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specified restrictions on β, models I(2)-B contain misspecified restrictions on β, while models I(2)-C
contain correctly specified restriction on α and β. All three algorithms seem to perform quite well
in maximizing the likelihood of the I(2) model under restrictions on Π only, with Triangular-hybrid
beating the others. In particular, under the correctly specified restrictions A and C the likelihood is
easily and quickly maximized (especially when T = 1000), with almost no case of distant convergence.

Conversely, the misspecified restrictions in model I(2)-B require more iterations and, for the first
two teams, induce distant convergence quite frequently. However, as observed when discussing
Formula I(1) results, it is important to keep in mind that distant convergence is indeed a problem when
the restriction is correctly specified since it leads to over-rejection, whereas for misspecified restrictions
it can be seen as beneficial, since it increases the power of the test.

More generally, the analysis of restrictions A, B, C, seems to suggest that estimation of restricted
α and β is easier in the I(2) case with respect to the I(1) case. Note however that the comparison is
not completely fair, since most of the difficulties in the I(1) case are found when ρ0 = 0.9 (weak mean
reversion), and this coefficient does not appear in the current Formula I(2) design.

Consider finally the restrictions I(2)-D and I(2)-E, reported in the last two panels of Table 5.
Remember that I(2)-D is a correctly specified model with restrictions on τ, while I(2)-E is a misspecified
model with restrictions on τ. Table 5 shows serious difficulties in maximizing the likelihood under
restrictions on τ; in both cases (i.e., whether the hypothesis is true or false), the number of iterations
is much higher than under restrictions A, B and C and it does not decrease even when T = 1000.
Failure to converge (FC) becomes a serious problem for triangular switching (and to some extent
delta switching), and there is an high percentage of distant convergence (DC) for all three algorithms;
Triangular hybrid performs better, having a smaller average distance (AD). Notice that for model
I(2)-D (where the null hypothesis is true) distant convergence is more problematic since it leads to
over-rejection.

To analyze this problem, as done in Formula I(1), Figure 3 illustrates the impact of distant
convergence. It is apparent from the figure that over-rejection is substantial here. Since the 5% critical
value of the asymptotic χ2 (4) distribution is 9.49, the analysis clearly shows several cases where one
would (correctly) accept using the overall maximum, and (wrongly) reject using the distant maximum.
The striking difference with respect to Formula I(1) is that here the over-rejection due to distant
convergence remains even when T = 1000.

Figure 3. Formula I(2): I(2)-D, p = 6, ω = 0.9, ρ1 = 0 laps with distant convergence. (Left) T = 100,
(Right) T = 1000. Three extreme outliers for T = 1000 have been removed for readability. See caption
of Figure 1 for more details.
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As the final aspect of Formula I(2), consider the misspecified restrictions on τ in model I(2)-E.
Figure 4 shows that distant convergence has no practical implication for large samples (T = 1000),
where the power would be 1 anyway. Conversely, in small samples (T = 100) distant convergence
slightly increases the rejection rate, which would be quite high in any case.

Figure 4. Formula I(2): I(2)-E, p = 6, ω = 0.9, ρ1 = 0 laps with distant convergence. (Left) T = 100,
(Right) T = 1000. See caption of Figure 1 for more details.

Overall, in the setting of Formula I(2), maximizing the likelihood under correctly specified
restrictions on α and β seems fast and accurate. Conversely, when correctly specified restrictions on
τ are introduced, finding the overall maximum of the likelihood is not easy. Since β is one of the
components of τ, one might guess that the problems arise from the complementary directions with
respect to β within τ; the issue deserves further exploration.

As in the I(1) case, maximizing the likelihood under misspecified restrictions is difficult; however,
the consequence of this difficulty are benign, because they appear to increase the power of the test for
the current design of the Formula I(2) races.

9. Conclusions

The test run of the championships shows that there is room for improving algorithms. It demonstrates
the strength of this ‘collective learning’ experiment, where other researchers may try and propose new
algorithm to improve on the existing ones. All algorithms win in the end, since each team learns where
and how to improve the algorithm design.

Other circuits may be added in the future, as algorithms improve. Races with a similar spirit
can be set up in other adjacent fields, like fractional cointegration; the same principles may in fact be
applied to any other model classes where maximizing the likelihood needs numerical optimization.
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Appendix A. Practical Requirements for Submission

To facilitate submission and automated processing of results, some conventions are established
that submissions to the project must adopt.
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Appendix A.1. Innovations

A file containing 12 000 i.i.d. N(0, 1) time series of length 1000 is provided (ERRORS.CSV) in
the companion website. The series are organized column-wise and labelled eps00001 to eps12000.
In other words, this file contains the 1000 × 12 000 matrix E. The p-dimensional vector ε

(i)
t , t = 1, ..., T,

is obtained as the transpose of the t-th row of the submatrix E(1 : T, [i − 1]p + 1 : ip), assuming
indexation starts at element (1, 1).

Table A1 provides the first five generated observations for lap 1 of the I(1) and I(2) DGP with
p = 6, ρ0 = ρ1 = ω = 0.9.

Table A1. The first five observations of the generated data for I(1) and I(2) DGPs with p = 6, ρ0 = ρ1 =

ω = 0.9. Ten significant digits given; computation uses double precision.

t Formula I(1) X(1)′
t

1 0.2548828200 −2.009603960 0.5542620800 0.7913726500 −0.5458015100 −1.349741980
2 0.7806863280 −6.446826254 0.1020649020 −1.468146855 −1.017498239 −2.539647722
3 −0.3490545448 −9.526135279 −0.08454244820 −1.010888930 0.04508386490 −0.3954565398
4 −0.4230090503 −11.98920553 −0.6228956034 −2.179696857 −1.063624342 −1.528447976
5 −0.09820491529 −14.61563411 −1.559382683 −1.481900221 0.05204249257 −0.4856795382

t Formula I(2) X(1)′
t

1 0.2548828200 −2.009603960 0.5542620800 0.7913726500 −0.5458015100 −1.349741980
2 0.8061746100 −6.647786650 0.1020649020 −0.6767742050 −0.7626154190 −4.549251682
3 −0.2454976300 −10.37177830 −0.08454244820 −1.687663135 0.8257701929 −6.842282794
4 −0.3543575900 −13.78746208 −0.6228956034 −3.867359991 −1.412678886 −11.05458325
5 −0.07185436000 −17.61281121 −1.559382683 −5.349260212 −0.3709665578 −12.47488507

Appendix A.2. Report File Naming

For each circuit, a team needs to upload an output file on the companion website with either txt
or csv extension. The former is a text file where numbers are separated by a space, while the latter is a
csv spreadsheet file using a comma as separator (and without column headers). In all cases there will
be one lap per line in the output file.

The output file should be named FIxDGPyyyMODzzz.csv (or FIxDGPyyyMODzzz.txt), where:

x 1 for Formula I(1), 2 for Formula I(2);
yyy three digits DGP index n, as defined in Table A2;

Table A2. Definition of the DGP index n.

DGP index n := 8iT + 4ip + 2i0 + i1 + 1
iT = 0 T = 100 i0 = 0 ρ0 = 0 for Formula I(1) or ω = 0 for Formula I(2)
iT = 1 T = 1000 i0 = 1 ρ0 = 0.9 for Formula I(1) or ω = 0.9 for Formula I(2)
ip = 0 p = 6 i1 = 0 ρ1 = 0
ip = 1 p = 12 i1 = 1 ρ1 = 0.9

zzz three digits model index m, as defined in Table A3;
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Table A3. Definition of the model index m.

Model index m := 2ir + ik + 1

ir = 0 Restriction I(1)-A or I(2)-A
ir = 1 Restriction I(1)-B or I(2)-B
ir = 2 Restriction I(1)-C or I(2)-C
ir = 3 Restriction I(2)-D
ir = 4 Restriction I(2)-E

ir = 4 + r + (r + s − 1)(r + s)/2 M(r, s) with ordering as in Table A4

ik = 0 k = 2
ik = 1 k = 5

The ordering of the unrestricted I(2) estimates corresponds to the column vectorization of the
upper diagonal of the relevant part of a ranks test table. For instance, in case p = 6 the ordering of
models is the one in Table A4.

Table A4. Ordering of the models M(r, s) for case p = 6. Entries in the table correspond to the
numbering of models, where s2 = p − r − s. The ordering is similar for the case p = 12.

r\s2 5 4 3 2 1
1 1 2 4 7 11
2 3 5 8 12
3 6 9 13
4 10 14
5 15

As an example, results for the Formula I(2) circuit with n = 13 (iT = 1, ip = 1, i0 = 0 and
i1 = 0) and m = 6 (ir = 2, ik = 1), should be stored in a file named FI2DGP013MOD006.csv (or
FI2DGP013MOD006.txt).

Appendix A.3. Report File Content

Formula I(1) files have N lines with 4 + 2 (p + 1) r numbers, whereas Formula I(2) files have N
lines, each with 4 + 2 (p + 1) r + p (p + 1) numbers. Each line contains the following information:

(i : �u
a,c,i : �a,c,i : Na,c,i : Sa,c,i : θR′

a,c,i),

where:

1. i is the lap number, i = 1, ..., 1000;
2. �u

a,c,i is the unrestricted loglikelihood, reported with at least 8 significant digits:

• Formula I(1): loglikelihood of the unrestricted I(1) model;
• Formula I(2) ir > 4: loglikelihood of the VAR;
• Formula I(2) ir ≤ 4: loglikelihood of the unrestricted I(2) model.

3. �a,c,i as defined in (2) with at least 8 significant digits;
4. Na,c,i, the iteration count;
5. Sa,c,i is the integer convergence indicator, 1 for convergence, 0 for no convergence;
6. θR′

a,c,i is part of the coefficient vector, which is for Formula I(1):

θR′
a,c,i =

(
vec(αa,c,i)

′ : vec(βa,c,i)
′) .

For the Formula I(2) circuits use instead:

θR′
a,c,i =

(
vec(αa,c,i)

′ : vec(βa,c,i)
′ : vec(Γ : μ0)

′
a,c,i
)

.
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Coefficients must be reported exactly in the given order, providing at least 8 significant digits (but
15 digits is recommended). No particular normalization is required.

If the algorithm failed because likelihood evaluation failed (e.g., singular Ω), then �a,c,i = −∞
should be reported. The data is processed with Ox, so .NaN and .Inf are allowed. Because there is no
clear convention on writing −∞, any value of −10308 or lower is interpreted as −∞.

Table A5 provides the start of the first three lines of three selected output files.

Table A5. Three examples of output files. Beginning of first three lines given.

FI1DGP001MOD001.csv
1, 84.7587177451401, 82.2423190842343, 3, 1,-0.187577914295476, ...
2, 30.1177483889851, 28.6953188342152, 5, 1,0.299447436254108, ...
3, 64.5916602781794, 59.9799720330047, 4, 1,-0.0746786280148741, ...

FI1DGP001MOD001.txt
1 84.75871775 82.24231908 10 1 -1.8757787e-001 1.6004096e-002 ...
2 30.11774839 28.69531883 20 1 2.9944720e-001 -5.8528461e-002 ...
3 64.59166028 59.97997203 16 1 -7.4678444e-002 -1.5937408e-001 ...

FI2DGP001MOD001.csv
1, 76.4430824288192, 76.2400219176979, 10, 1,0.0844284641160844, ...
2, 27.5347594941493, 26.6849814069451, 19, 1,0.0711585542069055, ...
3, 48.709883495749, 48.2827756129209, 24, 1,0.12242477122602, ...
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