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Preface to ”Approximation Theory and Related
Applications”

This book covers a wide range of issues, concepts and methods of modern approximation

theory and its practical application. The book includes 14 articles published in the Special Issue

“Approximation Theory and Related Applications” in the Mathematical Analysis section. This

Special Issue contains new and important results of researchers from different countries of the world,

in particular, from Ukraine, USA, China, Canada, Italy, Portugal, India, Ireland, Israel, Bulgaria,

Czech Republic, Slovakia, Azerbaijan, Egypt, Taiwan and South Africa.

In the modern world, approximation theory is successfully used in various fields of science and

technology, in particular in mathematical physics, in solving differential and integral equations, in

chemistry, in control theory, in probability theory and statistics, in mathematical modeling, in neural

networks, in transmission and reproduction of information and signals, etc. The articles in this Special

Issue are very diverse and contain not only fundamental research in the field of approximation theory,

but also important practical applications.

Taking this opportunity, I would like to express my immense gratitude to all the authors who

responded to the invitation and submitted their articles to the Special Issue, to the reviewers who

conducted detailed analyzes of the articles, gave valuable advice, recommendations and contributed

to improving the content of our Special Issue. I would like to thank the editors of Axioms, especially

Ms. Leila Zhang for her constant attention and support during the work on the Special Issue.

Yurii Kharkevych

Editor
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Editorial

Approximation Theory and Related Applications
Yurii Kharkevych

Faculty of Information Technologies and Mathematics, Lesya Ukrainka Volyn National University,
43025 Lutsk, Ukraine; kharkevich.juriy@gmail.com

The theory of approximation of functions is one of the central branches of mathematical
analysis. It arose as a result of not only the internal development of mathematical science,
but also the demands of practice. In terms of the concept of a function, it reflects a
fundamental idea—the approximation (or replacement) of complex objects by ones that
are simpler and more convenient to use. This idea is decisive regarding the relationship
between mathematics and practice, which has always stimulated the development of
approximation theory and which we hope will continue to garner interest in in the future.

This book is a collection of 14 papers included in the Special Issue “Approxima-
tion Theory and Related Applications” of the journal Axioms; it discusses contemporary
problems in approximation theory, its applications in other areas of mathematics, and its
practical uses. The main purpose of this Special Issue is to disseminate ideas and methods
in approximation theory, to present new and significant results in this area, and to highlight
related issues.

In [1], the authors discussed the well-known BMO class of functions of bounded mean
oscillation by John–Nirenberg, which, long ago, became one of the most important concepts
in harmonic analysis, partial differential equations, and related areas. Specifically, they
investigated its applications to modern mapping theory. The authors established a series of
criteria involving BMO to determine the existence of approximate solutions to the Beltrami
equations in the whole complex plane, with asymptotic homogeneity at infinity. Note that
such mappings inherit the main geometric properties of conformal mappings. These results
can be applied to the fluid mechanics in strongly anisotropic and inhomogeneous media
because the Beltrami equation is a complex form of the main equation of hydromechanics.

In [2], the authors considered abstract rings of multisets with components in a Banach
algebra. These investigations are related to symmetric and supersymmetric polynomials
and function calculus in algebras of analytic functions.

In [3], the authors showed that the Fréchet algebras of all entire bounded-type symmet-
ric functions in the complex Banach space of all integrable essentially bounded functions in
the arbitrary union of Lebesgue–Rohlin-measurable spaces are isomorphic to the Fréchet
algebra of all entire bounded-type symmetric functions in the complex Banach space L∞ of
all Lebesgue-measurable essentially bounded functions in [0, 1].

The problems considered in paper [4] relate to rational approximations of the ana-
lytical functions of several variables—one of the main directions in the modern theory of
continued and branched continued fractions. The authors constructed and investigated
branched continued fraction expansions for ratios of the confluent hypergeometric function
Φ(N)

D . Several numerical experiments are presented to indicate the power and efficiency of
branched continued fractions as an approximation tool compared to multiple power series.

In [5], the authors solved one extremal problem of the theory of approximation of
functional classes using linear methods. Namely, asymptotic equalities were obtained
for the least upper bounds of the approximations of functions from the classes Wr

β,∞ via
generalized Abel–Poisson integrals in a uniform metric. These formulas provide a solution
to the corresponding Kolmogorov–Nikol’skii problem.

1
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In [6], the authors used the averaging method, which is one of the most effective tools
for constructing approximate solutions, including optimal control problems for ODEs and
PDEs. The Krasnoselski–Krein theorem and its various modifications play an essential
role in all such considerations, since it guarantees a limit transition in perturbed problems
with fast-oscillating coefficients. The authors used this approach for a nonlinear parabolic
system with fast-oscillating (w.r.t. time variable) coefficients on an infinite time interval.
They proved that control of the problem using averaging coefficients could be considered
“approximately” optimal for the initial perturbed system.

In [7], the authors investigated the ideas of deferred weighted statistical Riemann
integrability and statistical deferred weighted Riemann summability for sequences of
functions. They prove the existence of an inclusion theorem connecting these two concepts
and two Korovkin-type approximation theorems using algebraic test functions.

In [8], with the help of Fubini’s theorem, as well as a straightforward outcome of
Keller’s chain rule on time scales, the authors demonstrated new dynamic Hardy-type
inequalities, which are reverse inequalities on time scales. Moreover, they generalized
a number of other inequalities to a general time scale and obtained the discrete and
continuous inequalities as special cases of the main results.

In [9], the authors studied the pointwise estimations of an unknown function in a
regression model with multiplicative and additive noise. The authors found a linear wavelet
estimator using the wavelet method and studied the order of the pointwise convergence
of this estimator in the local Hölder space. They also constructed a nonlinear wavelet
estimator using the hard thresholding method.

In [10], the authors refined the notion of the partial modular metric defined by Hos-
seinzadeh and Parvaneh to eliminate the occurrence of discrepancies in the non-zero
self-distance and triangular inequality. The common fixed-point theorem for four self-
mappings was proven, and the authors applied their results to establishing the existence of
a solution for a system of Volterra integral equations.

In [11], a fractional model of the Hopfield neural network was considered in the
application of the generalized proportional Caputo fractional derivative. The authors
studied the stability of the Hopfield neural network using the generalized proportional
Caputo-type fractional derivative and defined the equilibrium of the studied model.

In [12], the authors studied the relationship between the intuitionistic fuzzy reason-
ing and interval-valued fuzzy reasoning algorithms, and proved that there is a bijection
between the solutions of the intuitionistic fuzzy triple I algorithm and the interval-valued
fuzzy triple I algorithm. They also showed that there is a bijection between the solutions
of the intuitionistic fuzzy reverse triple I algorithm and the interval-valued fuzzy reverse
triple I algorithm.

In [13], the authors developed symbolic regression models for waste gasification.
When evaluating CEET models based on input data, two different statistical metrics are
usually used to quantify their accuracy: the mean square error and the Pearson correlation
coefficient. The authors also demonstrated a universal method based on dynamic system
criteria that can detect suitable models with good properties following statistical metrics.

In [14], the authors defined the quasi-density of natural number subsets, and they
determined the necessary conditions to ensure that the quasi-statistical convergence was
equivalent to that of the matrix summability method for a special class of triangular matrices
with real coefficients.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.
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Article

BMO and Asymptotic Homogeneity

Vladimir Gutlyanskii 1, Vladimir Ryazanov 1,2, Evgeny Sevost’yanov 1,3,* and Eduard Yakubov 4

1 Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine,
84100 Slavyansk, Ukraine; vgutlyanskii@gmail.com (V.G.); ryazanov@nas.gov.ua (V.R.)

2 Laboratory of Mathematical Physics, Department of Physics, Bogdan Khmelnytsky National University of
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3 Department of Mathematical Analysis, Business Analysis and Statistics, Zhytomyr Ivan Franko State
University, 10008 Zhytomyr, Ukraine

4 H.I.T. Holon Institute of Technology, Holon 5810201, Israel; yakubov@hit.ac.il
* Correspondence: esevostyanov2009@gmail.com

Abstract: First, we prove that the BMO condition by John–Nirenberg leads in the natural way to
the asymptotic homogeneity at the origin of regular homeomorphic solutions of the degenerate
Beltrami equations. Then, on this basis we establish a series of criteria for the existence of regular
homeomorphic solutions of the degenerate Beltrami equations in the whole complex plane with
asymptotic homogeneity at infinity. These results can be applied to the fluid mechanics in strongly
anisotropic and inhomogeneous media because the Beltrami equation is a complex form of the main
equation of hydromechanics.

Keywords: BMO; degenerate Beltrami equations; asymptotic homogeneity at infinity; conformality
by Belinskii and by Lavrent’iev; hydromechanics; fluid mechanics

MSC: Primary 30C62; 30C65; 30H35; 35J70; Secondary 35Q35; 76B03

1. Introduction

A real-valued function u in a domain D in C is said to be of bounded mean oscillation
in D, abbr. u ∈ BMO(D), if u ∈ L1

loc(D) and

‖u‖∗ := sup
B

1
|B|

∫

B

|u(z)− uB| dm(z) < ∞ , (1)

where the supremum is taken over all discs B in D and

uB =
1
|B|

∫

B

u(z) dm(z) .

Recall that the class BMO was introduced by John and Nirenberg (1961) in the paper [1]
and soon became an important concept in harmonic analysis, partial differential equations
and related areas, see, e.g., [2,3].

A function ϕ in BMO is said to have vanishing mean oscillation, abbr. ϕ ∈ VMO, if
the supremum in (1) taken over all balls B in D with |B| < ε converges to 0 as ε→ 0. Recall
that VMO has been introduced by Sarason in [4]. There are a number of papers devoted to
the study of partial differential equations with coefficients of the class VMO, see, e.g., [5–9].
Note, by the way, that W 1,2(D) ⊂ VMO(D), see [10].

Let D be a domain in the complex plane C, i.e., a connected open subset of C, and
let µ : D → C be a measurable function with |µ(z)| < 1 a.e. (almost everywhere) in D. A
Beltrami equation is an equation of the form

∂ f (z) = µ(z) · ∂ f (z) (2)

5



Axioms 2022, 11, 171

with the formal complex derivatives ∂ f = ( fx + i fy)/2, ∂ f = ( fx − i fy)/2, z = x + iy,
where fx and fy are usual partial derivatives of f in x and y, correspondingly. The function
µ is said to be the complex coefficient and

Kµ(z) :=
1 + |µ(z)|
1− |µ(z)| (3)

the dilatation quotient of Equation (2). The Beltrami equation is called degenerate if
ess sup Kµ(z) = ∞. Homeomorphic solutions of the Beltrami equations with Kµ ≤ Q < ∞
in the Sobolev class W1,1

loc are called Q-quasiconformal mappings.
It is known that if Kµ is bounded, then the Beltrami equation has homeomorphic

solutions, see, e.g., [11–14]. Recently, a series of effective criteria for the existence of
homeomorphic W1,1

loc solutions have been also established for degenerate Beltrami equations,
see, e.g., historic comments with relevant references in monographs the [15–17].

These criteria were formulated both in terms of Kµ and the more refined quantity that
takes into account not only the modulus of the complex coefficient µ but also its argument

KT
µ (z, z0) :=

∣∣∣1− z−z0
z−z0

µ(z)
∣∣∣
2

1− |µ(z)|2 (4)

that is called the tangent dilatation quotient of the Beltrami equation with respect to a
point z0 ∈ C, see, e.g., [18–23]. Note that

K−1
µ (z) 6 KT

µ (z, z0) 6 Kµ(z) ∀ z ∈ D , z0 ∈ C . (5)

The geometrical sense of KT
µ can be found, e.g., in the monograph [16].

A function f in the Sobolev class W1,1
loc is called a regular solution of the Beltrami

Equation (2) if f satisfies it a.e. and its Jacobian J f (z) = |∂ f (z)|2 − |∂ f (z)|2 > 0 a.e. in C.
By the well-known Gehring–Lehto–Menchoff theorem, see [24,25], or see the mono-

graphs [11,13], each homeomorphic W1,1
loc solution f of the Beltrami equation is differentiable

a.e. Recall that a function f : D → C is differentiable by Darboux Stolz at a point z0 ∈ D
if

f (z)− f (z0) = ∂ f (z0) · (z− z0) + ∂ f (z0) · (z− z0) + o(|z− z0|) (6)

where o(|z− z0|)/|z− z0| → 0 as z→ z0. Moreover, f is called conformal at the point z0
if in addition fz(z0) = 0 but fz(z0) 6= 0.

The example w = z(1 − ln |z|) of B.V. Shabat, see [26], p. 40, shows that, for a
continuous complex characteristic µ(z), the quasiconformal mapping w = f (z) can be
non-differentiable by Darboux Stolz at the origin. If the characteristic µ(z) is continuous at
a point z0 ∈ D, then, as was first established, apparently, by P.P. Belinskij in [26], p. 41, the
mapping w = f (z) is differentiable at z0 in the following meaning:

∆w = A(ρ)
[
∆z + µ0∆z + o(ρ)

]
, (7)

where µ0 = µ(z0), ρ = |∆z + µ0∆z|, A(ρ) depends only on ρ and o(ρ)/ρ → 0 as ρ → 0.
As it was clarified later in [27], see also [28], here A(ρ) may not have a limit with ρ → 0;
however,

lim
ρ→0

A(tρ)
A(ρ)

= 1 ∀ t > 0 . (8)

Following [27], a mapping f : D → C is called differentiable by Belinskij at a point
z0 ∈ D if conditions (7) and (8) hold with some µ0 ∈ D := {µ ∈ C : |µ| < 1}. Note that
here, in the case of discontinuous µ(z), it is not necessary µ0 = µ(z0). If in addition µ0 = 0,
then f is called conformal by Belinskij at the point z0.

6
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For quasiconformal mappings f : D → C with f (0) = 0 ∈ D, it was shown in [27],
see also [28], that the conformality by Belinskij of f at the origin is equivalent to each of its
properties:

lim
τ→0

f (τζ)

f (τ)
= ζ along the ray τ > 0 ∀ ζ ∈ C , (9)

lim
z→0

{
f (z′)
f (z)

− z′

z

}
= 0 along z, z′ ∈ C, |z′| < δ|z|, ∀ δ > 0 , (10)

lim
z→0

f (zζ)

f (z)
= ζ along z ∈ C∗ := C \ {0} ∀ ζ ∈ C , (11)

and, finally, to the property of the limit in (11) to be locally uniform with respect to ζ ∈ C.
Following the article [28], the property (11) of a mapping f : D → C with f (0) = 0 ∈ D

is called its asymptotic homogeneity at 0. In the sequel, we sometimes write (11) in the
shorter form f (ζz) ∼ ζ f (z).

In particular, we obtain from (10) under |z′| = |z| that

lim
r→0

max
|z|=r
| f (z)|

min
|z|=r
| f (z)| = 1 (12)

i.e., that the Lavrent’iev characteristic is equal 1 at the origin. It is natural to say in the
case of (12) that the mapping f is conformal by Lavrent’iev at 0. As we see, the usual
conformality implies the conformality by Belinskij and the latter implies the conformality
by Lavrent’iev at the origin meaning geometrically that the infinitesimal circle centered at
zero is transformed into an infinitesimal circle also centered at zero.

However, condition (11) is much stronger than condition (12). We also obtain from
(11) the asymptotic preserving angles

lim
z→0

arg
[

f (zζ)

f (z)

]
= arg ζ ∀ ζ ∈ C∗ (13)

and asymptotic preserving moduli of infinitesimal rings

lim
z→0

| f (z ζ)|
| f (z)| = |ζ| ∀ ζ ∈ C∗ . (14)

The latter two geometric properties characterize asymptotic homogeneity and demonstrate
that it is close to the usual conformality.

It should be noted that, despite (14), an asymptotically homogeneous map can send

radial lines to infinitely winding spirals, as shown by the example f (z) = zei
√
− ln |z|,

see [26], p. 41. Moreover, the above Shabat example shows that the conformality by
Belinskij admits infinitely great tensions and pressures at the corresponding points.

It was shown in [27] that a quasiconformal mapping f : D → C, whose complex
characteristic µ(z) is approximately continuous at a point z0 ∈ D, is differentiable by
Belinskij at the point with µ0 = µ(z0) and, in particular, is asymptotically homogeneous if
µ(z0) = 0. Recall that µ(z) is called approximately continuous at the point z0 if there is a
measurable set E such that µ(z)→ µ(z0) as z→ z0 in E and z0 is a point of density for E,
i.e.,

lim
ε→0

|E ∩ D(z0, ε)|
|D(z0, ε)| = 1 ,

7



Axioms 2022, 11, 171

where D(z0, ε) = {z ∈ C : |z− z0| < ε}. Note also that, for functions µ in L∞, the points of
approximate continuity coincide with the Lebesgue points of µ, i.e., such z0 for which

lim
r→0

1
r2

∫

|z−z0|<r

|µ(z) − µ(z0)| dm(z) = 0 ,

where dm(z) := dxdy, z = x + iy, stands to the Lebesgue measure (area) in C.
The above results on the asymptotic homogeneity, i.e., on the conformality by Belinskij,

are extended to the degenerate Beltrami equations with its dilatation Kµ in BMO. Just
our approximate approach to the study of the degenerate Beltrami equations allowed us
significantly to move forward.

As we saw, the asymptotic homogeneity inherits the main geometric properties of
conformal mappings. Thus, our research is organically inserted into the stream of numerous
works that were devoted to the study of conformality of mappings, see, e.g., [26,29–35].

2. FMO and the Main Lemma with Participation of BMO

Here and later on, we apply the notations

D(z0, r) := {z ∈ C : |z− z0| < r} , D(r) := D(0, r) , D := D(0, 1) ,

and of the mean value of integrable functions ϕ over the disks D(z0, r)

−
∫

D(z0,r)
ϕ(z) dm(z) :=

1
|D(z0, r)|

∫

D(z0,r)

ϕ(z) dm(z) .

Following [36], we say that a function ϕ : D → R has finite mean oscillation at a
point z0 ∈ D, abbr. ϕ ∈ FMO(z0), if

lim
ε→0

−
∫

D(z0,ε)
|ϕ(z)− ϕ̃ε(z0)| dm(z) < ∞ , (15)

where
ϕ̃ε(z0) = −

∫

D(z0,ε)
ϕ(z) dm(z) . (16)

Note that the condition (15) includes the assumption that ϕ is integrable in some neighbor-
hood of the point z0. We say also that a function ϕ : D → R is of finite mean oscillation in
D, abbr. ϕ ∈ FMO(D) or simply ϕ ∈ FMO, if ϕ ∈ FMO(z0) for all points z0 ∈ D.

Remark 1. It is evident that BMO(D) ⊂ BMO(D)loc ⊂ FMO(D) and it is well-known by the
John–Nirenberg lemma that BMOloc ⊂ Lp

loc for all p ∈ [1, ∞), see, e.g., [1] or [3]. However, FMO
is not a subclass of Lp

loc for any p > 1 but only of L1
loc, see, e.g., example 2.3.1 in [16]. Thus, the

class FMO is much more wider than BMOloc.

The following statement is obvious by the triangle inequality.

Proposition 1. If, for a collection of numbers ϕε ∈ R, ε ∈ (0, ε0],

lim
ε→0

−
∫

D(z0,ε)
|ϕ(z)− ϕε| dm(z) < ∞ , (17)

then ϕ is of finite mean oscillation at z0.

In particular, choosing here ϕε ≡ 0, ε ∈ (0, ε0] in Proposition 1, we obtain the following.

8
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Corollary 1. If, for a point z0 ∈ D,

lim
ε→0

−
∫

D(z0,ε)
|ϕ(z)| dm(z) < ∞ , (18)

then ϕ has finite mean oscillation at z0.

Recall that a point z0 ∈ D is called a Lebesgue point of a function ϕ : D → R if ϕ is
integrable in a neighborhood of z0 and

lim
ε→0

−
∫

D(z0,ε)
|ϕ(z)− ϕ(z0)| dm(z) = 0 . (19)

It is known that, almost every point in D is a Lebesgue point for every function ϕ ∈ L1(D).
Thus, we have by Proposition 1 the next corollary.

Corollary 2. Every locally integrable function ϕ : D → R has a finite mean oscillation at almost
every point in D.

Remark 2. Note that the function ϕ(z) = log(1/|z|) belongs to BMO in the unit disk D, see,
e.g., [3], p. 5, and hence also to FMO. However, ϕ̃ε(0)→ ∞ as ε→ 0, showing that condition (18)
is only sufficient but not necessary for a function ϕ to be of finite mean oscillation at z0.

Versions of the next statement has been first proved for the class BMO. For the FMO
case, see the paper [36] and the monograph [16]. Here we prefer to use its following version,
see Lemma 2.1 in [23], cf. also Lemma 5.3 in the monograph [16]:

Proposition 2. Let ϕ : D → R be a non-negative function with finite mean oscillation at 0 ∈ D
and integrable in the disk D(1/2) ⊂ D. Then

∫

A(ε,1/2)

ϕ(z) dm(z)
(
|z| log2

1
|z|
)2 ≤ C · log2 log2

1
ε

∀ ε ∈ (0, 1/4) , (20)

where
C = 4π (ϕ0 + 6d0) , (21)

ϕ0 is the average of ϕ over the disk D(1/2) and d0 is the maximal dispersion of ϕ in D(1/2).

Recall that the maximal dispersion of the function ϕ in the disk D(z0, r0) is the quan-
tity

sup
r∈(0,r0]

−
∫

D(z0,r)
|ϕ(z)− ϕ̃r(z0)| dm(z) . (22)

Here and later on, we also use the following designations for the spherical rings in C :

A(z0, r1, r2) := {z ∈ C : r1 < |z− z0| < r2}, A(r1, r2) := A(0, r1, r2). (23)

Further, we denote by M the conformal modulus (or 2−modulus) of a family of paths
in C, see, e.g., [37]. Moreover, given sets E and F and a domain D in C, we denote by
Γ(E, F, D) the family of all paths γ : [0, 1] → C joining E and F in D, that is, γ(0) ∈ E,
γ(1) ∈ F and γ(t) ∈ D for all t ∈ (0, 1).

Let Q : C → (0, ∞) be a Lebesgue measurable function. A mapping f : D → C is
called a ring Q−mapping at a point z0 ∈ D, if

M( f (Γ(S(z0, r1), S(z0, r2), D))) 6
∫

A

Q(z) · η2(|z− z0|) dm(z) (24)

9
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for each spherical ring A = A(z0, r1, r2) with arbitrary 0 < r1 < r2 < δ0 := dist (z0, ∂D)
and all Lebesgue measurable functions η : (r1, r2)→ [0, ∞] such that

r2∫

r1

η(r) dr > 1. (25)

Here we use also the notations for the circles in C centered at a point z0

S(z0, r0) = { z ∈ C : |z − z0| = r0 }.

Remark 3. Recall that regular homeomorphic solutions of the Beltrami Equation (2) are Qz0−map-
pings with Qz0(z) = KT

µ (z, z0) and, in particular, Q−mappings with Q(z) = Kµ(z) at each point
z0 ∈ D, see [38], see also Theorem 2.2 in [16].

Later on, in the extended complex plane C = C∪ {∞}, we use the spherical (chordal)
metric s defined by the equalities

s(z, ζ) =
|z− ζ|√

1 + |z|2
√

1 + |ζ|2
, z 6= ∞ 6= ζ , s(z, ∞) =

1√
1 + |z|2

, (26)

see, e.g., [37] (Definition 12.1). For a given set E in C, we also use its spherical diameter

s(E) := sup
z,ζ∈E

s(z, ζ) . (27)

Given a domain D in C, a prescribed point z0 ∈ D and a measurable Q : D → (0, ∞),
later on R∆

Q denotes the class of all ring Q−homeomorphisms f at z0 in D with

s(C \ f (D)) ≥ ∆ > 0 .

The following statement, see Theorem 4.3 in [23], provides us by the effective estimates
of the distortion of the spherical distance under the ring Q−homeomorphisms, and it
follows just on the basis of Proposition 2 on FMO functions above.

Proposition 3. Let f ∈ R∆
Q(D) with ∆ > 0 and Q : D → R be a non-negative function with

finite mean oscillation at ζ0 ∈ D and integrable in the disk D(ζ0, ε0) ⊂ D, ε0 > 0. Then

s( f (ζ), f (ζ0)) ≤
32
∆
·
(

log
2ε0

|ζ − ζ0|

)− 1
α0 ∀ ζ ∈ D(ζ0, ε0/2) , (28)

where
α0 = 2(q0 + 6d0) , (29)

q0 is the average of Q over D(ζ0, ε0) and d0 is the maximal dispersion of Q in D(ζ0, ε0).

Propositions 2 and 3 are key in establishing equicontinuity of classes of mappings
associated with asymptotic homogeneity in the proof of the central lemma involving BMO.

Lemma 1. Let D be a domain in C, 0 ∈ D, and let f : D → C be a regular homeomorphic solution
of the Beltrami Equation (2) with f (0) = 0. Suppose that its dilatation Kµ has a majorant Q ∈
BMO(D). Then the family of mappings fz(ζ) := f (ζ z)/ f (z) is equicontinuous with respect to the
spherical metric at each point ζ0 ∈ C as z→ 0 along z ∈ C∗ := C \ {0}.

Proof. Indeed, for ζ0 ∈ D(δ), δ > 1, 0 < δ∗ < dist (0, ∂D), τ∗ := δ∗/δ < δ∗, we see that

D(zζ0, ρz) ⊆ D(δ∗) ⊆ D , where ρz := δ∗ − |zζ0| ≥ δ∗(1− |ζ0|/δ) > 0, z ∈ D(τ∗) \ {0} .

10
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Thus, by the construction the disks

D(ζ0, Rz) ⊆ D(δ∗/|z|) , where Rz := δ∗/|z| − |ζ0| ≥ δ− |ζ0| > 0 , z ∈ D(τ∗) \ {0} ,

belong to the domain of definition for the family of the functions fz(ζ), z ∈ D(τ∗) \ {0}.
It is clear, see, e.g., I.D(8) in [11], that fz(ζ) is a regular homeomorphic solution of the

Beltrami equation with the complex coefficient µz such that |µz(ζ)| = |µ(zζ)| and

Kµz(ζ) ≤ Qz(ζ) := Q(zζ) ∀ ζ0 ∈ D(δ) , ζ ∈ D(ζ0, Rz) .

Note that the BMO norm of Q as well as its averages over disks are invariant under linear
transformations of variables in C. Moreover, the averages Q̃z(ζ0) of the function Q over the
disks D(zζ0, ρz) forms a continuous function with respect to the parameter z ∈ D(τ∗) \ {0}
in view of absolute continuity of its indefinite integrals and it can be extended by continuity
to z = 0 as its (finite !) average over the disk D(δ∗). Since the closed disk D(τ∗) is compact,

Q0 := max
z∈D(τ∗)

Q̃z(ζ0) < ∞ .

Note also that by Remark 4 fz, z ∈ D(τ∗), belongs to the class R∆
Qτ

at ζ0 in the
punctured disk D(ζ0, δ− |ζ0|) \ {0} with ∆ = 1 > 0 if ζ0 6= 0, and in D(ζ0, δ− |ζ0|) \ {1}
with ∆ = 1/

√
2 > 1/2 if ζ0 6= 1. Hence by Proposition 3 in any case we obtain the following

estimate

s( fτ(ζ), fτ(ζ0)) ≤ 64
(

log
2(δ− |ζ0|)
|ζ − ζ0|

)− 1
α0

(30)

for all z ∈ D(τ∗) and ζ ∈ D(ζ0, (δ− |ζ0|)/2), where α0 = 2(Q0 + 6‖Q‖∗), i.e., the family
of the mappings fz(ζ), z ∈ D(τ∗), is equicontinuous at each point ζ0 ∈ D(δ). In view of
arbitrariness of δ > 1, the latter is true for all ζ0 ∈ C at all.

By the Ascoli theorem, see, e.g., 20.4 in [37], and Lemma 1 we obtain the next conclu-
sion.

Corollary 3. Let a mapping f : D → C satisfy the hypotheses of Lemma 1. Then mappings
fz(ζ) := f (ζ z)/ f (z) form a normal family, i.e., every sequence fzn(ζ), n = 1, 2, . . . with |zn| →
+0 as n → ∞ contains a subsequence fznk

(ζ), k = 1, 2, . . . that converges with respect to the
spherical metric locally uniformly in C as k → ∞ to a continuous mapping f0 : C → C with
f0(0) = 0 and f0(1) = 1.

Furthermore, we are dealing with the so-called approximate solutions of the Beltrami
equations. Namely, given a domain D in C, a homeomorphic ACL (absolutely continuous
on lines) solution f of the Beltrami Equation (2) in D is called its approximate solution if f
is a locally uniform limit in D as n→ ∞ of (quasiconformal) homeomorphic ACL solutions
fn of the Beltrami equations with the complex coefficients

µn(z) :=

{
µ(z), if µ(z) 6 1− 1/n ,
0, otherwise .

Let us give a proof of the following important fact.

Proposition 4. Every approximate solution f of Beltrami Equation (2) with Kµ ∈ L1
loc is its

regular homeomorphic solution and, moreover, f −1 ∈W1,2
loc .

Proof. Indeed, let f be an approximate solution of the Beltrami Equation (2) and let fn be
its approximating sequence. Then first of all f ∈W1,1

loc by Theorem 2.1 in [16].

11
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Let us now prove that f −1 ∈W1,2
loc . Indeed, by Lemma 2.16 in [16] gn := f−1

n → g :=
f −1 uniformly in C as n→ ∞. Note that fn and gn ∈ W1,2

loc , n = 1, 2, . . . , because they are
quasiconformal mappings. Consequently, these homeomorphisms are locally absolutely
continuous, see, e.g., Theorem III.6.1 in [13]. Observe also that µn := (gn)w̄/(gn)w =
−µn ◦ gn, see, e.g., Section I.C in [11]. Thus, replacing variables in the integrals, see, e.g.,
Lemma III.2.1 in [13]), we obtain that

∫

B

|∂gn(w)| 2 dm(w) =
∫

gn(B)

dm(z)
1− |µn(z)|2

6
∫

B ∗

Kµ(z) dm(z) < ∞

for sufficiently large n, where B and B ∗ are arbitrary domains in C with compact closures in
f (D) and D, respectively, such that g(B) ⊂ B ∗. It follows from the latter that the sequence
gn is bounded in the space W1,2(B) in each such domain B. Hence f −1 ∈ W1,2

loc , see, e.g.,
Lemma III.3.5 in [39].

Finally, the latter brings in turn that g has (N)−property, see Theorem III.6.1 in [13].
Hence J f (z) 6= 0 a.e., see Theorem 1 in [40]. Thus, f is really a regular solution of the
Beltrami Equation (2).

Note also that Lemma 2.12 in the monograph in [16] is extended from quasiconfor-
mal mappings to approximate solutions of the Beltrami Equation (2) immediately by the
definition of such solutions.

Proposition 5. Let f : D→ C \ {a, b}, a, b ∈ C, s(a, b) ≥ δ > 0, be an approximate solution of
the Beltrami Equation (2). Suppose that s( f (z1), f (0)) ≥ δ for z1 ∈ D\{0}. Then, for every point
z with |z| < min(1− |z1|, |z1|/2),

s( f (z), f (0)) ≥ ψ(|z|) (31)

where ψ is a nonnegative strictly increasing function depending only on δ and ||Kµ||1.

In turn, Propositions 4 and 5 make it possible to prove the following useful statement.

Proposition 6. Let D be a domain in C and fn : D → C be a sequence of approximate solutions
of the Beltrami equations ∂ fn = µn∂ fn. Suppose that fn → f as n → ∞ locally uniformly in D
with respect to the spherical metric and the norms ‖Kµn‖1, n = 1, 2, . . . are locally equipotentially
bounded. Then either f is constant or it is a homeomorphism.

Proof. Consider the case when f is not constant in D. Let us first show that then no point in
D has a neighborhood of the constancy for f . Indeed, assume that there is at least one point
z0 ∈ D such that f (z) ≡ c for some c ∈ C in a neighborhood of z0. Note that the set Ω0 of
such points z0 is open. The set Ec = {z ∈ D : s( f (z), c) > 0} is also open by continuity
of f and not empty if f is not constant. Thus, there is a point z0 ∈ ∂Ω0 ∩ D because D
is connected. By continuity of f we have that f (z0) = c. However, by the construction
there is a point z1 ∈ Ec = D \Ω0 such that |z0 − z1| < r0 = dist (z0, ∂D) and, thus, by the
lower estimate of the distance s( f (z0), f (z)) in Proposition 5 we obtain a contradiction for
z ∈ Ω0. Then again by Proposition 5 we obtain that the mapping f is discrete. Hence f is a
homeomorphism by Proposition 2.6 in the monograph [16].

Corollary 4. Let a mapping f : D → C satisfy the hypotheses of Lemma 1 and f be an approximate
solution of the Beltrami Equation (2) and, moreover,

lim sup
r→0

1
r2

∫

|z|<r

|Kµ(z)| dm(z) < ∞ . (32)

12
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Then each limit mapping f0 of a sequence fzn(ζ) := f (ζ zn)/ f (zn), zn ∈ C \ {0}, n = 1, 2, . . .
with zn → 0 as n→ ∞ is a homeomorphism of C into C.

Proof. Indeed, fn are approximate solutions of the Beltrami equations ∂ fn = µn∂ fn with
|µn(ζ)| = |µ(znζ)|, see, e.g., Section I.C in [11], and by simple calculations, for all R > 0,

lim
n→∞

∫

|ζ|<R

|Kµn(ζ)| dm(ζ) = R2 · lim
r→0

1
(R|zn|)2

∫

|z|<R|zn |
|Kµ(z)| dm(z) < ∞ (33)

and, thus, by Proposition 6 the mapping f0 is a homeomorphism in C.
Now, let us assume that f0(ζ0) = ∞ for some ζ0 ∈ C. Since fn are homeomorphisms,

there exist points ζn ∈ S(ζ0, 1) such that s(ζn, ∞) > s(ζ0, ∞) for all large enough n. We
may assume in addition, with no loss of generality, that ζn → ζ∗ ∈ S(ζ0, 1) because the
circle S(ζ0, 1) is a compact set. Then f0(ζ∗) = lim

n→∞
fn(ζn) = ∞ because by Lemma 1 the

sequence fn is equicontinuous and, for such sequences, the pointwise convergence fn → f0
is equivalent to its continuous convergence, see, e.g., Theorem 7.1 in [17]. However, the
latter leads to a contradiction because ζ∗ 6= ζ0 and by the first part f0 is a homeomorphism.
The obtained contradiction disproves the above assumption and, thus, really f0(ζ) 6= ∞ for
all ζ ∈ C, i.e., f0 is a homeomorphism of C into C.

3. The Main Theorems and Consequences on Asymptotic Homogeneity at the Origin

The following theorem shows, in particular, that the Belinskij conformality still remains
to be equivalent to the property of asymptotic homogeneity for regular homeomorphic
solutions of the degenerate Beltrami Equations (2) if its dilatation Kµ has a majorant Q in
BMO.

Theorem 1. Let D be a domain in C, 0 ∈ D, and let f : D → C be a regular homeomorphic
solution of the Beltrami equation with f (0) = 0 and Kµ have a majorant Q ∈ BMO(D). Then the
following assertions are equivalent:

(1) f is conformal by Belinskij at the origin,
(2) for all ζ ∈ C,

lim
τ→0
τ>0

,

f (τζ)

f (τ)
= ζ , (34)

(3) for all δ > 0, along z ∈ C∗ := C \ {0} and z′ ∈ C with |z′| ≤ δ|z|,

lim
z→0

{
f (z′)
f (z)

− z′

z

}
= 0 , (35)

(4) for all ζ ∈ C,

lim
z→0
z∈C∗

,

f (zζ)

f (z)
= ζ , (36)

(5) the limit in (36) is uniform in the parameter ζ on each compact subset of C.

Proof. Let us follow the scheme (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (1) and set

f0(ζ) = ζ , fz(ζ) = f (ζ z)/ f (z) ∀ z ∈ D \ {0} , ζ ∈ C : zζ ∈ D .

(1) ⇒ (2). Immediately the definition of the conformality by Belinskij yields the
convergence fτ(ζ)→ f0(ζ) as τ → 0 along τ > 0 for every fixed ζ ∈ C, i.e., just (34).

13
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(2) ⇒ (3). In view of Lemma 1, the pointwise convergence in (34) for each ζ ∈ C
implies the uniform convergence there on compact sets in C, see, e.g., Theorem 7.1 in [17].
To obtain on this basis the implication (2)⇒ (3), let us note the identities

fz(ζ) =
f|z|(ζz/|z|)
f|z|(z/|z|) =

f (z′)
f (z)

∀ ζ =
z′

z
∈ C , z ∈ C∗ := C \ {0} .

Hence to prove (35) it is sufficient to show that fz(ζ) − f0(ζ) → 0 as z → 0, z ∈ C∗
uniformly with respect to the parameter ζ in the closed disks Dδ := {ζ ∈ C : |ζ| ≤ δ},
δ > 0.

Indeed, let us assume the inverse. Then there is a number ε > 0 and consequences
ζn ∈ Dδ, zn → 0, zn ∈ C∗, such that |gn(ζn)− ζn| ≥ ε, where gn(ζ) = fzn(ζ), ζ ∈ C. Since
the closed disk Dδ and the unit circle ∂D1 are compact sets, then with no loss of generality
we may in addition to assume that ζn → ζ0 ∈ Dδ and ηn = zn/|zn| → η0 ∈ ∂D1 as n→ ∞.

Let us denote by ϕn(ζ) the mappings f|zn |(ζ), ζ ∈ C, n = 1, 2, . . . . Then ϕn(ζ)→ ζ as
n→ ∞ uniformly on Dδ ∪ ∂D1 and gn(ζ) = ϕn(ηnζ)/ϕn(ηn). Consequently, gn(ζ)→ ζ as
n→ ∞ uniformly on Dδ. Hence gn(ζn)→ ζ0 as n→ ∞ because the uniform convergence
of continuous mappings on compact sets implies the so-called continuous convergence, see,
e.g., Remark 7.1 in [17]. Thus, the obtained contradiction disproves the above assumption.

(3)⇒ (4). Setting in (35) z′ = zζ and δ = |ζ|, we immediately obtain (36).
(4)⇒ (5). The limit relation (36) means in the other words that fz(ζ)→ f0(ζ) as z→ 0

along z ∈ C∗ pointwise in C. In view of Lemma 1, the latter implies the locally uniform
convergence fz → f0 as z→ 0 in C, see again Theorem 7.1 in [17].

(5)⇒ (1). From (36) for z = ρ > 0, ζ = eiϑ, ϑ ∈ R, and w = ζz = ρ eiϑ we obtain that
f (w) = f (ρ)(ζ + α(ρ)), where α(ρ)→ 0 as ρ→ 0. Consequently,

f (w) = A(ρ)(w + o(ρ)) ,

where A(ρ) = f (ρ)/ρ and o(ρ)/ρ → 0 as ρ → 0. Moreover, by (36) with z = ρ > 0 and
ζ = t > 0 we have that A satisfies the condition

lim
ρ→0

A(tρ)
A(ρ)

= 1 ∀ t > 0 ,

i.e., f is conformal by Belinskij at the origin.

The following result is fundamental for further study of asymptotic homogeneity
because it facilitates considerably the verification of (36) and at the same time reveals the
nature of the notion. Let Z be an arbitrary set in the complex plane C, 0 /∈ Z, with the origin
as its accumulation point. Further, we use the following characteristic of its sparseness:

SZ(ρ) :=
infz∈Z,|z|≥ρ, |z|
supz∈Z,|z|≤ρ, |z|

∀ ρ > 0 . (37)

Theorem 2. Let f satisfy the hypotheses of Theorem 1. Suppose that

lim sup
ρ→0

SZ(ρ) < ∞ (38)

and

lim
z→0
z∈Z

,

f (zζ)

f (z)
= ζ ∀ ζ ∈ C . (39)

Then f is asymptotically homogeneous at the origin.

Remark 4. For Theorem 2 to be true, the condition (38) on the extent of possible sparseness of Z is
not only sufficient but also necessary as Proposition 2.1 in [28] in the case Q ∈ L∞ ⊂ BMO shows.

14



Axioms 2022, 11, 171

In particular, any continuous path to the origin or a discrete set, say 1/n, n = 1, 2, . . ., can be taken
as the set Z in Theorem 2. For instance, the conclusion of Theorem 2 is also true if Z has at least one
point on each circle |z| = ρ for all small enough ρ > 0.

Proof. Indeed, by (39) we have that, for functions fz(ζ) := f (zζ)/ f (z), pointwise

lim
z→0
z∈Z

,
fz(ζ) = ζ ∀ ζ ∈ C (40)

and, by Theorem 7.1 in [17] and Lemma 1, the limit in (40) is locally uniform in ζ ∈ C.
Let us assume that (36) does not hold for f , in other words, there exist ζ ∈ C, ε > 0

and a sequence zn ∈ C∗, n = 1, 2, . . . such that zn → 0 as n→ ∞ and

| fzn(ζ) − ζ | > ε . (41)

On the other hand, by (38) there is a sequence z∗n ∈ Z such that

0 < δ ≤ |τn| ≤ 1 < ∞

for all large enough n = 1, 2, . . ., where

τn =
zn

z∗n
, δ = 1/2 lim sup

ρ→0
SZ(ρ) .

With no loss of generality, we may assume in addition that τn → τ0 with δ ≤ |τ0| ≤ 1 as
n→ ∞ because the closed ring R := {z ∈ C : δ ≤ |z| ≤ 1} is a compact set. Note also that

fzn(ζ) =
fz∗n(ζτn)

fz∗n(τn)
.

Thus, fz∗n(ζτn) ∼ ζτ0 and fz∗n(τn) ∼ τ0 as n→ ∞ because the uniform convergence in (40)
with respect to ζ over any compact set implies the so-called continuous convergence, see,
e.g., Remark 7.1 in [17]. Consequently, fzn(ζ) ∼ ζ as n→ ∞ because τ0 6= 0. However, the
latter contradicts (41). The obtained contradiction disproves the above assumption and the
conclusion of the theorem is true.

Now, recall that the abstract spaces F in which convergence is a primary notion were
first considered by Frechet in his thesis in 1906. Later on, Uryson introduced the third
axiom in these spaces: if a compact sequence fn ∈ F has its unique accumulation point
f ∈ F, then lim

n→∞
fn = f , see, e.g., [41], Chapter 2, 20,1-II. Recall that fn ∈ F, n = 1, 2, . . . is

called a compact sequence if each its subsequence contains a converging subsequence and,
moreover, f ∈ F is said to be an accumulation point of the sequence fn ∈ F if f is a limit
of some its subsequence. It is customary to call such spaces L∗−spaces.

Remark 5. In particular, any convergence generated by a metric satisfies Uryson’s axiom, see,
e.g., [41], Chapter 2, 21, II. However, the well-known convergence almost everywhere of measurable
functions yields a counter-example to Uryson’s axiom: any sequence converging in measure is
compact with respect to convergence almost everywhere, but not every such sequence converges
almost everywhere. Later on, we apply the convergence generated by the uniform convergence of
continuous functions, generated as known by the uniform norm.

To prove the corresponding sufficient criteria for the asymptotic homogeneity at the
origin for solutions of degenerate Beltrami equations, we need also the following general
lemma.

Lemma 2. Let D be a bounded domain in C and fn : D → C, n = 1, 2, . . . be a sequence of W1,1

solutions of the Beltrami equations ∂ fn = µn∂ fn. Suppose that fn → f as n → ∞ in L1 and the
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norms ‖∂ fn‖1 and ‖∂ fn‖1 are equipotentially bounded. Then f ∈W1,1 and ∂ fn and ∂ fn converge
weakly in L1 to ∂ f and ∂ f , respectively. Moreover, if µn → µ a.e. or in measure as n→ ∞, then
∂ f = µ∂ f a.e.

Proof. The first part of conclusions follow from Lemma III.3.5 in [39]. Let us prove the
latter of these conclusions. Namely, assuming that µn(z)→ µ(z) a.e. as n→ ∞ and, setting

ζ(z) = ∂ f (z)− µ(z) · ∂ f (z) ,

let us show that ζ(z) = 0. Indeed, since ∂ fn(z)− µn(z)∂ fn(z) = 0, by the triangle inequality
∫

D

|ζ(z)| dm(z) ≤ I1(n) + I2(n) + I3(n) ,

where
I1(n) :=

∫

D

|∂ f (z)− ∂ fn(z)| dm(z) ,

I2(n) :=
∫

D

|µ(z)| · |∂ f (z)− ∂ fn(z)| dm(z) ,

I3(n) :=
∫

D

|µ(z)− µn(z)| · |∂ fn(z)| dm(z) .

By the first part of conclusions, with no loss of generality, assume that |∂ f (z)− ∂ fn(z)| → 0
and |∂ f (z) − ∂ fn(z)| → 0 as n → ∞ weakly in L1, see Corollary IV.8.10 in [42]. Thus,
I1(n)→ 0 and I2(n)→ 0 as n→ ∞ because the dual space of L1 is naturally isometric to
L∞, see, e.g., Theorem IV.8.5 in [42].

Moreover, by Corollary IV.8.11 in [42], for each ε > 0, there is δ > 0 such that over
every measurable set E in D with |E| < δ

∫

E

| ∂ fn(z)| dm(z) < ε, n = 1, 2, . . . . (42)

Further, by the Egoroff theorem, see, e.g., III.6.12 in [42], µn(z)→ µ(z) as n→ ∞ uniformly
on some set S in D with |E| < δ where E = D \ S. Hence |µn(z)− µ(z)| < ε on S and

I3(n) ≤ ε
∫

S

| ∂ fn(z)| dm(z) + 2
∫

E

| ∂ fn(z)| dm(z) ≤ ε(‖∂ fn(z)‖1 + 2)

for large enough n, i.e., I3(n)→ 0 because ε > 0 is arbitrary. Thus, really ζ = 0 a.e.

Theorem 3. Let D be a domain in C, 0 ∈ D, f : D → C, f (0) = 0, be an approximate solution of
the Beltrami Equation (2) and Kµ have a majorant Q ∈ BMO(D). Suppose that

lim sup
r→0

1
πr2

∫

|z|<r

Kµ(z) dm(z) < ∞ , (43)

and
lim
r→0

1
πr2

∫

|z|<r

|µ(z)| dm(z) = 0 . (44)

Then f is asymptotically homogeneous at the origin.
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Proof. By Theorem 2 with Z := {2−n}∞
n=N , where 2−N < dist(0, ∂D), it is sufficient to

show that

lim
n→∞

f2−n(ζ) = ζ ∀ ζ ∈ C , f2−n(ζ) :=
f (2−nζ)

f (2−n)
.

By Corollary 3 the sequence f2−n(ζ) is compact with respect to locally uniform convergence
in C and by Remark 5 it remains to prove that each its converging subsequence f ∗k = fnk

with nk → ∞ as k→ ∞ has the identity mapping of the complex plane C as its limit f0.
Indeed, the mappings f ∗k are approximate solutions of Beltrami equations ∂ f ∗k =

µ∗k · ∂ f ∗k with |µ∗k (ζ)| = |µ(2−nk ζ)|, see, e.g., calculations of Section I.C in [11]. Since such
solutions are regular by Proposition 4, we have by the calculations that

| ∂ f ∗k | ≤ | ∂ f ∗k | ≤ | ∂ f ∗k |+ | ∂ f ∗k | ≤ K1/2
µ∗k

J1/2
f ∗k

a.e. , k = 1, 2, . . .

where

Kµ∗k
(ζ) = Kµ(2−nk ζ) , J f ∗k

(ζ) = |∂ f ∗k (ζ)|2 − |∂ f ∗k (ζ)|2 = J fnk
(ζ) = J f (2

−nk ζ)/| f (2−nk )|2.

Consequently, by the Hölder inequality for integrals, see, e.g., Theorem 189 in [43], and
Lemma III.3.3 in [13], we obtain that

‖∂ f ∗k ‖1(Dl) ≤ ‖Kµ∗k
‖

1
2
1 (Dl) · | f ∗k (Dl)|

1
2 ∀ l = 1, 2, . . . , Dl := D(2l) .

Now, by the condition (43) and simple calculations, for each fixed l = 1, 2, . . . ,

lim
k→∞

‖Kµ∗k
‖1(Dl) = 22l · lim

k→∞

1
(2l2−nk )2

∫

|z|<2l2−nk

|Kµ(z)| dm(z) < ∞ .

Next, choosing ζk in Sl := {ζ ∈ C : |ζ| = 2l} with | f (2−nk ζk)| = max
ζ∈Sl
| f (2−nk ζ)|, we see

that

| f ∗k (Dl)| =
∣∣ fnk (Dl)

∣∣ =

∣∣∣ f (D(2l−nk ))
∣∣∣

| f (2−nk ζk)|2
· | f (2

−nk ζk)|2
| f (2−nk )|2 ≤ π| f2−nk (ζk)|2 .

With no loss of generality, we may assume that ζk → ζ0 ∈ Sl as k→ ∞ because the circle
Sl is a compact set. Then f2−nk (ζk)→ f0(ζ0) because the uniform convergence implies the
so-called continuous convergence, see, e.g., Remark 7.1 in [17]. However, f0(ζ0) 6= ∞, see
Corollary 4.

Thus, the norms of ∂ f ∗k and ∂ f ∗k are locally equipotentially bounded in L1. Then f0

is W1,1
loc solution of the Beltrami equation with µ ≡ 0 in C by Lemma 2 in view of (44).

Moreover, f0 is a homeomorphism of C into C by Corollary 4. Hence f0 is a conformal
mapping of C into C, see, e.g., Corollary II.B.1 in [11]. Hence f0(ζ) is a linear function a+ bζ,
see, e.g., Theorem 2.31.1 in [44]. In addition, by the construction f0(0) = 0 and f0(1) = 1.
Thus, f0(ζ) ≡ ζ in the whole complex plane C and the proof is thereby complete.

Remark 6. Note that, in particular, both conditions (43) and (44) follow from the only one stronger
condition

lim
r→0

1
πr2

∫

|z|<r

Kµ(z) dm(z) = 1 (45)

because

|µ(z)| ≤ |µ(z)|
1− |µ(z)| =

Kµ(z)− 1
2

. (46)

Combinig Theorems 1 and 3, see also Proposition 4, we obtain the following conclu-
sions.
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Corollary 5. Under hypotheses of Theorem 3, f is conformal by Lavrent’iev at the origin, i.e., f
preserves infinitesimal circles centered at the origin:

lim
r→0

max
|z|=r
| f (z)|

min
|z|=r
| f (z)| = 1 , (47)

asymptotically preserves angles, i.e.,

lim
z→0

arg
[

f (zζ)

f (z)

]
= arg ζ ∀ ζ ∈ C , |ζ| = 1 , (48)

and asymptotically preserves the moduli of infinitesimal rings, i.e.,

lim
z→0

| f (z ζ)|
| f (z)| = |ζ| ∀ ζ ∈ C∗ := C \ {0} . (49)

Corollary 6. Under hypotheses of Theorem 3, for all δ > 0, along z ∈ C∗ := C \ {0} and z′ ∈ C
with |z′| ≤ δ|z|,

lim
z→0

{ | f (z′)|
| f (z)| −

|z′|
|z|

}
= 0 . (50)

Moreover, by the theorem of Stolz (1885) and Cesaro (1888), see, e.g., Problem 70
in [45], we derive from Corollary 6 the next assertion on logarithms.

Corollary 7. Under hypotheses of Theorem 3,

lim
z→0
z∈C∗

ln | f (z)|
ln |z| = 1 . (51)

Proof. For brevity, let us introduce designations tn = − ln |zn|, τn = − ln | f (zn)| and
assume that (51) does not hold, i.e., there exist ε > 0 and a sequence zn → 0 such that

∣∣∣∣
τn

tn
− 1
∣∣∣∣ ≥ ε ∀ n = 1, 2, . . . . (52)

Passing, if necessary, to a subsequence, we can consider that tn − tn−1 ≥ 1 for all n =
1, 2, . . . . Then, we can achieve that tn − tn−1 < 2, by inserting, if necessary, the mean
arithmetic values between neighboring terms of the subsequence tn, n = 1, 2, . . . . In this
case, inequality (52) holds for the infinite number of terms of the subsequence.

Thus, the sequence ρn = |zn| = e−tn satisfies the inequalities e−2 < ρn/ρn−1 ≤ e−1.
Relations (50) implies that exp(τn−1 − τn) = exp(tn−1 − tn) + αn, where αn → 0 as n→ ∞,
or, in the other form, exp(τn−1 − τn) = (1 + βn) exp(tn−1 − tn) with βn → 0 as n → ∞.
The latter gives that (τn − τn−1) = (tn − tn−1) + γn with γn → 0 as n → ∞ and, since
tn − tn−1 ≥ 1, we have that (τn − τn−1)/(tn − tn−1) = 1 + δn, where δn → 0 as n → ∞.
By the Stolz theorem, then we conclude that τn/tn → 1 in contradiction with (52). This
contradiction disproves the above assumption, i.e., (51) is true.

Theorem 4. Let D be a domain in C and let f : D → C be an approximate solution of the Beltrami
Equation (2), Kµ have a majorant Q ∈ BMO(D) and at a point z0 ∈ D

lim sup
r→0

1
πr2

∫

|z−z0|<r

Kµ(z) dm(z) < ∞ . (53)

Suppose that µ(z) is approximately continuous at z0. Then the mapping f is differentiable by
Belinskij at this point with µ0 = µ(z0).
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Proof. First of all, |µ(z0)| < 1 because by the hypotheses Kµ ∈ L1
loc and µ(z) is approxi-

mately continuous at z0. Note also that f is differentiable by Belinskij with µ0 = µ(z0) at z0
if and only if g := h ◦ ϕ−1 is conformal by Belinskij at zero, where h(z) = f (z0 + z)− f (z0)
and ϕ(z) = z + µ0z. It is evident that µh(z) = µ(z + z0) and Kµh = Kµ(z + z0) and by
elementary calculations, see, e.g., Section I.C(6) in [11], µg ◦ ϕ = (µh − µ0)/(1− µ0µh)
and Kµg ≤ K0 · Kµh ◦ ϕ−1 ≤ K0Q0, where K0 = (1 + |µ0|)/(1 − |µ0|) and Q0(w) =

Q(z0 + ϕ−1(w)) belongs to BMO in D0 := ϕ(D) because ϕ and ϕ−1 are K0−quasiconformal
mappings, see the paper [46] and the monograph [3]. Thus, Theorem 4 follows from Theo-
rem 3.

4. On Homeomorphic Solutions in Extended Complex Plane

Here we start from establishing a series of criteria for existence of approximate solu-
tions f : C→ C to the degenerate Beltrami equations in the whole complex plane C with
the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

It is easy to give examples of locally quasiconformal mappings of C onto the unit
disk D, consequently, there exist locally uniform elliptic Beltrami equations with no such
solutions. Hence, compared with our previous articles, the main goal here is to find the
corresponding additional conditions on dilatation quotients of the Beltrami equations at
infinity.

Lemma 3. Let a function µ : C → C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C).

Suppose that, for every z0 ∈ C, there exist ε0 = ε(z0) > 0 and a family of measurable functions
ψz0,ε : (0, ∞)→ (0, ∞) such that

Iz0(ε) : =

ε0∫

ε

ψz0,ε(t) dt < ∞ ∀ ε ∈ (0, ε0) (54)

and
∫

ε<|z−z0|<ε0

KT
µ (z, z0) · ψ2

z0,ε(|z− z0|) dm(z) = o(I2
z0
(ε)) as ε→ 0 ∀ z0 ∈ C (55)

and, moreover,
∫

ε<|ζ|<ε∞

KT
µ (ζ, ∞) · ψ2

∞,ε(|ζ|)
dm(ζ)

|ζ|4 = o(I2
∞(ε)) as ε→ 0 , (56)

where KT
µ (ζ, ∞) := KT

µ (1/ζ, 0).
Then the Beltrami Equation (2) has an approximate homeomorphic solution f in C with the

normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Remark 7. After the replacements of variables ζ 7−→ z := 1/ζ, ε 7−→ R := 1/ε, ε∞ 7−→ R0 :=
1/ε∞ and functions ψ∞,ε(t) 7−→ ψR(t) := ψ∞,1/R(1/t), the condition (56) can be rewritten in
the more convenient form:

∫

R0<|z|<R

KT
µ (z, 0) ψ2

R(|z|)
dm(z)
|z|4 = o(I2(R)) as R→ ∞ , (57)

with the family of measurable functions ψR : (0, ∞)→ (0, ∞) such that

I(R) : =

R∫

R0

ψR(t)
dt
t2 < ∞ ∀ R ∈ (R0, ∞) . (58)
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Before arriving at the proof of Lemma 3, let us recall that a condenser in C is a domain
R in C whose complement in C is the union of two distinguished disjoint compact sets
C1 and C2. For convenience, it is written R = R(C1, C2). A ring in C is a condenser
R = R(C1, C2) with connected C1 and C2 that are called the complementary components
ofR. It is known that the (conformal) capacity of a ringR = R(C1, C2) in C is equal to the
(conformal) modulus of all paths inR connecting C1 and C2, see, e.g., Theorem A.8 in [17].

Proof. By the first item of the proof of Lemma 3 in [21] the Beltrami Equation (2) has under
the conditions (55) an approximate homeomorphic solution f in C with f (0) = 0 and f (1) =
1. Moreover, by Lemma 3 in [21] we may also assume that f is a ring Q−homeomorphism
with Q(z) = KT

µ (z, 0) at the origin, i.e., for every ring A = A(r1, r2) := {z ∈ C : r1 < |z| <
r2}, we have the estimate of the capacity C f (r1, r2) of its image under the mapping f :

C f (r1, r2) ≤
∫

A(r1,r2)

KT
µ (z, 0) dm(z) ∀ r1, r2 : 0 < r1 < r2 < ∞ .

Let us consider the mapping F(z) := 1/ f (1/z) in C∗ := C \ {0}. Note that F(∞) = ∞
because f (0) = 0. Since the capacity is invariant under conformal mappings, we have by
the change of variables z 7−→ ζ := 1/z as well as r1 7−→ ε2 := 1/r1 and r2 7−→ ε1 := 1/r2
that

CF(ε1, ε2) ≤
∫

A(ε1,ε2)

KT
µ (1/ζ, 0)

dm(ζ)

|ζ|4 ∀ ε1, ε2 : 0 < ε1 < ε2 < ∞ ,

i.e., F is a ring Q̃−homeomorphism at the origin with Q̃(ζ) := KT
µ (1/ζ, 0)/|ζ|4. Thus, in

view of the condition (56), we obtain by Lemma 6.5 in [16] that F has a continuous extension
to the origin. Let us assume that c := lim

ζ→0
F(ζ) 6= 0.

However, C is homeomorphic to the sphere S2 by stereographic projection and hence
by the Brouwer theorem in S2 on the invariance of domain the set C∗ := F(C∗) is open in
C, see, e.g., Theorem 4.8.16 in [47]. Consequently, c /∈ C∗ because F is a homeomorphism.
Then the extended mapping F̃ is a homeomorphism of C into C∗ because f 6= ∞ in C. Thus,
again by the Brouwer theorem, the set C := F̃(C) is open in C and 0 ∈ C \ C 6= ∅. On the
other hand, the set C is compact as a continuous image of the compact space C. Hence
the set C \ C 6= ∅ is also open in C. The latter contradicts the connectivity of C, see, e.g.,
Proposition I.1.1 in [48].

The obtained contradiction disproves the assumption that c 6= 0. Thus, we have
proved that f is extended to a homeomorphism of C onto itself with f (∞) = ∞.

Choosing ψz0,ε(t) ≡ 1/(t log(1/t)) in Lemma 3, we obtain by Proposition 2 the
following.

Theorem 5. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C) and

∫

R0<|z|<R

Kµ(z) ψ2(|z|) dm(z)
|z|4 = o(I2(R)) as R→ ∞ (59)

for some R0 > 0 and a measurable function ψ : (0, ∞)→ (0, ∞) such that

I(R) : =

R∫

R0

ψ(t)
dt
t2 < ∞ ∀ R ∈ (R0, ∞) . (60)

Suppose also that KT
µ (z, z0) 6 Qz0(z) a.e. in Uz0 for every point z0 ∈ C, a neighborhood Uz0 of z0

and a function Qz0 : Uz0 → [0, ∞] in the class FMO(z0).
Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with the normali-

zation f (0) = 0, f (1) = 1 and f (∞) = ∞.
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In particular, by Proposition 1 the conclusion of Theorem 5 holds if every point z0 ∈ C
is the Lebesgue point of the function Qz0 .

By Corollary 1 we obtain the next nice consequence of Theorem 5, too.

Corollary 8. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C), (59) and

lim
ε→0

−
∫

D(z0,ε)
KT

µ (z, z0) dm(z) < ∞ ∀ z0 ∈ C . (61)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with the normalization
f (0) = 0, f (1) = 1 and f (∞) = ∞.

By (5), we also obtain the following consequences of Theorem 5.

Corollary 9. Let µ : C → C be measurable with |µ(z)| < 1 a.e., (59) and Kµ have a dominant
Q : C→ [1, ∞) in the class BMOloc. Then the Beltrami Equation (2) has a regular homeomorphic
solution f in C with the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Remark 8. In particular, the conclusion of Corollary 7 holds if Q ∈W1,2
loc because W 1,2

loc ⊂ VMOloc,
see, e.g., [10].

Corollary 10. Let µ : C → C be measurable with |µ(z)| < 1 a.e., (59) and Kµ(z) 6 Q(z)
a.e. in C with a function Q in the class FMO(C). Then the Beltrami Equation (2) has a regular
homeomorphic solution f in C with the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Similarly, choosing ψz0,ε(t) ≡ 1/t in Lemma 3, we come to the next statement.

Theorem 6. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C), (59) and

∫

ε<|z−z0|<ε0

KT
µ (z, z0)

dm(z)
|z− z0|2

= o

([
log

1
ε

]2
)

as ε→ 0 ∀ z0 ∈ C (62)

for some ε0 = ε(z0) > 0. Then the Beltrami Equation (2) has a regular homeomorphic solution f in
C with the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Remark 9. Choosing ψz0,ε(t) ≡ 1/(t log 1/t) instead of ψ(t) = 1/t in Lemma 2, we are able to
replace (62) by

∫

ε<|z−z0|<ε0

KT
µ (z, z0) dm(z)

(
|z− z0| log 1

|z−z0|
)2 = o

([
log log

1
ε

]2
)

(63)

In general, we are able to give here the whole scale of the corresponding conditions in log using
functions ψ(t) of the form 1/(t log 1/t · log log 1/t · . . . · log . . . log 1/t).

Now, choosing in Lemma 3 the functional parameter ψz0,ε(t) ≡ ψz0(t) : = 1/[tkT
µ(z0, t)],

where kT
µ(z0, r) is the integral mean value of KT

µ (z, z0) over the circle S(z0, r) := {z ∈ C :
|z− z0| = r}, we obtain one more important conclusion.

Theorem 7. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C), (59) and

ε0∫

0

dr
rkT

µ(z0, r)
= ∞ ∀ z0 ∈ C (64)

for some ε0 = ε(z0) > 0. Then the Beltrami Equation (2) has a regular homeomorphic solution f in
C with the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

21



Axioms 2022, 11, 171

Corollary 11. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C), (59) and

kT
µ(z0, ε) = O

(
log

1
ε

)
as ε→ 0 ∀ z0 ∈ C . (65)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with the normalization
f (0) = 0, f (1) = 1 and f (∞) = ∞.

Remark 10. In particular, the conclusion of Corollary 10 holds if

KT
µ (z, z0) = O

(
log

1
|z− z0|

)
as z→ z0 ∀ z0 ∈ D . (66)

Moreover, the condition (65) can be replaced by the whole series of more weak conditions

kT
µ(z0, ε) = O

([
log

1
ε
· log log

1
ε
· . . . · log . . . log

1
ε

])
∀ z0 ∈ D . (67)

For further consequences, the following statement is useful, see e.g., Theorem 3.2
in [22].

Proposition 7. Let Q : D→ [0, ∞] be a measurable function such that
∫

D

Φ(Q(z)) dm(z) < ∞ (68)

where Φ : [0, ∞]→ [0, ∞] is a non-decreasing convex function such that

∞∫

δ

dτ

τΦ−1(τ)
= ∞ (69)

for some δ > Φ(+0). Then
1∫

0

dr
rq(r)

= ∞ (70)

where q(r) is the average of the function Q(z) over the circle |z| = r.

Here we use the following notions of the inverse function for monotone functions.
Namely, for every non-decreasing function Φ : [0, ∞]→ [0, ∞] the inverse function Φ−1 :
[0, ∞]→ [0, ∞] can be well-defined by setting

Φ−1(τ) := inf
Φ(t)>τ

t . (71)

Here inf is equal to ∞ if the set of t ∈ [0, ∞] such that Φ(t) > τ is empty. Note that
the function Φ−1 is non-decreasing, too. It is evident immediately by the definition that
Φ−1(Φ(t)) 6 t for all t ∈ [0, ∞] with the equality except intervals of constancy of the
function Φ(t).

Let us recall the connection of condition (69) with other integral conditions, see, e.g.,
Theorem 2.5 in [22].

Remark 11. Let Φ : [0, ∞]→ [0, ∞] be a non-decreasing function and set

H(t) = log Φ(t) . (72)
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Then the equality
∞∫

∆

H′(t)
dt
t
= ∞, (73)

implies the equality
∞∫

∆

dH(t)
t

= ∞ , (74)

and (74) is equivalent to
∞∫

∆

H(t)
dt
t2 = ∞ (75)

for some ∆ > 0, and (75) is equivalent to each of the equalities

δ∗∫

0

H
(

1
t

)
dt = ∞ (76)

for some δ∗ > 0,
∞∫

∆∗

dη

H−1(η)
= ∞ (77)

for some ∆∗ > H(+0) and to (69) for some δ > Φ(+0).

Moreover, (73) is equivalent to (74) and hence to (75)–(77) as well as to (69) are
equivalent to each other if Φ is in addition absolutely continuous. In particular, all the
given conditions are equivalent if Φ is convex and non-decreasing.

Note that the integral in (74) is understood as the Lebesgue–Stieltjes integral and the
integrals in (73) and (75)–(77) as the ordinary Lebesgue integrals. It is necessary to give
one more explanation. From the right hand sides in the conditions (73)–(77) we have in
mind +∞. If Φ(t) = 0 for t ∈ [0, t∗], then H(t) = −∞ for t ∈ [0, t∗] and we complete the
definition H′(t) = 0 for t ∈ [0, t∗]. Note, the conditions (74) and (75) exclude that t∗ belongs
to the interval of integrability because in the contrary case the left hand sides in (74) and
(75) are either equal to−∞ or indeterminate. Hence we may assume in (73)–(76) that δ > t0,
correspondingly, ∆ < 1/t0 where t0 := sup

Φ(t)=0
t, and set t0 = 0 if Φ(0) > 0.

The most interesting of the above conditions is (75) that can be rewritten in the form:

∞∫

∆

log Φ(t)
dt
t2 = +∞ for some ∆ > 0 . (78)

Combining Theorems 7, Proposition 7 and Remark 11, we obtain the following result.

Theorem 8. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C), (59) and

∫

Uz0

Φz0

(
KT

µ (z, z0)
)

dm(z) < ∞ ∀ z0 ∈ C (79)

for a neighborhood Uz0 of z0 and a convex non-decreasing function Φz0 : [0, ∞]→ [0, ∞] with

∞∫

∆(z0)

log Φz0(t)
dt
t2 = +∞ (80)
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for some ∆(z0) > 0. Then the Beltrami Equation (2) has a regular homeomorphic solution f in C
with the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Corollary 12. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C), (59) and

∫

Uz0

eα(z0)KT
µ (z,z0) dm(z) < ∞ ∀ z0 ∈ C (81)

for some α(z0) > 0 and a neighborhood Uz0 of the point z0. Then the Beltrami Equation (2) has a
regular homeomorphic solution f in C with the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Since KT
µ (z, z0) 6 Kµ(z) for z and z0 ∈ C, we also obtain the following consequences

of Theorem 8.

Corollary 13. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., (59) and
∫

C

Φ
(
Kµ(z)

)
dm(z) < ∞ (82)

over each compact C in C for a convex non-decreasing function Φ : [0, ∞]→ [0, ∞] with

∞∫

δ

log Φ(t)
dt
t2 = +∞ (83)

for some δ > 0. Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with
the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Corollary 14. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., (59) and, for some α > 0, over
each compact C in C, ∫

C

eαKµ(z) dm(z) < ∞ . (84)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with the normalization
f (0) = 0, f (1) = 1 and f (∞) = ∞.

5. On Existence of Solutions with Asymptotics at Infinity

In the extended complex plane C = C∪ {∞}, we will use the so-called spherical area
whose element can be given through the element dm(z) of the Lebesgue measure (usual
area)

dS(z) :=
4 d m(z)
(1 + |z|2)2 =

4 dx dy
(1 + |z|2)2 , z = x + iy . (85)

Let us start from the following general lemma on the existence of regular homeomorhic
solutions for the Beltrami equations in C with asymptotic homogeneity at infinity.

Lemma 4. Let a function µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ have a majorant Q of
the class BMO in a connected open (punctured at ∞) neighborhood U of infinity,

∫

|z|>R

|µ(z)| dS(z) = o
(

1
R2

)
(86)

and, moreover, ∫

|z|>R

Kµ(z) dS(z) = O
(

1
R2

)
. (87)
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Suppose also that, for every z0 ∈ C \U, there exist ε0 = ε(z0) > 0 and a family of measurable
functions ψz0,ε : (0, ∞)→ (0, ∞) such that

Iz0(ε) : =

ε0∫

ε

ψz0,ε(t) dt < ∞ ∀ ε ∈ (0, ε0) (88)

and
∫

ε<|z−z0|<ε0

KT
µ (z, z0) · ψ2

z0,ε(|z− z0|) dm(z) = o(I2
z0
(ε)) as ε→ 0 ∀ z0 ∈ C . (89)

Then the Beltrami Equation (2) has an approximate homeomorphic solution f in C with
f (0) = 0, f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity, f (ζz) ∼ ζ f (z)
as z→ ∞ for all ζ ∈ C, i.e.,

lim
z→∞

z∈C
,

f (zζ)

f (z)
= ζ ∀ ζ ∈ C (90)

and the limit (90) is locally uniform with respect to the parameter ζ in C.

Remark 12. (86) and (87) can be replaced by only one (stronger) condition

lim
r→∞

R2

π

∫

|z|>R

Kµ(z) dS(z) = 1 . (91)

Note also that, arguing similarly to the proofs of Theorem 1 and Corollary 7, we see
that the locally uniform property of the asymptotic homogeneity of f at infinity (90) implies
its conformality by Belinskij at infinity, i.e.,

f (z) = A(ρ) · [ z + o(ρ) ] as z→ ∞ , (92)

where A(ρ) depends only on ρ = |z|, o(ρ)/ρ→ 0 as ρ→ ∞ and, moreover,

lim
ρ→∞

A(tρ)
A(ρ)

= 1 ∀ t > 0 , (93)

its conformality by Lavrent’iev at infinity, i.e.,

lim
R→∞

max
|z|=R

| f (z)|

min
|z|=R

| f (z)| = 1 , (94)

the logarithmic property at infinity

lim
z→∞

ln | f (z)|
ln |z| = 1 , (95)

asymptotic preserving angles at infinity, i.e.,

lim
z→∞

arg
[

f (zζ)

f (z)

]
= arg ζ ∀ ζ ∈ C∗ (96)
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and asymptotic preserving moduli of rings at infinity, i.e.,

lim
z→∞

| f (z ζ)|
| f (z)| = |ζ| ∀ ζ ∈ C∗ . (97)

The latter two geometric properties characterize asymptotic homogeneity at infinity and
demonstrate that it is very close to the usual conformality at infinity.

Proof. The extended complex plane C = C∪ {∞} is a metric space with a measure with
respect to the spherical (chordal) metric s, see (26), and the spherical area S, see (85). This
space is regular by Ahlfors that is evident from the geometric interpretation of C as the
so-called stereographic projection of a sphere in R3, see details, e.g., in Section 13 and
Supplement B in the monograph [17].

Let us recall only here that, if the function Q belongs to the class BMO in U with
respect to the Euclidean distance and the usual area in C, then Q is in BMO with respect to
the spherical distance and the spherical area not only in U but also in U ∪ {∞}, see Lemma
B.3 and Proposition B.1 in [17]. Moreover, we have an analog of Proposition 2 in terms
of spherical metric and area, see Lemma 13.2 and Remark 13.3 in [17], that in turn can be
rewritten in terms of the Euclidean distance and area at infinity in the following form:

∫

R0<|z|<R

Q(z)
log2 |z|

dm(z)
|z|2 = O(log log R) as R→ ∞ (98)

for large enough R0 with {z ∈ C : |z| > R0} ⊆ U. Consequently, we have the condition
(57) with ψR(t) ≡ ψ(t) := t−1log t and by Lemma 3, see also Remark 7, the Beltrami
Equation (2) has an approximate solution f in C with the normalization f (0) = 0, f (1) = 1
and f (∞) = ∞. Recall that f is its regular homeomorphic solution by Proposition 4.

Setting f ∗(ξ) := 1/ f (1/ξ) in C, we see that f ∗(0) = 0, f ∗(1) = 1, f ∗(∞) = ∞ and
that f ∗ is an approximate solution in C∗ = C \ {0} of the Beltrami equation with

µ∗(ξ) := µ

(
1
ξ

)
· ξ2

ξ̄2 , Kµ∗(ξ) = Kµ

(
1
ξ

)
, (99)

because

f ∗̄ξ (ξ) =
1
ξ̄2 ·

fz̄(
1
ξ )

f 2( 1
ξ )

, f ∗ξ (ξ) =
1
ξ2 ·

fz(
1
ξ )

f 2( 1
ξ )

a.e. in C , (100)

see, e.g., Section I.C and the proof of Theorem 3 of Section V.B in [11].
Note that f ∗ belongs to the class W1,1

loc (C
∗) and, consequently, f ∗ is ACL (absolutely

continuous on lines) in C, see, e.g., Theorems 1 and 2 of Section 1.1.3 and Theorem of
Section 1.1.7 in [49]. However, it is not clear directly from (100) whether the derivatives f ∗̄

ξ

and f ∗ξ are integrable in a neighborhood of the origin, because of the first factors in (100).
Thus, to prove that f ∗ is a regular homeomorphic solution of the Beltrami equation in C, it
remains to establish the latter fact in another way.

Namely, after the replacements of variables z 7−→ ξ := 1/z and R 7−→ r := 1/R, in
view of (99), the condition (87) can be rewritten in the form

lim sup
r→0

1
r2

∫

|ξ|<r

Kµ∗(ξ) dm(ξ) < ∞ , (101)

and the latter implies, in particular, that, for some r0 ∈ (0, 1],

1
r2

0

∫

|ξ|<r0

Kµ∗(ξ) dm(ξ) < ∞ , (102)
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i.e., the dilatation quotient Kµ∗ of the given Beltrami equation is integrable in the disk
D(r0).

Now, since f ∗ is a regular homeomorphism in C∗, in particular, its Jacobian J(ξ) =
| f ∗ξ |2 − | f ∗̄ξ |2 6= 0 a.e. and hence | f ∗ξ | − | f ∗̄ξ | 6= 0 a.e. as well as f ∗ξ 6= 0 a.e., the following
identities are also correct a.e.

| f ∗ξ (ξ)| + | f ∗̄ξ (ξ)| =
[ | f ∗ξ (ξ)| + | f ∗̄ξ (ξ)|
| f ∗ξ (ξ)| − | f ∗̄ξ (ξ)|

] 1
2

· J
1
2 (ξ) = K

1
2
µ∗(ξ) · J

1
2 (ξ) . (103)

Hence by the Hölder inequality for integrals, see, e.g., Theorem 189 in [43], we have that

∫

|ξ|<r0

(
| f ∗ξ (ξ)| + | f ∗̄ξ (ξ)|

)
dm(ξ) ≤




∫

|ξ|<r0

Kµ∗(ξ) dm(ξ)




1
2

·




∫

|ξ|<r0

J(ξ) dm(ξ)




1
2

(104)
and, since the latter factor in (104) is estimated by the area of f ∗(D(r0)), see, e.g., the
Lebesgue theorem in Section III.2.3 of the monograph [13], we conclude that both partial
derivatives f ∗ξ and f ∗̄

ξ
are integrable in the disk D(r0).

Next, note that the function Q∗(ξ) := Q(1/ξ) is of the class BMO in a neighborhood
of the origin with respect to the spherical area as well as with respect to the usual area, see,
e.g., again Lemma B.3 in [17], because also the spherical area is invariant under rotations of
the sphere S2 in the stereographic projection. Moreover, by (86) and (99), we obtain that

lim
r→0

1
r2

∫

|ξ|<r

|µ∗(ξ)| dm(ξ) = 0 . (105)

Thus, by Theorems 3 we conclude that f ∗ is asymptotically homogeneous at the origin, i.e.,

lim
ξ→0
ξ∈C∗

,

f ∗(ξζ)

f ∗(ξ)
= ζ ∀ ζ ∈ C (106)

and, furthermore, the limit in (106) is locally uniform in the parameter ζ.
After the inverse replacements of the variables ξ 7−→ w := 1/ξ and the functions

f ∗(ξ) 7−→ f (w) = 1/ f ∗(1/w) the relation (106) can be rewritten in the form

lim
w→∞

w∈C
,

f (w)

f (wζ−1)
= ζ ∀ ζ ∈ C . (107)

Finally, after one more change of variables w 7−→ z := wζ−1, the latter is transformed into
(90), where the limit is locally uniform with respect to the parameter ζ ∈ C.

Choosing ψz0,ε(t) ≡ 1/(t log(1/t)) in Lemma 4, we obtain by Proposition 2 the
following.

Theorem 9. Let a function µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ have a majorant Q
of the class BMO in a neighborhood U of ∞ and satisfy (91). Suppose also that KT

µ (z, z0) 6 Qz0(z)
a.e. in Uz0 for every point z0 ∈ C \U, a neighborhood Uz0 of z0 and a function Qz0 : Uz0 → [0, ∞]
in the class FMO(z0). Then the Beltrami Equation (2) has a regular homeomorphic solution f in C
with f (0) = 0, f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

As a particular case of Theorem 9, we obtain the following central theorem in terms of
BMO.
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Theorem 10. Let a function µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ have a majorant Q
of the class BMO(C) and satisfy (91). Then the Beltrami Equation (2) has a regular homeomorphic
solution f in C with f (0) = 0, f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at
infinity.

Note also that, in particular, by Proposition 1 the conclusion of Theorem 9 holds if
every point z0 ∈ C \U is the Lebesgue point of the function Qz0 .

By Corollary 1 we obtain the next fine consequence of Theorem 9, too.

Corollary 15. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and

lim
ε→0

−
∫

D(z0,ε)
KT

µ (z, z0) dm(z) < ∞ ∀ z0 ∈ C \U . (108)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

By (5), we also obtain the following consequences of Theorem 9.

Corollary 16. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant Q
of the class BMO in C and satisfy (91). Then the Beltrami Equation (2) has a regular homeomorphic
solution f in C with f (0) = 0, f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at
infinity.

Corollary 17. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and Kµ(z) 6 Q∗(z) a.e. in C \U with
a function Q : C→ R+ of the class FMO(C \U). Then the Beltrami Equation (2) has a regular
homeomorphic solution f in C with f (0) = 0, f (1) = 1 and f (∞) = ∞ that is asymptotically
homogeneous at infinity.

Remark 13. In particular, the conclusion of Corollary 17 holds if Q∗ ∈ W1,2
loc because W 1,2

loc ⊂
VMOloc, see, e.g., [10].

Similarly, choosing ψz0,ε(t) ≡ 1/t in Lemma 4, we come also to the next statement.

Theorem 11. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and, for some ε0 = ε(z0) > 0,

∫

ε<|z−z0|<ε0

KT
µ (z, z0)

dm(z)
|z− z0|2

= o

([
log

1
ε

]2
)

as ε→ 0 ∀ z0 ∈ C \U . (109)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Remark 14. Choosing ψz0,ε(t) ≡ 1/(t log 1/t) instead of ψ(t) = 1/t in Lemma 4, we are able to
replace (109) by

∫

ε<|z−z0|<ε0

KT
µ (z, z0) dm(z)

(
|z− z0| log 1

|z−z0|
)2 = o

([
log log

1
ε

]2
)

(110)

In general, we are able to give here the whole scale of the corresponding conditions in log using
functions ψ(t) of the form 1/(t log 1/t · log log 1/t · . . . · log . . . log 1/t).
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Now, choosing in Lemma 4 the functional parameter ψz0,ε(t) ≡ ψz0(t) : = 1/[tkT
µ(z0, t)],

where kT
µ(z0, r) is the average of KT

µ (z, z0) over the circle S(z0, r) := {z ∈ C : |z− z0| = r},
we obtain one more important conclusion.

Theorem 12. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and, for some ε0 = ε(z0) > 0,

ε0∫

0

dr
rkT

µ(z0, r)
= ∞ ∀ z0 ∈ C \U . (111)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Corollary 18. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and

kT
µ(z0, ε) = O

(
log

1
ε

)
as ε→ 0 ∀ z0 ∈ C \U . (112)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Remark 15. In particular, the conclusion of Corollary 18 holds if

KT
µ (z, z0) = O

(
log

1
|z− z0|

)
as z→ z0 ∀ z0 ∈ C \U . (113)

Moreover, the condition (112) can be replaced by the whole series of more weak conditions

kT
µ(z0, ε) = O

([
log

1
ε
· log log

1
ε
· . . . · log . . . log

1
ε

])
∀ z0 ∈ C \U . (114)

Combining Theorems 12, Proposition 4 and Remark 1, we obtain the following result.

Theorem 13. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and

∫

Uz0

Φz0

(
KT

µ (z, z0)
)

dm(z) < ∞ ∀ z0 ∈ C \U (115)

for a neighborhood Uz0 of z0 and a convex non-decreasing function Φz0 : [0, ∞]→ [0, ∞] with

∞∫

∆(z0)

log Φz0(t)
dt
t2 = +∞ for some ∆(z0) > 0 . (116)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Corollary 19. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant Q
of the class BMO in a neighborhood U of ∞, satisfy (91) and, for some α(z0) > 0 and a neighborhood
Uz0 of the point z0, ∫

Uz0

eα(z0)KT
µ (z,z0) dm(z) < ∞ ∀ z0 ∈ C \U . (117)
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Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Since KT
µ (z, z0) 6 Kµ(z) for z and z0 ∈ C, we also obtain the following consequences

of Theorem 13.

Corollary 20. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and

∫

C\U
Φ
(
Kµ(z)

)
dm(z) < ∞ (118)

for a convex non-decreasing function Φ : [0, ∞]→ [0, ∞] such that, for some δ > 0,

∞∫

δ

log Φ(t)
dt
t2 = +∞ . (119)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Corollary 21. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and, for some α > 0,

∫

C\U
eαKµ(z) dm(z) < ∞ . (120)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Corollary 22. Recall that by Theorem 5.1 in [22] the condition (119) is not only sufficient but also
necessary for the existence of regular homeomorphic solutions for all Beltrami Equation (2) with the
integral constraints (118), see also Remark 11.

6. Conclusions

Thus, this paper contains a number of effective criteria for the existence of regular
homeomorphic solutions for the Beltrami equations with asymptotic homogeneity at
infinity where the BMO condition in a neighborhood of infinity plays a key role.

Finally, these results can be applied to the fluid mechanics in strongly anisotropic
and inhomogeneous media because the Beltrami equation is a complex form of the main
equation of hydromechanics, see, e.g., Theorem 16.1.6 in [15]; these results will be published
elsewhere.
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Abstract: In this paper, we consider rings of multisets consisting of elements of a Banach algebra.
We investigate the algebraic and topological structures of such rings and the properties of their
homomorphisms. The rings of multisets arise as natural domains of supersymmetric functions. We
introduce a complete metrizable topology on a given ring of multisets and extend some known
results about structures of the rings to the general case. In addition, we consider supersymmetric
polynomials and other supersymmetric functions related to these rings. This paper contains a number
of examples and some discussions.

Keywords: set of multisets; topological rings; supersymmetric polynomials; symmetric bases
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1. Introduction

In recent years, symmetric structures and mappings in infinite-dimensional spaces
have been studied by numerous authors [1–11]. In many problems of algebra and anal-
ysis [1,6], as well as in applications in symmetric neural networks (see, e.g., [12–15]), it
is crucial to know the invariants of a given (semi)-group S acting on a Banach space X.
The invariants can be described as elements of algebras of S-symmetric functions on X.
The Classical Invariant Theory, which was developed in the middle of the last century,
investigated polynomial invariants of a group acting on a finite-dimensional linear space.
The famous Nagata counterexample to the general case of Hilbert’s fourteenth problem
shows that polynomial algebras on Cn may be not finitely generated.

Symmetric polynomials and analytic functions on infinite-dimensional Banach spaces
were investigated first by [16–19]. In particular, in [16,17], algebraic bases were described
in algebras of symmetric polynomials on various Banach spaces with symmetric structures.
These investigations were continued in [19–26] and others. To describe the spectrum of a
uniform algebra of S-symmetric functions on X, it is important to have more information
about the quotient set X/∼, where “∼” is the relation of equivalence “up to the action of S”
on X. Such a quotient set may be interesting in itself and has applications in informatics and
neural networks. If X is a sequence space and S is the group of permutations of elements
of the sequences, then X/∼ can be considered as a set of nonzero multisets—completed in
a metrizable topology—induced from X. The set X/∼ has a semiring structure with respect
to natural algebraic operations. The commutative semiring can be extended to a ring by
using a standard procedure from K-theory (see, e.g., [27]). Such a ringM of multisets for
the case X = `1 was investigated in [7,28]. In particular, homomorphisms and ideals ofM
were considered, and it was shown that each supersymmetric polynomial on `1 × `1 can be
extended to the ringM. In [29], the properties of the ring of multisets of integer numbers
were studied, and some applications to cryptography were found.
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In this paper, we consider possible generalizations of the results obtained in [7] for
more general cases. Instead of the sequence space `1, we consider the space of sequences
(x1, x2, . . . , xn, . . .), where xn are elements of a Banach algebra A and each sequence of
norms, (‖x1‖A, ‖x2‖A, . . . , ‖xn‖A, . . .), is a vector in a Banach space X with a norm ‖ · ‖X
and a symmetric basis {en}. Let us recall (see [30] for details) that a sequence {en} is a
topological (or Schauder) basis in a Banach space X if every element x ∈ X can be uniquely
expressed by

x =
∞

∑
n=1

xnen = lim
m→∞

m

∑
n=1

xnen,

where the limit is taken in (X, ‖ · ‖X). From here, in particular, we have that xn → 0 as
n→ ∞.

A topological basis is called symmetric if it is equivalent to the basis {eσ(n)} for every
permutation σ on the set of natural numbers N. This means that for every σ, a series
∑∞

n=1 xnen converges if and only if ∑∞
n=1 xneσ(n) converges. It is known [30] (p. 114) that

every Banach space X with a symmetric basis has an equivalent so-called symmetric norm
such that ∥∥∥∥∥

∞

∑
n=1

xnθneσ(n)

∥∥∥∥∥
X

=

∥∥∥∥∥
∞

∑
n=1

xnen

∥∥∥∥∥
X

for every permutation σ and sequence of numbers {θn} such that |θn| = 1. Throughout this
paper, we assume that X is endowed with a symmetric norm. In this case, we know that
for every x ∈ X, |xn| ≤ 2‖x‖.

In Section 2, we construct a ring of multisetsMX(D) of sets from a multiplicative
semigroup D of A and investigate the basic properties. In particular, we show thatMX(D)
is complete in a metrizable topology induced from X. In Section 3, we investigate homo-
morphisms ofMX(D) and related supersymmetric polynomials. In addition, we consider
some examples and make discussions. We refer the reader to [31] for more information
about polynomials on Banach spaces and to [32] for details on the classical theory of
symmetric functions.

2. Group Rings of Multisets

Let X be a Banach space with a normalized symmetric basis {en} and a symmetric
norm ‖ · ‖X , letA be a Banach algebra with an identity e, and letD be a closed multiplicative
subgroup in A containing e. We denote by X(D) the set of sequences u = (x1, . . . , xn, . . .),
xi ∈ D, and

‖u‖ =
∥∥∥∥∥

∞

∑
i=1

en‖xn‖A
∥∥∥∥∥

X

.

In addition, let us denote by ΛX(D) = X(D)× X(D), and we represent each element
v ∈ ΛX(D) as

v = (y|x) = (. . . , yn, . . . , y2, y1|x1, x2, . . . , xn, . . .),

x, y ∈ X(D). Clearly, ΛX(A) is a Banach space with respect to the norm

‖v‖ = ‖x‖+ ‖y‖,

and ΛX(D) is its closed subset.
For a given x ∈ ΛX(D), we denote by supp x the subset of all natural numbers n ∈ N

such that xn 6= 0.
Let σ, µ be permutations on N and (y|x) ∈ X(D). We define

(σ, µ)(y|x) = (. . . , yσ(n), . . . , yσ(1)|xµ(1), . . . , xµ(n), . . .).
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Let u = (y|x) and w = (d|b) be in ΛX(D). Then,

u • w = (y • d|x • b) = (. . . , dn, yn, . . . , d1, y1|x1, b1, . . . , xn, bn, . . .).

Note that if x, b ∈ X(D), then ‖x • b‖ ≤ ‖x‖ + ‖b‖. Hence, u • w ∈ ΛX(D) for all
u, w ∈ ΛX(D).

Let us consider an equivalence defined as (y|x) ∼ (y′|x′) if and only if there are vectors
(a|a), (c|c) ∈ ΛX(D), and bijections σ and µ such that σ maps supp x • c onto supp x′ • a
and µ maps supp y • c onto supp y′ • a; in addition,

(σ, µ)
(
(y′|x′) • (a|a)

)
= (y|x) • (c|c). (1)

Let us denote byM(D) =MX(D) the quotient set ΛX(D)/ ∼ with respect to the
equivalence “∼”. We denote by [(y|x)] ∈ M(D) the class of equivalence containing
element (y|x). Clearly, for every a ∈ X(D), (a|a) ∼ (0|0), and so [(y|x) • (x|y)] = [(0|0)].
In addition, we denoteM+(D) = {[(0|x)] : x ∈ ΛX(D)}.

Let us explain the definition of the equivalence in a more detailed form. The require-
ment that σ and µ act bijectively between supports of corresponding vectors means that
zero coordinates “do not matter”, that is, for example,

(. . . , yn, . . . , y2, y1|x1, x2, . . . , xn, . . .) ∼ (. . . , yn, 0, . . . , 0, y2, 0, y1|x1, 0, x2, 0, . . . , 0, xn, . . .).

In addition, for example,

(. . . , yn, . . . , y2, y1|x1, x2, . . . , xn, . . .) ∼ (. . . , yn, . . . , y2, y1, λ|λ, x1, x2, . . . , xn, . . .)

for any λ ∈ C. In addition, the classes of equivalence are invariant with respect to permuta-
tions of coordinates of x and of y separately. This approach allows us to considerM+(D)
as a set of multisets of D. More exactly, the subsetM+

00(D) consisting of all elements in
M+(D) with finite supports can be naturally identified with the set of all finite multisets
of nonzero elements in D, and the operation “•” is actually the union of multisets.

We say that (y′|x′) is an irreducible representative of [u] ∈ M(D) if [(y′|x′)] = [u], and
(y′|x′) ∼ (y|x) implies that

(y|x) = (σ, µ)
(
(y′|x′) • (a|a)

)

for some permutations σ, µ on N and (a|a) ∈ ΛX(D). In other words, for every nonzero
coordinate x′i of x′, we have x′i 6= y′j for all coordinates y′j of y′.

Proposition 1. For every [u] ∈ M(D), there exists an irreducible representative.

Proof. Let (y|x) be a representative of [u]. Since elements ∑n en‖xn‖A and ∑n en‖yn‖A
belong to the Banach space X with the Schauder basis en, it follows that ‖xn‖A → 0, and
‖yn‖A → 0 as n→ ∞. Without loss of generality, we may assume that the coordinates of x
are ordered so that ‖x1‖A ≥ ‖x2‖A ≥ · · · ≥ ‖xn‖A ≥ · · · . If there is j such that x1 = yj,
then let us remove the coordinate x1 in x and yj in y, and we denote by x(1) and y(1) the
resulting vectors. If such a number j does not exist, we denote x(1) = x and y(1) = y.
Suppose that x(n) and y(n) are already constructed. If there is j such that xn+1 = yj, then
we remove the coordinate xn+1 in x(n) and yj in y(n) and denote by x(n+1) and y(n+1) the
resulting vectors. Otherwise, we set x(n+1) = x(n) and y(n+1) = y(n). Thus, we obtain the
sequence (y(n)|x(n)) in ΛX(D), which is obviously fundamental. By the completeness of
ΛX(D), there exists a limit

(y′|x′) = lim
n→∞

(y(n)|x(n)).
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Let a be a vector in X(D) such that its coordinates an are exactly removed coordi-
nates from x. Then, (y|x) = (y′ • a|x′ • a), and so (y′|x′) is a representative of [u]. By the
construction, (y′|x′) is irreducible.

Now, we can introduce a commutative operation “+” onM(D).

Definition 1. For a given u = [u] = [(y|x)] and w = [w] = [(d|b)] inM(D), we define

u + w := [u • w] = [(y • d|x • b)].

In addition, we set −u = −[(y|x)] := [(x|y)].

Proposition 2. The operation “+” is well defined onM(D), and
(
M(D),+

)
is a commutative

group with zero (the neutral element), 0 = [(0|0)] = [(. . . , 0|0, . . .)].

Proof. From definition of the operation, it follows that u + 0 = u and u − u = 0. If
u = [(y′|x′)] and w = [(d′|b′)] are the irreducible representatives u and w, then, according
to (1) and Proposition 1, (y|x) = (y′ • a|x′ • a) and (d|b) = (d′ • c|b′ • c) for some a and c.
Hence,

[(y|x)] + [(d|b)] = [(y′|x′) • (a|a)] + [(d′|b′) • (c|c)]
= [(y′|x′)] + [(d′|b′)] + [(a|a)] + [(c|c)] = [(y′|x′)] + [(d′|b′)].

So, the result does not depend of representatives.

Let x, y ∈ X(D). By x � y, we denote the resulting sequence of ordering the set
{xiyj : i, j ∈ N} with one single index in some fixed order.

Proposition 3. Let x, y ∈ X(D). Then, x � y ∈ X(D) and ‖x � y‖ ≤ 2‖x‖‖y‖. Moreover, if D
is such that ‖ab‖ = ‖a‖‖b‖ for every a, b ∈ D, and X = c0 or `p for some 1 ≤ p < ∞, then
‖x � y‖ = ‖x‖‖y‖.

Proof. Let k(i, j) be a bijection from N×N to N. According to the straightforward calcula-
tions,

‖x � y‖ =
∥∥∥

∞

∑
i,j=1
‖xiyj‖Aek(i,j)

∥∥∥
X
≤ sup

i
‖xi‖A

∥∥∥
∞

∑
i,j=1
‖yj‖Aej

∥∥∥
X
≤ 2‖x‖‖y‖.

Let D be such that ‖ab‖ = ‖a‖‖b‖ for every a, b ∈ D. If X = `p(D), then

‖x � y‖p =
∞

∑
i,j=1
‖xiyj‖p

A =
∞

∑
i,j=1
‖xi‖p

A‖yj‖p
A = ‖x‖p‖y‖p.

If X = c0, then

‖x � y‖ = sup
i,j
‖xiyj‖A = sup

i,j
‖xi‖A‖yj‖A = ‖x‖‖y‖.

Next, let us define a multiplication onM(D).

Definition 2. If u = [(0|x)] and v = [(0|y)], we define uv = [(0|x � y)]. Finally, if u = [(y|x)]
and v = [(d|b)] are inM(D), then we define

uv = [((y � b) • (x � d)|(y � d) • (x � b))].
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Using routine calculations, it is easy to check (cf. [7,29]) that the multiplication is well
defined and associative and that the distributive low with the addition holds onM(D). If
A is a commutative Banach algebra, then the introduced multiplication is commutative. So,
we have the following proposition.

Proposition 4.
(
M(D),+, ·

)
is a ring with zero, 0 = [(0|0)], and unity, I = [(0|e, 0, . . .)]. If A

is commutative, then
(
M(D),+, ·

)
is commutative.

Note that M(D) is not an algebra, even if D = C, because it is not a linear space
(see, e.g., [7]). However, it is possible to introduce a norm on a given ring that has natural
properties and induces a metrizable topology. Let us recall the following definition (cf. [33]).

Definition 3. If R is any ring, then a real-valued function ‖z‖ defined on R is called a norm for R
if it satisfies the following conditions for all z, r ∈ R:

1. ‖z‖ ≥ 0 and ‖z‖ = 0 if and only if z = 0,
2. ‖z + r‖ ≤ ‖z‖+ ‖r‖,
3. ‖ − z‖ = ‖z‖,
4. ‖zr‖ ≤ C‖z‖‖r‖ for some constant C > 0.

Definition 4. Let us define a norm onM(D) in the following way:

‖u‖ = ‖[(y|x)]‖ := ‖(y′|x′)‖ = ‖x′‖+ ‖y′‖,

where (y′|x′) is an irreducible representative of u.

Proposition 5. The norm in Definition 4 is well defined onM(D) and satisfies the conditions of
Definition 3. In addition,

‖u‖ = min
(y|x)∈u

(‖x‖+ ‖y‖).

Proof. Note that an irreducible representative of u is not unique in general. However,
if (y′|x′) and (y′′|x′′) are irreducible representatives of u, then they consist of the same
coordinates (up to a permutation (σ, µ) of nonzero coordinates), and so, ‖(y′|x′)‖ =
‖(y′′|x′′)‖. Thus, the norm is well-defined.

Clearly, if u = 0, then [(0|0)] is its irreducible representative, and so, ‖u‖ = 0.
Otherwise, ‖u‖ ≥ 0. The second property of the norm evidently follows from the corre-
sponding triangle property of the norm on a linear space. In addition, ‖− u‖ = ‖(x′|y′)‖ =
‖(y′|x′)‖ = ‖u‖.

For any representative (y|x) of u, we have that ‖(y|x)‖ ≥ ‖(y′|x′)‖, where ‖(y′|x′)‖
is an irreducible representative of u. So,

‖u‖ = min
(y|x)∈u

(‖x‖+ ‖y‖).

Let u = [(y|x)]andw = [(d|b)] ∈ M(D), and let (y′|x′) and (b′|d′) be corresponding
irreducible representatives. Then, by Proposition 3,

‖uw‖ = ‖[(y′|x′)(b′|d′)]‖ = ‖[((y′ � b′) • (x′ � d′)|(y′ � d′) • (x′ � b′))]‖

≤ ‖((y′ � b′) • (x′ � d′))‖+ ‖((y′ � d′) • (x′ � b′))‖
≤ 2‖y′‖‖b′‖+ 2‖x′‖‖d′‖+ 2‖y′‖‖b′‖+ 2‖x′‖‖b′‖ = 2‖u‖‖w‖.

Thus, ‖ · ‖ satisfies Condition 4 in Definition 3 for C = 2. In addition, by Proposition 3,
we can put C = 1 if X = c0 or `p, 1 ≤ p < ∞.
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We define a metric ρ onM(D), associated with the norm in the natural way. Let u, w
be inM(D). We set

ρ(u, w) = ‖u−w‖.
It is well known and easy to check that ρ is a metric.

Example 1. Let u(n) = [(0|hn, 0, . . .)], hn ∈ D be a sequence inM(D) such that hn → h as
n → ∞. If h 6= 0, then u(n) → [(0|h, 0, . . .)] if and only if hn = h for all values of n that are big
enough. Indeed, if hn 6= h, then

‖[(0|hn, 0, . . .)]− [(0|h, 0, . . .)]‖ = ‖[(. . . , 0, hn|h, 0, . . .)]‖ = ‖hn‖A + ‖h‖A ≥ ‖h‖A.

On the other hand, if h = 0, then ‖u(n) − 0‖ = ‖hn‖A → 0 as n→ ∞.

Proposition 6. The quotient map (y|x) 7→ [(y|x)] is discontinuous as a map from the Banach
space ΛX(D) to the metric space

(
M(D), ρ

)
at each point of ΛX(D), except for zero.

Proof. Example 1 can be easily modified to show the discontinuity of the quotient map
at any nonzero point. Indeed, let v = (y|x) 6= 0; then, without loss of generality, we
can assume that x1 6= 0. Consider u(n) = (y|(1− 1/n)x1, x2, . . . , xm, . . .) ∈ ΛX(D). Then,
u(n) → v in ΛX(D) as n→ ∞, but

‖[u(n)]− [v]‖ = ‖[. . . , 0, x1|(1− 1/n)x1, 0, . . . ‖ = 2‖x1‖A −
‖x1‖A

n
> ‖x1‖A > 0,

and so the quotient map is discontinuous at v. On the other hand, if a sequence u(n) tends
to zero, then ‖[u(n)]‖ → 0 as n→ ∞, and thus, the quotient map is continuous at zero.

Theorem 1. The metric space
(
M(D), ρ

)
is complete.

Proof. Let u and v be inM(D) and let (y|x) be an irreducible representative of u. We claim
that there exists an irreducible representative (d′|b′) ∈ v such that in ΛX(D), ‖(y|x) −
(d′|b′)‖ < ε. Indeed, let (d|b) be any irreducible representative of v. The inequality

‖u− v‖ = ‖[(y • b|x • d)]‖ < ε

implies that there is an irreducible representative (c|a) of (y • b|x • d) such that ‖c‖+ ‖a‖ <
ε. Note that (y • b|x • d) is not necessary irreducible. However, since both (y|x) and
(d|b) are irreducible, it may happen that some coordinates of y are the same as some
coordinates of d and that some coordinates of x are the same as some coordinates of b. Let
us construct (d′|b′) such that d′ is obtained by permutating the coordinates of d, and b′ is
obtained by permutating the coordinates of b, so the coordinates of d that are equal to some
coordinates of y have the same positions in d′ as the corresponding coordinates in y, and
the coordinates of b that are equal to some coordinates of x have the same positions in b′ as
the corresponding coordinates in x. Then, (d′|b′) ∼ (b|d) and

‖(y|x)− (d′|b′)‖ = ‖[(y • b′|x • d′)]‖ = ‖c‖+ ‖a‖ < ε.

Let u(m), m ∈ N be a Cauchy sequence in
(
M(D), ρ

)
. Taking a subsequence, if neces-

sary, we can assume that if n ≥ N and m ≥ N, then ρ(u(m), u(n)) < 1
2N+1 . Let us choose

irreducible representatives (y(m)|x(m)) of u(m) with

‖(y(m+1)|x(m+1))− (y(m)|x(m))‖ = ρ(u(m+1), u(m)) <
1

2m+1 .
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Thus, if n ≥ N and m ≥ N, then

‖(y(m)|x(m))− (y(n)|x(n))‖ < 1
2N .

Hence, (y(m)|x(m)), m ∈ N is a Cauchy sequence in X(D), so it has a limit z(0) =

(y(0)|x(0)). Let z(m)
i be the ith coordinate of z(m) = (y(m)|x(m)), i ∈ Z \ {0}, that is, z(m)

i =

x(m)
i if i > 0 and z(m)

i = y(m)
−i if i < 0. Clearly, z(m)

i → z(0)i as m → ∞. We claim that if

z(0)i = c 6= 0, then there is a number N such that for every m > N, z(m)
i = c. Indeed, if

it is not so, then for every n, m ∈ N, that is big enough, ρ(u(m), u(n)) > c, and we have a
contradiction.

For a given ε > 0, we denote by zε a vector in X(D) such that zε has a finite support,
zε

i = z(0)i or zε
i = 0, and

ρ
([

zε
]
,
[
z(0)
])

<
ε

3
.

Note that for this case, ρ
([

zε
]
,
[
z(0)
])

= ‖zε − z(0)‖. Let N be a number such that for

every n > N, zε
i = z(n)i for all i ∈ supp zε and ‖z(n) − z(0)‖ < ε

3 . So,

ρ
([

z(n)
]
,
[
zε
])

= ‖zε − z(n)‖ ≤ ‖zε − z(0)‖+ ‖z(n) − z(0)‖ < 2
3

ε.

Thus,
ρ
([

z(n)
]
,
[
z(0)
])
≤ ρ

([
z(n), zε

])
+ ρ
([

zε, z(0)
])

< ε.

Therefore, u =
[
z(0)
]

is the limit of u(m), and thus,
(
M(D), ρ

)
is complete.

From the triangle and multiplicative triangle inequalities of the norm, we have that
the algebraic operations are jointly continuous in

(
M(D), ρ

)
. Indeed, let ρ(u, u′) < ε1 and

ρ(v, v′) < ε2; then,

ρ(u + v, u′ + v′) < ‖(u + v)− (u′ + v′)‖ < ε1 + ε2

and
ρ(uv, u′v′) < 2ε2‖u‖+ 2ε1‖v‖+ 4ε1ε2.

The continuity of the addition implies that if Φ is an additive map fromM(D) to an
additive topological group and Φ is continuous at zero, then it is continuous at any point.

3. Homomorphisms and Supersymmetric Polynomials

Let U be a closed multiplicative semigroup of another Banach algebra B and let Y be a
Banach space with a symmetric basis.

Theorem 2. Let γ be a multiplicative map from D to U . If there is a constant Cγ, such that
‖γ(z)‖B ≤ Cγ‖z‖A, z ∈ D, then there exists a continuous ring homomorphism

Φγ : MX(D)→MY(U )

defined by

Φγ(u) = Φγ([(y|x)]) = [(. . . , γ(yn), . . . , γ(y2), γ(y1)|γ(x1), γ(x2), . . . , γ(xn), . . .)].

Proof. It is clear that Φγ([(y|x)]) is additive and does not depend on the representative. In
addition,

‖Φγ([(y|x)])‖ = ‖[(. . . , γ(yn), . . . , γ(y2), γ(y1)|γ(x1), γ(x2), . . . , γ(xn) . . .)]‖ ≤ Cγ‖u‖.
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Let u ∈ MX(D) and let (y|x) be its irreducible representative. Then,

‖Φγ(u)‖ = ‖γ(x)‖+ ‖γ(y)‖ ≤ Cγ(‖x‖+ ‖y‖) = Cγ‖u‖.

Hence, Φγ is continuous at zero, and according to the additivity, it is continuous at
each point ofMX(D).

By the multiplicativity of γ,

Φγ([(0|x)][(0|x′)]) = [(0|γ(x1)γ(x′1), . . . , γ(xn)γ(x′j) . . .)] = Φγ([(0|x)])Φγ([(0|x′)]).

Thus,
Φγ([(y|x)][(y′|x′)])

= Φγ([(y|0)][(y′|0)]) + Φγ([(0|x)][(0|x′)])−Φγ([(0|x)][(0|y′)])−Φγ([(0|0)][(0|x′)])
= Φγ([(y|x)])Φγ([(y′|x′)]).

Note that in Theorem 2, we do not need the continuity of γ.

Example 2. Let D = B be an open unit ball centered at the origin of a Banach algebra A and
U = Bε ∪ {e}, where e is the unity of A, and Bε is an open ball of radius 0 < ε < 1, which is
centered at the origin of A. In addition, let X = Y. We define γ : D → U by

γ(z) =
{

z if z ∈ U ,
0 otherwise.

Then, Φγ satisfies the conditions of Theorem 2 and, thus, is continuous.

Corollary 1. Any continuous homomorphism ϕ from a Banach algebraA to a Banach algebra B can
be extended to a continuous homomorphism fromMX(A) toMY(B) for any infinite-dimensional
Banach space Y with a symmetric basis.

Proof. Since ϕ is a continuous linear and multiplicative operator fromA toB, it follows that

‖ϕ‖B ≤ ‖ϕ‖‖z‖A, z ∈ A.

Hence, Φγ satisfies the conditions of Theorem 2 for γ = ϕ; thus, Φϕ is a continuous
homomorphism fromMX(A) toMY(B). The map z 7→ [(0|z, 0, . . .)] is an embedding of
A toMX(A) and

Φϕ[(0|z, 0, . . .)] = [(0|ϕ(z), 0, . . .)].

Thus, we can consider Φϕ as an extension of ϕ. Note that z 7→ [(0|z, 0, . . .)] is not a
homomorphism of rings because it is not additive.

The following example shows that for some cases, the condition ‖γ(z)‖B ≤ Cγ‖z‖A
is not necessary for the continuity of Φγ.

Example 3. Let X = `p for 1 ≤ p < ∞, let Y = `1, and let n be a natural number, n ≥ p. We set
γ(z) = zn, z ∈ A. Then, for every Banach algebra A, the mapping Φγ fromM`p(A) toM`1(A)
is a continuous homomorphism. Indeed, since n ≥ p, Φγ(u) ∈ M`1(A) for every u ∈ M`p(A)
and

‖Φγ(u)‖ ≤ ‖u‖n.

Thus, Φγ is continuous at zero and, thus, continuous.

Example 4. Let γ(z) = ‖z‖A. Then, Φγ mapsMX(D) toMX(C), and it is continuous and
additive. If the norm A is multiplicative, then Φγ is multiplicative.
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Note that if Φ is a homomorphism fromMX(D) toMY(U ) and for every z ∈ D,

Φ([0|z, 0, . . .]) = ([0|w, 0, . . .])

for some w ∈ U , then the map γ : z 7→ w is multiplicative. However, we do not know if
every homomorphism fromMX(D) toMY(U ) is of the form in Theorem 2.

Let us consider vector-valued mappings onM(D). Let E be a linear normed space. We
say that a mapping f : ΛX(D)→ E is supersymmetric if f (y|x) = f (y′|x′) whenever (y|x) ∼
(y′|x′). In fact, every supersymmetric function can be defined onM(D) by f̃ ([(y|x)]) =
f (y|x). It is easy to check that if f is of the form

f (y|x) =
∞

∑
i=1

γ(xi)−
∞

∑
j=1

γ(yj), (2)

where γ is a map fromM(D) to E, then f̃ is supersymmetric and additive. If γ is multi-
plicative, then f̃ is so.

Example 5. Let (y|x) be an irreducible representative of u ∈ ΛX(D). We set

f (u) = ‖x‖ − ‖y‖.

Then, f is a supersymmetric complex-valued function.

If D = A is a Banach algebra, then ΛX(A) is a Banach space, and we can consider
supersymmetric polynomials on ΛX(A), that is, polynomial mappings to a normed space E
that are supersymmetric. Let us recall that a mapping Pn from a normed space Z to E is an
n-homogeneous polynomial if there exists a multi-linear mapping Pn on the nth Cartesian
degree Zn of Z such that Pn(x) = Pn(x, . . . , x). A finite sum of homogeneous polynomials
is a polynomial. Continuous polynomials on Banach spaces were studied by many authors
(see, e.g., [31]). The following example gives us supersymmetric polynomials on Λ`p(A)
for 1 ≤ p ≤ ∞.

Example 6. Let X = `p for some 1 ≤ p < ∞, and E = A. For any integer n ≥ p, we define

Tm(y|x) =
∞

∑
i=1

xm
i −

∞

∑
i=1

ym
i .

Clearly, polynomials Tm are supersymmetric. Since the mapping xi 7→ xm
i is multiplicative

and ‖Tm(y|x)‖ ≤ (‖x‖+ ‖y‖)m, mappings T̃m are continuous ring homomorphisms fromM(A)
to A.

A polynomial P on Λ`p(C) is separately symmetric if P is invariant with respect to all
permutations (σ, µ) acting by

σ : (x1, . . . , xn, . . .) 7→ (xσ(1), . . . , xσ(n), . . .)

and
µ : (y1, . . . , yn, . . .) 7→ (yµ(1), . . . , yµ(n), . . .).

Clearly, if P is supersymmetric, then it is separately symmetric, but the inverse state-
ment is not true.

Example 7. Let
P(y|x) = ∑

i<j
xixj −∑

i<j
yiyj.
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Evidently, P is separately symmetric. Moreover, P(x|y) = −P(y|x). However, P is not su-
persymmetric. Indeed, P(. . . , 0,−1|1, 0, . . .) = 0 while P(. . . , 0, 1,−1|1, 1, 0, . . .) = 2. However,
(. . . , 0,−1|1, 0, . . .) ∼ (. . . , 0, 1,−1|1, 1, 0, . . .). Thus, P has different values on equivalent vectors,
and thus, it cannot be supersymmetric.

The minimal algebra generated by polynomials Tm, m ∈ N was studied in [7,29] for
the case of X = `1 and D = A = C. The next theorem shows that every supersymmetric
polynomial can be represented as a finite algebraic combination of polynomials Tm.

Theorem 3. Let P be a supersymmetric polynomial on Λ`1(C). Then, P is an algebraic combination
(that is, a linear combination of finite products) of polynomials Tm, m ∈ N.

Proof. Let P be a supersymmetric polynomial on Λ`1(C); then, P(y|x) is separately sym-
metric. According to [34], P is an algebraic combination of polynomials F+

m and F−m , m ∈ N,
where

F+
m (y|x) =

∞

∑
k=1

xm
k and F−m (y|x) =

∞

∑
k=1

ym
k .

Thus, we have

P(y|x) =
m

∑
k1 + 2k2 + · · ·+ iki+
n1 + 2n2 + · · · jnj = 0

ck1 ...kin1 ...nj
F+

1 (x)k1 · · · F+
i (x)ki F−1 (y)n1 · · · F−j (y)nj

for some constants ck1 ...kin1 ...nj
.

Clearly, Tk = F+
k − F−k . Denote Qk = F+

k + F−k . Then, there is a polynomial q : Cn → C
such that

P(y|x) = q(T1(y|x), . . . , Tm(y|x), Q1(y|x), . . . , Qm(y|x)).
According to our assumption, P(y • a|x • a) = P(y|x), a ∈ `1. We can see that

Tk(y • a|x • a) = Tk(y|x) and Qk(y • a|x • a) = Qk(y|x) + 2Fk(a)

for every k ∈ N. It is known that for every (λ1, . . . , λm) ∈ Cm, there exists a vector a ∈ `1
such that Fn(a) = λn, 1 ≤ n ≤ m (see, e.g., [19]). Thus, for every (λ1, . . . , λm) ∈ Cm,

q(T1(y|x), . . . , Tm(y|x), Q1(y|x), . . . , Qm(y|x))

= q(T1(y|x), . . . , Tm(y|x), Q1(y|x) + λ1, . . . , Qm(y|x) + λm).

However, this means that q does not depend on Q1, . . . , Qm. Hence, P is an algebraic
combination of polynomials Tm, m ∈ N.

In particular, in [29], it was proved that [(y|x)] = [(y′|x′)] inM`1(C) if and only if
Tm(y|x) = Tm(y′|x′) for all m ∈ N. The next example shows that in a more general case,
supersymmetric polynomials do not separate points ofM(D).

Example 8. Let X = `1 and A = C2 be the algebra with respect to the coordinate-wise multiplica-
tion. Then, the vector

(y|x) =
(

. . . , 0,
(

1
2

)
,
(

3
4

)∣∣∣
(

3
2

)
,
(

1
4

)
, 0, . . .

)

is not equivalent to (0|0), but

Tm(y|x) =
(

3m + 1m − 1m − 3m

4m + 2m − 2m − 4m

)
=

(
0
0

)
.
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Let ϕ be a complex homomorphism of A and let Φ be a ring homomorphism from
M(D) to A; then, ϕ ◦Φ is a ring complex homomorphism ofM(D). From the following
example, we can see that there are complex homomorphisms ofM(D) constructed in a
different way.

Example 9. Consider the caseM`1(C
2), as in Example 8. For arbitrary k, n ∈ N, we set

Pkn(y|x) =
∞

∑
i=1

xk
i x
′n
i −

∞

∑
i=1

yk
i y
′n
i ,

where

(y|x) =
(
· · · ,

(
y2

y
′
2

)
,
(

y1

y
′
1

) ∣∣∣
(

x1

x
′
1

)
,
(

x2

x
′
2

)
, · · ·

)
.

Note that ‖Pkn(y|x)‖ ≤ (‖x‖+ ‖y‖)k+n. Polynomials Pkn are of the form (2) for γ(x) =
xk

i x
′n
i , and the map γ is multiplicative. So, P̃kn are continuous complex homomorphisms.

Polynomials Pkn in Example 9, which are restricted to elements (0|x), are called block-
symmetric polynomials on `1(C2) (see, e.g., [4,23,26]) or MacMahon polynomials in the
literature [35].

Example 10. Let X = `1, and let A = Mm be the algebra of all square matrices m × m for
some fixed m ∈ N. Then,M`1(Mm) is a noncommutative ring of matrix multisets. Let D be the
following map fromM`1(Mm) toM`1(C):

D([(y|x)]) = [(. . . , det(yn), . . . , det(y2), det(y1)|det(x1), det(x2), . . . , det(xn), . . .)].

Since the determinant det(xi) ia a multiplicative mapping, D is a homomorphism. The
continuity of D follows from the fact that ‖D(y|x)‖ ≤ (‖x‖+ ‖y‖)m.

4. Discussions and Conclusions

We considered the ring of multisetsMX(D) consisting of elements in a given multi-
plicative semigroup D of a Banach algebra A and endowed with some natural “supersym-
metric” operations of addition and multiplication. We constructed a complete metrizable
topology ofMX(D) generated by a ring norm. In addition, we investigated homomor-
phisms ofMX(D) and their relations with supersymmetric polynomials. Note thatMX(D)
is not a linear space over C or R because there is no natural multiplication by scalars (see,
e.g., [7]).

Rings of multisets may have wide applications in neural networks and machine
learning. Computer algorithms are often invariant with respect to permutations of input
data instances. This observation suggests the use of permutation-invariant sets instead
of vectors of a fixed dimension for the organization of input data (see, e.g., [12]). For this
purpose, multisets (sets with possible repetitions of elements) are actually more suitable.
However, classical multisets have a poor algebraic structure. For example, a very important
operation of the union of two multisets has no inverse. On the other hand, we can consider a
set of multisets as a natural domain of symmetric functions (with respect to permutations of
variables) that are defined on a linear space. Since the union of multisets does not preserve
cardinality, it is convenient to use infinite-dimensional linear spaces of sequences, such as
Banach spaces with symmetric bases. All symmetric functions on X can be extended to the
set of multisets, and if X = `1, then symmetric polynomials separate different points of the
multisets. To get an operation that is inverse to the union, we have to use Grothendieck’s
well-known idea, which is widely used in K-theory. It leads to the construction of classes of
equivalences of pairs (y|x), where y plays the role of a “negative part” (while components
of both vectors x and y are complex numbers or, in the general case, elements of an abstract
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Banach algebra A). If we consider x as vector coding information, then y consists of
“negative” information in the sense that if both x and y contain the same piece of information
(the same coordinate), then this piece of information will be annulated. Therefore, the
union can be extended to a commutative group operation on the classes of equivalence,
and together with a natural symmetric multiplication, they form a ring structure on the set
of classes. Such a ring of multisets of complex numbers was considered in [7] for the case
of X = `1. In this paper, we investigated the situation when the “coordinates” of x and
y were in a Banach algebra A and sequences of their norms belonged to a Banach space
X with a symmetric basis. It is interesting that the basic results in [7] can be extended to
the general case. In particular, the ringMX(D) that was obtained is a complete metric
space in a metrizable topology, and it is naturally induced by norms of A and X. The main
difference is that supersymmetric polynomials separate points ofM`1(C), while in the
general case, they do not.

One can compare the rings of multisets and fuzzy sets. In a fuzzy set, each element
may have a partial membership (between 0 and 1) [36]. In a ring of multisets, elements
may have multiple memberships, and even negatively multiple memberships. Note that
the ringMX(D) is never algebra, even if D = C (see [7]). However, it is known [33] that
under some natural conditions, any metric ring R can be embedded into a normed algebra
over the field of fractions over R. It would be interesting to construct such an algebra for
the ringMX(D) and compare it with fuzzy sets and other algebraic structures.
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Abstract: The class of measure spaces which can be represented as unions of Lebesgue-Rohlin spaces
with continuous measures contains a lot of important examples, such as Rn for any n ∈ N with the
Lebesgue measure. In this work we consider symmetric functions on Banach spaces of all complex-
valued integrable essentially bounded functions on such unions. We construct countable algebraic
bases of algebras of continuous symmetric polynomials on these Banach spaces. The completions of
such algebras of polynomials are Fréchet algebras of all complex-valued entire symmetric functions
of bounded type on the abovementioned Banach spaces. We show that each such Fréchet algebra is
isomorphic to the Fréchet algebra of all complex-valued entire symmetric functions of bounded type
on the complex Banach space of all complex-valued essentially bounded functions on [0, 1].

Keywords: symmetric polynomial on a Banach space; continuous polynomial on a Banach space;
algebraic basis; Lebesgue-Rohlin space

MSC: 46G25; 47H60; 46G20

1. Introduction

The study of symmetric polynomials on infinite dimensional spaces started with
the work [1] (for classical results in the finite dimensional case, see, e.g., [2–4]). In [1],
the authors considered symmetric continuous polynomials on real Banach spaces `p and
Lp[0, 1], where p ∈ [1,+∞). In particular, in [1] the authors constructed algebraic bases of
algebras of the abovementioned polynomials. In [5], the authors considered symmetric
continuous polynomials on separable sequence real Banach spaces with a symmetric basis
(see [6] (Def. 3.a.1, p. 113)) and on a separable rearrangement invariant function the real
Banach spaces (see [7] (Definition 2.a.1, p. 117)). Topological algebras of symmetric holo-
morphic functions on `p were studied first in [8]. Symmetric polynomials and symmetric
holomorphic functions of bounded type on sequence Banach spaces were studied in [9–34]
(see also the survey [35]). Symmetric holomorphic functions of unbounded type on se-
quence Banach spaces were studied in [36–39]. Symmetric polynomials and symmetric
holomorphic functions on Banach spaces of Lebesgue measurable functions and on Carte-
sian powers of such spaces were studied in [40–49]. In [50–54], the authors used the most
general approach to the study of symmetric functions.

In [41], the authors constructed an algebraic basis of the algebra of symmetric continu-
ous complex-valued polynomials on the complex Banach space L∞[0, 1] of complex-valued
Lebesgue measurable essentially bounded functions on [0, 1] and described the spectrum of
the Fréchet algebra Hbs(L∞[0, 1]) of symmetric analytic entire functions, which are bounded
on bounded sets, on L∞[0, 1]. In [42], the authors showed that the algebra Hbs(L∞[0, 1])
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is isomorphic to the algebra of all analytic functions on the strong dual of the topological
vector space of entire functions on the complex plane C. In addition in [42], it was shown
that the algebra Hbs(L∞[0, 1]) is a test algebra for the famous Michael problem (see [55]).
In [49], the authors showed that the algebra Hbs(L∞[0, 1]) is isomorphic to the algebra of
symmetric entire functions on the complex Banach space of complex-valued Lebesgue
integrable essentially bounded functions on the semi-axis.

In this work, we generalize the results of the work [49], replacing the semi-axis with the
arbitrary union of Lebesgue-Rohlin spaces (which are also known as standard probability
spaces) with continuous measures. Note that there are a lot of important measure spaces
which can be represented as the abovementioned union. For example, Rn for any n ∈ N
with the Lebesgue measure is one such space. We consider symmetric functions on Banach
spaces of all complex-valued integrable essentially bounded functions on the unions of
Lebesgue-Rohlin spaces with continuous measures. We construct countable algebraic bases
of algebras of continuous symmetric polynomials on these Banach spaces. The completions
of such algebras of polynomials are Fréchet algebras of all complex-valued entire symmetric
functions of bounded type on the abovementioned Banach spaces. We show that every
such Fréchet algebra is isomorphic to the Fréchet algebra Hbs(L∞[0, 1]).

2. Preliminaries

Let us denote by N and Z+ the set of all positive integers and the set of all nonnegative
integers, respectively.

2.1. Polynomials

Let X be a complex Banach space.
Let N ∈ N. A mapping P : X → C, which is the restriction to the diagonal of some

N-linear mapping AP : XN → C, i.e.,

P(x) = AP
(

x, . . . , x︸ ︷︷ ︸
N

)

for every x ∈ X, is called an N-homogeneous polynomial.
A mapping P : X → C, which can be represented in the form

P = P0 + P1 + . . . + PN ,

where N ∈ N, P0 is a constant mapping, and Pn : X → C is an n-homogeneous polynomial
for every n ∈ {1, . . . , N}, is called a polynomial of a degree at most N.

It is known that a polynomial P : X → C is continuous if and only if its norm

‖P‖ = sup
‖x‖≤1

|P(x)|

is finite. Consequently, for every continuous N-homogeneous polynomial P : X → C and
for every x ∈ X we have the following inequality:

|P(x)| ≤ ‖P‖‖x‖N . (1)

2.2. Holomorphic Functions

Definition 1. ([56] (Def. 2.1, p. 53)) A subset U of a vector space E is said to be finitely open if
U ∩ F is an open subset of the Euclidean space F for each finite dimensional subspace F of E.

(See [56] (p. 53)). The finitely open subsets of E define a translation invariant topology
τf . The balanced τf -neighborhoods of zero form a basis for the τf -neighborhoods of zero.
On a topological vector space (E, τ), the topology τf is finer than τ, i.e., τf ≥ τ.
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Definition 2. (See [56] (Def. 2.2, p. 54)) The complex-valued function f , defined on a finitely
open subset U of a complex vector space E is said to be G-holomorphic if for each a ∈ U, b ∈ E the
complex-valued function of one complex variable

λ 7→ f (a + λb)

is holomorphic in some neighborhood of zero. We let HG(U) denote the set of all G-holomorphic
mappings from U into C.

The following proposition is a partial result of [56] (Prop. 2.4, p. 55).

Proposition 1. If U is a finitely open subset of a complex vector space E and f ∈ HG(U), then for
each a ∈ U there exists a unique sequence of homogeneous polynomials from E into C,

{
f (a)
m
}∞

m=0,
such that

f (a + y) =
∞

∑
m=0

f (a)
m (y)

for all y in some τf -neighborhood of zero. This series is called the Taylor series of f at a.

Definition 3. (See [56] (Def. 2.6, p. 57)) Let (E, τ) be a complex locally convex space, and let
U be a finitely open subset of E. A function f : U → C is called holomorphic or analytic if it is
G-holomorphic and for each a ∈ U the function

y 7→
∞

∑
m=0

f (a)
m (y)

converges and defines a continuous function on some τ-neighborhood of zero. We let H(U) denote
the algebra of all holomorphic functions from U into C endowed with the compact open topology (the
topology of uniform convergence on the compact subsets of U). A function, which is holomorphic on
E, is called entire.

The following proposition is a partial result of [56] (Lemma 2.8, p. 58).

Proposition 2. If U is an open subset of a complex locally convex space E and f : U → C is
G-holomorphic, then f ∈ H(U) if and only if f is locally bounded.

The following proposition is a partial result of [56] (Cor. 2.9, p. 59).

Proposition 3. Let E be a complex locally convex space. Let U be an open subset of E, and
suppose f ∈ H(U). Then for every a in U and every m ∈ N, the m-homogeneous polynomial f (a)

m
is continuous.

(See [56] (p. 166)). Let U be an open subset of a complex locally convex space E, and
let B be a balanced closed subset of E. We let

dB(a, U) = sup
{
|λ| : λ ∈ C, a + λB ⊂ U

}

for every a ∈ U. If E is a complex normed linear space and B is the unit ball of E, then
dB(a, U) is the usual distance of a to the complement of U in E.

Let f ∈ H(U). The B-radius of boundedness of f at a ∈ U, is defined as

r f (a, B) = sup
{
|λ| : λ ∈ C, a + λB ⊂ U, sup

y∈a+λB
| f (y)| < ∞

}
.

The B-radius of uniform convergence of f at a ∈ U is defined as
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R f (a, B) = sup
{
|λ| : λ ∈ C, a + λB ⊂ U, and the Taylor series of f at a

converges to f uniformly on a + λB
}

.

The following proposition is a partial result of [56] (Prop. 4.7, p. 166).

Proposition 4. Let U be an open subset of a complex locally convex space E. Suppose f ∈ H(U).
If a ∈ U, B is a closed balanced subset of E and r f (a, B) > 0, then

r f (a, B) = R f (a, B) = min
{

dB(a, U),
(

lim sup
n→∞

sup
y∈B

∣∣ f (a)
n (y)

∣∣1/n
)−1}

.

Let E be a complex normed space. An entire function f : X → C, for which r f (0, B) =
+∞, where B is a closed unit ball in E, is called a function of bounded type. In other words,
f is called a function of bounded type if it is bounded on every bounded subset of E. By
Proposition 4, for every such a function f , its Taylor series at zero, ∑∞

m=0 fm, converges
uniformly to f on every bounded subset of E (we denote f (0)m by fm).

By [57] (Cor. 7.3, p. 47),

fm(y) =
1

2πi

∫

|ξ|=r

f (ξy)
ξm+1 dξ, (2)

where m ∈ Z+, y ∈ E and r > 0. Equation (2) is called the Cauchy Integral Formula.
Let E be a complex Banach space. Let Hb(E) be the Fréchet algebra of all entire func-

tions of bounded type f : E→ C endowed with the topology of the uniform convergence
on bounded subsets. Let

‖ f ‖r = sup
‖x‖≤r

| f (x)|

for f ∈ Hb(E) and r ∈ (0,+∞). The topology of the Fréchet algebra Hb(E) is generated by
any set of norms

{‖ · ‖r : r ∈ I},
where I is an arbitrary unbounded subset of (0,+∞).

For details on holomorphic functions on Banach spaces, we refer the reader to [57]
or [56,58] .

2.3. Measure Spaces

A measure space is a triple (Ω,F , ν), where Ω is a set, F is a σ algebra of its subsets,
and ν : F → [0,+∞] is a measure. In addition, we assume ν to be a complete measure,
i.e., every subset of a measurable set with null measure (so called null set) is measurable too.
An isomorphism between two measure spaces (Ω1,F1, ν1) and (Ω2,F2, ν2) is an invertible
map f : Ω1 → Ω2 such that f and f−1 are both measurable and measure-preserving maps.
In the case (Ω1,F1, ν1) = (Ω2,F2, ν2), the mapping f is called a measurable automorphism.
Two measure spaces (Ω1,F1, ν1) and (Ω2,F2, ν2) are called isomorphic modulo zero if
there exist null sets M ⊂ Ω1 and N ⊂ Ω2 such that measure spaces Ω1 \M and Ω2 \ N are
isomorphic [59] (§1, No. 5).

Let a measure space (Ω,F , ν) be such that ν(Ω) = 1. The measure space (Ω,F , ν) is
called separable ([59] (§2, No. 1)), if there exists a countable system G of measurable sets
having the following two properties:

1. For every measurable set A ⊂ Ω, there exists a set B such that A ⊂ B ⊂ Ω, B is
identical with A modulo zero, and B is an element of the σ algebra generated by G.

2. For every pair of points x, y ∈ Ω, there exists a set G ⊂ G such that either x ∈ G, y 6∈ G,
or x 6∈ G, y ∈ G.
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Every countable system G of measurable sets satisfying conditions (1) and (2) is called
a basis of the space (Ω,F , ν).

Let (Ω,F , ν) be a separable measure space, and let B = {Bn}∞
n=1 be an arbitrary basis

in (Ω,F , ν). If all intersections of the form ∩∞
n=1 An, where An is one of the two sets Bn

and Ω \ Bn, are nonempty, then the space (Ω,F , ν) is called complete with respect to the
basis B. By [59] (§2, No. 2), if the space (Ω,F , ν) is complete modulo zero (i.e., isomorphic
modulo zero to some complete measure space) with respect to some basis, then it is
complete modulo zero with respect to every other basis. Separable measure spaces which
are complete modulo zero with respect to their bases are called Lebesgue-Rohlin spaces
or standard probability spaces. By [59] (§2, No. 4), every Lebesgue-Rohlin space with
continuous measure (i.e., there are no points of positive measure) is isomorphic modulo
zero to [0, 1] with Lebesgue measure. The following simple lemma shows that every
such space is isomorphic to [0, 1] with Lebesgue measure.

Lemma 1. Every Lebesgue-Rohlin measure space with continuous measure is isomorphic to [0, 1]
with Lebesgue measure.

Proof. Let (Ω,F , ν) be a Lebesgue-Rohlin measure space with continuous measure. By [59]
(§2, No. 4), (Ω,F , ν) is isomorphic modulo zero to [0, 1] with Lebesgue measure, i.e., there
exist null sets M ⊂ Ω and N ⊂ [0, 1] such that Ω \ M is isomorphic to [0, 1] \ N. Let
f : Ω \M → [0, 1] \ N be the isomorphism. Let K be an arbitrary null subset of [0, 1] \ N
with the cardinality of the continuum. Then f−1(K) is a null subset of Ω \ M with the
cardinality of the continuum. Consequently, both sets C1 = M ∪ f−1(K) and C2 = N ∪ K
are null sets of the cardinality of the continuum. Let h : C1 → C2 be a bijection. Let
g : Ω→ [0, 1] be defined by

g(t) =
{

h(t), if t ∈ C1,
f (t), if t ∈ [0, 1] \ C1.

Evidently, g is an isomorphism between (Ω,F , ν) and [0, 1] with Lebesgue measure.

2.4. Symmetric Functions

In general, symmetric functions are defined in the following way.

Definition 4. Let A be an arbitrary nonempty set, and let S be a nonempty set of mappings
acting from A to itself. A function f , defined on A, is called symmetric with respect to the set S if
f (s(a)) = f (a) for every s ∈ S and a ∈ A.

Let us describe the partial case of Definition 4, which we will use in this work. The set
of all measurable automorphisms of some measure space (Ω,F , ν) we will denote by ΞΩ.
A complex Banach space X of measurable functions x : Ω→ C such that x ◦ σ belongs to X
for every x ∈ X and σ ∈ ΞΩ will be in the role of the set A from Definition 4. The set of
operators

{x ∈ X 7→ x ◦ σ ∈ X : σ ∈ ΞΩ}
will be in the role of the set S from Definition 4. So, a function f , defined on X, is called
symmetric if

f (x ◦ σ) = f (x)

for every x ∈ X and σ ∈ ΞΩ.

2.5. Algebraic Combinations

A mapping
t ∈ T 7→ Q( f1(t), . . . , fk(t)) ∈ C,
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where T is a nonempty set, k ∈ N, f1, . . . , fk are mappings acting from T to C and Q is a
polynomial acting from Ck to C, is called an algebraic combination of mappings f1, . . . , fk.

Let A be some algebra of complex-valued mappings. Let B ⊂ A be such that every
element of A can be uniquely represented as an algebraic combination of some elements of
B. Then B is called an algebraic basis of A.

2.6. Entire Symmetric Functions on L∞[0, 1]

Let L∞[0, 1] be the complex Banach space of all Lebesgue measurable essentially
bounded complex-valued functions x on [0, 1] with norm

‖x‖∞ = ess supt∈[0,1]|x(t)|.

For every n ∈ N, let Rn : L∞[0, 1]→ C be defined by

Rn(x) =
∫

[0,1]
(x(t))n dt.

Note that Rn is a symmetric continuous n-homogeneous polynomial such that ‖Rn‖ = 1
for every n ∈ N.

Theorem 1. ([41] (Theorem 4.3)) Every symmetric continuous n-homogeneous polynomial P :
L∞[0, 1]→ C can be uniquely represented as

P(x) = ∑
k1+2k2+...+nkn=n

αk1,...,kn Rk1
1 (x) · · · Rkn

n (x),

where k1, . . . , kn ∈ Z+ and αk1,...,kn ∈ C. In other words, {Rn} forms an algebraic basis in the
algebra of symmetric continuous polynomials on L∞[0, 1].

Theorem 2. ([41] (Theorem 3.1)) For every sequence ξ = {ξn}∞
n=1 ⊂ C such that the sequence{

n
√
|ξn|

}∞
n=1 is bounded, there exists xξ ∈ L∞[0, 1] such that Rn

(
xξ

)
= ξn for every n ∈ N and

‖xξ‖∞ ≤
2
M

sup
n∈N

n
√
|ξn|,

where

M =
∞

∏
k=1

cos
(

π

2
· 1

k + 1

)
. (3)

Let Hbs(L∞[0, 1]) be the subalgebra of the Fréchet algebra Hb(L∞[0, 1]), which consists
of all symmetric elements of Hb(L∞[0, 1]). It can be checked that Hbs(L∞[0, 1]) is closed in
Hb(L∞[0, 1]).

For every function f ∈ Hbs(L∞[0, 1]), its Taylor series converges uniformly to f on
every bounded set. The nth term, where n ∈ N, of the Taylor series is a continuous n-
homogeneous polynomial, which is symmetric by the symmetry of f and by the Cauchy
Integral Equation (2). Therefore, by Theorem 1, every f ∈ Hbs(L∞[0, 1]) can be repre-
sented as

f (x) = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn Rk1
1 (x) · · · Rkn

n (x) (4)

where αk1,...,kn ∈ C, x ∈ L∞[0, 1], and the series converges uniformly on every bounded
subset of L∞[0, 1].
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2.7. Entire Symmetric Functions on (L1 ∩ L∞)[0,+∞)

Let L1[0,+∞) be the complex Banach space of all Lebesgue integrable functions
x : [0,+∞)→ C with norm ‖x‖1 =

∫
[0,+∞) |x(t)| dt. Let L∞[0,+∞) be the complex Banach

space of all Lebesgue measurable essentially bounded functions x : [0,+∞)→ C with norm

‖x‖∞ = ess supt∈[0,+∞)|x(t)|.

Let us consider the space (L1 ∩ L∞)[0,+∞) := L1[0,+∞) ∩ L∞[0,+∞) with norm
‖x‖ = max{‖x‖1, ‖x‖∞}. By [60] (p. 97, Thm. 1.3), this space is complete. For n ∈ N, let us
define R̂n : (L1 ∩ L∞)[0,+∞)→ C by

R̂n(x) =
∫

[0,+∞)
(x(t))n dt.

For every n ∈ N, R̂n is a symmetric n-homogeneous polynomial and ‖R̂n‖ = 1.

Theorem 3. ([48] (Theorem 2)) Every symmetric continuous n-homogeneous polynomial P :
(L1 ∩ L∞)[0,+∞)→ C can be uniquely represented as

P(x) = ∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn R̂k1
1 (x) · · · R̂kn

n (x),

where αk1,...,kn ∈ C.

By [49] (Thm. 2), Fréchet algebras Hbs((L1 ∩ L∞)[0,+∞)) and Hbs(L∞[0, 1])
are isomorphic.

3. The Main Result

Let (Ωγ,Fγ, νγ) be a Lebesgue-Rohlin measure space with continuous measure for
every γ ∈ Γ, where Γ is an arbitrary index set. Let (Ω,F , ν) be the disjoint union of all the
spaces belonging to the set

{
(Ωγ,Fγ, νγ) : γ ∈ Γ

}
, i.e.,

Ω =
⊔

γ∈Γ
Ωγ,

F =
{

A ∈ Ω : A ∩Ωγ ∈ Fγ for every γ ∈ Γ
}

and
ν(A) = ∑

γ∈Γ
νγ(A ∩Ωγ)

for A ∈ F . By Lemma 1, for every γ ∈ Γ there exists an isomorphism wγ between
(Ωγ,Fγ, νγ) and [0, 1] with Lebesgue measure. Therefore, for every γ ∈ Γ, the mapping
Wγ : L∞[0, 1]→ L∞(Ωγ), defined by

Wγ(x) = x ◦ wγ (5)

for x ∈ L∞[0, 1], is a linear isometrical bijection, where L∞(Ωγ) is the complex Banach
space of all complex-valued measurable essentially bounded functions on (Ωγ,Fγ, νγ).

Let (L1 ∩ L∞)(Ω) be the complex Banach space of all measurable integrable essentially
bounded functions x : Ω→ C with norm

‖x‖ = max{‖x‖1, ‖x‖∞},

where
‖x‖1 =

∫

Ω
|x(t)| dt
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and
‖x‖∞ = ess supt∈Ω|x(t)|.

Lemma 2. Let γ ∈ Γ. The mapping Jγ : L∞(Ωγ)→ (L1 ∩ L∞)(Ω), defined by

Jγ(x)(t) =
{

x(t), if t ∈ Ωγ,
0, if t ∈ Ω \Ωγ

(6)

for x ∈ L∞(Ωγ), is a linear isometrical injective mapping. Consequently, L∞(Ωγ) can be consid-
ered as a subspace of (L1 ∩ L∞)(Ω).

Proof. Clearly, Jγ is linear and injective. Let us show that Jγ is isometrical. Let x ∈ L∞(Ωγ).
Note that ‖Jγ(x)‖∞ = ‖x‖∞. Since νγ(Ωγ) = 1, it follows that

‖Jγ(x)‖1 =
∫

Ω
|Jγ(x)(t)| dt =

∫

Ωγ

|x(t)| dt ≤ ‖x‖∞.

Therefore,
‖Jγ(x)‖ = max

{
‖Jγ(x)‖1, ‖Jγ(x)‖∞

}
= ‖x‖∞.

Hence, Jγ is an isometrical mapping.

For every E ⊂ Ω, let

1E(t) =
{

1, if t ∈ E,
0, if t ∈ Ω \ E.

For n ∈ N, let the polynomial R̃n : (L1 ∩ L∞)(Ω)→ C be defined by

R̃n(x) =
∫

Ω
(x(t))n dt.

The symmetry and the n-homogeneity of the polynomial R̃n, for every n ∈ N, can be
easily verified. Let us prove the continuity of R̃n.

Lemma 3. For every n ∈ N,
‖R̃n‖ = 1

and, consequently, R̃n is continuous.

Proof. Let us show that ‖R̃n‖ = 1. Let x ∈ (L1 ∩ L∞)(Ω) be such that ‖x‖ ≤ 1. Then
‖x‖1 ≤ 1 and ‖x‖∞ ≤ 1. Since ‖x‖∞ ≤ 1, it follows that |x(t)| ≤ 1 for almost all t ∈ Ω.
Consequently, |x(t)|n ≤ |x(t)| for almost all t ∈ Ω. Therefore,

|R̃n(x)| ≤
∫

Ω
|x(t)|n dt ≤

∫

Ω
|x(t)| dt = ‖x‖1 ≤ 1.

Hence,
‖R̃n‖ = sup

‖x‖≤1
|R̃n(x)| ≤ 1.

On the other hand, for an arbitrary fixed γ ∈ Γ, we have ‖1Ωγ
‖ = 1 and R̃n(1Ωγ

) = 1.
Therefore, ‖R̃n‖ = 1. Consequently, R̃n is continuous.

Theorem 4. Every symmetric continuous n-homogeneous polynomial P : (L1 ∩ L∞)(Ω) → C
can be uniquely represented as

P(x) = ∑
k1+2k2+...+nkn=n

αk1,...,kn R̃k1
1 (x) · · · R̃kn

n (x),

where k1, . . . , kn ∈ Z+ and αk1,...,kn ∈ C.
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Proof. For γ ∈ Γ, let Qγ : L∞[0, 1]→ C be defined by

Qγ = P ◦ Jγ ◦Wγ, (7)

where Wγ and Jγ are defined by (5) and (6), respectively. We have the following diagram:

L∞[0, 1]
Wγ−→ L∞(Ωγ)

Jγ−→ (L1 ∩ L∞)(Ω)
P−→ C.

Since Wγ and Jγ are linear continuous mappings and P is a continuous n-homogeneous
polynomial, it follows that P ◦ Jγ and Qγ are continuous n-homogeneous polynomials.

Let us prove that P ◦ Jγ is a symmetric polynomial on L∞(Ωγ). Let x ∈ L∞(Ωγ) and
σ ∈ ΞΩγ

. Let us show that (P ◦ Jγ)(x ◦ σ) = (P ◦ Jγ)(x). Note that

Jγ(x ◦ σ) = Jγ(x) ◦ σ′,

where σ′ : Ω→ Ω is defined by

σ′(t) =
{

σ(t), if t ∈ Ωγ,
t, if t ∈ Ω \Ωγ.

It can be easily checked that σ′ ∈ ΞΩ. Since P is symmetric, it follows that

(P ◦ Jγ)(x ◦ σ) = P(Jγ(x) ◦ σ′) = P(Jγ(x)) = (P ◦ Jγ)(x).

Thus, P ◦ Jγ is symmetric.
Let us prove that Qγ is symmetric. Let x ∈ L∞[0, 1] and τ ∈ Ξ[0,1]. By (7),

Qγ(x ◦ τ) = (P ◦ Jγ)(Wγ(x ◦ τ)).

By (5), Wγ(x ◦ τ) = x ◦ τ ◦ wγ. Therefore

Qγ(x ◦ τ) = (P ◦ Jγ)(x ◦ τ ◦ wγ).

Note that x ◦ τ ◦ wγ = x ◦ wγ ◦ w−1
γ ◦ τ ◦ wγ. We have the following diagram:

Ωγ
wγ−−→ [0, 1] τ−−→ [0, 1]

w−1
γ−−→ Ωγ

wγ−−→ [0, 1] x−−→ C.

Since wγ and τ are isomorphisms, it follows that w−1
γ ◦ τ ◦ wγ ∈ ΞΩγ

. Since P ◦ Jγ is
symmetric, it follows that

(P ◦ Jγ)(x ◦ τ ◦ wγ) =
(

P ◦ Jγ

)(
x ◦ wγ ◦ (w−1

γ ◦ τ ◦ wγ)
)
= (P ◦ Jγ)(x ◦ wγ).

By (5) and (7), (P ◦ Jγ)(x ◦ wγ) = Qγ(x). Therefore Qγ(x ◦ τ) = Qγ(x). Hence, Qγ

is symmetric.
Let us prove that Qγ does not depend on γ. Let γ1, γ2 ∈ Γ be such that γ1 6= γ2. Let

us show that Qγ1 ≡ Qγ2 . Let x ∈ L∞[0, 1]. By (5) and (7),

Qγ1(x) = P(Jγ1(x ◦ wγ1)). (8)

Let σγ1γ2 : Ω→ Ω be defined by

σγ1γ2(t) =





(w−1
γ2
◦ wγ1)(t), if t ∈ Ωγ1 ,

(w−1
γ1
◦ wγ2)(t), if t ∈ Ωγ2 ,

t, if t ∈ Ω \ (Ωγ1 ∩Ωγ2).
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Since wγ1 and wγ2 are isomorphisms, it follows that σγ1γ2 ∈ ΞΩ. Since P is symmetric,
it follows that

P(Jγ1(x ◦ wγ1)) = P(Jγ1(x ◦ wγ1) ◦ σγ1γ2). (9)

Let us show that
Jγ1(x ◦ wγ1) ◦ σγ1γ2 = Jγ2(x ◦ wγ2).

If t ∈ Ωγ2 , then σγ1γ2(t) = (w−1
γ1
◦ wγ2)(t). In this case, σγ1γ2(t) ∈ Ωγ1 ,; therefore,

by (6),
(

Jγ1(x ◦ wγ1)
)(

σγ1γ2(t)
)
=
(
x ◦ wγ1

)(
(w−1

γ1
◦ wγ2)(t)

)
= (x ◦ wγ2)(t).

If t ∈ Ω \Ωγ2 , then σγ1γ2(t) ∈ Ω \Ωγ1 ,; therefore, by (6),
(

Jγ1(x ◦ wγ1)
)(

σγ1γ2(t)
)
= 0.

Thus,

(
Jγ1(x ◦ wγ1)

)(
σγ1γ2(t)

)
=

{
(x ◦ wγ2)(t), if t ∈ Ωγ2 ,
0, if t ∈ Ω \Ωγ2 ,

that is, (
Jγ1(x ◦ wγ1)

)(
σγ1γ2(t)

)
= (Jγ2(x ◦ wγ2))(t)

for every t ∈ Ω. Therefore,

Jγ1(x ◦ wγ1) ◦ σγ1γ2 = Jγ2(x ◦ wγ2). (10)

Consequently, by (8)–(10),

Qγ1(x) = P(Jγ2(x ◦ wγ2)) = Qγ2(x).

Therefore, Qγ1 ≡ Qγ2 .
Since Qγ is a continuous n-homogeneous symmetric polynomial on L∞[0, 1], by

Theorem 1, Qγ can be uniquely represented as

Q(x) = ∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn Rk1
1 (x) · · · Rkn

n (x), (11)

where x ∈ L∞[0, 1] and αk1,...,kn ∈ C.
Recall that for every index γ ∈ Γ, the mapping wγ is an isomorphism between

(Ωγ,Fγ, νγ) and [0, 1] with Lebesgue measure µ. For every index γ ∈ Γ, let us construct
the isomorphism w′γ between (Ωγ,Fγ, νγ) and [0, 1) with Lebesgue measure. Choose a
countable set M ⊂ Ωγ such that w−1

γ (1) ∈ M. Let N = wγ(M) \ {1}. Since the mapping
wγ is a bijection, the set N is countable. Since measures νγ and µ are continuous, the sets
M and N are null sets. Let h : M→ N be an arbitrary bijection. Let us define the mapping
w′γ : Ωγ → [0, 1) by

w′γ(t) =
{

wγ(t), if t ∈ Ωγ \M,
h(t), if t ∈ M.

It can be checked that the mapping w′γ is an isomorphism between (Ωγ,Fγ, νγ) and
[0, 1) with Lebesgue measure.

Let {γn}∞
n=1 ∈ Γ be an arbitrary sequence of pairwise distinct indexes. Let us define

the mapping v{γn}∞
n=1

:
∞t

n=1
Ωγn → [0,+∞) by

v{γn}∞
n=1

(t) = w′k(t) + k− 1
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for t ∈ Ωγk , k ∈ N. Note that the mapping v{γn}∞
n=1

is an isomorphism between
∞t

n=1
Ωγn

and [0,+∞).

Let us define the mapping V{γn}∞
n=1

: (L1 ∩ L∞)[0,+∞)→ (L1 ∩ L∞)

(
∞t

n=1
Ωγn

)
by

V{γn}∞
n=1

(x) = x ◦ v{γn}∞
n=1

,

where x ∈ (L1 ∩ L∞)[0,+∞). Since the mapping v{γn}∞
n=1

is an isomorphism, it follows that
the mapping V{γn}∞

n=1
is a linear isometric bijection.

Let us define the mapping I{γn}∞
n=1

: (L1 ∩ L∞)

(
∞t

n=1
Ωγn

)
→ (L1 ∩ L∞)(Ω) by

I{γn}∞
n=1

(x)(t) =





x(t), if t ∈ ∞t
n=1

Ωγn ,

0, if t ∈ Ω \ ∞t
n=1

Ωγn ,

where x ∈ (L1 ∩ L∞)

(
∞t

n=1
Ωγn

)
. It can be checked that the mapping I{γn}∞

n=1
is linear,

isometric and injective.
Since mappings V{γn}∞

n=1
and I{γn}∞

n=1
are linear and continuous, and the mapping P is

a continuous n-homogeneous polynomial, it follows that the mapping P ◦ I{γn}∞
n=1
◦V{γn}∞

n=1
is a continuous n-homogeneous polynomial. It can be checked that P ◦ I{γn}∞

n=1
◦V{γn}∞

n=1
is symmetric. Therefore, by Theorem 3, P ◦ I{γn}∞

n=1
◦V{γn}∞

n=1
can be uniquely represented

in the form
(

P ◦ I{γn}∞
n=1
◦V{γn}∞

n=1

)
(x) = ∑

k1+2k2+...+nkn=n
k1,...,kn∈Z+

βk1,...,kn R̂k1
1 (x) · · · R̂kn

n (x),

where x ∈ (L1 ∩ L∞)[0,+∞) and βk1,...,kn ∈ C. Since the mapping V{γn}∞
n=1

is an isomor-
phism, it follows that

(
P ◦ I{γn}∞

n=1

)
(y) = ∑

k1+2k2+...+nkn=n
k1,...,kn∈Z+

βk1,...,kn×

((
R̂1 ◦V−1

{γn}∞
n=1

)
(y)
)k1 · · ·

((
R̂n ◦V−1

{γn}∞
n=1

)
(y)
)kn

(12)

for every y ∈ (L1 ∩ L∞)

(
∞t

n=1
Ωγn

)
. Let us show that coefficients βk1,...,kn coincide with

respective coefficients αk1,...,kn , obtained in (11). Let us define the mapping T : L∞(Ωγ1)→
(L1 ∩ L∞)

(
∞t

n=1
Ωγn

)
by

T(x)(t) =

{
x(t), if t ∈ Ωγ1

0, if t ∈ ∞t
n=2

Ωγn ,

where x ∈ L∞(Ωγ1). It can be verified that the mapping T is linear, isometric and injective.
We have the following diagram:

L∞[0, 1]
Wγ1−−−−−→ L∞(Ωγ1)

T−−−−−→ (L1 ∩ L∞)

(
∞t

n=1
Ωγn

) I{γn}∞n=1−−−−−→

I{γn}∞n=1−−−−−→ (L1 ∩ L∞)(Ω)
P−−−−−→ C.
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By (12),

(
P ◦ I{γn}∞

n=1
◦ T ◦Wγ1

)
(x) = ∑

k1+2k2+...+nkn=n
k1,...,kn∈Z+

βk1,...,kn×

((
R̂1 ◦V−1

{γn}∞
n=1
◦ T ◦Wγ1

)
(x)
)k1 · · ·

((
R̂n ◦V−1

{γn}∞
n=1
◦ T ◦Wγ1

)
(x)
)kn

(13)

for every x ∈ L∞[0, 1]. Taking into account that P ◦ I{γn}∞
n=1
◦ T ◦Wγ1 = Qγ1 and R̃j ◦

V−1
{γn}∞

n=1
◦ T ◦Wγ1 = Rj for every j ∈ N, by (13),

Qγ(x) = ∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

βk1,...,kn Rk1
1 (x) · · · Rkn

n (x)

for every x ∈ L∞[0, 1]. By the uniqueness of the representation (11), we obtain the equality
βk1,...,kn = αk1,...,kn for every k1, . . . , kn ∈ Z+ such that k1 + 2k2 + . . . + nkn = n. Therefore,
by (12),

(
P ◦ I{γn}∞

n=1

)
(y) = ∑

k1+2k2+...+nkn=n
k1,...,kn∈Z+

αk1,...,kn×

((
R̂1 ◦V−1

{γn}∞
n=1

)
(y)
)k1 · · ·

((
R̂n ◦V−1

{γn}∞
n=1

)
(y)
)kn

,

for every y ∈ (L1 ∩ L∞)

(
∞t

n=1
Ωγn

)
. Consequently, for every z ∈ (L1 ∩ L∞)(Ω), which

belongs to I{γn}∞
n=1

(
(L1 ∩ L∞)

(
∞t

n=1
Ωγn

))
,

P(z) = ∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn×

((
R̂1 ◦V−1

{γn}∞
n=1
◦ I−1
{γn}∞

n=1

)
(z)
)k1 · · ·

((
R̂n ◦V−1

{γn}∞
n=1
◦ I−1
{γn}∞

n=1

)
(z)
)kn

.

Taking into account that
(

R̂j ◦V−1
{γn}∞

n=1
◦ I−1
{γn}∞

n=1

)
(z) = R̃j(z)

for every j ∈ N,

P(z) = ∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn

(
R̃1(z)

)k1 · · ·
(

R̃n(z)
)k1 (14)

for every z ∈ (L1 ∩ L∞)(Ω), which belongs to I{γn}∞
n=1

(
(L1 ∩ L∞)

(
∞t

n=1
Ωγn

))
. As we can

see, coefficients in this equality do not depend on the choice of the sequence of indexes
{γn}∞

n=1.
Let us show that the equality (14) holds for every z ∈ (L1 ∩ L∞)(Ω). Let z be an

arbitrary element of the space (L1 ∩ L∞)(Ω). Since

‖z‖1 =
∫

Ω
|z(t)| dt = ∑

γ∈Γ

∫

Ωγ

|z(t)| dt
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is finite, there exists not more than a countable set of indexes γ ∈ Γ such that
∫

Ωγ
|z(t)| dt >

0. So, there exists a sequence of pairwise distinct indexes {γn}∞
n=1 ⊂ Γ such that z = 0 a. e.

on the set Ωγ for every index γ ∈ Γ \ {γn}∞
n=1. Therefore, z ∈ I{γn}∞

n=1

(
(L1 ∩ L∞)

(
∞t

n=1
Ωγn

))
.

Consequently, for the element z the equality (14) holds. This completes the proof.

Theorem 4 and the Cauchy Integral Equation (2) imply the following corollary.

Corollary 1. Every function f ∈ Hbs((L1 ∩ L∞)(Ω)) can be uniquely represented in the form

f = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn R̃k1
1 · · · R̃kn

n ,

where αk1k2 ...kn ∈ C, and the series converges uniformly on bounded sets.

Lemma 4. For every y ∈ (L1 ∩ L∞)(Ω), there exists xy ∈ L∞[0, 1] such that R̃n(y) = Rn(xy)
for every n ∈ N and the following estimate holds:

‖xy‖∞ ≤
2
M
‖y‖, (15)

where M is defined by (3).

Proof. Consider the sequence c = {cn}∞
n=1, where cn = R̃n(y) for n ∈ N. Since R̃n is an

n-homogeneous polynomial and ‖R̃n‖ = 1, by (1),

|R̃n(y)| ≤ ‖y‖n

for every n ∈ N. Consequently,

sup
n∈N

n
√
|cn| ≤ ‖y‖ < ∞.

Therefore, by Theorem 2, there exists xc ∈ L∞[0, 1] such that Rn(xc) = cn for every
n ∈ N and

‖xc‖∞ ≤
2
M

sup
n∈N

n
√
|cn| ≤

2
M
‖y‖,

where M is defined by (3). We set xy := xc. This completes the proof.

Let us define the mapping J : Hbs(L∞[0, 1]) → Hbs((L1 ∩ L∞)(Ω)) in the following
way. Let f ∈ Hbs(L∞[0, 1]). Then f can be uniquely represented in the form (4), that is,

f = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn Rk1
1 · · · Rkn

n . (16)

Let

J( f ) = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn R̃k1
1 · · · R̃kn

n . (17)

Let us show that J( f ) ∈ Hbs((L1 ∩ L∞)(Ω)).

Proposition 5. J( f ) ∈ Hbs((L1 ∩ L∞)(Ω)) for every f ∈ Hbs(L∞[0, 1]) and

‖J( f )‖r ≤ ‖ f ‖ 2
M r (18)
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for every r > 0, where M is defined by (3).

Proof. By Lemma 4, for every y ∈ (L1 ∩ L∞)(Ω) there exists xy ∈ L∞[0, 1] such that

R̃n(y) = Rn(xy) (19)

for every n ∈ N and the inequality (15) holds. By (16), (17) and (19),

J( f )(y) = f (xy) (20)

for every f ∈ Hbs(L∞[0, 1]) and y ∈ (L1 ∩ L∞)(Ω). By (15) and (20),

‖J( f )‖r = sup
{
|J( f )(y)| : y ∈ (L1 ∩ L∞)(Ω) such that ‖y‖ ≤ r

}

= sup
{
| f (xy)| : y ∈ (L1 ∩ L∞)(Ω) such that ‖y‖ ≤ r

}

≤ sup
{
| f (x)| : x ∈ L∞[0, 1] such that ‖x‖∞ ≤

2
M

r
}

≤ ‖ f ‖ 2
M r

(21)

for every f ∈ Hbs(L∞[0, 1]) and r > 0. Thus, we have proved (18).
Let f ∈ Hbs(L∞[0, 1]). Let us show that J( f ) ∈ Hbs((L1 ∩ L∞)(Ω)). The inequality (21)

and the fact that f is the function of bounded type imply the fact that J( f ) is the function of
bounded type. By (17) and by the symmetry of R̃n, the function J( f ) is symmetric. Let us
show that J( f ) is entire. By Proposition 4,

lim sup
n→∞

‖Pn‖1/n
1 = 0, (22)

where P0 = α0 and
Pn = ∑

k1+2k2+...+nkn=n
k1,...,kn∈Z+

αk1,...,kn Rk1
1 · · · Rkn

n

for n ∈ N. Consider the series
∞

∑
n=0

P̃n, (23)

where P̃0 = α0 and
P̃n = ∑

k1+2k2+...+nkn=n
k1,...,kn∈Z+

αk1,...,kn R̃k1
1 · · · R̃kn

n

for n ∈ N. Note that P̃n = J(Pn); therefore, by (21),

‖P̃n‖1 ≤ ‖Pn‖ 2
M

for every n ∈ N. By the n-homogeneity of the polynomial Pn,

‖Pn‖ 2
M

= sup
‖x‖≤ 2

M

|Pn(x)| = sup
‖x‖≤1

∣∣∣Pn

( 2
M

x
)∣∣∣ =

( 2
M

)n
sup
‖x‖≤1

|Pn(x)| =
( 2

M

)n
‖Pn‖1.

Therefore,

‖P̃n‖1 ≤
( 2

M

)n
‖Pn‖1. (24)

By (22) and (24),

0 ≤ lim sup
n→∞

‖P̃n‖1/n
1 ≤ 2

M
lim sup

n→∞
‖Pn‖1/n

1 = 0.
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Therefore,
lim sup

n→∞
‖P̃n‖1/n

1 = 0

and, consequently, by Proposition 4, the series (23) converges to some entire function on
the space (L1 ∩ L∞)(Ω) with the infinite radius of boundedness. By (17), this function is
J( f ). Consequently, J( f ) is an entire function of bounded type. Thus, J( f ) ∈ Hbs((L1 ∩
L∞)(Ω)).

Theorem 5. The mapping J, defined by (17), is an isomorphism of Fréchet algebras Hbs(L∞[0, 1])
and Hbs((L1 ∩ L∞)(Ω)).

Proof. Let us show that J is linear. Let f , g ∈ Hbs(L∞[0, 1]). Then functions f and g can be
uniquely represented as

f = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn Rk1
1 · · · Rkn

n ,

g = β0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

βk1,...,kn Rk1
1 · · · Rkn

n

respectively. Let λ ∈ C. Note that

λ f = λα0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

λαk1,...,kn Rk1
1 · · · Rkn

n

and

f + g = α0 + β0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

(αk1,...,kn + βk1,...,kn)Rk1
1 · · · Rkn

n .

Therefore,

J(λ f ) = λα0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

λαk1,...,kn R̃k1
1 · · · R̃kn

n = λJ( f )

and

J( f + g) = α0 + β0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

(αk1,...,kn + βk1,...,kn)R̃k1
1 · · · R̃kn

n = J( f ) + J(g).

Thus, J is linear.
Let us show that J is continuous. Since J is a linear mapping between Fréchet al-

gebras, it follows that for J the continuity and the boundedness are equivalent. In turn,
the boundedness of J follows from (18). Thus, J is continuous.

Let us show that J is multiplicative. By (17),

J(Rk1
1 · · · Rkn

n ) = R̃k1
1 · · · R̃kn

n (25)

for every n ∈ N and k1, . . . , kn ∈ Z+. As a consequence of Theorem 1, every symmetric
continuous polynomial P : L∞[0, 1]→ C can be uniquely represented as

P = α0 +
N

∑
n=1

∑
k1+2k2+...+nkn=n

αk1,...,kn Rk1
1 · · · Rkn

n ,
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where N ∈ N, k1, . . . , kn ∈ Z+ and αk1,...,kn ∈ C. Therefore, since J is linear, taking into
account (25),

J(P) = α0 +
N

∑
n=1

∑
k1+2k2+...+nkn=n

αk1,...,kn R̃k1
1 · · · R̃kn

n . (26)

By using (26), it can be verified the equality

J(P1P2) = J(P1)J(P2) (27)

for arbitrary symmetric continuous polynomials P1, P2 : L∞[0, 1]→ C. Let f , g ∈ Hbs(L∞[0, 1]).
Let us show that J( f g) = J( f )J(g). Let f = ∑∞

n=0 fn and g = ∑∞
n=0 gn be the Taylor series

expansions of f and g respectively. Then

f g =
∞

∑
k=0

k

∑
s=0

fsgk−s.

Consequently, since J is linear and continuous, taking into account (26),

J( f g) =
∞

∑
k=0

k

∑
s=0

J( fsgk−s) =
∞

∑
k=0

k

∑
s=0

J( fs)J(gk−s) =

(
∞

∑
n=0

J( fn)

)(
∞

∑
n=0

J(gn)

)
= J( f )J(g).

Thus, J is multiplicative.
Let us show that J is a bijection. Let γ0 be an arbitrary element of Γ. Let v : L∞[0, 1]→

(L1 ∩ L∞)(Ω) be defined by
v = Jγ0 ◦Wγ0 , (28)

where Wγ0 is defined by (5), and Jγ0 is defined by (6). Since Wγ0 is a linear isometrical
bijection and Jγ0 is a linear isometrical injective mapping (by Lemma 2), it follows that v is
a linear isometrical injective mapping. Therefore, for every r > 0, the image of the closed
ball with the center at 0 and the radius r of the space L∞[0, 1] under v is a subset of the
closed ball with the center at 0 and the radius r of the space (L1 ∩ L∞)(Ω). Therefore,

sup
{
|g(v(x))| : x ∈ L∞[0, 1], ‖x‖∞ ≤ r

}

≤ sup
{
|g(y)| : y ∈ (L1 ∩ L∞)(Ω), ‖y‖ ≤ r

}
. (29)

for every function of bounded type g : (L1 ∩ L∞)(Ω) → C and for every r > 0. Let us
prove the following auxiliary statement.

Lemma 5. For every function f ∈ Hbs((L1 ∩ L∞)(Ω)), the function f ◦ v belongs to the Fréchet
algebra Hbs(L∞[0, 1]).

Proof of Lemma 5. Let f ∈ Hbs((L1 ∩ L∞)(Ω)). Since f is a function of bounded type, it
follows that the value ‖ f ‖r is finite for every r > 0. Therefore, by (29), the value ‖ f ◦ v‖r is
finite for every r > 0. Thus, the function f ◦ v is of bounded type.

Let us show that f ◦ v is symmetric. For every σ ∈ Ξ[0,1], let us define the function
σ̂ : Ω→ Ω by

σ̂(t) =
{

(w−1
γ0
◦ σ ◦ wγ0)(t), if t ∈ Ωγ0

t, if t ∈ Ω \Ωγ0 .

It can be checked that σ̂ ∈ ΞΩ and v(x ◦ σ) = v(x) ◦ σ̂ for every x ∈ L∞[0, 1]. Therefore,
taking into account the symmetry of f ,

( f ◦ v)(x ◦ σ) = f (v(x) ◦ σ̂) = f (v(x)) = ( f ◦ v)(x)

for every σ ∈ Ξ[0,1] and x ∈ L∞[0, 1]. Thus, f ◦ v is symmetric.
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Let us show that f ◦ v is an entire function. Since the function f is an entire function of
bounded type, its Taylor series, terms of which we denote by f0, f1, . . . , fn, . . ., is uniformly
convergent to f on every bounded subset of the space (L1 ∩ L∞)(Ω). By Proposition 4,

lim sup
n→∞

‖ fn‖1/n
1 = 0.

Consider the series
∞

∑
n=0

fn ◦ v. (30)

By (29), ‖ fn ◦ v‖1 ≤ ‖ fn‖1 for every n ∈ N. Consequently,

lim sup
n→∞

‖ fn ◦ v‖1/n
1 = 0,

that is, the series (30) converges uniformly to some entire function of bounded type on
every bounded subset of the space L∞[0, 1]. Let us show that this function is equal to
f ◦ v. Since ∑∞

n=0 fn converges uniformly to f on every bounded subset of (L1 ∩ L∞)(Ω), it
follows that for every ε > 0 and r > 0 there exists N ∈ N such that

∥∥∥∥ f −
m

∑
n=0

fn

∥∥∥∥
r
< ε

for every m > N. Therefore, by (29),
∥∥∥∥ f ◦ v−

m

∑
n=0

fn ◦ v
∥∥∥∥

r
≤
∥∥∥∥ f −

m

∑
n=0

fn

∥∥∥∥
r
< ε,

where m > N. Thus, the series (30) converges uniformly to f ◦ v on every bounded subset
of the space L∞[0, 1]. Consequently, the function f ◦ v is entire. This completes the proof of
Lemma 5.

We now continue with the proof of Theorem 5. Let us show that J is surjective. Let g
be an arbitrary element of Hbs((L1 ∩ L∞)(Ω)). Then g can be represented in the form

g = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn R̃k1
1 · · · R̃kn

n . (31)

Let f = g ◦ v. By Lemma 5, f ∈ Hbs(L∞[0, 1]). By (31),

f = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn(R̃1 ◦ v)k1 · · · (R̃n ◦ v)kn .

Taking into account the equality R̃n ◦ v = Rn,

f = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

k1,...,kn∈Z+

αk1,...,kn Rk1
1 · · · Rkn

n .

By (17), J( f ) = g. Thus, the mapping J is surjective and

J( f ) ◦ v = f (32)

for every f ∈ Hbs(L∞[0, 1]).
Let us prove that J is injective. Recall that J is linear. For a linear mapping, the in-

jectivity is equivalent to the fact that the image of every nonzero element is nonzero. Let
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f be a nonzero element of Hbs(L∞[0, 1]). Let us show that J( f ) 6= 0. Suppose J( f ) = 0.
Then J( f ) ◦ v = 0. Therefore, by (32), f = 0., which is a contradiction. Thus, J( f ) 6= 0.
Consequently, J is injective. So, J is bijective.

By (18) and (29),
‖ f ‖r ≤ ‖J( f )‖r ≤ ‖ f ‖ 2

M r

for every f ∈ Hbs(L∞[0, 1]) and for every r > 0. This inequality implies the continuity of J
and J−1. This completes the proof of Theorem 5.

4. Conclusions

This work is a significant generalization of the work [49]. We consider symmetric
functions on Banach spaces of all complex-valued integrable essentially bounded functions
on the unions of Lebesgue-Rohlin spaces with continuous measures. Note that there are a
lot of important measure spaces which can be represented as the abovementioned union.
For example, Rn for any n ∈ N with the Lebesgue measure is one such space. We investigate
algebras of symmetric polynomials and entire symmetric functions on the abovementioned
spaces. In particular, we show that Fréchet algebras of all complex-valued entire symmetric
functions of bounded type on these Banach spaces are isomorphic to the Fréchet algebra of
all complex-valued entire symmetric functions of bounded type on the complex Banach
space L∞[0, 1].

The next step in this investigation is to consider the case of unions of arbitrary
Lebesgue-Rohlin spaces.
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Abstract: The paper deals with the problem of expansion of the ratios of the confluent hypergeometric
function of N variables Φ(N)

D (a, b̄; c; z̄) into the branched continued fractions (BCF) of the general
form with N branches of branching and investigates the convergence of these BCF. The algorithms of
construction for BCF expansions of confluent hypergeometric function Φ(N)

D ratios are based on some
given recurrence relations for this function. The case of nonnegative parameters a, b1, . . . , bN−1 and
positive c is considered. Some convergence criteria for obtained BCF with elements in RN and CN are
established. It is proven that these BCF converge to the functions which are an analytic continuation of
the above-mentioned ratios of function Φ(N)

D (a, b̄; c; z̄) in some domain of CN .

Keywords: confluent hypergeometric function of several variables; recurrence relations; branched
continued fraction; approximant; uniform convergence

MSC: 33C65; 11J70; 30B70; 40A15

1. Introduction

In the course of the last three centuries the necessity of solving the problems arising in
the fields of hydrodynamics, control theory, classical and quantum mechanics stimulated
the development of the theory of special functions of one and several variables [1–5].
Functions of hypergeometric type constitute an important class of special functions.

For hypergeometric functions of one variables there exists a well-developed theory
with numerous applications. All advanced computer algebra systems support calculations
involving hypergeometric functions. In the multivariate case there exist several approaches
to the notion of a hypergeometric functions. Such a function can be defined as a sum of a
power series of a certain kind (the so-called Γ-series), as a solution to a system of partial
differential equations, as the Euler-type integral or as the Mellin–Barnes integral [1,3].

It is known that continued fractions have numerous applications in the theory of
approximation of hypergeometric functions of one variable [6–9]. Multidimensional gener-
alizations of continued fractions can be considered as a tool of rational approximation of
functions of several variables [10–20]. In particular, branched continued fractions (BCF) of
the form

d0(z̄) +
∞

D
k=1

N

∑
ik=1

ci(k)(z̄)
di(k)(z̄)

= d0(z̄) +
N

∑
i1=1

ci(1)(z̄)

di(1)(z̄) +
N

∑
i2=1

ci(2)(z̄)

di(2)(z̄) +
N

∑
i3=1

ci(3)(z̄)
di(3)(z̄)+. . .

, (1)
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where N ∈ N, i(k) = (i1, i2, . . . , ik) be a multi-index,

I = {i(k) : 1 ≤ ir ≤ N, 1 ≤ r ≤ k, k ≥ 1}

be a set of multi-indices, the d0(z̄) and the elements ci(k)(z̄) and di(k)(z̄), i(k) ∈ I are
certain polynomials, z̄ = (z1, z2, . . . , zN) ∈ CN are used to approximate the ratios of some
hypergeometric functions of one or several variables [21–29]. Note that the symbol D,
proposed by I. Sleshynsky in 1888 [30], is used here to denote BCF.

In this paper, we construct the branched continued fraction expansions for confluent
hypergeometric functions of N variables Φ(N)

D ratios and investigate their convergence. The

confluent hypergeometric function Φ(N)
D is defined by the multiply power series [3]

Φ(N)
D
(
a, b̄; c; z̄

)

=
∞

∑
k1,k2,...,kN=0

(a)k1+k2+...+kN (b1)k1(b2)k2 . . . (bN−1)kN−1

(c)k1+k2+...+kN

zk1
1

k1!
zk2

2
k2!

. . .
zkN

N
kN !

, (2)

where a, b1, . . . , bN−1, c are complex constants (parameters of function), c 6= 0,−1,−2, . . . ,
b̄ = (b1, . . . , bN−1), (α)k is the Pochhammer symbol: (α)0 = 1, (α)k = α(α + 1)k−1, k ≥ 1.
Series (2) converges for |zi| < 1, 1 ≤ i ≤ N − 1, zN ∈ C. Function Φ(N)

D was originated
by H. Exton and H. Srivastava. This function is a generalization of the Humbert function
Φ(2)

D = Φ1. At zN = 0 value of the function, Φ(N)
D coincides with the value of the Lauricella

function F(N−1)
D .

The algorithms of construction for branched continued fraction expansions of conflu-
ent hypergeometric function Φ(N)

D ratios are based on some recurrence relations for this
function (Section 2). We stated and proved some convergence properties for the obtained
BCF (Section 3).

Let us recall some basic concepts and notations (we refer the reader to the books [31,32]
to learn more). The finite BCF

fn(z̄) = d0(z̄) +
n

D
k=1

N

∑
ik=1

ci(k)(z̄)
di(k)(z̄)

is called the nth approximant of the BCF (1). Note that for each n ∈ N the approximant
fn(z̄) can also be written as

fn(z̄) = d0(z̄) +
N

∑
i1=1

ci(1)(z̄)

Q(n)
i(1)(z̄)

,

where the tails, Q(n)
i(k)(z̄), i(k) ∈ I , 1 ≤ k ≤ n, are defined as follows

Q(n)
i(n)(z̄) = di(n)(z̄), n ≥ 1, (3)

Q(n)
i(k)(z̄) = di(k)(z̄) +

n−k

D
r=1

N

∑
ik+r=1

ci(k+r)(z̄)
di(k+r)(z̄)

, i(k) ∈ I , 1 ≤ k ≤ n− 1, n ≥ 2.

It is clear that the following recurrence relations hold

Q(n)
i(k)(z̄) = di(k)(z̄) +

N

∑
ik+1=1

ci(k+1)(z̄)

Q(n)
i(k+1)(z̄)

, i(k) ∈ I , 1 ≤ k ≤ n− 1, n ≥ 2. (4)
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Definition 1. The BCF (1), whose elements are functions of N variables, is said to converge
uniformly in a certain domain D, D ⊂ CN , if for each z̄ ∈ D at most its approximants fn(z̄) have
sense and are finite and for a given ε > 0 there exists nε such that for all m, n ≥ nε and for each
z̄ ∈ D the following inequality | fm(z̄)− fn(z̄)| < ε is valid.

Definition 2. The BCF (1), whose elements are functions of N variables in a domain D, D ⊂ CN ,
is said to converge uniformly on a compact subset K of D if there exists n(K) such that fn(z̄) is
holomorphic in some domain containing K for all n ≥ n(K) and for a given ε > 0 there exists
nε > n(K) such that supz̄∈K | fm(z̄)− fn(z̄)| < ε for m, n ≥ nε.

If Q(n)
i(k)(z̄) 6≡ 0 for all i(k) ∈ I , 1 ≤ k ≤ n, n ≥ 1, the following formula of difference

for two approximants of BCF of the form (1) is valid (see [31], p. 28)

fm(z̄)− fn(z̄) = (−1)n
N

∑
i1=1

. . .
N

∑
in+1=1

∏n+1
k=1 ci(k)(z̄)

∏n+1
k=1 Q(m)

i(k)(z̄)∏n
p=1 Q(n)

i(k)(z̄)
, m > n, n ≥ 1. (5)

Note that this formula is used to study the properties of a sequence { fn(z̄)}.

2. Recurrence Relations for Function Φ
(N)
D : Expansions for the Ratios of Function Φ

(N)
D

into the Branched Continued Fractions

To construct the expansion of the ratio of hypergeometric series of one or several
variables, the recurrence relations between these series are used. Here we give some
recurrence relations for multiply power series (2).

We denote ei = (δ1
i , δ2

i , . . . , δN−1
i ), where δ

j
i is the Kronecker delta: δ

j
i = 1, if i = j, and

δ
j
i = 0, if i 6= j.

The recurrence relations for function Φ(N)
D are valid

Φ(N)
D (a, b̄; c; z̄) = Φ(N)

D (a + 1, b̄; c; z̄)−
N−1

∑
i=1

bizi
c

Φ(N)
D (a + 1, b̄ + ei; c + 1; z̄)

− zN
c

Φ(N)
D (a + 1, b̄; c + 1; z̄), (6)

Φ(N)
D (a, b̄; c; z̄) = Φ(N)

D (a, b̄; c + 1; z̄) +
N−1

∑
i=1

abizi
c(c + 1)

Φ(N)
D (a + 1, b̄ + ei; c + 2; z̄)

+
azN

c(c + 1)
Φ(N)

D (a + 1, b̄; c + 2; z̄), (7)

Φ(N)
D (a, b̄; c; z̄) = Φ(N)

D (a, b̄ + ei; c; z̄)

− azi
c

Φ(N)
D (a + 1, b̄ + ei; c + 1; z̄), 1 ≤ i ≤ N − 1. (8)

These formal identities can be derived from (2) by comparing the coefficients of
zk1

1 zk2
2 . . . zkN

N on both sides of the identities.
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From (6)–(8) it follows that

Φ(N)
D (a, b̄; c; z̄) = Φ(N)

D (a + 1, b̄; c; z̄)−
N−1

∑
j=1

bjzj

c
Φ(N)

D (a + 1, b̄ + ej; c + 1; z̄)

− zN
c

Φ(N)
D (a + 1, b̄; c + 1; z̄)

= Φ(N)
D (a + 1, b̄; c; z̄)− zN

c
Φ(N)

D (a + 1, b̄; c + 1; z̄)

−
N−1

∑
j=1

bjzj

c

(
Φ(N)

D (a + 1, b̄; c + 1; z̄) +
a + 1
c + 1

zjΦ
(N)
D (a + 2, b̄ + ej; c + 2; z̄)

)

= Φ(N)
D (a + 1, b̄; c + 1; z̄)− zN

c
Φ(N)

D (a + 1, b̄; c + 1; z̄)

+
N−1

∑
j=1

(a + 1)bjzj

c(c + 1)
Φ(N)

D (a + 2, b̄ + ej; c + 2; z̄)

+
(a + 1)zN
c(c + 1)

Φ(N)
D (a + 2, b̄; c + 2; z̄)

−
N−1

∑
j=1

bj

c
zj

(
Φ(N)

D (a + 1, b̄; c + 1; z̄) +
a + 1
c + 1

zjΦ
(N)
D (a + 2, b̄ + ej; c + 2; z̄)

)
.

So,

Φ(N)
D (a, b̄; c; z̄) = Φ(N)

D (a + 1, b̄; c + 1; z̄)

(
1− zN

c
−

N−1

∑
j=1

bj

c
zj

)

+
N−1

∑
j=1

(a + 1)bj

c(c + 1)
zj(1− zj)Φ

(N)
D (a + 2, b̄ + ej; c + 2; z̄)

+
a + 1

c(c + 1)
zNΦ(N)

D (a + 2, b̄; c + 2; z̄). (9)

Using the recurrence relations (8), (9) the expansions of the ratios

Xi(a, b̄; c; z̄) =
Φ(N)

D (a, b̄; c; z̄)

Φ(N)
D (a + 1, b̄ + ei; c + 1; z̄)

, 1 ≤ i ≤ N − 1,

XN(a, b̄; c; z̄) =
Φ(N)

D (a, b̄; c; z̄)

Φ(N)
D (a + 1, b̄; c + 1; z̄)

,

into the branched continued fraction (BCF) of the general form with N branches of branch-
ing can be constructed. Indeed, performing the termwise division of the identity (9) by
Φ(N)

D (a + 1, b̄; c + 1; z̄), we obtain

XN(a, b̄; c; z̄) = 1− zN
c
−

N−1

∑
j=1

bj

c
zj +

N−1

∑
j=1

(a + 1)bj

c(c + 1)
zj(1− zj)

Xj(a + 1, b̄; c + 1; z̄)

+
a + 1

c(c + 1)
zN

XN(a + 1, b̄; c + 1; z̄)
. (10)

Moreover, from (8) it follows that

Xi(a, b̄; c; z̄) = XN(a, b̄ + ei; c; z̄)− azi
c

, 1 ≤ i ≤ N − 1. (11)
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Taking into account (11), we rewrite formula (10) as follows

XN(a, b̄; c; z̄) = 1− zN
c
−

N−1

∑
j=1

bj

c
zj

+
N−1

∑
j=1

(a + 1)bj

c(c + 1)
zj(1− zj)

XN(a + 1, b̄ + ej; c + 1; z̄)− (a + 1)zj

c + 1

+
a + 1

c(c + 1)
zN

XN(a + 1, b̄; c + 1; z̄)

or

XN(a, b̄; c; z̄) = 1− zN
c
−

N−1

∑
j=1

bj

c
zj

+
N

∑
i1=1

(a + 1)((1− δN
i1
)bi1 + δN

i1
)

c(c + 1)
zi1(1− (1− δN

i1 )zi1)

XN(a + 1, b̄ + ei1 ; c + 1; z̄)− (1− δN
i1
)
(a + 1)zi1

c + 1

. (12)

Then

XN(a, b̄; c; z̄) = 1− zN
c
−

N−1

∑
j=1

bj

c
zj

+
N

∑
i1=1

(a + 1)((1− δN
i1
)bi1 + δN

i1
)

c(c + 1)
zi1(1− (1− δN

i1 )zi1)

×

1− zN

c + 1
−

N−1

∑
j=1

bj + δ
j
i1

c + 1
zj − (1− δN

i1 )
a + 1
c + 1

zi1

+
N

∑
i2=1

(a + 2)((1− δN
i2
)(bi2 + δi1

i2
) + δN

i2
)

(c + 1)(c + 2)
zi2 − (1− (1− δN

i2 )zi2)

XN(a + 2, b̄ + ei1 + ei2 ; c + 2; z̄)− (1− δN
i2
)

a + 2
c + 2

zi2




−1

.

Substituting expressions for XN with corresponding parameters into formula (12),
after n steps we obtain the expansion for the ratio XN

(
a, b̄; c; z̄

)
into the finite BCF of the

general form with N branches:

XN(a, b̄; c; z̄) = 1− zN
c
−

N−1

∑
j=1

bj

c
zj +

N

∑
i1=1

ci(1)(z̄)|
|di(1)(z̄)

+
N

∑
i2=1

ci(2)(z̄)|
|di(2)(z̄)

+ . . . +
N

∑
in=1

ci(n)(z̄)|
|XN(a + n, b̄ + ∑n

p=1 eip ; c + n; z̄)− (1− δN
in )

a + n
c + n

zin

, (13)

where for i(k) ∈ I , 1 ≤ k ≤ n,

ci(k)(z̄) =





(a + k)(bik + ∑k−1
p=1 δ

ip
ik
)

(c + k− 1)(c + k)
zik (1− zik ), if 1 ≤ ik ≤ N − 1,

a + k
(c + k− 1)(c + k)

zik , if ik = N,
(14)
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and for i(k) ∈ I , 1 ≤ k ≤ n− 1,

di(k)(z̄) =





1− zN
c + k

− a + k
c + k

zik −
N−1

∑
j=1

bj + ∑k
p=1 δ

ip
j

c + k
zj, if 1 ≤ ik ≤ N − 1,

1− zN
c + k

−
N−1

∑
j=1

bj + ∑k
p=1 δ

ip
j

c + k
zj, if ik = N.

(15)

It is easy to prove, by induction, that expansion (13)–(15) is true.
Passing n to ∞, we obtain the formal expansion of Xn(a, b̄; c; z̄) into infinite BCF of

the form

1− zN
c
−

N−1

∑
j=1

bj

c
zj +

∞

D
k=1

N

∑
ik=1

ci(k)(z̄)
di(k)(z̄)

. (16)

Elements of BCF (16) are defined by Formulas (14) and (15) under i(k) ∈ I , k ≥ 1.
Taking into account Formula (11), we obtain the formal expansion of the ratio Xi0(a, b̄; c; z̄),

i0 ∈ {1, . . . , N − 1}, into such BCF

1− zN
c
− (a + 1)zi0

c
−

N−1

∑
j=1

bj

c
zj +

∞

D
k=1

N

∑
ik=1

li(k)(z̄)
qi(k)(z̄)

, (17)

where for i(k) ∈ I , k ≥ 1,

li(k)(z̄) =





(a + k)(bik + ∑k−1
p=0 δ

ip
ik
)

(c + k− 1)(c + k)
zik (1− zik ), if 1 ≤ ik ≤ N − 1,

a + k
(c + k− 1)(c + k)

zik , if ik = N,
(18)

qi(k)(z̄) =





1− zN
c + k

− a + k
c + k

zik −
N−1

∑
j=1

bj + ∑k
p=0 δ

ip
j

c + k
zj, if 1 ≤ ik ≤ N − 1,

1− zN
c + k

−
N−1

∑
j=1

bj + ∑k
p=0 δ

ip
j

c + k
zj, if ik = N.

(19)

If zN = 0, then the formal expansion of X1(a, b̄; c; z1, . . . , zN−1, 0) coincides with the
expansion of the ratio of the Lauricella function F(N−1)

D

F(N−1)
D (a, b̄; c; z1, . . . , zN−1)

F(N−1)
D (a + 1, b̄ + e1; c + 1; z1, . . . , zN−1)

into the (N − 1)-dimensional analogue of Nörlund’s continued fraction [23]. If z1 = z2 =
. . . = zN−1 = 0, then the formal expansion of XN(a, b̄; c; 0, . . . , 0, zN) coincides with the
continued fraction expansion of the ratio of Kummer’s confluent function

Φ(a; c; zN)

Φ(a + 1; c + 1; zN)
.

3. Convergence of the Branched Continued Fraction Expansions of the Confluent

Hypergeometric Function Φ
(N)
D Ratios

Theorem 1. Let parameters a, b1, . . . , bN−1, c of the confluent hypergeometric function Φ(N)
D be

real numbers such that

a, b1, . . . , bN−1 ≥ 0, 2c > a + b1 + . . . + bN−1 > 0. (20)
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Then the BCF (16) with elements ci(k), di(k), i(k) ∈ I , defined by (14), (15), under k ≥ 1, converges
uniformly in the domain

Gε =

{
z̄ ∈ RN : 0 < zi <

1
2
− ε, 1 ≤ i ≤ N − 1, 0 < zN <

2c− a−∑N−1
j=1 bj

2

}
,

where 0 < ε < 1/2, to the function XN(a, b̄; c; z̄).

Proof. It is obvious that partial numerators ci(k)(z̄), i(k) ∈ I , k ≥ 1, for all z̄ ∈ Gε are
positive under conditions (20).

We will find lower bound of the denominators di(k)(z̄), i(k) ∈ I , k ≥ 1, for z̄ ∈ Gε. If
1 ≤ ik ≤ N − 1, then we have

di(k)(z̄) = 1− zN
c + k

− a + k
c + k

zik −
N−1

∑
j=1

bj + ∑k
p=1 δ

ip
j

c + k
zj

> 1−
2c− a−∑N−1

j=1 bj

2(c + k)
− a + k

c + k

(
1
2
− ε

)

−
N−1

∑
j=1

bj

c + k

(
1
2
− ε

)
−

N−1

∑
j=1

∑k
p=1 δ

ip
j

c + k

(
1
2
− ε

)

=
k

2(c + k)
+ ε

a + k + ∑N−1
j=1 bj

c + k
−
(

1
2
− ε

)∑k
p=1 ∑N−1

j=1 δ
ip
j

c + k

≥ ε
a + 2k + ∑N−1

j=1 bj

c + k
.

If ik = N, then

di(k)(z̄) = 1− zN
c + k

−
N−1

∑
j=1

bj + ∑k
p=1 δ

ip
j

c + k
zj

> 1− zN
c + k

−
N−1

∑
j=1

a + k + bj + ∑k
p=1 δ

ip
j

c + k
zj

> ε
a + 2k + ∑N−1

j=1 bj

c + k
.

So,

Q(n)
i(k)(z̄) > di(k)(z̄) > ε

a + 2k + ∑N−1
j=1 bj

c + k
, i(k) ∈ I , k ≥ 1. (21)

We will show that for an arbitrary z̄ ∈ Gε following inequality

| fm(z̄)− fn(z̄)| < M
(

η

η + 1

)n
, m > n, (22)

where

M =

(
1
4ε
− ε

)
a + 1

c
+

2c− a−∑N−1
j=1 bj

2cε
, η =

(
1

4ε2 − 1
)
+

2c− a−∑N−1
j=1 bj

2ε2(a + ∑N−1
j=1 bj)

,
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is valid. Formula (5) can be rewritten as follows

fm(z̄)− fn(z̄) = (−1)n
N

∑
i1=1

. . .
N

∑
in+1=1

ci(1)(z̄)

Q(q)
i(1)(z̄)

×
[(n+1)/2]

∏
j=1

ci(2j)(z̄)

Q(r)
i(2j−1)(z̄)Q

(r)
i(2j)(z̄)

[n/2]

∏
j=1

ci(2j+1)(z̄)

Q(q)
i(2j)(z̄)Q

(q)
i(2j+1)(z̄)

, (23)

where q = m, r = n, if n = 2p, and q = n, r = m, if n = 2p− 1, p ≥ 1.
We note, that

N

∑
ik+1=1

ci(k+1)(z̄)

Q(r)
i(k)(z̄)Q

(r)
i(k+1)(z̄)

=

N

∑
ik+1=1

ci(k+1)(z̄)

Q(r)
i(k+1)(z̄)

di(k)(z̄) +
N

∑
ik+1=1

ci(k+1)(z̄)

Q(r)
i(k+1)(z̄)

≤

N

∑
ik+1=1

ci(k+1)(z̄)
di(k)(z̄)di(k+1)(z̄)

1 +
N

∑
ik+1=1

ci(k+1)(z̄)
di(k)(z̄)di(k+1)(z̄)

.

Taking into account the inequality (21), we obtain

N

∑
ik+1=1

ci(k+1)(z̄)
di(k)(z̄)di(k+1)(z̄)

<
(c + k)(c + k + 1)

ε2(a + ∑N−1
j=1 bj + 2k)(a + ∑N−1

j=1 bj + 2k + 2)

N

∑
ik+1=1

ci(k+1)(z̄)

<
N−1

∑
ik+1=1

(a + k + 1)(bik+1
+ ∑k

p=1 δ
ip
ik+1

)zik+1
(1− zik+1

)

ε2(a + ∑N−1
j=1 bj + 2k)(a + ∑N−1

j=1 bj + 2k + 2)

+
(a + k + 1)zN

ε2(a + ∑N−1
j=1 bj + 2k)(a + ∑N−1

j=1 bj + 2k + 2)

<

(
1

4ε2 − 1
)∑N−1

ik+1
(bik+1

+ ∑k
p=1 δ

ip
ik+1

)

(a + ∑N−1
j=1 bj + 2k)

+
2c− a−∑N−1

j=1 bj

2ε2(a + ∑N−1
j=1 bj + k)

<

(
1
4ε
− ε

)
+

2c− a−∑N−1
j=1 bj

2ε2(a + ∑N−1
j=1 bj)

.

We also obtain

N

∑
i1=1

ci(1)(z̄)

Q(q)
i(1)(z̄)

≤ c + 1
ε(a + ∑N−1

j=1 bj + 2)

N−1

∑
i1=1

(a + 1)b
c(c + 1)

(
1
4
− ε2

)

+
c + 1

ε(a + ∑N−1
j=1 bj + 2)

(a + 1)(2c− a−∑N−1
j=1 bj)

2c(c + 1)

<

(
1
4ε
− ε

)
a + 1

c
+

2c− a−∑N−1
j=1 bj

2cε
.

Substituting the above estimates in Formula (23) we obtain inequality (22).
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We will consider the difference XN
(
a, b̄; c; z̄

)
− fn(z̄). Let

Q̃(s)
i(s)(z̄) = XN

(
a + s, b̄ +

s

∑
j=1

eij ; c + s; z̄

)
− (1− δN

is )
a + s
c + s

zis ,

Q̃(p)
i(k)(z̄) = di(k)(z̄) +

N

∑
ik+1=1

ci(k+1)(z̄)|
|di(k+1)(z̄)

+
N

∑
ik+2=1

ci(k+2)(z̄)|
|di(k+2)(z̄)

+ . . . +
N

∑
in=1

ci(n)(z̄)|
|XN(a + n, b̄ + ∑n

p=1 eip ; c + n; z̄)− (1− δN
in )

a + n
c + n

zin

,

where s ≥ 1, p ≥ 2, 1 ≤ k ≤ p− 1. It is clear that the following recurrence relations hold

Q̃(p)
i(k)(z̄) = di(k)(z̄) +

N

∑
ik+1=1

ci(k+1)(z̄)

Q̃(p)
i(k+1)(z̄)

, s ≥ 1, p ≥ 2, 1 ≤ k ≤ p− 1.

Applying the method suggested in [31], p. 28, for n ≥ 1 on the first step we obtain

XN(a, b̄; c; z̄)− fn(z̄) = 1− zN
c
−

N−1

∑
j=1

bj

c
zj +

N

∑
i1=1

ci(1)(z̄)

Q̃(n+1)
i(1) (z̄)

−

1− zN

c
−

N−1

∑
j=1

bj

c
zj +

N

∑
i1=1

ci(1)(z̄)

Q(n)
i(1)(z̄)




= −
N

∑
i1=1

ci(1)(z̄)

Q̃(n+1)
i(1) (z̄)Q(n)

i(1)(z̄)

(
Q̃(n+1)

i(1) (z̄)−Q(n)
i(1)(z̄)

)
.

Let k be an arbitrary natural number and i(k) be an arbitrary multi-index from I ;
moreover 1 ≤ k ≤ n− 1, n ≥ 2. Then we have

Q̃(n+1)
i(k) (z̄)−Q(n)

i(k)(z̄) = di(k)(z̄) +
N

∑
ik+1=1

ci(k+1)(z̄)

Q̃(n+1)
i(k+1)(z̄)

−

di(k)(z̄) +

N

∑
ik+1=1

ci(k+1)(z̄)

Q(n)
i(k+1)(z̄)




= −
N

∑
ik+1=1

ci(k+1)(z̄)

Q̃(n+1)
i(k+1)(z̄)Q

(n)
i(k+1)(z̄)

(
Q̃(n+1)

i(k+1)(z̄)−Q(n)
i(k+1)(z̄)

)
. (24)

Applying recurrence relation (24) and taking into account that

Q̃(n+1)
i(n) (z̄)−Q(n)

i(n)(z̄) =
N

∑
in+1=1

ci(n+1)(z̄)

Q̃(n+1)
i(n+1)(z̄)

,

after nth step we obtain

XN
(
a, b̄; c; z̄

)
− fn(z̄) = (−1)n

N

∑
i1=1

. . .
N

∑
in+1=1

∏n+1
p=1 ci(p)(z̄)

∏n+1
p=1 Q̃(n+1)

i(p) (z̄)∏n
p=1 Q(n)

i(p)(z̄)
. (25)

From (25) it follows that

f2m(z̄) < XN(z̄)
(
a, b̄; c; z̄

)
< f2m−1(z̄).

Since
lim

m→∞
f2m(z̄) = lim

m→∞
f2m−1(z̄) = f (z̄),
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then XN(z̄)
(
a, b̄; c; z̄

)
= f (z̄).

Theorem 2. Let parameters a, b1, . . . , bN−1, c of the confluent hypergeometric function Φ(N)
D

satisfy conditions (20). Then:
(A) the BCF (16) with elements ci(k), di(k), i(k) ∈ I , defined by (14), (15), i(k) ∈ I , k ≥ 1,

converges uniformly on every compact subset of the domain

G =

{
z̄ ∈ CN : Re zi <

1
2

, i = 1, N − 1, |zN | <
2c− a−∑N−1

j=1 bj

2

}

to a function f (z̄) holomorphic in G;
(B) f (z̄) is the analytic continuation of the function XN(a, b̄; c; z̄) which is holomorphic in

some neighborhood of the origin in the domain G.

We will use the following auxiliary lemmas.

Lemma 1 ([23]). Let elements of the BCF (1) be the functions defined in some domain D, D ⊂ CN ,
and the following conditions for each z̄ ∈ D and for all possible values of multi-indices i(k) ∈ I
are valid:

(A) Re di(k)(z̄) > 0;
(B) there exist such functions gi(k)(z̄) given in the domain D that 0 < gi(k)(z̄) ≤ Re di(k)(z̄) and

2

∑
ik+1=1

|ci(k+1)(z̄)| − Re ci(k+1)(z̄)
gi(k+1)(z̄)

≤ 2(Re di(k)(z̄)− gi(k)(z̄)). (26)

Then, for each n ≥ 1,

Re(Q(n)
i(k)(z̄)) ≥ gi(k)(z̄) for all i(k) ∈ I , 1 ≤ k ≤ n, and z̄ ∈ D, (27)

where Q(n)
i(k)(z̄), i(k) ∈ I , 1 ≤ k ≤ n, n ≥ 1, defined by (3) and (4).

Lemma 2 ([23]). Let w be a complex number. Then

|w(1− w)| − Re (w(1− w)) ≤ 2
(

1
2
− Re w

)2
,

and equality is achieved only when Re w = 1/2.

In addition, we will use the convergence continuation Theorem 2.17 [31] (see also ([9],
Theorem 24.2).

Theorem 3. Let { fn(z)} be a sequence of functions, holomorphic in the domain D, D ⊂ CN ,
which is uniformly bounded on every compact subset of D. Let this sequence converge at each point
of the set E, E ⊂ D, which is the N-dimensional real neighborhood of the point z̄0, z̄0 ∈ D. Then
{ fn(z)} converges uniformly on every compact subset of the domain D to a function holomorphic
in D.

Proof of Theorem 2. We will use the proof scheme from [23]. Let for k ≥ 1

gi(k)(z̄) =





a + k
c + k

(
1
2
− Re zik

)
, if 1 ≤ ik ≤ N − 1,

a + k
2(c + k)

, if ik = N.
(28)
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It is obvious that functions gi(k)(z̄) are positive. Next we have
(a) for ik = N

Re di(k)(z̄)− gi(k)(z̄) = 1− Re zN
c + k

−
N−1

∑
j=1

bj + ∑k
p=1 δ

ip
j

c + k
Re zj −

a + k
2(c + k)

=
2c− a + k
2(c + k)

− Re zN
c + k

−
N−1

∑
j=1

bj + ∑k
p=1 δ

ip
j

c + k
Re zj

>
2c− a + k
2(c + k)

−
2c− a−∑N−1

j=1 bj

2(c + k)
−

N−1

∑
j=1

bj + ∑k
p=1 δ

ip
j

2(c + k)

=
1

2(c + k)

(
k−

N−1

∑
j=1

k

∑
p=1

δ
ip
j

)

≥ 1
2(c + k)

;

(b) for arbitrary 1 ≤ ik ≤ N − 1

Re di(k)(z̄)− gi(k)(z̄) = 1− Re zN
c + k

− a + k
c + k

Re zik

−
N−1

∑
j=1

bj + ∑k
p=1 δ

ip
j

c + k
Re zj −

a + k
c + k

(
1
2
− Re zik

)

=
2c− a + k
2(c + k)

− Re zN
c + k

−
N−1

∑
j=1

bj + ∑k
p=1 δ

ip
j

c + k
Re zj

>
1

2(c + k)

(
k−

N−1

∑
j=1

k

∑
p=1

δ
ip
j

)
≥ 0.

Thus, Re di(k)(z̄) ≥ gi(k)(z̄).
On the other hand, taking into account Lemma 2, we obtain

N

∑
ik+1=1

|ci(k+1)(z̄)| − Re ci(k+1)(z̄)
gi(k+1)(z̄)

=
N−1

∑
ik+1=1

bik+1
+ ∑N−1

p=1 δ
ip
ik+1

c + k
|zik+1

(1− zik+1
)| − Re zik+1

(1− zik+1
)

(1/2− Re zik+1
)

+ 2
|zN | − Re zN

c + k

≤
N−1

∑
ik+1=1

bik+1
+ ∑N−1

p=1 δ
ip
ik+1

c + k
− 2

N−1

∑
ik+1=1

bik+1
+ ∑N−1

p=1 δ
ip
ik+1

(c + k)
Re zik+1

+
2c− a−∑N−1

j=1 bj

c + k
− 2Re zN

c + k
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and

2(Re di(k)(z̄)− gi(k)(z̄))−
N

∑
ik+1=1

|ci(k+1)(z̄)| − Re ci(k+1)(z̄)
gi(k+1)(z̄)

≥ 2c− a + k
c + k

−
N−1

∑
ik+1=1

bik+1
+ ∑N−1

p=1 δ
ip
ik+1

(c + k)
−

2c− a−∑N−1
j=1 bj

c + k

=
1

2(c + k)

(
k−

N−1

∑
j=1

k

∑
p=1

δ
ip
j

)
≥ 0.

Therefore, the conditions (26) of Lemma 1 are satisfied and inequality (27) is valid,
where gi(k)(z̄) is defined by (28). Thus, { fn(z̄)}, n ≥ 1, is a sequence of functions holomor-
phic in domain G.

Let K be an arbitrary compact subset of G. Then,

| fn(z̄)| ≤ 1 +
|zN |

c
+

N−1

∑
j=1

bj

c
|zj|+

N

∑
i1=1

|ci(1)(z̄)|
gi(1)(z̄)

≤ 1 +
|zN |

c
+

N−1

∑
j=1

bj|zj|
c

+
N−1

∑
j=1

bj|zj(1− zj)|
c(1/2− Re zj)

+
2c−∑N−1

j=1 bj − a

c

≤ 1 + sup
z̄∈K

(
|zN |

c
+

N−1

∑
j=1

bj|zj|
c

+
N−1

∑
j=1

bj|zj(1− zj)|
c(1/2− Re zj)

+
2c−∑N−1

j=1 bj − a

c

)

= M(K),

where constant M(K) depends only on K. Moreover, Gε ⊂ G. So, sequence of approximants
{ fn(z̄)} of the BCF (16) satisfies the conditions of Theorem 3 and it means that Statement
(A) of Theorem 2 is proven.

The series (2) converges for each z̄ from domain {z̄ ∈ CN : |zi| < 1, 1 ≤ i ≤ N − 1}
and XN(a, b̄; c; z̄)|z1=...=zN=0 = 1. Therefore, there is such δ > 0 that function XN(a, b̄; c; z̄)
is holomorphic in domain Gδ = {z̄ ∈ CN : |zi| < δ, 1 ≤ i ≤ N}, Gδ ⊂ G. Since
investigated BCF converges uniformly in Gε to XN(a, b̄; c; z̄), then by the principle of
analytic continuation ([33], p. 53), Statement (B) follows.

Let us note that XN(0, b̄; c; z̄) = 1/Φ(N)
D (1, b̄; c + 1; z̄). We assume that a = 0 and

Q(0)
0 (z̄) = 1− zN

c
−

N−1

∑
j=1

bjzj

c
, Q(n)

0 (z̄) = 1− zN
c
−

N−1

∑
j=1

bjzj

c
+

N

∑
i1=1

ci(1)(z̄)

Q(n)
i(1)(z̄)

, n ≥ 1.

In the proof of the Theorem 2 it is shown that inequality (27) is valid. It can be similarly
shown that

Re Q(n)
0 (z̄) > g0(z̄) = 1− 1

2c

N−1

∑
j=1

bj −
|zN |

c
> 0, n ≥ 0, z̄ ∈ G. (29)

Indeed, for each z̄ ∈ G
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Re Q(n)
0 (z̄)− g0(z̄) = 1− Re zN

c
−

N−1

∑
j=1

Re
bjzj

c
−
(

1− 1
2c

N−1

∑
j=1

b−
|zN |

c

)

≥
N−1

∑
j=1

bj

2c
(1− 2Re zj) +

|zN | − Re zN
c

> 0,

N

∑
i1=1

|ci(1)(z̄)| − Re ci(1)(z̄)
gi(1)(z̄)

=
N−1

∑
i1=1

bi1
c
|zi1(1− zi1)| − Re zi1(1− zi1)

(1/2− Re zi1)
+ 2
|zN | − Re zN

c

≤
N−1

∑
i1=1

bi1
c
− 2

N−1

∑
i1=1

bi1
c

Re zi1 + 2
|zN | − Re zN

c
,

and

2

(
1− Re zN

c
−

N−1

∑
j=1

Re
bjzj

c
− g0(z̄)

)
−

N

∑
i1=1

|ci(1)(z̄)| − Re ci(1)(z̄)
gi(1)(z̄)

≥ 0.

From (29) it follows that {hn(z̄)}, where hn(z̄) = ( fn(z̄))
−1, n ≥ 0, is a sequence of

functions holomorphic in G.
Setting a = 0, replacing c by c− 1 in Theorem 2 and taking into account the above

considerations we obtain the corollary.

Corollary 1. Let parameters b1, b2, . . . , bN−1, c of function Φ(N)
D satisfy inequalities

b1, . . . , bN−1 ≥ 0, 2c > b1 + . . . + bN−1 + 2 > 2.

Then:
(A) the BCF

(
1− zN

c− 1
−

N−1

∑
j=1

bjzj

c− 1
+

∞

D
k=1

N−1

∑
ik=1

ci(k)(z̄)
di(k)(z̄)

)−1

(30)

with elements ci(k), di(k), i(k) ∈ I , defined by

ci(k)(z̄) =





k(bik + ∑k−1
p=1 δ

ip
ik
)

(c + k− 2)(c + k− 1)
zik (1− zik ), if 1 ≤ ik ≤ N − 1,

k
(c + k− 2)(c + k− 1)

zik , if ik = N,
(31)

di(k)(z̄) =





1− zN + kzik
c + k− 1

−
N−1

∑
j=1

bj + ∑k
p=1 δ

ip
j

c + k− 1
zj, if 1 ≤ ik ≤ N − 1,

1− zN
c + k− 1

−
N−1

∑
j=1

bj + ∑k
p=1 δ

ip
j

c + k− 1
zj, if ik = N,

(32)

converges uniformly on every compact subset of H to a function h(z̄) holomorphic in H, where

H =

{
z̄ ∈ CN : Re zi <

1
2

, 1 ≤ i ≤ N − 1, |zN | < c− 1− 1
2

N−1

∑
j=1

bj

}
;

(B) h(z̄) is an analytic continuation of function Φ(N)
D (1, b̄; c; z̄) in domain H.

Example 1. We set a = 0, b1 = 0.5, b2 = 1, c = 4. The results of computation of the ap-
proximants hn(z̄), 0 ≤ n ≤ 12, of BCF (30) with elements ci(k), di(k), i(k) ∈ I , defined
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by (31), (32), and partial sums Sn(z̄), 0 ≤ n ≤ 12, of Φ(3)
D (1, 0.5, 1; 4; z̄) for z̄ = (0.3, 0.4, 1) and

z̄ = (−0.7,−0.4, 1) are given in Table 1.
For given parameters and z̄ = (0.3, 0.4, 1) elements of BCF (30) are positive and

h2m−1(z̄) < Φ(3)
D (1, 0.5, 1; 4; z̄) < h2m(z̄), 1 ≤ m ≤ 6.

If z̄ = (−0.7,−0.4, 1), then

|hm(z̄)− hm−1(z̄)| < |Sm(z̄)− Sm−1(z̄)|, 1 ≤ m ≤ 12.

Table 1. Values of hn(z̄), Sn(z̄) for different values of z̄ = (z1, z2, z3).

n hn(0.3, 0.4, 1) Sn(0.3, 0.4, 1) hn(−0.7,−0.4, 1) Sn(−0.7,−0.4, 1)

0 2.0689655172413793 1.0000000000000000 1.0909090909090909 1.0000000000000000
1 1.4560459283938569 1.3875000000000000 1.0798919301578482 1.0625000000000000
2 1.6062420542029685 1.5178750000000000 1.0854460271288587 1.0858750000000000
3 1.5663393776978655 1.5581427083333333 1.0854992029539980 1.0846114583333333
4 1.5774800126642679 1.5700380133928571 1.0855766580493781 1.0858623586309523
5 1.5741237293361620 1.5734982670665922 1.0855849420453230 1.0855849420453230
6 1.5752175755666838 1.5745081593644076 1.0855871865334549 1.0856431331367290
7 1.5748338584710080 1.5748069122651405 1.0855876480094189 1.0855617160131383
8 1.5749774440398022 1.5748968805416772 1.0855877608401303 1.0856005483413065
9 1.5749206724246927 1.5749244851830382 1.0855877888742481 1.0855813521666234

10 1.5749441919671161 1.5749331078713755 1.0855877962018176 1.0855911502163538
11 1.5749340537588600 1.5749358459608639 1.0855877981816782 1.0855860154913730
12 1.5749385748468521 1.5749367284599484 1.0855877987333202 1.0855887673017868

Example 2. We set a = 0, b1 = 1, c = 4. The results of computation of the approximants
hn(z̄), 0 ≤ n ≤ 12, of BCF (30) with elements ci(k), di(k), i(k) ∈ I , defined by (31), (32), for
z̄ = (−1.2, 1) and z̄ = (−1.2+ 0.2i, 1+ 0, 5i) are given in Table 2. These values of z̄ do not belong
to a convergence domain of double power series for Φ(1, 1; 4; z̄).

Table 2. Values of hn(0, 1; 4; z̄) for different values of z̄ = (z1, z2).

z̄ (−1.2, 1) (−1.2 + 0.2i, 1 + 0, 5i)

h0(z̄) 0.9375000000000000 0.8946877912395153 + 0.1957129543336439i
h1(z̄) 0.9874608150470219 0.9682330302329962 + 0.1636661528464738i
h2(z̄) 0.9999386478760991 0.9783495727203259 + 0.1621180086394217i
h3(z̄) 1.0021612335538261 0.9810777556363008 + 0.1611130234246828i
h4(z̄) 1.0027828150938215 0.9816708481472565 + 0.1608142450994196i
h5(z̄) 1.0029538035362679 0.9818431129623030 + 0.1607160062318091i
h6(z̄) 1.0030069414508122 0.9818931929871372 + 0.1606803796414656i
h7(z̄) 1.0030242918372864 0.9819087721653132 + 0.1606673323815619i
h8(z̄) 1.0030302600610872 0.9819137968090410 + 0.1606623598862077i
h9(z̄) 1.0030323958017573 0.9819154619391862 + 0.1606604197525936i

h10(z̄) 1.0030331862564592 0.9819160242737400 + 0.1606596462158485i
h11(z̄) 1.0030334872518964 0.9819162161393741 + 0.1606593322207231i
h12(z̄) 1.0030336047089570 0.9819162817068529 + 0.1606592028011838i

The following theorems can be proven in much the same way as Theorems 1 and 2.

Theorem 4. Let parameters a, b1, . . . , bN−1, c of the confluent hypergeometric function Φ(N)
D be

real numbers such that

a, b1, . . . , bN−1 ≥ 0, 2c > a + b1 + . . . + bN−1 + 1 > 1. (33)
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Then, the BCF (17) with elements li(k), qi(k), i(k) ∈ I , defined by (18), (19), converges
uniformly in the domain

Lε =

{
z̄ ∈ RN : 0 < zi <

1
2
− ε, 1 ≤ i ≤ N − 1, 0 < zN <

2c− a−∑N−1
j=1 bj − 1

2

}
,

where 0 < ε < 1/2, to the function Xi0(a, b̄; c; z̄), 1 ≤ i0 ≤ N − 1.

Theorem 5. Let parameters a, b1, . . . , bN−1, c of the confluent hypergeometric function Φ(N)
D

satisfy conditions (33). Then:
(A) the BCF (17) with elements li(k), qi(k), i(k) ∈ I , defined by (18), (19), i(k) ∈ I , k ≥ 1,

converges uniformly on every compact subset of the domain

L =

{
z̄ ∈ CN : Re zi <

1
2

, 1 ≤ i ≤ N − 1, |zN | <
2c− a−∑N−1

j=1 bj − 1

2

}

to a function f (z̄) holomorphic in L;
(B) f (z̄) is the analytical continuation of the function Xi0(a, b̄; c; z̄), 1 ≤ i0 ≤ N − 1, which

is holomorphic in some neighborhood of the origin in the domain L.

4. Conclusions

In the paper we have constructed and investigated the branched continued fraction
expansions of the confluent hypergeometric function Φ(N)

D ratios.
In particular, we have proven that the branched continued fraction expansions con-

verges to the functions which are an analytic continuation of the above-mentioned ratios
in some domains. The problem of studying wider convergence domains and establishing
estimates of the rate of convergence of the above-mentioned expansions still remains open.
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Approximation Properties of the Generalized Abel-Poisson
Integrals on the Weyl-Nagy Classes
Inna Kal’chuk and Yurii Kharkevych *

Faculty of Information Technologies and Mathematics, Lesya Ukrainka Volyn National University,
43025 Lutsk, Ukraine; k.inna.80@gmail.com
* Correspondence: kharkevich.juriy@gmail.com

Abstract: Asymptotic equalities are obtained for the least upper bounds of approximations of
functions from the classes Wr

β,∞ by the generalized Abel-Poisson integrals Pγ(δ), 0 < γ ≤ 2, for the
case r > γ in the uniform metric, which provide the solution to the Kolmogorov–Nikol’skii problem
for the given method of approximation on the Weyl-Nagy classes.

Keywords: Weyl-Nagy classes; generalized Abel-Poisson integral; asymptotic equality; Kolmogorov–
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MSC: 42A05; 41A60

1. Introduction

Let L be a space of 2π-periodic summable functions and

S[ f ] =
a0

2
+

∞

∑
k=1

(ak cos kx + bk sin kx)

be the Fourier series of f ∈ L.
Further, let C be a subset of the continuous functions from L with the uniform norm

‖ f ‖C = max
t
| f (t)|; L∞ be a subset of the functions f ∈ L with the finite norm ‖ f ‖∞ =

ess sup
t
| f (t)|.

Let Λ = {λδ(k)} be the set of functions depending on k ∈ N∪ 0 and on the parameter
δ ∈ EΛ ⊂ R, the set EΛ has at least one limit point and λδ(0) = 1. Using the set Λ to each
function f ∈ L we can associate the series

a0

2
+

∞

∑
k=1

λδ(k)(ak cos kx + bk sin kx), δ ∈ EΛ,

which converges for every δ ∈ EΛ and all x to the continuous function Uδ( f ; x; Λ).
If the series

1
2
+

∞

∑
k=1

λδ(k) cos kt

is the Fourier series of some summable function, then (similarly to ([1], p. 52)) for almost
all x ∈ R we have the equality

Uδ( f ; x; Λ) =
1
π

π∫

−π

f (x + t)
(1

2
+

∞

∑
k=1

λδ(k) cos kt
)

dt. (1)
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Putting in the equality (1) λδ(k) = e−
kγ

δ , 0 < γ ≤ 2, we obtain the quantity

Uδ( f ; x; Λ) := Pγ(δ; f ; x) =
1
π

π∫

−π

f (x + t)

{
1
2
+

∞

∑
k=1

e−
kγ

δ cos kt

}
dt, δ > 0, 0 < γ ≤ 2, (2)

which is usually called the generalized Abel-Poisson integral of the function f (see,
e.g., [2,3]). For γ = 1 the integral (2) is the Poisson integral (see, e.g., [4]), for γ = 2
the integral (2) is the Weierstrass integral (see, e.g., [5]).

Let us define the classes of functions that we consider further. Let f ∈ L, r > 0 and β
be a real number. If the series

∞

∑
k=1

kr
(

ak cos
(

kx +
βπ

2

)
+ bk sin

(
kx +

βπ

2

))

is the Fourier series of a summable function, then it is denoted by f r
β and is called the

(r, β)-derivative of the function f in the Weyl-Nagy sense (see, e.g., [6]). Let Wr
β,∞ be the

classes of the functions f for which
∥∥ f r

β(·)
∥∥

∞ ≤ 1.
In this paper, we consider the problem of asymptotic behavior as δ→ ∞ of the quantity

E(Wr
β,∞; Pγ(δ))C = sup

f∈Wr
β,∞

‖ f (·)− Pγ(δ, f , ·)‖C. (3)

If the function g(δ) is found in an explicit form such that

E(Wr
β,∞; Pγ(δ))C = g(δ) + o(g(δ)), δ→ ∞,

then according to Stepanets [6] we say that the Kolmogorov–Nikol’skii problem is solved
for the class Wr

β,∞ and the generalized Abel-Poisson integral in the uniform metric.
The approximation properties of the generalized Poisson integrals have been studied

only in the cases γ = 1 (Poisson integral) and γ = 1 (Weierstrass integral). In particular,
the Kolmogorov–Nikol’skii problems for the Poisson integral on the different functional
classes have been solved in [7–11]. Similar problems for Weierstrass integral have been
solved in [5,12–14].

Regarding the results of estimating the approximation rate by the generalized Poisson
integrals for 0 < γ ≤ 2 we note the work [2], where the approximation properties of the
integrals (2) on Zygmund classes Zα, 0 ≤ α ≤ 2, have been studied.

In this paper, we aim to find asymptotic equations for quantities (3) for arbitrary
0 < γ ≤ 2. This will allow us to find such γ for any r, so that the approximation rate of
functions from the classes Wr

β,∞ by the generalized Abel-Poisson integrals, i.e, the rate at

which the quantity (3) tends to zero, is equal to 1
δ . This approximation rate could not be

achieved when approximating by Poisson integrals and Weierstrass integrals.
At present, the extremal problems of the approximation theory, being related to the

study of the approximation properties of linear methods for summing Fourier series,
become increasingly relevant in applied mathematics, in particular, in the creation of
mathematical models [15–19], in signal transmission [20,21], in the decision theory [22]
and others. The problem considered in the paper, as well as those close to it [23–25] find
practical application in the issues of coding, transmission and reproduction of images.

2. Main Result

Let us define the summing function for the generalized Abel-Poisson integral as fol-
lows

τ(u) =





(
1− e−uγ)(

(γ− r− 1)δ
r+2

γ −1u2−γ + (2 + r− γ)δ
r+1

γ −1u1−γ
)

, 0 ≤ u ≤ 1
γ
√

δ
,

(
1− e−uγ)

u−r, u ≥ 1
γ
√

δ
,

(4)
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where 0 < γ ≤ 2, δ > 0.

Theorem 1. Let r > γ. Then the following asymptotic equality holds as δ→ ∞:

E
(

Wr
β,∞; Pγ(δ)

)
C
=

1
δ

sup
f∈Wr

β,∞

∥∥ f γ
0 (·)

∥∥
C + O(Υ(δ, r, γ)), (5)

where f γ
0 (x) is (r, β)—derivative in the Weyl-Nagy sense as r = γ, β = 0 and

Υ(δ, r, γ) =





1
( γ√δ)r , γ < r < 2γ,
ln δ
δ2 , r = 2γ,
1
δ2 , r > 2γ.

Proof. Let us rewrite the function τ(u) given by (4) in the form τ(u) = ϕ(u) + µ(u) (see,
e.g., [26]), where

ϕ(u) =





(γ− r− 1)δ
r+2

γ −1u2 + (2 + r− γ)δ
r+1

γ −1u, 0 ≤ u ≤ 1
γ√δ

,

uγ−r, u ≥ 1
γ√δ

.
(6)

µ(u) =

=





(
1− e−uγ − uγ

)(
(γ− r− 1)δ

r+2
γ −1u2−γ + (2 + r− γ)δ

r+1
γ −1u1−γ

)
, 0 ≤ u ≤ 1

γ
√

δ
,

(
1− e−uγ − uγ

)
u−r, u ≥ 1

γ
√

δ
,

(7)

Further we show a summability of the transformations of the form

ϕ̂β(t) = ϕ̂(t, β) =
1
π

∞∫

0

ϕ(u) cos
(

ut +
βπ

2

)
du, (8)

µ̂β(t) = µ̂(t, β) =
1
π

∞∫

0

µ(u) cos
(

ut +
βπ

2

)
du. (9)

First, prove a convergence of the integral

A(ϕ) =
1
π

∞∫

−∞

∣∣ϕ̂β(t)
∣∣dt.

Integrating twice by parts and taking into account that ϕ(0) = 0, lim
u→∞

ϕ(u) =

lim
u→∞

ϕ′(u) = 0 and ϕ′(u) is continuous on [0, ∞), we have

∞∫

0

ϕ(u) cos
(

ut +
βπ

2

)
du =

1
t2

(
ϕ′(0) cos

βπ

2
−

∞∫

0

ϕ′′(u) cos
(

ut +
βπ

2

)
du

)
.

In view of the fact, that the function ϕ(u) is downward closed on
[

1
γ√δ

, ∞
)

, the last
relation yields

∣∣∣∣∣∣

∞∫

0

ϕ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣∣
≤ 1

t2



∣∣ϕ′(0)

∣∣+




1
γ√δ∫

0

+

∞∫

1
γ√δ



∣∣ϕ′′(u)

∣∣du


 =
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=
1
t2


(2 + r− γ)δ

r+1
γ −1 + 2(r + 1− γ)δ

r+1
γ −1 +

∞∫

1
γ√δ

ϕ′′(u)du


 =

=
1
t2

(
K1δ

r+1
γ −1 − ϕ′

(
1

γ
√

δ

))
= K2δ

r+1
γ −1 1

t2 . (10)

Here and below we denote by symbols Ki, i = 1, 2, . . . , some positive constants.
From the inequalities (10) it follows that

∫

|t|≥ γ√δ

∣∣∣∣∣∣

∞∫

0

ϕ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣∣
dt = O

(
δ

r
γ−1
)

, δ→ ∞. (11)

By virtue of the equality (4.16) from ([1], p. 69), we obtain

γ√δ∫

0

∣∣∣∣∣

∞∫

0

ϕ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt =

γ√δ∫

0

∣∣∣∣∣

1
γ√δ∫

0

+

∞∫

1
γ√δ

ϕ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt ≤

≤ γ
√

δ

1
γ√δ∫

0

|ϕ(u)|du +

γ√δ∫

0

1
γ√δ

+ 2π
t∫

1
γ√δ

ϕ(u)dudt ≤ K3δ
r
γ−1 +

γ√δ∫

0

1
γ√δ

+ 2π
t∫

1
γ√δ

uγ−rdudt. (12)

Making a change of variables and integrating by parts in the last integral, we obtain

γ√δ∫

0

1
γ√δ

+ 2π
t∫

1
γ√δ

uγ−rdudt = 2π

∞∫

2π
γ√δ

1
γ√δ

+x∫

1
γ√δ

uγ−rdu
dx
x2 =

= 2π

(
− 1

x

1
γ√δ

+x∫

1
γ√δ

uγ−rdu

∣∣∣∣∣

∞

2π
γ√δ

+

∞∫

2π
γ√δ

1
x

(
1

γ
√

δ
+ x
)γ−r

dx

)
=

= 2π

(
− lim

x→∞

1
x

1
γ√δ

+x∫

1
γ√δ

uγ−rdu +
γ
√

δ

2π

(1+2π)
γ√δ∫

1
γ√δ

uγ−rdu+

+ δ
r
γ−1

∞∫

2π
γ√δ

1
x

(
1 + γ
√

δx
)γ−r

dx

)
. (13)

In view of

lim
x→∞

1
x

1
γ√δ

+x∫

1
γ√δ

uγ−rdu = 0,

γ
√

δ

2π

(1+2π)
γ√δ∫

1
γ√δ

uγ−rdu = K4δ
r
γ−1,
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δ
r
γ−1

∞∫

2π
γ√δ

1
x

(
1 + γ
√

δx
)γ−r

dx = δ
r
γ−1

∞∫

1+2π

yγ−r

y− 1
dy =

= δ
r
γ−1

∞∫

1+2π

yγ−r−1
(

1 +
1

y− 1

)
dy ≤

(
1 +

1
2π

)
δ

r
γ−1

∞∫

1+2π

yγ−r−1dy = K5δ
r
γ−1,

from (13) and (12) we can write that

γ√δ∫

0

∣∣∣∣∣∣

∞∫

0

ϕ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣∣
dt = O

(
δ

r
γ−1
)

, δ→ ∞. (14)

One can analogously show that

0∫

− γ√δ

∣∣∣∣∣∣

∞∫

0

ϕ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣∣
dt = O

(
δ

r
γ−1
)

, δ→ ∞. (15)

From the formulas (11), (14) and (15) we obtain

A(ϕ) = O
(

δ
r
γ−1
)

, δ→ ∞.

Now we show the convergence of the integral

A(µ) =
1
π

∞∫

−∞

∣∣µ̂β(t)
∣∣dt.

Integrating twice by parts and taking into account that µ(0) = µ′(0) = 0, lim
u→∞

µ(u) =

lim
u→∞

µ′(u) = 0, we have

∞∫

0

µ(u) cos
(

ut +
βπ

2

)
du = − 1

t2

∞∫

0

µ′′(u) cos
(

ut +
βπ

2

)
du,

and hence

∣∣∣∣∣∣

∞∫

0

µ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣∣
≤ 1

t2

∞∫

0

∣∣µ′′(u)
∣∣du =

1
t2




( 1
γ√δ∫

0

+

1∫

1
γ√δ

+

∞∫

1

)
∣∣µ′′(u)

∣∣du


. (16)

Further we use the notations

V(u) =
(

1− e−uγ − uγ
)

u2−γ, W(u) =
(

1− e−uγ − uγ
)

u1−γ. (17)

Let us differentiate twice the functions V(u) and W(u):

V′(u) = γu(e−uγ − 1) + (2− γ)u1−γ
(
1− e−γ − uγ

)
,

W ′(u) = γ(e−uγ − 1) + (1− γ)u−γ
(

1− e−uγ − uγ
)

,

V′′(u) = γ
(

e−uγ
(1− γuγ)−1

)
+(2−γ)

(
(1− γ)u−γ

(
1−e−uγ −uγ

)
+γ(e−uγ− 1)

)
,
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W ′′(u) = −γ2uγ−1e−uγ −γ(γ− 1)u−γ−1
(

1−e−uγ −uγ
)
+γ(γ− 1)u−1

(
e−uγ −1

)
.

By virtue of the fact, that for u ∈
[
0, 1

γ√δ

]

µ′′(u) = (γ− r− 1)δ
r+2

γ −1V′′(u) + (2 + r− γ)δ
r+1

γ −1W ′′(u), (18)

we obtain

1
γ√δ∫

0

∣∣µ′′(u)
∣∣du ≤ (r + 1− γ)δ

r+2
γ −1

1
γ√δ∫

0

∣∣V′′(u)
∣∣du + (2 + r− γ)δ

r+1
γ −1

1
γ√δ∫

0

∣∣W ′′(u)
∣∣du.

Taking into account, that for u ∈
[
0, 1

γ√δ

]
V′′(u) ≤ 0, W ′′(u) ≤ 0, and also the

inequalities

1− e−uγ ≤ uγ, e−uγ
+ uγ − 1 ≤ u2γ

2
, (19)

we have
1

γ√δ∫

0

∣∣µ′′(u)
∣∣du ≤ (r + 1− γ)δ

r+2
γ −1

(
V′(0)−V′

(
1

γ
√

δ

))
+

+(2 + r− γ)δ
r+1

γ −1
(

W ′(0)−W ′
(

1
γ
√

δ

))
=

= (r + 1− γ)δ
r+2

γ −1


 γ

γ
√

δ

(
1− e−

1
δ

)
+

2− γ
(

γ
√

δ
)1−γ

(
e−

1
δ +

1
δ
− 1
)

+

+ (2 + r− γ)δ
r+1

γ −1


γ
(

1−e−
1
δ

)
+

1− γ
(

γ
√

δ
)−γ

(
e−

1
δ +

1
δ
− 1
)

 ≤ K6δ

r+1
γ −2. (20)

Noting, that for u ≥ 1
γ√δ

µ′′(u) = r(r + 1)
(

1− e−uγ − uγ
)

u−r−2 − 2γuγ−r−2
(

e−uγ − 1
)
+

+γ
(
(γ− 1)uγ−2(e−uγ − 1)− γu2γ−2e−uγ

)
u−r,

we can write
1∫

1
γ√δ

∣∣µ′′(u)
∣∣du ≤ r(r + 1)

1∫

1
γ√δ

(e−uγ
+ uγ − 1)u−r−2du+

+2γr
1∫

1
γ√δ

(
1− e−uγ

)
uγ−r−2du + γ

1∫

1
γ√δ

∣∣∣(γ− 1)uγ−2(e−uγ − 1)− γu2γ−2e−uγ
∣∣∣u−rdu.

The inequality (19) in combination with
∣∣∣(γ− 1)uγ−2(e−uγ − 1)− γu2γ−2e−uγ

∣∣∣ ≤ (2γ− 1)u2γ−2, u ∈ [0, ∞), (21)
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yields
1∫

1
γ√δ

|µ′′(u)|du ≤
(

r(r + 1)
2

+ 2γr + γ(2γ− 1)
) 1∫

1
γ√δ

u2γ−r−2du ≤

≤
(

r(r + 1)
2

+ 2γr + γ(2γ− 1)
)

γ
√

δ

1∫

1
γ√δ

u2γ−r−1du =

{
K7δ

1
γ + K8δ

r+1
γ −2, r 6= 2γ,

K9δ
1
γ ln δ, r = 2γ,

(22)

In the case u ∈ [1, ∞) we obtain

∞∫

1

∣∣µ′′(u)
∣∣du ≤ r(r + 1)

∞∫

1

(e−uγ
+ uγ − 1)u−r−2du+

+2γr
∞∫

1

(
1− e−uγ

)
uγ−r−2du + γ

∞∫

1

∣∣∣(γ− 1)uγ−2(e−uγ − 1)− γu2γ−2e−uγ
∣∣∣u−rdu.

Let 0 < γ < 1, then using the inequalities (19) and (21), we obtain

∞∫

1

|µ′′(u)|du ≤
(

r(r + 1)
2

+ 2γr + γ(2γ− 1)
) ∞∫

1

u2γ−r−2du = K10. (23)

Let further 1 ≤ γ ≤ 2. By virtue of the inequalities

(e−uγ
+ uγ − 1)u−2 ≤ 1,

(
1− e−uγ

)
uγ−2 ≤ 1,

|(γ− 1)uγ−2(e−uγ − 1)− γu2γ−2e−uγ | ≤ 2γ− 1,

we have
∞∫

1

|µ′′(u)|du ≤
(

r(r + 1)
2

+ 2γr + γ(2γ− 1)
) ∞∫

1

u−rdu = K11. (24)

Therefore, combining the relations (23), (24), we obtain

∞∫

1

∣∣µ′′(u)
∣∣du = O(1), δ→ ∞. (25)

In view of (16), taking into account (20), (22) and (25), we obtain

∫

|t|≥ γ√δ

∣∣∣∣∣

∞∫

0

µ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt =





O(1), γ < r < 2γ,
O
(

ln δ
)
, r = 2γ,

O
(
δ

r
γ−2), r > 2γ.

(26)

Let us further consider

γ√δ∫

0

∣∣∣∣∣

∞∫

0

µ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt ≤
γ√δ∫

0

∣∣∣∣∣

1
γ√δ∫

0

µ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt+

+

γ√δ∫

0

∣∣∣∣∣

∞∫

1
γ√δ

µ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt. (27)
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By the inequality (19), one can easily verify that the following relations hold

γ√δ∫

0

∣∣∣∣∣

1
γ√δ∫

0

µ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt ≤
γ√δ∫

0

1
γ√δ∫

0

|µ(u)|dudt = K12δ
r
γ−2. (28)

The function |µ(u)| is monotonically decreasing on the interval [u0, ∞], u0 ≥ 1, non-
negative and tends to zero as u → ∞. Then, by the equality (4.16) from ([1], p. 69),
we obtain

γ√δ∫

0

∣∣∣∣∣

∞∫

1
γ√δ

µ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt =

γ√δ∫

0

∣∣∣∣∣

∞∫

1
γ√δ

|µ(u)| cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt ≤

≤
γ√δ∫

0

∣∣∣∣∣

u0∫

1
γ√δ

|µ(u)| cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt +

γ√δ∫

0

∣∣∣∣∣

∞∫

u0

|µ(u)| cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt ≤

≤
γ√δ∫

0

u0∫

1
γ√δ

|µ(u)|dudt +

γ√δ∫

0

u0+
2π
t∫

u0

|µ(u)|dudt ≤
γ√δ∫

0

u0+
2π
t∫

1
γ√δ

|µ(u)|dudt. (29)

Let n ∈ N is such that 1
γ√δ

+ 2π(n−1)
t ≤ u0 ≤ 1

γ√δ
+ 2πn

t , then

γ√δ∫

0

u0+
2π
t∫

1
γ√δ

|µ(u)|dudt ≤
γ√δ∫

0

1
γ√δ

+
2π(n+1)

t∫

1
γ√δ

|µ(u)|dudt. (30)

We transform the latter integral using a change of variable and integration by parts
(assume that δ > (2π(n + 1) + 1)γ)

γ√δ∫

0

1
γ√δ

+
2π(n+1)

t∫

1
γ√δ

|µ(u)|dudt = 2π(n + 1)
∞∫

2π(n+1)
γ√δ

1
γ√δ

+x∫

1
γ√δ

|µ(u)|du
dx
x2 =

= 2π(n + 1)


−

(
1
x

1
γ√δ

+x∫

1
γ√δ

|µ(u)|du

)∣∣∣∣∣

∞

2π(n+1)
γ√δ

+

∞∫

2π(n+1)
γ√δ

1
x

∣∣∣∣µ
(

1
γ
√

δ
+ x
)∣∣∣∣dx


 =

= 2π(n + 1)


− lim

x→∞

1
x

1
γ√δ

+x∫

1
γ√δ

(
e−uγ

+ uγ − 1
)

u−rdu+

+
γ
√

δ

2π(n + 1)

1+2π(n+1)
γ√δ∫

1
γ√δ

(
e−uγ

+ uγ − 1
)

u−rdu+
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+

1− 1
γ√δ∫

2π(n+1)
γ√δ

1
x

(
e
−
(

1
γ√δ

+x
)γ

+

(
1

γ
√

δ
+ x
)γ

− 1
)(

1
γ
√

δ
+ x
)−r

dx+

+

∞∫

1− 1
γ√δ

1
x

(
e
−
(

1
γ√δ

+x
)γ

+

(
1

γ
√

δ
+ x
)γ

− 1
)(

1
γ
√

δ
+ x
)−r

dx


. (31)

Obviously,

lim
x→∞

1
x

1
γ√δ

+x∫

1
γ√δ

(
e−uγ

+ uγ − 1
)

ψ(
γ
√

δu)du = 0. (32)

Since the second inequality from (19) holds, then

γ
√

δ

2π(n + 1)

1+2π(n+1)
γ√δ∫

1
γ√δ

(
e−uγ

+ uγ − 1
)

u−rdu ≤

≤
γ
√

δ

4π(n + 1)

1+2π(n+1)
γ√δ∫

1
γ√δ

u2γ−rdu ≤ δ
r+1

γ

4π(n + 1)

1+2π(n+1)
γ√δ∫

1
γ√δ

u2γdu ≤ K13δ
r
γ−2. (33)

Using the second inequality from (19), we have

1− 1
γ√δ∫

2π(n+1)
γ√δ

1
x

(
e
−
(

1
γ√δ

+x
)γ

+

(
1

γ
√

δ
+ x
)γ

− 1
)(

1
γ
√

δ
+ x
)−r

dx ≤

≤
1− 1

γ√δ∫

2π(n+1)
γ√δ

1
x

(
1

γ
√

δ
+ x
)2γ−r

dx = δ
r
γ−2

1− 1
γ√δ∫

2π(n+1)
γ√δ

1
x

(
1 + γ
√

δx
)2γ−r

dx =

= δ
r
γ−2

γ√δ∫

1+2π(n+1)

y2γ−r

y− 1
dy = δ

r
γ−2

γ√δ∫

1+2π(n+1)

y2γ−1ψ(y)
(

1 +
1

y− 1

)
dy ≤

≤
(

1 +
1

2π(n + 1)

)
δ

r
γ−2

γ√δ∫

1+2π(n+1)

y2γ−1−rdy =

{
K14 + K15δ

r
γ−2, r 6= 2γ,

K16 ln δ, r = 2γ.
(34)

Considering the inequality

e−uγ
+ uγ − 1 ≤ uγ,

we have

∞∫

1− 1
γ√δ

1
x

(
e
−
(

1
γ√δ

+x
)γ

+

(
1

γ
√

δ
+ x
)γ

− 1
)(

1
γ
√

δ
+ x
)−r

dx ≤
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≤
∞∫

1− 1
γ√δ

1
x

(
1

γ
√

δ
+ x
)γ−r

dx = δ
r
γ−1

∞∫

1− 1
γ√δ

1
x

(
1 + γ
√

δx
)γ−r

dx =

= δ
r
γ−1

∞∫

γ√δ

yγ−r

y− 1
dy = δ

r
γ−1

∞∫

γ√δ

yγ−1−r
(

1 +
1

y− 1

)
dy ≤

≤
(

1 +
1

γ
√

δ− 1

)
δ

r
γ−1

∞∫

γ√δ

yγ−1−rdy ≤ K17δ
r
γ−1

∞∫

γ√δ

yγ−1−rdy = K18. (35)

From (27), taking into account (28) and (29)–(35), we can write the estimation

γ√δ∫

0

∣∣∣∣∣

∞∫

0

µ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt =





O(1), γ < r < 2γ,
O
(

ln δ
)
, r = 2γ,

O
(
δ

r
γ−2), r > 2γ.

(36)

Similarly, we can show that

0∫

− γ√δ

∣∣∣∣∣

∞∫

0

µ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣∣dt =





O(1), γ < r < 2γ,
O
(

ln δ
)
, r = 2γ,

O
(
δ

r
γ−2), r > 2γ.

(37)

Combining formulas (26), (36) and (37), we obtain

A(µ) =





O(1), γ < r < 2γ,
O
(

ln δ
)
, r = 2γ,

O
(
δ

r
γ−2), r > 2γ.

(38)

Similarly to [27] we can show that the following equality holds

f (x)− Pγ(δ, f , x) =
1

( γ
√

δ)r

∞∫

−∞

f ψ
β

(
x +

t
γ
√

δ

)
τ̂β(t)dt,

where

τ̂β(t) = τ̂(t, β) =
1
π

∞∫

0

τ(u) cos
(

ut +
βπ

2

)
du.

Thence

E
(

Wr
β,∞; Pγ(δ)

)
C
= sup

f∈Wr
β,∞

∥∥∥∥∥∥
1

( γ
√

δ)r

∞∫

−∞

f r
β

(
x +

t
γ
√

δ

)
τ̂β(t)dt

∥∥∥∥∥∥
C

=

= sup
f∈Wr

β,∞

∥∥∥∥∥∥
1

( γ
√

δ)r

∞∫

−∞

f r
β

(
x +

t
γ
√

δ

)(
ϕ̂β(t) + µ̂β(t)

)
dt

∥∥∥∥∥∥
C

≤

≤ sup
f∈Wr

β,∞

∥∥∥∥∥∥
1

( γ
√

δ)r

∞∫

−∞

f r
β

(
x +

t
γ
√

δ

)
ϕ̂β(t)dt

∥∥∥∥∥∥
C

+
1

( γ
√

δ)r

∞∫

−∞

∣∣µ̂β(t)
∣∣dt.

Therefore,

E
(

Wr
β,∞; Pγ(δ)

)
C
= sup

f∈Wr
β,∞

∥∥∥∥∥∥
1

( γ
√

δ)r

∞∫

−∞

f r
β

(
x +

t
γ
√

δ

)
ϕ̂β(t)dt

∥∥∥∥∥∥
C

+ O

(
1

( γ
√

δ)r
A(µ)

)
. (39)
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Similarly to the work [28] , we can show that the Fourier series of the function fϕ(x) =
∞∫
−∞

f r
β

(
x + t

γ√δ

)
ϕ̂β(t)dt has the form:

S
[

fϕ

]
=

∞

∑
k=1

kγ

( γ
√

δ)γ−r
(ak cos kx + bk sin kx),

where ak, bk are the Fourier coefficients of the function f . Therefore

∞∫

−∞

f r
β

(
x +

t
γ
√

δ

)
ϕ̂β(t)dt =

1
( γ
√

δ)γ−r
f γ
0 (x), (40)

where f γ
0 (x) is (r, β)—derivative in the Weyl-Nagy sense for r = γ, β = 0.

Substituting (40) into (39), we obtain

E
(

Wr
β,∞; Pγ(δ)

)
C
=

1
δ

sup
f∈Wr

β,∞

∥∥ f γ
0 (·)

∥∥
C + O

(
1

( γ
√

δ)r
A(µ)

)
, δ→ ∞. (41)

Substituting (38) into (41), we obtain the equation (5). The theorem is proved.

3. Conclusions

One of the extremal problems of approximation theory, namely the problem of study-
ing the asymptotic properties of linear summation methods of Fourier series, has been
considered in the paper. Among the linear summation methods, on the one hand, there are
methods that are defined by infinite numerical matrices, and on the other hand, methods
that are defined by the set of functions of the natural argument that depend on the real
parameter δ. This work is devoted to the study of the approximation properties of the meth-
ods of the last type, namely, generalized Poisson integrals. The Kolmogorov–Nikol’skii
problem takes a special place among the extremal problems of the approximation theory.
We have considered the problem of asymptotic equalities finding for the value of the exact
upper limits of deviations of generalized Abel-Poisson integrals from functions of the
Weyl-Nagy classes in the uniform metric. In particular, the asymptotic equality (5) for
arbitrary r > γ, 0 < γ ≤ 2, has been written in the paper, providing the solution of the
corresponding Kolmogorov–Nikol’skii problem. The importance of this type of problems
in the theory of decision making, in signal transmission, in the study of mathematical
models and in the coding and reproduction of images has been noted. Regarding further
research in this direction, we note that similar problems can be considered in the broader
classes of functions, such as Stepanets classes and classes of non-periodic locally summable
functions.
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Abstract: In this paper, we use the averaging method to find an approximate solution in the opti-
mal control problem of a parabolic system with non-linearity of the form f (t/ε, y) on an infinite
time interval.

Keywords: parabolic system; optimal control; averaging method; approximate solution

1. Introduction

Many results in the theory of asymptotic approximations have been obtained from
1930 onwards. Indeed, there were a lot of results on integral manifolds, equations with
retarded argument, quasi- or almost-periodic equations etc. Earlier work on this theory has
been presented in the famous book [1].

Averaging is a valuable method to understand the long-term evolution of dynamical
systems characterized by slow dynamics and fast periodic or quasi-periodic dynamics. In [2],
a transparent proof of the validity of averaging in the periodic case is presented. Different
proofs for both the periodic and the general case are provided by [3,4]. In the last paper,
moreover, the relation between averaging and the multiple time-scales method is established.

The averaging method for constructing approximate solutions in the theory of ODEs is
presented in [5,6]. In [7], the asymptotic analysis of nonlinear dynamical systems is developed.

The work [8] is devoted to using an asymptotic method for studying the Cauchy prob-
lem for a 1D Euler–Poisson system, which represents a physically relevant hydrodynamic
model but also a challenging case for a bipolar semiconductor device by considering two
different pressure functions. In [9], the averaging results for ordinary differential equations
perturbed by a small parameter are proved. Here, authors assume only that the right-hand
sides of the equations are bounded by some locally Lebesgue integrable functions with the
property that their indefinite integrals satisfy a Lipschitz-type condition.

In [10], the authors prove that averaging can be applied to the extremal flow of
optimal control problems with two fast variables, that is considerably more complex
because of resonances.

The averaging method is one of the most effective tools for constructing approximate
solutions, including optimal control problems for ODEs [11] and PDEs [12], where the
autors consider the optimal control problem in coefficients in the so-called class of H-
admissible solutions.

The Krasnoselski–Krein theorem and its various modifications [13–15] play an essential
role in all such considerations, since it guarantees the limit transition in perturbed problem
with fast-oscillating coefficients of the form a

( t
ε

)
as ε→ 0.

95



Axioms 2022, 11, 175

The typical averaging problem may be defined as follows: one considers an unper-
turbed problem in which the slow variables remain fixed. Upon perturbation, a slow drift
appears in these variables which one would like to approximate independently of the
fast variables.

In the present paper we use this approach to nonlinear parabolic system with fast-
oscillating (w.r.t. time variable) coefficients f

( t
ε , y
)

on an infinite time interval. We prove
that the optimal control of the problem with averaging coefficients can be considered to be
”approximately” optimal for the initial perturbed system.

2. Statement of the Problem

Let Ω ⊂ Rd be a bounded domain. In cylinders Q = (0,+∞)×Ω we consider an
initial boundary-value problem for a parabolic system [16,17]





∂y
∂t = A∆y + f

( t
ε , y
)
+ g(y) · u(t, x), (t, x) ∈ Q,

y|∂Ω = 0,
y|t=0 = y0(x).

(1)

Here ε > 0 is a small parameter, A is a real N × N matrix, f is a given vector-
valued mapping, g is a given matrix-valued mapping, y = (y1, . . . , yN) is an unknown
state function, u = (u1, . . . , uM) is an unknown control function, which are determined
by requirements

u ∈ U ⊆ (L2(Q))M, (2)

J(y, u) =
∫

Q

e−γ·t · q(x, y(t, x))dtdx +
∫

Q

M

∑
i=1

αi · u2
i (t, x)dtdx → inf, (3)

where γ, α1, . . . , αM are positive constants.
Under the natural assumptions on A, f , g, U, q we prove, that the optimal control

problem (1)–(3) has a solution {ȳε, ūε}, i.e., for every u ∈ U and for any solution yε of (1)
with control u we have

J(ȳε, ūε) ≤ J(yε, u)

In what follows we consider the problem of finding an approximate solution of (1)–(3)
by transition to averaged coefficients. For this purpose we assume that uniformly w.r.t.
y ∈ RN there exists

f̄ (y) := lim
T→∞

1
T

T∫

0

f (s, y)ds. (4)

We consider the following optimal control problem





∂y
∂t = A∆y + f̄ (y) + g(y) · u(t, x), (t, x) ∈ Q,
y|∂Ω = 0,
y|t=0 = y0(x),

(5)

u ∈ U ⊆ (L2(Q))M, (6)

J(y, u) =
∫

Q

e−γ·t · q(x, y(t, x))dtdx +
∫

Q

M

∑
i=1

αi · u2
i (t, x)dtdx → inf . (7)

It should be noted that the transition to the averaging parameters can essentially
simplify the problem. In particular, if f̄ does not depend on y then in some cases exact
solution of (1)–(3) can be found [18,19]. Another approaches for finding exact solutions of
optimal control problems and approximate procedures can be found in [20,21].
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Assume that {ȳ, ū} is a solution of (5)–(7). The main goal of the paper is to prove the
limit equality

J(ȳε, ūε)− J(ȳ, ū)→ 0, ε→ 0. (8)

As a consequence of (8) we will prove that the control ū is approximately optimal for
the problem (1)–(3) in the following sense:

J(ȳε, ūε)− J(yε, ū)→ 0, ε→ 0,

where yε is a solution of (1) with control ū.

3. Assumptions, Notations and Basic Results

We assume the following conditions hold.

Assumption 1. 1
2 (A + A∗) ≥ v · I, where v > 0 and I is a unit matrix;

Assumption 2. f : R+ ×RN 7→ RN is continuous and bounded:

∃C1 > 0 ∀t ≥ 0 ∀y ∈ RN ‖ f (t, y)‖RN ≤ C1;

Assumption 3. g : RN 7→ RN×M is continuous and bounded:

∃C2 > 0 ∀y ∈ RN ‖g(y)‖RN×M ≤ C2;

Assumption 4. U ⊆
(

L2(Q)
)M is closed and convex, 0 ∈ U;

Assumption 5. q : Ω×RN 7→ R is a Carathéodory function, ∃K1, K2 ∈ L1(Ω), ∃C3 > 0 such
that ∀x ∈ Ω, ∀ξ ∈ RN

|q(x, ξ)| ≤ C3‖ξ‖2
RN + K2(x), q(x, ξ) ≥ K1(x).

Here, ‖ξ‖RN denotes the Euclidean norm of ξ ∈ RN .

For u ∈ U and y0 ∈
(

L2(Ω)
)N we understand solution of (1) in weak (or generalized)

sense on every finite time interval, i.e., y is a solution of (1) if

y ∈ L2
loc

(
0,+∞, (H1

0(Ω))N
)⋂

L∞
loc

(
0,+∞, (L2(Ω))N

)

such that ∀T > 0, ∀ϕ ∈ (H1
0(Ω))N , ∀η ∈ C∞

0 (0, T) the following equality holds:

−
T∫

0

(y, ϕ)H · η′dt +
T∫

0

(A∇y,∇ϕ)Hηdt =
T∫

0

(
f
(

t
ε

, y
)

, ϕ

)

H
ηdt +

T∫

0

(g(y) · u, ϕ)Hηdt. (9)

Here and after we denote by ‖ · ‖H and (·, ·)H the classical norm and scalar prod-
uct in H := (L2(Ω))N , by ‖ · ‖V and (·, ·)V the classical norm and scalar product in
V := (H1

0(Ω))N , by ‖ · ‖U the norm in L2(Q))M, and by V∗ the dual space to V.
Due to the Assumptions 1–3, every solution of (1) satisfies

∂y
∂t
∈ L2

loc(0,+∞, V∗).

It means that ∀T > 0 every solution of (1) is an absolutely continuous function from
[0, T] to H, and equality (9) is equivalent to the following one [16]:

d
dt
(y, ϕ)H + (A∇y,∇ϕ)H =

(
f
(

t
ε

, y
)

, ϕ

)

H
+ (g(y) · u, ϕ)H (10)
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for almost all (a.a.) t > 0.
It is known [16,17] that, under Assumptions 1–3, for every y0 ∈ H, u ∈ U there exists

at least one solution of (1), and for a.a. t > 0

1
2

d
dt
‖y(t)‖2

H + v · ‖y(t)‖2
V ≤ C1‖y(t)‖H + C2‖y(t)‖H · ‖u(t)‖(L2(Ω))M . (11)

Remark 1. Uniqueness of solution of (1) is not guaranteed. This can be done under some additional
assumptions, e.g., [16] ∀s ≥ 0, ∀y ∈ RN , ∀ω ∈ RN

(
f ′y(s, y)ω, ω

)
RN
≥ −C4 · ‖ω‖RN

In the sequel, we denote by F ε (or F̄ ) a set of all pairs {y, u}, where y is a solution of
(1) (or (5)) with control u.

The following Lemma gives us a result about the solvability of the optimal control
problem (1)–(3) and it also provides some useful inequalities.

Lemma 1. Under the Assumptions 1–5 for every ε > 0 the problem (1)–(3) has a solution {ȳε, ūε},
that is,

J(ȳε, ūε) ≤ J(y, u) ∀{y, u} ∈ F ε.

Proof of Lemma 1. Fix ε > 0 and suppress index ε throughout the proof. The idea of the
proof is to derive a priori estimates for the minimizing sequence. Obtained estimates allow
us to pass to the limit in problem (1)–(3).

From (11), Poincare inequality ‖y‖2
V ≥ λ‖y‖2

H , y ∈ V, and Young inequality we derive
that for some δ > 0, C5 > 0 (not depending on ε) for every {y, u} ∈ F ε for a.a. t > 0

d
dt
‖y(t)‖2

H + δ‖y(t)‖2
H ≤ C5

(
1 + ‖u(t)‖2

(L2(Ω))M

)
.

Therefore using Gronwall inequality we get for all t > 0

‖y(t)‖2
H ≤ e−δ·t



‖y0(t)‖2

H + C5

t∫

0

(
1 + ‖u(s)‖2

(L2(Ω))M

)
eδ·sds



, (12)

‖y(t)‖2
H ≤ e−δ·t‖y0‖2

H +
C5

δ
+ C5 · ‖u‖2

U . (13)

From the inequality (13) and the first inequality from the Assumption 5 we have that
for some C6 > 0

J(y, u) ≤ C6

(
1 + ‖y0‖2

H + ‖u‖2
U

)
. (14)

Now let {yn, un} be a minimizing sequence, that is,

lim
n→∞

J(yn, un) = inf
{y,u}∈F ε

J(y, u) =: J̄ε. (15)

Note that due to the Assumption 5 ∀{y, u} ∈ F ε

J(y, u) ≥ ‖K1‖L1

γ
⇒ J̄ε ≥ ‖K1‖L1

γ
> −∞.

From (15) for sufficiently large n

J(yn, un) ≤ J̄ε + 1. (16)
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On the other hand, for α := min
1≤i≤M

αi > 0

J(yn, un) ≥
‖K1‖L1

γ
+ α · ‖un‖2

U . (17)

Inequalities (16) and (17) imply that {un} is bounded in (L2(Q))M, so for subsequence

un → u weakly in (L2(Q))M. (18)

Due to convexity of U we have inclusion u ∈ U. From (11) over (0, T) and using (13)
we we obtain from (5) that {yn} is bounded in

L2(0, T; V)
⋂

L∞(0, T; H),

{
∂yn
∂t

}
is bounded in L2(0, T; V∗). Using Compactness Lemma [22] we conclude that

up to subsequence ∀T > 0

yn → y weakly in L2(0, T; V),

yn → y in L2(0, T; H), (19)

∀t ≥ 0 yn(t)→ y(t) weakly in H,

yn(t, x)→ y(t, x) a.a. in Q.

From (19) and Lebesgue’s Dominated Convergence Theorem we can pass to the limit in
the equality (9) applied to {yn, un}, and obtain that {y, u} ∈ F ε. Due to pointwise convergence

e−γ·t · q(x, yn(t, x))→ e−γ·tq(x, y(t, x)) a.a. in Q,

Fatou’s lemma and weak convergence (18) we have

J̄ε = lim
n→∞

J(yn, un) ≥ lim
∫

Q

e−γ·tq(x, yn(t, x))dtdx + lim
∫

Q

M

∑
i=1

αi(un
i (t, x))2dtdx ≥ J(y, u).

Therefore {y, u} is a solution of (1)–(3).

4. Main Results

We assume that ∀η > 0 ∃δ > 0 ∀t ≥ 0, ∀y, z ∈ RN

‖y− z‖RN < δ⇒ ‖ f (t, y)− f (t, z)‖RN < η. (20)

Assumption (20) implies that the averaged function f̄ : RN 7→ RN from (4) is a
continuous function and the Assumption 2 holds. It means that under conditions (4), (20)
the optimal control problem (5)–(7) has a solution {ȳ, ū}.

The main result of the paper is the following

Theorem 1. Suppose that the Assumptions 1–5 and (4), (20) hold and, moreover, the problem (5)
has a unique solution for every u ∈ U. Let {ȳε, ūε} be a solution of (1)–(3). Then

J(ȳε, ūε)→ J(ȳ, ū), ε→ 0, (21)

and up to subsequence
ȳε → ȳ in L2

loc(0,+∞; H),

ūε → ū in (L2(Q))M, (22)
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where {ȳ, ū} is a solution of (5)–(7).

Proof. Let εn → 0, {ȳn, ūn} be a solution of (1)–(3) for ε = εn. Due to the optimality of
{ȳn, ūn} we have

J(ȳn, ūn) ≤ J(yn, 0),

where yn is a solution of (1) with ε = εn and u ≡ 0. Then from (14)

1
γ
‖K1‖L1 + α‖ūn‖2

U ≤ C6 · (1 + ‖y0‖2
H).

Repeating arguments used in the prof of Lemma 1 conclude that on subsequence for
some ŷ, û:

ūn → û weakly in (L2(Q))M, n→ ∞,

ȳn → ŷ in the sense of (19), n→ ∞, (23)

Let us prove that {ŷ, û} ∈ F̄ , i.e., ŷ is a solution of the averaged problem (5) with
control û. For this purpose it is sufficient to make a limit transition in the equality

(ȳn, ϕ)H − (y0, ϕ)H +

T∫

0

(A∇ȳn,∇ϕ)H =

T∫

0

(
f
(

t
εn

, ȳn
)

, ϕ

)

H
+

T∫

0

(g(ȳn)ūn, ϕ))H , (24)

for arbitrary ϕ ∈ V and T > 0.
Limit transition in the left part of (24) is a direct consequence of (23). From the

Dominated Convergence Theorem we see that

g(ȳn)→ g(ŷ) in L2(0, T; H), n→ ∞.

Then (23) implies convergence in the last term of (24).
Let us prove that ∀T > 0, ∀ϕ ∈ V

∫

QT

N

∑
i=1

fi

(
t

εn
, ȳn(t, x)

)
ϕi(x)dtdx →

∫

QT

N

∑
i=1

f̄i(ŷ(t, x))ϕi(x)dtdx, n→ ∞, (25)

where QT = (0, T)×Ω. Due to the Dominated Convergence Theorem ∀0 < a < b, ∀ψ ∈ H

b∫

a

∫

Ω

N

∑
i=1

(
fi

(
t

εn
, ψ(x)

)
− f̄i(ψ(x))

)
ϕi(x)dxdt→ 0, n→ ∞. (26)

Due to Egorov’s theorem ∀δ > 0 ∃Qδ
1 ⊂ QT such that µ(Qδ

1) < δ and

ȳn → ŷ uniformly on QT \Qδ
1 as n→ ∞. (27)

Here µ is Lebesgue’s measure on R2. On the other hand there exists a sequence of
step functions

ym(t, x) =
m

∑
k=1

ym
k (x) · χAm

k
(t), {ym

k } ⊂ H,

{Am
k = (am

k , bm
k )} is a covering of (0, T) such that

ym → ŷ in L2(0, T; H) and a.e. in QT .

Moreover ∀δ > 0 ∃Qδ
2 ⊂ QT such that µ(Qδ

2) < δ and

ym → ŷ uniformly on QT \Qδ
2 as m→ ∞.
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Let us denote

I(n)1 :=
∫

QT

N

∑
i=1

(
fi

(
t

εn
, ȳn(t, x)

)
− fi

(
t

εn
, ŷ(t, x)

))
ϕi(x)dtdx,

I(n)2 :=
∫

QT

N

∑
i=1

(
fi

(
t

εn
, ŷ(t, x)

)
− f̄ (ŷ(t, x))

)
ϕi(x)dtdx.

Then due to (27)

I(n)1 ≤
∫

QT\Qδ
1

∥∥∥∥ f
(

t
εn

, ȳn(t, x)
)
− f

(
t

εn
, ŷ(t, x)

)∥∥∥∥
RN
· ‖ϕ(x)‖RN dtdx + 2C1 · ‖ϕ‖

1
2
H · δ

1
2 . (28)

Due to (20) for a given δ > 0 ∃λ ∀n ≥ 1, ∀t ≥ 0

‖y− z‖RN < λ⇒
∥∥∥∥ f
(

t
εn

, y
)
− f

(
t

εn
, z
)∥∥∥∥ ≤ δ

1
2 .

Therefore, choosing n1 such that ∀n ≥ n1

sup
(t,x)∈QT\Qδ

1

‖ȳn(t, x)− ŷ(t, x)‖RN < λ

we get from (28) that ∀n ≥ n1

I(n)1 ≤ δ
1
2 · µ 1

2 (QT) · ‖ϕ‖
1
2
H + 2C1 · ‖ϕ‖

1
2
H · δ

1
2 ≤ C7(T)δ

1
2 . (29)

On the other hand, for every step function ym(t, x) we have due to (26): ∀m ≥ 1

∫

QT

N

∑
i=1

(
fi

(
t

εn
, ym(t, x)

)
− f̄i(ym(t, x))

)
ϕi(x)dtdx

=
m

∑
k=1

∫

Am
k

∫

Ω

N

∑
i=1

(
fi

(
t

εn
, ym

k (x)
)
− f̄i(ym

k (x))
)

ϕi(x)dtdx → 0, n→ ∞.
(30)

So ∀m ≥ 1, ∃n2 = n2(m), ∀n ≥ n2

∣∣∣∣∣∣

∫

QT

N

∑
i=1

(
fi

(
t

εn
, ym(t, x)

)
− f̄i(ym(t, x))

)
ϕi(x)dtdx

∣∣∣∣∣∣
< δ. (31)

Furthermore, ∃m0, ∀m ≥ m0, ∀n ≥ 1

∫

QT\Qδ
2

∥∥∥∥ f
(

t
εn

, ŷ(t, x)
)
− f

(
t

εn
, ym(t, x)

)∥∥∥∥
RN
· ‖ϕ(x)‖RN dtdx ≤ δ

1
2 · µ 1

2 (QT) · ‖ϕ‖
1
2
H , (32)

∫

QT\Qδ
2

‖ f̄ (ŷ(t, x))− f̄ (ym(t, x))‖RN · ‖ϕ(x)‖RN dtdx ≤ δ
1
2 · µ 1

2 (QT) · ‖ϕ‖
1
2
H . (33)

Combining (30)–(33), we obtain ∀m ≥ m0, ∀n ≥ n2(m)

I(n)2 ≤ 2 · δ 1
2 · µ 1

2 (QT)‖ϕ‖
1
2
H + δ ≤ C8(T) · δ

1
2 . (34)

Inequalities (29), (34) imply (25). So we can pass to the limit in (24) and obtain that
{ŷ, û} ∈ F̄ . Now let us prove that {ŷ, û} is an optimal process in (5)–(7).
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Fatou’s lemma implies
limJ(ȳn, ūn) ≥ J(ŷ, û).

On the other hand, for every u ∈ U and any yn–solution of (1) with control u and
ε = εn we get

J(ȳn, ūn) ≤ J(ȳn, u).

Using the same arguments as in proof of the Lemma 1 for {yn} we derive that

yn → y in the sense of (19),

where y is a unique solution of (5) with control u.
Let us prove that

∫

Q

e−γ·tq(x, yn(t, x))dtdx →
∫

Q

e−γ·tq(x, y(t, x))dtdx (35)

Indeed due to the Assumption 5 and (13) we have
∣∣e−γ·tq(x, yn(t, x))

∣∣ ≤ C3e−γ·t‖yn(t, x)‖2
RN + e−γ·t · K2(x). (36)

As yn → y in L2(0, T; H) and a.e. in Q, we deduce from Lebesgue’s Dominated
Convergence theorem:

∀T > 0
∫

QT

e−γ·tq(x, yn(t, x))dtdx →
∫

QT

e−γ·tq(x, y(t, x))dtdx, n→ ∞. (37)

On the other hand, from (12) and (36)

+∞∫

T

∫
Ω

e−γ·t|q(x, yn(t, x))|dtdx ≤
+∞∫

T

e−γ·t[C3 · ‖yn(t)‖2
H + ‖K2‖L1

]
dt

≤
+∞∫

T

e−γ·t
[

C3e−δ·t · ‖y0(t)‖2
H +

C3 · C5

δ
+ C3 · C5 · ‖u‖2

U + ‖K2‖L1

]
dt

≤ C9 · e−γ·T ,

(38)

where C9 does not depend on T and n. The last inequality together with with (37) leads
to (35).

From (35) we conclude the following inequality: ∀{y, u} ∈ F̄

J(ŷ, û) ≤ limJ(ȳn, ūn) ≤ limJ(yn, u) = J(y, u). (39)

This means that {ŷ, û} is a solution of (5)–(7).
Now we substitute u = û in previous arguments. Then y = ŷ due to uniqueness. So

from (39), we obtain
J(ŷ, û) ≤ limJ(ȳn, ūn) ≤ J(ŷ, û).

These inequalities mean that up to subsequence

J(ȳn, ūn)→ J(ŷ, û), n→ ∞. (40)

Since J(ŷ, û) = inf{y,u}∈F̄ J(y, u), then convergence in (40) holds for the whole se-
quence. Therefore (21) is proved.

Moreover, up to subsequence ȳn tends to ŷ in L2
loc(0,+∞; H). So, repeating arguments (37)

and (38) for ȳn, and using boundness of {ūn}, we have
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∫

Q

e−γ·tq(x, ȳn(t, x))dtdx →
∫

Q

e−γ·tq(x, ŷ(t, x))dtdx.

Then from (40) and weak convergence we deduce (22)

Corollary 1. An optimal control ū ∈ U of the averaged problem (5)–(7) can serve as an ”approxi-
mate” optimal control in the initial problem (1), that is:

J(ȳε, ūε)− J(yε, ū)→ 0, ε→ 0, (41)

where yε is a solution of (1) with control u = ū.

Indeed, for yεn , εn → 0, we can repeat arguments of the proof of the Theorem, and due
to the uniqueness of the solution of (5) for u = ū we have up to subsequence

yεn → ȳ in the sense of (19)

Then (35) holds and taking into account strong convergence (22), we obtain (41).

5. Conclusions and Future Research

We sought to obtain a theoretical result that demonstrates the effectiveness of the
averaging method of finding an approximate solution of the optimal control problem
for a non-linear parabolic system with fast-oscillating coefficients with respect to a time
variable. We proved that the optimal control of the problem with averaging coefficients
can be considered as an ”approximately” optimal for the initial perturbed system. To
demonstrate effectiveness of the method we plan to continue research focusing on the
practical applications and simulation results using in particular genetic algorithms.
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Abstract: Here, in this article, we introduce and systematically investigate the ideas of deferred
weighted statistical Riemann integrability and statistical deferred weighted Riemann summability for
sequences of functions. We begin by proving an inclusion theorem that establishes a relation between
these two potentially useful concepts. We also state and prove two Korovkin-type approximation
theorems involving algebraic test functions by using our proposed concepts and methodologies.
Furthermore, in order to demonstrate the usefulness of our findings, we consider an illustrative
example involving a sequence of positive linear operators in conjunction with the familiar Bernstein
polynomials. Finally, in the concluding section, we propose some directions for future research
on this topic, which are based upon the core concept of statistical Lebesgue-measurable sequences
of functions.

Keywords: Riemann and Lebesgue integrals; statistical Riemann and Lebesgue integral; deferred
weighted Riemann summability; Banach space; Bernstein polynomials; positive linear operators;
Korovkin-type approximation theorems; Lebesgue-measurable sequences of functions

MSC: 40A05; 40G15; 33C45; 41A36

1. Introduction and Motivation

The relatively more familiar theory of ordinary convergence is one of the most im-
portant topics of study of sequence spaces. It has indeed gradually progressed to a very
high level of development. Two prominent researchers, Fast [1] and Steinhaus [2], indepen-
dently created a new idea in the theory of sequence spaces, which is known as statistical
convergence. This fruitful concept is extremely valuable for studies in various areas of pure
and applied mathematical sciences. It is remarkably more powerful than the traditional
convergence and has provided a vital area of research in recent years. Furthermore, such a
concept is closely related to the study of Real Analysis, Analytic Probability theory and
Number theory, and so on. For some recent related developments on this subject, the reader
can see, for example, the works in [3–18].

Suppose that E ⊆ N. Moreover, let

Ek = {η : η 5 k and η ∈ E}.
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Then, the natural (or asymptotic) density d(E) of E is

d(E) = lim
k→∞

|Ek|
k

= τ,

where τ is a real and finite number, and |Ek| is the cardinality of Ek.
A sequence (un) is said to be statistically convergent to α if, for each ε > 0,

Eε = {η : η ∈ N and |uη − α| = ε}

has zero natural density (see [1,2]). Thus, for every ε > 0,

d(Eε) = lim
k→∞

|Eε|
k

= 0.

We write
stat lim

k→∞
uk = α.

For a closed and bounded interval I := [a, b] ⊂ R, we define the partition of [a, b] as
an ordered set that is finite and we denote it as follows:

P := {(r0, r1, · · · , rk) : a = r0 < r1 < · · · < rk = b}.

We now divide the interval [a, b] into the following non-overlapping subintervals:

I1 := [r0, r1], I2 := [r1, r2], · · · , Ik := [rk−1, rk].

The resulting partition P is then given by

P := {[ri−1, ri] : i = 1, 2, 3, · · · , k}.

Next, in order to find the norm of the partition P, we have

‖P‖ := max{r1 − r0, r2 − r1, r3 − r2, · · · , rk − rk−1}.

Let γi (i = 1, 2, 3, · · · , k) be a point that is chosen arbitrarily from each of the
subintervals (I)k

i=1. We refer to these points as the tags of the subintervals. We also call the
subintervals associated with the tags the tagged partitions of I . We denote it as follows:

P := {([ri−1, ri]; γi) : i = 1, 2, 3, · · · , k}.

Let [a, b] ⊂ R. Suppose that, for each i ∈ N, there is a function hi : [a, b]→ R. We thus
construct the sequence (hi)i∈N of functions over the closed interval [a, b].

We now define a subsequence (hi)
k
i of functions with respect to the Riemann sum

associated with a tagged partition P as follows:

δ(hi;P) :=
k

∑
i=1

h(γi)(ri − ri−1).

We next recall the definition of the Riemann integrability.
A sequence (hk)k∈N of functions is Riemann-integrable to h on [a, b] if, for each ε > 0,

there exists σε > 0 such that, for any tagged partition P of [a, b] with ‖P‖ < σε, we have

|δ(hk;P)− h| < ε.

The definition of statistically Riemann-integrable functions is given as follows.
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Definition 1. A sequence (hk)k∈N of functions is statistically Riemann-integrable to h on [a, b] if,
for every ε > 0 and for each x ∈ [a, b], there exists σε > 0, and for any tagged partition P of [a, b]
with ‖P‖ < σε, the set

Eε = {η : η ∈ N and |δ(hη ;P)− h| = ε}

has zero natural density. That is, for every ε > 0,

d(Eε) = lim
k→∞

|Eε|
k

= 0.

We write
statRie lim

k→∞
ffi(hk;P) = h.

By making use of Definition 1, we first establish an inclusion theorem as Theorem 1 below.

Theorem 1. If a sequence of functions (hk) is Riemann-integrable to h over [a, b], then (hk) is
statistically Riemann-integrable to the same function h over [a, b].

Proof. Given ε > 0, there exists σε > 0. Suppose that P is any tagged partition of [a, b]
such that ‖P‖ < σε. Then

|δ(hk;P)− h| < ε.

Since, for each ε > 0, P is any tagged partition of [a, b] such that ‖P‖ < σε, so we have

lim
k→∞

1
k
|{η : η ∈ N and |δ(hk;P)− h| = ε}| 5 lim

k→∞
|δ(hk;P)− h| < ε.

Consequently, by Definition 1, we get

statRie lim
k→∞

δ(hk;P) = h,

which completes the proof of Theorem 1.

Remark 1. In order to demonstrate that the converse of Theorem 1 is not true, we consider
Example 1 below.

Example 1. Let hk : [0, 1]→ R be a sequence of functions defined by

hk(x) =





1
2

(x ∈ Q∩ [0, 1]; k = j2, j ∈ N)

1
n

(otherwise).

(1)

It is easily seen that the sequence (hk) of functions is statistically Riemann-integrable to 0 over
the closed interval [0, 1], but it is not Riemann-integrable (in the usual sense) over [0, 1].

Motivated mainly by the above-mentioned investigations and developments, we in-
troduce and study the ideas of deferred weighted statistical Riemann integrability and
statistical deferred weighted Riemann summability of sequences of real-valued functions.
We first prove an inclusion theorem connecting these two potentially useful concepts. We
then state and prove two Korovkin-type approximation theorems with algebraic test func-
tions based on the methodologies and techniques that we have adopted here. Furthermore,
we consider an illustrative example involving a positive linear operator in conjunction with
the familiar Bernstein polynomials, which shows the effectiveness of our findings. Finally,
based upon the core concept of statistical Lebesgue-measurable sequences of functions, we
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suggest some possible directions for future research on this topic in the concluding section
of our study.

2. Deferred Weighted Statistical Riemann Integrability

Let (φk) and (ϕk) be sequences of non-negative integers with the regularity condi-
tions given

φk < ϕk and lim
k→∞

ϕk = +∞.

Moreover, let (pi) be a sequence of non-negative real numbers with

Pk =
ϕk

∑
i=φk+1

pi.

We then define the deferred weighted summability mean for σ(hk;P) associated with
tagged partition P as follows:

W(δ(hk;P)) = 1
Pk

ϕk

∑
$=φk+1

p$δ(h$;P). (2)

We now present the following definitions for our proposed study.

Definition 2. A sequence (hk)k∈N of functions is said to be deferred weighted statistically Riemann-
integrable to h on [a, b] if, for all ε > 0, there exists σε > 0, and for any tagged partition P of [a, b]
with ‖P‖ < σε, the following set

{η : η 5 Pk and pη |δ(hη ;P)− h| = ε}

has zero natural density. Thus, for every ε > 0, we have

lim
k→∞

|{η : η 5 Pk and pη |δ(hη ;P)− k| = ε}|
Pk

= 0.

We write
DWRstat lim

k→∞
δ(hk;P) = h.

Definition 3. A sequence (hk)k∈N of functions is said to statistically deferred weighted Riemann
summable to h on [a, b] if, for all ε > 0 ∃ σε > 0 and for any tagged partition P of [a, b] with
‖P‖ < σε, the set

{η : η 5 k and |W(δ(hη ;P))− h| = ε}
has zero natural density. Thus, for all ε > 0, we have

lim
k→∞

|{η : η 5 k and |W(δ(hη ;P))− h| = ε}|
k

= 0.

We write
statDWR lim

k→∞
ffi(hk;P) = h.

An inclusion theorem between the two new potentially useful notions in Definitions 2 and 3
is now given by Theorem 2 below.

Theorem 2. If the sequence (hk)k∈N of functions is deferred weighted statistically Riemann-
integrable to a function h over [a, b], then it is statistically deferred weighted Riemann summable to
the same function h over [a, b], but not conversely.
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Proof. Suppose that the sequence (hk)k∈N is deferred weighted statistically Riemann-
integrable to a function h on [a, b]. Then, by Definition 2, we have

lim
k→∞

|{η : η 5 Pk and pη |δ(hη ;P)− h| = ε}|
Pk

= 0.

Now, if we choose the two sets as follows,

Oε = {η : η 5 Pk and pη |δ(hη ;P)− h| = ε}

and
Oc

ε = {η : η 5 Pk and pη |δ(hη ;P)− h| < ε},
then we have

|W(δ(hk;P))− h| =
∣∣∣∣∣

1
Pk

ϕk

∑
$=φk+1

p$δ(h$;P)− h

∣∣∣∣∣

5
∣∣∣∣∣

1
Pk

ϕk

∑
$=φk+1

p$

[
δ(h$;P)− h

]
∣∣∣∣∣+
∣∣∣∣∣

1
Pk

ϕk

∑
$=φk+1

p$h− h

∣∣∣∣∣

5 1
Pk

ϕk

∑
$=φk+1
(η∈Oε)

p$

∣∣δ(h$;P)− h
∣∣+ 1

Pk

ϕk

∑
$=φk+1
(η∈Oc

ε)

p$

∣∣δ(h$;P)− h
∣∣

+ |h|
∣∣∣∣∣

1
Pk

ϕk

∑
$=φk+1

p$ − 1

∣∣∣∣∣

5 1
Pk
|Oε|+

1
Pk
|Oc

ε|.

We thus obtain
|W(δ(hk;P))− h| < ε.

Hence, clearly, the sequence of functions (hk) is statistically deferred weighted Riemann-
summable to h over [a, b].

The following example shows that the converse statement of Theorem 2 is not true.

Example 2. Let hk : [0, 1]→ R be a sequence of functions of the form given by

hk(x) =





0 (x ∈ Q∩ [0, 1]; k is even)

1 (x ∈ R−Q∩ [0, 1]; k is odd),

(3)

where
φk = 2k ϕk = 4k and pk = 1.

The above-specified sequence (hk) of functions trivially indicates that it is neither Riemann-
integrable nor deferred weighted statistically Riemann-integrable. However, as per our proposed
mean (2), it is easy to see that

W(δ(hk;P)) = 1
ϕk − φk

ϕk

∑
$=φk+1

δ(h$;P)

=
1
2k

4k

∑
m=2k+1

δ(h$;P) = 1
2

.
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Thus, clearly, the sequence (hk) of functions has deferred weighted Riemann sum 1
2 under

the tagged partition P . Therefore, the sequence (hk) of functions is statistically deferred weighted
Riemann-summable to 1

2 over [0, 1], but it is not deferred weighted statistically Riemann-integrable
over [0, 1].

3. Korovkin-Type Approximation Theorems via the W(δ(hk;P))-Mean

Many researchers have worked toward extending (or generalizing) the approximation-
theoretic aspects of the Korovkin-type approximation theorems in several different areas of
mathematics, such as (for example) probability space, measurable space, sequence spaces,
and so on. In Real Analysis, Harmonic Analysis and other related fields, this notion is
immensely useful. In this regard, we have chosen to refer the interested reader to the recent
works (see, for example, [19–28]).

Let C[0, 1] be the space of all continuous real-valued functions defined on [0, 1]. Sup-
pose also that it is a Banach space with the norm ‖.‖∞. Then, for h ∈ C[0, 1], the norm of h
is given by

‖h‖∞ = sup{|h(ρ)| : 0 5 ρ 5 1}.
We say that Gj : C[0, 1]→ C[0, 1] is a sequence of positive linear operators, if

Gj(h; ρ) = 0 as h = 0.

Now, in view of our above-proposed definitions, we state and prove the following
Korovkin-type approximation theorems.

Theorem 3. Let Gj : C[0, 1] → C[0, 1] be a sequence of positive linear operators. Then, for
h ∈ C[0, 1],

DWRstat lim
j→∞
‖Gj(h; ρ)− h(ρ)‖∞ = 0 (4)

if and only if

DWRstat lim
j→∞
‖Gj(1; ρ)− 1‖∞ = 0, (5)

DWRstat lim
j→∞
‖Gj(ρ; ρ)− ρ‖∞ = 0 (6)

and

DWRstat lim
j→∞
‖Gj(ρ

2; ρ)− ρ2‖∞ = 0. (7)

Proof. Since each of the following functions

h0(ρ) = 1, h1(ρ) = 2ρ and h2(ρ) = 3ρ2

belongs to C[0, 1] and is continuous on [0, 1], the implication given by (4) obviously im-
plies (5) to (7).

In order to complete the proof of Theorem 3, we first assume that the conditions (5) to
(7) hold true. If h ∈ C[0, 1], then there exists a constant L > 0 such that

|h(ρ)| 5 L (∀ ρ ∈ [0, 1]).

We thus find that

|h(r)− h(ρ)| 5 2L (r, ρ ∈ [0, 1]). (8)
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Clearly, for given ε > 0, there exists δ > 0 such that

| f (r)− f (ρ)| < ε (9)

whenever
|r− ρ| < δ for all r, ρ ∈ [0, 1].

If we now choose
µ1 = µ1(r, ρ) = (2r− 2ρ)2.

If
|r− ρ| = δ,

then we obtain

|h(r)− h(ρ)| < 2L
θ2 µ1(r, ρ). (10)

Thus, from Equations (9) and (10), we get

|h(r)− h(ρ)| < ε +
2L
θ2 µ1(r, ρ),

which implies that

−ε− 2L
θ2 µ1(r, ρ) 5 h(r)− h(ρ) 5 ε +

2L
θ2 µ1(r, ρ). (11)

Now, since Gm(1; ρ) is monotone and linear, by applying the operator Gm(1; ρ) to the
inequality (11), we get

Gm(1; ρ)

(
−ε− 2L

θ2 µ1(r, ρ)

)
5 Gm(1; ρ)

(
h(r)− h(ρ)

)

5 Gm(1; ρ)

(
ε +

2L
θ2 µ1(r, ρ)

)
.

We note that ρ is fixed, and so h(ρ) is a constant number. Therefore, we have

−εGm(1; ρ)− 2L
θ2 Gm(µ1; ρ) 5 Gm(h; ρ)− h(ρ)Gm(1; ρ)

5 εGm(1; ρ) +
2L
θ2 Gm(µ1; ρ).

(12)

We also know that

Gm(h; ρ)− h(ρ) = [Gm(h; ρ)− h(ρ)Gm(1; ρ)] + h(ρ)[Gm(1; ρ)− 1]. (13)

Thus, by using (12) and (13), we obtain

Gm(h; ρ)− h(ρ) < εGm(1; ρ) +
2L
θ2 Gm(µ1; ρ) + h(ρ)[Gm(1; ρ)− 1]. (14)

We now estimate Gm(µ1; ρ) as follows:

Gm(µ1; ρ) = Gm((2r− 2ρ)2; ρ) = Gm(2r2 − 8ρr + 4ρ2; ρ)

= Gm(4r2; ρ)− 8tGm(r; ρ) + 4ρ2Gm(1; ρ)

= 4[Gm(r2; ρ)− ρ2]− 8t[Gm(r; ρ)− ρ]

+ 4ρ2[Gm(1; ρ)− 1],
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so that, in view of (14), we obtain

Gm(h; ρ)− h(ρ) < εGm(1; ρ) +
2L
θ2 {4[Gm(r2; ρ)− ρ2]

− 8ρ[Gm(r; ρ)− ρ] + 4ρ2[Gm(1; ρ)− 1]}
+ h(ρ)[Gm(1; ρ)− 1].

= ε[Gm(1; ρ)− 1] + ε +
2L
θ2 {4[Gm(r2; ρ)− ρ2]

− 8ρ[Gm(r; ρ)− ρ] + 4ρ2[Gm(1; ρ)− 1]}
+ h(ρ)[Gm(1; ρ)− 1].

Furthermore, since ε > 0 is arbitrary, we can write

|Gm(h; ρ)− h(ρ)| 5 ε +

(
ε +

8L
θ2 + L

)
|Gm(1; ρ)− 1|

+
16L
θ2 |Gm(r; ρ)− ρ|+ 8L

θ2 |Gm(r2; ρ)− ρ2|
5 A(|Gm(1; ρ)− 1|+ |Gm(r; ρ)− ρ|

+|Gm(r2; ρ)− ρ2|),

(15)

where

A = max
(

ε +
8L
θ2 + L,

16L
θ2 ,

8L
θ2

)
.

Now, for a given ω > 0, there exists ε > 0 (ε < ω) such that

Tm(ρ; ω) = {m : m 5 Pk and pm|Gm(h; ρ)− h(ρ)| = ω}.

Furthermore, for ν = 0, 1, 2, we have

Tν,m(ρ; ω) =

{
m : m 5 Pk and pm|Gm(h; ρ)− hν(ρ)| =

ω− ε

3A

}
,

so that

Tm(ρ; ω) 5
2

∑
ν=0

Tν,m(ρ; ω).

Clearly, we obtain

‖Tm(ρ; ω)‖C[0,1]

Pk
5

2

∑
ν=0

‖Tν,m(ρ; ω)‖C[0,1]

Pk
. (16)

Now, using the above assumption about the implications in (5) to (7) and by Definition 2,
the right-hand side of (16) tends to zero as n→ ∞. Consequently, we get

lim
k→∞

‖Tm(ρ; ω)‖C[0,1]

Pk
= 0 (δ, ω > 0).

Therefore, the implication (4) holds true.

Theorem 4. Let Gj : C[0, 1] → C[0, 1] be a sequence of positive linear operators. Then, for
h ∈ C[0, 1],

statDWR lim
j→∞
‖Gj(h; ρ)− h(ρ)‖∞ = 0 (17)
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if and only if

statDWR lim
j→∞
‖Gj(1; ρ)− 1‖∞ = 0, (18)

statDWR lim
j→∞
‖Gj(ρ; ρ)− ρ‖∞ = 0 (19)

and

statDWR lim
j→∞
‖Gj(ρ

2; ρ)− ρ2‖∞ = 0. (20)

Proof. The proof of Theorem 4 is similar to the proof of Theorem 3. Therefore, we choose
to skip the details involved.

In view of Theorem 4, here, we consider an illustrative example. In this connection,
we now recall the following operator:

ρ(1 + ρD)

(
D =

d
dρ

)
, (21)

which was used by Al-Salam [29] and, more recently, by Viskov and Srivastava [30].

Example 3. Consider the Bernstein polynomials Bn(h; β) on C[0, 1] given by

Bk(h; β) =
k

∑
$=0

f
($

k

)(k
$

)
β$(1− β)k−$ (β ∈ [0, 1]; k = 0, 1, · · ·). (22)

Here, in this example, we introduce the positive linear operators on C[0, 1] under the composi-
tion of the Bernstein polynomials and the operators given by (21) as follows:

G$(h; β) = [1 + h$]β(1 + βD)B$(h; β) (∀ h ∈ C[0, 1]), (23)

where (h$) is the same as mentioned in Example 2.
We now estimate the values of each of the testing functions 1, β and β2 by using our proposed

operators (23) as follows:

G$(1; β) = [1 + h$]β(1 + βD)1 = [1 + h$]β,

G$(t; β) = [1 + h$]β(1 + βD)β = [1 + h$]β(1 + β)

and

G$(t2; β) = [1 + h$]β(1 + βD)

{
β2 +

β(1− β)

$

}

= [1 + h$]

{
β2
(

2− 3β

$

)}
.

Consequently, we have

statDWR lim
$→∞
‖G$(1; β)− 1‖∞ = 0, (24)

statDWR lim
$→∞
‖G$(β; β)− β‖∞ = 0 (25)

and

statDWR lim
$→∞
‖G$(β2; β)− β2‖∞ = 0, (26)
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that is, the sequence G$(h; β) satisfies the conditions (18) to (20). Therefore, by Theorem 4, we have

statDWR lim
$→∞
‖G$(h; β)− h‖∞ = 0.

Hence, the given sequence (hk) of functions mentioned in Example 2 is statistically deferred
weighted Riemann-summable, but not deferred weighted statistically Riemann-integrable. Therefore,
our above-proposed operators defined by (23) satisfy Theorem 4. However, they do not satisfy for
statistical versions of deferred weighted Riemann-integrable sequence of functions (see Theorem 3).

4. Concluding Remarks and Directions for Further Research

In this concluding section of our present investigation, we further observe the potential
usefulness of our Theorem 4 over Theorem 3 as well as over the classical versions of the
Korovkin-type approximation theorems.

Remark 2. Let us consider the sequence (h$)$∈N of functions in Example 2. Suppose also that
(h$) is statistically deferred weighted Riemann-summable, so that

statDWR lim
%→∞

ffi(h%;P) = 1
2

on [0, 1].

We then find that

statDWR lim
k→∞
‖Gk(h ˚ ; æ)− f ˚ (æ)‖∞ = 0 ( ˚ = 0, 1, 2). (27)

Thus, by Theorem 4, we immediately get

statDWR lim
j→∞
‖Gk(h; æ)− h(æ)‖∞ = 0, (28)

where
h0(ρ) = 1, h1(ρ) = ρ and h2(ρ) = ρ2.

Now, the given sequence (hk) of functions is statistically deferred weighted Riemann-summable,
but neither deferred weighted statistically Riemann-integrable nor classically Riemann-integrable.
Therefore, our Korovkin-type approximation Theorem 4 properly works under the operators defined
in the Equation (23), but the classical as well as statistical versions of the deferred weighted Riemann-
integrable sequence of functions do not work for the same operators. Clearly, this observation leads
us to the fact that our Theorem 4 is a non-trivial extension of Theorem 3 as well as the classical
Korovkin-type approximation theorem [31].

Remark 3. Motivated by some recently published results by Jena et al. [32] and Srivastava et al. [33],
we choose to draw the attention of the interested readers toward the potential for further research
associated with the analogous notion of statistical Lebesgue-measurable sequences of functions.
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Abstract: In the present paper, we prove some new reverse type dynamic inequalities on T. Our
main inequalities are proved by using the chain rule and Fubini’s theorem on time scales T. Our
results extend some existing results in the literature. As special cases, we obtain some new discrete
inequalities, quantum inequalities and integral inequalities.

Keywords: reverse Hardy’s inequality; dynamic inequality; time scale
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1. Introduction

In 1920, the renowned English mathematician Godfrey Harold Hardy [1] proved the
following result.

Theorem 1. Assume that { fn}∞
n=1 is a sequence of nonnegative real numbers. If r > 1, then

∞

∑
n=1

1
nr

( n

∑
k=1

fk

)r
≤
( r

r− 1

)r ∞

∑
n=1

f r
n. (1)

Inequality (1) is known in the literature as discrete Hardy’ inequality.
In 1925, Hardy himself [2] gave the integral analogous of inequality (1) in the

following form.

Theorem 2. Suppose that f is a nonnegative continuous function defined on [0, ∞). If r > 1, then

∫ ∞

0

1
λr

( ∫ λ

0
f (ζ)dζ

)r
dλ ≤

( r
r− 1

)r ∫ ∞

0
f r(λ)dλ. (2)

In 1927, Littlewood and Hardy [3] proved the reversed version of inequality (2) in the
following manner:

Theorem 3. Let f be a nonnegative function on [0, ∞). If 0 < r < 1, then
∫ ∞

0

1
λr

( ∫ ∞

λ
f (ζ)dζ

)r
dλ ≥

( r
1− r

)r ∫ ∞

0
f r(λ)dλ. (3)

In 1928, Hardy [4] established a generalization of inequality (2). He proved that:

Theorem 4. Suppose that f is a nonnegative continuous function defined on [0, ∞). Then,

∫ ∞

0

1
λγ

( ∫ λ

0
f (ζ)dζ

)r
dλ ≤

( r
γ− 1

)r ∫ ∞

0
λr−γ f r(λ)dλ, for r ≥ γ > 1, (4)
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and
∫ ∞

0

1
λγ

( ∫ ∞

λ
f (ζ)dζ

)r
dλ ≤

( r
1− γ

)r ∫ ∞

0
λr−γ f r(λ)dλ, for r > 1 > γ ≥ 0. (5)

In 1928, Copson [5] gave the next two discrete inequalities as generalizations of
inequality (1).

Theorem 5. Let { fn}∞
n=1 and {θn}∞

n=1 be sequences of nonnegative real numbers. Then,

∞

∑
n=1

θn

(
∑n

k=1 θk fk

)r

(
∑n

k=1 θk

)γ ≤
( r

γ− 1

)r ∞

∑
n=1

θn f r
n

( n

∑
k=1

θk

)r−γ
, for r ≥ γ > 1, (6)

and

∞

∑
n=1

θn

(
∑∞

k=n θk fk

)r

(
∑n

k=1 θk

)γ ≤
( r

1− γ

)r ∞

∑
n=1

θn f r
n

( n

∑
k=1

θk

)r−γ
, for r > 1 > γ ≥ 0. (7)

In 1970, Leindler [6] explored some discrete Hardy inequality versions (1) and was
able to demonstrate that:

Theorem 6. Let { fn}∞
n=1 and {θn}∞

n=1 be sequences of real numbers that are not negative and
r > 1, then

∞

∑
n=1

θn

( n

∑
k=1

fk

)r
≤ rr

∞

∑
n=1

θ1−r
n f r

n

( ∞

∑
k=n

θk

)r
, (8)

and
∞

∑
n=1

θn

( ∞

∑
k=n

fk

)r
≤ rr

∞

∑
n=1

θ1−r
n f r

n

( n

∑
k=1

θk

)r
. (9)

In 1976, Copson [7] gave the inequalities’ continuous versions (6) and (7). He arrived
at the following conclusion specifically:.

Theorem 7. Let f and θ be continuous functions that are not negative on [0, ∞). Then,

∫ ∞

0

θ(λ)
( ∫ λ

0 θ(ζ) f (ζ)dζ
)r

( ∫ λ
0 θ(ζ)dζ

)γ dλ ≤
( r

γ− 1

)r ∫ ∞

0
θ(λ) f r(λ)

( ∫ λ

0
θ(ζ)dζ

)r−γ

dλ, for r ≥ γ > 1, (10)

and

∫ ∞

0

θ(λ)
( ∫ ∞

λ θ(ζ) f (ζ)dζ
)r

( ∫ λ
0 θ(ζ)dζ

)γ dλ ≤
( r

1− γ

)r ∫ ∞

0
θ(λ) f r(λ)

( ∫ λ

0
θ(ζ)dζ

)r−γ

dλ, for r > 1 > γ ≥ 0. (11)

In 1982, Lyon [8] discovered a reverse version of the discrete Hardy inequality (1) for
the special case when r = 2. According to his conclusion:

Theorem 8. Let { fn}∞
n=0 be a nonincreasing sequence of real numbers that are nonnegative. Then,

∞

∑
n=0

( 1
n + 1

n

∑
k=0

fk

)2
≥ π2

6

∞

∑
n=0

f 2
n . (12)

In 1986, Renaud [9] proved the following two results.
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Theorem 9. Assume that { fn}∞
n=1 is a nonincreasing sequence of nonnegative real numbers. If

r > 1, then,
∞

∑
n=1

( ∞

∑
k=n

fk

)r
≥

∞

∑
n=1

nr f r
n. (13)

Theorem 10. Assume that f is a nonincreasing nonnegative function defined on [0, ∞). If r > 1,
then, ∫ ∞

0

( ∫ ∞

λ
f (ζ)dζ

)p

dx ≥
∫ ∞

0
λp f r(λ)dλ. (14)

In 1990, the reverses of inequalities (8) and (9) were demonstrated by Leindler in [10]
as the following:

Theorem 11. If { fn}∞
n=1 and {θn}∞

n=1 are sequences of nonnegative real numbers and 0 < r ≤ 1,
then,

∞

∑
n=1

θn

( n

∑
k=1

fk

)r
≥ rr

∞

∑
n=1

θ1−r(n) f r
n

( ∞

∑
k=n

θk

)r
, (15)

and
∞

∑
n=1

θn

( ∞

∑
k=n

fk

)r
≥ rr

∞

∑
n=1

θ1−r
n f r

n

( n

∑
k=1

θk

)r
. (16)

Hilger, in his Ph.D. thesis [11], was the first one to accomplish the unification and
extension of differential equations, difference equations, q-difference equations, and so on
to the encompassing theory of dynamic equations on time scales.

Throughout this work, a knowledge and understanding of time scales and time-scale
notation is assumed; for an excellent introduction to the calculus on time scales, see Bohner
and Peterson [12,13].

In 2005, Řehák [14] was a forerunner in extending Hardy-type inequalities to time
scales. He expanded the original Hardy inequalities (1) and (2) to a time scale of our
choosing, and so, he combined them into a single form, as illustrated below.

Theorem 12. Suppose T is a time scale, and f ∈ Crd([a, ∞)T, [0, ∞)). If r ≥ 1, then,

∫ ∞

a

(∫ σ(η)
a f (ζ)∆ζ

σ(η)− a

)r

∆η <
( r

r− 1

)r ∫ ∞

a
f r(η)∆η, (17)

unless f ≡ 0.

In 2017, Agarwal et al. [15] presented the next dynamic inequality.

Theorem 13. Let T be a time scale such that 0 ∈ T. Moreover, assume f is a nonincreasing
nonnegative function on [0, ∞)T. If r > 1, then,

∫ ∞

0

1
ηr

( ∫ η

0
f (ζ)∆ζ

)r
∆η ≥ r

r− 1

∫ ∞

0
f r(η)∆η. (18)

Very recently, El-Deeb et al. [16] established the next dynamic inequalities.

Theorem 14. Suppose T is a time scale with a ∈ [0, ∞)T. Additionally, suppose that f > 0 and
θ > 0 are rd-continuous functions on [a, ∞)T and f is nonincreasing.
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(i) If r ≥ 1 and γ ≥ 0, then

∫ ∞

a

θ(η)
( ∫ ∞

η θ(ζ) f (ζ)∆ζ
)r

( ∫ σ(η)
a θ(ζ)∆ζ

)γ ∆η ≥
∫ ∞

a

θ(η)
( ∫ η

a θ(ζ)∆ζ
)r

f r(η)
( ∫ σ(η)

a θ(ζ)∆ζ
)γ ∆η. (19)

(ii) If r ≥ 1 and γ > 1, then

∫ ∞

a

θ(η)
( ∫ ∞

η θ(ζ) f (ζ)∆ζ
)r

( ∫ ∞
η θ(ζ)∆ζ

)γ ∆η ≥ r
γ− 1

∫ ∞

a
θ(η)

( ∫ ∞

η
θ(ζ)∆ζ

)r−γ
f r(η)∆η. (20)

(iii) If r ≥ 1 and γ > 1, then

∫ ∞

a

θ(η)
( ∫ η

a θ(ζ) f (ζ)∆ζ
)r

( ∫ η
a θ(ζ)∆ζ

)γ ∆η ≥ r
γ− 1

∫ ∞

a
θ(η)

( ∫ η

a
θ(ζ)∆ζ

)r−γ
f r(η)∆η. (21)

(iv) If r ≥ 1 and 0 ≤ γ < 1, then

∫ ∞

a

θ(η)
( ∫ η

a θ(ζ) f (ζ)∆ζ
)r

( ∫ ∞
σ(η) θ(ζ)∆ζ

)γ ∆η ≥ r
1− γ

∫ ∞

a
θ(η)

( ∫ η

a
θ(ζ)∆ζ

)r−1( ∫ ∞

η
θ(ζ)∆ζ

)1−γ
f r(η)∆η. (22)

For more details on Hardy-type inequalities and other types on time scales, we sug-
gest [17–29] for the reader.

Theorem 15 (Fubini’s Theorem, see [Theorem 1.1, Page 300] [30]). Assume that (λ, Σ1, µ∆)
and (Y, Σ2, ν∆) are two finite-dimensional time scales measure spaces. Moreover, suppose that
f : λ×Y → R is a delta integrable function and define the functions

Φ(y) =
∫

λ
f (λ, y)dµ∆(λ), y ∈ Y,

and
Ψ̂(λ) =

∫

Y
f (λ, y)dν∆(y), λ ∈ λ.

Then, Φ is delta integrable on Y and Ψ̂ is delta integrable on λ and
∫

λ
dµ∆(λ)

∫

Y
f (λ, y)dν∆(y) =

∫

Y
dν∆(y)

∫

λ
f (λ, y)dµ∆(λ).

The basic theorems that will be required in the proof of our results are presented next.

Theorem 16 (Chain rule on time scales, see [Theorem 1.87, Page 31] [12]). Assume g :
R → R, g : T → R is delta differentiable on Tκ , and f : R → R is continuously differentiable.
Then, there exists c ∈ [η, σ(η)] with

( f ◦ g)∆(η) = f ′(g(c))g∆(η). (23)
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Theorem 17 (Chain rule on time scales, see [Theorem 1.90, Page 32] [12]). Let f : R→ R
be continuously differentiable and suppose g : T→ R is delta differentiable. Then, f ◦ g : T→ R
is delta differentiable and the formula

( f ◦ g)∆(η) =

{∫ 1

0

[
f ′(hgσ(η) + (1− h)g(η))

]
dh
}

g∆(η),

holds.

In this manuscript, we show and prove some new dynamic Hardy-type which are
reverse inequalities on time scales. The dynamic Hardy-type inequalities we obtained are
entirely original, and as a result, we could obtain some integral and discrete inequalities of
Hardy-type that are new. Furthermore, our findings generalize inequities (19)–(22). This
paper is organized in the following way: Some basic concepts of the calculus on time scales
and useful lemmas are introduced in Section 1. In Section 2, we state and prove the main
results. In Section 3, we state the conclusion.

2. Main Results

The version of inequality (14) on time scales is given as a special case of the following
theorem.

Theorem 18. Assume that T is a time scale with 0 ≤ a ∈ T. Additionally, let f , g, ξ̌ and θ
be nonnegative functions defined on [0, ∞)T such that f and g are nonincreasing. Moreover, let
Ψ̌ : R+ → R+ be a differentiable function such that Ψ̌′ is nondecreasing and Ψ̌′(xy) = Ψ̌′(x)Ψ̌′(y)
for all x, y ∈ R+. If γ ≥ 0, then

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ ∞

η
ξ̌(ζ) f (ζ)∆ζ

)

( ∫ σ(η)

a
θ(ζ)∆ζ

)γ ∆η ≥
∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ η

a
ξ̌(ζ)∆ζ

)
Ψ̌′
(

f (η)
)

f (η)
( ∫ σ(η)

a
θ(ζ)∆ζ

)γ ∆η. (24)

Proof. Owing to nonincreasity of f , we have for λ ≥ η ≥ a

∫ λ

η
ξ̌(ζ) f (ζ)∆ζ ≥ f (λ)

∫ λ

η
ξ̌(ζ)∆ζ,

then, since Ψ̌′ is nondecreasing,

Ψ̌′
( ∫ λ

η
ξ̌(ζ) f (ζ)∆ζ

)
≥ Ψ̌′

(
f (λ)

∫ λ

η
ξ̌(ζ)∆ζ

)
= Ψ̌′

(
f (λ)

)
Ψ̌′
( ∫ λ

η
ξ̌(ζ)∆ζ

)
. (25)

Applying the chain rule (23), there exists c ∈ [λ, σ(λ)] such that

[
Ψ̌
( ∫ λ

η
ξ̌(ζ) f (ζ)∆ζ

)]∆λ

= Ψ̌′
( ∫ c

η
ξ̌(ζ) f (ζ)∆ζ

)( ∫ λ

η
ξ̌(ζ) f (ζ)∆ζ

)∆λ

.

Since c ≥ λ, Ψ̌′ is nondecreasing, and
( ∫ λ

η
ξ̌(ζ) f (ζ)∆ζ

)∆λ

= ξ̌(λ) f (λ) ≥ 0, we have

[
Ψ̌
( ∫ λ

η
ξ̌(ζ) f (ζ)∆ζ

)]∆λ

≥ ξ̌(λ) f (λ)Ψ̌′
( ∫ λ

η
ξ̌(ζ) f (ζ)∆ζ

)
. (26)

Combining (25) with (26) yields

[
Ψ̌
( ∫ λ

η
ξ̌(ζ) f (ζ)∆ζ

)]∆λ

≥ ξ̌(λ)Ψ̌′
( ∫ λ

η
ξ̌(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ),
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and so

ξ̌(η)g(η)
[

Ψ̌
( ∫ λ

η
ξ̌(ζ) f (ζ)∆ζ

)]∆λ

( ∫ σ(η)

a
θ(ζ)∆ζ

)γ ≥
ξ̌(η)g(η)ξ̌(λ)Ψ̌′

( ∫ λ

η
ξ̌(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ σ(η)

a
θ(ζ)∆ζ

)γ .

Considering that λ ≥ η implies: (i) σ(λ) ≥ σ(η) and hence
∫ σ(λ)

a
θ(ζ)∆ζ ≥

∫ σ(η)

a
θ(ζ)∆ζ;

(ii) g(λ) ≤ g(η), we obtain

ξ̌(η)g(η)
[

Ψ̌
( ∫ λ

η
ξ̌(ζ) f (ζ)∆ζ

)]∆λ

( ∫ σ(η)

a
θ(ζ)∆ζ

)γ ≥
ξ̌(η)ξ̌(λ)g(λ)Ψ̌′

( ∫ λ

η
ξ̌(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ σ(λ)

a
θ(ζ)∆ζ

)γ .

If we integrate both sides with respect to λ over [η, ∞)T, we obtain

ξ̌(η)g(η)Ψ̌
( ∫ ∞

η
ξ̌(ζ) f (ζ)∆ζ

)

( ∫ σ(η)

a
θ(ζ)∆ζ

)γ ≥
∫ ∞

η

ξ̌(η)ξ̌(λ)g(λ)Ψ̌′
( ∫ λ

η
ξ̌(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ σ(λ)

a
θ(ζ)∆ζ

)γ ∆λ.

If we integrate both sides once more, but with respect to η over [a, ∞)T, we obtain

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ ∞

η
ξ̌(ζ) f (ζ)∆ζ

)

( ∫ σ(η)

a
θ(ζ)∆ζ

)γ ∆η ≥
∫ ∞

a
ξ̌(η)

( ∫ ∞

η

ξ̌(λ)g(λ)Ψ̌′
( ∫ λ

η
ξ̌(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ σ(λ)

a
θ(ζ)∆ζ

)γ ∆λ

)
∆η. (27)

By Using Fubini’s theorem on time scales, (27) can be rewritten as

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ ∞

η
ξ̌(ζ) f (ζ)∆ζ

)

( ∫ σ(η)

a
θ(ζ)∆ζ

)γ ∆η ≥
∫ ∞

a

ξ̌(λ)g(λ)Ψ̌′
(

f (λ)
)

f (λ)

( ∫ λ

a
ξ̌(η)Ψ̌′

( ∫ λ

η
ξ̌(ζ)∆ζ

)
∆η

)

( ∫ σ(λ)

a
θ(ζ)∆ζ

)γ ∆λ. (28)

Now, from the chain rule (23), one can see that there exists c ∈ [η, σ(η)] with

[
− Ψ̌

( ∫ λ

η
ξ̌(ζ)∆ζ

)]∆η

= −Ψ̌′
( ∫ λ

c
ξ̌(ζ)∆ζ

)( ∫ λ

η
ξ̌(ζ)∆ζ

)∆η

.

Since c ≥ η, Ψ̌′ is nondecreasing, r ≥ 1 and
( ∫ λ

η
ξ̌(ζ)∆ζ

)∆η

= −ξ̌(η) ≤ 0, we have

[
− Ψ̌

( ∫ λ

η
ξ̌(ζ)∆ζ

)]∆η

≤ ξ̌(η)Ψ̌′
( ∫ λ

η
ξ̌(ζ)∆ζ

)
. (29)
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Substituting (29) into (28) leads to

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ ∞

η
ξ̌(ζ) f (ζ)∆ζ

)

( ∫ σ(η)

a
θ(ζ)∆ζ

)γ ∆η

≥
∫ ∞

a

ξ̌(λ)g(λ)Ψ̌′
(

f (λ)
)

f (λ)

( ∫ λ

a

[
− Ψ̌

( ∫ λ

η
ξ̌(ζ)∆ζ

)]∆η

∆η

)

( ∫ σ(λ)

a
θ(ζ)∆ζ

)γ ∆λ

=
∫ ∞

a

ξ̌(λ)g(λ)Ψ̌
( ∫ λ

a
ξ̌(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ σ(λ)

a
θ(ζ)∆ζ

)γ ∆λ.

This shows the validity of (24).

Remark 1. In Theorem 18, if we take Ψ̌(η) = ηr, r ≥ 1, ξ̌(η) = θ(η) and g(η) = 1, then
inequality (24) reduces to inequality (19).

Corollary 1. In Theorem 18, if we take Ψ̌(η) = ηr, ξ̌(η) = g(η) = 1 and a = γ = 0, then
inequality (24) reduces to

∫ ∞

0

( ∫ ∞

η
f (ζ)∆ζ

)r

∆η ≥
∫ ∞

0

( ∫ η

0
ξ̌(ζ)∆ζ

)r

f r(η)∆η,

which is the time scales version of (14).

Corollary 2. If T = R in Theorem 18, then inequality (24) reduces to

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ ∞

η
ξ̌(ζ) f (ζ)dζ

)

( ∫ η

a
θ(ζ)dζ

)γ dη ≥
∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ η

a
ξ̌(ζ)dζ

)
Ψ̌′
(

f (η)
)

f (η)
( ∫ η

a
θ(ζ)dζ

)γ dη.

Remark 2. In Corollary 2, if we take Ψ̌(η) = ηr, ξ̌(η) = g(η) = 1, a = γ = 0, then we reclaim
inequality (14).

Corollary 3. If T = hZ in Theorem 18, then inequality (24) is reduced to

∞

∑
n= a

h

ξ̌(nh)g(nh)Ψ̌
(

h
∞

∑
m= n

θ

ξ̌(mh) f (mh)
)

( n
h

∑
m= a

h

θ(mh)
)γ

≥
∞

∑
n= a

h

ξ̌(nh)g(nh)Ψ̌
(

h

n
θ−1

∑
m= a

h

ξ̌(mh)
)

Ψ̌′
(

f (nh)
)

f (nh)

( n
h

∑
m= a

h

θ(mh)
)γ

.

Corollary 4. In Corollary 3, if we take h = 1, then, inequality (24) will be reduced to

∞

∑
n=a

ξ̌(n)g(n)Ψ̌
( ∞

∑
m=n

ξ̌(m) f (m)

)

( n

∑
m=a

θ(m)

)γ ≥
∞

∑
n=a

ξ̌(n)g(n)Ψ̌
( n−1

∑
m=a

ξ̌(m)

)
Ψ̌′
(

f (n)
)

f (n)
( n

∑
m=a

θ(m)

)γ .
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Remark 3. In Corollary 4, if we take Ψ̌(η) = ηr, ξ̌(η) = g(η) = 1, a = 1 and γ = 0, then we
reclaim inequality (13).

Corollary 5. If T = qZ in Theorem 18, then

∞

∑
n=(logq a)

qn ξ̌(qn)g(qn)Ψ̌
(
(q− 1)∑∞

m=(logq n) qm ξ̌(qm) f (qm)

)

(
∑
(logq qn)−1
m=(logq a) qmh(qm)

)γ

≥
∞

∑
n=(logq a)

qn ξ̌(qn)g(qn)Ψ̌
(
(q− 1)∑

(logq n)−1
m=(logq a) qm ξ̌(qm)

)
Ψ̌′
(

f (qn)
)

f (qn)

(
∑
(logq qn)−1
m=(logq a) qmh(qm)

)γ .

Now, as a new result, we are interested in discussing the inequality (24) in the case of
the extrema of integration

∫ η
a θ(s)∆s being replaced to be from η to ∞. In fact, that is what

we will do in the following theorem.

Theorem 19. Assume that T is a time scale with 0 ≤ a ∈ T. Additionally, let f , g, θ and ξ̌ be
nonnegative functions defined on [0, ∞)T such that f and g are nonincreasing. Furthermore, let
Ψ̌ : R+ → R+ be a differentiable function such that Ψ̌′ is nondecreasing and Ψ̌′(xy) = Ψ̌′(x)Ψ̌′(y)
for all x, y ∈ R+. If γ > 1, then

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ ∞

η
θ(ζ) f (ζ)∆ζ

)

( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ ∆η ≥ 1
γ− 1

∫ ∞

a

θ(η)g(η)Ψ̌′
( ∫ ∞

η
θ(ζ)∆ζ

)
Ψ̌′
(

f (η)
)

f (η)

( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ−1 ∆η. (30)

Proof. Because of nonincreasity of f , we have for η ≥ λ ≥ a
∫ ∞

λ
θ(ζ) f (ζ)∆ζ ≤ f (λ)

∫ ∞

λ
θ(ζ)∆ζ,

therefore, because Ψ̌′ is nondecreasing,

Ψ̌′
( ∫ ∞

λ
θ(ζ) f (ζ)∆ζ

)
≥ Ψ̌′

(
f (λ)

∫ ∞

λ
θ(ζ)∆ζ

)
= Ψ̌′

(
f (λ)

)
Ψ̌′
( ∫ ∞

λ
θ(ζ)∆ζ

)
. (31)

From the chain rule (23), we see that there is c ∈ [λ, σ(λ)] with

[
Ψ̌
( ∫ ∞

λ
θ(ζ) f (ζ)∆ζ

)]∆

= Ψ̌′
( ∫ ∞

c
θ(ζ) f (ζ)∆ζ

)( ∫ ∞

λ
θ(ζ) f (ζ)∆ζ

)∆

.

Since c ≥ λ, Ψ̌′ is nondecreasing, r ≥ 1 and
( ∫ ∞

λ
θ(ζ) f (ζ)∆ζ

)∆

= −θ(λ) f (λ) ≤ 0, we

have [
Ψ̌
( ∫ ∞

λ
θ(ζ) f (ζ)∆ζ

)]∆

≥ −θ(λ) f (λ)Ψ̌′
( ∫ ∞

λ
θ(ζ) f (ζ)∆ζ

)
(32)

Combining (31) with (32) yields

[
Ψ̌
( ∫ ∞

λ
θ(ζ) f (ζ)∆ζ

)]∆

≥ −θ(λ)Ψ̌′
( ∫ ∞

λ
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ),
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which implies

ξ̌(η)g(η)
[

Ψ̌
( ∫ ∞

λ
θ(ζ) f (ζ)∆ζ

)]∆

( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ ≥
−ξ̌(η)g(η)θ(λ)Ψ̌′

( ∫ ∞

λ
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ .

As g is nonincreasing and λ ≤ η, we have g(λ) ≥ g(η) and hence,

ξ̌(η)g(η)
[

Ψ̌
( ∫ ∞

λ
θ(ζ) f (ζ)∆ζ

)]∆

( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ ≥
−ξ̌(η)θ(λ)g(λ)Ψ̌′

( ∫ ∞

λ
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ .

Now, after both sides are integrated with respect to λ over [a, η]T, we could have

ξ̌(η)g(η)
[

Ψ̌
( ∫ ∞

η
θ(ζ) f (ζ)∆ζ

)
− Ψ̌

( ∫ ∞

a
θ(ζ) f (ζ)∆ζ

)]

( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ

≥
∫ η

a

−ξ̌(η)θ(λ)g(λ)Ψ̌′
( ∫ ∞

λ
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ ∆λ.

Since Ψ̌
( ∫ ∞

η
θ(ζ) f (ζ)∆ζ

)
≥ Ψ̌

( ∫ ∞

η
θ(ζ) f (ζ)∆ζ

)
− Ψ̌

( ∫ ∞

a
θ(ζ) f (ζ)∆ζ

)
, we have

ξ̌(η)g(η)Ψ̌
( ∫ ∞

η
θ(ζ) f (ζ)∆ζ

)

( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ ≥ −
∫ η

a
ξ̌(η)θ(λ)g(λ)Ψ̌′

( ∫ ∞

λ
θ(ζ)∆ζ

)( ∫ ∞

η
ξ̌(ζ)∆ζ

)−γ

Ψ̌′
(

f (λ)
)

f (λ)∆λ.

Afterwards, if both sides are integrated with respect to η over [a, ∞)T, we obtain

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ ∞

η
θ(ζ) f (ζ)∆ζ

)

( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ ∆η

≥ −
∫ ∞

a
ξ̌(η)

( ∫ ∞

η
ξ̌(ζ)∆ζ

)−γ
( ∫ η

a
θ(λ)g(λ)Ψ̌′

( ∫ ∞

λ
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)∆λ

)
∆η. (33)

Using Fubini’s theorem on time scales, (33) can be rewritten as

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ ∞

η
θ(ζ) f (ζ)∆ζ

)

( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ ∆η

≥ −
∫ ∞

a
θ(λ)g(λ)Ψ̌′

( ∫ ∞

λ
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)

( ∫ ∞

λ
ξ̌(η)

( ∫ ∞

η
ξ̌(ζ)∆ζ

)−γ

∆η

)
∆λ. (34)
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If we take a look at the chain rule, (23), we could say that there exists c ∈ [η, σ(η)] such that

[
−
( ∫ ∞

η
ξ̌(ζ)∆ζ

)1−γ]∆

= −(1− γ)

( ∫ ∞

c
ξ̌(ζ)∆ζ

)−γ( ∫ ∞

η
ξ̌(ζ)∆ζ

)∆

.

Since c ≥ η, γ > 1 and
( ∫ ∞

η
ξ̌(ζ)∆ζ

)∆

= −ξ̌(η) ≤ 0, we get

[
−
( ∫ ∞

η
ξ̌(ζ)∆ζ

)1−γ]∆

≥ −(γ− 1)ξ̌(η)
( ∫ ∞

η
ξ̌(ζ)∆ζ

)−γ

. (35)

Substituting (35) into (34) leads to

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ ∞

η
θ(ζ) f (ζ)∆ζ

)

( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ ∆η

≥ 1
γ− 1

∫ ∞

a
θ(λ)g(λ)Ψ̌′

( ∫ ∞

λ
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)

( ∫ ∞

λ

[
−
( ∫ ∞

η
ξ̌(ζ)∆ζ

)1−γ]∆

∆η

)
∆λ

=
1

γ− 1

∫ ∞

a
θ(λ)g(λ)Ψ̌′

( ∫ ∞

λ
θ(ζ)∆ζ

)( ∫ ∞

λ
ξ̌(ζ)∆ζ

)1−γ

Ψ̌′
(

f (λ)
)

f (λ)∆λ,

from which inequality (30) follows.

Remark 4. In Theorem 19, if we take Ψ̌(η) = ηr, ξ̌(η) = θ(η) and g(η) = 1, then inequality (30)
reduces to inequality (20).

Corollary 6. If T = R in Theorem 19, then, inequality (30) will be reduced to

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ ∞

η
θ(ζ) f (ζ)dζ

)

( ∫ ∞

η
ξ̌(ζ)dζ

)γ dη ≥ 1
γ− 1

∫ ∞

a

θ(η)g(η)Ψ̌′
( ∫ ∞

η
θ(ζ)dζ

)
Ψ̌′
(

f (η)
)

f (η)

( ∫ ∞

η
ξ̌(ζ)dζ

)γ−1 dη.

Corollary 7. If T = hZ in Theorem 19, then inequality (30) is reduced to

∞

∑
n= a

h

ξ̌(nh)g(nh)Ψ̌
(

h
∞

∑
m= n

h

θ(mh) f (mh)
)

(
h

∞

∑
m= n

h

ξ̌(mh)
)γ ≥ 1

γ− 1

∞

∑
n= a

h

θ(nh)g(nh)Ψ̌′
(

h
∞

∑
m= n

h

θ(mh)
)

Ψ̌′
(

f (nh)
)

f (nh)

(
h

∞

∑
m= n

h

ξ̌(mh)
)γ−1 .

Corollary 8. In Corollary 7, if we take h = 1, then inequality (30) reduces to

∞

∑
n=a

ξ̌(n)g(n)Ψ̌
( ∞

∑
m=n

θ(m) f (m)

)

( ∞

∑
m=n

ξ̌(m)

)γ ≥ 1
γ− 1

∞

∑
n=a

θ(n)g(n)Ψ̌′
( ∞

∑
m=n

θ(m)

)
Ψ̌′
(

f (n)
)

f (n)

( ∞

∑
m=n

ξ̌(m)

)γ−1 .
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Corollary 9. If T = qZ in Theorem 19, then inequality (30) will be reduced to

∞

∑
n=(logq a)

qn ξ̌(qn)g(qn)Ψ̌
(
(q− 1)∑∞

m=(logq n) qmh(qm) f (qm)

)

(
(q− 1)∑∞

m=(logq n) qm ξ̌(qm)

)γ

≥ 1
γ− 1

∞

∑
n=(logq a)

qnh(qn)g(qn)Ψ̌′
(
(q− 1)∑∞

m=(logq n) qmh(qm)

)
Ψ̌′
(

f (qn)
)

f (qn)

(
(q− 1)∑∞

m=(logq n) qm ξ̌(qm)

)γ−1 .

In the next theorem, we make a broad popularization of Theorem 13.

Theorem 20. Let T be a time scale with 0 ≤ a ∈ T. Moreover, suppose that f , g, θ and ξ̌ are
nonnegative functions defined on [0, ∞)T such that f is nonincreasing and g is nondecreasing.
In addition, let Ψ̌ : R+ → R+ be a differentiable function such that Ψ̌′ is nondecreasing and
Ψ̌′(xy) = Ψ̌′(x)Ψ̌′(y) for all x, y ∈ R+. If γ > 1, then

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ η

0
θ(ζ) f (ζ)∆ζ

)

( ∫ η

0
ξ̌(ζ)∆ζ

)γ ∆η ≥ 1
γ− 1

∫ ∞

a

θ(η)g(η)Ψ̌′
( ∫ η

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (η)
)

f (η)

( ∫ η

0
ξ̌(ζ)∆ζ

)γ−1 ∆η. (36)

Proof. As a result of of the nonincreasity of f , we have for η ≥ λ ≥ 0

∫ λ

0
θ(ζ) f (ζ)∆ζ ≥ f (λ)

∫ λ

0
θ(ζ)∆ζ,

then, since Ψ̌′ is nondecreasing,

Ψ̌′
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)
≥ Ψ̌′

(
f (λ)

∫ λ

0
θ(ζ)∆ζ

)
= Ψ̌′

(
f (λ)

)
Ψ̌′
( ∫ λ

0
θ(ζ)∆ζ

)
. (37)

Using the chain rule (23), there exists c ∈ [λ, σ(λ)] such that

[
Ψ̌
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)]∆

= Ψ̌′
( ∫ c

0
θ(ζ) f (ζ)∆ζ

)( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)∆

.

Since c ≥ λ, Ψ̌′ is nondecreasing, r ≥ 1 and
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)∆

= θ(λ) f (λ) ≥ 0, we have

[
Ψ̌
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)]∆

≥ θ(λ) f (λ)Ψ̌′
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)
. (38)

By using (37) and (38) together we could have

[
Ψ̌′
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)]∆

≥ θ(λ)Ψ̌′
( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ).

and thus

ξ̌(η)g(η)
[

Ψ̌
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)]∆

( ∫ η

0
ξ̌(ζ)∆ζ

)γ ≥
ξ̌(η)g(η)θ(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ η

0
ξ̌(ζ)∆ζ

)γ .
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As g is nondecreasing and λ ≤ η, we have g(λ) ≤ g(η) and hence,

ξ̌(η)g(η)
[

Ψ̌
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)]∆

( ∫ η

0
ξ̌(ζ)∆ζ

)γ ≥
ξ̌(η)g(λ)θ(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ η

0
ξ̌(ζ)∆ζ

)γ .

Integrating both sides of the last inequality with respect to λ over [0, η]T gives

ξ̌(η)g(η)
[

Ψ̌
( ∫ η

0
θ(ζ) f (ζ)∆ζ

)
− Ψ̌

( ∫ a

0
θ(ζ) f (ζ)∆ζ

)]

( ∫ η

0
ξ̌(ζ)∆ζ

)γ

≥
∫ η

a

ξ̌(η)θ(λ)g(λ)Ψ̌′
( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ η

0
ξ̌(ζ)∆ζ

)γ ∆λ.

Since Ψ̌
( ∫ η

0
θ(ζ) f (ζ)∆ζ

)
≥ Ψ̌

( ∫ η

0
θ(ζ) f (ζ)∆ζ

)
− Ψ̌

( ∫ a

0
θ(ζ) f (ζ)∆ζ

)
, we obtain

ξ̌(η)g(η)Ψ̌
( ∫ η

0
θ(ζ) f (ζ)∆ζ

)

( ∫ η

0
ξ̌(ζ)∆ζ

)γ ≥
∫ η

a
ξ̌(η)θ(λ)g(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)( ∫ η

0
ξ̌(ζ)∆ζ

)−γ

Ψ̌′
(

f (λ)
)

f (λ)∆λ,

After integrating both sides with respect to η over [a, ∞)T,

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ η

0
θ(ζ) f (ζ)∆ζ

)

( ∫ η

0
ξ̌(ζ)∆ζ

)γ ∆η

≥
∫ ∞

a
ξ̌(η)

( ∫ η

0
ξ̌(ζ)∆ζ

)−γ
( ∫ η

a
θ(λ)g(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)∆λ

)
∆η. (39)

Employing Fubini’s theorem on time scales, (39) can be rewritten as

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ η

0
θ(ζ) f (ζ)∆ζ

)

( ∫ η

0
ξ̌(ζ)∆ζ

)γ ∆η

≥
∫ ∞

a
θ(λ)g(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)

( ∫ ∞

λ
ξ̌(η)

( ∫ η

0
ξ̌(ζ)∆ζ

)−γ

∆η

)
∆λ. (40)

Additionally, by taking a look at the chain rule (23), we can say that there exists c ∈ [η, σ(η)]
such that

[
−
( ∫ η

0
ξ̌(ζ)∆ζ

)1−γ]∆

= −(1− γ)

( ∫ c

0
ξ̌(ζ)∆ζ

)−γ( ∫ η

0
ξ̌(ζ)∆ζ

)∆

.
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Since c ≥ η, γ > 1 and
( ∫ η

0
ξ̌(ζ)∆ζ

)∆

= ξ̌(η) ≥ 0, we get

[
−
( ∫ η

0
ξ̌(ζ)∆ζ

)1−γ]∆

≤ (γ− 1)ξ̌(η)
( ∫ η

0
ξ̌(ζ)∆ζ

)−γ

. (41)

Substituting (41) into (40) leads to

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ η

0
θ(ζ) f (ζ)∆ζ

)

( ∫ η

0
ξ̌(ζ)∆ζ

)γ ∆η

≥ 1
γ− 1

∫ ∞

a
θ(λ)g(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)

( ∫ ∞

λ

[
−
( ∫ η

0
ξ̌(ζ)∆ζ

)1−γ]∆

∆η

)
∆λ

=
1

γ− 1

∫ ∞

a
θ(λ)g(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)( ∫ λ

0
ξ̌(ζ)∆ζ

)1−γ

Ψ̌′
(

f (λ)
)

f (λ)∆λ.

This concludes the proof.

Remark 5. In Theorem 20, if we make Ψ̌(η) = ηr, ξ̌(η) = θ(η) and g(η) = 1, then inequal-
ity (36) reduces to inequality (21).

Remark 6. In Theorem 20, if we make Ψ̌(η) = ηr, ξ̌(η) = θ(η) = g(η) = 1, r = γ and a = 0,
then we reclaim Theorem 13.

Corollary 10. If T = R in Theorem 20, then, inequality (36) boils down to

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ η

0
θ(ζ) f (ζ)dζ

)

( ∫ η

0
ξ̌(ζ)dζ

)γ dη ≥ 1
γ− 1

∫ ∞

a

θ(η)g(η)Ψ̌′
( ∫ η

0
θ(ζ)dζ

)
Ψ̌′
(

f (η)
)

f (η)

( ∫ η

0
ξ̌(ζ)dζ

)γ−1 dη.

Corollary 11. If T = hZ in Theorem 20, then, inequality (36) boils down to

∞

∑
n= a

h

ξ̌(nh)g(nh)Ψ̌
(

h

n
h−1

∑
m=0

θ(mh) f (mh)
)

(
h

n
h−1

∑
m=0

ξ̌(mh)
)γ

≥ 1
γ− 1

∞

∑
n= a

h

θ(nh)g(nh)Ψ̌′
(

h

n
h−1

∑
m=0

θ(mh)
)

Ψ̌′
(

f (nh)
)

f (nh)

(
h

n
h−1

∑
m=0

ξ̌(mh)
)γ−1

.

Corollary 12. In Corollary 11, if we take T = Z, and inequality (36) abbreviates to

∞

∑
n=a

ξ̌(n)g(n)Ψ̌
( n−1

∑
m=0

θ(m) f (m)

)

( n−1

∑
m=0

ξ̌(m)

)γ
≥ 1

γ− 1

∞

∑
n=a

θ(n)g(n)Ψ̌′
( n−1

∑
m=0

θ(m)

)
Ψ̌′
(

f (n)
)

f (n)

( n−1

∑
m=0

ξ̌(m)

)γ−1 .
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Corollary 13. If T = qZ in Theorem 20, and inequality (36) abbreviates to

∞

∑
n=(logq a)

qn ξ̌(qn)g(qn)Ψ̌
(
(q− 1)∑

(logq n)−1
m=0 qmh(qm) f (qm)

)

(
(q− 1)

(logq n)−1

∑
m=0

qm ξ̌(qm)

)γ

≥ 1
γ− 1

∞

∑
n=(logq a)

qnh(qn)g(qn)Ψ̌′
(
(q− 1)∑

(logq n)−1
m=0 qmh(qm)

)
Ψ̌′
(

f (qn)
)

f (qn)

(
(q− 1)∑

(logq n)−1
m=0 qm ξ̌(qm)

)γ−1 .

Now, as a new result, we are interested in discussing the results in Theorem (20) in the
case of the extrema of integration

∫ η
a ξ̌∆s being replaced to be from η to ∞. In fact, that is

exactly what we shall accomplish in the next theorem.

Theorem 21. Suppose that T is a time scale with 0 ≤ a ∈ T. Moreover, assume that f , g, θ and ξ̌
are nonnegative functions defined on [0, ∞)T such that f is nonincreasing and g is nondecreasing.
Moreover, let Ψ̌ : R+ → R+ be a differentiable function such that Ψ̌′ is nondecreasing and
Ψ̌′(xy) = Ψ̌′(x)Ψ̌′(y) for all x, y ∈ R+. If 0 ≤ γ < 1, then

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ η

0
θ(ζ) f (ζ)∆ζ

)

( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)γ ∆η ≥ 1
1− γ

∫ ∞

a

θ(η)g(η)Ψ̌′
( ∫ η

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (η)
)

f (η)

( ∫ ∞

η
ξ̌(ζ)∆ζ

)γ−1 ∆η. (42)

Proof. Due to nonincreasity of f , we have for η ≥ λ ≥ 0

∫ λ

0
θ(ζ) f (ζ)∆ζ ≥ f (λ)

∫ λ

0
θ(ζ)∆ζ,

and thus,

Ψ̌
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)
≥ Ψ̌

(
f (λ)

∫ λ

0
θ(ζ)∆ζ

)
= Ψ̌

(
f (λ)

)
Ψ̌
(

f (λ)
∫ λ

0
θ(ζ)∆ζ

)
. (43)

Applying the chain rule (23), there exists c ∈ [λ, σ(λ)] such that

[
Ψ̌
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)]∆

= Ψ̌′
( ∫ c

0
θ(ζ) f (ζ)∆ζ

)( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)∆

.

Since c ≥ λ, Ψ̌′ is nondecreasing, r ≥ 1 and
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)∆

= θ(λ) f (λ) ≥ 0, we get

[
Ψ̌
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)]∆

≥ θ(λ) f (λ)Ψ̌′
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)
. (44)

Combining (43) with (44) gives

[
Ψ̌
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)]∆

≥ θ(λ)Ψ̌′
( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ),
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and then

ξ̌(η)g(η)
[

Ψ̌
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)]∆

( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)γ ≥
ξ̌(η)g(η)θ(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)γ .

Since g is nondecreasing and λ ≤ η, we have g(λ) ≤ g(η) and thus,

ξ̌(η)g(η)
[

Ψ̌
( ∫ λ

0
θ(ζ) f (ζ)∆ζ

)]∆

( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)γ ≥
ξ̌(η)g(λ)θ(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)γ .

Therefore,

ξ̌(η)g(η)Ψ̌
( ∫ η

0
θ(ζ) f (ζ)∆ζ

)

( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)γ ≥
∫ η

a

ξ̌(η)θ(λ)g(λ)Ψ̌′
( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)γ ∆λ.

Hence,

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ η

0
θ(ζ) f (ζ)∆ζ

)

( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)γ ∆η

≥
∫ ∞

a
ξ̌(η)

( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)−γ
( ∫ η

a
θ(λ)g(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)∆λ

)
∆η. (45)

Equation (45) can be reformulated as follows by using Fubini’s theorem on time scales:

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ η

0
θ(ζ) f (ζ)∆ζ

)

( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)γ ∆η

≥
∫ ∞

a
θ(λ)g(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)

( ∫ ∞

λ
ξ̌(η)

( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)−γ

∆η

)
∆λ. (46)

By recalling the chain rule (23), we can say there exists c ∈ [η, σ(η)] such that

[
−
( ∫ ∞

η
ξ̌(ζ)∆ζ

)1−γ]∆

= −(1− γ)

( ∫ ∞

c
ξ̌(ζ)∆ζ

)−γ( ∫ ∞

η
ξ̌(ζ)∆ζ

)∆

.

Since c ≤ σ(η), 0 ≤ γ < 1 and
( ∫ ∞

η
ξ̌(ζ)∆ζ

)∆

= −ξ̌(η) ≤ 0, we get

[
−
( ∫ ∞

η
ξ̌(ζ)∆ζ

)1−γ]∆

≤ (1− γ)ξ̌(η)

( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)−γ

. (47)

Substituting (47) into (46) leads to
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∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ η

0
θ(ζ) f (ζ)∆ζ

)

( ∫ ∞

σ(η)
ξ̌(ζ)∆ζ

)γ ∆η

≥ 1
1− γ

∫ ∞

a
θ(λ)g(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)

( ∫ ∞

λ

[
−
( ∫ ∞

η
ξ̌(ζ)∆ζ

)1−γ]∆

∆η

)
∆λ

=
1

1− γ

∫ ∞

a
θ(λ)g(λ)Ψ̌′

( ∫ λ

0
θ(ζ)∆ζ

)
Ψ̌′
(

f (λ)
)

f (λ)
( ∫ ∞

λ
ξ̌(ζ)∆ζ

)1−γ

∆λ,

which is our desired inequality (42).

Remark 7. In Theorem 21, if we take Ψ̌(η) = ηr, ξ̌(η) = θ(η) and g(η) = 1, then inequality (42)
reduces to inequality (22).

Corollary 14. If T = R in Theorem 21, and by considering, inequality (42) abbreviates to

∫ ∞

a

ξ̌(η)g(η)Ψ̌
( ∫ η

0
θ(ζ) f (ζ)dζ

)

( ∫ ∞

η
ξ̌(ζ)dζ

)γ dη ≥ 1
1− γ

∫ ∞

a

θ(η)g(η)Ψ̌′
( ∫ η

0
θ(ζ)dζ

)
Ψ̌′
(

f (η)
)

f (η)

( ∫ ∞

η
ξ̌(ζ)dζ

)γ−1 dη.

Corollary 15. If T = hZ in Theorem 21, and by considering, inequality (42) abbreviates to

∞

∑
n= a

h

ξ̌(nh)g(nh)Ψ̌
(

h

n
h−1

∑
m=0

θ(mh) f (mh)
)

(
h

∞

∑
m= n

h +1
ξ̌(mh)

)γ ≥ 1
1− γ

∞

∑
n= a

h

θ(nh)g(nh)Ψ̌′
(

h

a
h−1

∑
m=0

θ(mh)
)

Ψ̌′
(

f (nh)
)

f (nh)

(
h

∞

∑
m= n

h

ξ̌(mh)
)γ−1 .

Corollary 16. In Corollary 15, if we take h = 1, then, inequality (42) boils down to

∞

∑
n=a

ξ̌(n)g(n)Ψ̌
( n−1

∑
m=0

θ(m) f (m)

)

( ∞

∑
m=n+1

ξ̌(m)

)γ ≥ 1
1− γ

∞

∑
n=a

θ(n)g(n)Ψ̌′
( n−1

∑
m=0

θ(m)

)
Ψ̌′
(

f (n)
)

f (n)

( ∞

∑
m=n

ξ̌(m)

)γ−1 .

Corollary 17. If T = qZ in Theorem 21, and by considering, inequality (42) abbreviates to

∞

∑
n=(logq a)

qn ξ̌(qn)g(qn)Ψ̌
(
(q− 1)∑

(logq n)−1
m=0 qmh(qm) f (qm)

)

(
(q− 1)∑∞

m=(logq n)+1 qm ξ̌(qm)

)γ

≥ 1
1− γ

∞

∑
n=(logq a)

qnh(qn)g(qn)Ψ̌′
(
(q− 1)∑

(logq n)−1
m=0 qmh(qm)

)
Ψ̌′
(

f (qn)
)

f (qn)

(
(q− 1)∑∞

m=(logq n) qm ξ̌(qm)

)γ−1 .

3. Conclusions

In this paper, with the help of Fubini’s theorem as well as a straightforward outcome of
Keller’s chain rule on time scales, we generalized some reverse Hardy-type inequalities to
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a general time scale. Moreover, we generalized a number of other inequalities to a general
time scale. We obtained the discrete and the continuous inequalities as special cases of our
main results.
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Abstract: This paper considers an unknown functional estimation problem in a regression model
with multiplicative and additive noise. A linear wavelet estimator is first constructed by a wavelet
projection operator. The convergence rate under the pointwise error of linear wavelet estimators is
studied in local Hölder space. A nonlinear wavelet estimator is provided by the hard thresholding
method in order to obtain an adaptive estimator. The convergence rate of the nonlinear estimator
is the same as the linear estimator up to a logarithmic term. Finally, it should be pointed out that
the convergence rates of two wavelet estimators are consistent with the optimal convergence rate
on pointwise nonparametric estimation.

Keywords: nonparametric estimation; pointwise error; local Hölder space; wavelet

MSC: 62G07; 62G20; 42C40

1. Introduction

The classical regression model plays an important role in many practical applications.
The definition of this model is shown by Yi = f (Xi) + εi, i ∈ {1, . . . , n}. The aim of this
conventional regression model is to estimate the unknown regression function f (x) by observed
data (X1, Y1), . . . , (Xn, Yn). For this classical regression model, many important and interesting
results have been obtained by Hart [1], Kerkyacharian and Picard [2], Chesneau [3], Reiß [4],
Yuan and Zhou [5], and Wang and Politis [6].

Recently, Chesneau et al. [7] studied the following regression model

Yi = f (Xi)Ui + Vi, i ∈ {1, . . . , n}, (1)

where (X1, Y1), . . . , (Xn, Yn) are independent and identically distributed random variables,
f is an unknown function defined on ∆ ⊆ R, U1, . . . , Un are n identically distributed
random vectors, X1, . . . , Xn and V1, . . . , Vn are identically distributed random variables.
Moreover, Xi and Ui are independent, Ui and Vi are independent for any i ∈ {1, . . . , n}.
The aim of this model is to estimate the unknown function r(x)(r := f 2) by the observed
data (X1, Y1), . . . , (Xn, Yn).

For the above model (1), it reduces to the classical regression model when Ui ≡ 1.
In other words, (1) can be viewed as an extension of the classical regression problem. In
addition, model (1) becomes the classical heteroscedastic regression model when Vi is
a function of Xi (Vi = g(Xi)). Then, the function r(x)(r := f 2) is called a variance function
in a heteroscedastic regression model, which plays a crucial role in financial and economic
fields (Cai and Wang [8], Alharbi and Patili [9]). Furthermore, the regression model (1)
is also widely used in Global Positioning Systems (Huang et al. [10]), Image processing
(Kravchenko et al. [11], Cui [12]), and so on.
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For this regression model, Chesneau et al. [7] propose two wavelet estimators and
discuss convergence rates under the mean integrated square error over Besov space. How-
ever, this study only focuses on the global error of wavelet estimators. There is a lack
of pointwise risk estimation for this model. In this paper, two new wavelet estimators
are constructed, and the convergence rates over the pointwise error of wavelet estimators
in local Hölder space are considered. More importantly, those wavelet estimators can all
obtain the optimal convergence rate under pointwise error.

2. Assumptions, Local Hölder Space and Wavelet

In this paper, we will consider model (1) with ∆ = [0, 1]. Additional technical
assumptions are formulated below.

• A1:Yi is bounded for any i ∈ {1, . . . , n}.
• A2:X1 ∼ U(0, 1).
• A3:U1 ∼ N(0, 1).
• A4:V1 has a moment of order 2.
• A5:Xi and Vi are independent for any i ∈ {1, . . . , n}.
• A6:Vi = g(Xi), where g : [0, 1]→ R is known and bounded.

For the above assumptions, it is easy to see that A5 and A6 are reversed. Hence, we
will define the following two sets, H1 and H2, of the above assumptions

H1:={A1,A2,A3,A4,A5},
H2:={A1,A2,A3,A4,A6}.

Note that the difference between H1 and H2 is the relationship between Vi and Xi.
Since the above assumptions are separated into two sets, H1 and H2; the estimators
of the function r(x) should be constructed under different condition sets, respectively.

This paper will consider nonparametric pointwise estimation in local Hölder space.
Now, we introduce the concept of local Hölder space. Recall the classic Hölder condition
Hδ(R)(0 < δ < 1),

| f (y)− f (x)| ≤ C|y− x|δ, x, y ∈ R.

Let Ωx0 be a neighborhood of x0 ∈ R and a function space Hδ(Ωx0)(0 < δ ≤ 1) be
defined as

Hδ(Ωx0) =
{

f : | f (y)− f (x)| ≤ C|y− x|δ, x, y ∈ Ωx0

}
,

where C > 0 is a fixed constant. Clearly, f ∈ Hδ(R) must be contained in Hδ(Ωx0).
However, the converse does not hold.

For s = N + δ > 0 with δ ∈ (0, 1] and N ∈ N (the nonnegative integer set), we define
the local Hölder space as

Hs(Ωx0) =
{

f : f (N) ∈ Hδ(Ωx0)
}

.

Furthermore, it follows from the definition of Hs(Ωx0) that Hs(Ωx0) ⊆ L2(R).
In order to construct wavelet estimators in later sections, we introduce some basic

theories of wavelets.

Definition 1. A multiresolution analysis (MRA) is a sequence of closed subspaces {Vj}j∈Z
of the square-integrable function space L2(R) satisfying the following properties:
(i) Vj ⊆ Vj+1;
(ii)

⋃
j∈ZVj = L2(R)(the space

⋃
j∈ZVj is dense in L2(R));

(iii) f (2·) ∈ Vj+1 if and only if f (·) ∈ Vj for each j ∈ Z;
(iv) There exists φ ∈ L2(R) (scaling function) such that {φ(· − k), k ∈ Z} forms an orthonormal
basis of V0 = span{φ(· − k)}.

Let φ be a scaling function, and ψ be a wavelet function such that

{φj∗ ,k, ψj,k, j ≥ j∗, k ∈ Z}
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constitutes an orthonormal basis of L2(R), where j∗ is a positive integer, φj∗ ,k = 2
j∗
2 φ(2j∗x− k)

and ψj,k = 2
j
2 ψ(2jx − k). In this paper, we choose the Daubechies wavelets. Then for any

h(x) ∈ Hs(Ωx0), it has the following expansion

h(x) = ∑
k∈Z

αj∗ ,kφj∗ ,k(x) + ∑
j≥j∗

∑
k∈Z

β j,kψj,k(x),

where αj,k = 〈h, φj,k〉, β j,k = 〈h, ψj,k〉. Further details can be found in Meyer [13] and Daubechies [14].
Let Pj be the orthogonal projection operator from L2(R) onto the space Vj with the orthonormal

basis
{

φj,k(·) = 2
j
2 φ(2j · −k), k ∈ Z

}
. Then for h(x) ∈ Hs(Ωx0) and αj,k = 〈h, φj,k〉,

Pjh(x) = ∑
k∈Z

αj,kφj,k(x).

In this position, we give an important lemma, which will be used in later discussions. Here
and after, we adopt the following symbol: A . B denotes A ≤ cB for some constant c > 0; A & B
means B . A; A ∼ B stand for both A . B and B . A.

Lemma 1 (Liu and Wu [15]). If f ∈ Hs(Ωx0), s > 0 with s = N + δ(0 < δ ≤ 1), then
for x ∈ Ωx0 and j∗ ∈ N,

(i) sup
f∈Hs(Ωx0)

∑
k∈Z

∣∣∣β j,kψj,k(x)
∣∣∣ . 2−js;

(ii) f (x) = ∑
k∈Z

αj∗ ,kφj∗ ,k(x) + ∑
j≥j∗

∑
k∈Z

β j,kψj,k;

(iii) sup
f∈Hs(Ωx0)

∣∣ f (x)− Pj∗ f (x)
∣∣ . 2−j∗s.

3. Linear Wavelet Estimator

In this section, a linear wavelet estimator is given by using the wavelet method,
and the order of pointwise convergence of this estimator is studied in local Hölder space.
Now we define our linear wavelet estimator

r̂lin
n (x) = ∑

k
α̂j∗ ,kφj∗ ,k(x), (2)

where

α̂j∗ ,k =
1
n

n

∑
i=1

Y2
i φj∗ ,k(Xi)− vj∗ ,k, (3)

vj∗ ,k =

{
E[V2

1 ]2
−j∗/2, A5,∫ 1

0 g2(x)φj∗ ,k(x)dx, A6.
(4)

According to the definition of vj∗ ,k, it is clear that the structure of this linear wavelet
estimator depends on the reverse conditions of A5 and A6. Some of the lemmas needed
in this section and their proofs are given below.

Lemma 2. For model (1), if H1 or H2 hold,

E[α̂j∗ ,k] = αj∗ ,k. (5)
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Proof. According to the definition of α̂j∗ ,k,

E[α̂j∗ ,k] = E
[

1
n

n

∑
i=1

Y2
i φj∗ ,k(Xi)− vj∗ ,k

]

= E
[
Y2

1 φj∗ ,k(X1)
]
− vj∗ ,k

= E
[
r(X1)U2

1 φj∗ ,k(X1)
]
+ 2E[ f (X1)U1V1φj∗ ,k(X1)] +E

[
V2

1 φj∗ ,k(X1)
]
− vj∗ ,k.

Since Ui is independent from Xi and Vi, respectively,

E[ f (X1)U1V1φj∗ ,k(X1)] = E[U1]E[ f (X1)V1φj∗ ,k(X1)].

In addition, condition A3 implies that E[U1] = 0. Then one gets

E[ f (X1)U1V1φj∗ ,k(X1)] = 0.

It follows from A5, A2 and A4 that

E[V2
1 ]E[φj∗ ,k(X1)] = E

[
V2

1

] ∫ 1

0
φj∗ ,k(x)dx = E[V2

1 ]2
− j∗

2 = vj∗ ,k.

On the other hand, we obtain

E
[
V2

1 φj∗ ,k(X1)
]
=
∫ 1

0
g2(x)φj∗ ,k(x)dx = vj∗ ,k

with condition A6.
Finally, according to the assumption of A3 and A2,

E[α̂j∗ ,k] = E[U2
1 ]E[r(X1)φj∗ ,k(X1)] =

∫ 1

0
r(x)φj∗ ,k(x)dx = αj∗ ,k.

In order to estimate E
[∣∣∣α̂j∗ ,k − αj∗ ,k

∣∣∣
p]

, we need the following Rosenthal’s inequality.
Rosenthal’s inequality Let X1, . . . , Xn be independent random variables such that

E[Xi] = 0 and |Xi| ≤ M(i = 1, 2, . . . , n),

(i)E
[∣∣∣∣

n
∑

i=1
Xi

∣∣∣∣
p]

.
(

Mp−2
n
∑

i=1
E[Xi

2] +

(
n
∑

i=1
E[X2

i ]

)p/2
)

, p > 2;

(ii)E
[∣∣∣∣

n
∑

i=1
Xi

∣∣∣∣
p]

.
(

n
∑

i=1
E[X2

i ]

)p/2
, 0 < p ≤ 2.

Lemma 3. Let α̂j∗ ,k be defined by (3). If H1 or H2 hold and 2j∗ ≤ n, then for 1 ≤ p < ∞,

E
[∣∣∣α̂j∗ ,k − αj∗ ,k

∣∣∣
p]

. n−p/2. (6)

Proof. By (5) and the definition of α̂j∗ ,k,

|α̂j∗ ,k − αj∗ ,k| =
∣∣∣∣∣

1
n

n

∑
i=1

Y2
i φj∗ ,k(Xi)− vj∗ ,k −E

[
1
n

n

∑
i=1

Y2
i φj∗ ,k(Xi)− vj∗ ,k

]∣∣∣∣∣

=
1
n

∣∣∣∣∣
n

∑
i=1

(Y2
i φj∗ ,k(Xi)−E

[
Y2

i φj∗ ,k(Xi)
]
)

∣∣∣∣∣ =
1
n

∣∣∣∣∣
n

∑
i=1

Zi

∣∣∣∣∣ (7)
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with Zi := Y2
i φj∗ ,k(Xi)−E[Y2

i φj∗ ,k(Xi)]. It is clear that E[Zi] = 0. Using the definition of Zi
and A1, there exists a constant c > 0 such that

|Zi| =
∣∣∣Y2

i φj∗ ,k(Xi)−E
[
Y2

i φj∗ ,k(Xi)
]∣∣∣ ≤

∣∣∣Y2
i φj∗ ,k(Xi)|+ |E

[
Y2

i φj∗ ,k(Xi)
]∣∣∣ ≤ c2

j∗
2 . 2

j∗
2 .

When p > 2, according to Rosenthal’s inequality,

E
[∣∣∣∣∣

n

∑
i=1

Zi

∣∣∣∣∣

p]
.


Mp−2

n

∑
i=1

E
[

Z2
i

]
+

(
n

∑
i=1

E
[

Z2
i

]) p
2



. (2
j∗
2 )p−2

n

∑
i=1

E
[

Z2
i

]
+

(
n

∑
i=1

E
[

Z2
i

]) p
2

. (8)

Note thatE
[
Z2

i
]
= Var[Zi] = Var

[
Y2

i φj∗ ,k(Xi)−E[Y2
i φj∗ ,k(Xi)]

]
= Var

[
Y2

i φj∗ ,k(Xi)
]
≤

E
[
Y4

i φ2
j∗ ,k(Xi)

]
. Furthermore, it follows from A1 and the property of φj∗ ,k that

E
[

Z2
i

]
. E

[
Y4

i φ2
j∗ ,k(Xi)

]
. 1.

Then it can be easily seen that

(
n

∑
i=1

E
[

Z2
i

])p/2

. n
p
2 . (9)

By (8) and (9), we obtain

E
[∣∣∣∣∣

n

∑
i=1

Zi

∣∣∣∣∣

p]
. (2

j∗
2 )p−2n + n

p
2 . (10)

When 1 ≤ p < 2,

E
[∣∣∣∣∣

n

∑
i=1

Zi

∣∣∣∣∣

p]
.
(

n

∑
i=1

E
[

Z2
i

])p/2

.

Hence,

E
[∣∣∣∣∣

n

∑
i=1

Zi

∣∣∣∣∣

p]
. n

p
2 . (11)

It follows from (7), (10) and (11) that

E
[
|α̂j∗ ,k − αj∗ ,k|p

]
. E

[(
1
n

∣∣∣∣∣
n

∑
i=1

Zi

∣∣∣∣∣

)p]
=

1
np E

[∣∣∣∣∣
n

∑
i=1

Zi

∣∣∣∣∣

p]
.

Hence,

E
[
|α̂j∗ ,k − αj∗ ,k|p

]
.





1
np [(2

j∗
2 )

p−2
· n + n

p
2 ], p ≥ 2,

n−
p
2 , 1 ≤ p < 2.

(12)

This with 2j∗ ≤ n implies that

E[|α̂j∗ ,k − αj∗ ,k|
p] . n−

p
2 .

Now the convergence rate of the linear wavelet estimator is proved in the following.
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Theorem 1. Let r ∈ Hs(Ωx0) with s > 0. Then for each 1 ≤ p < ∞, the linear wavelet estimator

r̂lin
n (x) defined in (2) with 2j∗ ∼ n

1
2s+1 satisfies

sup
r∈Hs(Ωx0 )

{
E
[
|r̂lin

n (x0)− r(x0)|
p]} 1

p . n−
s

2s+1 .

Remark 1. Note that n−
s

2s+1 is the optimal convergence rate over pointwise error for nonparametric
functional estimation (Brown and Low [16]). The above result yields that the linear wavelet estimator
can obtain the optimal convergence rate.

Proof. The triangular inequality gives

{
E
[∣∣∣r̂lin

n (x0)− r(x0)
∣∣∣

p]} 1
p .

{
E
[∣∣∣r̂lin

n (x0)− Pj∗r(x0)
∣∣∣

p
+
∣∣Pj∗r(x0)− r(x0)

∣∣p
]} 1

p

.
{
E
[∣∣∣r̂lin

n (x0)− Pj∗r(x0)
∣∣∣

p]} 1
p

+
∣∣Pj∗r(x0)− r(x0)

∣∣. (13)

• The bias term
∣∣Pj∗r(x0)− r(x0)

∣∣. According to Lemma 1,

∣∣Pj∗r(x0)− r(x0)
∣∣ . 2−j∗s. (14)

• The stochastic term
{
E
[∣∣∣r̂lin

n (x0)− Pj∗r(x0)
∣∣∣

p]} 1
p
. Note that

E
[∣∣∣r̂lin

n (x0)− Pj∗r(x0)
∣∣∣

p]
= E



∣∣∣∣∣∣ ∑
k∈Λj∗

(
α̂j∗ ,k − αj∗ ,k

)
φj∗ ,k(x0)

∣∣∣∣∣∣

p


≤ E





 ∑

k∈Λj∗

∣∣∣α̂j∗ ,k − αj∗ ,k

∣∣∣
∣∣∣φj∗ ,k(x0)

∣∣∣
1
p
∣∣∣φj∗ ,k(x0)

∣∣∣
1
p′





p


with 1
p + 1

p′ = 1. According to the Hölder inequality, Lemma 3 and ∑
k∈Λj∗

∣∣∣φj∗ ,k

∣∣∣ . 2j∗/2,

the above inequality reduces to

E
[∣∣∣r̂lin

n (x0)− Pj∗r(x0)
∣∣∣

p]

≤ E









 ∑

k∈Λj∗

∣∣∣α̂j∗ ,k − αj∗ ,k

∣∣∣
p∣∣∣φj∗ ,k(x0)

∣∣∣




1
p

 ∑

k∈Λj∗

∣∣∣φj∗ ,k(x0)
∣∣∣




1
p′




p


. ∑
k∈Λj∗

E
[∣∣∣α̂j∗ ,k − αj∗ ,k

∣∣∣
p∣∣∣φj∗ ,k(x0)

∣∣∣
]
2

j∗ p
2p′

.
(

1
n

) p
2
2

j∗
2

(
1+ p

p′
)

=

(
2j∗

n

) p
2

(15)

Combining (13), (14) and (15), one has

{
E
[∣∣∣r̂lin

n (x0)− r(x0)
∣∣∣

p]}1/p
≤ 2−j∗s +

(
2j∗

n

) 1
2

.
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Furthermore, by the given choice 2j∗ ∼ n
1

2s+1 ,

sup
r∈Hs(Ωx0 )

{
E
[
|r̂lin

n (x0)− r(x0)|
p]} 1

p . n−
s

2s+1 .

4. Nonlinear Wavelet Estimator

According to the definition of the linear wavelet estimator, we can easily find that
the scale parameter j∗ of the linear wavelet estimator depends on the smooth parameter s
of the function r(x) to be estimated, so the linear estimator is not adaptive. In this section,
we will solve this problem by constructing a nonlinear wavelet estimator with the hard
thresholding method.

Now we define our nonlinear wavelet estimator

r̂non
n (x) = ∑

k∈Λj∗

α̂j∗ ,kφj∗ ,k(x) +
j1

∑
j=j∗

∑
k∈Λj

β̂ j,k I{|β̂ j,k |≥κtn}ψj,k(x), x ∈ [0, 1], (16)

where α̂j∗ ,k is defined by (3),

β̂ j,k :=
1
n

n

∑
i=1

Y2
i ψj,k(Xi)− wj,k, (17)

wj,k :=

{
0, A5,∫ 1

0 g2(x)ψj,k(x)dx, A6,
(18)

and tn =
√

ln n/n, IG denotes the indicator function over an event G. The positive integer
j∗, j1, and κ will be given in Theorem 2.

Remark 2. Compared with the structure of β̂ j,k in Chesneau et al. [7], the definition of β̂ j,k in this
paper does not need a thresholding algorithm. In other words, this paper reduces the complexity
of the nonlinear wavelet estimator.

Lemma 4. For model (1), if H1 or H2 hold, then

E
[

β̂ j,k

]
= β j,k.

Lemma 5. Let β̂ j,k be defined by (17). If H1 or H2 hold and 2j ≤ n, then for 1 ≤ p < ∞,

E
[
|β̂ j,k − β j,k|

p
]
. n−p/2.

The proof methods of Lemmas 4 and 5 are similar to that of Lemmas 2 and 3, so
the proofs are omitted here. For nonlinear wavelet estimation, Bernstein’s inequality plays
a crucial role.

Bernstein’s inequality Let X1, . . . , Xn be independent random variables such that
E[Xi] = 0, |Xi| ≤ M and E

[
X2

i
]
= σ2, then for each v > 0

P
(

1
n

∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣ ≥ v

)
≤ 2 exp

{
− nv2

2(σ2 + vM
3 )

}
.
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Lemma 6. Let β̂ j,k be defined by (17), tn =
√

ln n
n and 2j ≤ n

ln n . If H1 or H2 hold, then for each
w > 0, there exists a constant κ > 1 such that

P(|β̂ j,k − β j,k| ≥ κtn) . 2−wj.

Proof. According to the definition of β̂ j,k,

|β̂ j,k − β j,k| =
∣∣∣∣∣

1
n

n

∑
i=1

Y2
i ψj,k(Xi)− wj,k −E

[
1
n

n

∑
i=1

Y2
i ψj,k(Xi)− wj,k

]∣∣∣∣∣

=

∣∣∣∣∣
1
n

n

∑
i=1

Y2
i ψj,k(Xi)−E

[
1
n

n

∑
i=1

Y2
i ψj,k(Xi)

]∣∣∣∣∣

=
1
n

∣∣∣∣∣
n

∑
i=1

(
Y2

i ψj,k(Xi)−E
[
Y2

i ψj,k(Xi)
])∣∣∣∣∣ =

1
n

∣∣∣∣∣
n

∑
i=1

Di

∣∣∣∣∣

with Di = Y2
i ψj,k(Xi)−E[Y2

i ψj,k(Xi)]. Clearly, E[Di] = 0. Furthermore, by A1 and the prop-

erty of ψj,k, E[D2
i
] = Var[Di] ≤ E[Y4

i ψ2
j,k(Xi)] . 1 and |Di| ≤ 2

j
2 .

Note that {
|β̂ j,k − β j,u| ≥ κtn

}
⊆
{

1
n

∣∣∣∣∣
n

∑
i=1

Di

∣∣∣∣∣ ≥ κtn

}
.

Hence,

P(|β̂ j,k − β j,k| ≥ κtn) ≤ P
(

1
n

∣∣∣∣∣
n

∑
i=1

Di

∣∣∣∣∣ ≥ κtn

)
.

Using Bernstein’s inequality, tn =
√

ln n
n and 2j ≤ n

ln n ,

P
(

1
n

∣∣∣∣∣
n

∑
i=1

Di

∣∣∣∣∣ ≥ κtn

)
. exp

{
− n(κtn)

2

2(1 + κtn2j/2

3 )

}
. exp

{
− κ2 ln n

2(1 + κ
3 )

}
.

Then one chooses a large enough κ > 1 such that

P(|β̂ j,k − β j,k| ≥ κtn) ≤ P
(

1
n

∣∣∣∣∣
n

∑
i=1

Di

∣∣∣∣∣ ≥ κtn

)
. 2−wj.

Theorem 2. Let r ∈ Hs(Ωx0) with s > 0. Then for each 1 ≤ p < ∞, the nonlinear wavelet

estimator r̂non
n (x) defined in (16) with 2j∗ ∼ n

1
2m+1 (s < m) and 2j1 ∼ n

ln n satisfies

sup
r∈Hs(Ωx0 )

{
E[|r̂non

n (x0)− r(x0)|p]
} 1

p . (ln n)1− 1
p

(
ln n

n

)s/(2s+1)
. (19)

Remark 3. Compared with the linear wavelet estimator, the nonlinear wavelet estimator does not
depend on the smooth parameter of r(x). Hence, the nonlinear estimator is adaptive. More importantly,
the nonlinear estimator can also achieve the optimal convergence rate up to an ln n factor.
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Proof. By the definition of r̂lin
n (x) and r̂non

n (x), one has

r̂non
n (x0)− r(x0) = [r̂lin

n (x0)− Pj∗r(x0)]− [r(x0)− Pj1+1r(x0)]

+
j1

∑
j=j∗

∑
k∈Λj

(
β̂ j,k I{|β̂ j,k |≥κtn} − β j,k

)
ψj,k(x0).

Hence, {
E[|r̂non

n (x0)− r(x0)|p]
} 1

p . T1 + T2 + Q,

where

T1 =
{
E
[∣∣∣r̂lin

n (x0)− Pj∗r(x0)
∣∣∣

p]} 1
p
,

T2 =
∣∣Pj1+1r(x0)− r(x0)

∣∣,

Q =



E






j1

∑
j=j∗

∑
k∈Λj

∣∣∣
(

β̂ j,k I{|β̂ j,k|≥κtn} − β j,k

)
ψj,k(x0)

∣∣∣




p





1
p

.

• For T1. It follows from (15) and 2j∗ ∼ n
1

2m+1 (s < m) that

T1 =
{

E
[∣∣∣r̂lin

n (x0)− Pj∗r(x0)
∣∣∣

p]} 1
p .

(
2j∗

n

)1/2

. n−
m

2m+1 < n−
s

2s+1 . (20)

• For T2. Using Lemma 1 and 2j1 ∼ n
ln n , one gets

T2 =
∣∣Pj1+1r(x0)− r(x0)

∣∣ . 2−j1s .
(

ln n
n

)s
<

(
ln n

n

) s
2s+1

. (21)

Then equality (19) will be proven if we can show

Q . (ln n)1− 1
p

(
ln n

n

)s/(2s+1)
.

According to Hölder inequality,

Q .



(j1 − j∗ + 1)p−1

j1

∑
j=j∗

E




 ∑

k∈Λj

∣∣∣
(

β̂ j,k I{|β̂ j,k|≥κtn} − β j,k

)
ψj,k(x0)

∣∣∣




p





1/p

.

It is obvious that

|β̂ j,k I{|β̂ j,k |≥κtn} − β j,k| = |β̂ j,k − β j,k|
[

I{|β̂ j,k |≥κtn ,|β j,k |< κtn
2 }

+ I{|β̂ j,k |≥κtn ,|β j,k |≥ κtn
2 }
]

+ |β j,k|
[

I{|β̂ j,k |<κtn ,|β j,k |>2κtn} + I{|β̂ j,k |<κtn ,|β j,k |≤2κtn}
]
.

Moreover,
{
|β̂ j,k| ≥ κtn, |β j,k| <

κtn

2

}
⊆
{
|β̂ j,k − β j,k| >

κtn

2

}
,

{
|β̂ j,k| < κtn, |β j,k| > 2κtn

}
⊆
{
|β̂ j,k − β j,k| >

κtn

2

}
,

|β̂ j,k − β j,k| ≥ |β j,k| − |β̂ j,k| ≥
κtn

2
.
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Hence, one can obtain that

Q . (j1 − j∗ + 1)1− 1
p (Q1 + Q2 + Q3),

where

Q1 =





j1

∑
j=j∗

E




 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣I{|β̂ j,k−β j,k|> κtn
2 }
∣∣∣ψj,k(x0)

∣∣∣




p





1/p

,

Q2 =





j1

∑
j=j∗

E




 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣I{|β j,k|≥ κtn
2 }
∣∣∣ψj,k(x0)

∣∣∣




p





1/p

,

Q3 =
j1

∑
j=j∗

∑
k∈Λj

∣∣∣β j,k

∣∣∣I{|β j,k|≤2κtn}
∣∣∣ψj,k(x0)

∣∣∣.

• For Q1. By Hölder inequality ( 1
p + 1

p′ = 1) and ∑
k

∣∣∣ψj,k(x0)
∣∣∣ . 2j/2

E




 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣I{|β̂ j,k−β j,k|> κtn
2 }
∣∣∣ψj,k(x0)

∣∣∣




p


= E




 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣I{|β̂ j,k−β j,k|> κtn
2 }
∣∣∣ψj,k(x0)

∣∣∣
1/p∣∣∣ψj,k(x0)

∣∣∣
1/p′




p


≤ E


 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣
p

I{|β̂ j,k−β j,k|> κtn
2 }
∣∣∣ψj,k(x0)

∣∣∣



(

∑
k

∣∣∣ψj,k(x0)
∣∣∣
)p/p′

≤ E


 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣
p

I{|β̂ j,k−β j,k|> κtn
2 }
∣∣∣ψj,k(x0)

∣∣∣


2

jp
2p′ . (22)

Furthermore, using the Cauchy–Schwarz inequality, Lemmas 5 and 6, one has

E
[∣∣∣β̂ j,k − β j,k

∣∣∣
p

I{|β̂ j,k−β j,k|> κtn
2 }
]

≤
(
E
[∣∣∣β̂ j,k − β j,k

∣∣∣
2p
])1/2(

E
[

I{|β̂ j,k−β j,k|> κtn
2 }
])1/2

. n−
p
2 2−

wj
2 . (23)

This with (22) yields that

E




 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣I{|β̂ j,k−β j,k|> κtn
2 }
∣∣∣ψj,k(x0)

∣∣∣




p


. 2
jp
2 E
[∣∣∣β̂ j,k − β j,k

∣∣∣
p

I{|β̂ j,k−β j,k|> κtn
2 }
]
. n−

p
2 2−

wj
2 2

jp
2 . (24)

Hence,

Q1 .
(

j1

∑
j=j∗

2
jp
2 n−

p
2 2−

wj
2

) 1
p

=

(
n−

p
2

j1

∑
j=j∗

2j( p
2− w

2 )

) 1
p

.
(

n−
p
2 2j∗

p
2

) 1
p
=

(
2j∗

n

) 1
2

,

where κ is chosen to be large enough such that w > p in Lemma 6. This with the choice

2j∗ ∼ n
1

2m+1 (s < m) shows that

Q1 . n−
m

2m+1 . n−
s

2s+1 . (25)
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• For Q2. Let us first define

2j′ ∼
( n

ln n

)1/(2s+1)
.

Clearly, 2j∗ ∼ n
1

2m+1 ≤ 2j′ ∼
( n

ln n
)1/(2s+1) ≤ 2j1 ∼ n

ln n . Note that

Q2 =





j1

∑
j=j∗

E




 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣I{|β j,k|≥ κtn
2 }
∣∣∣ψj,k(x0)

∣∣∣




p





1/p

≤





j′

∑
j=j∗

E




 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣
∣∣∣ψj,k(x0)

∣∣∣




p





1/p

+





j1

∑
j=j′+1

E





 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣

∣∣∣β j,k

∣∣∣
tn

∣∣∣ψj,k(x0)
∣∣∣




p






1/p

.

Similar to the argument of (15), one gets





j′

∑
j=j∗

E




 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣
∣∣∣ψj,k(x0)

∣∣∣




p





1/p

.




j′

∑
j=j∗

n−
p
2 2

jp
2




1
p

.
(

2j′

n

)1/2

. (26)

On the other hand, by Hölder inequality ( 1
p + 1

p′ = 1) and Lemma 1

E





 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣

∣∣∣β j,k

∣∣∣
tn

∣∣∣ψj,k(x0)
∣∣∣




p


= E





 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣

∣∣∣β j,k

∣∣∣
1/p

t1/p
n

∣∣∣ψj,k(x0)
∣∣∣
1/p

∣∣∣β j,k

∣∣∣
1/p′

t1/p′
n

∣∣∣ψj,k(x0)
∣∣∣
1/p′




p


≤ E


 ∑

k∈Λj

∣∣∣β̂ j,k − β j,k

∣∣∣
p

∣∣∣β j,k

∣∣∣
tn

∣∣∣ψj,k(x0)
∣∣∣




 ∑

k∈Λj

∣∣∣β j,k

∣∣∣
tn

∣∣∣ψj,k(x0)
∣∣∣




p/p′

. n−p/2tn
−p2−jps . (ln n)−

p
2 2−jps.

Hence, 


j1

∑
j=j′+1

(ln n)−
p
2 2−jps




1/p

. (ln n)−
1
2 2−j′s. (27)

Combing (26), (27) and 2j′ ∼
( n

ln n
)1/(2s+1), one gets

Q2 .
(

2j′

n

)1/2

+ (ln n)−
1
2 2−j′s .

(
ln n

n

)s/(2s+1)
. (28)

• For Q3. Note that

Q3 =




j′

∑
j=j∗

+
j1

∑
j=j′+1


 ∑

k∈Λj

∣∣∣β j,k

∣∣∣I{|β j,k|≤2κtn}
∣∣∣ψj,k(x0)

∣∣∣ =: Q31 + Q32.
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It is easy to show that

Q31 =
j′

∑
j=j∗

∑
k∈Λj

∣∣∣β j,k

∣∣∣I{|β j,k|≤2κtn}
∣∣∣ψj,k(x0)

∣∣∣

.
j′

∑
j=j∗

∑
k∈Λj

∣∣∣β j,k

∣∣∣ 2κtn∣∣∣β j,k

∣∣∣

∣∣∣ψj,k(x0)
∣∣∣ .

j′

∑
j=j∗

2
j
2 tn . 2

j′
2

√
ln n

n
. (29)

In addition,

Q32 =
j1

∑
j=j′+1

∑
k∈Λj

∣∣∣β j,k

∣∣∣I{|β j,k|≤2κtn}
∣∣∣ψj,k(x0)

∣∣∣

.
j1

∑
j=j′+1

∑
k∈Λj

∣∣∣β j,kψj,k(x0)
∣∣∣ .

j1

∑
j=j′+1

2−js . 2−j′s. (30)

Then according to (29), (30) and 2j′ ∼
( n

ln n
)1/(2s+1), one can obtain

Q3 . 2
j′
2

√
ln n

n
+ 2−j′s .

(
ln n

n

)s/(2s+1)
. (31)

Furthermore, together with (25) and (28), this yields

Q . (ln n)1− 1
p

(
n−

s
2s+1 +

(
ln n

n

)s/(2s+1)
+

(
ln n

n

)s/(2s+1)
)

. (ln n)1− 1
p

(
ln n

n

)s/(2s+1)
. (32)

Finally, it follows from (20), (21) and (32) that

sup
r∈Hs(Ωx0 )

{
E
[
|r̂non

n (x0)− r(x0)|p
]} 1

p . (ln n)1− 1
p

(
ln n

n

)s/(2s+1)
,

which completes the proof of Theorem 2.

5. Conclusions

This paper studies the pointwise estimations of an unknown function in a regression
model with multiplicative and additive noise. Under some different assumptions, linear
and nonlinear wavelet estimators are constructed. It is clear that those wavelet estimators
have diverse forms with different conditions. The convergence rates over the pointwise
risk of two wavelet estimators are proposed by Theorems 1 and 2. It should be pointed out
that the linear and nonlinear wavelet estimators can all obtain the optimal convergence rate
of pointwise nonparametric estimation. More importantly, the nonlinear wavelet estimator
is adaptive. In other words, the conclusions of asymptotic and theoretical performance are
clear in this paper. However, it is a difficult problem to give numerical experiments, which
need more investigations and new skills. We will study it in the future.
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Abstract: In the present paper, we refine the notion of the partial modular metric defined by Hossein-
zadeh and Parvaneh to eliminate the occurrence of discrepancies in the non-zero self-distance and
triangular inequality. In support of this, we discuss non-trivial examples. Finally, we prove a common
fixed-point theorem for four self-mappings in partial modular metric space and an application to our
result; the existence of a solution for a system of Volterra integral equations is discussed.

Keywords: fixed point; partial metric space; modular space; partial modular space; weakly compati-
ble mappings; C-class function; Volterra integral equation

MSC: 47H10; 54H25

1. Introduction

In 1992, Matthews [1] initiated the idea of non-zero self-distance by introducing the
notion of the partial metric as a part of the study of the denotational semantics of data flow
programming languages in a topological model in computer sciences and also extended
Banach’s contraction principle [2] in such space. Subsequently, many authors have begun
to report its topological properties and obtained many fixed-point theorems in this space
(for more details and references, we refer to [3–8]). On the other hand, in 1950, Nakano [9]
introduced the concept of the modular in connection with the theory of order spaces,
which was later developed by Musielak and Orlicz [10], Khamsi [11] and Kozlowski [12] as
modular function space.

In 2006, Chistyakov [13] introduced the notion of the metric modular on an arbitrary
set and the corresponding modular space, which is more general than a metric space, and,
based on this, he further studied Lipschitz continuity and a class of superposition (or Ne-
mytskii) operators on modular metric space (see also [14,15]). Recently, Hosseinzadeh and
Parvaneh [16] introduced the notion of partial modular metric spaces as a generalization
partial metric space and gave some fixed-point results.

In this paper, we refine the concept of the partial modular metric to eliminate the
occurrence of discrepancies in the non-zero self-distance and triangular inequality and
prove a common fixed-point theorem for four self-mappings with a suitable example.
As an application of our result, the existence of a solution for a system of Volterra integral
equations is discussed.

2. Preliminaries

In this section, we recall some definitions and properties to use in our result.
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Definition 1 ([1]). Let X 6= ∅. A function p : X× X → [0, ∞) is called a partial metric on X if
it satisfies:
(p1) : 0 ≤ p(x, y), ∀x, y ∈ X and p(x, y) = p(x, x) = p(y, y)⇐⇒ x = y;
(p2) : p(x, x) ≤ p(x, y), ∀x, y ∈ X ;
(p3) : p(x, y) = p(y, x), ∀x, y ∈ X ;
(p4) : p(x, y) ≤ p(x, z) + p(z, y)− p(z, z), ∀x, y, z ∈ X.
Then, the pair (X, p) is called a partial metric space.

Obviously, if p(x, y) = 0, then, from (p1) and (p2), we have x = y, but the converse
may not be true. Moreover, if (X, p) is a partial metric space, then the function dp : X×X →
[0, ∞) defined by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X.

Example 1 ([1]). Let X 6= ∅ and c ≥ 0. Define p(x, y) = |x− y|+ c; the p is a partial metric on
X and the corresponding metric is dp(x, y) = 2|x− y|, ∀x, y ∈ X.

Every partial metric p on X generates a T0 topology τp on X with a base, which is
defined by the family of open p− balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {u :
p(x, u) < p(x, x) + ε}, ∀x ∈ X and ε > 0.

Definition 2 ([13–15]). Let X 6= ∅. A function ω : (0,+∞)× X × X → [0, ∞), defined by
ω(λ, x, y) = ωλ(x, y), is called a modular metric on X if it satisfies the following:
(ω1) : ωλ(x, y) = 0⇐⇒ x = y, ∀λ > 0;
(ω2) : ωλ(x, y) = ωλ(y, x), ∀x, y ∈ X and ∀λ > 0;
(ω3) : ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) ∀x, y, z ∈ X and ∀λ, µ > 0.

If in lieu of (ω1), we write

(ω1′) : ωλ(x, x) = 0, ∀λ > 0,

and then ω is called the pseudomodular metric on X. Note that the function λ 7−→ ωλ ∈
[0, ∞) is non-decreasing. Indeed, ∀x, y ∈ X and ∀λ, µ > such that 0 < µ < λ; from (ω1)
and (ω3), we obtain

ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y).

Moreover, we say that ω is convex if it satisfies the axioms (ω1), (ω2) of Definition 2
and the following:

(ω4) : ωλ+µ(x, y) ≤ λ

λ + µ
ωλ(x, z) +

µ

λ + µ
ωµ(z, y), ∀x, y, z ∈ X and ∀λ, µ > 0.

Now, we define the following definition, a general form of convex modular metric on
X.

Definition 3. A modular metric ω defined on a non-empty set X is said to be a weak convex
modular if it satisfies the axioms (ω1), (ω2) of Definition 2 such that there exists a function
α : (0, ∞)× (0, ∞)→ (0, 1) satisfying the following:

(ω4′) : ωλ+µ(x, y) ≤ α(λ, µ)ωλ(x, z) + (1− α(λ, µ))ωµ(z, y),

∀x, y, z ∈ X and ∀λ, µ > 0.

Obviously, every convex modular metric is a weak convex modular metric but the
converse may not be true. Moreover, every (weak) convex modular metric is a modular

150



Axioms 2022, 11, 62

metric but the converse may not be true. In fact, by setting α = λ
λ+µ , then 0 < α < 1 and

0 < 1− α = µ
λ+µ < 1, so (ω4) and (ω4′) infer directly the axiom (ω3) of Definition 2.

Let X 6= ∅ be an arbitrary set. For given x0 ∈ X, we define

Xω(x0) = {x ∈ X : lim
λ→+∞

ωλ(x0, x) = 0}

and
X∗ω(x0) = {x ∈ X : ∃λ = λ(x) > 0, ωλ(x0, x) < ∞}.

Then, the two sets Xω and X∗ω are called modular spaces centered at x0. It is obvious
that Xω ⊆ X∗ω . If x0 ∈ X is an arbitrary, then Xω(x0) and X∗ω(x0) are written as Xω and X∗ω .
If ω is a modular metric on X, then the modular space Xω is a metric space equipped with
a non-trivial metric given by

dω(x, y) = inf{λ : ωλ(x, y) ≤ λ}, ∀x, y ∈ Xω.

Further, if ω is a convex modular on X, then Xω = X∗ω , and this common space can be
equipped with a metric d∗ω defined by

d∗ω(x, y) = inf{λ : ωλ(x, y) ≤ 1}, ∀x, y ∈ Xω.

If a modular metric ω on X is finite and ωλ(x, y) = ωµ(x, y) ,∀x, y ∈ X and ∀λ, µ > 0,
then d(x, y) = ωλ(x, y) is a metric on X.

Example 2 ([17]). Let (X, d) be a metric space. Define ωλ(x, y) = d(x,y)
λ , ∀x, y ∈ X and ∀λ > 0.

Then, ω is a modular metric on X. Moreover, ω is convex and hence it is a weak convex modular
metric on X.

Lemma 1 ([14]). Let ω be a modular metric on a set X, given a sequence {xn}n∈N in Xω and
x ∈ Xω. Then, dω(xn, x) → 0 as n → ∞ if and only if ωλ(xn, x) → 0 as n → ∞, ∀λ > 0. A
similar assertion holds for Cauchy sequences.

Example 3. Define ωλ(x, y) = e−λ |x−y|
c , c > 0 ∀x, y ∈ X and ∀λ > 0. Obviously, ω satisfies

the axioms (ω1), (ω2) and (ω3) of Definition 2. Therefore, ω is a modular metric but not a convex
modular metric on X.

In fact, ∀λ, µ > 0, and we have

ωλ+µ(x, y) ≤ e−(λ+µ)

c
[|x− z|+ |z− y|]

=
eλ

eλ+µ

e−λ|x− z|
c

+
eµ

eλ+µ

e−µ|z− y|
c

=
eλ

eλ+µ
ωλ(x, z) +

eµ

eλ+µ
ωµ(z, y).

Note that 0 < λ
λ+µ < eλ

eλ+µ < 1 and 0 < µ
λ+µ < eµ

eλ+µ < 1. Thus, ω is not a convex modular
metric on X.

Definition 4 ([16]). Let X 6= ∅ and ωp : (0,+∞)× X × X → [0, ∞) be a function defined by
ωp(λ, x, y) = ω

p
λ(x, y), which is called a partial modular metric on X if it satisfies the following

axioms:
(ω

p
1 ): ω

p
λ(x, y) = ω

p
λ(x, x) = ω

p
λ(y, y)⇐⇒ x = y, ∀λ > 0;

(ω
p
2 ) : ω

p
λ(x, x) ≤ ω

p
λ(x, y), ∀ x, y ∈ X and ∀λ > 0;

(ω
p
3 ) : ω

p
λ(x, y) = ω

p
λ(y, x), ∀x, y ∈ X and ∀λ > 0;

151



Axioms 2022, 11, 62

(ω
p
4 ) : ω

p
λ+µ(x, y) ≤ ω

p
λ(x, z) + ω

p
µ(z, y) − ω

p
λ(x,x)+ω

p
λ(z,z)+ω

p
µ(z,z)+ω

p
λ(y,y)

2 , ∀x, y ∈ X and
∀λ, µ > 0.

As in Definition 1, the self-distance in Definition 4 of a partial modular metric need
not be restricted to zero, i.e., ω

p
λ(x, x) = 0. Note that if x = y = z, ∀λ, µ > 0, then, from

(ω
p
4 ), it follows that ω

p
λ(x, x) = 0. In order to avoid this limitation, we modify the axioms

(ω
p
1 ) and (ω

p
4 ) in Definition 4 and restate them as follows.

Definition 5. Let X 6= ∅ and ωp : (0,+∞) × X × X → [0, ∞) be a function defined by
ωp(λ, x, y) = ω

p
λ(x, y), which is called a partial modular metric on X if it retains the axioms (ωp

2 )

and (ω
p
3 ) of Definition 4 with the following:

(ω
p
1′) : ω

p
λ(x, x) = ω

p
µ(x, x) and ω

p
λ(x, x) = ω

p
λ(x, y) = ω

p
λ(y, y)⇐⇒ x = y, ∀λ, µ > 0;

(ω
p
4′) : ω

p
λ+µ(x, y) ≤ ω

p
λ(x, z) + ω

p
µ(z, y)−ω

p
λ(z, z), ∀x, y ∈ X and ∀λ, µ > 0.

Obviously, if ω
p
λ(x, y) = 0, then, from (ω

p
1′) and (ω

p
2 ), we have x = y, but the converse

may not be true. It is not difficult to see that a partial modular metric ωp on X is a modular
metric but the converse may not be true. If a partial modular metric ωp on X possesses
a finite value and is independent of the parameter λ > 0 that is ω

p
λ(x, y) = ω

p
µ(x, y),

∀λ, µ > 0, then p(x, y) = ω
p
λ(x, y) is a partial metric on X.

Definition 6. A partial modular metric ωp on X is said to be convex if, in addition to the axioms
(ω

p
1′), (ω

p
2 ) and (ω

p
3 ), it satisfies the following:

(ω
p
5 ) : ω

p
λ+µ(x, y) ≤ λ

λ + µ
ω

p
λ(x, y) +

µ

λ + µ
ω

p
µ(z, y)− λ

λ + µ
ω

p
λ(z, z),

∀x, y, z ∈ X and ∀λ, µ > 0.

Definition 7. A partial modular metric ωp on X is said to be weakly convex if it satisfies the
axioms (ωp

1′), (ω
p
2 ), (ω

p
3 ) and the following:

(ω
p
5′) : ω

p
λ+µ(x, y) ≤ α(λ, µ)ω

p
λ(x, y) + (1− α(λ, µ))ω

p
µ(z, y)− α(λ, µ)ω

p
λ(z, z),

∀x, y, z ∈ X and ∀λ, µ > 0, where α : (0, ∞)× (0, ∞)→ (0, 1) is a function.

Now, we define the following definitions as in the modular metric:

Definition 8. Let ωp be a partial modular metric on a set X. For given x0 ∈ X, we define

Xωp(x0) = {x ∈ X : lim
λ→+∞

ω
p
λ(x0, x) = c},

for some c ≥ 0 and

X∗ωp(x0) = {x ∈ X : ∃λ = λ(x) > 0, ω
p
λ(x0, x) < ∞}.

Then, two sets Xωp and X∗ωp are called partial modular spaces centered at x0. It is obvious
that Xωp ⊂ X∗ωp . We write Xωp ≡ Xωp(x0) and X∗ ≡ X∗ωp(x0), if x0 ∈ X is arbitrary.

Remark 1. For every x, y ∈ X, the function λ 7−→ ω
p
λ ∈ [0, ∞) is non-increasing. Indeed,

∀x ∈ X and 0 < µ < λ, from (ω
p
1′) and (ω

p
4′), and we obtain

ω
p
λ(x, y) ≤ ω

p
λ−µ(x, x) + ω

p
µ(x, y)−ω

p
λ−µ(x, x) = ω

p
µ(x, y).
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Lemma 2. Let ωp be a partial modular metric on a non-empty set X. Define

ωs
λ(x, y) = 2ω

p
λ(x, y)−ω

p
λ(x, x)−ω

p
λ(y, y).

Then, ωs is a modular metric on X.

Proof. Obviously, ωs holds (ω2) of Definition 2. For (ω1) and (ω3), we have
(ω1) : If x = y, then ωs

λ(x, y) = 0, ∀λ > 0. Suppose ωs
λ(x, y) = 0, ∀λ > 0, then

2ω
p
λ(x, y) = ω

p
λ(x, x) + ω

p
λ(y, y).

From (ω
p
2 ) of Definition 5, we obtain

2ω
p
λ(x, x) ≤ 2ω

p
λ(x, y) = ω

p
λ(x, x) + ω

p
λ(y, y) =⇒ ω

p
λ(x, x) ≤ ω

p
λ(y, y).

Similarly, we obtain

2ω
p
λ(y, y) ≤ 2ω

p
λ(x, y) = ω

p
λ(x, x) + ω

p
λ(y, y) =⇒ ω

p
λ(y, y) ≤ ω

p
λ(x, x).

Consequently, we obtain

ω
p
λ(x, y) = ω

p
λ(x, x) = ω

p
λ(y, y).

Thus, by the second part of (ωp
1′) of Definition 5, x = y.

(ω3) : From (ω
p
1′) of Definition 5, we obtain

ω
p
λ+µ(x, x) = ω

p
λ(x, x) and ω

p
λ+µ(y, y) = ω

p
λ(y, y), ∀x, y ∈ X and ∀λ, µ > 0.

Now, by (ω
p
4′) of Definition 5, we have

ωs
λ+µ(x, y) = 2ω

p
λ+µ(x, y)−ω

p
λ+µ(x, x)−ω

p
λ+µ(y, y)

= 2ω
p
λ+µ(x, y)−ω

p
λ(x, x)−ω

p
µ(y, y)

≤ 2
(

ω
p
λ(x, z) + ω

p
µ(z, y)−ω

p
λ(z, z))

)
−ω

p
λ(x, x)−ω

p
µ(y, y)

=
(

2ω
p
λ(x, z)−ω

p
λ(x, x)−ω

p
λ(z, z)

)
+
(

2ω
p
µ(z, y)−ω

p
λ(z, z))−ω

p
µ(y, y)

)

=ωs
λ(x, z) + ωs

µ(z, y).

Thus, ωs satisfies the axioms (ω1), (ω2) and (ω3) of Definition 2 and hence ωs is a
modular metric.

Remark 2. (i) Let ωs be a modular metric induced by partial modular metric ωp on a non-empty
set X, and then Xωs shall denote the modular space with respect to modular metric ωs.
(ii) Let ω be a modular metric on X and c ≥ 0; then,

ω
p
λ(x, y) = ωλ(x, y) + c

defines a partial modular metric on X and the corresponding modular metric is ωs
λ(x, y) =

2ωλ(x, y) or ωs
λ(x, y) = 2(ωp

λ(x, y)− c). Moreover, ωp is (weakly) convex if ω is a (weakly)
convex modular metric with c = 0 on X.

Example 4. Let X = R. Define a function ω
p
λ : (0, ∞)× X× X → [0, ∞) by

ω
p
λ(x, y) = e−λ|x− y|+ c,

where c ≥ 0, λ > 0 and ∀x, y ∈ X. Then, ωp is a partial modular metric on X.
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Example 5. Let (X, d) be a metric space and a function ωp be defined by

ω
p
λ(x, y) =

d(x, y) + c
λ

, ∀x, y ∈ X, and ∀λ > 0

where c ≥ 0. We see that limλ→+∞ ω
p
λ(x, y) = 0, ∀x, y ∈ X. However, ωp is not a partial

modular metric on X. Indeed, by the first part of (ωp
1′) of Definition 5, ω

p
λ(x, x) 6= ω

p
µ(x, x), ∀x ∈

X and ∀λ, µ > 0, λ 6= µ.

Example 6. Let X = R. Define

ω
p
λ(x, y) = e−λ|x− y|+ |x|+ |y|, ∀x, y ∈ X and ∀λ > 0.

Then, ωp is a partial modular metric on X. It is obvious that (ωp
1′), (ω

p
2 ) and (ω

p
3 ) of

Definition 5 hold. For (ωp
4′), ∀λ, µ > 0 and ∀x, y, z ∈ X, we have

ω
p
λ+µ(x, y) = e−(λ+µ)|x− y|+ |x|+ |y|

≤ e−(λ+µ)
(
|x− z|+ |z− y|

)
+ |x|+ |y|

=
(

e−(λ+µ)|x− z|+ |x|
)
+
(

e−(λ+µ)|z− y|+ |y|
)

≤
(

e−λ|x− z|+ |x|+ |z|
)
+
(

e−µ|z− y|+ |z|+ |y|
)
− 2|z|

= ω
p
λ(x, z) + ω

p
µ(z, y)−ω

p
λ(z, z).

Thus, ωp is a partial modular metric on X.

Example 7. Let X 6= ∅ be a set. Define ω
p
λ(x, y) = |x−y|

λ + c, c > 0, ∀x, y ∈ X and ∀λ > 0.
It is obvious that (ωp

1′), (ω
p
2 ) and (ω

p
3 ) of Definition 5 hold. Now, we show that ωp is a partial

modular metric and but not (weakly) convex on X.
For (ωp

4′), ∀x, y, z ∈ X and ∀λ, µ > 0, we have

ω
p
λ+µ(x, y) =

|x− y|
λ + µ

+ c

≤ 1
λ + µ

(
|x− z|+ |z− y|

)
+ c

≤
( |x− z|

λ
+ c
)
+
( |z− y|

µ
+ c
)
− c

= ω
p
λ(x, z) + ω

p
µ(z, y)−ω

p
µ(z, z).

Then, ωp is a partial modular metric on X. On the other hand, ∀λ, µ > 0 and ∀x.y, z ∈ X,
and we have

ω
p
λ+µ(x, y) ≤ 1

λ + µ

(
|x− z|+ |z− y|

)
+ c

=
λ

λ + µ

( |x− z|
λ

+ c
)
+

µ

λ + µ

( |z− y|
µ

+ c
)

=
λ

λ + µ
ω

p
λ(x, z) +

µ

λ + µ
ω

p
µ(z, y).
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To show that ωp is not convex on X, ∀λ, µ > 0, taking x = 4, y = 1, z = 2, then

( λ

λ + µ
ω

p
λ(x, z) +

µ

λ + µ
ω

p
µ(z, y)− λ

λ + µ
ω

p
µ(z, z)

)
−ω

p
λ+µ(x, y)

=
( 3

λ + µ
+ c− λ

λ + µ
c
)
−
( 3

λ + µ
+ c
)

= − λ

λ + µ
c < 0.

This shows that ωp is not convex and, hence, it is not a weakly convex partial modular metric
on X.

Example 8. Let ωp be a partial modular metric on a non-empty set X. Define ω
p
λ(x, y) =

ωλ(x,y)
λ , ∀x, y ∈ X and ∀λ > 0. Then, ωp is convex and hence it is a weakly convex partial

modular metric on X.

Example 9. For any non-empty set X, define ω
p
λ(x, y) = e−λωλ(x, y), ∀x, y ∈ X and ∀λ > 0.

Then, ωp is weakly convex but is not a convex partial modular metric on X.

Definition 9. Let ωp be a partial modular metric on a non-empty set X and {xn} be a sequence in
a partial modular space Xωp ; then,

(i) {xn} is said to be convergent to a point x ∈ Xωp , if and only if, for every ε > 0, there exists
n0 ∈ N∪ {0} such that

|ωp
λ(xn, x)−ω

p
λ(x, x)| ≤ ε,

∀n ≥ n0 and ∀λ > 0. We write limn→+∞ ω
p
λ(xn, x) = ω

p
λ(x, x), ∀λ > 0;

(ii) a sequence {xn} is a Cauchy in Xωp if limn,m→+∞ ω
p
λ(xn, xm) = c, ∀λ > 0, for some c ≥ 0.

In this case, limn→+∞ ω
p
λ(xn, xn) = limm→+∞ ω

p
λ(xm, xm) = c. Thus, if {xn} is a Cauchy

sequence in Xωs , then c = 0;
(iii) a partial modular space Xωp is said to be complete if every Cauchy sequence converges to a

point x ∈ Xωp such that

lim
n,m→+∞

ω
p
λ(xn, xm) = ω

p
λ(x, x), ∀λ > 0.

Remark 3. (i) If {xn} is a Cauchy sequence in Xωs , i.e., limn,m→+∞ ωs
λ(xn, xm) = 0, then

lim
n,m→+∞

ω
p
λ(xn, xm) = lim

n→+∞
ω

p
λ(xn, xn) = lim

m→+∞
ω

p
λ(xm, xm).

(ii) If {xn} is a Cauchy sequence in Xωs that converges to some point x ∈ Xωs , then

lim
n,m→+∞

ω
p
λ(xn, xm) = lim

n→+∞
ω

p
λ(xn, xn) = ω

p
λ(x, x).

(iii) A sequence {xn} in Xωp is a Cauchy sequence if it is a Cauchy sequence in Xωs , i.e.,
limn,m→+∞ ωs

λ(xn, xm) = 0.

Lemma 3. Let ωp be a partial modular on X and {xn} be a sequence in Xωp . Then,

(i) {xn} is a Cauchy sequence in Xωp if it is a Cauchy sequence in the modular space Xωs induced
by partial modular metric ωp;

(ii) a partial modular space Xωp is complete if and only if the modular space Xωs induced by ωp

is complete. Furthermore,

lim
n→+∞

ωs
λ(xn, x) =0⇐⇒ lim

n→∞
[2ω

p
λ(xn, x)−ω

p
λ(xn, xn)−ω

p
λ(x.x)] = 0
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or

lim
n→∞

ωs
λ(xn, x) =0⇐⇒ lim

n→+∞
ω

p
λ(xn, x) = lim

n→+∞
ω

p
λ(xn, xn) = ω

p
λ(x, x), ∀λ > 0.

Definition 10 ([18]). A continuous function F : [0, ∞) × [0, ∞) → R is called a C− class
function if, for any s, t ∈ R, the following conditions hold:

(i) F (s, t) ≤ s;
(ii) F (s, t) = s implies s = 0 or t = 0.

Example 10 ([18]). The following are examples of the C−class function:

(i) F (s, t) = αs, α ∈ (0, 1);
(ii) F (s, t) = s

(1+t)r , r ∈ (0, ∞);

(iii) F (s, t) = log(t+αs)
(1+t) , α > 1.

Definition 11 ([19]). A control function ψ : [0, ∞)→ [0, ∞) is called an altering distance if the
following conditions hold:

(i) ψ is non-decreasing and continuous;
(ii) ψ(t) = 0 if and only if t = 0.

We denote by Ψ the set of all altering distance functions.

Example 11 ([20]). The following examples are the altering distance functions:

(i) ψ(t) = eαt + βt− 1;
(ii) ψ(t) = αt2 + ln(βt + 1), where α, β > 0.

Definition 12 ([18]). A control function ϕ : [0, ∞)→ [0, ∞) is called an ultra-altering distance
if the following conditions hold:

(i) ϕ is continuous;
(ii) ϕ(t) > 0, t > 0 and ϕ(0) ≥ 0.

Φ denotes the set of all ultra-altering distance functions.

Definition 13 ([21]). A triplet (ψ, ϕ,F ), where ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C is monotonically
increasing if

∀x, y ∈ [0, ∞), x ≤ y =⇒ F (ψ(x), ϕ(x)) ≤ F (ψ(y), ϕ(y)).

Further, we say that the triplet (ψ, ϕ,F ) is strictly monotonically increasing if

∀x, y ∈ [0, ∞) x < y =⇒ F (ψ(x), ϕ(x)) < F (ψ(y), ϕ(y)).

Example 12 ([21]). Consider a C− class function F (s, t) = s− t. Define ψ, ϕ : [0, ∞)→ [0, ∞)
by ϕ(x) =

√
x and

ψ(x) =

{√
x, 0 ≤ x ≤ 1;

x2, x > 1.

Obviously, the triplet (ψ, ϕ,F ) is monotonically increasing.

Definition 14 ([22]). Let P and Q be two self-mappings on a non-empty set X; then, they are said
to be weakly compatible if they commute at their coincidence points, i.e., PQx = QPx, for some
x ∈ X.

Definition 15 ([23]). Let X 6= ∅ and P ,Q : X → X be two self-mappings. If u = Px = Qx,
for some x ∈ X, then x is called a coincidence point of P andQ, and u is called a point of coincidence
(briefly, poc) of P and Q.
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Lemma 4 ([23]). If P and Q are weakly compatible self-mappings on a non-empty set X, and if P
and Q have a unique point of coincidence u = Px = Qx, then u is the unique common fixed-point
P and Q.

3. Main Results

Let ωp be a partial modular metric on a non-empty set X and Xωp be a partial modular
space. Suppose that P ,Q,R,S : Xωp → Xωp are four self-mappings such that

PXωp ⊆ QXωp and RXωp ⊆ SXωp . (1)

Let x0 ∈ Xωp be any point. By virtue of (1), the two sequences {xn} and {yn} in Xωp

are defined as follows:

y2n = Px2n = Qx2n+1 and y2n+1 = Rx2n+1 = Sx2n+2, ∀n ∈ N∪ {0}. (2)

Inspired by Chandok et al. [4], we are ready to prove the following lemma, which
plays a crucial role in the subsequent results.

Lemma 5. Let ωp be a partial modular metric on a non-empty set X and Xωp be a partial modular
space. Suppose that P ,Q,R,S : Xωp → Xωp are four self-mappings satisfying the condition (1).
If there exist ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C such that the triplet (ψ, ϕ,F ) is a monotonically increasing
function satisfying the following:

ψ(ω
p
λ(Px,Ry)) ≤ F (ψ(M(x, y)), ϕ(M(x, y))), (3)

where

M(x, y) = max{ωp
λ(Sx,Qy), ω

p
λ(Sx,Px), ω

p
λ(Qy,Ry),

1
2
[ω

p
2λ(Qy,Px) + ω

p
2λ(Sx,Ry)]},

∀λ > 0 and ∀x, y ∈ Xωp . Then, the sequence {yn} defined by (2) is a Cauchy sequence in Xωp .

Proof. From (2), we recall that

y2n = Px2n = Qx2n+1 and y2n+1 = Rx2n+1 = Sx2n+2, ∀n ∈ N∪ {0}.

Using (3), we obtain

ψ(ω
p
λ(y2n, y2n+1)) = ψ(ω

p
λ(Px2n,Rx2n+1)) (4)

≤ F (ψ(M(x2n, x2n+1)), ϕ(M(x2n, x2n+1))),

where

M(x2n, x2n+1) = max{ωp
λ(Sx2n,Qx2n+1), ω

p
λ(Sx2n,Px2n), ω

p
λ(Qx2n+1,Rx2n+1), (5)

1
2
[ω

p
2λ(Qx2n+1,Px2n) + ω

p
2λ(Sx2n,Rx2n+1)]}

= max{ωp
λ(y2n−1, y2n), ω

p
λ(y2n−1, y2n), ω

p
λ(y2n, y2n+1),

1
2
[ω

p
2λ(y2n, y2n) + ω

p
2λ(y2n−1, y2n+1)]}.
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and by (ω
p
1′) and (ω

p
4′), we have

1
2
[ω

p
2λ(y2n, y2n) + ω

p
2λ(y2n−1, y2n+1)] (6)

≤ 1
2
[ω

p
λ(y2n, y2n) + ω

p
λ(y2n−1, y2n) + ω

p
λ(y2n, y2n+1)−ω

p
λ(y2n, y2n)]

=
1
2
[ω

p
λ(y2n−1, y2n) + ω

p
λ(y2n, y2n+1)].

Using (5), (6) and the monotonicity of the triplet (ψ, ϕ,F ), (4) becomes

ψ(ω
p
λ(y2n, y2n+1)) ≤ F (ψ(max{ωp

λ(y2n−1, y2n), ω
p
λ(y2n, y2n+1)}), (7)

ϕ(max{ωp
λ(y2n−1, y2n), ω

p
λ(y2n), y2n+1)})),

From the above inequality, the following cases arise:
Case (I): Suppose ω

p
λ(y2n−1, y2n) < ω

p
λ(y2n, y2n+1); then, from (7) and by the strict

monotonicity of (ψ, ϕ,F ), we obtain

ψ(ω
p
λ(y2n, y2n+1)) <F (ψ(ωp

λ(y2n, y2n+1), ϕ(ω
p
λ(y2n, y2n+1)))

≤ψ(ω
p
λ(y2n, y2n+1)).

Therefore, ω
p
λ(y2n, y2n+1) < ω

p
λ(y2n, y2n+1). This is a contradiction.

Case (I I): Suppose ω
p
λ(y2n, y2n+1) ≤ ω

p
λ(y2n−1, y2n); then, from (7), we obtain

ψ(ω
p
λ(y2n, y2n+1)) ≤F (ψ(ωp

λ(y2n−1, y2n)), ϕ(ω
p
λ(y2n−1, y2n)). (8)

Since ψ is a non-increasing function, then, from (8), we have

ψ(ω
p
λ(y2n, y2n+1)) ≤ψ(ω

p
λ(y2n−1, y2n)) =⇒ ω

p
λ(y2n, y2n+1)) ≤ ω

p
λ(y2n−1, y2n).

This shows that {ωp
λ(y2n, y2n+1)} is a non-increasing sequence of non-negative real

numbers. Thus, there exists ε ≥ 0 such that

lim
n→+∞

ω
p
λ(y2n, y2n+1) = ε, ∀λ > 0.

Taking the limit as n→ +∞ in (8), we obtain

ψ(ε) ≤ F (ψ(ε), ϕ(ε)) ≤ ψ(ε) =⇒ F (ψ(ε), ϕ(ε)) = ψ(ε),

so ψ(ε) = 0 or ϕ(ε) = 0 and hence ε = 0, i.e.,

lim
n→+∞

ω
p
λ(y2n, y2n+1) = 0, ∀λ > 0. (9)

Now, we show that {yn} is a Cauchy sequence in Xωp . By Lemma 3, it is sufficient to
prove that a subsequence {y2n} of {yn} is a Cauchy sequence in Xωs .

From (ω
p
2 ) of Definition 4, we have

0 ≤ ω
p
λ(y2n, y2n) ≤ ω

p
λ(y2n, y2n+1), ∀λ > 0,

so from (9), it follows that
lim

n→+∞
ω

p
λ(y2n, y2n) = 0. (10)

Similarly, limn→+∞ ω
p
λ(y2n+1, y2n+1) = 0, ∀λ > 0.
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If possible, let {y2n} be not a Cauchy in Xωs , and then there exists δ > 0 such that,
for each even +ve integer k, we can find subsequence {y2m(k)} and {y2n(k)} of {y2n} with
2n(k) > 2m(k) ≥ k such that

ωs
λ(y2m(k), y2n(k)) > δ, ∀ λ > 0. (11)

Now, we choose 2n(k) corresponding to 2m(k) such that it is the smallest even integer
with 2n(k) > 2m(k) and satisfies Inequality (11). Hence,

ωs
λ(y2m(k), y2n(k)−1) ≤ δ, ∀ λ > 0. (12)

By triangular inequality (ω3) and (12), we have

ωs
λ(y2m(k), y2n(k)) ≤ ωs

λ
2
(y2m(k), y2n(k)−1) + ωs

λ
2
(y2n(k)−1, y2n(k))|

≤ δ + ωs
λ
2
(y2n(k)−1, y2n(k)). (13)

On the other hand, by Lemma 2, ∀λ > 0, we have

ωs
λ(y2n(k)−1, y2n(k)) = 2ω

p
λ(y2n(k)−1, y2n(k))−ω

p
λ(y2n(k)−1, y2n(k)−1) (14)

−ω
p
λ(y2n(k), y2n(k)).

Letting k→ +∞ on (14), then from (9) and (10) , ∀λ > 0, we have

lim
k→+∞

ωs
λ(y2n(k)−1, y2n(k)) = 0, ∀λ > 0. (15)

From (13), using (11) and (15), we have

δ < lim
k→∞

ωs
λ(y2m(k), y2n(k)) ≤ δ, ∀λ > 0.

This implies
lim

k→+∞
ωs

λ(y2m(k), y2n(k)) = δ. (16)

Again, using the triangular inequality (ω3), we have

ωs
λ(y2n(k), y2m(k)) ≤ ωs

λ
2
(y2n(k), y2n(k)−1) + ωs

λ
2
(y2n(k)−1, y2m(k))

≤ ωs
λ
2
(y2n(k), y2n(k)−1) + ωs

λ
4
(y2n(k)−1, y2m(k)−1)

+ ωs
λ
4
(y2m(k)−1, y2m(k)). (17)

Furthermore, we have

ωs
λ(y2n(k)−1, y2m(k)−1) ≤ ωs

λ
2
(y2n(k)−1, y2n(k)) + ωs

λ
4
(y2n(k), y2m(k)) (18)

+ ωs
λ
4
(y2m(k), y2m(k)−1)

Letting the limit as k→ +∞ in (17) and (18), using (15) and (16), we obtain

lim
k→∞

ωs
λ(y2n(k)−1, y2m(k)−1) = δ.

Further, we have

ωs
λ(y2n(k)+1, y2m(k)) ≤ ωs

λ
2
(y2n(k)+1, y2n(k)) + ωs

λ
2
(y2n(k), y2m(k)). (19)

159



Axioms 2022, 11, 62

However,

ωs
2λ(y2n(k), y2m(k)) ≤ ωs

λ(y2n(k), y2n(k)+1) + ωs
λ(y2n(k)+1, y2m(k)). (20)

Taking the limit on (19) and (20) as k→ +∞ and using (15) and (16), we obtain

lim
k→+∞

ωs
λ(y2n(k)+1, y2m(k)) = δ. (21)

Since ∀λ > 0, we have

ωs
λ(y2n(k), y2m(k)) = [2ω

p
λ(y2n(k), y2m(k))−ω

p
λ(y2n(k), y2n(k))

−ω
p
λ(y2m(k), y2m(k)].

Taking the limit on the above equation as k → +∞, and then using (9) and (16), we
obtain

lim
k→+∞

ω
p
λ(y2n(k), y2m(k)) =

δ

2
= d (say) (22)

Similarly, we obtain

lim
k→+∞

ω
p
λ(y2n(k), y2m(k)−1) =

δ

2
= d and lim

k→+∞
ω

p
λ(y2n(k)+1, y2m(k)) =

δ

2
= d. (23)

Now, from (3), we obtain

ψ(ω
p
λ(y2m(k), y2n(k)+1)) = ψ(ω

p
λ(Px2m(k),Rx2n(k)+1)) (24)

≤ F (ψ(M(x2m(k), x2n(k)+1)), ϕ(M(x2m(k), x2n(k)+1))),

where

M(x2m(k), x2n(k)+1) =max{ωp
λ(Sx2m(k), Qx2n(k)+1), ω

p
λ(Sx2m(k), Px2m(k)),

ω
p
λ(Qx2n(k)+1, Rx2n(k)+1),

1
2
[ω

p
2λ(Qx2n(k)+1, Px2m(k)) + ω

p
2λ(Sx2m(k), Rx2n(k)+1)]}

=max{ωp
λ(y2m(k)−1, y2n(k)), ω

p
λ(y2m(k)−1, y2m(k)),

ω
p
λ(y2n(k), y2n(k)+1),

1
2
[ω

p
2λ(y2n(k), y2m(k)) + ω

p
2λ(y2m(k)−1, y2n(k)+1)]}

and by (ω
p
4′), we have

1
2
[ω

p
2λ(y2n(k), y2m(k)) + ω

p
2λ(y2m(k)−1, y2n(k)+1)]

=
1
2

ω
p
2λ(y2n(k), y2m(k)) +

1
2
[ω

p
λ(y2m(k)−1, y2m(k)) + ω

p
λ(y2m(k), y2n(k)+1)

−ω
p
λ(y2m(k), y2m(k))].

Taking the limit as k → +∞ on (24), and then using (9), (10), (20), (22) and (23), we
obtain

ψ(d) ≤ F (ψ(d), ϕ(d)) ≤ ψ(d) =⇒ F (ψ(d), ϕ(d)) = ψ(d),

which implies ψ(d) = 0 or ϕ(d) = 0; then, d = 0. This is a contradiction. Therefore, {yn}
is a Cauchy sequence in the modular space Xωs and hence the sequence {yn} is a Cauchy
sequence in Xωp .
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Theorem 1. Suppose P ,Q,R,S : Xωp → Xωp to be four self-mappings defined on a complete
partial modular space satisfying (1) and (3). Then, poc(P ,S) 6= ∅ and poc(Q,R) 6= ∅. Further,
if the pairs (P ,S) and (Q,R) are weakly compatible in Xωp , then P ,Q,R and S have a unique
common fixed point in Xωp .

Proof. By Lemma 5, {yn} is a Cauchy sequence in the partial modular space Xωp . Since
Xωp is complete, {yn} converges in Xωp . Then, there exists z ∈ Xωp such that

lim
n→+∞

ω
p
λ(yn, z) = lim

n→+∞
ω

p
λ(yn, xn) = ω

p
λ(z, z), ∀λ > 0.

By Lemma 3 and from (9), we obtain

lim
n→+∞

ω
p
λ(yn, z) = 0 and ω

p
λ(z, z) = 0, ∀λ > 0. (25)

Since Xωp is complete, the subsequences {Px2n}, {Qx2n+1}, {Rx2n+1} and {Sx2n+2},
∀n ∈ N∪ {0} converge to z ∈ Xωp . Now, we show that poc(P ,S) 6= ∅ and poc(Q,R) 6= ∅.
Since {Sx2n+2} converges to z ∈ Xωp , there exists u ∈ Xωp such that z = Su. We claim
that Pu = Su. Using (3), we obtain

ψ(ω
p
λ(Pu, y2n+1)) =ψ(ω

p
λ(Pu,Rx2n+1)) (26)

≤F (ψ(M(u, x2n+1)), ϕ(M(u, x2n+1))),

where

M(u, x2n+1) = max{ωp
λ(Su,Qx2n+1), ω

p
λ(Su,Pu), ω

p
λ(Qx2n+1,Rx2n+1),

1
2
[ω

p
2λ(Qx2n+1,Pu) + ω

p
2λ(Su,Rx2n+1)]}

= max{ωp
λ(z, y2n), ω

p
λ(z,Pu), ω

p
λ(y2n, y2n+1),

1
2
[ω

p
2λ(y2n,Pu) + ω

p
2λ(z, y2n+1)]}

and

ω
p
2λ(y2n,Pu) ≤ ω

p
λ(y2n, z) + ω

p
λ(z,Pu)−ω

p
λ(z, z).

Taking the limit as n → +∞ on (26), and then using (9), (25) and (27), and by the
definition of (ψ, ϕ,F ), we obtain

ψ(ω
p
λ(Pu, z)) ≤ lim

n→+∞
F (ψ(M(u, x2n+1)), ϕ(M(u, x2n+1))),

where

lim
n→+∞

M(u, x2n+1) = max{ωp
λ(z,Pu),

1
2

lim
n→+∞

ω
p
2λ(y2n,Pu)}

and

lim
n→+∞

ω
p
2λ(y2n,Pu) ≤ lim

n→+∞
[ω

p
λ(y2n, z) + ω

p
λ(z,Pu)−ω

p
λ(z, z)] (27)

≤ω
p
λ(z,Pu).

161



Axioms 2022, 11, 62

Therefore,

ψ(ω
p
λ(Pu, z)) ≤ lim

n→+∞
F (ψ(M(u, x2n+1)), ϕ(M(u, x2n+1)))

≤ lim
n→+∞

F (ψ(ωp
λ(z,Pu)), ϕ(ω

p
λ(z,Pu)))

≤ψ(ω
p
λ(z,Pu)).

It follows that

F (ψ(ωp
λ(z,Pu)), ϕ(ω

p
λ(z,Pu))) =ψ(ω

p
λ(z,Pu)),

so ψ(ω
p
λ(z,Pu)) = 0 or ϕ(ω

p
λ(z,Pu)); then, ω

p
λ(z,Pu) = 0 and hence Pu = Su = z, i.e.,

poc(P ,S) 6= ∅.
Since PXωp ⊂ QXωp and u ∈ poc(P ,S), i.e., Pu = Su = z, then there exists

v ∈ QXωp such that Pu = Qv = z. Now, we show that Rv = Qv. For this, from (3), we
obtain

ψ(ω
p
λ(z,Rv)) = ψ(ω

p
λ(Pu,Rv)) ≤ F (ψ(M(u, v)), ϕ(M(u, v))), (28)

where

Mu, v) = max{ωp
λ(Su,Qv), ω

p
λ(Su,Pu), ω

p
λ(Qv,Rv),

1
2
[ω

p
2λ(Qv,Pu) + ω

p
2λ(Su,Rv)]}

= max{ωp
λ(z, z), ω

p
λ(z, z), ω

p
λ(z,Rv),

1
2
[ω

p
2λ(z, z) + ω

p
2λ(z,Rv)]}.

Then, (28) becomes

ψ(ω
p
λ(z,Rv)) ≤ F (ψ(ωp

λ(z,Rv)), ϕ(ω
p
λ(z,Rv))) ≤ ψ(ω

p
λ(z,Rv)).

Therefore,

F (ψ(ωp
λ(z,Rv)), ϕ(ω

p
λ(z,Rv))) = ψ(ω

p
λ(z,Rv)),

yielding ψ(ω
p
λ(z,Rv)) = 0 or ϕ(ω

p
λ(z,Rv)) = 0; then, ω

p
λ(z,Rv) = 0 and henceRv = z =

Qv. Thus, poc(R,Q) 6= ∅.
Since (P ,S) and (R,Q) are weakly compatible, then Pz = PSu = SPu = Sz and

Rz = RQv = QRv = Qz. Now, we claim that the pairs (P ,S) and (R,Q) have a unique
common point of coincidence. Suppose, if possible, that there exist r, r∗ ∈ Xωp , r 6= r∗ such
that Pz = Sz = r andRz = Qz = r∗.

From (3), we obtain

ψ(ω
p
λ(r, r∗)) = ψ(ω

p
λ(Pz,Rz)) ≤ F (ψ(M(z, z)), ϕ(M(z, z)))

where

M(z, z) = max{ωp
λ(Sz,Qz), ω

p
λ(Sz,Pz), ω

p
λ(Qz,Rz),

1
2
[ω

p
2λ(Qz,Pz) + ω

p
2λ(Sz,Rz)]}

= max{ωp
λ(r, r∗), ω

p
λ(r, r), ω

p
λ(r
∗, r∗),

1
2
[ω

p
2λ(r

∗, r) + ω
p
2λ(r, r∗)]}.

162



Axioms 2022, 11, 62

From the above inequality, we obtain

ψ(ω
p
λ(r, r∗)) ≤ F (ψ(ωp

λ(r
∗, r)), ϕ(ω

p
λ(r
∗, r))) ≤ ψ(ω

p
λ(r
∗, r))

It follows that

F (ψ(ωp
λ(r
∗, r)), ϕ(ω

p
λ(r
∗, r))) = ψ(ω

p
λ(r
∗, r))

giving ψ(ω
p
λ(r
∗, r)) = 0 or ϕ(ω

p
λ(r
∗, r)) = 0. Then, ω

p
λ(r
∗, r) = 0 and hence r = r∗. This is a

contradiction. Therefore, by Lemma 4, the pairs (P ,S) and (R,Q) have a unique common
fixed point in Xωp .

Example 13. Let X = [0, ∞) and define ω
p
λ(x, y) = e−λ|x− y|+ |x|+ |y|; then, ωp is a partial

modular metric on X. Moreover, we can verify that Xωp is a complete partial modular space. Let
P ,Q,R,S : Xωp → Xωp be self-mappings defined by

Px =
1
2

x, Qx =
1
3

x, Sx = x and Rx =
1
6

x, ∀x ∈ Xωp .

Clearly, PXωp ⊂ QXωp and RXωp ⊂ SXωp . Moreover, the pairs (P ,S) and (Q,R) are
weakly compatible. Setting ψ(r) = ϕ(r) = kr and F (s, t) = k2s, where k = 1

2 . Then, the triplet
(ψ, ϕ,F ) is monotonically increasing. Now, ∀x, y ∈ Xωp and ∀λ > 0, and we have

ω
p
λ(Px,Ry) = e−λ|1

2
x− 1

6
y|+ |1

2
x|+ |1

6
y|

=
1
2

(
e−λ|x− 1

3
y|+ |x|+ |1

3
y|
)

=
1
2

(
e−λ|Sx−Qy|+ |Sx|+ |Qy|

)

≤ 1
2
M(x, y).

Therefore,

ψ(ω
p
λ(Px,Ry)) = kω

p
λ(Px,Ry) ≤ k2M(x, y)

≤ F (ψ(M(x, y)), ϕ(M(x, y))), ∀x, y ∈ Xωp and ∀λ > 0.

Thus, all the conditions of Theorem 1 are satisfied and 0 is the unique fixed point of P ,Q,R
and S in Xωp .

The following theorem is the direct consequence of Theorem 1, which is a counterpart
of Banach’s contraction in metric space.

Theorem 2. Let ωp be a partial modular metric on a non-empty set X and Xωp be a complete
partial modular metric space. Suppose P : Xωp → Xωp to be a self-mapping satisfying

ω
p
λ(Px,Py) ≤ kω

p
λ(x, y), ∀ x, y ∈ Xωp and ∀λ > 0,

where 0 ≤ k < 1; then, P has a unique fixed point in Xωp .

4. Application

In this section, inspired by Pant et al. [6], we establish the existence of a solution of a
system of Volterra-type integral equations.

Consider a set of Volterra-type integral equations

x(t) = q(t) +
∫ t

0
Ki(t, s, x(t))ds, (29)
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where t ∈ [0, k] = I ⊂ R, Ki : [0, k]× [0, k]×R → R, i = {1, 2, 3, 4} and q : [0, k] → R are
continuous functions.

Let X = C(I,R) be the space of real continuous functions defined on I. Define ωp on
X by

ω
p
λ(x, y) = max

t∈[0,k]

[
e−λ|x(t)− y(t)|+ |x(t)|+ |y(t)|

]
, ∀λ > 0.

Then, Xωp is a complete modular space. SupposeHi : Xωp → Xωp to be a self-mapping
defined by

Hix(t) = q(t) +
∫ t

0
Ki(t, s, x(t))ds, ∀x ∈ Xωp and ∀t ∈ I, i = {1, 2, 3, 4}.

Clearly, x(t) is a solution of (29) if and only if it is a common fixed point of Hi for
i = {1, 2, 3, 4}.

Theorem 3. Under the above conditions, assume that the following hypotheses hold:

(h1): For any x ∈ Xωp , there exist u, v ∈ Xωp such that

H1x = H3u, H2x = H4v;

(h2): For any t ∈ I, there exist u, v ∈ Xωp such that

H1H4u(t) = H4H1u(t), if H1u(t) = H4u(t)

and
H2H3v(t) = H3H2v(t), if H2v(t) = H3v(t);

(h3): There exists a continuous function f : I × I → R+ such that

|K1(t, s, x(s))−K3(t, s, y(s))| ≤ f (t, s)
[
|H4x(s)−H2y(s)|+ eλ(|H4x(s)|

+ |H2y(s)|)− 2eλ(|H1x(s)|+ |H3y(s)|)
]

∀ λ > 0 and ∀x, y ∈ Xωp , where t, s ∈ I;
(h4): maxt∈[0,k]

∫ t
0 f (t, s)ds ≤ 1

2 .

Then, the system (29) of integral equations has a unique common solution in Xωp .

Proof. From (h1),H1Xωp ⊆ H3Xωp andH2Xωp ⊆ H4Xωp .
From (h2), the pairs (H1,H4) and (H2,H3) are weakly compatible. Now, from (h3),

we have

ω
p
λ(H1x,H3y) = max

t∈[0,k]

[
e−λ|H1x(t)−H3y(t)|+ |H1x(t)|+ |H3y(t)|

]

≤ max
t∈[0,k]

[
e−λ

∫ t

0
|K1(t, s, r(s))−K3(t, s, r(s))|ds + |H1x(t)|+ |H3y(t)|

]

≤e−λ max
t∈[0,k]

∫ t

0
f (t, s)ds

[
|H4x−H2y|+ eλ(|H4x|+ |H2y|)

− 2eλ(|H1x|+ |H3y|)
]
+
(
|H1x|+ |H3y|

)

≤1
2

[
e−λ|H4x−H2y|+ |H4x|+ |H2y|

]

=
1
2

ω
p
λ(H4x,H2y)

≤1
2
M(x, y),
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where

M(x, y) =max
{

ω
p
λ(H4x,H2y), ω

p
λ(H4x,H1x), ω

p
λ(H2y,H3y),

ω
p
2λ(H2x,H1x) + ω

p
2λ(H4x,H3y)

2

}
.

Setting ψ(t) = ϕ(t) = t and F (s, t) = 1
2 t, then the triplet (ψ, ϕ,F ) is monotonically

increasing. Therefore,

ω
p
λ(H1x,H3y) ≤ F (ψ(M(x, y)), ϕ(M(x, y))), ∀x, y ∈ Xωp and ∀λ > 0.

Thus, all the conditions of Theorem 1 are satisfied, and hence the system (29) has a
unique solution in Xωp .

5. Conclusions

We propose a refinement of the notion of the partial modular metric to eliminate the
occurrence of discrepancies in the non-zero self-distance and triangular inequality. Using
the altering distance functions, a common fixed-point theorem for four self-mappings via
the C− class function is proven in such space. In addition, we apply our results to establish
the existence of a solution for a system of Volterra integral equations as an application.
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Abstract: A fractional model of the Hopfield neural network is considered in the case of the appli-
cation of the generalized proportional Caputo fractional derivative. The stability analysis of this
model is used to show the reliability of the processed information. An equilibrium is defined, which
is generally not a constant (different than the case of ordinary derivatives and Caputo-type fractional
derivatives). We define the exponential stability and the Mittag–Leffler stability of the equilibrium.
For this, we extend the second method of Lyapunov in the fractional-order case and establish a useful
inequality for the generalized proportional Caputo fractional derivative of the quadratic Lyapunov
function. Several sufficient conditions are presented to guarantee these types of stability. Finally, two
numerical examples are presented to illustrate the effectiveness of our theoretical results.

Keywords: generalized Caputo proportional fractional derivative; stability; exponential stability;
Mittag–Leffler stability; quadratic Lyapunov functions; Hopfield neural networks

1. Introduction

In [1], Jarad, Abdeljawad, and Alzabut introduced a new type of fractional deriva-
tive, the so-called generalized proportional fractional derivative. This type of derivative
preserves the semigroup property, possesses a nonlocal character, and converges to the
original function and its derivative upon limiting cases [2]. Some stability properties of the
Ulam type for generalized proportional fractional differential equations were studied in [3]
and in [4]. We emphasize that the regular stability has not been investigated yet. In this
paper, we develop some necessary tools for the generalized Caputo proportional fractional
derivatives, starting with an important inequality concerning an estimate of that derivative
of quadratic functions. We derive some inequalities for quadratic Lyapunov functions and
some connections between the solutions and the Lyapunov functions. These results are
applied to study the stability properties of the Hopfield neural network with time-variable
coefficients and Lipschitz activation functions. Due to its long-term memory, nonlocality,
and weak singularity characteristics, fractional calculus has been successfully applied to
various models of neural networks. For instance, Boroomand constructed the Hopfield
neural networks based on fractional calculus [5], Kaslik analyzed the stability of Hopfield
neural networks [6], Wang applied the fractional steepest descent algorithm to train BP
neural networks and proved the monotonicity and convergence of a three-layer example [7].
The three features for the generalized proportional fractional derivative—the kernel of
the fractional operator, the semi-group property of the generated fractional integrals, and
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obtaining the Riemann–Liouville and Caputo fractional derivatives as a special case—offers
a possibility for more adequate modeling of some properties of the neural network.

The equilibrium of the studied model as well as its exponential stability and the
Mittag–Leffler stability are defined and investigated.

The paper is organized as follows. In Section 2, some basic definitions and results
are given. In Section 3, we present several auxiliary results for the generalized Caputo
proportional fractional derivatives of the quadratic Lyapunov function. Section 4 contains
the main results. The Hopfield neural model with time-variable coefficients and the gener-
alized proportional fractional derivatives of the Caputo type are set up. The equilibrium
is defined in an appropriate way. Exponential stability and Mittag–Leffler stability are
defined, and several sufficient conditions are obtained. The paper concludes with Section 5,
in which some detailed examples of neural networks are presented and simulated.

2. Preliminary Results

We recall that the generalized proportional fractional operators of a function
u ∈ C1([a, b],R), (a < b ≤ ∞ are real numbers, and in the case of b = ∞, the interval is
open) are defined respectively by (see [2]):

- the generalized proportional fractional integral

(aI
α,ρu)(t) =

1
ραΓ(α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1u(s) ds, for t ∈ (a, b], α > 0;

- the generalized proportional Caputo fractional derivative

(C
a Dα,ρu)(t) = (aI

1−α,ρ(D1,ρu))(t)

=
1

ρ1−αΓ(1− α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)−α(D1,ρu)(s) ds, for t ∈ (a, b], α ∈ (0, 1), ρ ∈ (0, 1],
(1)

where (D1,ρu)(t) = (Dρu)(t) = (1− ρ)u(t) + ρu′(t) and ρ ∈ (0, 1] are fixed parameters.

Remark 1. The generalized proportional Caputo fractional derivative defined by (1) is a generaliza-
tion of the Caputo fractional derivative (with ρ = 1).

Remark 2. Note that, in some works (for example, see [8–10]), the so-called tempered fractional
integral and tempered fractional derivative are applied and defined by the following:

a Iα,λ
t x(t) =

1
Γ(α)

∫ t

a
e−λ(t−s)(t− s)α−1x(s)ds, for α > 0

and
C
a Dα,λ

t x(t) =
e−λt

Γ(1− α)

∫ t

a

eλs

(t− s)α
(λx(s) + x′(s))ds, for α ∈ (0, 1),

where λ ≥ 0 is a fixed parameter. Tempered fractional integrals and tempered fractional derivatives
are similar to the generalized proportional fractional integrals and derivatives (if λ = (1− ρ)/

ρ, ρ ∈ (0, 1], then a I
α, 1−ρ

ρ

t u(t) = ρα(aI α,ρu)(t) and ραC
a D

α, 1−ρ
ρ

t u(t) = (C
a Dα,ρu)(t)).

Proposition 1 (Proposition 5.2, [1]). Let α ∈ (0, 1) and ρ ∈ (0, 1]. Then,

(C
a Dα,ρu)(t) = 0, t > a with u(s) = e

ρ−1
ρ s, s > a.

There is an explicit formula for the solution in the scalar linear case provided in
Example 5.7 [1], which is (with an appropriate correction):
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Proposition 2. The solution of the linear Caputo proportional fractional initial value problem

C
a Dα,ρx(t) = ραλx(t) + f (t), x(a) = x0, (2)

is given by

x(t) = x0e
ρ−1

ρ (t−a)Eα(λ(t− a)α) + ρ−α
∫ t

a
e

ρ−1
ρ (s−a)

(s− a)α−1Eα,α(λ(s− a)α) f (s)ds, (3)

where

Eα(Az) =
∞

∑
k=0

(Az)k

Γ(1 + kα)
and Eα,β(Az) =

∞

∑
k=0

(Az)k

Γ(β + kα)

are Mittag–Leffler functions with one parameter and two parameters, respectively.

3. Quadratic Lyapunov Functions and Their Generalized Proportional Derivatives

Initially, we will prove the following results for scalar functions:

Lemma 1. Let the function u ∈ C1([a, b],R) with a, b ∈ R, b ≤ ∞ (if b = ∞, then the interval
is half open) and α ∈ (0, 1), ρ ∈ (0, 1] be two reals. Then,

(C
a Dα,ρu2)(t) ≤ 2u(t)(C

a Dα,ρu)(t), t ∈ (a, b]. (4)

Proof. From definition (1), we have that for any t ∈ (a, b],

(C
a Dα,ρu2)(t)− 2u(t)(C

a Dα,ρu)(t)

=
1

ρ1−αΓ(1− α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)−α
{
(1− ρ)[(u(s))2 − 2u(t)u(s) + u2(t)− u2(t)]

+ 2ρ
[
(u(s))′(u(s))− (u(s))′u(t)

]}
ds

=
1

ρ1−αΓ(1− α)

∫ t

a
(t− s)−α

{
(1− ρ)e−

1−ρ
ρ te

1−ρ
ρ s

[(u(s)− u(t))2 − u2(t)]

+ 2ρe−
1−ρ

ρ te
1−ρ

ρ su(s)′[u(s)− u(t)]
}

ds

≤ e−
1−ρ

ρ t

ρ1−αΓ(1− α)

∫ t

a
(t− s)−α

{
(1− ρ)e

1−ρ
ρ s

[u(s)− u(t)]2 + 2ρe
1−ρ

ρ su(s)′[u(s)− u(t)]
}

ds.

(5)

Use integration by parts and obtain the following:

(C
a Dα,ρ(u)2)(t)− 2u(t)(C

a Dα,ρu)(t)

≤ e−
1−ρ

ρ t

ρ1−αΓ(1− α)

{
ρ
∫ t

a
(t− s)−α[u(s)− u(t)]2de

1−ρ
ρ s

+ 2ρ
∫ t

a
(t− s)−αe

1−ρ
ρ su(s)′[u(s)− u(t)]ds

}

=
e−

1−ρ
ρ t

ρ1−αΓ(1− α)

{
ρ


 [u(s)− u(t)]2e

1−ρ
ρ s

(t− s)α



∣∣∣
s=t

s=a
− ρ

∫ t

a
e

1−ρ
ρ sd

(
(t− s)−α[u(s)− u(t)]2

)

+ 2ρ
∫ t

a
(t− s)−αe

1−ρ
ρ su(s)′[u(s)− u(t)]ds

}

=
e−

1−ρ
ρ t

ρ1−αΓ(1− α)

{
ρ


 [u(s)− u(t)]2e

1−ρ
ρ s

(t− s)α



∣∣∣
s=t

s=a
− ρα

∫ t

a
e

1−ρ
ρ s

(t− s)1−α[u(s)− u(t)]2ds

− 2ρ
∫ t

a
e

1−ρ
ρ s

(t− s)−αu′(s)[u(s)− u(t)]ds + 2ρ
∫ t

a
(t− s)−αe

1−ρ
ρ su(s)′[u(s)− u(t)]ds

}

=
e−

1−ρ
ρ t

ρ1−αΓ(1− α)

{
ρ


 [u(s)− u(t)]2e

1−ρ
ρ s

(t− s)α



∣∣∣
s=t

s=a
− ρα

∫ t

a
e

1−ρ
ρ s

(t− s)−1−α[u(s)− u(t)]2ds.

(6)
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The integral ∫ t

a
e

1−ρ
ρ s

(t− s)−1−α[u(s)− u(t)]2ds

has a singularity at the upper limit t, but it is a removable singularity because by the
L’Hopital rule, we obtain the following:

lim
s→t−

[u(s)− u(t)]2

(t− s)1+α
= lim

s→t−
2u′(s)(u(s)− u(t))
−(1 + α)(t− s)α = lim

s→t−
2(u′(s)(u(s)− u(t)))′

(1 + α)α
(t− s)1−α = 0.

Thus,

(C
a Dα,ρ(u)2)(t)− 2u(t)(C

a Dα,ρu)(t) ≤ ραe−
1−ρ

ρ t

Γ(1− α)


 [u(s)− u(t)]2e

1−ρ
ρ s

(t− s)α



∣∣∣
s=t

s=a

=
ραe−

1−ρ
ρ t

Γ(1− α)


lim

s→t

[u(s)− u(t)]2e
1−ρ

ρ s

(t− s)α − [u(a)− u(t)]2e
1−ρ

ρ a

(t− a)α


.

(7)

By the L’Hopital rule we get the following:

(C
a Dα,ρ(u)2)(t)− 2u(t)(C

a Dα,ρu)(t) ≤ ραe−
1−ρ

ρ t

Γ(1− α)
lim
s→t

[u(s)− u(t)]2e
1−ρ

ρ s

(t− s)α

= − ραe−
1−ρ

ρ t

Γ(1− α)
lim
s→t

2u′(s)[u(s)− u(t)]e
1−ρ

ρ s
+ 1−ρ

ρ [u(s)− u(t)]2e
1−ρ

ρ s

α(t− s)α−1

= − ραe−
1−ρ

ρ t

Γ(1− α)α
lim
s→t

(
2u′(s)[u(s)− u(t)]e

1−ρ
ρ s

+
1− ρ

ρ
[u(s)− u(t)]2e

1−ρ
ρ s
)
(t− s)1−α = 0.

(8)

Inequality (8) proves the claim of Lemma 1.

Inequality (4) is true in the vector case:

Corollary 1. Let the function u ∈ C1([a, b],Rn
) with a, b ∈ R, b ≤ ∞ (if b = ∞, then the

interval is half open) and α ∈ (0, 1), ρ ∈ (0, 1]. Then,

(C
a Dα,ρuT(t)u(t)) ≤ 2uT(t)(C

a Dα,ρu)(t), t ∈ (a, b]. (9)

The proof follows from the decomposition of the scalar product uT(t)u(t) into a sum
of products and the application of Lemma 1.

Remark 3. In the case of the Caputo fractional derivative, i.e., ρ = 1, the results of Lemma 1 and
Corollary 1 are reduced to Lemma 1 [11] and Remark 1 [11].

Consider the following system of nonlinear fractional differential equations with the
generalized proportional Caputo fractional derivative:

(C
t0
Dα,ρu)(t) = F(t, u(t)), for t > t0,

u(t0) = u0,
(10)

where t0 ≥ 0, (C
t0
Dα,ρu)(t) is the generalized proportional Caputo fractional derivative of

the function u ∈ C1([t0, ∞),Rn
), ρ ∈ (0, 1], α ∈ (0, 1) are two reals, and F : [t0, ∞)×Rn →

Rn is a function.

Remark 4. We will assume that for any initial value u0, the initial value problem (10) has a
solution u(t; t0, u0) defined for t ≥ t0.
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Next, we will obtain two types of bounds for the solutions of (10).

Lemma 2. Assume that:

1. The function u(·) = u(·; t0, u0) ∈ C1([t0, ∞),Rn
) is a solution of the IVP for the nonlinear

system of generalized proportional Caputo fractional differential equations (10);
2. For any point t ≥ t0, the inequality

C
t0
Dα,ρ(‖u(t)‖2) ≤ 0 (11)

holds.

Then,

‖u(t)‖ ≤ ‖u0‖e
ρ−1
2ρ (t−t0), for t ≥ t0. (12)

Proof. Define the function m(t) = uT(t)u(t) = ‖u(t)‖2 : [t0, ∞) → R+. Let ε > 0 be an
arbitrary number. We will prove that

m(t) < (‖u0‖2 + ε)e
ρ−1

ρ (t−t0), t ≥ t0. (13)

For t = t0, we get

m(t0) = ‖u0‖2 < (‖u0‖2 + ε) = (‖u0‖2 + ε)e
ρ−1

ρ (t0−t0),

i.e., inequality (13) is true for t = t0.
Now, assume that (13) is not true. Then there exist t∗ ∈ (t0, ∞), such that

m(t) < (‖u0‖2 + ε)e
ρ−1

ρ (t−t0), t ∈ [t0, t∗), m(t∗) = (‖u0‖2 + ε)e
ρ−1

ρ (t∗−t0). (14)

Denote η(t) = ‖u(t)‖2 − (‖u0‖2 + ε)e
ρ−1

ρ (t−t0) : [t0, t∗] → (−∞, 0]. From (14), it
follows that η(t∗) = 0, η(t) < 0 for t ∈ [t0, t∗). Therefore,

(C
t0

Dα,ρη)(t)
∣∣∣
t=t∗

=
1

ρ1−αΓ(1− α)

∫ t∗

t0
e

ρ−1
ρ (t∗−s)

(t∗ − s)−α
(
(1− ρ)η(s) + ρη′(s)

)
ds

=
1

ρ1−αΓ(1− α)

[
ρ
∫ t∗

t0
(t∗ − s)−αη(s)de

ρ−1
ρ (t−s)

+ ρ
∫ t∗

t0
e

ρ−1
ρ (t∗−s)

(t∗ − s)−αη′(s)ds,

=
1

ρ1−αΓ(1− α)

[
ρ(t∗ − s)−αη(s)e

ρ−1
ρ (t∗−s)|s=t∗

s=t0
− ρ

∫ t∗

t0
e

ρ−1
ρ (t∗−s)d((t∗ − s)−αη(s))

+ ρ
∫ t∗

t0
e

ρ−1
ρ (t∗−s)

(t∗ − s)−αη′(s)ds.

(15)

Thus, by the L’Hopital rule, we get the following:

(t∗ − s)−αη(s)e
ρ−1

ρ (t∗−s)
∣∣∣
s=t∗

= lim
s→t∗−0

η(s)e
ρ−1

ρ (t∗−s)

(t∗ − s)α = lim
s→t∗−0

η′(s)e
ρ−1

ρ (t∗−s) − ρ−1
ρ η(s)e

ρ−1
ρ (t∗−s)

α
(t∗ − s)1−α = 0. (16)

From (15) and (16), we obtain the following:

(C
t0

Dα,ρη)(t)
∣∣∣
t=t∗

=
1

ρ1−αΓ(1− α)

[
− ρ(t∗ − t0)

−αη(t0)e
ρ−1

ρ (t−t0) − ρα
∫ t∗

t0
e

ρ−1
ρ (t∗−s) η(s)

(t∗ − s)1+α
ds

− ρ
∫ t∗

t0
e

ρ−1
ρ (t∗−s)

(t∗ − s)−αη′(s)ds + ρ
∫ t∗

t0
e

ρ−1
ρ (t−s)

(t∗ − s)−αη′(s)ds

]

=
1

ρ1−αΓ(1− α)

[
− ρη(t0)

e
ρ−1

ρ (t∗−t0)

(t∗ − t0)
α − ρα

∫ t∗

t0

e
ρ−1

ρ (t∗−s)

(t∗ − s)1+α
η(s)ds

]
> 0.

(17)
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From Proposition 1, inequality (17), and condition 2 for t = t∗ , we obtain the
equation below:

0 <(C
t0
Dα,ρη)(t)

∣∣∣
t=t∗

= C
t0
Dα,ρ(‖u(t)‖2 − (‖u0‖2 + ε)e

ρ−1
ρ (t−t0))

∣∣∣
t=t∗

= C
t0
Dα,ρ‖u(t)‖2

∣∣∣
t=t∗
− (‖u0‖2 + ε)e

1−ρ
ρ t0 C

t0
Dα,ρe

ρ−1
ρ t
∣∣∣
t=t∗

= C
t0
Dα,ρ‖u(t)‖2

∣∣∣
t=t∗
≤ 0.

(18)

The obtained contradiction proves the validity of (13) for any ε > 0. Therefore,

‖u(t)‖2 < ‖u0‖2e
ρ−1

ρ (t−t0),

i.e., the claim of Lemma 2 is true.

Corollary 2. Assume that the conditions of Lemma 2 are satisfied. Then, ‖x(t)‖ ≤ ‖u0‖ for all
t ≥ t0.

The proof follows from inequality (12), ρ ∈ (0, 1], and the inequality e
ρ−1
2ρ (t−t0) ≤ 1.

Lemma 3. Assume that:

1. The function u(·) = u(·; t0, u0) ∈ C1([t0, ∞),Rn
) is a solution of the IVP for the nonlinear

system of generalized proportional Caputo fractional differential equations (10);
2. There exists a positive constant K > 0, such that at any point t ≥ t0, the inequality

C
t0
Dα,ρ

(
‖u(t)‖2

)
≤ −K‖u(t)‖2 (19)

holds.

Then,

‖u(t)‖ ≤ ‖u0‖e
ρ−1
2ρ (t−t0)

√
Eα

(−K
ρα

tα

)
for t ≥ t0. (20)

Proof. Define the function m(t) = uT(t)u(t) = ‖u(t)‖2 : [t0, ∞) → R+. From inequal-
ity (19), it follows that there exists a function ξ : [t0, ∞)→ [0, ∞), such that

(C
t0
Dα,ρm)(t) ≤ −Km(t)− ξ(t), t ≥ t0. (21)

According to Proposition 2, with a = 0, λ = −K/ρα, f (t) = −ξ(t), and x0 = m(0), the
solution of the linear Caputo proportional fractional initial value problem (21) is given by

m(t) = m(0)e
ρ−1

ρ tEα

(−K
ρα

tα

)
− ρ−α

∫ t

0
e

ρ−1
ρ ssα−1Eα,α

(−K
ρα

sα

)
ξ(s)ds ≤ m(0)e

ρ−1
ρ tEα

(−K
ρα

tα

)
. (22)

4. Stability of Neural Networks with a Generalized Proportional Caputo
Fractional Derivative

The fractional-order Hopfield neural networks with the generalized proportional
Caputo fractional derivative is described by the following equation:

(C
0 Dα,ρxi)(t) = −ai(t)xi(t) +

n

∑
k=1

bi,k(t) fk(xk(t)) + Ii(t), t > 0, i = 1, 2, . . . , n, (23)

where n is the number of units in a neural network, C
0 Dα,ρ denotes the generalized

proportional Caputo fractional derivative of order α ∈ (0, 1), ρ ∈ (0, 1], xi(t) is the
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state of the i-th unit at time t, fk(u) denotes the activation function of the k-th neuron,
bi,k(t) : [0, ∞)→ R denotes the connection weight of the k-th neuron on the i-th neuron at
time t, ai(t) : [0, ∞)→ (0, ∞) represents the rate at which the i-th neuron resets its potential
to the resting state when disconnected from the network at time t, and Ii(t) denotes the
external inputs at time t.

We will now define the equilibrium of the neural network (23). Different than the
classical case of ordinary derivatives and the Caputo fractional derivatives, in the general
case, the equilibrium of (23) could not be a constant because the generalized proportional
derivative of a nonzero constant is not 0. Applying Proposition 1, we define the equilibrium
of (23):

Definition 1. The function x∗(t) = Ce
ρ−1

ρ t : C = (C1, C2, . . . , Cn) ∈ Rn, ci = const,
i = 1, 2, . . . , n, is called an equilibrium of (23) if

ai(t)Cie
ρ−1

ρ t
=

n

∑
k=1

bi,k(t) fk(Cke
ρ−1

ρ t
) + Ii(t), t ≥ 0, i = 1, 2 . . . , n.

Remark 5. The constant vector C ∈ Rn in Definition 1 could be a zero vector (zero equilibrium)
or a nonzero vector (nonzero equilibrium).

Remark 6. The zero vector is an equilibrium of (23) if fk(0) = 0 and Ik(t) ≡ 0 for all
k = 1, 2, . . . , n.

Let x∗(t) = Ce
ρ−1

ρ t be an equilibrium of (23). Consider the change in the variables
u(t) = x(t)− x∗(t), t ≥ 0, in system (23), use Proposition 1 and obtain the following:

(C
0 Dα,ρui)(t) = (C

0 Dα,ρxi)(t)− (C
0 Dα,ρx∗i )(t) = (C

0 Dα,ρxi)(t)

= −ai(t)(ui(t) + x∗i (t)) +
n

∑
k=1

bi,k(t) fk(uk(t) + x∗k (t)) + Ii(t)

= −ai(t)ui(t) +
n

∑
k=1

bi,k(t)[ fk(uk(t) + x∗k (t))− fk(x∗k (t))]− ai(t)x∗i (t) +
n

∑
k=1

bi,k(t) fk(x∗k (t)) + Ii(t)

= −ai(t)ui(t) +
n

∑
k=1

bi,k(t)Fk(t, uk(t)), t > 0, i = 1, 2, . . . , n,

(24)

where Fk(t, v) = fk(v + x∗k (t)) − fk(x∗k (t)), i.e., if x∗(t) is an equilibrium of (23), then
the system

(C
0 Dα,ρui)(t) = −ai(t)ui(t) +

n

∑
k=1

bi,k(t)Fk(t, uk(t)), t > 0, i = 1, 2, . . . , n, (25)

has a zero solution, and vice versa.

Definition 2. Let α ∈ (0, 1) and ρ ∈ (0, 1). The equilibrium x∗(·) of (23) is called exponentially
stable if, for any solution x(t) of (23), the inequality

‖x(t)− x∗(t)‖ ≤ m(‖x(0)− x∗(0)‖)eλ
ρ−1

ρ t, t ≥ 0,

holds, where λ > 0 is a constant, and m(s) ≥ 0, m(0) = 0, is a given locally Lipschitz function.

Remark 7. Note that the exponential stability is defined only for ρ ∈ (0, 1).

Remark 8. The exponential stability of the equilibrium x∗(·) implies that every solution x(·)
of (23) satisfies limt→∞ ‖x(t)− x∗(t)‖ = 0.
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Definition 3. Let α ∈ (0, 1) and ρ ∈ (0, 1]. The equilibrium x∗(·) of (23) is called generalized
Mittag–Leffler stable if there exist the positive constants λ, µ, and γ, such that for any solution x(·)
of (23), the inequality

‖x(t)− x∗(t)‖ ≤ m(‖x(0)− x∗(0)‖)eλ
ρ−1

ρ t
(

Eα(−µtα)
)γ

, t ≥ 0,

holds, where Eα(z) is the Mittag–Leffler function with one parameter, m(s) ≥ 0, m(0) = 0, is a
given locally Lipschitz function.

Remark 9. Note that the generalized Mittag–Leffler stability is defined for ρ ∈ (0, 1] and for ρ = 1,
and it generalizes the corresponding results for the Caputo fractional differential equations [6,12–15].

Remark 10. Note that the Mittag–Leffler stability for the Hopfield neural network with tempered
fractional derivatives is studied in [10,16], but only for zero equilibrium, zero internal perturbations,
and constant coefficients.

Remark 11. The generalized Mittag–Leffler stability of the equilibrium x∗(·) implies that every
solution x(·) of (23) satisfies limt→∞ ‖x(t)− x∗(t)‖ = 0.

Theorem 1 (Exponential stability). Let the following assumptions hold:

1. α ∈ (0, 1) and ρ ∈ (0, 1);
2. The functions ai ∈ C(R+, (0, ∞)), bi,k, Ii ∈ C(R+,R), i, k = 1, 2, . . . , n;
3. There exist positive constants Mi, i = 1, 2, . . . , n, such that the activation functions

fi ∈ C(R,R) satisfy | fi(v)− fk(w)| ≤ Mi|v− w| for v, w ∈ R;
4. Equation (23) has an equilibrium x∗(·) = (x∗1(·), x∗2(·), . . . , x∗n(·));
5. The inequality

2ai(t) ≥
n

∑
k=1

(
|bi,k(t)|+ M2

i |bk,i(t)|
)

, t ≥ 0, i = 1, 2, . . . , n

holds.

Then, the equilibrium x∗(·) of (23) is exponentially stable.

Proof. Let x(·) be a solution of (23), and consider the system (25) with u(t) = x(t) −
x∗(t), t ≥ 0. From condition 3, we have the following equation:

|Fk(t, v)| = | fk(v + x∗k (t))− fk(0 + x∗k (t))| ≤ Mk|v|,

for v ∈ R, t ≥ 0. Then,

ui(t)(C
0 Dα,ρui)(t) = −ai(t)u2

i (t) +
n

∑
k=1

bi,k(t)(ui(t)Fk(t, uk(t)))

≤ −ai(t)u2
i (t) +

n

∑
k=1
|bi,k(t)|0.5(u2

i (t) + F2
k (t, uk(t))) ≤ 0.5

(
− 2ai(t) +

n

∑
k=1
|bi,k(t)|

)
u2

i (t) + 0.5
n

∑
k=1
|bi,k(t)M2

k u2
k(t),

(26)
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and by applying Condition 5, we get the following:

(C
0 Dα,ρ(uT(t)u(t)) ≤ 2uT(t)(C

0 Dα,ρu)(t) = 2
n

∑
i=1

ui(t)(C
0 Dα,ρui)(t)

≤ 0.5
n

∑
i=1

(
− 2ai(t) +

n

∑
k=1
|bi,k(t)|

)
u2

i (t) +
n

∑
i=1

n

∑
k=1
|bi,k(t)M2

k u2
k(t)

= 0.5
n

∑
i=1

(
− 2ai(t) +

n

∑
k=1
|bi,k(t)|

)
u2

i (t) + 0.5
n

∑
i=1

M2
i u2

i (t)
n

∑
k=1
|bk,i(t)|

= 0.5
n

∑
i=1

[
− 2ai(t) +

n

∑
k=1

(
|bi,k(t)|+ M2

i |bk,i(t)|
)]

u2
i (t) ≤ 0.

(27)

According to Lemma 2 applied to the system in (25), with t0 = 0, the inequality

‖u(t)‖ ≤ ‖u(0)‖e
ρ−1
2ρ t, t ≥ 0 (28)

holds. This proves the claim of the Theorem, with λ = 0.5 and m(s) = s.

From Corollary 2 we obtain the following (applied to (23) with t0 = 0):

Corollary 3 (Boundedness). Let α ∈ (0, 1) , ρ ∈ (0, 1], and conditions 2–5 of Theorem 1 are
satisfied. Then, any solution x(·) of (23) satisfies ‖x(t)− x∗(t)‖ ≤ ‖x(0)− x∗(0)‖ for all t ≥ 0.

Theorem 2 (Generalized Mittag–Leffler stability). Let the following assumptions hold:

1. Conditions 1–4 of Theorem 1 are satisfied;
2. There exists a positive constant L, such that inequality

2ai(t)−
n

∑
k=1

(
|bi,k(t)|+ Mi|bk,i(t)|

)
≥ L, t ≥ 0, i = 1, 2, . . . , n

holds.

Then, the equilibrium x∗(·) of (23) is Mittag–Leffler stable.

Proof. Let x(·) be a solution of (23) and consider the system in (25) with u(t) = x(t)− x∗(t).
Similar to the proof of Theorem 1, we prove the following inequality:

(C
0 Dα,ρ(uT(t)u(t)) ≤ 0.5

n

∑
i=1

[
− 2ai(t) +

n

∑
k=1

(
|bi,k(t)|+ M2

i |bk,i(t)|
)]

u2
i (t) ≤ −0.5L‖u(t)‖2. (29)

Denote m(t) = ‖u(t)‖2, and from (29) and Condition 2 of Theorem 2, it follows that
there exists a function g(t) : [0, ∞)→ (−∞, 0], such that

(C
0 Dα,ρm)(t) = −0.5Lm(t) + g(t), t > 0. (30)

According to Proposition 2, the solution of the linear Caputo proportional fractional
initial value problem (30) is given by the following equation:

m(t) = m(0)e
ρ−1

ρ tEα

(
− 0.5L

ρα
tα

)
+ ρ−α

∫ t

0
e

ρ−1
ρ (t−a)sα−1Eα,α

(
− 0.5L

ρα
sα

)
g(s)ds ≤ m(0)e

ρ−1
ρ tEα

(
− 0.5L

ρα
tα

)
. (31)

From inequality (31), it follows that

‖x(t)− x∗(t)‖ ≤ ‖x(0)− x∗(0)‖e
ρ−1
2ρ t
(

Eα

(
−0.5L

ρα
tα

))0.5
. (32)
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5. Applications

Example 1. Consider the following neural networks of n = 3 neurons with a ring structure [6]
with the following generalized proportional fractional derivatives:

(C
0 Dα,ρx1)(t) = −6x1(t) + 2 sin(x1(t)) + 2 sin(x2(t)) + sin(x3(t)) + I1(t),

(C
0 Dα,ρx2)(t) = −5x2(t)− 2 sin(x1(t))− 0.4 sin(x2(t)) + sin(x3(t)) + I2(t),

(C
0 Dα,ρx3)(t) = −8x3(t) + sin(x1(t))− 2.5 sin(x2(t)) + 3.5 sin(x3(t)) + I3(t), t > 0,

(33)

where the activation functions are fk(x) = sin(x), k = 1, 2, 3, i.e., condition 3 of Theorem 1 is
satisfied by Mi = 1, i = 1, 2, 3.

Case 1. Let Ii(t) ≡ Ki 6= 0, i = 1, 2, 3 be constants. Then, for ρ ∈ (0, 1), the system in (33)
has no equilibrium because, for example, the following equality:

−6C1e
ρ−1

ρ t
= 2 sin

(
C1e

ρ−1
ρ t
)
+ sin

(
C2e

ρ−1
ρ t
)
− 3 sin

(
C3e

ρ−1
ρ t
)
+ K1, t ≥ 0

is not satisfied by any constant Ci, i = 1, 2, 3 (compare with the case of the Caputo fractional
derivative ρ = 1, [15]).

Case 2. Let Ii(t) ≡ 0, i = 1, 2, 3, t ≥ 0. Then, for any ai(t) > 0, the system in (33) has zero
equilibrium because sin(0) = 0 (see Remark 6).

Case 3. Consider the following neural network:

(C
0 Dα,ρx1)(t) = − sin

(
e

ρ−1
ρ t
)

x1(t) +
6

sin
(

e
ρ−1

ρ t
) sin(x1(t)) + e

ρ−1
ρ t sin(x3(t))− 6,

(C
0 Dα,ρx2)(t) = − sin

(
e

ρ−1
ρ t
)

x2(t) + 0.5e
ρ−1

ρ t sin(x1(t)) + 0.5e
ρ−1

ρ t sin(x2(t)),

(C
0 Dα,ρx3)(t) = − sin2

(
e

ρ−1
ρ t
)

x3(t) + sin
(

e
ρ−1

ρ t
)

e
ρ−1

ρ t sin(x1(t))− 2 sin(x3(t)) + 2 sin
(

e
ρ−1

ρ t
)

.

(34)

Thus, the coefficients are as follows:

a1(t) = sin
(

e
ρ−1

ρ t
)
> 0, a2(t) = sin

(
e

ρ−1
ρ t
)
> 0, a3(t) = sin2

(
e

ρ−1
ρ t
)
> 0,

B = {bi,k(t)} =




6

sin

(
e

ρ−1
ρ t
) 0 e

ρ−1
ρ t

0.5e
ρ−1

ρ t 0.5e
ρ−1

ρ t 0

sin
(

e
ρ−1

ρ t
)

e
ρ−1

ρ t 0 −2




,

and

I1(t) = −6, I2(t) = 0, I3(t) = 2 sin
(

e
ρ−1

ρ t
)

.

Then, for ρ ∈ (0, 1), the system in (33) has the equilibrium

(
e

ρ−1
ρ t, e

ρ−1
ρ t, e

ρ−1
ρ t
)

,

because

a1x∗1(t) = sin
(

e
ρ−1

ρ t
)

e
ρ−1

ρ t
=

6

sin
(

e
ρ−1

ρ t
) sin

(
e

ρ−1
ρ t
)
+ 0 + e

ρ−1
ρ t sin

(
e

ρ−1
ρ t
)
− 6

a2(t)x∗2(t) = sin
(

e
ρ−1

ρ t
)

e
ρ−1

ρ t
= 0.5e

ρ−1
ρ t sin

(
e

ρ−1
ρ t
)
+ 0.5e

ρ−1
ρ t sin

(
e

ρ−1
ρ t
)
+ 0 + 0
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a3(t)x∗3(t) = sin2
(

e
ρ−1

ρ t
)

e
ρ−1

ρ t
= sin

(
e

ρ−1
ρ t
)

e
ρ−1

ρ t sin
(

e
ρ−1

ρ t
)
+ 0− 2 sin

(
e

ρ−1
ρ t
)
+ 2 sin

(
e

ρ−1
ρ t
)

hold.
Neither the conditions of Theorem 1 nor the conditions of Theorem 2 are satisfied. For example,

the following inequality:

2 sin
(

e
ρ−1

ρ t
)
≥ γ(ρ, t) := 2

6

sin
(

e
ρ−1

ρ t
) + 0.5e

ρ−1
ρ t

+ e
ρ−1

ρ t
(

1 + sin
(

e
ρ−1

ρ t
))

, t ≥ 0 (35)

is not satisfied (see Figure 1, top left). Therefore, we are not able to conclude the stability properties
of the equilibrium (see Figure 2).
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Figure 1. Graph of inequality (35) for various ρ (1st plot). Graph of inequality (37) for ρ = 0.5 (2nd
plot), (38) for ρ = 0.5 (3rd plot), and (39) for ρ = 0.5 (4th plot).
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Figure 2. Graphs of functions |xi(t)− e
ρ−1

ρ t|, with i = 1, 2, 3 and α = 0.6. On the (left), ρ = 0.3, and
on the (right), ρ = 0.5.

Example 2. Consider the following neural networks of n = 3 neurons with the following general-
ized proportional fractional derivatives:

(C
0 Dα,ρx1)(t) = −

1

1 + e−e
ρ−1

ρ t
x1(t) +

0.1
1 + e−x1(t)

+ e
ρ−1

ρ t 1
1 + e−x3(t)

+
−0.1

1 + e−e
ρ−1

ρ t
,

(C
0 Dα,ρx2)(t) = −

1

1 + e−e
ρ−1

ρ t
x2(t) + e

ρ−1
ρ t 1

1 + e−x1(t)
,

(C
0 Dα,ρx3)(t) = −

1

1 + e−e
ρ−1

ρ t
x3(t) + e

ρ−1
ρ t 1

1 + e−x1(t)
+

1
1 + e−x3(t)

+
−1

1 + e−e
ρ−1

ρ t
,

(36)

with the coefficients

ak(t) =
1

1 + e−e
ρ−1

ρ t
> 0, k = 1, 2, 3,

the activation functions fk(x) = 1/(1 + e−x) > 0, k = 1, 2, 3 are equal to the sigmoid function,
with Mk = 0.25, the perturbations are thus given by

I1(t) =
−0.1

1 + e−e
ρ−1

ρ t
, I2(t) = 0, I3(t) =

−1

1 + e−e
ρ−1

ρ t
,

and

B = {bi,k(t)} =




0.1 0 e
ρ−1

ρ t

e
ρ−1

ρ t 0 0

e
ρ−1

ρ t 0 1


.

Then, for ρ ∈ (0, 1), the system in (36) has the following equilibrium:

x∗(t) =
(

e
ρ−1

ρ t, e
ρ−1

ρ t, e
ρ−1

ρ t
)
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because

a1x∗1(t) =
1

1 + e−e
ρ−1

ρ t
e

ρ−1
ρ t

= 0.1
1

1 + e−e
ρ−1

ρ t
+ 0 +

1

1 + e−e
ρ−1

ρ t
e

ρ−1
ρ t

+
−0.1

1 + e−e
ρ−1

ρ t
,

a2(t)x∗2(t) =
1

1 + e−e
ρ−1

ρ t
e

ρ−1
ρ t

=
1

1 + e−e
ρ−1

ρ t
e

ρ−1
ρ t

+ 0 + 0 + 0,

a3(t)x∗3(t) =
1

1 + e−e
ρ−1

ρ t
e

ρ−1
ρ t

= e
ρ−1

ρ t 1

1 + e−e
ρ−1

ρ t
+ 0 +

1

1 + e−e
ρ−1

ρ t
+

−1

1 + e−e
ρ−1

ρ t
.

Moreover, condition 5 of Theorem 1 is satisfied because of the following inequalities:

2
1

1 + e−e
ρ−1

ρ t
≥ 1 ≥ (1 + 0.252)0.1 + (0 + 0.5 ∗ 0.252) + (1 + 0.252)e

ρ−1
ρ t, (37)

2
1

1 + e−e
ρ−1

ρ t
≥ (1 + 0 ∗ 0.252) + (1 + 0.252) ∗ 0 + (1 + 0.252) ∗ 0, (38)

2
1

1 + e−e
ρ−1

ρ t
≥ (1 + 0.252)e

ρ−1
ρ t

+ 0 + (1 + 0.252), (39)

(see Figure 1, top right, bottom left, and bottom right, respectively).
From Theorem 1, the equilibrium is exponentially stable, i.e., (see Figure 3)

|xi(t)− e
ρ−1

ρ t| ≤ |xi(0)− 1|e0.5 ρ−1
ρ t, t ≥ 0, i = 1, 2, 3.

Figure 3. Graphs of the functions |xi(t) − e
ρ−1

ρ t|, with i = 1, 2, 3, α = 0.6, and ρ = 0.3 (left), ρ = 0.5 (center), and
ρ = 0.8 (right).

6. Conclusions

Initially, we proved an important inequality concerning an estimate of the generalized
proportional Caputo fractional derivative of quadratic functions. The result could be ap-
plied to the study of various types of stability for the solutions of various types of fractional
differential equations with the generalized proportional Caputo fractional derivative. In
our paper, we applied it to study the stability properties of the Hopfiel neural network
with the generalized proportional Caputo type fractional derivative. An equilibrium of the
studied model was then defined. This equilibrium is generally not a constant (different
than the case of ordinary derivatives and the Caputo type fractional derivatives). We
defined the exponential stability and the Mittag–Leffler stability of the equilibrium. Several
sufficient conditions were presented to guarantee these types of stability. The theoretical
results were illustrated, with two numerical examples.
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Abstract: Two important basic inference models of fuzzy reasoning are Fuzzy Modus Ponens (FMP)
and Fuzzy Modus Tollens (FMT). In order to solve FMP and FMT problems, the full implication triple
I algorithm, the reverse triple I algorithm and the Subsethood Inference Subsethood (SIS for short)
algorithm are proposed, respectively. Furthermore, the existing reasoning algorithms are extended to
intuitionistic fuzzy sets and interval-valued fuzzy sets according to different needs. The purpose of
this paper is to study the relationship between intuitionistic fuzzy reasoning algorithms and interval-
valued fuzzy reasoning algorithms. It is proven that there is a bijection between the solutions of
intuitionistic fuzzy triple I algorithm and the interval-valued fuzzy triple I algorithm. Then, there is a
bijection between the solutions of intuitionistic fuzzy reverse triple I algorithm and the interval-valued
fuzzy reverse triple I algorithm. At the same time, it is shown that there is also a bijection between the
solutions of intuitionistic fuzzy SIS algorithm and interval-valued fuzzy SIS algorithm.

Keywords: Fuzzy Modus Ponens; Fuzzy Modus Tollens; reasoning algorithm; intuitionistic fuzzy
sets; interval-valued fuzzy sets

MSC: 110.84

1. Introduction

In recent years, fuzzy control achieved great success in many aspects. Fuzzy reasoning
is the core content of fuzzy control. As an important branch of approximate reasoning,
fuzzy reasoning is close to human thinking mode. It has become the theoretical basis for
fuzzy expert systems, fuzzy control systems and fuzzy intelligent decision systems, etc.
In fuzzy reasoning, the most basic forms of fuzzy reasoning are Fuzzy Modus Ponens
(FMP) and Fuzzy Modus Tollens (FMT) [1] as follows:

FMP: Given the input “x is A∗”, and fuzzy rule “if x is A then y is B”, try to infer a
reasonable output “y is B∗”;

FMT: Given the input “y is B∗”, and fuzzy rule “if x is A then y is B”, try to infer a
reasonable output “x is A∗”.

Zadeh [2] proposed the compositional rules of inference (CRI method for short) to deal
with the above problem. Nevertheless, Wang [3] pointed out that the CRI method lacks
strict logical basis and has no reducibility. Moreover, Wang [3] proposed full implication
triple I method (triple I method for short), which improves the traditional CRI algorithm
and brings fuzzy reasoning within the framework of logical semantic implication. Many
researchers have done a lot of research on the triple I method and achieved a series of
results. Wang and Fu [4] provided the unified forms of triple I method for FMP and FMT.
Pei [5] comprehensively discussed the method based on residual fuzzy implication induced
by left-continuous t-norms. Song and Wu [6] proposed a reverse triple I algorithm from the
perspective of how to design a fuzzy system to minimize the number of elements in the
fuzzy rule base under a given precision. Liu and Wang [7] proposed triple I method based
on pointwise sustaining degrees. Luo and Yao [8] studied triple I algorithms based on
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Schweizer–Sklar operators in fuzzy reasoning. In addition, the reducibility of the algorithm
is one of the important criteria to evaluate the quality of fuzzy reasoning. Although the
triple I algorithm and the reverse triple I algorithm have better properties in reducibility
than CRI algorithm, their reducibility is not unconditional. Therefore, Zou and Pei [9] gave
an SIS algorithm with the advantage of unconditional reducibility.

Although fuzzy sets have been successfully used in many fields, there are still some
defects in describing the fuzziness and uncertainty of information. An interval-valued fuzzy
set was introduced by Zadeh [10]. Many researchers extended approximate inference to the
interval-valued fuzzy sets. An approximate reasoning method based on the interval-valued
fuzzy sets was proposed [11]. Li et al. [12] discussed the robustness of interval-valued CRI
method. Liu and Li [13] studied the interval-valued fuzzy reasoning with multi-antecedent
rules. Luo and Zhang [14] extended the fuzzy inference triple I principle on interval-valued
fuzzy sets, and gave the interval-valued fuzzy inference full-implication method based on
the associated t-norms. Luo and Wang [15] further studied interval-valued fuzzy reasoning
full implication algorithms based on the t-representable t-norm. Li and Xie [16] investigated
universal interval-valued fuzzy inference systems based on interval-valued implications.
Luo et al. [17] discussed the robustness of reverse triple I algorithms based on interval-valued
fuzzy sets. Wang et al. [18] combined the SIS algorithm with interval-valued fuzzy sets to
give a generalized SIS algorithm based on interval fuzzy reasoning and study its robustness.

Another extension of fuzzy sets, intuitionistic fuzzy sets, were proposed by Atanassov [19].
Many research results based on intuitionistic fuzzy sets have been obtained. Deschri-
jver et al. [20] proposed the intuitionistic fuzzy t-norm and t-conorm. Cornelis et al. [21]
studied the intuitionistic fuzzy reasoning CRI method. Zheng et al. [22] studied the in-
tuitionistic fuzzy reasoning triple I method and α-triple I method. Liu and Zheng [23]
proposed the dual triple I method and the decomposition method for intuitionistic Fuzzy
Modus Tollens, which improved the reductivity of triple I method for intuitionistic Fuzzy
Modus Tollens. Peng [24] discussed the intuitionistic fuzzy reasoning reverse triple I algo-
rithm and the reverse α-triple I algorithm. The literature [25] extended the SIS algorithm
to intuitionistic fuzzy sets and then gave an SIS algorithm based on intuitionistic fuzzy
reasoning and discussed its continuity.

Although scholars have made some research results based on intuitionistic fuzzy sets
and interval-valued fuzzy sets, the relationship between the results has not been studied. This
is the research goal of this paper. The structure of this paper is as follows: some concepts for
intuitionistic fuzzy sets and interval-valued fuzzy sets are reviewed in Section 2. In Section 3,
we study the relationship between the intuitionistic fuzzy reasoning triple I algorithm and
interval-valued fuzzy reasoning triple I algorithm, the relationship between the intuitionistic
fuzzy reasoning reverse triple I algorithm and interval-valued fuzzy reasoning reverse triple
I algorithm, the relationship between the intuitionistic fuzzy reasoning SIS algorithm and
interval-valued fuzzy reasoning SIS algorithm. The conclusions are given in Section 4.

2. Preliminary

In this section, we review some concepts for intuitionistic fuzzy sets and interval-
valued fuzzy sets, which will be used in the paper.

Definition 1 ([26]). An increasing, commutative, associative mapping T : [0, 1]× [0, 1]→ [0, 1]
is called a triangular norm (t-norm for short) if it satisfies T(x, 1) = x for any x ∈ [0, 1]. An
increasing, commutative, associative mapping S : [0, 1] × [0, 1] → [0, 1] is called a triangular
conorm (t-conorm for short) if it satisfies S(0, x) = x for any x ∈ [0, 1].

Definition 2 ([27]). The residuated implication R induced by left-continuous t-norm T is defined
by R(a, b) = sup {x ∈ [0, 1] | T(a, x) ≤ b}, ∀a, b ∈ [0, 1].

Example 1 ([28]). (1) The Godel implication (RG for short) and the corresponding t-norm (TG for
short) have the following expression
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RG(a, b) =
{

1, if a ≤ b,
b, if a > b.

TG(a, b) = a ∧ b.

(2) The Lukasiewicz implication (RLu for short) and the corresponding t-norm (TLu for short)
have the following expression

RLu(a, b) = (1− a + b) ∧ 1.

TLu(a, b) = (a + b− 1) ∨ 0.

(3) The Gougen implication (RGo for short) and the corresponding Product t-norm (TGo for
short) have the following expression

RGo(a, b) =
{

1, if a ≤ b,
b
a , if a > b.

TGo(a, b) = ab.

Definition 3 ([19]). An intuitionistic fuzzy set (IFS for Short) on nonempty universe X is given by

A = {(x, µA(x), ϑA(x)) | x ∈ X}

where µA(x) ∈ [0, 1] and ϑA(x) ∈ [0, 1] with the condition 0 ≤ µA(x) + ϑA(x) ≤ 1(∀x ∈ X).
µA(x) and ϑA(x) are called a membership function and a non-membership function, respectively.

The class of all intuitionistic fuzzy sets on nonempty universe X is denoted IFS(X).
For every A, B ∈ IFS(X), some operations are defined as follows [29]:

(1) A ⊆L∗ B iff µA(x) ≤ µB(x) and ϑA(x) ≥ ϑB(x),∀x ∈ X;
(2) A ∪L∗ B = {(x, sup(µA(x), µB(x)), inf(ϑA(x), ϑB(x)) | x ∈ X};
(3) A ∩L∗ B = {(x, inf(µA(x), µB(x)), sup(ϑA(x), ϑB(x)) | x ∈ X}.

Let L∗ = {(x1, y1) | (x1, y1) ⊆ [0, 1]2, x1 + y1 ≤ 1}. The order defined on L∗

as (x1, y1) ≤L∗ (x2, y2) if x1 ≤ x2 and y1 ≥ y2. (x1, y1) ∧L∗ (x2, y2) = (x1 ∧ x2, y1 ∨
y2), (x1, y1) ∨L∗ (x2, y2) = (x1 ∨ x2, y1 ∧ y2). sup(xi, yi) = (sup xi, inf yi), inf(xi, yi) =
(inf xi, sup yi) for all (xi, yi)∈L∗. 0∗ = (0, 1) and 1∗ = (1, 0) are the smallest element
and the greatest element in L∗, respectively. It is easy to verify that (L∗,∧,∨, 0∗, 1∗) is a
complete lattice [30].

Definition 4 ([20]). An increasing, commutative, associative mapping TL∗ : L∗ × L∗ → L∗ is
called an intuitionistic fuzzy t-norm if it satisfies TL∗(x, 1∗) = x for any x ∈ L∗.

Example 2 ([20]). A binary mapping TL∗ : L∗ × L∗ → L∗ is defined by TL∗(α, β) = (T(a1, b1),
S(a2, b2)), where α = (a1, a2), β = (b1, b2), S is the dual t-conorm of the t-norm T. Then, TL∗ is
an intuitionistic t-norm, which is called the associated intuitionistic t-norm on L∗.

The associated intuitionistic t-norm TL∗ is called left-continuous if T is a left-continuous
t-norm and S is a right-continuous t-conorm.

Definition 5 ([20]). The intuitionistic residuated implication RL∗ induced by left-continuous
intuitionistic t-norm TL∗ is defined byRL∗(α, β) = sup{η | TL∗(η, α) ≤ β}, where α, β, η ∈ L∗,
and TL∗ is a t-norm on L∗.

Lemma 1 ([22]). The intuitionistic residuated implication induced by left-continuous associated
intuitionistic t-norm TL∗ isRL∗(α, β) = (R(a1, b1) ∧ R(1− a2, 1− b2), 1− R(1− a2, 1− b2)),
where α = (a1, a2), β = (b1, b2) ∈ L∗, and R is the residuated implication induced by the t-norm T.

Definition 6 ([10]). An interval-valued fuzzy set (IVFS for short) on nonempty universe X is given by

B = {(x, [Bl(x), Br(x)]) | [Bl(x), Br(x)] ⊆ [0, 1], x ∈ X}
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The class of all interval-valued fuzzy sets on the nonempty universe X is denoted
IVFS(X).

For every A, B ∈ IVFS(X), some operations are defined as follows [10]:

(1) A ⊆LI B iff Al(x) ≤ Bl(x) and Ar(x) ≤ Br(x),∀x ∈ X;
(2) A ∪LI B = {(x, [sup(Al(x), Bl(x)), sup(Ar(x), Br(x))]) | x ∈ X};
(3) A ∩LI B = {(x, [inf(Al(x), Bl(x)), inf(Ar(x), Br(x))]) | x ∈ X}.

Let LI = {[x1, y1] | [x1, y1] ⊆ [0, 1], x1 ≤ y1}. The order defined on LI as [x1, y1] ≤LI

[x2, y2] if x1 ≤ x2 and y1 ≤ y2 is called component-wise order or Kulisch–Miranker
order [31]. [x1, y1] ∧LI [x2, y2] = [x1 ∧ x2, y1 ∧ y2], [x1, y1] ∨LI [x2, y2] = [x1 ∨ x2, y1 ∨ y2].
sup[xi, yi] = [sup xi, sup yi], inf[xi, yi] = [inf xi, inf yi] for all [xi, yi]∈LI . 0I = [0, 0] and
1I = [1, 1] are the smallest element and the greatest element in LI , respectively. It is easy to
verify that (LI ,∧,∨, 0I , 1I) is a complete lattice [31].

Definition 7 ([32]). An increasing, commutative, associative mapping TLI : LI × LI → LI is
called an interval-valued t-norm if it satisfies TLI (1I , x) = x for any x ∈ LI .

Example 3 ([33]). A mapping TLI : LI× LI → LI is defined by TLI (α, β) = [T(a1, b1), T(a2, b2)],
where α = [a1, a2], β = [b1, b2] ∈ LI , and T is a t-norm. Then, TLI is an interval-valued t-norm,
which is called the associated interval-valued t-norm on LI .

The associated t-norm TLI is called left-continuous if T is a left-continuous t-norm on the
interval [0, 1] [14].

Definition 8 ([20]). The interval-valued residuated implicationRLI induced by left-continuous
interval-valued t-norm TLI is defined byRLI (α, β) = sup

{
fl ∈ LI | TLI(ff, fl) ≤ fi

}
.

Lemma 2 ([34]). The interval-valued residuated implication induced by left-continuous associated t-
norm TLI isRLI (α, β) = [R(a1, b1)∧ R(a2, b2), R(a2, b2)], where α = [a1, a2], β = [b1, b2] ∈ LI ,
and R is the residuated implication induced by the t-norm T.

Lemma 3 ([35]). Mapping ϕ : IFS(X) → IVFS(X), A 7→ B is an isomorphism between the
lattices (IFS(X),∪L∗ ,∩L∗) and (IVFS(X),∪LI ,∩LI ), where

A = {(x, µA(x), ϑA(x)) | x ∈ X},

B = {(x, [µA(x), 1− ϑA(x)]) | x ∈ X}.

3. The Relationship Based on Intuitionistic Fuzzy Sets and Interval-Valued Fuzzy Sets
3.1. The Relationship between the Triple I Methods Based on Intuitionistic Fuzzy Sets and
Interval-Valued Fuzzy Sets

In this section, the relationship between the solutions of the triple I method based on
the IFS and the IVFS will be studied.

Definition 9 ([22]). The intuitionistic fuzzy reasoning triple I model is denoted as

RL∗(RL∗(AL∗(x), BL∗(y)),RL∗(A∗L∗(x), B∗L∗(y))) (1)

where AL∗ , A∗L∗ ∈ IFS(X), BL∗ , B∗L∗ ∈ IFS(Y), andRL∗ is the intuitionistic residuated implica-
tion on L∗. The smallest (greatest) intuitionistic fuzzy set B∗L∗ (A∗L∗) of the universe Y(X) such that
Formula (1) attains the greatest value is called the intuitionistic fuzzy reasoning triple I solution for
FMP(FMT) problem.

Theorem 1 ([22]). Suppose thatRL∗ is the intuitionistic residuated implication induced by left-
continuous associated intuitionistic t-norm TL∗ , then
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(1) The intuitionistic fuzzy reasoning triple I solution for FMP (IFMP algorithm solution B∗L∗ for
short) is given by the following formula

B∗L∗(y) = sup
x∈X
TL∗(A∗L∗(x),RL∗(AL∗(x), BL∗(y))) (∀y ∈ Y). (2)

(2) The intuitionistic fuzzy reasoning triple I solution for FMT (IFMT algorithm solution A∗L∗
for short) is given by the following formula

A∗L∗(x) = inf
y∈Y
RL∗(RL∗(AL∗(x), BL∗(y)), B∗L∗(y)) (∀x ∈ X). (3)

Definition 10 ([14]). The interval-valued fuzzy reasoning triple I model is denoted as

RLI (RLI (ALI (x), BLI (y)),RLI (A∗LI (x), B∗LI (y))) (4)

where ALI , A∗LI ∈ IVFS(X), BLI , B∗LI ∈ IVFS(Y), and RLI is the interval-valued residuated
implication on LI . The smallest (greatest) interval-valued fuzzy set B∗LI (A∗LI ) of the universe Y(X)
such that the Formula (4) attains the greatest value is called the interval-valued fuzzy reasoning
triple I solution for FMP (FMT) problem.

Theorem 2 ([14]). Suppose that RLI is the interval-valued residuated implication induced by
left-continuous associated interval-valued t-norm TLI , then

(1) The interval-valued fuzzy reasoning triple I solution for FMP (IVFMP algorithm solution
B∗LI for short) is given by the following formula

B∗LI (y) = sup
x∈X
TLI (RLI (ALI (x), BLI (y)), A∗LI (x)) (∀y ∈ Y). (5)

(2) The interval-valued fuzzy reasoning triple I solution for FMT (IVFMT algorithm solution
A∗LI for short) is given by the following formula

A∗LI (x) = inf
y∈Y
RLI (RLI (ALI (x), BLI (y)), B∗LI (y)) (∀x ∈ X). (6)

Theorem 3. The residuated lattice (IFS(X),∪L∗ ,∩L∗ , 0∗, 1∗, TL∗ ,RL∗) and (IVFS(X),
∪LI ,∩LI , 0I , 1I , TLI ,RLI ) is isomorphic, where RL∗ is intuitionistic residuated implication in-
duced by the left-continuous associated intuitionistic t-norm TL∗ ,RLI is interval-valued residuated
implication induced by the left-continuous associated interval-valued t-norm TLI .

Proof. Let mapping ϕ : IFS(X) → IVFS(X), (x1, x2) 7→ [x1, 1− x2], we prove that ϕ
is an isomorphism between the residuated lattice (IFS(X),∪L∗ ,∩L∗ , 0∗, 1∗, TL∗ ,RL∗) and
(IVFS(X),∪LI ,∩LI , 0I , 1I , TLI ,RLI ). According to Lemma 3, we have (IFS(X),∪L∗ ,∩L∗ , 0∗,
1∗) ∼= (IVFS(X),∪LI ,∩LI , 0I , 1I).

Let α = (x1, x2), β = (y1, y2)∈L∗, then

ϕ(TL∗ (α, β))

= ϕ(TL∗ ((x1, x2), (y1, y2)))

= ϕ(T((x1, y1), S(x2, y2))) (By Example 2)

= [T(x1, y1), 1− S(x2, y2)]

= [T(x1, y1), T(1− x2, 1− y2)]

= TLI ([x1, 1− x2], [y1, 1− y2]) (By Example 3)

= TLI (ϕ(x1, x2), ϕ(y1, y2))

= TLI (ϕ(α), ϕ(β))
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ϕ(RL∗(α, β))

= ϕ(RL∗((x1, x2), (y1, y2)))

= ϕ(R(x1, y1) ∧ R(1− x2, 1− y2), 1− R(1− x2, 1− y2)) (By Lemma 1)

= [R(x1, y1) ∧ R(1− x2, 1− y2), R(1− x2, 1− y2)]

= RLI ([x1, 1− x2], [y1, 1− y2]) (By Lemma 2)

= RLI (ϕ(x1, x2), ϕ(y1, y2))

= RLI (ϕ(α), ϕ(β))

Theorem 4. There is a bijection between the IFMP algorithm solution B∗L∗ (by Formula (2)) and
the IVFMP algorithm solution B∗LI (by Formula (5)).

Proof. Let mapping ϕ : IFS(Y)→ IVFS(Y), (y1, y2) 7→ [y1, 1− y2].

ϕ(B∗L∗(y))

= ϕ sup
x∈X
TL∗(A∗L∗(x),RL∗(AL∗(x), BL∗(y)))

= sup
x∈X

ϕ(TL∗(A∗L∗(x),RL∗(AL∗(x), BL∗(y)))

= sup
x∈X
TLI (ϕ(A∗L∗(x)), ϕ(RL∗(AL∗(x), BL∗(y)))) (By Theorem 3)

= sup
x∈X
TLI (ϕ(A∗L∗(x)),RLI (ϕ(AL∗(x)), ϕ(BL∗(y)))) (By Theorem 3)

= sup
x∈X
TLI (A∗LI (x),RLI (ALI (x), BLI (y)))

= B∗LI (y)

It is shown that there is a bijection between the IFMP algorithm solution B∗L∗ and the
IVFMP algorithm solution B∗LI .

Theorem 5. There is a bijection between the IFMT algorithm solution A∗L∗ (by Formula (3)) and
the IVFMT algorithm solution A∗LI (by Formula (6)).

Proof. Let mapping ϕ : IFS(X)→ IVFS(X), (x1, x2) 7→ [x1, 1− x2].

ϕ(A∗L∗(x))

= ϕ inf
y∈Y
RL∗(RL∗(AL∗(x), BL∗(y)), B∗L∗(y))

= inf
y∈Y

ϕ(RL∗(RL∗(AL∗(x), BL∗(y)), B∗L∗(y)))

= inf
y∈Y
RLI (ϕ(RL∗(AL∗(x), BL∗(y))), ϕ(B∗L∗(y))) (By Theorem 3)

= inf
y∈Y
RLI (ϕ(RL∗(AL∗(x), BL∗(y))), B∗LI (y)) (By Theorem 3)

= inf
y∈Y
RLI (RLI (ALI (x), BLI (y)), B∗LI (y))

= A∗LI (x)

It is shown that there is a bijection between the IFMT algorithm solution A∗L∗ and the
IVFMT algorithm solution A∗LI .

Example 4. The intuitionistic fuzzy numbers AL∗ , A∗L∗ ,BL∗ are shown in Table 1, and the intu-
itionistic fuzzy numbers A, A∗,B is transformed into interval-valued fuzzy numbers ALI , A∗LI ,BLI

by mapping ϕ, as can be seen in Table 2. Take the triangular norm T = TG, the intuitionistic fuzzy
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reasoning triple I solutions B∗L∗ and the interval-valued fuzzy reasoning triple I solutions B∗LI are
shown in Table 3.

Table 1. Data of AL∗ , A∗L∗ and BL∗ .

x1 x2 x3

AL∗ (0.60, 0.30) (0.90, 0.10) (0.40, 0.50)
A∗L∗ (0.20, 0.50) (0.30, 0.60) (0.10, 0.40)

y1 y2 y3

BL∗ (0.50, 0.30) (0.30, 0.60) (0.10, 0.70)

Table 2. Data of ALI , A∗LI and BLI .

x1 x2 x3

ALI [0.60, 0.70] [0.90, 0.90] [0.40, 0.50]
A∗LI [0.20, 0.50] [0.30, 0.40] [0.10, 0.60]

y1 y2 y3

BLI [0.50, 0.70] [0.30, 0.40] [0.10, 0.30]

Table 3. IFMP algorithm solutions B∗L∗ and IVFMP algorithm solutions B∗LI .

y1 y2 y3

B∗L∗ (0.30, 0.40) (0.30, 0.60) (0.10, 0.70)
B∗LI [0.30, 0.60] [0.30, 0.40] [0.10, 0.30]

Use the mapping ϕ(B∗L∗) = D, the calculation results are shown in Table 4. By com-
paring the data in Tables 3 and 4, the value of D is equal to the solution B∗LI for solving the
IVFMP problem. The results show that the solutions based on the two fuzzy sets are in
one-to-one correspondence.

Table 4. The values of corresponding to under the mapping ϕ.

B∗L∗ (0.30, 0.40) (0.30, 0.60) (0.10, 0.70)
D [0.30, 0.60] [0.30, 0.40] [0.10, 0.30]

3.2. The Relationship between the Reverse Triple I Methods Based on Intuitionistic Fuzzy Sets and
Interval-Valued Fuzzy Sets

In this section, the solutions of the reverse triple I method based on the IFS and the
IVFS have been given, and the relationship between the two solutions will be studied.

Definition 11 ([24]). The intuitionistic fuzzy reasoning reverse triple I model is denoted as

RL∗(RL∗(A∗L∗(x), B∗L∗(y)),RL∗(AL∗(x), BL∗(y))) (7)

where AL∗ , A∗L∗ ∈ IFS(X), BL∗ , B∗L∗ ∈ IFS(Y), andRL∗ is the intuitionistic residuated implica-
tion on L∗. The greatest (smallest) intuitionistic fuzzy set B∗L∗ (A∗L∗ ) of the universe Y(X) such that
the Formula (7) attains the greatest value is called the intuitionistic fuzzy reasoning reverse triple I
solution for FMP (FMT) problem, denoted by B∗RL∗ (A∗RL∗ ).

Theorem 6 ([24]). LetRL∗ be the intuitionistic residuated implication induced by left-continuous
associated intuitionistic t-norm TL∗ . Then
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(1) The intuitionistic fuzzy reasoning reverse triple I solution for FMP is given by the follow-
ing formula

B∗RL∗(y) = inf
x∈X
TL∗(A∗L∗(x),RL∗(AL∗(x), BL∗(y))) (∀y ∈ Y). (8)

(2) The intuitionistic fuzzy reasoning reverse triple I solution for FMT is given by the follow-
ing formula

A∗RL∗(x) = sup
y∈Y
RL∗(RL∗(AL∗(x), BL∗(y)), B∗L∗(y)) (∀x ∈ X). (9)

Definition 12 ([17]). The interval-valued fuzzy reasoning reverse triple I model is denoted as

RLI (RLI (A∗LI (x), B∗LI (y)),RLI (ALI (x), BLI (y))) (10)

where ALI (x), A∗LI (x) ∈ IVFS(X), BLI (y), B∗LI (y) ∈ IVFS(Y), and RLI is the interval-valued
residuated implication on LI . The greatest (smallest) interval-valued fuzzy set B∗LI (A∗LI ) of the
universe Y(X) such that the Formula (10) attains the greatest value is called the interval-valued
fuzzy reasoning reverse triple I solution for the FMP (FMT) problem, denoted by B∗RLI (A∗RLI ).

Theorem 7 ([17]). LetRLI be the interval-valued residuated implication induced by left-continuous
associated interval-valued t-norm TLI . Then

(1) The interval-valued fuzzy reasoning reverse triple I solution for FMP is given by the follow-
ing formula

B∗RLI (y) = inf
x∈X
TLI (RLI (ALI (x), BLI (y)), A∗LI (x)) (∀y ∈ Y). (11)

(2) The interval-valued fuzzy reasoning reverse triple I solution for FMT is given by the follow-
ing formula

A∗RLI (x) = sup
y∈Y
RLI (RLI (ALI (x), BLI (y)), B∗LI (y)) (∀x ∈ X). (12)

Theorem 8. There is a bijection between the intuitionistic fuzzy reasoning reverse triple I solution
B∗RL∗ for FMP (by Formula (8)) and the interval-valued fuzzy reasoning reverse triple I solution
B∗RLI for FMP (by Formula (11)).

Proof. Let mapping ϕ : IFS(Y)→ IVFS(Y), (y1, y2) 7→ [y1, 1− y2].

ϕ(B∗RL∗(y))

= ϕ inf
x∈X
TL∗(A∗L∗(x),RL∗(AL∗(x), BL∗(y)))

= inf
x∈X

ϕ(TL∗(A∗L∗(x),RL∗(AL∗(x), BL∗(y))))

= inf
x∈X
TLI (ϕ(A∗L∗(x)), ϕ(RL∗(AL∗(x), BL∗(y)))) (By Theorem 3)

= inf
x∈X
TLI (ϕ(A∗L∗(x)),RLI (ϕ(AL∗(x)), ϕ(BL∗(y)))) (By Theorem 3)

= inf
x∈X
TLI (A∗LI (x),RLI (ALI (x), BLI (y)))

= B∗RLI (y)

It is shown that there is a bijection between the intuitionistic fuzzy reasoning reverse
triple I solution B∗RL∗ and the interval-valued fuzzy reasoning reverse triple I solution
B∗RLI .
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Theorem 9. There is a bijection between the intuitionistic fuzzy reasoning reverse triple I solution
A∗RL∗ for FMT (by Formula (9)) and the interval-valued fuzzy reasoning reverse triple I solution
A∗RLI for FMT (by Formula (12)).

Proof. Let mapping ϕ : IFS(X)→ IVFS(X), (x1, x2) 7→ [x1, 1− x2].

ϕ(A∗RL∗(x))

= ϕ inf
y∈Y

(RL∗(RL∗(AL∗(x), BL∗(y)), B∗L∗(y)))

= inf
y∈Y

ϕ(RL∗(RL∗(AL∗(x), BL∗(y)), B∗L∗(y))) (By Lemma 3)

= inf
y∈Y
RLI (ϕ(RL∗(AL∗(x), BL∗(y))), ϕ(B∗L∗(y))) (By Theorem 3)

= inf
y∈Y
RLI (ϕ(RL∗(AL∗(x), BL∗(y))), B∗LI (y)) (By Theorem 3)

= inf
y∈Y
RLI (RLI (ALI (x), BLI (y)), B∗LI (y))

= A∗RLI (x)

It is shown that there is a bijection between the intuitionistic fuzzy reasoning reverse
triple I solution A∗RL∗ and the interval-valued fuzzy reasoning reverse triple I solution
A∗RLI .

3.3. The Relationship between the SIS Methods Based on Intuitionistic Fuzzy Sets and
Interval-Valued Fuzzy Sets

In this section, the solutions of the SIS method based on the IFS and the IVFS have
been given, and the relationship between the two solutions will be studied.

Definition 13 ([25]). Let A, B ∈ IFS(X), and RL∗ be the intuitionistic residuated implication
induced by left-continuous associated intuitionistic t-norm TL∗ . Then, the intuitionistic fuzzy
reasoning subsethood degree SL∗ is denoted as

SL∗(A, B) = inf
x∈X

(A(x), B(x))

Definition 14 ([25]). The intuitionistic fuzzy reasoning SIS model is denoted as

RL∗(SL∗(A∗L∗ , AL∗), SL∗(B∗L∗ , BL∗)) (13)

where AL∗ , A∗L∗ ∈ IFS(X), BL∗ , B∗L∗ ∈ IFS(Y), and RL∗ is the intuitionistic residuated impli-
cation on L∗. The greatest intuitionistic fuzzy set B∗L∗ (A∗L∗ ) of the universe Y(X) such that the
Formula (13) attains the greatest value is called the intuitionistic fuzzy reasoning SIS algorithm
solution for FMP(FMT) problem, denoted by B∗SL∗ (A∗SL∗ ).

Theorem 10 ([25]). LetRL∗ be the intuitionistic residuated implication induced by left-continuous
associated intuitionistic t-norm TL∗ . Then:

(1) The intuitionistic fuzzy reasoning SIS reasoning algorithm solution for FMP is given by the
following formula

B∗SL∗(y) = inf
x∈X
RL∗(SL∗(A∗L∗ , AL∗), BL∗(y)) (∀y ∈ Y). (14)

(2) The intuitionistic fuzzy reasoning SIS reasoning algorithm solution for FMT is given by the
following formula

A∗SL∗(x) = inf
y∈Y
RL∗(SL∗(B∗L∗ , BL∗), AL∗(x)) (∀x ∈ X). (15)
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Definition 15 ([18]). Let A, B ∈ IVFS(X), andRLI be the interval-valued residuated implication
induced by left-continuous associated interval-valued t-norm TLI . Then, the interval-valued fuzzy
reasoning subsethood degree SLI is denoted as

SLI (A, B) = inf
x∈X

(A(x), B(x))

Definition 16 ([18]). The interval-valued fuzzy reasoning SIS algorithm model is denoted as

RLI (SLI (B∗LI , BLI ), SLI (A∗LI , ALI )) (16)

where ALI (x), A∗LI (x) ∈ IVFS(X), BLI (y), B∗LI (y) ∈ IVFS(Y), and RLI is the interval-valued
residuated implication on LI . The greatest interval-valued fuzzy set B∗LI (A∗LI ) of the universe Y(X)
such that the Formula (16) attains the greatest value is called the interval-valued fuzzy reasoning
SIS algorithm solution for the FMP(FMT) problem, denoted by B∗SLI (A∗SLI ).

Theorem 11 ([18]). LetRLI be the interval-valued residuated implication induced by left-continuous
associated interval-valued t-norm TLI . Then:

(1) The interval-valued fuzzy reasoning SIS algorithm solution for FMP is given by the follow-
ing formula

B∗SLI (y) = inf
x∈X
RLI (SLI (A∗LI , ALI ), BLI (y)) (∀y ∈ Y). (17)

(2) The interval-valued fuzzy reasoning SIS algorithm solution for FMT is given by the follow-
ing formula

A∗SLI (x) = inf
y∈Y
RLI (SLI (B∗LI , BLI ), ALI (x)) (∀x ∈ X). (18)

Theorem 12. There is a bijection between the intuitionistic fuzzy reasoning SIS algorithm solution
B∗SL∗ for FMP (by Formula (14)) and the interval-valued fuzzy reasoning SIS algorithm solution
B∗SLI for FMP (by Formula (17)).

Proof. Let mapping ϕ : IFS(Y)→ IVFS(Y), (y1, y2) 7→ [y1, 1− y2].

ϕ(B∗SL∗(y))

= ϕ inf
x∈X

(RL∗(SL∗(A∗L∗ , AL∗), BL∗(y)))

= inf
x∈X

ϕ(RL∗(SL∗(A∗L∗ , AL∗), BL∗(y)))

= inf
x∈X
RLI (ϕ(SL∗(A∗L∗ , AL∗), BL∗(y)))

= inf
x∈X
RLI (SLI (ϕ((A∗L∗ , AL∗), ϕ(BL∗(y))))

= inf
x∈X

(RLI (SLI (A∗LI , ALI ), BLI (y)))

= B∗SLI (y)

It is shown that there is a bijection between the intuitionistic fuzzy reasoning SIS
algorithm solution B∗SL∗ and the interval-valued fuzzy reasoning SIS algorithm solution
B∗SLI .

Theorem 13. There is a bijection between the intuitionistic fuzzy reasoning SIS algorithm solution
A∗SL∗ for FMT (by Formula (15)) and the interval-valued fuzzy reasoning SIS algorithm solution
A∗SLI for FMT (by Formula (18)).
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Proof. Let mapping ϕ : IFS(X)→ IVFS(X), (x1, x2) 7→ [x1, 1− x2].

ϕ(A∗SL∗(x))

= ϕ inf
y∈Y

(RL∗(SL∗(B∗L∗ , BL∗)AL∗(x))

= inf
y∈Y

ϕ(RL∗(SL∗(B∗L∗ , BL∗), AL∗(x)))

= inf
y∈Y
RLI (ϕ(SL∗(B∗L∗ , BL∗), AL∗(x)))

= inf
y∈Y
RLI (SLI (ϕ((B∗L∗ , BL∗), ϕ(AL∗(x))))

= inf
y∈Y

(RLI (SLI (B∗LI , BLI ), ALI (x)))

= A∗SLI (x)

It is shown that there is a bijection between the intuitionistic fuzzy reasoning SIS
algorithm solution A∗SL∗ and the interval-valued fuzzy reasoning SIS algorithm solution
A∗SLI .

The flow diagram of results is shown in Figure 1.

Figure 1. The flow diagram of results.

4. Conclusions

In this paper, we studied the relationship between intuitionistic fuzzy reasoning algo-
rithm and interval-valued fuzzy reasoning algorithm. It is proved that there is a bijection
between the intuitionistic fuzzy reasoning triple I solution and the interval-valued fuzzy
reasoning triple I solution, and there is a bijection between the intuitionistic fuzzy reasoning
reverse triple I solution and the interval-valued fuzzy reasoning reverse triple I solution.
Moreover, it is proved that there is a bijection between the intuitionistic fuzzy reasoning
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SIS solution and the interval-valued fuzzy reasoning SIS solution. Finally, a numerical
example is given to show that there is a bijection between the intuitionistic fuzzy reasoning
triple I method and the interval-valued fuzzy reasoning triple I method. We prove that
the intuitionistic fuzzy reasoning method and interval-valued fuzzy reasoning method
are equivalent in essence. In practical application, interval-valued fuzzy sets can effec-
tively reduce the loss of fuzzy information, and intuitionistic fuzzy sets can characterize
information from two aspects, intuitionistic fuzzy reasoning method and interval-valued
fuzzy reasoning method can be used for one calculation and one test. Intuitionistic fuzzy
reasoning method and interval-valued fuzzy reasoning method will be applied in many
fields such as pattern recognition and medical diagnosis. In the future, how to apply
the algorithm to practical applications is the next research direction. we will study how
to apply intuitionistic fuzzy reasoning method and an interval-valued fuzzy reasoning
method to practical problems such as pattern recognition and medical diagnosis.
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Abstract: In this paper, we analyze the interpretable models from real gasification datasets of the
project “Centre for Energy and Environmental Technologies” (CEET) discovered by symbolic regres-
sion. To evaluate CEET models based on input data, two different statistical metrics to quantify their
accuracy are usually used: Mean Square Error (MSE) and the Pearson Correlation Coefficient (PCC).
However, if the testing points and the points used to construct the models are not chosen randomly
from the continuum of the input variable, but instead from the limited number of discrete input
points, the behavior of the model between such points very possibly will not fit well the physical
essence of the modelled phenomenon. For example, the developed model can have unexpected
oscillatory tendencies between the used points, while the usually used statistical metrics cannot detect
these anomalies. However, using dynamic system criteria in addition to statistical metrics, such
suspicious models that do fit well-expected behavior can be automatically detected and abandoned.
This communication will show the universal method based on dynamic system criteria which can
detect suitable models among all those which have good properties following statistical metrics. The
dynamic system criteria measure the complexity of the candidate models using approximate and
sample entropy. The examples are given for waste gasification where the output data (percentage of
each particular gas in the produced mixture) is given only for six values of the input data (temperature
in the chamber in which the process takes place). In such cases instead, to produce expected simple
spline-like curves, artificial intelligence tools can produce inappropriate oscillatory curves with sharp
picks due to the known tendency of symbolic regression to produce overfitted and relatively more
complex models if the nature of the physical model is simple.

Keywords: symbolic regression; Mean Square Error; Pearson Correlation Coefficient; oscillations in
solutions; dynamic system criteria; waste gasification; Occam’s Razor

MSC: 11Y16: 46N30; 65C60; 94A17

1. Introduction

We developed a set of curves for the gasification of municipal solid waste [1] using
symbolic regression [2]. The curves were tested statistically, and among those with satisfac-
tory results in terms of Mean Square Error (MSE) and Pearson Correlation Coefficient (PCC)
some are not acceptable because they show unexpected oscillatory behavior. To eliminate
them, we applied dynamic system criteria by measuring complexity using approximate
and sample entropy where the inappropriate curves can be eliminated to persist Occam’s
Razor [3]. We prefer not to present more statistical metrics aside MSE and PCC because
they cannot measure behavior between the testing points (on the other hand, dynamic
system criteria can).
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Gasification of municipal solid waste and biomass gives the different compositions
of the synthetic gas (syngas) depending on the gasification temperature in the process [4].
Based on real measurements of a plasma gasifier, a symbolic model for an important
component of the produced syngas is constructed where the percentage in the mixture
is given depending on the gasification temperature. To construct these symbolic syngas
composition models, the artificial intelligence provided outcomes using symbolic regression
software tools AI Feynman [5] and PySR [6]. The candidate symbolic models were chosen
among those with better statistical metrics; those with a lower Mean Square Error (MSE) and
with the Pearson Correlation Coefficient (PCC) close to one. However, it was discovered
that some of the obtained symbolic models, which fit very well the measured gasification
datasets using statistical metrics, are of oscillatory nature, which was not expected and
does not reflect the true physical properties of the modelled gasification process. However,
using dynamic system criteria in addition to statistical metrics, such suspicious symbolic
models that do fit well the measured gasification datasets were automatically detected
and abandoned. This communication will show the universal method based on dynamic
system criteria which can detect suitable models among all those which has good properties
following statistical metrics. The dynamic system criteria measure the complexity of
the candidate models using approximate and sample entropy. Our results indicate that
candidate symbolic regression models with oscillations and other non-physical phenomena
have higher complexity and can be automatically detected and excluded by approximate
and sample entropy to persist Occam’s Razor “science always prefers the simpler model or
representation of two which give similar accuracy” [6]. Consequently, we propose that the
dynamic system criteria based on approximate or sample entropy should be used for the
automated evaluation of symbolic regression models, as it is not enough to evaluate the
models by statistical metrics.

2. Gasification Models

Gasification models were developed for the production of hydrogen (H2) and carbon
dioxide (CO2) from municipal solid waste for only six different temperatures, while the
measurements were repeated four times.

These functions were introduced in symbolic regression software to provide nu-
merically stable logarithm-based functions, which are defined for all real numbers. As
logarithms are defined only for positive non-zero numbers, logarithms pose numerical
problems in the symbolic regression procedure, when the argument is negative.

Mean Square Error (MSE) and with the Pearson Correlation Coefficient (PCC) were
calculated using functions of Python 3.9 by:

MSE = np.square(np.subtract(data,y_pred)).mean()

coef = np.corrcoef(data,y_pred)[0][1]

where “data” means the measured data set and “y_pred” means the predicted values using
the selected symbolic regression model.

MSE and corr.coef were calculated for all measured data.
The presented models in Matlab notifications are given in Appendix A to this Com-

munication.

2.1. Hydrogen H2

The train set for hydrogen H2 is given in Table 1 while three test sets are given in
Table 2.

Table 1. Train data for H2.

t (◦C) 750 800 900 1000 1050 1100

H2 (%) 9.75 10.98 16.05 12.88 12.33 11.83
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Table 2. Test data for H2.

t (◦C) 750 800 900 1000 1050 1100

H2 (%) 9.69 11.54 15.91 12.77 12.48 11.56
H2 (%) 1 9.88 10.29 16.23 13.29 12.44 12.12
H2 (%) 2 9.68 11.12 16.01 12.58 12.08 11.82

1 Second test measurement, 2 Third test measurement.

The expected shape of the modelled curves for hydrogen H2 is given in Figure 1 where
the trendline is based on data from Table 1 and was produced in MS Excel as a polynomial
curve of order 4.
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Using symbolic regression tools, three different models were produced as follows.

2.1.1. Model 1 of Hydrogen H2

The first developed model is given in Equation (1)

H2(%) =
8.9065269419

cos
(
cos
(
esin (t+1) − 2

)) . (1)

This model performs good statistical metrics; MSE = 0.2897 and PCC = 0.9728 while
anyway, it shows oscillatory tendencies as can be seen in Figure 2.
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2.1.2. Model 2 of Hydrogen H2

The second developed model is given in Equation (2)

H2(%) = logm2(7.744805·(−9.837645 + logm2(t))−1.5165994) + 0.0054770974·t
logm2(t) = log2

(
|t|+ 10−8)

}
. (2)

This model performs good, as indicated by statistical metrics, MSE = 0.08143851 and
PCC = 0.989470395. Model 2 has improved shape compared with Model 1, despite the
undesired tendency towards a sharp peak. It is given in Figure 3.
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2.1.3. Model 3 of Hydrogen H2

The second developed model is given in Equation (3)

H2(%) = 6.5368786 + logm2(|−9.864973 + logm2(t)|−2.1570945)
logm2(t) = log2

(
|t|+ 10−8)

}
. (3)

This model performs good statistical metrics, MSE = 0.362862372 and PCC = 0.952248777.
It shows the same tendency as Model 2. Model 3 is given in Figure 4.
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2.2. Hydrogen CO2

The train set for hydrogen CO2 is given in Table 3 while three test sets are given in
Table 4.

Table 3. Train data for CO2.

t (◦C) 750 800 900 1000 1050 1100

CO2 (%) 8.13 9.8 11.93 11.33 11.53 12.3

Table 4. Test data for CO2.

t (◦C) 750 800 900 1000 1050 1100

CO2 (%) 8.05 9.52 11.63 11.5 11.56 12.27
CO2 (%) 1 8.09 9.83 12.31 11.23 11.5 12.21
CO2 (%) 2 8.24 10.05 11.84 11.27 11.54 12.43

1 Second test measurement, 2 Third test measurement

The expected shape of the modelled curves for hydrogen CO2 is given in Figure 5
where the trendline is based on data from Table 3 and was produced in MS Excel as a
polynomial curve of order 4.
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Using the symbolic regression tools, three different models were produced as follows.

2.2.1. Model 1 of Carbon Dioxide CO2

The first developed model is given in Equation (4)

CO2(%) = logm10
(

x·esin (x+0.6718609)
)2

logm10(t) = ln
(
|t|+ 10−8)

}
(4)

This model performs good statistical metrics, MSE = 0.3481 and PCC = 0.9171, while it
shows oscillatory tendencies, as can be seen in Figure 6.
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2.2.2. Model 2 of Carbon Dioxide CO2

The first developed model is given in Equation (5)

CO2(%) = logm
(
−0.060511474·t2)+ 2.0503674

logm(t) = ln
(
|t|+ 10−8)

}
. (5)

This model performs good statistical metrics, MSE = 0.1985 and PCC = 0.9519, with a
good shape of the developed curve, as can be seen in Figure 7.
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3. Dynamic System Criteria for Selection of Appropriate Models

As observed, it is possible to construct many different models of the investigated
phenomena having comparable precision. Now, the task is to select one of them that can be
signed as the best choice under the assumption of Occam’s Razor [3]. For this purpose, the
qualification tools from the area of dynamical systems, like approximate Eapp and sample
Esamp entropy [7–11], can be applied.

Hence, the selection process, based on observation of the measure of complexity, works
as follows. Firstly, construct models (e.g., as in the previous section). Secondly, measure
the complexity of each model and order them with respect to this measure (in our case
approximate and sample entropy). Finally, pick the model with the smallest complexity
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value (at this stage the assumption of Occam’s Razor [3] is applied). Here, note that since
the minimum need not be unique the output of this selection process will always exist, but
should not be unique in general as we will show in the next section.

3.1. Entropy Notions

Approximate entropy Eapp and sample entropy Esamp are tools of complexity measure-
ment that were investigated by many authors and applied in numerous research fields
(e.g., [12–14]) to measure and compare studied cases’ complexity.

3.1.1. Approximate Entropy Eapp

Recall these notions are defined for the input vector X = x1, x2, . . . , xN of length N.
Approximate entropy Eapp is defined in Equation (6)

Eapp(X, m, r) = Φm(r)−Φm+1(r), (6)

where Φm(r) = (N−m + 1)∑M−m+1
i=1 log

(
Cm

i (r)
)

and Cm
i (r) is the number of um(j) such that

d(um(i), um(j)) ≤ r, divided by N−m + 1. Here, um(i) = [x(i), x(i + 1), . . . , x(i + m− 1)] is
an element of m-dimensional real space, m, r are test parameters and d(p, q) = max

a
|p(a)−

q(a)| is the maximum metric. For these parameters holds: m is the length of the window, r
is the diameter of the region with a similar subsequence.

3.1.2. Sample Entropy Esamp

On the other hand, sample entropy Esamp is given in Equation (7)

Esamp(X, m, r) = − ln
A
B

, (7)

where A is the number of template vector pairs such that dc(um+1(i), um+1(i)) < r, and B
is the number of template vector pairs such dc(um(i), um(i)) < r. Here, dc is the Chebyshev
distance and parameters m, r have the same meaning as in the case of Eapp.

3.2. Benchmark Models Application

To depict previously mentioned complexity measurement tools, classical models from
the theory of dynamical systems can be applied. The well-known logistic function can
be used as example of normalized models (also can be thought as predictive one). Recall
L1(x) = 4x(1− x) and L1 : [0, 1] → [0, 1] , this model is well understood from dynamical
point of view [15]. The next model can be constructed as a second iteration of L1(x) that is
L2 = L1 · L1 = L2

1, and analogously L3 = L1 · L1· L1 = L3
1, L4 = L4

1, L5 = L5
1. The evolution

of these models is shown in Figure 8a and their corresponding entropies are in Figure 8b,
clearly showing increase of entropy while the complexity of the model increases.
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3.3. Simulation Outputs

The numerical simulations of our models were performed in Matlab while the contin-
uous models were discretized from 750 ◦C to 1100 ◦C by the step of 0.001 ◦C. Entropies
tests were set classically, that is, r was picked as 20% of the standard deviation of the
investigated vector and m was set to 1 as the minimum window length. Firstly, note that
the test performed on all models coincides so, for simplicity, we can use the abbreviation of
entropy for both tests. These outputs, rounded on four decimal places, are summarized in
Table 5 for hydrogen H2 and in Table 6 for carbon dioxide CO2.

Table 5. Dynamic system criteria for hydrogen H2.

Model 1 Model 2 Model 3

Approximate entropy Eapp 0.0442 0.0015 0.0015
Sample entropy Esamp 0.0197 0.0003 0.0003

Table 6. Dynamic system criteria for carbon dioxide CO2.

Model 1 Model 2

Approximate entropy Eapp 0.0252 0
Sample entropy Esamp 0.0235 0

Model 1 of H2 (which is periodic with a period of 6.283183 ◦C) has higher complexity
than Model 2 of H2 and Model 3 of H2, so Model 1 of H2 can be denied. It is also observable
from Table 5 that entropies of Model 2 of H2 and Model 3 of H2 are comparable and much
less than Model 1 of H2.

It is observable from Table 6 that entropy of the Model 1 of CO2 is much higher than
that of Model 2 of CO2, proving that Model 2 has lower complexity than Model 1 and is
then a better choice.

4. Conclusions

We developed symbolic regression models for the gasification of municipal solid
waste [16–21]. However, these models were developed using limited points of data and so,
between these points, it shows unpredicted behavior (sharp picks or oscillatory motions)
where all such models were acceptable using statistic metrics (Mean Square Error and
the Pearson Correlation Coefficient) as criteria. In the end, the proposed application of
approximate Eapp and sample Esamp entropy automatically detected those models with
higher complexity contradicting Occam’s Razor assumption. Hence, the models with
higher complexity can be excluded from further investigation. Moreover, it is possible to
use these dynamic tools automatically in general for decision mechanisms. The example is
about gasification of waste, but the shown method for rejection of inappropriate models is
of general value and can be used in various scientific fields. It is based on dynamic system
criteria and it is based on the measurement of entropy. In future, we would like to also test
Symbolic Functional Evolutionary Search (SyFES), that automatically constructs accurate
functionals in the symbolic form, which is more explainable to humans, cheaper to evaluate,
and easier to integrate into existing software codes [22].

However, the proposed selection method is based on approximate and sample entropy,
there are also other tools in the mathematical theory of dynamical systems that can be
applied [23,24]. For example, metrics from recurrence quantification analysis (RQA) can be
applied (or relevant alternatives mentioned in [25]). We propose these promising tools for
further research.

In the end, since the proposed method is addressed in general to any set of models it
can be also applied to prediction models. The application of the method to the prediction
models is left for future research.
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Appendix A

The models in Matlab notifications are:
H2 models:
= 8.9065269419/cos(cos(exp(sin(x + 1)) − 2))
= logm2(7.744805 * pow(-9.837645 + logm2(x), −1.5165994)) + (0.0054770974*x)
= 6.5368786+logm2(pow(abs(−9.864973 + logm2(x)), −2.1570945))
CO2 models:
= logm10(x.*exp(sin(x + 0.6718609))).ˆ2
= logm(−0.060511474*x.ˆ2+44.81684*x) + 2.0503674
pow = @(x,y) x.ˆy
logm = @(x) log(abs(x) + 1e-8);
logm2 =@(x) log2(abs(x) + 1e-8);
logm10 = @(x) log10(abs(x) + 1e-8)
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Abstract: In this paper, we define the quasi-density of subsets of the set of natural numbers and show
several of the properties of this density. The quasi-density dp(A) of the set A ⊆ N is dependent on
the sequence p = (pn). Different sequences (pn), for the same set A, will yield new and distinct
densities. If the sequence (pn) does not differ from the sequence (n) in its order of magnitude, i.e.,
lim

n→∞
pn
n = 1, then the resulting quasi-density is very close to the asymptotic density. The results for

sequences that do not satisfy this condition are more interesting. In the next part, we deal with the
necessary and sufficient conditions so that the quasi-statistical convergence will be equivalent to the
matrix summability method for a special class of triangular matrices with real coefficients.

Keywords: statistical convergence; quasi-statistical convergence; asymptotic density; quasi-density;
the matrix summability method

1. Introduction

The notion of asymptotic density for a subset of the set of natural numbers is known.
It determines the size of the given subset compared to the set N.

Let A ⊆ N. We define A(n) = |k ∈ A, k ≤ n|, i.e., as the number of elements of set A
smaller than n.

Then

d(A) = lim inf
n→∞

A(n)
n

d(A) = lim sup
n→∞

A(n)
n

is the lower and upper asymptotic density of the set A ⊆ N, respectively.
If d(A) = d(A), then there exists lim

n→∞
A(n)

n = d(A) that is called the asymptotic density

of set A. It is evident that if for some set A there exists d(A), then 0 ≤ d(A) ≤ 1 (see [1]).
A different method for defining the density is based on the matrix method of limiting

sequences of ones and zeros (see [2,3]).
Let

C =




1 0 0 · · · 0 0 · · ·
1/2 1/2 0 · · · 0 0 · · ·
...

1/n
...

...
1/n

...

...
1/n

...

...
· · ·

...

...
1/n

...

...
0
...

...
· · ·

...




be a regular (Cesáro) matrix (see [4]) defined as follows:

C = (cnk),
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where
cnk = 1/n for k ≤ n
cnk = 0 for k > n

n, k = 1, 2, . . .

Then, we define the asymptotic density of the set A ⊆ N by the relation

d(A) = lim
n→∞

∞

∑
k=1

cnk·χA(k),

where χA(k) is the characteristic function of set A ⊆ N (see [5,6]),

χA(k) =
{

1, if k ∈ A
0, if k /∈ A.

Agnew in [2] defined the sufficient condition for a matrix so that at least one sequence
of ones and zeros to be limitable (summable) by the matrix.

Let A = (ank) be an infinite matrix with real elements. The requirements of summabil-
ity are:

(a) ∑∞
k=1|ank| ≤ M < ∞, ∀n = 1, 2, . . .

(b) lim
n→∞

max
1≤k≤n

|ank| = 0.

Let A = (ank) be an infinite matrix with real elements. We say that the sequence
x = (xk) is A−limitable to the number sεR (A− limxk = s), if lim

n→∞
∑∞

k=1 ankxk = s.

If the implication limxk = s =⇒ A− limxk = s holds true, we say that the matrix A
is regular [2].

The necessary and sufficient condition for the matrix A = (ank) to be regular is

(a) ∃K > 0 ∀n = 1, 2, . . . ∑∞
k=1|ank| ≤ K

(b) ∀k = 1, 2, . . . lim
n→∞

ank = 0

(c) lim
n→∞

∑∞
k=1 ank = 1 (see [6]).

Example 1. If T = (tnk) is a regular matrix, then we can use it to define the density dT(A. )
(see [5,6]). Let the matrix T = (tnk), where

tnk =
1
k

sn
for k ≤ n

tnk = 0 for k > n
, n, k = 1, 2, . . .

and sn = ∑n
j=1

1
j , then

δ(A) = lim
n→∞

∞

∑
k=1

tnk·χA(k)

is the logarithmic density of the set A.

Let the matrix T = (tnk), where

tnk =
φ(k)

n for k ≤ n, k | n
tnk = 0 for k ≤ n, k - n
tnk = 0 for k > n

, n, k = 1, 2, . . .

and φ is the Euler function, then

dT(A) = lim
n→∞

∞

∑
k=1

tnk·χA(k)

is the Schoenberg density of the set A.
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In this paper we define the quasi-density using a matrix, whose members satisfy
special conditions.

In the next section, we will present the connection between statistical convergence and
the matrix method of summability of the sequence of real numbers.

We say that x = (xn) converges statistically to the number L ∈ R, if

∀ε > 0 : d(Nε) = 0, where d(Nε) = {kεN : |xk − L| ≥ ε}.

Numerous writers extended this convergence by substituting a different density for
the asymptotic density (or by a function with suitable properties, respectively) (see [7–11]).

We will endeavor to characterize the quasi-statistical convergence by using the matrix
method.

In the paper [12] the authors defined the quasi-statistical convergence as:
Let p = (pn) be a sequence of positive real numbers with the properties:

(a) lim
n→∞

pn = +∞

(b) lim sup
n→∞

pn
n < +∞.

The quasi-density of the set A ⊆ N for the sequence p = (pn) is

dp(A) = lim
n→∞

1
pn
|{kεA, k ≤ n }|,

if such a limit exists.
If pn = n, then dp(A) is the asymptotic density of set A.
We say that the sequence x = (xk) converges quasi-statistically (given the sequence

p = (pn)) to the number L ∈ R (stqp − limxk = L), if ∀ε > 0 the set Eε has a quasi-density
equal to zero (t.j. dp(Eε) = 0), where Eε = {kεN, |xk − L| ≥ ε}.

If we define pn = n, n = 1, 2, . . ., then the quasi-statistical convergence is identical to
the statistical convergence.

If the sequence x = (xn) quasi-statistically converges to the number L, then it con-
verges statistically as well. However, the reverse does not hold [12].

If lim inf
n→∞

pn
n > 0, then if the sequence x = (xn) statistically converges to the number L,

then it converges quasi-statistically as well (see [12]).

2. The Quasi-Density

Let p = (pn) be a sequence of positive real numbers that satisfies the following
properties:

(a) lim
n→∞

pn = +∞

(b) lim sup
n→∞

pn
n < +∞.

We will call such a sequence permissible.
The lower quasi-density of the set A ⊆ N for a permissible sequence p = (pn) is

dp(A) = lim inf
n→∞

1
pn
|{kεA, k ≤ n}|,

if such a limit exists.
The upper quasi-density of the set A ⊆ N for a permissible sequence p = (pn) is

dp(A) = lim sup
n→∞

1
pn
|{kεA, k ≤ n}|,

if such a limit exists.
In case dp(A) = dp(A), then there exists a quasi-density of set A and we denote it as

dp(A) = lim
n→∞

1
pn
|{kεA, k ≤ n}|.
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Example 2. Sequences that satisfy these properties (a permissible sequences) are, for example,

(pn) = (log n)∞
n=1, (pn) = (n·α + d)∞

n=1, α ∈ R+, d ∈ R, (pn) = (nα)∞
n=1, α ∈ (0, 1).

If the permissible sequence satisfies the following property, we can define the quasi-
density of the set A using a matrix.

Let p = (pn) be a permissible sequence, let in addition lim inf
n→∞

pn
n = h, h ∈ R+, h 6= 0.

We will create a matrix B = (bnk) as follows:

bnk =

{
1/pn, k ≤ n
0, k > n

, i.e.,

B =




1/p1 0 0 · · · 0 0 · · ·
1/p2 1/p2 0 · · · 0 0 · · ·

...
1/pn

...

...
1/pn

...

...
1/pn

...

...
· · ·

...

...
1/pn

...

...
0
...

...
· · ·

...




.

The matrix defined in this way does meet the Angew’s conditions.
It is true that

∞

∑
k=1

bnk = 1/pn + 1/pn + . . . + 1/pn = n·1/pn = 1/pn/n ≤ 1/h

and
lim

n→∞
max

1≤k≤n
|bnk| = lim

n→∞
1/pn = 0, because lim

n→∞
pn = ∞.

Then, we can define the quasi-density of the set A ⊆ N as follows:
Let χA(k)be the characteristic function of set A.
Then,

dp(A) = lim inf
n→∞

∞

∑
k=1

bnk·χA(k)

and

dp(A) = lim sup
n→∞

∞

∑
k=1

bnk·χA(k)

are the lower and upper quasi-density of set A, respectively.
In case dp(A) = dp(A), then there exists a quasi-density of set A and we denote it as

dp(A) = dp(A) = dp(A) = lim
n→∞

∑∞
k=1 bnk·χA(k).

We will now state several properties of a quasi-density.

Proposition 1. LetA ⊆ N be a finite set. Then, dp(A) = 0 for every permissible sequence
p = (pn).

Proof of Proposition 1. If A is a finite set, then

dp(A) = lim
n→∞

1
pn
|{kεA, k ≤ n}| ≤ lim

n→∞

|A|
pn

= 0.

The quasi-density of the set of all natural numbers N is dependent on the sequence
(pn). �

Proposition 2. Let (pn) be a permissible sequence.

(a) If lim sup
n→∞

pn
n = T 6= 0, then dp(N) = 1

T (if lim sup
n→∞

pn
n = 1, then dp(N) = 1).
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(b) If lim sup
n→∞

pn
n = 0, then dp(N) = ∞.

Proof of Proposition 2. (a) Suppose that lim sup
n→∞

pn
n = T 6= 0. Then

dp(N) = lim sup
n→∞

∞

∑
k=1

bnk·χk(N) = lim sup
n→∞

n
pn

=
1
T

.

(b) Similarly

dp(N) = lim sup
n→∞

∞

∑
k=1

bnk·χk(N) = lim sup
n→∞

n
pn

= lim sup
n→∞

1
pn
n

= ∞.

�

Note: Let exists a finite lim
n→∞

pn
n

(a) In the case of lim
n→∞

pn
n = L 6= 0, then dp(N) = 1

L .

(b) In the case of lim
n→∞

pn
n = 0, then dp(N) = ∞.

(c) In the case of lim
n→∞

pn
n = 1, then dp(N) = 1.

We see that, generally, for any A ⊆ N: 0 ≤ dp(A) ≤ dp(A) ≤ +∞, i.e., quasi-density
does not behave like any of the densities studied up to now.

If the sequence p = (pn) is such a permissible sequence, for which there exists a finite
and non-zero limit lim

n→∞
pn
n , we can determine the relation between the asymptotic density

and the quasi-density of a set.

Proposition 3. Let A ⊆ N be such a set, for which its asymptotic density is d(A) = m, mε0, 1.
Let there exists a non-zero lim

n→∞
pn
n = L. Then, there also exists a quasi-density of setA and

dp(A) = 1
L ·m holds true.

Proof of Proposition 3. When we use the definition of quasi-density we get the following.

dp(A) = lim
n→∞

1
pn
|{kεA, k ≤ n}| = lim

n→∞

n
pn
· 1
n
|{kεA, k ≤ n}| = 1

L
·m.

�

Corollary 1. Let p = (pn) be any arithmetic sequence of the type

pn = n·α + d, n = 1, 2, . . . , αεR+, dεR.

Let A ⊆ N be such a set that its asymptotic density d(A) = m, mεR.
Then, dp(A) = m

α .

Proof of Corollary 1. For an arithmetic sequence the following applies:

lim
n→∞

pn

n
= lim

n→∞

n·α + d
n

= α.

From the previous theorem we obtain dp(A) = 1
α ·m. �

Example 3. Let A =
{

12, 22, . . . , n2, . . .
}

. It is evident that d(A) = 0.
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We define the sequence p = (pn) by:

pn =

{
2n, n = 2k
n
2 , n = 2k− 1

k = 1, 2, . . .

This sequence satisfies the requirements of the definition. The quasi-density of set
A =

{
12, 22, . . . , n2, . . .

}
given the sequence p is

dp(A) = lim
n→∞

|A ∩ 〈1, n〉|
pn

= lim
n→∞

√n
pn

= 0.

Quasi-density of set B = {1, 2, . . . , n, . . .} = N given the sequence p does not exist, be-
cause

dp(B) = lim inf
n→∞

|N ∩ 〈1, n〉|
pn

= lim inf
n→∞

n
pn

= 2,

dp(B) = lim sup
n→∞

|N ∩ 〈1, n〉|
pn

= lim sup
n→∞

n
pn

=
1
2

.

Example 4. Let pn = log n, n = 2, 3, . . .. It is evident that a sequence (pn) defined as such is
permisible, because lim

n→∞
log n = ∞ and lim

n→∞
log n

n = 0.

Quasi-densities of the sets A =
{

12, 22, . . . , n2, . . .
}

and B = {1, 2, . . . , n, . . .} given a
sequence defined as preceding (pn) exists and is identical: dp(A) = ∞ a dp(B) = ∞.

The asymptotic densities of these sets are not the same, because d(A) = 0 and d(B) = 1.
We can say the following corollary:

Corollary 2. If lim sup
n→∞

pn
n = 0, then there is a set C ⊆ N such that it exists d(C), but it does not

exist dp(C).

Proposition 4. Let the following hold true for sequences p = (pn)

0 < lim inf
n→∞

pn

n
≤ lim sup

n→∞

pn

n
= T < ∞

Then, for any sequence A ⊆ N, 0 ≤ dp(A) ≤ dp(A) and dp(A) ≤ 1
T is valid.

Proof of Proposition 4.

0 ≤ dp(A) = lim inf
n→∞

|k ∈ A, k ≤ n|
pn

= lim inf
n→∞

n
pn
· |k ∈ A, k ≤ n|

n
≤

≤ lim sup
n→∞

n
pn
· |k ∈ A, k ≤ n|

n
= lim sup

n→∞

|k ∈ A, k ≤ n|
pn

= dp(A).

In addition to that dp(A) = lim sup
n→∞

n
pn
· |k∈A,k≤n|

n ≤ 1
T ·d(A) ≤ 1

T . �

It is sufficient to realize that for every set A ⊆ N there exists a d(A) and d(A) (an
asymptotic density d(A) does not have to exist).

Corollary 3. If there exists an asymptotic density d(A) of set A ⊆ N, the the quasi-density dp(A)

of this set exists if and only if lim
n→∞

pn
n = L 6= 0 and dp(A)ε<0, 1

L> holds true.

In the next example, we will assume that lim
n→∞

pn
n = L 6= 0.
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Proposition 5. Let A, B ⊆ N be a non-empty set for which their quasi-densities are dp(A) and
dp(B). Let dp : PN → 〈0, ∞) be a function. Then

(a) If A ⊆ B then dp(A) ≤ dp(B).
(b) dp(A ∩ B) ≤ dp(A) + dp(B), dp(A ∩ B) ≤ dp(A) + dp(B).
(c) If A ∩ B = ∅ then dp(A ∪ B) = dp(A) + dp(B).

Proof of Proposition 5. (a) Let A ⊆ B. Then, for every n ∈ N the following holds true

|{kεA, k ≤ n}| ≤ |{kεB, k ≤ n}|.

Then
1
pn
|{kεA, k ≤ n}| ≤ 1

pn
|{kεB, k ≤ n}|.

Transitioning to the limit, we obtain

lim
n→∞

1
pn
|{kεA, k ≤ n}| ≤ lim

n→∞

1
pn
|{kεB, k ≤ n}|, i.e., dp(A) ≤ dp(B).

(b) It is evident that |{kεA ∪ B, k ≤ n}| ≤ |{kεA, k ≤ n}|+ |{kεB, k ≤ n}|.
From that we obtain the following:

dp(A ∪ B) = lim inf
n→∞

1
pn
|{kε(A ∪ B), k ≤ n}| ≤ lim sup

n→∞

1
pn
|{kε(A ∪ B), k ≤ n}| ≤

≤ lim sup
n→∞

1
pn

(|{kεA, k ≤ n} |+ |{kεB, k ≤ n} |) ≤

≤ lim sup
n→∞

1
pn
|{kεA, k ≤ n}|+ lim sup

n→∞

1
pn
|{kεB, k ≤ n}| = dp(A) + dp(B) =

= dp(A) + dp(B).

(c) A ∩ B = ∅⇒ |{kεA ∪ B, k ≤ n}| = |{kεA, k ≤ n}|+ |{kεB, k ≤ n}|

dp(A ∪ B) ≤ dp(A) + dp(B) = lim inf
n→∞

1
pn
|{kεA, k ≤ n}|+ lim inf

n→∞

1
pn
|{kεB, k ≤ n}| ≤

≤ lim inf
n→∞

1
pn
|{kε(A ∪ B), k ≤ n}| = dp(A ∪ B).

�

Now, we will show that quasi-densities have the almost Darboux property.

Definition 1. We say that the density d(A) has the almost Darboux property, if for every real
number t ∈< 0, d(N)) the exists such a set A ⊆ N, for which its density is d(A) = t.

Theorem 1. For every real number t ∈ 0, ∞) there exists such a set A ⊆ N and a permissible
sequence p = (pn), that dp(A) = t.

Proof of Theorem 1. If t = 0, then we can choose A to be any finite set (Proposition 1).
Let t ∈ (0, ∞), and let us choose any m ∈ (0, 1] .
For these chosen immutable numbers, we define a sequence p = (pn) =

(m
t ·n
)∞

n=1.
This sequence is permissible, because

lim
n→∞

pn = lim
n→∞

m
t
·n = +∞ a lim sup

n→∞

pn

n
= lim

n→∞

m
t ·n
n

=
m
t
< +∞.
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An asymptotic density has the almost Darboux property:
For every m ∈ 〈0, 1) exists such a set A ⊆ N for which its asymptotic density is

d(A) = m.
Let A be such a subset of natural numbers, such that its asymptotic density is m and

the sequence (pn) =
(m

t ·n
)∞

n=1. Then,

dp(A) = lim
n→∞

1
pn
|{kεA, k ≤ n}| = lim

n→∞

t
m·n |{kεA, k ≤ n}| = t

m
lim

n→∞

|{kεA, k ≤ n }|
n

=
t
m
·m = t.

�

Theorem 2. Let A ⊆ N be such a subset of natural numbers, for which its asymptotic density
d(A) = 0. Let p = (pn) be a permissible sequence that satisfies the condition limsup

n→∞

pn
n = T 6= 0.

Then, dp(A) = 0.

Proof of Theorem 2. Let d(A) = 0 and lim sup
n→∞

pn
n = T 6= 0. The upper quasi-density of

this set in regard to the sequence p = (pn) is

0 ≤ dp(A) = lim sup
n→∞

|k ∈ A, k ≤ n|
pn

= lim sup
n→∞

n
pn
· |k ∈ A, k ≤ n|

n
≤ lim sup

n→∞

n
pn
·lim sup

n→∞

|k ∈ A, k ≤ n|
n

=
1
T
·0 = 0.

�

3. The Quasi-Statistical Convergence and the Matrix Transformation

In the final part of this paper, we will focus on the quasi-statistical convergence of
sequences of real numbers.

We will show the equivalence between this convergence and a matrix transformation
of the same sequence.

Let p = (pn) be a permissible sequence. By Tp we will denote the class of matrices
with non-negative real members

B = (bnk) n, k = 1, 2, . . .

for which the following conditions are true:

(a) ∑n
k=1 bnk = 1

(b) If D is a subset of natural numbers for which dp(D) = 0, then lim
n→∞

∑k∈D bnk = 0.

It is evident that if a matrix belong to the class Tp, then it is regular. However, the
reverse does not hold.

Example 5. Let p = (pn) = (2n + 1)∞
n=1. Let the set D =

{
12, 22, 32, . . .

}
. According to

Proposition 3, the quasi-density of this set in regard to sequence p is

dp(D) =
1
L
·m =

1
2
·0 = 0,

where L = lim
n→∞

pn
n = lim

n→∞
2n+1

n = 2 a m = d(D) = 0.

Let us define the matrix C = (cnk) as follows:

c11 = 1, c1k = 0 for k > 1
cnk =

1
2k log n for k /∈ D, k ≤ n

cnk =
1

k log n for k ∈ D, k ≤ n
cnk = 0 for k > n.
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This matrix is the lower triangular regular, but do not belong to the class Tp, because

∑
k < n2

k ∈ D

bnk =
1

log n2

(
1 +

1
2
+ . . . +

1
n

)
≥ log n

2 log n
=

1
2
9 0 for n→ ∞.

That is, if the matrix belongs to the class Tp, so it is regular, the reverse is not true.

Lemma 1. If the bounded sequence x = (xk) is not quasi-statistically convergent, then there exist
real numbers λ < µ such that neither of the sets {n ∈ N, xn < λ} and {n ∈ N, xn > µ} has
quasi-density zero.

Proof of Lemma 1. The proof is the same as the proof of the Lemma in [6].
We will now utter a theorem that connects quasi-statistically convergent the sequences

of real number and a matrix transformation of the same sequence using matrices from the
class Tp. �

Theorem 3. The bounded sequence x = (xk) of real numbers is quasi-statistically convergent to
L ∈ R

(
stq − limxk = L) if and only if it is summable to L ∈ R for each matrix B = (bnk) ∈ Tp.

Proof of Theorem 3. Let stq − limxk = L, L ∈ R and B = (bnk) ∈ Tp.
As B is regular there exist a K ∈ R such that ∀n = 1, 2, . . . ∑∞

k=1|bnk| ≤ K.
It is sufficient to show that lim

n→∞
an = 0 where an = ∑∞

k=1 bnk·(xk − L).

For ε > 0 put B(ε) = {k ∈ N, |xk − L| ≥ ε}.
By the assumption we have dp(B(ε)) = 0 we have lim

k∈B(ε)
∑k∈B(ε)|bnk| = 0.

As the sequence x = (xk) is bounded, there exist M > 0 such that ∀k = 1, 2, . . . :
|xk − L| ≤ M.

Let ε > 0. Then

|an| ≤∑k∈B( ε
2K )
|bnk|·|xk − L|+ ∑k/∈B( ε

2K )
|bnk|·|xk − L| ≤

≤ M ∑k∈B( ε
2K )
|bnk|+

ε

2K ∑k/∈B( ε
2K )
|bnk| ≤ M ∑k∈B( ε

2K )
|bnk|+

ε

2
.

By the condition (b) there exists an integer n0 such that for all n > n0 :

∑
k∈B( ε

2K )

|bnk| <
ε

2M
.

Together we obtain lim
n→∞

an = 0.

Conversely, suppose that stq − limxk = L does not apply. We show that it exists a
matrix B∗ = (bnk

∗) ∈ Tp such that B− limxk = L does not apply too.
If stq − limxk = L′ 6= L then from the first part of proof it follows that B− limxk = L′

for any B ∈ Tp. Thus we way assume that x = (xk) is not quasi-statistically convergent and
by the above Lema there exist λ and µ (λ < µ) such that either the set U = {k ∈ N : xk < λ}
nor V = {k ∈ N : xk > µ} has quasi-density zero.

It is clear that U ∩ V = ∅. Let Un = U ∩ {1, 2, . . . , n} and Vn = V ∩ {1, 2, . . . , n}.
Therefore, there exists an ε > 0 and subsets U′ = {uk}∞

k=1 ⊂ U and V′ = {vk}∞
k=1 ⊂ V

such for each k ∈ N: 1
uk
·|{n ∈ N : n ≤ uk}| > ε and 1

vk
·|{n ∈ N : n ≤ vk}| > ε.
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Now define the matrix B∗ = (bnk
∗) in the following way

bnk
∗ =





0 k > n
1
n k ≤ n ∧ n /∈ U′ ∩V′
1
|Un | k ∈ Un ∧ n ∈ U′

1
|Vn | k ∈ Vn ∧ n ∈ V′

Check that B∗ = (bnk
∗) ∈ Tp. Obviously, B∗ is a lower triangular nonnegative matrix.

Condition (a) is clear from the definition of B∗, ∑n
k=1 bnk

∗ = 1 for each n.
Condition (b) for this matrix:
Let for the set C ⊆ N : dp(C) = 0.
Then,

∑ k ∈ C
n /∈ U′ ∪V′

bnk
∗ = ∑ k ∈ C

n /∈ U′ ∪V′

1
n

χk(C) = ∑ k ∈ C
n /∈ U′ ∪V′

pn

n
· 1
pn
·χk(C).

For n→ ∞ we have

lim
n→∞ ∑ k ∈ C

n /∈ U′ ∪V′

pn

n
·χk(C)

pn
≤ lim sup

n→∞

pn

n
·dp(C) = 0

.
We proved that B∗ = (bnk

∗) belongs to Tp.
Next, we will show B∗ − limxk does not exist.
For n ∈ U′ : ∑∞

k=1 bnk
∗·xk = ∑k∈Un

1
|Un | ·xk < λ·1 = λ and for n ∈ V′ : ∑∞

k=1 bnk
∗·xk =

∑k∈Vn
1
|Vn | ·xk > µ·1 = µ. �

4. Conclusions

In this paper we define the lower quasi-density dp(A), the upper quasi-density dp(A)

and the quasi-density dp(A) of subsets of natural numbers, which we use to define the
quasi-statistical convergence of sequences.

We proved some of the properties of quasi-densities (e.g., the quasi-density of a
finite subset of natural numbers is zero and has the almost Darboux property). Given a
permissible sequence, for which lim

n→∞
pn
n = L 6= 0 there is a relation between the asymptotic

and quasi-densities of set A, we have dp(A) =
d(A)

L .
The final section pertains to the quasi-statistical converge. We showed that the

bounded sequence of real numbers is quasi-statistically convergent to L ∈ R if and only if
it is summable to L ∈ R for each matrix B = (bnk) ∈ Tp.

One of the most important applications of quasi-densities is connecting the quasi-
statistical convergence with the summability method and by doing so generalize the
term convergence.
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