control. Red lines designate
the contribution of this paper.

In [24], necessary conditions for Problem P were established. These conditions are
as follows:

Problem Pλ [([24], pp. 80–82)]. If (x∗, u∗) is an optimal solution to Problem P, then
there exists an absolutely continuous costate vector λ∗(t, θ), such that for θ ∈ Θ:

∂λ∗

∂t
(t, θ) = −∂H(x∗, λ∗, u∗, t, θ)

∂x
,

λ∗(T, θ) =
∂F(x∗(T, θ), θ)

∂x
(18)

where H is defined as:

H(x, λ, u, t, θ) =

λ f (x(t, θ), u(t), θ) + r(x(t, θ), u(t), t, θ). (19)

Furthermore, the optimal control u∗ satisfies

u∗(t) = arg min
u∈U

H(x∗, λ∗, u, t),

where H is given by

H(x, λ, u, t) =
∫

Θ
H(x, λ, u, t, θ)dθ. (20)

Because Problem PM is a standard non-linear optimal control problem, it admits a
dual problem as well. Problem PMλ, provided by the Pontryagin minimum principle (a
survey of minimum principle conditions is given by [25]). Applied to PM this generates:

275

Sensors 2022, 22, 4773

Problem PMλ. For feasible solution (X̄M, u) to Problem PM, find Λ̄(t) = [λ̄M
1 (t), . . . λ̄M

M(t)],
λ̄M

i : [0, T]→ RNx , that satisfies the following conditions:

dλ̄M
i

dt
(t) = −∂H̄M(x̄M

i , λ̄M
i , u, t)

∂xM
i

,

λ̄M
i (T) = αM

i
∂F(x̄M

i , θM
i)

∂x̄M
i

, (21)

where H̄M is defined as:

H̄M(X̄M, Λ̄M, u, t) =
M

∑
i=1

[
λ̄M

i f (x̄M
i (t), u(t), θM

i) + αM
i r(x̄M

i (t), u(t), t, θM
i)

]
. (22)

An alternate direction from which to approach solving Problem P overall is to ap-
proximate the necessary conditions of Problem P , i.e., Problem Pλ, directly rather than to
approximate Problem P. This creates the system of equations:

dλ

dt
(t, θM

i) = −∂H(x, u, t, θM
i)

∂x

λ(T, θM
i) =

∂F(x(T, θM
i), θM

i)

∂x
(23)

for i = 1, . . . , M, where H is defined as:

H(x, λ, u, t, θ) = λ f (x(t, θ), u(t), θ) + r(x(t, θ), u(t), t, θ).

This system of equations can be re-written in terms of the quadrature approximation
of the stationary Hamiltonian defined in Equation (20). Define

H̃M(x, λ, u, t) :=
M

∑
i=1

αM
i H(x(t, θM

i), λ(t, θM
i), u(t), t, θM

i).

Let
Λ̃(t) = [λ̃M

1 (t), . . . λ̃M
M(t)] = [λ(t, θM

1), . . . , λ(t, θM
M)]

and let
X̃M = [x̃M

1 (t), . . . , x̃M
M(t)]

denote the semi-discretized states from Equation (16). Equation (23) can then be written as:

dλ̃M
i

dt
(t) = − 1

αM
i
· ∂H̃M(X̃M, Λ̃, u, t)

∂x̃M
i

λ̃M
i (T) =

∂F(x̃M
i (T), θM

i)

∂x̃M
i

(24)

for i = 1, . . . , M. Thus, we reach the following discretized dual problem:

Problem PλM . For feasible controls u and solutions X̃M to Equation (16), find
Λ̃(t) = [λ̃M

1 (t), . . . λ̃M
M(t)], λ̃M

i : [0, T]→ Rnx , that satisfies the following conditions:

dλ̃M
i

dt
(t) = − 1

αM
i
· ∂H̃M(X̃M, Λ̃, u, t)

∂x̃M
i

,

λ̃M
i (T) =

∂F(x̃M
i , θM

i)

∂x̃M
i

, (25)

276

Sensors 2022, 22, 4773

where H̃M is defined as:

H̃M(X̃M, Λ̃M, u, t) =
M

∑
i=1

[
αM

i λ̃M
i f (x̃M

i (t), u(t), θM
i) + αM

i r(x̃M
i (t), u(t), t, θM

i)
]
. (26)

Lemma 1. The mapping:

(x̄M
i , ū) #→ (x̃M

i , ũ),
λ̄M

i
αM

i
#→ λ̃M

i ,

for i = 1, . . . , M is a bijective mapping from solutions of Problem PMλ to Problem PλM .

Proof. In the case of this particular problem, unlike standard control, the collocation of the
relevant dynamics involves no approximation of differentiation (since the discretization is
in the parameter domain rather than the time domain), and, thus, the mapping of covectors
between Problem PMλ and Problem PH̃M(X̃M ,Λ̃M ,u,t)=λM is straightforward and simply
constructively provided by the lemma itself. The two mappings of the lemma, (x̄M

i , ū) #→
(x̃M

i , ũ) (identity mapping) and λ̄M
i

αM
i
#→ λ̃M

i (scaling by 1
αM

i
) are both bijections.

Theorem 1. Let {X̃M, Λ̃M, uM}M∈V be a sequence of solutions for Problem PλM with an accu-
mulation point {X̃∞, Λ̃∞, u∞}. Let (x∞, λ∞, u∞) be the solutions to Problem Pλ for the control
u∞. Then

lim
M∈V

H̃M(X̃M, Λ̃M, uM, t) = H(x∞, λ∞, u∞, t)

where H̃M is the Hamiltonian of Problem PλM as defined by Equation (26) and H is the Hamiltonian
of Problem P as defined by Equation (20). The proof of this theorem can be found in the Appendix B.

The convergence of the Hamiltonians of the approximate, standard control problems
to the Hamiltonian of the general problem, H(x∞, λ∞, u∞, t), means that many of the
useful features of the Hamiltonians of standard optimal control problems are preserved.
For instance, it is straightforward to show that the satisfaction of Pontryagin’s minimum
principle by the approximate Hamiltonians implies minimization of H(x∞, λ∞, u∞, t) as
well. That is, that

H(x∞, λ∞, u∞, t) ≤ H(x∞, λ∞, u, t)

for all feasible u. Furthermore, when applicable, the stationarity properties of the standard
control Hamiltonian, such as a constant-valued Hamiltonian in time-invariant problems, or
stationarity with respect to u(t) in problems with open control regions, are also preserved.

5. Numerical Example

In a slight refashioning of the notation in the Section 2.2, Equation (12), let the parame-
ter vector θ be defined by all the unknown parameters defining the interaction functions.
Assuming prior distribution φ(θ) over these unknowns and parameter bounds Θ, we
construct the following optimal control problem for robustness against the unknown pa-
rameters.

Problem SD (Swarm Defense). For K defenders and N attackers, determine the defender
controls uk(t) that minimize:

J =
∫

θ

[
1− P0(t f , θ)

]
φ(θ)dθ (27)

277

Sensors 2022, 22, 4773

subject to: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏk(t) = f (yk(t), uk(t)), yk(0) = yk0

ẍj(t, θ) =

FS(t, θ) + FHVU(t, θ) + FD(t, θ), xj(0, θ) = xj0(θ)

Q̇j(t, θ) =

−Qj(t, θ)∑K
k=1 Pk(t, θ)dj,k

y (xj(t, θ), yk(t)), Qj(0, θ) = 1
Ṗk(t) =

−Pk(t, θ)∑N
j=1 Qj(t, θ)dk,j

x (yk(t), xj(t, θ)), Pk(0, θ) = 1

for swarm attackers j = 1, . . . , N and controlled defenders k = 1 . . . , K.
We implement Problem SD for both swarm models in Section 2.1, for a swarm of

N = 100 attackers and K = 10 defenders.

5.1. Example Model 1: Virtual Body Artificial Potential

The cooperative swarm forces FS are defined with the Virtual Body Artificial Potential
of Section 2.1 with parameters α, d0 and d1. In lieu of a potential for the virtual leaders, we
assign the HVU tracking function:

fHVU = −K1(xi − y0)

‖xi − y0‖ (28)

where y0 ∈ R3 is the position of the HVU. The dissipative force fvi = −K2 ẋi is employed
to guarantee stability of the swarm system. K1 and K2 are positive constants. The swarm’s
collision avoidance response to the defenders is defined by Equation (4) with parameters αh,
h0 and h1. Since there is only a repulsive force between swarm members and defenders, not
an attractive force, we set h1 = h0. For attrition, we use the the damage function defined in
Equation (21) of [20]:

FD = λΦ
(

F− ar2

σ

)
, r = ‖xi − yj‖2 (29)

where Φ is the cumulative normal distribution and ‖ · ‖2 is the vector 2-norm. This function
smoothly penalizes proximity, with the impact decreasing with distance. The parameters λ,
F, a, and σ shape the steepness of this function and the decline of damage over distance. For
the damage rate of defenders inflicted on attackers, we calibrate by the parameters λD, σD.
For the damage rate of attackers inflicted on defenders, we calibrate by the parameters λA,
σA. In both cases, the parameters F and a in [20] are set to F = 0, a = 1. Table 1 provides
the parameter values that remain fixed in each simulation, and and Table 2 provides the
parameters we consider as uncertain.

Table 1. Model 1 Fixed Parameter Values.

Parameter Value Meaning

t f 45 final time
K1 5 tracking coefficient
K 10 number of defenders
h1 h0 interaction parameter
λD 2 defender weapon intensity
σD 2 defender weapon range
N 100 number of attackers
K2 5 dissipative force

278

Sensors 2022, 22, 4773

Table 2. Model 1 Varied Parameter Values.

Parameter Nominal Range Meaning

α 0.5 [0.1, 0.9] control gain
d0 1 [0.5, 1.5] lower range limit
d1 6 [4, 8] upper range limit
λA 0.05 [0.01, 0.09] weapon intensity
σA 2 [1.5. 2.5] weapon range
αh 6 [5, 7] herding intensity
h0 3 [2, 4] herding range

We first use the nominal parameter values provided in Tables 1 and 2 to find a nominal
solution defender trajectories that result in the minimum probability of HVU destruction.
With the results of these simulations as a reference point, we consider as uncertain each
of the parameters that define attacker swarm model and weapon capabilities. In this
simulation, these parameters are considered individually. The number of discretization
nodes for parameter space was chosen by examination of the Hamiltonian. To illustrate this
method and the results obtained in Section 4 we compute Hamiltonians for the Problem
SD and Model 1 with θ = d0, d0 ∈ [0.5, 1.5] and M = [5, 8, 11]. As M increases the sequence
of Hamiltonians should converge to the optimal Hamiltonian for the Problem SD. For
Problem SD that should result in a constant, zero-valued Hamiltonian. Figure 3 shows the
respective Hamiltonians for M = [5, 8, 11]. The value M = 11 was chosen for simulations,
based on the approximately zero-valued Hamiltonian it generates.

Figure 3. Convergence of Hamiltonion as number of parameter nodes M increases.

We compare the performance of the solution generated using uncertain parameter
optimal control Problem SD versus a solution obtained with the nominal values. Figure 4
shows the nominal solution trajectories. The comparitive results of the nominal solutions
vs the uncertain parameter control solutions are shown in Figure 5, where the performance
of each is shown for different parameters values.

279

Sensors 2022, 22, 4773

Figure 4. Shown are four snapshots during a simulations at t = 0, 15, 30, and 45 (time units are
arbitrary). Defenders are represented by blue spheres and attackers by red spheres. The HVU is the
yellow sphere. Below these snapshots, we show full trajectories for the entire simulation, which is the
result of an optimization protocol using the parameters shown in Table 1.

280

Sensors 2022, 22, 4773

Figure 5. Performance of Solutions of Swarm Model 1 as parameter values are varied. Each panel
illustrates a different varied parameter, stated on the x-axis.

As seen in Figure 5 the trajectories generated by optimization using the nominal values
perform poorly over a range of α, d0, σA, αk and h0. In the case of h0, for example, this is
because the attackers are less repelled by the defenders when h0 is decreased, and they are
more able to destroy the HVU from a longer distance as σA is increased. The parameter
uncertainty solution, however, demonstrates that using the uncertain parameter optimal
control framework a solution can be provided which is robust over a range of parameter
values. We contrast these results with the case of uncertain parameters d1 and λA, also
shown in Figure 5. It can be seen that robustness improvements are modest to non-existent

281

Sensors 2022, 22, 4773

for these parameters. This suggests an insensitivity of the problem d1 and λA parameters.
This kind of analysis can be used to guide inference and observability priorities.

5.2. Example Model 2: Reynolds Boid Model

To demonstrate flexibility of the proposed framework to include diverse swarm models
we have applied the same analysis as was done in Section 5.1 to the Reynolds Boid Model
introduced in Section 2.1. We apply the same HVU tracking function as Equation (28). The
herding force FD of the defenders repelling attackers is applied as a separation force in the
form of Equation (10). The fixed parameter values are the same as those in Table 1; the
uncertain parameters and ranges are given in Table 3. The results are shown in Figure 6.
Again, we see that the tools developed in this paper can be used to gain an insight into the
robustness properties of the nominal versus uncertain parameter solutions. For example,
we can see that the uncertain parameter solutions perform much better than the nominal
ones for the cases where λ, σ and wI are uncertain.

Figure 6. Performance of Solutions of Swarm Model 2 as parameter values are varied.

282

Sensors 2022, 22, 4773

Table 3. Model 2 Varied Parameter Values.

Parameter Nominal Range Meaning

λA 0.05 [0.01, 0.09] weapon intensity
σA 2 [1.5, 2.5] weapon range
ral 2 [1.5, 2.5] alignment range
wal 0.75 [0.25, 1.25] alignment intensity
rcoh 2 [1.5, 2.5] cohesion range
wcoh 0.75 [0.25, 1.25] cohesion intensity
rsep 1 [0.5, 1.5] separation range
wsep 0.5 [0.1, 0 .9] separation intensity

rI 2 [1.5, 2.5] herding range
wI 4.5 [3.5, 5.5] herding intensity

6. Conclusions

In this paper, we have built on our previous work on developing an efficient numerical
framework for solving uncertain parameter optimal control problems. Unlike uncertainties
introduced into systems due to stochastic “noise”, parameter uncertainties do not average
or cancel out in regard to their effects. Instead, each possible parameter value creates a
specific profile of possibility and risk. The uncertain optimal control framework which has
been developed for these problems exploits this inherent structure by producing answers
which have been optimized over all parameter profiles. This approach takes into account
the possible performance ranges due to uncertainty, while also utilizing what information
is known about the uncertain features, such as parameter domains and prior probability
distributions over the parameters. Thus, we are able to contain risk, while providing
plans which have been optimized for performance under all known conditions. The
results reported in this paper include analysis of the consistency of the adjoint variables
of the numerical solution. In addition, the paper includes a numerical analysis of a large
scale adversarial swarm engagement that clearly demonstrates the benefits of using the
proposed framework.

There are many directions for future work for the topics of this paper. The numerical
simulations in this paper consider the parameters individually, as one-dimensional param-
eter spaces. However, Problem P allows for multi-dimensional parameter spaces. A more
dedicated implementation, taking advantage of the parallelizable form of Equation (16), for
example, could certainly manage several simultaneous parameters. Exponential growth
as parameter space dimension increases is an issue for both the quadrature format of
Equation (15) and handling of the state space size for Equation (16). This can be some-
what mitigated by using sparse grid methods for high-dimensional integration to define
the nodes in Equation (15). For large enough sizes, Monte Carlo sampling, rather than
quadrature might be more appropriate for designating parameter nodes.

A further direction for future work would be to incorporate these methods into
the design of more responsive closed-loop control solutions. The optimization methods
in this paper provide open-loop controls. While useful, closed-loop controls would be
more ideal for dynamic situations with uncertainty. There are many ways, however, that
open-loop solutions can provide stepping stones to developing closed-loop solutions.
For instance, Ref. [26] utilizes closed-loop solutions to train a neural network to learn an
optimal closed-loop control strategy. Open-loop solutions can also be used to provide initial
guesses to discretized closed-loop optimizations, seeding the optimization algorithm.

Another direction for future work is in the greater application of the duality results of
Section 4. The numerical results in this paper simply utilize the Hamiltonian consistency.
The proof of Theorem 1, however, additionally demonstrates the consistency of the adjoint
variables for the problem. As the results demonstrate, parameter sensitivity for these swarm
models is highly non-linear. The numerical solutions of Section 5 are able to demonstrate
this sensitivity by applying the solution to varied parameter values. However, this is
actually a fairly expensive method for a large swarm, as it involves re-evaluation of the

283

Sensors 2022, 22, 4773

swarm ODE for each parameter value. More importantly, it would not be scalable to high-
dimensional parameter spaces, as the exponential growth of that approach to sensitivity
analysis would be unavoidable. The development of an analytical adjoint sensitivity
method for this problem could be of great utility for paring down numerical simulations to
only focus on the parameters most relevant to success.

Author Contributions: Formal analysis, T.T.; Writing—original draft, C.W. and I.K.; Writing—
review & editing, Q.G. and A.H.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Office of Naval Research under Grant No. N0001421WX01974.
Additionally, this work was supported by the Department of the Navy, Office of Naval Research,
Consortium for Robotics Unmanned Systems Education and Research at the Naval Postgraduate School.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the University of Texas at San Antonio, the Univer-
sity of California Santa Cruz, and the Naval Postgraduate School for their administrative and
research support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Assumptions and Definitions

We we impose the assumptions in Section 2 of [4]. The definition of accumulation point
used in the following proof can be found in Definition 3.2 of [4]. The following assumption
is placed on the choice of numerical integration scheme to be utilized in approximating
Problem P:

Assumption A1. For each M ∈ N, there is a set of nodes {θM
i }M

i=1 ⊂ Θ and an associated set of
weights {αM

i }M
i=1 ⊂ R, such that for any continuous function h : Θ → R,

∫
Θ

h(θ)dθ = lim
M→∞

M

∑
i=1

h(θM
i)αM

i .

This is the same as Assumption 3.1 of [4]; we include it for reference.
In additions to the assumptions of [4], we also impose the following:

Assumption A2. The functions f and r are C1. The set Θ is compact and x0 : Θ #→ Rnx is
continuous. Moreover, for the compact sets X and U defined in Assumptions 2.3 and 2.4 of [4],
and for each t ∈ [0, T], θ ∈ Θ, the Jacobians rx and fx are Lipschitz on the set X ×U, and the
corresponding Lipschitz constants Lr and L f are uniformly bounded in θ and t. The function F is
C1 on X for all θ ∈ Θ; in addition, F and Fx are continuous with respect to θ.

Appendix B. Main Theorem Proof

The theorem relies on the following lemma:

Lemma A1. Let {uM} be a sequence of optimal controls for Problem PM with an accumulation
point u∞ for the infinite set V ⊂ N. Let (x∞(t, θ), λ∞(t, θ)) be the solution to the dynami-
cal system: {

ẋ∞(t, θ) = f (x∞(t, θ), u∞(t), θ)

λ̇∞(t, θ) = − ∂H(x∞(t,θ),λ∞(t,θ),u∞(t),t,θ)
∂x

(A1)

284

Sensors 2022, 22, 4773

{
x∞(0, θ) = x0(θ)

λ∞(T, θ) = ∂F(x∞(T,θ),θ)
∂x

(A2)

where H is defined as per Equation (19), and let {(xM(t, θ), λM(t, θ))} for M ∈ V be the sequence
of solutions to the dynamical systems:{

ẋM(t, θ) = f (xM(t, θ), uM(t), θ)

λ̇M(t, θ) = − ∂H(xM(t,θ),λM(t,θ),uM(t),t,θ)
∂x

(A3)

{
xM(0, θ) = x0(θ)

λM(T, θ) = ∂F(xM(T,θ),θ)
∂x

(A4)

Then, the sequence {(xM(t, θ), λM(t, θ))} converges pointwise to (x∞(t, θ), λ∞(t, θ)) and
this convergence is uniform in θ.

Proof. The convergence of {xM(t, θ)} is given by Lemmas 3.4 and 3.5 of [4]. The conver-
gence of the sequence of solutions {λM(t, θ)} is guaranteed by the optimality of {uM}.
The convergence of {λM(t, θ)} then follows the same arguments given the convergence
of {xM(t, θ)}, utilizing the regularity assumptions placed on the derivatives of F, r, and
f with respect to x to enable the use of Lipschitz conditions on the costate dynamics and
transversality conditions.

Remark A1. Note that λM(t, θ) is not a costate of Problem PλM , since it is a function of θ.
However, when θ = θM

i , then λM(t, θM
i) = λ̃M

i (t), where λ̃M
i is the costate of Problem PλM

generated by the pair of solutions to Problem PM, (x̃M
i , u∗M) . In other words, the function λM(t, θ)

matches the costate values at all collocation nodes. Since these values satisfy the dynamics equations
of Problem PλM , a further implication of this is that the values of λM(t, θM

i) produce feasible
solutions to Problem PλM .

Remark A2. Since the functions {(xM(t, θ), λM(t, θ))} obey the respective identities xM(t, θM
i) =

x̃M
i (t) and λM(t, θM

i) = λ̃M
i (t), their convergence to (x∞(t, θ), λ∞(t, θ)) also implies the conver-

gence of the sequence of discretized primals and duals, {X̃M} and {Λ̃M}, to accumulation points
given by the relations

lim
M∈V

x̃M
i (t) = x∞(t, θM

i), lim
M∈V

λ̃M
i (t) = λ∞(t, θM

i)

We now prove Theorem 1. Let {(xM(t, θ), λM(t, θ))} for M ∈ V be the sequence
of solutions defined by Equation (A3) and let (x∞(t, θ), λ∞(t, θ)) be the accumulation
functions defined by Equation (A1). Incorporating Remarks A1 and A2, we have:

lim
M∈V

H̃M(X̃M, Λ̃M, uM, t) =

lim
M∈V

M

∑
i=1

αM
i

[
λ̃M

i (t) f (x̃M
i (t), u(t), θM

i) + r(x̃M
i (t), u(t), t, θM

i)
]

= lim
M∈V

M

∑
i=1

αM
i

[
λM(t, θM

i) f (xM(t, θM
i), u(t), θM

i) + r(xM(t, θM
i), u(t), t, θM

i)
]

Due to the results of Lemma A1, and applying Remark 1 of [4] on the convergence of
the quadrature scheme for uniformly convergent sequences of continuous functions, we
find that:

lim
M∈V

H̃M(X̃M, Λ̃M, uM, t) =

285

Sensors 2022, 22, 4773

∫
Θ
[λ∞(t, θ) f (x∞(t, θ), u∞(t), θ) + r(x∞(t, θ), u∞(t), t, θ)]dθ = H(x∞, λ∞, u∞, t)

thus proving the theorem.

References

1. Walton, C.; Gong, Q.; Kaminer, I.; Royset, J.O. Optimal Motion Planning for Searching for Uncertain Targets. IFAC Proc. Vol. 2014,
47, 8977–8982. [CrossRef]

2. Gong, Q.; Kang, W.; Walton, C.; Kaminer, I.; Park, H. Partial Observability Analysis of an Adversarial Swarm Model. J. Guid.
Control. Dyn. 2020, 43, 250–261. [CrossRef]

3. Phelps, C.; Gong, Q.; Royset, J.O.; Walton, C.; Kaminer, I. Consistent approximation of a nonlinear optimal control problem with
uncertain parameters. Automatica 2014, 50, 2987–2997. [CrossRef]

4. Walton, C.; Kaminer, I.; Gong, Q. Consistent numerical methods for state and control constrained trajectory optimisation with
parameter dependency. Int. J. Control 2021, 94, 2564–2574. [CrossRef]

5. Weinan, E.; Han, J.; Li, Q. A mean-field optimal control formulation of deep learning. arXiv 2018, arXiv:1807.01083.
6. Walton, C.; Phelps, C.; Gong, Q.; Kaminer, I. A Numerical Algorithm for Optimal Control of Systems with Parameter Uncertainty.

IFAC-PapersOnLine 2016, 49, 468–475. [CrossRef]
7. Chung, S.J.; Paranjape, A.A.; Dames, P.; Shen, S.; Kumar, V. A Survey on Aerial Swarm Robotics. IEEE Trans. Robot. 2018,

34, 837–855. [CrossRef]
8. Mehmood, U.; Paoletti, N.; Phan, D.; Grosu, R.; Lin, S.; Stoller, S.D.; Tiwari, A.; Yang, J.; Smolka, S.A. Declarative vs rule-based

control for flocking dynamics. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing, Pau, France, 9–13
April 2018; pp. 816–823.

9. M. Wahab, S. Nefti-Maziani, A.A. A Comprehensive Review of Swarm Optimization Algorithms. PLoS ONE 2015, 10, e0122827.
10. Mavrovouniotis, M.; Li, C.; Yang, S. A survey of swarm intelligence for dynamic optimization: Algorithms and applications.

J. Swarm Evol. Comput. 2017, 33, 1–17. [CrossRef]
11. Leonard, N.E.; Fiorelli, E. Virtual leaders, artificial potentials and coordinated control of groups. In Proceedings of the 40th IEEE

Conference on Decision and Control (Cat. No. 01CH37228), Orlando, FL, USA, 4–7 December 2001; Volume 3, pp. 2968–2973.
12. Ogren, P.; Fiorelli, E.; Leonard, N.E. Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed

environment. IEEE Trans. Autom. Control 2004, 49, 1292–1302. [CrossRef]
13. Reynolds, C.W. Flocks, Herds and Schools: A Distributed Behavioral Model; ACM: New York, NY, USA, 1987; Volume 21.
14. Haque, M.; Rahmani, A.; Egerstedt, M. A hybrid, multi-agent model of foraging bottlenose dolphins. IFAC Proc. Vol. 2009,

42, 262–267. [CrossRef]
15. Strömbom, D.; Mann, R.P.; Wilson, A.M.; Hailes, S.; Morton, A.J.; Sumpter, D.J.; King, A.J. Solving the shepherding problem:

heuristics for herding autonomous, interacting agents. J. R. Soc. Interface 2014, 11, 20140719. [CrossRef] [PubMed]
16. Pierson, A.; Schwager, M. Bio-inspired non-cooperative multi-robot herding. In Proceedings of the 2015 IEEE International

Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1843–1849.
17. Paranjape, A.A.; Chung, S.J.; Kim, K.; Shim, D.H. Robotic herding of a flock of birds using an unmanned aerial vehicle.

IEEE Trans. Robot. 2018, 34, 901–915. [CrossRef]
18. Kolon, C.; Schwartz, I.B. The Dynamics of Interacting Swarms. arXiv 2018, arXiv:1803.08817.
19. Szwaykowska, K.; Schwartz, I.B.; Romero, L.M.y.T.; Heckman, C.R.; Mox, D.; Hsieh, M.A. Collective motion patterns of swarms

with delay coupling: Theory and experiment. Phys. Rev. E 2016, 93, 032307. [CrossRef]
20. Walton, C.; Lambrianides, P.; Kaminer, I.; Royset, J.; Gong, Q. Optimal motion planning in rapid-fire combat situations with

attacker uncertainty. Nav. Res. Logist. 2018, 65, 101–119. [CrossRef]
21. Ruths, J.; Li, J.S. Optimal Control of Inhomogeneous Ensembles. Trans. Autom. Control 2012, 57, 2012–2032. [CrossRef]
22. Hager, W.W. Runge-Kutta Methods in optimal control and the transformed adjoint system. Numer. Math. 2000, 87, 247–282.

[CrossRef]
23. Gong, Q.; Ross, I.M.; Kang, W.; Fahroo, F. Connections Between the Covector Mapping Theorem and Convergence of Pseudospec-

tral Methods for Optimal Control. Comput. Optim. Appl. 2008, 41, 307–335. [CrossRef]
24. Gabasov, R.; Kirillova, F.M. The Maximum Principle in Optimal Control Theory; Publishing House Nauka i Tekhnika: Minsk, Belarus,

1974. (In Russian)
25. Hartl, R.F.; Sethi, S.P.; Vickson, R.G. A survey of the maximum principles for optimal control problems with state constraints.

SIAM Rev. 1995, 37, 181–218. [CrossRef]
26. Nakamura-Zimmerer, T.; Gong, Q.; Kang, W. Adaptive Deep Learning for High-Dimensional Hamilton–Jacobi–Bellman Equations.

SIAM J. Sci. Comput. 2021, 43, A1221–A1247. [CrossRef]

286

sensors

Article

Over-Actuated Underwater Robots: Configuration Matrix
Design and Perspectives †

Tho Dang 1,*, Lionel Lapierre 1,*, Rene Zapata 1, Benoit Ropars 2 and Pascal Lepinay 1

Citation: Dang, T.; Lapierre, L.;

Zapata, R.; Ropars, B.; Lepinay, P.

Over-Actuated Underwater Robots:

Configuration Matrix Design and

Perspectives. Sensors 2021, 21, 7729.

https://doi.org/10.3390/s21227729

Academic Editors: Reza Ghabcheloo

and Antonio M. Pascoal

Received: 15 October 2021

Accepted: 18 November 2021

Published: 20 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Informatics, Robotics and MicroElectronics (LIRMM) (UMR 5506 CNRS—UM),
Université Montpellier, 161 rue Ada, CEDEX 5, 34392 Montpellier, France; zapata@lirmm.fr (R.Z.);
lepinay@lirmm.fr (P.L.)

2 Reeds Company, 199 rue Hélène Boucher, 34170 Castelnau-Le-Lez, France; ropars@lirmm.fr
* Correspondence: danghuu@lirmm.fr (T.D.); lapierre@lirmm.fr (L.L.)
† The manuscript is extended by our publication Dang, HT.; Lapierre, L.; Zapata, R.; Lepinay, P.; Ropars, B.

Configuration Matrix Design of Over-Actuated Marine Systems. In Proceedings of the OCEANS 2019,
Marseille, France, 17–20 June 2019; pp. 1–10, doi:10.1109/OCEANSE.2019.8867445.

Abstract: In general, for the configuration designs of underwater robots, the positions and directions
of actuators (i.e., thrusters) are given and installed in conventional ways (known points, vertically,
horizontally). This yields limitations for the capability of robots and does not optimize the robot’s
resources such as energy, reactivity, and versatility, especially when the robots operate in confined
environments. In order to optimize the configuration designs in the underwater robot field focusing
on over-actuated systems, in the paper, performance indices (manipulability, energetic, reactive,
and robustness indices) are introduced. The multi-objective optimization problem was formulated
and analyzed. To deal with different objectives with different units, the goal-attainment method,
which can avoid the difficulty of choosing a weighting vector to obtain a good balance among these
objectives, was selected to solve the problem. A solution design procedure is proposed and discussed.
The efficiency of the proposed method was proven by simulations and experimental results.

Keywords: over-actuated underwater robots; multi-objective optimization; underwater robots;
performance indices

1. Introduction

The Actuation System (AS) is an important part of marine robots. The AS groups the
different actuators carried by the system. Following the generic Navigation–Guidance–
Control (NGC) structure, the AS is in charge of realizing the desired force (Fd

B) provided by
the control system (see Figure 1).

Figure 1. NGC structure augmented with the actuation system and sensorial stage.

Sensors 2021, 21, 7729. https://doi.org/10.3390/s21227729 https://www.mdpi.com/journal/sensors287

Sensors 2021, 21, 7729

Following Figure 1, the sensorial stage using sensors measurement and prior knowl-
edge of the environment provides to the navigation system the necessary information to
compute an estimation of the system state (η̂). Then, the guidance system uses this esti-
mation and the reference system state (ηd) provided by the mission controller to compute
the error function (ε). The control system is then in charge of computing the desired force
(Fd

B) in order to reduce the error function to zero. Note that classically, this desired force is
expressed in the body-frame. Afterwards, the actuation system produces in the environment
a resulting force (FB), which should be as close as possible to Fd

B. Note that, in this paper,
the desired force (Fd

B) and resulting force (FB) are (6× 1) vectors and include force and
torque elements. Inside the AS block, referring to Figure 2, the desired force (Fd

B) is the
output of the controller. Then, the dispatcher (D) considers the actuator allocation method
(and eventually, redundancy management) to compute the desired actuator force (Fd

m) that
each actuator has to produce. The inverse actuator characteristics are then considered in
order to compute the actuator inputs (cm). Once applied, cm can produce actuator forces
(Fm). The resulting force FB is produced with respect to the actuator configuration (A).
The properties of the AS are indeed dependent on the actuator configuration (position
and attitude of the actuators with respect to the body-frame), actuator dynamics (response
characteristics), and dispatcher (control allocation, redundancy management) (see Figure 2)
and afford the system different properties. Let us consider in the following that n is the
number of Degrees of Freedom (DoFs) of the system and m is the number of actuators. If the
system carries less actuators than DoFs, it is said to be underactuated (in that case, A will be
an (n×m) matrix where n > m). Long-range Autonomous Underwater Vehicles (AUVs)
and, for the terrestrial case, unicycle wheeled vehicles belong to this category [1]. In that
case, specific nonlinear guidance strategies have to be used [2]. If the system carries more
actuators than DoFs, it is said to be redundant (n < m). Then, there are different solutions
(cm) to produce an identical resulting force (FB). Indeed, D is one of the multiple possible
inverses of A, classically D = A+, where A+ is the Moore–Penrose pseudo-inverse. The
properties of the AS play a pivotal role in the system performances, in terms of achievable
dynamics, maneuverability, robustness, and dependability. The properties of an overactu-
ated system have been studied in aerospace control, where critical safety is required [3],
and for marine vehicles [4], where the harsh oceanic condition may easily produce actuator
failure. Redundancy was also used in [5] in order to compensate different and unknown
actuator responses. The domain of robotic manipulators has also extensively studied this
question of redundancy, especially with recent works on humanoid robotics, where the
task function approach [6] has been used to concurrently achieve equilibriums [7], walking
pattern following [8], and multicontact management [9].

Figure 2. Actuation system scheme.

For a global evaluation of an actuation system, we should of course consider many
factors, including redundancy management, the control allocation method, the actuator
characteristics (inverse and direct), and the actuator configuration. This paper focuses on
the study of the actuator configuration; for other problems, the readers can refer to [5] and
the references therein.

Different performance criteria related to the actuator configuration design have been
proposed. For mobile manipulation, the manipulability index [10] measures the manipula-
tion capability of the end-effector. Intuitively, this index regards the set of all end-effector

288

Sensors 2021, 21, 7729

velocities, which is realizable by joint velocities. This set is called the hyper-manipulability
ellipsoid. This index is quantified by computing the hyper-manipulability ellipsoid’s prop-
erties. Based on these properties, there are different ways to quantify the manipulability
index, including the volume of the hyper-manipulability ellipsoid, the ratio of the minimum
and maximum radii of the hyperellipsoid, and the minimum radius of the hyperellipsoid.
The selection depends on the purpose of evaluation. When the uniformity of manipulating
ability is important, the ratio of two radii of the hyperellipsoid is chosen (the optimal value
will be close to one). Otherwise, the minimum radius of the hyperellipsoid is suited for
the case where the minimum manipulating ability might be critical [11]. Another criterion,
attainability [12–14], was studied using workspace volume estimation.

In the underwater robotics field, the manipulability index, energetic index, and force index
were introduced in [15], and the manipulability index was applied in [16]. Specifically,
the manipulability index is used to measure the system’s ability to exert a desired force
with a specific actuator configuration. Therefore, the closer to one this index is, the better
the robot’s isotropy is, i.e., the robot can exert the same forces/torques in any direction.
The energetic index is a measurement of the variation of system energy when the direction of
the desired force changes. This is evaluated by measuring the energy consumption when
the direction of a normalized desired force changes over a 3D sphere. The basic idea of the
energetic index is to keep the system’s energy consumption constant and as low as possible
when the direction of action changes. The force index is used to measure the ratio between
the actual maximum value and the minimum value of realizing forces. However, these
studies only considered a given and fixed actuator configuration. Regarding the design of
the actuator configuration of an overactuated underwater robot, a general problem is how
to achieve an optimal configuration considering different performance indices. This is a
challenging issue that raises two specific questions:

1. How do we define general and typical indices to evaluate an actuator configuration
of an overactuated underwater robot?

2. How do we solve the complex optimal problem, which is normally nonconvex and
has some conflicting objectives?

This paper focuses on the design of the actuator configuration for an overactuated
underwater robot with the contributions outlined below:

1. We propose performance indices to evaluate the actuator configuration of underwater
robots;

2. We optimize an actuator configuration design of an overactuated underwater robot
with respect to different performance indices simultaneously.

This paper focuses on the design of an actuator configuration of an overactuated
underwater robot, which optimizes different performance indices. Mathematically, an actu-
ator configuration is a mapping from an actuator force vector to a resulting force vector
(note that these vectors include force and torque elements). Since we considered an underwater
robot equipped with thrusters, the mapping is from a thruster force vector (Fm space) to
a body-frame vector (FB space) (see Figure 3). The mapping operator is a matrix, which
has different names in the literature such as: control effectiveness matrix [4,17], static trans-
formation matrix [18], geometrical distribution of thrusters [19], configuration matrix [16].
In this paper, the mapping of an actuator configuration is called a configuration matrix,
denoted as A.

Figure 3. Actuator configuration mapping.

289

Sensors 2021, 21, 7729

The paper is organized as follows. The notations are given in Section 2. The problem
formulation and performance indices are described in Section 3. The problem’s solution
is displayed in Section 4. Simulation results and analyses are depicted in Section 5. Real
experiments are depicted in Section 6. Finally, conclusions and future works are discussed
in Section 7.

2. Notation

This section provides most of notations used in the whole paper. However, further
notations are introduced when needed. In order to illustrate the notations, a given robot
configuration is shown in Figure 4, and detailed explanations are given in Table 1.

Figure 4. A given robot configuration.

Table 1. Notations.

A Configuration matrix
A+ Moore–Penrose pseudo-inverse of A matrix
ui (3× 1) unit vector of the direction of the ith thruster
ri (3× 1) unit vector of the position of the ith thruster

Fm (m× 1) force vector of m thrusters
Fd

m (m× 1) desired force vector of m thrusters
Fm,i Force magnitude of the ith thruster
Fd

B (6× 1) desired force (force and torque elements) w.r.t. the body-frame
FB = (F

Γ) (6× 1) resulting force (force and torque elements) w.r.t. the body-frame
cm (m× 1) input vector of thrusters
⊗ Cross product
‖ · ‖ Euclidean norm
‖ · ‖p p-norm

m Number of thrusters
n Number of Degrees of Freedom (DoFs)
F (3× 1) vector of force elements in the resulting force FB
Γ (3× 1) vector of torque elements in the resulting force FB
D Dispatcher
di Distance of the ith thruster to the center of the body-frame

cond(A) Condition number of the matrix A
Vol(.) Volume of a space
rank(.) Rank of a matrix

290

Sensors 2021, 21, 7729

3. Problem Formulation

The relation between the desired force (Fd
B) and resulting force (FB) depends on

different elements (see Figure 2). This paper only focuses on the actuator configuration.
Therefore, three assumptions were considered:

1. The inverse characteristics and direct characteristics of the actuators are perfectly known,
i.e., Fd

m = Fm;
2. The dispatcher is the Moore–Penrose pseudo-inverse of the actuators’ configuration, i.e., if the

actuators’ configuration is the A matrix, the dispatcher is D = A+;
3. All actuators have the same characteristics.

3.1. Model of the Actuator Configuration

This part describes how to model an actuator configuration of an overactuated under-
water robot equipped with thrusters. A thruster is modeled by the position and direction
of the force produced with respect to the body-frame of the robot. The position of the
ith thruster is described by a unit position vector ri and the distance di to the system’s
Center of Mass (CM) in the body-frame. The direction of the ith thruster is represented
by a unit direction vector ui with respect to the body-frame as in Figure 5, and the ith
thruster induces a force with the magnitude denoted as Fm,i. The relation of the thruster
force vector and resulting force vector (note that this space includes force elements (F) and
torque elements (Γ)) is described in Equation (1).

Figure 5. Actuator configuration model.

FB = AFm =

(
F

Γ

)
(1)

where FB = [Fu Fv Fw Fp Fq Fr]T ∈ R6, A ∈ R6×m, Fm = [Fm,1 Fm,2 . . . Fm,m]T

∈ Rm, and m is the number of thrusters, m > 6. The configuration matrix A is described as:

A =

(
u1 u2 · · · um

d1r1 ⊗ u1 d2r2 ⊗ u2 · · · dmrm ⊗ um

)

=

(
u1 u2 · · · um
τ1 τ2 · · · τm

)
=

(
A1
A2

) (2)

where A1 and A2 ∈ R3×m are submatrices of A, which correspond to the force and torque
elements, respectively. It is obvious to see that τT

i .ui = 0. This is one constraint of the
configuration matrix.

291

Sensors 2021, 21, 7729

In this paper, we assumed that all distances from the thruster positions to the center
of the body-frame are the same, di = dj = const, i, j = 1, . . . , m. Without loss of generality,
we can assume that di = 1, i = 1, . . . , m.

3.2. Manipulability Index

As mentioned before, the manipulability index was first introduced in [20] for ma-
nipulator mechanisms, and there are different ways to quantify the manipulability index.
This paper focuses on the isotropic property of a marine robot. Then, the ratio between the
maximum and minimum radii of the manipulability ellipsoid was chosen (see Figure 6).
Because of the units’ consistency, the matrices that relate to the force space, A1, and torque
space, A2, were investigated separately. However, because of our assumption on di, the ma-
nipulability index is defined as the condition number of the configuration matrix:

Im = Cond(A) =
σmax

σmin
(3)

where σmax and σmin are the maximum and minimum singular values of the configuration
matrix, A, respectively.

Figure 6. Manipulability ellipsoid with mapping.

Following Figure 6, the manipulability index investigates the resulting force ellip-
soid, which is realizable by the thruster forces (Fm) such that ‖Fm‖ ≤ 1 (see Theorem in
Appendix A). If Im = 1, the robot is isotropic, or if Im = ∞, the robot cannot act along at
least one direction.

3.3. Energetic Index

Energy is very important for marine robots, and the energy consumption of robots
depends on many factors such as the mechanical design, the environmental effects, and the
specific mission. In order to evaluate the energy performance of an underwater robot, the
energetic index was introduced in [15]. Being different from this, in our paper, the two-
norm of the thruster force vector, pE = ‖Fm‖2, was used to quantify the energy that an
underwater robot consumes to produce forces and torques, which can be calculated as
follows in Equation (4):

pE = ‖Fm‖2 =

√
m

∑
i=1

F2
mi = ‖A+.Fd

B‖2 (4)

The energetic index is proposed to measure the variation of the energy consumption
of an underwater robot when the direction of the desired force changes. It is quantified
by computing the energy consumption when a unit desired force vector, (Fd

B), changes
over the unit hypersphere (see Figure 7 for a 3D sphere). Because of the units’ consistency,
however, the force and torque sphere were computed separately.

For the force sphere case, the unit desired force vector includes a unit vector of force
elements and a zero vector of torque elements. For the torque sphere case, the unit desired

292

Sensors 2021, 21, 7729

force vector includes a zero vector of force elements and a unit vector of torque elements.
Intuitively, this can be expressed as:

Fd
B =

(
F

Γ

)
=

{
(us

0), for the force sphere
(0

us
), for the torque sphere.

(5)

where us = [cos α cos β sin α cos β sin β]T is a unit vector in spherical coordinates with
α ∈ [−π, π] and β ∈ [−π/2, π/2].

According to these two cases, the norm of the thruster force vector was also divided
into two cases as follows:

pE =

{
pE f = ‖A+(us

0)‖, for the force sphere case
pEΓ = ‖A+(0

us
)‖, for the torque sphere case.

(6)

Figure 7. The rotation of the unit desired vector in the 3D sphere.

The energetic index is defined as:

Ie =
1
S

∫
S
(we f pE f + weΓ pEΓ)dS (7)

where S is the area of the three-dimensional sphere, pE f , pEΓ are the subvectors of pE
corresponding to the force sphere and the torque sphere case, respectively, and we f and
weΓ are the weighting coefficients. Note that the weighting coefficients were chosen to
normalize the difference between the force and torque spheres. These choices depends
on the robot’s characteristics. However, because of the normalization of the spheres, it is
normal to assign one to these coefficients.

3.4. Workspace Index

The term workspace volume was first introduced in [13] for manipulator mechanisms.
In this paper, the work space index was used to measure the volume of the attainable
regions of the resulting force space with respect to (w.r.t.) the body-frame. In general, the
characteristics of thrusters always have limitations, namely saturations and dead-zones
(in this index, the dead-zone is not considered). This yields the polytope of the thruster
force space, the Fm space, denoted as M. By properly choosing the configuration matrix,
A = (A1A2)

T , the volume of the resulting force space for the force, the FF space, and the
resulting force space for the torque, the FT space, can be maximized (see Figure 8). Note
that the resulting spaces for the force and torque were studied separately because of the
units’ consistency.

In general, the set M of thruster forces is known (with the given saturations of
thrusters), so M is a polytope and FF and FT are also polytopes (under the A1 and A2

linear transform actions). We define the workspace index as:

Iw = ωw f Vol(FF) + ωwτVol(FT) (8)

293

Sensors 2021, 21, 7729

where Vol is the volume of a polytope and ωw f and ωwτ are the weighting coefficients.
In control perspectives, the larger the space’s volumes are, the less control effort is

need. The design objective was to maximize the workspace index, Iw. Normally, the set
M is convex and its vertices are known. It is easy to find the vertices of FF and FT .
Of course, FF and FT are also convex sets (because of the linear transformation). This
problem becomes a volume computation of convex polytopes.

Figure 8. Space mapping (vi is denoted as the vertex).

3.5. Reactive Index

The reactive index quantifies how fast the actuation system is able to change the
orientation of the resulting force FB (ideally, Fd

B). Suppose that the robot is traveling in a
direction with a set of thruster forces Fm1 induced from desired force vector Fd

B1. The robot
wants to change to another direction (or the same direction with a different magnitude)
with the desired force vector Fd

B2, so the thrusters have to produce another set of thruster
forces Fm2. The two-norm of the deviation of the thruster forces, %Fm = Fm1 − Fm2 =
[%Fm1%Fm2 · · · %Fmm]T , is considered as the reactive capability of the robot. Referring to
the approximation of the characteristics of the thrusters, as Figure 9, the change from Fm1 to
Fm2 is closer than that from Fm1 to Fm3 (in the linear section, the dead-zone of the thruster
characteristics is neglected in this paper). Hence, we have:

%Fm = A+(Fd
B1 − Fd

B2) = A+%Fd
B (9)

‖%Fm‖ = ‖A+%Fd
B‖ ≤ ‖A+‖‖%Fd

B‖ (10)

‖%Fm‖
‖%Fd

B‖
≤ ‖A+‖ (11)

From Equation (11), the sensitivity of the thruster forces with respect to the desired
forces, in other words the variation of the thruster forces w.r.t. the desired forces, is upper-
bounded by the norm of the pseudo-inverse of the configuration matrix, ‖A+‖. We define
the reactive index as:

Ire = ‖A+‖ (12)

It is obvious to see that if this index is lower, the robot is more reactive. Then,
the objective of the design process is to minimize the reactive index.

294

Sensors 2021, 21, 7729

Figure 9. Thruster characteristics’ approximation.

3.6. Robustness Index

This criterion measures the robustness level of the AS of an underwater robot. This
means that if any thruster of the robot fails, the remaining ones can still perform the robot’s
mission. In particular, for any Fd

B vector, there always exists a Fm vector to satisfy the
equation FB = AFm, and FB is as close as possible to Fd

B.
We have:

FB = AFm =
m

∑
i=1

aiFm,i (13)

where ai is the ith column of the matrix A and Fm,i is the force magnitude of the ith thruster.
When one or more thrusters completely fail, the value of Fm,i = 0. Note that in the

case that the ith thruster has partly failed, the value of Fm,i remains small (not addressed
in this paper). This is equivalent, as we considered that a corresponding column ai of the
configuration matrix A equals the zero vector. Therefore, Equation (13) is equivalent to:

FB = A
′
Fm (14)

where the A
′

matrix is the A matrix with one or more corresponding columns equal to the
zero vectors.

We discuss hereafter two questions: What are the conditions of the matrix A
′

to
guarantee the robustness? What is the maximum number of failed thrusters?

To address these two questions, we supposed that k thrusters fail, and Equation (14)
is a linear equation system with six equations (the dimensions of FB are 6× 1) and (m− k)
variables, because the matrix A

′
is 6×m, where k columns are zero vectors. It is obvious

to see that if rank(A
′
) = 6, for a given Fd

B, there always exits Fm such that FB = A
′
Fm

and FB is as close as possible to Fd
B. This can be interpreted as m− k ≥ 6 or k ≤ m− 6.

The condition on the configuration matrix and that on the maximum number of failed
thruster that guarantee the robustness of an underwater robot are stated as:

1. The maximum failed thrusters: m− 6;
2. Robustness condition: the rank of the configuration matrix always equals six, i.e., rank(A) = 6,

if any columns, from one to a maximum of (m− 6), of the A matrix equal the zero vectors.
If rank(A) < 6, the system becomes underactuated, and the guidance and control have to change
to guarantee the robot’s mission. This problem is not addressed in this paper.

We define the robustness index as:

Iro = rank(A|≤m−6) = 6 (15)

295

Sensors 2021, 21, 7729

where A|≤m−6 is the A matrix where the maximum number of columns being zero is
(m− 6). This index is verified in the solving process of the problem.

3.7. Configuration Matrix Design Problem

With all the performance indices discussed above, we propose the following design
problem:

min
A

V(A) = min
A

[Im Ie
1
Iw

Ire]
T (16)

s.t A ∈ A

where V(A) is the objective function vector. A is the feasible set of the configuration
matrix (A) including the constraints of the configuration matrix (A) and the robustness
index. The reciprocal of the workspace index, 1

Iw
, is in Equation (16), because we wanted to

maximize the workspace index.
This is a multi-objective optimization problem, and the unique solution belongs to the

convexity of each objective function in the objective vector and the feasible set, A. Note
that this optimization problem is with respect to a matrix variable (matrix optimization),
not a vector variable. However, the optimization techniques for vector variables (vector
optimization) can be applied here because we do not lose the physical meaning when
converting a matrix variable to a vector variable in this optimization problem (because of
the independency of each column in the matrix derived from the independent positions
and orientations of the thrusters).

Specifically, Equation (16) can be rewritten as:

min
A

V(A) = min
A

[Im Ie
1
Iw

Ire]
T (17)

s.t ‖ui‖ = 1, i = 1, 2, . . . , m

‖τi‖ ≤ 1, i = 1, 2, . . . , m

τT
i ui = 0, i = 1, 2, . . . , m

Iro = rank(A|≤m−6) = 6

The problem (17) is to minimize an objective vector V(A), including the manipula-
bility index, the energetic index, the reciprocal of the workspace index, and the reactive
index, with respect to configuration matrix, A, and to satisfy the constraints of the matrix
structure itself and the robustness index. It is clear that this is a nonconvex and multi-
objective optimization problem, which normally has many solutions. In the following
sections, we propose a mathematical analysis and a method for solving the multi-objective
optimization problem.

4. Problem Solution

Our final objective was to find a distribution (position and orientation) of the thrusters
of an underwater robot. This means obtaining the ui and ri vectors for i = 1, 2, . . . , m.
These vectors can be extracted from configuration matrix A, which is the solution of the
problem (17). Recall that our problem (17) is the multi-objective optimization problem with
nonconvexity, and theoretically, this problem has infinitely many Pareto-optimal solutions.
Our objective was to find one Pareto-optimal solution to build the robot. Analyzing the
underlying mathematical properties of the problem helped us simplify the solving process.
Thus, the mathematical analysis of the problem is shown in the next section.

4.1. Mathematical Analysis

The configuration matrix A has the form:

A =

(
u1 u2 · · · um
τ1 τ2 · · · τm

)
(18)

296

Sensors 2021, 21, 7729

We have:

B = ATA =

(
u1 u2 · · · um
τ1 τ2 · · · τm

)T(
u1 u2 · · · um
τ1 τ2 · · · τm

)
(19)

B is an m×m symmetric matrix where each element is denoted as bij. We have:

Tr(B) =
m

∑
i=1

bii

=
m

∑
i=1

λi (20)

where λi is the ith eigenvalue of matrix B.
From Equations (19) and (20), we have:

m

∑
i=1

λi =
m

∑
i=1

uT
i ui + τT

i τi

=
m

∑
i=1
‖ui‖2 + ‖τi‖2

m

∑
i=1

λi =
m

∑
i=1

(1 + ‖τi‖2) (21)

In the case of manipulability index optimization, the condition of configuration matrix
A is one, cond(A) = 1. This means that the maximum singular value equals the minimum
singular value, σmax = σmin. Note that the matrix A is the n × m matrix with n < m.
The matrix A has n nonzero singular values (we have to guarantee that rank(A) = n), then
the matrix B has n nonzero eigenvalues and m− n zero eigenvalues.

In the optimization case of the manipulability index, cond(A) = 1 ⇒ σmax = σmin, we
have λi = λmax = λmin = λ (σ =

√
λ). Equation (21) is rewritten as:

nλ = m +
m

∑
i=1
‖τi‖2

λ =
m
n
+

1
n

m

∑
i=1
‖τi‖2 (22)

Considering the fact that ‖τi‖2 ≤ 1, we have:

λ ≤ 2.
m
n

(23)

Therefore, we have λmax = 2 m
n when ‖τi‖2 = 1.

In the singular-value decomposition of a matrix, when cond(A) = 1, the matrix A can
be written as:

A = USVT = U[σ]n×mVT (24)

where U ∈ Rn×n, V ∈ Rm×m are orthogonal matrices, S = [σ]n×m =

⎛
⎜⎝

σ 0 · · · 0
... σ · · · 0
0 · · · σ 0

⎞
⎟⎠ ∈

Rn×m

The pseudo-inverse of matrix A is A+ and can be written as:

A+ = VS+UT = V[
1
σ
]m×nUT (25)

297

Sensors 2021, 21, 7729

where S+ = [1
σ]m×n =

⎛
⎜⎜⎜⎝

1
σ · · · 0
... 1

σ 0
0 0 1

σ
0 · · · 0

⎞
⎟⎟⎟⎠ ∈ Rm×n

Our objective for the reactive index was to minimize ‖A+‖. From Equation (25),
the reactive index Ire = ‖A+‖ = 1

σ , and the minimum value of the reactive index is
equivalent to the maximum value of σ. This leads to the equality of Equation (23).

In order to minimize the reactive index and the manipulability index, the configuration
matrix A has the following structure:

A = USVT

= U

⎛
⎜⎜⎜⎜⎜⎝

σ 0 · · · 0 0 0
0 σ 0 · · · 0 0
0 0 σ 0 · · · 0
...

...
...

...
...

...
0 0 0 σ 0 0

⎞
⎟⎟⎟⎟⎟⎠VT (26)

where S(n × m) is like-diagonal and σ =
√

λ =
√

2 m
n ; U(n × n) and V(m × m) are

orthogonal matrices (UUT = I, VVT = I). This result can be used as the initial value of the
numerical optimization process and is useful for solving the problem.

We continue to discuss the energetic index. First, we introduce a proposition as fol-
lows:

Proposition 1. Let M be a p× q matrix (p ≥ q), M ∈ Rp×q. For all x ∈ Rq, if M = PΣQT,

where P ∈ Rp×p, Q ∈ Rq×q are orthogonal matrices, Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ 0 · · · 0
0 μ · · · 0
0 · · · μ 0
0 · · · 0 μ
...

...
...

...
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
∈ Rp×q, then

‖Mx‖ = ‖M‖‖x‖.

Proof. We have:

‖Mx‖2 = (Mx)T(Mx) = xTMTMx (27)

With M = PΣQT :

‖Mx‖2 = xT(PΣQT)T(PΣQT)x

= xTQΣTPTPΣQTx

= xTQΣTΣQTx (28)

298

Sensors 2021, 21, 7729

We have:

ΣTΣ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ 0 · · · 0
0 μ · · · 0
0 · · · μ 0
0 · · · 0 μ
...

...
...

...
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

T⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ 0 · · · 0
0 μ · · · 0
0 · · · μ 0
0 · · · 0 μ
...

...
...

...
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

μ2 0 · · · 0
0 μ2 · · · 0
...

...
...

...
0 · · · 0 μ2

⎞
⎟⎟⎟⎠ = μ2I (29)

where I is a q× q identity matrix.
Replacing Equation (29) to (28), we have:

‖Mx‖2 = xTVμ2IVTx

= μ2xTx = ‖M‖2‖x‖2 (30)

Therefore, ‖Mx‖ = ‖M‖‖x‖.

The energetic index is stated as:

Ie =
1
S

∫
S
(we f ‖A+(Fd

B(f)‖+ weΓ‖A+Fd
B(Γ)‖)dS (31)

Choosing we f = weΓ = 1 (because the desired force vectors, Fd
B(f), Fd

B(τ), are units),
we have:

Ie =
1
S

∫
S
(‖A+Fd

B(f)‖+ ‖A+Fd
B(Γ)‖)dS (32)

In the case in which the reactive index and the manipulability index are minimum,
the configuration matrix A(n×m) has the form of Equation (26); therefore, the pseudo-
inverse matrix A+(m× n, m > n) has the following structure:

A+ = VS+UT = V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
σ 0 · · · 0
0 1

σ · · · 0
0 · · · 1

σ 0
0 · · · 0 1

σ
...

...
...

...
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

UT (33)

where V, U are orthogonal matrices.
It is clear that matrix A+ satisfies the condition of Proposition 1. Applying this

proposition, we have: ‖A+Fd
B(f)‖ = ‖A+‖‖Fd

B(f)‖ and ‖A+Fd
B(Γ)‖ = ‖A+‖‖Fd

B(Γ)‖.
Therefore, Equation (32) becomes:

Ie =
1
S

∫
S
(‖A+‖‖Fd

B(f)‖+ ‖A+‖‖Fd
B(Γ)‖)dS

=
1
S
‖A+‖

∫
S
(‖Fd

B(f)‖+ ‖Fd
B(Γ)‖)dS

= 2‖A+‖ (34)

299

Sensors 2021, 21, 7729

From the aforementioned mathematical analysis of the energetic index, we can see
that the energetic index belongs to the norm of the pseudo-inverse of the configuration
matrix, Ire = 2‖A+‖, when the configuration matrix A has the form of (26).

We then discuss the upper-bound of the workspace index. For the units’ consistency,
the workspace index for the force space and that for the torque space were investigated
separately, denoted as Iw f and Iwτ , respectively. Recall that the objective of the workspace
index is to maximize the volume of the resulting force space (FB space), including the
resulting space for the force and the resulting space for the torque with given thrusters’
force (the Fm space).

The fact that for all vectors Fm ∈ Rm, ‖AFm‖ ≤ ‖A‖‖Fm‖. The volume of the resulting
force space is maximum when the equality holds.

Following Figure 10, the volumes of the resulting force spaces (FB) (the force and
torque spaces) are always less than the volumes of the exterior hypersphere of FB spaces of
the force and torque (this may be the circumscribed spheres or not). This means that:

Figure 10. Upper-bound of the resulting force space.

IwF ≤ Vol(B(R1))

IwT ≤ Vol(B(R2)) (35)

where B(R1) and B(R2) are Euclidean balls of radius R1 = ‖A(1 : 3, :)‖‖Fm‖ = ‖A1‖‖Fm‖
and of radius R2 = ‖A(4 : 6, :)‖‖Fm‖ = ‖A2‖‖Fm‖, respectively; A(1 : 3, :) is composed
of the first three rows of A, and A(4 : 6, :) is composed of the last three rows of A.

The volume of a Euclidean ball of radius R in n-dimensional Euclidean space is [21]:

Vn(R) =

{
πk

k! R2k, ifn = 2k
2k+1πk

(2k+1)!! R2k+1, ifn = 2k + 1.
(36)

where (2k + 1)!! = 1.3.5, . . . , (2k− 1).(2k + 1).

Proposition 2. If the configuration matrix A has the form of (26), then cond(A1) = cond(A2) =
1 and ‖A1‖ = ‖A2‖ = σ.

Proof. We have:

AAT = (USVT)(USVT)T = USVTVSTUT

= USSTUT = σ2I (37)

On the other hand:

300

Sensors 2021, 21, 7729

AAT =

(
A1

A2

)(
A1

A2

)T
=

(
A1

A2

)
(AT

1 AT
2)

=

(
A1AT

1 0

0 A2AT
2

)
(38)

From (37) and (38), we have:

A1AT
1 = σ2I1

A2AT
2 = σ2I2 (39)

where I1 and I2 are partitioned matrices of matrix I.
From (39) and the uniqueness of singular-value decomposition [22], it is obvious to see

that the structures of A1 and A2 are the same as (26) with different dimensions. Therefore,
cond(A1) = cond(A1) = 1 and ‖A1‖ = ‖A2‖ = σ.

From (35) and (36) and Proposition 2, it is obvious to obtain the upper-bound of the
resulting spaces of the force and torque of the system and then the upper-bound of the
workspace index. Normally, the weighting coefficients in the workspace index are chosen
as one because of our assumption of di.

4.2. Problem Solution

Based on the above mathematical analysis, the goal-attainment method was chosen to
solve the problem with the given desired values. The idea of this method is to minimize
the deviation of the desired values and the obtained values. One advantage of the goal-
attainment method is that the problem does not need to be normalized to a dimensionless
problem. The solution of this method has been proven to be Pareto-optimal. This method is
also suitable when the feasible objective set is nonconvex [23]. All Pareto-optimal solutions
may be found by changing the attainment vector; however, this depends on the properties
of the problem.

Our problem using the goal-attainment method becomes:

min
A,γ

γ

s.t A ∈ Ā

V(A)−wγ ≤ Vgoal (40)

where Ā = A \ Iro, i.e., the feasible set of configuration matrices, A, without robustness
index Iro, γ is a slack vector variable, and Vgoal = [Id

m Id
e

1
Id
w

Id
re] is the desired objective

vector, w is an attainment vector, which can be chosen. The goal-attainment method with
two objective functions is illustrated in Figure 11. By altering w vector, we searched for the
Pareto-optimal solutions.

Therefore, our solving process included two phases:

1. Phase 1: Find one Pareto-optimal solution of the configuration matrix with the goal-
attainment method;

2. Phase 2: Check the robustness index of the chosen solution in Phase 1.

The optimization toolbox in the MATLAB environment was used to solve our problem.
Note that our problem was formulated as a multi-objective optimization problem. One
objective has one desired value excluding the robustness index, which is as a constraint,
and therefore, the desired vector is set up. The goal-attainment method was used to solve
the problem. An attainment vector was chosen as a trade-off between the underachieve-
ment and overachievement of the objective functions. In multi-objective optimization,
an optimal solution depends on a decision maker. Theoretically, there is no method for
this choice. In our work, this vector was selected by trial and error. In particular, for the

301

Sensors 2021, 21, 7729

manipulability, reactivity, and energetic indices, we know exactly the desired values, so
the corresponding values in the attainment vector were chosen as zero, which means that
these are hard constraints. For the workspace index, we only know the upper-bound of the
desired value; therefore, a positive value was chosen for underachievement.

Figure 11. Goal-attainment method with two objective functions.

5. Simulation Results

We designed an overactuated underwater robot with m = 8 thrusters and n = 6 de-
grees of freedom. Two cases were simulated: the general case and the given position
case. In the general case, we have to identify both the positions and orientations of eight
thrusters optimizing the performance indices. In the given position case, the thrusters
are installed at the corners of a cube, and we only have to determine the directions of the
thrusters. In this simulation, the thruster characteristics were chosen as in [5], then the max-
imum and minimum values of the thrusters forces were Fimax = 1.1N and Fimin = −0.4N,
respectively. The desired values of the performance indices were subsequently Id

m = 1,

Id
e = 1.2248, Id

wF = 597.7, Id
wT = 597.7, Id

re = 0.6124 (σmax =
√

2 m
n = 1.6330; see Table 2

for more details).

Table 2. Desired values of the indices.

Index Optimal Formula and Condition Desired Value

Id
m σmax = σmin 1

Id
e 2 ‖A+‖ 1.2248
1
Id
w

see Equations (35) and (36) and 1
Id
w
= 1

Id
wF

+ 1
Id
wT

0.0033

Id
re

1
σmax 0.6124

5.1. General Case

In this case, the robot is called a ball robot, and the positions and orientations of the
thrusters are not known. The problem (40) is solved as follows.

5.1.1. Phase 1

The optimization toolbox was used to solve the problem (40) with the desired goal
vector, and the constraints were Vgoal = [Id

m Id
e

1
Id
w

Id
re] = [1 1.2248 0.0033 0.6124]T ,

the constraint set Ā = {A ∈ R6×8/‖ui‖ = 1, ‖τi‖ ≤ 1, τT
i ui = 0}, and the attainment

vector w = [0 0 0 0.0036]T . The attainment vector allows setting the overachievement
or underachievement of the individual goals. At the moment, there is no general method

302

Sensors 2021, 21, 7729

to choose this attainment vector. It was chosen by trial and error. By our approach, we
found that some values of this vector can be assigned zero (this imposes hard constraints),
except the workspace index (because of the upper-bound value).

The simulation results are shown in Figures 12 and 13a,b. The configuration matrix
A and optimal values are shown in Table 3. Specifically, in Figure 12, the positions of the
thrusters are at the top of the blue line, and the orientations of the thrusters are shown
as the red arrow. Furthermore, we can see that the isotropic property of the robot is
guaranteed (see Figure 13a,b) with the sphere shapes of the attainable spaces of the forces
and torques. From Table 3, the obtained values of the manipulability index, the energetic
index, and the reactive index were almost the same as the desired values. However,
the obtained workspace index was smaller than the desired one.

Figure 12. Positions and directions of the thrusters (general case) (XI-axis = u-axis; YI-axis = v-axis;
ZI-axis=w-axis).

0

2

Fz

2

Force space

Fy

2

4

0

Fx
0-2 -2

(a)

-4
-2

4

0Tz

2 4

2

Torque space

Ty

2

4

0

Tx

0-2 -2-4 -4

(b)

Figure 13. Attainable spaces in the general case (Fx-axis = u-axis; Fy-axis = v-axis; Fz-axis = w-axis).
(a) Force space. (b) Torque space.

303

Sensors 2021, 21, 7729

Table 3. Configuration matrix in the general case.

Configuration Matrix Optimal Value Attainment Factor

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.8891 −0.3645 0.5438 0.9879 0.3134 0.0148 0.0495 0.6090
−0.0985 −0.3036 −0.5911 −0.0608 −0.9493 0.0515 0.8919 0.7158

0.4471 0.8803 0.5957 0.1429 0.0260 0.9986 0.4495 0.3417
−0.4308 0.4701 −0.8386 0.0379 −0.1336 0.5628 −0.9972 0.4758

0.5107 0.7561 −0.4103 0.9868 −0.0712 −0.8259 0.0690 0.0149
−0.7441 0.4554 0.3583 0.1577 −0.9885 0.0342 −0.0272 −0.8794

⎞
⎟⎟⎟⎟⎟⎟⎠ Fval =

⎛
⎜⎜⎝

1.0000
1.2200
0.0050
0.6124

⎞
⎟⎟⎠ 0.3896

5.1.2. Phase 2

In this phase, the robustness index was checked. The optimal configuration matrix A

in Table 3 satisfies the robustness constraint. Specifically, the maximum number of thrusters
that are acceptable (for failures) is two.

5.2. Given Position Case

In this case, the robot is called the cube robot, and the positions of thrusters are at the
corners of the cube. We only had to find their orientations. The number of variables in the
problem (40) was reduced. The desired objective vector and attainment vector were the
same as in general case. The results are presented in the sequel.

5.2.1. Phase 1

The optimization toolbox was used to solve our problem, and the simulation results
are shown in Figures 14 and 15a,b and Table 4. The directions of the thrusters are depicted
as red arrows in Figure 14. Being similar to the general case, the isotropic property is also
guaranteed in this case (see Figure 15a,b). One Pareto-optimal configuration matrix is
shown in Table 4. We can see that the obtained objective values in Table 4 are the same as
the general case.

Figure 14. Robot design with the directions of the thrusters (given position case) (XI-axis = u-axis;
YI-axis = v-axis; ZI-axis = w-axis).

304

Sensors 2021, 21, 7729

-2

0

2 2

Fz
2

Force space

Fy

0

Fx

0
-2-2 -4

(a)

-2

0

2

Tz

Torque space

Ty

2

2

Tx

0 0
-2 -2

(b)

Figure 15. Attainable spaces in the given position case (Fx-axis = u-axis; Fy-axis = v-axis;
Fz-axis = w-axis). (a) Force space. (b) Torque space.

Table 4. Configuration matrix in the given position case.

Configuration Matrix Optimal Value Attainment Factor

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.0836 0.6616 −0.8122 0.4785 −0.6616 −0.0836 −0.4785 −0.8122
0.7452 0.7452 0.3337 0.3337 0.7452 0.7452 0.3337 −0.3337
0.6616 −0.0836 −0.4785 −0.8122 0.0836 −0.6616 0.8122 −0.4785

−0.8122 0.4785 −0.0836 −0.6616 −0.4785 0.8122 0.6616 −0.0836
−0.3337 −0.3337 0.7452 0.7452 −0.3337 −0.3337 0.7452 −0.7452

0.4785 0.8122 0.6616 −0.0836 −0.8122 −0.4785 0.0836 0.6616

⎞
⎟⎟⎟⎟⎟⎟⎠ Fval =

⎛
⎜⎜⎝

1.0000
1.2200
0.0050
0.6124

⎞
⎟⎟⎠ 0.3868

5.2.2. Phase 2

The optimal configuration matrix A in Table 4 satisfies the conditions of the robustness
index. Similarly, the maximum number of thrusters that can fail is two.

5.3. A Comparison of Two Configurations

In this section, a comparison of two configurations is illustrated. The choice of the
configurations corresponds to a real robot (cube robot), which is used in the experiments
in the next section. The first one is a normal configuration (denoted as C1) in which the
thrusters are distributed vertically or horizontally (in practice, this configuration is easier
to install, as Figure 21 shows). The configuration matrix of the C1 configuration, denoted
as A1, is shown in Equation (41).

A1 =

⎛
⎜⎝

0 1 0 0 0 0 −1 0
1 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 −1

0.27 0 −0.27 0.27 0.27 0.27 0 0.27
0 −0.27 0.27 0 0 0.27 −0.27 −0.27

0.27 −0.27 0 0.27 0.27 0 0.27 0

⎞
⎟⎠ (41)

The second one (denoted as C2) is an optimal configuration, denoted as A2, which
is a solution of the optimization problem (given position case) thanks to the thruster
characteristics of BlueRobotics (Figure 16), and the optimal configuration matrix is shown
in Equation (42).

A2 =

⎛
⎜⎝

0.6616 −0.8122 0.4785 0.0836 −0.0836 −0.4785 −0.8122 −0.6616
0.7452 0.3337 0.3337 0.7452 0.7452 0.3337 −0.3337 0.7452

−0.0836 −0.4785 −0.8122 0.6616 −0.6616 0.8122 −0.4785 0.0836
0.1608 0.0111 −0.2459 −0.3708 0.3642 0.2015 0.0011 −0.1658

−0.0989 0.3556 0.3633 −0.0989 −0.1056 0.3508 −0.3456 −0.1056
0.3906 0.2292 0.0044 0.1583 −0.1649 −0.0254 0.2392 −0.3708

⎞
⎟⎠ (42)

305

Sensors 2021, 21, 7729

Figure 16. Thruster characteristics (BlueRobotics) [24].

Note that the configuration matrices A1 and A2 were calibrated with the corresponding
geometrical properties of the real cube robot at the LIRMM Institute, Montpellier University.
The attainable force space and torque space corresponding to the two configurations C1 and
C2 are illustrated in Figure 17a,b. It is obvious that the C2 configuration is more isotropic
than the C1 configuration. However, for some specific points of the attainable force and
torque spaces, the C1 configuration is better than the C2 configuration.

100

-100

Force space

0

Fx(N)

F
z(

N
)

0100

100

Fy(N)

0 -100-100

(a)

-50

50

0

T
z(

N
.m

)

Ty(N.m) 0
50

Torque space

Tx(N.m)

50

0-50
-50

(b)

Figure 17. Attainable spaces for different configurations (X-axis = u-axis; Y-axis = v-axis;
Z-axis = w-axis). (a) C1(blue), C2(red). (b) C1(blue), C2(red).

Thanks to the properties of matrices A1 and A2 (Equations (41) and (42)) and the
thruster characteristics (Figure 16), Table 5 shows the values of the performance indices
for both configurations. The performances of the C2 configuration are better than C1. Be-
cause of the calibration (the distance di is different between the motors), the manipulability
index (Im) is larger than one (Note that, theoretically, the distances of all thrusters with
respect to the center of mass were assumed the same (without loss of generality, they
were assigned one). However, in practice, for our cube robot, these distances were not
completely the same, and we had to calibrate the configuration matrix.).

306

Sensors 2021, 21, 7729

Table 5. Comparison between the two configurations (Iro shows the maximum number of thrusters
that can fail to make sure that rank(A = 6)).

No. Indices C1 C2

1 Im 7.12 2.559
2 Ie 3.32 2.09
3 Iw 6,511,536.45 10,919,428.13
4 Ire 4.05 1.56
5 Iro 0 2

In order to verify the attainability of the two configurations (workspace index), incremen-
tal torques were applied about the u-, v-, and w-axis, respectively (Figures 18a, 19a and 20a),
and the corresponding Pulse-Width Modulation (PWM) inputs (cm) of the eight thrusters
were computed. The results are shown in Figures 18b,c, 19b,c and 20b,c, in which the two
PWM saturation values of the thrusters (upper saturation value: 1900, lower saturation
value: 1100) are plotted with two bold lines. We can see that the performances of the
robot with the two configurations are almost the same for the rotation about the u- and
v-axis. However, the C2 configuration showed better performance for the rotation about
the w-axis. In fact, the thrusters with the C1 configuration reached saturations very earlier
in comparison with the thrusters with the C2 configuration (Figure 20b,c).

In order to validate the robustness of the optimal configuration (C2) in comparison
with the normal configuration (C1), the rank of matrices A1 and A2 was checked when
one or two arbitrary columns have been nullified. When the resulting matrices are rank
deficient, this means that the robustness is not guaranteed because one direction is not
actuated. Therefore, we cannot control all 6 DoFs independently. The robustness index
in Table 5 shows the checking results. In particular, when the fifth thruster of the C1

configuration fails, the robustness is not guaranteed.

0 200 400 600 800 1000
time step(s)

0

10

20

30

40

50

T
or

qu
e(

N
.m

)

Torque applied on X

(a)

0 200 400 600 800 1000
time step(s)

1000

1200

1400

1600

1800

2000

P
W

M
 in

pu
ts

Thruster PWM of C1 configuration (X)

(b)

0 200 400 600 800 1000
time step(s)

1000

1200

1400

1600

1800

2000

P
W

M
 in

pu
ts

Thruster PWM of C2 configuration (X)

(c)

Figure 18. The simulation of the cube rotation about the u-axis for C1 and C2 (X-axis = u-axis).
(a) Applied torque about the u-axis. (b) PWM inputs of C1 . (c) PWM inputs of C2.

307

Sensors 2021, 21, 7729

0 200 400 600 800 1000
time step(s)

0

10

20

30

40

50

T
or

qu
e(

N
.m

)

Torque applied on Y

(a)

0 200 400 600 800 1000
time step(s)

1000

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C1 configuration (Y)

(b)

0 200 400 600 800 1000
time step(s)

1000

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C2 configuration (Y)

(c)

Figure 19. The simulation of the cube rotation about the v-axis for C1 and C2 (Y-axis = v-axis).
(a) Applied torque about the v-axis. (b) PWM inputs of C1 . (c) PWM inputs of C2.

0 200 400 600 800 1000
time step(s)

0

10

20

30

40

50

T
or

qu
e(

N
.m

)

Torque applied on Z

(a)

0 200 400 600 800 1000
time step(s)

500

1000

1500

2000

P
W

M

Thruster PWM of C1 configuration (Z)

(b)

0 200 400 600 800 1000
time step(s)

1000

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C2 configuration (Z)

(c)

Figure 20. The simulation of the cube rotation about the Z-axis for C1 and C2 (Z-axis = w-axis).
(a) Applied torque about the w-axis. (b) PWM inputs of C1. (c) PWM inputs of C2.

308

Sensors 2021, 21, 7729

6. Experimental Results

Experiments were carried out on the cube robot to compare between the two config-
urations, C1 (see Figure 21) and C2 (see Figure 22), in the swimming pool at Montpellier
University. The cube in the water and a video link for the cube’s operations can be seen in
Figure 23.

Figure 21. C1 of the cube robot.

Figure 22. C2 of the cube robot.

309

Sensors 2021, 21, 7729

Figure 23. Cube robot in the water https://www.youtube.com/watch?v=RKiWUOxDKdw (accessed
on 18 October 2019)

6.1. Attainability Validation

The incremental torques about the u-axis, v-axis, and w-axis were applied to cube
robot respectively, and angular velocities and PWM input values were stored to evaluate
these two configurations. For safety, the experiments were stopped when one thruster
reached the saturation values. The experimental results are shown in Figures 24–26.
For rotating about the u-axis (Figure 24), the attainability of configurations C1 and C2

was almost the same: all thrusters operated in a feasible region. Otherwise, for rotating
about the v-axis or w-axis, the attainability of configuration C2 was better than that of C1.
In particular, with the v-axis experiment (Figure 25), the cube robot with C1 stopped the
mission earlier than with C2 (at Time Step 771) because one thruster reached saturation.
The same thing happened with the w-axis experiment (at Time Step 451) (see Figure 26).

0 200 400 600 800
time step(s)

0

10

20

30

40

N
.m

Torque applied to X

C1
C2

(a) Applied torque about the u-axis

0 200 400 600 800
time step(s)

-0.5

0

0.5

1

1.5

2

2.5

3

ra
d/

s

Angular velocity about X

C1
C2

(b) Angular velocities

0 200 400 600 800
time step(s)

1000

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C1 configuration

(c) PWM inputs of C1

0 200 400 600 800
time step(s)

1000

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C2 configuration

(d) PWM inputs of C2

Figure 24. The cube rotates about the u-axis for C1 and C2 (X-axis = u-axis).

310

Sensors 2021, 21, 7729

0 200 400 600 800 1000
time step(s)

-10

0

10

20

30

40

50

60

N
.m

Torque applied to Y

C1
C2

771

(a) Applied torque about the v-axis

0 200 400 600 800 1000
time step(s)

-0.5

0

0.5

1

1.5

2

2.5

3

ra
d/

s

Angular velocity about Y

C1
C2

771

(b) Angular velocities

0 200 400 600 800
time step(s)

1000

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C1 configuration

(c) PWM inputs of C1

0 200 400 600 800 1000
time step(s)

1000

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C2 configuration

(d) PWM inputs of C2

Figure 25. The cube rotates about the v-axis for C1 and C2 (Y-axis = v-axis).

0 200 400 600 800
time step(s)

0

10

20

30

40

N
.m

Torque applied to Z

C1
C2

451

(a) Applied torque about the w-axis

0 200 400 600 800
time step(s)

0

1

2

3

ra
d/

s

Angular velocity about Z

C1
C2

451

(b) Angular velocities

0 100 200 300 400 500
time step(s)

1000

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C1 configuration

(c) PWM inputs of C1

0 200 400 600 800
time step(s)

1000

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C2 configuration

(d) PWM inputs of C2

Figure 26. The cube rotates about the Z–axis for C1 and C2 (Z-axis = w-axis).

6.2. Energetic Validation

In this section, we verify the energy consumption during these experiments for the
two configurations. An energy-like criterion is proposed:

311

Sensors 2021, 21, 7729

E =
m

∑
i=1

∫ T

t=0
|PWMi(t)− 1500|dt (43)

where m is the number of thrusters, T is the time of the experiment, and PWMi(t) is the
PWM inputs of the ith thruster.

Table 6 shows the energy consumption of the robot during the three rotation experi-
ments. For u-axis rotation, the attainability of the two configurations was the same, but
the energy consumption of C2 was lower than that of C1. For v-axis and w-axis rota-
tions, the duration of the experiments of C2 was longer than that of C1, and the energy
consumption, therefore, was higher.

Table 6. Energy consumption of the two configurations.

No. Rotation EC1 EC2

1 u 7.2303 × 104 6.9603 × 104

2 v 7.5480 × 104 1.0590 × 105

3 w 3.1637 × 104 7.4350 × 104

Table 7 shows the comparison of the energy consumption of the two configurations
with the same time duration. For the v-axis rotation, the energy value of C2 was lower than
that of C1. However, for the w-axis, the energy value of C2 was higher. This happened
because the robot dived deeper in C2 in the experiment of the w-axis rotation, and the robot
had to deliver more power to maintain a greater constant depth.

Table 7. Energy consumption of the two configurations with the same time duration.

No. Rotation EC1 EC2

1 v 7.5480 × 104 7.2715 × 104

2 w 3.1637 × 104 3.3312 × 104

6.3. Robustness and Reactive Validation

This section validates the robustness and reactivity of the optimal configuration (C2) in
comparison to the normal one (C1). For robustness, the robot performed a mission, and one
or two thrusters were turned off. For the normal configuration C1, the mission would fail,
and for the optimal configuration C2, the mission would be guaranteed. Specifically, for
the robustness index, we carried out the following experiments:

1. The cube robot dives to a predefined depth with all motors being in the normal
operating conditions;

2. The cube robot dives to the same predefined depth with one vertical motor being
stopped;

3. The cube robot dives to the same predefined depth with two vertical motors being
stopped;

4. The cube robot dives to the same predefined depth with three motors being stopped
(two vertical motors and one arbitrary motor);

5. The cube robot simultaneously dives to the same predefined depth and rotates about
the w-axis with three motors being stopped (two vertical motors and one horizontal
motor)

For the reactive index, we measured how fast the robot changed missions. The follow-
ing experiments were carried out:

312

Sensors 2021, 21, 7729

1. The cube robot goes down to the predefined depth and goes up to another predefined
depth, then goes down again to the former predefined depth;

2. In the sequel, the cube robot goes down to the predefined depth, rotates about the
u-axis, and after that, rotates about the v-axis. The rotation time of each axis should
be 60 s or longer;

3. Next, the cube robot goes down to the predefined depth, rotates about the u-axis, and
after that, rotates about the diagonal-axis (diagonal of the cube robot). The rotation
time of each axis should be 60 s or longer.

The experimental results for the robustness validation of C1 and C2 are shown in
Figures 27–29. In the case of one or two motors stopped, the depth control performances of
C1 and C2 were almost the same (see Figure 27). The differences are clear in the case of
three thrusters stopped (Figure 29): the performance of C1 was not guaranteed (Figure 28)
and violations of the PWM values occurred (see Figure 29a).

(a) (b)

Figure 27. Depth control for C1 and C2 with one and two motors stopped. (a) Depth control of
two configurations with one motor stopped. (b) Depth control of two configurations with two
motors stopped.

Figure 28. Depth control for C1 and C2 with three motors stopped.

313

Sensors 2021, 21, 7729

(a) (b)

Figure 29. PWM evaluation for C1 and C2 with 3 motors stopped. (a) PWM of C1. (b) PWM of C2.

The results for the reactive validation are shown in Figures 30–32. We measured the
reactive time of the angular velocities when the directions of the cube’s actions changed. It
is clear that the reactive time of C2 was faster than that of C1. Specifically, the reactive time
is the region formed by the vertical dashed lines in Figures 30–32. It is obvious that the
reactive time of C2 was smaller than that of C2 (see Figures 31 and 32).

(a) (b)

Figure 30. Angular velocity evaluation for C1 and C2: diving, rotating about the u-axis, and rotating
about the diagonal-axis (Wx = p; Wy = q; Wz = r). (a) Angular velocities of C1. (b) Angular
velocities of C2.

(a) (b)

Figure 31. Angular velocity evaluation for C1 and C2: diving, rotating about the u-axis, and rotating
about the v-axis (Wx = p; Wy = q). (a) Angular velocities of C1. (b) Angular velocities of C2.

314

Sensors 2021, 21, 7729

Figure 32. Angular velocity evaluation for C1 and C2: diving, rotating about the u-axis, and rotating
about the v-axis (Wx = p; Wy = q).

7. Conclusions and Future Work

In this paper, an approach for designing an optimal configuration matrix (which
depends on the positions and directions of the thrusters) of overactuated underwater robots
was presented. The performance indices (related to manipulability, energy, workspace,
reactivity, and robustness) were proposed and analyzed. Specifically, the manipulability
index shows the isotropic properties of a robot; the energetic index minimizes the energy
consumption under some assumptions; the workspace index is related to the attainable
spaces (i.e., the force and torque spaces) of the robot; the reactive index presents how
fast the robot changes the direction of the resulting actuation force; finally, the robustness
index is related to the capacity of the robot to maintain its performance in the case of
failures (i.e., some thrusters are completely stopped). It was formulated as a multi-objective
optimization problem. Because the different indices exhibit different magnitudes and
physical meanings, the goal-attainment method was chosen to find one Pareto-optimal
solution. Simulation and experimental results showed that the performances of the optimal
configuration were better than a “normal” configuration, which is often used (thrusters are
installed vertically or horizontally). Because of the nonconvexity of the problem, finding
all Pareto-optimal solutions, the Pareto front, remains a challenging problem and will be
future work. Moreover, a design problem relaxing the assumptions (i.e., perfectly known
characteristics of the actuators, pseudo-inverse dispatcher) is also an interesting direction
for future research.

Author Contributions: Conceptualization, T.D., L.L., and R.Z.; methodology, T.D., L.L., and R.Z.;
software, T.D., B.R., and P.L.; validation, T.D., L.L., R.Z., B.R., and P.L.; writing—original draft
preparation, T.D.; writing—review and editing, L.L.; supervision, L.L. and R.Z.; project administra-
tion, L.L.; funding acquisition, L.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This project was supported by the LabEx NUMEV (ANR-10-LABX- 0020) within the I-SITE
MUSE (ANR-16-IDEX-0006) and the Region Occitanie (french FEDER funds).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Numev Labex, MUSE, Montpellier University;
Region Occitanie; and FEDER for supporting this research.

Conflicts of Interest: The authors declare no conflict of interest.

315

Sensors 2021, 21, 7729

Abbreviations

The following abbreviations are used in this manuscript:

AS Actuation System
NGC Navigation–Guidance–Control
DoFs Degrees of Freedom
AUVs Autonomous Underwater Vehicles
CM Center of Mass
PWM Pulse-Width Modulation

Appendix A

Theorem A1. The image of the unit hypersphere under any n×m matrix is a hyperellipsoid.

Proof. Let A be an n×m matrix with rank r. Let A = USVT be a singular-value decom-
position of A. The left and right singular vectors of A are denoted as u1, u2, . . . , un and
v1, v2, . . . , vm, respectively. Since rank(A) = r, the singular values of A have the properties:
σ1 ≥ σ2 ≥, . . . ,≥ σr > 0 and σr+1 = σr+2 =, . . . ,= σm = 0.

Let x =

⎛
⎜⎝

x1
...

xm

⎞
⎟⎠ be an unit vector in Rm. Because V is an orthogonal matrix and VT

is also, we have that VTx is an unit vector (it is easy to see that ‖VTx‖ = ‖x‖). Therefore,
(vT

1 x)2 + (vT
2 x)2+, . . . ,+(vT

mx)2 = 1.
On the other hand, we have A = σ1u1vT

1 + σ2u2vT
2 +, . . . ,+σrurvT

r . Therefore:

Ax = σ1u1vT
1 x + σ2u2vT

2 x+, . . . ,+σrurvT
r x

= (σ1vT
1 x)u1 + (σ2vT

2 x)u2+, . . . ,+(σrvT
r x)ur

= y1u1 + y2u2+, . . . ,+yrur

= Uy (A1)

where yi denotes the σiv
T
i x and y =

⎛
⎜⎝

y1
...

yr

⎞
⎟⎠.

From (A1), we have: ‖Ax‖ = ‖Uy‖ = ‖y‖ (since U is an orthogonal matrix). More-
over, y has the following property:

(
y1

σ1
)2 + (

y2

σ2
)2+, . . . ,+(

yr

σr
)2 =

= (vT
1 x)2 + (vT

2 x)2+, . . . ,+(vT
r x)2 ≤ 1 (A2)

Specifically:

1. If r = m (of course, we must have m ≤ n), the equality in Equation (A2) holds, and the
image of the unit hypersphere forms the surface of a hyperellipsoid;

2. If r < m, the image of the unit hypersphere corresponds to a solid hyperellipsoid.

This completes the proof.

References

1. Lapierre, L. Robust diving control of an AUV. Ocean Eng. 2009, 36, 92–104. [CrossRef]
2. Lapierre, L.; Jouvencel, B. Robust nonlinear path-following control of an AUV. IEEE J. Ocean. Eng. 2008, 33, 89–102. [CrossRef]
3. Levine, W.S. The Control Systems Handbook: Control System Applications; CRC Press: Boca Raton, FL, USA, 2010.
4. Johansen, T.A.; Fossen, T.I. Control allocation—A survey. Automatica 2013, 49, 1087–1103. [CrossRef]
5. Ropars, B.; Lapierre, L.; Lasbouygues, A.; Andreu, D.; Zapata, R. Redundant actuation system of an underwater vehicle. Ocean

Eng. 2018, 151, 276–289. [CrossRef]

316

Sensors 2021, 21, 7729

6. Nakamura, Y.; Hanafusa, H.; Yoshikawa, T. Task-priority based redundancy control of robot manipulators. Int. J. Robot. Res.
1987, 6, 3–15. [CrossRef]

7. Adorno, B.V.; Fraisse, P.; Druon, S. Dual position control strategies using the cooperative dual task-space framework. In
Proceedings of the IROS’10: International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010;
pp. 3955–3960.

8. Agravante, D.J.; Sherikov, A.; Wieber, P.B.; Cherubini, A.; Kheddar, A. Walking pattern generators designed for physical
collaboration. In Proceedings of the ICRA 2016: 2016 IEEE International Conference on Robotics and Automation (ICRA),
Stockholm, Sweden, 16–21 May 2016; pp. 1573–1578.

9. Pham, T.H.; Caron, S.; Kheddar, A. Multicontact Interaction Force Sensing From Whole-Body Motion Capture. IEEE Trans. Ind.
Inform. 2018, 14, 2343–2352. [CrossRef]

10. Yoshikawa, T. Dynamic manipulability of robot manipulators. In Proceedings of the 1985 IEEE International Conference on
Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; Volume 2, pp. 1033–1038. [CrossRef]

11. Yoshikawa, T. Foundations of Robotics: Analysis and Control; MIT Press: Cambridge, MA, USA, 1990.
12. Kumar, A.; Waldron, K. The workspaces of a mechanical manipulator. J. Mech. Des. 1981, 103, 665–672. [CrossRef]
13. Paden, B.; Sastry, S. Optimal kinematic design of 6R manipulators. Int. J. Robot. Res. 1988, 7, 43–61. [CrossRef]
14. Park, F.C.; Brockett, R.W. Kinematic dexterity of robotic mechanisms. Int. J. Robot. Res. 1994, 13, 1–15. [CrossRef]
15. Pierrot, F.; Benoit, M.; Dauchez, P. Optimal thruster configuration for omni-directional underwater vehicles. SamoS: A

Pythagorean solution. In Proceedings of the OCEANS ’98 Conference Proceedings, Nice, France, 28 September–1 October 1998;
Volume 2, pp. 655–659. [CrossRef]

16. Kharrat, H. Optimization of Thruster Configuration for Swimming Robots. Master’s Thesis, Rice University, Houston, TX, USA,
2015.

17. Stephan, J.; Fichter, W. Fast Exact Redistributed Pseudoinverse Method for Linear Actuation Systems. IEEE Trans. Control Syst.
Technol. 2017, 27, 451–458. [CrossRef]

18. Grechi, S.; Caiti, A. Comparison between Optimal Control Allocation with Mixed Quadratic & Linear Programming Techniques.
In Proceedings of the 10th IFAC Conference on Control Applications in Marine SystemsCAMS, Trondheim, Norway, 13–16
September 2016; Volume 49, pp. 147–152.doi: 10.1016/j.ifacol.2016.10.335. [CrossRef]

19. Ropars, B.; Lasbouygues, A.; Lapierre, L.; Andreu, D. Thruster’s dead-zones compensation for the actuation system of an
underwater vehicle. In Proceedings of the Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 741–746.

20. Yoshikawa, T. Manipulability of robotic mechanisms. Int. J. Robot. Res. 1985, 4, 3–9. [CrossRef]
21. Olver, F.W.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions Hardback and CD-ROM; Cambridge

University Press: Cambridge, UK, 2010.
22. Trefethen, L.N.; Bau, D., III. Numerical Linear Algebra; Siam: Philadelphia, PA, USA, 1997; Volume 50.
23. Gembicki, F.; Haimes, Y. Approach to performance and sensitivity multiobjective optimization: The goal-attainment method.

IEEE Trans. Autom. Control 1975, 20, 769–771. [CrossRef]
24. BlueRobotics. Available online: https://bluerobotics.com/ (accessed on 20 December 2018).

317

Citation: Zhao, P.; Guo, Z.;

Hovakimyan, N. Robust Nonlinear

Tracking Control with Exponential

Convergence Using Contraction

Metrics and Disturbance Estimation.

Sensors 2022, 22, 4743. https://

doi.org/10.3390/s22134743

Academic Editor: Baochang Zhang

Received: 9 May 2022

Accepted: 20 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Robust Nonlinear Tracking Control with Exponential
Convergence Using Contraction Metrics and
Disturbance Estimation

Pan Zhao *, Ziyao Guo and Naira Hovakimyan

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA; ziyaog2@illinois.edu (Z.G.); nhovakim@illinois.edu (N.H.)
* Correspondence: panzhao2@illinois.edu

Abstract: This paper presents a tracking controller for nonlinear systems with matched uncertainties
based on contraction metrics and disturbance estimation that provides exponential convergence
guarantees. Within the proposed approach, a disturbance estimator is proposed to estimate the
pointwise value of the uncertainties, with a pre-computable estimation error bounds (EEB). The
estimated disturbance and the EEB are then incorporated in a robust Riemannian energy condition
to compute the control law that guarantees exponential convergence of actual state trajectories to
desired ones. Simulation results on aircraft and planar quadrotor systems demonstrate the efficacy
of the proposed controller, which yields better tracking performance than existing controllers for
both systems.

Keywords: robust control; nonlinear control; uncertain systems; disturbance estimation; robot safety

1. Introduction

Robotic systems generally have nonlinear dynamics and are subject to model uncertain-
ties and disturbances. Moreover, many robotic systems are underactuated, i.e., having fewer
independent control inputs than degrees of freedom, including fixed-wing aircraft, quadro-
tors and dynamic walking robots. The design of tracking controllers for underactuated
robotic systems is a much more challenging problem compared to that for fully-actuated
systems. Recently, the concept of a control contraction metric (CCM) was introduced
in [1] to synthesize trajectory tracking controllers for general nonlinear systems, including
underactuated ones. The CCM extends contraction theory [2] from analysis to constructive
control design, while contraction theory is focused on analyzing nonlinear systems in
a differential framework by studying the convergence between pairs of state trajectories
toward each other. It was shown in [3] that CCM reduces to conventional sliding and
energy-based designs for fully-actuated systems. On the other hand, for underactuated
systems, compared to prior approaches based on local linearization [4], the CCM approach
leads to a convex optimization problem for controller synthesis and generates controllers
that stabilize every feasible trajectory in a region, instead of just a single target trajectory
that must be known a priori [3].

On the other hand, control design methods to deal with dynamic uncertainties in the
deterministic setting can be roughly classified into adaptive and robust approaches. Robust
approaches, such as H∞ control [5], μ synthesis [6] and robust/tube model predictive
control (MPC) [7,8], usually consider parametric uncertainties or bounded disturbances
and aim to find controllers with performance guarantees for the worst case of such un-
certainties. The consideration of worst-case scenarios associated with robust approaches
often leads to conservative nominal performance. Disturbance–observer (DOB) based
control and related methods such as active disturbance rejection control (ADRC) [9] lump

Sensors 2022, 22, 4743. https://doi.org/10.3390/s22134743 https://www.mdpi.com/journal/sensors319

Sensors 2022, 22, 4743

all uncertainties that may include parametric uncertainties, unmodeled dynamics and ex-
ternal disturbances, together as a “total disturbance”, estimate it via an observer and then
compute control actions to compensate for the estimated disturbance [10] to recover the
nominal performance. However, for state-dependent uncertainties, DOB-based control
methods usually ignore the dependence of “disturbance” on system states and rely on
assumptions on the derivative of the “disturbance” that are difficult to verify for theoretical
guarantees [10,11]. Alternatively, adaptive control methods such as model reference adap-
tive control (MRAC) [12] usually need a parametric structure for the uncertainties, rely on
online estimation of the parameters for control law construction and provide asymptotic
performance guarantees in most cases. One of the exceptions is L1 adaptive control [13]
that does not need a parameterization of the uncertainties (similar to DOB-based control)
and focuses on transient performance guarantees in terms of uniformly bounded error
between the ideal and uncertain systems.

Both robust and adaptive control approaches have been explored in the context of
CCM-based control in the presence of uncertainties and disturbances. In particular, adap-
tive control was combined with CCM to handle nonlinear control-affine systems with both
parametric [14] and non-parametric uncertainties [15]. The case of bounded disturbances
in CCM-based control was addressed by leveraging input-to-state stability analysis [16] or
robust CCM [17,18]. CCM for stochastic systems was developed in [19] to minimize the
mean squared tracking error in the presence of stochastic disturbances. Closely relevant to
this paper, [15] designed an L1 adaptive controller to augment a baseline CCM-based con-
troller to compensate for matched nonlinear non-parametric uncertainties that can depend
on both time and states. The authors of [15] proved that transient tracking performance
was guaranteed in the sense that the actual state trajectory exponentially converges to
a neighborhood or a tube around the desired one. Compared to [15], our approach relies
on a disturbance observer that yields an estimation error bound and robust Riemannian
energy condition and ensures that the actual state trajectory exponentially converges to the
nominal one.

Statement of Contributions: We present a tracking controller for nonlinear systems sub-
ject to matched uncertainties that can depend on both time and states based on contraction
metrics and disturbance estimation. Our controller leverages a disturbance estimator to
estimate the pointwise value of the uncertainties, with a pre-computable estimation error
bound. The estimated disturbance and the estimation error bound are then incorporated
into a robust Riemannian energy condition to compute the control law that guarantees
exponential convergence of actual state trajectories to nominal ones. We validate the effi-
cacy of our controller on two simulation examples and demonstrate its advantages over
existing controllers.

The idea presented in this paper is leveraged in [20] for safe learning of uncertain
dynamics using deep neural networks. Compared to [20], this paper is not relevant to
learning and allows the uncertainty to be dependent on both time and states, as opposed
to the dependence on states only in [20]. Additionally, this paper includes an additional
aircraft example for performance illustration and conducts extensive comparisons with
existing adaptive approaches in simulations that are not available in [20].

Notations: Let Rn, R+ and Rm×n denote the n-dimensional real vector space, the set
of non-negative real numbers and the set of real m by n matrices, respectively. I and 0
denote an identity matrix, and a zero matrix of compatible dimensions, respectively;‖·‖
denotes the 2-norm of a vector or a matrix. For a vector y, yi denotes its ith element. For
a matrix-valued function M : Rn → Rn×n and a vector y ∈ Rn, ∂y M(x) � ∑n

i=1
∂M(x)

∂xi
yi

denotes the directional derivative of M(x) along y. For symmetric matrices P and Q, P > Q
(P ≥ Q) means P−Q is positive definite (semidefinite). 〈X〉 is the shorthand notation of
X + X�. Finally, (denotes the Minkowski set difference.

320

Sensors 2022, 22, 4743

2. Problem Statement and Preliminaries

Consider a nonlinear control-affine system with uncertainties

ẋ(t) = f (x(t)) + B(x(t))(u(t) + d(t, x(t))), (1)

where x(t) ∈ X ⊂ Rn is the state vector, u(t) ∈ U ⊂ Rm is the control input vector,
f : Rn → Rn and B : Rn → Rm are known and locally Lipschitz continuous functions,
and d(t, x) represents the matched model uncertainty that can depend on both time and
states. We assume that B(x) has full column rank for any x ∈ X . Suppose X is a compact
set that contains the origin, and the control constraint set U is defined as U � {u ∈ Rm :
u ≤ u ≤ ū}, where u, ū ∈ Rm denote the lower and upper bounds of all control channels,
respectively. Furthermore, we make the following assumptions on B(x) and d(t, x).

Assumption 1. There exist known positive constants LB, Ld, ld and bd such that for any x, y ∈ X
and t, τ ≥ 0, the following inequalities hold:∥∥B(x)− B(y)

∥∥ ≤ LB
∥∥x− y

∥∥, (2)∥∥d(t, x)− d(τ, y)
∥∥ ≤ Ld

∥∥x− y
∥∥+ ld|t− τ| , (3)∥∥d(t, x)

∥∥ ≤ bd. (4)

Remark 1. Assumption 1 indicates that the uncertain function d(t, x) is locally Lipschitz in both
t and x with known Lipschitz constants and is uniformly bounded by a known constant in the
compact set X .

In fact, given the local Lipschitz constants Ld and ld, a uniform bound on d(t, x) in
X can always be derived by using Lipschitz continuity properties if the bound on d(t, x∗)
for an arbitrary x∗ in X and any t ≥ 0 is known. For instance, assuming

∥∥d(t, 0)
∥∥ ≤ b0

d,
from (3), we have

∥∥d(t, x)
∥∥ ≤ b0

d + Ld maxx∈X ‖x‖ for any x ∈ X and g ≥ 0. In practice,
some prior knowledge about the actual system and the uncertainty may be leveraged to
obtain a tighter bound than the one based on the Lipschitz continuity explained earlier,
which is why we directly make an assumption on the uniform bound. With Assumption 1,
we will show (in Section 3.3) that the pointwise value of d(t, x(t)) at any time t can be
estimated with a pre-computable estimation error bound.

For the system in (1), assume we have a nominal state and input trajectory, x�(·) and
u�(·), which satisfy the nominal, i.e., uncertainty-free, dynamics:

ẋ� = f (x�) + B(x�)u�. (5)

We would like to design a state-feedback controller in the form of

u(t) = k(t, x(t), x�(t)) + u�(t), (6)

so that the actual state trajectory x(·) exponentially converges to the nominal one x�(·).
Our solution is based on CCM and disturbance estimation. Next, we briefly review CCM
for uncertainty-free systems.

Control Contraction Metrics (CCMs)

We first introduce some notations related to Riemannian geometry, most of which are
from [1]. A Riemannian metric on Rn is a symmetric positive-definite matrix function M(x),
smooth in x, which defines a “local Euclidean” structure for any two tangent vectors δ1 and
δ2 through the inner product 〈δ1, δ2〉x � δ�1 M(x)δ2 and the norm

√〈δ1, δ2〉x. A metric is
called uniformly bounded if a1 I ≤ M(x) ≤ a2 I holds ∀x and for some scalars a2 ≥ a1 > 0.
Let Γ(a, b) be the set of smooth paths connecting two points a and b in Rn, where each
c ∈ Γ(a, b) is a piecewise smooth mapping, c : [0, 1] → Rn, satisfying c(0) = a, c(1) = b.
We use the notation c(s), s ∈ [0, 1], and cs(s) � ∂c

∂s . Given a metric M(x) and a curve c(s),

321

Sensors 2022, 22, 4743

we define the Riemannian energy of c(s) as E(c) �
∫ 1

0 c�s M(c(s))cs(s)ds. The Riemannian
energy between a and b is defined as E(a, b) � infc∈Γ(a,b) E(c).

Contraction theory [2] draws conclusions on the convergence between pairs of state
trajectories toward each other by studying the evolution of the distance between any
two infinitesimally close neighbouring trajectories. CCM generalizes contraction analysis
to the controlled dynamics setting in which the analysis jointly searches for a controller
and a metric that describes the contraction properties of the resulting closed-loop system.
Following [1,14], we now briefly review CCMs by considering the nominal, i.e., uncertainty-
free, system:

ẋ = f (x) + B(x)u, (7)

where x(t) ∈ Rn and u(t) ∈ Rm. The differential form of (7) is given by δ̇x = A(x, u)δx +

B(x)δu, where A(x, u) � ∂ f
∂x +

m
∑

i=1

∂bi
∂x ui with bi(x) denoting the ith column of B(x). Consider

a function V(x, δx) = δ�x M(x)δx for some positive definite metric M(x), which can be
viewed as the Riemannian squared differential length at point x. Differentiating and
imposing that the squared length decreases exponentially with rate 2λ, one obtains

V̇(x, δx) = δ�x (〈MA〉+ Ṁ)δx + 2δ�x MBδu ≤ −2λδ�x Mδx, (8)

where Ṁ = ∂ f+Bu M = ∂ f M + ∑m
i=1 ∂bi

Mui. We first recall some basic results related
to CCM.

Definition 1 ([1]). The system (7) is said to be universally exponentially stabilizable if, for any feasi-
ble desired trajectory x�(t) and u�(t), a feedback controller can be constructed that for any initial con-
dition x(0), a unique solution to (7) exists and satisfies

∥∥x(t)− x�(t)
∥∥ ≤ R

∥∥x(0)− x�(0)
∥∥ e−λt,

where λ and R are the convergence rate and overshoot, respectively, independent of the initial
conditions.

Lemma 1 ([1]). If there exists a uniformly bounded metric M(x), i.e., α1 I≤M(x)≤α2 I for some
positive constants α1 and α2, such that for all x and δx
=0 satisfying δ�x MB = 0,

δ�x

(〈
M

∂ f
∂x

〉
+∂ f M+2λM

)
δx ≤ 0, (9a)

δ�x

(〈
M

∂bi
∂x

〉
+∂bi

M

)
δx = 0, i = 1, . . . , m (9b)

hold, then the system (7) is universally exponentially stabilizable in the sense of Definition 1 via
continuous feedback defined almost everywhere, and everywhere in the neighborhood of the target
trajectory with the convergence rate λ and overshoot R =

√
α2
α1

.

The condition (9) ensures that the dynamics orthogonal to the input are contracting,
i.e., (8) holds in the presence of δ�x MB = 0 and is often termed as the strong CCM condi-
tion [1]. In particular, the condition (9b) can be satisfied by enforcing that each column
of B(x) forms a killing vector field for the metric M(x), i.e.,

〈
M ∂bi

∂x

〉
+∂bi

M = 0 for all
i = 1, . . . , m. The CCM condition (9) can be transformed into a convex constructive condi-
tion for the metric M(x) by a change of variables. Let W(x) = M−1(x) (commonly referred
to as the dual metric), and B⊥(x) be a matrix whose columns span the null space of the input
matrix B (i.e., B�⊥B = 0). Then, condition (9) can be cast as convex constructive conditions
for W(x):

322

Sensors 2022, 22, 4743

B�⊥

(〈
∂ f
∂x

W
〉
− ∂ f W + 2λW

)
B⊥ ≤ 0 (10a)

〈
∂bi
∂x

W
〉
−∂bi

W = 0, for i = 1, · · · , m. (10b)

The existence of a contraction metric M(x) is sufficient for stabilizability via Lemma 1.
What remains is constructing a feedback controller that achieves the universal exponential
stabilizability (UES). As mentioned in [1,16], one way to derive the controller is to interprete
the Riemann energy, E(x�(t), x(t)), as an incremental control Lyapunov function and use it
to construct a min-norm controller that renders for any time t

Ė(x�(t), x(t)) ≤ −2λE(x�(t), x(t)). (11)

Specifically, at any time t > 0, given the metric M(x) and a desired/actual state pair
(x�(t), x(t)), a minimum-energy path, i.e., a geodesic, γ(·, t) connecting these two states
(i.e., γ(0, t) = x�(t) and γ(1, t) = x(t)), can be computed (e.g., using the pseudospectral
method in [21] to solve a nonlinear programming problem). Consequently, the Rieman-
nian energy of the geodesic is defined as E(x�(t), x(t)) =

∫ 1
0 γs(s, t)�M(γ(s, t)))γs(s, t)ds,

where γs(s) � ∂γ
∂s , can be calculated. As noted in [16], from the formula for the first

variation of energy [22], Ė(x�(t), x(t)) = 2γ�s (1, t)M(x(t))ẋ(t)− 2γ�s (0, t)M(x�(t))ẋ�(t).
Therefore, (11) can be rewritten as

γ�s (1, t)M(x(t))ẋ(t)− γ�s (0, t)M(x�(t))ẋ�(t) ≤ −λE(x�(t), x(t)), (12)

where ẋ(t) = f (x(t)) + B(x(t))u(t) and ẋ�(t) = f (x�(t)) + B(x�(t))u�(t). Therefore, the
control signal with a minimum norm for u(t)− u�(t) can then be obtained by solving the
following quadratic programming (QP) problem:

u(t) = argmin
k∈Rm

∥∥k− u�(t)
∥∥2 subject to (12) (13)

at each time t, which is guaranteed to be feasible under condition (9) [1]. The minimiza-
tion problem (13) is often termed as the pointwise min-norm control problem and has an
analytic solution [23]. The above discussions can be summarized in the following theo-
rem. The proof is trivial by following Lemma 1 and the subsequent discussions and is
thus omitted.

Theorem 1 ([1]). Given a nominal system (7), assume that there exists a uniformly bounded metric
W(x) that satisfies (10) for all x ∈ Rn. Then, the control law constructed by solving (13) with
M(x) = W−1(x), universally exponentially stabilizes the system (7) in the sense of Definition 1,
where R =

√
α2
α1

with α1 and α2 being two positive constants satisfying α1 I≤M(x)≤α2 I.

Remark 2. According to Definition 1 and Theorem 1, under the conditions of Theorem 1, given
any feasible trajectory (x�((·), u�(·)) of (7), a controller can always be constructed to ensure that
the actual state trajectory x(·) exponentially converges to x�(·).
3. Robust Trajectory Tracking Using CCM and Disturbance Estimation

In Section 2, we have shown that existence of a CCM for a nominal (i.e., uncertainty-
free) system can be used to construct a feedback control law to guarantee the universal
exponential stabilizability (UES) of the system. In this section, we present a controller based
on CCM and disturbance estimation to ensure the UES of the uncertain system (1), whose
architecture is depicted in Figure 1.

323

Sensors 2022, 22, 4743

Uncertain System QP with Robust
Riemannian Energy

Condition

Disturbance
Estimator

DE-CCM Controller

Figure 1. Block diagram of the closed-loop system with the proposed DE-CCM controller.

3.1. CCMs for the Actual System

To apply the contraction method to design a controller to guarantee the UES of the
uncertain system (1), we need to first search a valid CCM for it. Following Section 2, we
can derive the counterparts of the strong CCM condition (9) or (10). Due to the particular
structure with (1) attributed to the matched uncertainty assumption, we have the following
lemma. A similar observation has been made in [14] for the case of matched parametric
uncertainties. The proof is straightforward and thus omitted. One can refer to [14] for
more details.

Lemma 2. The strong (dual) CCM condition for the uncertain system (1) is the same as the strong
(dual) CCM condition, i.e., (9) and (10), for the nominal system.

Remark 3. As a result of Lemma 2, a metric M(x) (dual metric W(x)) satisfying the condition (9)
and (10) for the nominal system (7) is always a CCM (dual CCM) for the true system (1).

Define D = {y ∈ Rm :
∥∥y

∥∥ ≤ bd}, where bd is introduced in Assumption 1.
Assumption 1 indicates d(t, x) ∈ D for any t ≥ 0 and x ∈ X . As mentioned in Section 2,
given a CCM and a desired trajectory x�(t) and u�(t) for a nominal system, a control law
can be constructed to ensure exponential convergence of the actual state trajectory x(t)
to the desired state trajectory x�(t). In practice, we have access to only the nominal dy-
namics (5) instead of the true dynamics to plan a trajectory x�(t) and u�(t). The following
lemma gives the condition when x�(t), planned using the nominal dynamics (5), is also a
feasible state trajectory for the true system.

Lemma 3. Given a desired trajectory x�(t) and u�(t) satisfying the nominal dynamics (5) with
x�(t) ∈ X , if

u�(t) ∈ U (D, ∀t ≥ 0, (14)

then x�(t) is also a feasible state trajectory for the true system (1).

Proof. Define ū�(t) � u�(t) − d(t, x�(t)). Since u�(t) ∈ U (D and −d(t, x�(t)) ∈ D,
which is due to x�(t) ∈ X and Assumption 1, we have ū�(t) ∈ U . By comparing the
dynamics in (1) and (5), we conclude that x�(t) and ū�(t) satisfy the true dynamics (1) and
thus are a feasible state and input trajectory for the true system. �

Lemma 3 provides a way to verify whether a trajectory planned using the nominal
dynamics is a feasible trajectory for the true system in the presence of actuator limits. In the
absence of such limits, any feasible trajectory for the learned dynamics is also a feasible
trajectory for the true dynamics due to the particular structure of (1) associated with the
matched uncertainty assumption.

3.2. Robust Riemannian Energy Condition

Section 2 shows that, given a nominal system and a CCM for such a system, a control
law can be constructed via solving a QP problem (13) with a condition to constrain the

324

Sensors 2022, 22, 4743

decreasing rate of the Riemannian energy, i.e., condition (12). When considering the
uncertain dynamics in (1), the condition (12) becomes

γ�s (1, t)M(x(t))ẋ(t)− γ�s (0, t)M(x�(t))ẋ�(t) ≤ −λE(x�(t), x(t)), (15)

where ẋ(t) = f (x(t)) + B(x(t))(u(t) + d(x(t))) represents the true dynamics evaluated
at x(t), and ẋ�(t) = f (x�) + B(x�)u� as defined in (5). Several observations follow im-
mediately. First, it is clear that (15) is not implementable due to its dependence on the true
uncertainty d(x(t)) through ẋ(t). Second, if we could have access to the pointwise value of
d(x(t)) at each time t, (15) will become implementable even when we do not know the
exact functional representation of d(x). Third, if we could estimate the pointwise value of
d(x(t)) at each time t with a bound to quantify the estimation error, then we could derive
a robust condition for (15). Specifically, assume d(x(t)) is estimated as d̂(t) at each time t
with a uniform estimation error bound (EEB) δ, i.e.,

∥∥∥d̂(t)− d(x(t))
∥∥∥ ≤ δ, ∀t ≥ 0. Then, we

could immediately get the following sufficient condition for (15):

γ�s (1, t)M(x) ˙̌x(t)− γ�s (0, t)M(x�)ẋ� +
∥∥∥γ�s (1, t)M(x)B(x)

∥∥∥ δ ≤ −λE(x�, x), (16)

where
˙̌x(t) � f (x) + B(x)(u(t) + d̂(t)). (17)

Moreover, since M(x) satisfies the CCM condition (9), u(t) that satisfies (16) is guar-
anteed to exist for any t ≥ 0, regardless of the size of δ, if the input constraint set U is
sufficiently large. We term condition (16) the robust Riemannian energy (RRE) condition.

3.3. Disturbance Estimation with a Computable EEB

We now introduce a disturbance estimation scheme to estimate the pointwise value of
the uncertainty d(x) with a pre-computable EEB, which can be systematically improved by
tuning a parameter in the estimation law. The estimation scheme is based on the piecewise-
constant estimation (PWCE) law in [24], which was originally from [25]. The PWCE law
consists of two elements, namely a state predictor and a piecewise-constant update law.
The state predictor is defined as:

˙̂x(t) = f (x(t)) + B(x(t))u(t) + σ̂(t)− ax̃(t), x̂(0) = x(0), (18)

where x̃(t) � x̂(t)− x(t) is the prediction error, and a is an arbitrary positive constant.
The estimation, σ̂(t), is updated in a piecewise-constant way:⎧⎪⎨

⎪⎩
σ̂(t) = σ̂(iT), t ∈ [iT, (i + 1)T),

σ̂(iT) = − a
eaT − 1

x̃(iT),
(19)

where T is the estimation sampling time, and i = 0, 1, 2, · · · . Finally, the pointwise value of
d(x(t)) at time t is estimated as

d̂(t) = B†(x(t))σ̂(t), (20)

where B†(x(t)) is the pseudoinverse of B(x(t)). The following lemma establishes the EEB
associated with the estimation scheme in (18) and (19). The proof is similar to that in [24].
For completeness, it is given in Appendix A.

Lemma 4. Given the dynamics (1) subject to Assumption 1, and the estimation law in (18) and (19),
if x ∈ X and u ∈ U for any t ≥ 0, the estimation error can be bounded as

325

Sensors 2022, 22, 4743

∥∥∥d̂(t)−d(t, x(t))
∥∥∥ ≤ δ(t, T) �

{
bd, ∀ 0 ≤ t < T,
α(T)maxx∈X B†(x), ∀ t ≥ T,

(21)

where

α(T) �
(

2
√

nT(Ldφ + ld) + (1−e−aT)
√

nbd

)
max
x∈X

∥∥B(x)
∥∥+ 2

√
nTLBbd, (22)

φ � max
x∈X ,u∈U

∥∥ f (x) + B(x)u
∥∥+ bd max

x∈X
∥∥B(x)

∥∥ , (23)

with constants LB, Ld and bd from Assumption 1, and φ defined in (23). Moreover, limT→0 δ(t, T) = 0,
for any t ≥ T.

Proof. See Appendix A. �

Remark 4. Lemma 4 implies that theoretically, for t ≥ T, the disturbance estimation after a single
sampling interval can be made arbitrarily accurate by reducing T, which further indicates that the
conservatism with the RRE condition can be arbitrarily reduced after a sampling interval.

In practice, the value of T is subject to the limitations related to computational hard-
ware and sensor noise. Additionally, using a very small T tends to introduce high frequency
components in the control loop, potentially harming the robustness of the closed-loop sys-
tem, e.g., against time delay. This is similar to the use of a high adaptation rate in model
reference adaptive control schemes as discussed in [13]. Therefore, one should avoid the
use of a very small T for the sake of robustness unless a low-pass filter is used to filter
the estimated disturbance before fed into (16), as suggested by the L1 adaptive control
theory [13].

Remark 5. The estimation in [0, T) cannot be arbitrarily accurate. This is because the estimation
in [0, T) depends on x̃(0) according to (19). Considering that x̃(0) is purely determined by the
initial state of the system, x(0), and the initial state of the predictor, x̂(0), it does not contain any
information of the uncertainty. Since T is usually very small in practice, lack of a tight estimation
error bound for the interval [0, T) will not cause an issue from a practical point of view. Additionally,
the estimation of φ defined in (23) could be quite conservative. Further considering the frequent
use of Lipschitz continuity and inequalities related to matrix/vector norms in deriving the constant
α(T), α(T) can be overly conservative. Therefore, for practical implementation, one should leverage
some empirical study, e.g., performing simulations under a few user-selected functions of d(t, x)
and determining a bound for δ(t, T). In our experiments, we found the theoretical bound δ(t, T)
computed according to (21) was usually at least 10 and could be 104 times more conservative.

3.4. Exponentially Convergent Trajectory Tracking

Based on the review of contraction control in Section 2 and the discussions in
Sections 3.2 and 3.3, the control law can be obtained by solving the following QP problem
at each time t:

u(t) = argmin
k∈Rm

∥∥k− u�(t)
∥∥2 (24)

subject to

γ�s (1, t)M(x) ˙̌x− γ�s (0, t)M(x�)ẋ� +
∥∥∥γ�s (1, t)M(x)B(x)

∥∥∥ δ(t, T) ≤ −λE(x�, x), (25)

where ˙̌x(t) = f (x) + B(x)(k + d̂(t)), according to (17), depends on d̂(t), which is from
the disturbance estimation law defined by (18) to (20), δ(t, T) as defined in (21), and
ẋ�(t) = f (x�) + B(x�)u� as defined in (5). Similar to (13), problem (24) is a point-
wise min-norm control problem and has an analytic solution [23]. Specifically, denot-
ing φ0(t, x�, x) � γ�s (1, t)M(x)(f (x) + B(x)(u�(t) + d̂(t)) +

∥∥∥γ�s (1, t)M(x)B(x)
∥∥∥ δ(t, T)−

326

Sensors 2022, 22, 4743

γ�s (0, t)M(x�)ẋ� + λE(x�, x) and φ1(x�, x) � B�(x)M(x)γs(1, t), (25) can be written as
φ0(t, x�, x) + φ�1 (x�, x)(k− u�(t)) ≤ 0, and the solution for (24) is given by

u(t) = k�=

⎧⎪⎪⎨
⎪⎪⎩

u�(t) if φ0(t, x�, x)≤0,

u�(t)−φ0(t, x�, x)φ1(x�, x)∥∥φ1(x�, x)
∥∥2 if φ0(t, x�, x)>0.

(26)

To move forward with analysis, we need to verify that when x(t), x�(t) ∈ X , the con-
trol signal u(t) resulting from solving the QP problem (24) satisfies u(t) ∈ U . Deriving
verifiable conditions to ensure this set bound is outside the scope of this paper and will be
addressed as future work. We are now ready to state the main result of the paper.

Theorem 2. Given an uncertain system represented by (1) satisfying Assumption 1, assume that
there exists a metric W(x) such that for all x ∈ X , (10) holds and α1 I ≤ M(x) = W−1(x) ≤ α2 I
holds for positive constants α1 and α2. Furthermore, suppose that a nominal trajectory (x�(·), u�(·))
planned using the nominal dynamics (5) and the initial actual states x(0) satisfy (14) and

Ω(t)�
{

y∈Rn : y ≤∥∥x�(t)
∥∥+√

α2

α1

∥∥x(0)−x�(0)
∥∥ e−λt

}
⊂ X , (27)

for any t ≥ 0. Then, if u(t) from solving (24) satisfies u(t) ∈ U for any t ≥ 0, the control
law constructed by solving (24) ensures x(t) ∈ X for any t ≥ 0, and furthermore, universally
exponentially stabilizes the uncertain system (1) in the sense of Definition 1 with R =

√
α2
α1

, i.e.,

∥∥x(t)− x�(t)
∥∥ ≤ √

α2

α1

∥∥x(0)− x�(0)
∥∥ e−λt, ∀t ≥ 0. (28)

Proof. We use contradiction to show x(t) ∈ X for all t ≥ 0. Assume this is not true.
According to (27), x(0) ∈ X . Since x(t) is continuous, there must exist a time τ such that

x(t) ∈ X , ∀t ∈ [0, τ−] and x(τ) /∈ X . (29)

Now let us consider the system evolution in [0, τ−]. Since u(t) ∈ U by assumption and
x(t) ∈ X for any t in [0, τ−], the EEB in (21) holds in [0, τ−]. As a result, the control law ob-
tained from solving (24) ensures satisfaction of the RRE condition (16) and thus satisfaction
of the Riemannian energy condition (15) for the uncertain system (1), and thereby univer-
sally exponentially stabilizes the uncertain system (1) in [0, τ−], in the sense of Definition 1
with R =

√
α2
α1

, according to Theorem 1. On the other hand, satisfaction of (14) implies

that x�(t) is a feasible state trajectory for the uncertain system (1) according to Lemma 3.
Further considering Theorem 1, we have

∥∥x(t)
∥∥ ≤∥∥x�(t)

∥∥+
√

α2
α1

∥∥x(0)− x�(0)
∥∥ e−λt for

any t in [0, τ−]. Due to (27), the preceding inequality indicates that x(t) remains in the
interior of X for t in [0, τ−]. This, together with the continuity of x(t), immediately implies
x(τ) ∈ X , which contradicts (29). Therefore, we conclude that x(t) ∈ X for all t ≥ 0.
From the development of the proof, it is clear that with the control law given by the solution
of (24), the UES of the closed-loop system in the sense of Definition 1 with R =

√
α2
α1

for all
t ≥ 0 is achieved, which is mathematically represented by (28). The proof is complete. �

3.5. Discussion

Theorem 2 essentially states that under certain assumptions, the proposed controller
guarantees exponential convergence of the actual state trajectory x(t) to a desired one x�(t).
With the exponential guarantee, if the actual trajectory meets the desired trajectory at certain
time τ, then these two trajectories will stay together afterward. While the exponential
convergence guarantee is stronger than the performance guarantees provided by existing

327

Sensors 2022, 22, 4743

adaptive CCM-based approaches [14,15] that deal with similar settings (i.e., matched
uncertainties), the proposed method requires the knowledge of the Lipschitz bound of the
uncertainty d(t, x) and the input matrix function B(x) to be in a compact set known a priori
(see Assumption 1), and the actual control inputs to stay in a compact set known a priori,
which cannot be verified at this moment due to the lack of a bound on the control inputs.
These requirements are not needed in [14,15].

The approach here is related to the robust control Lyapunov-based approaches [23]
which provide robust stabilization around an equilibrium point (as opposed to a trajectory
considered in this paper) in the presence of uncertainties.

Remark 6. The exponential convergence guarantee stated in Theorem 2 is based on a continuous-
time implementation of the controller. In practice, a controller is normally implemented on a digital
processor or controller with a fixed sampling time. As a result, the property of exponential conver-
gence may be slightly violated.

Computational cost: As can be seen from Sections Section 2 and 3.2–3.4, computation of
the control signal at each time t includes three steps: (i) updating the estimated disturbance
d̂(t) via (18) to (20), (ii) computing the geodesic γ(·, t) connecting the actual and nominal
states (see the discussion below (11)), and (iii) computing the control signal u(t) via (26).
The computation costs of steps (i) and (iii) are quite low as they only involve integration
and algebraic calculation. In comparison, step (ii) has a relatively high computational
cost as it necessitates solving a nonlinear programming (NLP) problem. However, since
the NLP problem does not involve dynamic constraints, it is much easier to solve than
a nonlinear model predictive control (MPC) problem [21]. Following [21], such a problem
can be efficiently solved by applying a pseudospectral method.

4. Simulation Results

In this section, we illustrate the performance of our proposed tracking controller based
on the RRE condition and disturbance estimation, denoted as DE-CCM, using aircraft and
planar quadrotor examples. For both examples, we perform comparisons of DE-CCM
with standard CCM controllers that ignore the uncertainties and adaptive CCM (Ad-CCM)
controllers considering parametric uncertainties designed using the approach in [14]. All
the computations and simulations were performed in Matlab R2021b.

4.1. Longitudinal Dynamics of an Aircraft

We first implement our method on the simplified pitch dynamics of an aircraft bor-
rowed from [26]:

ẋ �

⎡
⎢⎣θ̇

α̇
q̇

⎤
⎥⎦ =

⎡
⎢⎣ q

q− L̄(α)
−kqq + M̄(α)

⎤
⎥⎦+

⎡
⎢⎣0

0
1

⎤
⎥⎦u, (30)

where θ, α and q are the pitch angle (in rad), angle of attack (in rad), and pitch rate (in
rad/s). Here L̄(α) and M̄(α) are aerodynamic lift and moment, respectively. Using the
flat plat theory, these two aerodynamic terms are approximated by L̄(α) = 0.8 sin(2α) and
M̄(α) = −lα L̄(α) with unknown parameters kq ∈ [0.1 0.8] and lα ∈ [−3 1]. For all the
simulations, the true values are chosen to be kq = 0.8, lα = −3, while the nominal values
of these parameters used in designing all the tested controllers are limited to knom

q = 0.2,
lnom
α = −1. As a result, the dynamics can be recast in the form of (30) with f (x) = [q, q−

L̄(α),−knom
q q− lnom

α L̄(α)]�, B(x) = [0, 0, 1]� and d(t, x) = −(kq− knom
q)q− (lα− lnom

α)L̄(α).
The control objective is to drive the system from nominal initial states [0, 0, 0]T to terminal
states [180◦, 0, 0]T . For CCM search and trajectory planning, the following constraints are
enforced: x ∈ X = [−10◦, 180◦]× [−5◦, 40◦]× [−10, 50]◦/s, u ∈ U = [−15, 15]◦/s2.

We set the convergence rate λ to 1. By gridding the set of α and evaluating the con-
straints (9) in those grid points, we found a CCM W(x) as a quadratic function of α with the
SPOT toolbox [27] (to formulate the convex optimization problem) and Mosek solver [28].

328

Sensors 2022, 22, 4743

Additionally, the constants α1 and α2 in (28) such that α1 I ≤ M(x) = W−1(x) ≤ α2 I for all
x ∈ X were found to be α1 = 0.1 and α2 = 396.5. We planned a nominal trajectory (x�(·),
u�(·)) using OptimTraj [29,30], to drive the system from the initial states [0, 0, 0]T to the
terminal states [180◦, 0, 0]T , while minimizing the task completion time (Ta) and energy
consumption characterized by the cost function J =

∫ Ta
0 u(t)2dt + 5Ta. For simulation,

OPTI [31] and Matlab fmincon solvers were used to solve the geodesic optimization prob-
lem (see Section 2). The initial states of the actual system were chosen to be [5◦, 5◦, 0]T ,
slightly deviated from that planned ones to better illustrate the tracking performance. We
implemented our proposed DE-CCM, Ad-CCM from [14] and a standard CCM which
neglects all the uncertainty. For Ad-CCM design, the adaptation gain was chosen to be
diag([103, 103]) to achieve a relatively good tracking result, while further increasing it did
not help much with the tracking performance. The design procedure for Ad-CCM in [14]
requires a parametric structure for the uncertainty, which is given by

d(t, x) =
[
q L̄(α)

]
︸ ︷︷ ︸

Δ(t,x)

[
knom

q − kq

lnom
α − lα

]
︸ ︷︷ ︸

θ

=
[
q 0.8 sin(2α)

][−0.6
2

]
, (31)

where Δ(t, x) is the known base function and θ is the unknown parameter vector to be esti-
mated by the adaptive law proposed in [14]. The control signals under all three controllers
were updated at 200 Hz.

It is easy to notice from Assumption 1 that LB = 0 and ld = 0 since the input matrix
is constant, and the uncertainty is time-invariant. We can also verify that the disturbance
is bounded by bd = 2.12 and has a Lipschitz constant Ld = 3.80. By gridding the space X
and making use of the control input bound, the system derivative can also be bounded by
a constant φ = 2.11. According to (21), if we want to achieve an EEB δ(t, T) = 0.05 for all
t ≥ T, the maximum value for the estimation sample time T is 7.76× 10−4 s. However,
as mentioned in Remark 5, the way to compute the EEB is quite conservative. In the
simulations we found that Ts = 0.005 was more than enough to ensure the EEB and
therefore used Ts = 0.005 for implementing the DE-CCM controller.

As shown in Figures 2 and 3, due to ignoring the uncertainties, CCM yielded a
large tracking error between 2 and 6 s. The state trajectories under Ad-CCM had some
oscillations, which lasted roughly up to 8 s. All three states yielded by DE-CCM achieve
good tracking performance without large deviations from the planned trajectories, unlike
the performance yielded by Ad-CCM and CCM. From Figure 3 we notice that the tracking
error represented by x − x� under DE-CCM monotonically decreases and achieves the
smallest steady-state error. The small non-zero tracking error at the end under DE-CCM,
which is inconsistent with the performance guarantee in (25), is due to the limited control
update frequency, while the performance guarantee in Lemma 4 holds under continuous
update of the control signal, i.e., corresponding to an infinitely high update frequency.
Table 1 shows the mean squared error (MSE) for state trajectory tracking defined by

MSE =
1
N

N

∑
i=1

∥∥x(ti)− x�(ti)
∥∥2 , (32)

where N is the number of data points, under DE-CCM, Ad-CCM and CCM. We observe that
DE-CCM outperforms CCM and Ad-CCM in terms of MSE by 54% and 2%, respectively.

329

Sensors 2022, 22, 4743

Figure 2. Trajectory tracking performance of different controllers.

Figure 3. Tracking error under different controllers.

Table 1. MSE for state trajectory tracking for the aircraft example.

CCM Ad-CCM DE-CCM

MSE 2.994× 10−3 1.397× 10−3 1.369× 10−3

330

Sensors 2022, 22, 4743

From Figure 4, we observe that the input of DE-CCM is smoother than Ad-CCM.
The small oscillations between 2 s to 8 s in DE-CCM input are due to the finite tolerance in
the geodesic optimization. Decreasing the tolerance and the sample time will reduce the
oscillations but request more iterations (and thus more time) to compute the control signal
at each time step.

Figure 4. Control inputs yielded by different controllers.

4.2. Planar Quadrotor

A planar quadrotor system is borrowed from [16]. The state vector is defined as
x = [px, pz, φ, vx, vz, φ̇]�, where px and pz are the positions in x and z directions, respec-
tively, vx and vz are the slip velocity (lateral) and the velocity along the thrust axis in the
body frame of the vehicle, φ is the angle between the x direction of the body frame and
the x direction of the inertia frame. The input vector u = [u1, u2] contains the thrust force
produced by each of the two propellers. The dynamics of the vehicle are given by

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

˙px
˙pz
φ̇

˙vx
˙vz
φ̈

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vx cos(φ)− vz sin(φ)
vx sin(φ) + vz cos(φ)

φ̇
vzφ̇− g sin(φ)
−vxφ̇− g cos(φ)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
1
m

1
m

l
J − l

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(u + d(t, x)),

where m and J denote the mass and moment of inertia about the out-of-plane axis, and l is
the distance between each of the propellers and the vehicle center, and d(t, x) denotes the
unknown disturbances exerted on the propellers. The parameters were set as m = 0.486 kg,
J = 0.00383 Kg m2, and l = 0.25 m. The uncertainty d(t, x) was set to be d(t, x) =
0.15(v2

x + v2
z)[−1+ 0.3 sin(2t);−1+ 0.3 cos(2t)]. We imposed the following constraints: x ∈

X � [0, 10]× [0, 10]× [−π
3 , π

3]× [−2, 2]× [−1,−1]× [−π
3 , π

3], u ∈ U � [0, 3
2 mg]× [0, 3

2 mg].
When searching for CCM, we parameterized the CCM W by φ and vx and imposed

the constraint W ≥ 0.01I. The convergence rate λ was chosen to be 0.8. More details about
synthesizing the CCM can be found in [17]. For estimating the disturbance using (18) to (20),
we set a = 10. It is easy to verify that Ld = 1.23, ld = 0.64, bd = 1.38, and LB = 0 (due to
the fact that B is constant) satisfy (2). By gridding the space X , the constant φ in (23) can be
determined as φ = 584.6. According to (21), if we want to achieve an EEB δ(t, T) = 0.1 for
all t ≥ T, then the estimation sampling time needs to satisfy T ≤ 6.42× 10−7 s. However,
as noted in Remark 5, the EEB computed according to (21) could be overly conservative.

331

Sensors 2022, 22, 4743

In the simulations, we found that the estimation sampling time of 0.002 s was more than
enough to ensure the desired EEB and therefore simply set T = 0.002 s.

We consider the task of navigation from (2, 0) to (8, 8) while avoiding three obstacles
depicted by black circles in Figure 5. A nominal trajectory (x�(·), u�(·)) was generated
using OptimTraj [29] to minimize the cost J =

∫ Ta
0

∥∥u(t)
∥∥2 dt + 5Ta, where Ta is the arrival

time. OPTI [31] and Matlab fmincon solvers were used to solve the geodesic optimization
problem (see Section 2). The actual start point was set to be (0, 0), which was different from
the planned start point, to reveal the trajectory convergence pattern.

Figure 5. Trajectory tracking performance of different controllers.

For comparison, we also designed a standard CCM controller by completely ignoring
the uncertainty and two adaptive CCM (Ad-CCM) controllers following the approach
in [14]. To apply the approach in [14] which can only handle parametric uncertainties, we
parameterized the uncertainty as

d(t, x) =

[
v2

x(−1 + 0.3 sin(2t)) v2
z(−1 + 0.3 sin(2t))

v2
x(−1 + 0.3 cos(2t)) v2

z(−1 + 0.3 cos(2t))

]
︸ ︷︷ ︸

Δ(t,x)

[
0.15
0.15

]
︸ ︷︷ ︸

θ

, (33)

where Δ(t, x) is the basis function that is assumed to be known, and θ is th vector of
unknown parameters. With the parametric structure (33), we designed two adaptive CCM
controllers using Γ = 10 and Γ = 100, respectively, where Γ denotes the adaptive gain.
Figure 5 shows the planned and actual trajectories under the CCM, Ad-CCM, and our
proposed controller based on the RRE condition and disturbance estimation, denoted as
DE-CCM, while Figures 6 and 7 show the control inputs and Riemannian energy. One can
see that the actual trajectories yielded by the CCM controller deviated quite a lot from the
planned ones and collided with one obstacle. On the other hand, the actual trajectories
yielded by the DE-CCM controller converged to the desired trajectory as expected and
almost overlapped with it afterward. In fact, the slight deviations of actual trajectories from
the desired ones under the DE-CCM controller were due to the finite step size associated
with the ODE solver used for the simulations (see Remark 6). Table 2 shows the MSE for
state trajectory tracking defined in (32). We observe that DE-CCM outperforms CCM and
Ad-CCM in terms of MSE by 46% and 14%, respectively.

332

Sensors 2022, 22, 4743

Figure 6. Riemannian energy under different controllers. E0 � E(x�(0), x(0)).

Figure 7. Control inputs yielded by different controllers.

Table 2. MSE for state trajectory tracking for the planar quadrotor example. For Ad-CCM, only the
result for Γ = 100, which corresponds to better tracking performance compared to Γ = 10, is included.

CCM Ad-CCM (Γ = 100) DE-CCM

MSE 1.175 0.738 0.634

From Figure 6, one can see that the magnitude of E(x�, x) under the RD-CCM controller
decreased exponentially, and the magnitude was bounded by the curve E(x�(0), x(0))e−2λt

from above except at the very end when the energy is close to zero. In comparison, Ad-
CCM with Γ = 100 yielded similar tracking performance to DE-CCM, while the tracking
performance of Ad-CCM with Γ = 10 was relatively worse and characterized by larger
oscillations. Additionally, from Figure 7, one can see that the control inputs generated
by both of the Ad-CCM controllers have high-frequency oscillations before 3 s, which
is undesired for practical deployment. Finally, Figure 8 shows the actual and estimated
disturbances as well as the estimation error. One can see that the estimated disturbance is

333

Sensors 2022, 22, 4743

quite close to the actual one for both channels, and the EEB of 0.1 is respected throughout
the simulation.

Figure 8. Actual and estimated disturbances (top) and the estimation error (bottom). Note that di

and d̂i (i = 1, 2) represent the ith element of d (actual disturbance) and d̂ (estimated disturbance),
respectively. The blue dashed line in the bottom plot denotes the EEB used in computing the control
inputs.

5. Conclusions

This paper presents a robust trajectory tracking controller with exponential conver-
gence for uncertain nonlinear systems based on control contraction metrics (CCM) and
disturbance estimation. The controller uses a disturbance estimator to estimate the point-
wise value of the uncertainty with a pre-computable estimation error bound (EEB). The es-
timated disturbance and the EEB are then incorporated into a robust Riemannian energy
condition, which guarantees exponential convergence of actual trajectories to desired ones.
The efficacy of the proposed controller is validated in simulations. In particular, the pro-
posed controller outperforms an existing adaptive CCM controller in terms of tracking
performance by 2% for the aircraft example and 14% for the planar quadrotor example,
while not needing to know the basis functions to parameterize the uncertainties that are
needed by the adaptive CCM controller.

This paper considers only matched uncertainties, which are added to the system
through the same channels as control inputs. In the future, we would like to address
unmatched uncertainties that widely exist in practical systems. Additionally, we would
like to experimentally validate the proposed controller on real hardware.

Author Contributions: The individual contributions of the authors are as follows. Conceptualization,
methodology and formal analysis, P.Z.; software and investigation, Z.G. and P.Z.; validation and
visualization, Z.G.; supervision, N.H.; writing—original draft preparation, P.Z.; writing—review and
editing, Z.G. and N.H.; project administration, P.Z.; funding acquisition, N.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded in part by AFOSR, in part by NASA, and in part by NSF under
the RI grant #2133656 and NRI grant #1830639.

Institutional Review Board Statement: Not available.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not available.

334

Sensors 2022, 22, 4743

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof of Lemma 4: Hereafter, we use the notations Zi and Zn
1 to denote the integer sets

{i, i + 1, i + 2, · · · } and {1, 2, · · · , n}, respectively. Additionally, for notation brevity, we
define σ(t) � B(x(t))d(x(t)). From (1) and (18), the prediction error dynamics are obtained
as

˙̃x(t) = −ax̃(t) + σ̂(t)− σ(t), x̃(0) = 0. (A1)

Note that σ̂(t) = 0 (and thus d̂(t) = 0 due to (20)) for any t ∈ [0, T) according to (19).
Further considering the bound on d(t, x) in (4), we have∥∥∥d̂(t)− d(t, x(t))

∥∥∥ ≤ bd, ∀t ∈ [0, T). (A2)

We next derive the bound on
∥∥σ̂(t)− σ(t)

∥∥ for t ≥ T. For any t ∈ [iT, (i + 1)T)
(i ∈ Z0), we have

x̃(t) = e−a(t−iT) x̃(iT) +
∫ t

iT
e−a(t−τ)(σ̂(τ)− σ(τ))dτ.

Since x̃(t) is continuous, the preceding equation implies

x̃((i + 1)T) = e−aT x̃(iT) +
∫ (i+1)T

iT
e−a((i+1)T−τ)dτσ̂(iT)−

∫ (i+1)T

iT
e−a((i+1)T−τ)σ(τ)dτ

= e−aT x̃(iT)+
1− e−aT

a
σ̂(iT)−

∫ (i+1)T

iT
e−a((i+1)T−τ)σ(τ)dτ

= −
∫ (i+1)T

iT
e−a((i+1)T−τ)σ(τ)dτ, (A3)

where the first and last equalities are due to the estimation law (19).
Since x(t) is continuous, σ(t) (= B(x)d(x)) is also continuous given Assumption 1.

Furthermore, considering that e−a((i+1)T−τ) is always positive, we can apply the first mean
value theorem in an element-wise manner (Note that the mean value theorem for definite
integrals only holds for scalar valued functions) to (A3), which leads to

x̃((i + 1)T) =−
∫ (i+1)T

iT
e−a((i+1)T−τ)dτ[σj(τ

∗
j)] = −

1
a
(1− e−aT)[σj(τ

∗
j)], (A4)

for some τ∗j ∈ (iT, (i + 1)T) with j ∈ Zn
1 and i ∈ Z0, where σj(t) is the j-th element of

σ(t), and
[σj(τ

∗
j)] � [σ1(τ

∗
1), · · · , σn(τ

∗
n)]

�.

The estimation law (19) indicates that for any t in [(i + 1)T, (i + 2)T), we have σ̂(t) =
− a

eaT−1 x̃((i + 1)T). The preceding equality and (A4) imply that for any t in [(i + 1)T, (i +
2)T) with i ∈ Z0, there exist τ∗j ∈ (iT, (i + 1)T) (j ∈ Zn

1) such that

σ̂(t) = e−aT[σj(τ
∗
j)]. (A5)

Note that∥∥∥σ(t)−[σj(τ
∗
j)]

∥∥∥≤√n
∥∥∥σ(t)−[σj(τ

∗
j)]

∥∥∥
∞
=
√

n
∣∣∣σj̄t(t)−σj̄t(τ

∗̄
jt
)
∣∣∣ ≤√n

∥∥∥σ(t)−σ(τ∗̄jt)
∥∥∥ , (A6)

335

Sensors 2022, 22, 4743

where j̄t = arg maxj∈Zn
1

∣∣∣σj(t)− σj(τ
∗
j)

∣∣∣. Similarly,

∥∥∥[σj(τ
∗
j)]

∥∥∥ ≤√n
∥∥∥[σj(τ

∗
j)]

∥∥∥
∞
=
√

n
∣∣∣∣σĵ(τ

∗̂
j)

∣∣∣∣ ≤ √n
∥∥∥∥σ(τ∗̂j)

∥∥∥∥ ≤ √nbd max
x∈X

∥∥B(x)
∥∥ , (A7)

where ĵ = arg maxj∈Zn
1

∣∣∣σj(τ
∗
j)

∣∣∣, and the last inequality is due to the fact
∥∥B(x)d(t, x)

∥∥ ≤∥∥B(x)
∥∥∥∥d(t, x)

∥∥ and (4). Therefore, for any t ∈ [(i + 1)T, (i + 2)T) (i ∈ Z0), we have

∥∥σ(t)−σ̂(t)
∥∥ =

∥∥∥σ(t)−e−aT [σj(τ
∗
j)]

∥∥∥ ≤∥∥∥σ(t)−[σj(τ
∗
j)]

∥∥∥+(1−e−aT)
∥∥∥[σj(τ

∗
j)]

∥∥∥
≤√n

∥∥∥σ(t)−σ(τ∗̄jt)
∥∥∥+(1−e−aT)

√
nbd max

x∈X
∥∥B(x)

∥∥ , (A8)

for some τ∗̄jt ∈ (iT, (i + 1)T), where the equality is due to (A5), and the last inequality is
due to (A6) and (A7). The dynamics in (1) indicates that

‖ẋ‖ ≤∥∥ f (x) + B(x)u
∥∥+

∥∥B(x)
∥∥∥∥d(t, x)

∥∥ ≤ φ, (A9)

where φ is defined in (23). As a result, the inequality (A9) implies that

∥∥∥x(t)− x(τ∗̄jt)
∥∥∥ ≤ ∫ t

τ∗̄jt

∥∥ẋ(τ)
∥∥ dτ ≤

∫ t

τ∗̄jt
φdτ = φ(t− τ∗̄jt) ≤ 2φT, (A10)

where the last inequality is due to the fact that

t ∈ [(i + 1)T, (i + 2)T) and τ∗̄jt ∈ (iT, (i + 1)T) (A11)

Therefore, we have∥∥∥σ(t)−σ(τ∗̄jt)
∥∥∥ =

∥∥∥B(x(t))
(

d(t, x(t))−d(τ∗̄jt , x(τ∗̄jt))
)
+
(

B(x(t))−B(x(τ∗̄jt))
)

d(τ∗̄jt , x(τ∗̄jt))
∥∥∥

≤ ∥∥B(x(t))
∥∥∥∥∥d(t, x(t))−d(τ∗̄jt , x(τ∗̄jt))

∥∥∥+
∥∥∥B(x(t))− B(x(τ∗̄jt))

∥∥∥∥∥∥d(τ∗̄jt , x(τ∗̄jt))
∥∥∥

≤
(

Ld

∥∥∥x(t)− x(τ∗̄jt)
∥∥∥+ ld(t− τ∗̄jt)

)
max
x∈X

∥∥B(x)
∥∥+ LB

∥∥∥x(t)− x(τ∗̄jt)
∥∥∥bd

≤ 2T
(
(Ldφ + ld)max

x∈X
∥∥B(x)

∥∥+ LBbd

)
, (A12)

where the second inequality is due to Assumption 1 and the last inequality is due to (A10)
and (A11). Finally, plugging (A12) into (A8) leads to

∥∥σ(t)−σ̂(t)
∥∥ ≤ 2

√
nT

(
(Ldφ + ld)max

x∈X
∥∥B(x)

∥∥+ LBbd

)
+(1−e−aT)

√
nbd max

x∈X
∥∥B(x)

∥∥
=

(
2
√

nT(Ldφ + ld) + (1−e−aT)
√

nbd

)
max
x∈X

∥∥B(x)
∥∥+ 2

√
nTLBbd (A13)

= α(T), (A14)

for any t ≥ T. From (A2) and (A14) and the relation between σ̂(t) and d̂(t) in (20), we
arrive at (21). Considering Assumption 1 and the assumption that X and U are compact,
the constants involved in the definition of α(T) in (22) are all finite. As a result, we have
limT→0 α(T) = 0, which further indicates that limT→0 δ(t, T) = 0, for any t ≥ T. The proof
is complete. �

336

Sensors 2022, 22, 4743

References

1. Manchester, I.R.; Slotine, J.J.E. Control contraction metrics: Convex and intrinsic criteria for nonlinear feedback design. IEEE
Trans. Autom. Control 2017, 62, 3046–3053. [CrossRef]

2. Lohmiller, W.; Slotine, J.J.E. On contraction analysis for non-linear systems. Automatica 1998, 34, 683–696. [CrossRef]
3. Manchester, I.R.; Tang, J.Z.; Slotine, J.J.E. Unifying robot trajectory tracking with control contraction metrics. In Robotics Research;

Springer: Cham, Switzerland, 2018; pp. 403–418.
4. Tedrake, R.; Manchester, I.R.; Tobenkin, M.; Roberts, J.W. LQR-trees: Feedback motion planning via sums-of-squares verification.

Int. J. Robot. Res. 2010, 29, 1038–1052. [CrossRef]
5. Doyle, J.; Glover, K.; Khargonekar, P.; Francis, B. State-space solutions to standard H2 and H∞ control problems. IEEE Trans.

Autom. Control 1989, 34, 831–847. [CrossRef]
6. Packard, A.; Doyle, J. The complex structured singular value. Automatica 1993, 29, 71–109. [CrossRef]
7. Mayne, D.Q.; Seron, M.M.; Raković, S. Robust model predictive control of constrained linear systems with bounded disturbances.

Automatica 2005, 41, 219–224. [CrossRef]
8. Mayne, D.Q. Model predictive control: Recent developments and future promise. Automatica 2014, 50, 2967–2986. [CrossRef]
9. Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [CrossRef]
10. Chen, W.H.; Yang, J.; Guo, L.; Li, S. Disturbance-observer-based control and related methods—An overview. IEEE Trans. Ind.

Electron. 2015, 63, 1083–1095. [CrossRef]
11. Li, S.; Yang, J.; Chen, W.; Chen, X. Generalized extended state observer based control for systems With mismatched uncertainties.

IEEE Trans. Ind. Electron. 2012, 59, 4792–4802. [CrossRef]
12. Ioannou, P.A.; Sun, J. Robust Adaptive Control; Dover Publications, Inc.: Mineola, NY, USA, 2012.
13. Hovakimyan, N.; Cao, C. L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation; Society for Industrial and

Applied Mathematics: Philadelphia, PA, USA, 2010.
14. Lopez, B.T.; Slotine, J.J.E. Adaptive nonlinear control with contraction metrics. IEEE Control Syst. Lett. 2020, 5, 205–210. [CrossRef]
15. Lakshmanan, A.; Gahlawat, A.; Hovakimyan, N. Safe feedback motion planning: A contraction theory and L1-adaptive control

based approach. In Proceedings of the 59th IEEE Conference on Decision and Control (CDC), Jeju Island, Korea, 14–18 December
2020; pp. 1578–1583.

16. Singh, S.; Landry, B.; Majumdar, A.; Slotine, J.J.; Pavone, M. Robust feedback motion planning via contraction theory. Int. J. Robot.
Res. 2019, under review.

17. Zhao, P.; Lakshmanan, A.; Ackerman, K.; Gahlawat, A.; Pavone, M.; Hovakimyan, N. Tube-certified trajectory tracking for
nonlinear systems with robust control contraction metrics. IEEE Robot. Autom. Lett. 2022, 7, 5528–5535. [CrossRef]

18. Manchester, I.R.; Slotine, J.J.E. Robust control contraction metrics: A convex approach to nonlinear state-feedback H∞ control.
IEEE Control Syst. Lett. 2018, 2, 333–338. [CrossRef]

19. Tsukamoto, H.; Chung, S.J. Robust controller design for stochastic nonlinear systems via convex optimization. IEEE Trans. Autom.
Control 2020, 66, 4731–4746. [CrossRef]

20. Zhao, P.; Guo, Z.; Cheng, Y.; Gahlawat, A.; Kang, H.; Hovakimyan, N. Guaranteed nonlinear tracking control in the presence of
DNN-learned dynamics with contraction metrics and disturbance estimation. IEEE Conf. Decis. Control. 2022, under review.

21. Leung, K.; Manchester, I.R. Nonlinear stabilization via control contraction metrics: A pseudospectral approach for computing
geodesics. In Proceedings of the American Control Conference, Seattle, WA, USA, 24–26 May 2017; pp. 1284–1289.

22. Do Carmo, M.P.; Flaherty Francis, J. Riemannian Geometry; Springer: Boston, MA, USA, 1992.
23. Freeman, R.; Kokotovic, P.V. Robust Nonlinear Control Design: State-Space and Lyapunov Techniques; Springer Science & Business

Media: Berlin, Germany, 2008.
24. Zhao, P.; Mao, Y.; Tao, C.; Hovakimyan, N.; Wang, X. Adaptive robust quadratic programs using control Lyapunov and barrier

functions. In Proceedings of the 59th IEEE Conference on Decision and Control, Jeju Island, Korea, 14–18 December 2020;
pp. 3353–3358.

25. Cao, C.; Hovakimyan, N. L1 adaptive output feedback controller for non strictly positive real reference systems with applications
to aerospace examples. In Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI,
USA, 18–21 August 2008; p. 7288.

26. Lopez, B.T.; Slotine, J.J.E.; How, J.P. Robust Adaptive Control Barrier Functions: An Adaptive and Data-Driven Approach to
Safety. IEEE Control Syst. Lett. 2021, 5, 1031–1036. [CrossRef]

27. Megretski, A. Systems Polynomial Optimization Tools (SPOT). 2010. Available online: https://github.com/spot-toolbox/spotless
(accessed on 1 September 2021).

28. Andersen, E.D.; Andersen, K.D. The MOSEK interior point optimizer for linear programming: An implementation of the
homogeneous algorithm. In High Performance Optimization; Springer: New York, NY, USA, 2000; pp. 197–232.

29. Kelly, M. An introduction to trajectory optimization: How to do your own direct collocation. SIAM Rev. 2017, 59, 849–904.
[CrossRef]

30. Kelly, M.P. OptimTraj User’s Guide, Version 1.5. 2016 . Available online: https://github.com/MatthewPeterKelly/OptimTraj
(accessed on 1 September 2021).

31. Currie, J.; Wilson, D.I. OPTI: Lowering the barrier between open source optimizers and the industrial MATLAB user. In
Proceedings of the Foundations of Computer-Aided Process Operations, Savannah, GA, USA, 8–11 January 2012.

337

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Sensors Editorial Office
E-mail: sensors@mdpi.com

www.mdpi.com/journal/sensors

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com ISBN 978-3-0365-6329-9

	A9R13m6nqb_1pqs10c_a3g
	[Sensors] Motion Optimization and Control of Single and Multiple Autonomous Aerial, Land, and Marine Robots.pdf
	A9R13m6nqb_1pqs10c_a3g.pdf

