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Preface to “Advances in Flow Modeling for Water
Resources and Hydrological Engineering”

This book presents a print version the Special Issue of the journal Hydrology dedicated to
“Advances in Flow Modeling for Water Resources and Hydrological Engineering”. The overall
goal of this Special Issue was to consider the recent advances on models and methods for water
resource modelling. In particular, basin-wide water resources planning, watershed management,
flood forecasting, droughts, climate changes impacts on flood risk and water resources, reservoir
operation and management, river morphology and sediment transport, river water quality, and
irrigation were the main issues that the papers published in this Special Issue aimed to discuss. These
original objectives were achieved, and in the 21 papers collected in this volume, readers will find a
collection of scientific contributions providing a sample of the state-of-the-art and forefront research
in these fields. Among the articles published in the Special Issue 1 is a Technical Note and 20 are
Research Articles. In total, 79 authors from five different continents (Africa, America, Asia, Europe,
and Oceania) contributed to the Special Issue, showing the results of case studies and demonstration
sites from the same five continents. The geographic distribution of the case studies is wide enough to
attract the interest of an international audience of readers. The articles collected here will hopefully
provide different, useful insights into advancements in computer techniques that allow the water
scientists to develop complex models at different scales to support water resources planning and

management.

Carmelina Costanzo, Tommaso Caloiero, and Roberta Padulano
Editors
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Abstract: Surface and ground waters can be considered the main sources of water supply for agricul-
tural, municipal, and industrial consumers. Over the centuries, the combination of both naturally
occurring conditions and humanity’s actions has placed increasing pressure on these water resources.
As an example, climate change and natural variability in the distribution and occurrence of water are
among the natural driving forces that complicate the sustainable development of water resources.
Recent advances in computer techniques have allowed scientists to develop complex models at
different scales to support water-resource planning and management. The Special Issue “Advances in
Flow Modeling for Water Resources and Hydrological Engineering” presents a collection of scientific
contributions providing a sample of the state-of-the-art research in this field.

Keywords: water resources modelling; flood forecast; climate-change impacts; drought; river quality;
river morphology; watershed hydrology; watershed management; reservoir management

1. Introduction

Water resource systems planning and management issues are often very complex. The
pressures on water resources are increasing with the expansion of global development,
involving ecological and hydrological consequences in river basins and groundwater
aquifers and water-quality deterioration. All this leads to the growing need to investigate
the effects of different human influences and impacts on the hydrological regime and water
quality, such as land-use changes, climatic variability and climate change, and intensified
water and land-use practices. Moreover, economic, environmental, and social issues have
gained considerable attention in water resources research. In this context, computer-based
models can help to choose the most impactful plans, designs and policies. Over the last
few years, advances in computer techniques have allowed scientists to develop complex
models at different scales to support water resource planning and management.

The Special Issue “Advances in Flow Modeling for Water Resources and Hydrological
Engineering” focuses on recent advances in models and methods for water resource mod-
elling. In particular, the following issues have been discussed: basin-wide water resources
planning; watershed management; flood forecasting; droughts; climate change impacts on
flood risk and water resources; reservoir operation and management; river morphology
and sediment transport; river-water quality.

2. Some Data of the Special Issue

From early December 2019 to late September 2022, a total of 36 papers were submitted
to this Special Issue. After a rigorous editorial check and peer-review process, involving
external and independent experts in the field, 15 papers were rejected and 21 papers were
accepted (about 57%). Of the 21 articles published in the Special Issue, 1 is a Technical
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Note [1], and 20 are Research Articles [2-21]. Figure 1 compares the geographic distribution
of the first authors of the research teams publishing in the Special Issue (Figure 1a), as
well as that of the case studies and demonstration sites (Figure 1b). The analysis of this
figure allows one an overview of the scientific community working on flow modelling for
water resources and hydrological engineering, although it is just a sample and thus not
an exhaustive representation. Seventy-nine authors from five different continents (Africa,
America, Asia, Europe and Oceania) contributed to the Special Issue, showing the results
of case studies and demonstration sites from the same five continents.

(b)
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Figure 1. Geographic distribution of (a) first authors of research teams publishing in the Special Issue;
(b) case studies and demonstration sites that are discussed in the papers.

Figure 2 shows the main keywords of the papers in Special Issue, which reflect the
scope of scientific content on the subject. The relevant themes are numerous, ranging from
hydraulic laws to hydraulic numerical models, to climate change, to hydrological models
and forecasting models. All these themes refer to applications to experimental cases or
actual rivers or catchment areas. “Modelling” is the predominant keyword, cited in 5 out
of 20 articles, among which three referred to “Hydrological Modelling”.
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Figure 2. Word cloud of the keywords published in the Special Issue.

3. Overview of the Special Issue Contributions

The paper [1] presents a web app for a rapid, smart and smooth computation of
catchment-scale water balance, relying on the Thornthwaite-Mather method, which only
requires simple input information such as temperature, precipitation and location of the site.
the latter.

By properly setting, or possibly calibrating, input parameters such as the runoff coefficient,

flow values are simulated, and they can be compared to observed values for validation. The
app is tested on two different catchments: one in Northern Italy and the other in Slovenia,
with different performances due to the underestimation of snowfall and snow melting in

Paper [2] presents an in-depth trend analysis of the main hydro-climatic variables
(rainfall, temperature, low and high flows) recorded in the headwaters of the Mero catch-

ment (NW Spain). The case study is a near-natural regime stream, negligibly influenced or
modified by human activities, and it is particularly significant in terms of water resources

accounting for temperature trends.

for the nearby area. The study detected statistically significant trends in mean seasonal
number of days with low flow was particularly evident in spring and summer. Addi-

stream discharge for autumn and summer. In addition, a significant upward trend in the

tionally, a falling trend in high flows was observed in autumn. Such trends often proved

to be inconsistent with rainfall trends: however, this behaviour can be explained by also

In paper [3], the authors address the possible role of climate change in altering ground-
water quality in terms of tile drainage and consequent nitrogen yield, using a test case
located in the Great Lakes area (Canada). A well-known field-scale model, DRAINMOD,
is calibrated, relying on literature parameters and site observations for rainfall and tem-
perature, and then applied to climate projections under a future emission scenario. Tile
flow is estimated to increase, especially in winter; however, the projected rise in nitrate loss
through tiles was uncorrelated with tile flow. This could be explained by an increase in
minimum spring temperature, leading to enhanced nitrification and excessive nitrate loss.

The goal of paper [4] is to assess the potentialities and limitations of CFD models
in simulating the performance of the Parshall flume, a variation on the Venturi flume
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often used to collect laboratory and field discharge data. By using OpenFOAM, which
is associated with seven different turbulence models, a selection of geometries for the
Parshall flume are numerically set up, and numerical results are compared to the measured
data collected in corresponding experimental scenarios. Results show that, although their
performances vary, all the tested turbulence models are able to satisfactorily capture the
actual flow in the flume. However, additional tests are recommended to further explore the
range of simulated discharge values.

In paper [5], the estuarine area of the Yukon River (Alaska) is analysed with particular
reference to the surface sediment plumes formed by glacier-melt and rainfall sediment
runoff, with the aim of exploring the mechanisms behind plume plunging at the boundary
between river water and marine water. Analysis relies on discharge and sediment mea-
surements, as well as on plume observations conducted from a boat. It was found that
both the suspended sediment concentration and sediment load of the Yukon River were
relatively high in the glacier-melt and rainfall runoffs of July-September. Hence, temporal
variations of glacier-melt and rainfall could change the behavior of the sediment plume in
the coastal region.

The goal of paper [6] is to set up a flood prediction model based on the concept of
“Probability of Success”. The model, developed for the Croatian catchment referring to the
Gornja Kasina hydrological station, assesses the probability of flooding as the overlap of
five statistical categories describing the most relevant factors affecting the rainfall-runoff
transformation (climatological, geological and geographical features). Comparison with
past flood observations for the test case showed that the model could capture flood events
that caused significant damages, although they were not registered as “floods” by the
involved stream gauges.

In paper [7], a real-scale dam-break wave was simulated using the 2D finite volume
Roe-TVD method. For this purpose, a numerical code was developed to solve the 2D depth
average, shallow water equations on unstructured triangular cells considering turbulence
terms and a dry bed front. To validate the code, initially, available experimental data were
considered. After verifying the model, the real-scale dam break was simulated, and the
flow behaviour from encountering the two bridges was analysed along the pathway. The
flood wave arrival time to the bridges, the flooded area and the duration of flooding of the
bridges were studied.

Paper [8] aims to provide an explanation and a theoretical foundation for the empirical
well-known eddy viscosity profiles. The eddy viscosity is defined as a product between a
velocity scale and a length scale. From this definition, two analytical eddy viscosity models
are proposed. The proposed analytical models are validated through the computation of
velocity profiles, obtained from the resolution of the momentum equation, and comparison
with experimental data.

In paper [9], the spatial variability of the main water balance components in an
intensively agricultural area in the headwaters of Upper East Fork White River in Indiana,
USA, was analysed. Extensive data collection was necessary to provide the best possible
input for a SWAT model set up for the simulation. To optimise the data outputs, a spatial
calibration approach was implemented in four gauging sites. It was confirmed that in areas
with intensified agricultural development—an activity that heavily disturbs the land phase
of the hydrological cycle—it is critical for hydrological models to incorporate factors such
as water use and relevant agricultural management practices.

The authors of paper [10] use a computational fluid dynamics (CFD) approach to
simulate flows in Parshall flumes, which are used to measure flowrates in channels. The
objective of this research was to study the reliability of numerical simulations of a Parshall
flume using various nonlinear turbulence models. The numerical results are compared
with the experimental data, which show that choosing the right turbulence model is the
key element in accurately simulating Parshall flumes.

Paper [11] aims to develop a robust and rational methodology to assess the change in
the hydrological response of a post-fire watershed, especially where the scarcity or absence
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of hydrometric data do not allow the calibration of a more complex rainfall-runoff model.
Thus, this study proposes an integrated approach that combines spatial information on
burned areas and levels of fire severity, direct soil infiltration measurements and rainfall-
runoff modelling. This approach was applied to a burned forest catchment in Italy to
explain the repercussions of fire on the hydrological response of a natural watershed. Flood
peak and volume were computed through the application of the Soil Conservation Service-
Curve Number method (SCS-CN); the flow propagation was simulated through a lag-time
approach based on the time-area curve of the catchment.

Paper [12] presents the physical model study of shock waves at the Mohmand Dam
Spillway project in Pakistan. In this study, a hydraulic analysis of shock waves was carried
out to investigate its generation mechanism. Different experiments were performed to
analyse the rooster tail on a flat spillway chute and to examine the factors affecting the
characteristics of the rooster tail. The results revealed that shock wave height is influenced
by spillway chute slope, pier shape and flow depth. Moreover, the height of the shock
wave can be minimized by installing a semi-elliptical pier on the tail part of the main pier.

Paper [13] evaluates the potential for a newly proposed nonlinear subsurface flux equa-
tion to improve the performance of the hydrological Hillslope Link Model. The equation
contains parameters that are functionally related to the hillslope steepness and the presence
of tile drainage. To assess performance improvements, they compare simulation results to
streamflow observations during a 17-year period (2002-2018) at 140 U.S. Geological Survey
(USGS) gauging stations. The new equation provides a better representation of hydrograph
recession curves, hydrograph timing and total runoff volume. However, the authors found
discrepancies in the spatial distribution of hillslope scale parameters.

Paper [14] describes the main stages and processes required to implement and improve
an operational hydrologic forecasting system in the Upper Zambezi River Basin and its
sub-basins. The process of implementation was complex, and several decisions needed to
be made about the input data (precipitation from satellites or climate products), the hydro-
logical models to be included along with their optimal parameter sets and the timescales
required for the generation of streamflow forecasts. Once the system was completely oper-
ational, additional developments were required to improve its performance and reduce the
spread of total hydrologic uncertainty into the final streamflow forecast products.

Paper [15] assesses historical (1983-2005) and future (2026-2100) rainfall, maximum
temperature and minimum temperature trends in the Ziway Lake Basin (Ethiopia). Simu-
lated historical and future climate data were obtained from the CMIP5 datasets considering
the RCP4.5 and RCP8.5 emission scenarios. The modified Mann—-Kendall trend test was
applied to estimate the trends of annual rainfall, Tmax and Tmin in historical and future
periods. Rainfall experienced no clear trends, while Tmax, and Tmin significantly increased
in both RCP 4.5 and 8.5 scenarios, especially in the central part of the basin at the end of
the 21st century.

In paper [16], the potential effects of climate change and variability on the maximum
precipitation, temperature and hydrological regime in Devil’s Creek, Tacna, Peru were
analyzed. For this purpose, the outputs of the meteorological variables of fifteen regional
climate models were used as inputs for the hydrological model considering the RCP4.5
and RCP8.5 emission scenarios. The results showed an increase in the maximum annual
precipitation by more than 30% for both the RCP4.5 and RCP8.5 scenarios for the 2021-2050
period with reference to the 19812005 period. Moreover, the maximum flows could
increase by 220% and 154% for the RCP4.5 scenarios for the 2021-2050 and 20512080
terms, respectively, and 234% and 484% for the RCP8.5 scenarios and for the 2021-2050 and
2051-2080 terms, respectively.

The aim of paper [17] is to develop a modified model that improves the accuracy of
the determination of skin friction factors in gravel-bed rivers. With this aim, 100 velocity
profile data obtained from eight gravel-bed rivers were utilized to develop an analytical
method that considers the momentum thickness of the boundary layer and its deviation
in large-scale topographic bedforms in a 1D force-balance model. The proposed model
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showed high accuracy in the prediction of skin friction factors for energy slopes between
0.001 and 0.1. Additionally, the model was used to modify the classic Einstein—-Strickler
equation, allowing an improvement of the accuracy of the predicted skin friction factors in
nonuniform flow conditions even when velocity profiles and energy slope were unavailable.

In paper [18], the transition from supercritical to subcritical flow around a fully
submerged abrupt negative step in a horizontal rectangular open channel was investigated
in a laboratory experiment. As a result, five different types of rapidly varying flow were
observed by varying the subcritical downstream tailwater depth. Moreover, the numerical
results showed that the Boussinesq equations can simulate the basic flow characteristics
with acceptable accuracy.

In paper [19], monthly streamflow and satellite-based actual evapotranspiration data
(AET) were used to evaluate the Soil and Water Assessment Tool (SWAT) model for the
calibration of an experimental sub-basin with mixed land-use characteristics in Athens,
Greece. Three calibration scenarios were conducted with streamflow, AET and streamflow—
AET data to evaluate the simulated outputs. The sensitivity analysis showed that the most
sensitive parameters for streamflow are related to groundwater flow, runoff generation
and channel routing, and for actual evapotranspiration, they are all connected to soil
properties. This research showed that combining streamflow and MODIS satellite-based
AET data in the calibration process can improve model performance regarding streamflow
and water balance and contribute to understanding the hydrological processes in a mixed
land-use catchment.

Paper [20] tests the suitability of the RFFE approaches within smaller headwater
catchments in the Pilbara (Australia) and evaluates them through a comparison of peak
discharge values derived from a 2D hydrodynamic direct rainfall model. This paper
provides the first comparative study of The RFFE approaches for the Pilbara using updated
ARR values to validate their use within smaller catchments in the same region.

Paper [21] deals with how the Colorado River may respond to future climates. Histori-
cal and future streamflow projections for the Colorado River basin were evaluated with a
perspective of drought and surplus periods.

4. Conclusions

This Special Issue on numerical methods and models for water resource modelling is
very interesting and constitutes a point of reference for future developments on the topic.

In particular, the Special Issue illustrates that the use of hydraulic models can assist
with hydraulic constructions for planning the negative effects of shock waves on spillway
operations [12], to determine the best combination of different turbulence models to design
Parshall flumes [4,10], to model the eddy viscosity in surface flows [8], to determine hazard
maps downstream of a dam [7] and to improve the accuracy of the determination of skin
friction factors in gravel-bed rivers [17] and the performance of the hydrological Hillslope
Link Model [13].

Similarly, the presented hydrological models contribute to future development regard-
ing the study of the hydrological response after a fire [11], environmental sustainability
ensuring socioeconomic stability and the production of critical crops in agriculture [9] and
to determine the peak flow through regionalization techniques [20]. Significant attention is
paid to the impacts of climate change on the performance of hydrological models in terms
of water quantity and quality, using observed trends [3,21] and future climate scenarios [2],
and to the role of extreme flood events [5,6], also by means of simplified [1] or empirical [6]
prediction models.

Finally, the use of high-resolution Satellite Precipitation Products [14] and emission
scenarios [15,16] as inputs for the hydrological model allowed us to improve the existing
hydrologic forecasting system and detect the impacts of climate changes on the hydrologi-
cal regime.
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Abstract: Historical and future drought and surplus periods in the Colorado River basin are evalu-
ated based on eight climate scenarios. Unimpaired streamflow from 17 stations in the Colorado River
are evaluated based on U.S. Geological Survey, Bureau of Reclamation, and Coupled Modeled Inter-
comparison Projection 5 downscaled data from 1950-2099. Representative Concentration Pathway
(RCP) 4.5 and 8.5 emission scenarios are considered for four climate models (HadGEM2-ES, CNRM-
CMS5, CanESM2, MI-ROCS5). Drought (surplus) quantities, magnitudes, severities, and water year
flows are compared for the historical and future periods. Results indicate that there is a significant
difference between the historical record and future projections. The results are not consistent in terms
of increase of drought or surplus; however, the intensity (as measured by magnitude and duration)
will likely increase for both RCP 4.5 and 8.5. The CanESM2 and CNRM-CM>5 models project wetter
scenarios, and HadGEM2 and MI-ROC5 models project drier scenarios. For the critical Lees Ferry
station, models indicate a chance of higher drought and surplus length and magnitude on the order
of two times the historical period. In addition, basin wide flow at Lees Ferry had a shift in the future
mean ensemble of approximately 3-10% for the water year. Future hydrologic changes will heighten
the need for appropriate management and infrastructure options available to adapt to these changes.

Keywords: drought; climate change; water; hydrology; streamflow

1. Introduction

The Colorado River basin is one of the most important basins in the United States and
provides critical water resource for seven States (Colorado, Utah, Wyoming, New Mexico,
Nevada, Arizona, and California) and Mexico. It serves a population of over 36 million
people, supports an economy of $26 billion based on recreation, provides water for 4 million
acres of farmland and sustains 30 endemic fish species [1]. It is also a highly managed
system with over 50 million acre-ft of storage available between the two largest reservoirs
(Lake Mead and Lake Powell). This large amount of storage is critical for sustaining
water supplies during droughts, hydropower generation, recreation, and environmental
productivity. Much of the southwestern United States has experienced sustained drought
over the past 20 years and this has resulted in declines in water supplies in many basins
and reservoirs. For instance, the Colorado River basin experienced Tier 1 and 2 shortage
for the first time in 2022 and 2023 which trigger mandatory water consumption cuts for
southwestern states. In addition, drought continency plans will need to be developed
to ensure long term sustainability of water supplies and reservoir [2]. There is a need to
understand if this is the “new normal” for the future or are these changes part of drought
and surplus cycles that are experienced over years.

Extensive research has been conducted on the impact of climate change on the water
conditions of the Colorado River basin. Early studies [3] used specific warming scenarios
(e.g., 1,2, 3 °C warming) along with hydrologic and system models to evaluate changes.
Rajagopalan et al. [4] demonstrated how increased demand and changing climate were
taxing the reliability of water supply. As Coupled Model Intercomparison Project (CMIP)
projections of future climate have become available, studies have focused on impacts in
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headwater basins [5,6], uncertainties in precipitation projections [7], the role of increasing
temperature on reduction of streamflow [8,9], and implications of changes in future flows in
the basin [10]. Others such as Woodhouse et al. [11] have evaluated hypothetical droughts
from 1-4 °C warming and implications for reliability of Colorado River flows. Finally, the
Bureau of Reclamation [12] has studied this extensively using paleo records and future
flows into major reservoirs (Lake Mead and Lake Powell). Most studies that have evaluated
the future projections, use the entire suite of models from CMIP5 (on the order of 32 models)
and usually for Representative Concentration Pathway (RCP) 4.5 and 8.5.

This work fills a gap in research where both drought and surplus periods from the
historical records and future projections that are likely in the Colorado River. The contribu-
tions from the work presented here include the evaluation of both drought and surplus
periods from 2021-2099 based on specific climate model projections that are most likely
for this region. It is important to note that paleo records are not considered here as the
focus is on evaluating the impact of future streamflow conditions in relation to historical
(as measured from gauge records). Finally, observations and conclusions are drawn on
changes in extremes (both droughts and surpluses) to stations that contribute to the entire
basin and those for specific states (e.g., Arizona).

2. Materials and Methods
2.1. Data

The main data used in this study is yearly streamflow for various locations in the
Colorado River basin from past periods and for the future. The selected stations represent
a combination of headwater locations that are important for understanding high water
generating portions of the basin, a main river station (e.g., Lees Ferry) that is important for
water management, and lower basin stations that contribute only to Arizona flows and are
important for understanding monsoonal impacts. A total of 17 stations noted below are
used in the analysis of droughts and surpluses.

2.1.1. Historical Streamflow

Unimpaired streamflow stations are needed to conduct this analysis and remove any
anthropogenic effects. Unimpaired stations were initially identified by Wallis et al. [13]
updated by Tootle et al. [14]. For this study, those locations within the Colorado River
basin are used from the larger U.S. data set. This results in 16 stations that were updated
from the U.S. Geological Survey (USGS) NWISWeb Data retrieval (Available online: https:
/ /waterdata.usgs.gov/nwis/, accessed on 1 January 2022) to water year 2021, so the
analysis is performed using the time period water year 1951-2021. This time period was
selected by Tootle et al. [13] as being ideal for having a large number of streamflow stations
and sufficient number of years of data for long-term analyses. In addition, the use of NWIS
streamflow data allows for these results to be compared in the future with other analyses
that may be conducted in the west on other unimpaired streamflow data. In addition, the
Lees Ferry data was obtained for water years 19062021 from the Bureau of Reclamation
who maintains natural flow that accounts for consumptive uses and losses. (Available
online: https:/ /www.usbr.gov/lc/region/g4000/NaturalFlow /index.html, accessed on
1 January 2022). In the analysis performed for all the stations (Section 3.1), the period
of 1951-2021 was used for Lees Ferry to allow for appropriate comparisons. For specific
analysis of Lees Ferry (Section 3.2), additional analysis was performed using the extended
record 1906-2021.

Monthly data for all the stations is used to compute the water year cumulation defined
as the months October-September. The 17 stations noted above are summarized and show
in Table 1 and Figure 1. These are also locations where future flow data is available (see
Section 2.1.2). For these stations, water year streamflow data is calculated in million acre-ft
(MAF) which is a common unit used for water management. (Note: 1 MAF = 1233 million
cubic meters MCM).

10



Hydrology 2022, 9, 227

Table 1. List of Stations with characteristics.

Station Name Location/Name Elevation (m) Drainage Area (km?)
Lees Ferry Upper (U1) 940 289,561
Piney River Upper (U2) 2217 219
East River Upper (U3) 2440 749
Lake Fork Upper (U4) 2386 878
Slater Fork Upper (U5) 2012 391
Rock Creek Upper (U6) 2210 381
Yellowstone River Upper (U7?) 2265 342
White River Upper (U8) 1951 1678
Fish Creek Upper (U9) 2338 156
Muddy Creek Upper (U10) 1983 272
Smiths Fork Upper (Ull1) 2044 427
Gila River Lower (L1) 1419 4828
San Francisco River Lower (L2) 1047 7156
Gila River at Safford Lower (L3) 957 20,350
Salt River Chrysotile Lower (L4) 1023 7379
Salt River Roosevelt Lower (L5) 664 11,152
Tonto Creek Lower (L6) 769 1748
N hd I
- . 4
i
U
 Denver g

., Legend

oAbuaera: Stations

New Mexico

2

Colorado River Basins

o Esri, L

Figure 1. Map of stations used in this study for Upper and Lower Colorado River basin.

Of the 17 stations identified in Table 1, 11 stations are from the Upper basin and six
are from the Lower basin. It is noteworthy that 10 of the Upper basin stations contribute
flows to Lees Ferry which is a measure of total Upper basin. The inclusion of all the
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stations allows for a spatial analysis of how flows may change in the future and eventually
contribute to the overall flow at Lees Ferry. In addition, the inclusion of the six Lower basin
stations allows for further spatial analysis of the entire Colorado River (Upper and Lower).

2.1.2. Future Projections of Streamflow

Future water year streamflow values were obtained from the comprehensive database
of downscaled hydrology projections using Bias Correction and Spatial Disaggregation
(BCSD) and made available by Bureau of Reclamation [14]. These projections represent
downscaled climate projections (e.g., wind, temperature, precipitation) of the Coupled
Modeled Intercomparison Project 5 (CMIP) projections to grid scales of % degree 12 km us-
ing BCSD [15]. The downscaled climate data is then used in the VIC hydrologic models for
the western U.S. and values aggregated to subbasin scale [16]. The VIC hydrologic model
used to develop the downscaled streamflow projections is physically based for various
subbasins of the Colorado River basin and routes to key points that provide streamflow pro-
jections. This results in 97 projections of monthly and daily hydrology at specified locations
(e.g., streamflow stations) over the contiguous U.S. using BCSD on CMIP5 projections. In
the Reclamation archive [14], there are 18 CMIP5 models and Representative Concentration
Pathways (RCP) 4.5 and 8.5 scenarios available to the year 2099.

A total of eight projections were used that represent four models (of the 18 noted
above) at two emission levels as RCP 4.5 and 8.5. The emission level of RCP 4.5 is an
intermediate climate change scenario that minimizes greenhouse gas emissions. RCP 8.5
is the highest level of greenhouse gas emissions resulting from a large population with
high energy [17]. The Fourth National Climate Assessment [18] identified RCP 4.5 and
8.5 as the core scenarios representing the appropriate range of future conditions. The four
model simulations are those used by Pierce et al. [19] and Lynam and Piechota [20] to
evaluate various scenarios of California streamflow and include HadGEM2-ES, CNRM-
CM5, CanESM2, and MIROCS5. While there is no direct evidence that these models behave
well for the Colorado River basin, these models are selected here based on their ability to
simulate historical climate spatial and temperature structure at the global, Southwestern U.S.
and California scales [19]. In addition, the range of these models will give a representative
sample of the scenarios while still allowing for a detailed analysis of what specific futures
may look like in terms of water supply. For this study there is no assumption about the
model bias (e.g., water, wet, average) and direct reference is made to the models that best
represent climate of the region.

To best represent the overall impact of the models for the two climate scenarios (RCP
4.5 and 8.5), ensemble water year means are calculated based on the average of the four
models. This is a common practice in climate change studies where multiple models are
evaluated and there is a need to establish a best estimate of the “average” of the models,

e.g., [21].

2.2. Drought and Surplus Definitions

Following a definition used by Lynam and Piechota [20] drought was defined as
periods where there was two or more consecutive years of deficit flow (below average flow)
with the period ending only when two consecutive years of surplus occurred. The average
flow for the historical period is used for all analyses to ensure analyses are evaluating the
impact in relation to current hydrologic conditions. Similarly, surplus periods were defined
as two or more consecutive years of excess flow (above average flow) with the period
ending only when two consecutive years of deficit occurred. Other studies in the west have
used drought definitions where in any given year a drought can occur if the index (i.e.,
PDSI) drops below zero or alternatively using a three-year moving average to determine
drought years [12]. The approach used here recognizes the varied nature of drought (and
surplus) definitions while using a standard statistical measure appropriate for a basin that
has significant storage (i.e., 4 years of storage in the two major reservoirs). For both drought
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and surplus periods, duration, magnitude (defined as the cumulative of the departure from
the average), and the severity (defined as magnitude/duration) were compiled.

2.3. Testing of Differences

The difference in the total number of droughts and surplus periods for each scenario
(i.e., historical vs. future periods) was evaluated using the F-test. In this test, the variance
in two populations is evaluated to see if there is a significant difference. In this study, the
population consist of the number of drought and surplus periods. For all tests, the historical
population of drought and surplus periods is evaluated against the future population
of drought and surplus periods determined in the analysis. Results are displayed and
discussed in Section 3.

The sample populations of drought and surplus for each scenario are also presented
as box and whisker plots where the middle of the box represents the median, the top and
bottom represent the 75th and 25th percentiles of the population and the top and bottom of
the whisker represent the 90th and 10th percentiles of the population (see Section 3.2).

3. Results
3.1. Station Specific Results for the Basin

The station specific results of the entire basin for historical and future droughts (sur-
pluses) are shown in Tables 2—4, and Figures 2 and 3. These results are shown for future
flows including drought and surplus periods (duration and magnitude) along with changes
in the mean water year flow. For all analysis presented in this Section 3.1, the historical
time period of 1951-2021 is used for all stations.

Table 2. Duration (in years) of drought and surplus for Upper (U) and Lower (L) Basin stations based
on 1951-2021 for all stations and also the time period 1907-2021 for Lees Ferry. For drought duration,
red values are higher than the historical record and blue values are lower. For surplus duration, blue
values are higher than the historical record and red values are lower.

Drought Duration RCP 4.5 RCP 8.5
. L CNRM- HadGEM2- MI- CNRM- HadGEM2- MI-
Station Historical CanESM2 CM5 ES ROCS CanESM2 CMS5 ES ROCS
Lees Ferry (U) 1907-2021 22 10 6 10 17 13 17 32 14
Lees Ferry (U) 1951-2021 11 8 6 10 17 11 8 32 14
Piney River (U) 11 10 11 9 12 7 17 14 19
East River (U) 9 28 13 12 25 16 12 37 21
Lake Fork (U) 17 5 4 7 5 3 4 20 13
Slater Fork (U) 9 3 2 3 4 2 4 2 4
Rock Creek (U) 22 6 5 18 22 5 11 32 8
Yellowstone River (U) 9 30 27 54 50 18 28
White River (U) 11 15 8 17 24 13 17 54 24
Fish Creek (U) 11 10 11 24 27 12 21 31 27
Muddy Creek U) 15 4 6 14 27 4 4 17 13
Gila River (L) 21 2 7 2 10 4
San Franciso River (L) 27 2 2 3 3
Gila at Safford (L) 28
Salt River Chrysotile (L) 27 12 50 44 24 12 65
Salt River Roosevelt (L) 27 19 10 30 44 24 12 57 35
Tonto Creek (L) 23 38 12 23 44 24 17 73 45
Smiths Fork (L) 14 5 11 15 22 5 8 12 13
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Table 2. Cont.

Surplus Duration RCP 4.5 RCP 8.5
. L CNRM- HadGEM2- MI- CNRM- HadGEM2- MI-
Station Historical CanESM2 CM5 ES ROCS CanESM2 CMS5 ES ROCS
Lees Ferry (U) 1907-2021 18 16 20 8 4 17 23 6 8
Lees Ferry (U) 1951-2021 10 16 20 10 5 18 23 6 11
Piney River (U) 7 17 20 10 6 17 15 7 11
East River (U) 10 9 11 6 4 17 15 6 11
Lake Fork (U) 10 44 65 20 13 27 40 8 11
Slater Fork (U) 9 36 20 31 20 38 33 43 30
Rock Creek (U) 20 16 20 6 5 21 27 6 8
Yellowstone River (U) 9 3 3 2 2 8 3
White River (U) 9 9 20 4 5 15 15 2 3
Fish Creek (U) 9 8 15 4 3 15 4 6 8
Muddy Creek U) 9 19 18 13 5 19 14 6 3
Gila River (L) 8 30 16 25 15 13
San Franciso River (L) 6 69 70 21 37
Gila at Safford (L) 6
Salt River Chrysotile (L) 11 6 2 2 9 10 2
Salt River Roosevelt (L) 11 7 7 6 2 10 16 2 8
Tonto Creek (L) 8 7 6 2 2 7 12 4 3
Smiths Fork (L) 10 14 12 4 10 32 8 11 7
Table 3. Magnitude (in MAF) of drought and surplus periods for Upper (U) and Lower (L) Basin
stations based on 1951-2021 for all stations and also the time period 1907-2021 for Lees Ferry. Blue
values are higher than the historical record and red values are lower (Note: 1 MAF = 1233 million
cubic m).
Drought Magnitude RCP 4.5 RCP 8.5
. L CNRM- HadGEM2- MI- CNRM- HadGEM2- MI-
Station Historical CanESM2 CM5 ES ROC5 CanESM2 CMS5 ES ROCS
Lees Ferry (U) 1907-2021 —52.3 —14.3 —20.0 —35.7 —48.8 —26.9 -30.7 —123.4 —56.3
Lees Ferry (U) 1951-2021 —20.9 —-9.2 —-14.8 —27.1 —34.1 —-12.3 —16.8 —95.8 —44.2
Piney River (U) —0.08 —0.06 —0.10 —0.09 —0.12 —0.10 —-0.12 —0.18 —0.26
East River (U) —-0.33 —0.89 —0.44 -0.77 —1.02 —0.60 —0.63 —2.56 —1.59
Lake Fork (U) —0.18 —0.05 —0.07 —0.21 —-0.16 —0.18 —0.04 —0.71 —0.37
Slater Fork (U) —-0.13 —0.05 —0.05 —0.02 —0.07 —0.03 —0.02 —0.05 —0.07
Rock Creek (U) —-0.87 —0.06 —0.11 —0.38 —0.56 —0.13 —0.14 —0.96 —0.23
Yellowstone River (U) —0.11 —0.95 —0.70 —2.85 —2.15 —0.78 —1.01
White River (U) —0.52 —1.04 —1.06 —2.61 —2.85 —1.41 —1.89 —10.20 —3.73
Fish Creek (U) —0.08 —0.08 —0.13 —0.25 —0.38 —0.15 -0.19 —0.49 —0.33
Muddy Creek U) —0.06 —0.02 —0.04 —0.11 —-0.22 —0.04 —0.03 —0.22 —0.14
Gila River (L) —0.69 —0.03 —0.08 —0.06 —0.14 —0.10
San Franciso River (L) —0.90 —0.05 —0.04 —0.06 —0.07
Gila at Safford (L) —-1.99
Salt River Chrysotile (L) —3.11 —1.44 —7.68 —9.54 —2.03 —1.64 -9.70
Salt River Roosevelt (L) —4.14 —1.83 —-1.21 —4.02 —10.77 —1.34 -1.32 —9.64 —5.13
Tonto Creek (L) —0.78 —0.94 —0.52 —0.89 —-2.79 —0.49 —0.42 —3.12 —1.55

Smiths Fork (L) -0.32 -0.13 —0.24 —0.47 —0.47 —0.14 -0.19 —0.49 -0.27
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Table 3. Cont.

Surplus Magnitude RCP 4.5 RCP 8.5
. s CNRM- HadGEM2- MI- CNRM- HadGEM2- MI-
Station Historical CanESM2 CM5 ES ROCS CanESM2 CMS5 ES ROCS
Lees Ferry (U) 1907-2021 60.9 54.6 98.2 21.8 27.9 142.9 89.1 19.2 20.6
Lees Ferry (U) 1951-2021 45.0 66.7 115.5 25.3 29.8 157.9 109.0 24.3 29.8
Piney River (U) 0.12 0.21 0.30 0.17 0.12 0.32 0.21 0.12 0.14
East River (U) 0.55 0.85 0.52 0.24 0.36 1.17 0.66 0.22 0.41
Lake Fork (U) 0.36 4.01 6.51 1.25 1.11 2.55 5.12 0.53 1.08
Slater Fork (U) 0.21 1.58 1.02 0.94 0.87 1.56 1.67 1.30 0.82
Rock Creek (U) 0.65 0.48 0.61 0.35 0.25 1.70 1.01 0.15 0.35
Yellowstone River (U) 0.18 0.04 0.04 0.11 0.09 0.35 0.11
White River (U) 1.04 0.85 2.72 0.46 0.88 2.12 1.68 0.58 0.50
Fish Creek (U) 0.18 0.11 0.13 0.09 0.07 0.55 0.13 0.05 0.03
Muddy Creek U) 0.12 0.40 0.48 0.18 0.10 0.79 0.31 0.06 0.08
Gila River (L) 0.48 2.01 1.79 2.88 0.40 0.98
San Franciso River (L) 0.71 8.33 12.03 1.96 5.13
Gila at Safford (L) 1.86
Salt River Chrysotile (L) 3.32 1.74 1.62 0.85 1.28 3.71 0.86
Salt River Roosevelt (L) 4.39 2.20 3.02 3.05 2.33 3.30 9.14 0.17 1.44
Tonto Creek (L) 1.21 0.30 0.39 0.72 0.13 0.57 1.51 0.01 0.10
Smiths Fork (L) 0.17 0.80 0.42 0.30 0.20 3.36 0.31 0.42 0.29
Table 4. Table of historical and future annual water year mean flow (MAF) for all eight scenarios and
historical period of 1951-2021 for all stations. For Lees Ferry, the historical mean is also show for the
time period 1907-2021. Ensemble means are also provided as the average of the four models for each
RCP 4.5 and 8.5. Blue values are higher than the historical record and red values are lower. (Note: 1
MAF = 1233 million cubic m).
RCP 4.5 RCP 8.5
Station Historical CanESM2 CCNI\I}II;/I- HadEGSEMZ- Rl\(/)HC-S Ensemble CanESM2 CCNI\I}II;/I- HadEC;EMZ- Rl\(/)HC-S Ensemble
Lees Ferry (U) 1906-2021 14.7 16.7 16.8 13.6 13.8 15.2 17.7 17.3 12.3 13.6 15.2
Lees Ferry (U) 19512021 13.8 16.7 16.8 13.6 13.8 15.2 17.7 17.3 123 13.6 15.2
Piney River (U) 0.055 0.061 0.060 0.056 0.056 0.058 0.060 0.061 0.053 0.054 0.057
East River (U) 0.228 0.239 0.230 0.195 0.207 0218 0.233 0.240 0.174 0.199 0212
Lake Fork (U) 0.162 0.252 0.259 0.197 0.207 0.229 0.241 0.268 0.155 0.194 0215
Slater Fork (U) 0.057 0.093 0.093 0.086 0.083 0.089 0.101 0.096 0.085 0.084 0.092
Rock Creek (U) 0.096 0.120 0.116 0.084 0.093 0.103 0.140 0.114 0.076 0.094 0.106
Yellowstone River (U) 0.098 0.074 0.073 0.050 0.059 0.064 0.087 0.072 0.044 0.060 0.066
White River (U) 0432 0437 0.457 0.348 0.363 0.401 0.439 0452 0.288 0.340 0.380
Fish Creek (U) 0.034 0.035 0.033 0.026 0.024 0.030 0.045 0.033 0.024 0.024 0.032
Muddy Creek U) 0.027 0.042 0.041 0.027 0.025 0.034 0.050 0.039 0.024 0.023 0.034
Gila River (L) 0.118 0.183 0.228 0.168 0.167 0.187 0.200 0.244 0.140 0.172 0.189
San Franciso River (L) 0.153 0.301 0.382 0.273 0.266 0.306 0319 0.407 0.227 0.274 0.307
Gila at Safford (L) 0338 0.754 0.925 0.688 0.665 0.758 0.808 0.982 0.582 0.686 0.765
Salt River Chrysotile (L) 0.447 0.388 0.488 0.335 0.307 0.379 0.406 0.538 0.280 0.329 0.388
Salt River Roosevelt (L) 0.579 0.596 0.746 0.520 0.456 0.580 0.633 0.834 0.433 0.494 0.599
Tonto Creek (L) 0.110 0.096 0.117 0.085 0.066 0.091 0.108 0.137 0.070 0.074 0.097
Smiths Fork (L) 0.135 0.170 0.146 0.126 0.131 0.143 0.206 0.142 0.132 0.139 0.155
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Figure 2. Spatial distribution of percentage change in mean projected water year streamflow for the
period 2022-2099 for 4.5 RCP scenario, four models and ensemble.
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Figure 3. Spatial distribution of percentage change in mean projected water year streamflow for the
period 2022-2099 for 8.5 RCP scenario, four models and ensemble.
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3.1.1. Drought (Surplus) Duration

For the evaluation of drought duration and magnitude, the changes appear to be larger
under the RCP 8.5 scenario as compared to the historical record and RCP 4.5 (Tables 2 and 3).
The longest duration droughts occur in the Lower basin (e.g., Salt Creek stations). His-
torically, the longest drought was 27 years at Salt Creek, and in the future (MI-ROC5
scenario), droughts may be up to 44-65 years long (Table 2). In the Upper basin, Lees Ferry
station has two models (HadGEM2-ES and MI-ROC5) where the drought duration is longer
(14-32 years compared to 11 years in the historical record. All other models show shorter
drought periods than the historical record.

The duration of surplus periods is longer for many of the stations in the Upper basin.
For instance, Lake Fork has seven of the eight scenarios with longer duration, and Slater
Fork has all the scenarios with longer surplus duration (increasing from 9 years in the
historical record to 2043 years depending on the model scenario). In comparison, Lees
Ferry six of the eight scenarios had longer duration surplus periods than the historical
record (increasing in duration from 10 years in the historical record to 11-23 years in
the future).

3.1.2. Drought (Surplus) Magnitude

The largest changes in drought magnitude (as indicated by negative values in Table 3)
appear in four Upper Basin stations (East River, Yellowstone River, White River, Fish Creek)
that show a higher magnitude in all scenarios corresponding to the longer drought periods
(Table 2). The change in magnitude is very large and, in some cases, shows droughts that
are 5-20 times larger than the historical record. It should be noted that these are much
smaller headwater basins as compared to Lees Ferry that represents the entire Upper basin.
For Lees Ferry, two of the models (HadGEM2-ES and MI-ROC5) had drought magnitudes
larger than the historical record (on the order of two to four times larger). For instance,
HadGEM2-ES2 and MI-ROC5 models under the RCP 8.5 scenarios had largest drought
magnitudes of —95.8 MAF and —44.2 MAF over multiple years, compared to the largest
drought in the historical record that was —20.9 MAF.

For the magnitudes of future surplus, the CanESM2 and CNRM-CM5 models’ con-
ditions were likely to be wetter. Similar to the results for surplus duration periods, Lake
Fork and Slater Fork had all the scenarios with higher surplus magnitudes (increasing from
2-20 times in magnitude depending on scenario). For Lees Ferry, two of the models had
higher surplus magnitudes (CanESM2 and CNRM-CMS5) on the order of two to three times
larger than the historical record.

3.1.3. Changes in Water Year Mean Flow

To understand the implications of changes in the mean water supply for a given year,
it is important to understand how the water year (October-September) flows change from
the historical record to the future. This is different from the results show in Table 3 which
are the average drought (surplus) that is expected over a longer period for the historical
record and the future projections. Table 4 presents the historical water year average flow
for each station and the change in water year average flow that would occur under each
of the future climate scenarios. Of all the scenarios (RCP 4.5 and 8.5 and four models),
60% of the results indicated a future mean water year flow that would be higher than the
historical mean. As noted earlier, the CanESM2 and CNRM-CM5 models are wetter than
the HadGEM2-ES and MI-ROCS that tend to have drier conditions as noted in the water
year flows. For the RCP 4.5 and 8.5 scenarios using CanESM2 and CNRM-CM5 models,
85% of analyses had higher (or wetter) water year means. Similarly, for the HadGEM2-ES
and MI-ROC5 models, 66% had lower (or drier) water year means.

When comparing the RCP 4.5 and 8.5 results in Table 4, there does not appear to
be much of a difference. For instance, both RCPs have similar changes in the ensemble
water year mean-six (6) stations are lower (drier) and 11 are higher (wetter). Of note, is the
approximate 10% (from 13.8 MAF to 15.2 MAF) increase in water year flow at Lees Ferry
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in Table 4 based on the historical record (1951-2021) and 3% increase (from 14.7 MAF to
15.2 MAF) based on the historical record (1907-2021). It is important to note that this is an
ensemble from two models that produce higher averages (on the order of 17 MAF) and two
models that produce lower average (on the order of 12-13 MAF). If realized, this would
have significant implications for water management in the region.

Figures 2 and 3 present the spatial changes in the basin and the magnitude of the
water year flows. There is a slight tendency for higher magnitude of changes in water
year flows under the RCP 8.5 scenarios than 4.5 scenarios. For instance, at Lees Ferry, the
ensemble for RCP 4.5 and 8.5 is 15.2 MAF. Figures 2 and 3 also show the tendency for
wetter conditions in CanESM2 and CNRM-CMS5 streamflow projections and generally drier
in the Had-GEM2 and MI-ROCS5 streamflow projections (for both RCP 4.5 and 8.5). This
is consistent with results seen in California climate change analysis [19,20]. However, the
spatial results for the Had-GEM2 and MI-ROCS5 were not as consistent as the CanESM?2
and CNRM-CMS5 scenarios. For the Had-GEM2 and MI-ROCS5 scenarios (both RCP 4.5 and
8.5) there was a mix of wet and dry signals in the streamflow projections in both the Upper
and Lower basin.

3.2. Further Analysis for Lees Ferry

Specific results of historical flows (using the entire record from 1907-2021) and climate
projections (RCP 4.5 and 8.5) are presented in Figures 4-6 for Lees Ferry. This is the most
critical station in the Colorado River basin and represents the dividing point between the
Upper and Lower basin located downstream of Lake Powell (Glen Canyon Dam).

100
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Figure 4. Boxplot of cumulative deficit and surplus (MAF) for all years and all RCP 4.5 and 8.5 sce-
narios and all models (CanESM2, CnRM-CM5, HadGEM2-ES, MI-ROC5) at Lees Ferry. (Note: 1
MAF = 1233 million cubic m).
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Figure 6. Scatter plot of duration vs. severity for historical and all RCP 4.5 and 8.5 scenarios at Lees
Ferry. (Note: 1 MAF = 1233 million cubic m).

The variation in surplus and deficit quantities is presented with boxplots in Figure 4.
Each boxplot represents the population of droughts and surplus for the specified scenario.
For the CanESM2 and CNRM-CMS5 models (RCP 4.5 and 8.5), the overall tendency is
more surplus (positive flows) periods. For instance, the 25th, 50th and 75th percentiles
change from historical values of —15, 0, 10 MAF, respectively, to values under CNRM-CM5
(RCP 8.5) of —5, 0, 43 MAF, respectively. For the HadGEM2-ES and MI-ROC5 (RCP4.5
and 8.5) scenarios, the overall tendency was more deficit (negative flows) periods. For
instance, the 25th, 50th and 75th percentiles change from historical values of —15, 0, 10 MAF,
respectively, to values under HadGEM2-ES (RCP 8.5) of —44, 0, 6 MAF, respectively. In
Figure 4, it appears there is a large range in values (i.e., larger box) in the RCP 8.5 scenarios
as compared to RCP 4.5. This is further evaluated in Figure 6.

Further representation of model specific variations at Lees Ferry is shown in Figure 5
for all models and RCP 4.5 and 8.5. As noted earlier, the CanESM?2 and CNRM-CMS5 are
wetter scenarios, and HadGEM2 and MI-ROCS5 are drier. Example scenarios include a range
of surplus periods for CanESM2 (RCP 8.5) with durations of 17 to 2 years and magnitudes
of 143 to 2 MAF compared to historical surpluses with durations of 18 to 3 years and
magnitudes of 61 to 3 MAF. Similar example scenarios include a range of deficit periods for
HadGEM2 (RCP 8.5) with durations of 32 to 3 years and magnitudes of —123 to —18 MAF
compared to historical surpluses with durations of 22 to 2 years and magnitudes of —52 to
—1 MAF. This indicates more extreme surplus and deficit periods in the future when an
ensemble of all models is used.

The severity (defined as magnitude divided by duration) of drought and surplus
for all scenarios in comparison to the historical data is presented in Figure 6. The green
circles represent the historical drought and surplus periods (16 total) ranging from —3.1
to 3.9 MAF/year with durations from 2 to 22 years. Under future conditions, maximum
drought and surplus severity increases to levels of —8.2 to 14.0 MAF/year. The number of
drought and surplus periods is also noteworthy. In the historical record, there are eight
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(8) drought and eight (8) surplus periods. Where in the future record for RCP 4.5 (8.5),
there are 26 (22) drought periods and 30 (26) surplus periods. Thus, the ensemble of model
scenarios shows a slightly wetter condition for Lees Ferry and more extreme drought
and surplus periods. Many of these are under 5 years in duration reflecting the rapidly
changing conditions in the future.

4. Discussion

In this study, historical and future streamflow projections for the Colorado River basin
were evaluated with a perspective of drought and surplus periods. The results of this
study conform with past studies of the region. For instance, Lynam and Piechota [20] and
Pierce et al. [19] found that the HadGEM2-ES model had drier conditions (lower streamflow)
in California and CNRM-CMS5 model to have wetter conditions (higher streamflow). The
results for the Colorado River basin in this research have similar signatures in the model
output for streamflow projections at Lees Ferry (i.e., surplus flows for CNRM-CM5 and
drier flows for HadGEM2-ES). This does highlight the potential of either connections
between California basins and Colorado River, and/or similarities in which models before
well in the western United States for climate change studies. This also highlights the range
of climate scenarios that can be provided from GCMs. In general, Pierce et al. [19] found
that all the GCMs had warming in the future, but some of the models were warming at
higher levels than others and the cooler /wetter models were less warm. This range in
model scenarios could be viewed as contradictory, or it could be viewed as a measure
of the uncertainty of potential future projections. This does have implications on water
management as the range of future conditions are planned for and assigned levels of risk.

Other research in the Colorado River basin has shown the potential for declines at
Lees Ferry under future climate ensemble mean projections below a critical threshold of
13.8 MAF [11]. The results in the study presented here show many scenarios are above
this threshold (i.e., wetter conditions) and highlight the importance of understanding the
appropriate models for the region. It is noteworthy that some of the previous studies [12]
have shown the change in seasonal runoff with higher streamflow (10-20%) occurring
during the December—March period and less during the critical April-July period. This
may be important in establishing the timing of future streamflow under warmer conditions.
In addjition, other studies use many models (32) from CMIP5 which adds to the variability
shown in results. It is believed that the study presented here is a more focused approached
that has specific results for certain model scenarios. This will lead to a better understanding
of climate change impacts in the western United States.

Various studies have confirmed the wet signal identified in the research presented here.
Hoerling et al. [9] noted an increase in the median precipitation from CMIP5 projections
for both RCP 4.5 and 8.5 precipitation over Colorado by the middle of the 21st century.
Ayers et al. [21] showed higher precipitation projections in CMIP5 (compared to CMIP3)
along with streamflow for the Upper Colorado River basin. Lukas et al. [22] also noted this
potential for higher streamflow along with an earlier snowmelt

5. Conclusions

The research presented here provides interesting findings related to how the Colorado
River may respond to future climates. While the results are not always consistent in terms
of how drought or surplus periods will change in the future, the intensity (as measured by
magnitude and duration) will likely increase for both RCP 4.5 and 8.5. There did not appear
to be large difference between the results for the RCP 4.5 and RCP 8.5 scenarios. There
were more pronounced differences between models where the CanESM2 and CNRM-CM5
models had a wet signal, and HadGEM2 and MI-ROC5 models had a dry signal. The
spatial results for the Had-GEM2 and MI-ROC5 were not as consistent (i.e., mix of dry and
wet) as the CanESM2 and CNRM-CMS scenarios which were mostly wet. Most interesting
results were for the Lees Ferry station where models indicate a chance of higher drought
and surplus length and magnitude on the order of two times the historical period. It was a
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surprise that the future mean ensemble water flow for the Lees Ferry was approximately
3-10% of the historical and highlights the sensitivity of record length used in the analysis.

The hydroclimatology and future water supply of the Colorado River basin is an
active area of research, discussion and management. While there remains a lot of uncer-
tainties with future projections, the future will likely have more extremes (wet and dry).
These uncertainties include the large-scale climate models that are downscaled for local
climate conditions and the different hydrologic modeling methods (e.g., physically based,
distributed, semi-distributed, statistical). Regardless, the results of this study, highlight
that the future may have extended dry or wet periods that were not always seen in the
historical (or paleo) record and may question the use of paleo records given that future
climates may look very different. Having the appropriate management and infrastructure
options available will be critical to adapt to these changes.
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Abstract: Arid and semi-arid regions typically lack high-resolution river gauging data causing
difficulties in understanding rainfall-runoff patterns. A common predictive method for discharge
estimation within ungauged catchments is regional flood frequency estimation (RFFE), deriving
peak discharge estimates from similar, gauged catchments and applying them to the catchment of
interest. The majority of RFFE equations are developed for larger catchments where flow events may
be larger and of greater interest. We test a series of RFFE methods derived for the Pilbara region,
applying them to new ungauged small catchments under 10 km?. Rainfall values are derived from a
guideline Australian design rainfall database, Australian Rainfall and Runoff 2019 (ARR2019) which
was recently updated with an additional 30 years of rainfall data. RFFE equations are compared
to a direct rainfall model to evaluate their performance within small catchments, identifying key
limitations and considerations when modelling small headwater catchments.

Keywords: regional flood frequency; ungauged catchments; direct rainfall modelling; headwater
catchments; Australia

1. Introduction

Flood frequency analysis is commonly undertaken to identify and estimate flood quan-
tiles corresponding to a given return period using the available streamflow observations in
a catchment [1]. Where streamflow records are absent, or catchments are widely ungauged,
prediction of streamflow involves applying regional flood frequency estimation (RFFE)
methods, which are data-driven empirical procedures that attempt to compensate for a lack
of temporal data at a given location with spatial data, obtained from other locations within
a homogenous region [2]. RFFE approaches are frequently used throughout Australia
for the prediction of flood events. Accurately predicting the magnitude of flood events
is essential for the planning of water resource systems [3] in addition to adhering to the
design standards of engineered structures designed to convey a certain flow [4,5]. A lack of
long-term rainfall and streamflow data within arid and semi-arid regions is a major issue
for run-off modelling [6] and this challenge is highlighted here within the Pilbara region in
Western Australia.

Western Australia accounts for 39% of the global supply of iron ore [7] but has a
notable lack of rainfall and streamflow data owing to (a) the high spatial and temporal
variability of streamflow, (b) the high cost of establishing dense hydrologic gauging sites
(c) the likelihood of gauging sites being destroyed by flash flooding events and (d) the
disproportionate interest of flow events in larger river channels resulting in a scarcity of
data smaller catchments. This data scarcity results in a fewer opportunities for validation of
hydrological models used and therefore there are limited opportunities to demonstrate that
a given-site specific model is capable of making accurate predictions for periods outside a
calibration period [8]. Nevertheless, increasing engineering modifications are carried out
in small catchments in the Pilbara, such as culvert installation for roads and railways or
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mining river diversions—such as those found in our study region. River diversions are
expensive engineering structures and their design and performance rely on adequately
estimating both frequent and rare flow events [9]. There is also increased recognition of
the importance to estimate and subsequently preserve natural hydrologic flow conditions
resulting in an interest in estimating frequent flow events (e.g., 1EY, 0.5EY and 0.2EY where
EY stands for the average number of exceedances per year) particularly in these semi-arid
areas where flow is sparse and poorly understood.

Current practices for the design and prediction of peak discharges for river relocation
designs are based on several estimation methods such as regionalisation methods, numeri-
cal and hydrologic modelling. The outcome of these methodological provides wide-ranging,
typically heuristic results. However, the improvement of two-dimensional hydrodynamic
models is changing how peak discharges are being estimated. Direct rainfall modelling
(or rain-on-grid) has increasingly become a standard approach for predicting design flood
behaviour [10,11]. The application of rainfall directly onto a 2D domain allows for the sim-
ulation of catchment runoff by applying it directly to the modelling grid [12,13]. Catchment
runoff within direct rainfall models is dependent on the grid or mesh cell area, the rainfall
depth, grid cell roughness, rainfall losses (IL/CL) and the slope between neighbouring
cells. This distributed rainfall approach directly onto the 2D domain can give considerably
more detail, particularly in the upper parts of sub-catchments [14] and has been found to
provide a better representation of minor overland flowpaths than conventional modelling
methods [12]. In the absence of stream gauges, this paper examines the suitability of direct
rainfall modelling to test the suitability of RFFE approaches on small ungauged catchments
within the Pilbara. The tested RFFE approaches were previously designed for the semi-arid
Pilbara region and have previously been validated using gauged flow data within medium
to large catchments [15-18]. Most direct-rainfall models are used as a means of indirect
calibration or comparison with traditional hydrological predictive methods and can be
used to elucidate discrepancies in other models [19]. Direct rainfall models are useful in the
modelling of design flood simulations providing appropriate checks and quality assurance
procedures are implemented [13]. There are many sources of uncertainty that can have
a strong influence on flood mapping and flow hydrographs, including synthetic rainfall
estimation with IDF curves [20], initial soil moisture conditions [21,22] the basin response
model, modelling grid sizes [23] and the difference between storm return time and the
correspondent flood return time [24] to name a few.

This paper tests the suitability of these RFFE approaches within smaller headwater
catchments in the Pilbara and evaluates them through a comparison of peak discharge
values derived from a 2D hydrodynamic direct rainfall model. This paper provides the
first comparative study of RFFE approaches for the Pilbara using updated ARR (2019) [25]
values to validate their use within smaller catchments in the same region. To achieve this,
we firstly (a) select existing RFFE techniques previously applied and validated in larger
catchments, (b) simulate direct rainfall events within a series of smaller catchments (c) use
the resulting discharge values to quasi-validate their application within small headwater
catchments to provide a range of likely predicted peak discharges for a range of annual
exceedance probabilities.

2. Study Area

The Pilbara region of Western Australia is a large arid to semi-arid region with a
wide expanse of ungauged catchments with limited streamflow records within its catch-
ments [26,27]. The region in a transitional location between the Eyrean (central desert) and
the southern Torresian (tropical) bioclimatic regions [28]. The Pilbara region is classified
as either Arid, desert hot (Bwh) and Arid steppe hot (Bsh) by the updated Koppen-Geiger
climate classification [29]. Temperatures exceed 30 °C for most of the year, and rarely
dip below 10 °C. Because of its positioning, tropical depressions and recurrent cyclonic
events comprise most the regions’ total rainfall [30,31]. The Pilbara has a low total rainfall
averaging between 250-300 mm annually [26,32,33] but the majority of flow events are
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concentrated in short duration floods of high magnitude [34]. The region is characterized
by extreme hydroclimatic conditions, in which the rainfall is highly sporadic [31], driven
by infrequent tropical cyclones (Figure 1) and thunderstorms occurring mainly within
the summer months between January to March [26,35]. Winter rainfall is typically from
low pressure trough systems [26]. For smaller streams, such as those within headwater
channels, flow events typically last around 5 days of the year.
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Figure 1. Observed Southern Hemisphere Tropical Cyclone genesis counts (all seasons) indicating
the 122 average annual number of tropical cyclones through Australian region in El Nifio, La Nifia,
and neutral 123 years (modified from Australian Government Bureau of Meteorology, 2019 [36]).

Rainfall is very localised, causing issues for the correlation of rainfall and runoff. In
addition, the Pilbara has very high evaporative losses, the annual potential evaporation
is also 10 times higher than the annual rainfall [37]. Runoff is also highly variable, and
only 2-13% of mean annual rainfall becomes runoff in the Pilbara [38]. Higher percentages
of rainfall almost certainly run off in small headwater catchments, with a lot of runoff
infiltrating into streambeds and therefore failing to reach downstream gauging stations [38].
Most gauging sites are located within larger catchments, however most of these initial
stream gauges were not operational until 1967 [33,39].

The Pilbara region is also rich in iron ore and open-cut mines resulting in a wide
array of engineering structures built to service mine sites, in addition to many watercourse
modifications such as culverts, drains and river diversion channels constructed both within
large and smaller channels. River diversion channels for mining in the Pilbara region are
designed conservatively to convey rare flow events driven by large cyclonic events or
infrequent 100 and 1000-year ARI floods (or the 1 to 0.1AEP (%)) [9]. Many river diversions
are constructed within smaller catchments that lack gauged rainfall or streamflow data
resulting in a poor understanding of the peak flood discharges and more frequent events
experienced within these catchments.

3. Materials and Methods
3.1. General Approach

This research tests a series of RFFE methods to calculate predicted peak discharge
(Qpeax) previously used within the Pilbara and applies them specifically to smaller sized
catchments using updated ARR2019 IFD rainfall values. The selected RFFE methods
were chosen based on their satisfactory performance when applied in larger catchments
in the Pilbara. The methods tested include a QRT and PRT method from Taylor et al.,
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2011 [15], QRT and PRT methods from Rahman et al., 2012 [2], a Regional Flood Frequency
Procedure (RFFP2000) from Flavell., 2012 [17], a IFM method from Davies and Yip, 2014 [18]
and the ARR 2016 RFFE (Table 1). Further details on the RFFE approaches and their
prior performance is provided in Table S1 of the Supplementary Material. Next, the
RFFE methods are quasi-validated against a TUFLOW direct rainfall model, acting as the
observation of rainfall within the catchments lacking gauging infrastructure. The results
yield a range of peak discharge estimates for each AEP. The direct rainfall model (and
associated sensitivity analysis) is used to provide validation for the most appropriate RFFE
for small catchments. Figure 2 shows the full sequence of steps. Similar approaches have
been undertaken to assess the performance of ARR 2016 RFFE using RORB modelling [40]
or to incorporate it into a direct rainfall model of complex urban catchments [41]. However,
few studies have used direct rainfall modelling approaches to benchmark RFFE methods
within small semi-arid headwater channels.

Table 1. Regional Flood Frequency Estimation methods applied to headwater catchments.

Method Equation

ARR (Australian Rainfall and Runoff Regional Flood Frequency
Estimation Model) RFFE Model

QX = QIO x GFx

with Qqq as: logjg = bg + by logjg (area) + by logio(Ig50) Where
by, b1 and b, are regression coefficients, estimated using OLS
regression, area is the catchment area in km? and Is 50 is the
design rainfall intensity at catchment centroid for a 6 h duration
and 50% AEP. The values of by, b; and b, and the regional
Growth Factors (GFx) are embedded into the RFFE Model 2015.
For a small catchment area: Qs = 7.32 x 108 A0-651 Iihe 2 yrs5'251

Index Flood Method (IFM) (Davies and Yip, 2014) [18] Frequency Factors: 2ARI = 0.31, 5ARI = 1.0

10 ARI =1.70, 20ARI = 2.58, 50ARI = 4.15, 100ARI = 5.82
M = —11.411 + 0.527 x In(area) + 7.765 x In(Ijppy2)

Parameter Regression Technique (PRT) (Taylor et al., 2011) [15] S = Cy:g = C; where C; and C; are regional average M = 2.54 +

Fixed Region Parameter Regression Technique (PRT) (Rahman

et al., 2012a) [2]

Quartile Regression Technique QRT (Taylor et al., 2011) [15]

Quartile Regression Technique QRT (Rahman et al., 2012) [2]

RFFP (Flavell, 2012) [17]

0.52[In(area) — 4.71] + 8.08[In(I122) — 1.47]

M = 2.54 + 0.52[In(area) — 4.71] + 8.08[In(I1ony ) — 1.47]

stdev = 1.45 + 0.10(zarea) + 0.07(zforest) (4.8.17) skew = —0.49 —
0.08(zarea) — 0.64(zsden) (4.8.18)

In(Q2) = —11.366 + 0.521 x In(area) + 7.858 x In(Ijppy2) In(Q5) =
—15.913 + 0.486 x In(area) + 5.336 x In(Ijp2)

In(Qqp) = —14.285 + 0.465 X In(area) + 5.055 X In(Ijp5) In(Q2p)
= —12.949 + 0.445 x In(area) + 4.824 x In(Iyp;) In(Qsp) =
—4.914 + 0.431 x In(area) + 5.705 x In(Ijpp;2) In(Qqgo) = —4.072
+0.413 x In(area) + 5.412 x In(Iypp,7)

In(Qy) = 2.66 + 0.51(In(area) — 4.71) + 8.08 [In(I} ) — 1.47]
In(Q5) = 3.90 + 0.48[In(area) — 4.71] + 7.20 [In(112,2) — 1.47]
In(Qqp) = 4.51 + 0.45[In(area) — 4.71] + 6.74 [In(I120) — 1.47]
In(Qy) = 5.01 + 0.44[In(area) — 4.71] + 6.19 [In(I122) — 1.47]
In(Qsp) = 5.59 + 0.41[In(area) — 4.71] + 5.66 [In(I122) — 1.47]
In(Q1gp) = 5.87 + 0.39[In(area) — 4.71] + 5.34 [In(I12,1) — 1.47]
Q, = 1.72 x 10-%4(AS25)08 LAT 1217 LONG®77 (L2/A)~1.95
Q5 =747 x 10746(ASe0.5)0.81 LAT714.62 LONG31.4O (LZ/A)70'68
QlO =236 X 10734(ASeO.5)0.81 LAT715.24 LONG26.28 (Lz/A)70.39
With the largest value from two Qpp equations being adopted
for the Qg value:

Qo = 1.98 x 10 — 23(AS.02)079 LAT~ 1508 ONG20-91

Q20 = Qi = (13.21A%61) /(8.74A060)

Qs0 = Qg9 X frequency factor (Qs/Qz)

Q100 = Q20 X frequency factor (Q100/Q20)

A = catchment area (km?), S, = equivalent uniform slope
(m/km) and L = mainstream length (km)
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Figure 2. Workflow of steps to determine Regional Flood Frequency Estimation (RFFE) selection and
for small headwater channels.

3.2. Regionalisation Approaches

Regionalisation refers to the process of transferring hydrological information from one
catchment to another. RFFE approaches assume a statistical relationship between observ-
able catchment properties and flood discharge characteristics, allowing the construction
of flood hydrographs by applying relationships developed for gauged catchments with
similar properties [42]. Regionalization approaches are commonly based either on spatial
proximity or similar catchment attributes [43]. Within regionalization methods, model
parameters are used as an instrument to transfer hydrological information from gauged
to ungauged basins [44]. In general, a regional model can be stated in a simplified form
defined by Wagener and Wheater (2006) as:

01 = Hr(6r|$) + vr 1)

where ] is the estimated hydrological variable of interest at the ungauged site (it can be
an estimated model parameter, probability or cumulative distribution function parameter,
or hydrological response such as streamflow or flow events), Hr is a functional relation
for 0 using a set of catchment attributes—physiographic or meteorological attributes
¢, Or is a set of regional hydrological variables of interests and vy is an error term [45].
Regionalisation approaches may be satisfactory if the catchments are similar in some sense,
but error prone if they are not [46]. Razavi and Coulibaly (2013) provide a review of
methodology for streamflow prediction in ungauged basin using regionalization methods,
concluding that most model-dependent methods in arid to warm-temperate climates (e.g.,
Australia) indicate that physical similarity and spatial proximity appear to be the best
approach to estimating streamflow. However, the most regionalisation methods are highly
site-specific, and therefore, a comparative study between suitable approaches is suggested
before selecting the regionalisation method for a given site or region.
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3.3. Regional Flood Frequency Estimation (RFFE)

Regional flood frequency estimation (RFFE) is widely used to estimate flood quartiles
in ungauged catchments. RFFE approaches provide an alternative method to flood fre-
quency analysis (FFA) where a lack of temporal data is substituted with spatial data to make
more accurate flood estimates at ungauged sites [15]. Common RFFE techniques include
Probabilistic Rational Method (PRM), Quantile Regression Techniques (QRT) the Index
Flood Method (IFM) and a Parameter Regression Technique (PRT). Regression based RFFE
methods are more commonly applied to recent studies within Australia. The following
section details selected regression based RFFE methods, which are developed from a longer
record of data and are considered to give a more reliable estimation of design flows.

3.3.1. Quartile Regression Technique

The quartile regression technique (QRT) is used frequently within ungauged catch-
ments. The method estimates flood quartiles through a multiple regression between
recorded streamflow data and a set of climatic and catchment characteristics within a
region [47]. The QRT regression technique is expressed as:

Qr = aB*CCD )

where B, C and D are catchment and climatic characteristics variables (predictors); 4, b,
¢, d are the regression coefficients and Qr is the flood magnitude with T-year ARI (flood
quantile) [48].

3.3.2. Parameter Regression Technique

The parameter regression technique (PRT) is similar to the QRT. However, instead of
quartiles, the first three moments of the log-Pearson type 3 (LP3) distribution are taken as
dependent variables in regression analysis against catchment characteristics [15]. Let Q
be the annual maximum flood series at a site and X = In(Q), then the mean (M), standard
deviation (S) and skew (g) of the X series are taken as dependent variables:

InQr =M+ KpS 3)

where Q7 is a flood quantile of T years ARI and K is the standardized LP3 frequency factor
(which is a function of skew) and can be obtained from ARR or can be approximated [15].

3.3.3. Index Flood Method

The index flood method (IFM) assumes that the exceedance probability distribution of
annual peak discharge is identical, except for a site-specific scaling factor called the index
flood (average likely flood) [49]. The IFM method is expressed as:

Qr = g1 4)

where Qr is the flood quantile, y; is the function basin area, slope and g7 is a regional
growth factor (a dimensionless frequency distribution quantity common to all sites within
each homogeneous region).

3.4. Australian Rainfall and Runoff (ARR) RFFE

The Australian Rainfall and Runoff (ARR) guidelines offer predicted estimates of
rainfall intensity, frequency, and duration (IFD) values for Australia. Additionally, ARR also
has a regional flood frequency estimation model which is widely used and recommended
for design flood estimation [11,50]. The ARR guidelines were updated in 2016 and again in
2019. Five predictor values were adopted for the RFFE technique [51,52]. These predictor
values are: catchment area (in km?); design rainfall intensity at catchment centroid (in
mm/h) for the 6 h duration and 50% AEP (°°% I}); design rainfall intensity at catchment
centroid (in mm/h) for the 6 h duration and 2% AEP (*” Ig,); ratio of design rainfall
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intensities of AEPs of 2% and 50% for duration of 6 h (3% Iy, /9% I¢},); and catchment shape
factor (S¢), which is defined as the shortest distance between catchment outlet and centroid
divided by the square root of catchment area. The RFFE technique used in ARR is adapted
for different regions throughout Australia (Figure 3).
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Figure 3. Adopted regions for RFFE technique in Australia. Modified from Rahman et al., (2019) [52].
The Fortescue Catchment, Pilbara is outlined.

Each region is determined based on a Region of Interest (ROI) approach based on
geographical proximity of gauging stations, with fringe zones between regions defined
by the 500 mm and 400 mm isohyet to delineate between humid and arid/semi-arid
regions [53]. The Pilbara region was characterized as an alternative sub-region distinct from
the other arid and semi-arid regions of Australia [51]. This was due to (a) concentrations
of stream gauging stations in three parts of Western Australia which are separated by
long distances (e.g., Kimberley region, Pilbara region and South-West WA) and (b) notable
differences in region hydrologic conditions [2]. The approach used for the Pilbara region
was modified to an IFM as suggested by Farquharson et al., (1992) [54]. This recommended
approach is an IFM with Qg as an index variable and a dimensionless growth factor (GF)
for X% AEP (GFy):

Qx = QlO x GFx (5)
A prediction equation was developed for Q1 as a function of catchment characteristics,
and regional growth factors were developed based on the estimated at-site flood quartile. A

Bayesian parameter estimation procedure with LP3 distribution was used to estimate flood
quantiles for each gauged site for AEPs of 50%, 20%, 10%, 5%, 2% and 1%. Rahman et al.,
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(2019) provide further information surrounding this process [52]. The adopted predictive
equation for the index variable Q1 has the form:

10g10(Q10) = bo + b1logio(area) + balogio (I, 50) (6)

where by, b1 and b, are regression coefficients, estimated using OLS regression, area is the
catchment area (in km?) and I 50 is the design rainfall intensity at catchment centroid for
a 6 h duration and 50% AEP. The values of by, b; and b, and the regional growth factors
(GFx) are embedded into the RFFE Model 2015.

3.5. Direct Rainfall Modelling

Direct Rainfall Modelling (also known as rain-on-grid) was undertaken in TUFLOW
HPC, a 2D fixed-grid, adaptive time-step, hydrodynamic solver that uses an explicit finite
volume solution [55]. TUFLOW HPC reduces the run time of models. The direct-rainfall
approach applied the rainfall hyetograph (mm versus time) uniformly to active cells within
the defined grid of the catchment of interest. Each hyetograph value represents the rainfall
that fell per increment. The double precision version of TUFLOW Classic was used in
initial model set-up to minimize initial model errors (such as deficient or erroneous data)
before running greater numbers of simulations in the GPU for faster run-times after model
establishment. TUFLOW Classic uses a fixed time step and will highlight any initial errors
with the model runs. Instabilities in the model highlight bad data or poor model set up [56].
TUFLOW HPC can hide poor model set up through its adaptive time-stepping to ensure the
model remains stable. Model simulation parameters (grid size, time-step) were established
to optimise the accuracy, run-time, and stability of the model. To effectively resolve flow
events within the channel it is recommended to provide at least 5 grid/mesh elements
laterally across the river channel [57].

The time-step for the model runs was maintained at 1/5 of the selected model grid
size in meters (a time-step appropriate for TUFLOW classic) [55] with a cell wet/dry
depth of 0.0002 m to account for the high proportion of shallow flow with a direct rainfall
model. Due to the small catchment size, rainfall values are small and the reported IL/CL
values for larger Pilbara river channels are scaled to these larger catchment hydrological
inputs. Simply, the observed losses in larger catchments are larger than the grid-averaged
rainfall inputs in small headwater channels. Therefore, IL/CL values were not applied
during the final modelled scenarios. Hall (2015) provides a description of the advantages
and disadvantages of direct rainfall modelling through model construction, calibration
validation and sensitivity analysis [13].

3.5.1. Inputs
Catchment DEMs

Headwater channels (first-to-third order) are the areas from which water originates
within a channel network and are closely coupled to hillslope processes [58]. This study
used a high-resolution dataset around the periphery of the Yandi iron ore mine in the
Pilbara, WA (Figure 4). Catchments were selected based on the high-resolution dataset
covering the full extent of the catchment. Surface catchment DEMs were derived from
a wide area semi-global matching (SGM) survey [59] (horizontal accuracy = 0.5 m and
vertical accuracy = 0.25 m) undertaken in the Upper Fortescue catchment. Additionally, the
catchments were screened for minimal catchment disturbance, such as mining, agriculture
of the hydraulic alteration of the waterway from bridges and culverts. Catchments with
engineering infrastructure, such as railways, culverts and main roads were modelled
until the upstream contact with these features. Ten catchments (ranging from 0.96 km?
to 9.23 km?) matched these requirements and were selected to test the RFFE approaches
(Table 2).
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Figure 4. Map of headwater catchments used to test RFFE methods. Numbered catchments border
the Yandi Mine in Eastern Pilbara, WA.

Table 2. Catchment description for RFFE and direct rainfall analysis.

Catchment Area (km?) Latitude Longitude Se (m/km) L (km)
1 1.05 —22.711924 118.955892 18.54 1.13
2 0.96 —22.694436 119.001585 40.57 0.71
3 1.68 —22.695323 119.045882 16.65 1.10
4 1.48 —22.690506 119.087058 22.97 1.64
5 1.71 —22.697491 119.084533 37.61 1.55
6 1.95 —22.732084 118.965195 12.49 1.37
7 5.99 —22.765762 119.159322 2248 2.06
8 3.23 —22.804315 119.161401 22.72 1.30
9 1.1 —22.795682 119.109156 26.71 1.17
10 2.42 —22.735894 118.980309 16.85 1.21
Rainfall

The Bureau of Meteorology, Australia (BOM) 2016 Design Rainfall Data System [60]
was used to provide rainfall intensities for RFFE analysis and as a modelling input for direct
rainfall modelling. The BOM 2016 IFD values provide a rainfall intensity (mm/h) or depth
(mm) based on the latitude, longitude, and catchment size within a set location (Figure 5).
BOM2016 IFD values replaced the older 1987 IFD and interim 2013 IFD values providing
30 additional years of hydrological data and adjustments to the approach. Additionally, the
direct rainfall was applied to the 2D model over the entire catchment as time-series data as
mm versus hours. The time-series data has a histogram stair-step shape) therefore rainfall
was applied as a stepped approach holding the rainfall constant during the allocated time
interval (BMT, 2018) meaning each rainfall value is the amount of rain that fell in mm
between the previous time and current time. Rainfall was applied to every active cell
within the digitised catchment. Ten varied areal hyetograph patterns were used for each
catchment (Figure 6). Podger et al., (2018) provide a detailed description of the creation of
these hyetograph patterns [61].
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Figure 5. Single location IFD design rainfall plot (Catchment 1). Legend shows Annual Exceedance
Probability (AEP) expressed as a percentage. Output from BOM Design Rainfall Data System [60].

3.5.2. Roughness

Manning’s n values were assigned to account for runoff conditions. The roughness
values assigned within a direct rainfall model can affect the timing of runoff. Additionally,
constant roughness values may underestimate the effective roughness and ignores the role
of spatially varied roughness within the catchment. Catchment floodplains were assigned
a Manning’s value of n = 0.02 and the channel was assigned a default Manning’s value of
0.035. Adjustments of the roughness values were made in the sensitivity analysis of the
TUFLOW models.

3.5.3. Output
Discharge

For each catchment a cross section was delineated near the catchment outlet, (Figure 7).
At this cross section, a plot output was created in the form of a time-series hydrograph.
This time-series provides the flood flow through the catchment during each model scenario
and is used to identify peak discharge (Qpeax) values for each rainfall event. Backwater
development has been reported during flood modelling of channel confluences within
the larger Marillana Catchment [62]. Therefore, cross sections were delineated slightly
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upstream from the catchment outlet to reduce backwater flow events impacting peak
discharge values during flood modelling.
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Figure 6. Design rainfall patterns for 5% AEP 12 h storm.

Figure 7. Catchment with a digitized white line showing a cross section (Plot output) for the
TUFLOW model.
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In addition to using the plot output for each simulation, maps of water depth (d) and
velocity (V) were constructed at each of the model time-steps. The output from this was
used to make an independent estimate of discharge using a velocity-area method:

Q=AV @)
where Q is the discharge expressed in cubic meters per second (m? s~1 or cumecs), A is the
stream cross sectional area (m?) and V is the mean velocity of stream flow (m s~ 1). Mea-
surements of stream water depth (stage) are typically measured at sites within the Pilbara,
however continuous flow measurement of river discharge is expensive and logistically
unwise given the annual frequency of flow events within the region.

3.6. Sensitivity Analysis

Sensitivity analysis or calibration methods are critical steps in rainfall-runoff and
developing useful models of complicated hydrologic systems [63,64]. Models can be
calibrated to observed data to demonstrate that the model can produce an observed flow
time series with an acceptable level of accuracy [64]. Alternatively, a model may be available
that has been previously calibrated for a catchment as part of another study. Sensitive
model parameters should be recognised and appropriately evaluated to ensure they are
constrained within acceptable ranges. Prediction in ungauged basins is challenging to
validate owing to the data limitations within the area. When models are not able to be
calibrated to measurements sensitivity testing should at least be carried out to assess the
sensitivity of the model to variations in the main model parameters [11]. Model evaluation
may not be limited to how accurately model predictions match historical observations,
but how well the model represents the hydrological system. In this paper, we use a
direct rainfall model to quasi-validate and select the most appropriate RFFE procedure for
headwater, small size catchments. All RFFE procedures used in this investigation have
been previously calibrated on larger catchments in the Pilbara.

There is no standard method for estimating uncertainty in streamflow in ungauged
basins using regionalisation techniques [44]. Uncertainty is estimated here in the sensitivity
analysis of the direct rainfall modelling approach by adjusting model parameters on three
catchments. (Figure 8). Sensitivity analysis was carried out to determine the optimum
model running conditions and explore the suitability of direct rainfall modelling within
these small headwater catchments. Catchments were selected on the basis of channel
gradient to encompass a range of catchment types within the analysis. Catchment 5 was
the steepest, with greater expected areas of supercritical flow and areas of complex terrain
which would challenge model performance [56]. Other catchments included catchment 1; a
small, shallow, unconfined channel with multiple flow paths and 10; a larger catchment
with a predominantly unconfined single-thread channel representative of many of the
headwater channels in the vicinity.

Existing direct rainfall models have been found to be most sensitive to Manning’s
roughness and rainfall [13] and therefore sensitivity analysis was carried out to address
the parameters that have larger uncertainties within the model. Sensitivity analysis was
carried out to address: rainfall hyetograph shape, Manning’s roughness (adjusted to +/—
20% or the upper and lower bounds for characteristic minor natural streams [65] and grid
sizing, assessed with a 1 m, 2 m, 5 m and 10 m spacing.

3.7. Procedure for Evaluating RFFE Approaches

To evaluate the RFFE approaches, we use the result of the direct rainfall model to act
as a measured series in this “quasi-validation”. This quasi-validation uses joint plots of
the RFFE output and simulated rain-on-grid discharge to compare the output of predictive
methods. The ARR RFFE approach provides confidence limits of 5% Lower confidence
limit (LCL) and a 95% Upper confidence limit (UCL) which are used as the absolute cut off
for RFFE values. The evaluation procedure was as follows: (1) Was the RFFE output within
the 5-95% confidence limit range for the ARR approach? (2) Did the approach demonstrate
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appropriate hydrological scaling across space and flood return period? (i.e., did the results
increase with an increase in rainfall magnitude or catchment area) and lastly, (3) Did RFFE
results display good agreement with findings from the rain-on-grid model? If not, did any
approaches align with other tested RFFE methods.
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Figure 8. Catchments used in sensitivity analysis. (a) Catchment 1—A small shallow unconfined
catchment with multiple flow paths, (b) Catchment 5—A steep, confined catchment and (c) Catchment
10—An unconfined single thread channel within a larger catchment. Graphs show the contour data
of the longitudinal profile of the river channel. The red dashed line shows the equal area slope.

4. Results
4.1. Estimates of Peak Discharge for REFE Methods

Rainfall values for RFFE approaches were obtained from BOM Design Rainfall Data
System (2016) using 2016 Intensity, Frequency and Duration (IFD) values. The rainfall
output showed a relatively homogenous depth for catchments ranging between 0.96 km?
and 2 km?2. Larger catchments (sized 5.99 and 3.23 km?) were predicted to have higher
rainfall depths for the 12 h storm across the range of AEP (Table 3). A wide range of Qpy,
values were obtained using the RFFE equations (Figure 9). The Flavell RFFP2000 procedure
produced higher Qp, values for Q; events. Between Qs and Qio, the ARR values were
highest, with greatest agreement with the IFM and Flavell RFFP2000. The PRT and QRT
approach from Taylor et al., (2011) show nearly identical values with no increase in peak
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discharge values for an increase in catchment size. The fixed region PRT (Rahman et al.,
2012) provided the lowest estimates of predicted peak discharge. Both QRT and PRT
approaches produced low discharge values across Q19-Q1oo flow events.

Table 3. ARR rainfall depths (mm) for a 12 h storm per AEP (%).

Catchment Area (km?) 50AEP 20AEP 10AEP 5AEP 2AEP 1AEP
1 1.05 2.35 6.75 11.0 16.0 23.3 29.0
2 0.96 2.37 6.78 11.0 16.1 23.4 29.1
3 1.68 3.34 9.59 15.6 22.7 33.1 41.2
4 1.48 3.32 9.52 15.5 26.6 32.8 40.9
5 1.71 3.59 10.3 16.8 24.4 35.5 44.3
6 1.95 3.22 9.24 15.1 21.9 31.9 39.7
7 5.99 7.21 20.7 33.7 49.0 71.3 88.9
8 3.23 4.70 13.5 22.0 32.0 46.5 58.0
9 1.1 2.59 7.44 12.1 17.6 25.6 32.0
10 242 3.72 10.7 17.4 25.3 36.8 45.9

A IFM (Davies and Yip, 2014) O Direct Rainfall ARR RFFE (2019) <3 RFFP2000 (Flavell, 2012)
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Figure 9. Comparison of small flood predicted peak discharges using RFFE approaches [2,15,17,18]
for Q,, Qs, Q10, Q20, Qsg and Qg return intervals.

4.2. Direct Rainfall Catchment Modelling

Table 4 shows the output values from direct rainfall modelling from the 10 catchments.
Figure 10 show the results of direct rainfall modelling. These values have also been plotted
next to the RFFE approaches with similar output (ARR RFFE (2019), IFM (Davies and Yip,
2014) and the Flavell RFFP (Flavell, (2012)) selected from deductive reasoning, omitting
PRT and QRT approaches that yielded uncharacteristically small flood magnitudes across
all annual exceedance probability.
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Table 4. Modelled peak discharges using the direct rainfall modelling approach for a 12 h rainfall

event across average return intervals. Peak discharge values are in m3 s 1.

Catchment 2ARI 5ARI 10ARI 20ARI 50ARI 100ARI
1 0.51 7.75 16.56 17.58 58.10 77.79
3 224 10.63 12.45 19.39 30.37 83.30
4 0.80 2.68 3.50 18.41 21.22 62.69
5 2.88 10.11 27.40 32.56 70.25 120.11
6 1.38 5.75 7.32 7.50 6.32 58.53
7 4.16 9.60 52.0 72.66 76.73 87.60
8 0.20 1.95 52.29 61.26 68.82 85.86
9 2.20 2.37 9.78 10.97 62.24 128.20
10 0.64 3.72 10.7 174 253 36.80
A IFM (Davies and Yip, 2014) O Direct Rainfall ARR RFFE (2019) <& RFFP2000 (Flavell, 2012)
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Figure 10. IFM [18], ARR RFFE and RFFP2000 [17] approaches compared with results from direct
rainfall modelling from TUFLOW for the modelled headwater catchments.

4.3. TUFLOW Sensitivity Analysis

The results of the sensitivity analysis are found in Figure 11. The grid size of the
model caused large variability in peak discharge values. Changes in peak velocity values
were sensitive to this change in grid size, resulting in higher velocities (as one would
expect) for a higher resolution DEM (e.g., 2 m) compared to the 10 m grid size. This
increase in velocity is attributed to the more detailed topographic representation of channel
constrictions and channel bed heterogeneity in the higher resolution grid size (Figure 12).
C5 was the steepest and most topographically varied catchment, with steep confining areas.
Within this catchment there was greater variability in the peak discharge from adjustments
to Manning’s n value, hyetograph shape, (and most prominently) grid size; where Qp,,
values were doubled between a grid size increment increase of 5 m to 10 m. Final model
scenarios used a grid size of 2 m, rainfall pattern 6, which resulted in the highest peak
discharge in sensitivity analysis and a channel-wide Manning’s roughness value of 0.035.
The range of output values for the sensitivity analysis are found in Table 5.
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Figure 11. Sensitivity analysis box plot to show results for Catchments 1, 5 and 10 for a Q¢ flood
where Manning's n, hyetograph shape and grid size were adjusted.

Table 5. Results of sensitivity analysis catchments 1, 5 and 10 for the 20ARI.

Catchment Grid Size Hyetograph Manning's n Qpeak (m3s—1)
1 5 7 0.028 18.76
1 5 7 0.035 13.71
1 5 7 0.042 11.02
1 5 1 0.035 17.22
1 5 2 0.035 7.38
1 5 3 0.035 14.24
1 5 4 0.035 8.67
1 5 5 0.035 10.70
1 5 6 0.035 6.68
1 5 7 0.035 13.71
1 5 8 0.035 9.98
1 5 9 0.035 13.58
1 5 10 0.035 13.66
1 2 7 0.035 10.54
1 5 7 0.035 13.71
1 10 7 0.035 21.61
5 5 7 0.028 26.62
5 5 7 0.035 13.30
5 5 7 0.042 9.86
5 5 1 0.035 7.87
5 5 2 0.035 10.75
5 5 3 0.035 17.36
5 5 4 0.035 18.90
5 5 5 0.035 13.01
5 5 6 0.035 11.60
5 5 7 0.035 13.30
5 5 8 0.035 7.92
5 5 9 0.035 9.25
5 5 10 0.035 6.29
5 1 7 0.035 8.93
5 2 7 0.035 10.10
5 5 7 0.035 13.30
5 10 7 0.035 46.21
10 5 7 0.028 9.48
10 5 7 0.035 15.45
10 5 7 0.042 7.80
10 5 1 0.035 14.28
10 5 2 0.035 14.66
10 5 3 0.035 16.96
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Table 5. Cont.

Catchment Grid Size Hyetograph Manning’s n Qpeak (m3s-1)
10 5 4 0.035 16.00
10 5 5 0.035 17.55
10 5 6 0.035 20.34
10 5 7 0.035 15.45
10 5 8 0.035 20.22
10 5 9 0.035 15.27
10 5 10 0.035 21.91
10 2 7 0.035 20.82
10 5 7 0.035 15.45
10 10 7 0.035 33.98

Velocity (m-s™)
wm High: 1.36

. Low: 0

Velocity (m-s')

% High: 2.20

N oo
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Figure 12. Effect of grid size variation in the direct rainfall model. Figure (a) shows 10 m grid, (b)
5m grid and (c) 2 m grid sizing.
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5. Discussion
5.1. Direct Rainfall Model Performance
5.1.1. Sensitivity Analysis

Sensitivity analysis of the direct rainfall model has indicated that the steeper, confined
C5 is more sensitive to alterations in grid size, Manning’s n and hyetograph shape. Further
research and integration of IL/CL values would improve the model’s representation
of headwater channel processes. A grid size of 2 m was selected to avoid excessive
computation time but to integrate detailed topographic forms such as smaller flowpaths
and to capture the heterogeneity of the natural environment. Higher within a catchment,
flowpaths become smaller and may be poorly represented by the model if they exist on
a sub-grid scale, affecting the timing of runoff routing within the catchment [57] (ARR,
2012). This is likely a key contributor to the increased Qp;, values for coarser resolution
model grid sizes (5-10 m). Mesh (grid-size) resolution has been shown to have a high
impact on a models output flow volume in other studies conducting direct rainfall in small
catchments [23]. Additionally, the slope between neighbouring cells has a key influence on
the behaviour of catchment runoff, and therefore peak discharge values. Care should be
taken to adequately understand the potential variability in peak discharge estimation using
direct rainfall models. Additionally, explicit consideration of local variation in rainfall
patterns in peak flood discharge modelling efforts is advised.

5.1.2. Applicability of Direct Rainfall Modelling in Headwater Catchments

Direct rainfall models are subject to higher levels of mass error when using the di-
rect rainfall approach particularly where the model has areas of steep, complex flow or
the model is located at a high elevation above sea level and experience relatively small
inflows [56]. The catchments modelled here have many of these challenges. They are
small catchments with small inflows, and experience sudden changes in slope conditions.
Drainage pathways are not clearly defined and for some catchments, the hydrological
boundaries between channel and floodplain are difficult to model. Flow is routed along the
floodplain or within a claypan environment culminating in diffusive and complex drainage
patterns. For these catchments, there were unexpected peak discharge values which may
not fully represent what would occur in these catchments outside of where flow is rapidly
dispersed away from channel setting (e.g., catchment 10).

The catchment outlet of several small headwater channels was prone to backwater
effects. Such backwater effects have been reported for other channels in the Pilbara region
from constrictions within the channel [34]. Backwaters can decrease velocities, raise the
water surface elevation (WSE) and extend upstream [34]. Peak discharge values obtained
from the catchment outlet were based on a cross section beyond the extent of backwater
effects from outlet constrictions or tributary junctions. Care was taken to inspect the
mapped output to interpret the water surface elevation at catchment cross sections.

Despite these warnings, the use of direct rainfall modelling is useful within small catch-
ments with well-defined drainage pathways to quasi-calibrate selected RFFE approaches in
the complete absence of rainfall and streamflow data. In doing so, an approximation of
likely flood flows within these ungauged settings can be made. However, direct rainfall
modelling with these catchment characteristics should not replace a hydrologic modellers
perspicacity in dealing with flow estimation within dryland headwater environments. Even
when calibration is properly done, models tend to have greater predictive strengths over
shorter timeframes than longer timeframes as the system over short time scales is more sim-
ilar to the one which it was calibrated for. Therefore, greater trust can be placed on the more
frequent flow predictions than longterm flow dynamics within these headwater catchments.

5.2. RFFE Evaluation

The evaluation procedure was as follows: (1) Was the RFFE output within the 5-95%
confidence limit range for the ARR approach. (2) Did the approach demonstrate appropriate
hydrological scaling across space and flood return period (i.e., did the results increase with
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an increase in rainfall magnitude or catchment area) and lastly, (3) Did RFFE results display
good agreement with findings from the rain-on-grid model and if not, did any approaches
align with other tested RFFE methods. Many of the RFFE approaches for the Pilbara region
are created using far larger catchment sizes. For example, the Flavell REFP2000 approach is
derived from an average catchment size of 5570 km? and this research tests the application
of this RFFE in catchments with an average size of 2.16 km?. Despite this magnitude
variation in catchment size, these RFFE approaches are used in these smaller catchments
for design discharge calculations. However, the direct modelling highlights that catchment
representativeness remains an issue. This issue is exacerbated by sparse gauging coverage
and continues to be a high priority for future research [57].

The RFFP2000 (Flavell, 2012), IFM (Davies and Yip, 2014) and ARR RFFE (2019)
methods produce higher estimates of peak discharge. These three methods diverge from
the other approaches in estimating higher peak discharge estimates and this deviation is
more pronounced in less frequent flood flows (Qyg, Qs and Qygp). These three methods
are also more sensitive to changes in catchment area with larger catchments (above 5 km?)
predicted to have peak discharges double that of smaller catchments (around 2 km?).

Both PRT methods estimate the lowest peak discharge values across all ARI, with little
increase in discharge across less frequent flood flow events. These estimation techniques
are less sensitive to catchment size and may overlook flood flow magnitudes within
smaller catchments as they were created with a dataset comprised of larger catchments.
Additionally, parameter regression techniques give emphasis to the mean and therefore
frequent flows [66]. These methods provide a lower estimate of peak discharges, with
emphasis on frequent flow events and are likely not suited to smaller headwater catchments
such as those in this study.

The QRT methods show slightly higher predicted peak discharges but still do not
provide convincing flood discharges at higher return intervals. PRT and QRT methods
should be used with caution on smaller headwater channels. The IFM (Davies and Yip,
2014) method uses greater weighted frequency factors which results in the larger range of
peak flood values across return intervals. This greater range of frequency factors for the
IFM method compared to the PRT methods is likely to better represent higher magnitude
flow events within these headwater catchments.

The ARR RFFE (2019) [25] approach is industry standard for larger catchments and is
useful for small headwater catchments even if it is likely to provide a conservative estimate.
The ARR RFFE model is noted to have large uncertainty with mean relative errors of
50-60% [57]. Alternative methods developed by Flavell (RFFP2000 and RFFP2006) and
by Davies and Yip (2014) have been suggested as viable locally developed replacements
to ARR2015 methods for the Pilbara region [57]. The Flavell RFFE approach is relatively
complicated in comparison to the IFM and ARR (RFFE) 2019 approaches. The Flavell RFFP
approach requires some catchment analysis to provide equation values (such as slope,
latitude, longitude, length of catchment) but it is likely these values would be easy to
populate for any catchment of interest. The Davies and Yip (2014) IFM approach uses a
wide spatial distribution and catchment range in developing design equations making it
applicable throughout the Indian Ocean drainage division [18]. The RFFP2000, IFM and
ARR RFFE (2019) are therefore suggested for the estimate of peak discharge values within
small ungauged headwater channels.

6. Conclusions

The role of this research was to identify peak discharge values from a direct rain-
fall model, and to compare these findings with RFFE approaches conducted within the
region. Within the TUFLOW direct rainfall model simulations, the model was predomi-
nantly sensitive to grid size and Manning’s n, with the rainfall pattern having a smaller
impact on Qpeax. It is worth noting however that even the variation in the shape of the
hyetograph produced up to 50% variation in the final Qpeak value within the sensitivity
analysis. Therefore, awareness of the limitations of direct rainfall modelling within these
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steeper catchments is necessary when using this approach or selecting an RFFE approach.
Despite this caution, the Flavell RFFP2000 and Davies and Yip, (2014) IFM appear the most
reasonable estimates of peak discharge within the channels. These approaches provide
lower estimates than the ARR2019 RFFE models, which are suggested to provide higher
flow rates and are commonly used as part of a conservative approach to waterway design
within the Pilbara. Whilst the direct rainfall modelling approach has many barriers when
applied to headwater channels, this approach is useful to provide a frame of reference
when selecting an RFFE approach for ungauged headwater catchments. It is common for
a RFFE approach to be applied without first considering the weaknesses and limitations
of the derived equation, or its suitability within small headwater catchments. Here, we
show the potential for direct rainfall modelling and its applicability in an environment
with limited opportunities to validate peak flood discharge estimation methods. The lack
of gauged real-world measurements within these catchments continues to present the main
obstacle in improving our understanding of flow conditions and rainfall values within the
Pilbara region.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/hydrology9100165/s1, Table S1: Supplementary material high-
lighting key method details for the RFFE estimation methods applied to headwater catchments in the
Pilbara, WA.

Author Contributions: Conceptualization, A.F. and L.R.; methodology, A.F. and LR ; software, A.F,,
writing—original draft preparation, A.F,; writing—review and editing, A.F. and LR. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded the University of Melbourne Research Scholarship with addi-
tional funding from BHP, Australia (Project 041639).

Data Availability Statement: Data available on request from the authors.

Acknowledgments: The authors would like to thank the 3RG research group for their discussions
surrounding this work. We would also like to acknowledge the support of Iain Rea of BHP for
this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Hailegeorgis, T.T.; Alfredsen, K. Regional flood frequency analysis and prediction in ungauged basins including estimation of
major uncertainties for mid-Norway. . Hydrol. Reg. Stud. 2017, 9, 104-126. [CrossRef]

2. Rahman, A,; Haddad, K.; Zaman, M.; Ishak, E.; Kuczera, G.; Weinmann, E. Australian Rainfall and Runoff Revision Project 5:
Regional Flood Methods: Stage 2 Report. P5/52/015. 2012. Available online: http:/ /www.arr.org.au/wp-content/uploads/2013
/Projects/ ARR_Project5_Stage2_Report_Final_.pdf (accessed on 24 August 2022).

3. Feldman, A.D. Flood Hydrograph and Peak Flow Frequency Analysis; US Army Corps of Engineers: Davis, CA, USA, 1979.

4. Canterford, R.P; Pescod, N.R.; Pearce, N.H.; Turner, L.H.; Atkinson, R.J. Frequency analysis of Australian rainfall data as used for
flood analysis and design. In Regional Flood Frequency Analysis: Proceedings of the International Symposium on Flood Frequency and
Risk Analyses, Baton Rouge, LA, USA, 14-17 May 1987; Springer: Dordrecht, The Netherlands, 1987; pp. 293-302.

5. Ladson, A.R.; Weinmann, E. Hydrology—An Australian Introduction. Australas. ]. Water Resour. 2008, 12, 71-72. [CrossRef]

6. Pilgrim, D.H.; Chapman, T.G.; Doran, D.G. Problems of rainfall-runoff modelling in arid and semi-arid regions. Hydrol. Sci. ].
1988, 33, 379400. [CrossRef]

7. Chamber of Minerals and Energy of Western Australia (CME). Iron Ore. 2022. Available online: https:/ /www.cmewa.com.au/
about/wa-resources/iron-ore/ (accessed on 24 August 2022).

8.  Refsgaard, J.C.; Knudsen, ]. Operational Validation and Intercomparison of Different Types of Hydrological Models. Water Resour.
Res. 1996, 32, 2189-2202. [CrossRef]

9.  Flatley, A.; Markham, A. Establishing effective mine closure criteria for river diversion channels. ]J. Environ. Manag. 2021,
287,112287. [CrossRef]

10. Huxley, C.; Syme, B. TUFLOW GPU-best practice advice for hydrologic and hydraulic model simulations. In Proceedings of the
37th Hydrology & Water Resources Symposium, Queenstown, New Zealand, 28 November—2 December 2016; pp. 195-203.

11. Ball, J.E,; Babister, M.K.; Nathan, R.; Weinmann, P.E.; Weeks, W.; Retallick, M.; Testoni, I. Australian Rainfall and Runoff—A Guide to

Flood Estimation; Institution of Engineers: Barton, Australia, 2016.

44



Hydrology 2022, 9, 165

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Caddis, B.M.; Jempson, M.A; Ball, ].E.; Syme, W.]. Incorporating hydrology into 2D hydraulic models-the direct rainfall approach.
In Proceedings of the 9th National Conference on Hydraulics in Water Engineering, Darwin, Australia, 23-26 September 2008.
Hall, J. Direct rainfall flood modelling: The good, the bad and the ugly. Aust. ]. Water Resour. 2015, 19, 74-85. [CrossRef]

Taylor, H.; Kerr, T. Designing for Mining: Challenges of Hydrological Design in the Pilbara. Hydrol. Water Resour. Symp. 2014,
2014, 4452.

Taylor, M.; Haddad, K.; Zaman, M.; Rahman, A. Regional flood modelling in Western Australia: Application of regression-based
methods using ordinary least squares. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth,
Australia, 12-16 December 2011; pp. 3803-3810.

Rahman, A.; Zaman, M.; Haddad, K.; Kuczera, G.; Weinmann, E.; Weeks, W.; Rajaratnam, L.; Kemp, D. Development of a new
regional flood frequency analysis method for semi-arid and arid regions of Australia. In Proceedings of the 34th Hydrology and
Water Resources Symposium Sydney, Sydney, Australia, 19-22 November 2012; pp. 1433-1440.

Flavell, D. Design flood estimation in Western Australia. Australas. . Water Resour. 2012, 16, 1-20. [CrossRef]

Davies, J.R; Yip, E. Pilbara Regional Flood Frequency Analysis. In Proceedings of the Hydrology and Water Resources Symposium,
Perth, Australia, 24-27 February 2014; pp. 182-189.

Oreskes, N.; Shrader-Frechette, K.; Belitz, K. Verification, validation, and confirmation of numerical models in the earth sciences.
Science 1994, 263, 641-646. [CrossRef] [PubMed]

Annis, A.; Nardi, F.; Volpi, E.; Fiori, A. Quantifying the relative impact of hydrological and hydraulic modelling parameterizations
on uncertainty of inundation maps. Hydrol. Sci. ]. 2020, 65, 507-523. [CrossRef]

Ahmadisharaf, E.; Kalyanapu, A.J.; Bates, PD. A probabilistic framework for floodplain mapping using hydrological modeling
and unsteady hydraulic modeling. Hydrol. Sci. |. 2018, 63, 1759-1775. [CrossRef]

Grillakis, M.G.; Koutroulis, A.G.; Komma, J.; Tsanis, I.K.; Wagner, W.; Bloschl, G. Initial soil moisture effects on flash flood
generation—A comparison between basins of contrasting hydro-climatic conditions. J. Hydrol. 2016, 541, 206-217. [CrossRef]
David, A.; Schmalz, B. Flood hazard analysis in small catchments: Comparison of hydrological and hydrodynamic approaches by
the use of direct rainfall. J. Flood Risk Manag. 2020, 13, e12639. [CrossRef]

Viglione, A.; Blosch, G. On the role of storm duration in the mapping of rainfall to flood return periods. Hydrol. Earth Syst. Sci.
2009, 13, 205-216. [CrossRef]

Ball, J.; Babister, M.; Nathan, R.; Weeks, W.; Weinmann, E.; Retallick, M.; Testoni, I. (Eds.) Australian Rainfall and Runoff: A Guide to
Flood Estimation; Geoscience Australia: Canberra, Australia, 2019.

Ruprecht, J. Arid Zone Hydrology: Pilbara region of Western Australia. In Proceedings of the 23rd Hydrology and Water
Resources Symposium, Hobart, Australia, 21-24 May 1996; pp. 301-305.

Broit, A.; Boytar, G. Development of a methodology for catchments exhibiting sheet flow characteristics in the Pilbara region.
Hydrol. Water Resour. Symp. 2014, 2014, 953-961.

BHP Billiton Iron Ore Pty Ltd. BHP Billiton Iron Ore Pilbara Expansion: Strategic Proposal, 650 Environmental Scoping Document.
November 2013. Available online: https://www.bhp.com/-/media/bhp /regulatory-information-media/iron-ore/western-
australia-iron-ore/0000/ referral-and-environmental-scoping-document/160316_ironore_waio_pilbarastrategicassessment_
state_environmentalscopingdocument.pdf (accessed on 24 August 2022).

Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Képpen Geiger climate classification. Hydrol. Earth Syst.
Sci. 2007, 11, 1633-1644. [CrossRef]

Sudmeyer, R. Climate in the Pilbara. Bulletin 4873, Department of Agriculture and Food, Western Australia, Perth. Available
online: https:/ /library.dpird.wa.gov.au/bulletins /220/ (accessed on 24 August 2022).

Charles, S.P;; Fu, G,; Silberstein, R.P.; Mpelasoka, F.; McFarlane, D.; Hodgson, G.; Teng, ]J.; Gabrovsek, C.; Ali, R.; Barron, O.; et al.
Hydroclimate of the Pilbara: Past, Present, and Future. A Report to the Government of Western Australia and Industry Partners from the
CSIRO Pilbara Water Resource Assessment; CSIRO Land and Water: Clayton, Australia, 2015; pp. 1-140.

Ruprecht, J.; Ivansecu, S. Surface Hydrology of the Pilbara Region: Summary Report. Surface Water Hydrology Report; Series no. 32;
Water and Rivers Commission: Perth, Australia, 2000.

Wark, B.; Thomas, L. Does your rating curve hold water: The consequence of rating 860 curve errors. In Proceedings of the
ANCOLD, Canberra, Australia, 21-22 October 2014; pp. 1-11.

Harvey, M.; Pearcey, M.; Price, K.; Devkota, B. Geomorphic, hydraulic and sediment transport modelling for mine related channel
realignment—Case Study: Caves Creek, Pilbara, Western Australia. In Hydrology and Water Resources Symposium; Engineers
Australia: Queensland, Australia, 2014; pp. 259-266.

MWH. Ecohydrological Conceptualisation of the Fortescue Marsh Region; Project No. 83501069; MWH: Melbourne, Australia, 2015; pp.
1-178.

Bureau of Meterology (Australia). Tropical Cyclone Climatology Maps. Product Code: IDCJCMO0011. 2019. Available online:
http:/ /www.bom.gov.au/climate/maps/averages/tropical-cyclones/ (accessed on 24 August 2022).

Haque, M.M.; Rahman, A.; Haddad, K.; Kuczera, G.; Weeks, W. Development of a regional flood frequency estimation model for
Pilbara, Australia. In Proceedings of the 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29
November—4 December 2015; pp. 2172-2178.

45



Hydrology 2022, 9, 165

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

CSIRO; McFarlane, D.M. Pilbara Water Resource Assessment: Upper Fortescue Region; A Report to the Government of Western
Australia and Industry Partners from the CSIRO Pilbara Water Resources Assessment; CSIRO Land and Water Flagship: Clayton,
Australia, 2015.

Doherty, R. Calibration of HEC-RAS models for rating curve development in semi-arid regions of Western Australia. In
Proceedings of the AHA 2010 Conference, Perth, Australia, 5-9 July 2010; pp. 1-25.

Kemp, D.; Hewa, G. An Investigation into the Efficacy of Australian Rainfall and Runoff 2016 Procedures in the Mount Lofty Ranges,
South Australia; Australian Flow Management Group, University of South Australia: Adelaide, Australia, 2019.

Coombes, PJ.; Colegate, M.; Buchanan, S. Use of direct rain as an investigation process and design of basins using ARR2016
methods. In Proceedings of the Stormwater 2018, Sydney, Australia, 8-12 October 2018.

Schumann, G.; Bates, P.D.; Apel, H.; Aronica, G.T. Global flood hazard mapping, modeling, and forecasting: Challenges and perspectives
In Global Flood Hazard: Applications in Modeling, Mapping, and Forecasting; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp.
239-244.

Merz, R.; Bloschl, G.; Parajka, J. Regionalisation methods in rainfall-runoff modelling using large catchment samples. In Large
Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment—MOPEX; IAHS
Publication: Wallingford, UK, 2006; Volume 307, pp. 117-125.

Razavi, T.; Coulibaly, P. Improving streamflow estimation in ungauged basins using a multi-modelling approach. Hydrol. Sci. ].
2016, 61, 2668-2679. [CrossRef]

Wagener, T.; Wheater, H.S. Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty.
J. Hydrol. 2006, 320, 132-154. [CrossRef]

Bloschl, G.; Sivapalan, M. Scale issues in hydrological modelling: A review. Hydrol. Process. 1995, 9, 251-290. [CrossRef]
Pandey, G.R.; Nguyen, V.T.T. A comparative study of regression-based methods in regional flood frequency analysis. J. Hydrol.
1999, 225, 92-101. [CrossRef]

Rijal, N.; Rahman, A. Design flood estimation in ungauged catchments: Quantile regression technique and Probabilistic Rational
Method compared. In Proceedings of the Modsim05: International Congress on Modelling and Simulation: Advances and
Applications for Management and Decision Making, Melbourne, Australia, 12-15 December 2005.

Mishra, B.K,; Takara, K.; Yamashiki, Y.; Tachikawa, Y. An assessment of predictive accuracy for two regional flood frequency
estimation methods. Annu. J. Hydraul. Eng. [SCE 2010, 54, 7-12.

Austroads. Guide to Bridge Technology Part 8: Hydraulic Design of Waterway Structures. 2018, pp. 1-157. Available
online: https://austroads.com.au/publications/bridges/agbt08-18 /media/AGBT08-18_Guide_to_Bridge_Technology_Part_
8_Hydraulic_Design_of_Waterway_Structures.pdf (accessed on 24 August 2022).

Rahman, A.; Haddad, K.; Kuczera, G. Features of regional flood frequency estimation (RFFE) model in Australian Rainfall
and Runoff. In Proceedings of the 21st International Congress on Modelling and 792 Simulation, Gold Coast, Australia, 29
November—4 December 2015; pp. 2207-2213.

Rahman, A.; Haddad, K.; Kuczera, G.; Weinmann, E. Chapter 3. Regional Flood Methods. In ARR Australian Rainfall and Runoff;
Geoscience Australia: Canberra, Australia, 2019.

Rahman, A.; Haddad, K.; Haque, M.M.; Kuczera, G.; Weinmann, E. Australian Rainfall and Runoff, Project 5: Regional Flood Methods:
Stage 3 Report; Geoscience Australia: Canberra, Australia, 2015; ISBN 978-0-85825-796 869-3.

Farquharson, FAK.; Meigh, ].R.; Sutcliffe, ].V. Regional Flood Frequency Analysis in arid and semi-arid areas. ]. Hydrol. 1992,
138, 487-501. [CrossRef]

BMT. TUFLOW Classic/HPC User Manual. Build 2018-03-AD. 2018, pp. 1-443. Available online: https://www.tuflow.com/
Download/TUFLOW /Releases /2018-03 / TUFLOW %20Manual.2018-65703.pdf (accessed on 20 June 2021).

Syme. TUFLOW HPC. TUFLOW UK Conference, Bristol. 2018, pp. 1-63. Available online: https:/ /tuflow.com/media /4964 /201
804-tuflow-hpc-overview-tuflow-conference-uk.pdf (accessed on 24 August 2022).

Engineers Australia. Australian Rainfall and Runoff Revision Project 15: Two Dimensional Modelling in Urban and Rural Floodplains.
Stage 1 and 2 Draft Report; Geoscience Australia: Canberra, Australia, 2012. Available online: https://arr.ga.gov.au/__data/
assets/pdf_file/0019/40573 / ARR_Project15_TwoDimensional_Modelling_DraftReport.pdf (accessed on 24 August 2022).
Gomi, T,; Sidle, R.C.; Richardson, J.S. Undersftanding processes and downstream linkages of headwater systems: Headwaters
differ from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their
need for different means of protection from land use. BioScience 2002, 52, 905-916.

Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2007,
30, 328-341. [CrossRef]

Bureau of Meteorology (Australia). Design Rainfall System 2016. 2016. Available online: http://www.bom.gov.au/water/
designRainfalls/revised-ifd/ (accessed on 10 July 2022).

Podger, S.; Babister, M.; Ward, M. Determination of pre-burst rainfalls for Australian rainfall and runoff. In Proceedings of the
Hydrology and Water Resources Symposium, Melbourne, Australia, 3-6 December 2018; pp. 649-660.

RioTinto. Resource Development: Marillana Creek Regional Flow Balance and Catchment Hydrology; Appendix A9; Rio Tinto: London,
UK, 2010; pp. 1-46.

Foglia, L.; Hill, M.C.; Mehl, S.W.; Burlando, P. Sensitivity analysis, calibration, and testing of a distributed hydrological model
using error-based weighting and one objective function. Water Resour. Res. 2009, 45. [CrossRef]

46



Hydrology 2022, 9, 165

64. Vaze, ] Jordan, P.; Beecham, R.; Frost, A.; Summerell, G. Guidelines for Rainfall-Runoff Modelling: Towards Best Practice Model
Application; eWater Cooperative Research Centre: Canberra, Australia, 2011; ISBN 978-1-921543-51-7.

65. Department of Primary Industries and Regional Development. Typical Values for Manning’s Coefficient (n) for Bare Soil Water-
ways. 2018. Available online: https:/ /www.agric.wa.gov.au/water-management/mannings-roughness-coefficient (accessed on
24 August 2022).

66. Rogers, A.D.; Davies, J.R. ARR 2015 Unpacked—Implications for stormwater design in WA. In Proceedings of the IPWEA State
Conference, Freemantle, Australia, 9-11 March 2016; pp. 1-12.

47






hydrology

Article

Multi-Variable SWAT Model Calibration Using Satellite-Based
Evapotranspiration Data and Streamflow

Evgenia Koltsida and Andreas Kallioras *

Citation: Koltsida, E.; Kallioras, A.
Multi-Variable SWAT Model
Calibration Using Satellite-Based
Evapotranspiration Data and
Streamflow. Hydrology 2022, 9, 112.
https://doi.org/10.3390/
hydrology9070112

Academic Editors: Tommaso
Caloiero, Carmelina Costanzo and

Roberta Padulano

Received: 26 April 2022
Accepted: 17 June 2022
Published: 21 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Laboratory of Engineering Geology and Hydrogeology, School of Mining and Metallurgical Engineering,
National Technical University of Athens, Heroon Polytechniou Str. 9, 15780 Athens, Greece;
ekoltsida@metal.ntua.gr

* Correspondence: kallioras@metal.ntua.gr; Tel.: +30-210-772-2098

Abstract: In this study, monthly streamflow and satellite-based actual evapotranspiration data (AET)
were used to evaluate the Soil and Water Assessment Tool (SWAT) model for the calibration of
an experimental sub-basin with mixed land-use characteristics in Athens, Greece. Three calibration
scenarios were performed using streamflow (i.e., single variable), AET (i.e., single variable), and
streamflow—AET data together (i.e., multi-variable) to provide insights into how different calibration
scenarios affect the hydrological processes of a catchment with complex land use characteristics. The
actual evapotranspiration data were obtained from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS). The calibration was achieved with the use of the SUFI-2 algorithm in the SWAT-CUP
program. The results suggested that the single variable calibrations showed moderately better perfor-
mance than the multi-variable calibration. However, the multi-variable calibration scenario displayed
acceptable outcomes for both streamflow and actual evapotranspiration and indicated reasonably
good streamflow estimations (NSE = 0.70; R? = 0.86; PBIAS = 6.1%). The model under-predicted
AET in all calibration scenarios during the dry season compared to MODIS satellite-based AET.
Overall, this study demonstrated that satellite-based AET data, together with streamflow data, can
enhance model performance and be a good choice for watersheds lacking sufficient spatial data
and observations.

Keywords: SWAT; streamflow; MODIS; evapotranspiration; hydrological modeling; multi-variable calibration

1. Introduction

Hydrological models have been extensively utilized to estimate the consequences of
climate variability, land management practices, and policy directions at various temporal
and spatial scales [1]. Model development requires a good comprehension of the watershed
characteristics to achieve accurate model simulation [2,3]. Nonetheless, most basins are
ungauged or inadequately gauged [4]. The absence of adequate observations affects the
calibration process and further model improvement [5].

Hydrological model calibration is typically achieved with flow data at the outlet of the
basin by choosing the most suitable values for input parameters and comparing simulated
outcomes with observed data [6]. However, calibration focused on one variable only may
aggregate all watershed processes together and intensify the occurrence of the equifinality
problem (i.e., multiple parameter sets can reproduce a similar output) [7-9]. Using multiple
variables (e.g., streamflow, evapotranspiration, soil moisture) in the calibration process
attempts to overcome equifinality across multiple parameter sets [10-12].

In addition, unknown procedures to the modeler, such as unidentified discharges, agri-
cultural activities, and dumping of construction materials, interfere with the natural behav-
ior of the system and increase the uncertainty in streamflow calibration [13,14]. Therefore,
incorporating remote sensing data in model calibration can increase model accuracy, cap-
ture the spatial and temporal heterogeneity of hydrological processes, and be a promising
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alternative for catchments lacking sufficient observations [13,15,16]. Satellite-based actual
evapotranspiration (AET) data can be used to constrain hydrological parameters associated
with the water balance [17,18]. For instance, a study in southern India [13] used MODIS
satellite-based AET data to calibrate the SWAT model and suggested that satellite-based
AET data with a monthly temporal resolution can be used to reduce equifinality obtained
from traditional streamflow calibration. In addition, a study in Myanmar [16] calibrated the
SWAT model using (Global Land Evaporation Amsterdam Model (GLEAM) satellite-based
AET data and measured streamflow. This study suggested that constraining the model with
actual evapotranspiration and streamflow data (i.e., multi-variable calibration) can produce
good results for both variables. Finally, a study in a catchment in Michigan [18] calibrated
the SWAT model using observed streamflow data and remotely sensed based AET data
from the Simplified Surface Energy Balance (SSEBop) model and the Atmosphere-Land
Exchange Inverse (ALEXI) model. The results of this study suggested that incorporating
satellite-based AET data in the hydrological model calibration can maintain a satisfactory
performance for streamflow while improving evapotranspiration estimations.

The complexity of spatially distributed model applications in mixed land-use water-
sheds (i.e., blended combinations of land use) has been explored in past studies [19-23].
Nevertheless, the use of remote sensing data for hydrological model calibration in mixed
land-use watersheds has not yet been thoroughly analysed. Urban and peri-urban environ-
ments are characterized by high variability in land use, soil types, management practices,
and diverse hydrological processes, which increase issues of model uncertainties and make
the calibration process challenging [20,24]. The SWAT model is a physically-based model
that incorporates the spatial distribution of land use, topography, and soil and allows dif-
ferent hydrological processes in a watershed to interconnect [6]. This makes the model able
to estimate how the hydrological components are affected by land management methods in
catchments with complex land uses and heterogeneity in soil formations. This study used
streamflow and satellite-based actual evapotranspiration (AET) data to calibrate the SWAT
model of an urban/peri-urban catchment characterized by a typical Mediterranean climate.
Three calibration scenarios were developed using (i) streamflow data, (ii) AET data, and
(iii) both streamflow and AET data. This study aims to (i) investigate which parameters
are more sensitive in the single variable and multi-variable scenarios; (ii) assess the model
performance of the different scenarios; (iii) examine the outcomes of major hydrological
components between the single-variable and multi-variable scenarios, and (iv) evaluate the
suitability of remote sensing data for streamflow simulation. This study is the first attempt
to simulate the hydrological components of an experimental sub-basin with complex land
use characteristics and will provide insights into how different calibration scenarios affect
the hydrological processes for sustainable water resource management. The major innova-
tion of the proposed methodology is that it has been developed for a typical Mediterranean
peri-urban area and can be easily applied to catchments with similar hydrological and
geomorphological characteristics.

2. Materials and Methods
2.1. Description of the Study Area

The study site is a sub-basin (140 km?) of the Kifissos River basin (380 km?), Athens,
Greece (Figure 1). The Kifissos River’s route is almost 22 km, of which at least 14 km are
within an urban area [25]. The elevation varies from 1399 m in the northern part to 94 m
in the southern part. The study area has as mild Mediterranean climate [26]. The mean
annual temperature is 16.4 °C, and the mean annual rainfall is 643 mm [27]. The mean
annual actual evapotranspiration is 483 mm. The annual evapotranspiration ranges from
551 mm (upstream) to 395 mm (downstream) (Figure 2a).
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Figure 1. Location of Kifissos River sub-basin and monitoring stations (right), Athens metropolitan
area (lower left), and zoom out display of Greece (upper left).
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Figure 2. Kifissos River sub-basin (a) MODIS average annual evapotranspiration, (b) land use, and
(c) soil types. The study area includes 25 sub-basins of which the sub-basin numbers (1-11) indicate
the sub-basins used for actual evapotranspiration calibration.

The sub-basin is an urban/peri-urban area. The dominant land cover types are resi-
dential areas (34.1%), shrubland (15.9%), and agriculture (12.4%) (Figure 2b) [28]. Table Al
displays the land use categories of the study area at catchment level and Table A2 displays
the land use categories of the study area at sub-basin level. The major soils are Cambisols,
Regosols, Leptosols, and Luvisols [29]. These formations are generally high in clay and
sand contents with good soil permeability (Figure 2c).

2.2. Data Sources

The input data include a digital elevation model (DEM) at 30 m resolution from the
website of the US Geological Survey [30], a land use map from the 100 m 2018 Corine
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Land Cover map [28], a soil map from the Food and Agriculture Organization Digital
Soil Map of the World (30 arcseconds resolution) [31], and meteorological data from the
National Observatory of Athens [27]. Daily rainfall data were obtained from 2015 to 2019.
The daily measured streamflow data at the basin outlet (Monastiri gauging station) were
available from 2018 to 2019 and were retrieved from Open Hydrosystem Information
Network [32]. The actual evapotranspiration (AET) data were collected from the Moderate
Resolution Imaging Spectroradiometer Global Evaporation [33] with a pixel resolution of
500 x 500 m [34].

2.3. The SWAT Hydrological Model

The SWAT (Soil and Water Assessment Tool) program is an open-source, physically
based, continuous-time river basin model developed to estimate the influence of manage-
ment practices on discharge, sediments, and agriculture in large complex basins [6,35]. The
model runs on a daily time step, and its main variables are hydrology, weather, soil, land
use, sediments, nutrients, bacteria, and pathogens.

In SWAT, the basin is divided into sub-basins, then into hydrologic response units
(HRUs) with unique land use, soil, and slope characteristics [36]. The water balance is
computed separately for each hydrologic response unit [37]. The water balance equation is
estimated using the following (Equation (1)):

t
SWi = SW, + Zi:l (Rduy - qurf —Eq — Wseep - ng)/ (1)

where SW; is the soil water content (mm), SW, is the soil water content on day 7 in the
previous period (mm), £ is the time step (days), R4, indicates the amount of precipitation
onday i (mm), Qs represents the surface streamflow on day i (mm), E, indicates the AET
on day i (mm), Wseep is the percolation and bypass flow on day i (mm), and Qg represents
the return flow on day i (mm).

2.4. Model Setup

The QGIS interface of the SWAT model was utilized for model configuration [38]. The
watershed was delineated into 25 sub-basins and 386 hydrological response units (HRUs).
A 10% threshold was used for land use, soil, and slope to limit the influence of minor soil
and land use types for each sub-basin. The Corine Land Cover land use classes [28] were
converted to the SWAT land use classes [6]. The model was simulated from 2015 to 2019
and run on a daily time step. Two years (1 January 2015-31 December 2016) were set as
a warm-up period. The potential evapotranspiration was calculated using the Penman—
Monteith method, the surface runoff was estimated using the curve number method [39],
and the channel routing was computed using the variable storage coefficient method [40].

2.5. Model Calibration and Sensitivity Analysis

The model was calibrated using the Sequential Uncertainty Fitting Algorithm (SUFI-2)
in the SWAT-Calibration and Uncertainty Program (SWAT-CUP) [41]. In SUFI-2, the
calibrating parameters are set according to literature and sensitivity analysis, and then the
parameters sets are generated using Latin hypercube sampling (LHS) [14]. The significance
of each parameter is defined with a t-test. Parameters with large t-stat and small p-value
(p-value < 0.03) are identified as sensitive parameters [42].

Three calibration scenarios were conducted using monthly time series of streamflow
from one station at the outlet of the study site and the MODIS satellite-based actual
evapotranspiration (AET) from eleven sub-basins based on data availability [33]. The
daily streamflow was converted to monthly for comparison reasons. The monthly average
values were calculated by a resample function, and the missing values were estimated
by an interpolation function using the linear method (Python pandas library). The actual
evapotranspiration data from MODIS were in a geotiff format (raster). In addition, to
compare the MODIS satellite-based AET (pixel values) to the SWAT simulated AET, an
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area-weighted averaging approach in QGIS (zonal statistics) was performed to create the
aggregated monthly values for each sub-basin [23,43].

The scenarios include: (i) streamflow calibration (i.e., single variable), (ii) AET calibra-
tion (i.e., single variable), and (iii) both streamflow and AET calibration (i.e., multi-variable).
Based on data availability, streamflow was calibrated from 2018 to 2019, and evapotran-
spiration was calibrated from 2017 to 2019. All the available data were used for model
calibration to represent the wet and dry conditions properly (2017: 487 mm, 2018: 675 mm,
2019: 765 mm). The calibration process used 20 parameters linked to streamflow and
evapotranspiration (Table 1), and their sensitivities were estimated. The original value
ranges of the parameters and their sensitivities for each calibration scenario are displayed
in Table 2. In the single variable calibrations, the two variables (i.e., streamflow and ac-
tual evapotranspiration) were calibrated separately, and the performance of the second
variable was evaluated. In the multi-variable calibration the two variables were calibrated
together using a multi-variable objective function and assigning equal weights to each
variable [16,44]. The Nash—Sutcliffe model efficiency (NS) was used as an objective function,
and 900 simulations per iteration were performed and up to three iterations.

Table 1. Calibrated parameters. The method “r” (relative) indicates multiplying the current parameter
value by a given value, the method “v” (replace) indicates replacing the current parameter value, and
the method “a” (absolute) indicates adding a given value to the current parameter [14].

Category Parameter Description

Surface runoff r_CN2.mgt Curve number
v_SURLAG.bsn Surface runoff lag coefficient

Groundwater/Baseflow v_ALPHA_BE.gw Baseflow alpha factor
a_GW_DELAY.gw Groundwater delay
v_RCHRG_DP.gw Deep aquifer percolation fraction

Lateral flow

Channel

Soil

Threshold depth of water in the shallow aquifer for
“revap” to occur

v_GW_REVAP.gw Groundwater “revap” coefficient

Threshold depth of water in the shallow aquifer

v_REVAPMN.gw

V-GWQMN.gw required for return flow to occur
r_LAT_TTIME.hru Lateral flow travel time

r_HRU_SLP.hru Average slope steepness

r_OV_N.hru Manning’s coefficient for overland flow
r_SLSUBBSN.hru Average slope length

v_CH_N2.rte Manning’s coefficient for the main channel
v_CH_K2.rte Hydpraulic conductivity of the main channel alluvium
v_ESCO.bsn Soil evaporation compensation coefficient
v_EPCO.hru Plant uptake compensation coefficient
v_CANMX hru Maximum canopy storage

r_SOL_K.sol Saturated hydraulic conductivity
r_SOL_BD.sol Moist bulk density of the soil layer
r_SOL_AWC.sol Soil available water storage capacity

The model performance of each scenario was further analyzed using the coeffi-
cient of determination (Rz) [45], Nash—Sutcliffe efficiency (NSE) [46], and percent bias
(PBIAS) [47], as shown in Equations (2)—(4).

[2?21 (Qobs (1) - Qobs) (Qsim (l) - Qsim)} ?

R2 = p— — ’ (2)
Z?:l (Qohs(i) - Qobs)2 ?:1 (Qsim (l) - Qsim)2
n . 2
NSE— 1 [zi1<Qobs(z> = Qun(0)"| 3
2?21 (Qobs(i) - Qobs)

53



Hydrology 2022, 9, 112

Y1 (Qops (1) — Qsim (1)) % 100
Z?:l Qobs(i) ’

where Qs is the measured streamflow, Q;y,, is the simulated streamflow on the day i, Qs
is the mean of measured streamflow, and Q,;,, is the mean of simulated streamflow. R?
varies from 0 to 1, where 0 indicates no correlation and 1 means perfect correlation and
less error variance. NSE can vary from —oo to 1, where values < 0 show that the model is
unreliable and values closer to 1 indicate a perfect fit between simulated and measured data.
The best PBIAS value is 0. Positive values show that the model results are underestimated,
and negative values show that the model results are overestimated. Model performance
can be assessed as “satisfactory” for a monthly time step if R* > 0.60, NSE > 0.50, and
PBIAS < 4+15% for watershed-scale models [48].

PBIAS =

4)

Table 2. SWAT calibrated parameters and their sensitivities for each calibration scenario. Numbers in
bold indicate the parameters with the highest sensitivity (p-value < 0.03).

Initial Ranges Flow Calibration AET Calibration AE"lI": lggila;;:lltion

Parameters

Min Max t-Test p-Value t-Test p-Value t-Test p-Value
CN2 —0.10 0.10 —0.85 0.40 1.25 0.21 —0.53 0.59
SURLAG 0.00 10.00 0.38 0.70 0.64 0.53 1.23 0.22
ALPHA_BF 0.00 1.00 —0.07 0.95 0.47 0.64 —0.46 0.65
GW_DELAY —30.00 90.00 9.89 0.00 —0.82 0.41 9.70 0.00
RCHRG_DP 0.00 0.50 2.78 0.01 —1.24 0.21 2.61 0.01
REVAPMN 800.00 1900.00 0.53 0.60 0.05 0.96 —0.35 0.73
GW_REVAP 0.02 0.20 1.17 0.24 —1.47 0.14 —1.30 0.19
GWQMN 0.00 500.00 0.18 0.86 0.69 0.49 —0.34 0.73
LAT_TTIME 0.00 180.00 18.98 0.00 —0.02 0.99 22.12 0.00
HRU_SLP —0.50 3.00 6.09 0.00 —7.58 0.00 —8.84 0.00
OV_N —0.50 3.00 —0.59 0.56 0.37 0.71 0.66 0.51
SLSUBBSN —0.20 0.20 —2.23 0.03 2.15 0.03 0.17 0.86
CH_N2 0.01 0.30 0.35 0.72 1.56 0.12 1.21 0.23
CH_K2 0.00 127.00 —1.52 0.13 —0.47 0.64 1.60 0.11
ESCO 0.50 0.95 1.70 0.09 29.33 0.00 498 0.00
EPCO 0.50 0.95 —0.74 0.46 —5.50 0.00 —0.64 0.52
SOL_K —0.80 0.80 8.43 0.00 —8.24 0.00 —7.85 0.00
SOL_BD —0.30 0.30 10.46 0.00 —7.70 0.00 —8.45 0.00
SOL_AWC —0.05 0.05 —0.34 0.73 0.35 0.72 2.52 0.01
3. Results

3.1. Sensitivity Analysis

The most sensitive parameters for each calibration scenario are shown in Table 2.
Sensitive parameters are identified by p-value less than 0.03. Figure Al shows the relative
changes of the five most sensitive parameters for each calibration scenario versus objective
function. Most variations of NSE values were found to be in the calibration with streamflow
rather than single evapotranspiration and multi-variable calibrations.

In the streamflow calibration, the parameters with the highest sensitivity were lateral
flow travel time (LAT_TTIME), moist bulk density of the soil layer (SOL_BD), groundwater
delay time (GW_DELAY), saturated hydraulic conductivity (SOL_K), and average slope
steepness (HRU_SLP). These parameters were connected to groundwater flow, runoff
generation, and channel routing. In the AET calibration, the parameters with the highest
sensitivity were soil evaporation compensation coefficient (ESCO), saturated hydraulic
conductivity (SOL_K), moist bulk density of the soil layer (SOL_BD), average slope steep-
ness (HRU_SLP), and plant uptake compensation coefficient (EPCO), which are mostly
related to soil properties. In the multi-variable calibration, the most sensitive parameters
were lateral flow travel time (LAT_TTIME), groundwater delay time (GW_DELAY), aver-
age slope steepness (HRU_SLP), moist bulk density of the soil layer (SOL_BD), saturated
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hydraulic conductivity (SOL_K), and soil evaporation compensation coefficient (ESCO).
These parameters referred to both groundwater flow and soil properties.

3.2. Model Performance Evaluation

The model performance was assessed with criteria recommended by Moriasi et al. [48].
In all three calibration scenarios, the deviations from the observed values start to increase
during the dry season and decline during the wet season. Table 3 displays the model
performance for all three scenarios for all the sub-basins. Figure 3 presents the measured
and simulated hydrographs at the outlet of the catchment (Monastiri gauging station) for
all three scenarios. Finally, Figure 4 shows the measured and simulated AET for the entire
study area at a catchment scale.

Table 3. Model evaluation statistics for each calibration scenario; (a) Streamflow calibration, (b) AET
calibration, and (c) Multi-variable calibration. The location of the sub-basins 1-11 is indicated
in Figure 2a—c.

NSE R? PBIAS (%)
Variable Station/Sub-Basin @ ) © @ ) © @ ®) ©

Streamflow Monastiri station 0.71 0.38 0.70 0.84 0.84 0.86 5.60 8.29 6.10
Sub-basin 1 0.27 0.49 0.18 0.58 0.75 057 11.68 11.60 16.70

Sub-basin 2 0.30 0.33 0.28 0.72 0.76 076 1096 12.70 13.80

Sub-basin 3 0.11 036 —0.10 0.59 0.69 0,55 15.81 15.00 21.70

Sub-basin 4 0.37 0.34 0.42 0.73 0.75 0.75 848 1250 13.60

Sub-basin 5 0.09 0.28 0.15 0.80 0.78 0.81 3.07 6.10 5.30

Evapotranspiration Sub-basin 6 022 035 026 064 074 068 9.00 1070 14.50
Sub-basin 7 —-0.17 -0.14 0.19 0.87 0.80 0.86 —12.72 —530 -840

Sub-basin 8 0.57 0.56 0.69 0.82 0.82 0.83 2.46 6.40 5.40

Sub-basin 9 0.42 0.51 0.56 0.83 0.82 0.79 2.69 7.00 7.00

Sub-basin 10 0.44 0.58 0.52 0.80 0.87 0.81 1.19 6.00 4.00

Sub-basin 11 0.34 0.54 0.63 0.84 0.82 0.83 —-053 770 2.90

- 25
4- MM Precipitation === Observed 50
TA = Streamflow calibration ) ’g
"2 = AET calibration g
g ,;_ I~ 75 Nav)
o = Multi-variable calibration =
o
% 100 ’g
E z
< 1253
Z £
« 150
175
0 1 1 T T T 1 T 200
2018/01 2018/04 2018/07 2018/10 2019/01 2019/04 2019/07 2019/10
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Figure 3. Simulated versus measured monthly streamflow for each calibration scenario at the outlet
of the sub-basin (Monastiri gauging station).
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Figure 4. Simulated versus measured MODIS evapotranspiration for each calibration scenario at
catchment scale.

3.2.1. Streamflow Calibration

The streamflow calibration showed good results in general for streamflow (NSE = 0.71;
R? = 0.84; PBIAS = 5.6%) (Table 3). The results regarding evapotranspiration were unsat-
isfactory for NSE (NSE within —0.17 to 0.57), except for sub-basin 8 (NSE = 0.57), and
satisfactory for R? and PBIAS (R? > 0.58; PBIAS within —12.7% to 15.8%). Figure 3 desig-
nates a satisfying match between measured and simulated streamflow except for low flows
during the dry season. However, the temporal dynamics of the hydrograph were generated
correctly. Figure 4 indicates differences between observed and simulated AET. Stream-
flow calibration underestimated evapotranspiration in the wet season and overestimated
evapotranspiration at the beginning of the dry season.

3.2.2. Actual Evapotranspiration Calibration

The AET calibration presented unsatisfactory performance for NSE for sub-basins
2-7 and satisfactory performance for sub-basins 1, 8, 9, 10, and 11 (NSE within —0.14 to
0.58) (Table 3). In respect of R?> and PBIAS, the results were satisfactory for all the sub-
basins (R? > 0.69; PBIAS within —5.3% to 15%). The performance for streamflow was
unsatisfactory (NSE = 0.38; R? = 0.84; PBIAS = 8.3%). In particular, the observed and
simulated AET values did not match well. Nevertheless, they showed a well-matched
seasonal variation of evapotranspiration (Figure 4). AET calibration underestimated low
flows and overestimated high flows for the simulation period (Figure 3). Performance
statistics were generally better for streamflow than evapotranspiration in single-variable
calibration scenarios.

3.2.3. Multi-Variable Calibration

The multi-variable scenario, using streamflow and MODIS satellite-based AET, showed
satisfactory performance for streamflow (NSE = 0.70; R? = 0.86; PBIAS = 6.1%) and un-
satisfactory (sub-basins 1-7) to satisfactory (sub-basins 8-11) performance for evapotran-
spiration (NSE within —0.10 to 0.69; R? > 0.55; PBIAS within —8.4% to 21.7%) (Table 3).
Simulated and observed streamflow values are much better than those for AET calibration
and similar to streamflow calibration (Figure 3). Results for AET are related to those of
AET calibration, showing underestimation of the simulated values (Figure 4). Compared
to single variable calibration scenarios, multi-variable calibration displayed similar NSE
values obtained from single-variable calibration, and R? showed good performances (>0.75)
for both variables (Table 3).
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3.3. Major Water Balance Components

The major water balance components (i.e., actual evapotranspiration, water yield, and
precipitation) are displayed in Figure 5. In general, average annual precipitation (643 mm)
was slightly greater than combined water yield (WYLD) and actual evapotranspiration
(AET) values. Actual evapotranspiration contributed a large amount of water loss from the
watershed, about 60% in all scenarios. The total water yield of the multi-variable calibration
is higher than the other two modeling scenarios. In particular, the total water yield was
estimated to be 171 mm for flow calibration, 151 mm for AET calibration, and 186 mm for
multi-variable calibration.

700

PRECIP
e AET
600 1 == WYLD

500+

Water depth (mm)

b w2 P

(= (=1 [=1

o o [=}
L 1 1

100+

)

Water balance components

Figure 5. Water balance components; (i) Streamflow calibration, (ii) AET calibration, and (iii) Multi-
variable calibration. PRECIP: Precipitation (mm), AET: Actual evapotranspiration (mm), WYLD:
Water yield (mm).

4. Discussion

In this study, the SWAT hydrological model was used to interpret the behaviour of
an urban/sub-urban environment and analyse its underlying mechanisms. The study
area is a typical Mediterranean catchment prone to natural hazards such as floods, forest
fires and their combined impact. Therefore, the mechanisms governing surface runoff and
the interactions between the hydrological components should be analysed in depth for
these vulnerable areas. The main objective was to investigate which parameters are more
sensitive in a mixed land-use basin and to propose a multi-variable calibration procedure
using both streamflow and satellite-based AET data for SWAT modelling.

The sensitivity analysis results showed that the parameters with the highest sensitivity
for streamflow are connected to groundwater flow, runoff generation, and channel routing,
and for actual evapotranspiration, they are linked to soil properties, respectively (Table 2,
Figure A1l). The differences in the sensitivity of the parameters are due to different data
used in the calibration process. Similar outcomes were obtained by Sirisena et al. [16] and
Moriasi et al. [49]. Sirisena et al. [16] concluded that the most sensitive parameters for
evapotranspiration were connected to soil properties. Moriasi et al. [49] pointed out that
the high sensitivity of the soil parameters to AET indicated a connection between actual
evaporation and soil water.

Both variables present a slightly better performance in the single calibrations with
streamflow and evapotranspiration than in the multi-variable calibration (Table 3). Nonethe-
less, the multi-variable calibration produced satisfactory results for both streamflow and
AET and showed reasonably good streamflow estimations (NSE = 0.70). AET showed
the best performance for forests (e.g., sub-basins 1, 8, 9, 10, 11). This indicates that the
MODIS data probably show better performance at simulating forests and semi-natural
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areas than in sub-urban areas, including more complex management systems. In addition,
evapotranspiration algorithms are characterized by resolution issues, misclassification of
land use, and data generation uncertainties [50]. Therefore, these algorithms may not
correctly capture the land use changes (especially in sub-urban areas) and the available soil
moisture on the ground.

In most sub-basins, MODIS satellite-based AET and SWAT simulated AET show that
seasonal patterns match well, although the SWAT model under-predicted AET compared
with the MODIS satellite-based AET during the dry season (Figure 4, Table 3). These results
are consistent with those of other studies [51,52]. A study in Morocco [51] and a study in
Iran [52] suggested that the multi-variable calibration can produce good results for both
variables. Nevertheless, the single variable calibrations showed better performance. The
differences for all three scenarios intensify during the dry season and decline during the
wet season (Figures 3 and 4). The underestimation of AET and the low baseflow, especially
during the dry season (Figure 3), could suggest unknown water contributions in the study
area. These deviations are probably also connected to soil replenishment and the crops’
high water demand during the dry season. Furthermore, it is worth mentioning that
MODIS satellite-based AET could include errors and underestimations or overestimations
of the “true” AET, altering the model’s water balance [53]. For instance, the higher MODIS
satellite-based AET values in the AET calibration scenario led to lower water yield values
than the streamflow calibration scenario (Figure 5). Satellite-based evapotranspiration
datasets use sensor-derived parameters (e.g., surface heat flux, latent heat flux) that may
have several uncertainties. Model misrepresentations, errors in the inputs, and spatial and
temporal scaling decrease the efficiency of the algorithms [54].

For both single variable calibrations, the simulated second variable (i.e., AET for
streamflow calibration and streamflow for AET calibration) is not well represented. The
unsatisfactory performance of the second variable in the single variable calibrations indi-
cates the poor representation of the catchment’s water balance. Many studies support that
incorporating satellite data in the hydrological model calibration improved the estimation
of water balance components regardless of the model performance improvement. A study
in China [55] calibrated the SWAT model with GLEAM AET data and streamflow. Although
streamflow only calibration produced reliable results, this approach grouped the hydro-
logical process. Furthermore, a study by Immerzeel and Droogers [13] pointed out that
incorporating AET data in hydrological model calibration reduces equifinality obtained
from traditional streamflow only calibration. The water balance is best reproduced when
both streamflow and AET are used in the calibration process [52]. Several studies [49,56]
reported that satellite AET data could be used to constrain hydrological parameters that
are highly sensitive to evapotranspiration.

In general, the calibration process is challenging because of the uncertainties that exist
due to model simplification, processes that are not accounted by the model, and processes
that are unknown to the modeler [14]. In this study, the main sources of uncertainty are
connected to inaccuracies (i) in the quality of input data (climate, soil, and land cover reso-
lution), (ii) in the model set up (aggregation and interpolation methods), (iii) in the choice
of objective data and parameterization, (iv) observed data, and (v) processes unknown
to the modeler which interfere with the natural system [42]. Observational errors in the
precipitation data, MODIS actual evapotranspiration, and discharge, as well as the effects
of elevation and topography, increase bias and generate variability. For example, errors
in streamflow measurements can vary from 6% to 19% under different combinations of
channel types and measurement techniques [57]. In addition, poor resolution and data
generation uncertainties in evapotranspiration algorithms can induce biases between AET
simulated values and satellite-based AET [17,50,58]. For instance, a study in Ethiopia [50]
estimated the major water balance components of the Upper Blue Nile basin using the
JGrass-NewAge hydrological system and remote sensing data (GLEAM and MODIS AET).
This study concluded that the satellite-based data introduce bias in estimating the water
budget. Another study by [58] conducted a multi-objective validation for West Africa river
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basins using remote sensing data. The results showed that MODIS satellite-based AET
underestimated SWAT-simulated AET in arid areas. Finally, Dile et al. [17] evaluated AET
outputs derived from AVHRR and MOD16 AET datasets using outputs from a SWAT model
for Ethiopia. This study suggested that datasets did not agree well with the precipitation in
regions with a bimodal precipitation pattern. Therefore, careful consideration should be
given to analyzing data from satellite-based products. Further information is necessary to
estimate the uncertainty in model outputs and improve the calibration results at HRU level.

5. Conclusions

This study used monthly streamflow and MODIS satellite-based AET data to calibrate
the SWAT model. Three calibration scenarios were conducted with streamflow, AET,
and streamflow—AET data to evaluate the simulated outputs. The sensitivity analysis
showed that the most sensitive parameters for streamflow are related to groundwater
flow, runoff generation, and channel routing, and for actual evapotranspiration, they
are all connected to soil properties. The model performance results indicated that the
single variable calibrations showed satisfactory performance only for the first variable that
was simulated. The multi-variable calibration showed satisfactory performance for both
streamflow and AET. The SWAT model generally under-predicted AET in all scenarios
compared to MODIS satellite-based AET.

This research showed that combining streamflow and MODIS satellite-based AET data
in the calibration process can improve model performance regarding streamflow and water
balance and contribute to understanding the hydrological processes in a mixed land-use
catchment. Furthermore, the use of satellite data in model calibration, as presented in
this study, can be utilized in catchments lacking measured data or in catchments with
similar hydrological and geomorphological characteristics. Future work should incorporate
discharge, soil moisture, and HRU level AET data in a combined objective function at
a high temporal resolution.
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Appendix A

The following tables display the land use categories of the study area at catchment
(Table A1) and sub-basin level (Table A2).

Table Al. Land use categories of the study area at catchment level.

Corine Classification SWAT Code SWAT Classification (%) Catchment

Industrial or commercial units UucoM Commercial 11.43
Discontinuous urban fabric URLD Residential-Low Density 34.11

Road and rail networks and associated land UTRN Transportation 4.07
Continuous urban fabric URHD Residential-High Density 1.54

Pastures PAST Pasture 0.31

Land p ri{m}ipally occupied by agriculture, with AGRL Agricultural Land-Generic 12.39

significant areas of natural vegetation

Broad-leaved forest FRSD Forest-Deciduous 3.11

Coniferous forest FRSE Forest-Evergreen 9.59

Mixed forest FRST Forest-Mixed 7.51
Sclerophyllous vegetation RNGB Range-Brush 15.94

Table A2. Land use categories of the study area at sub-basin level. Artificial surfaces (i.e., urban
fabric, industrial, commercial and transport units), agricultural areas (i.e., arable land, pastures
and heterogeneous agricultural areas) and forests and semi natural areas (i.e., forests, scrub and
herbaceous vegetation associations).

Sub-Basins Artificial Surfaces (%) Agricultural Areas (%) Forests and Semi Natural Areas (%)
Sub-basin 1 1.88 5.02 93.10
Sub-basin 2 53.36 9.95 36.69
Sub-basin 3 21.83 9.28 68.89
Sub-basin 4 56.11 25.05 18.84
Sub-basin 5 76.91 0.74 22.35
Sub-basin 6 18.31 23.25 58.45
Sub-basin 7 76.43 8.34 15.23
Sub-basin 8 56.77 0.29 4294
Sub-basin 9 75.28 3.06 21.65
Sub-basin 10 80.65 2.72 16.63
Sub-basin 11 28.65 27.38 43.97
Sub-basin 12 100.01 0.00 0.00
Sub-basin 13 74.16 25.83 0.00
Sub-basin 14 73.29 26.71 0.00
Sub-basin 15 81.90 18.10 0.00
Sub-basin 16 99.33 0.67 0.00
Sub-basin 17 64.20 35.76 0.04
Sub-basin 18 29.88 19.13 51.00
Sub-basin 19 7.98 13.54 78.48
Sub-basin 20 9.29 28.47 62.23
Sub-basin 21 80.42 19.58 0.00
Sub-basin 22 73.64 26.36 0.00
Sub-basin 23 83.87 16.13 0.00
Sub-basin 24 100.01 0.00 0.00
Sub-basin 25 100.00 0.00 0.00

The following figure shows the relative changes of the five most sensitive parameters
for each calibration scenario versus objective function (Figure A1).
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Figure A1. Calibrated values (x-axis) versus objective function NSE value range (y-axis); blue dots
symbolize streamflow calibration, green dots symbolize AET calibration, and grey dots symbolize
multi-variable calibration. The parameters (a—e) are the most sensitive parameters for streamflow
calibration, the parameters (f-j) are the most sensitive parameters for AET calibration, and the
parameters (k-o) are the most sensitive parameters for multi-variable calibration.
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Abstract: The transition from supercritical to subcritical flow around a fully submerged abrupt
negative step in a horizontal rectangular open channel has been investigated. In a laboratory
experiment the one-dimensional energy and the momentum conservation equations were studied
by means of depth and pressure measurements by piezometers installed along the bottom and
the step face. Froude number varied in the range 1.9 to 5.8 while the step height to critical depth
ratio was in the range 1.34 to 2.56. The results are presented in dimensionless form using mainly a
characteristic length scale that is the sum of critical depth and step height and the Froude number
of the supercritical flow upstream. Five different types of rapidly varying flow are observed when
the subcritical downstream tailwater depth varied. The supercritical water jet at the top of the step
either strikes the bottom downstream of the step when the maximum pressure head is greater, or
moves to the surface of the flow when it is lower than tailwater depth, and the separation of the
two flow regimes occurs when the tailwater depth to the characteristic length scale is around 1.05.
The normalized energy loss and a closure parameter for the momentum equation are presented
in dimensionless diagrams for practical use by the design engineer. Finally, the one-dimensional
equations of motion including Boussinesq terms are solved numerically and the results found are
congruent to the experimental findings.

Keywords: abrupt negative step; hydraulic jump; energy loss; momentum closure; Boussinesq
equations; specified intervals

1. Introduction

Stilling basins are designed to dissipate the kinetic energy of the flow by means of
hydraulic jumps formed in them, for which a thorough investigation of the physical and
numerical study is reported in [1]. In several cases an abrupt forward facing (negative)
step is introduced to stabilize the jump, so that it is not swept away from the basin. The
transition from supercritical to subcritical flow at an abrupt negative step affects the design
and construction of a stilling basin. The design usually includes determination of the step
height, the required tailwater water elevation, an adequate basin length and all necessary
structures in it such as blocks, end sill, etc. Submerged negative steps can also be met in
river training works, in canals conveying water, as well as in natural streams. Engineers and
scientists have been studying the flow of submerged steps in the laboratory for a long time,
measuring mainly the flow depths and pressure distribution at the bottom and the step
face, and trying to correlate the flow parameters to energy and momentum conservation,
as well as to the various flow profiles that appear there.

In laboratory experiments the flow is usually controlled by a sluice gate upstream,
and a sharp crested overflow downstream of the step. Five different rapidly varying flow
profiles have been observed around a step with supercritical flow upstream and subcritical
downstream [2—4], namely minimum B-jump, B-jump, wave-train, wave-jump and A-jump
(Figure 1). Minimum B-jump (Figure 1i) is the hydraulic jump at the toe of the step, Bjump
(Figure 1ii) is the submerged jump downstream of the step, wave-train (Figure 1iii) is the
surface jet-type flow without formation of a hydraulic jump, wave-jump (Figure 1liv) is
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the flow of an ascending jet forming a standing wave downstream of the step, before it
dives and results in a submerged hydraulic jump, and A-jump (Figure 1v) is the flow where
the hydraulic jump is formed upstream of the step. These profiles appear with the above
sequence if one increases the downstream tailwater depth continuously.

(1)

(ii)

(iii)

(iv)

v)

Figure 1. Transition from supercritical to subcritical flow around a vertical step, (i) minimum B-jump,
(ii) B-jump, (iii) wave-train, (iv) wave-jump and (v) A-jump.
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Several researchers in the past have studied the transition from supercritical to subcrit-
ical flow over a fully submerged negative (abrupt or rounded) step by experiments. Several
authors [2-11] have investigated the influence of the pressure distribution at the face of the
step of different jump types in order to obtain closure of the one-dimensional momentum
equation. Velocity and shear stress distribution was measured [12] at the channel bottom
using a Preston tube. In some cases the flow type alternated between B-jump, wave-train
and wave-jump every once in a while [4,13,14], thus resulting in varying velocity and
pressure fields. Standard deviation of pressure fluctuations at the channel bottom axis was
measured by [15], while published experimental results of jumps at an abrupt drop with
subcritical and supercritical flow conditions upstream have also been reported [16]. The
presence of roughness elements inside a channel with an abrupt drop reduced the pressure
forces on the bottom axis of the channel [17,18], if compared to the developed pressure
either from the classical hydraulic jump or inside a smooth channel with drop. Also, for
upstream Froude number greater than eight, the relative height of the step to upstream
depth d/y; does not seem to affect the energy loss [5], while the energy dissipation of the
jump [6] is higher in the case of a channel with negative step, if compared to the energy
loss in a channel with a positive step. The wave-jump type flow was found to dissipate the
energy more efficiently than the classical hydraulic jump [7,19], while inclined channels
under the presence of negative or positive step with sharp crested B-jumps resulted in
higher energy dissipation than A-jumps [20]. The different flow profiles developed in
sloping rectangular open channels with an abrupt drop have also been investigated [21],
while the highest energy loss was observed in B-jump, if compared to the minimum B-jump
and the A-jump [22]. The energy loss was reported [23] in dimensionless form, while
jumps formed at a negative step are more stable, energy dissipative efficient and more
compact [24], if compared to the jumps appearing in positive steps.

Regarding numerical modeling of the flow in the presence of an abrupt step, the
B-jump was studied [25] in an open channel 0.4 m wide with a 9.7 cm abrupt drop high for
upstream Froude numbers 1.21 and 1.4. The Reynolds-Averaged Navier Stokes (RANS)
equations were solved using the ANSYS-FLUENT commercial software with the finite
volume method to compute the free surface profile and the time-averaged velocity field.
The B-jump, wave-jump and A-jump in an open channel 2 m long and 0.4 m wide with
abrupt drops 3.20 and 6.52 cm high, for Froude number in the range 2.8-3.9, have been
studied [26] using Smoothed Particle Hydrodynamics (SPH) to discretize the Navier Stokes
equations along with k-¢ turbulence model. The results regarded the computation of the
instantaneous velocity and vorticity fields.

Systematic pressure measurements have not been reported to date in the area of an
abrupt drop in an open channel hence, pressure distribution cannot be linked to the linear
characteristics of the flow. Energy losses and momentum equation balance have not been
reported conclusively around a step with supercritical flow upstream, which is a result
due to lack of use of the appropriate dimensionless representation of them. The aim of the
present work is to investigate the rapidly varying flow in a horizontal rectangular open
channel with the presence of a fully submerged abrupt negative step, with supercritical flow
upstream and subcritical downstream. To obtain it we performed systematic measurements
of the linear flow characteristics as well as the pressure at the bottom and face of the step, for
supercritical flow upstream with Froude number up to about 6. From these measurements
the conditions under which different flow patterns appear, as well as other aspects of the
flow, such as the closure of the one-dimensional momentum and energy loss equations
will be investigated, and the results will be presented in dimensionless form. The Saint
Venant equations will be solved in one dimension including Boussinesq terms that have
been usually omitted in the past, to evaluate some of the experimental findings.

2. Theory

The flow under investigation (Figure 2) is that around a vertical forward facing
(negative) step where the flow upstream is supercritical and downstream subcritical. The
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EGL

parameters involved are the flow rate per unit width g, the step height d, the upstream and
downstream depths y; and y, and mean velocities V1 and Vj, respectively. Two parameters
that are important in the description of the flow are the critical depth y. = (q?/g)!/® and the
Froude number of the supercritical flow upstream of the step Fr; = V1 /(gy1)!/?, g being
the gravitational acceleration.

Cross Section Cross Section
(2) (1)
; EGL

Free

Surface .,

I

Figure 2. Definition sketch for the momentum and the energy equations.

Let us study the flow theoretically using the one-dimensional momentum and energy
conservation equations [27]. We apply the one-dimensional momentum equation along
the main flow direction per unit width, in the control volume between upstream Cross
Section 1 with supercritical flow and downstream Cross Section 2 with subcritical flow, and
depths y; and y», respectively, to get

1 1
S8yi +kgd(y; +d/2) — 5gy3 = q(V2 = V1) (1)

In Equation (1) we assume that the velocity is uniform at Cross Sections 1 and 2, the
shear stresses at the wall and the bottom of the channel can be neglected, and the pressure
distribution at the face of the step is hydrostatic hence, F1 = (gy12)/2, F, = (gy2?)/2 and
Fs = kgd(y; + d/2). To make Equation (1) valid, the second term on the left that corresponds
to force on step face pgd(y; + d/2) from the hydrostatic pressure distribution with pressure
pgy1 at the top and pg(y; + d) at the bottom must be multiplied by a correction factor k,
defined to be the ratio of the real pressure that is due to the curvature of the streamlines
near the step, to the anticipated hydrostatic one at the middle of the step pg(y; + d/2) [3].

If the flow rate q and depths y; and y, are known, solving Equation (1) for k we get

L — 9V2 = V1) — 38(y} — y3) )
gd <Y1 + %)
Equation (2) holds if the flow depth at the step is y, in other words for all types of

flow but A-jump. For the latter case the term in the denominator must be replaced by

gd(y, — d/2).
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The energy loss AH at the step is computed from the one-dimensional energy equation
assuming known depths and flow rate, and uniform velocity at Cross Sections 1 and 2.

AH=H; -Hy=d+y, +Vi/2g—y,— V3/2g ©)

where Hj and Hj, are the energy heads at Cross Sections 1 and 2, respectively, considering
uniform velocity distributions.

3. Experiments
3.1. Setup and Procedure

Experiments were carried out at the Laboratory of Applied Hydraulics of the School
of Civil Engineering at the National Technical University of Athens, Greece. The open
channel used is 10.50 m long with rectangular cross section 0.255 m wide x 0.50 m deep is
shown in Figure 3, and was equipped with a sluice gate upstream and a thin crested weir
at downstream end. The section of the channel where measurements were taken has been
modified to accommodate the experiments. The steel, nontransparent bottom has been
replaced with Lucite with a row of piezometers attached to it, and the vertical side glass
walls were replaced with new ones with improved optical properties.

, 10.520 m ,
| .
HIGH ENERGY HIGH RESISTANCE AND CLEARNESS PLEXIGLASS BOTTOM
DISSIPATION  GLASS SIDE WALLS OF THICKNESS 10mm  oF THICKNESS 10 mm
n STRUCTURE
143 m
£ 1.315m | :
S S o — CROSS
S N J143m, SECTION
3] c / - ig ig
"o}
e 18 [T T s |3
E et g ° Tg
> p= —
8 e HT 0.255m
- "mﬁ Il I Il 1l It
o
=

0.800m  PIPE PVC 200 mm PN10 PUMP

0.354m

Figure 3. Side view of the open channel.

The water supply was obtained via a recirculation system that consists of a 3 kW pump
with variable speed motor and maximum discharge capacity of 40 L/s at 5 m head, which
is connected to a 2.65 m® water tank at the downstream end of the channel. Water was
pumped to the upstream end of the channel through a PVC pipe of nominal diameter 0.2 m.
The flowrate was measured with an ultrasonic flow meter of 2-5% accuracy, attached in the
horizontal PVC pipe that flowed full about 10 pipe diameters downstream of the pump. A
screen system at the entrance of the water in the channel was used to dissipate the kinetic
energy of the inflow and reduce waves from agitation, upstream of the sluice gate.

A downstream facing vertical step 10.3 cm high and 1 m long made of Lucite was
placed 4.85 m upstream of the channel end. The vertical sluice gate was positioned 0.35 m
upstream of the step face, in order to control the flow from upstream. Ten piezometers were
placed in the middle of the step and three along the middle of the step face. Twenty-one
piezometers were placed along the middle of the Lucite bottom downstream of the step.
The piezometers were de-aerated during the course of the experiment, once the step was
submerged in the flow.

The flow was controlled with the vertical sluice gate and supercritical flow was
obtained on the step surface at the desired inflow Froude number upstream from the drop.
Downstream, the flow was controlled with a vertical sharp crested weir at the end of
the channel, and the depth was adjusted to the desired level. Once the supercritical flow
conditions were set upstream of the drop, the rapidly varying flow around it was adjusted
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by the tailwater depth. The depth of flow was measured using a point gauge and from the
piezometers far downstream of the step, where the flow was parallel to the bottom.

The experimental procedure was as follows. The pump was set to the desired flow rate
adjusted by the variable speed motor and measured with the ultrasonic flow meter, then
the channel was filled with water above the step, keeping the end weir at the appropriate
elevation. The piezometers were de-aerated and the supercritical flow upstream of the drop
was adjusted to the desired inflow Froude number with the sluice gate opening. Then, the
flow conditions downstream of the submerged step were adjusted with the end weir to the
desired type of flow. Increasing the weir height gradually, the flow was set from minimum
B-jump to B-jump, to wave-train, to (standing) wave-jump, to A-jump. The flow depths
were measured with a point gauge with accuracy £0.0001 m. The supercritical flow depth,
y1, was measured at a distance 3 y; upstream of the drop, while the tailwater subcritical
depth y, was measured at a distance 2.5 m downstream of the drop, (Figure 2). In both
cases the flow depths y; and y, were measured at Cross Sections 1 and 2, where the flow
was almost uniform. Three hundred (291) different jump and pressure measurements for
various upstream and downstream conditions have been performed. The range of the main
flow parameters is listed in the following Table 1.

Table 1. Range of initial parameters of supercritical flow upstream of the step.

Q (L/s) q (L/s/m) y1 (cm) y2 (cm) Inflow Fry Inflow Re
6.46-17.50 25.32-68-67 1.4-3.6 25.8-26.8 1.88-5.82 23,000-63,000
3.2. Results

In order to normalize the measured lengths, i.e., the flow depths y; and y,, we must
define a length scale which should include information regarding the flow parameters.
These parameters must involve information regarding the fluid and the geometry of the
flow. A characteristic length scale has been defined to be the sum y. + d, which involves
information regarding the flow rate q in terms of the critical depth, and the potential energy
of the flow in terms of the step height. This length scale is also greater than y; + d and
approaches asymptotically the maximum (supercritical) water surface elevation upstream
of the drop.

In an effort to distinguish the flow regimes of the different jump types the normalized
depth Fri(y. + d)/y» is plotted in Figure 4 as a function of the inflow Froude number
Fr; upstream. The triangles correspond to wave-train where the supercritical jet flow
remains at the surface downstream of the drop and subsequently diffuses into the tailwater
due to turbulent shear stress at the interface between the supercritical and subcritical
flow regimes. Downstream of the step, there exists a long recirculation regime up to the
point of reattachment. The wave-train separates the following two flow regimes: The first
where the supercritical jet flow impinges at the bottom near the toe of the step followed
by a (minimum B or B type) hydraulic jump that may be submerged; the second where
the supercritical jet flow remains at the surface downstream of the drop (wave-jump or
A-jump). An indicative ‘line’ separating the two regimes may be regarded that for which
Fri(yc +d)/y2 =0.71 Frqy + 0.43.

The normalized depth y, /[Fri(yc + d)] is plotted in Figure 5 against y, /[Fr1(y; + d)]
for all different types of the flow, and subcritical tailwater depth. It is evident that all data
collapse on a single curve for all flow types, with subcritical flow downstream of the step.
The second order polynomial regression line (with correlation coefficient R? = 0.98) shown
in the graph that relates the two mononyms, can be of use in the design of stilling basins,
because it relates the incoming flow of known discharge q with depth y; (Froude number
Fr;), to the tailwater depth y, and the step height d. For example, if we consider a 5 m
wide orthogonal channel conveying discharge of 30 m3/s, with known (defined) upstream
and downstream depths y; = 0.60 m and y, = 4.00 m, the Froude number and critical depth
are Fr; = 4.12 and y. = 1.54 m respectively. Then, from the implicit function with respect to

70



Hydrology 2022, 9, 74

step height, by trial and error one gets d = 2.58 m, corresponding to y,/[(yc + d)Fr{] = 0.24
and y»/[(y1 + d)Fr;] = 0.31.
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Figure 4. Distinction of the different flow regimes.
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Figure 5. Relationship between y, Fry, d, yc and yy.

The energy loss calculated from the one-dimensional energy Equation (3) where
uniform velocity distribution is assumed, is normalized by y. and plotted versus the
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normalized length Fri(y. + d)/y» for all different types of flow in Figure 6. All the data
collapse on a second order polynomial:

y = —0.047x> +1.38x — 2.10 (4)

X

min B jump

B jump

Wave train

Wave jump

A jump

| ey =-0.047x>+ 1.38x - 2.10

2 3 4 5 6 7
Fri(y. + d)y,

Figure 6. Normalized energy loss at the step AH/y. versus Fry(yc + d)/y>.

This figure can be used along with Figure 5 to estimate energy loss for the design of a
stilling basin that has been selected for construction.

The pressure force at the face of the step is corrected using a pressure correction
coefficient k computed from Equation (2). Assuming uniform streamwise velocity and
hydrostatic pressure distribution, k is computed using depth y; at the step face for the
A-jump type of flow and y; for all other types of flow considered. Neglecting the momen-
tum loss due to friction, the computed k is plotted against dimensionless length (y; + d)/y»
in Figure 7. It is evident that only a few data regarding minimum B-jump are found in
the regime (y; + d)/y2 > 1, while the majority of the measurements are in the regime
(y1 +d)/y2 < 1. The pressure correction coefficient k takes a value around 0.5 when the
flow type is minimum B-jump and 1 for A-jump. If we substitute k = 1/2 in Equation (1) or
k =1 in modified (1) we end up.

Loy +tgd (v, +9) -
3 +

1
28
®)
3gd(y; +d)* — %)

for the minimum B-jump and

%gy%+gd(y ) 38y3 = q(V2— V1) ©)
18y} —38(y, —d)* = q(V2— V1)

for the Ajump. The first equation shows that if we consider hydrostatic pressure distribu-
tion on the step face, the momentum from the left must be reduced by gd(y; + d/2)/2 for
closure, that is equal to one half of the pressure force on the step face, if the water elevation
is at y; + d. The second shows that the pressure distribution on the step face is hydrostatic,
since the pressure force of the step face on the control volume is counter balanced by the
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Figure 7. Correction coefficient k to balance the momentum equation versus (y; + d)/y».

When the hydraulic jump is submerged (B-jump) 0.5 <k < 1.5 for 0.6 < (y1 + d)/y2 < 1.
If the flow does not impinge at the bottom, in other words if surface flow is observed
downstream of the step face, then 1 < k <2 for 0.55 < (y; + d)/y2 < 0.9 (wave-train) and
k>1.5for 0.5 < (y; +d)/y, <0.7 (wave-jump).

We present the pressure head measurements along the middle of the face of the step
measured with three piezometers located 2.0, 4.5 and 7.0 cm above the channel bottom in
Figure 8. The lines plotted are linear fits to measured pressure head, where the correlation
coefficients were found to be greater than 0.99. The red line is the one corresponding to
zero pressure at the top of the step. When the flow is supercritical or the minimum B-jump
appears downstream, part of the step face appears to have negative pressure. When the
flow type is B-jump, i.e., when the hydraulic jump is submerged, the pressure may be
positive all over the face of the step, or negative in part of it, when the tailwater depth is
low. For the case of the wave-train the pressure at the face of the step is marginally positive,
depending upon the transient characteristic of the flow [4,13], while it is positive all over
for the wave-jump and the A-jump.

Assuming linear pressure distributions at the face of the step we can compute the
maximum pressure at the bottom. If we normalize the measured pressures with maximum
pressure at the step and the vertical distance from the bottom versus the maximum pressure
head we end up with a dimensionless graph p/pmax against y/(p/pg)max shown in Figure 9.
One may observe that when the maximum pressure head is equal to the step height,
P/Pmax~0, and may occur for three types of flow, supercritical, minimum B-jump and
B-jump. For all other types of flow the pressure is positive over the face of the step and the
maximum pressure head is greater than d.

We can normalize the horizontal distance x from the toe of the step using the theoretical
distance where a free water jet atop the step with velocity Vi would reach the bottom
downstream, namely 2!/2 Fr1d. In Figure 10 we have plotted the pressure head p/pg at
along the bottom downstream from the step normalized by y,, versus the dimensionless
distance x/(2/2 Frid) where the supercritical free water jet would theoretically impinge at
the bottom, for all different types of jumps. It is evident that when the water jet strikes the
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bottom (B-jump and minimum B-jump), there is a peak pressure at some distance from the
step that is due to stagnation, as a result of the vertical velocity component. In particular,
for the case of the minimum B-jump the peak pressure occurred around x/(2!/2 Fryd) = 0.3.
Furthermore, the pressure upstream of the maximum is less than the hydrostatic one for the
previous three types of the flow, which is a result of the curved streamlines of the water jet.
When the flow runs on the surface (wave-train, wave-jump, A-jump) the peak disappears,
the pressure is lower than hydrostatic up to about x/(2'/2 Fr;d) = 0.5 and it is attributed to
the ‘suction’ developed from the fast water jet at the top of the step (Bernoulli).

Next, the normalized maximum pressure head pmax/pg measured at the bottom of
the channel downstream of the step by tailwater depth y,, is plotted versus y»/(y. + d)
for all types of jumps in Figure 11. Two groups of points appear in this figure showing a
sharp discontinuity, the group on the left from pressure measurements of the minimum
B-jump and B-jump types of flow where (pmax/pg)/y2 > 1, while the group on the right
from pressure measurements of the wave-train, the wave-jump and the A-jump types of
flow where (pmax/0g)/y2 < 1. This sharp discontinuity occurs at y,/(yc + d)~1.07 where
the flow type from B-jump converts to wave-train, i.e., when the flow becomes a surface jet
with a very long recirculation regime downstream of the step. Apparently, the pressure
distribution is not hydrostatic in both regimes, on the left because the piezometer measures
the dynamic pressure that is due to the vertical velocity component besides the hydrostatic
pressure mentioned earlier, while on the right where the fast surface flow ‘sucks’ the
underlying slow recirculating fluid (Bernoulli).
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Figure 8. Distribution of the measured pressure head at the face of step with three piezometers,
extended linearly to the top (i) supercritical flow, (ii) min Bjump, (iii) Bjump, (iv) wave-train,
(v) wave-jump, and (vi) A-jump.

2.0 [ [ [
* min B jump
* B jump
»+ Wave train
15 : i
. W'fwe jump
. . " A jump
~ * =
210 gy -
\\_Q:" . | ] .‘: L ] ...
> "
0.5 i
| | | | | | | | | | | |

0.0 ‘ ‘
0.5 04 -03 -02 -01 00 01 02 03 04 05 06 07 08 09 10
(p/p2)(p/pg) .

Figure 9. Dimensionless pressure head (p/pg)/(p/ pg)max at the face of the step versus dimensionless
vertical distance from bottom y/(p/pg)max for all types of flow.
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The pressure distribution on the face of the step has been found to be linear along the
three piezometers installed 2.0, 4.5 and 7.0 cm above the channel bottom, i.e., the lowest is
2 cm above the bottom while the highest 3.3 cm below the top of the step. If we assume that
the pressure distribution is linear over the face of the step and extrapolate the measured
linear pressure distribution to the bottom and the top of it, then we can compute the
pressure force that the step exerts on the flow. Hence, it is evident to compare the pressure
force on the step face estimated from the one-dimensional momentum equation, with the
force computed from the hypothetical linear pressure distribution that is measured by the
three piezometers and is extrapolated to the top and bottom of the step. Hence, the force
estimated from the momentum equation is computed as the difference between pressure
force and inertial force at Cross Sections 1 and 2 in Figure 2, assuming uniform velocity and
hydrostatic pressure distribution, while the measured force is computed by integrating the
assumed ‘linear” pressure distribution over the step height. Both forces are normalized by
the minimum force obtained for critical depth. The normalized estimated force is plotted
versus the measured one in Figure 12, and found to be bigger as expected. Apparently,
the differences are resulting from (1) negligence of the friction force from the walls and
bottom of the channel and (2) from the hypothesis of linear pressure distribution at the face
of the step.
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Figure 11. Dimensionless maximum pressure head at the bottom of the channel downstream of the
step, versus y»/(yc + d) for all types of jumps.
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Figure 12. Comparison between the theoretical and the experimental results for the non-
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4. Numerical Modeling
4.1. Governing Equations

Boussinesq equations have been used to model the unsteady one-dimensional rapidly
varied open channel flow [27] and simulate the minimum B jump and A jump. These
include additional terms if compared to Saint Venant equations from the non-hydrostatic
pressure distribution resulting from the curved streamlines. The channel is prismatic with
rectangular cross section and rigid bottom and sides with no lateral flow. The assumptions
made are the following: (1) the vertical velocity is zero at the channel bottom and maximum
at free surface, (2) the streamwise velocity is uniformly distributed over the depth, (3) the
lateral velocity is zero, (4) the fluid is incompressible, (5) the bottom slope is small and
(6) the formula for energy friction slope of steady flow is used for the unsteady flow. The
one-dimensional Boussinesq equations for mass and momentum conservation in vector
form are

9G  oF
S+5 =5 @)
where
uy 0
G = y :|, F - 7 S = |: :|/ 8
{ uy [ wy+ (4)ey? - (3)yE ] 8y (So — S) ®)
0%u 0*u ou 2
e v <8x> ©)

In equations above, x is the longitudinal distance along the channel measured from
the sluice gate, t is the time, y = y(x,t) and u = u(x,t) are the unknown depth and average
over the cross section velocity in the main flow direction, t S¢ the energy grade slope, S, the
longitudinal bottom slope, g the gravitational acceleration and E = E(x,t) the Boussinesq
term. The energy slope computed from Manning formula in SI units is S¢ = n?u?/ RY/3,
where n¢ is the Manning friction coefficient, u the mean over the wetted cross-section
velocity and R the hydraulic radius.

The system of equations can only be solved numerically. The Dissipative Two-Four [28]
and the MacCormack [29] finite difference schemes were applied for the discretization of the
mass and momentum conservation equations, with the appropriate initial and boundary
conditions. The first scheme is fourth order accurate in space and second order accurate in
time, while the second is second order accurate both in space and time, both allowing for
the proper simulation of the Boussinesq terms as well as the free surface of hydraulic jump.
Iterations continue until the depth difference between two successive iterations is less than
a fixed value, then the minimum B jump or the A jump form as part of the steady state
solution. Implementation of the numerical schemes used for the solution of Equation (7) is
presented in the Appendix A.

The input data for the developed algorithm include the geometry of the channel, the
flow depths yyp and yq, as well as the flow rate, Q. The algorithm has been programmed
in house using the Matlab® computational environment.

4.2. Results

Four experiments have been selected, two regarding formation of the minimum
B-jump and two of the A-jump shown in Table 2, where the flow rate Q, upstream Froude
number Fr and depth yyp at the vena contracta, and the depth y4, upstream of the weir for
each jump have been considered. These experiments were modeled using the same flow
conditions (upstream and tailwater depths and the flow rate), and the numerical results are
compared to the experiments in the following paragraphs.
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Table 2. Measured parameters for modeling of the hydraulic jumps.

Test Case/Experiment Q (L/s) Fr Yup (m) Ydo (m) Type of Jump
1 8.11 3.59 0.0200 0.1259 minimum B
2 9.88 4.37 0.0200 0.1442 minimum B
3 6.70 3.20 0.0190 0.1922 A jump
4 9.41 4.50 0.0190 0.2234 A jump

The spatial step was 0.025 m resulting in 201 nodes for all cases. The time interval
in each iteration was variable for stability purposes, subject to Courant-Friedrichs-Lewy
condition. Artificial viscosity was added to the numerical schemes to reduce oscillations in
the region of the jump. The dissipation parameter has been set to 0.012 after trial and error,
and was applied to all cases. The computed flow depth difference in all nodes between two
successive iterations did not exceed 10~* m for convergence.

In Figures 13 and 14 the numerical results are compared to experiments regarding test
case 1 (min Bjump) and test case 3 (A-jump) respectively. In the same figures we have
plotted the Boussinesq terms computed, using the two different schemes for comparison.
From these figures it is evident that Boussinesq term is significant in the region of the jump
owing to the non-parallel streamlines where it takes the highest values, while is vanishes
everywhere else. The location of the jump is in acceptable agreement with measurements,
especially in the case of the A-jump (Figure 14 top), while the jump shape cannot be
predicted numerically, as expected. The measured pressure at the bottom of the channel
is also plotted upstream and downstream of the step for comparison. It is asymptotically
congruent to the computed depth in the uniform (parallel) flow sections upstream and
downstream of the hydraulic jump in both cases, while the hydrostatic pressure distribution
is confirmed outside the region of the jump, from the almost zero value of the Boussinesq
term, as expected.

The computed mean velocity over the cross section along the channel is plotted for
test cases 1 and 3 in Figure 15, and is not different for both computational schemes. The
MacCormack scheme overestimates slightly the velocity at the upstream end of the channel,
while the two numerical schemes produce almost identical results downstream. The
‘computational pseudo-time” evolution of the hydraulic jump until steady state is shown
in Figure 16 for test cases 2 (min Bjump) and 4 (A-jump), using the Dissipative Two-Four
and the MacCormack scheme respectively. In these figures the free surface profile is also
shown at time t = 0, resulting from the initial condition, while it can be noted that the jump
moves upstream until it is stabilized in its final location. Similar numerical results have
been produced for the other test cases.

The required iterations for the algorithm to reach steady state and the maximum
percentage error regarding mass conservation are shown in Table 3 for all test cases and
both numerical schemes. The depth of flow and mean velocity were used to compute the
flow rate. It is evident that the mass conservation error from the MacCormack scheme is
smaller if compared to that of the Dissipative Two-Four scheme, except for case 4, while the
algorithm reaches steady state solution faster if the MacCormack scheme is used, requiring
smaller number of iterations except for test cases 2 and 4.

Table 3. Mass balance error and number of iterations for convergence.

Test Case/Experiment Numerical Scheme Maximum Mass Conservation Error (%)  Iterations
1 Dissipative Two-Four 4.01 6117
MacCormack 3.59 5779
2 Dissipative Two-Four 4.07 4866
MacCormack 3.64 5067
3 Dissipative Two-Four 2.45 5474
MacCormack 213 4934
4 Dissipative Two-Four 3.92 5965
MacCormack 4.09 6355
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Figure 13. Test case 1: (Top) Comparison between the computed free surface profile and the experi-
ment (point gauge and pressure head measurements). (Bottom) Numerical results for the Boussinesq
term along the channel for the Dissipative Two-Four scheme, prediction and the correction step.
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Figure 14. Test case 3: (Top) Comparison between the computed free surface profile and the experi-
ment (point gauge and pressure head measurements). (Bottom) Numerical results for the Boussinesq
term along the channel length for the MacCormack scheme, prediction and the correction step.
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Figure 15. Numerical results for the mean stream-wise velocity along the channel length: Test
case 1 (top), and test case 3 (bottom).
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Figure 16. Numerical results for the temporal evolution of the jump: Test case 2 (top) for the
Dissipative Two-Four scheme, and test case 4 (bottom) for the MacCormack scheme.

5. Discussion

The presence of a fully submerged step in an orthogonal channel with supercritical
flow upstream and subcritical downstream results in five major types of rapidly varying
flow. They are, in the order of appearance for increasing tailwater depth: (i) minimum
B-jump, (ii) B-jump, (iii) wave-train, (iv) wave-jump and (v) A-jump. For the first two types
of jumps the supercritical water jet impinges at the bottom, while for the other types the
water jet moves at the surface.

A characteristic length scale used for the description of the flow and to normalize
the measured lengths, was found to be the sum of the step height and critical depth
d + y., regarding the potential energy height and the minimum energy (critical) depth of
the flow. To apply the momentum equation in the flow direction, the assumption of the
hydrostatic pressure distribution at the face of the step had to be reevaluated, and closure
was obtained with the use of a pressure correction coefficient k. The one-dimensional
momentum equation has led to an equation for the theoretical calculation of k as a function
of measured flow depths y; and yy, the step height d and the discharge per unit width q
(Equation (2)). The coefficient k for the case of the downward moving water jet (minimum
B-jump and B-jump) was found in general less than one, while for the case of a surface
water jet (wave-train, wave-jump and A-jump) was found greater than one (Figure 7). Note
that in some measurements regarding B-jump k was greater than the unity, possibly due to
the alternating flow characteristics between B-jump and wave-train, something that has
been also observed earlier [13]. A comparison of k computed from experiments from earlier
investigations is shown in Figure 17, where k has been plotted regardless of the type of
flow. From this graph it is evident that k takes the highest values if (y; + d)/y2 < 0.5, and
the lowest ones if (y; + d)/y2 > 1. There are experiments [4,6,12,22] where k computed
from the measurements takes negative values, a result that is considered to be ambiguous,
since the momentum upstream of the step must always exceed that of tailwater. One issue
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could be related to the different accuracy of the measurements presented in those studies.
Another issue could be related to the size of the step and the type of the flow. In fact, from
the analysis of the experiments, it turned out that the types of flow that gave negative
values of k are the minimum B-jump and B-jump for small height steps. Those flows that
impinge at the bottom if combined with small step height may produce negative pressure
profile (see for example Figure 8ii where part of the pressure is negative in a step that is
high if compared to y.). The data of [4] show several points around k = 0 a result that is
attributed to small step size, if compared to the critical depth of the flow. The data show a
very large scatter for (y; + d)/y2 < 0.5, where k in some cases is much larger than 2. The
high values of k mean that the pressure at the face of the step is greater than hydrostatic
(Figure 8v). A closer look at the experiments showed that all the data that gave k > 2
correspond to wave-jump. Hence, the recirculation roller under the jump where the flow
expands in depth increases the pressure abruptly on the step face, resulting in large values
of k and ejection of the water jet upwards. Moreover, the discrepancy of the data may be
attributed to the different size of the channel width and flow parameters used in different
experiments as shown in Table 4.

Apparently, the flow downstream of the step is three-dimensional (3D) based on the
ratio of the channel width to the tailwater depth b/y, < 5. Note that the flow is not affected
by the side walls in a wide channel with b/y, > 5 [27]. It is evident that in a wider channel
the flow is rather two-dimensional with no secondary flow, if compared to a narrower one
where the tailwater depth is around the same size of channel width, with strong secondary
flow and three-dimensional flow characteristics. Moreover, discrepancies may occur from
the size of the step height used, if compared to a characteristic length, such as the critical
depth y.. If d/yc < 1, the curvature of streamlines at the drop is small, resulting in a
minimal effect of the step in the momentum equation. The effect of the geometrical and
hydraulic parameters is also shown in Figure 18 where the present data of Figure 5 are
plotted in Figure 18 along with data from earlier investigations. There is a significant spread
of the data that is due to the geometric characteristics and flow parameters used.
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Figure 17. Comparison of k versus (y; + d)/y», from the present and earlier investigations [4,6,7,9,12,13,19,22,23].
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Table 4. Main geometric and hydraulic parameters of earlier and the present experiment.

Researchers b (m) d (cm) q (IUs/m) Fry dfyc Dimelr:\ls(;‘(/)vnality
Rajaratnam & Ortiz 1977 [12] 0.410 3.60-7.60 35.79-145.24 2.97-10.55 0.40-1.43 3D
Hager & Bretz 1986 [6] 0.500 7.60 60.00-400.00 3.93-5.71 0.36-1.06 3D
Kawagoshi & Hager 1990 [19] 0.500 5.00-7.70 5.98-179.56 1.99-13.68 0.37-5.00 3D
Pagliara 1992 [7,9] 0.500 3.72-8.45 9.80-138.00 1.85-6.90 0.45-2.78 3D
v O SE BERN WY oplg o
wman O SHEP BTEL R pmy w
Larson 2004 [22] 0.610 9.72-30.48  95.63-386.22 4.10-6.41 0.39-2.22 3D
Papanicolaou & Matziounis 2006 [23] 0.100  2.50-10.00 29.90-71.50 1.73-4.91 0.31-2.17 3D
Present 0.255 10.30 25.32-67.08 1.88-5.82 1.34-2.56 3D
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Figure 18. Comparison of y,/[(yc + d)Fr1] versus y,/[(y1 + d)Fr;], from the present and earlier
investigations [4,6,7,9,12,13,19,22,23].

The normalized energy loss computed from the one-dimensional energy equation
with critical depth AH/y. is a function of the dimensionless parameter Fri(y. + d)/y> as
shown in Figure 6. A quadratic equation can give an estimate of AH/y. when the flowrate,
step height, Froude number and tailwater depth are given. In Figure 19 we have plotted
the present data along with data from earlier experiments for comparison. Data [4] show
the same trend as the present ones and those in [22], while those by other authors have
shown higher energy loss even in the regime 2 < Fri(y. + d)/y2 < 6 of the present data.
From Table 4 one may note that the data with higher energy loss correspond to a two-
dimensional type of flow where the open channel used was quite wide. The hydraulic jump
is an energy loss mechanism where dissipation occurs due to vigorous mixing (mixing
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energy) at Kolmogorov scale where the viscosity is dominant, converting the high kinetic
energy of the flow into heat. In wider channels the side walls do not affect the flow, thus
enhancing mixing, while in narrower ones the side wall shear suppresses turbulence and
subsequently the energy losses. This is evident in the experiments by Mossa et al. [4], where
the normalized loss in the 0.40 m wide SIA channel is higher than that in the 0.30 m wide
IAM channel for the same values of Fri(y. + d)/y> in the horizontal axis. Moreover, the
experiments by Larson [22] in a 0.61 m wide channel show higher energy losses than those
in measurements in narrow channels [23].
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Figure 19. Dimensionless energy loss AH/y. as a function of Fri(y. + d)/y; for all types of
jumps [4,6,7,9,12,13,19,22,23].

Measurements of the pressure at the step face and downstream of the toe have been
performed by piezometers installed along the middle of the channel cross section. The
pressure at the face of the step measured at three points was found to vary linearly with
distance from bottom. The pressure was extrapolated linearly to the top and bottom of
the step, and part of it was found to be negative near the top for the cases of supercritical
flow, minimum B-jump and B-jump, while it was positive on the face of the step for the
wave-train, wave jump and A-jump. The normalized pressure by the maximum pressure
at the bottom was zero at the face of the step at dimensionless height y/(p/pg)max~1 from
bottom, only for minimum B-jump and B-jump.

The pressure head at the bottom downstream of the step has shown a maximum
that greater than tailwater depth, and occurred at normalized distance x/ (21/2Fr;d)~0.25
from the step for the minimum B-jump and B-jump, while the pressure head was lower
everywhere else up to x/(2!/2Fr;d)~2. For the types of flow wave-train, wave-jump and
A-jump the pressure was lower than hydrostatic up to about x/(2!/2Fr;d)~1.50, meaning
that the water jet creates a surface flow that sucks the fluid from recirculation zone below
it. The normalized maximum pressure head (p/pg)max/y2 at the bottom of the channel
downstream of the step was found greater than 1 for y,/(yc + d) < 1.07 for min B-jump and
B-jump, and lower than 1 for y,/(yc + d) > 1.07 for all other types of flow. Hence, one may
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observe that the water jet flows at the surface once the tailwater depth for y, > 1.07(y + d).
Finally, the normalized force at the face of the step computed from the pressure distribution
was found lower than the estimated one from closure of the momentum equation, a result
that is expected since in theoretical analysis friction force has been neglected, and pressure
distribution at the step is assumed to be linear.

Regarding the numerical modeling of the free surface and the location of the mini-
mum B jump as well as the A jump, the Boussinesq equations were discretized with two
finite difference schemes, the Dissipative Two-Four scheme and the MacCormack scheme.
Apparently, the RANS equations combined with a turbulence closure model or SPH can
capture the turbulent structure of a steady hydraulic jump but the computational cost
is high, since at high Reynolds numbers the computational time required for a decent
computer is very long. Detailed discussion on this may be found in [30,31], while in [31] it
is stated that RANS equations combined with a turbulence closure model can model the
mean flow variables with accuracy over 90%, including also air concentrations. Moreover,
the high fidelity Eulerian methods such as the LES or DNS or the Langragian method
SPH can capture the turbulent structure of a steady hydraulic jump but the computational
cost is high. For practical civil engineering applications shallow water modeling is much
simpler to use while the one-dimensional shallow water equations can capture the basic
characteristics of a hydraulic jump with acceptable accuracy. Computations of the flow
depth and the average cross-sectional velocity at the downstream boundary node and at the
step were done using the method of characteristics and an iterative convergence algorithm
for the flow depth between two successive iterations. Experiment and numerical results
regarding the free surface elevation were in agreement, thus validating the numerical
algorithm. In the four test cases examined the MacCormack scheme has shown smaller
error in mass conservation.

6. Conclusions

From the analysis of experimental data and the appropriate non dimensional rep-
resentation of the findings in a submerged abrupt drop in an orthogonal channel with
supercritical flow upstream where Fr < 6 and 1 < d/y. < 3, the following conclusions
are drawn:

e  Five different types of subcritical flow are observed downstream of a submerged
vertical step in an orthogonal channel, minimum B-jump and B-jump where the
supercritical jet impinges at the bottom if dimensionless depth y,/(y. + d) < 1.07,
and wave-train, wave jump and A-jump when the water jet moves at the surface if
y2/(yc +d) > 1.07. These can be distinguished if the normalized depth Fry(y. + d)/y»
is plotted against Fr;.

e For all five different types of flow, there is an equation relating the upstream and
downstream depths y; and y», the critical depth and Froude number (Figure 5), from
which one may compute the step height that fulfills these data.

e  The energy loss in dimensionless form AH/y. for each type of flow can be estimated
using Figure 6, where it is plotted versus the normalized length Fry(y. + d)/y2.

e Regarding the closure of momentum equation, for the limiting case of minimum
B-jump the pressure correction coefficient k = 1/2 is equivalent to pressure force
upstream from a linear pressure distribution extended to depth y; + d but reduced
by gd(y1 +d/2)/2 for closure; for the limiting case of A-jump the pressure correction
coefficient k = 1 is equivalent to pressure force downstream from hydrostatic pressure
distribution to depth (y, — d) from free the surface for closure.

e  The pressure distribution measured at the face of the step was linear. If extended to
the top of the step, there was a regime of negative pressure for the minimum B-jump
and B-jump types of flow. The pressure head at the bottom downstream of the step
showed a maximum that exceeded the tailwater depth for the minimum B-jump and
B-jump types of flow, while around the toe was less than y; for all other types of flow.
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e  The present experiment can be useful to the hydraulic engineer in the design of stilling
basins with abrupt negative steps and other structures relevant to the dissipation of
kinetic energy of water.

e  The numerical results showed that Boussinesq equations can simulate the basic flow
characteristics of the minimum B-jump and the A-jump with acceptable accuracy.
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Appendix A
On the Numerical Solution of Boussinesq Equations

The physical and computational grid for the solution of the governing equations is
shown in Figure Al. The jump forms inside a horizontal open channel with rectangular
cross section of width b and flow rate Q, combining the use of an upstream sluice gate
and a downstream sharp crested weir, with the distance between them to be 5.20 m. The
longitudinal distance x is measured from the origin set at vena contracta downstream of
the sluice gate. The distance between vena contracta and the weir is L = 5.00 m (region
where the computational solution is sought) and is discretized by a number of n nodes
including the boundary nodes, creating a uniform grid with interval Ax =L/(n — 1). The
depth at vena contracta is yyp and the depth upstream of the weir where the flow is almost
uniform is y4,. The index i denotes the computational grid location, and the upstream
and downstream boundaries correspond to nodes i = 1 and i = n with depths yy, and
Vdo respectively. The abrupt drop is located at node i = m and it is treated numerically as
a boundary.

- = |
Sluice___|
Gate
' ! h - T
k+1 777 e " P ' +' P
Upstream . H At ' Yoo €7
— ' . [ ad
Boundary r.p I S e "'"Q""T """ AR T &Downstream
Abrupt Drop———| % 1 — ' Boundany
Sharp Crested
Weir

X > L=5.00 m

Figure A1. Physical and computational domain of the rapidly varied flow in the region of the drop.
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The Boussinesq equations can be solved numerically using two different schemes, the
Dissipative Two-Four and the MacCormack scheme. The Dissipative Two-Four scheme
consists of a predictor and a corrector step, again for the spatial derivatives of Equation (7),
in the predictor step forward finite differences are used and in the corrector step backward
finite differences. This scheme includes the spatial nodes i + 2, i + 1 and i in the predictor
step (Equation (A1)) and the nodes i, i — 1 and i — 2 in the corrector step (Equation (A2))
respectively, as:

A
G =G +2 (k2 — 8F, + 7FF) + st (A1)
K% 1 k * A * * * 1 *
G = E(Gi +G) + S (—TF 48Ry — L) + 58], (A2)
The vector G}‘H at the next iteration level k + 1 and grid point i is given by:

Gkl = %(G}‘ +Gi**), (A3)

where A = At/ Ax, At being the time step and superscripts k and k + 1 refer to two successive
iterations. All variables with asterisk (*) refer to those calculated at the predictor step while
all variables with double asterisk (**) refer to those calculated at the corrector step.

The MacCormack scheme is a two-step algorithm scheme. For the spatial derivatives
of Equation (7), forward finite differences are used including nodes i + 1 and i in the
predictor step (Equation (A4)), while in the corrector step backward finite differences are
used including the nodesiand i — 1 (Equation (A5)) as:

G =Gk— A(F};l —~ F}<) + AtSF, (Ad)

and
G* = Gf —A(F —F{ ) +Ats]. (A5)

The flow variables at the next iteration level k + 1 and grid point i are given by
Equation (A3).

Denoting i to be the spatial node and k the iteration number, the second order deriva-
tive in the Boussinesq term 9%u/9x? is approximated by a three point central finite difference
in both steps, predictor and corrector. Forward finite difference is used in the predictor step
(Equation (A6)) and backward finite difference in the corrector step (Equation (A7)) for the
first order derivative du/ox as:

K K |k k K\ 2

B — ok uf g —2u Fugd (W Yy (A6)
P AXZ Ax ’
u’ g —2uf +ul u —u 2

Ef =u] s Axlz = _ ( ! Axl ) . (A7)

The mixed partial derivative 9*u/dxat has been ignored since it is zero at steady state.

The appropriate initial and boundary conditions must be set in order to have a well
posed problem [27]. At time t = 0 two characteristic curves enter at the computational
domain, so the flow depth and the streamwise velocity must be specified at each grid
point. An auxiliary condition has to be specified for each characteristic curve entering
the boundaries of the computational domain, which includes the steady, gradually varied
supercritical flow, in the entire length of the channel. From the steady gradually varied

flow equation:

dx  1-—TFr? (A8)

the flow depth and velocity are computed at each grid point numerically using the Kutta-
Merson method with known initial depth upstream, so the calculations can proceed down-
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stream at each grid point. The initial depth yy;, is that at the exit of the sluice gate, while
Fr=u/ /8y is the Froude number of the flow.

The flow conditions at each boundary are fixed. At node i =1 (Figure A1) the flow
is supercritical with depth yyp while at node i = n the flow is subcritical with depth ygq,.
During the iteration process the flow depths at nodesi =1, i = n, are constant and known
from the experimental measurements taken downstream of the sluice gate and upstream of
the weir, respectively. The velocity at i =1, uyp, is also constant and known, uyp = Q/byyp,
while at i = n it has to be computed.

The velocity at the downstream boundary node i = n will be estimated with the
method of specified intervals and the positive characteristic equation discretized by finite
differences. In Figure Al points A and B correspond to the nodes n — 1 and n respectively,
at time level k, while the positive characteristic passing through the point P with the
unknown velocity at the downstream boundary at the time level k + 1 is indicated. The
point R is the intersection of the positive characteristic passing through the point P with the
grid line of the time level k. With the method of specified intervals the velocity, the celerity
and the flow depth at point R respectively, are calculated [32] from Equations (A9)—(Al1) as

up + A(Cgua — caup)

"R 1—|—?\(uB—uA—|—CB—CA)I (A9)
cp + Aug(cp —ca)

_ ) A10

R 1+ )\(CB — CA) ( )

YR = R/8 (A11)

where ¢ = /gy is the celerity of the propagating wave inside a rectangular open channel of

small amplitude in shallow water and us = uﬁ_l, ug = uk, cp = 4 /gyﬁf1 and cg = y/gyk.
The energy line slope at point R is estimated as:

St, = nfu}/RE3, (A12)

k+1

~T1 at iteration k

where Rg = byr/(b + 2yr). Then the velocity at point P i.e., the variable u
+ 1, can be computed from the following relationship:

up = ukt! = ug +2cg — 2 gyk+t1 — gAt(Sg, —So), (A13)

The unknown flow variables at the step were computed using the method of specified
intervals. In the case of the minimum B jump the flow is supercritical at the step. The
depth and the velocity at node, i = m will be calculated using the positive and the negative
characteristic curves. In Figure A2a, points A and B correspond to nodes m — 1 and m
respectively, at time level k, while the positive and negative characteristics passing through
point P with the unknown flow depth and velocity at node m at the time level k + 1 are
indicated. The point R is the intersection of the positive characteristic through point P with
the grid line of time level k. The method of specified intervals computes the velocity, the
celerity, the flow depth and the energy line slope at point R with Equations (A9)-(A12).
The point S is the intersection of the negative characteristic passing through point P with
the grid line of time level k. The velocity, the celerity, the flow depth and the energy
line slope at point S through the negative characteristic curve are computed [32] from
Equations (A14)-(A17) as

_ _up—A(cpua — caug)
1+)\(uB—uA —CB—O—CA)’

ug (A14)

e B~ Aus(cp —ca)
s 1-—- }\(CB — CA)

(A15)
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ys = c3/g, (A16)

St, = nfu3/R¢3, (A17)

In Equations (A9), (A10), (A14) and (A15), itis us = uX_,, ug = uk, cs = \/ﬁ,

cg = /8y and Rg =bys/(b + 2ys). Then, the flow depth and the velocity at point P i.e., the

variables yXt1, uk1, at iteration k + 1 can be computed from the following equations:

yp =yt = {0.25[ug — us +2(cr + cs) — gAL(Sg, — S¢)] } /8, (A18)
up = ukt =05 [uR + us + 2(cr — cs) — gAt(Sg, + S, |, (A19)
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Figure A2. Characteristic curves at the drop: (a) Supercritical flow; (b) Subcritical flow.

In the case of the A-jump the flow is subcritical at the step. The difference in compari-
son with the minimum B-jump is the direction of the negative characteristic curve shown
in Figure A2b. In Figure A2b, points A, B and C correspond tonodesm — 1, mand m + 1
respectively at time level k, while the positive and the negative characteristics passing
through point P with unknown flow depth and velocity at node m at the time level k + 1
are indicated. The point R is the intersection of the positive characteristic passing through
point P with the grid line of time level k. The velocity, the celerity the flow depth as well as
the energy line slope at point R are calculated from Equations (A9)-(A12) with upy = uX_,
up = uX,. Point S is the intersection of the negative characteristic passing through point P
with the grid line of time level k. The velocity, the celerity, the flow depth as well as the
energy line slope at point S through the negative characteristic curve are computed [32]
from Equations (A20)-(A23) as

up + A(cguc — ccup)

- A2
Us 1+7\(UC*UB*CB+Cc)/ ( 0)
CB + }\US(CB — Cc)
= A21
R T\ (42D
Vs = 3/8, (A22)
St, = nfu3/R¢>, (A23)
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where ug = ui‘n, uc = ufm_l, B = 4/8YK, cc =\ /gyk 41 and Rg = bys/(b + 2ys). Then the

flow depth and velocity at point P i.e., the variables yX*1, ukf! at iteration k + 1 can be
computed from Equations (A18) and (A19), respectively.

The time step At, was variable in each iteration satisfying the Courant-Friedrichs-Lewy
condition for all spatial nodes for stability reasons, calculated from the following relationship:

cnAX
] + /et )

where c,, is the Courant number which must be less than or equal to 0.65 [28] and Ax is the
constant spatial step as shown in Figure Al.

High oscillations occur in the region of the jump; therefore, in order to filter them out,
artificial viscosity had to be added to the numerical schemes. According to Chaudhry [27]
we implement the following. First the parameter &; at computational node i and at iteration
k + 1is calculated as:

At = (A24)

k+1 k k+1
NP ORI e ad \ o
& = , for the interior nodes (A25)
k+1 k+1 +1
y1+1
k+1 k+1
Yirr 7Y ‘
gl = H—l for the upstream end node (A26)
k+1 k+1
Yit1
k k
ki1 |V Ty +11’
& W for the downstream end node (A27)
Ty

Then at the center of the segment between node i and node i + 1 it is:

Ax
k41 k+1 ¢k+1
£1+(1/2) Kart—— At max(ﬁ E’H—l ) (A28)
Similarly between node i — 1 and node i
k+1 k+1 gk+1
‘E (1/2) kart t maX(E,l 17 Ev )/ (A29)

where k,y is the coefficient adjusting the amount of dissipation. Finally the flow depth and
the velocity are modified to the new ones according to the following equation:

frlew}(—i—1 - fol }(—H + E»k+ (1/2) (foldi—:ll - fold%(—‘rl) E»k+ (1/2) (foldl fold%(jil)/ (A3O)

where f is either the flow depth or the velocity.
The developed algorithm for each numerical scheme consists of the following steps:

1.  Compute the flow depth and velocity at all computational spatial nodes at initial time
(t = 0) according to the initial condition of the problem. At first iteration:

2. Set up the depths yyp and yyq, at the upstream and downstream boundary nodes
respectively, known from the experimental measurements.

3.  Compute the vector G} in the predictor step, the vector G;* in the corrector step and
the vector G; for all internal computational spatial nodes except for the node where
the drop is placed.

4. Compute the vector G;j at the location of the drop and the velocity at the downstream
boundary node with the specified intervals method.

5. Compute & and &;4(1/2 and modify the flow depth and velocity according to
Equation (A30).
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6.  Repeat steps 2-5, with the computed depth and velocity of the present iteration to be
the starting values for the next iteration. The algorithm iterates until the change of
the depth between two successive iterations in all computational spatial nodes is less
than a fixed convergence value. Then the minimum B-jump or the A-jump form as
part of the steady state solution.
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Abstract: Determination of skin friction factor has been a controversial topic, particularly in gravel-
bed rivers where total flow resistance is influenced by the existence of small-scale skin roughness
and large-scale topographic forms. The accuracy of existing models predicting skin friction factors
in conditions where small-scale skin roughness and large-scale topographic forms exist is very
low. The objective of this study is to develop a modified model that improves the accuracy of the
determination of skin friction factors in gravel-bed rivers. To this end, 100 velocity profile data
obtained from eight gravel-bed rivers were utilized to develop an analytical method that considers
the momentum thickness of the boundary layer and its deviation in large-scale topographic bedforms
in a 1D force-balance model. The results show that the accuracy of the skin friction factors is enhanced
when (1) the model is in the form of an exponential function of energy slope, and (2) the deviation of
momentum thickness is considered in the model. The proposed model results in high accuracy of the
predicted skin friction factors for energy slopes between 0.001 and 0.1, which exist in most gravel-bed
rivers with different morphologies. Additionally, this study model was used to modify the classic
Einstein-Strickler equation. The modified equation resulted in improved accuracy of the predicted
skin friction factors in non-uniform flow conditions even when velocity profiles and energy slope
were not available.

Keywords: gravel bed rivers; skin friction; flow resistance; bed forms; energy slope; boundary
layer characteristics

1. Introduction

Friction factor and its sources have always been a major research topic [1-4]. During
the past decades, the decomposition of friction factor has been a prevalent approach in
sedimentology. Usually, the total friction factor is assumed to be the sum of the skin friction
factor and bedform friction factor [5,6]. Briefly, large-scale impediments, such as bedforms
or submerged vegetation patches, are responsible for the formation of large-scale flow
structures. These large-scale flow structures transfer large amounts of momentum in the
upper and the middle region of flow [7,8]. On the other hand, skin friction is the key factor
in the momentum transfer procedures in the near-bed region of rivers. To be brief, not
only does the skin friction factor play a key role in the flow resistance, but also it is the
main index of shear stress which governs sedimentation and erosion processes. While the
determination of skin friction factor has been focused on in the field and experimental
studies, the results can also be used in numerical modeling of sedimentation. Such models
can be used to predict the changes in bed geometry under different flow scenarios [9].

In the main, velocity profile has been widely used to predict bed friction factor in
natural waterways. However, in the presence of a highly rough bed, using of velocity
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profile may lead to some unexpected results. This condition arises from the multi-layer
structure of the boundary layer above the coarse sediments. Indeed, the lower layer of flow
(or roughness layer), which is in contact with the coarse sediments, may have different
characteristics in closely similar bed materials of river beds with different geometries of
bedforms [10]. For small values of h/D, where h is the water depth, and D is a geometry
parameter representative of the bed roughness (generally a grain diameter), the streamwise
velocity profile is not self-similar inside the roughness layer [11,12]. This characteristic
can only be detected by highly sensitive and expensive velocimeter tools, such as acoustic
Doppler velocity profiler (ADVP). On the other hand, in a wide range of engineering works,
the accuracy and sensitivity of velocimetry are limited by common tools, such as rotary
current meters with poor spatial resolution, particularly in the near-bed zone. Consequently,
there is a fundamental need for the development of new approaches that be applicable in
the absence of sensitive and expensive velocimeter tools.

2. Materials and Methods

Amongst the well-known friction and flow resistance indices, the Darcy—Weisbach
friction factor is one of the most applied ones in hydraulic calculations. The total friction
factor (f) can be written as the following [13,14]:

2
Uy
=8 = 1
f=s(a) <>
where u,, is the average streamwise velocity in a particular section of flow, and u is the
shear velocity which can be calculated via different methods. Application of the boundary-
layer parameters based on the ASCE Task Force recommendation has led to a series of new
approaches, such as the boundary-layer characteristics method (BLCM) [15]. Considering
the BLCM, the shear velocity can be calculated as:
(0% — 0)Umax
* = 2
" co* @)
where C is a constant with a value of 4.4 [16], §* is the boundary layer displacement
thickness, 0 is the momentum thickness of the boundary layer, and, 1,4y is the maximum
velocity of a particular velocity profile. 6* and 6 can be calculated as [16]:

5._4(1_WW)@ 3)

by u
N /0 Umax (1 B umax)dy @

Gravel bed rivers have recently been investigated in a distinct topic in which the
friction factor can be divided into two parts [13,17-20]:

f=f+f (5)

where f’ is the skin friction factor (emerged from grains) and f” is the form friction factor
(emerged from large-scale topographic forms of the river bed). For plane beds, bed shear
stress is the representative stress of the skin friction factor. Figure 1 shows a typical velocity
distribution in which bed shear stress can be defined via momentum thickness of the

boundary layer:
_1dD _d ’
Toed = 3 gy %(Pu 9) (6)
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where D is the drag force emerged by the bed surface and b is the width of the channel.
On the other hand, for a wide channel, the shear stress can be calculated based on the
Darcy—Weisbach equation:

2 2
1,.,U u
Tt = vhsy = 7k (a ' hg> = 5 7

where 1 is the specific gravity of water, / is the flow depth, g is the gravity acceleration,
and u is the weighted average velocity. However, in the above-mentioned equations, the
roughness of the bed surface is not considered directly. For a relatively plane bed and
uniform flow, Einstein suggested a modified form of Stickler’s Equation to relate the bed
roughness (1) to the median grain size (dsp) [21].

den1/6
ny = 534 (8)
u=0
Ml u=099U “J, u=U b
U\ 1 v V/ 1 v
X
I S I =
{ Equal #_ 0
/| Momentum flux fr— u=u(y)
- .
-u
L] ! 0 |
!

Figure 1. Definition of momentum thickness in a fully developed boundary layer.

By considering Einstein’s Equation, the Darcy—Weisbach friction factor can be calcu-

lated as: 3
d
f== (50) ©)

where d is the flow depth in a wide channel. In the same approach to relative roughness,
Keulegan (1938) [22] developed a relatively simple but practical equation:

)
f = [2.0310g<12k'2h)] (10)

S

In this equation, h is the depth of flow and ks is Nikuradse equivalent roughness size.
Determination of ks is a controversial issue and there is a wide range of estimations from
1.23d35 to 3dgg or 6.6d50 [23-25]. In another approach, the Shields parameter can be applied
in the Keulegan Equation via a series of calculations. Critical shields parameter (t*;) can

be defined as: 1S
T = ° = ! (1)
Y(SG—1))dso  (SG —1)dsg
where 7 is the specific gravity of water, and SG is the ratio of sediments’ specific gravity
to water specific gravity. This equation is valid for both uniform and non-uniform flow if
S presents the true gradient of the energy loss. On the other hand, T can be written in
association with S¢ as the following [14,26]:

75 = 015597 (12)
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Assuming ks = dsq in Equation (5), and by comparing Equations (6) and (7), f’ can be
calculated via logarithm rules. The final equation can be written as [14]:

f' = [0.9742 — 15225108 (55 )| a (13)

While Einstein’s Equation (Equations (12) and (13)) is based on field and empirical
studies on uniform flow and relatively plane bed, derivation of f’ in Equation (13) is
not restricted to those conditions. This fundamental difference will lead to considerably
different results when the two approaches are applied to a unique case.

3. Motivation and Objective

Generally, skin friction factors calculated via classic approaches (e.g., [21]) are devel-
oped based on uniform flow conditions where plane bed morphology is assumed and
where no emergent or submerged vegetation and obstacles exist. Accordingly, existing
models for predicting the skin friction factors for riverbeds where large-scale topographic
forms and vegetation exist yield inaccurate results. Determination of friction factor in non-
uniform flow is a relatively complicated task that is very far from the classic approaches
and needs advanced algorithms and methodologies [4,15,19].

The objective of this study is to develop a modified model that improves the accuracy
of the determination of skin friction factors in gravel-bed rivers. Accordingly, prevalent
equations have been modified to increase their accuracy in the presence of large bedforms
and non-uniform flow.

4. Methodology and Technical Approach

Since many classic equations of roughness and friction factor were developed based
on the uniform flow condition, considering the fundamental assumptions in the application
of the uniform flow is essential. According to (1/7)th power velocity profile law of Prandtl,
the velocity distribution of a uniform flow can be described as [27,28]:

G-

where ¢ is the boundary layer which is defined as the region adjacent to a surface over which
the velocity changes from zero to the free-stream velocity (0.99 U) [29]. The momentum
thickness is also calculable as:

7.7 (uy
0= ﬁé = 72y<u) (15)
By considering the definition of ¢, the momentum thickness can be defined as a linear
function of flow depth:
7 ( Uy
0= 72y(099u) = 0.1043y (16)

where y is the vertical elevation in which u = 0.99 U and is typically equal to the total depth
of flow. Inserting Equation (16) into Equation (6) results in a differential form of bed shear
stress for uniform flow:

d
TUniforn = 7= (0.10430U%y ) (17)

Assuming a condition in which skin friction factor is calculated via a classic approach
(such as Einstein-Strickler, which relies on uniform flow) and also via a boundary layer
characteristic approach such as in Equation (13), the ratio of skin friction factors can be
written as:

; fl;ed — Tbt’d (18)
fUniform Tuniform
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where f; ; is the calculated value of skin friction factor via momentum thickness and
Flini Form is the skin friction factor calculated via Einstein’s Equation. By inserting Equa-
tions (6) and (17) into Equation (18), the ratio of skin friction factors can be obtained as:

! d 2
= (pU0 .
/fbed = 4x (pU?0) ~ 9587, 19)
fllniform ax (0.1043pU2y) Y0.99

Subsequently, the skin friction in a non-uniform flow can be estimated as:

9.587

f/ = TGfl/,Iniform (20)
Nonetheless, there is a fundamental assumption in this equation: all the momentum
thickness of the boundary layer is produced by skin friction. However, despite uniform and
even quasi-uniform flow, it is a controversial assumption for non-uniform flow. Figure 2
shows a conceptual scheme of momentum thickness above a large-scale topographic form.
Owing to Equation (5), the momentum transition is affected by skin friction and form
friction in a complex process. Consequently, a portion of the momentum thickness, which
is not restricted to one as the upper limit, must be considered in Equation (20). This

phenomenon can be included in Equation (20) in the form of:

, 9587 )
f - T(q)e)fumform (21)

and

!
29 _ 01043  Eaa— f (22)
d f Uniform

where ¢ is an indicator representing the portion of momentum thickness which is shaped
by the skin friction and d is the flow depth in relatively shallow rivers. Equation (22)
and the value of %9 are investigated via data gathered in 100 velocimetry stations of eight
gravel-bed rivers, including four reaches in Iran and four in Italy (Table 1). Total and skin
friction factors were respectively calculated via BLCM (Equations (1)-(4)) and the Keulegan
approach (With a wide range of K values). The equivalent skin friction of uniform flow
was also calculated via the Einstein-Strickler Equation (Equations (8) and (9)) by applying
the value of ds.

(pgNon—Um'form BNon‘UnifOTm

I‘ Non-Uniform Flow Quasi Uniform Flow

Figure 2. Schematic illustration of momentum thickness near a topographic bed form.
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Table 1. The rivers and profiles used to derive Equation (24).

. . No. of Avg. Depth Avg. Umean Avg. ds Average f’
River Location Profiles (cm) (em/s) (mm) Avg. Fr Avg. f (Keulegan) Avg. S¢
Melodari Ttaly 14 136 649 20 0.554 1.204 0.101 0.038
Cerasia Ttaly 15 19.5 56 47 0.416 0.78 0.072 0.016
Valanidi Ttaly 8 158 614 35 0.502 1.089 0.086 0.026
Gallico Ttaly 13 245 722 52 0.470 1.182 0.088 0.028
Zayanderud Iran 5 73 77 10 0.291 0.092 0.044 0.001
Kaj Iran 8 27 63.9 10 0.396 0.153 0.042 0.004
Gamasyab Iran 24 30 84.2 19 0.287 0.107 0.043 0.003
Marbor Iran 13 2 926 17 0.433 0.116 0.050 0.006
S 0 . o . .
Consequently, considering %’ as a nonlinear multivariable function of a series of
non-dimensional parameters, this parameter can be defined as:
c2
90 _ a (450 3 c4
i mx Fre" i * 5%k Regrain (23)
Subsequently, the modified momentum thickness (65;,,) which is formed by the skin
friction would be:
d50 c2
— — cl c3 c4
Oskin = @0 = | m*x Fr® x (d) * 5% * Regryiy | ¥d (24)
Using the conjugate gradient approach to minimize the root-mean-square deviation
(RMSD) for the 100 velocity profile, “m”, “c1”, “c2”, “c3”, and “c4” were respectively
calculated for different K values. The results are presented in Table 2. RMSD should
always be a non-negative value including 0, which represents the perfect fit, and generally,
the lower value of RMSD is considered the better result.
Table 2. Calculated parameters to determine modified momentum thickness emerged by skin friction
for different equivalent roughness in the Keulegan Equation.
0 = 00 = cl 50 2 c3 c4
skin = QU = m x Fr *(T) *sf*Regmm wd
Pearson . .
ks m cl c2 c3 c4 Correlation Equu.zalen.t ]?quatlon
.. for Skin Friction Factor
Coefficient
Dso 0.013 0 -08 0 0 0.89 0.017 (@) v
1.5 Dso 0.014 0 ~0.85 0 0 0.93 0.018 % (d% 0
2 Dsp 0.015 0 —09 0 0 0.94 0.019 ( dsn ) 0%
Lamb-Shields Method 0.225 0 ~033 0.33 0 0.80 0.3 %593

(Equation (13))

While none of the classic variants of the Keulegan Equation contain flow parameters,
the Lamb-Shields-based form of the Keulegan Equation (Equation (13)) was considered
as the basis for comparison (Figure 3). Normalized root-mean-square deviation (NRMSD)
was calculated for this comparison as the following:

NRMSD — — 1 YN (Bskin (Keulegan — Shields) — Gskin)z

25
Ockin (Keulegan — Shields) N (25)

In order to describe the application of the developed equation in a practical situation,
a field case study was established to evaluate the skin friction factor where bed topography
was captured with high resolution.

104



Hydrology 2022, 9, 58

0 skin (Lamb-Shields)

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01 -

* n . *
®» @ L
< ¢ L 2 *
A XY $ 1 L 4
28 & ": .
L 4
e A R ¢ + Ks=D50 (NRMSD= 0.33)
_v'"i:lb"’"‘!l' pe : o L 2
I gt AR Ks=1.5D50 (NRMSD= 0.27)
v *
¢ ¢ Ks=2D50(NRMSD= 0.77)
0.02 0.04 0.06 0.08 0.1
stin

Figure 3. Comparison between values of modified momentum thickness of skin friction and their
correlation with the Keulegan-Shields approach.

5. Field Study and Data Collection

The Marbor River is located in the central Zagros Mountains in the Dena region of
the Isfahan province in Iran. A relatively straight reach of a local branch was selected for
this study. The bed materials consist of gravel size grains with sparse round cobbles and
negligible sand-size grains in the banks. The reach width varies from 3 to 4.5 m and the
length of the study area was 15.2 m. Grain size distribution and the flow velocity were
captured in five sections through 13 stations. The grain size distribution was calculated
by using the Wolman method in all stations [30]. Figure 4 shows the general grain size
distribution of the reach. Water surface elevation and topographic map of the bed were
produced via accurate surveying. The topography of the bed, river plan, and the location
of the sections are shown in Figure 5. The topography and velocimetry results represent a
completely non-uniform flow condition in the selected reach. Figure 6 shows the profiles of
the riverbed and water surface and also velocity distributions in the centroid of the reach.
Bed slope has been calculated via accurate surveying and the 2D gravity projections on
global coordinates have been included in the water fluxes [31,32]. All in all, data from
13 stations were used for the evaluation of skin friction factor by different methods. The
displacement and momentum thicknesses of the boundary layer were calculated for each
station through the 2D velocity profile (Table 3).
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Figure 4. Grain size distribution in the selected reach (Wolman method).
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Figure 5. Topography of the bed, river plan, and the location of the sections in the selected reach (The
lowest point has been set as the baseline of local elevation code)—Marbor River.
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Figure 6. Water surface elevation (light blue dashed line), riverbed elevation (violet line), and velocity
profiles (dark blue lines) along the center of mass’ line (centroid line)—selected reach of Marbor River.
Table 3. Measured and calculated flow parameters in the Marbor River.
Station 1A IC 1A 1B 1 A 111B i1 (e IVA IVB IvC VA VB
dso 20 22 21 17 23 17 13 16 20 16 19 19 16
(mm)
d (cm) 21 23 21 21 17 23 21 17 29 23 11 33 25
g:;:; 1.26 1.22 0.94 1.11 0.58 116 1.08 0.94 0.94 0.76 0.46 0.88 0.71
(n?;s) 0.16 0.17 0.14 0.162 0.092 0.098 0.086 0.074 0.095 0.094 0.036 0.14 0.075
Fr 0.88 0.81 0.65 0.77 0.45 0.77 0.75 0.73 0.56 0.51 0.44 0.49 0.45
0% (m) 0.034 0.043 0.049 0.048 0.038 0.024 0.024 0.014 0.049 0.033 0.008 0.082 0.043
0 (m) 0.019 0.023 0.025 0.027 0.018 0.016 0.017 0.01 0.028 0.022 0.006 0.043 0.028
VAQ) 0.123 0.153 0.175 0.168 0.199 0.056 0.050 0.049 0.082 0.123 0.048 0.195 0.090
VAG) 0.066 0.067 0.061 0.067 0.050 0.047 0.045 0.044 0.040 0.040 0.034 0.052 0.040
¢ 0.057 0.086 0.114 0.101 0.148 0.009 0.005 0.005 0.042 0.083 0.014 0.143 0.049
Uniform 0.062 0.062 0.063 0.059 0.070 0.057 0.054 0.062 0.056 0.056 0.076 0.053 0.055

Subsequently, the skin friction factor values were evaluated using the following
four methods:

a: Applying the friction factor of the equivalent uniform flow and the measured
momentum thickness (Equation (20)): In this approach, the momentum thickness must
be calculated via velocity profile. The results are comparable to the exact values of the
flow characteristics method with equivalent Lamb-Shields parameter (Figure 7a). While
there is a general correlation between these values, the deviation is also clear because of the
¢ parameter.
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Figure 7. Skin friction factor calculated using Equation (20) (a), Equation (21) (b), modified Einstein—
Strickler Equation (c), and classic Einstein—Strickler Equation (d), in the Marbor River. The vertical
axis shows the skin friction factor calculated with the flow characteristic method. The ranges of
deviations are shown with dashed blue lines.

b: Applying the friction factor of the equivalent uniform flow and the modified
momentum thickness (Equation (21)): Using the ¢ parameter in this approach leads to
an independent equation that only relies on the energy slope, and the results are very
close to the exact values. This approach is independent of velocity profile which makes
it a suitable method in engineering works (Figure 7b). The applied equation is shown in
Table 2 (f' = 0.3 % 52'33 ). The calculated values of ¢ (using Equation (24)) and the measured
values of this parameter are also shown in Table 4. Investigation of the values of ¢ at the
37 stations of the two gravel-bed rivers (Marbor and Gamasyab) shows that for the majority
of the velocimetry stations, ¢ < 1. For the centerline of the explored reach of the Marbor
River, higher values of ¢ (¢ > 1) are observed in the local contractions (Sec. I and Sec III),
while the bed profile seems to have a much lower impact on the values of ¢ (Figure 8). The
higher values of ¢ in the contractions might be related to the morphological drag of walls.
Essentially, wall drag is the main source of scattering of results, particularly in natural
channels [33]. However, Lamb et al. (2008) [26] mentioned that the effect of wall drag
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increases in the high bed slops (S > 0.02). In this study, this phenomenon was observed for
two sections, although more data sets are required to evaluate the value of ¢ for various
ranges of contractions. Figure 9 shows the surface waves near the wall of a contraction
zone, which clearly shows the development of a horizontal boundary layer.

Table 4. Comparison between measured and calculated ¢.

Section I 11 I v \%
Station Left Right Left Cent. Right Left Cent. Right Left Cent. Right Left Cent.
Calculated ¢ 1.21 1.14 0.85 0.95 0.72 1.23 1.07 1.30 0.85 0.90 0.81 0.82 0.68
Measured ¢ 1.18 1.11 0.83 0.93 0.71 1.22 1.07 1.30 0.78 0.77 0.87 0.81 0.69

Flow direction

= -

Figure 8. 3D illustration of the measured ¢ in the investigated reach.

Figure 9. Surface waves and the contraction streamlines, which are visible near the wall of a
contraction zone (Marbor River).

c: Applying modified friction factor of the equivalent uniform flow: Modified Einstein—
Strickler Equation was used (by considering Ks = D5. See Table 2). This method is also
independent of the velocity profile. The results contain a higher level of errors in comparison
with the two previous methods, although it is less scattered in comparison with the classic
Einstein-Strickler Equation (Figure 7c).

d: Applying friction factor of the equivalent uniform flow: The classic Einstein—
Strickler Equation according to Equation (9) (Figure 7d).

109



Hydrology 2022, 9, 58

6. Discussion

The findings of this study indicate that the skin friction factor can be calculated via
Equation (21) with high accuracy in comparison with other classic methods. Many studies
have shown that the average velocity is not the only relevant velocity scale in determining bed
friction, and the effect of flow characteristics needs to be considered [34-38]. Correspondingly, the
presented approach does not rely on average velocity as a single variable. Actually, it contains the
effects of momentum thickness and its deviations in topographic forms. This method calculates
the skin friction factor as an exponential function of energy slope, which means the skin friction
factor rises when the energy slope increases. Lamb et al. (2008) [26] explained this phenomenon
as a result of backwater effects and an associated pressure differential, which increased the mobil-
ity of particles on steeper slopes. This method also eliminated the need for velocity profiles which
play a significant role in many fluvial parameters. However, the concept of the ¢ parameter is
not restricted to the measurements where energy slope is available. Applying this concept in
the classic Einstein-Strickler method leads to a modified version of the method, evaluating skin
friction factor without considering energy slope and velocity profiles.

In order to compare the accuracy of the methods which are developed based on the
¢ parameter, the relative error ((f'sLcm — f7)/f'BLcm) Was calculated for 100 velocimetry
points (Figure 10). This was done for a wide range of energy slopes (0.001-0.1). The results
showed that Equation (21) contains less than 5% of error in comparison to the boundary
layer flow characteristics method for energy slopes between 0.0014 and 0.056, considering
the normal range of friction factor in gravel-bed rivers (Figure 10a). For the high energy
slope (S¢ > 0.06), the error increases linearly. The results also showed that for the conditions
where the energy slope is not available, the modified Einstein’s Equation (based on the ¢
parameter’s concept) can reduce the error up to 50% on average (Figure 10b). In addition
to the Marbor river, for other rivers with different energy slopes, the accuracy of results
obtained from Equation (21) can be compared with the results obtained from the Einstein
equation (Figure 11). According to the Figure, the Einstein equation is not appropriately
accurate in low and high energy slopes. One reason can be attributed to the assumptions
taken into account by Einstein. The normal or semi-normal flow regime is not prevalent
in rivers with very steep energy slopes because of the tendency of flow to accelerate in
such conditions. On the other hand, very low energy slopes are prevalent in the presence
of flow blockage or decelerating flow. Despite the Einstein equation, Equation (21) takes
energy slope into account. Consequently, the accuracy of the estimated skin friction factor
increased on extreme slopes. However, it must be considered that the findings of this
research are limited by the number of rivers where flow data are available. As presented in
Figure 11a, the accuracy of results decreased sparsely in higher energy slopes. However,
the accuracy of the results is still acceptable in comparison with classic methods. Despite
the energy slope, relative errors do not comply with a predictable pattern for average
velocity and relative roughness (Figure 12). The relative error remains below 6% in most
cases. However, large relative errors have been observed in the presence of higher relative
roughness. Consequently, it is recommended that future research studies focus on the
accuracy of the proposed approach in rivers with higher relative roughness.
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Figure 12. Relative error of skin friction factors calculated using Equation (24) and the BLCM method
in comparison with average velocity (left) and relative roughness (right).

7. Conclusions

The skin drag in open-channel flow is determinable through the modified momentum
thickness of the boundary layer. In order to derive a general equation, a 1D force-balance
model was applied based on the momentum thickness of the boundary layer. The values
of the initial model were compared to standard uniform flow models of skin friction. The
deviation of the predicted values (known as ¢) was formulated through dimensionless
parameters and an optimization procedure that used data sets of eight gravel-bed rivers
with 100 velocimetry stations. Applying the ¢ parameter in the Einstein-Strickler Equation,
the skin friction factor reveals an exponential function of the energy slope. The comparison
with previous studies (e.g., [26]) shows a similar relation for the total friction factor and
bed slope. This method was also considered for a field case study and the results showed a
high correlation between the new method and the Keulegan method. The high correlation
rate is also expectable for an energy slope range between 0.001 and 0.1, which involves the
majority of gravel-bed rivers. The application of ¢ parameters can lead to engineer-friendly
equations which are applicable in engineering works where velocity profile is not available.
The results showed that for the conditions where the energy slope is not available, the
modified Einstein’s Equation (based on the ¢ parameter’s concept) can reduce the error up
to 50% on average.
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Abstract: Global projections of climate change indicate negative impacts on hydrological systems,
with significant changes in precipitation and temperature in many parts of the world. As a result,
floods and droughts are expected. This article discusses the potential effects of climate change and
variability on the maximum precipitation, temperature, and hydrological regime in Devil’s Creek,
Tacna, Peru. The outputs of precipitation and daily temperature of fifteen regional climate models
were used for the RCP4.5 and RCP8.5 emission scenarios. The methodology used includes the
bias correction and downscaling of meteorological variables using the quintiles mapping technique,
hydrological modeling, the evaluation of two emission scenarios, and its effect on the maximum
flows of the stream. The results of the multi-model ensemble show that the maximum annual
precipitation will probably increase by more than 30% for the RCP4.5 and RCP8.5 scenarios for
the 2021-2050 period relative to the 1981-2005 period. Likewise, as expected, the maximum flows
could increase by 220% and 154% for the RCP4.5 scenarios for the 2021-2050 and 20512080 terms,
respectively, and 234% and 484% for the RCP8.5 scenarios and for the 2021-2050 and 20512080 terms,
respectively, concerning the recorded historical value, increasing the probability of flood events and
damage in populations located downstream.

Keywords: maximum precipitation; maximum flow; climate change; hydrological modeling

1. Introduction

Changes in temperature and precipitation patterns, due to the increase in greenhouse
gas concentrations, affect hydrological processes. Consequently, negative impacts are
expected on water resources for agriculture, urban uses, mining, industry, aquatic life
in rivers and lakes, and hydroelectric power production. Similarly, spatial changes in
the intensity and frequency of precipitation can affect the magnitude and frequency of
flows, increasing the intensity of floods and droughts, with important impacts on economic
activities at the local and regional levels [1,2].

On the other hand, on a global scale, studies show that the temperature increases by more
than 3.5 °C, under the RCP8.5 emission scenario. By the end of the 21st century, precipitation
is projected to reduce by more than 20% for medium and low latitudes [3]. Similarly, an
increase in evaporation and a decrease in soil moisture content and groundwater recharge
are expected. Consequently, drought conditions and increased evapotranspiration rates are
projected for summer in subtropical regions, as well as medium and low latitudes [3].

In Peru, a national evaluation of climate scenarios carried out by the Peruvian National
Meteorological and Hydrological Service (SENAMHI), estimated a progressive increase
in the maximum and minimum temperature, by 2.8 °C on average by the end of the
21st century. Similarly, a reduction in precipitation of 40% is projected for winter, and an
average increase of 20% during summer and spring [4].
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An increase in temperature with a decrease in precipitation will produce a drastic
decrease in water availability in rivers and other natural sources, as well as a substan-
tial increase in evapotranspiration rates, meaning greater water consumption, affecting
agricultural and municipal uses, and the production of electrical and industrial energy.
Additionally, a slow but sustained reduction in glaciers in Peru is expected, which plays
an important role in the supply of water to the water systems of communities in the
Andean regions.

On the other hand, many regions of the north, center, and south of Peru are frequently
seriously affected by floods and huaycos (debris flow and mudslides) as a result of high-
intensity precipitation which occurs in the basins, influenced by the El Nifio phenomenon. It
is estimated that 26 El Nifio events have occurred during the 20th century. The most severe
events occurred in 1924-1925, 1982-1983, 1997-1998 [5], and most recently in 2016-2017.
These events have generated great damages and economic losses in the social, productive,
and infrastructure sectors. The total sectoral damages caused by the El Nifio phenomena
1982-1983 and 1997-1998 were around USD 3200 million and USD 3500 million, respectively,
including direct and indirect damages [6]. In the latest 2016-2017 event, total damages
were estimated to be around USD 4 billion [7].

Similarly, at the JORGE BASADRE rain gauge, located in the city of Tacna, precipitation
of 5.1 mm was recorded in 24 h in 2017, constituting one of the highest values ever recorded
for November. The intensities were variable and covered a large part of the coastal zone of
the Tacna region [8].

On the other hand, extreme precipitation events are commonly represented using
IDF precipitation curves. Extreme weather events are becoming more severe and frequent,
which leads to uncertainties as to how prepared the infrastructure is to face these changes.
Infrastructure designs are based on the IDF precipitation curves with the assumption of
stationarity, which means that the statistical properties of future events will be similar to
those of the past [9,10]. However, climate change is expected to alter climate extremes,
a concept called non-stationarity [11].

The main objective of this research is to evaluate the potential impacts of climate
change and variability on precipitation and maximum flows in the Devil’s Creek, located in
the Tacna region, Peru. The Tacna region is located in the northern region of the Atacama
Desert. The Atacama Desert is one of the largest hyper-arid deserts in the world [12].

For this purpose, the outputs of the meteorological variables of fifteen regional climate
models of the Coupled Model Intercomparison Project Phase 5 [13] were used as inputs for
the hydrological model. A bias correction was applied for temperature and precipitation
using the quantile mapping method [14-17], which enables bias correction of the regional
climate model simulations in comparison with the data observed in rain gauges. The
changes in precipitation and maximum flow were evaluated for the period 2021-2050 and
the RCP4.5 (intermediate) and RCP8.5 (high) emission scenarios.

The results, in combination with the evaluation of the maximum precipitation and
temperature, the analysis of frequencies, and hydrological modeling, will help to answer the
research questions such as: What would be the changes of the maximum precipitation and
temperature in the sub-basin of the Devil’s Creek under historical conditions and climate
change scenarios? What changes would the frequency of maximum flows experience in
the study area under scenarios of variability and climate change? What are the differences
between historical conditions and climate change?

2. Materials and Methods
2.1. Precipitation Data and Historical Temperature

Historical data of daily precipitation and temperature of five (5) rain gauges near
the study basin (Figure 1) were collected and analyzed for the period 1966-2020. The
completion and extension of information were carried out with the Climatol software,
which uses an approach based on the method used by Paulhus and Kohler [16] to complete
the missing daily precipitation data. This consists of spatial interpolation of the normal
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precipitation rate of neighboring rain gauges. This proportion method is extended in the
Climatol package with options to use differences and full standardization to normalize the
data [18]. However, because the JORGE BASADRE rain gauge only had daily precipitation
data since 1993 (Table 1), and because a minimum period of 30 years is necessary, for
analysis of the frequency of maximum precipitation, it was considered appropriate to
evaluate information from the product named PISCO (Peruvian Interpolated data of the
SENAMHI Climatological and hydrological Observations. Precipitation v2.0) [19], available
from SENAMHI (National Service of Meteorology and Hydrology of Peru). To use these
data, they had to be corrected using the quantile mapping technique and validated for the
Devil’s Creek area using local rain gauges (JORGE BASADRE, Calana, Calientes, Sama
Grande, and Palca) as reference rainfall or observed values. These data have made it
possible to complete the daily precipitation dataset for the JORGE BASADRE rain gauge,
from 1981-1992.
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Figure 1. Location of the Devil’s Creek with the meteorological rain gauges selected for the down-
scaling and cells of the general circulation models (GCMs).

Table 1. Availability of precipitation data.

Rain Gauge No. Values Start Date Final Date % Gaps Duration (Years)
Calana 19,704 1 January 1966 31 December 2020 2 55
JORGE BASADRE 9952 1 January 1993 31 December 2020 3 28
Calientes 19,298 1 January 1966 31 December 2020 4 55
Sama Grande 19,789 1 January 1966 31December 2020 1 55
Palca 15,866 1 July 1966 31 December 2020 20 55

2.2. General Circulation Models and Scenarios

When considering climate change, one of the challenges water resource managers
often face is deciding which general circulation models (GCMs) should be used to assess the
impacts of climate change on water resource systems. This is a puzzling question because
all GCMs demonstrate uncertainty in the prediction of historical climate variables [20,21].
However, some criteria, such as spatial resolution, the degree of atmospheric-ocean cou-
pling, and the availability of multiple realizations, can be taken into account when selecting
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a set of GCMs to reduce uncertainties in the predictions of maximum precipitation and
floods based on any individual GCM [2,22,23]. Considering the high degree of uncer-
tainty that climate models present in the projection of precipitation, fifteen regional climate
models have been deemed convenient to be evaluated in this research.

Currently, there are regionally scaled models (25 km x 25 km) whose outputs still need
bias correction and spatial downscaling to improve their performance in a particular region.
This research uses 15 general circulation models of the CMIP5 project (the NASA NEX-
GDDP dataset—-Coupled Model Intercomparison Project Phase 5): ACCESS1-0, becc-csm1-
1, CanESM2, CCSM4, CESM1-BGC, CNRM-CM5, CSIRO-Mk3-6-0, GFDL -CM3, GFDL-
ESM2G, GFDL-ESM2M, IPSL-CM5A-LR, MIROC-ESM, MIROC-ESM-CHEM, MIROCS,
MPI-ESM-LR, MPI-ESM-MR [24].

On the other hand, climate data from the downscaled emission scenarios RCP4.5
(intermediate emission) and RCP8.5 (high emissions) are used. These scenarios have
been selected based on their emission trajectories; medium and high, respectively, for the
period 2021-2080.

2.3. Bias Correction and Downscaling

Downscaling can be defined as a technique that increases the resolution of GCMs to
obtain the climate at a local scale. There are two fundamental methods for downscaling
large-scale data from GCM results: statistical and dynamic downscaling. Their concepts
have been discussed in various articles [25-28]. This research uses a statistical downscaling
of the outputs of the previously described regional models. Quantile mapping is applied to
perform bias correction in regional climate model simulations compared to observed data.
This method is designed to fit the distribution of the modeled data, so that they match
observed climate data [29,30]; in this case, precipitation and temperature. The following
expression was applied and resolved in Rstudio to find the corrected future value:

Vi = F (Fe(x])) M)
f

where y. vy i 18 the future value corrected at time 7, and Fy (x), Fy, (y) represent the empirical
cumulative distribution functions of the model (x) and observations (y). To perform bias
correction and the downscaling, this study uses a historical period and a base period
simulated by climate models, both from January 1981 to December 2005. With this, the
correction for the future period 2021-2080 is applied.

2.4. Climate Model Ensembles

The evaluation of the capacity of a climate model to simulate trends in extreme events
is complex due to internal climate variability, whose simulated phases are unique for the
realization of each model [31]. On the other hand, we know that, currently, the models have
improved a lot in projecting the future climate. However, a high degree of uncertainty still
persists, showing great variability between models in mainly projecting precipitation. In this
sense, the multi-model ensembles highlight the uncertainty in climate predictions that result
from structural differences in global climate models, as well as the uncertainty due to variations
in the initial conditions or parameterizations of the model [32]. Similarly, several investigations
have shown that a weighted ensemble method, based on the simulation performance of the
models, may have better projection abilities than the equal-weighted ensembles [33-36].

In this study, the ensemble of downscaled climate scenarios of the 14 global circulation
models (GCMs) applied to the Devil’s Creek is given by the weighted average whose
weights are determined according to the performance of each model concerning the histori-
cal period 1981-2005. The determination of the weights of each GCM is determined by the
genetic algorithm [37], whose objective function is to minimize:

2005 14 2
Fopj =min Y | Pristj — Y (wi * Poemy) )
j=1981 i—1
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where Py;; is the historical maximum annual precipitation for the Devil’s Creek, for the
year j, Pgcy is the maximum annual precipitation of the GCM of the Devil’s Creek, and w
is the weight of each GCM. The objective is to minimize the error between the observed
value and the simulated value, optimizing the weights that each model would have based
on its performance with the history.

The proposed objective function is interpreted as the ensemble of the 14 GCMs in the
Devil’s Creek for the period 1981-2005 to be identical to the maximum annual precipitation
generated in the creek.

The genetic algorithm begins with an initial population subjected to the selection process
of the objective function evaluation to later apply the genetic crossing and mutation operators.
These are responsible for diversifying the individuals of the initial population [37,38]. A
simple ensemble with equal weighting is used for the minimum and maximum temperatures.

2.5. Hydrological Modeling
2.5.1. Frequency Analysis of Total Daily Precipitation for the Northern Area of the City
of Tacna

In the Caplina river basin, there are five rain gauges: two main climate rain gauges
(La Yarada and Calana), two ordinary rain gauges (Calientes and Palca), and a main
agricultural climate rain gauge (JORGE BASADRE) [39]. Due to its proximity to the city
of Tacna, the total daily precipitation recorded at the JORGE BASADRE rain gauge was
considered representative of the northern area of the city of Tacna. This rain gauge has
a continuous record of 28 years (1993 to 2020) (Figure 2). The frequency analysis was
performed from the partial duration series, which was adjusted to the Gumbel distribution.

ILLINIJ_..h.

‘\I‘M.\u) |LLJMM.LJ|.\|¢M.LLN\.J.L["JML Al

Date
Figure 2. Total daily precipitation—JORGE BASADRE rain gauge.

Figure 3 shows that the precipitation event recorded on 21 February 2020 has a return
period of 255.8 years.
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Figure 3. Frequency analysis of the partial series of total daily precipitation at JORGE BASADRE rain
gauge (from 1993 to 2020).

2.5.2. Estimated Precipitation Events for the Devil’s Creek
Figure 4 shows the comparison of the total daily rainfall discharged from the PISCO

product for the coordinates of the JORGE BASADRE rain gauge and the total daily rainfall
from the JORGE BASADRE rain gauge, during the period 1 January 1993 to 21 April 2014.
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Figure 4. Comparison double-mass between the precipitation data of the PISCO product in JORGE
BASADRE rain gauge and the rainfall of the JORGE BASADRE rain gauge, during 7780 days
(1 January 1993-21 April 2014).
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Pisco Daily Precipitation Devil s Creek

The efficiency criterion used to evaluate the similarity of the daily rainfall at the
JORGE BASADRE rain gauge and the PISCO daily precipitation was the Nash—Sutcliffe
model. The efficiency criterion of Nash and Sutcliffe efficiency (E) is defined by the
following equation [40].

N6 —R)

E—1 =)
Y1 (0 - 0)

®)

where O; is the daily rainfall recorded, P; is the PISCO daily precipitation, O is the
mean daily rainfall recorded, and N is the number of observations. The ranges of E
lay between 0.75 and 1.0 (Very good), 0.65 and 0.75 (Good), 0.5 and 0.65 (Satisfactory),
and <0.5 (Unsatisfactory).

The Nash-Sutcliffe efficiency index of the PISCO product was 0.83, which shows a
very good correspondence between the series indicated above [41]. Likewise, it was found
that the difference between the total daily precipitation depth discharged from the PISCO
product for the coordinates of the JORGE BASADRE rain gauge with respect to the total
daily rainfall (depth) from the JORGE BASADRE rain gauge was —31%. Similarly, it was
found that the difference between the total daily precipitation depth discharged from the
PISCO product for the coordinates of the middle and upper parts of the Devil’s Creek with
respect to the total daily precipitation depth discharged from the PISCO product for the
JORGE BASADRE rain gauge was —6%. Figure 5 shows a comparison of the total daily
rainfall discharged from the PISCO product for the coordinates of the middle and upper
parts of the Devil’s Creek and the total daily rainfall from the JORGE BASADRE rain gauge
discharged from the PISCO product, during the period 01 January 1993 to 21 April 2014.

y =0.9378x-2.81

R? :0.99%3/

S

50.0 100.0 150.0 200.0 250.0 300.0 350.0
Pisco Daily Precipitation UNJBG (mm)

Figure 5. Comparation double-mass between the precipitation data of the PISCO product in the
JORGE BASADRE rain gauge versus the precipitation data of the PISCO product in Devil’s Creek
over 7780 days (1 January 1993-21 April 2014).

On the other hand, the FIAG UN]JBG automatic rain gauge has continuously recorded
precipitation every 30 min from 7 December 2019 to the present (7 May 2021). Given that
the FIAG UNJBG automatic rain gauge is located near the JORGE BASADRE rain gauge, it
was assumed that the precipitation which falls every 30 min in the middle and upper parts
of the Devil’s Creek differed by —38% with respect to FIAG UN]JBG automatic rain gauge.
The calculations are as follows:
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JORGE BASAGRE rain gauge = 1.31 x PISCO precipitation in JORGE BASADRE;

PISCO precipitation for the coordinates of the middle and upper parts of the Devil’s

Creek x 1.06 = PISCO precipitation in JORGE BASADRE;

The FIAG UNJBG automatic rain gauge is located near the JORGE BASADRE rain
gauge; therefore, we assumed that the rainfall data of the FIAG UNJBG automatic rain

gauge were the same that the rainfall data of the JORGE BASADRE rain gauge;

value 1.38 is a result of 1.31 x 1.06.

Considering this, the estimated precipitation for the middle and upper parts of the
Devil’s Creek for the period 7 December 2019 to 7 May 2021 is shown in Figure 6. In that

period, three main events have been identified.
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Figure 6. Estimated hourly rainfall for the Devil’s Creek. (a) Event on 23-24 January 2020; (b) event
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on 21 February 2020; and (c) event on 27 December 2020.

In order to corroborate the lower amount of precipitation in the Devil’s Creek con-
cerning the FIAG UNJBG automatic rain gauge, a space-time analysis of the information
recorded at the JORGE BASADRE rain gauge was carried out with other daily satellite
products, such as IMERG and CHIRPS. To do this, two virtual rain gauges were defined to
be compared with the JORGE BASADRE rain gauge. Table 2 shows the location of each of

the aforementioned rain gauges.
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Table 2. Virtual rain gauges and JORGE BASADRE rain gauge.

No Rain Gauge Length Latitude  Elevation (masl) Source Record
_ o o 1993-2014,
1 Jorge Basadre G. 70.2515 18.0268 552 UNJBG 2017-2021
2 EV01 —70.25° —17.95° 941 - -
5 EV02 —70.15° —17.85° 1560 - -

Additionally, Figure 7 shows the location of the aforementioned rain gauges. The two
virtual rain gauges are located in the lower and upper parts of the basin. It should be noted
that the quadrants correspond to the available satellite information.

70°20'W 70"18'W

70°"10W

17°50'S
17°50'S

17°55'S
17°55'S

Legend

18°0'S

18°0'S

Virtual station
Climate station
Est. JBG

Devil’s Ravine

Sub-basins

70°15'W 70°10W

70°20'W
Figure 7. Location of virtual rain gauges and the JORGE BASADRE rain gauge.

For the spatial analysis of precipitation, three satellite products were used, as shown
in Table 3. Similarly, for the IMERG product, the early and final versions were used. The
information for each product was the total daily precipitation.

In the case of the IMERG product, the information was available from 2000 to date,
and in the case of CHIRPS, the information was complete for the entire analysis period.

Figure 8 shows the series of total daily precipitation data from the JORGE BASADRE
rain gauge and the series of each satellite product downloaded for the same coordinate
from the JORGE BASADRE rain gauge. It can be seen that the data downloaded for the total
daily precipitation of the IMERG Early product slightly overestimated the precipitation,
and the IMERG Final product underestimated the precipitation information at the JORGE
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BASADRE rain gauge. In contrast, the data downloaded for the total daily precipitation
of the CHIRPS product were greater than the data for the total daily precipitation of the
JORGE BASADRE rain gauge.

Table 3. Satellite and data base products analyzed.

Product Version Abbreviation Source Resolution Frequency Term
Peruvian Interpolated data
of SENAMHI's .
Climatological and V.21 PISCO SENAMHI 0.1° x 0.1° Daily 1981-2016
Hydrological Observations
Integrated Multi-satellite . .
R‘(’; trievals for GPM Early V06B IMERG-F NASA 0.1° x 0.1° Daily and 30 min ~ 2000-2021
Integrated Multi-satellite . . .
R%etrievals for GPM Final V06B IMERG-E NASA 0.1° x 0.1° Daily and 30 min ~ 2000-2021
Climate Hazards group
Infrared Precipitation with V.2.0 CHIRPS UCSB (%) 0.05° x 0.05° Daily 1981-2021
Rain gauges
(¥) University of California Santa Barbara.
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Figure 8. Comparation between (a) daily rainfall in JORGE BASADRE rain gauge and daily precipi-
tation from satellites products: (b) IMERG Early, (¢) IMERG Final, and (d) CHIRPS.

Although the information from the satellite products used does not have a good corre-
lation with the data observed from the JORGE BASADRE rain gauge, a spatial correlation
between them can be determined to establish indicators of spatial variation. The spatial
correlation was carried out between the three established rain gauges: JORGE BASADRE
rain gauge, Virtual Rain Gauge 01 (lower part of the Creek), and Virtual Rain Gauge 2
(upper part of the creek).

Figure 9 shows the results of the correlations made concerning the JORGE BASADRE
rain gauge and the virtual rain gauges EV01 and EV02. With the IMERG Early product,
the results obtained were that the precipitation in the EV01 area was 40% lower than the
precipitation in the JORGE BASADRE rain gauge, whereas the EV02 rain gauge area had
41% less precipitation than the JORGE BASADRE rain gauge area. Similarly, with the
IMERG Final product, the results obtained were that the precipitation in the EV01 area was
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33% lower than the precipitation in the JORGE BASADRE rain gauge, whereas the EV02
rain gauge area had 71% less precipitation than the zone of JORGE BASADRE rain gauge.

Concerning the CHIRPS product, the precipitation in the EV01 and EV02 zones was
lower by 27% and 45%, respectively, in comparison to the JORGE BASADRE rain gauge. In
summary, the previous results corroborate that the amount of precipitation in the Devil’s
Creek was less than the amount of precipitation in the city of Tacna, during the period of
common observation between them.

Table 4 shows a summary table of the linear regression coefficients obtained in the
comparison of the data series. It is observed that the area of the EV01 virtual rain gauge,
on average, would have 31% less precipitation than the JORGE BASADRE rain gauge,
whereas the area of the EV02 virtual rain gauge would have 51.7% less precipitation than
the JORGE BASADRE rain gauge.

Table 4. Summary of the regression coefficients and percentage between the JORGE BASADRE rain
gauge and the virtual rain gauge (EV01 and EV02).

EV01 and EV02 Have Less
Virtual PISCO JB IMERG Early IMERG Final CHIRPS ]JB Mean Precipitation than JORGE
Rain Gauge Rain Gauge JB Rain Gauge JB Rain Gauge  Rain Gauge BASADRE Rain Gauge
(%)
EVO01 0.76 0.60 0.67 0.73 0.69 100% — 69% = 31.0%
EV02 0.51 0.59 0.29 0.54 0.483 100% — 48.3% = 51.7%
PISCO (JORGE BASADRE raingauge versus PISCO (JORGE BASADRE raingauge versus
5 EVO01) 5 EVO02)
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Figure 9. Cont.
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Figure 9. Correlations were made between the total daily precipitation data between the JORGE
BASADRE rain gauge and the virtual rain gauges, (EV01 and EV02) using the products: (a,b) PISCO,
(c,d) IMERGE Early, (e,f) IMERGE Final, and (g,h) CHIRPS.

2.5.3. Types of Soils and Infiltration Capacity in the Devil’s Creek

Characterization of the soil type was carried out through field samplings conducted on
22 July 2020. Figure 10 shows the places where three soil samplings and the corresponding
infiltration tests were carried out. The information on the infiltration tests is presented
in Table 5.

Table 5. Location of sampling points, texture, infiltration equation, and hydraulic conductivity
at saturation (Ks).

. . Infiltration Equation Ks
Sampling UTM Coordinates Texture F (mm), t (min) (mm/min)
1 368477E, 8019016N Clayey silt F=4.01t8 0.872
2 368477E, 8019035N  oandy silt with gravel F = 3.67 087 1311
and clay
3 368328E, 8018959N Sandy silt F=721072 0.749

with gravels
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Figure 10. Location of soil sampling points.

2.5.4. Hydrological Model of the Devil’s Creek

Hydrological modeling of the maximum flow produced in the Devil’s Creek was
carried out using the RS MINERVE program.

The RS MINERVE program is open access and widely used in Peru and national
institutions such as the National Water Authority (ANA, by its abbreviation in Spanish)
and the Potable Water and Sewerage Service of Lima (SENAMHI, by its abbreviation
in Spanish) [42].

The RS MINERVE program is a flow simulation program which allows the modeling
of complex hydraulic and hydrological networks following a semi-distributed approach.
The program is capable of representing not only the main hydrological processes such as
snow and glacier melting, surface and sub-surface runoff, but also regulatory infrastructure
such as retention dams, spillways, water intakes, turbines, and pumps, among others.

RS MINERVE integrates different hydrological precipitation-runoff models such as
GSM, SOCONT, SAC-SMA, GR4J, and HBV. Likewise, it allows the inclusion of hydraulic
structures through different models (reservoirs, turbines, spillways, etc.) [43].

The model used for the hydrological modeling of the Devil’s Creek was the SOCONT
(Soil CONTribution model). The SOCONT and GR4J] models are more sensitive in extreme
event modeling than the HBV and SAC models [44]. As shown in Figure 11, the SOCONT
model procedure consists of the Snow-SD model simulating the evolution of the glacial
layer (melting and accumulation) as a function of temperature (T) and precipitation (P),
and calculating the equivalent precipitation (Peq). In the case of Devil’s Creek, and because
it is not a glacial stream, the equivalent precipitation constituted the precipitation. This
equivalent precipitation was used as input to the GR3 model that takes into account
the potential evapotranspiration (ETP) and generates the net intensity of rainfall for the
SWMM model.
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Figure 11. Composition of the SOCONT model.

The flow components of the SOCONT model are explained below:

- P: precipitation (L/T);

- T: Temperature (°C);

- Py: Liquid precipitation (L/T);

- Pgsn: Solid precipitation (L/T);

- Peq: Equivalent precipitation (L/T) equal Py, (L/T), because there is no glacial area in
the basin;

- iy Infiltration intensity (L/T)
ilnf = Peq (1 — (Hgrs/Heramax)?), If Hors < Heramax, Where Hggs (L) is the actual
capacity of infiltration reservoir (L), and Hgr3py (L) is the maximum capacity of the
infiltration reservoir.
imf = 0, if HGrs > HGR3Max;

- ETR: Real evapotranspiration (L/T)
ETR = ETP v/ Hgrs/ Horamax, If HGrs < HGR3Max
ETR = ETP, If Hgrs > Hgr3Max;

- inet: Net intensity (L/T), iNet = Peq — iinf;

- Qgcrs: Base discharge (L3/7)
Qars = Kgra-Hgrs-A, If Hgrz < Hgramax, Where Kgrs is the release coefficient of the
infiltration reservoir (1/T) and A is the surface (L2).
Qars = KGrs-Horamax A, if Hors > HGr3Max;

- I Runoff intensity (L/T), I, = K, VJoH2/3.1/L, where K, is the Strickler coefficient
(LY/3/T), o is the average slope of the plane, H, is the runoff water level downstream

of the surface (L), and L is the length of the plane (L);
- Qq: Surface runoff (L3/T), Q; = I,-A;

- Quot: Total runoff (L3/T), Qtot = Qgrs + Qr.
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According to Table 6, the total number of parameters necessary for hydrological
modeling is 16, of which 7 parameters are typical of the SOCONT model and also take into
account 4 initial conditions.

Table 6. SOCONT model parameters and plugins [45].

Object Units Description Regular Range
A m? Surface >0
S mm/°C/d Reference degree-day snowmelt coefficient 0.5to0 20
SInt mm/°C/d Degree-day snowmelt coefficient Oto4
Smin mm/°C/d Minimal degree-day snowmelt coefficient >0
SPh d Phase shift of the sinusoidal function 1to 365
ThetaCri - Critical relative water content of the snow pack 0.1
bp d/mm Melt coefficient due to liquid precipitation 0.0125
Tepl °C Minimum critical temperature for liquid precipitation 0
Tep2 °C Maximum critical temperature for solid precipitation 4
SOCONT Tcf °C Critical snowmelt temperature 0
HGR3Max m Maximum height of infiltration reservoir Oto2
KGR3 1/s Release coefficient of infiltration reservoir 0.00025 to 0.1
L m Length of the plane >0
Jo - Runoff slope >0
Kr ml/3/s Strickler coefficient 0.1to 90
CFR - Refreezing coefficient Oto1l
SWEIni m Initial snow water equivalent height -
HGR3Ini m Initial level in infiltration reservoir -
Hrlni m Initial runoff water level downstream of the surface -
Thetalni - Initial relative water content in the snow pack -
3. Results

3.1. Projected Maximum Annual Precipitation
3.1.1. Period 2021-2050

e RCP4.5 scenario

The maximum annual precipitation projected for the period 2021-2050 under the
RCP4.5 emission scenario in the Devil’s Creek is presented in Figure 12. The results show
a variation range from 0.79 mm to 283 mm with an average of 5.64 mm and a standard
deviation of 12.65 mm. The maximum value was projected by the model MPI_ESM_LR
(the coupled Max Planck Institute Earth System Model). Likewise, the models bec_csm1_1,
CanESM2, CCSM4, GFDL_ESM2G, GFDL_ESM2M, MPI_ESM_LR projected maximum
annual precipitation in a range of 27 mm to 283 mm. The bcc_csm1_1 and GFDL_ESM2M
models predicted around 46 mm by 2034.

On the other hand, given the uncertainty in the projections, an arithmetic average of
all models has been estimated, as well as an ensemble (dashed blue line) which has been
calculated, assigning a greater weight to the model that has better performance concerning
the maximum annual rainfall observed (see Equation (2)). The Access1-0 model was
discarded from the analysis of maximum annual precipitation because it projected high
values greater than 500 mm. The results of the assembly of the models indicate variation in
the annual maximum daily precipitation from 2.77 mm to 24.70 mm, with an average of
5.70 mm for the period 2021-2050. The range of uncertainty in the predictions is shown
in Figure 13, in which the linear extensions represent the highest and lowest values; the
upper, central, and lower limits of the box represent the percentiles of 75%, 50%, and 25%,
respectively; and the solid circles represent the outliers, which correspond to the maximum
values predicted by each model.
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Figure 12. Annual maximum daily precipitation projected by 14 climate models under the RCP4.5
scenario for the Devil’s Creek. The dashed blue line corresponds to the ensemble. Period: 2021-2050.
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Figure 13. Boxplot for future projections of the annual maximum daily precipitation of 14 GCMs
under the RCP4.5 scenario in the Devil’s Creek, period 2021-2050. The linear extensions represent the
highest and lowest values; the upper, middle and lower limits of the box represent the percentiles of
75%, 50%, and 25%, respectively; and the solid circles represent the outliers.

e RCP8.5 Scenario

The annual maximum daily precipitation projected for the 2021-2050 term under the
RCP8.5 emission scenario in the Devil’s Creek is shown in Figure 14. A varied range of
1.70 mm to 75.7 mm is evidenced with an average of 5.24 mm and a standard deviation of
3.29 mm for all models, indicating a low dispersion concerning the mean. The maximum
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value was projected by the GFDL_ESM2M (Fluid Dynamics Laboratory (GFDL) GFDL-
ESM2M model).
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Figure 14. Annual maximum daily precipitation projected by 14 climate models under the RCP8.5
scenario for the Devil’s Creek. The dashed blue line corresponds to the ensemble. Period: 2021-2050.

Likewise, the CanESM2, CNRM_CMS5, GFDL_ESM2M, MIROC_ESM_CHEM, MIROC5
models projected the highest annual maximum precipitation values in a range of 25.5 mm
to 75.7 mm, indicating that, in this period of analysis, heavy precipitation could occur in
the Devil’s Creek.

On the other hand, the results of the model ensemble indicate a variation in the
maximum annual precipitation from 3.14 mm to 25.96 mm, with an average of 5.80 mm for
the 2021-2050 term under the RCP8.5 scenario.

The range of uncertainty in the predictions is shown in Figure 15. Similarly, the linear
extensions represent the highest and lowest values; the upper, central, and lower limits of
the box represent the percentiles of 75%, 50%, and 25%, respectively; and the solid circles
represent the outliers, which correspond to the maximum values predicted by each model.

3.1.2. Period 2051-2080
e RCP4.5 Scenario

The maximum annual precipitation projected for the period 2051-2080 under the
RCP4.5 emission scenario in the Devil’s Creek is shown in Figure 16. The results indicate
a variation range from 0.86 mm to 95.46 mm with an average of 5.55 mm and a standard
deviation of 5.20 mm for all models, indicating a low dispersion concerning the mean. The
maximum value was projected by the CCSM4 model (The Community Climate System
Model Version 4). Likewise, of the 14 models evaluated, 7 of them CCSM4, CNRM_CMS5,
GFDL_ESM2M, IPSL_CM5A_LR, MIROC_ESM_CHEM, MIROC5, MPI_ESM_LR projected
the highest annual maximum precipitation values in a range of 21 mm to 96 mm, indicating
that heavy precipitation could occur in the Devil’s Creek during the analysis period under
this emission scenario.
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Figure 16. Annual maximum daily precipitation projected by 14 climate models under the RCP4.5
scenario for Devil’s Creek. The dashed blue line corresponds to the ensemble. Period: 2051-2080.

On the other hand, the results of the model ensemble indicate a variation in the
maximum annual precipitation from 2.77 mm to 17.86 mm, with an average of 5.60 mm for
the 2051-2080 term under the RCP4.5 scenario. The range of uncertainty in the predictions
is presented in Figure 17.
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under the RCP4.5 scenario in the Devil’s Creek, period 2051-2080. The linear extensions represent the
highest and lowest values; the upper, middle and lower limits of the box represent the percentiles of
75%, 50%, and 25%, respectively; and the solid circles represent the outliers.

e RCP8.5 Scenario

The maximum annual precipitation projected for the period 2051-2080 under the
RCP8.5 emission scenario in the Devil’s Creek is shown in Figure 18. The results indicate
a variation range from 0.62 mm to 224.65 mm with an average of 6.0 mm and a standard
deviation of 10.50 mm for all models, indicating a high dispersion concerning the mean.
The maximum value is projected by the bcc_csm1_1 (the Beijing Climate Center Climate
System Model). Likewise, of the 14 models evaluated, 6 of them bec_csm1_1, CanESM2,
CNRM_CMS5, GFDL_ESM2G, IPSL_CM5A_LR, MIROCS5 projected the highest annual
maximum precipitation values in a range from 19.28 mm to 224.65 mm, indicating that
heavy rainfall could occur in the stream of the river. Diablo during the analysis period
under this broadcast scenario.

On the other hand, the results of the model ensemble indicate a variation in the
maximum annual precipitation from 2.92 mm to 49.74 mm, with an average of 7.21 mm for
the 2051-2080 term under the RCP8.5 scenario. The range of uncertainty in the predictions
is presented in Figure 19. Similarly, the linear extensions represent the highest and lowest
values; the upper, middle, and lower limits of the box represent the percentiles of 75%, 50%,
and 25%, respectively.

On the other hand, a relative change has been calculated in relation to the historical
average for the period 1981-2005, simulated by the corrected and scaled GCM for the
Devil’s Creek. Under the RCP4.5 scenario, the annual maximum daily precipitation could
increase by 32.44%, on average; with a range from —35.80% to +470.77%. Under the
RCP8.5 scenario, the maximum annual precipitation will probably increase by 34.64%, on
average, during the 2021-2050 term. Values range from —27.24% to 502.37%. Positive
and negative values indicate a probable increase and decrease in the annual maximum
daily precipitation, respectively. For the 2021-2050 period, under the RCP4.5 scenario, the
maximum annual precipitation could increase by 29.79%, on average; the range is from
—35.66% to +314.45%. On the other hand, under the RCP8.5 scenario, the maximum annual
precipitation could increase by 67.23%, on average. For this scenario, the values range from
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—32.24% to 1053.97%. The maximum percentage value corresponds to a positive anomaly
of 45.43 mm concerning the historical average simulated by the GCM.

225 .
E 200
3
s
S 175
8
a
‘G 150
(7]
a
= 125
jd
o
£ 100
£
x
s 75 B
® k3
2 so » ¢
(< "
< AN
° / °
= o /2‘\\ - ’}.. 2 o T s
a 4 [ o 4 =
ceda-d-pb-goo o B340 Fop-dg g b-0-d00pe-ud-t

2051 2054 2057 2060 2063 2066 2069 2072 2075 2078

Year
® bcc_csml_1 e CanESM2 CcCsma e CESM1_BGC
® CNRM_CMS ® CSIRO_Mk3_6_0 ® GFDL_ESM2G ® GFDL_ESM2M
® IPSL_CM5A_LR ® MIROC_ESM_CHEM ® MIROC_ESM e MIROCS
® MPLESM_LR MPI_ESM_MR ® Mean = == = Ensemble

Figure 18. Annual maximum daily precipitation projected by 14 climate models under the RCP8.5
scenario for the Devil’s Creek. The dashed blue line corresponds to the ensemble. Period: 2051-2080.
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Figure 19. Boxplot for future projections of the annual maximum daily precipitation of 14 GCMs
under the RCP8.5 scenario in the Devil’s Creek, 2051-2080 term. The linear extensions represent the
highest and lowest values; the upper, middle, and lower limits of the box represent the percentiles of
75%, 50%, and 25%, respectively; and the solid circles represent the outliers.
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3.2. Projected Temperature
3.2.1. Annual Average Temperature

The temperature under climate change is another important variable that needs to be
evaluated and projected to determine the potential impact on the hydrological response of
the basin under study. Figures 20 and 21 present the minimum average annual temperature
simulated by regional climate models, after bias correction and scaling for the study area,
under RCP4.5 and RCP8.5 scenarios, for the 1981-2100 term. The black line corresponds
to the averaged time series of all models evaluated. Similarly, as evidenced by other
researchers, climate models agree in projecting a positive trend in temperature. However,
from 2050 onwards, greater variability and a decrease in the trend are observed under
the RCP4.5 scenario. On the other hand, as expected, the RCP8.5 high-emissions scenario
projected the highest values. In both scenarios, the MIRO-ESM-CHEM model projects
the highest minimum temperature values. Figures 22 and 23 show the average annual
maximum temperature projected by the regional climate models for the study area, under
the RCP4.5 and RCP8.5 scenarios, 1981-2100 term. Similarly, the black line corresponds
to the averaged time series of all the evaluated models and for both scenarios, the MIRO-
ESM-CHEM model projects the highest values of maximum temperature.
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Figure 20. Minimum annual average temperature simulated by climate models, corrected and scaled
for the Devil’s Creek, 1981-2100 term, RCP4.5 emission scenario. The black line represents the
averaged ensemble of 15 GCMs.
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Figure 21. Minimum annual average temperature simulated by climate models, corrected and scaled
for the Devil’s Creek, 1981-2100 term, RCP8.5 emission scenario. The black line represents the
averaged ensemble of the 15 GCMs.
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Figure 22. Maximum annual average temperature simulated by climate models, corrected and scaled
for the Devil’s Creek, 1981-2100 term, RCP4.5 emission scenario. The black line represents the
averaged ensemble of 15 GCMs.
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Figure 23. Maximum annual average temperature simulated by regional climate models, corrected
and scaled for the Devil’s Creek, 1981-2100 term, RCP8.5 emission scenario. The black line represents
the averaged ensemble of 15 GCMs.

3.2.2. Average Monthly Temperature

Figure 24 presents the minimum monthly average temperature under the RCP4.5 and
RCP8.5 scenarios for the Devil’s Creek, 2021-2050 and 2051-2080 periods for the average
multi-model ensemble of 15 regional climate models. Likewise, the historical period of
1981-2005 simulated by the GCM is observed. Monthly increases of 2.13 °C and 3.45 °C
on average are projected for the minimum temperature under the RCP4.5 scenario, and
of 2.62 °C and 4.90 °C under the RCP8.5 scenario, for the 2021-2050 and 2051-2080 terms,
respectively. All of them corresponded with the 1981-2005 term. Likewise, the months of
May, June, July, and August, as well as the period from January to March, project the largest
increases in the minimum temperature for both scenarios. Figure 25 presents the maximum
monthly average temperatures for the RCP4.5 and RCP8.5 scenarios. The results indicate
an increase in the monthly average maximum temperature of 1.79 and 2.85 °C under the
RCP4.5 scenario for the 2021-2050 and 2051-2080 terms, both relative to the 1985-2005 term.
On the other hand, under the RCP8.5 scenario, the average increase is 2.12 °C and 4.06 °C
for the periods previously described. For both scenarios, June, July, and August show the
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largest increases, meaning that there will probably be greater warming during winter in the
coming decades. Likewise, the minimum temperatures tend to increase slightly in relation
to the maximum temperatures.
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Figure 24. Average monthly temperature (minimum) under RCP4.5 and RCP8.5 scenarios for the Devil’s
Creek, 2021-2050 and 2051-2080 periods. The multi-model ensemble average of 15 GCMs.
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Figure 25. Average monthly temperature (maximum) under RCP4.5 and RCP8.5 scenarios for the Devil’s
Creek, 2021-2050 and 2051-2080 periods. The multi-model ensemble average of 15 GCMs.

3.2.3. Monthly Changes

In this study, we have provided average temperature changes for two periods: 2020-2050
and 2051-2080, relative to the period 1981-2005. Figure 26 shows the monthly average
temperature changes (minimum) under RCP4.5 and RCP8.5 scenarios for the Devil's Creek,
for the multi-model average ensemble of 15 GCMs corrected and downscaled. For both
scenarios and the two study periods, changes are positives; consequently, minimum tempera-
ture would increase in the next decades under climate change. Under the RCP4.5 scenario,
the largest positive changes are projected in July and August: 2.7 °C on average for the
period 2021-2050. Additionally, this is a change of 4.4 °C, on average, for winter (JJA) during
the period 2051-2080. The lowest minimum temperature changes are projected for spring
(SON) with 1.8 °C and 2.9 °C for both periods, respectively. On the other hand, under the
RCP8.5 scenario, the highest values of increase in the minimum temperature are projected for
winter (JJA), more than 3.2 °C and 6. 3 °C for both periods.

Figure 27 shows the monthly average temperature change (maximum) under the
RCP4.5 and RCP8.5 scenarios. Under the RCP4.5 scenario, it is evident that the greatest
positive change in the maximum temperature would occur in winter (JJA), more than 3.0 °C
and 4.9 °C for both periods. Similarly, for the RCP8.5 high-emissions scenario, in winter,
the highest increases are projected, ranging from 3.5 to 6.9 °C, on average, for the periods
2021-2050 and 2051-2080, respectively.
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Figure 26. Average monthly temperature change (minimum) under RCP4.5 and RCP8.5 scenarios for
the Devil’s Creek, 2021-2050 and 2051-2080 periods. The multi-model ensemble average of 15 GCMs.
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Figure 27. Average monthly temperature change (maximum) under RCP4.5 and RCP8.5 scenarios for
the Devil’s Creek, 2021-2050 and 2051-2080 periods. The multi-model ensemble average of 15 GCMs.

3.3. Calibration and Generation of Maximum Flows in the Devil’s Creek
3.3.1. Under Historical Conditions

As a precedent to the generation of the maximum flows produced in the Devil’s Creek,
it should be mentioned that the channel of this creek was interrupted by an informal
embankment used as a trail to access farms in the area of the Alto de la Alianza hill. The
collapse of this embankment, located 2.0 km from the town of La Florida (City of Tacna),
caused the debris flow on 21 February 2020. Figure 28 shows the site before and after the
collapse of the informal embankment called Paso Camiara.

The calibration of the hydrological model was carried out by modeling the maximum
flow produced in the Devil’s Creek, dated 21 February 2020, as a result of the event of
maximum rain and rupture of the Paso Camiara informal embankment. Figure 29 shows
the topology of the Devil’s Creek, generated in the RS Minerve model.

As seen in Figure 7, the Devil’s Creek was subdivided into five sub-basins: two in
the upper part (SC1 and SC2), two in the middle part (SC3 and SC4), and one in the lower
part (S5C5). Each of the sub-basins is linked to a virtual precipitation rain gauge. The
precipitation events for each sub-basin are shown in Table 7.

The rain event of 21 February 2020, attributable to the positive anomaly of the sea
surface temperature between +1 °C and +2 °C, produced off the coast of Tacna between
22 January 2020 and 22 February 2020 (Figure 30) [12].
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Riverbed of the Devil’s Creek obstructed by an informal em- The place of the informal embankment collapsed by the
bankment as an access trail to farms on the Alto de la Alianza flood of 22 February 2020 and that caused the flood to-
hill. Source INGEMMET (2016). wards the city of Tacna.

Figure 28. Before and after the Devil’s Creek channel was obstructed by an informal embankment as
an access trail to farms in the Alto de la Alianza hill.

R

o

Figure 29. Structure of the RS Minerve Model for simulation of the 21 February 2020 event.
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Average SST Anomalies

Table 7. The intensity of precipitation over each sub-basin (mm/h).

Date Hour SC5 SC4 and SC3 SC2and SC1
21 February 2020 15:00 0.00 0.00 0.00
21 February 2020 16:00 0.43 0.39 0.34
21 February 2020 17:00 2.03 1.83 1.62
21 February 2020 18:00 1.01 0.91 0.81
21 February 2020 19:00 5.36 4.82 4.29
21 February 2020 20:00 2.46 2.21 1.97
21 February 2020 21:00 0.86 0.77 0.69
21 February 2020 22:00 0.00 0.00 0.00
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Figure 30. Sea surface temperature anomalies between 1 December 2019 and 28 March 2020.

Sub-basins 1 and 2 discharge their waters to River 1, and this flow joins the runoff
produced by Sub-basin 3. This discharge feeds River 2, which joins the production of
run-off from Sub-basin 4, before entering the informal Paso Camiara embankment. This
structure served to model the dam break effect. Finally, the abrupt discharge from the dam
break joins the runoff produced in Sub-basin 5. The parameters and initial conditions for
each of the sub-basins are shown in Table 8. Likewise, the parameters and initial conditions
for each river, are shown in Table 9.

In order to enter the RS Minerve, utilizing the bathymetry information of the Paso
Camiara informal embankment (height vs. volume), the calculations were made using
information from the topographic survey (Figure 31).

To simulate the dam break effect, it was assumed that this would occur when the
dam’s maximum height of 13.0 m was reached.

A necessary aspect to carry out the calculation of the dam break is the determination
of the width of the breach.
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To calculate the width of the rectangular breach (b), the formula proposed by Froehlich
(2008) can be used, obtained by processing 69 cases of dam failures [46]:

b= 0.27 ko V032 H)0%

(4)

where b (m) is the width of the breach, kg (Adim) is 1.3 (Overflow failures) and 1.0 (For
other cases), V (m?) is the volume of water stored above the bottom of the breach, and Hj,
(m) is the height of the breach.

Table 8. SOCONT model parameters for each sub-basin.

Sub-Basins SC1 SC2 SC3 SC4 SC5
SOCONT Model Parameters
A m? 8,446,871 7,775,105 16,991,236 8,542,694 11,086,674
bp d/mm 0.0125 0.0125 0.0125 0.0125 0.0125
CFR - 1 1 1 1 1
HGR3Max m? 0.1 0.1 0.1 0.2 0.5
Jo - 0.102 0.060 0.028 0.036 0.047
KGR3 1/s 0.001 0.001 0.001 0.001 0.001
Kr m!/3/s 2 2 2 2 2
L m 1489.2 1301.7 1514.2 1008.1 1613.8
S mm/°C/d 5 5 5 5 5
Sint mm/°C/d 0 0 0 0 0
Smin mm/°C/d 0 0 0 0 0
SPh d 80 80 80 80 80
Tef °C 0 0 0
Tepl °C 0 0 0
Tep2 °C 4 4 4 4
ThetaCri - 0.1 0.1 0.1 0.1 0.1
Initial conditions
SWEIni m 0 0 0 0 0
Thetalni - 0 0 0 0 0
HGR3Ini m 0.1 0.1 0.1 0.1 0.1
Hrlni m 0 0 0 0 0
Table 9. Riverbed model parameters by cinematic approximation.
Riverbed River1 River 2
Parameters
L m 12,541.4 8622.1
BO m 5 12
m - 1 1
Jo - 0.03 0.0335
K m!/3/s 30 30
N - 1 1
Initial conditions
Qini m3/s 0 0
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Figure 31. Bathymetry of the informal Paso Camiara embankment.

If we consider kj = 1.3, the volume of water stored before the dam break was 23,911.5 m3,
and if the total water height above the breach is 13.0 m, there will be a breach width of
9.8 m.

Likewise, if the breach is considered as a spillway, with a coefficient of 1.5, the dis-
charge flow at the instant of the total rupture of the dam would be 688.7 m3/s.

Q=15 xb x Hmax'® =1.5 x 9.8 x 13!° =688.7 m>/s
The results of these calculations are shown in Table 10.

Table 10. Instantaneous discharge flow due to breach of the Paso Camiara informal embankment.

Hc (m) V (Hm?) b (m) Qp (m3/s)
13 0.0239115 9.8 688.7

Paso Camiara Dam

The simulated hydrographs produced by each of the sub-basins are shown in Figure 32.

The entrance hydrograph to the Paso Camiara informal embankment is shown in
Figure 33. A maximum inflow flow of 10.72 m3/s produced at 22:00 h was calculated. It
should be mentioned that the Devil’s Creek does not have a gauging station. The maximum
flow of 10.72 m3 /s was contrasted with the water footprints left by the event in the riverbed
of the Devil’s Creek.

Figure 34 shows the height and flow hydrographs in the Paso Camiara dam. The
results of the simulation show that from 4:00 p.m. on 21 February 2020, the filling of the
Paso Camiara informal embankment began, breaking at a maximum water height of 15.7 m
and discharging a maximum flow of 2550.8 m®/s. Figure 35 shows the debris flow which
produced floods that caused the loss of three human lives as well as great economic losses
in Tacna city.
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Figure 32. Hydrographs generated by the sub-basins.
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Figure 33. Hydrograph of entry to the Paso Camiara informal embankment.
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Figure 34. Hydrographs of water height in the dam and flow discharged due to the collapse of the
Paso Camiara dam.
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Figure 35. Gestion newspaper reports: debris flow in Tacna left three people dead, 22 February 2020.

3.3.2. Under Climate Change Conditions

To carry out the hydrological modeling of the maximum flow in the Devil’s Creek,
produced by maximum rainfall events generated by climate change models, a topology
was used without considering the Paso Camiara informal embankment. Therefore, Sub-
basins 1 and 2 discharge their waters to River 1, and this flow joins the runoff produced
by Sub-basin 3. This discharge feeds River 2, which joins the production of run-off from
Sub-basin 4, which joins the runoff produced in Sub-basin 5. Likewise, the parameters and
initial conditions for each of the sub-basins were maintained. Figure 36 shows the structure
of the RS Minerve model.

The modeling of the maximum flow product of precipitation intensities over each
sub-basin (mm/h) for the RCP4.5 and 8.5 scenarios, and for 2021-2050 and 2051-2080 terms
(Table 11), are shown in Table 12 and Figure 37, respectively.
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Figure 36. Structure of the RS Minerve Model for the simulations of events with different climate
change scenarios.

Table 11. Precipitation intensity over each sub-basin (mm/h) for RCP4.5 and 8.5 scenarios, from 2021
to 2050 and from 2051 to 2080.

2021-2050 (RCP4.5) 2051-2080 (RCP4.5) 2021-2050 (RCP8.5) 2051-2080 (RCP8.5)

SC4 SC2 SC4 SC2 SC4 SC2 SC4 SC2

Hours SC5 and and SC5 and and SC5 and and SC5 and and
SC3 SC1 SC3 SC1 SC3 SC1 SC3 SC1

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.87 0.78 0.70 0.63 0.57 0.51 0.92 0.83 0.73 1.76 1.58 1.41
2 411 3.70 3.29 2.98 2.69 2.39 4.34 3.90 3.47 8.31 7.48 6.65
3 2.04 1.84 1.64 1.48 1.34 1.19 2.16 1.94 1.73 413 3.72 3.31
4 10.85 9.77 8.68 7.88 7.09 6.30 11.45 10.31 9.16 21.94 19.75 17.55
5 4.98 4.48 3.98 3.62 3.25 2.89 5.26 473 4.20 10.07 9.06 8.06
6 1.74 1.57 1.39 1.26 1.14 1.01 1.84 1.65 1.47 3.52 3.17 2.82
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Totalin 6 h 24.60 22.14 19.68 17.86 16.07 14.29 25.96 23.36 20.77 49.74 44.77 39.79
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Table 12. Flood hydrographs for RCP4.5 and RCP8.5 scenarios from 2021 to 2050 and from 2051
to 2080.

. Years 2021-2050  Years 2021-2050  Years 2051-2080  Years 2051-2080
Time (Hour)

RCP4.5 RCP8.5 RCP4.5 RCP8.5
1.0 0.0 0.0 0.0 0.0
2.0 0.1 0.1 0.1 0.2
3.0 2.2 25 1.2 14.0
4.0 49 55 29 16.6
5.0 23.7 26.0 13.5 76.4
6.0 30.4 329 19.1 78.6
7.0 26.0 27.7 17.6 55.7
8.0 19.1 20.1 13.8 349
9.0 14.4 15.1 10.9 239
10.0 11.3 11.7 8.9 17.5
11.0 9.1 9.5 74 13.4
12.0 7.6 7.8 6.3 10.7
13.0 6.4 6.6 54 8.7
14.0 55 5.7 47 73
15.0 49 5.0 4.2 6.3

—0—2021-2050yearsRCP 4.5
—8—2021-2050yearsRCP 8.5
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Figure 37. Flood hydrographs for RCP4.5 and RCP8.5 scenarios for 2021-2050 and 2051-2080 terms.

4. Discussion

This research addressed the impacts of natural variability and climate change on
the maximum precipitation and maximum flows in the Devil’s Creek, Tacna, Peru. For
the projection of the future maximum annual precipitation, maximum temperature, and
minimum temperature, the analysis is based on the daily output of 15 general circulation
models (GCMs) of the CMIPS5 project (Coupled Model Intercomparison Project Phase 5) and
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considers two emission scenarios: RCP4.5 and RCP8.5. The Access1-0 model projection was
discarded due to a high overestimation of maximum precipitation. Furthermore, given the
uncertainty in the projections by the GCMs [31], an ensemble of 14 GCMs was assessed. In
general, although most models do not agree in projecting similar trends in precipitation as
evidenced in other investigations [21,45,46], the projections indicate that the future pattern
of maximum annual precipitation will experience significant changes, with increases for
the two periods evaluated and for both scenarios.

Compared with historical conditions, heavy precipitation events are intensified, espe-
cially for the high-emissions scenario, according to the multi-model ensemble of 14 GCMs.
Under the RCP4.5 scenario, the maximum annual precipitation could increase by more
than 32%, on average, whereas under the RCP8.5 scenario, it could increase by 35%, on
average, during the 2021-2050 period relative to the historical period of 1981-2005. On
the other hand, for the 2051-2080 period, the maximum annual precipitation projected
for the RCP4.5 scenario tends to decrease slightly. However, significant positive change is
projected under the RCP8.5 scenario relative to the 1981-2005 period.

Regarding future temperature changes, as evidenced in other investigations, the
GCMs agree in projecting a positive temperature trend [47,48]. However, as of 2050, greater
variability and a decrease in the low trend are observed under the RCP4.5 scenario for the
Devil’s Creek area. Additionally, as expected, the RCP8.5 scenario projected the highest
temperature values. For both scenarios, the values in June, July, and August denote a high
range of positive changes of the minimum temperature. The behavior is similar for the
monthly average maximum temperature during the 2021-2050 term for both scenarios.
In contrast, it occurs during the 2050-2080 term under the RCP8.5 scenario that indicates
significant warming during June, July, and August; similarly, it happens for January,
February, and March.

Regarding the historical rainfall event of 21 February 2020, in the Devil’s Creek, it can
be affirmed that this is attributable to the positive anomaly of the sea surface temperature
off the coast of Tacna during the days before that date.

Likewise, the lowest estimated rainfall sheet for the event of 21 February 2020, in the
Devil’s Creek, concerning the rainfall sheet recorded in the city of Tacna, is attributed to
the shorter distance from the city of Tacna to the coastal area. This was demonstrated, in
the absence of registered information on rainfall on the Devil’s Creek, through the spatio-
temporal analysis of the information registered in the city of Tacna (JORGE BASADRE rain
gauge) and satellite products such as IMERG and CHIRPS.

Regarding the debris flow produced as a result of the rainfall event of 21 February
2020, which caused a loss of human lives, this was the consequence of the collapse of an
informal embankment built as a trail, located 2.0 km upstream from the town center named
La Florida (City of Tacna).

Regarding the historical and future hydrological modeling, these were carried out
through the RS Minerve program. The historical hydrological modeling was calibrated by
estimating the footprints of maximum flows produced in the middle section of the Devil’s
Creek and the evidence and testimonies recorded in videos of the magnitude of the disaster
caused by the debris flow of 21 February 2020. The future hydrological modeling was
carried out for two time periods: 2021 to 2050 and 2051 to 2080, for RCP4.5 and RCP8.5
scenarios, respectively. The results will be used for the design of studies and alternatives
for the protection of the population in the area of influence of the Devil’s Creek.

5. Conclusions

Climate models agree in projecting a positive trend in surface temperature. However,
from 2050 onwards, greater variability and a decrease in the trend were observed under
the RCP4.5 scenario. On the other hand, as expected, the RCP8.5 high-emissions scenario
projected the highest values. For both scenarios and for both periods, minimum and
maximum temperature would increase under climate change. Higher positive monthly
changes are projected in June, July, and August, meaning that winters would be warmer.
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The result of the model ensemble, under the RCP4.5 scenario, indicated a variation in
the maximum annual precipitation from 2.77 mm to 24.70 mm, with an average of 5.70 mm
for the 2021-2050 term. Additionally, this was from 3.14 mm to 25.96 mm, with an average
of 5.80 mm under the RCP8.5 scenario. For the 2051-2080 term, the multi-model ensemble
of 14 GCMs indicated a variation in the maximum annual precipitation from 2.77 mm to
17.86 mm, with an average of 5.60 mm under the RCP4.5 scenario and from 2.92 mm to
49.74 mm, averaging 7.21 mm under the RCP8.5 scenario.

Regarding the relative change, under the RCP4.5 scenario, the maximum annual
precipitation could increase by 32%, on average. Under the RCP8.5 scenario, it would
probably increase by 35%, on average, during the 2021-2050 term. On the other hand, for
the 2050-2080 term, the maximum annual precipitation could increase by 30% under the
RCP4.5 scenario and 65% under the RCP8.5 scenario.

The rainfall event of 21 February 2020, in the Devil’s Creek, is attributable to the
positive anomaly of the sea surface temperature between +1 °C and +2 °C, produced off
the coast of Tacna between 22 January 2020, and 22 February 2020.

The debris flow produced as a result of the rainfall event of 21 February 2020 was the
consequence of the collapse of an informal embankment built as a trail, located 2.0 km
upstream from the town of La Florida (City of Tacna).

Historical hydrological modeling using the RS Minerve model was calibrated by
estimating the footprints of maximum flows produced in the middle section of the Devil’s
Creek and the evidence and testimonies recorded in videos of the magnitude of the disaster
caused by the debris flow of 21 February 2020.

The maximum flood volume in the Devil’s Creek could increase by 220% and 154%
for the RCP4.5 scenario, for the 2021-2050 and 20512080 terms, respectively.

The maximum flood volume in the Devil’s Creek could increase by 234% and 484%
for the RCP8.5 scenario for the 2021-2050 and 20512080 terms, respectively.

Author Contributions: E.IL-B. designed, collected observed data, wrote the first draft, and edited the
document. E.C.-V. designed, collected observed data, wrote the first draft, and edited the document.
E.P-V. guided writing and review. EM., A.C. and A.V. collected and processed information. All
authors have read and agreed to the published version of the manuscript.

Funding: Universidad Nacional Jorge Basadre Grohmann, Tacna, Peru.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable. The data corresponds to reports from Peruvian public
institution that under agreement provided such information with academic purposes.

Acknowledgments: The authors would like to thank the National Water Authority (ANA) and the
National Meteorology and Hydrology Service (SENAMHI) for providing the valuable information
used in this work.

Conflicts of Interest: The authors declare no conflict of interest.

1. Ingol, EM.; Mckinney, D.C. Modeling Climate Change Impacts on Hydrology and Water Resources: Case Study Rio Conchos Basin; Center
for Research in Water Resources Bureau of Engineering Research, The University of Texas at Austin: Austin, TX, USA, 2011.

2. Stagl,J.; Mayr, E.; Koch, H.; Hattermann, F; Huang, S.; Judith, S. Managing Protected Areas in Central and Eastern Europe Under Cli-
mate Change, Effects of Climate Change on the Hydrological Cycle in Central and Eastern Europe; Springer Open: Berlin/Heidelberg, Ger-

many, 2013; pp. 31-43.

3. IPCC. Climate Change and Water. Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change;
Bates, B.C., Kundzewicz, Z.W., Wu, S., Palutikof, ].P.,, Eds.; IPCC Technical Paper VI; IPCC: Geneva, Switzerland, 2008.

4. SENAMHI. Escenarios Climaticos en el Perti para el Afio 2030. 2009. Available online: https://idesep.senamhi.gob.pe/portalidesep /
files/tematica/cambio_climatico/Escenarios_climaticos_en_el_Peru_para_el_ano_2030.pdf (accessed on 21 November 2021).

148



Hydrology 2022, 9, 10

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Changnon, S.A. EI Nifio 1997-1998: The Climate Event of the Century; Oxford University Press: New York, NY, USA, 2000; p. 36.
ISBN 978-0-19-803096-6. Available online: https:/ /oxford.universitypressscholarship.com/view/10.1093/0s0/9780195135510.00
1.0001/isbn-9780195135510 (accessed on 21 November 2021).

Comunidad Andina de Fomento (CAF). El Fenomeno El Nifio 1997-1998 Memoria; Retos Y Soluciones. 2000. Available
online: https://scioteca.caf.com/bitstream /handle /123456789 /676 /Las%?20lecciones%20de%20E1%20Ni%C3%B1o.Per%C3
%BA.pdf (accessed on 21 November 2021).

El Nifio Costero. Las Inundaciones de 2017 en el Perii; ISET-International, Soluciones Précticas y el Programa de Resiliencia a las
Inundaciones de Zurich: La Paz, Bolivia, 2017.

Pino, E.; Ramos, L.; Avalos, O.; Tacora, P.; Chavarri, E.; Angulo, O.; Ascensios, D.; Mejia, J. Effect of Environmental and Geological
Characteristics on Water Quality in the Caplina River Basin, Tacna, Peru. Tecnol. Cienc. Agua 2017, 8, 77-99. [CrossRef]

Cheng, L.; AghaKouchak, A. Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a
Changing Climate. Sci. Rep. 2014, 4, 7093. [CrossRef]

Sarhadi, A.; Soulis, E.D. Time-varying extreme rainfall intensity-duration-frequency curves in a changing climate. Geophys. Res.
Lett. 2017, 44, 2454-2463. [CrossRef]

Hu, H.; Ayyub, B. Extreme Precipitation Analysis and Prediction for a Changing Climate. ASCE-ASME ]. Risk Uncertain. Eng.
Syst. Part A Civ. Eng. 2018, 4, 04018029. [CrossRef]

Pino, E.; Chavarri, E. Evidence of climate change in the hyper-arid region of the southern coast of Peru, head of the Atacama
Desert. Tecnol. Cienc. Agua 2022, 3, 1. [CrossRef]

CMIPS5. Coupled Model Intercomparison Project Phase 5. 2013. Available online: https://pcmdi.llnl.gov/mips/cmip5/ (accessed
on 21 November 2021).

Han, Z.Y,; Tong, Y.; Gao, X.J. Correction based on quantile mapping for temperature simulated by the RegCM4. Clim. Change Res.
2018, 14, 331-340.

Yang, X.; Wood, E.E; Sheffield, ].; Ren, L.; Zhang, M.; Wang, Y. Bias correction of historical and future simulations of precipitation
and temperature for china from CMIP5 models. ]. Hydrometeorol. 2018, 19, 609—-623. [CrossRef]

Tong, Y.; Gao, X.; Han, Z.; Xu, Y.; Xu, Y.; Giorgi, F. Bias correction of temperature and precipitation over China for RCM simulations
using the QM and QDM methods. Clim. Dyn. 2021, 57, 1425-1443. [CrossRef]

Paulhus, ].L.H.; Kohler, M.A. Interpolation of missing precipitation records. Mon. Weather. Rev. 1952, 80, 129-133. [CrossRef]
Guijarro, J.A. Homogenization of climatic series with Climatol. In Reporte Técnico State Meteorological Agency (AEMET); Balearic Is-
lands Office: Madrid, Spain, 2018.

Aybar, C.; Lavado-Casimiro, W.; Huerta, A.; Fernandez, C.; Vega, F,; Sabino, E.; Felipe-Obando, O. Uso del Producto Grillado
“PISCO” de Precipitacion en Estudios, Investigaciones y Sisitemas Operacionales de Monitoreo y Pronéstico Hidrometeoroldgico.
2017. Available online: https://www.senamhi.gob.pe/load/file/014025ENA-8.pdf (accessed on 21 November 2021).

Warren, W.; Parkinson, C. An Introduction to Three-Dimensional Climate Modeling, 2nd ed.; University Science Books; National
Center for Atmospheric Research and NASA Goddard Space Flight Center: California, VA, USA, 2005; p. 368.

IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change; Stocker, T.ED., Qin, G.-K., Plattner, M., Tignor, S.K., Allen, J., Boschung, A., Nauels, Y.,
Xia, V.B., Midgley, PM., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1535.

Flato, G.J.; Marotzke, B.; Abiodun, P.; Braconnot, S.C.; Chou, W.; Collins, P.; Cox, F; Driouech, S.; Emori, V.; Eyring, C.; et al.
Evaluation of climate models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK.

Overland, ].E.; Wang, M.; Bond, N.A.; Walsh, ].E.; Kattsov, V.M.; Chapman, W.L. Considerations in the Selection of Global Climate
Models for Regional Climate Projections: The Arctic as a Case Study. J. Clim. 2011, 24, 1583-1597. [CrossRef]

NASA. NEX-GDDP: NASA Earth Exchange Global Daily Downscaled Climate Projections, the Coupled Model Intercomparison
Project Phase 5. 2012. Available online: https://www.nccs.nasa.gov/sites/default/files/ NEX-GDDP-CMIP6-Tech_Note.pdf
(accessed on 21 November 2021).

Wilby, R.L.; Wigley, TM.L. Downscaling General Circulation Model Ouput: Review of Methods and Limitations. Prog. Phys.
Geogr. 1997, 21, 530-548. [CrossRef]

Chong-Yu, X. From GCMs to River Flow: A Review of Downscaling Methods and Hydrologic Modeling Approach. Prog. Phys.
Geogr. 1999, 23, 229-249.

Wilby, R.L.; Charles, S.P; Zorita, E.; Timbal, B.; Whetton, P.; Mearns, L.O. Guidelines for Use of Climate Scenarios Developed From
Statistical Downscaling Methods. 2004. Available online: https://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf
(accessed on 21 November 2021).

Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modeling to impacts studies: Recent advances in downscaling
techniques for hydrological modeling. Int. J. Clim. 2007, 27, 1547-1578. [CrossRef]

Teutschbein, C.; Seiber, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies:
Review and evaluation of different methods. J. Hydrol. 2012, 456457, 12-29. [CrossRef]

Maraun, G. Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue, Helmholtz Centre for Ocean
Research Kiel, Kiel, Germany. J. Clim. 2013, 26, 2137-2143. [CrossRef]

149



Hydrology 2022, 9, 10

31.
32.
33.
34.

35.
36.

37.
38.
39.
40.
41.
42.

43.

44.

45.

46.

47.

48.

Perkins, S.E.; Fischer, E.M. The usefulness of different realizations for the model evaluation of regional trends in heat waves.
Geophys. Res. Lett. 2013, 40, 5793-5797. [CrossRef]

Semenov, M.; Stratonovitch, P. Use of multi-model ensembles from global climate models for assessment of climate change
impacts. Clim. Res. 2010, 41, 1-14. [CrossRef]

Bishop, C.H.; Abramowitz, G. Climate model dependence and the replicate Earth paradigm. Clim. Dyn. 2013, 41, 885-900. [CrossRef]
LeDuc, M.; Mailhot, A.; Frigon, A.; Martel, J.-L.; Ludwig, R.; Brietzke, G.B.; Giguere, M.; Brissette, F.; Turcotte, R.; Braun, M.; et al.
The ClimEx Project: A 50-Member Ensemble of Climate Change Projections at 12-km Resolution over Europe and Northeastern
North America with the Canadian Regional Climate Model (CRCMb5). |. Appl. Meteorol. Clim. 2019, 58, 663-693. [CrossRef]
Annan, ].D.; Hargreaves, J.C. On the meaning of independence in climate science. Earth Syst. Dyn. 2017, 8, 211-224. [CrossRef]
Wang, B.; Zheng, L.; Liu, D.L.; Ji, E; Clark, A.; Yu, Q. Using multi-model ensembles of CMIP5 global climate models to reproduce
observed monthly rainfall and temperature with machine learning methods in Australia. Int. J. Clim. 2018, 38, 4891-4902.
[CrossRef]

Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 44-50. [CrossRef]

Kramer, O. Genetic algorithms. In Genetic Algorithm Essentials; Springer: Berlin/Heidelberg, Germany, 2017; pp. 11-19.
SENAMHI. Boletin Hidroclimatico Mensual Direccién Zonal 7. 2021. Available online: https:/ /repositorio.senamhi.gob.pe/
handle/20.500.12542 /1209 (accessed on 21 November 2021).

Krause, P; Boyle, D.P; Base, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5,
89-97. [CrossRef]

Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation
Criteria. Trans. ASABE 2015, 58, 1763-1785. [CrossRef]

Murnoz, R.; Huggel, C.; Drenkhan, E; Vis, M.; Viviroli, D. Comparing model complexity for glacio-hydrological simulation in the
data-scarce Peruvian Andes. . Hydrol. Reg. Stud. 2021, 37, 100932. [CrossRef]

Hidalgo, I.G.; Paredes-Arquiola, J.; Andreu, J.; Lerma-Elvira, N.; Lopes, ].E.G.; Cioffi, F. Hydropower generation in future climate
scenarios. Energy Sustain. Dev. 2020, 59, 180-188. [CrossRef]

Astorayme, M.; Garcia, J.; Suarez, W.; Felipe, O.; Huggel, C.; Molina, W. Modelizacion hidrolégica con un enfoque semidistribuido
en la cuenca del rio Chillén, Pert. Rev. Peru. Geo Atmosférica RGPA 2015, 4, 109-124. Available online: http:/ /www.senamhi.gob.
pe/rpga/pdf/2015_vol04/paper8.pdf (accessed on 21 November 2021).

Garcia, J.; Foehn, A ; Fluixa, ].; Roquire, B.; Brauchli, T.; Paredes, J.; Cesare, G.; Minerve, R.S. Technical Manual; Centre de Recherche
sur I’Environnement Alpin: Sion, Switzerland, 2020.

Campos, D. Modelado empirico simple del rompimiento de presas pequefias de tierra (hidrograma de salida). Ing. Investig. Tecnol.
2013, 14, 377-388. [CrossRef]

Dosio, A.; Jones, R.G.; Jack, C.; Lennard, C.; Nikulin, G.; Hewitson, B. What can we know about future precipitation in Africa?
Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 2019, 53,
5833-5858. [CrossRef]

Ortega, G.; Arias, P.A; Villegas, ].C.; Marquet, P.A.; Nobre, P. Present-day and future climate over central and South America
according to CMIP5/CMIP6 models. Int. |. Clim. 2021, 41, 6713-6735. [CrossRef]

150



hydrology

Article

Spatiotemporal Trend Analysis of Temperature and Rainfall
over Ziway Lake Basin, Ethiopia

Aster Tesfaye Hordofa 1/*

Citation: Hordofa, A.T.; Leta, O.T,;
Alamirew, T.; Chukalla, A.D.
Spatiotemporal Trend Analysis of
Temperature and Rainfall over Ziway
Lake Basin, Ethiopia. Hydrology 2022,
9,2. https://doi.org/10.3390/
hydrology9010002

Academic Editors: Tommaso
Caloiero, Carmelina Costanzo,

Roberta Padulano and Alain Dezetter

Received: 3 November 2021
Accepted: 16 December 2021
Published: 22 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Olkeba Tolessa Leta 3@, Tane Alamirew (2 and Abebe Demissie Chukalla 5

1 Africa Centre of Excellence for Water Management, Addis Ababa University, Addis Ababa 1176, Ethiopia
2 Faculty of Water Resources and Irrigation Engineering, Arba Minch University Water Technology
Institute (AWTI), Arba Minch 4400, Ethiopia
Bureau of Watershed Management and Modeling, St. Johns River Water Management District,
4049 Reid Street, Palatka, FL 32177, USA; OLeta@sjrwmd.com
4 Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa 1176, Ethiopia;
tena.a@wlrc-eth.org
5 The Department of Land and Water Management, IHE Delft Institute for Water Education,
2611 AX Delft, The Netherlands; a.chukalla@un-ihe.org
*  Correspondence: aster.tesfaye@aau.edu.et

Abstract: Rainfall and temperature trends detection is vital for water resources management and
decision support systems in agro-hydrology. This study assessed the historical (1983-2005) and future
(2026-2100) rainfall, maximum temperature (Tmax), and minimum temperature (Tp,;,) trends of the
Ziway Lake Basin (Ethiopia). The daily observed rainfall and temperature data at eleven stations were
obtained from the National Meteorological Agency (NMA) of Ethiopia, while simulated historical
and future climate data were obtained from the Coupled Model Intercomparison Project 5 (CMIP5)
datasets under Representative Concentration Pathways (RCP) of 4.5 and 8.5. The CMIP5 datasets
were statistically downscaled by using the climate model data for hydrologic modeling (CMhyd)
tool and bias corrected using the distribution mapping method available in the CMhyd tool. The
performance of simulated rainfall, Tmax, and Ty, of the CMIP5 models were statistically evaluated
using observation datasets at eleven stations. The results showed that the selected CMIP5 models can
reasonably simulate the monthly rainfall, Tmax, and Ty, at the majority of the stations. Modified
Mann-Kendall trend test were applied to estimate the trends of annual rainfall, Tmax, and Ty in the
historical and future periods. We found that rainfall experienced no clear trends, while Tmax, and Tpin
showed consistently significant increasing trends under both RCP 4.5 and 8.5 scenarios. However,
the warming is expected to be greater under RCP 8.5 than RCP 4.5 by the end of the 21st century,
resulting in an increasing trend of Tmax and T, at all stations. The greatest warming occurred in
the central part of the basin, with statistically significant increases largely seen by the end of the
21st century, which is expected to exacerbate the evapotranspiration demand of the area that could
negatively affect the freshwater availability within the basin. This study increases our understanding
of historic trends and projected future change effects on rainfall- and evapotranspiration-related
climate variables, which can be used to inform adaptive water resource management strategies.

Keywords: climate change; representative concentration pathways 4.5 and 8.5; modified Mann-
Kendall trend test; Ziway Lake Basin; Rift Valley; Ethiopia

1. Introduction

Climate change may have significant consequences on temperature and rainfall pat-
terns, which are the most vital climatic elements used in the decision-making process for
integrated water resources management [1,2]. For example, integrated water resources
management models utilize temperature and rainfall as important input data for assessing
freshwater availability [3]. The evidence of rapid global climate change includes an overall
increase in temperature and decrease in rainfall that could result in declining freshwater
availability [4-6], shrinking ice sheets, and rising sea level, among others [7,8]. Climate
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change impacts are more prominent in the African continent, especially countries that
are predominantly dependent on a rain-fed agricultural system [9]. For example, several
studies on temperature and rainfall changes have shown that most African countries have
experienced warmer temperatures by more than 1 °C, frequent heat waves, and an increase
in the number of hot days since 1901 [10]. In addition, both seasonal and annual rainfall
conditions of the African countries are highly variable [11,12].

Ethiopia, located in the eastern part of the African horn, strongly depends on rain-fed
agriculture that in turn contributes a large portion to the country’s economy. However,
due to climate change and limited water resources availability, the country’s rain-fed and
irrigated agricultural productivities are probably at risk, leading to negative consequences
on food security [13,14]. This is projected to be accelerated in the future, as reported in
many studies [15-18].

The Central Rift Valley (CRV) Lakes Basin of Ethiopia, located in the eastern part of
the country, has experienced considerable seasonal and annual rainfall variability, with
a prominent increase in temperature [19]. Some studies have already documented the
hydroclimate conditions and climate change impacts in the CRV, including partially in the
Ziway Basin (Meki and Katar sub-basins, the two major sub-basins draining into the Ziway
Lake) [20,21]. For example, Musie et al. [21] have reported climate variability has negatively
impacted the monthly streamflow of the Ziway Lake Basin (ZLB). Abraham et al. [20]
indicated future annual decrement in runoff depth from the Katar and Maki rivers. They
also documented that reduction in runoff has been caused by decrease in rainfall and
increase in temperature. Furthermore, other studies found that an annual decline in Ziway
Lake water level is due to a decrease in runoff from both the Katar and Meki rivers,
including increase in evapotranspiration from the basin [20,21]. These studies show that
water resources of the ZLB are highly exposed to a rapidly changing global climate [22].
The changes in rainfall and temperature in particular are important drivers affecting the
runoff and evapotranspiration and thus the lake water level [23]. A good description
and understanding of rainfall and temperature trends is thus crucial for many studies
related to irrigation (agriculture), climatology, and hydrology. Long-term trend analyses in
rainfall and temperature are also important for rain-fed and irrigated agricultural areas,
particularly for the ZLB, which is dominated by agricultural land [24]. It has been reported
that both rainfall and temperature can impact water availability (Ziway Lake water level),
irrigation water demand, water use efficiency, and productivity of the ZLB [25-28].

Previous studies have documented hydrological responses of the ZLB to climate
change with some studies based on only the historical period [21] and others based on
projected areal rainfall and temperature over the large area [20]. While the previous studies
focused on impact of climate change on hydrological responses of the basin [20,21,24],
rainfall and temperature trends of the basin have not been analyzed in-depth. Therefore, in-
depth characterization, understanding, and trend analysis of rainfall and temperature both
spatially and temporally are a vital procedure in assessing climate change impacts on fresh-
water resources availability, irrigation water uses, and water resources planning [29-36].
This study conducted detailed rainfall and temperature trends analysis at spatial and
temporal explicit scale, which is important for the ZLB with its significant topography
and experiences with climate variations. The current study also introduced climate model
selection criteria relevant to the case study that includes availability of the most commonly
used RCP 4.5 and 8.5 scenarios, availability of high spatial resolution and ensemble mod-
els, and recommendations from the past studies [37,38]. The study further evaluated the
performance of the selected climate models and identified the best performing models for
the study area.

The primary aim of this study was to analyze the spatial pattern and temporal trends
in annual rainfall and temperature for historical (1983-2005) and future (2026-2100) periods.
The future period was split into near-term (2026-2049), middle-term (2050-2072), and far-
term (2073-2100) time series. The study utilized rainfall, maximum temperature (Tmax),
and minimum temperature (Tpi,) from eleven stations together with Coupled Model
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Intercomparison Project 5 (CMIP5) under two representative concentration pathways
(RCP 4.5 and RCP 8.5). In this study, we first selected some CMIP5 models based on the
abovementioned selection criteria and downscaled and bias corrected the climate variables
of the selected CMIP5 models. We then evaluated the performance of the CMIP5 models’
data against observations at eleven stations that are spatially fairly distributed over the
ZLB. Finally, we analyzed the annual trends of historical and future temperature and
rainfall datasets.

2. Study Area Description

The Ziway Lake Basin (ZLB) is located within 38°00'-39°30’ East and 7°00'-8°30’
North in the Adami Tullu-Jiddo Kombolcha Woreda of the East Shewa Zone, Oromia
region, Ethiopia. The basin is about 150 km south of the capital city, Addis Ababa. The
town of Ziway (recently named Batu) is situated on the lake’s western shore. The altitude
of Ziway Lake is approximately 1636 m above mean sea level (amsl), and has a maximum
water depth of 4 m, a total basin drainage area of about 7300 km? (Figure 1), and a lake
volume of 1.5 million cubic meters [29]. Most of the basin is characterized by low to
moderately undulating topography but bounded by a steep slope and abrupt faults in
the eastern and southeastern escarpments, ranging from 4200 to 1600 m (Figure 1). ZLB
experiences a monsoon agro-climate and has a tropical climate with no uniform spatial
and temporal climatic conditions. The rainfall patterns are generally affected by the annual
oscillation of the intertropical convergence zone that forms a wet summer from June to
September [30]. The mean annual rainfall of the basin spatially varies from 417 to 1012 mm,
with a noticeable temporal variation at a monthly time scale. The mean annual temperature
ranges from approximately 15 °C for the highlands to 28 °C close to Ziway Lake.
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Figure 1. Topographic map of the Ziway Lake Basin.
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3. Data and Methods
3.1. Observed Data

Daily maximum and minimum temperature (Tmax and Tpin) and rainfall (RF) data
of the gauged stations, which were used for historical and future climate downscaling
and bias correction, were obtained from the National Meteorological Agency (NMA) of
Ethiopia. The dataset was obtained from eleven climate stations distributed over the Ziway
Lake Basin for the period from 1983 to 2005.

3.2. Historical and Future Climate Data

We accessed the CMPI5 model data through the four Earth System Gird Federation
(ESGF) gateways that manage, analyze, and distribute the model output and observation
data [31]. At the time of this study, the CMIP5 version is the most up-to-date set of widely
used climate models [31]. In addition, compared to CMIP3, the updated CMIP5 models
produce higher resolution projections and use an updated set of greenhouse gas emission
scenarios [32]. Among the four representative concentration pathways (RCPs), this study
selected the two most commonly used emission scenarios of the future climate, RCP 4.5
and RCP 8.5, which are, respectively, an intermediate and a very high greenhouse gas
(GHG) emission [32] scenario. We obtained the CMIP5 (RCP 4.5 and RCP 8.5) data from
https:/ /esgf-node.llnl.gov/search/cmip5/ (accessed from 10 January 2021 to 18 January
2021). The CMIP5 output provides global climate metadata that stores the data in the form
of network command data form (NetCDF).

3.3. CMIP5 Selection Criteria

A range of Global Climate Models (GCMs) are available to access the future minimum
and maximum temperature and rainfall data [33-36]. Three criteria were set to select
suitable GCMs that capture climate of the stations in the study area [33]. The criteria are
RCP 4.5 and 8.5 scenario availability, model resolutions and ensemble, and past studies in
the study area [21,37,38]. Based on these criteria, three CMIP5 GCMs were selected and their
corresponding output data, such as rainfall, maximum temperature (Tmax), and minimum
temperature (Tp,in) were downloaded under the two RCP 4.5 and RCP 8.5 scenarios. Table 1
summarizes the characteristics of the selected GCM.

Table 1. CMIP5 global climate models considered in this study.

Modeling Center Model Resolution in Degrees Institute Reference
Centre National de Recherches
CNRM-CERFACS CNRM-CM5 14 x 14 Meteorologiques/Centre Europeen de Recherche et [24,38]
Formation Avancees en Calcul Scientifique
MPLM MPL-ESM-LR 19 %19 Max Planck Institute for Meteorology [33,34,38]
(MPI-M)
Commonwealth Scientific and Industrial Research
CSIRO-QCCCE CSIRO-MK3.6 1.8 x 1.8 Organization in collaboration with the Queensland [37,38]

Climate Change Centre of Excellence

3.4. Data Extraction, Downscaling, and Bias Correction

Downscaling the GCM—-CMIP5 outputs to finer spatial resolutions is necessary for a
reliable assessment of the regional impact of climate change on rainfall and temperature.
The statistical downscaling method, which is the most widely used due to its quick and
effective assessments of local climate change impacts [39,40], is applied to downscale
and generate GCM-CMIP5 data (rainfall and temperature) at individual stations. We
extracted the large-scale climate variables obtained from CMPI5 model for historical, RCP
4.5 and 8.5 scenarios and downscaled using the climate model data for hydrologic modeling
(CMhyd) tool [41]. We made a bias correction of the rainfall and temperature data using
the distribution mapping method, which is recommended in the previous studies, and also
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available in the CMhyd software [38]. We used the eleven stations’ observed temperature
and rainfall data for the bias correction and downscaling of the climate data from the three
selected GCM-CMIP5 models (Table 1).

3.5. Climate Models Performance Evaluation

We evaluated the performance of the downscaled and bias-corrected CMIP5 models
over the Ziway Lake Basin using monthly observations of rainfall, minimum temperature,
and maximum temperature from 1983 to 2005 at eleven stations. We applied three statistical
evaluation metrics that include percent bias (PBIAS), root mean square error (RMSE), and
correlation coefficient (r) [42].

3.6. Rainfall and Temperature Trend Analysis
3.6.1. Mann—Kendall Test

The foremost measures of time series data including climate change are trend analysis,
which identifies the general increasing or decreasing tendencies of the climate variables [43].
There are two main standard types of trend analysis: nonparametric and parametric meth-
ods. Parametric analysis is the most preferred method, but it is applicable for stationarity
and normally distributed and serial-independent data, which is not possible in most hydro-
climatological time series records [44]. In contrast, the nonparametric trend test requires
time series data that are independent and less sensitive to outliers [45]. In this study, we
used the nonparametric methods of Mann-Kendall (MK) to detect the rainfall and tem-
perature trends for both historical and future periods: historical (1985-2005), near-term
(2026-2049), middle-term (2050-2072), and far-term (2073-2100) time series. Because of its
reliability for detecting monotonic trends in climate time series data, the nonparametric
method of MK has been widely applied to discovering trends in hydrometeorological time
series [45-48].

For comparison purpose, we also produced the spatial distribution maps for both
mean annual temperature (Tmax and Tpn) and rainfall. For this, we used the known-
distance-based interpolation method called inverse distance weighting [49]. Then, we
applied ArcGIS technique to generate maps showing the spatial distribution for rainfall
and temperature (Tmax and Tpyin) over the ZLB.

3.6.2. Modified Mann—Kendall Test

The Mann-Kendall trend (MK) test is a nonparametric test used to reliably estimate
trends of time series data. The original Mann—Kendall trend test does not consider serial
correlation and seasonality effect [48]. In the actual world, the time series data are autocor-
related and this autocorrelation produces a misconception of trend test results [50,51]. To
solve this problem, researchers and scholars proposed the modified Mann—Kendall tests,
such as the Hamed and Rao modified MK Test [51], Yue and Wang modified MK Test [45],
and modified MK test using the whitening method [52]. The modified MK (MMK) test, as
proposed by Hamed and Rao [51] considers all the significant autocorrelation coefficients
in a time series. Consequently, in this study, we used the widely applied MMK method [51].
We identified the trends of the selected variables (Tmax, Tmin, and rainfall) using the MMK
and the Sen’s slope test for annual time scales. We performed the analyses using the Python
package called PyMannKendall in Jupyter Notebook [53]. The presence of a statistically
significant trend is determined using the MK value. This statistic is used to test the null
hypothesis of no trend exists against the alternative hypothesis that a trend does exist. A
positive MK value indicates an increasing trend in the time series, while a negative MK
value indicates a decreasing trend. The MMK trend test uses a two-tailed test method for
evaluating and determining trend significance by simultaneously running three confidence
intervals (90%, 95%, and 99%) [54].
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4. Results and Discussion
4.1. Performance Evaluation of CMIP5 Models

The three CMIP5 models (CNMR-CM5, MIP-ESM, and CSIRO-MK3.6) show a positive
correlation coefficient for monthly observed rainfall with r values ranging from 0.4 to 1 at
the eleven stations (Table A1, Appendix A). The CNMR-CM5 model showed the highest
r-value of 1 at three stations (Kulumsa, Meraro, and Sagure) and a medium r-value of
0.6 at Bui station, suggesting higher (medium) agreements with the observed dataset. On
average, the spatial correlation coefficients of the selected models range from 0.5 to 0.73.
The results suggest that from the three models, the CNRM-CMS5 model showed relatively
a good agreement with the observed data at all stations (0.73). This may be due to its
high horizontal spatial resolution compared to the other models, including its resolution
improvements that increased both in the atmosphere (from 2.8° to 1.4°) and in the ocean
(from 2° to 1°) [55-57].

All models showed good performance in simulating the monthly Tpax with r val-
ues ranging from 0.5 to 0.7, which indicates acceptable agreement against the observed
data (Table A2, Appendix A). In addition, all models showed lower magnitude of RMSE
(0.3 to 1.6 °C), indicating the simulated monthly Trax values have good agreement with
the observed monthly Tmax values of the eleven stations in the basin. The PBIAS values are
in the range —15.5% to 40.1% for Tmax, which indicates that the selected models showed
both underestimation and overestimation of the observed Tp,ax values.

Similar to Tmay, r values of the three models for the Ty, range from 0.5 to 0.7, while
the RMSE values range from 0.8 to 1.6 °C (Table A3, Appendix A). This indicates that
the monthly simulated Ty, values by the three climate models reasonably represented
the observed Ty, values at all stations. The values of PBIAS are in the range —10.8% to
37.3% for Tpin, confirming the selected models both underestimated and overestimated
Tmin at different stations. Overall, the selected CMIP5 models can reasonably simulate the
monthly rainfall and temperature (Tmax and Tp,in) at the majority of the eleven stations (see
Tables A1-A3, Appendix A).

4.2. Historical Annual Rainfall and Temperature Trends
4.2.1. Temporal Trends of Annual Historical Rainfall and Temperature

The modified Mann—Kendall trend test and Sen’s slope estimators for historical annual
rainfall are presented in Table 2. The table shows increasing trends in rainfall for some
stations while the other stations show decreasing trends under certain conditions of the
three selected climate models (CNMR-CM5, CSIRO-MK3.6, and MIP-ESM-LR). The results
generally indicate insignificant increasing or decreasing trends at almost all stations and
for all the three models, which in turn highlights that rainfall trends varied spatially over
the study area. However, a significant increasing trend in annual rainfall is shown at Arata,
at 5% significance level for CNRM-CM5 model output.

Table 2. Mann-Kendall trend and Sen’s slope estimator value for annual baseline (observed) and
historical rainfall within the Ziway Lake Basin from 1983-2005.

CNMR-CM5 CSIRO-MK3.6 MIP-ESM-LR
Station MK Trend Sen’s MK Trend Sen’s Slope MK Trend Sen’s Slope
Test Slope
Ziway —2.14 —0.52 0.16 0.08 0.79 0.33
Meki 0.42 0.10 0.01 0.06 0.79 0.34
Arata 217* 0.56 —0.02 —0.02 —0.42 —0.14
Butajira —1.21 —0.31 0.63 0.27 0.63 0.23
Tora —0.50 —0.19 —0.26 —0.19 —0.58 —0.30
Bui —0.66 —0.23 0.63 0.29 0.63 0.31
Kulumsa 0.90 0.37 —0.53 —0.07 0.05 0.07
Assela 0.85 0.37 —0.16 —0.03 0.05 0.10
Sagure 1.06 0.36 0.48 0.18 1.02 0.01
Meraro 0.48 0.18 —0.90 —0.42 —0.58 —0.21
Adamitulu 1.11 0.35 0.11 0.05 0.90 0.20
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Table A4 in Appendix A summarizes the modified Mann-Kendall test results for Trax.
The table clearly indicates that historical (model simulated) Tmax data have experienced
statistically significant upward trends.

Table A5 of Appendix A summarizes the modified Mann-Kendall trend test results
for Tin. Similar to Tax, the table indicates that historical (simulated) Ty, data have also
experienced statistically significant upward trends. Results show that there are significant
warming trends for annual Trax and T from 1983 to 2005 for all stations at different
significance levels (see Tables A4 and A5, Appendix A). Overall, both stations and GCM-
CMIP5 datasets showed similar upward slopes, highlighting the suitability of downscaled
Tmax and Trin data for trend analysis.

4.2.2. Spatial Distribution of Historical Mean Annual Rainfall and Temperature

Although this study conducted historical spatial trend analysis for the three selected
GCM-CMIP5 models, we only present graphical results for CNMR-CM5 model that showed
the best performance with observed data as compared to the other models. However, the
statistical performance of the other models is summarized in Appendix A. The spatial
distribution of mean annual rainfall and temperature over the Ziway Lake Basin for the
period 1983 to 2005 are shown in Figure 2 for both observed (stations) and historical
(GCM-CMIPS simulated) data. The spatial distribution of stations (observed) and historical
(simulated) mean annual rainfall and temperature over ZLB showed similar patterns.
Figure 2a clearly shows that the western part of Ziway Lake Basin (in the part of Meki
River) had received more rainfall than the eastern part of the Basin (in the part of Katar
River), which is consistent with model simulation outputs (Figure 2b).
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Figure 2. Spatial distribution of observed and CNRM-CM5 model annual mean rainfall (mm/year)
and annual mean temperatures (Tmax and Ty (°C)) for (a) observed and (b) CNRM-CMS5 rainfall
(c) observed Tmax, (d) CNRM-CMS5 Tpax, () observed Tpyipn, and (f) CNRM-CM5 Tpi, over the ZLB
(1983-2005).

Figure 2 also shows the spatial distribution of mean annual Trax and Tri, over ZLB
for the period from 1983 to 2005. Both observed and simulated temperatures over the study
area indicated similar spatial distribution; Tmax ranges from 28 to 19 °C (Figure 2¢,d) and
Tmin ranges from 14 to 9 °C (Figure 2e,f).
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4.3. Future Annual Rainfall and Temperature Trends
4.3.1. Temporal Trends of Annual Future Rainfall and Temperature
Annual Rainfall Trend

Table 3 shows the rainfall trend analysis for the future period (2026-2049) under RCP
4.5 and RCP 8.5 scenarios. The annual average rainfall showed nonsignificant decreasing
trends under the RCP 4.5 emission scenario at most of the stations. However, under the RCP
8.5 emission scenario, annual rainfall data showed insignificant increasing or decreasing
trends except at Meki and Arata stations, which showed significantly increasing trends at
5% significance level.

Table 3. Projected Mann-Kendall trend and Sen’s slope estimator results average rainfall for eleven
stations within the Ziway Lake Basin for the period 2026-2049.

Model CNMR-CM5 CSIRO-MK3.6 MIP-ESM-LR
Station MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s
Test RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5
Ziway 0.71 0.52 0.38 0.23 0.94 0.06 1.61 1.34 —0.55 0.22 —1.41 —2.35
Meki —0.54 —0.11 1.07 0.29 0.12 0.24 2.06 * 2.37 0.38 —0.03 0.07 0.04
Arata —0.53 —0.09 1.41 0.53 0.02 0.14 2.01% 1.35 0.24 0.12 —0.27 —0.15
Butajira 0.48 0.08 0.57 0.20 —0.02 —0.12 1.46 1.53 —0.38 0.08 —0.05 —0.01
Tora 0.28 0.05 0.07 0.04 0.67 0.53 1.61 1.92 —0.34 —0.02 —0.12 —0.10
Bui 0.17 0.03 0.37 0.15 0.62 0.60 1.36 0.93 0.05 —0.10 0.07 0.02
Kulumsa —0.42 —0.07 0.47 0.25 —0.07 —0.05 1.60 1.14 —0.55 —0.01 0.22 0.05
Assela —0.53 —0.07 0.62 2.90 —0.02 —0.13 1.70 1.05 —-0.25 0.06 0.32 0.07
Sagure —0.18 —0.03 0.57 0.15 —0.07 —0.23 1.51 0.69 —0.67 —0.06 1.66 1.05
Meraro —0.34 —0.05 0.52 0.07 —0.27 —0.19 1.31 0.71 —0.38 —0.08 0.17 0.08
Adamitulu —0.54 —0.09 0.39 0.23 1.07 0.41 —0.06 —0.01 0.70 0.03 —0.17 —0.16

During the mid-term period (2050-2072), the annual rainfall is expected to show
increasing trends at Bui and Tora stations at the 5% significance level under the RCP 8.5
scenario for the CNRM-CM>5 model, including the Ziway station under the MIP-ESM-LR
model (Table A6, Appendix A). Significant increasing trends are also projected at Arata,
Meki, and Ziway stations under the RCP 4.5 for the CSIRO-MKS3.6 model. During the
far-term period (2073-2100), the annual rainfall under the RCP 8.5 scenario is projected
to have insignificant positive trends for all models (Table A7). In general, the projected
rainfall showed insignificant increase and decrease trends during the entire 21st century
under both RCP 4.5 and RCP 8.5 (Figure 3).
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Figure 3. The annual rainfall from 2026 to 2100 for CNRM-CM5 model under RCP 4.5 and 8.5 scenarios.

The Intergovernmental Panel on Climate Change (IPCC) [58] reported frequent and
intensive occurrence of extreme events such as droughts, under both RCP 4.5 and RCP 8.5.
For example, IPCC [58] forecasted (with 66% certainty) that droughts will become more
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frequent, longer, and intensive by the end of the twenty-first century due to an overall
decrease in rainfall amounts and increase in temperature. However, our findings indicate
that the general trend in rainfall is unpredictable for the Ziway Lake Basin (ZLB), which
may cause an increase or decrease in water availability that could potentially affect the
farming practices in the ZLB. The results of prior studies on hydrological responses to
climate change also illustrated fluctuation in rainfall [20,21]. Such trends are expected to
affect the agricultural production and irrigation water requirements in the basin [59-61].

Annual Future Maximum Temperature (Tmax) and Minimum Temperature (Tin) Trends

Table 4 presents the near-term (2026-2049) Trmax Mann-Kendall trend analysis for the
three selected models (CNRM-CM, CSIRO-MK3.6. and MIP-ESM-LR) for both RCP 4.5 and
RCP 8.5 scenarios. Maximum temperature showed significantly increasing trends at 0.1%,
1%, and 5% significance levels under both RCP 4.5 and 8.5 scenarios. However, each model
indicated a slightly different increasing level of maximum temperature.

Table 4. Projected Mann—Kendall trend and Sen’s slope estimator results for annual mean Tpax for
eleven stations within the Ziway Lake Basin for the period 2026-2049.

Model CNMR-CM5 CSIRO-MKa3.6 MIP-ESM-LR
Station MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s
Test RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5
Ziway 2.00* 0.04 1.86 0.03 243 * 0.03 3.35 *** 0.05 1.51 0.02 2.66 ** 0.03
Meki 221* 0.04 2.51% 0.05 2.95 ** 0.05 4.14 = 0.05 1.51 0.03 1.71 0.03
Arata 221%* 0.04 2.85 ** 0.07 3.35 *#** 0.07 3.35 *** 0.05 1.56 0.03 1.66 0.03
Butajira 221% 0.04 1.17 0.02 3.20 *** 0.04 3.34 *** 0.05 1.56 0.02 1.66 0.02
Tora 1.56 0.03 2.00 * 0.04 1.56 0.02 3.64 *** 0.06 1.66 0.02 2.98 ** 0.03
Bui 220* 0.04 0.57 0.01 0.60 0.01 3.69 *** 0.06 2.71** 0.02 2.01* 0.03
Kulumsa 220* 0.04 241*% 0.04 2.90 ** 0.04 3.35 *** 0.05 1.51 0.02 1.61 0.02
Assela 2.9** 0.04 2.80 ** 0.04 3.17 *** 0.05 3.34 *** 0.05 2.32% 0.02 1.69 0.03
Sagure 2.65 ** 0.04 2.65** 0.04 3.62 *** 0.07 3.35** 0.05 1.56 0.02 3.66 ** 0.02
Meraro 2.80 0.05 2.80 ** 0.05 3.37 #** 0.04 3.32 % 0.05 1.61 0.02 1.71 0.03
Adamitulu 2.50 ** 0.07 3.25** 0.07 3.52 *** 0.04 2.12% 0.04 0.87 0.01 3.96 ** 0.02

As shown in Table A8, regardless of the applied scenarios, the mid-term (2050-2072)
maximum temperature is expected to be higher than the near-term (2026-2049). In addi-
tion, as it should be expected, the RCP 8.5 scenario is projected to cause more warming
than the RCP 4.5 scenario by the end of this century (Figure 4). We noticed a significant
increasing trend of 0.02 to 0.03 °C/year using the CNRM-CM5 model. The CSIRO-MK3.6
model showed a larger significant increasing rate of 0.08 to 0.09 °C/year within the basin
(Table A9).

‘1—-— CNRM-CM5 (RCP 8.5) ~===~~ Trend —— CNRM-CM5 (RCP 4.5) -..._. Trend

Maximum Temperature (°Clyear)

28 2030 2040 2050 2060 2070 2080 2090 2100

Year

Figure 4. Annual average Tmayx trends from 2026 to 2100 under RCP (4.5 and 8.5) for CNRM-CMB5.
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Overall, the annual maximum temperature at the eleven stations of the basin is
generally projected to increase at an increasing rate (Figure 4). More importantly, the RCP
8.5 scenario is expected to cause a higher increase in maximum temperature as compared
to the RCP 4.5 scenario (Figure 4). This could be due to a continuous increase in radiative
forcing emissions under the RCP 8.5 scenario [45].

Similar to the maximum temperature, the minimum temperature is expected to in-
crease at increasing rate at all stations for both RCP 4.5 and 8.5 scenarios (Tables A10-A12,
Appendix A). As compared to the RCP 4.5 scenario, the RCP 8.5 scenario is predicted
to cause more warming by the end of the 21st century. For example, the majority of the
stations showed a significant annual minimum temperature change of 0.1 degree by the
end of this century under RCP 8.5 and CSIROM-MK3.6 model (Table A12).

In general, irrespective of the two RCP 4.5 and 8.5 scenarios, the future annual mean
temperatures (Tmax and Tmin) have shown increasing trends relative to the historical trends.
This indicates a warmer temperature in the near-, mid-, and far-terms [62]. In addition,
RCP 8.5 is predicted to cause a larger increase in temperature than that of RCP 4.5 at all
stations, especially by the end of the 21st century. This is consistent with the conclusions
drawn by the IPCC Fifth Assessment Report (AR5) [62], which indicates an increase in
evapotranspiration within the area and crop water demand [63,64]. Additionally, the
increase in an increasing rate of future temperature will likely lead to a negative effect on
freshwater availability, crop production, and the phenological days for crops [13,14,65,66].

4.3.2. Spatial Distribution of Future Mean Annual Rainfall and Temperature

Figure 5 shows the spatial distribution of projected mean annual rainfall using the
CNRM-CMS5 model under both RCP 4.5 and 8.5 scenarios within the ZLB. The figure
depicts a slight difference in rainfall distribution when compared to the spatial distribution
of historical rainfall (see Figure 2). The future rainfall projections indicate wetter conditions
over the basin under both RCP 4.5 and 8.5 scenarios except during the near-term of RCP 4.5
and mid-term of RCP 8.5 scenario (Figure 5a,d), which exhibit lower annual rainfall related
to the other periods.
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Figure 5. Spatial distribution of CNRM-CM5 model mean annual rainfall (mm/year) within the ZLB
for RCP 4.5 and 8.5 scenarios and three future periods: (a) near-term RCP 4.5, (b) near-term RCP 8.5,
(c) mid-term RCP 4.5, (d) mid-term RCP 8.5, (e) far-term RCP 4.5, and (f) far-term RCP 8.5.
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The rainfall pattern is unevenly distributed. The distribution showed lower values of
rainfall corresponding to the lower elevation (in the central part of the basin) and higher
values corresponding to the higher elevations, particularly, in the southern part. The
average rainfall depth at each gauge station during the analyzed period of 2026-2049,
2050-2072, and 2073-2100 under both scenarios exhibit different distribution, which may
be due to change in climatic conditions and topographic and physiographic factors.

The rainfall pattern shows a slight decrease within the major parts of the basin (west,
north, and east) under both RCP 4.5 and 8.5 scenarios of the near-term (Figure 5a) and
mid-term (Figure 5d), respectively. The eastern and central parts of the ZLB are expected
to receive lower rainfall values as compared with the western part of the basin (Figure 5).
Overall, as compared to the RCP 4.5 scenario, the RCP 8.5 scenario is expected to cause a
larger decrease in rainfall amounts by the end of the 21st century (Figure 5f).

The spatial distributions of projected mean annual Tmax and Trin of CNRM-CMS for
the two RCP (4.5 and 8.5) scenarios are shown in Figures 6 and 7, respectively. The future
minimum and maximum temperatures appear to have similar spatial distribution with
the historical (1983-2005) temperature (see Figure 2). However, relative to the historical
values, both the future Trax and Tiin values are predicted to be noticeably increasing over
the basin under both RCP 4.5 and 8.5 scenarios.
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Figure 6. Spatial distribution of CNRM-CM5 model mean annual Tpyax (°C) within the ZLB for
RCP 4.5 and 8.5 scenarios and three future periods: (a) near-term RCP 4.5, (b) near-term RCP 8.5,
(c) mid-term RCP 4.5, (d) mid-term RCP 8.5, (e) far-term RCP 4.5, and (f) far-term RCP 8.5.

The central part of the basin will experience higher Tmax and Tpin values that range
from 20 to 31 °C (Figure 6) and 11 to 19 °C (Figure 7), respectively. Apart from the western
(in the part of Meki River) and central (around Ziway Lake), some small portions of the
eastern part (in the part of Katar River) are expected to experience a cooler temperature.
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Figure 7. Spatial distribution of CNRM-CM5 model mean annual Ty, (°C) within the ZLB for
RCP 4.5 and 8.5 scenarios and three future periods: (a) near-term RCP 4.5, (b) near-term RCP 8.5,
(c) mid-term RCP 4.5, (d) mid-term RCP 8.5, (e) far-term RCP 4.5, and (f) far-term RCP 8.5.

5. Conclusions

Understanding spatial and temporal trends in annual rainfall and temperature is of
interest in a basin’s water resource management and decision-making processes. Such
studies are more important in basins where agricultural development is strongly dependent
on rain-fed agriculture and irrigation, such as the Ziway Lake Basin (ZLB), Ethiopia. This
study analyzed the historical (1983 to 2005) and future (2026-2100) trends of annual rainfall,
minimum temperature (Ti,in), and maximum temperature (Tmax) for the ZLB under RCP
4.5 and RCP 8.5 scenarios.

The results in this study revealed that the climate models reproduced well the spatial
and temporal patterns of the annual mean rainfall and temperature of the study area.

The annual rainfall at the eleven stations of the ZLB showed both negative and
positive insignificant trend. As the agriculture system of the basin highly depends on
rain-fed agriculture and extensive irrigation, future climate change may have negative
implications on the freshwater availability and agricultural productivity of the basin. We
found that annual Tax and Tpin of the ZLB are projected to increase at an increasing rate
for both RCP 4.5 and 8.5. However, the RCP 8.5 is predicted to cause higher warming by the
end of the 21st century. Such change is expected to increase the evapotranspiration of the
basin, the key component of the hydrologic cycle, and thus negatively affects the freshwater
availability and ecosystem functioning of the basin. The increase in temperature further
increases the crop water requirement, which exacerbate the water supply-demand gap.

The findings of this study offer in-depth and useful information for better under-
standing and managing water resources and implementing mitigation measures to climate
change in the Ziway Lake Basin. In addition, policy makers and relevant stakeholders such
as farmer unions in the basin could also benefit from this study to minimize the negative
impacts of climate change on freshwater availability and agricultural productivity.

As this study analyzed the annual rainfall and temperature trends only, future research
work focuses on analyzing the spatiotemporal trends of seasonal rainfall and tempera-
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ture. Furthermore, future studies should also compare the CMIP5 and CMIP6 models
datasets and assess their ability to simulate the spatiotemporal distribution of rainfall
and temperature.

Author Contributions: Conceptualization, A.T.H., O.T.L. and A.D.C.; data curation and analysis,
A.TH.; formula analysis and methodology, A.T.H.; writing—original draft, A.T.H.; literature review,
A.TH,; editing, A TH., O.T.L. and A.D.C,; supervision O.T.L., T.A. and A.D.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Africa Center of Excellence for Water Manage-
ment, Addis Ababa University, Ethiopia.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are available at the World Climate Research
Program (WCRP) Climate Explorer https:/ /esgf-node.llnl.gov/search/cmip5/ (accessed from 10
January 2021 to 18 January 2021), daily CMIP5 project data of historical and future precipitation and
maximum and minimum temperature under RCP 4.5 and RCP 8.5 emission scenarios.

Acknowledgments: The authors would like to thank the National Meteorological Agency (NMA) of
Ethiopia for providing the gauged climate data. We would also like to express our sincere gratitude
to the Africa Center of Excellence for Water Management, Addis Ababa University, for the support to
conduct this research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1l. Statistical performance indices of the GCMs-CMIP5 for monthly rainfall of 1983 to 2005.

Model CNMR-CM5 CSIRO-MK3.6 MIP-ESM-LR
Station RMSE (mm)  PBIAS (%) r RMSE (mm)  PBIAS (%) r RMSE (mm)  PBIAS (%) r
Ziway 274 11.2 0.8 22.0 29.9 0.4 40.7 29.6 0.5
Meki 27.9 2.8 0.8 31.2 12.5 0.5 28.2 12.8 0.6
Arata 31.8 —10.8 0.9 40.6 —11.6 0.5 37.2 —20.3 0.6
Butajira 39.7 35.0 0.7 28.4 -3.5 0.4 43.8 53 0.5
Tora 33.5 15 0.8 39.0 -12 0.4 46.3 -23 0.5
Bui 38.2 —4.2 0.6 34.6 2.8 0.5 324 2.4 0.6
Kulumsa 9.1 -9.0 1.0 16.1 -1.6 0.4 449 —2.8 0.5
Assela 26.1 7.8 0.9 27.4 12.3 0.5 47.5 12.0 0.5
Sagure 16.9 12.2 1.0 10.6 12.2 1.0 39.6 15.0 0.6
Merero 8.5 15.8 1.0 19.2 16.7 0.5 23.4 33.1 0.6
Adamitulu 16.2 0.0 0.9 48.6 -9.7 0.4 35.8 -9.5 0.5
Table A2. Statistical indices values of GCMs-CMIP5 output monthly maximum temperature during
1983-2005 over Ziway Lake Basin.
Model CNMR-CM5 CSIRO-MK3.6 MIP-ESM-LR

Station RSME (C°) PBIAS (%) r RSME (C°) PBIAS (%) r RSME (C°) PBIAS (%) r
Ziway 1.0 0.3 0.7 1.1 0.4 0.7 1.2 0.4 0.6
Meki 1.3 40.1 0.6 1.3 28.0 0.6 1.2 50.2 0.6
Arata 1.0 22.3 0.7 1.1 22.4 0.7 1.0 22.3 0.7
Butajira 0.9 -17 0.6 1.0 -1.6 0.6 1.0 -1.6 0.5
Tora 0.9 0.8 0.7 1.0 0.8 0.7 1.0 0.8 0.6
Bui 0.9 15.1 0.6 0.3 1.0 0.6 1.1 10.7 0.6
Kulumsa 1.1 -09 0.6 11 -0.8 0.6 1.2 -0.9 0.5
Assela 1.1 —8.8 0.7 1.1 —8.8 0.7 1.2 —8.8 0.6
Sagure 1.3 —8.6 0.7 1.0 —229 0.6 14 —15.6 0.5
Merero 1.0 —15.5 0.7 1.1 —74 0.7 1.1 —15.5 0.6
Adamitulu 1.2 0.0 0.7 1.2 6.7 0.7 1.2 0.0 0.6
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Table A3. Statistical indices values of GCMs—-CMIP5 output monthly minimum temperature during
1983-2005 over Ziway Lake Basin.

CNRM-CM5 CSIRO-MK3.6 MIP-ESM-LR
St;a:;(t)n MK Trend Sen’s Slope MK Trend Sen’s Slope MK Trend Sen’s Slope
Ziway 2.01* 0.03 2.15* 0.03 2.32 ** 0.04
Meki 221% 0.03 2.07 * 0.03 2.32 ** 0.03
Arata 2.31* 0.03 2.29* 0.03 2.43 ** 0.03
Butajira 2.1*% 0.03 2.20* 0.02 2.69 ** 0.05
Tora 1.56 0.02 2,12 0.02 2.69 ** 0.05
Bui 2.20* 0.03 2.15* 0.02 2.27 ** 0.03
Kulumsa 2.20* 0.03 2,91 ** 0.05 2.32 ** 0.03
Assela 2.9 ** 0.05 2.05* 0.02 2.38 ** 0.03
Sagure 2.65 ** 0.04 2.07 * 0.02 2.27 ** 0.03
Merero 2.80 ** 0.05 2.16* 0.02 2.51 ** 0.03
Adamitulu 2.50 ** 0.05 220% 0.02 2.32 ** 0.03
Table A4. Mann-Kendall trend and Sen’s slope estimator value for annual baseline and historical
Tmax at Ziway Lake Basin from 1983 to 2005.
Model CNMR-CM5 CSIRO-MK3.6 MIP-ESM-LR
Station RSME (C°)  PBIAS (%) r RSME (C°)  PBIAS (%) r RSME (C°)  PBIAS (%) r
Ziway 1.1 21.3 0.8 1.3 21.3 0.7 1.2 21.3 0.7
Meki 1.4 37.3 0.7 1.5 371 0.6 1.8 12.2 0.4
Arata 1.2 2.1 0.7 1.2 2.1 0.6 1.0 —-2.1 0.7
Butajira 0.9 -78 0.6 0.8 —18.3 0.7 1.0 —183 0.6
Tora 0.8 22 0.7 0.8 2.2 0.7 1.0 22 0.4
Bui 1.2 -23 0.7 0.8 2.2 0.7 1.0 —-22 0.7
Kulumsa 1.1 —10.8 0.6 1.5 —74 0.5 1.1 12.1 0.7
Assela 1.0 1.1 0.7 1.0 —204 0.7 1.2 —11.8 0.8
Sagure 0.9 —74 0.7 1.5 —439 0.5 1.0 —-27.1 0.6
Merero 0.9 -32 0.7 1.4 —44.6 0.6 1.0 —44.8 0.6
Adamitulu 1.0 0.0 0.8 1.0 0.0 0.8 1.1 0.0 0.6
Table A5. Mann-Kendall trend and Sen’s slope estimator value for annual baseline and historical
Tmin at Ziway Lake Basin from 1983 to 2005.
CNRM-CM5 CSIRO-MKa3.6 MIP-ESM-LR
St;:;(t)n MK Trend Sen’s Slope MK Trend Sen’s Slope MK Trend Sen’s Slope
Ziway 2.85 ** 0.02 2.01* 0.03 2.32% 0.03
Meki 1.74 0.02 1.95 0.02 2.17* 0.03
Arata 2.32% 0.03 2.11% 0.02 23*% 0.03
Butajira 2.93 ** 0.02 3.16 ** 0.04 2.75 ** 0.04
Tora 2.48* 0.02 2.69 ** 0.03 2.67 ** 0.04
Bui 248 * 0.02 3.06 ** 0.04 243 * 0.03
Kulumsa 1.69 0.01 2.01* 0.02 1.42 0.01
Assela 1.58 0.01 2.11* 0.02 2.34* 0.03
Sagure 1.69 0.01 291 ** 0.04 2.32% 0.03
Merero 1.74 0.01 2.64 ** 0.03 2.32% 0.03
Adamitulu 1.85 0.01 2.06 * 0.03 2.32* 0.03

164



Hydrology 2022, 9, 2

Table A6. Projected Mann—-Kendall trend and Sen’s slope estimator results average rainfall for 11
stations over Ziway Lake Basin from the period 2050-2072.

Model CNMR-CM5 CSIRO-MK3.6 MIP-ESM-LR
Station MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s
Test RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5
Ziway 0.68 0.35 1.56 0.38 2.69 ** 2.16 1.42 191 —0.32 —0.08 217 * 0.51
Meki 0.30 0.46 1.70 0.71 2.59 ** 2.33 1.47 3.29 -1.17 —-0.27 0.82 0.53
Arata 0.49 0.47 1.61 0.64 2.64 ** 2.73 1.14 1.56 —0.87 -0.19 1.10 0.64
Butajira 0.35 0.43 1.47 0.48 217 * 1.74 1.19 1.05 —0.77 —0.23 1.00 0.46
Tora —0.12 —0.10 217* 1.06 1.89 1.75 1.65 1.98 -1.17 —0.26 0.63 0.33
Bui —0.07 —0.23 2.03* 1.04 1.99 3.60 1.33 1.54 —0.82 —0.30 0.58 0.53
Kulumsa —0.30 —0.30 1.75 0.76 217* 223 1.24 1.23 —-0.77 —-0.17 0.72 0.34
Assela 0.30 0.41 1.33 1.20 236 * 1.89 1.19 1.20 —1.41 —0.36 0.72 0.45
Sagure 0.16 0.26 1.33 0.55 217 * 1.76 0.82 0.44 —0.92 —0.25 1.19 1.20
Meraro 0.30 0.20 1.28 0.30 1.89 1.33 1.33 1.37 —1.27 —0.22 0.82 0.46
Adamitulu 0.21 0.16 0.49 0.36 2.73 ** 1.86 —0.03 —0.01 —0.07 —0.05 0.86 0.55

Table A7. Projected Mann-Kendall trend and Sen’s slope estimator results of annual average rainfall
for 11 stations over Ziway Lake Basin from the period 2073-2100.

Model CNMR-CM5 CSIROM-MK3.6 MIP-ESM-LR
Station MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s
Test RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5
Ziway —1.45 —1.03 1.28 0.58 1.28 0.91 0.62 1.12 0.35 0.07 1.50 0.40
Meki —1.63 —1.51 1.06 0.71 0.88 1.02 1.15 2.52 —0.93 —0.33 1.63 0.88
Arata —1.50 —1.86 1.10 0.96 1.37 2.77 0.62 0.76 0.09 0.05 1.59 0.99
Butajira —-1.32 —1.08 1.23 0.52 1.19 1.06 1.85 2.14 0.35 0.10 1.72 0.81
Tora —1.45 —2.06 0.93 0.68 1.54 1.12 1.63 2.66 —0.40 -0.15 1.16 1.03
Bui —1.81 —3.14 0.84 0.65 1.76 227 0.62 1.00 —247 —1.10 1.45 0.99
Kulumsa —1.90 —2.53 0.75 0.58 0.88 0.72 0.48 0.73 —2.60 —0.92 1.67 0.85
Assela —-0.79 —0.57 0.84 0.44 1.90 1.08 0.35 0.41 0.02 0.01 1.63 0.76
Sagure —0.97 —0.79 1.28 0.63 1.28 0.95 0.04 0.03 —0.79 —0.25 0.35 0.41
Meraro —0.66 —0.37 1.06 0.46 0.62 0.41 1.37 0.93 —0.88 -0.26 1.32 0.52
Adamitulu —0.93 —0.33 0.11 0.12 1.68 1.38 0.01 —0.01 —0.71 —0.15 0.04 0.03

Table A8. Projected Mann—Kendall trend and Sen’s slope estimator results of annual mean T,y for
11 stations over Ziway Lake Basin from the period 2050-2072.

Model CNMR-CM5 CSIROM-MK3.6 MIP-ESM-LR
Station MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s
Test RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5
Ziway 245 % 0.04 2.15% 0.03 4.52 % 0.09 4.28 *** 0.09 0.02 0.01 3.00 ** 0.04
Meki 2.07 * 0.03 2.07* 0.03 4.56 *** 0.09 4.09 *** 0.09 0.03 0.01 2.91** 0.04
Arata 2.08 * 0.03 229* 0.03 4.54 #** 0.09 4.27 #** 0.09 0.03 0.01 2.95 ** 0.04
Butajira 2.08 * 0.03 220* 0.02 4.57 #** 0.09 4.27 #** 0.09 0.02 0.01 3.04 ** 0.04
Tora 236 * 0.04 2.12% 0.02 4.67 *** 0.08 4.40 *** 0.08 0.02 0.01 2.86 ** 0.04
Bui 2.07* 0.03 2.15% 0.02 4.63 ¥+ 0.08 4.4+ 0.08 0.02 0.01 2.73 ** 0.03
Kulumsa 2.08 * 0.03 291 * 0.03 4.52** 0.09 4.28 *** 0.09 0.02 0.01 2.87 ** 0.04
Assela 4.09 #** 0.05 2.05* 0.02 4.50 ** 0.09 4.27 #** 0.09 0.02 0.01 3.04 ** 0.04
Sagure 4.09 #** 0.05 2.07* 0.02 4.32 %% 0.08 4.26 *** 0.09 0.02 0.01 2.95 *#* 0.04
Meraro 4.09 *** 0.04 2.16* 0.02 4.40 0.09 4.28 *** 0.09 0.02 0.01 3.09 ** 0.04
Adamitulu 413 #* 0.05 220* 0.02 4.63 *** 0.09 4.14 #** 0.08 0.01 0.01 3.37 * 0.07

Table A9. Projected Mann—Kendall trend and Sen’s slope estimator results of annual mean Tmay for
11 stations over Ziway Lake Basin from the period 2073-2100.

Model CNMR-CM5 CSIROM-MK3.6 MIP-ESM-LR
Station MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s
Test RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5 RCP 4.5 RCP 4.5 RCP 8.5 RCP 8.5
Ziway 3.67 #** 0.07 2.78 #* 0.03 4.63 *** 0.07 4.63 *** 0.07 1.51 0.02 1.90 0.03
Meki 3.62 *** 0.07 2.73** 0.03 4.63 *** 0.07 4.63 *** 0.07 1.51 0.03 1.90 0.03
Arata 3.71 0.07 25* 0.03 4.63 *** 0.07 4.63 *** 0.07 1.56 0.03 1.81 0.03
Butajira 3.71 #* 0.06 247 * 0.03 4.63 *** 0.07 4.63 *** 0.07 1.56 0.02 1.85 0.03
Tora 3.20 #** 0.06 3.17 ** 0.04 5.47 #** 0.06 4.72 % 0.07 1.66 0.02 2.25 0.04
Bui 3.29 #* 0.05 3.31 % 0.04 5.47 #x* 0.07 4.63 *** 0.07 1.71 0.02 2.20 0.03
Kulumsa 3.34 ¥ 0.06 3.22%* 0.04 4.63 ¥+ 0.07 4.63 *** 0.07 1.51 0.02 1.98 0.03
Assela 3.67 *** 0.06 2.30* 0.03 4.63 *** 0.07 4.63 *** 0.07 1.51 0.02 1.90 0.03
Sagure 3.67 *** 0.06 247* 0.03 4.63 *** 0.07 4.63 *** 0.07 1.56 0.02 1.85 0.03
Meraro 3.62 #** 0.07 2.78 ** 0.03 4.63 *** 0.07 4.38 #** 0.06 1.61 0.02 0.17 0.00
Adamitulu 3.62 *** 0.08 3.57 *** 0.05 4.38 *** 0.06 4.47 ** 0.07 0.87 0.01 2.42* 0.05
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Table A10. Projected Mann—Kendall trend and Sen’s slope estimator results of annual mean Ty, for

11 stations over Ziway Lake Basin from the period 2026-2049.

Model CNMR-CM5 CSIROM-MK3.6 MIP-ESM-LR
Station MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s
Test RCP45 RCP45 RCP85 RCP85 RCP45 RCP45 RCP85 RCP85 RCP45 RCP45 RCP85 RCP8S5
Ziway 3.89 %+ 0.07 3.45 %+ 0.05 4.14 %% 0.08 414 %% 0.08 2.46* 0.04 1.96 0.04
Meki 4.29 #+ 0.07 3.89 #** 0.06 4.2 0.08 4.14 0.08 2.36* 0.04 1.96 0.04
Arata 226* 0.04 2.85** 0.03 4.14 = 0.08 4.09 *** 0.08 231* 0.04 2.01* 0.04
Butajira 1.51 0.03 1.17 0.02 4.14 = 0.08 4.14 = 0.08 2.36* 0.04 2.01* 0.04
Tora 0.07 0.00 2,00 * 0.01 4.78 %% 0.07 4.79 ** 0.07 2.86 % 0.04 171 0.04
Bui 0.05 0.00 1.17 0.01 4.78 %% 0.07 4,09 ** 0.08 2.80 * 0.04 1.76 0.04
Kulumsa 1.61 0.04 241% 0.02 4.4+ 0.08 414+ 0.08 2.46* 0.04 191 0.04
Assela 1.12 0.02 2.80 ** 0.02 4.4+ 0.08 414 0.08 241% 0.04 1.96 0.04
Sagure 1.17 0.03 2.65 ** 0.02 4.09 *** 0.08 4.14 = 0.08 242* 0.04 2.01* 0.04
Meraro 1.12 0.02 2.80 % 0.03 4.14 %% 0.08 4.39 %% 0.07 231% 0.04 1.28 0.04
Adamitulu 225% 0.05 3.25 % 0.04 4.39 %+ 0.07 4.79 %% 0.07 3.20 % 0.06 221% 0.06
Table A11. Projected Mann—Kendall trend and Sen’s slope estimator results of annual mean Tp;, for
11 stations over Ziway Lake Basin from the period 2050-2072.
Model CNMR-CM5 CSIROM-MK3.6 MIP-ESM-LR
Station MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s
Test RCP45 RCP45 RCP85 RCP85 RCP45 RCP45 RCP85 RCP85 RCP45 RCP45 RCP85 RCP8S5
Ziway 1.28 0.02 4.2 % 0.02 4.58 %+ 0.10 4.20 %% 0.09 1.14 0.02 3.61 #* 0.05
Meki 1.00 0.02 4.30 = 0.02 4.63 %% 0.10 4.6%% 0.10 1.14 0.02 3.60 *** 0.05
Arata 1.03 0.02 4.52 0.02 4.65 ** 0.09 418+ 0.09 1.12 0.02 3.53 0.05
Butajira 1.00 0.02 4.54 0.02 4.56 *** 0.10 4.18 *** 0.09 1.05 0.01 3.57 *** 0.05
Tora 1.47 0.03 4.24 0.02 4.14 #* 0.09 4.14 = 0.09 0.72 0.01 3.26 ** 0.05
Bui 0.98 0.02 4.4 %% 0.02 4.14 %% 0.09 4.4 %% 0.09 0.82 0.01 3.35#+ 0.05
Kulumsa 1.03 0.02 4.46 0.03 4.56 *** 0.10 4.18 0.09 1.14 0.01 3.48 0.04
Assela 1.75 0.03 4.58 *** 0.02 4.58 *** 0.10 4.19 *** 0.09 1.10 0.01 3.61 *** 0.04
Sagure 1.75 0.03 4.09 ** 0.02 4.09 ** 0.08 4.17 *** 0.09 1.10 0.02 3.57 *** 0.04
Meraro 1.70 0.03 4.54 % 0.02 4.54 %% 0.10 418 % 0.09 1.10 0.01 3.61 0.05
Adamitulu 1.56 0.03 4.62 %% 0.02 4.62 %% 0.10 4.06 %% 0.08 1.56 0.02 418 %% 0.05
Table A12. Projected Mann—Kendall trend and Sen’s slope estimator results of annual mean Tp;, for
11 stations over Ziway Lake Basin from the period 2073-2100.
Model CNMR-CM5 CSIROM-MK3.6 MIP-ESM-LR
Station MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s MK Sen’s
Test RCP45 RCP45 RCP85 RCP85 RCP45 RCP45 RCP85 RCP85 RCP45 RCP45 RCP85 RCP85
Ziway 2,63 % 0.08 2.59 * 0.06 4.43 %% 0.03 4.76 %% 0.10 1.51 0.02 2.78 % 0.05
Meki 2.63 % 0.08 2.59 % 0.06 3.95 % 0.05 4.76 %% 0.10 1.51 0.03 2.78 % 0.05
Arata 2.57* 0.08 2.64 ** 0.06 3.45 *** 0.07 4.76 *** 0.10 1.56 0.03 2.73** 0.05
Butajira 2.63 ** 0.08 2.69 ** 0.06 3.20 ** 0.04 4.76 *** 0.10 1.56 0.02 2.68 ** 0.04
Tora 2.69 ** 0.09 2.36* 0.06 1.56 0.02 4.89 *** 0.09 1.66 0.02 2.82** 0.06
Bui 2.69 ** 0.07 2.31% 0.05 1.60 0.01 4.76 %% 0.10 171 0.02 2,60 ** 0.05
Kulumsa 2,63 % 0.09 231% 0.06 2,90 ** 0.04 4.76 %% 0.10 1.51 0.02 2.73 % 0.05
Assela 2.6* 0.08 2.69 ** 0.06 3.1* 0.05 4.76 *** 0.10 1.51 0.02 2.60 ** 0.04
Sagure 2.6** 0.08 2.69 ** 0.06 3.62 *¥** 0.07 4.76 *** 0.10 1.56 0.02 2.64** 0.04
Meraro 2.6** 0.08 2.64 ** 0.06 3.37 *#** 0.04 4.98 *** 0.08 1.61 0.02 1.03 0.00
Adamitulu 2,63 % 0.10 2.54 0.07 2.52 % 0.04 4.89 %% 0.09 0.87 0.01 3.44 #+ 0.07
Mann-Kendall test of significance levels: 90% (*), 95% (**), 99% (***).
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Abstract: This study evaluates the potential for a newly proposed non-linear subsurface flux equation
to improve the performance of the hydrological Hillslope Link Model (HLM). The equation contains
parameters that are functionally related to the hillslope steepness and the presence of tile drainage.
As a result, the equation provides better representation of hydrograph recession curves, hydrograph
timing, and total runoff volume. The authors explore the new parameterization’s potential by
comparing a set of diagnostic and prognostic setups in HLM. In the diagnostic approach, they
configure 12 different scenarios with spatially uniform parameters over the state of Iowa. In the
prognostic case, they use information from topographical maps and known locations of tile drainage
to distribute parameter values. To assess performance improvements, they compare simulation
results to streamflow observations during a 17-year period (2002-2018) at 140 U.S. Geological Survey
(USGS) gauging stations. The operational setup of the HLM model used at the Iowa Flood Center
(IFC) serves as a benchmark to quantify the overall improvement of the model. In particular, the
new equation provides better representation of recession curves and the total streamflow volumes.
However, when comparing the diagnostic and prognostic setups, the authors found discrepancies in
the spatial distribution of hillslope scale parameters. The results suggest that more work is required
when using maps of physical attributes to parameterize hydrological models. The findings also
demonstrate that the diagnostic approach is a useful strategy to evaluate models and assess changes

in their formulations.

Keywords: hydrology; tiling; subsurface flow; Iowa

1. Introduction

Flood forecasts that are calculated using regional distributed hydrological models are
becoming more common and relevant because they also provide information about internal
watershed processes in large domains, along with predicted hydrographs for all streams in
the river network. These forecasts are expected to be accurate at the region’s ungauged
watersheds [1] as a consequence of appropriate spatial representation of processes and
parameters in the model.

Current hydrological models correctly identify many aspects of the streamflow hydro-
graphs, thereby providing acceptable forecasts. However, they still struggle to reproduce
the hydrograph recession. According to [2], modelers need to pay more attention to storm
runoff’s slow flow, which is a crucial component of the recession. For regional models,
recession becomes more challenging because its non-linearity increases with the spatial
scale [3-5]. Landscape properties such as topography, soil, and the stream network seem to
be involved in the recession variability [6-8]. Additionally, human landscape and land-use
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interventions, such as tile drainage, can help to restore river health [9]. Nevertheless, these
interventions also have the potential to alter streamflow and its recession [10,11]. A good
representation of the recession may influence the estimation of the flood duration, and
flood occurrence during successive events.

1.1. Issues with the Hillslope Link Model (HLM) in Iowa

The Iowa Flood Center (IFC) produces flood forecasts for the state of Iowa using
the Hillslope Link Model (HLM) [12-15]. The operational HLM represents the hillslope
subsurface flux, using a linear-reservoir equation. According to [15], the current HLM
configuration accurately estimates peak flows with an overall acceptable performance
in Iowa. However, the model has some limitations in capturing the hydrograph reces-
sions and the total runoff volume at some locations, as reported in [14]. The discrep-
ancies between simulated and observed recessions are more common in watersheds
with tiling drainage. Sample streamflow simulation results, using the IFC HLM oper-
ational model for three lowa watersheds are presented in Figure la—c (in red). The model
performance is described in terms of Kling Gupta Efficiency [16], which is defined as

KGE=1- \/(p —1)%+ (« —1)*+ (B — 1), where p, a, and B denote correlation, the ra-
tio of standard deviation (05 /0, ), and the ratio of the mean (ps/,) between simulated
and observed streamflow, respectively. The model’s limitations are most evident in the
watersheds located in the north and west regions of Iowa, where the model has low perfor-
mance in terms of the Kling Gupta Efficiency (KGE) index (Figure 1d). We associate the
model’s poor performance in the region of north-central Iowa, known as the Des Moines
Lobe, with the widespread use of artificial subsurface drainage (known as tile drains) in
the region [11].

jun-14 Jun-29 Jui-14

Figure 1. (a—c) Observed (black) and simulated streamflows by the linear (red) and the non-linear (blue) setups at three
USGS gauged stations. (d) Mean annual KGE performance of the HLM linear setup for Iowa between 2002 and 2018.

To address these issues, the authors of [17] developed a subsurface non-linear equation
that can represent subsurface flow from hillslopes with different steepness and soil con-
ductivities, as well as the presence of tile drainage. The blue lines in Figure 1la—c show the
resulting hydrographs using the non-linear equation with parameters corresponding to no
tile and a steepness of 2% [17]. Compared with the linear equation of the operational HLM,
the non-linear equation tends to improve the total streamflow volume and the simulated
recession shapes. However, we still observe discrepancies (Figure 1a,b) that are attributed
to issues with the parameter values and spatial representation of processes. The model
proposed in [15] serves as motivation for this study, to evaluate the performance of such
model modifications.

172



Hydrology 2021, 8, 187

1.2. The Diagnostic-Prognostic Approach

According to the authors of [18], the development of a hydrological model is subject
to the hypothesis-testing process. This process evaluates, rejects, and replaces model
components. We performed a diagnostic-prognostic analysis of the model at 140 USGS
gauges in Iowa to test the utility of the non-linear equation to represent the hillslope
subsurface flux. In this case, we adapted the diagnostic-prognostic approach developed
in studies on evapotranspiration [19-21]. Our diagnostic setups have simplified, spatially
uniform parameter values, while the prognostic scenarios use maps to determine parameter
values. The diagnostic-prognostic approach offers complementary information about the
model [22] and the required independence to perform model comparisons [23].

According to [15], an insightful way to improve models starts with model performance
verification, followed by structure modification. We expanded on this approach by using
the diagnostic-prognostic analysis to add tools to verify the model’s processes and required
parameters. Our objective is to identify the non-linear model parameters for Iowa, their
uncertainties, and the model limitations.

The paper is organized as follows: we first describe the HLM model and the equations
governing the hillslope processes, including the linear equation and non-linear equations
to represent subsurface and drainage tile fluxes. Next, we describe the diagnostic and
prognostic setups. Then, we compare the diagnostic and prognostic approach results using
140 USGS stations and we analyze the parameters’ influence on the model performance.
Finally, we provide conclusions based on our experiment results.

2. Materials and Methods
2.1. Model Description

The Hillslope Link Model (HLM) represents the hydrological processes at the hillslope
scale (Figure 2a,b) and routes the streamflow through the channel network (Figure 2c).
At the hillslopes, HLM has three storages, ponded surface (S, [m]), topsoil (St [m]), and
subsurface storage (Ss [m]). The water from the ponded storage can either infiltrate the
topsoil (g, [m - min~!]) or flow as runoff to the channel link (qpL [m- min~!]). The water
in the topsoil percolates (q7; [m - min~!]) to the soil storage. Finally, the water in the soil
storage seeps into the channel link as subsurface runoff (g5 [m - min~!]). Evaporation
occurs from the three storages as a removal of volume from the model. Once in the
river network, HLM transports the channel water (g [m? - s71]) downstream. A detailed
description of the hillslope and stream routing process can be found in [11,14].

The surface runoff, infiltration, and percolation rates are linked through the refer-
ence speed v, and the shape of the hillslope. Each hillslope has a parameter k;[min~!]
(Equation (1)) that depends on the hillslope link length (L;[m]) and area (4, [m2] ), along
with the reference velocity v,. The parameter k; is the inverse of the runoff residence
time in the hillslope. The runoff q,; and the infiltration g, are linked to k, through
Equations (2) and (3), respectively. Moreover, the infiltration also depends on the topsoil
depth (T;) assumed to be equal to 0.1]m]. Additionally, the percolation rate qr; is computed
as a proportion of ky, expressed by k;. Usually, k; is 2% of k; however, its value may change
depending on the soil and topographical properties.

ky =0, - <Ll) -60 1)
h
qpL = ka2 - Sp ()
gr =k -Sp-99- (1—S7/Ty)° &)
q1s = ko - St - ki (4)
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Figure 2. Hillslope Link Model spatial discretization and schematic of the storages and processes represented at the hillslope

scale: (a) HLM hillslope process using the linear subsurface flux equation; (b) hillslope process including the active layer (B),

the exponential flux (gesr), and the tile drainage flux (gsp); (c) watershed decomposition into hillslopes and channel links;

and (d) functional form of the subsurface flux in the function of the soil storage (Ss) after [17].

The current HLM setup represents the subsurface flux to the channels (g [m - min~])
with a linear equation (red line on Figure 2d). The equation releases water to the channel at
arate m, when S; is greater than the no-flow threshold (S,), as follows,

gsL. = m - (Ss — So) %)

Ref. [17] developed a set of parameterizations for ordinary differential equations that
adds a non-linear component to Equation (5) when S; is above threshold storage. The
following exponential equation (continuous line on Figure 2d) is added to Equation (5) if
Ss is greater than the activation threshold g [m],

qest, = a(Ss — p)e'7 (5P 6)

where « is a parameter that depends on the hillslope properties, such as its steepness and
the soil conductivity. In [17], the authors also developed an exponential equation that
applies when the hillslope has tiles. The following equation (dashed line on Figure 2d) is
added when S; is greater than the tile relative depth D; [m],

gsp = (S5 — Dyg)e* (5~ Pa) 7)

In the described scheme, the subsurface flux becomes a set of equations that HLM
activates, depending on the value of S, relative to the thresholds S,, 5, and D;. The
segmented subsurface runoff is as follows,

qlsL if Ss < .B
gsL = qlst + gest if Ss>PB (8)
glsp +qesp +qsD  if  Ss> Dy

The relative tile depth (D;) is independent of §, so either could be larger depending
on the tile configuration and the hillslope properties. Moreover, if there are no tiles,
Equation (8) is limited to its two first expressions. More details on the subsurface equation
development can be found in [17].
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2.2. Model Setup and Data

We used both diagnostic and prognostic approaches to test the performance using
the non-linear equation. We used the river network for the state of lowa derived from a
DEM of 90 m and decomposed into about 420,000 individual hillslopes, following the ap-
proach presented in [11]. The precipitation force corresponds to hourly Stage IV QPEs [24].
We forced the evapotranspiration using the mean annual monthly values derived from
MODIS [25] for the region.

Equation (8) offers a formulation for the subsurface flux that we want to validate
for the Iowa domain. In this process, we can fix parameters uniformly over the space or
distribute them spatially. A uniform setup assumes that each hillslope in the region uses
the same model parameters, while a distributed setup assumes parameter variability as a
function of landscape properties. Neither approach is without error because the parameters
are only approximate and could depend upon unknown factors that are variable in space.
The fixed setup is unrealistic, and the distributed setup may be subject to spatial errors.
However, both approaches are complementary. Fixed setups could help assess the ability
of Equation (8) to improve the accuracy of the simulated streamflow fluctuations. In
contrast, a distributed setup helps to validate the parameter description given by the
map(s). Considering this, we used both approaches to validate the new g;; equation and
to explore the limits of the so-called predefined setups. In the distribute parameters case,
we use the steepness of the hillslopes (Figure 3a) and the tiles localization according to the
Iowa Department of Natural Resources (DNR) (Figure 3b).

Figure 3. Maps of the hillslope steepness (a) and tile drainage localization according to the lowa DNR (b).

The model validation consists of comparing fixed (diagnostic) and distributed (prog-
nostic) HLM setups (Figure 4). The diagnostic setup (Figure 4a) shows how different
formulations could significantly improve the model across the region. On the other hand,
the prognostic setups (Figure 4b) show the improvements and limitations derived from the
application of “known” spatial variables.

The formulation of Equation (8) relies on the percolation rate because the non-linear
formulation depends upon the amount of water in the subsurface storage. The described
dependence increases the relevance of the percolation parameter (k;). The distribution of k;
can be derived from maps of the soil profile properties. However, using an additional map
may increase the errors affecting the comparison of both setups. For this reason, we choose
to fix three different percolation rates for the diagnostic and prognostic setups (Figure 4c).

Moreover, we used the same values for Sy, B, and Dy, in both setups. In [17] S
oscillates between 1.4 and 1.55 in function of the slope. Nevertheless, additional features
of the hillslope such as the bedrock depth, and soil type determine the value of Sy. To
avoid adding additional uncertainty sources, we fixed Syp = 1.48. On the other hand, for
and D; we used the values described by [17] of 1.67 and 1.635, respectively. In Table 1 we
summarize the described diagnostic and prognostic setups.
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fixed for the domain of Iowa after [17] (b) prognostic case, with equations varying with the hillslopes steepness (blue
scenario) and the presence of tiles (red scenario); and (c) percolation rates fixed for the different scenarios. Their combination
gives us 12 diagnostic scenarios and three prognostic scenarios.

Table 1. HLM diagnostic and prognostic setups summary.

Identifier Type Slope Tiled k;
D1 Diagnostic 0% False 0.02
D2 Diagnostic 2% False 0.02
D3 Diagnostic 5% False 0.02
D4 Diagnostic 2% True 0.02
D5 Diagnostic 0% False 0.03
D6 Diagnostic 2% False 0.03
D7 Diagnostic 5% False 0.03
D8 Diagnostic 2% True 0.03
D9 Diagnostic 0% False 0.04
D10 Diagnostic 2% False 0.04
D11 Diagnostic 5% False 0.04
D12 Diagnostic 2% True 0.04
P1 Prognostic Variable Variable 0.02
P2 Prognostic Variable Variable 0.03
P3 Prognostic Variable Variable 0.04

2.2.1. Diagnostic Setups

In the diagnostic setup (Figure 4a), we created four base parametrizations, using
Equation (8) for the Iowa domain. The parametrizations range from flat hillslopes (light
blue line on Figure 4a) to steep or tiled hillslopes (red line on Figure 4a). In the tiled case,
we used a steepness of 2% under the assumption that tiles are usually installed in flat
terrains. Then, we combined the four parameterizations and the three k; rates to obtain 12
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diagnostic (D) scenarios (D1 to D12 in Figure 4c). In the scenarios, D1 to D4 use k; = 0.02;
D5 to D8 use k; = 0.03; and D9 to D12 use k; = 0.04. A summary of the diagnostic scenarios
is provided in Table 1.

2.2.2. Prognostic Setups

In the prognostic setup, we distributed parameter values in function of the hillslopes
steepness and the lowa DNR map describing tile presence (Figure 4b). According to [17]
the coefficient & of Equation (6) changes in function of the hillslope steepness () with
a linear equation. Using the following equation, we assigned the parameter « to each
hillslope, obtaining variable g;L curves that oscillate between the blue bands shown in
Figure 4b:

&=, (8.5 * 10—8) 19481077 )

Additionally, we include Equation (8) for tiled terrain. To do it, we assigned tiles to
the hillslopes based in the map in Figure 4b. In the tile drainage case, we changed c in
function of the slope using the following equation:

c=34%10"8 log(y,) +57%1077 (10)

Then, we developed the prognostic (P) scenarios P1, P2, and P3 using the distributed
parameters « and ¢ with the percolation rates k; of 0.02, 0.03 and 0.04, respectively (dis-
tributed setups in Figure 4c). A summary of the prognostic scenarios is provided in Table 1.

3. Results
3.1. Insights from a Diagnostic-Prognostic Approach

The diagnostic and prognostic setups produced significant differences between the
model outputs. In Figure 5, we present the simulated hydrographs at three watersheds
simulated by the diagnostic scenario D4 in blue and the prognostic scenario P1 in red. In
this case, the diagnostic setup assumes that all the hillslopes have tiles or are steep. On the
other hand, the prognostic setup assumes there to be tiles only at some hillslopes and that
the parameter « of Equation (6) varies with the steepness. In these three cases, the diagnostic
(or fixed) setup produces a longer recession curve than the one obtained by the prognostic
setup. The diagnostic case has a better match to the lowa River at Tama (Figure 5b), while
the prognostic setup exhibits a better match to the White Breast Creek (Figure 5a) and at
the Cedar River (Figure 5c). Figure 5 gives a brief description of the expected differences
between the setups. Additionally, it shows that Equation (8) can improve the streamflow
representation, given the correct set of parameters that are obtained.

According to Figure 5, the non-linear model can produce a good representation of the
hydrograph falling limb and early recession, depending on the parameters. Considering
the described sensitivity, we compare the event-based KGE of the non-linear setups and
the linear model (Figure 6). The KGE equation summarizes the correlation (), the mean
ratio (1), and the deviation ratio (¢). Our results suggest that the KGE performance
depends heavily on the percolation rate (k;). With k; = 0.02 (first row of Figure 6), all the
non-linear setups tend to improve the linear model, with a significant performance decrease
in some events. Conversely, values of k; equal to 0.03 and 0.04 do not exhibit a significant
KGE change (second and third rows of Figure 6). Cases such as D5 and D11 exhibited a
performance such as that obtained by the linear model. Other cases, such as D9, tended
toward a general decrease in performance. D6, D8, and P2 exhibited a slight performance
increase. The described results highlight the relevance of the percolation rate and the
subsurface parameters. The comparison with the linear model shows that Equation (8) can
significantly improve the model performance, depending on the parameters.
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Differences among the scenarios are highlighted by comparing the performance gauge
by gauge. First, we choose the diagnostic (D) and prognostic (P) setup with the best
performance at each gauge. For this, we used the KGE to select the setup that outperformed
the others for most of the events. In Figure 7, we present the KGE distribution and the
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percentage of time each scenario was chosen. We found similarities between the diagnostic
and prognostic chosen setups when grouped by the percolation rate values (k;). D4 and P1
(k; = 0.02) have a similar KGE distribution, as do D8 and P2 (k; = 0.03) and the group that
includes D9, D11, D12, and P3 (k; = 0.04). The similarities among the described groups
highlights the relevance of k;. Moreover, some differences also highlight the relevance of
Equation (8) parameters.

Diagnostic setups Prognostic setups
1.0 40% 4% 27% 2% 24% 25% 2% 71%
05 a \ ) &

w \ /

s /- / Y
-0.5 i \ /
-1.0 v

D4 D8 D9 D11 D12 P1 P2 P3
Scenario

Figure 7. Event-based KGE distribution for the selected scenarios at each station.

The results presented in Figure 7 follow a spatial distribution. Figure 8 shows each
USGS gauge colored by the diagnostic (Figure 8a) and prognostic (Figure 8b) setups with
the best performance. In both cases, the percolation rate defines the spatial distribution.
We can identify how the chosen setups (Figure 8) follow the Iowa landforms to some extent
in the diagnostic case (see Figure 3a). Scenario D12 is recurrent over the Des Moines Lobe
and the Northwest Iowa Plain. D9 recurs over the Missouri River Alluvial and Loess
Hills landforms. We found that D4 dominates over the Southern Iowa Drift area. In the
remaining regions, we see a mix of scenarios. The spatial distribution is similar among
the chosen prognostic scenarios (Figure 8b) and seems to be highly influenced by the
percolation rates, represented here by tones of blue (k; = 0.02), red (k; = 0.03), and green
(kj = 0.04).

@ D4

Diagnostic Scenario Prognostic Scenario

@ o3

O @ b1l @ D12 @ Fr1 @ P2 @ P3

Figure 8. Spatial distribution of the scenarios with best KGE performance at each USGS station: (a) results obtained from
the diagnostic scenarios; and (b) results obtained from the prognostic scenarios. The green, red, and blue gauge colors

correspond to the percolation rates of 0.02, 0.03, and 0.04, respectively.

According to Figure 8, the chosen diagnostic and prognostic scenarios share percola-
tion rates. However, differences exist in the spatial performance improvement distribution
(Figure 9). Figure 9a,b show the diagnostic and prognostic scenarios of KGE improvement
with respect to the linear model. With only two cases of negative KGE differences (red
dots on Figure 9a), the diagnostic scenarios outperform the linear model at almost all
the USGS gauges. Alternatively, in the prognostic case (Figure 9b), the count of negative
KGE differences increases to 13, while the number of gauges decreases in cases where the
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improvement is more significant than 0.1 (yellow). We attribute the decrease in prognostic
case performance to the parameter’s spatial distribution.

@)
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L

Figure 9. Mean KGE spatial difference of the diagnostic and prognostic scenarios with respect to the linear model:

(a) diagnostic KGE minus linear model KGE; and (b) prognostic KGE minus linear model KGE.

The prognostic scenario performance decrease occurs mostly over the east and west
regions of lowa. The most significant decrease is observed for the Northwest Iowa Plains
landform (Figure 9b). In this region, the chosen diagnostic setups were D12 and D9
(Figure 8a), suggesting a mix between tiled terrain and flat hillslopes. Over the Southern
Iowan Drift landform area, the k; value is the same for the diagnostic and prognostic
scenarios. However, the prognostic scenario performance declines at several stations in this
region. On the other hand, the Iowa Surface region exhibits more k; discrepancies between
both scenarios, as well as a higher number of performance differences.

The described results suggest a level of heterogeneity in the parameters shown by the
diagnostic and prognostic scenarios. This heterogeneity creates difficulties when choosing
the most adequate regional parameterization for the model, regardless of whether it is
fixed (diagnostic) or distributed (prognostic). To address this issue, we compare the KGE
(upper diagonal in Figure 10) and the mean ratio y (lower diagonal in Figure 10) of the
chosen scenarios. We estimate p as the ratio between the simulated (y4;,;,) and observed
(ops) flows with values near indicating a perfect match. According to Figure 10, the KGE
and mean ratio of scenarios D4 and P1 outperform almost all the scenarios. Additionally,
both scenarios have the highest percentage of events with KGE values above 0.4 (blue
bars in Figure 10 histograms). Compared with the linear model, the D4 and P1 mean ratio
correction is significant. In both plots (Linear-D4 and Linear-P1), there are almost no events
where the linear setup outperformed D4 and P1. The scenarios D4 and P1 have the same k;
(0.02) value; however, their subsurface parameters are different.

The parameters of D4 are fixed for all the domains following line 4 of Figure 4a. This
parameterization represents highly conductive soils or the presence of tiles. On the other
hand, P1 parameters follow the hillslope steepness with Equation (9), and the presence of
tiles described by the map in Figure 4b. The described differences in the parameters seem
to develop slight dissimilarities in performance. According to panel D4-P1 in Figure 10,
the KGE performance is similar in both, although D4 has a better performance in some
events. Moreover, the panel P1-D4 shows that the mean ratio description of both setups is
similar. Considering that D4 assumes tiles everywhere, our results suggest a high presence
of tile-like signatures.
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Figure 10. An event-based KGE comparison of the diagnostic and prognostic dominant scenarios. Each row compares a

scenario against the others. The upper diagonal panels correspond to the KGE histogram of the scenarios. Over the diagonal
the KGE histogram of each setup, a coloring in of the percentage of events with blue is visible, with a KGE of above 0.4. The
lower diagonal compares the event-based mean-ratio error.

3.2. Extended Metrics

According to the diagnostic and prognostic KGE comparisons, the performance dif-
ferences between the two scenarios are relatively small. However, the KGE is subject to
three parameters that do not necessarily reflect all the relevant changes in the simulated
streamflows. With this in mind, we also compared the NSE (Nash Sutcliffe efficiency), the
hit rate, and the lags (Figure 11a—c, respectively). The NSE contrasts the simulated data
prediction skill with the mean value of the observations. An NSE of below 0 indicates
that the mean value performs better than the model, and an NSE of 1 indicates a perfect
simulation. The hits rate is the percentage of time that is shared by observations and
simulations during floods. A hit rate of zero corresponds to missing all the floods, and a hit
rate of one corresponds to a perfect match. The lag is a measure of the displacements ap-
plied over the simulated data to maximize the correlation. We made hourly displacements
from —48 h to 48 h. Negative lag values correspond to cases in which the simulated data
exhibit responses earlier than the observed, and positive values correspond to the opposite
behavior. A simulated series with good performance must have lags near zero.

Results from Figure 11 show that D4 and P1 have some similarities and some relevant
differences. Regarding the NSE (Figure 11a), D4 has a slightly better score. Regarding the
hits rate (Figure 11b), it is hard to tell which scenario has a better performance. Furthermore,
P1 has a higher fraction of hit rates approaching one, but it also has higher frequencies
at some lower intervals. The number of lags is also similar (Figure 11c). Nevertheless,
P1 tends toward negative lag values more than D4 does, representing more frequent early
peak estimations.
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Figure 11. Histograms of performance metrics for the scenarios D4 and P1. Panel a compares the NSE. Panel (b) compares
the Hit Rate considering (a) Hit when the simulated and observed streamflow are above the flood level of the gauge. Panel
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In addition to the indexes, we compare the simulated peaks of the chosen diagnostic
and prognostic scenarios. Because the gauged watersheds areas range between 40 and
18,000 km?, we performed a scale-independent comparison. To obtain scale-independent
peaks (Z), we divided the peaks Q) [m? - s71] by the mean annual peak Q, [m® - s~!]. Then,
for each event of each link, we computed the difference between the simulated (Zs) and
the observed (Z,) standardized peaks. The peak flow estimation of D4 and P1 exhibited
a similar performance, with D4 being superior. The D4 scenario reaches a fraction of
32% for differences near zero (Figure 12), while in P1 this value drops to 28% (Figure 12).
Additionally, P1 has a higher fraction of errors equal or greater than one.
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Figure 12. Histograms of the standardized peak flows difference for the D4 (blue) and
P1(red) scenarios.

We expected the diagnostic superiority because, in the prognostic case, we impose
restrictions based on maps. The resulting differences among simulations emphasize the
parameters’ relevance and the need for their correct representation. Contrasted with
the diagnostic scenarios, the prognostic scenarios tend to reduce the performance. The
differences between D4 and P1 suggest that the landscape descriptors could have errors
that lead to decreases in the modeling performance. Additionally, our results suggest that
there may be more tiles than the ones represented by the map in Figure 4b.

3.3. Analysis of Parameter Values

The diagnostic and prognostic scenarios offer different ways to determine the values
of parameters in space. In the diagnostic cases, we identified the best fixed-parameter
combination for each gauged watershed. In the prognostic cases, we pre-defined a set
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of distributed parameters based on the available information. In a previous step, we
defined the best diagnostic and prognostic setup for each gauge (Figure 8a,b, respectively).
According to our results, a spatial distribution of the parameters seems to be explained
by k; and the parameters of Equation (8). Additionally, the chosen diagnostic scenarios
outperform the chosen prognostic ones (Figure 8a,b). In some gauges, the performance
differences are small; however, in others, the difference is relatively large. This is an
interesting result because the only difference between both cases is the parameterization of
Equation (8). Considering the described performance differences, we explore in more detail
how they are related to the parameterizations of the diagnostic and prognostic setups.

We compare Equation (8) setup for the diagnostic and prognostic scenarios to evaluate
whether variations in the parameters explain the observed performance differences. We
made the comparison at each gauged watershed. For the comparison, the prognostic setup
has a set of curves g5 (P) for a given watershed (light blue lines in Figure 13), and there is
one diagnostic curve gg (D) for the same watershed (dark blue line in Figure 13). Using
Equation (11), we compare g1 (D) with the 50th percentile of g1 (P) for storages between
1.6 and 1.7 [m] (green region in Figure 13). We choose the 1.6-1.7 range because it describes
the shift the linear to the exponential expression. Besides, the hillslopes subsurface storage
(Ss) is usually in this range during storm events.
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Figure 13. Example of the g1, parameterization comparison between the diagnostic and prognostic
scenarios. The light blue lines are g,; curves of the prognostic scenario for a given watershed. The
red line corresponds to the 50th percentile of the prognostic g5, curves. The dark blue line is the
gs1 curve of the diagnostic scenario. We used the green region to perform a comparison between
the scenarios.

1 N qs.(D); — P50(qsL.(P));
Agst = Zl: qs.(D);

According to Figure 14, the differences of the parameters (Ag;1) do not adequately
explain the performance differences between the diagnostic and the prognostic scenarios.
In some cases, low absolute values of Ag;; are linked to low KGE differences. However,
the described behavior does not apply for large absolute values of Ags;. Figure 14 shows
many watersheds in which the differences of the absolute parameters are larger than 10%
(x-axis), while the KGE absolute differences are low. Additionally, some cases with low
absolute Ag;; exhibit large KGE differences. On the other hand, according to the colors of
Figure 14 (non-absolute Ag,r,), positive values of Ag;;, are related to low KGE differences;
and negative values of Ag,; correspond to high KGE differences.

(11)
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Figure 14. Parameters’ absolute differences vs. KGE differences at the USGS gauges. The colors
correspond to non-absolute differences in the parameters.

We also compared the Ag;; and the KGE differences in space. According to Figure 15,
the coincidences between the KGE and Ag,;, do not show a strong regional pattern. We
observe some similarities only in the Des Moines Lobe and the Northwest Iowa Plains
regions. In both cases, some significant KGE differences correspond with large absolute
Aggy, values. Additionally, there is a match between low KGE and Ag,;, differences in the
Iowan Surface region, with some exceptions.
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b i ).
Models KGE differences 0.0 0

Figure 15. Maps showing KGE differences (a), and Ag;y, (b), in USGS gauges.

It is hard to establish a relationship between the diagnostic and prognostic parameters
and their performance differences. We attribute this lack of correlation to the model’s
non-linear transformations at the hillslope scale and throughout the network. It is expected
that the parameters would alter the model’s output. However, our results show that a
pre-defined distribution of the parameters could lead to modeling errors that are hard

to identify.

4. Conclusions

The Iowa Flood Center (IFC) has been making operational flood forecasts for the state
of Jowa since 2010. IFC forecasters use the hydrological Hillslope Link Model (HLM), along
with rainfall data. The HLM has been accurate in forecasting streamflow fluctuations at
several scales [14]. However, the model has limitations in its representation of the recession
curve, and it underestimates the total streamflow volume. Moreover, the limitations seem
to increase in a tiled landscape. The authors of [17] attributed these limitations to the
linear equation HLM uses to represent the subsurface flux and the lack of an equation
representing the tiled terrain. To address this issue, [15] developed an exponential equation
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that can be parameterized to represent the function of the hillslope steepness and the
presence of tiles.

This paper evaluated the exponential equation proposed by [17], which represents
subsurface hillslope-link interaction in HLM. The equation can represent hillslopes with
and without tile drainage. We performed the equation evaluation at 140 USGS gauges
in Iowa. The analysis used hourly records between 2002 and 2018. In the evaluation,
we compared the exponential equation with a linear equation. The comparison used
a diagnostic and a prognostic approach to establish the parameters. In the diagnostic
setup, we implemented 12 fixed parameter scenarios, while in the prognostic setup, we
distributed the parameters with consideration of the hillslope steepness and presence of
tiles. In both cases, we considered three fixed percolation rates. Results from this study
indicate the following:

e  Compared with the linear equation, the exponential equation corrects the volume bias
on the simulated streamflow. We attribute the correction to the active layer threshold
on the exponential equation and the significant outflow increase once the storage is
above this threshold. In contrast, in the linear equation, the water remains in the soil
for extended periods because of the described absence of these processes.

e Depending on the parameters, the exponential equation could improve the perfor-
mance of HLM. We found that the exponential equation outperforms the linear equa-
tion for several parameter combinations with changes in the shape of the hydrograph,
the simulated peaks, and timing. We also found significant differences using different
combinations of the equation parameters and the percolation rate.

e  The percolation rate plays a significant role in the representation of the subsurface flux
from the described combinations. We found spatial coincidences in the percolation
rates when choosing the best diagnostic and prognostic scenarios. Additionally, the
percolation rate induces changes comparable to those produced by the exponential
equation’s parameters.

e  Determining the distributed parameters of HLM remains challenging. In this paper,
we used the diagnostic and prognostic approaches to analyze the parameters of HLM.
The diagnostic approach assumes unknown conditions and fixed parameters over the
space. On the other hand, the prognostic method is the more classical approach, in
which the parameters are derived from maps of the landscape. In our experiments,
the diagnostic setups tended to outperform the prognostic setups. Additionally, had
difficulty in identifying a link between the diagnostic and prognostic parameters and
their respective performances.

In the current work, we showed that a better representation of the processes and the
correct parameters can improve a hydrological model. The improvement is supported
by comparisons performed at 140 USGS gauges. Moreover, the differences between the
diagnostic and prognostic setups suggest that identifying the parameters is still challenging.
Despite the limitation related to the number of gauges, the diagnostic approach reveals the
parameters’ potential spatial distribution.

Two main factors may explain the differences in parameters and performance between
the diagnostic and prognostic setups: errors in the landscape description and unrepresented
processes in HLM. Uncertainties exist in the tile localization maps; likewise, limitations
exist in the representation of the average steepness at the hillslope scale. On the other hand,
we unrepresented processes in some regions of lowa, such as potholes over the northwest
and agricultural terraces in the west. It is difficult to identify which of these factors is more
relevant to the implementation of a hydrological model. However, according to our results,
the use of maps as landscape descriptors may lead to the detection of errors that are usually
hidden in a posterior calibration process. Moreover, we found it difficult to identify the
errors caused by the prescribed distributed parameters. Both issues could be addressed
using diagnostic setups that help to identify the uncertainties derived from the parameters
and their possible regional distributions.
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Abstract: The combination of Hydrological Models and high-resolution Satellite Precipitation Prod-
ucts (SPPs) or regional Climatological Models (RCMs), has provided the means to establish baselines
for the quantification, propagation, and reduction in hydrological uncertainty when generating
streamflow forecasts. This study aimed to improve operational real-time streamflow forecasts for the
Upper Zambezi River Basin (UZRB), in Africa, utilizing the novel Variational Ensemble Forecasting
(VEF) approach. In this regard, we describe and discuss the main steps required to implement,
calibrate, and validate an operational hydrologic forecasting system (HFS) using VEF and Hydrologic
Processing Strategies (HPS). The operational HFS was constructed to monitor daily streamflow and
forecast them up to eight days in the future. The forecasting process called short- to medium-range
(SR2MR) streamflow forecasting was implemented using real-time rainfall data from three Satellite
Precipitation Products or SPPs (The real-time TRMM Multisatellite Precipitation Analysis TMPA-RT,
the NOAA CPC Morphing Technique CMORPH, and the Precipitation Estimation from Remotely
Sensed data using Artificial Neural Networks, PERSIANN) and rainfall forecasts from the Global
Forecasting System (GFS). The hydrologic preprocessing (HPR) strategy considered using all raw
and bias corrected rainfall estimates to calibrate three distributed hydrological models (HYMOD_DS,
HBV_DS, and VIC 4.2.b). The hydrologic processing (HP) strategy considered using all optimal
parameter sets estimated during the calibration process to increase the number of ensembles avail-
able for operational forecasting. Finally, inference-based approaches were evaluated during the
application of a hydrological postprocessing (HPP) strategy. The final evaluation and reduction
in uncertainty from multiple sources, i.e., multiple precipitation products, hydrologic models, and
optimal parameter sets, was significantly achieved through a fully operational implementation of
VEF combined with several HPS. Finally, the main challenges and opportunities associated with
operational SR2ZMR streamflow forecasting using VEF are evaluated and discussed.

Keywords: variational ensemble forecasting; hydrologic processing strategies or hypotheses; SR2MR
streamflow forecasting; real-time hydrologic forecasting system; satellite precipitation products;
multi models; best streamflow prediction; inverse variance weighting; inverse probability weighting

1. Introduction
1.1. Decisions and Limitations of Hydrologic Forecasting

At any spatiotemporal scale, critical decisions about the design, functionality, and
operability of a Hydrologic Forecasting System (HFS) need to be made to reduce the total
hydrologic uncertainty (THU) propagated from different components of a hydrologic
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modelling paradigm (HMP). In fact, reducing the total hydrological uncertainty is key to
developing reliable Integrated Water Resources Management (IWRM) strategies across
spatial and temporal scales. For river basins across the world, the allocation of water
resources largely relies on accurate streamflow forecasts. In Africa, for instance, the waters
of the Upper Zambezi River Basin (UZRB) are shared by eight countries: Angola, Namibia,
Zambia, Botswana, Malawi, Tanzania, Zimbabwe, and Mozambique. However, the admin-
istrative complexities created by the transnational nature of the Zambezi Basin (Figure 1)
result in inconsistencies in the operation and maintenance of the rain gauges and stream
gauges (see Table 1), and consequently a lack of reliable hydrologic data for the implemen-
tation of an HFS. For example, rainfall or streamflow time series with missing records can
undermine the effectiveness of calibration and validation schemes, consequently increasing
the propagation of total hydrological (meteorological) uncertainty for the establishment of
hydrologic processing strategies. Therefore, an appropriate identification and quantifica-
tion of uncertainty (at any level) can help reducing the THU for the final development of
streamflow forecast products.

§

Kalene Hill Road Bridge (b) 0: 10I°E 20.°E 30'°E 40.°E
o oS ARABIA
Mwinilunga S A HAR.A
! 0
{ Solwezie = o=’ ALY NIGER 20°N
’ . 2 CHAD BYRAN
Angola | i
// Ia - NIGERIA _100N
N\ ETHIOPIA
Chivata Villag¢ Kasempal
Kabompo ® T -0°
I Kabompo DR CONGO
® 400 -600 (mm/yr) TANZANIA
® 600.1-800 e ~10°S
2 NG L4
2lako @  800.1-1000 %, @T iga)
— 1000.1 - 1200 I i
. o T NAMIBIA -20°S
@ 1200.1-1400
®  11.1-50.0 (m¥s) S
1 | Zambezi so -30°
® 50.1-2000 =) “ APRICA
A Dams
@® 200.1-500.0
. T T T T T
500.1-1000.0
n ver
@ 1000.1-1500.0 Land Cove
>
DEM }
AN !

I:l Broadleaved deciduous closed (42.9%)
:] Broadleaved deciduous (23.4%)
[] shrub deciduous (14.8%)

D Herbaceous (16.1%)

Regularlly flooded (2.2%)

D Managed Areas (0.6%)

3 ( 2\
P
- Broadleaved evergreen (0.002%)

- High : 1671 (m.a.s.l.)

S Low 1 731

Figure 1. (a) Upper Zambezi River Basin (UZRB) delineated above the Katima Mulilo streamgauge. The green markers

represent 9 rain gauges available in the basin. The blue markers represent the streamgauges used in this study; (b) Location

of the Zambezi Basin in the African continent. The map also shows the location of major hydropower and water storage

projects; (c) Modelling domain selected to implement the real-time HFS (RT-HFS). The modelling domain was set up

using grid cells at 0.25° of spatial resolution; (d) Land cover map based on [1]. The basin is dominated by broadleaved

trees (~66%), herbaceous (16.1%), and shrubs (14.8%), whereas only a little (~0.6%) of the area is managed or represents
agricultural; and (e) Digital Elevation Model (DEM) based on Hydrosheds (90 m resolution). The spatial distribution of
the vegetation types is consistent with the elevational pattern of the basin, which ranges between approximately 731 and

1671 m above sea level [2].
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1.2. Knowledge Gaps and Justification of the Study

The first HFS for Zambezi was applied in 2011, where the use of the Kalman filter was
combined with a simple two-layer conceptual hydrological model to forecast streamflow
in three sub-basins [3]. Satellite-based soil moisture estimates were used to calibrate the
aggregated hydrologic model, which was able to generate daily streamflow forecasts up
to 40 days into the future. Meier [4] argued that the spatial resolution of the satellite
data needed to be improved together with the implementation of more sophisticated
hydrologic models. In 2014, the daily floodplain behavior of the Zambezi was simulated
by [5] applying a modified reservoir approach for the SWAT model [6]. Their results
showed that the modified version of SWAT improved the simulation of daily streamflow
and floodplain development in the Zambezi basin. Several other hydrological models
have been satisfactorily calibrated and validated in other sub-basins of the Zambezi with
available records (i.e., [7-12]). Despite all these modelling efforts in the Zambezi Basin,
an operational HFS for the undisturbed flows of the poorly gauged UZRB has yet to be
established. The primary objective of an operational HFS is to generate an accurate short-
to medium-range (SR2MR) streamflow forecast that can inform water distribution schemes
at the relevant spatial and temporal scales. The forecasts can be obtained from multiple
ensembles constructed from Variational Ensembles Forecasting (VEF) approaches.

1.3. Variational Ensemble Forecasting (VEF) to Improve Operational Streamflow Forecasts

An operational HFS can only be implemented if the realtime and short-term forecasts
of the input data (e.g., rainfall, temperature, etc.) are readily available. Therefore, the
use of multiple satellite precipitation products (or regional climate models), combined
with multiple conceptual and physic-based hydrologic models, can provide important
insights about the practical and scientific aspects of implementing operational HFS in
poorly gauged basins [13,14]). In this regard, many Variational Ensemble Forecasting (VEF)
algorithms have been proposed to improve the representation of the components included
in a Hydrologic Forecasting System (HFS). Previous studies have applied VEF based
on multiproduct, multimodel, or multi-initialization schemes (see for example [13-21]).
However, the evaluation of VEF including an additional dimension with multiple optimal
parameter sets has not been explored in simulation schemes or operational forecasting yet’
neither has the role of Hydrologic Processing Strategies to improve the assimilation of VEF
applications in an operational HFS context.

1.4. Purpose of This Paper

The main motivation of this study is to describe, analyze, and discuss the main steps
required to design and implement an HFS, aimed to improve SR2ZMR streamflow forecasts
in the UZRB and its sub-basins during the operational stage. The technical functionality and
operability of the HFS is assessed using Hydrologic Processing Strategies (HPS) within the
context of a Variational Ensemble Forecasting (VEF) hydrologic modelling paradigm [22],
i.e., optimal combination of multiple precipitation products, multiple hydrologic models,
and multiple parameters sets. The THU propagated by the HFS is evaluated and compared
according to different sources of uncertainty, i.e., satellite-based, or model-based rainfall
estimates, hydrological models, and optimal parameters. As detailed later in this paper,
a more comprehensive overview of the whole modeling paradigm used to implement
an operational HFS can help significantly to generate an improved streamflow forecast
products that are closer to the hydrological conditions of the basin under study.

2. Methods
2.1. The Upper Zambezi River Basin (UZRB) Domain

The operational HFS implementation for the UZRB and its sub-basins with records
(Table 1), considered the drainage area (~339,521 km?) delineated above the Katima Mulilo
streamgauge (Table 1 and Figure 1a). The mean annual streamflow at the UZRB (measured
at Victoria Falls) represents about 25% of the mean annual streamflow measured at the
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Zambezi Delta outlet (~4200 m3/s), the largest contribution of all tributaries within the
whole Zambezi Basin [23,24]. The historic mean daily flows (1942-2017) measured at
Katima Mulilo stream gauge were about 1174 m?/s (Table 1); however, during extreme
episodes the maximum daily streamflows can exceed more than six times the mean daily
streamflows. The basin is dominated by broadleaved trees (~66%), herbaceous (16.1%),
and shrubs (14.8%), whereas only a little (~0.6%) of the area is managed or represents
agriculture (Figure 1c). The spatial distribution of these vegetation types is consistent with
the elevational pattern of the basin, which ranges between approximately 731 and 1671 m
above sea level (Figure 1d). The UZRB domain for the operational HFS implementation
was set up using grid cells at 0.25° of spatial resolution, approximately 25 km at the Equator
(Figure 1e). This area above Katima Mulilo was selected, because it is the unique portion
of the Zambezi that does not have ongoing hydropower or water storage infrastructure
projects (see Figure 1b). This is an advantage for HFS implementation since the presence of
dams or any other anthropogenic water regulations can be an important limitation when
the primary objective is to simulate natural streams.

Table 1. Description of streamgauges use in this study. The HFS column shows those streamgauges (sub-basins) used for the calibration

of hydrologic models.
South East Area Altitude Average Flow . Missing
Country ~ Streamgauge  y irude  Longitude  (km?)  (m.as.l) (m3/s) Period %) HES
. Kalene Hill
Zambia ; —11.13 24.25 764 1261 12.3 1977-2004 34.81 No
Road Bridge
Zambia  Chivata Village ~ —13.33 2315 3354 1065 17.4 1962-2004 23.32 Yes
Zambia Luanginga- —14.96 22.68 34,621 1021 59.0 1958-2004 8.94 Yes
Kalabo
Zambia Kabompo ~13.60 2421 42,740 1029 2522 1990-2005 51.04 Yes
Pontoon
Zambia Lukulu —14.38 23233 206,531 1012 772.0 1950-2004 12.44 Yes
Zambia Senanga ~16.11 2325 284,538 992 972.6 1947-2004 8.40 Yes
Namibia  Katima Mulilo —17.48 24.3 339,521 746 1174.5 1942-2017 13.54 Yes

2.2. Forecasting Timescales and Water Management Activities

An HFS can be implemented for either of the three (or a combination thereof) principal
forecasting timescales: (1) Realtime Monitoring or Short- to Medium-Range Forecasting
(SR2MR), (2) Subseasonal to Seasonal or Short- to Long-Range Forecasting (SR2LR), or
(3) Climate Change Predictions. The choice of forecasting timescales is partly determined
by the relevant water management goals, and the needs of end users of the forecasts. In
this study, the need for better water management schemes for flood warning and water
allocation in the lower Zambezi Basin prompted the implementation of an HFS for realtime
streamflow monitoring and short- to medium-range (SR2MR) forecasting in the UZRB and
its sub-basins. As mentioned in the previous section, the HFS was implemented to forecast
streamflow in the UZRB because it is the only part of the whole Zambezi River Basin
without water regulation infrastructure, i.e., natural streamflow patterns can be observed
in the UZRB. The SR2MR scheme allows streamflow forecasting from realtime up to eight
days into the future (Figure 2).

2.3. The Operational Context of a Hydrologic Modeling Paradigm

A functional HFS requires the design of a hydrologic modelling paradigm under an
operational scheme. The design can range from a simple propagation of meteorological
forecasts using a single hydrological model to more advanced techniques which can
include multiparameter, multimodel, or multi-initialization schemes (Figure 3). The use
of a simple propagation scheme does not allow for the quantification of the hydrological
uncertainty propagated from the model structure or from the model parameters. However,
by adding more parameter sets for a single hydrological model (i.e., [15]), by adding more
hydrological models [13,14,16-18], or simply by performing more initializations of the
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initial starting conditions of a single model [19,20], the hydrological uncertainty either from

the parameters, model assumptions, or initial conditions can be quantified.
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Figure 2. Structure and major modules required to implement an operational Realtime Hydrologic Forecasting System
(RT-HFS) at (a) short-range timescales RT-HFSggr and at (b) medium-range timescales RT-HFSyR.
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In the UZRB, the operational HFS is designed as a VEF modelling paradigm [22] in
which the best SR2ZMR forecasts are derived from the combination of multiple precipitation
products, multiple hydrologic models, and multiple parameters sets (Figure 3). This
technique makes it possible to increase the range of possible streamflow forecast ensembles
that can be used to evaluate and select the best representations of the hydrological states
and fluxes for the UZRB and its sub-basins.

2.4. Selection of Hydro Climatological Forcings

The input data can have significant impacts on the propagation of meteorological
and total hydrological uncertainty, and consequently, on the final streamflow forecasts. In
this regard, it is well known that rainfall is the most important variable for streamflow
simulation. At this stage, either point-based instrumental records or gridded-based cli-
matology products can be used to establish baseline conditions and to correct SPPs or
RCMs. The UZRB is a poorly gauged basin that lacks a consistent hydrometric network
with continuous records (only nine rain gauges with discontinuous records were available
for the HFS implementation). Therefore, the hydrological preprocessing hypothesis (also
known as meteorological postprocessing hypothesis) [22] was approximated using rainfall
climatology provided by CHIRPS (Climate Hazards Group InfraRed Precipitation with
Station data) [25,26], and temperature climatology provided by the Global Meteorological
Forcing Dataset (GMFD) [27].

To minimize the probability of errors propagated during the implementation of the
operational HFS, the quality of the climatological forecast products used in an HFS needs
to be evaluated and validated before they can be reliably used for hydrological appli-
cations. In the UZRB, three SPPs were evaluated, corrected, and then used to provide
short-range (realtime) rainfall estimates (1) TMPA-RT [28]; (2) CMORPH [29]; and (3)
PERSIANN [30,31]. To complete the SR2ZMR scheme, medium-range rainfall forecasts from
the Global Forecasting System (GFS) [32] were used. The original GFS product provides
rainfall forecasts in six-hour intervals (00, 06, 12, and 18 UTC) up to 16 days into the future.
However, since the quantity of missing records between 9 and 16 days in the archives is
larger (at least in this region), only rainfall forecasts provided at 00 UTC and up to eight
days into the future were selected for operational implementation. (Table 2).

Table 2. Climatology data used to correct (preprocess) rainfall forecasts from SPPs and RCMs.

Product Institution Ressl())allflitailon I'{l": :(:lr; (gf)ln Global Coverage Period

CH[IZIgS 1 UCSB 025° x 025° Daily ) ;’g ]{:\:Z% W 1981 to present

GI‘[’Q;']) : Princeton 0.25° x 0.25° Daily 15(?; é\T_ _12%2 ?N 1981-2012
PERSIABNII]‘I'CCS ? uct 0.25° x 0.25° 3-hourly ;’gg Vlf,j)gg % 1998 to present
CM([)ZI;]P H NOAA-CPC 0.25° x 0.25° 3-hourly 1868: N _168% ?/v 1998 to present
TMI[’ZAS-]RT 5 NASA GES DISC 0.25° x 0.25° 3-hourly 185(5); ]{:\1_12%2 ?N 1998 to present
G{g ;6 NOAA-NCEI 0.25° x 0.25° 3-hourly 1;3: o _198% ?/v 2014 to present
Katima Mulilo GRDC Streamgauge Daily 17.48° S-24.3° W 1942 to present

! Climate Hazards Infrared Precipitation with Station data (CHIRPS). 2 Global Meteorological Forcing Dataset (GMFD) 3 Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN) # Climate
Prediction Center morphing method (CMORPH) ® Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis-Real
Time © Global Forecast System (GFS).
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2.5. Hydrologic Models for Operational HES

The selection of a model structure to be included in the hydrologic modelling paradigm
(HMP) and ultimately in the operational HFS is as important as the selection of the model
parameters to be used in the calibration process [16]. For an operational HFS, many
HMP options can be implemented, including a single selection or an optimal combination
of multiple precipitation or climate products, multiple hydrological models, multiple
model state initializations, and /or multiple parameters sets. For example, the operational
VEF approach implemented in the UZRB, and its sub-basins utilized three distributed
hydrologic models (at 0.25° of spatial resolution): (1) HBV_DS, (2) HYMOD_DS, and
(3) VIC 4.2.b (Figure 4). The first two models are distributed versions of two traditional
well-known hydrological models: HBV [33,34] and HYMOD [35,36]. The VIC model used
in this study is a modified version of the well-known Variable Infiltration Capacity (VIC)
land surface model [37] that can resolve both the water and the energy balances. The
modification allows postprocessing of VIC model outputs with the Lohmann’s model for
routing [38]; a Gamma distribution to represent the catchment’s unit hydrograph; and
the linearized version of the Saint-Venant Equations for final river routing. Additional
details of the model states, fluxes, and parameters used in this study are provided in the
Appendix A.

HYMOD DS * (b) VIC4.2.b ’ (C)

Figure 4. Modelling structures used in the operational HFS implementation for the UZRB. (a) HBV_DS, (b) HYMOD_DS,
and (c) VIC 4.2.b. Details about model states, fluxes, and parameters are provided in the Appendix A.

2.6. Calibration of Models Included in the HFS

The models described in the previous section were calibrated and validated for the
whole UZRB and its sub-basins at 0.25 degrees of spatial resolution (approximately 25 km
at the Equator). Historical available daily streamflow records for the UZRB and its sub-
basins were used as reference data (Figures 5 and 6). The genetic algorithm [39] was used
to optimize the parameter sets of the three models. However, at this stage, any suitable
optimization scheme can be implemented (e.g., [39—43]; and many others) based on the
availability of time, resources, and expertise. In this study, a daily pooled calibration
considering all observed daily records in the UZRB, and its sub-catchments (Figure 5) was
applied at the Massachusetts Green High-Performance Computing Center (MGHPCC). The
algorithm was run in parallel processing mode using 100,000 iterations, with population
sizes ranging between 100 and 1000 generations. With this approach, the evaluation of the
most appropriate population of parameter sets within each generation could be conducted
in a more efficient manner. The Kling-Gupta efficiency [44] and the Nash-Sutcliffe effi-
ciency [45], among other measures, were used to evaluate the degree of agreement between
observed and simulated streamflow (Figure 6).
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an amplification along the y-axis for a better visualization of the hydrographs.
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Figure 6. (Top) UZRB and sub-catchments utilized during the daily calibration process. (Bottom) Calibration performances
for Katima Mulilo Streamgauge (2002-2015).
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2.7. Operational Variational Ensemble Forecasting (VEF)

A group of i hydroclimatological inputs, j hydrologic models, and k calibrated model
parameters can be used to establish simple or variational ensemble forecasts. A VEF
approach can provide a larger number of forecasts than a simple assembling approach,
because it evaluates all possible modelling chain sequences that can be arranged to con-
struct an HFS (see Figure 7). At this stage, data assimilation techniques to support the
“perfect model assumption” can be also applied to generate deterministic streamflow fore-
casts. Ref. [46] reviewed and evaluated many available methods to perform deterministic
forecasts. However, in an operational context, the experience of streamflow forecasters
suggests that uncertainty bands can better support decision making for water management
schemes [47-52]. The intention of a VEF approach is to use all available weighted or
non-weighted components of a modelling chain (HFS) to generate streamflow forecasts.
The final hypothesis about the probability distribution of streamflow forecasts can be
approximated using several procedures applied to the Multiproduct, Multimodel, and
Multiparameter sets, through the implementation of a VEF approach that can be trained
during Ty and used during Tr as:

e .
M By By B ) = ’H(ﬁ(z;;F m;TF,hf,,Tw,h’gTW))v Tw € {to,...,t} and V Tr € {t,...,tf} )
ﬁl;l]"p = ﬁ(”iTF IZLTW/ZilTF) (2)
i _ra | #k

B, = (ST, 'ﬁeTw) 3)
ﬁ’;Tw = h(0%, Iz’;TW) @)

" e
ﬁ;JTF = h(z;;F iy, h]pTw,heTW) (5)

e  where, M is a Multiproduct, Multimodel, and Multiparameter Variational Ensemble
Streamflow Forecast for the forecast period Tr.
e  Hisafamily of hypothetical ensemble components for the warmup period T and

used to forecast the period Tr
. ﬁly]TFk is a hypothesis of the hydrologic process from a family of input data i, hydrologic
model j, and parameter set k, about the HFS for the forecast period Tf
ik
2y,
pgriod Tg
e 7l isahypothesis of the input data from a family of input data i about the HFS for

uTF
the forecast period T

is the streamflow prediction i, j, k about the HFS response for the forecast

. hé,TW is a hypothesis of the hydrologic process from a family of hydrologic models j

and for the warmup period Ty.
° ﬁST is a hypothesis of the parameter sets from a family of parameter sets k for the
w

warmup period Ty,
*  uf, is the control variable for the forecast period TF.

e 7z, isafamily of input data i about the HFS for the forecast period Tr

i

. z;,TW is a family of input data 7 about the HFS for the warmup period Ty,
. S]'TW is the model structure j for the warmup period Ty,

. GI%W is the parameter set k for the warmup period Ty,

. ngw is a family of parameter sets k for the warmup period Ty.

The VEF approach (Figure 7) makes it possible to explicitly represent how different
components of each model ensemble (modelling chain) vary according to all possible
combinations of biogeophysical representations of the climate system and the hydrologic
system (e.g., [53]). In addition, one of the novel aspects of this research is introduction
of the assumption that the forecast skill of hydrologic models to represent underlying
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hydrologic processes can be better captured by assessing the generalization capabilities of
multiple optimal parameters sets.

HPR = HP = HPP = Forecast

7.1.1,k
. - h 1,
. i . - > yTForecast

..... 2.2k
yTForecast

’_li' gkt
yTForecast

’fi,}',k

yTraining yrescing YTForecast

Figure 7. Multi-Input, Multimodel, and Multiparameter Variational Ensemble Forecasting (VEF). Each Hydrologic Process-

ing Strategy (HPS) is shown in the context of VEF.

2.8. Strategies to Reduce Uncertainty and Improve VEF in an Operational Environment

In the development of an operational streamflow forecasting paradigm, it must be
determined how total hydrological uncertainty will be reduced to improve streamflow
forecasts. This topic is still a matter of discussion among many hydrologists and researchers
around the world [47-52]. For instance, standardized processes to decompose, quantify, or
evaluate the meteorological or the total hydrological uncertainty propagated from a mod-
elling paradigm are required (see, i.e., Figure 8). The implementation of new techniques for
the decomposition of uncertainty can take advantages from VEF approaches to explore all
available sources of climate data and physical representations (i.e., model structures and
parameters) for hydrologic modelling. Taking this into account, a combination of VEF and
hydrological processing hypotheses can help us better understand how the propagation of
errors occurs. For example, from multiple climate products the amount of meteorological
uncertainty propagated through the modelling chain can be identified; then comparisons
can be made to estimate the amount of total hydrological uncertainty (THU) propagated
from the same system. This more systematic method to identify uncertainties can be useful
to inform additional pre- or postprocessing of THU.

Assuming that an operational HFS can be evaluated as a VEF approach, three main
strategies (Figure 8) to establish hydrological processing hypotheses can be applied to
evaluate and improve the forecast skill of any hydrological model: (1) Hydrological Pre-
processing (HPR) (or Meteorological Postprocessing), which can include the application
of bias correction techniques (i.e., physical or statistical improvements) to reduce the
propagation of errors or the application of Bayesian or non-Bayesian approaches to estimate
an optimal weighted combination of precipitation products; (2) Hydrological Processing
(HP), which can include improvements in the models’ structure, states, or parameters;
and (3) Hydrological Postprocessing (HPP), which can include bias correction techniques
applied over the streamflow forecasts or the use of Bayesian approaches to estimate an
optimal weighted combination of streamflow forecasts.
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3. Results

The three main strategies for the evaluation of hydrological hypotheses (HPR, HP, and
HPR) were applied to evaluate and improve the forecast skill of operational streamflow
forecasts in the UZRB. The implementation of one or another strategy can have significant
impacts on the final forecasting products. For example, precipitation bias correction
methods (HPR strategies) can dramatically perturb the volume of water entering to the
system, in the HP strategies the most sensitive model parameters can significantly modify
water routing though the model structure, and HPP strategies can have a large impact
by directly perturbing the forecasts to adjust scaling and fitting issues derived from a
poor model representation. Details on how these three processing strategies can impact
operational streamflow forecasts are discussed in the following sections of this paper.

3.1. Strategy 1: Hydrological Pre-Processing (HPR)

Rainfall forecasts or any other climate forecasts derived from satellites or climatological
models are prone to errors that must be corrected. The propagation of these errors is more
significant when the forecasts are biased, especially those for rainfall, since this is the most
important variable for hydrological modeling. Corrections applied over rainfall records
allow for the identification of sensitivities or gaps associated to the improvement of satellite
data, for the calibration and validation of variational hydrological models, and for the
identification or selection of the best ensembles for any operational implementation of
an HFS.
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The corrections correspond to the application of any selected HPR hypothesis, and they
contribute to the reductions of the propagated meteorological uncertainties through the
VEF implementation. One of the most popular HPR strategies is Quantile Mapping [54-57],
a technique that has been previously evaluated in the UZRB and compared to Principal
Components Analysis (PCA) [13]. In the operational context, the Quantile Mapping (QM)
technique is applied at a daily time scale with the assumption that the probability density
functions (PDFs) of the rainfall observations and forecasts follow Gamma PDFs. The
key idea behind this technique is to swap the quantiles of the simulated data with the
quantiles of the observed data. The application of this technique has shown that daily
estimates from SPPs and RCMs can be satisfactorily corrected at the catchment scale or at
more regional scales (i.e., [54-60]). The previous studies agree with our findings for the
UZRB where precipitation estimates from three satellites were significantly improved after
the application of the Quantile Mapping (QM) method, used with a Gamma Probability
Distribution Function (PDF). The results showed that all raw SPPs (Figure 9a—c) could be
satisfactorily corrected at daily time scales (Figure 9d—f). Here, it is important to notice
that many missing and false detections of rainfall can be corrected (see all raw to corrected
scatters in Figure 9); however, the selection and fitting of a fixed PDF to the whole rainfall
dataset can also reduce the performance of rainfall forecasts in some areas if (1) the selected
PDF is not a good representation of the local climate conditions; if (2) the application of QM
is exclusively tied to regional parameters instead of cell-by-cell parameters or vice versa,
and if (3) only fixed temporal parameters are used instead of temporally varying parameters.
All these factors can have result on successful or inadequate rainfall corrections that can
have a significant impact on the next steps related to model calibration, final structural
design, and generation of final operational streamflow forecasts products.
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Figure 9. Scatter plots for daily average rainfall in the UZRB. The observed daily rainfall records
from CHIRPS (with drizzle effect removed for rainfall < 0.1 mm) are compared to raw (a—c) and
corrected (d-f) satellite-based rainfall estimates from CMORPH, TMPA-RT, and PERSIANN for the
period 2001-2017. Three error measures are included for comparison: the Root Mean Squared Error
(RMSE), the Nash-Sutcliffe Efficiency (NSE), and the Correlation Coefficient (R).

3.2. Strategy 2: Hydrological Processing (HP)

The VEF hydrologic modeling paradigm requires bridging science and engineering
for the design of functional and operational HFS. Therefore, all available precipitation
datasets utilized during HPR, must be used to evaluate the propagation of meteorological
uncertainty into final SR2ZMR streamflow forecasts (see Figure 10a;—ay). Generally, the
objective of HP is to constrain the range of valid model outcomes for the application of HPP
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strategies and for the generation of forecast products. Multimodel Ensemble approaches
are a popular alternative to propagate uncertainty into future forecasts; however, they can
yield boundless errors in inference, which can produce unbounded uncertainty bands [61].
Although this is an acceptable argument, the science and engineering of streamflow fore-
casting can play an important role in defining the best alternatives for the management of
total hydrologic uncertainty (THU). In doing this, Variational Ensemble Forecasting (VEF)
approaches have the advantage that they can be implemented using all available sources
of input data, hydrologic models, and optimal parameter sets, to improve the assimilation
of forecasts. VEF can also be coupled with regularization techniques to constrain the
forecasting range based on the classification and evaluation of historic events to define the
best ensembles for HPP.
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Figure 10. (aj—ay) All 72 possible SR2ZMR streamflow forecasts simulated for the UZRB and its sub-basins using an
operational VEF approach. (b1-b7) Ranking of Total Skill (R?) propagated from SR2MR streamflow forecasts. (c;—c7) Best
10 VEF simulations ranked by R2. (d1—-d7) Ranking of Root Mean Squared Error (RMSE) propagated from SR2MR forecasts.
(e1—e7) Best 10 VEF simulations ranked by RMSE. Best 10 VEF simulations. The basins and sub-basins are organized from
larger to smaller catchment area (left to right).

Constraining and selecting the best ensembles for operational forecasting should be
understood as a procedure that can vary at any model run. The variation of ensembles
depends on the historic forecast skill performance estimated for all available hydrological
events and their classified characteristic responses. In the UZRB and its sub-basins, the
implementation of an operational VEF approach was used to generate SR2ZMR streamflow
forecasts derived from all possible combinations of SPPs, hydrologic models, and optimal
parameter sets (Figure 10a;—ay). The propagation of meteorological uncertainty can be
quite large in the resulting streamflow traces when the whole input-model-parameter
space is mapped and used for operational forecasts. To avoid unbounded uncertainty
bands, the VEF approach allows improving the accuracy of streamflow forecasts through a
ranking evaluation and posterior identification of the best hydrologic ensembles for the
UZRB (Figure 10b;—by for forecasts ranked using skill analysis of R2 and Figure 10d;-dy for
forecasts ranked using total uncertainty defined as RMSE). Then the best ten raw streamflow
forecasts are ranked using skill and /or uncertainty measures (Figure 10c;—c7,ey—ey). The
application of specific or combined verification techniques on streamflow forecasts usually
leads to an improvement of the HPP hypotheses. This multiple evaluation is helpful to
identify how skill and uncertainty perform over space and time but also to evaluate how
the spatial resolution of precipitation products can have a large effect on the operational
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forecasts. For instance, the smallest sub-basins inside the UZRB (see Kabombo, Kalabo,
Chivata, and Kalene in Figure 10) resulted in higher total uncertainty compared to large
basins (see Katima, Senanga, and Lukulu in Figure 10). This reduction in performance
in the smallest sub-basins is probably associated with the smallest number of available
precipitation grid cells, which produces larger averaged forecasting errors if missing or
false detections are present in the forecasts.

3.3. Evaluating Pre-Operational SR2ZMR Streamflow Forecasts

All 72 possible SR2MR forecasts that were generated in the UZRB by the combination
of multiple rainfall products, hydrological models, and optimal parameter sets, enabled
the identification of differences between the satellite precipitation products (SPPs) and
their HPR strategies (or bias corrections) but also between the hydrological models and
their optimal parameter sets (or HP strategy). From the VEF approach, the best raw model
ensembles (Figure 10) were retained (20 out of 72 ensembles were selected for this study)
and used for the generation of final streamflow forecasts products and reports for end users.

In general, an expected outcome is to have climatology products with better forecast
skill (see for example Figure 11a,b) because of the instrumental corrections applied during
the Hydrological Preprocessing (HPR) stage. However, one disadvantage of the climatology
products is that they are not available in the SRZMR domain. For this reason, SPPs and
RCMs are still needed for SR2ZMR streamflow forecasts in the UZRB or any other basins
around the World. Therefore, the selection of final streamflow forecasts is also operationally
based on SR2MR records. Furthermore, the quantification and propagation of retrospective
meteorological uncertainties might be required for the release of final forecasts depending
on the needs of end users. In the UZRB, multiples ensembles for deterministic streamflow
forecasts and the spread of uncertainty by means of a probability density function were
established for each daily SR2MR forecast. These forecasts were provided for Namibian
Hydrological Services, one of the relevant African institutions that manages water resources
in the Upper Zambezi River.

3.4. Strategy 3: Hydrologic Post-Processing (HPP) for Raw Streamflow Forecasts

Our inability to generate exact physical representations of natural hydrologic systems
creates the need for streamflow forecasts that can quantify and reduce the total hydrologic
uncertainty (THU) propagated from a hydrologic modelling paradigm (HMP). Hydro-
logical Postprocessing (HPP) hypotheses focus on establishing standardized methods to
quantify and propagate total hydrological uncertainty (which is the sum of all uncertainties
i.e.,, input, parameter, or structural uncertainties propagated into the final streamflow
forecasts). Similar to HPR and HP, different methods can be applied for HPP hypotheses,
i.e., stochastic, Bayesian, or machine learning methods can be used as post-processors
for the final ensemble of SR2ZMR streamflow forecasts. The objective at this stage is to
minimize the error of the deterministic forecast but also the spread of total hydrological
uncertainty around the raw streamflow forecasts. The deterministic forecast can be ob-
tained as an optimal weighted SR2ZMR streamflow forecast, which is used to propagate
the total hydrological uncertainty (Figure 12). In the UZRB, a Multivariate Combinatorial
Linear Regression (MCLR) approach was applied as a regularization technique to inform
the best selection of hydrologic ensembles that minimized the spread of total hydrologic
uncertainty. The MCLR was also used as a first level hydrologic postprocessor to resolve
scaling issues of the raw streamflow forecasts (Figure 12). The final ensemble of raw and
corrected SR2MR streamflow forecasts was then evaluated using two inference-based hy-
drologic postprocessors: (1) Inverse-Variance Weighting (IVW), and (2) Inverse-Probability
Weighting (Figure 12). Both approaches were compared to the best streamflow predic-
tion (BSP) and the Average Streamflow Prediction (AVSP) using the retrospective total
hydrologic uncertainty quantified using the root mean square error in millimeters per day
(Figure 12). The application of hydrologic postprocessors (MCLR, IVW, and IWP) revealed
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an improved efficiency of both the forecasts and the propagation of THU in the UZRB and
its sub-basins (Figure 12).
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Figure 11. (a) Peak streamflow hydrograph (January to June of 2017) for the UZRB at Katima Mulilo,
and (b) Ranked Predictive Skill (R?) for the best 20 simulations obtained from the operational VEF
approach. The acronyms represent the Hydrological Models (HYM for Hymod; HBV for HBV; and
VIC for VIC); the Satellite Precipitation Products or Climatology (CH for CHIRPS and CH2 for drizzle
removed effect; CM for CMORPH and CM2 for its bias corrected version; TM for TMPA and TM2
its bias corrected version; PE for PERSIANN and PE2 its bias corrected version); and the utilized
parameter set (CH is CHIRPS parameter set; CM is CMORPH parameter set; TM is TMPA parameter
set; and PE is PERSIANN parameter set).
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Figure 12. (top) Catchment-average satellite-based precipitation for the UZRB and its sub-basins. SR2MR streamflow
forecasts for Katima Mulilo, and its sub-basins Senanga, Lukulu, Kabompo, Kalabo, Chivata, and Kalene (organized
from left to right according to their size). The y-axis represents the daily streamflow forecasts, and the x-axis represents
the validation and testing periods (2002-2004). The initial streamflow forecasts with their respective uncertainty bands
(RMSE in mm) are shown in red. The hydrologically postprocessed (HPP) forecast is shown in light green. BSP is the best
streamflow forecast; AVSP is the average streamflow forecast; IVW-SP is the Inverse-Variance Weighting streamflow forecast;
IVP-SP is the Inverse-Probability Weighting streamflow forecast. The letter “c” at the end of each acronym represents the
regularization applied by combining Multivariate Combinatorial Linear Regression (MCLR) and Inference-Based methods
for SR2ZMR daily streamflow forecasting.
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The combination of HPP with short and long-term memory windows (for periods
ranging between 5 and 180 days before the event) also proved to be more efficient in
improving the performance of SR2MR streamflow forecasts (see Appendix A Figure A3
for details). The effect of HP for operational streamflow forecasting was mainly observed
in two aspects: (1) a better performance of the deterministic streamflow forecasts, i.e.,
correction of scaling issues, and (2) narrower total hydrologic uncertainty bands around
the deterministic forecast, i.e., more practical and realistic uncertainty bands for decision
makers (see details in Figure 12).

4. Discussion

To establish operational hydrological forecasting systems (HFS) it is important to first
define who will be the main and potential end users of the streamflow forecasts prod-
ucts within the basin under consideration. In the UZRB (Figure 1), the need for better
water management schemes for flood warning and water allocation schemes has required
the generation of daily SR2ZMR streamflow forecasts (Figure 2). Several water users and
water authorities of the countries sharing waters from the UZRB can take advantage of
the benefits of this operational HFS implementation, which can largely help developing
sustainable water management and allocation activities for this transnational basin. For
example, the water users of streamflow forecasts in the UZRB can be informed about the
main water management decisions that need to be taken care of for water supply, reservoir
management, hydraulic design, etc. These decisions are generally complex; therefore, un-
der such a scenario, the best way to inform the local authorities and end users in the UZRB
can be obtained if we had “perfect” weather forecasts, or climatic predictions, that could
be combined with “perfect’ hydrologic models to generate “almost” perfect streamflow
forecasts. If this hypothesis were still true only one weather or climatic prediction (model),
and one hydrologic model would be needed for streamflow forecasting. For example,
the ‘perfect’ climate estimates of the climate model could be combined with one ‘perfect’
hydrological model, and the streamflow prediction should be close enough to inform both
managers and users, so they can apply the right decisions for water management. The
problem of this hypothesis is the fact that so far, hydrologists and meteorologists has not
been able to create or establish perfect model representations of climate and hydrology,
i.e., models are simplified representations of the hydroclimatological processes occurring
across spatiotemporal scales. Therefore, we know and assume that during the operational
implementation of the HFS in the UZRB there were countless sources of uncertainty, and
different tools and schemes were established in this study to quantify how meteorological
and hydrological uncertainty propagate through an operational VEF approach. One of the
first adopted techniques that emerged was the utilization of single model realizations as
those provided in many previous studies (see for example [3-12]). Then, multi-ensembles
of climate predictions were used to quantify and propagate the meteorological uncertainty
through the streamflow forecasts. The main issue of this technique is that it did not al-
low quantifying the uncertainty propagated from the hydrological model either from the
model structure or from its parameters. To resolve this problem [15], proposed a way
to quantify the hydrological uncertainty from a single model with multiple parameters
that can be obtained from the calibration of multiple climate products. The final set of
outputs is obtained from a multiproduct and multiparameter scheme. This technique
allows quantifying the hydrological uncertainty propagated from multiple parameters sets
of a single hydrological model; however, it does not allow quantifying how the uncertainty
propagates and varies as a function of the structure of the selected hydrological model. This
latter conceptualization of hydrological uncertainty is tied to the modelling assumptions
required to establish the physical representation of the hydrologic system. Obviously, these
assumptions also vary as a function of the selected hydrological model and its structure. In
this context, hydrologists have opted to promote more comprehensive modelling schemes
that combine multiproducts and multiple hydrological models [14,16-18]. With this tech-
nique, it has been possible to quantify the meteorological uncertainty propagated from
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the climate products and the hydrological uncertainty propagated from the hydrologic
models and their corresponding structures. On the other hand, recent studies [62-64] have
argued that the performance of a single hydrological model can be improved together
with the streamflow forecasts if multiple climate products are combined with a model
that is perturbed by generating multiple initializations with different initial conditions,
i.e., changes in surface storage, groundwater storage, or snow storage, among others. The
main objective behind this approach is to capture the current hydrologic condition of a
catchment to assimilate streamflow. For example, in this regard it has been traditionally
assumed that the warmup period is required for hydrologic modelling; however, this
approach can be bypassed given that the initial states are adjusted beforehand, taking in
consideration the streamflow assimilation. This scheme has also stablished a new source
for the quantification of hydrologic uncertainty just by changing the initial conditions of
the hydrological model. With this technique, a new research niche has been recognized
by hydrologists and now is also applied to quantify total hydrological uncertainty (THU).
Having said that, it is also important to add that all the schemes mentioned above have
allowed quantifying the hydrological uncertainty in separated procedures, either from
multiple climate products, from multiple hydrological models, from multiple parameters
sets, or from multiple initializations. In fact, all these hydrologic modeling paradigms
(HMP) are still applied in a systematic manner to identify and quantify different sources of
hydrological uncertainty.

Despite the existence of all these HMP previously mentioned, none of them have
proposed a combined technique to quantify both meteorological and hydrological uncer-
tainties propagated from different sources of a VEF implementation (see Figures 7 and 8),
i.e., sources as climate forecasts, modelling assumptions, and optimal parameter sets, that
can be evaluated for any operational hydrological forecasting system (HFS) implementa-
tion with VEF. To accomplish this issue, we have implemented a VEF approach [22] based
on multiple satellite precipitation products (and GFS precipitation forecasts), multiple
hydrologic models, and multiple optimal parameters sets for SRZMR daily streamflow fore-
casting. The VEF approach implemented in the UZRB (Figure 10) has allowed increasing
the number of possible hydrologic ensembles available for streamflow forecasting, together
with an improvement of the streamflow assimilation (observed versus predicted). It also
provides a more comprehensive and systematic framework to identify and propagate the
spread of total hydrologic uncertainty in an operational hydrologic forecasting system.
Now, the natural question is how much room is left to define new modelling paradigms or
techniques that can be used to quantify or minimize the propagation of total hydrological
uncertainty? To answer this question, we need to differentiate between what we can do to
define the best integrated implementation of an HFS, and what adjustments are required at
each separated component (i.e., inputs, models, or outputs) of the HFS. The operational
HES implementation in the UZRB, identified and considered three general hydrologic
processing strategies (HPS) that can be applied to any VEF approach. If we consider that
any hydrologic modelling paradigm (HMP) can either include multiple inputs; hydrologic
models, parameters, initializations; and outputs, then, we can hypothesize that at each
component of the HMP it is possible to apply additional techniques or methods to improve
streamflow forecasting. These strategies were conceptualized as: (1) Hydrological Pre-
processing (HPR), (2) Hydrological Processing (HP), and (3) Hydrological Postprocessing
(HPP). Taking advantage of the strategies proposed for the establishment of hydrologic
processing strategies or hypotheses, standardized methods for HPR (Figure 9) and HPP
(Figure 12) were applied in the UZRB, showing that the performance of raw VEEF stream-
flow forecasts can be significantly improved, and the spread of uncertainty can be better
constrained by applying regularization processes that combine the strength of Multivariate
Combinatorial Linear Regression (MCLR) and Inference-Based approaches (Figure 12).

The science and engineering of future operational streamflow forecasting in the UZRB
will continue concentrating efforts in improving the forecasts; however, new needs from
end users might also require improving the physical representation at the catchment scale.
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For this, it will be necessary to establish the role of mathematical, statistical, and /or machine
learning methods that can be used to correct and propagate the hydrologic uncertainty from
different components of a VEF approach, i.e., Bayesian, stochastic, pattern, or inference-
based learning methods, etc. The performance of different rainfall products and methods
also needs to be evaluated across different catchment sizes and forecast timescales to
determine the space-time variability that propagates total hydrologic uncertainty. This
evaluation must also be extended to determine the dependence of the accuracy of the
streamflow forecasts and the propagation of hydrological uncertainty from physically
based models. All the above will indicate the applicability limits of the VEF approach
based on multiple precipitation or climate products, multiple hydrologic models, and
multiple optimal parameters sets. All of the above will allow the establishment of new
robust theoretical and hypothetical paradigms to quantify, evaluate, reduce, and manage
the propagation of total hydrologic uncertainty using VEF approaches.

5. Conclusions

This paper described the main stages and processes required to implement and
improve an operational hydrologic forecasting system (HFS) in the UZRB and its sub-basins.
The process of implementation is very complex, and important decisions needed to be
made about the input data (precipitation from satellites or climate products), the hydrologic
models to be included along with their optimal parameter sets, and the timescales required
for the generation of streamflow forecasts.

Once the HFS was completely operational in the UZRB, additional improvements to
the forecasts were required to improve its performance and reduce the spread of total hydro-
logic uncertainty into the final streamflow forecast products. In this regard, three general
strategies to improve the performance of VEF approach were proposed: from Hydrological
Preprocessing to Postprocessing techniques that can improve the input data, the hydrologic
models (or their structures), the optimal parameter sets, and the raw streamflow forecasts.
The whole range of available techniques for operational HFS will require more detailed and
standardized conceptualizations. In this regard, bias corrections or preprocessing (HPR)
techniques applied over the input data will still play an important role in operational
hydrological forecasts for the UZRB. The operational implementation of the VEF combined
with regularization and inference-based methods improved the performance of streamflow
forecasts as the primary need from end users in the UZRB; however, new alternatives
to improve the physical understanding of the basin are still a pending task. Finally, it is
important to add that the science of Hydrological Postprocessing is still under an early
stage of development, and it still lacks the standardized methods that can be used for these
purposes. Emerging methods will need to be evaluated to establish the real boundary
between physical and statistical needs in operational streamflow forecasting. This disci-
pline will also require a natural merging of science and engineering (practical applications)
in a real-world context to establish baseline conditions for streamflow forecasting and
hydrological uncertainty quantification and propagation.
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Appendix A. Hydrologic Models Used for SR2MR Streamflow Forecasting in the UZRB

The HBV_DS model is a modified distributed version of the Hydrologiska Byrans
Vattenbalansavdelning (HBV) model (see details in Bergstrom, 1976; Seibert and Vis, 2012;
Yang and Wi, 2018), and it simulates catchment discharge on a daily time step, based on time
series of precipitation and air temperature. The implementation of HBV_DS (Figure A1)
requires the calibration of 20 parameters (see Table Al). The Potential Evapotranspiration
(PET) is computed as a function of daily mean temperature and hours of daylight using the
Hamon Method (Hamon, 1961). In the snow routine, the snow accumulation and snowmelt
are computed by a degree-day method (see Moore, 1993; Rango and Martinec, 1995). The
actual evaporation and the groundwater recharge are simulated as a function of the actual
soil water storage. The surface runoff, the interflow, and the percolation are simulated using
a single linear reservoir with three outlets, and the groundwater routing is represented by
a single linear reservoir. The sum of these outflows is then routed using the diffusive wave
approximation of the linearized Saint-Venant equation (Lohmann et al., 1998).

HBV_DS

Pet = F(Cpe 6,0)

1. Snow Sub-Module (7 parameters)

[ [9snow )= F(Sse | Dgs 75, Ty, Ses TruWhic .Cre) ]

] &
6.4 1 777 R, 8
Sa[ Gsnow S E ki 3. Routing Sub-Module
,’ e Gt (4 parameters
Suz ', k-l |— parameters
o P =
= // % Q;=F(9s 9 G| n. K. VW, D)
v B’ —_ | | 1
7 Sz * b g 2 Soil Moisture Sub-Module
-~ (9 parameters)
Bt O bmm==

Simex [ [95. G, Gel=F (Suz: Stz P. Pet, Gsoon | Cpe Bur, S1™, B, Uz, K, ks, Kis K5) ]

Figure A1l. Hydrologiska Byrans Vattenbalansavdelning (HBV) Model Structure (states, fluxes,
and parameters).

The HYMOD_DS model (Wi et al., 2015) is a modified version of the original HyMod Hy-
drological Model (see details in Moore, 1985; Boyle et al., 2000; Gonzalez-Leiva et al., 2016;
Valdés-Pineda et al., 2016). The modified distributed version (Figure A2) simulates stream-
flows on a daily time step and requires daily precipitation and mean temperature as input
variables. The implementation of HYMOD_DS requires the calibration of 15 parameters
(see Table A1). The model is based on the probability-distributed storage capacity concept
(proposed by Moore, 1985) to represent the soil moisture accounting component. Estimates
of potential evaporation rates are calculated using the Hamon Method (Hamon, 1961). The
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rate of change in snow and glacier volume is expressed by the degree day factor (DDF)
mass balance model (see Moore, 1993; Stahl et al., 2008). The direct runoff is character-
ized by an instantaneous unit hydrograph (IUH) (Nash, 1957), in which the catchment is
represented as a series of “n” linear reservoirs. The groundwater routing is simplified as
a single linear reservoir. Finally, similar to the HBV_DS model, the transport of water in
the channel system is described using the diffusive wave approximation of the linearized
Saint-Venant equation (Lohmann et al., 1998).
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Figure A2. HyMod Hydrologic Model Structure (states, fluxes, and parameters).

The VIC (Variable Infiltration Capacity) Model (Liang et al., 1994, 1996; Cherkauer
et al., 2003; Bowling et al., 2004; Bowling and Lettenmaier, 2009) is a large-scale semi-
distributed hydrologic model (Figure A3). VIC simulates streamflows on a sub-daily or
daily time step and requires daily precipitation, mean daily temperature, and/or mean
wind speed as input variables. The VIC model has about 50 parameters; however, its
implementation requires the calibration of 5 parameters (Table Al). The model balances
both the water and surface energy budgets within the grid cell; and its sub-grid variations
are captured statistically. The total evapotranspiration over a grid cell is computed as the
sum of three types of evaporation: evaporation from the canopy layer of each vegetation tile,
transpiration from each of the vegetation tiles, and evaporation from the bare soil (Liang
et al. 1994). The snow model in VIC represents the snowpack as a two-layer medium and
solves for energy and mass balance for the ground surface snowpack in a manner similar
to other cold land processes models (Anderson, 1976; Wigmosta et al., 1994; Tarboton et al.,
1995). The VIC model uses the variable infiltration curve (Zhao et al., 1980) to account
for the spatial heterogeneity of runoff generation. It assumes that surface runoff from the
upper two soil layers is generated by those areas for which precipitation, when added to
soil moisture storage at the end of the previous time step, exceeds the storage capacity of
the soil. The formulation of subsurface runoff follows the Arno model conceptualization
(Franchini and Pacciani, 1991; Todini, 1996). To finally simulate streamflow, VIC results are
postprocessed with a separate routing model (Lohmann, et al., 1996; 1998a; b), based on a
linear transfer function to simulate the streamflow.
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Table A1l. Parameters included in the calibration of the HBV_DS, HYMOD_DS, and VIC models.

Figure A3. Variable Infiltration Capacity (VIC) Model Structure (states, fluxes, and parameters).

Module Parameters Description Range Units Model
Cout Proportlon.ahty Coeffl(:lent. of Hamon 0.1-2 non-dim HVB-HYMOD
P Potential Evapotranspiration
g, max Maxmu_lm storage capacity of soil 51500 (mm) HVB-HYMOD
moisture accounting tank
B Shape parameter of the storage capacity 0.01-1.99 non-dim HVB-HYMOD
distribution function
o Split parameter for quick and slow 0.01-0.99 non-dim HYMOD
components
Soil Permanent Wilting Point (limiting soil .
Owie moisture for PET occurrence) 0.1-1 non-dim HBV
uzy Upper reservoir water level for quick 0-1000 mm HBV
runoff occurrence
K. Recession constant for qullckflow in the 0.01-0.99 day~! HVB-HYMOD
Soil Moisture _upper refservlou‘ flow in th
K Recession ci)nstant or slowflow In the 0.0001-0.99 dayfl HVB-HYMOD
ower reservoir
Ky Recession constant for 1ntferﬂow in the 0.001-0.15 day’l HBV
upper reservoir
K, Flow rate for percolation betwgen the 0-3 mm day~ HBV
upper and lower reservoir
b; Shapg parameter of t.he Variable 0-0.4 non-dim VIC
Infiltration Capacity curve
D, Second Soil Layer Thickness 0.1-1.5 m VIC
D3 Third Soil Layer Thickness 0.1-1.5 m VIC
Dsmax Maximum Baseflow Velocity 0-30 mm day*1 VIC
Dsg Fraction of Maximum Baseflow Velocity 0-1 non-dim VIC
W Fraction of Maximum Soil Moisture 0-1 non-dim VIC

content of the third soil layer
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Table A1. Cont.

Module Parameters Description Range Units Model
Dyt Degree-Day Factor 0.001-10.0 mm °C day~! HVB-HYMOD
St Snowfall Correction Factor 0.4-1 non-dim HBV
Ts Temperature threshold for snow falling 0-5 °C HVB-HYMOD
Tm Temperature threshold for snowmelt 0-5 °C HVB-HYMOD
Snow T Temperature interval f(?r mixture of snow 0-5 oC HBV
and rain
Wi Liquid water holding capacity of the 0-0.2 non-dim HBV
snowpack
Crp Refreezing coefﬁ.aent of the liquid water 0-1 non-dim HBV
in snow
r Glacier melt factor 1-2 non-dim HYMOD
Glacier Kg Glacier reservoir release coefficient 0.01-0.99 non-dim HYMOD
T, Glacier melt temperature threshold 0-10 °C HYMOD
n Grid Unit Hyd%‘ograph parameter 1-99 non-dim HVB-HYMOD
(number of linear reservoirs)
Kq Grid Unit Hydrograph parameter 0.01-0.99 day ! HVB-HYMOD
Routing (reservoir storage constant)
Wave velocity in the linearized 1
vw Saint-Venant equation 0-5-5.0 ms HYMOD
D D1ffu§1V1ty in the llnegrlzed 200-4000 m2 g1 HYMOD
Saint-Venant equation
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Figure A4. Effect of short and long-term memory (moving window) on the performance of daily streamflow forecasts for

the UZRB and its sub-basins. From left to right each plot represents a memory window ranging between 5 and 180 days.
The following windows were used: 5, 8, 15, 30, 45, 60, 90, 120, 150, and 180 days. Reddish colors represent aggregated
streamflow forecasts and blueish colors represent weighted streamflow forecasts.
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Abstract: Shock waves are generated downstream of spillways during flood operations, which have
adverse effects on spillway operations. This paper presents the physical model study of shock waves
at the Mohmand Dam Spillway project, Pakistan. In this study, hydraulic analysis of shock waves
was carried out to investigate its generation mechanism. Different experiments were performed to
analyze the rooster tail on a flat spillway chute and to examine the factors affecting the characteristics
of the rooster tail. The study results show that shock wave height is influenced by spillway chute
slope, pier shape, and flow depth. Moreover, the height of the shock wave can be minimized by
installing a semi-elliptical pier on the tail part of the main pier. Further modifications in the geometry
of the extended tail part of the pier are recommended for the elimination of the shock wave. Based
on observed data collected from the model study, an empirical equation was developed to estimate
the shock wave height generated on the flat slope spillway chutes (5° to 10°).

Keywords: shock wave; spillway; spillway pier; flat chute; physical modeling

1. Introduction

Concerns related to the effects of unpredictably high flows entering reservoirs, espe-
cially considering possible increased rainfall intensities, have led to a renewed general
interest in reservoir spillway design. In the spillways, gates are mounted onto the crest
of a free spillway that controls the head, discharge, reservoir volume, and reservoir level
increase. The addition of these gates adds some new complex issues to the hydraulic
subjects [1-3]. According to Ansar et al. [4], not all flow conditions can occur at most spill-
ways; thus, flow conditions at a gated spillway tend to become controlled when the gate
opening G, is smaller than the critical depth y. and submerged when the tailwater depth
h is greater than y.. Moreover, they developed generalized flow rating equations based
on field flow measurements at the gated spillway. Al-Mansori et al. [5] found that, with
increasing hydraulic head up to seven times that of the design head, the flow separation
zone grows linearly.

Among gate discharge coefficients, the gate’s location above the spillways, and separa-
tion of flow profile, the spillway transverse flows and waves are lesser-known issues. These
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waves are called by different names such as shock waves, lateral shock waves, and rooster
tail waves [6,7]. The mechanism that induces the rooster tail is the gathering pressure
generated by the joint flow. During that process, the kinetic energy of the diffused flow
is converted into pressure energy and is transported to the bottom, subsequently. Thus,
variations in the pressure of the spillway bottom can be used to reflect the intensity of
the rooster tail [6]. Likewise, shock waves are frequently generated in dam spillways by
uniform flow disturbances due to the presence of spillway piers, curves, or changes in
the cross-section of spillway chutes [6,8,9]. Consequently, local maxima inflow depth are
produced, and their magnitude can be much greater than the incoming uniform depth.
This has important practical implications in the dimensioning of the chute walls, which
must be designed with greater height to adequately convey the flow, with the obvious
consequences in terms of magnitude and cost [10]. According to Jiang and Xiang [11],
shock waves behind the pier may result in poor hydraulic performance such as reduced
discharge capacity, erosion and swell, increased aeration, and asymmetry of water flow in
the steep groove. The shock wave generated at the end of the pier causes the water surface
downstream of the sluice to become a cross-shaped rhombic wave, which causes the water
flow to be partially high and may lead to overflow. For spillways, overflow may result in
erosion of the spillway foundation; thus, to prevent the overflow of water, it is necessary to
increase the sidewall.

Moreover, the design of the spillway must tend to the constant cross-section and
slope to approach uniform flow and thus avoid the shock wave phenomenon. However,
these geometric particularities are frequently unavoidable due to the topographical and/or
geological characteristics of the dam and spillway site [10]. Thus, shock waves can be
generally grouped into different categories [6]. In slit-type energy dissipaters, a shock
wave is generated due to the contraction of the channel section [5,12]. The second kind
of shock wave is induced in stepped spillways due to their steep chute slope [13-16].
Rajaratnam [13] noted that the second kind of shock wave occurs during low flows. In
another study, Chanson [17] observed the effect of step geometry and flow regime on the
generation of a shock wave. Similarly, Carnacina et al. [16] conducted an experimental
study to observe shock wave height on the stepped spillway and concluded that shock wave
height is low in steep chutes as compared to flat ones. The third type of shock wave occurs
due to the installation of an aerator on spillway chutes to avoid cavitation damages [18,19].
Studies indicate that the aerator ramp, the ratio of lateral jet length to bottom jet length,
flow depth, and Froude number have a dominant effect on shock wave intensity. The
fourth type of shock wave is generated directly downstream of the overflow spillway crest.
In this case, diffusion of flows takes place due to spillway piers at their tail part [6]. A
number of research studies have been carried out to study the hydraulic characteristic of
this kind of shock wave. Behera et al. [20] concluded that a standing wave is created at the
downstream end of the pier because the confluence of the flows from the two spillway bays
is at a slight angle and higher discharge. The standing wave develops directly downstream
of the pier, and the shock waves travel laterally, reaching the downstream of a bucket for
higher discharge Q equals 810.54 m?/s. These standing waves with shock waves are highly
fluctuating and create additional scouring damage in the downstream spillway together
with regular hydraulic jumps. Under these circumstances, such waves may be eliminated
to save costs and avoid potential catastrophic hazards. Duan [21] developed a sloping tail
pier to eliminate the shock wave generated on the spillway chute of a hydropower project.
Later, an experimental study of [22-24] concluded that the height of shock wave depends
on the ratio of approach flow depth to pier width. They performed several experiments in
the horizontal channel and sloping chutes to investigate the hydraulic characteristics of a
shock wave. In another study, Wu and Yan [25,26] investigated the formation of a shock
wave in discharging tunnel due to pier. They developed a new type of pier to control shock
wave in discharge tunnel. Recently, Xue et al. [6] also developed a composite tail for the
spillway pier to reduce shock wave height or eliminate the shock wave on spillway chutes
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with slope variations of 12° to 20°. Xue et al. [6] noted that shock waves are influenced by
spillway pier width and type, chute slope and flow depth in the spillway chute.

Despite many studies on the hydraulic characteristics of flow in a chute spillway, there
is insufficient knowledge of the formation of shock waves. Investigations on the formation
of the shock wave flow in a horizontal rectangular channel by Reinaur and Hager [22]
showed that, for the state of constant flow depth Hy and constant pier width bp, the height
of waves and their width increase with an increase in the Froude number. Recently, it was
noticed that if the depth measurements were taken perpendicularly to the chute spillway;,
the results would be consistent with the studies performed in the horizontal channel [23,27].
Further, Wu and Yan [25] investigated the hydraulic characteristics of the shock wave’s
formation by the pier of the discharge tunnel of the Sanbanxi hydropower station. It was
observed that the primary reason for the shock wave’s inception was the concavity of the
water surface.

The current literature on shock waves over spillways includes a large quantity of
experimental work indicating that an intense shock wave can overtop the spillway chute
walls and induce vibrations in spillway structures [25,28]. Ultimately, such a situation
disturbs the flood operation of the spillway [29-31]. The literature survey also showed the
lack of research on shock wave generation at flat spillway chutes (5° to 10°). Keeping in
view the adverse effects of a shock wave, a physical model of Mohmand Dam Spillway
was constructed to investigate the hydraulic characteristics and generation mechanism
of shock waves on flat spillway chutes. In the end, an empirical equation was developed
based on observed data to estimate shock wave height for flat slope spillway chutes.

2. Study Area

Mohmand dam is proposed on Swat River, approximately 37 km north of Peshawar
and 5 km upstream of existing Munda Headworks in Mohmand Agency of Pakistan’s
Federally Administrated Tribal Area (FATA), as shown in Figure 1. The gated type of
spillway is provided to pass a design flood of 27,427 m3/s. It is to be located on the left
abutment of the dam. It comprises seven bays (07) and a long concrete chute. The crest
level of the spillway is 539 m amsl, whereas the maximum reservoir operating level is
563 m amsl. To normalize the high flow velocity (23 to 45 m/s), a double stilling basin
arrangement is provided to dissipate the energy.

Khyber Pakhtunkhwa
k. . 3
&
[ o
o ‘
= )
() | %,
2 | %,
! i
| s
e %
Flow Pire::ﬁnn G
W f'z;%
; \4 ! Y
‘Up Stream
\\’
q Mohmand Dam
Down Stream — \
Subhan Khwar e, <

Legend

I vonmand Dam

| | Stream

o 50 6o 200 a0

ek © OpenStreetMap (and) contributors, CC-8Y-8A

Figure 1. Location of Mohmand Dam project.
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3. Experimental Setup

To study the hydraulic characteristics of shock waves on flat spillway chutes, a physical
model of Mohmand Dam spillway was constructed in the model tray hall of Center of
Excellence in Water Resources Engineering (CEWRE), Lahore, Pakistan. The spillway
model was designed based on gravity similarity criteria. It was constructed with two bays
at a scale of 1:100 considering discharge and space limitations.

Each bay was equipped with radial gates. As shown in Figure 2a, the model consists of:
a water tank, V-notch, a small water tank, baffle walls, a spillway control section (provided
with redial gates and piers), and a spillway chute. The width of each bay and pier was
15 and 5 mm, respectively. As depicted in Figure 2b, the tail part of the spillway pier has
an elliptical or rectangular shape. The length of semi-major axis (2) and chute slope (0)
were considered for this study. Details regarding geometric parameters of the pier and
spillway chute slope are discussed in Table 1 below (where a = 0 means tail part of the pier
is rectangular, otherwise it is elliptical).
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Figure 2. (a) Layout plane of the experimental setup. (b) Definition sketch for semi-major axis of spillway pier.

Table 1. Detail of geometric modifications.

Geometric Variables M; M, M3 My
Spillway slope (6) 1:6.5 1:6.5 1:8.5 1:8.5
Length of semi major axis (m) () 0 45 0 45
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Model operation was performed for each geometric variable shown in Table 1 at
free-flow conditions by varying the reservoir levels “H’ from 541 to 558 m amsl (with an
increment of 1 m). However, it was operated after its validation and dynamic similarity
check, as discussed below. Hydraulic parameters observed during model operation include
flow depth at upstream of the pier (%,), shock wave height (h,,), depth of water surface
cavity at confluence area of two defused flows (k.), horizontal distance before the collision
of the two diffused flows (I;), and pressure head at the bottom of the chute (/). Flow depth
and pressure heads were measured using point gauge and piezometer tubes, respectively.
Figure 3 shows the definition sketch for observed parameters.

Shock wave

Backwater

Figure 3. Definition sketch for observed hydraulic parameters.

4. Model Validation

Validation of the model was performed to obtain an idea about the accuracy of model
results. For this purpose, observed discharge values were compared with computed
ones. The comparison of observed discharge with computed discharge, as indicated in
Table 2, at reservoir level of 541m average mean sea level (amsl) shows only a 1.19% error,
whereas at maximum reservoir levels, this difference is 3.11%. Table 2 shows that the
overall percentage of the difference between observed and computed values is up to 3%. It
indicates that the physical model is a good representative of a prototype.

Table 2. Comparison between observed and computed discharge.

Reservoir Level = Observed Discharge = Computed Discharge

Sr. No. amsl (m) (@3/s) (m3/s) Error (%)

1 539 0 0 0

2 541 156.99 155.14 1.19
3 543 453.08 446.8 1.41
4 545 848.05 837.4 1.27
5 547 1337.75 1314.28 1.79
6 549 1902.02 1870.5 1.69
7 551 2550.89 2498.5 2.10
8 558 5052.27 5214.2 3.11

5. Dynamic Similarity of Model

Dynamic similarity exists between the model and prototype if the ratio of inertial to
gravity forces at some point in the model is the same at the corresponding point of the
prototype. Froude similarity law is used in problems where gravity is important, i.e., in
free-surface flows such as in case of flow over the spillway, weir, under sluice gates, open
channel, etc. In the current study, Froude’s model law was applied. The Froude number
observed near the control section of the spillway at the reservoir level of 558 m amsl was
0.730, whereas the calculated value was 0.725. This indicates that the model is dynamically
similar to the prototype.
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6. Height of Shock Wave

The height of the shock wave provides an important reference for the computation
of optimal height of spillway sidewalls. In the current study, shock wave height was
computed by operating the Mohmand Dam Spillway model for geometric variables as
shown in Table 1. The results show (Figure 4) that in the beginning, the height of the shock
wave for all geometric variables (M; to My) was almost the same, but with the further
increase in reservoir level (above 547 m amsl), a clear difference in shock wave height
between M; and M, and M3 and My was noticed. For Mj, the shock wave height was
increased with the increase in reservoir level up to 551m amsl, and after that, the shock
wave height decreased with a further increase in reservoir level. For M,, the shock wave
height increased thoroughly with the increase in the reservoir level. The same trend was
observed in the case of M3 and My. It is also visible from Figure 4 that shock wave heights
are also almost the same at the maximum reservoir level. It is noted that when discharge
increases, the backwater flow also increases, and the distance between the two diffused
flows and pier decreases, which affect the shock wave height at maximum discharge or
reservoir level. A clear difference in shock wave height between M; and M; and M3 and
My (from reservoir level 547 to 557 m amsl) indicates the impact of the extended part of the
pier installed at its tail end (semi-major axis length).
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Figure 4. Observed shock wave heights for all geometric variables.

Figure 5a—c presents the profile view of shock wave formation at reservoir levels of 547,
549 and 551 m amsl, respectively, without geometric modification (a = 0), while Figure 5d—f
shows the profile view of shock wave formation at above-mentioned reservoir levels with
geometric modification (a2 = 45 mm). As shown in Figure 5a,d, for the same reservoir level,
i.e., at 547 m amsl, the shock wave height is low in the case of ‘d” as compared to case ‘a’
due to geometric modification. A similar trend can be noted at other reservoir levels (549
and 551 m amsl) from Figure 5.
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Figure 5. Profile views of shock wave formation for M3 (a—c) and My (d-f).

7. Evaluation of Cavity Angle and Diffused Flow Pressure

The flow was diffused laterally behind the pier because there was no constraint effect
due to the pier sidewall. A cavity with backwater in the tail part of the pier was generated
by the diffused flow, as shown in Figure 6a,b. Based on the experimental observations,
it was noted that the size of the cavity can significantly affect the shock wave formation.
The ratio of the horizontal diffusion distance to the depth of the water surface concave
(Ic/h¢) can be used to describe the cavity form. Thus, the experimental data were used
to investigate the relationship between the ratio of the shock wave height to the width
of the pier (h,,/b) and I./h.. The value of the coefficient of determination is 0.85, which
indicates that there is a significant correlation between them (Figure 7), and an exponential
relationship can be written as follows:

hm

M _ 30018 exp(—0.493) @
b he

As per Figure 3, the equation for the dropping angle () can be given as under:

L 1
to = <
«© he cos?0

+ tan @)

In Equation (2), 6 represents the spillway chute angle. By rearranging Equation (2)
and substituting it into Equation (1), we can obtain:

h
= = 3.0018exp [—0.493(001?5 - tanG)-COSZG] 3)
It can be noted from Equation (3) that k,, /b increases with the increase in dropping
angle (4) when the spillway chute slope (6) and the width of the pier (b) remain constant,
which means that the rooster tail’s height is significantly affected by the dropping angle.
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Figure 6. Cavity formation behind the pier. (a) Longitudinal view. (b) Plan view.

Pressure Energy

The other hydraulic parameter that induced the shock wave was the gathering pres-
sure generated by the joint flow. During that process, the kinetic energy of the diffused flow
is converted into pressure energy and is transported to the bottom, subsequently. Thus,
variations in the pressure of the spillway bottom may be used to reflect the intensity of the
shock wave.

The pressure distributions along the length of the chute for M3 and My are shown in
Figures 8 and 9, respectively, in which the origin of the coordinate axis (x) is at the tail of the
pier, ‘p’ is the spillway chute pressure, and ‘Y’ is the bulk density of water (y = 9.8 kN/m?).
It can be concluded from Figures 8 and 9 that at different water heads (H), all the pressure
peaks occur at the bottom near the tail part of the pier due to the formation of a shock wave.
Moreover, the peak values for My are slightly less as compared to M3 due to extension in
the tail part of the pier (length of semi-major axis).
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Figure 9. Spillway chute pressure distribution for My.

8. Evaluation of Cavity Angle and Diffused Flow Pressure

The equation presented by Xue et al. (2018) was modified for estimation of the shock
wave height on flat spillway chutes (5° to 10°).

h ho \*° cia
PT’: =25 (;) exp(—hio — coi) 4)

In the above equation, ‘c;” and ‘c;” are experimental coefficients, whereas ‘i’ represents
the slope ratio of the bottom. Analysis was performed on MiniTab software to examine the
suitability of experimental coefficients for experimental data collected from the model study.
Minitab is the statistical software that helps in taking out the complexities of statistical
calculations. The experimental data were divided into training and testing values. Seventy
percent (70%) of values were used as training values, while thirty percent (30%) values
were considered as testing values. Training data were used to modify the Xue et al. (2018)
equation. The modified form of Equation (4) is shown below.

0.5
I;Tm =25 (%) exp(— 0.;851 —13.67i) ®)
0 0

Computed values of shock wave height using Equation (5) were correlated with the
testing values (observed data) to find the coefficient of determination (R?). Figure 10 shows
that the coefficient of determination for computed and observed data of shock wave height
is 0.91, which indicates that data is in good correlation. Hence, the equation developed
(Equation (5)) through this study can be used for the estimation of shock wave height
generated on flat spillway chutes (5° to 10°).
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Figure 10. Plot between observed and computed shock wave height.

9. Conclusions

A physical study was performed on a flat spillway with varying geometric parameters
of pier and spillway chute slope. While different chute configurations were tested, the
focus of the study was on the hydraulic characteristics and generation mechanism of a
shock wave on flat spillway chutes (5° to 10°). The spillway model was designed based on
gravity similarity criteria. It was constructed with two bays at a scale of 1:100 considering
discharge and space limitations.

The study results showed that shock wave height was slightly decreased with a
decrease in spillway chute slope. However, extension in the tail part of the spillway pier
(semi-major axis length) caused a further reduction in shock wave height. Overall, a 26%
reduction in shock wave height was noted due to the extended part of the spillway pier.
The dropping angle of diffused flow significantly affected the shock wave height. It was
noted that shock wave height is directly proportional to the dropping angle of diffused
flow. Variation in pressure energy along the spillway chute indicated the intensity of shock
wave. Pressure peaks were observed near the tail part of the spillway pier due to the
formation of a shock wave. In this study, an empirical equation was developed to estimate
the shock wave height, which can be used to estimate the shock wave height at the flat
spillway chute, varying from 5° to 10°. Lastly, the main goal of the experiments was to
support the planning of shock waves’ adverse effects on spillway operations, therefore,
the currently reduced-scale experiments may apply to prototype scale, considering the
extension in the tail part of the spillway pier along with the reduction in chute slope for
the elimination of shock waves.
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Abstract: Forest fire is a common concern in Mediterranean watersheds. Fire-induced canopy
mortality may cause the degradation of chemical-physical properties in the soil and influence
hydrological processes within and across watersheds. However, the prediction of the pedological
and hydrological effect of forest fires with heterogenous severities across entire watersheds remains
a difficult task. A large forest fire occurred in 2017 in northern Italy providing the opportunity
to test an integrated approach that exploits remote and in-situ data for assessing the impact of
forest fires on the hydrological response of semi-natural watersheds. The approach is based on
a combination of remotely-sensed information on burned areas and in-situ measurements of soil
infiltration in burned areas. Such collected data were used to adapt a rainfall-runoff model over an
experimental watershed to produce a comparative evaluation of flood peak and volume of runoff
in pre- and post-fire conditions. The model is based on a semi-distributed approach that exploits
the Soil Conservation Service Curve Number (SCS-CN) and lag-time methods for the estimation of
hydrological losses and runoff propagation, respectively, across the watershed. The effects of fire
on hydrological losses were modeled by adjusting the CN values for different fire severities. Direct
infiltration measurements were carried out to better understand the effect of fire on soil infiltration
capacity. We simulated the hydrological response of the burned watershed following one of the most
severe storm events that had hit the area in the last few years. Fire had serious repercussions in
regard to the hydrological response, increasing the flood peak and the runoff volume up to 125%
and 75%, respectively. Soil infiltration capacity was seriously compromised by fire as well, reducing
unsaturated hydraulic conductivity up to 75% compared with pre-fire conditions. These findings can
provide insights into the impact of forest fires on the hydrological response of a whole watershed and
improve the assessment of surface runoff alterations suffered by a watershed in post-fire conditions.

Keywords: burned areas; hydrological modelling; infiltration capacity; SCS-CN; post-fire

1. Introduction

Fires severely alter the hydrological response of watersheds to rainfall [1,2]. Fire-
induced loss of canopy cover, litter consumption, and the formation of water repellent
layers on the soil surface reduce canopy interception and soil infiltration, increasing flood
peak and volume runoff [3-6].

Fire acts as a generalist herbivore that removes plant material above the ground
surface. Depending on fire behavior and species-specific resistance, trees can suffer death
or defoliation, survive, or re-sprout following fire. The ability to survive and re-sprout
depends on tree height, scorch and char heights, tree species, age, stem and bark thickness,
and fire intensity and residence time. In the hydrological cycle, this natural process leads
to a reduction in evapotranspiration fluxes, leaf rainfall interception and tree suction
capacity [7]. High temperatures can vaporize soil organic matter and generate a thin
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hydrophobic layer (from 1 to 7 cm), which strongly reduces soil infiltration capacity [8]. In
addition, the burning process degrades soil structure and porosity, causing considerable
nutrient loss through volatilization, leaching and erosion, and alters the quantity and
specific composition of microbial and soil-dwelling invertebrate communities [9].

Such effects induce strong responses in watershed hydrology and flood hazard. In-
situ measurements carried out in European and North American natural watersheds
showed that the annual flood peak in post-fire conditions can increase between 1.2 and
10 times [10-17]. Such variability depends on watershed size, with stronger effects in
smaller watersheds [18]. After individual flood events, post-fire hydrological responses are
often sharper and quicker than in unburned sites, due to the simultaneous reduction in
hydrological retention and time of concentration [19]. Flood magnitude may also increase
after fire, e.g., from a 10-year to a 1-year return interval for the same discharge [20]. Youberg
et al. [21] estimated that a 2-year return period rainfall in a burned watershed can produce
a runoff similar to a 100-year event in pre-fire conditions. Such an exceptional increase
in hazard has a catastrophic impact on the economy of a region, although assessing the
costs of post-fire flooding is very difficult. The Emergency Events Database (EM-DAT),
an international disaster database (http://www.emdat.be/, accessed on 8 October 2021), lists,
for instance, damages of Euros 200 billion related to various disasters since 1900 in the
Mediterranean countries, of which 85 billion are related to flooding.

Despite the knowledge accumulated on the effects of fire on soils, quantifying the
impact of different burn severities on the soil’s hydrological response and especially on
infiltration losses across whole watersheds remains a difficult task [22]. In many cases,
studies on post-fire hydrology have focused only on short time scales (from 1 to 3 years),
thus limiting the assessment of the longevity of fire impacts [23]. The first years after fire
are often considered the most critical in terms of hydrological instability [24,25]; however,
in some cases a significant increase in runoff discharge has been observed up to a decade
after burning [4,26]. Another reason for concern is the effect of climate change on both fire
frequency and severity, and on rainfall frequency and intensity. Mediterranean watershed
flood risk is expected to increase over time, with increasingly dangerous impacts on
infrastructures, human and economic activities in the watersheds affected by fire [27].

In light of these concerns, the main purpose of this study is to develop a robust
and rational methodology to assess the change in hydrological response of a post-fire
watershed, especially where the scarcity or absence of hydrometric data does not allow
the calibration of a more complex rainfall-runoff model. Thus, this study proposes an
integrated approach that combines spatial information on burned areas and levels of fire
severity, direct soil infiltration measurements, and rainfall-runoff modelling. Then it
was developed, implemented, and tested on a burned forest catchment in order to better
understand the repercussions of fire on the hydrological response of a natural watershed.
Flood peak and volume were computed through the application of the Soil Conservation
Service-Curve Number method (SCS-CN), whereas the flow propagation was simulated
through a lag-time approach based on the time-area curve of the catchment. The curve
number (CN) was adjusted according to the severity of burned areas, whereas direct soil
infiltration measurements were carried out to corroborate information about the effect of
fire on soil infiltration capacity. Finally, the proposed procedure could be a useful example
for hydrologists and foresters engaged in designing post-disaster interventions and in
planning silvicultural practices.

2. Study Area

The study domain is the Tinella watershed, a forested 2.6 km? area located in the
province of Varese (Figure 1). It is an integral part of the Campo dei Fiori Regional Park, a
natural protected area of about 6 km? where environment educational, cultural and sports
activities are promoted for tourists and local communities. Inside the Tinella watershed,
the elevation ranges between 470 m and 1200 m asl, while the average slope is about 46%.
It is mostly south-facing, which increases the risk of forest fire [25,28]. The climate is mild,
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and generally warm and temperate, and is classified as humid subtropical climate (Cfa)
according to the Koppen—Geiger classification. The average temperature is 12.0 °C with a
total annual precipitation of ~1500 mm.
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Figure 1. Position of the Tinella watershed, its two sub-basins (WS10 and WS11) and the rain gauge network present in the

study area.

The Tinella watershed incorporates two nested sub-basins (WS10 and WS11 as shown
in Figure 1) that are of similar size, ~1.3 km?, and steepness ~45%, but they were affected
differently by the fire. Table 1 summarizes several geomorphological features calculated by
hydrological tools, implemented in QGis 3.10 and applied over the 5 m-resolution DEM,
which is freely downloadable from the regional database at the link (https://www.geoportale.
regione.lombardia.it/web/geoportale/download-dati, accessed on 8 October 2021).

Table 1. Morphometric features of the Tinella sub-basins WS10 and WS11.
Parameter WS10 WSs11
Western Sub-Basin Eastern Sub-Basin
Area (km?) 1.26 1.34
Perimeter (m) 8051 8751
Length of the main water stream (m) 2752.58 3426.99
Mean slope of the watershed (%) 45.07 + 13.68 46.67 = 15.84
Mean slope of the main water stream (%) 22.87 20.74
Minimum elevation (m) 475.72 475.00
Mean elevation (m) 841.56 + 197.84 854.85 + 198.77
Maximum elevation (m) 1221.02 1226.03
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The Tinella watershed is mainly covered by mesophilous broad-leaved forests (about
47% of the sub-basin area in WS10 and 35% in WS11) dominated by chestnut (Castanea
sativa Mill.) and maple-ash (Acer psudoplatanus L. and Fraxinus excelsior L.) on south-facing
slopes (about 28% of the sub-basin area in WS10 and 30% in WS11), whereas the dominant
species in the northern part is beech (Fagus sylvatica L.) (about 2% in WS10 of the sub-basin
area and 24% in WS11). Concerning the soil, a 1:250.000 regional soil map shows that the
watershed is mainly characterized by thin clay-loamy soil (about 80% of the sub-basin area,
both in WS10 and WS11), with a minor presence of deep silty-loamy spoils in the southern
part (10% of the sub-basin area).

The study area is located in the Lombardy region, one of the most forested regions
in Italy (about 650,000 ha) with a high exposure to forest fire risk [29]. In October 2017,
after a dry summer with little rain, a large fire burned 374 ha of the southern side of
Campo dei Fiori, destroying 318 ha of forest. In-situ post-fire surveys revealed that the
soil and the understory and overstory were severely compromised. The northern part
of the Tinella watershed lost approximately 10 ha of forest and underwent significant
hydrological changes (reduction in infiltration and water retention capacity). In fact, at
each following severe rainfall event, some damage was registered at the watershed outlet
in the municipality of Luvinate (in province of Varese), which was caused by a high-level
of flow and sediment, mobilized by slope (soil instabilities) and along the channel network,
bed and streambank erosion. The impacts of fire on post-rainfall runoff are still poorly
understood since the watershed is not instrumented. However, it appears that hydraulic
infrastructures are no longer able to channel the post-fire flood peaks and runoff volumes.
To alleviate such threats, Lombardy region has invested about Euro 2 million for the
restoration of burned areas and the building of new hydraulic infrastructures to reduce
channel gradient, solid transport, and downstream runoff.

3. Materials and Methods

3.1. Storm Severity Analysis

Storm severity analysis was conducted on the rainfall data obtained by 13 rain gauges
(Table 2). Twelve of them belong to the official network of meteorological stations managed
by the Regional Environmental Protection Agency (ARPA) (https://www.arpalombardia.it,
accessed on 8 October 2021), whereas the last one, very close to the outlet of the basin,
belongs to the Centro Meteo Lombardo (CML) (http://www.centrometeolombardo.com, ac-
cessed on 8 October 2021). CML is a citizen’s association with an interest in meteorology
that manages a dense recreational network of rain gauges uniformly distributed over
the regional territory. The distance between rain gauge positions and the outlet of the
watershed varies from 1 to 16 km, whereas data acquisition at each station is every 10 min.
Data from all rain gauges were weighted as a function of the inverse square distance from
the center of the watershed to obtain a single vector of rainfall data to use as input for
the rainfall-runoff model. In particular, the storm severity analysis was focused on an
extreme rainfall event that occurred on the 24 September, 2020, which was the last day
after a series of moderate rainfall events that occurred in 2018 and in 2019. Concerning
the methodology, storm severity was represented through a graph showing the return
periods of the storm for the different rainfall durations [30]. A moving-window procedure
for rainfall accumulation was adopted to detect the maximum rainfall depth observed for
each duration. Thus, the Depth-Duration-Frequency curve (DDF) was used to estimate
the return period for each maximum rainfall depth. DDFs are described through the Gener-
alized Extreme Value (GEV) probability distribution over the entire regional territory [31]
and their parameters (for rainfalls 1-24 h) were available on a raster map with a spatial
resolution of 2 km (http://ita.arpalombardia.it/ITA/servizi/richiesta_dati/idro_pluvio_termo.asp,
accessed on 8 October 2021). The Bell [32] formula was applied for adjusting DDF curve
parameters in case of rainfall duration of less than 1 h.
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Table 2. Coordinates of the rain-gauge stations and their distance from the watershed outlet.

Distance from the

Sensor Code Site East * North * Watershed Outlet Elevation (m asl)
(m)
8152 Arcisate 491,501 5,076,955 9451 334.66
9091 Castronno 486,058 5,066,146 12,658 365.76
8150 Cuveglio 480,047 5,083,338 5564 276.71
14,131 Lavena Ponte Tresa 488,398 5,090,913 14,193 273.53
8583 Laveno Mombello 471,939 5,084,222 11,848 950.00
8587 Laveno Mombello 470,425 5,084,109 13,121 194.37
8163 Luino 480,079 5,094,539 16,488 194.38
19,356 Porto Ceresio 491,668 5,082,687 10,550 279.99
22,022 Porto Valtravaglia 477,812 5,087,930 10,664 872.17
10,666 Valganna 485,317 5,084,612 7179 657.55
14,527 Varano Borghi 477,631 5,068,133 11,007 239.47
8228 Varese 486,300 5,075,452 4983 407.17
1111 Luvinate 481,511 5,076,293 1985 408.97

* WGS 84/UTM zone 32N—EPSG:32632.

3.2. Framework of the Integrated Approach

The integrated approach is characterized by a combination of (i) analysis of satellite
images for detecting burned areas and level of fire severity, (ii) measurements of the
soil infiltration capacity under different fire severities, and (iii) modelling rainfall-runoff
processes of the watershed (Figure 2).
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Figure 2. Steps of the integrated approach.

3.2.1. Detecting Burned Areas and Fire Severity

The spatial assessment of burned areas and fire severity was conducted by combining
field-based measures of the Geometrically structured Composite Burn Index (GeoCBI) [33]
and spectral signatures extracted from Sentinel-2 imagery. GeoCBI is a modification of the
original CBI [34] that consists of a score based on a subjective assessment of fire impacts on
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five different vegetation layers. Canopy loss at the watershed scale was then assessed by
the derivative differenced Normalized Difference Vegetation Index (NDVI), a traditional
vegetation index commonly used to identify the photosynthetic activity [35].

3.2.2. Measurements of Soil Infiltration Capacity

Unsaturated hydraulic conductivity of soil (K) was considered as a proxy for soil
infiltration capacity of the areas affected by different burn severity. K was measured directly
in situ using a Mini-Disk Infiltrometer (MDI) (METER Group Inc., Pullman, WA, USA,
2020), a highly portable and inexpensive tension infiltrometer. These measurements were
conducted following the standard protocols described in the MDI user manual [36]. In
detail, MDI was used to measure cumulative infiltration with a pressure head (suction) of
—2 c¢m, which is adequate for most soils—as reported in the MDI manual. Before placing
the MDY, the soil surface must be cleaned and delicately levelled using a trowel and scissors
to avoid the overturning of the device during measurements, as well as to allow perfect
adherence between the sintered filter of the instrument and the soil surface. To ensure the
contact between the sintered disk and soil surface, a thin layer of sand (about 0.5 cm thick)
must be added. The water level inside the minidisk water reservoir is recorded at 30 s
regular time intervals for no less than ~5 min for each test.

The unsaturated hydraulic conductivity is then derived by combining the obtained
cumulative infiltration measures with knowledge of van Genuchten’s soil parameters [37]
using Zhang’s method [38].

The cumulated infiltration rate measured with each test is expressed as a function
of the square root of time and interpolated through the function proposed by Zhang
(Equation (1)). C; is determined as the slope of the curve obtained with this method:

I=Ct% + G, 1)

where I is the cumulated infiltration rate (mm), ¢ is time (s), C; (m s~ /%) and C; (m s~ 1)
are two parameters related to soil sorptivity and unsaturated hydraulic conductivity.
The value of K (cm s~1) was then calculated as shown in Equation (2):

_ G

K= 2
Ay

@)
where A, (—) is a parameter dependent on soil texture and suction and defined by
Equation (3):

11.65 (n%1—1) exp[2.92(n—1.9)a I]

Ay = 091 n>19
11.65 0'1—1(0( 70)75 —1.9)a ®)
A, = L (n )exp([)-g.l (n—1.9)a ho| n<19
(a 7o)

where 1 is the infiltrometer’s radius (equal to 2.25 cm), n (=) and « (—) are retention
parameters depending on soil texture and ry, according to the values reported in the MDI
manual, and hj is the pressure head of the infiltrometer (set to —2 cm).

3.2.3. Rainfall-Runoff Simulation Strategy

The assessment of hydrological losses and runoff propagation was performed through
a simple approach widely described in the scientific literature and also easy to imple-
ment for ungauged basins or where details on physiographic characteristics of the wa-
tershed are scarce. The computation of hydrological losses was conducted using the
SCS-CN method [39-41], a semi-spatial-distributed approach, implemented for provid-
ing direct runoff after the separation of initial abstraction and infiltration losses from
total rainfall. This method is one of the commonly used heuristic approaches for estimat-
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ing the surface runoff from watersheds. Direct runoff (P,) (mm) is calculated through
Equations (4) and (5):

__(P-L)
P"_(P—Ig—i—S) @)
S:%—m (5)

where P (mm) is the gross rainfall depth, Is (mm) the initial abstraction and S (mm)
the maximum potential retention of the basin, which depends by CN. The CN value
theoretically varies between 0 and 100. However, the practical values are typically in the
range of 40 to 98 [42] and are usually determined by combining land use and hydrological
group data through tables reported in technical manuals [43]. Ia includes surface storage,
interception and infiltration aptitude before runoff begins and it is calculated as follows
(Equation (6)):

Iy =aS (6)

where « (—) is a constant, which in original formulation was set equal to 0.2, but recent
works demonstrate that its value can range from 0.05 to 0.2 [42,44-46] as a function of the
physiographic characteristics of the watershed, type of vegetation cover and severity of
potential alterations suffered by the watershed such deforestation and fire [47,48].

Then, the propagation of direct runoff was simulated through a simple translation of
water flow over the drainage watershed excluding natural storage. The runoff volumes
originating from different parts of the watershed were cumulated assuming no interaction
between them. The runoff travel time distribution was described by a time-area curve,
obtained by the combination of a constant flow transfer velocity and the area—distance
curve, which can be easily derived from the Digital Elevation Model (DEM) of the wa-
tershed using the ‘Overland Flow Distance’ tool of QGis. The corresponding time—area
curves were then derived by scaling the x-axis with the average runoff propagation velocity
obtained as the ratio of the length of the longest flow path and the time of concentration
(tc). In particular, ¢ is another key parameter for estimating the hydrological response of a
watershed. Despite the fact that the scientific literature describes a wide spectrum of empir-
ical formulations [49-51], in this integrated approach, the Natural Resources Conservation
Service-Soil Conservation Service (NRCS-SCS) method [41,52] was used. This method,
described by Equation (7), directly depends on the length of the main water stream L (km),
while it is inversely proportional to the average slope of the watershed (m m~!) and CN:

1 0.7
te = 0.057<gg? — 9) L0805 (7)

where t. in hours. It was considered suitable because it was tested on several natural
watersheds. Moreover, the presence of the CN value as an input parameter allows us to
include the potential shift in the flood peak before and after fire conditions.

3.2.4. Setup of the Integrated Approach in the Study Area

For determining fire severity, the GeoCBI was assessed in 73 georeferenced, 30 m-
diameter plots randomly placed within the burned perimeter. The assessment of fire
impacts was caried out on a scale of zero (unburned) to three (maximum severity) on five
different vegetation layers (herbs, low shrubs <1 m tall, tall shrubs and trees 1-5 m tall,
intermediate trees, and dominant or co-dominant trees), and scores were weighted on
the fraction cover of each stratum [34]. Differenced NDVI (ANDVI) was calculated from
pre-treated, cloud-free 10-m Sentinel-2 (level 2A) images taken in July one year before and
one year after the fire, and bias-corrected using the average NDVI change across the whole
Sentinel-2 image outside the fire perimeter, to account for phenological differences between
years. Finally, ANDVI was then classified into three severity classes (low, moderate, and
high) and unburned, based on GeoCBI measures in the field.
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Concerning the determination of the soil infiltration capacity, 39 infiltration measure-
ments at 13 points in the Tinella watershed were carried out over areas affected by different
fire severity. The measurement points were selected randomly within the burned area as a
function of the level of the fire severity. The van Genuchten’s parameters (1 and o) derived
from soil texture were assessed by collecting ad hoc soil samples at each measurement
point at a depth ranging from ~0 to 10 cm. This depth adequately represents both the
soil layer that is mainly involved in the surface runoff [53] and that is mainly affected by
burning. For each measurement point at least 3 repetitions were conducted.

Parametrizing the rainfall-runoff model is a fundamental step for assessing watershed
runoff, especially determining the spatial distribution of CN and Ia values. Concerning
CN, in the Tinella watershed, deciduous forests, evergreen coniferous and mix forests were
considered as three macro-types of land use, whereas the hydrological groups were derived
from soil characteristics, grouping sand, loamy sand, sandy loam in group A, silt loam in
group B, silt, loam and sandy clay loam in group C, and lastly, silt clay loam, clay loam,
sandy clay and clay in group D, according to the classification of USDA NRCS [54]. The
results of these classifications are reported in Table 3.

Table 3. CN values (-) applied over Tinella watershed as a function of forest type (deciduous broadleaf, evergreen coniferous

and mixed forests) and hydrological group (A, B, C and D).

Land Use

A B C D

Deciduous broadleaf
Evergreen coniferous
Mixed forest

42 66 79 85
34 60 73 79
38 62 75 81

CN was assessed for each sub-area described by the area—distance curve and then
adjusted according to the Antecedent Moisture Condition (AMC) first condition, since in the
5 days before 24 September, and more, no rainfall events occurred over the basin. Although
there is consensus on the increase in flood peak after a fire, there is still no consistent
methodology to estimate post-fire CN values [55]. In fact, the analysis of the hydrologic
response of watersheds to fire is still a topic under investigation and only a few studies have
been undertaken [56]. Most of them are mainly based on practical rules and/or experience
and propose a modification of the CN value as a function of burn severity. In this study,
two different approaches were adopted and implemented following two practical manuals
provided by the U.S. National Forest Services: Uinta National Forest-Research Station [57]
(hereafter called the HSR method) and Rocky Mountain-Research Station [58] (hereafter
called the DS method). Table 4 summarizes the guidelines to choosing the post-fire CN.
Concerning Ia, the o« parameter was considered proportional to the level of fire severity,
varying its value from 0.05 to 0.2 as a function of the soil infiltration capacity recorded in
the different fire severity areas.

Table 4. Post-fire CN as a function of burn severity.

HSR Method

High burn severity CNpost = CNpre + 15
Moderate burn severity CNpost = CNpre + 10
Low burn severity CNpost = CNpre +5

DS Method

High burn severity with water repellent soils CNpost =95
High burn severity without water repellent soils CNpost =90to 91
Moderate burn severity with water repellent soils CNpost =90
Moderate burn severity without water repellent soils CNpost = 85
Low burn severity CNpost = CNpre +5
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4. Results

4.1. Storm Severity

According to the rainfall data from the meteorological network, the storm event that
occurred on 24 September hit the study area and the Tinella watershed at different times,
intensity, and severity (Figure 3).
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Figure 3. Spatial distribution of storm severity: the coloured contour lines and the labels written
in in black describe the return period of storm (year), whereas the labels in blue describe the rain-
gauge stations.

Rain gauges located in the northwestern part of the study area were the first to record
the beginning of the storm event (at 5 p.m.). The storm was characterized by two rainfall
peaks separated by ~1.5 h. Considering the rain gauges located in the north-western part
of the study area, the first rainfall peak occurred between 5 and 6.15 p.m. and the intensity
was between 80 and 100 mm h~! (Figure 4a). The second peak was generally less intense
(on average 55 mm h~!) and occurred between 8 and 9 p.m. Considering data from the rain
gauge close to the Tinella watershed (i.e., the rain gauge number 1111) the storm appeared
to shift temporally, and the first rainfall peak occurred at about 7 p.m., with the second one
at past 9 p.m. The rainfall intensity exceeded the 100 mm h~! in the first peak, whereas in
the second one it was close to 60 mm h~1.

Severity graphs show that the storm was characterized by a return period of less than
10 years in large parts of the study area. However, in the northeastern part of the study
area, the storm was characterized by a return period exceeding 20 years. In particular,
severity calculated on data from rain gauge 10,666 and 14,131 showed a peak return period
of 30 and 21 years, respectively, obtained for a critical rainfall duration of 150 and 180 min.
Close to the Tinella watershed, however, the storm was extremely severe with two peak
return periods exceeding 40 years. Specifically, the first one was about 120 years with a
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critical rainfall duration of about 40 min, whereas the second one was about 45 years with
a critical rainfall duration of about 160 min. This contributed to the stress on the Tinella
watershed during the storm event with significant repercussions on flood peak.
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Figure 4. (a) Temporal distribution of rainfall intensity, and (b) severity graph obtained from each rain gauge located in the

study area.
Concerning the spatial distribution of the return periods, the results of a linear interpo-
lation of the maximum storm’s return periods obtained from data from each rain gauge in
the study area, show that the front direction of the storm was oriented from the north-east
to the south-west of the study area, reaching the center of the Tinella watershed with its

maximum severity (i.e., 120 years) as shown in Figure 4b.

4.2. Burned Area
The fire event of October 2017 damaged about 62% of the Tinella watershed area

(Figure 5). Analyzing the WS10 and WS11 sub-basins separately showed they were affected
by different levels of burn severity. In the WS10, 29% of the sub-basin area (i.e., 0.37 kmz)
had a high level of burn severity, 42% (i.e., 0.53 km?) had a moderate level of burn severity,
and 4% (i.e., 0.05 km?) had a low burn severity. Instead, in the WS11, 24% of the sub-basin
area (i.e., 0.32 km?) showed a high burn severity, 25% (i.e., 0.34 km?) had a moderate level
of burn severity, and 1% (i.e., 0.02 km?) had a low burn severity.
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Figure 5. Areas affected by fire, burn severity and position of infiltration measurements.

4.3. Soil Infiltration Response to Burn Severity

Soil sample analysis showed that the texture of the first layer of the soil is homogenous
across the entire study domain, with no significant spatial pattern or differences in areas
affected by different burn severity levels (see Figure 5). Overall, the soils were sandy loam
(for about 62% of samples), followed by loam (23%) and loam-sandy (15). A good level
of skeleton ranging from 13 to 50% of sample weight was found in all detected points,
whereas from a visual inspection, soil samples presented a clear component of ash that was
observed in the soil-water mixture during the deposition step of the texture lab analysis.

Results of soil infiltration measurements performed over May—June 2021, revealed
that unsaturated hydraulic conductivity was smaller in highly burned sites than in low and
moderate burned areas (Figure 6). Specifically, K was on average 7.9, 17.7 and 32.7 mm h~!
in high, moderate and low burned areas, respectively. The reduction in infiltration capacity
from low burned areas to moderate and high burned sites was on average of 45% and 75%,
respectively. A slight increase in standard deviation was observed in measurements carried
out in low burned areas (about 10 mm h~1), whereas in moderate and high burned sites it
was about 5 and 4 mm h~!, respectively. No significant spatial pattern was observed across
the watershed.

4.4. Hydrological Impact of Storm on Watershed Runoff in Pre- and Post-Fire Condition

One of the impacts of fire on watershed runoff is the timing of hydrological response.
The presence of burned areas inside the Tinella watershed alters the time of concentration
value. In particular, tc was estimated as ~50 min both in W510 and WS11 sub-basins in
pre-fire conditions, whereas its value decreases to ~40 min in post-fire condition using both
the HSR and DS method. The reduction of 20% in time of concentration led to speeding up
the hydrological response of both the watershed to the precipitation causing a shift of the
flood peak in post-fire conditions close to the rainfall peak (Figure 7a,b).
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Figure 6. Unsaturated hydraulic conductivity measured in different forest areas affected by different
burn severity levels.
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Figure 7. Tinella watershed runoff (Q) before and after the forest fire calculated with the HSR and DS methods. (a) Runoff
formation from the WS10 sub-basin. (b) Runoff formation from the WS11 sub-basin. Rainfall intensity calculated as
weighted average of the rainfall data recorded by the rain gauge network in the study area is also shown, indicating
strikingly similar pluviographs.
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In pre-fire conditions, the hydrological response of WS10 and WS11 sub-basins to the
two consecutive rainfall events (the first characterized by rainfall peak of about 60 mm h~!
and the second characterized by rainfall peak of about 40 mm h~!) was assessed to be very
similar. This is also confirmed by the CN value found on average for the two portions of
the Tinella watershed, which in pre-fire conditions was assessed to be about 66 in both
WS10 and WS11.

In pre-fire conditions, the simulations produced flood peaks ranging between 3.5 and
4 m3 s~! for both sub-basins (Figure 7a,b). The hydrological losses (considered through the
CN value) in post-fire conditions were found to be 10% lower on average than in the pre-fire
conditions. In post-fire conditions, the CN value was assessed to be 76 and 73 on average
by applying the HSR method for the WS10 and WS11 sub-basin, respectively, whereas it
was assessed to be 72 and 71 by applying the DS method. This led to a substantial increase
in the flood peak in post-fire conditions in both the WS10 and WS511 sub-basins, however
several differences were revealed. Concerning the WS10, the increase in the maximum
flood peak from pre- to post-fire conditions was assessed to be 125%, more than doubling
from about 4 to 9 m® s~! using the HSR method, and 75% using the DS method (from 4 to
7 m3 s71). Slight differences in flood peaks were found during the second rainfall event
using DS and HSR, with values ranging from 5.5 to 6.5 m® s !, respectively. In the WS11
sub-basin, the increase in the maximum flood peak from pre- to post-fire conditions was
assessed to be 86% using the HSR method (i.e., from about 3.5 to 6.5 m3 s_l) and 57%
using the DS method (i.e., from 3.5 to 5.5 m® s~ !). The flood peak difference between the
WS10 and WS11 sub-basins in post-fire conditions was 2 m3 s~! on average, whereas the
maximum flood peak at the outlet of Tinella watershed was about 15 m? s~ (i.e., about
two times the maximum flood peak in the pre-fire condition). The overall flood volume
was estimated to be 39,700 m? in the pre-fire condition, whereas in post-fire conditions it
was about 69,400 m> using the HSR method (i.e., 75% higher than the pre-fire condition)
and 57,300 m? using the DS method (i.e., about 45% higher than the pre-fire condition).

5. Discussion

Forest fire removed the canopy cover, and reduced soil infiltration capacity, all of
which then increased flood peaks after subsequent rainfall events. The reduction in the soil
infiltration capacity (—45% and —75% after moderate and high severity fires relative to low
severity areas) is consistent with those reported in previous studies [59,60]. Fire-induced
water repellency contributes to reduced soil infiltration rates, with stronger effects in higher
fire severities [59]. In particular, the clogging of soil pores, caused by small particles of
ash, reduces infiltration across the top layer of the soil, thus facilitating the development of
surface runoff [60]. Robichaud [61] found that hydraulic conductivity in natural watersheds
after high severity fire was 50% lower than in low severity fire, as a consequence of soil
surface crusting and sealing. Plaza-Alvarez et al. [62] found that soil hydraulic conductivity
in burned Mediterranean pine (Pinus pinaster Aiton) forests ranged from 20 to 50 mm h~!
with a constant decrease over all seasons of about 10 mm h~! relative to unburned sites.

Flood peaks calculated under pre-fire conditions showed small variations (below
0.2 m3 s~1) between the first and second flood peaks occurring during the storm event (as
shown in Figure 7a,b). This can be explained considering the characteristics of the SCS-CN
approach applied for calculating the hydrological losses in the watershed. In particular, the
method allocated most of the hydrological losses in the first stage of precipitation, which
produced a stronger abatement of the flood peak resulting from the first rainfall relative
to the second one, although the intensity of the first rainfall event was about 50% higher.
Flood peaks increased in both watersheds as a result of forest fire, especially after the first
rainfall event (+75-125% and +57-86% in WS10 and WS11, respectively, according to the
methods used). Fire effects on flood peaks were less evident in WS11, where fire affected
only half of the watershed area. This evidence confirms that the difference in hydrological
response in WS11 compared to the WS10 sub-basin can be mainly ascribed to the different
size of the burned areas and local differences in fire severity.
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The enhanced hydrological response clearly highlights the increased sensitivity of
the burned basin to rainstorms. Additional reinforcing effects, although not analyzed
in this study, could be attributed to the reduction in water losses by evapotranspiration
after fire-induced tree mortality, and to the lower surface roughness produced by the
consumption of ground vegetation and litter [63]. Besides the impact on peak discharge,
forest fire can also strongly increase sediment yields, with repercussions on soil erosion
rates, water quality, and debris flow hazard [64].

The workflow illustrated in this study may contribute to the analysis of fire effects
in ungauged watersheds, integrating analysis of canopy mortality, soil hydrological prop-
erties, and hydraulic responses in catchments with spatially heterogenous disturbance
severities. These findings provide additional information that may help to improve the
understanding of the effect of forest fires on hydrological response, which is especially
relevant in the context of human-induced climate change. Global warming may in fact ex-
acerbate hydrological hazards as a consequence of forest fire, as a consequence of increased
fire frequency and severity [65], altered rainfall patterns [66], and loss of forest resilience
due to disturbances [67]. In this context, more research is required to improve the model
parametrization and calibration, while explicitly accounting for the spatial and temporal
variability of hydrological responses. Lastly, an integrated approach for the analysis of
hydrological consequences of forest fire in ungauged catchments could also support fire
prevention and recovery activities by highlighting spatial priorities for silvicultural actions
aimed at improving forest resistance to fire and accelerating post-fire recovery by afforesta-
tion measures, especially where natural vegetation response is not fast enough to ensure
hydrogeologic protection against future extreme rainfall [68].

6. Conclusions

In this study, an integrated approach that exploits a combination of remote and
in-situ data for a comprehensive evaluation of the impact of forest fire on hydrological
response of natural watersheds was tested on a real case study located in northern Italy.
Specifically, the NDVI obtained by Sentinel-2 images was used to identify burned areas
in the watershed and their level of fire severity, whereas direct infiltration measurements
performed in those areas through a Mini Disk Infiltrometer were used to better understand
the infiltration capacity of the soils in post-fire conditions. These data were included in a
semi-distributed rainfall-runoff model based on the SCS-CN method and lag-time for the
calculation of hydrological losses and flow propagation over the watershed, respectively.
Specifically, the impact of forest fire on the hydrological response was investigated through
a modelling experiment on the Tinella watershed, which was affected by a forest fire about
four years ago. On 24 September 2020, the Tinella watershed was hit by a storm event
with a maximum recorded return period of 120 years, which resulted in several damaged
sites within the watershed and downstream to the outlet. The characteristics of this storm
event were used as meteorological input to the modelling approach. The CN value was
adjusted as a function of the level of fire severity, whereas direct infiltration measurements
carried out in watershed areas affected by different burn severity were adopted to obtain
the proportional behavior of the initial abstraction as a function of burn severity level.

The results of this study show that the infiltration capacity of burned soil was deeply
affected by the forest fire with an unsaturated hydraulic conductivity that decreased by
45% and 75% from low to moderate, and from low to high burned sites, respectively. The
reduction in soil hydraulic conductivity and tree canopy cover actively altered the surface
runoff. Runoff hydrographs were found to be much sharper with considerably higher flood
peaks and runoff volumes. In particular, the flood peak and runoff volume in post-fire
conditions increased by up to 2.2 and 1.7 times compared to the pre-fire conditions.
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Abstract: This study uses a computational fluid dynamics (CFD) approach to simulate flows in
Parshall flumes, which are used to measure flowrates in channels. The numerical results are compared
with the experimental data, which show that choosing the right turbulence model, e.g., v — fand
LG, is the key element in accurately simulating Parshall flumes. The Standard Error of Estimate
(SEE) values were very low, i.e., 0.76% and 1.00%, respectively, for the two models mentioned above.
The Parshall flume used for this experiment is a good example of a hydraulic structure for which
the design can be more improved by implementing a CFD approach compared with a laboratory
(physical) modeling approach, which is often costly and time-consuming.

Keywords: Venturi flume; CFD; OpenFOAM; RANS; nonlinear model; turbulence model; numerical
simulation; Parshall flume

1. Introduction

Data from downscaled physical models of different hydraulic structures, such as
dams, weirs, etc., were, in the past, the main resource for predicting the consequences of
extreme damage. In recent years, with advancements in computing facilities and numerical
modeling methods, numerical simulations have become a powerful and popular approach
in the design of hydraulic structures [1].

There are various reasons, such as irrigation and quality control, for the importance of
measuring the flowrate in an open channel, and this has led different individuals to come
up with various ideas and designs for discharge measurement devices. One of the most
popular devices is the Parshall flume, a modification of the Venturi flume, developed by
Ralph L. Parshall in the 1930s. The major difference between this flume and the Venturi
flume is the drop that was introduced in the throat’s bed elevation. This design, with a
negative bed slope starting at the beginning of the throat section, helps fluid gain speed
and, shortly before exiting the throat, a relatively gentle positive slope reduces the speed of
the fluid at the exit of the throat section. The relationship between the head at two locations
within the flume, i.e., the throat and upstream, provides a value for the flowrate in the
open channel [2].

The available sizes for Parshall flumes are limited, and in addition, within this limited
range, manufacturers tend to contravene the original specifications provided by Parshall
as the inventor. To create a custom-size Parshall flume, many experiments have to be
undertaken by the manufacturers to ensure the accuracy of the flowrate within the device.
It is costly and time-consuming to run the necessary laboratory experiments for a new
size, and using a Computational Fluid Dynamics (CFD) model can significantly accelerate
the process [3].

Computer simulations are an essential tool in the design and optimization of hydraulic
structures at present, and recent advancements in computing hardware now also allow
researchers and engineers to solve previously impossible equations. Fluid motion is one
of the most complicated engineering phenomena, and a particular approach to solving
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a fluid’s governing equations depends on the hardware limitations and available time.
Various turbulence models are available within different computational fluid dynamics
simulation software, and obtaining the best possible hydraulic structural design is possible
through the use of CFD simulations. It is important to choose the best model with respect
to the cost of calculations and accuracy. Therefore, in this paper, three nonlinear turbulence
models from the RANS family were chosen to simulate the flow of water in a 3-inch Parshall
flume, and the data from the simulations are compared with the experimental results from
a study conducted by Dursun [4].

The study by Wright et al. [5] on the Parshall flume rating curve revealed that cali-
bration for low-discharge flows for the Parshall flume had not been carried out; therefore,
there was a bias in the results provided by Parshall himself for the proposed relationship.
In their paper, they tried to provide a solution to this flaw, and so a numerical model
was established to address the effect of the viscosity of the fluid on the depth discharge
relationship. Experiments on a variety of flumes that carried only 15% of the recommended
discharge revealed that the flowrate was overpredicted by 25%. The proposed numerical
model for the low discharges provided a good match with the experimental data obtained
in the laboratory.

Khosronejad et al. [6] implemented a Large Eddy Simulation (LES) model to determine
the accuracy of Parshall flume discharge results in comparison with the experimental
data. Their study was conducted on two Parshall flumes that were placed in a parallel
arrangement, and the results were taken either from the flow passing through an individual
flume when the other flume was closed or with the flow passing through both flumes at
the same time. In addition to the flow measurement device used in this experiment, a
dye dilution approach was also implemented to determine flow rates in the field. The
difference between the standard rating curve value and the modeled value according to
their study was, at maximum, 10%, while the discharge was at the lower flow rate for all
three different scenarios, i.e., flows passing through flumes individually or in parallel, and
was a minimum of 1.3% when the discharge was between 1.13 and 1.7 m3/s in the parallel
flow case. It was concluded that a Parshall flume could provide more accurate results when
operated at higher flowrates.

Davis and Deutsch [7] conducted studies on Parshall flumes with nonstandard posi-
tioning: the slope of the stream, the upstream velocity profile, and alterations in Parshall
flume geometry were investigated in this research. Due to the implementation of SOFA-
LUMP, a 3D finite-difference code, the simulated flowrates were accurate enough and the
computational cost was under the expected budget. A downside of this study was the
neglect of the viscosity effects in the numerical model; however, the numerical results were
close to the experimental findings. The authors concluded that the proposed numerical
model could be used as a guideline to determine the results for nonstandard Parshall
flumes, and that the numerical model was the best substitute for laboratory experiments or
field installations for accurate results.

Sun et al. [8] investigated the flow in a flume with symmetrical curve obstructions on
the flume’s sides, and the results revealed that there was an incremental velocity increase
within the throat section and a sudden flowrate decrease due to the introduction of a
submerged flow condition at the end of that section. A comparison of water levels between
the laboratory experiments and the numerical simulations showed a 4.7% error value,
which was described as a good agreement. Due to its high accuracy and lower head loss,
the proposed curved flume was believed to be an ideal choice for implementation from
mild sloped flows to flat ones, e.g., for agriculture and irrigation systems.

Savage et al. [9] tackled the common problem of nonstandard entrance wingwalls
in Parshall flumes, which is often neglected. To obtain proper results, it is important to
know the best upstream location to measure the head for the flume. It was shown that
CFD is a better tool, providing more accurate data compared to the costly physical “build
and test” method. This paper introduced a correction factor for a range of different sizes
(2-8 ft) of Parshall flumes, to adjust their results, and the implementation of this study
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for a nonstandard Parshall flume with a free-flow condition increased the accuracy of the
discharge results from a 60% error to just +/—5%.

In a study by Heyrani et al. [10], the data from seven different turbulence models were
compared with the experimental results from Dursun [4]. In the paper, it was concluded
that, among the Reynolds-average Navier-Stokes (RANS), Large Eddy Simulation (LES),
and Detached Eddy Simulation (DES) models, the best performance was achieved by
the k — £ model from the RANS family, while the Dynamic K LES model was in second
place. The water level results from the CFD simulations provided an error of less than
1.93%-2.08% compared to the experimental findings and were reasonably acceptable for
further implementation. Although several turbulence models were examined in the study,
some important ones remained unused, which are the subject of the present paper.

The objective of this paper is to extend the study by Heyrani et al. (2021) with more
sophisticated, and potentially more accurate, turbulence models in order to develop highly
accurate yet efficient modeling approaches for Parshall flumes. Two nonlinear k — e models,
which have proved to be highly accurate in certain fluid problems, are considered. In
addition, the > — f model, which is a compromise between the computational efficiency
of two-equation models and the accuracy of the Reynolds Stress Models (RSM), is also
considered in this study.

This paper is organized as follows. Governing equations and description of turbulence
models are provided in Section 2, and numerical details such as mesh, boundary, and initial
conditions are then described in Section 3. Next, results and discussions are presented in
Section 4, and some concluding results complete the study.

2. Methodology
2.1. Description of CFD Model

As one of the most reliable tools to analyze the behavior of fluids, Computational
Fluid Dynamics (CFD) is capable of calculating a wide range of related parameters by
taking advantage of the recent development of computer processors. The parameters that
are accurately calculated by CFD include flow velocity, temperature and pressure.

CFD models are capable of providing solutions for the flow equations or describing
the behavior of a fluid when it interacts with rigid boundaries or obstacles along its path.
With respect to the conservation of mass, energy, and momentum, the Navier-Stokes
system of equations is derived for viscous fluids [11].

As a reliable open-source solver for computational fluid dynamics models, Open-
FOAM is implemented in this study to perform reliable simulations. This computing
platform uses the Finite Volume Method (FVM) and includes many specific libraries de-
veloped in C++. It is an object-oriented toolbox that can simulate a wide range of flow
problems, such as two-phase flows and free-surface flows, with a wide range of turbulence
models. It also has the ability to numerically solve continuum mechanics problems [12].

Three nonlinear turbulence models are used to simulate the flow motion in this paper,
i.e., the LC low-Reynold, SQ low-Reynold, and v> — f models, which are briefly discussed
in the following section.

2.2. Governing Equations

A viscous incompressible fluid flow is governed by a set of general three-dimensional
systems of equations called the Navier-Stokes system, which consists of momentum and
continuity equations. The system is described as follows [13,14]:

ou Jdv  Jdw

ax Ty T az O (1)
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Equation (1) is the continuity equation, followed by the three momentum equations
(Equations (2)—(4)) for different directions, i.e., X, y, and z directions.

ou ou ou ou 1dp >
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In the above equations, fluid density is denoted by p, the three spatial directions of
velocity are represented by u, v, and w, p denotes the total pressure, time is symbolized by

t, and g is the gravitational acceleration.

4)

2.2.1. RANS

The Reynolds-Averaged Navier-Stokes Model is the dominant practical method for
simulating the motion of a fluid. Other methods, such as Large Eddy Simulation (LES),
are computationally more expensive and still impractical for engineering applications.
The viscosity-related properties of the fluid are essentially used to estimate the impact of
turbulence. The variation in the turbulent kinetic energy (k) is described by an equation
for k.

A variety of turbulence models are available under this category, and the application
of three non-linear approaches to form a comparison with the experimental data forms the
main objective of this study.

v? — f Model

A modified version of the k — e model, where k represents the turbulent kinetic energy
and ¢ denotes the energy dissipation, is called the v* — f turbulence model, which consists
of four equations to simulate the effect of turbulence to find a solution for fluid flow motion.
It has two extra equations for velocity and relaxation factors, as well as the two general
kinetic energy and dissipation equations. This model falls between the categories of the
Reynolds Stress Models (RSM) and the original k — ¢ model. In order to evaluate eddy
viscosity with this model, the new term v?, which represents the velocity, is implemented
instead of the term for kinetic energy. The governing equations of this model are as follows:

ok oku; 0 ok

§+37Xi :P—e+a—xj(Dkeffa—xj)—|—Sk ®)
aavt2+axa/;ul Kf — 6V2£aa (Dkeff%VZHSVz @)
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In the above equations, the length and time-scales for turbulence are denoted by L
and T, while f represents the solution to the last equation. The elliptic operator is used
by the v? — f model to calculate a similar term to the strain—pressure correlation term of
the RSM. There are four different constant C terms, i.e., C;, C, Cl;, and Cg, which are
considered the constants, and the four S terms, i.e., S, S, SW' and S fr which are expected
to be defined by the user as source terms. The reader is referred to [15] for further details
and values of the coefficients.
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Shih et al. (1998) Quadratic k— ¢ Model (SQ)

This model is derived from the direct implementation of a basic turbulence relation-
ship. To propose a novel algebraic equation for the Reynolds stress, an essential turbulent
relationship has been applied. Two limitations are defined based on their realizability and
the theory of rapid distortion and, within the inertia sublayer, the coefficients of the model
are regulated using simple flows, such as surface flow and homogenous shear flow.

Quadratic and cubic terms of average velocity in the model were proposed for
Reynolds stresses. This is a short version of the general formula for mean velocity gradi-
ents and turbulent stresses [16]. The rapid distortion theory was used to determine the
coefficients of the model’s constraints [17] of realizability [18].

The equations used to model the general turbulent shear flow are:

o+ (plj) ;=0 ©)
2 _
(pUi)  + (pUilly) = —P; + {V <Ui,j + Uji — 3Uk,k5ij> - Puiuj] 4 (10)
/]
(k)  + (pUik) ; = [(# +£ T> ,j] — Pl — pe (11)
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where S in the above equation is defined as:
1
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The nonlinear model for the Reynolds stresses is:
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—pill; = =30k &;j + pr Uy + Uji — 5Upkdij) + Al (Uk,iuk,j - i,kuj,k)
k4
+A5 0 (U iU Uy + Uijk pUpi — 51136 — 53Uy, (ui,kuk,j + U Uy, — %Hl5ij) (13)
— 5 Uy (Ug iU + Ui U 51])}
Ih =U;;U;; , T =UU;; , Iz = Ul pUp g (14)
The equations used to obtain the coefficients value of y7 and A3 to As are provided
below:
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The reader is referred to [19] for further details and values of the coefficients.

Lien (1996) Cubic Turbulence Model (LC)

A new version of an eddy-viscosity model for turbulent flows with high Reynolds
numbers was derived in [15] by implementing a nonlinear association between the param-
eters of strain and Reynolds stresses. For low-Reynolds conditions, vorticity tensors were
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also included in this relationship to identify all the variations in the turbulence length scale
close to the wall in an asymptotic manner.

Using series-expansion, a general and coordinate invariant formula for strains and
stresses is possible, as follows:

I
ui“j

w =36 — FSij+ 'L [Sikskj — 36ijSuSk | + C2*L [Qikskj + ijskz}
G [Qikﬂjk — 16000y | + HOT

(17)

where C;, and C; to C3, proposed by [20] and only applicable to high-Reynolds areas, are:
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To inspect the consequence of streamline curvature, a cubic correction proposed by [21]
is also used:

S

vtk vrk
HOT = C4?2 (Skinj + Skali> Sk + CSG%(Slekl = O0uOy)Si (21)
where:
Cs = —10C; C5 = —2C;, (22)
The turbulent viscosity v obtained from the k — e modelling framework is described as:
K2
= C,— 2
vr C;t € (23)

The reader is referred to [22] for further details and values of the coefficients.

2.3. Numerical Setup

The interFoam solver from the OpenFOAM family was chosen as the solver in this
study, as it provides a blend of applications of the VoF method and the finite-volume
method [10]. The Euler and Crank-Nicolson schemes were implemented as first- and
second-order time schemes, respectively, to discretize the temporal term, while the Gauss
linear method was applied for the gradient terms. The results from the two different
temporal discretization schemes used in this study showed no significant differences,
i.e., no significant improvement was observed when the second-order scheme was used.
Therefore, using either method has no effect on the reduction in error. In other words, the
time scheme has a negligible impact as the source of error. Within this solver, different
schemes were used for different purposes, such as the corrected Gauss linear scheme
for the Laplacian scheme and a linear scheme for the purpose of discretization of the
interpolation terms.

As the initial condition, the inflows of the flume for different scenarios were constant,
i.e,101/s,201/s, and 30 1/s. Similar to Heyrani et al. (2021), the flow passing through the
walls was considered to be zero, and no dissipation or acceleration was initially defined in
the model.

2.3.1. Boundary Conditions

Figure 1 provides a schematic side and top view of the boundary condition considered
in this simulation, where the flow enters and exits from one end to another while passing
above the bed, which was defined as a wall. Over the flow is the atmosphere boundary, and
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the condition at the outlet is zero gradient. The volume of fluid method was implemented
for the surface of the flow with regard to the zero-pressure state where the two fluids, i.e.,
liquid and air, meet.

Atmosphere

Inlet

19PNQO

Inlet

PpNO

Wall

Figure 1. Side and top view of boundary condition of the modeled Parshall flume.

2.3.2. Mesh Sensitivity Analysis

Implementing the right mesh size, i.e., the mesh closest to the optimum grid size,
allows for the simulation to produce the results that are the closest to the actual data, i.e.,
experimental results, with an optimal computational cost. For the simulations in this study,
a mesh sensitivity analysis was performed to determine the best grid size for the structured
mesh that was used.

In this procedure, the refined mesh resolution was progressively increased until no
further changes were obtained in the results. Figure 2 describe the four steps taken to find
the optimum grid size in this study. This was started with 52,000 cells in total, progressing
to 270,000 over three steps. The data quality resulting from the progression to the second
step, i.e., from 52,000 to 75,000 cells, had significant changes, but on proceeding to 270,000,
there were no significant changes recorded in the quality of the simulated data. Therefore,
no further increase in the number of cells is recommended after 75,000.

(©) (D)

Figure 2. Mesh sensitivity