
Edited by

Mathematical Methods 
and Operation Research in 
Logistics, Project Planning, 
and Scheduling 

Zsolt Tibor Kosztyán and Zoltán Kovács
Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics



Mathematical Methods and Operation
Research in Logistics, Project
Planning, and Scheduling





Mathematical Methods and Operation
Research in Logistics, Project
Planning, and Scheduling

Editors

Zsolt Tibor Kosztyán

Zoltán Kovács
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Preface to the Special Issue on “Mathematical Methods and
Operation Research in Logistics, Project Planning,
and Scheduling”

Zsolt Tibor Kosztyán 1,* and Zoltán Kovács 2,*

1 Department of Quantitative Methods, Institute of Management, Faculty of Business Administration and
Economics, University of Pannonia, 8200 Veszprem, Hungary
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* Correspondence: kosztyan.zsolt@gtk.uni-pannon.hu (Z.T.K.); kovacs.zoltan@gtk.uni-pannon.hu (Z.K.)

In the last decade, the Industrial Revolution 4.0 brought flexible supply chains and
flexible design projects to the fore. Nevertheless, the recent pandemic, the accompanying
economic problems, and the resulting supply problems have further increased the role
of logistics and supply chains. Therefore, planning and scheduling procedures that can
respond flexibly to changed circumstances have become more valuable both in logistics
and projects. The aim of this Special Issue was to gather novel, original publications that
offer new methods and approaches in the field of planning and scheduling in logistics and
project planning that are able to respond to the challenges of the changing environment.
The response of the scientific community has been significant, with many papers being
submitted for consideration, and, finally, twelve papers were accepted after going through
a careful peer-review process based on quality and novelty criteria.

The paper by Abusaq et al. [1] suggests a decision support system for optimizing
biomass-based wood pellet production supply chain network design (WPP-SCND). The
WPP-SCND decision system minimizes the total supply chain (SC) cost of the system while
also reducing carbon emissions associated with wood pellet SC activities. A fuzzy flexible
robust possibilistic programming (fuzzy-FRPP) technique is developed for solving the
suggested uncertain WPP-SCND model.

The paper authored by Zhanh et al. [2] proposes a mathematical formulation of
the multi-trip time-dependent vehicle routing problem with split delivery (MTTDVRP-
SD). It analyzes the pattern of the solution, including the delivery routing and delivery
quantity. The paper develops an algorithm based on the simulation anneal (SA) frame-
work. The proposed algorithm is compared with random–simulation anneal–CPLEX
(R-SA-CPLEX), auction–genetic algorithm–CPLEX (A-GA-CPLEX), and auction–simulation
anneal–CPLEX (A-SA) on 30 instances at three scales, and its effectiveness and efficiency
are statistically verified.

In the paper by Kovács et al. [3], the authors identify different aggregation scenar-
ios in risk assessment. They summarize the requirements of aggregation functions and
characterize different aggregations according to these requirements. They critique the
multiplication-based risk priority number (RPN) used in existing applications and propose
using other functions in different aggregation scenarios. The behavior of certain aggre-
gation functions in warning systems is also examined. The authors find that, depending
on the aggregation location within the organization and the purpose of the aggregation,
considerably more functions can be used to develop complex risk indicators.

The paper by Yan et al. [4] studies a single-machine problem with resource allocation
and deteriorating effect. Under group technology and limited resource availability, the goal
was to determine the schedules of groups and jobs within each group such that the total
completion time was minimized.

Mathematics 2023, 11, 232. https://doi.org/10.3390/math11010232 https://www.mdpi.com/journal/mathematics1
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In the paper by Radácsi et al. [5], a model and solution are shown for controlling the
inventory of a logistics warehouse in which neither satellite positioning nor IoT solutions
can be used. The proposed model involves three steps. In the first step, a traversal path
definition provides an optimal solution, which is pre-processing. This is in line with the
structure and capabilities of the warehouse. In the second step, the pre-processed path
determines the real-time movement of the drone during processing, including camera
movements and image capture. The third step is post-processing, i.e., the processing of
images for QR code identification, the interpretation of the QR code, and the examination
of matches and discrepancies for inventory control.

The paper by Nagy et al. [6] solves the Dynamic Capacitated Arc Routing Problem
(DCARP) combinatorial optimization problem by the Artificial Bee Colony (ABC) algorithm.
The problem requires identifying such route plans on a given graph to several vehicles
that generate the least total cost, and it considers dynamic changes in the problem. The
proposed algorithm excels in finding a relatively good quality solution in a short amount
of time, which makes it a competitive solution.

The paper by Ogazón et al. [7] focuses on foodbank networks. Foodbank networks
provide adequate infrastructure and perform logistics activities to supply food to people in
need on a day-to-day basis. The paper proposes a mathematical formulation for the design
of logistics processes, including collection, transshipment, and aid distribution, over a
network of foodbanks inspired by the real case of Bancos de Alimentos de México (BAMX).

The paper authored by Alkahtani [8] formulates mathematical models and provides
an optimization algorithm for process outsourcing, considering imperfect production with
variable quantities for effective supply chain management. The numerical experiment was
performed based on the data taken from the industry for the application of the proposed
outsourcing-based SCM model.

The paper by Bognár and Hegedűs [9] proposes a new risk assessment method. The
proposed PRISM (partial risk map) methodology is a risk assessment method developed
as the combination of the failure mode and effect analysis and risk matrix from the risk
assessment methods. Based on the new concept of partial risks, three different aggregation
functions are presented for assessing incident risks.

The paper by Khan et al. [10] presents an inventory model that involves non-instantaneous
deterioration, nonlinear stock-dependent demand, and partially backlogged shortages by
considering the length of the waiting time under a hybrid prepayment and cash-on-delivery
scheme. The corresponding inventory problem is formulated as a nonlinear constraint
optimization problem.

In the paper by Ambrosino and Cerrone [11], a variation of the Rich Vehicle Routing
Problem (RVRP) is solved in city logistic problems. The authors deal with a multi-period
vehicle routing problem with a heterogeneous fleet of vehicles, with customers’ require-
ments and company restrictions to satisfy, in which the fleet composition has to be defined
daily. A mixed integer programming model was proposed, and an experimental campaign
was presented to validate it.

The paper by Álvarez-Miranda and Pereira [12] proposes a hybrid method for design-
ing delivery zones with an objective based on improving the quality of express delivery
services. The proposed method combines a preprocess based on the grouping of demand
in areas according to the structure of the territory, a heuristic that generates multiple can-
didates for the distribution zones, and a mathematical model that combines the different
distribution zones generated to obtain a final territorial design.

As Guest Editors of this Special Issue, we are grateful to all authors who contributed
their articles. We would also like to express our gratitude to all reviewers for their valuable
comments on the improvement of the submitted papers. The goal of this Special Issue was
to attract quality and novel papers in the field of “Mathematical Methods and Operation
Research in Logistics, Project Planning, and Scheduling”. It is hoped that these selected
research papers will be found to be impactful by the international scientific community and
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that these papers will motivate further operations research for solving complex problems
in various disciplines and application fields.

Conflicts of Interest: The authors declare no conflict of interest.
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A Districting Application with a Quality of Service Objective
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Abstract: E-commerce sales have led to a considerable increase in the demand for last-mile delivery
companies, revealing several problems in their logistics processes. Among these problems, are
not meeting delivery deadlines. For example, in Chile, the national consumer service (SERNAC)
indicated that in 2018, late deliveries represented 23% of complaints in retail online sales and were
the second most common reason for complaints. Some of the causes are incorrectly designed delivery
zones because in many cases, these delivery zones do not account for the demographic growth of
cities. The result is an imbalanced workload between different zones, which leads to some resources
being idle while others fail to meet their workload in satisfactory conditions. The present work
proposes a hybrid method for designing delivery zones with an objective based on improving the
quality of express delivery services. The proposed method combines a preprocess based on the
grouping of demand in areas according to the structure of the territory, a heuristic that generates
multiple candidates for the distribution zones, and a mathematical model that combines the different
distribution zones generated to obtain a final territorial design. To verify the applicability of the
proposed method, a case study is considered based on the real situation of a Chilean courier company
with low service fulfillment in its express deliveries. The results obtained from the computational
experiments show the applicability of the method, highlighting the validity of the aggregation
procedure and improvements in the results obtained using the hybrid method compared to the initial
heuristic. The final solution improves the ability to meet the conditions associated with express
deliveries, compared with the current situation, by 12 percentage points. The results also allow an
indicative sample of the critical service factors of a company to be obtained, identifying the effects of
possible changes in demand or service conditions.

Keywords: districting; last-mile delivery; hybrid heuristics

1. Introduction

A supply chain is the set of elements that allows the development and delivery of a
product or service to its customers. Among the stages that can be found in a chain, one of
the most important is the final stage, which is usually known as the last-mile service.

The last mile is the process by which a product is transported from the closest distri-
bution center to the final customer [1]. This last-mile concept has been gaining increasing
importance due to the enormous growth of e-commerce as well as the current COVID-19
pandemic situation, which limits people’s mobility. This is demonstrated, for example,
by statistical data from Statista, where one can see that in mid-2014, online sales generated
1.3 trillion dollars worldwide, reaching 4.2 trillion dollars in 2020 [2].

Currently, the last-mile logistics process is considered one of the most crucial in the
supply chain, not only because of the current importance of e-commerce but also because
of how decisive it is and the impact it has in terms of customer satisfaction. It is also one
of the points along the chain experiencing the most problems and that generates the most
costs in the entire chain [3].

Mathematics 2022, 10, 13. https://doi.org/10.3390/math10010013 https://www.mdpi.com/journal/mathematics5
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These problems can be structured in several groups. On the one hand, there are
environmental problems that have to do with the ecological vision and commitment of each
company. On the other hand, there are transportation problems caused, among other causes,
by road congestion in densely packed areas, which prevents the efficient distribution of
products. There are also problems associated with the relationship between the service
and the customer with respect to the delivery of the product, such as not meeting delivery
deadlines, failed delivery attempts due to the recipient not being present at the destination
address, deliveries rejected by the customer given the poor condition of the packaging, and
even deliveries not fulfilled due to lost packages. In summary, this final distribution phase
presents several problems that need to be specifically addressed for an efficient operation.

The process of distribution to the final customer is usually carried out in two different
ways: either by the workers of the company itself that sells the product or by outsourcing it
to a logistics and transport company that performs the service of transfer of documents,
parcels, or luggage of various customers from one origin to a destination (courier). This
outsourcing is known as third-party logistics (3PL), is frequently used internationally, and
is the most widespread in the Chilean market, since 3PLs have more experience, which
leads them to having sustainable competitive advantages over time [4].

The courier market in Chile has experienced considerable changes in demand due
to e-commerce, resulting in lower customer service metrics since it has been difficult for
distribution companies to adapt to the increase in demand. This can be observed in the
statistical data of customer satisfaction in the 2019 semiannual report of the ProCalidad de
Chile organization and by the data provided by the website of the National Consumer Ser-
vice (Servicio Nacional del Consumidor—SERNAC). In the ProCalidad data, the Couriers
sector is classified into a group of many problems [5].

On the other hand, the National Consumer Service in 2018 received a total of 330,000 com-
plaints, of which 33% were associated with retail. The online retail sales complaints were
broken down into 53% due to noncompliance with the contracted conditions, 23% due to
delays in the delivery of what was purchased, and 11.7% due to poor quality of service [6].
In addition, in 2020 and only during the first semester (during the period of pandemic caused
by COVID-19), 72,000 complaints were received related to the delay of deliveries of products
sold through e-commerce [7].

These statistics shows the relevance of proper on-time delivery as an integral part of
any Customer Relationship Management (CRM) [8] strategy of a successful courier com-
pany. A CRM strategy should lead to improved customer satisfaction metrics, that helps to
ensure loyal customers [9,10]. In order to achieve these results, a delivery company requires
an effective logistic strategy, in which last-mile logistics play an important role. In fact,
last-mile logistic were identified as a critical step with successful logistic strategies in early
e-commerce literature, see [11] for an example, being delivery speed and delivery reliability
two of the required capabilities of any successful last-mile logistics implementation [4].

This research originates from and studies a case observed in a courier company
operating in the city of Antofagasta (Chile). Antofagasta is the mining capital of the country,
and due to being isolated, suffers from a situation in which the distribution problems
mentioned above are exacerbated. The company currently works with a distribution
model that divides the city into 10 delivery zones, each of them assigned to a third-party
delivery person who works with a long-term contract, freely organizing their operations
within the assigned zone. The company offers various products that basically depend
on the agreed delivery time. The most important service with the greatest number of
problems is the Overnight (ON) service. Overnight service requires delivery before 11:00 a.m.,
with noncompliance of that deadline leading to the highest number of customer complaints
and the highest noncompliance with internal service quality metrics. As an indicator,
the initial service situation at the time this study was conducted showed that only 83% of
deliveries met this condition, with the company’s short-term goal being to reach a level of
service quality equal to 90%.

6
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To alleviate the problems identified, the company needs to reevaluate its last-mile
operations, moving from a cost-saving to a customer-based operational focus. Among the
different changes that the company has to implement, this work focuses on the redesign of
the delivery zones geared towards the fulfillment of the express delivery service needs.

Note that while the design of delivery areas falls within a broader class of problems
known as districting in the scientific literature, see Section 2 for a review, our proposal
differs from previous work on the metric used to evaluate the candidate districting plans.
While the districting literature usually focuses on finding districts with a “fair” (i.e., even)
distribution among them, our goal is to optimize a quality of service associated to the total
expected number of late deliveries. This change modifies the structure of the problem,
as the proposed method focuses on an overall metric built from the contributions of the
selected delivery zones rather than on a similarity operational metric among delivery zones.

To solve this novel problem, a multi-stage hybrid optimization method is proposed
that will be able to design new zones considering the critical factors of service. These
delivery zones are defined by keeping in mind the quality of overnight service consid-
ering the time available for delivery and an estimate of the expected number of on-time
deliveries according to the characteristics of the proposed delivery areas. The proposed
procedure performs a preprocessing of the zone based on practical recommendations to
add the deliveries in basic units assignable to the delivery zones, which allows maintaining
some of the current practices’ territorial boundaries between distributors. Subsequently,
a procedure is used that combines a random territory generator and a local improvement
procedure, which generates alternative territorial configurations. Finally, these alternative
configurations are combined through an integer linear program to obtain a final proposal.
This procedure is tested in instances derived from the daily operations of the company,
as well as in a case study situation, showing significant improvements with respect to
current operations. Specifically, it is possible to achieve a level of quality of service greater
than 95%, which illustrates the improvement obtained by the proposed process. Our
experiments show the advantages of the different elements of our solution methodology.
First, the aggregation approach balances computational requirements with solution quality,
as more fine-grained aggregation schemes increase computational times without leading
to better solutions in terms of quality. Second, the proposed constructive procedure fol-
lowed by a local search method is able to provide high-quality delivery areas. Moreover,
the generated areas are sufficiently diverse to provide a pool of partial solutions, which the
combination procedure is able to use to obtain new and better districting plans.

The rest of the work is structured as follows. Section 2 performs a study of the avail-
able literature associated with the design of territories. Section 3 describes the problem
addressed and the data processing performed. Section 4 describes the proposed resolu-
tion procedure, while Section 5 details the results of the experiments performed. Finally,
Section 6 describes the conclusions reached and the possible extensions to be made in
the work.

2. Literature Review

The problem of territory design or district design is a problem that consists of grouping
small geographic areas, called basic units, into larger geographic groups called districts
or territories in such a way that these territories are acceptable according to the planning
criteria considered [12]. In the 1960s, Hess et al. [13] proposed the first works on the
design of territories in an electoral context. In his research, the authors use a mathematical
model and a heuristic to create electoral districts. The intention was to find territories
with a similar number of voters (i.e., following the premise of “one man, one vote”)
while avoiding the manipulation of electoral constituencies to favor certain candidates
or parties (a defect known as “gerrymandering” in the literature). Subsequently [14]
extended the same approach to a problem of the design of sales territories. In this case,
the objective is to achieve equitable territories with respect to the associated workload
between different vendors.

7
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These investigations served as a starting point for the area, which was later expanded
to a wide range of applications and resolution methods, both exact and heuristic or meta-
heuristic. Within the different applications, we can find both in the areas already mentioned,
that is, the design of political territories [15–17] and that of sales territories [18–20], as in
other areas, such as the design of service areas, in settings as diverse as home health
care [21,22], police patrolling [23,24], the design of school districts [25], the design of energy
distribution networks [26], or waste collection [27,28]. Finally, and of special interest for
this work are the applications related to the design of distribution territories [29,30], which
is the area in which this work is focused. The design of distribution territories consists of
designing zones for the pick up and/or delivery of products to customers residing in the
zone. Each of these areas is assigned one or more carriers, which will establish one or more
service routes each day, starting from a warehouse where the products are stored.

Regardless of how the territories obtained are applied, there are a series of require-
ments and attributes that all the problems of territory design share and that serve as a
point of comparison between the different studies [31]. Within the requirements, there
is a unique assignment that implies that each basic unit, that is, each geometric object
associated with customers or users, must be assigned to a single territory. Another criterion
is the balance between different territories according to some measure. For example, in the
distribution of goods, the measure is usually the workload, whose balance seeks to avoid
comparative differences between workers. This workload can be represented, for example,
by the number of customers in each zone [30].

The compactness of the generated territories is another of the typical requirements
for this type of problem. The geometric interpretation of compactness corresponds to a
preference for territories with rounded or rectangular shapes that do not have distortions
or holes. This helps, for example, that the districts include customers that are close to each
other, favoring efficient operations (for example, delivery routes). Finally, another typical
requirement is that of contiguity, which is defined as the ability to travel between basic
units of the same territory without having to leave it. Although these last two criteria have
specific definitions, there is no single representation of the concepts of compactness and
contiguity since they depend largely on the problem and its attributes.

Among the attributes of the problem, we highlight those linked to the type and
characteristics of the basic units (the representation of the units or customers to be grouped)
and of the districts (the groups to be created). For example, the type of basic unit indicates
how customers are represented in space and may correspond to coordinates [29], lines, or
geometric figures that define urban blocks [32], while the characteristics of the districts, such
as the number of territories to be created, are usually fixed according to the characteristics
of the system being designed (for example, it can be equal to the number of carriers that
the distribution service provider has) or the variables that are to be optimized [29,33,34].

Considering that the territory design problem corresponds to an optimization problem
in which one tries to optimize some objective function that indicates the quality of the
solution offered by an optimization method, it is necessary to review the resolution methods
that have been used in the literature for the problem of territory design and specifically for
the design of territories in the area of logistics and distribution.

Among the methods that can be found are the exact methods based on mathematical
programming techniques, which seek to obtain a global optimum as a solution to the
problem. Optimality has only been achieved in cases with few customers due to the
computational complexity of the territory design problem, which is a computationally
NP-hard problem [35]. Among the different exact methods are [21,26,36].

Another type of available procedure is one that combines heuristics or metaheuristics
with mathematical programming techniques, usually called matheuristics [37]. In [29] a
large-scale design of territories is performed using data from up to 45,000 delivery points,
in which the objective is to divide a set of customers into the minimum possible number
of territories that satisfy the geometric condition of having a rectangular shape, as well as
considerations of vehicle capacity and the time limit of the distribution service. To do this,
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ref. [29] apply a column generation procedure based on an extension of the capacitated
clustering problem with which they search for candidate territories that meet the conditions
and considerations described above, combining it with a metaheuristic based on the tabu
search to select the best candidates.

Another type of research that also combines a heuristic method with another based
on an exact method is that by [38]. In this work, territories are designed by partitioning
concentric rings around the distribution center with the objective of minimizing transporta-
tion costs. These costs include vehicle operating expenses, such as the cost per mileage and
delivery time, as well as an extra cost in case of exceeding the service time limit. It is impor-
tant to mention that to reduce the computational effort, the Beardwood approximation [39]
is used to calculate the service time and the distance traveled in each territory. The method
used to solve this problem is an extension of a gradient method combined with a genetic
algorithm. The procedure differs from a previous version by the same researchers [34]
in that the formulation of the variables is continuous, which avoids cumbersome data
preparation and the creation of disjointed concentric cell partitions.

In [33] a hybrid approach is also carried out in the design of territories for a meat
distribution company. In this case, two K-means algorithms are used to partition the area
and create candidate territories, which are then combined with a mathematical model
based on formulations of a set covering model, which seeks to minimize the number of
territories needed to perform the distribution service. It is important to mention that in
this research, the level of service is represented, approximating the time it takes for the
distribution service with the formula proposed in [40] since it allows an approximation
with differently shaped territories without assuming a distribution of the customers in
the zone.

A different resolution method consists of using tools derived from computational
geometry. Generally, these methods are based on Voronoi diagrams to define territories.
A Voronoi diagram consists of partitioning a plane from the intersection of the bisectors
of a set of points. Through the intersection of these bisectors, polygons are formed that
represent the area that contains the positions closest to the points of the set. In [41] the use
of a weighted multiplicative version of these diagrams to define territories was studied.
The weighted multiplicative version allows greater flexibility to create territories with a
balanced number of customers. In this research, the balance criterion approximates the
time it takes for vehicles to deliver to customers in each territory using the Beardwood
formula, adding the round-trip distance to the warehouse and considering the service time
for each customer.

Finally, there are heuristic methods that are ad hoc procedures for solving the problem.
Within these are the metaheuristics that can be classified into three groups according to the
basic ideas they represent: constructive procedures, neighbor exploration procedures, and
population procedures. The constructive procedures yield a final solution through small
steps in which simple decisions are made (for example, the inclusion of a basic unit in a
district) and, generally, they take the one that seems the best choice in each step. On the
other hand, metaheuristics based on neighbor exploration begin from an initial solution of
the problem that is progressively improved through small modifications.

Finally, population-based metaheuristics procedures imitate the process of biological
evolution, which consists of constructing new solutions from the combination of others.
Among the numerous metaheuristics available for this type of problem, the most common
are the Greedy Randomized Adaptive Search procedure, GRASP, metaheuristic [30,42–44],
genetic algorithms [45], simulated annealing [23] and the tabu search [46].

Finally, it should be noted that although the bulk of the literature considers problems
with a single objective, there are several studies that try to optimize two or more functions
together in the field of service territories [47], political territories [48], or sales territories [32].
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3. Problem Description

This section describes the problem addressed in this work, indicating the requirements
and attributes of the problem, the starting data, and the objective sought in it.

As a starting point, there is a historical log of addresses with deliveries made in a
delivery zone—in our case a city. The basic demarcations of the city are known (geographic
limits, streets, and main avenues). These demarcations constitute the set of geographical
characteristics that the company and the distributors use to designate the boundaries
of the distribution territories. For each customer, their spatial coordinates are available
(that is, their latitude and longitude) as well as the days in which a delivery was made
to the customer (so the frequency of deliveries for each customer can be obtained, that is,
the percentage of days in which the customer has had one or more scheduled deliveries). We
also know the spatial location of the warehouse from which the deliveries begin, the traffic
speed on expressways (such as “beltways” and highways) and within the city (through the
streets), as well as the number, k, of territories to be designed.

In the first phase of preprocessing, basic demarcations are used to group customers
into basic units. To do this, the city is divided using these demarcations, which are the
same ones that the distributors use to delimit their areas in a logical way (that is, through
avenues, main streets, and other physical divisions of the territory). The use of these
demarcations has two benefits: first, it allows creating logical territorial groupings with the
daily operations observed in practice; and second, it ensures that the territories (distribution
zones) are better adopted by the workers and the managers of the company. This is an
important step to ensure the applicability of the solutions provided by our solution method.
Due to the particularities of the operations considered in our case study, see Section 5.2,
the aggregation into basic units helps stakeholders to voice their opinion on how clients
should be grouped into small areas that are to be serviced together.

Figure 1 shows an example of the divisions created in one zone of the city.

Figure 1. Divisions created in a zone of the city studied in the case study. The different groupings
are shown in different colors, while the roads used to delimit the territories are highlighted in green.
Additionally, the adjacency among basic units are shown through the inclusion of two lines between
adjacent territories.

Two basic units are said to be adjacent if they share a boundary. Figure 1 indicates
these adjacency relationships through two lines. Computationally, the adjacency relations
are coded through a graph G(V, E), where the vertices, V, are equivalent to the basic units
and the edges, E, correspond to the adjacency relations between the basic units associated
with both ends of the edges.

Each basic unit also has two associated labels that correspond to its equivalent work-
load and its center of mass. The equivalent workload of a basic unit is equivalent to the sum
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of the delivery frequencies of its addresses, the blue dots that can be seen in Figure 1, that
is, the expected number of daily deliveries associated with customers located in that basic
unit. The center of mass of each basic unit corresponds to the average of the coordinates of
the customers weighted by their delivery frequency.

The basic units should be grouped into k territories under conditions of contiguity
and quality of service. The quality of service plays the role of balance in other problems
of territory design, although it does not necessarily imply that a regular distribution of
deliveries is generated. Note that compactness, as described in Section 2 is not considered
explicitly, but the blocks used to design the basic units inherently include an aspect of
compactness, and the quality of service function that will be shown below penalizes the
creation of unbalanced territories or odd structures in terms of their shape or size.

The condition of contiguity is established as a hard condition, that is, as a constraint
that all solutions must meet to be considered valid and that forces the vertices of the basic
units making up a territory to be connected in graph G(V, E). This condition can be verified
by checking whether the subgraph induced by the subset of vertices associated with the
basic units making up the territory constitutes a connected graph. This operation is easy to
evaluate through an algorithm such as that of Hopcroft and Tarjan [49].

The quality of service will be the objective criterion used to evaluate the different
territorial proposals and corresponds to an approximation of the expected number of late
deliveries based on the proposed territorial design. Note that these characteristics makes
our work depart from other works, as we focus on a service objective and estimate number
of deliveries and not the cost of performing the delivery. The approach adopted in this work
is constructed through an estimation of the time required by three components: (1) the time
required to reach the territory from the logistics center (the warehouse) and (2) the service
time required to deliver to each of the customers in the territory, and (3) the travel time in
the territory between the various customers. The time to return to the warehouse is not
taken into account since after making express deliveries, other deliveries will continue to be
distributed throughout the day. The estimation of the service time allows the calculation of
the number of maximum deliveries that can be made within the delivery window set by the
service, and the difference between the expected number of deliveries and the maximum
number of possible deliveries—in case such a difference is positive, it will be our estimate
of the quality of service.

Each of the three time estimates is determined as follows.
The time it takes for the carrier to go from the distribution center to a territory, which

we call T0, is calculated as the minimum distance between the distribution center and
the territory multiplied by the average speed of travel on expressways. The calculation
of this distance is performed by looking up the minimum distance between each basic
unit that makes up the territory and the distribution center and selecting the minimum
between them.

To determine the expected route time within the territory, the tour length to visit
the customers is estimated. Generally, this step would correspond to the resolution of a
traveling salesman problem (TSP) in case of knowing the specific customers that must be
served. Given that the exact customers of each workday are unknown and the TSP is a
complex problem in itself [50], it is decided to estimate the tour length using a “distribution-
free” approximation as proposed in [40] and then multiply the length of the route by the
average speed of travel observed within the urban center, which we denote as sw.

The estimation of the length of the tour, d, associated with the problem corresponds
to (1)

d = 2.791
√

nσ̂′
xσ̂′

y + 0.2669

√
σ̂xσ̂y

d̄xd̄y
nAs, (1)

where:

• d̄x (d̄y) is the average of the distances between the delivery points and the central
horizontal axis (central vertical axis);
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• σ̂x (σ̂y) is the standard deviation of Tpoints;
• σ̂′

x (σ̂′
y) is the standard deviation of the absolute distance of the delivery points with

the central horizontal axis (central vertical axis);
• As is the area of the territory on which the approximation will be made;
• n is the number of delivery points within the territory.

As in [40], the central horizontal axis and the central vertical axis are defined as the
midpoint of the space in which the distributions are made.

Finally, the service time per delivery, which we call Ts, corresponds to an estimate of
the time it takes for the recipient of the package to open the door, receive the package and
sign the document that proves receipt of the delivery. This time must be multiplied by the
number of deliveries to be made.

By combining the three factors, Equation (2), an estimate of the total time required to
serve a territory, T, is obtained:

T = T0 + Tsn + dsw. (2)

Given that it is intended to determine the maximum number of customers to serve
in the time available for deliveries and that all the parameters of (2) are known except the
number of customers n, the procedure to determine the quality of the service will obtain
the value maximum of n such that (2) is less than the available time window for deliveries,
and then this number will be compared with the number of deliveries within the territory.
If the maximum number is less than the number of deliveries that must be made, then the
difference between both will correspond to the number of late deliveries of the territory;
otherwise, it is estimated that all deliveries can be made on time so the quality of service
would be 100%, i.e., no late deliveries. Note that the description and the implementation
aim to minimize the expected number of late deliveries, a measure of “disservice”, rather
than to maximize the number of deliveries on-time. For all intents and purposes, both
objectives are identical and, while the code internally minimizes disservice, solutions are
reported in terms of quality of service.

In summary, the problem can be formulated as the assignment of the basic units to k
groups in such a way that:

1. Each basic unit belongs to a single grouping (i.e., to a single territory);
2. The basic units of each grouping generate a related subgraph;
3. The sum of the average number of late deliveries in the set of territories is minimized.

As mentioned above, the model does not verify the compactness of the solution,
but the function that determines the length of the delivery route, Equation (1), favors the
construction of compact districts when evaluating the deviations of the coordinates of the
deliveries. Another important aspect of the model described is that when estimating the
load of each basic unit as the value observed for the deliveries made during a period of
time in that geographical area, the model does not work directly with customer history.
This avoids the biases that could be created by assigning the past locations of customers as
the only existing basic units. Furthermore, it is no longer assumed that historical delivery
locations will be the same as future deliveries, nor will the distribution of deliveries in the
future be similar to the historical distribution.

4. Proposed Solution Methodology

This section details the hybrid procedure proposed to solve the problem. This pro-
cedure is divided into two parts. The first part, which is described in Sections 4.1 and 4.2,
corresponds to a multi-start procedure that generates alternative solutions to the prob-
lem through a constructive procedure followed by a local improvement procedure. Al-
though the multi-boot procedure has certain requests with a GRASP metaheuristic, it differs
from it in the use of a completely random constructive strategy against GRASP in that the
constructive phase limits the selection made at each step to a subset of candidates. This
part does not use the quality of service function shown in Section 3 but rather optimizes an
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alternative function with less computational calculations, which significantly reduces the
total time required by the algorithm.

In the second part, the level of service of each territory generated in the first part is
evaluated, and a mathematical model is solved that attempts to combine the territories
constructed by the multi-boot procedure looking for new and better combinations of
territories that configure the final territory design. The evaluation of the quality of the
proposed method, as well as the contribution of the second phase to the quality of the final
procedure, is shown in Section 5.

4.1. Constructive Heuristic

The constructive phase is responsible for forming feasible territories, which will act as
initial solutions for local improvement. The constructive method is detailed in Algorithm 1.

Algorithm 1 Description of the constructive algorithm
Input: Number of territories k; Graph G(V,E); Coordinates of each basic unit.
Output: Solution of the problem with k territories.
1: Select k different basic units at random and assign to each territory.
2: repeat
3: for each territory κ and basic unit v do
4: if v is not part of a territory but is adjacent to the territory κ then
5: Add the pair (v, κ) to the list of iteration candidates.
6: Select a candidate pair according to (3) and assign the basic unit v to the κ territory.
7: until Base units remain unassigned

The first step of the constructive phase is to generate an amount of “seeds” for the
territories equal to the number of clusters to be constructed. Each of these seeds corresponds
to a different basic unit and will serve as a point from which the different territories
will “grow”.

The next step is to find the basic units that can be assigned to the clusters under
construction. Initially, the basic assignable units are those that are adjacent to the seeds of
the clusters and that do not yet form a territory. Subsequently, they will correspond to any
basic unit that is not part of a territory and that is adjacent to another basic unit that is part
of a territory. Note that by restricting the search for candidates to basic units adjacent to
basic units that are part of a territory, the connectivity condition of the resulting groupings
is ensured.

After determining the candidates, we proceeded to calculate the distance between
each of the candidates and the “seed” of its adjacent territory, considering as the distance
between two basic units the Euclidean distance between the centers of mass of both basic
units and a candidate-seed pair whose probability is proportional to the inverse of the
distance between the “seed” and the district is chosen (that is, the shorter the distance of the
basic unit with the seed, the greater the probability of being chosen). Let dvκ be the distance
between a candidate basic unit v and a territory κ and let V′

κ be the set of all candidates to
be assigned to district κ. Then, (3) indicates the probability that the basic unit v is selected
during this phase and is assigned to territory κ,

pvκ =
dvκ

∑k
κ′=1 ∑v′∈V′

k
dv′κ′

. (3)

Equation (3) gives each pair of candidate basic unit and territory a probability propor-
tional to its distance between the basic unit and the “seed” of the district, dvk the numerator
of the equation. The denominator ensures that the sum of probabilities of all candidates
equals 1, by dividing each numerator by the total sum among all numerators of the pairs of
candidate basic units and territories.
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This approach, in which a probability is assigned to any candidate instead of limiting
the decision to the best candidate or a subset of candidates, allows increasing the diversity
of solutions facing the subsequent steps of local improvement and solution combinations.

This process of candidate identification and the assignment of a candidate to a group-
ing is repeated until all basic units are part of a territory. These solutions do not take into
account the objective of the problem directly but do try to obtain compact territories by
assigning basic units, seeking to minimize distances with respect to a central unit.

4.2. Local Search Procedure

With the initial solution constructed, a local search is performed to “improve” this
solution with respect to a metric that describes the balance of deliveries between different
districts. The development of the local search phase is summarized in Algorithm 2.

Algorithm 2 Description of the local search phase
Input: Initial solution; Number of territories k; Graph G(V,E); Workload of each basic unit.
Output: Solution of the problem with k territories.
1: repeat
2: Initialize better change to null change
3: for each basic unit v do
4: for each territory κ do
5: if the assignment of v to κ is feasible then
6: Evaluate balance load, bl, according to Equation (4)
7: if the solution is improved and better change is improved then
8: Save v and κ as better change
9: if better change is not null change then

10: Implement change
11: until better change is null change

The neighborhood used in the improvement process is defined by changing the
assignment of a basic unit. Such change corresponds to extracting a basic unit (other than
the seed of a territory) from some grouping and adding it to another grouping, maintaining
the condition of contiguity (connectivity of territories). After moving, it is verified if the
movement is feasible, that is, the two territories affected by the change continue to define
related subgraphs in G(V,E), and it is evaluated whether there were improvements with
respect to an auxiliary function that allows us to analyze the balance in the workload of the
resulting territories. For this (4) is evaluated where v is the basic unit that leaves district κ
and becomes part of district κ′, c(v) is the workload of the basic unit and C(κ) and C(κ′)
are the current workloads of districts κ and κ′ respectively. In the case that bl, Equation (4),
is positive, the move is considered an improvement since it reduces the load of the most
loaded district associated with the change.

bl = max
{

C(κ); C(κ′)
}− max

{
C(κ)− c(v); C(κ′) + c(v)

}
. (4)

Equation (4) evaluates the effect on the workload balance between the districts in-
volved in the change. By comparing the workloads among the most loaded districts,
Equation (4) helps to identify candidate districting plans in which the workload differences
among districts are small.

Note that the verification performed in (4) does not correspond directly with the
objective function of the problem, but the calculation time of (4) is less, and preliminary
computational experiments showed that territories with similar workloads had better
quality of service values. The logic behind this result is that distributing deliveries equitably
between delivery zones helps to obtain territories with similar workloads and avoids
concentrating many deliveries in some districts, while others do not have enough; see
Section 5.2 for an analysis of the associated importance to balance the number of deliveries
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for each district. In addition, seeing the equal distribution of work between the different
distribution zones is easily interpreted within the operations of the company.

The local search is organized as a “best-improvement” procedure; that is, all possible
feasible insertions are considered, of which the one that generates the greatest impact on
the balance is kept. When all the changes have been reviewed, the change that leads to the
greatest improvement in the auxiliary function is applied, and then all possible changes
are checked again. The algorithm ends when there is no feasible change that improves the
value of the auxiliary function. The implementation chooses to organize the search as “first
improvement” since the second option showed biases in the order in which the basic units
were considered within the procedure. In the case of using a “best-improvement” type
move, it is observed that the algorithm tends to vary the districts and basic units involved
in the changes made more frequently than in the “first-improvement” type search.

4.3. Combination of Solutions through Integer Programming

As the aforementioned heuristic generates many feasible solutions and the territories
that comprise it have not been directly evaluated with the quality of service metric that is
sought to be optimized, it is important to carry out a process that evaluates the territories
according to the final metric and selects the best combination of territories according to this
criterion. For this reason, the third step of the proposed method proposes a mathematical
model that selects the best subset of territories among those found by the feasible solutions
of the heuristic to reduce the average number of expected late deliveries. This third step
also contributes to a better use of the solutions found during the first phase and can be
seen as a phase of search intensification similar to a common “path relinking” in many
implementations of the GRASP metaheuristic [51].

Let I be the set of feasible territories obtained as a result of the first phase. Each territory
i ∈ I has an associate number of late deliveries τi obtained as indicated in Section 3 and a
vector ai of length |J| which has value 1, aij = 1, if the territory i includes the basic unit j
(j ∈ J) and value 0, aij = 0, if not. For each territory i ∈ I a binary variable xi is defined
that will take value 1 if the territory is selected and 0 if not.

With these data and variables, Formulations (5)–(8) constitute a valid formulation for
the problem of selecting territories among those available.

z∗ = min ∑
i∈I

τixi (5)

s.t ∑
i∈I

xi = k (6)

∑
i∈I

aijxi = 1, ∀j ∈ J (7)

xi ∈ {0, 1}, ∀i ∈ I (8)

Equation (5) represents the objective function, which seeks to find a design of territories
that has the least number of late deliveries. This objective is achieved by adding the number
of late deliveries, τi, of the districts selected by the solution to the formulation, those
districts whose variable τi take value 1. Constraint (6) indicates that the set of territories
chosen must be composed of a number of k territories by enforcing that the number of
districts whose variable take cvalue equal to 1 is exactly equal to a predetermined constant k
which is a parameter of the problem. Constraint set (7) indicates that all urban blocks have
to be assigned to a territory, by ensuring that exactly one district is selected, its variable
takes value equal to 1, if it includes the urban block, that is, if aij = 1. Finally, the decision
variable is defined as a binary variable, as observed in condition (8). The resolution of the
mathematical model is performed through a standard integer linear programming solver;
see details in the next section. The model corresponds to a set partitioning problem with
the additional condition that exactly k districts must be chosen among the |I| available.
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Given that each of the territories of the set of territories meets the conditions of
connectivity, that the model ensures unique assignment of each basic unit to a territory
and that the number of districts to be constructed is chosen, the resulting solution of
optimizing (5)–(8) is a valid solution for the design of territories analyzed. In addition, this
model always has a feasible solution since each solution obtained during the local search
procedure is a feasible solution to the problem. Note that this step can be generalized to
any other districting problem in which the combination of different districting solutions
can be seen as a partition problem and the objective function can be obtained through the
summation of the aggregation of each district.

Finally, it is important to comment that sometimes the proposal presented can generate
solutions that do not meet some additional conditions of service that are useful in practice.
In practice, these conditions are presented in such a way that two basic units cannot be
assigned to the same territory. In this case, the model can be adapted to the requirement
by eliminating those territories that do not meet the indicated condition without needing
to change the model. Although this characteristic is not discussed in the computational
results shown in Section 5, it does contribute to the practical applicability of the resolution
procedure described.

5. Computational Experiments

This section presents the results of the computational experiments and the analysis of
the results obtained by the procedures shown under different conditions and parameters.

The procedures described in the document were programmed in C language using
IBM ILOG CPLEX version 12.10 to solve the integer linear program described in Section 4.3.
The experiments were performed on a computer running an Intel i5 8600K processor at
3.6 GHz, 16 GB of RAM under the Windows 10 professional operating system.

The instances used in the experiments come from the delivery database of a courier
company that operates in the city of Antofagasta (Chile). This database includes 21,025 de-
liveries made over 19 business days. Of the described deliveries, 4768 correspond to express
parcel service, while the rest correspond to regular service. The delivery schedule begins
at 9 a.m., and the limit imposed for express deliveries set by service conditions is 11 a.m.,
so 2 h are available for express deliveries. The number of territories (delivery zones) to be
created is set at 10 since this is the value currently used and corresponds to hiring 10 inde-
pendent distributors who work exclusively for the company. Finally, the time associated
with each delivery is equal to 2 min, and the speeds within the city are at 14 km/h, while
the speed on the main roads is 31 km/h. These values come from a study conducted by
the traffic control operational unit in Chile. Note that while the instances and constants
specifically refer to a particular situation, there is no reason to think that there is a bias
introduced within the results due to this decision.

The set of instances was obtained by sampling for three demand scenarios: low de-
mand (half of that observed in the data collection period), medium demand (that observed
in that period), and high demand (double that observed) which are equivalent to 2384,
4768, and 9536 deliveries over 19 days. For the medium demand, those registered in the
database are used as deliveries, while for the low demand, half of them are randomly
chosen. For the scenario with high demand, an identical number of new deliveries chosen
at random from the locations of the regular service deliveries are added to the deliveries
considered in the medium-demand case. Although they are services performed at different
times, they have similar demand behaviors, so this option is chosen to generate instances
with higher demand.

During the preprocessing, three levels of granularity are considered in the definition
of basic units, that is, different amounts of urban blocks (basic units) into which the city is
divided during the preprocessing. These levels correspond to 43, 85, and 128 urban blocks.

For each of these combinations of demand levels and number of basic units, the terri-
torial distribution is designed with different numbers of territories (for the low demand
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level, 5 and 7 districts are designed, for the medium level 5, 7, 10, and 12 districts and for
high demand 5, 7, 10, 12, 15, 20, 22l and 25 districts).

Finally, a limit is imposed on the number of solutions proposed by the constructive
heuristic equal to 50, 100, 200, 500, 1000, 5000, and 10,000 solutions, and the resolution
time of the mathematical model is limited to 600 s. Given the reduced computation times
of the proposed heuristic, which uses a simplified evaluation function to speed up the
calculations, the total calculation times never reached 1200 s, a time that is considered
reasonable in the practical environment analyzed since the design of territories is carried
out every several years. The computation times of the heuristic solutions and of the integer
programming procedure are also considered separately since it is possible to reuse the
solutions constructed by the heuristic to obtain alternative solutions with the mathematical
model if required.

5.1. Results from the Experiments

The results of Tables 1–3 show the detailed results for each instance, identified by the
number of basic units (column ‘BUs’), the number of districts to build (column ‘#’), and the
number of solutions generated by the first phase of the procedure (columns ‘50’ to ‘10,000’).
The number reported is the estimated number of late deliveries, so the level of service
would correspond to 1 minus the fraction between the number of late deliveries and the
total number of deliveries to be made as indicated in the description of each table.

Table 1. Average of late deliveries on the worst day by the number of solutions generated during the
first phase of the algorithm, Columns ‘50’, ‘100’, ‘200’, ‘500’, ‘1000’, ‘5000’, and ‘10,000’ and instance
parameters (number of basic units in column ‘BU’, and number of generated districts in column ‘#’)
for instances with low demand.

BUs # 50 100 200 500 1000 5000 10,000

43 5 94.26 94.54 94.6 94.74 95.01 95.39 95.68
7 99.77 99.95 100 100 100 100 100

85 5 94.1 94.23 94.33 94.63 94.8 95.16 95.27
7 99.88 100 100 100 100 100 100

127 5 94.39 94.46 94.68 94.83 95.06 95.33 95.38
7 99.97 99.98 99.98 99.98 100 100 100

Table 2. Average of late deliveries on the worst day by number of solutions generated during the
first phase of the algorithm, Columns ‘50’, ‘100’, ‘200’, ‘500’, ‘1000’, ‘5000’, and ‘10,000’ and instance
parameters (number of basic units, column ‘BU’, and number of districts generated, column ‘#’) for
instances with medium demand.

BUs # 50 100 200 500 1000 5000 10,000

43

5 77.77 78 78.12 78.35 78.5 78.59 78.6
7 84.9 85.21 85.4 85.49 85.58 85.78 85.83

10 94.52 94.87 95.15 95.48 95.57 95.85 95.87
12 98.13 98.61 98.98 99.19 99.3 99.45 99.48

85

5 77.74 77.74 77.98 78.05 78.11 78.35 78.42
7 84.93 84.96 85.02 85.36 85.53 85.67 85.72

10 93.98 94.27 94.9 95.32 95.5 95.75 95.81
12 97.73 98.14 98.73 99.26 99.41 99.65 99.68

127

5 77.58 77.77 77.82 77.87 78.05 78.09 78.17
7 84.52 84.71 84.8 84.92 85.12 85.43 85.53

10 93.54 93.95 94.11 94.52 94.97 95.6 95.71
12 95.51 96.74 97.57 98.7 99.27 99.73 99.79
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Table 3. Average of late deliveries on the worst day by number of solutions generated during the
first phase of the algorithm, Columns ‘50’, ‘100’, ‘200’, ‘500’, ‘1000’, ‘5000’, and ‘10,000’ and instance
parameters (number of basic units, column ‘BU’, and number of districts generated, column ‘#’) for
instances with high demand.

BUs # 50 100 200 500 1000 5000 10,000

43

5 70.36 70.4 70.54 70.69 70.73 70.8 70.8
7 74.25 74.27 74.48 74.61 74.63 74.66 74.67

10 79.78 79.89 80.04 80.08 80.1 80.19 80.23
12 83.14 83.37 83.49 83.56 83.59 83.7 83.75
15 87.86 88.12 88.35 88.55 88.62 88.8 88.82
17 90.34 90.7 90.89 91.15 91.31 91.5 91.56
20 92.22 92.25 92.26 92.26 92.26 92.26 92.26
22 92.26 92.26 92.26 92.26 92.26 92.26 92.26
25 92.26 92.26 92.26 92.26 92.26 92.26 92.26

85

5 70.35 70.35 70.37 70.41 70.52 70.62 70.68
7 77.8 77.83 77.98 78.15 74.38 74.48 74.51

10 79.4 79.68 79.79 79.91 79.99 80.12 80.19
12 82.95 83.18 83.37 83.52 83.61 83.72 83.76
15 87.59 88.17 88.41 88.65 88.74 88.91 88.97
17 90.96 91.26 91.43 91.81 91.95 92.12 92.18
20 93.12 94.06 94.65 94.98 95.2 95.38 95.43
22 94.74 95.35 95.64 95.93 96.09 96.22 96.23
25 95.81 96.33 96.38 96.38 96.38 96.75 96.75

127

5 70.22 70.3 70.31 70.6 70.6 70.6 70.6
7 74.02 74.09 74.11 74.14 74.28 74.44 74.47

10 79.24 79.46 79.55 79.89 80.06 80.29 80.38
12 82.79 82.9 83.19 83.5 83.68 83.92 83.96
15 87.31 87.78 88.29 88.67 88.94 89.2 89.25
17 88.58 90.02 91.13 91.8 92.22 92.58 92.66
20 92.66 93.66 94.93 95.94 96.28 96.84 96.93
22 94.55 96.21 96.82 97.4 97.7 97.97 98.05
25 96.6 97.56 98.14 98.25 98.28 98.28 98.28

In the three scenarios, it can be observed that when the number of territories (or
delivery zones) increases, the number of late deliveries decreases considerably, which
shows that increasing the number of districts positively influences the level of service. This
conclusion is logical and shows that there is a possibility of improving the quality of service
through an increase in current subcontracted services, although there comes a time when
increasing the number of districts does not generate great benefits. Specifically, for the
current demand scenario, with a medium level of demand and 10 districts, an increase
of 20% in the number of districts (going from 10 to 12 districts) would lead to substantial
improvements and an expected fulfillment of almost 100% of the on time deliveries. If the
results associated with changes in demand are compared, it can be seen that the current
delivery service would not be able to cope with a significant increase in demand (a high
number of deliveries scenario), requiring a significant growth in the number of districts to
be able to adapt to this change.

With respect to the procedure of aggregating urban blocks, it can be seen that in the
scenarios with low and medium demand, there are no appreciable differences in the results,
which indicates that the grouping factor applied does not influence the results obtained.
On the other hand, in the high demand scenario, it can be observed that increasing the
granularity (a greater number of basic units) has a positive effect on the results obtained
using this method. From this result, it can be inferred that the correct level of granularity
depends on the number of deliveries to be analyzed and that if the level of aggregation
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is correct, the effect on the results is minimal. It should be emphasized that greater
granularity implies a greater computational effort with respect to the resolution method,
so it is important to define a degree of grouping consistent with the practical needs of the
problem (for example, maintaining assigned distribution zones that make sense for the
distributor) and the possible improvements derived from subdividing the territory into
zones that are increasingly difficult to operate from a day-to-day operations point of view.

Regarding the number of independent executions of the first phase of the procedure,
it is observed that when increasing their number, there is a small decrease in the number of
late deliveries in the three respective scenarios. However, these increases are sometimes
lower and imply an increase in computational effort, so it is necessary to know to what
extent these changes are significant and thus reduce the run time of the procedure.

To measure how significant the use of different initial solutions is, a parametric
ANOVA with blocking factors test is performed. In this case, the comparison element
is the number of independent runs of the first phase of the procedure, that is, 50, 100, 200,
500, 1000, 5000, and 10,000 independent runs. A block design is chosen so that the test
considers that part of the variations are caused by the different instances used (number of
districts, granularity). The test performed takes as a null hypothesis that the treatments
are equal, which leads to a negative outcome since the treatments show significance with a
p-value of 2.2 × 10−16. Additionally, a nonparametric test, the Page test [52], is performed
to avoid possible problems of the nonnormality of the residuals. This test also rejects the
null hypothesis with a p-value of 2.2 × 10−16, which leads us to conclude that the number
of independent runs of the metaheuristic impacts the results obtained by the algorithm.

To identify which treatments are significantly different, a nonparametric hypothesis
test called the “Distribution free Two-Sided all-treatments multiple comparisons based on
Friedman rank sums” (Wilcoxon, Nemenyi, McDonald, and Thompson) is applied, which
performs multiple comparisons between pairs of treatments. The results of the test are
shown in Table 4.

Table 4. Results of the Wilcoxon, Nemenyi, McDonald, and Thompson test to identify possible
improvements associated with the generation of a greater number of solutions during the first phase
of the analyzed procedure.

50 100 200 500 1000 5000

100 2.4 × 10−8 - - - - -
200 <2 × 10−16 8.6 × 10−8 - - - -
500 <2 × 10−16 <2 × 10−16 1.1 × 10−9 - - -

1000 <2 × 10−16 <2 × 10−16 <2 × 10−16 2 × 10−6 - -
5000 <2 × 10−16 <2 × 10−16 <2 × 10−16 <2×10−16 4 × 10−10 -

10,000 <2 × 10−16 <2 × 10−16 <2 × 10−16 <2×10−16 5.7 × 10−14 0.019

The results of the nonparametric pairwise comparison test show that each increase in
the multi-boot level implies a significant difference between the medians with a significance
level of 95%. However, the comparison between 5000 and 10,000 has low significance and
may not justify the additional computational cost.

In the previous tables of the 3 scenarios, when going from 5000 to 10,000 executions of
the heuristic, it can be observed that the average change is smaller compared to the other
increases in the number of executions of the heuristic.

Finally, Table 5 evaluates the effect of adding the second phase of the method, that is,
the resolution of the mathematical model on the performance of the proposed procedure.
For this, the percentage decrease in the number of late deliveries recorded by using the
mathematical model is evaluated. This value results from dividing the difference between
the expected number of late deliveries of the best solution of the first phase and the second
phase by the expected number of late deliveries of the first phase. In this case, a different
behavior can be observed according to the levels of grouping (number of basic units),
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number of solutions generated, and number of territories to be constructed. Specifically, it is
observed that as the number of territories and alternative solutions increases, the differences
are very significant, especially when a greater number of districts are constructed.

Table 5. Percentage of improvement obtained by the use of the second phase of the proposed procedure
(number of districts generated, column ‘#’).

# Solutions 43 Units 85 Units 127 Units

10

50 12.3 3.8 0
100 16.2 6 0.1
200 19.8 12.9 1.1
500 15.6 16.6 5.4

1000 17.3 16.5 9.1
5000 20.5 16.4 14.7

10,000 18.7 17.1 16.3

12

50 61.9 17.9 2
100 65 30.8 14.9
200 73.4 48.5 33.6
500 73.7 65.2 54.6

1000 73.6 69.1 57.3
5000 73.1 75 79.4

10,000 71.5 75.3 82.8

5.2. Results from the Case Study

Considering the analysis performed in Section 5.1 with respect to the solutions ob-
tained, it is decided to offer a solution to the new territorial design using the original
conditions considered by the company (10 districts, medium demand) using a configura-
tion of the procedure that uses 5000 iterations of the constructive heuristic followed by the
combination of territories following the mathematical model.

In addition, given that the differences between the medium and high granularity
levels were not significant for the scenarios with current demand, a medium granularity
was chosen to offer solutions. This combination of characteristics of the procedure allows
generating the number of initial solutions indicated and offering an optimal solution for
the resulting mathematical model in a total of less than two minutes of run time.

The final solution proposal is shown in Figure 2. It should be noted that some territories
have a reduced number of basic units; for example, there is a territory with a single basic
unit that corresponds to a zone with a strong presence of industries and offices, while other
zones include a large number of basic units (zones with less population and/or economic
activity). This disparity is logical and is due to the structure of the city considered in the
case study.

The final solution is capable of obtaining an average quality of service of 95.7%, which
represents an improvement of 12 points compared to the current service level, which is
83% and allows a certain buffer with respect to the company’s goal to reach a service level
of 90%.

For a more detailed analysis of the behavior for each of the 19 days available in the
study, see Table 6, shows a disparity of service levels throughout the different days, showing
that on the day of greatest demand (Day 8) the service index worsens significantly.
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(a) (b)

Figure 2. Divisions created in a zone of the city studied in the case study (figure (a) shows the north
and central area, while figure (b) shows the central and south area). The territories are shown in
different colors with the basic units delimited by white lines.

Table 6. Level of service reached by the proposed solution for each of the 19 days where which
information is available.

Day Level Day Level

1 100% 11 100%
2 100% 12 98.3%
3 96.7% 13 91.8%
4 100% 14 91.8%
5 100% 15 100%
6 100% 16 100%
7 100% 17 95.5%
8 78.6% 18 82.5%
9 88.9% 19 94.5%

10 100%

Analyzing the individual results of each day, it is observed that one of the causes of
greater service delays corresponds to a strong variability in the demand depending on the
day. In addition, there is no pattern based on the day of the week or the month that justifies
this variability. While an increase in the number of delivery zones would improve the level
of service on those critical days, the change would lead to an oversized delivery service in
most days since optimal levels, 100% of deliveries, are reached in most days of service.

Another important analysis to perform is the effect of service time on the quality of
the solution. The service time is defined as the time it takes the carrier to stop the vehicle at
the delivery destination, deliver the package, and resume the route. The company assumes
that this time is two minutes per delivery, but the variability is high, and given the reduced
time available to make all the express deliveries, even small variations can significantly
vary the results. To respond to this problem, it was checked what the result would be if the
service time were increased to 2 min and 15 s and to 2 min and 30 s.

The results of this change indicate that the quality of service decreases to 93.6% when
the increase is only 15 s and to 90.3% when service time is increased by 30 s. These results
translate into large variations on the worst day, in which the quality of service drops to
70.4% and 64.1%, respectively. Therefore, one of the improvements available to be made
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in the daily operation of the system corresponds to maintaining and/or improving that
delivery time, which is of vital importance for managing a large number of shipments in
smaller time windows.

6. Conclusions and Future Work

In the present work, a procedure and a case study are proposed for the design of
delivery zones subject to quality of service conditions in express deliveries. The procedure
considers a preprocess of grouping customers into basic units that, on the one hand, helps
to generate solutions with the characteristics expected by both the management of the
company and by the carriers and, on the other hand, reduces the computational needs of
the design method.

The method for designing territories consists of an initial phase in which a set of
alternatives are generated that are subsequently combined through a mathematical model to
obtain a final territorial design. The mathematical model is general and can be used in other
districting problems that feature similar characteristics in terms of the objective function
and districts interactions. Moreover, and to minimize computation times, an alternative
objective function is used in the initial search phase and to evaluate a more detailed estimate
of the level of service offered by each territory considered only in the last phase of the
algorithm. This procedure yields quality solutions in shorter times.

Our results show that while a very coarse granularity when grouping clients may
hinder the quality of the solution, increasing granularity impacts algorithmic performance
but may not directly translate into better solutions. Consequently, there is a “sweet spot” in
which a proper degree of aggregation has a positive impact on the algorithmic performance
and the properties expected from the proposed districting plans. While this result makes
intuitive sense, previous literature on districting problems has not given much attention
to it, focusing its attention on other issues, such as defining compactness metrics to try to
reach similar results to those than can be obtained through aggregation.

If the results of the case study are examined, it is clear that the proposed territorial
design leads to evident and achievable improvements in the company’s service indices.
The redesigned delivery zones allow reaching a level of service equivalent to 95.7% without
internal operational changes. Moreover, the districting plan make sense from a practical
point of view as the borders between districts are defined by major roads and streets as in
manually generated districts. It is also observed that given the sensitivity of the average
service time, it is essential that there is a correct functioning in this process. This point is
critical in overall system performance, and incorrect functioning of the system could lead
to significant deterioration of the system.

Note that the conclusions reached within the case study may vary in different countries
or even in different areas within a country. While the proposed methodology is agnostic
to the area under study, data availability, or cultural particularities, the application of this
research results to other countries or situations may or may not be possible. For instance,
our methodology considers that the old territorial design can be ignored, while there are
cases in which changes between the previous and the new territorial design should be
minimal or units that need to be assigned to specific territories for some particular reasons.
We also consider that all overnight deliveries are identical and no preference must be given
to some of them. Other operational features, such as the existence of multiple product
offerings with different express delivery deadlines would also impact the methodology
and require changes to our approach, even if the overall methodological scheme would
still be valid.

Among the possibilities for improvement and study, we highlight the inclusion of
standard service or pickup operations, such as returns, within the express service in the
same territorial design process. This work did not take this combined approach because
the view of the company in the case study is that the standard service does not entail major
problems and can be performed without taking its limiting factors into account, but this
condition may not be true for other scenarios or settings. In this case, it would be necessary
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to approach the problem from a multicriteria perspective, evaluating the trade-off between
the different needs and objectives of each type of service offered by the company.

Similarly, this study does not consider other side constraints that may impact the
operational viability of the territories, such as the physical capacity of the vehicle or the size
of the items delivered. While these conditions need to be considered in some applications
and require additional study within the districting literature, they were not considered
necessary in this study because most overnight deliveries are small parcels and letters that
represent a small fraction of the total capacity of the vehicles used for delivery.

Finally, it would also be interesting to study the case where the number of districts
is not specified as an input. Such a situation is less frequent in delivery companies as
changes in their operations should take previous decisions (i.e., the number of territories)
into account, but it is a problem of practical relevance that deserves proper attention.
However, in some circumstances it may be interesting to reduce operational costs and
given the structure of the delivery service, where territories are handed out to independent
contractors to actually perform delivery operations, “district minimization” translates into
“cost minimization”. While the proposed solution method does not provide a direct solution
approach for such a problem, it does provide a tool to evaluate the effect on the quality
of service metric when a different number of districts, parameter k, are used, and thus it
can be seen as a possible decision-aiding tool to manually evaluate the pros and cons of
alternative plans.
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Abstract: In this work, a Rich Vehicle Routing Problem (RVRP) is faced for solving city logistic
problems. In particular, we deal with the problem of a logistic company that has to define the best
distribution strategy for obtaining an efficient usage of vehicles and for reducing transportation costs
while serving customers with different priority demands during a given planning horizon. Thus,
we deal with a multi-period vehicle routing problem with a heterogeneous fleet of vehicles, with
customers’ requirements and company restrictions to satisfy, in which the fleet composition has to be
daily defined. In fact, the company has a fleet of owned vehicles and the possibility to select, day
by day, a certain number of vehicles from the fleet of a third-party company. Routing costs must
be minimized together with the number of vehicles used. A mixed integer programming model is
proposed, and an experimental campaign is presented for validating it. Tests have been used for
evaluating the quality of the solutions in terms of both model behavior and service level to grant to
the customers. Moreover, the benefits that can be obtained by postponing deliveries are evaluated.
Results are discussed, and some conclusions are highlighted, including the possibility of formulating
this problem in such a way as to use the general solver proposed in the recent literature. This seems
to be the most interesting challenge to permit companies to improve the distribution activities.

Keywords: rich vehicle routing problem (RVRP); heterogeneous fleet; fleet dimensioning; VRP with
time windows (VRPTW); multi-period VRP; combinatorial optimization

1. Introduction

Distribution activities in urban areas represent a considerable part of the total cost of
transport and are intended to grow for the emerging increment in the number of requests
for pick up and deliveries [1]. For these reasons, companies are required to find logistics
solutions in such a way as to reduce costs caused by inefficiency and ineffectiveness [2].
Moreover, efficient solutions are required by the law restrictions (for example, to limit noise
and air pollution) imposed to preserve social interests.

Nowadays, companies pay more attention to their city logistics activities and try to in-
clude in their decisional process external costs related to transports, together with total logis-
tic costs [3]. The optimization of the number of vehicles used together with the better usage
of the vehicles’ capacity permit to reduce the negative impacts of transportation activities.

When dealing with the optimization of transportation activities, one of the most
studied combinatorial optimization problems is the vehicle routing problem (VRP).

The basic form of VRP can be used when a fleet of homogeneous vehicles is avail-able
in a depot to serve a set of customers. Each customer is characterized by a given location
and a given demand and must be visited once. Each vehicle starts its route at the depot,
visits a subset of customers in such a way that the total delivered demand is less or equal
to its capacity, and finally returns to the depot. Moreover, the objective is to minimize
the total routing costs, often expressed in terms of total travelled distance. VRP has been
quickly recognized as a useful model for facing logistics problems and for supporting
supply chain managers; thus, a set of additional attributes and constraints have been added
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to its first definition, and researchers have defined a new class of these problems: the rich
VRP (RVRP) [4].

Many logistics problems requiring operative and tactical decisions are faced by an
RVRP. The distribution network can be more complex than the simple one considered in
VRP: more than one depot and more layers can characterize the supply chain, different
kinds of depots can be operative in the supply chain and can play different roles (i.e.,
maintaining inventories and being a cross-docking point). The planning of distribution
activities refers to more than one period when the problem cannot be decomposed into
single period problems since some decisions refer to and impact more than one period.
Examples of these problems can be found in the enormous literature related to VRP and its
extensions, including the multi-depot VRP [5], the periodic-VRP [6–8], and the inventory-
routing problems [9].

VRP has also been combined with location decisions in the network design problems;
thus, location-routing problems are defined and studied [10].

The dynamic version of the problem represents a useful instrument to guide companies
that have to serve both customers with a known demand at the beginning of the planning
horizon and new customers with requests arriving over it.

Moreover, when dealing with real-life logistics activities, constraints related to many
operational aspects are relevant and must be included in the VRP model.

Customers are often characterized by priorities, by multi-product demands, they can
either require to be served in defined time windows or have other requirements.

On the other hand, distribution companies may have either a heterogeneous fleet of
vehicles or an undefined fleet (when they refer to third parties for having trucks); they
must respect law restrictions for drivers and, finally, may have policies to follow that can
impose distribution conditions in respect to serving customers (i.e., related to the customer
service level to grant, to the lead time to grant, and to the discounts that can be applied in
case of delays).

All these aspects generate new constraints that characterize the faced problem as an
RVRP. Comprehensive classifications of RVRP problems can be found in [4,11,12].

As far as the objective functions are considered, new and interesting objectives charac-
terizing the management of distribution activities include the minimization of the number
of vehicles used and of extra hours worked by drivers as well as of the postponed service
(in case of soft time windows), and the balance of the routes in terms of duration or/and
number of clients visited; readers can refer to [13] for an overview of the different objec-
tives used in VRP. Finally, environmental performance evaluations, together with business
evaluations, are included in VRP; the authors refer to green VRP (GVRP) [14]. Recent
papers related to distribution activities in urban areas include environmental aspects in
their model [15,16].

In this paper, we are involved with an RVRP with additional constraints due to:

• Multi-periods planning, as in [17], together with a distribution policy of the company
that permits the postponement of services;

• Customer requirements: time windows for serving customers, and products with
different priorities, as in [18];

• Fleet of vehicles: a heterogenous fleet in terms of capacity and costs, as in [19], since
the company has its own and third-party vehicles.

To the authors’ knowledge, the problem investigated here has never been proposed
in the literature, and the above three cited papers have only some common elements
with the RVRP analyzed. In particular, ref. [17] deals with a multi-period distribution
of pharmaceutical products that is characterized by a heterogeneous fleet, restrictions on
routes (a maximum duration and a maximum number of clients are fixed), and flexible
customer time windows. The authors analyze a multi-depot network, where it is also
possible to use auxiliary depots for improving routing costs and permitting to anticipate
deliveries; moreover, incompatibilities between customers and vehicles are considered. This
is different from our problem because we permit the postponement of a part of customers’

28



Mathematics 2022, 10, 191

demand following different demand priorities. Priorities are also included in [18]; in case of
not enough vehicles (the fleet is fixed), it is possible to postpone customer services until the
next day (depending on the priorities given) or to allow extra time to drivers, differently
from our case in which there is the possibility of postponing the delivery of some products
until one or two days.

Finally, in [19], the authors consider a fleet composed of company vehicles and vehicles
of third-party, thus a heterogeneous fleet for the costs and the possibility of outsourcing the
last mile transport of some specific deliveries. Furthermore, this problem is different from
ours because the company we are involved with can increase the available vehicles due
to third-party ones but without distinguishing between long-haul transport and last mile,
and without using third-party depots. Heuristics approaches for heterogeneous fleet VRP
(HFVRP) have been reviewed in [20]. In [21], the authors propose a Branch-Cut-and-Price
algorithm (BCP) for solving HFVRP; they also show how to transform the MD-VRP and
the site-dependent VRP in an HFVRP.

Many RVRP, based on a multi-period analysis, are present in the literature in addition
to the previous ones. In [20], a survey of heuristics approaches for periodic VRP is pre-
sented. To cite some other recent papers, ref. [22] is related to food distribution in Portugal
and presents a RVRP with multiple time windows, multi-products, and site-dependent
incompatible constraints; ref. [23] considers a multi-depot network, but customers can be
visited only once in the planning horizon with a heterogeneous fleet and respecting some
site-dependent incompatible constraints; in [24], multiple periods and multi-depot RVP is
analyzed, and the authors also include in the analysis inventory management.

In the recent literature, many papers offer exact algorithms to solve some of the
variants of VRP cited above, such as VRPTW, HFVRP, and MD-VRP. The new challenge
was to find a general solver for tackling a wide class of VRPs. Heuristics and meta-heuristics
for many variants of VRP were reviewed by [20]; the authors defined Muli-attribute-VRP
(MAVRP). A Unified Hybrid Genetic Search metaheuristic as a general-purpose algorithm
for solving MAVRP was proposed by [25]. Recently, ref. [26] proposed a BCP algorithm
that is able to solve most of the studied VRP variants. The authors also offer a generic way
to model different attributes of VRP that permits them to be solved by BCP.

The problem under investigation will be deeply analyzed and defined in the next
section, while in Section 3, the proposed method for solving it is presented. A computational
campaign for validating the proposed model and for evaluating the impact of the company
policy on distribution activities and costs is reported in Section 4. A discussion together
with some conclusions are reported in Section 5.

2. Problem under Investigation

In this work, the problem under investigation can be defined as a multi-period VRP
with time windows for serving customers, with a heterogeneous fleet of vehicles, in which
the fleet composition must be defined by searching for the best mix of subcontracting
transportation to add to an owned fleet. The number and type of vehicles to be used
each day of a given planning horizon have to be defined, together with the routes for the
selected vehicles.

The company, which has a fleet of owned vehicles and has the possibility of using
extra vehicles of a third party company, adopts a distribution strategy for obtaining an
efficient usage of the vehicles and for reducing routing costs, which must be minimized
together with the number of vehicles used.

In more detail, given a depot with a heterogeneous fleet of vehicles, a set of extra
vehicles that can be required daily to a third part company, and a set of customers char-
acterized by demand over a planning horizon for products with three different priorities,
determine the best way to serve the customers in such a way to satisfy their demands by
respecting required time windows, minimize the total kilometers traveled and the number
of additional vehicles required to serve customers, while respecting law restrictions for
drivers (i.e., the maximum route duration and the maximum drive time per route).
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The daily customer demand is characterized by three different priorities, in the sense
that a part of the demand must be delivered on the exact day the request refers, another part
can be delayed to the day after, and another part (with the low priority) can be postponed
by two days. This means that a part of the customer demand can be split into two or three
days. An example is reported in Figure 1. Let us consider a planning horizon of 5 working
days (Day 1, Day 2, . . . Day 5) and suppose to have to supply to a given client the following
quantities 10, 11, and 5 (in pallets) in three days of the week: Day 1, Day 3, and Day 4,
split into p0, p1, and p2 according to the required delivery priorities (i.e., 10 is given by
p0 = 5, p1 = 4, and p2 = 1 as reported in the bottom of Figure 1). This means that if it is
necessary to reduce the transportation costs, the company can deliver either part of p1 or
the whole p1 in Day 2, and p2 either in Day 2 or Day 3. Suppose there are vehicles with
nine-pallet capacity, as shown in Figure 1, it is possible to note that when the split strategy
is permitted, the demand of Day 1 is not completely served in the required day, and p2 for
example, is supplied in Day 3, together with a part of the demand of Day 3. The demand of
Day 3 for products p1 and p2 is satisfied in Day 4 together with the demand of Day 4. In
this way, we are able to use only one vehicle each day, while without the split strategy in
Day 1 and Day 3, two vehicles are required.

Figure 1. Example of deliveries without and with the postponing strategy.

This distribution policy is based on the different priorities associated with the cus-
tomers’ demand and has a positive impact on both the costs of the company for the
third part vehicles and the external costs paid by the society due to better usage of the
vehicle capacity.

The above described distribution policy can be adopted for reducing the impact of
negative externalities of transport activities. Cooperation among different actors of the
supply chain (in this case, between the distribution company and the customers) is an
important way that must be investigated for improving efficiency. In the next section, we
introduce the optimization model for solving this distribution problem.

3. Method: An Optimization Model

In this section, the mathematical programming model proposed to solve the problem
described above is introduced. We begin with useful notations, which are outlined below.

Sets:
N is set of nodes
C is set of customers
A is set of arcs
P is set of types of products characterized by different priorities (i.e., p0, p1, p2)
V is set of vehicles
V′ is set of vehicles of the third party
D is set of working days
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Parameters:
cij ∀(i, j) ∈ A is transport cost associated to arc (i,j)
sij ∀(i, j) ∈ A is transport time associated to arc (i,j)
djpd ∀j ∈ C, ∀p ∈ P, ∀d ∈ D is demand of customer j for product p in day d
aj ∀j ∈ C is least time for visiting customer j
bj ∀j ∈ C is last time for visiting customer j
tj ∀j ∈ C is time required to serve customer j
ek ∀k ∈ V′ is cost associated to vehicle k of the third party
qk ∀k ∈ V ∪ V′ is capacity of vehicle k
mdk ∀k ∈ V ∪ V′ is maximum driver time for vehicle k
msk ∀k ∈ V ∪ V′ is maximum service time for vehicle k (i.e., max route duration)
Decision variables:
xijkd ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ V ∪ V′, d ∈ D
xijkd = 1 if vehicle k travel on arc (i,j) in day d
ykd ∈ {0, 1}, ∀k ∈ V, d ∈ D ykd = 1 if vehicle k is used during day d
zkd ∈ {0, 1}, ∀k ∈ V′, d ∈ D zkd = 1 if vehicle k of third party is used during day d
tikd ≥ 0 ∀i ∈ N, k ∈ V, d ∈ D is arrival time of vehicle k at customer i in day d
q0ipkd ≥ 0 ∀i ∈ C, p ∈ P, k ∈ V ∪ V′, d ∈ D is quantity of product p shipped on time

to customer i by vehicle k in day d
q1ipkd ≥ 0 ∀i ∈ C, p ∈ P\{p0}, k ∈ V ∪ V′, d ∈ D is quantity of product p (either a

product p1 or p2) shipped with 1 day-delay to customer i by vehicle k in day d
q2ipkd ≥ 0 ∀i ∈ C, p ∈ P\{p0, p1}, k ∈ V ∪ V′, d ∈ D is quantity of product p2,

shipped with 2 days-delay to customer i by vehicle k in day d
The resulting model is the following:

Min ∑(i,j)∈A ∑k∈V∪ V′ ∑d∈D cijxijkd+∑k∈V′ ∑d∈D ekzkd (1)

∑(i,j)∈A ∑k∈V∪ V′ xijkd ≤ 1 ∀j ∈ C, ∀d ∈ D (2)

∑(n0,j)∈A ∑k∈V∪ V′ xijkd ≤ ∑k∈V ykd + ∑k∈V′ zkd d ∈ D (3)

∑(n0,j)∈A xijkd ≤ 1k ∈ V ∪ V′, ∀d ∈ D (4)

∑(i,j)∈A xijkd ≤ Mykdk ∈ V, ∀d ∈ D (5)

∑(i,j)∈A xijkd ≤ Mzkdk ∈ V′, ∀d ∈ D (6)

∑(i,j)∈A sij xijkd ≤ tdk ∈ V ∪ V′, ∀d ∈ D (7)

∑(i,j)∈A

(
sij + tj

)
xijkd ≤ tdk ∈ V ∪ V′, ∀d ∈ D (8)

∑k∈V∪ V′ q0j0kd = dj0d∀j ∈ C, ∀d ∈ D (9)

∑k∈V∪ V′ q0j0kd + q1j1k(d−1) = dj1d∀j ∈ C, ∀d ∈ D (10)

∑k∈V∪ V′ q0j0kd + q1j1k(d−1) + q1j2k(d−2) = dj2d ∀j ∈ C, ∀d ∈ D (11)

∑j∈C q0j0kd + q0j1kd + q0j2kd + q1j1k(d−1) + q1j2k(d−1) + q2j2k(d−2) ≤ qkk ∈ V ∪ V′, ∀d ∈ D (12)

∑(i,j)∈A xijkddjpd ≥ q0jpkd∀j ∈ C, ∀p ∈ P, k ∈ V ∪ V′, ∀d ∈ D (13)

∑(i,j)∈A xijkddjpd ≥ q1jpkd∀j ∈ C, ∀p ∈ P, k ∈ V ∪ V′, ∀d ∈ D (14)

∑(i,j)∈A xijkddjpd ≥ q2jpkd∀j ∈ C, ∀p ∈ P, k ∈ V ∪ V′, ∀d ∈ D (15)

∑k∈V∪ V′ tjkd ≤ bj∀j ∈ C, ∀d ∈ D (16)

∑k∈V∪ V′ tjkd ≥ aj∀j ∈ C, ∀d ∈ D (17)
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tjkd − tikd ≥ sij + ti + M
(

xijkd − 1
)
∀(i, j) ∈ A, k ∈ V ∪ V′, ∀d ∈ D (18)

Equation (1) aims at minimizing the routing costs and the number of vehicles of third
party used during the time horizon. Equation (2) impose that each day of the planning
horizon, each customer can be visited no more than 1 time by a vehicle (either an owned or a
third-party vehicle). Equations (3)–(6) refer to the usage of vehicles: the maximum number
of vehicles used each day must be no greater than the number of owned vehicles and the
number of vehicles available due to the third party (Equation (3)) and each vehicle can be
used at most for one route per day (Equation (4)). Equations (5) and (6) are used to define
variables y and z related to the usage of owned and third-party vehicles respectively.

Equations (7) and (8) are related to the maximum duration of each route associated
with a vehicle; in particular, Equations (7) refer to the drive time, while Equation (8) to the
service time that includes the time spent at the customer’s location for delivering goods in
addition to time spent driving.

Equations (9)–(11) are related to the customer demand, for the products having
3 different priorities. The capacity of each vehicle is verified due to Equation (12). More-
over, Equations (13)–(15) link variables x and those representing the quantities supplied
to customers: only if vehicle k visits customer j in day d, it can supply a given amount of
product p to the customer, no greater than the demand of the customer for that product.

Equations (16)–(18) are related to the time windows. For each customer, Equations
(16) and (17) verify that the vehicle arrives within his time window. Equation (18) permit
to compute, in the correct way, the time of arrival at each couple of customers visited in
sequence by the same vehicle k (i.e., when arc (i,j) is used by vehicle k).

The validation of the proposed model is presented in the next section.

4. Results

Some experimental tests have been realized with the aim of validating the proposed
model and evaluating the effect of the strategy of postponing some deliveries in such a way
to reach more sustainable solutions, in terms of number of vehicles used and better usage
of vehicle capacity. All tests have been implemented in Java, using CPLEX version 12.8
as a solver. The computational tests were performed on a MacBook Pro, with a 2.9 GHz
Intel i9 processor, and 32 GB of RAM. Different kinds of instances have been generated.
In particular, we have tested instances characterized by a different space distribution of
clients (i.e., a circular region and a rectangular one) and a different position of the depot
in the considered region; the depot can be either centred in the area or positioned near a
border of the area as depicted in Figure 2.

 
Figure 2. Circular and rectangular region with different depot locations.

We consider a time horizon of a week (5 working days) and instances with 10 and
20 clients with a random generated demand for three types of products:

• p0 product to serve in time;
• p1 product to serve no more than 1 day late;
• p2 product to serve no more than 2 days late.

The demand distribution among these three products is 50% p0, 30% p1 and 20% p2.
Moreover, different demand distributions within the time horizon are generated: each
client has a demand distributed among 2 days or 5 days of the week. Finally, different time
window durations are considered: from 0 h to 1 h, from 1 h to 2 h, and from 2 h to 3 h.

In the following, we will use Instance Id for identifying the instance characteristics
in the following order: shape, depot position, number of clients, time windows duration,
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i.e., C_C_10_1 refers to a circular area with a depot in the centre, 10 customers with time
windows of 1 hour, while R_L_20_3 refers to a rectangular area with a depot near a border,
20 customers to serve with time windows from 2 to 3 h.

The experimental campaign has the following main aims:

1. To evaluate the impact of some of the characteristics of the generated instances on
both the model behavior (in terms of computational time and optimality gap) and
the quality of the solutions in terms of service level to grant to the customers (i.e.,
delayed deliveries);

2. To evaluate the benefits that can be obtained when postponing deliveries.

4.1. First Analysis: Model Behavior and Customer Service Level

In this section, we report some results obtained solving randomly generated instances
by the models (1)–(18) within a time limit of 30 min.

Each set of instances (Id_Ist) are shown in Table 1: the objective function values (Obj),
the computational time in seconds (CPU time), and the optimality gap (Gap). The last
three columns are related to the quality of the solutions, and the delays in the delivery are
reported. In particular, the ratio between the quantities delivered with one (two) day(s)
delay and the total customer demand (l1/tot [l2/tot]) are computed together with the total
amount of goods delayed (l1 + l2) with respect to the total demand ((l1 + l2)/tot). Instances
characterized by 10 customers have 3640 variables and 3965 constraints, while those with
20 customers have 11,240 variables and 11,805 constraints.

Data reported in Table 1 are the average values of two instances. From Table 1, we
can note that it is possible to solve up to optimality instances with 10 customers and in-
stances with 20 customers and a time window duration of less than 1 h. When larger time
windows are considered, often the time limit of half an hour is reached, and only the best
solutions found by CPLEX are returned. Solutions with an average gap of 0.05 and 0.11 are
obtained for instances with time windows less than 2 and 3 h, respectively. About 50% of
instances characterized by 20 customers and time windows from 1 to 2 h have been solved
up to optimality.

Table 1. Results obtained by using mode (1)–(18).

Id_Ist Obj CPU Gap l1/tot l2/tot l1 + l2/tot

CC_10_1 6809.77 0 0.00 5.11 0.0 5.1
RC_10_1 5552.58 1 0.00 5.84 0.0 5.8
CL_10_1 8859.78 0 0.00 5.11 0.0 5.1
RL_10_1 6786.45 1.5 0.00 5.11 0.0 5.1
CC_10_2 6532.14 0.5 0.00 4.38 0.0 4.4
RC_10_2 5347.37 3 0.00 5.84 0.0 5.8
CL_10_2 8567.69 25 0.00 4.38 0.0 4.4
RL_10_2 6274.39 32 0.00 5.84 0.0 5.8
CC_10_3 6425.10 4.5 0.00 5.84 0.0 5.8
RC_10_3 5275.17 28 0.00 5.11 0.0 5.1
CL_10_3 8038.77 975 0.02 6.57 0.0 6.6
RL_10_3 6310.80 915.5 0.07 5.11 0.0 5.1
CC_20_1 11,116.72 8 0.00 4.99 0.6 5.6
RC_20_1 10,405.45 25.5 0.00 6.16 0.0 6.2
CL_20_1 14,342.25 48 0.00 4.69 0.0 4.7
RL_20_1 11,527.94 210 0.00 5.28 0.0 5.3
CC_20_2 8816,25 1018.5 0.01 4.11 0.0 4.1
RC_20_2 8527.19 1141 0.01 4.40 0.6 5.0
CL_20_2 12,797.78 1800 0.06 4.99 0.3 5.3
RL_20_2 10,527.72 1800 0.11 4.40 0.3 4.7
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Table 1. Cont.

Id_Ist Obj CPU Gap l1/tot l2/tot l1 + l2/tot

CC_20_3 9093.23 1800 0.03 4.69 0.6 5.3
RC_20_3 7600.76 1800 0.05 4.40 1.5 5.9
CL_20_3 11,785.21 1800 0.19 4.40 0.3 4.7
RL_20_3 9097.86 1800 0.18 4.88 0.0 4.9

The following figures are useful to understand what the main factors are impacting
the difficulty when solving the model. In particular, the graph in Figure 3 reports an
increasing trend of the computational time spent by the model when increasing the number
of customers, when changing the position of the depot: instances characterized by a depot
located in the center of the region seems to be easier to be solved, and also, the shape of the
area in which customers are located (from circle to rectangular) seems to have an effect on
the solution time and gap.

 

Figure 3. Optimality gap (%) and computational time (secs).

But what are the main factors impacting the CPU time and optimality gap? In the
following graphs, we are able to stress the main influencer factor on the CPU, on the Gap,
and on the quality of the solution in terms of delays.

In graphs reported in Figure 4, we can compare the average Gap in percentage
(Figure 4a) and average CPU time in seconds (Figure 4b) of instances characterized by
different areas’ shape, different depots position and a different number of customers (num-
ber C). In Figure 4a, we can observe by the orange line, that when customers are distributed
in a rectangular area, the Gap is a little higher; the lateral position of the depot has a
greater impact on the Gap as the larger number of customers. In Figure 4b the orange line
represents in all cases the longest solution time, but the impact on the CPU time is low for
the area shape, larger for the depot position, and influenced by the number of customers.

 
(a)  (b)  

Figure 4. Factors influencing the model behavior: (a) impact on the optimality gap; (b) impact on
computational time.
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From Figure 5, we can note that the considered factors (number C, depot position,
and shape) seem not to have a strong impact on the postponed deliveries (percentage of
postponed customers’ demand). All the differences are in the range −6.0 + 4.3%

Figure 5. Postponed deliveries.

Finally, we show in the graph of Figure 6 the impact of time window durations on the
complexity of the model. We can easily note that larger time windows have an impact on
both CPU time and the optimality gap. In particular, instances with a 1-h time window are
solved up to optimality in an average CPU time of 36.75 s, while 727.50 and 1140.38 s are
required to solve instances with 2- and 3-h time windows. The average gaps have the same
trend and pass from 0 to 0.02 and 0.07.

 

Figure 6. Impact of time window durations on optimality gap (%) and computational time (secs).

We are also interested in evaluating the impact of time windows duration on the
quality of the solutions. In the graph shown in Figure 7, we can observe the relation
between the time window duration and the total quantities of delayed deliveries. The time
window durations seem to have a soft effect on the delayed deliveries.

 

Figure 7. Time window durations and % of postponed deliveries.
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Impact of Time Windows Duration on the Routing Costs

When analyzing the different solutions obtained varying the time window (TW)
durations, we noted some differences in the planned routes and their related costs. As an
example of these differences, in Figure 8 we report the solution for a specific day of the
week in which we have to serve a subset of 20 customers, assuming to have 1 h (Figure 8a)
and 3 h (Figure 8b) time windows. The number of routes is unchanged, but the paths (i.e.,
the sequences of visited customers) are different.

 
(a)  (b) 

Figure 8. Planned routes: (a) distribution plan for serving customers respecting 1-h TW; (b) distribu-
tion plan for serving customers respecting 3-h TW.

As far as transportation costs are considered, the savings due to larger time windows
durations can be computed looking at Table 1 (obj column). On average, passing from time
windows less than 1 h to time windows from 1 to 2 h, we obtain a saving of 4.6%, while
from less than 1 h to time windows from 2 to 3 h the saving is 7%.

4.2. Second Analysis: Effects of Postponing Deliveries

The policy of distribution companies for reducing routing costs may include split
deliveries. In this paper, the split delivery can be used to postpone part of the customer’s
demand by either one or two days. The split considered here is possible only for a part
of the customer demand in accordance with the priorities (as already explained in the
previous sections). In this section, we show the benefits that can be obtained by using this
distribution strategy. We compare the results reported in Table 1, related to the following
situation p0 = 50%, p1 = 30%, and p2 = 20% with those obtained considering two opposite
and extreme cases:

• free: there is not a limitation on the products that can be postponed (i.e., p0 = p1 = 0%
and p2 = 100%);

• fixed: it is not possible to postpone deliveries (i.e., p0 = 100%, p1 = p2 = 0).

From Figure 9, we can note that the transportation costs are lower for case free. In this
case, there is a higher level of postponed deliveries, which is double with respect to the case
50-30-20; the delayed deliveries pass from 4.52% to more than 9%. Concerning the costs,
we can say that the distribution strategy investigated here permits the cost reduction of
about 2.4%, while the saving passes to 5.4% in the ideal case, which is when the company
is free to decide when to deliver goods (in any case within 2 days).
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Figure 9. Impact of different distribution policies on the routing costs.

5. Discussion and Conclusions

In this work, we have analyzed a distribution strategy for reducing routing costs and
the number of vehicles used for serving customers (that is, for reducing the impact of
negative externalities of transport activities). In particular, the scope of the present work
has been to investigate the advantages that should be obtained with more flexibility in
serving customers. This flexibility can be obtained by solving a period VRP for a planning
horizon during which split delivery is permitted for a part of the customer’s demand. In
fact, each customer’s demand is partitioned into three sets in accordance with different
priorities. The split delivery in this case consists in postponing part of the demand and
depends on the priority.

Note that, the distribution strategy based on split deliveries, while permitting to
optimize transportation costs, can represent a reduction of the customer’s service level.
Thus, part of the savings in the transportation costs could be shared with customers; in this
way, the cooperation among companies and their customers will produce a gain for both.

We can conclude in stressing that cooperation among different actors of the supply
chain is an important avenue that must be investigated for improving efficiency.

For evaluating this strategy, we have proposed a mixed integer programming model,
that can be included in the class of RVRP. Despite the objective function that minimizes the
sum of two objectives, in the present paper we have not investigated the proposed RVRP
as a bi-objective optimization problem. In future work, it should be interesting to furnish
the distribution company with a set of Pareto efficient solutions by facing the problem, for
example, with the epsilon constraints method.

We have solved some small instances with 10 and 20 customers. Larger instances have
been solved up to optimality, only when time windows duration is less than 1 h. For larger
time windows, it was not possible to obtain optimal solutions within half an hour. Larger
instances will require a different approach for being solved in reasonable CPU times.

The future challenge is to furnish a tool able to support the distribution company we
are involved with during its decisional process for serving customers. Thus, in future works,
we will deeply analyze the solution methods for solving this RVRP. The performances of
the proposed model can be improved by adding sub-tour cuts for couples of nodes and
for cycles of three nodes. We tested them solving the larger instances and have noted a
CPU time reduction that ranges from 20 to 70%. Moreover, in the recent literature generic
solver for RVRP has been proposed. The idea is to investigate how to transform our RVRP
in such a way to use the generic solver. Some kinds of transformations are described
in [21], but unfortunately, we deal with a period VRP with split delivery among the periods
of the planning horizon, and this case is quite different from those proposed in some
recent papers.
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Abstract: This research work presents an inventory model that involves non-instantaneous dete-
rioration, nonlinear stock-dependent demand, and partially backlogged shortages by considering
the length of the waiting time under a hybrid prepayment and cash-on-delivery scheme. The cor-
responding inventory problem is formulated as a nonlinear constraint optimization problem. The
theoretical results for the unique optimal solution are presented, and eight special cases are also
identified. Moreover, a salient theoretical result is provided: a certain condition where the optimal
inventory policy may or may not involve deterioration. Finally, two numerical examples are provided
using a sensitivity analysis to show the validity range of the inventory parameters.

Keywords: inventory; non-instantaneous deterioration; partial backlogging; stock-dependent demand

1. Introduction

Harris [1] was the first researcher to design an economic order quantity (EOQ) inven-
tory model by presenting the concept of inventory to encounter future demand by storing
products in warehouses for an appropriate period of time. Notwithstanding, his inventory
model incorporated many practical scenarios in simple forms, for instance, demand is
constant and known, the quality level of the products during the storing period is uniform,
products are delivered instantaneously after the order has been made, the payment is en-
tirely dependent on the products delivery time, and products are always available to meet
market demand. Nowadays, inventory management has become more much complicated
because of the emergence of competitive market globalization, and hence, a substantial
number of researchers in the inventory field have been developing several efficacious
inventory models by taking more realistic assumptions that perfectly model the reality of
businesses into consideration. A recent report by [2] indicates that about half of the total
number of stored items in any US grocery industry are perishable while the remaining
half consists of non-perishable foods and non-food items. Subsequently, the gross revenue
of any grocery practitioner depends considerably upon how to manage these perishable
items by increasing operational efficiency through the entire business with the help of
proper purchasing coordination and by fulfilling the market demand on time. However,
a plethora of perishable items (for instance, vegetables, fruits, milk, meat, among others)
deteriorate during the storage time period due to their physical ingredients or due to other
reasons. Additionally, for many other types of products (for instance, perfumes, radioactive
materials, alcohol, among others), practitioners can observe the decay these items over their
storage time durations. Due to the deterioration of these products, practitioners’ profits

Mathematics 2022, 10, 434. https://doi.org/10.3390/math10030434 https://www.mdpi.com/journal/mathematics41



Mathematics 2022, 10, 434

may be badly affected, and hence, the impact of deterioration must be considered in the
inventory management of these items. Due to the original quality of the items (for instance,
vegetables, fruits, milk, meat, among others), deterioration may not start at the moment
when the products are received by the practitioner and might begin sometime after from
the items have been received by the practitioner. This kind of phenomenon is termed as
non-instantaneous deterioration. In general, customers always prefer to buy what they
want from a place where a substantial number of items in perfect condition are stored.
This study demonstrates the client inclinations to stock a huge amount product storage
as a nonlinear stock-dependent function. In order to improve the operational efficiency
of the inventory management for non-instantaneous deteriorating items, this research
work outlines an inventory model with nonlinear stock-dependent demand and partial
backlogged shortage with a hybrid advance and cash payment agreement. Under this
agreement, for a product that is in high demand or a product that is in limited supply in
markets, the retailer pays a fraction or the total of the purchase cost prior to receiving the
delivery for the purpose of an on-time delivery.

The remaining portion of this research work is systematized as follows: Section 2
presents a literature review. Section 3 states the notation, description, and formulation of
the inventory model as a nonlinear constraint optimization problem. Section 4 develops
the solution procedure. Section 5 identifies some particular cases. Section 6 studies the
impacts of the parameters of the advance payment scheme on the total cost. Section 7
solves some numerical examples to show the validity range of the inventory parameters.
Finally, Section 8 provides conclusions and some opportunities for future research.

2. Literature Review

This section articulates the research gap and previous research contributions by de-
scribing existing studies related to this research work and then compares the studies in a
tabular form.

Considering a constant deterioration rate, Ghare and Schrader [3] formulated an
EOQ inventory model. After that, a plethora of inventory models were developed by
several researchers by observing the characteristics of different deteriorating items to help
practitioners reduce the losses incurred from the impact of deterioration efficaciously
by maintaining the order size in a competent manner. Taleizadeh et al. [4] studied a
vendor-managed inventory model for deteriorating items by adopting the Stackelberg
approach. Some other correlated studies were conducted by Shaikh et al. [5], Tavakoli
and Taleizadeh [6], Pando et al. [7], Khan et al. [8], Shaikh et al. [9], Khan et al. [10],
Khan et al. [11], and Das et al. [12]. As a matter of fact, due to the original quality of the
items (for instance, vegetables, fruits, milk, meat, among others), deterioration may not start
from the moment when the products are received by the practitioner, and it might begin
after some time the items have been received by the practitioner. This kind of phenomenon
is termed as non-instantaneous deterioration. Musa and Sani [13] explored the impact
of delayed deterioration on the inventory management policies of practitioners when
they allowed a delay in the payment environment. Later, Sarkar and Sarkar [14] further
investigated the consequences of delayed deterioration on the retailer’s best stock policy
when the demand is related to a linear form of the current stock amount. In this direction,
it is worth referring to the following recent works: Tyagi et al. [15], Mashud et al. [16],
Rastogi et al. [17], Khan et al. [18], Sundararajan et al. [19], and Sundararajan et al. [20].

According to Levin et al. [21], a large number of customers are attracted by the
display of huge amounts of stock with lots of variety in super-shops, resulting in the
market demand increasing. This is termed as stock-dependent demand. Valliathal and
Uthayakumar [22] established an economic production quantity (EPQ) inventory model
for time-reliant deteriorating goods with current stock-dependent market demand and
partial backordering, and then they solved the problem by proposing a computational
methodology. Later, Min et al. [23] extended Valliathal and Uthayakumar [22]’s production–
inventory model by including the consequences incurred by delaying payments and solved
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the problem mathematically by developing theoretical results. Pando et al. [24] analyzed
another inventory management policy by considering the nonlinear stock-dependent
market demand instead of the linear demand pattern when the carrying cost is proportional
to power form of the current stock amount. Sarkar and Sarkar [14] further investigated the
effect of delayed deterioration when the demand is related to a linear form of the current
stock amount. Again, Pando et al. [25] extended the previous study by Pando et al. [24]
by improving the carrying cost proportionally to the power form of both the current stock
amount and the storage duration. Following that, Yang [26] described two inventory
models on the basis of the terminal condition under power form of the current stock
amount related to demand when the carrying cost is proportional to the nonlinear form of
the current stock amount. Sarkar et al. [27] investigated a seasonal product related inventory
model with preservation facilities and linearly stock-dependent item demand along with
time-dependent partial backordering. Later, Pando et al. [7] considered the nonlinear stock
amount-related consumption rate for decaying products with zero terminating scenario
and obtained an optimal solution. Again, Pando et al. [28] and Pando et al. [29] further
examined the power form of the stock amount-related consumption rate under the objective
of optimizing the profit and cost ratio. Recently, Cárdenas-Barrón et al. [30] improved
the inventory model developed by Yang [26] by allowing a delay in payments into two
inventory models according to the terminal conditions. All of the aforementioned studies
related to nonlinear stock-dependent client demand are formulated for non-deteriorating
items, except for in a single study Pando et al. [7]. However, Pando et al. [7] considered the
moment at which deterioration began as the moment at which the items began to be stored
in the warehouse. Consequently, it is critical to make inventory management more robust
and flexible to delay deteriorating items under nonlinear stock-dependent client demand
by developing efficient and effective inventory models.

Most recently, during the global coronavirus pandemic, the stay-at-home orders have
markedly stimulated online grocery shopping, i.e., e-shopping transactions that depend
on advanced payment and cash-on-delivery. When online shopping, suppliers typically
require a certain segment of the purchasing price in advance of delivery, after the order
has been placed, and asks for the rest of the purchasing price when the order is deliv-
ered, i.e., cash-on-delivery. By receiving the advanced payment segment for the ordered
goods, suppliers cannot only obtain assurance about the orders but can also earn interest
from this segment. Relaxing the cash-on-delivery policy from typical inventory models,
Zhang [31] introduced an advance payment strategy in the inventory management sys-
tem for the first time. Connected to this, the researchers developed some noteworthy
works, such as an EOQ inventory model, by allowing multiple prepayment payment
opportunities (Taleizadeh et al. [32]); multiple prepayment payments opportunities for
deteriorating items (Taleizadeh [33]); the inclusion of prepayment opportunities in the
supply chain environment (Zhang et al. [34]), multiple prepayment models under capacity
constraints (Khan et al. [18], Khan et al. [35] and Shaikh et al. [36]); price discount op-
portunities on the basis of full or partial prepayment (Tavakoli and Taleizadeh [6], and
Khan et al. [11]); and multiple prepayment opportunities for a perishable item with a
certain lifetime (Khan et al. [37]).

Practitioners are frequently confronted with two distinct situations during shortages,
namely (i) backorders and (ii) sales opportunity when shortages appear due to uncer-
tainty in the marketplaces. In fact, when shortages occur, the customers may wait for
new products to arrive or may move to other available sources that are able to meet their
requirements. When all of the customers wait for the new product they want to arrive, the
situation is termed as complete backordering (Shaikh et al. [5], and San-José et al. [38], and
San-José et al. [39]); moreover, when some customers wait for new products to arrive, the
situation is defined as partial backordering. Many researchers have been studying partial
backordering situations by assuming that a fixed portion of the customers wait for a backo-
rdered item, i.e., a constant backlogging rate (Yang [26]; Taleizadeh [33]; Singh et al. [40],
Khan et al. [11], Khan et al. [35], and Cárdenas-Barrón et al. [30]). In fact, whether customers
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wait for backorders or not depends on the duration of the waiting time. Hence, relaxing
the concept of constant backlogging by waiting time, which is sensitive to the backlogging
rate, some researchers have described several inventory policies (Sarkar and Sarkar [14];
Tyagi et al. [15]; Sarkar et al. [27]; Khan et al. [8], Khan et al. [37]; Shaikh et al. [36], and
Panda et al. [28]). In addition, a comparison of the aforementioned studies and the proposed
inventory model is presented in Table 1.

Table 1. A comparison of the inventory models.

Authors

EOQ/EPQ
Inventory

Model

Stock-Dependent
Demand

Deterioration Payment Scheme
Partial Backordering

Rate

Linear Nonlinear Instantaneous
Non-

Instantaneous
Advance

Cash on
Delivery

Constant
Waiting

Time De-
pendent

Shaikh et al. [5] EOQ
√ √ √

Pando et al. [7] EOQ
√ √ √

Khan et al. [11] EOQ
√ √ √ √

Sarkar and Sarkar [14] EOQ
√ √ √ √

Tyagi et al. [15] EOQ
√ √ √ √

Mashud et al. [16] EOQ
√ √ √ √

Valliathal and
Uthayakumar [22] EPQ

√ √ √ √

Min et al. [23] EPQ
√ √ √

Pando et al. [24] EOQ
√ √

Pando et al. [25] EOQ
√ √

Yang [26] EOQ
√ √ √

Sarkar et al. [27] EOQ
√ √ √ √

Pando et al. [28] EOQ
√ √

Pando et al. [29] EOQ
√ √

Cárdenas-Barrón
et al. [30] EOQ

√ √ √

Alshanbari et al. [41] EOQ
√ √ √ √

Rahman et al. [42] EOQ
√ √ √ √

This paper EOQ
√ √ √ √ √

Table 1 indicates that few works have explored the impacts of the nonlinear form
of stock amount-related market demand on inventory policies and only a single work
(Pando et al. [7]) in the literature has been conducted on decaying items under the nonlin-
ear form of the stock amount-related consumption rate. In Pando et al. [7], deterioration
commences as soon as the products are stored in the warehouse of the practitioner. How-
ever, they ignored the fact that a plethora of items (for instance, vegetables, fruits, milk,
meat, fish, among others) has certain time intervals within the deterioration time span
that do not commence immediately due to the original quality of the products. Moreover,
Pando et al. [7] considered that products are delivered instantaneously after the practitioner
has made the order and that the payment is entirely accomplished when the product is
delivered. However, for a product that is in high or limited on the market, practitioners
want to pay a fraction or total of the purchase cost prior to receiving the delivery for the
purposes of having an on-time delivery. On the other hand, suppliers require a certain
segment of the purchasing price after the product has been ordered and in advance of the
rest of the segment that is paid when the order is delivered, i.e., cash-on-delivery, in order
to obtain assurance about their orders. In addition, Pando et al. [7] did not take another
practical scenario in marketplaces into consideration: backordering.
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The salient findings of this research work can be abridged as follows: (i) the effects
of the power form of the stock amount-related market demand on inventory policies for
delayed or deteriorated items are investigated; (ii) a hybrid prepayment and cash-on-
delivery payment scheme for the retailer is adopted; (iii) partial backordering on the basis
of the length of the customer waiting time is incorporated; and (iv) a certain condition
is provided to decide whether the optimal inventory policy involves deterioration. The
combination of these four claims made by the present research work is unique in the
inventory management literature.

3. Notation, Description and Formulation of the Inventory Model

This research work defines an inventory model for non-instantaneous deteriorating
items with stock-dependent demand and partial-backlogged shortages with a hybrid
payment system.

3.1. Notation

The following notation is used throughout the development of the inventory model:

Parameter Units Description

C0 USD/order replenishment cost
cp USD/unit purchasing cost

ch USD/unit/unit of time
holding cost per unit per unit of
time

cb USD/unit/unit of time
shortage cost per unit per unit of
time

cd USD/unit/unit of time
deterioration cost per unit per
unit of time

cl USD/unit/unit of time
opportunity cost per unit per unit
of time

η η > 0 scaling constant for demand rate
θ 0 < θ < 1 deterioration rate

γ 0 ≤ γ < 1
inventory level elasticity of
demand rate

δ δ ≥ 0 backloging parameter

ts unit of time
time at which the inventory starts
to deteriorate with a rate of θ

ℵ integer value number of installments to prepay

σ unit of time
time interval to accomplish the
prepayment

ω %
portion of the purchase price to
prepay

ic %/unit of time interest charged for the loan

I(t) units
inventory level at any time t
where 0 ≤ t ≤ t1 + t2

X USD/cycle the total cost per cycle
TC(t1, t2) USD/unit of time the total cost per unit of time
Dependent Decision variables

S units maximum stock per cycle
R units maximum shortages level
Decision variables

t1 unit of time
time at which the inventory level
becomes zero

t2 unit of time
time duration at which the
inventory level is negative

3.2. Description of the Inventory Model

Initially, a retailer places an order to a supplier following a hybrid advanced and
cash payment scheme. According to this scheme, the order is made by giving the ω
portion of the total purchase price with the help of ℵ equal installments during σ time
units, and when the order is received by the person paying, then the remaining (1 − ω)
amount is paid instantaneously. The replenishment rate is deemed as infinite. This paper
considers that the demand is a power function of the stock level at time t, then it is:
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D(t) =

{
η[I(t)]γ, when I(t) > 0
η, when I(t) ≤ 0

where η > 0 and 0 ≤ γ < 1. Notice that when

I(t) > 0, the demand is dependent on stock, and when I(t) ≤ 0, demand is constant.
This type or demand has been used previously by Pando et al. [7]; Pando et al. [25];
Yang [26]; and Cárdenas-Barron et al. [30]. In this inventory model, an infinite planning
horizon is considered. It is well-known that product deterioration is a critical phenomenon
in inventory management. Moreover, every deteriorating product has a fresh lifetime;
after that time, it begins to deteriorate increasingly over time or constantly. Bearing its
importance to inventory management, it is incorporated into the proposed inventory model,
and the deterioration rate is considered as constant (Taleizadeh et al. [4]; Shaikh et al. [5];
Tavakoli and Taleizadeh [6]; Pando et al. [7]; and Sarkar and Sarkar [14]). In contrast,
when there is no stock available in the retailer’s warehouse, i.e., there is no deterioration
during the shortage time. The I1(t) denotes the inventory level at any time t ∈ [0, ts] when
deterioration has no effect on the product on the stock amount. I2(t) represents for the
inventory level at any time t ∈ [ts, t1] when there is product deterioration, while I3(t)
represents the inventory level at any time t ∈ [t1, t1 + t2] when shortages have appeared.
Due to the vagueness of the demand some time, it is difficult for the retailer to foresee
how much stock needs to be preserved for the customers. Therefore, natural shortages
are inevitable for variable demands. Moreover, it is important to satisfy the shortages
more meticulously through proper management. In this inventory model, the backlogging
rate depends on the customer waiting time, which is anticipated as 1

1+δy , where y is the
customer waiting time (Khan et al. [8], Sarkar et al. [27] and Khan et al. [37]).

Initially, the company places an order for a unique product with S + R units by
providing the ωcp(S + R) amount, creating loans from a third party (i.e., a bank) through ℵ
equal installments during σ time units, and when the order is received, then the remaining
(1−ω) portion is paid at t = 0. The inventory level follows the pattern depicted in Figure 1.

Figure 1. Inventory system for non-instantaneous deterioration with partial backlogging.

3.3. Formulation of the Inventory Model

In the beginning, the inventory is declined due to customer consumption alone. How-
ever, after ts units of time, the stock is not only depleted to satisfy customer demand but
also due to deterioration and consequently, the inventory amount reaches zero at time
t = t1. Shortly after, shortages appear, and these are partially backlogged shortages with a
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rate that depends upon the customer waiting time. Therefore, the inventory amount at any
moment preserves the following differential equations:

dI1(t)
dt

= −η[I1(t)]
γ 0 ≤ t ≤ ts (1)

with the condition I1(0) = S, and I1(t) is continuous at t = ts.

dI2(t)
dt

+ θ I2(t) = −η[I2(t)]
γ ts < t ≤ t1 (2)

with the subsidiary condition I2(t1) = 0, and I2(t) is continuous at t = t1.

dI3(t)
dt

= − η

1 + δ(t1 + t2 − t)
t1 < t ≤ t1 + t2 (3)

with the auxiliary condition I3(t1 + t2) = −R.
Utilizing the condition I1(0) = S from Equation (1), one has

I1(t) =
[
S1−γ − ηt(1 − γ)

] 1
1−γ 0 ≤ t ≤ ts (4)

Again, employing I2(t1) = 0, from Equation (2), one finds

I2(t) = η
1

1−γ θ
− 1

1−γ

{
eθ(1−γ)(t1−t) − 1

} 1
1−γ ts ≤ t ≤ t1 (5)

Using I3(t1 + t2) = −R, from Equation (3), one has

I3(t) =
η

δ
ln|1 + δ(t1 + t2 − t)| − R t1 < t ≤ t1 + t2 (6)

Considering the continuity of the current inventory at t = ts and t = t1, one has

S = [ηts(1 − γ) + Δ1]
1

1−γ (7)

R =
η

δ
ln|1 + δt2| (8)

where Δ1 = η
θ

{
eθ(1−γ)(t1−ts) − 1

}
.

The following costs are involved in the inventory model.

(a) The ordering cost per cycle is:

OC = C0 (9)

(b) The purchasing cost per cycle is:

PC = cp(S + R) (10)

(c) The loan cost per cycle from Figure 1 is: LC = ic
[(

ωPC
ℵ

)(
σ
ℵ
)
(1 + 2 + . . . + ℵ)

]
LC=

icωσ(ℵ+ 1)cp(S + R)
2ℵ (11)

(d) The inventory holding cost per cycle is: HC = ch

[∫ ts
0 I1(t)dt +

∫ t1
ts

I2(t)dt
]

HC=
ch

η + α

[
(tsα + Δ1)

η+α
α − Δ1

η+α
α + {α(t1 − ts)}

η+α
α

]
(12)

where α = η(1 − γ).
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(e) The deterioration cost per cycle is: DC = cd

[
I2(ts)− η

∫ t1
ts

[I2(t)]
γdt

]
DC= cd

[
Δ1

1
1−γ + (γ − 1)α

γ
1−γ (t1 − ts)

1
1−γ

]
(13)

(f) The shortage cost per cycle is: SC = −cb
∫ t1+t2

t1
I3(t)dt

SC=
cbη

δ

[
t2 − ln|1 + δt2|

δ

]
(14)

(g) The opportunity cost per cycle is: OC = clη
∫ t1+t2

t1

[
1 − 1

1+δ(t1+t2−t)

]
dt

OC= clη

[
t2 − ln|1 + δt2|

δ

]
(15)

Detailed calculations of HC and DC are given in Appendix A.
Therefore, the total inventory cost is determined as the sum of the ordering cost,

purchasing cost, loan cost, holding cost, deterioration cost, shortage cost, and opportunity
cost, that is, X = C0 + PC + LC + HC + DC + SC + OC.

Hence, the total inventory cost per unit of time is

TC(t1, t2) =
1

t1 + t2

⎡⎢⎢⎢⎣
C0 + cp

{
1 + icωσ(ℵ+1)

2ℵ
}(

{ηts(1 − γ) + Δ1}
1

1−γ + η
δ ln|1 + δt2|

)
+ ch

η+α

[
(tsα + Δ1)

η+α
α − Δ1

η+α
α + {α(t1 − ts)}

η+α
α

]
+cd

[
Δ1

1
1−γ + (γ − 1)α

γ
1−γ (t1 − ts)

1
1−γ

]
+
(
cl +

cb
δ

)
η
[
t2 − ln|1+δt2|

δ

]
⎤⎥⎥⎥⎦ (16)

where Δ1 = η
θ

{
eθ(1−γ)(t1−ts) − 1

}
and α = η(1 − γ).

Considering the total inventory cost, the nonlinear optimization problem is written
as follows:

Problem : Minimize TC(t1, t2) =
X

t1+t2
Subject to 0 < ts ≤ t1 ≤ t1 + t2

(17)

4. Solution Procedure

The optimization problem given in (17) can be solved by the following solution procedure.
Computing the first and second order partial derivatives of TC(t1, t2) with respect to

t1 and t2, one obtains

∂TC(t1, t2)

∂t1
= − X

(t1 + t2)
2 +

1
t1 + t2

∂X
∂t1

(18)

∂2TC(t1, t2)

∂t2
1

=
2X

(t1 + t2)
3 − 2

(t1 + t2)
2

∂X
∂t1

+
1

t1 + t2

∂2X
∂t2

1
(19)

∂TC(t1, t2)

∂t2
= − X

(t1 + t2)
2 +

1
t1 + t2

∂X
∂t2

(20)

∂2TC(t1, t2)

∂t2
2

=
2X

(t1 + t2)
3 − 2

(t1 + t2)
2

∂X
∂t2

+
1

t1 + t2

∂2X
∂t2

2
(21)

Now, the necessary conditions for optimizing TC(t1, t2) are:

∂TC(t1, t2)

∂t1
= 0 (22)

∂TC(t1, t2)

∂t2
= 0 (23)
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Using Equations (22) and (23), the reduced forms of Equations (18)–(21) can be obtained
as follows:

X = (t1 + t2)
∂X
∂t1

(24)

∂2TC(t1, t2)

∂t2
1

=
1

t1 + t2

∂2X
∂t2

1
(25)

X = (t1 + t2)
∂X
∂t2

(26)

∂2TC(t1, t2)

∂t2
2

=
1

t1 + t2

∂2X
∂t2

2
(27)

Combining Equations (24) and (26), one writes

∂X
∂t1

=
∂X
∂t2

(28)

where ∂X
∂t1

and ∂X
∂t2

are computed as

∂X
∂t1

=
cp

1−γ

{
1 + icωσ(ℵ+1)

2ℵ
}
{ηts(1 − γ) + Δ1}

γ
1−γ ∂Δ1

∂t1
+ cd

[
1

1−γ Δ1
γ

1−γ ∂Δ1
∂t1

− α
γ

1−γ (t1 − ts)
γ

1−γ

]
+ ch

α

[
(tsα + Δ1)

η
α ∂Δ1

∂t1
− Δ1

η
α

∂Δ1
∂t1

+ α
η+α

α (t1 − ts)
η
α

]
,

(29)

∂X
∂t2

=
cpη

1 + δt2

{
1 +

icωσ(ℵ+ 1)
2ℵ

}
+
(

cl +
cb
δ

)
η

(
1 − 1

1 + δt2

)
(30)

Based on the performed analysis, the following lemma is proposed:

Lemma 1. If cp

{
1 + icωσ(ℵ+1)

2ℵ
}
≥ (

cl +
cb
δ

)
, then the optimization problem given in (17) does

not have an optimal solution.

Proof. See Appendix B. �

It follows from Equation (28) that

cpη
1+δt2

{
1 + icωσ(ℵ+1)

2ℵ
}
− (

cl +
cb
δ

)
η 1

1+δt2
=

cp
1−γ

{
1 + icωσ(ℵ+1)

2ℵ
}
{ηts(1 − γ) + Δ1}

γ
1−γ ∂Δ1

∂t1

−(cl +
cb
δ

)
η + cd

[
1

1−γ Δ1
γ

1−γ ∂Δ1
∂t1

− α
γ

1−γ (t1 − ts)
γ

1−γ

]
+ ch

α

[
(tsα + Δ1)

η
α ∂Δ1

∂t1
− Δ1

η
α

∂Δ1
∂t1

+ α
η+α

α (t1 − ts)
η
α

]
.

(31)

After performing some simplifications, from Equation (31), one has

t2 =
η

δ

⎡⎣ cp

{
1 + icωσ(ℵ+1)

2ℵ
}
− (

cl +
cb
δ

)
Φ(t1)

− 1
η

⎤⎦ (32)

where
Φ(t1) =

cp
1−γ

{
1 + icωσ(ℵ+1)

2ℵ
}
{ηts(1 − γ) + Δ1}

γ
1−γ ∂Δ1

∂t1

−(cl +
cb
δ

)
η + cd

[
1

1−γ Δ1
γ

1−γ ∂Δ1
∂t1

− α
γ

1−γ (t1 − ts)
γ

1−γ

]
+ ch

α

[
(tsα + Δ1)

η
α ∂Δ1

∂t1
− Δ1

η
α

∂Δ1
∂t1

+ α
η+α

α (t1 − ts)
η
α

]
.

(33)

Equation (32) reveals that t2 is a function of t1. Now, the existence of the unique time
at which the inventory level becomes zero, i.e., t1, is explored.
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Performing differentiation with respect to t1 on both sides of Equation (31), one obtains

−
[
cp

{
1+ icωσ(ℵ+1)

2ℵ
}
−(cl+

cb
δ )

]
ηδ

(1+δt2)
2

dt2
dt1

= cd

⎡⎢⎣ 1
1−γ

{
γ

1−γ Δ1
2γ−1
1−γ

(
∂Δ1
∂t1

)2
+ Δ1

γ
1−γ ∂2Δ1

∂t2
1

}
+α

γ
1−γ γ

γ−1 (t1 − ts)
2γ−1
1−γ

⎤⎥⎦
+ ch

α

⎡⎢⎣ η
α (tsα + Δ1)

η−α
α

(
∂Δ1
∂t1

)2
+ (tsα + Δ1)

η
α ∂2Δ1

∂t2
1

− η
α Δ1

η−α
α

(
∂Δ1
∂t1

)2 − Δ1
η
α

∂2Δ1
∂t2

1
+ α

η+α
α

η
α (t1 − ts)

η−α
α

⎤⎥⎦
+

cp
1−γ

{
1 + icωσ(ℵ+1)

2ℵ
}⎡⎣ γ

1−γ{ηts(1 − γ) + Δ1}
2γ−1
1−γ

(
∂Δ1
∂t1

)2

+{ηts(1 − γ) + Δ1}
γ

1−γ ∂2Δ1
∂t2

1

⎤⎦,

(34)

where ∂Δ1
∂t1

= η(1 − γ)eθ(1−γ)(t1−ts) and ∂2Δ1
∂t2

1
= ηθ(1 − γ)2eθ(1−γ)(t1−ts).

Since ∂2Δ1
∂t2

1
> 0, η

α

(
∂Δ1
∂t1

)2{
(tsα + Δ1)

η−α
α − Δ1

η−α
α

}
> 0, and

∂2Δ1
∂t2

1

{
(tsα + Δ1)

η
α − Δ1

η
α

}
> 0, the expression on the right-hand side of Equation (34) is

always positive. Consequently,[
cp

{
1 + icωσ(ℵ+1)

2ℵ
}
− (

cl +
cb
δ

)]
ηδ

(1 + δt2)
2

dt2

dt1
< 0 (35)

Employing Equation (31) and accomplishing some simplifications, Equation (22)
reduces to

1

(t1 + t2)
2

⎡⎢⎢⎢⎢⎢⎣
(t1 + t2)

[
cpη

1+δt2

{
1 + icωσ(ℵ+1)

2ℵ
}
+
(
cl +

cb
δ

)
η
(

1 − 1
1+δt2

)]
−C0 −

(
cl +

cb
δ

)
η
[
t2 − ln|1+δt2|

δ

]
− ch

η+α

[
(tsα + Δ1)

η+α
α − Δ1

η+α
α + {α(t1 − ts)}

η+α
α

]
−cd

[
Δ1

1
1−γ − (1 − γ)α

γ
1−γ (t1 − ts)

1
1−γ

]
− cp

{
1 + icωσ(ℵ+1)

2ℵ
}( {ηts(1 − γ) + Δ1}

1
1−γ

+ η
δ ln|1 + δt2|

)
⎤⎥⎥⎥⎥⎥⎦ = 0 (36)

For convenience, let us define the auxiliary function Ψ(t1) from Equation (36) as follows:

Ψ(t1) = (t1 + t2)
[

cpη
1+δt2

{
1 + icωσ(ℵ+1)

2ℵ
}
+
(
cl +

cb
δ

)
η
(

1 − 1
1+δt2

)]
−C0 −

(
cl +

cb
δ

)
η
[
t2 − ln|1+δt2|

δ

]
− ch

η+α

[
(tsα + Δ1)

η+α
α − Δ1

η+α
α + {α(t1 − ts)}

η+α
α

]
−cd

[
Δ1

1
1−γ − (1 − γ)α

γ
1−γ (t1 − ts)

1
1−γ

]
− cp

{
1 + icωσ(ℵ+1)

2ℵ
}(

{ηts(1 − γ) + Δ1}
1

1−γ + η
δ ln|1 + δt2|

)
,

(37)

where t1 ∈ [ts, ∞).
Differentiating Ψ(t1) with respect to t1, one obtains

dΨ(t1)
dt1

=
[

cpη
1+δt2

{
1 + icωσ(ℵ+1)

2ℵ
}
+
(
cl +

cb
δ

)
η
(

1 − 1
1+δt2

)]
− cd

[
1

1−γ Δ1
γ

1−γ ∂Δ1
∂t1

− α
γ

1−γ (t1 − ts)
γ

1−γ

]
− (t1 + t2)

ηδ

(1+δt2)
2

dt2
dt1

[
cp

{
1 + icωσ(ℵ+1)

2ℵ
}
− (

cl +
cb
δ

)]
− cp

1−γ

{
1 + icωσ(ℵ+1)

2ℵ
}
{ηts(1 − γ) + Δ1}

γ
1−γ ∂Δ1

∂t1
− ch

α

[
(tsα + Δ1)

η
α ∂Δ1

∂t1
− Δ1

η
α

∂Δ1
∂t1

+ α
η+α

α (t1 − ts)
η
α

]
.

(38)

Using the expression in Equation (31), the first order derivative of Ψ(t1) is expressed as

dΨ(t1)

dt1
= −(t1 + t2)

ηδ

(1 + δt2)
2

dt2

dt1

[
cp

{
1 +

icωσ(ℵ+ 1)
2ℵ

}
−
(

cl +
cb
δ

)]
> 0 (39)
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Equation (39) reveals that the auxiliary function Ψ(t1) strictly increases in t1 ∈ [ts, ∞).
In addition, at t1 = ts, from Equation (32), one has

t2 =
1
δ
(ξ1 − 1) (40)

where ξ1 =
cp

{
1 + icωσ(ℵ+1)

2ℵ
}
− (

cl +
cb
δ

)
cp

{
1 + icωσ(ℵ+1)

2ℵ
}
(αts)

γ
1−γ − (

cl +
cb
δ

)
+ ch

η (αts)
1

1−γ

(41)

Now, the expression of the auxiliary function Ψ(t1) at t1 = ts is:

Ψ(ts) =
{

ts +
(ξ1−1)

δ

}[
cpη
ξ1

{
1 + icωσ(ℵ+1)

2ℵ
}
+
(
cl +

cb
δ

)
η
(

1 − 1
ξ1

)]
− C0 − ch

η+α (tsα)
η+α

α

−(cl +
cb
δ

) η
δ (ξ1 − 1 − ln|ξ1|) − cp

{
1 + icωσ(ℵ+1)

2ℵ
}{

(αts)
1

1−γ + η
δ ln|ξ1|

}
(= Ω, say)

(42)

It is easy to show that when t1 becomes larger, Ψ(t1) tends to be ∞.
Now, two cases for the optimal t1 are recognized on the basis of the sign of Ω, i.e.,

Ψ(ts), as follows:
Case 1: When Ω < 0, employing the intermediate value theorem, one can straightfor-

wardly observe that Equation (22) represents a unique situation, say t̃1 ∈ (ts, ∞), which is
the unique optimal t1 minimizing the total inventory cost per unit of time. Moreover, the
corresponding optimal shortages duration, say t̃2, is calculated from Equation (32). Now,
the convexity of TC(t1, t2) at the point

(
t̃1, t̃2

)
is explored as follows:

Computing the second order partial derivatives of TC(t1, t2) at the point (t1, t2) =
(
t̃1, t̃2

)
,

one has

∂2TC(t1, t2)

∂t2
1

∣∣∣∣∣
(t1,t2)=(t̃1,̃t2)

=
1

t̃1 + t̃2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cp
1−γ

{
1 + icωσ(ℵ+1)

2ℵ
}⎡⎣ γ

1−γ{ηts(1 − γ) + Δ1}
2γ−1
1−γ

(
∂Δ1
∂t1

)2

+{ηts(1 − γ) + Δ1}
γ

1−γ ∂2Δ1
∂t2

1

⎤⎦
+ ch

α

⎡⎢⎣ η
α (tsα + Δ1)

η−α
α

(
∂Δ1
∂t1

)2
+ (tsα + Δ1)

η
α ∂2Δ1

∂t2
1

− η
α Δ1

η−α
α

(
∂Δ1
∂t1

)2 − Δ1
η
α

∂2Δ1
∂t2

1
+ α

η+α
α

η
α (t1 − ts)

η−α
α

⎤⎥⎦+
cd

⎡⎢⎣ 1
1−γ

{
γ

1−γ Δ1
2γ−1
1−γ

(
∂Δ1
∂t1

)2
+ Δ1

γ
1−γ ∂2Δ1

∂t2
1

}
+α

γ
1−γ γ

γ−1 (t1 − ts)
2γ−1
1−γ

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(t1,t2)=(t̃1,̃t2)

(43)

Since ∂2Δ1
∂t2

1
> 0, η

α

(
∂Δ1
∂t1

)2{
(tsα + Δ1)

η−α
α − Δ1

η−α
α

}
> 0, and

∂2Δ1
∂t2

1

{
(tsα + Δ1)

η
α − Δ1

η
α

}
> 0, the expression on the right-hand side of Equation (43)

is always positive. Consequently,

∂2TC(t1, t2)

∂t2
1

∣∣∣∣∣
(t1,t2)=(t̃1,̃t2)

> 0 (44)

∂2TC(t1, t2)

∂t2
2

∣∣∣∣∣
(t1,t2)=(t̃1,̃t2)

=
ηδ(

t̃1 + t̃2
)(

1 + δt̃2
)2

{(
cl +

cb
δ

)
− cp

{
1 +

icωσ(ℵ+ 1)
2ℵ

}}
(45)

∂2TC(t1, t2)

∂t1∂t2

∣∣∣∣
(t1,t2)=(t̃1,̃t2)

=
∂2TC(t1, t2)

∂t2∂t1

∣∣∣∣
(t1,t2)=(t̃1,̃t2)

= 0 (46)
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Since ∂2TC(t1,t2)

∂t2
1

∣∣∣∣
(t1,t2)=(t̃1,̃t2)

> 0 and, from Equations (44)–(46), one can straightfor-

wardly observe that ∂2TC(t1,t2)

∂t2
1

∣∣∣∣
(t1,t2)=(t̃1,̃t2)

∂2TC(t1,t2)

∂t2
2

∣∣∣∣
(t1,t2)=(t̃1,̃t2)

−
[

∂2TC(t1,t2)
∂t1∂t2

∣∣∣
(t1,t2)=(t̃1,̃t2)

]2

is only positive when cp

{
1 + icωσ(ℵ+1)

2ℵ
}
<
(
cl +

cb
δ

)
.

Taking the above results into consideration, the following theorem can be proposed to
achieve the optimal replenishment policy.

Theorem 1. If Ω < 0 and cp

{
1 + icωσ(ℵ+1)

2ℵ
}
<
(
cl +

cb
δ

)
, then a unique t∗1 = t̃1 and t∗2 = t̃2

exist, where t̃1 and t̃2 satisfy Equations (22) and (32), respectively, and TC(t1, t2) achieves the
global minimum value at

(
t∗1, t∗2

)
=
(
t̃1, t̃2

)
.

Case 2: When Ω ≥ 0, then the total inventory cost per unit of time is an increasing
function for t1 ∈ [ts, ∞), as Ψ(t1) > 0 for all t1 ∈ (ts, ∞). Consequently, the value of t1
satisfying Equation (22) does not exist in this case, and hence, the unique optimal t1 for
minimizing the total cost is achieved at ts. In this case, there only one decision variable
exists, i.e., t2, and the corresponding nonlinear optimization problem becomes

Problem : Minimize Π(t2) = TC(ts, t2) =
X̃

ts+t2
Subject to 0 < ts = t1 ≤ ts + t2

(47)

where
X̃ = C0 + cp

{
1 + icωσ(ℵ+1)

2ℵ
}{

(αts)
1

1−γ + η
δ ln|1 + δt2|

}
+ ch

η+α (tsα)
η+α

α +
(
cl +

cb
δ

)
η
{

t2 − ln|1+δt2|
δ

}
.

The first order derivative of Π(t2) is

Π′(t2) =
1

(ts + t2)
2

[
−X̃ + (ts + t2)

dX̃
dt2

]
(48)

For notational convenience, let us define the auxiliary function Z(t2) from Equa-
tion (48) as follows:

Z(t2) = −X̃ + (ts + t2)

[
cpη

1 + δt2

{
1 +

icωσ(ℵ+ 1)
2ℵ

}
+
(

cl +
cb
δ

)
η

(
1 − 1

1 + δt2

)]
(49)

where t2 ≥ 0.
In addition, at t2 = 0, the value of Z(t2) is

Z(0) = − C0 − cp

{
1 + icωσ(ℵ+1)

2ℵ
}
(αts)

1
1−γ − ch

η+α (tsα)
η+α

α

+tscpη
{

1 + icωσ(ℵ+1)
2ℵ

} (50)

Approaching t2 tends to ∞, and one can straightforwardly observe that

lim
t2→∞

Z(t2) = ∞ (51)

Differentiating Z(t2) with respect to t2, one has

dZ(t2)

dt2
= (ts + t2)

ηδ

(1 + δt2)
2

[(
cl +

cb
δ

)
− cp

{
1 +

icωσ(ℵ+ 1)
2ℵ

}]
(52)

52



Mathematics 2022, 10, 434

To investigate the characteristics of Equation (48), let

χ1 = C0 + cp

{
1 +

icωσ(ℵ+ 1)
2ℵ

}
(αts)

1
1−γ +

ch
η + α

(tsα)
η+α

α

and χ2 = tscpη
{

1 + icωσ(ℵ+1)
2ℵ

}
.

Theorem 2.

(a) If χ1 = χ2 and cp

{
1 + icωσ(ℵ+1)

2ℵ
}
<

(
cl +

cb
δ

)
, then Equation (48) has a unique root at

t2 = 0.
(b) If χ1 > χ2 and cp

{
1 + icωσ(ℵ+1)

2ℵ
}
<
(
cl +

cb
δ

)
, then Equation (48) has a unique root of t2

in (0, ∞).
(c) If χ1 < χ2, then Equation (48) has no real root of t2.

Proof.

(a) When χ1 = χ2, then t2 = 0 is a root of Equation (48). Moreover, if(
cl +

cb
δ

) − cp

{
1 + icωσ(ℵ+1)

2ℵ
}

> 0, then Equation (52) reveals that Z(t2) is strictly
an increasing function of t2, and hence, t2 = 0 is the unique root of Equation (48).
On the other hand, if

(
cl +

cb
δ

)− cp

{
1 + icωσ(ℵ+1)

2ℵ
}

≤ 0, then Equation (52) shows
that Z(t2) is either a strictly decreasing or constant function of t2 in (0, ∞), which
contradicts the result of Equation (51).

(b) If χ1 > χ2, then Z(0) < 0. When
(
cl +

cb
δ

) − cp

{
1 + icωσ(ℵ+1)

2ℵ
}

≤ 0, then Equa-
tion (52) exposes the fact that Z(t2) is either a strictly decreasing or constant function
of t2 in (0, ∞), and consequently, Equation (48) has no real root of t2. Again, if(
cl +

cb
δ

)− cp

{
1 + icωσ(ℵ+1)

2ℵ
}
> 0, then Z(t2) is strictly an increasing function of t2

in (0, ∞). Since lim
t2→∞

Z(t2) = ∞, Equation (48) has a unique real root of t2 in (0, ∞).

(c) Finally, when χ1 < χ2, one can observe from Equation (50) that Z(0) is positive. As a result,

Equation (48) has no real root of t2 in [0, ∞) when
(
cl +

cb
δ

)− cp

{
1 + icωσ(ℵ+1)

2ℵ
}
≥ 0

because Z(t2) becomes either a strictly increasing or constant function of t2 in (0, ∞) in this
case. On the other hand, if

(
cl +

cb
δ

)− cp

{
1 + icωσ(ℵ+1)

2ℵ
}
< 0, then the function Z(t2) is

a strictly a decreasing function of t2 in (0, ∞), which opposes the result lim
t2→∞

Z(t2) = ∞. �

Theorem 3. If cp

{
1 + icωσ(ℵ+1)

2ℵ
}
<
(
cl +

cb
δ

)
, then Π(t2) is strictly pseudo-concave in t2, and

hence, a sole optimal t∗2 exists for which Π(t2) is minimized.

Proof. For notational suitability, let us define

Z1(t2) = C0 + cp

{
1 + icωσ(ℵ+1)

2ℵ
}{

(αts)
1

1−γ + η
δ ln|1 + δt2|

}
+ ch

η+α (tsα)
η+α

α +
(
cl +

cb
δ

)
η
{

t2 − ln|1+δt2|
δ

}
,

(53)

Z2(t2) = ts + t2 > 0 (54)

As a result, Π(t2) is repressed as follows: Π(t2) =
Z1(t2)
Z2(t2)

. Moreover, Z1(t2) is strictly
positive as the sum of all of the inventory-associated costs. Taking the differentiation of
Z1(t2) two times with respect to t2, one finds

dZ1(t2)

dt2
=

cpη

1 + δt2

{
1 +

icωσ(ℵ+ 1)
2ℵ

}
+
(

cl +
cb
δ

)
η

(
1 − 1

1 + δt2

)
(55)
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d2Z1(t2)

dt2
2

=
ηδ

(1 + δt2)
2

[(
cl +

cb
δ

)
− cp

{
1 +

icωσ(ℵ+ 1)
2ℵ

}]
(56)

The second order derivative d2Z1(t2)

dt2
2

is positive only when

cp

{
1 + icωσ(ℵ+1)

2ℵ
}

<
(
cl +

cb
δ

)
. Therefore, Z1(t2) is a differentiable and strictly convex

in t2 if cp

{
1 + icωσ(ℵ+1)

2ℵ
}
<
(
cl +

cb
δ

)
. Moreover, Z2(t2) = ts + t2 is a positive and affine

function of t2. This implies that Π(t2) is a strictly pseudo-convex function in t2, and
therefore, there a unique optimal solution of t∗2 exists. This completes the proof of the
theorem. �

Setting dΠ1(t2)
dt2

, the necessary condition to achieve t∗2 is:

(ts + t2)

{
cpη

1 + δt2

{
1 +

icωσ(ℵ+ 1)
2ℵ

}
+
(

cl +
cb
δ

)
η

(
1 − 1

1 + δt2

)}
− X̃ = 0 (57)

Taking the above results into consideration, the following theorem can be proposed to
achieve the optimal replenishment policy for Ω ≥ 0.

Theorem 4. If Ω ≥ 0, χ1 ≥ χ2 and cp

{
1 + icωσ(ℵ+1)

2ℵ
}

<
(
cl +

cb
δ

)
, then Π(t2) is strictly

pseudo-concave in t2, and hence, TC(t1, t2) achieves the global minimum value at t∗1 = ts and t∗2 ,
which satisfies Equation (57).

Proof. The proof is immediate from Theorems 2 and 3. �

5. Special Cases

The proposed inventory model involves the following inventory models as particu-
lar cases:

(i) If the value of δ is chosen as 0, then the backlogging rate of the current inventory
model becomes 1, that is, shortages are completely backlogged.

(ii) If δ → ∞ , one has t2 ≈ 0 from Equation (32), and hence, the current inventory model
reduces to the inventory model without shortages.

(iii) When ts = 0 and δ = 0, then the current inventory model becomes the inventory
model with instantaneous deterioration and is fully backlogged.

(iv) If ts = 0 and δ → ∞ , then one has t2 ≈ 0 from Equation (32), and therefore, the
current inventory model transforms into the inventory model with instantaneous
deterioration without shortages.

(v) If ω = 1, then the current inventory model involves a fully advance payment scheme.
On the other hand, when ω = 0 and γ = 0, then the present inventory model does
not involve any advance payment policy under constant demand and hence involves
a payment policy that is similar to the one seen in the classical EOQ inventory model.

(vi) If ℵ = 1, then the present model includes a single installment opportunity for prepay-
ment, whereas when ℵ = 1 and ω = 1, then the present inventory model becomes
a fully advance payment scheme with single installment instead of multiple install-
ment opportunities.

6. Sensitivity Analysis

The impacts of the parameters of the advance payment scheme on the total cost per
unit of time are examined in this section.

(a) Calculating the derivative of TC(t1, t2) with respect to ℵ, one has
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dTC(t1, t2)

dℵ = − 1
t1 + t2

[(
icωσcp

2ℵ2

)(
{ηts(1 − γ) + Δ1}

1
1−γ +

η

δ
ln|1 + δt2|

)]
< 0 (58)

Equation (58) implies that increasing the number of installments to accomplish the
prepayment decreases the total cost per unit of time.

(b) Taking the derivative of TC(t1, t2) with respect to σ, one obtains

dTC(t1, t2)

dσ
=

1
t1 + t2

[
cp

{
icω(ℵ+ 1)

2ℵ
}(

{ηts(1 − γ) + Δ1}
1

1−γ +
η

δ
ln|1 + δt2|

)]
> 0 (59)

It reveals that increasing the time duration for accomplishing prepayment opportuni-
ties increases the total cost per unit of time.

(c) By performing the first-order differentiation of TC(t1, t2) with respect to ω, one obtains

dTC(t1, t2)

dω
=

1
t1 + t2

[
cp

{
icσ(ℵ+ 1)

2ℵ
}(

{ηts(1 − γ) + Δ1}
1

1−γ +
η

δ
ln|1 + δt2|

)]
> 0 (60)

It follows that the total cost per unit of time increases when the portion of the total
purchase price for accomplishing the prepayment scheme increases.

(d) By taking the derivative of TC(t1, t2) with respect to ic, one obtains

dTC(t1, t2)

dic
=

1
t1 + t2

[
cp

{
ωσ(ℵ+ 1)

2ℵ
}(

{ηts(1 − γ) + Δ1}
1

1−γ +
η

δ
ln|1 + δt2|

)]
> 0 (61)

Therefore, Equation (61) exposes that the total cost per unit of time increases when the
interest charging rate for the borrowed amounts increases.

7. Numerical Examples

To demonstrate the applicability of the inventory model, several numerical examples
are solved in this section.

Example 1. The values of the input parameters for the example are from Pando et al. [25] and Khan
et al. [37] with some additional data that were adopted in the present work the present work. Let
C0 = 10, cp = 50, ch = 0.5, cb = 20, cd = 50, cl = 10, η = 1, θ = 0.05, γ = 0.1, δ = 0.1,
ts = 0.5, ℵ = 3, σ = 5, ω = 0.4 and ic = 0.05. The values of all of the parameters are in their
appropriate units, and LINGO18.0 software was used to solve the example. Now,

Ω =
{

ts +
(ξ1−1)

δ

}[
cpη
ξ1

{
1 + icωσ(ℵ+1)

2ℵ
}
+
(
cl +

cb
δ

)
η
(

1 − 1
ξ1

)]
−C0 − ch

η+α (tsα)
η+α

α − (
cl +

cb
δ

) η
δ (ξ1 − 1 − ln|ξ1|)

−cp

{
1 + icωσ(ℵ+1)

2ℵ
}(

{ηts(1 − γ)} 1
1−γ + η

δ ln|ξ1|
)
= −10.95273

Since cp

{
1 + icωσ(ℵ+1)

2ℵ
}

= 53.333 and
(
cl +

cb
δ

)
= 210, one can observe that

cp

{
1 + icωσ(ℵ+1)

2ℵ
}

<
(
cl +

cb
δ

)
. Therefore, based on Theorem 1, the optimal time durations

for positive and negative stock amounts are determined from Equations (22) and (32) and are given
by t∗1 = 1.1771 and t∗2 = 0.2718. Moreover, the global minimum the total cost per unit of time is
TC∗ = 57.4792 (see Figure 2).
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Figure 2. Graphical presentation of the convexity of TC against t1 and t2 when Ω < 0.

Example 2. Let C0 = 10, cp = 100, ch = 15, cb = 40, cd = 100, cl = 20, η = 1.2, θ = 0.05,
γ = 0.05, δ = 0.4, ts = 0.6, ℵ = 3, σ = 5, ω = 0.4, and ic = 0.05. The values of all of the
parameters are in their appropriate units, and LINGO18.0 software was used to solve the example.
In this case, the value of Ω is:

Ω =
{

ts +
(ξ1−1)

δ

}[
cpη
ξ1

{
1 + icωσ(ℵ+1)

2ℵ
}
+
(
cl +

cb
δ

)
η
(

1 − 1
ξ1

)]
− C0 − ch

η+α (tsα)
η+α

α − (
cl +

cb
δ

) η
δ (ξ1 − 1 − ln|ξ1|)

− cp

{
1 + icωσ(ℵ+1)

2ℵ
}(

{ηts(1 − γ)} 1
1−γ + η

δ ln|ξ1|
)
= 0.6191346 > 0

Since χ1 = 84.4558, χ2 = 64, cp

{
1 + icωσ(ℵ+1)

2ℵ
}

= 106.6667, and
(
cl +

cb
δ

)
= 120,

one can observe that χ1 > χ2 and cp

{
1 + icωσ(ℵ+1)

2ℵ
}
<
(
cl +

cb
δ

)
. Consequently, according to

Theorem 4, the optimal time duration for positive stock amounts ist∗1 = ts = 0.6, and the op-
timal time duration for the negative stock amounts is obtained from Equation (52) and is pro-
vided by t∗2 = 1.5487. In addition, the global minimum of the total cost per unit of time is
TC∗ = 134.1203 (see Figure 3). Figure 3 reveals that the cost function TC(t1, t2) is strictly
increasing for t1 ∈ [ts, ∞), and hence, t∗1 = ts.

Figure 3. Graphical presentation of the convexity of TC against t1 and t2 when Ω ≥ 0.

Example 3. The solutions of the special cases mentioned in Section 5 are investigated with the
same data from Example 1 and the corresponding conditions for the cases. The computational results
are summarized in Table 2.
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Table 2. Optimal solutions for the special cases.

Special Case t*
1 t*

2 TC*

(i) when δ = 0 1.1856 0.2119 57.5717
(ii) when δ → ∞ 1.22 0 57.9451
(iii) when ts = 0 and δ = 0 1.0833 0.2889 59.112
(iv) when ts = 0 and δ → ∞ 1.1481 0 59.8604
(v) when ω = 1 1.1292 0.2553 62.1095
(vi) when ω = 0 and γ = 0 1.7639 0.4864 57.4215
(vii) when ℵ = 1 1.1606 0.2666 59.025
(viii) when ℵ = 1 and ω = 1 1.0928 0.2396 65.9521

Example 4. By adopting Example 1 in this example, the consequence of estimating the parameters
of the optimal results of t1, t2 and total cost TC is explored. The percentage of variations in the
optimal results are taken as measures of the analysis, increasing and decreasing the parameters by
−20% to +20%. These results are obtained by altering a single parameter value at a time and by
keeping the rest of the parameters values unchanged. The outcomes of the analysis are presented in
Table 3. The * denotes the optimal solution.

Table 3. Consequence of changing the parameters of the proposed inventory model.

Parameter % Changes of
Parameters

% Changes in
TC*

% Changes in

S∗ R∗ t∗1 t∗2

δ

−20 0.04 0.19 −5.04 0.17 −5.35

−10 0.02 0.10 −2.59 0.09 −2.75

10 −0.02 −0.10 2.73 −0.09 2.91

20 −0.04 −0.21 5.61 −0.19 5.99

γ

−20 1.53 9.99 21.62 6.76 21.98

−10 0.79 4.85 11.16 3.25 11.33

10 −0.85 −4.60 −11.88 −3.02 −12.02

20 −1.75 −8.97 −24.52 −5.85 −24.77

C0

−20 −2.61 −12.90 −36.56 −11.48 −36.88

−10 −1.25 −6.26 −17.52 −5.54 −17.71

10 1.16 5.95 16.31 5.21 16.57

20 2.24 11.63 31.64 10.16 32.20

θ

−20 −0.27 4.79 −3.83 4.40 −3.88

−10 −0.13 2.28 −1.85 2.10 −1.88

10 0.12 −2.09 1.75 −1.93 1.77

20 0.24 −4.02 3.41 −3.71 3.45

cb

−20 −0.22 −1.13 30.68 −0.99 31.22

−10 −0.10 −0.50 13.28 −0.44 13.48

10 0.08 0.40 −10.48 0.35 −10.61

20 0.14 0.73 −18.96 0.64 −19.17

ch

−20 −0.07 0.59 −1.02 0.52 −1.03

−10 −0.04 0.30 −0.51 0.26 −0.51

10 0.04 −0.29 0.50 −0.26 0.51

20 0.07 −0.59 1.01 −0.52 1.02
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Table 3. Cont.

Parameter % Changes of
Parameters

% Changes in
TC*

% Changes in

S∗ R∗ t∗1 t∗2

cp

−20 −17.31 11.85 9.91 10.35 10.06

−10 −8.63 5.54 5.42 4.86 5.50

10 8.59 −4.90 −6.42 −4.33 −6.50

20 17.14 −9.27 −13.92 −8.22 −14.08

cl

−20 −0.01 −0.04 1.19 −0.04 1.20

−10 −0.004 −0.02 0.59 −0.02 0.60

10 0.004 0.02 −0.58 0.02 −0.59

20 0.01 0.04 −1.16 0.04 −1.17

η

−20 −13.10 −70.15 78.60 −57.52 127.00

−10 – – – – –

10 12.29 −20.49 42.26 −25.65 29.84

20 23.14 −37.42 64.34 −44.91 37.63

ts

−20 0.41 −2.24 5.76 5.84 −2.24

−10 0.20 −1.15 2.79 2.83 −1.14

10 −0.19 1.22 −2.63 −2.66 1.19

20 −0.36 2.49 −5.09 −5.16 2.44

From Table 3, the following interpretations are given:

(i) The total cost (TC) is decreased; consequently, with the increase in the inventory level
elasticity parameter (γ), the total stock (S), maximum shortage (R), and the time where
the stock becomes zero (t1) sharply fall. This same tendency is also identified in the
shortage period (t2).

(ii) When the value of the backlogging parameter (δ) increases, the total cost of the system
(TC) declines as well as the stock amount (S). In contrast, the value of the shortage
amount (R) intensifies; contrasting observations are noticed at point (t1), where short-
ages are started. This reveals that an increase in the backlogging parameter triggers
the customer demand; as a result, the stock is consumed quickly; consequently, it
decreases the time (t1) at which the shortages commence. The duration of the short-
age period (t2) increase significantly simultaneously as the backlogging parameter
(δ) increases.

(iii) It is observed that an intensification of the ordering cost triggers the value of the stock
(S), shortage (R), and the time (t1), resulting in stock becoming zero. This means that
the retailer has much more time to sell their own products without any interruptions
(i.e., shortages). It also affects the total cost (TC) positively. This is a positive sign for
the retailer, as the ordering cost neutralizes the holding cost of the system. However,
an increase in the holding cost (ch) results in a significant increase in total cost (TC), as
the practitioner has to hold the products for a long time before they can be sold.

(iv) It can be concluded that an upsurge in the purchase cost badly affects the total cost
(TC) because the retailer has to buy goods at a high cost. Thence, the retailer reduces
the capacity to purchase products, affecting the stock (S) and shortage amount (R).

(v) As the value of the lost sale cost per unit (cl) increases, the total cost (TC) decreases,
and it has a significant effect on the shortage amount (R), where it diminishes as the
lost sale cost increases. The length where the (t1) shortage commences is less sensitive
with regard to the lost sale cost per unit (cl), while it is moderately sensitive with
respect to the rest of the parameters. It should also be noted that the investment in
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shortage cost (cb) intensifies the total cost (TC) as well as increases the amount of
shortages (R).

(vi) The total cost (TC) upsurges as the rate of deterioration increases (θ); consequently
it reduces the stock (S) in the retailer’s warehouse. This is exhibited by the fact that
an intensification in the deterioration rate diminishes the on-hand inventory of the
retailer, as deterioration is considered as the obsolesce or decay of products. A massive
effect is noted with the increase in the scaling factor of the demand rate (η). When it
increases, the total cost (TC) and the stock (S) significantly increases resulting in some
of losses in business for the retailer.

(vii) When the deterioration free time (ts) increases, the total cost (TC) decreases. Nonethe-
less, the practitioner’s stock rises at the same time because during this period, there
is no deterioration, so the stock only depletes due to customer demand. Moreover,
a higher fresh item period reduces the number of shortages (R) and, consequently,
the duration of the shortages (t2) as well. In contrast, a proliferation in the fresh item
period prolongs the shortage-free duration (t1), which provides more flexibility to
the retailer to sell his products according to market demand. As a result, the retailer
can maintain the products’ original quality for a longer period of time by providing a
better holding environment.

8. Conclusions

This research studies an inventory model that considers the effect of delayed deterio-
ration under nonlinear stock-dependent market demand and partial backlogged shortages
with respect to the length of the customer waiting time. In the inventory procedure, de-
mand is modeled as a power function of the inventory level when the inventory level is
positive while it is constant during shortage periods. The inventory model was formulated
as a nonlinear optimization problem, which was solved mathematically. The convexity
was proven mathematically as well as numerically. A certain condition was found for the
existence of the optimal solution to the problem. Moreover, a salient theoretical result was
obtained that guarantees whether the optimal inventory policy involves deterioration or
not. The executed analysis points out that a proliferation in the fresh-item period prolongs
the shortage-free duration, which provides more flexibility to the inventory manager to sell
his/her products according to market demand. This result has a direct influence on the
inventory policy to reduce the cost of inventory management. The total cost increases as
the deterioration rate increases because it consequently reduces the stock in the retailer’s
warehouse. This exhibits the fact that an intensification in the deterioration rate diminishes
the on-hand inventory of the retailer, as deterioration is considered the obsolescence or
decay of products.

In this research work, an optimal policy for an economic order quantity inventory
model was derived under the following limitations:

(i) The proposed inventory model was derived based on deteriorating products, nonlin-
ear stock-dependent demand, and partially backlogged shortages. However, preser-
vation technology was not applied to reduce the rate of deterioration.

(ii) Advanced payment with an installment facility was considered for the development
of this inventory model. Other facilities such as delay in payment, all unit discount
facility, among others are not considered here.

In the future, on the one hand, the inventory model can be expanded for various
kinds of variable demands that are dependent on the displayed stock-level, time, quantity
discount, etc. On the other hand, the inventory model can also be generalized by including
single-level trade credit or two-level credit policies. Finally, one can also explore this
inventory model in fuzzy and interval environments. Due to the high nonlinearity of the
objective function, soft computing techniques, metaheuristic algorithms, and uncertainty
techniques can be applied in order to solve the proposed inventory model.
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Appendix A

Holding cost (HC): HC = ch

[∫ ts
0 I1(t)dt +

∫ t1
ts

I2(t)dt
]

Now,
∫ ts

0 I1(t)dt =
∫ ts

0 [ηts(1 − γ) + Δ1 − ηt(1 − γ)]
1

1−γ dt

=
∫ ts

0 [α(ts − t) + Δ1]
1

1−γ dt, whereα = η(1 − γ)

= 1
η+α

[
(tsα + Δ1)

η+α
α − Δ1

η+α
α

]
Again,

∫ t1
ts

I2(t)dt =
∫ t1

ts
η

1
1−γ θ

− 1
1−γ

{
eθ(1−γ)(t1−t) − 1

} 1
1−γ dt

= η
1

1−γ θ
− 1

1−γ
∫ t1

ts

{
1 + θα(t1−t)

η − 1
} η

α dt

= α
η
α
∫ t1

ts
(t1 − t)

η
α dt = 1

η+α{α(t1 − ts)}
η+α

α

Therefore, HC = ch
η+α

[
(t1α + Δ1)

η+α
α − Δ1

η+α
α + {α(t1 − ts)}

η+α
α

]
.

Deterioration cost (DC):DC = cd

[
I2(ts)− η

∫ t1
ts

[I2(t)]
γdt

]
DC = cd

[
Δ1

1
1−γ − η

1
1−γ θ

− γ
1−γ

∫ t1
ts

[{
eθ(1−γ)(t1−t) − 1

} γ
1−γ

]
dt
]

= cd

[
Δ1

1
1−γ − η

1
1−γ θ

− γ
1−γ

∫ t1
ts

[{
e

θα(t1−t)
η − 1

} γ
1−γ

]
dt

]
DC ≈ cd

[
Δ1

1
1−γ − η

1
1−γ θ

− γ
1−γ

∫ t1
ts

[{
1 + θα(t1−t)

η − 1
} γ

1−γ

]
dt
]

DC = cd

[
Δ1

1
1−γ − α

γ
1−γ

∫ t1
ts

(t1 − t)
γ

1−γ dt
]
= cd

[
Δ1

1
1−γ − (1 − γ)α

γ
1−γ (t1 − ts)

1
1−γ

]
Appendix B

From Equation (29), one has

∂X
∂t1

=
cp

1−γ

{
1 + icωσ(ℵ+1)

2ℵ
}
{ηts(1 − γ) + Δ1}

γ
1−γ ∂Δ1

∂t1
+ cd

[
1

1−γ Δ1
γ

1−γ ∂Δ1
∂t1

− α
γ

1−γ (t1 − ts)
γ

1−γ

]
+ ch

α

[
(tsα + Δ1)

η
α ∂Δ1

∂t1
− Δ1

η
α

∂Δ1
∂t1

+ α
η+α

α (t1 − ts)
η
α

] (A1)

The expression on the right-hand side of (A1) only involves the decision variable t1
where t1 ∈ [ts, ∞). Now at t1 = ts,

∂X
∂t1

∣∣∣∣
t1=ts

= cpη

{
1 +

icωσ(ℵ+ 1)
2ℵ

}
(αts)

γ
1−γ + ch(tsα)

η
α > 0 (A2)

Moreover,
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d
dt1

(
∂X
∂t1

)
=

cp
1−γ

{
1 + icωσ(ℵ+1)

2ℵ
}[

γ
1−γ{ηts(1 − γ) + Δ1}

2γ−1
1−γ

(
∂Δ1
∂t1

)2
+ {ηts(1 − γ) + Δ1}

γ
1−γ ∂2Δ1

∂t2
1

]
+cd

[
1

1−γ

{
γ

1−γ Δ1
2γ−1
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(
∂Δ1
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)2
+ Δ1

γ
1−γ ∂2Δ1
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1
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γ−1 (t1 − ts)
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α

⎡⎣ η
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α

(
∂Δ1
∂t1

)2
+ (tsα + Δ1)

η
α ∂2Δ1
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1
− η

α Δ1
η−α

α

(
∂Δ1
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η
α
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∂t2

1

+α
η+α
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η
α (t1 − ts)

η−α
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⎤⎦,

(A3)

where ∂Δ1
∂t1

= η(1 − γ)eθ(1−γ)(t1−ts) and ∂2Δ1
∂t2

1
= ηθ(1 − γ)2eθ(1−γ)(t1−ts).

Since ∂2Δ1
∂t2

1
> 0, η

α

(
∂Δ1
∂t1

)2{
(tsα + Δ1)

η−α
α − Δ1

η−α
α

}
> 0, and

∂2Δ1
∂t2

1

{
(tsα + Δ1)

η
α − Δ1

η
α

}
> 0, the expression on the right-hand side of Equation (A3)

is always positive. Therefore, ∂X
∂t1

> 0 for all t1 ∈ [ts, ∞). Combining Equations (28) and
(30) and then by performing some simplifications one can write

1
1 + δt2

<

(
cl +

cb
δ

)[(
cl +

cb
δ

)− cp

{
1 + icωσ(ℵ+1)

2ℵ
}] (A4)

Since the left-hand side of the inequality (B4) is always positive, the inequality (A4) will
be true only if

(
cl +

cb
δ

) − cp

{
1 + icωσ(ℵ+1)

2ℵ
}

> 0. Otherwise, if(
cl +

cb
δ

) − cp

{
1 + icωσ(ℵ+1)

2ℵ
}

≤ 0, then one can find t2 < 0, which contradicts the as-

sumption t2 ≥ 0. Consequently, if
(
cl +

cb
δ

) ≤ cp

{
1 + icωσ(ℵ+1)

2ℵ
}

, then there is no optimal
solution for TC(t1, t2).
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Abstract: The PRISM (partial risk map) methodology is a novel risk assessment method developed
as the combination of the failure mode and effect analysis and risk matrix risk assessment methods.
Based on the concept of partial risks, three different aggregation functions are presented for assessing
incident risks. Since the different aggregation functions give different properties to the obtained
PRISM numbers and threshold surfaces (convex, concave, linear), the description of these properties
is carried out. Similarity analyses based on the sum of ranking differences (SRD) method and rank
correlation are performed and robustness tests are applied related to the changes of the assessment
scale lengths. The PRISM method provides a solution for the systematically criticized problem of
the FMEA, i.e., it is not able to deal with hidden risks behind the aggregated RPN number, while
the method results in an expressive tool for risk management. Applying new aggregation functions,
proactive assessment can be executed, and predictions can be given related to the incidents based on
the nature of their hidden risk. The method can be suggested for safety science environments where
human safety, environmental protection, sustainable production, etc., are highly required.

Keywords: partial risk map; PRISM; PRISM number; failure mode and effect analysis; FMEA; RPN;
risk matrix; risk assessment; safety science; systems safety

MSC: 90B50; 90B25

1. Introduction

Nowadays, the development of risk assessment methodologies is clearly visible in
the industry and service sector as well. One typical development direction is to combine
different mathematical methodologies with a platform risk assessment methodology such
as FMEA—failure mode and effect analysis [1,2], RM—risk matrix [3], HAZOP—hazard
and operability analysis [4], FTA—fault tree analysis [5], etc. The typical aim of these
studies is to develop the platform methodology, increasing its strengths and/or decreasing
its weaknesses by adding new, typically mathematical features. Another major devel-
opment direction is to combine a risk assessment methodology with another one [6–8].
Typically, the aim is to combine the strength of the risk assessment methodologies in this
case. Throughout the decades of development, the reliability, effectiveness, usefulness, ap-
plicability, etc., of the platform risk assessment methodologies were significantly increased
by dominantly mathematic-based methodological developments [9–12].

In our understanding, the risk is not just the probability of an incident but a composite
of all the characteristics that are relevant to the incident and its possible outcome. In this
paper, just the probability of the occurrence, the severity of the consequences, and the
degree of undetectability are considered, but other aspects or features of the incident can
be regarded as a component of the risk (e.g., criticality, range/expansion of the effects,
controllability, etc.). The number of such characteristics that are considered can vary
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method by method; in most of the cases, these characteristics are described with values
and condensed into a single value for each incident.

Based on the combination of the FMEA and RM methodologies, a novel risk as-
sessment methodology called partial risk map (PRISM) was described. Although, the
application of the methodology was presented in a case study related to the assessment
of compliance risks in the banking sector [13], the PRISM risk assessment method is more
generic and can be applied in different operational fields as well, where the risk assessment
is based on similar rating factors to the FMEA, and the identification of hidden risks is
essential. Thus, the method can be offered for safety science environments, where human
health, environmental protection, and sustainable production are in the focus, and also
applied to those fields, where the incident consequences can be generally high. Since the
methodology is quite novel, it still has potential to improve in different descriptive, compar-
ative, and developmental directions. Although, the methodology builds on the strengths
of both the FMEA and RM methods, the mathematical process of the incident ranking
is still not defined [13]. The purpose of this work is the mathematical development and
description of the ranking algorithm of the PRISM method. The aim is to create, describe,
and compare some aggregation functions for the incident characteristics to determine and
to detail the application of the PRISM number. Since PRISM methodology applies the same
risk assessment dimensions as FMEA, the paper also focuses on putting the results related
to the PRISM number into the context of the RPN (risk priority number) of FMEA. Thus,
the aim of the paper is to create the formal description of the theory of partial risks and to
compare the newly developed formulas to each other and to the formula of RPN. The main
results and innovations of the paper are the following:

• Three functions are developed for assessing partial risks (one algorithm is sensitive for
incidents, having a high risk level at one rating factor, one algorithm is sensitive for
middle risk levels at all the rating factors, one is a balanced algorithm). Applying the
new functions, proactive assessment can be executed, and predictions can be given
related to the incidents based on the nature of their hidden risk.

• The developed functions have an exact description based on the distribution of their
possible values and these are compared to the distribution of RPN number.

• The rankings of the functions are compared to each other by applying different anal-
yses, and detailed discussion of the theoretical differences is given based on the
comparison.

• The rankings are robust related to the change of evaluation factor scales. This test is
important, since, in the practical field, the evaluation scale lengths can be different.

Therefore, the work aims to identify the evaluation specialties of the different meth-
ods, and based on the comparisons, possible application suggestions are given for the
practitioners and other research gaps are presented for future research and development.

Since the PRISM methodology builds off of some key specialties of FMEA and RM
as well, in Section 1.1, a brief introduction of these two methodologies is given, and in
Section 1.2, the description of the PRISM method is presented. All the methods featured
in these subsections evaluate the risk of the incidents based on several risk factors and
use some aggregation of these factors to provide an order of priority among the incidents.
The applied method influences the priorities and directs the focus of risk mitigation in a
different way.

1.1. Brief Description of the RM and FMEA

In this subsection, the focus is on the brief introduction of two methodologies, which
have significant impacts on the aim of this study. Thus, RM and FMEA are introduced
here since the PRISM method builds on some key features of these methodologies [14].
The introduction aims to describe the basic structures of the methods and to refer to some
important notes of existing developments. There is no focus on the complete introduction
of these methods, their practical applications, and all the consequences in the field of risk
assessment techniques.
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The methodology of the risk matrix is a widely applicable method of risk assessment.
The structure of risk matrices is built up by factors developed to assess the risk of particular
objects [15]. Risk matrices are usually based on two independent rating factors, which are
the probability of occurrence and the severity of consequences [16]. In most cases, RM
estimates the risk on ordinal or higher measurement scales having usually four to five
different values. The higher the factor-related risk of the object, the higher the value of the
factor.

The risk assessment is generally based on the score of the probability of occurrence and
the severity of consequences factors [17]. In the case of having high values related to both
rating factors, the associated risk is usually interpreted as high, while in the case of having
low values related to the factors, the indicated risk level is low. However, other categories
can be created as well. The visualization of the methodology is usually represented with a
matrix as shown in Figure 1.

Figure 1. Visualization example of the risk matrix.

Selection of the set of the riskiest incidents that must be averted, mitigated, eliminated,
etc., can be executed using a given or calculated threshold level. Once an aggregated value
reaches the threshold level, it signals to the control system. In Figure 1, two threshold levels
are visualized on the frontiers of the white, light gray, and dark gray cells as examples. The
darker the region, the higher the priority.

Similar to the risk matrices, the failure mode and effect analysis methodology also
estimates risks of certain incidents by different rating factors. In the case of FMEA, the esti-
mation is based on the aggregation of three rating factor values (probability of occurrence,
severity of consequences, and degree of undetectability). The most typical aggregation of
these values is multiplication, as many scientific papers refer to it [1,2,18–20].

As for the result of the multiplication, the RPN can be calculated. Based on the RPN
value, it can be decided whether any risk reduction action is necessary to be launched or
not in case of certain incidents. Over the past decades, the RPN is widely criticized by
scientists, highlighting a couple of weaknesses of the RPN.

One of the most criticized properties of the RPN is that some hidden or latent risks
can be unestimated or misestimated because different combinations of the three factors can
result in the same RPN [13,21–25]. Thus, these hidden risks can later lead to unexpected
errors.

Despite structured criticisms [22,23,26–29], the method is used quite frequently in
the latest publications as well without modifications applied to it. As for example, an
application is given for the classical failure mode and effects analysis in the context of smart
grid cyber–physical systems [30].

1.2. Brief Description of the Partial Risk Map (PRISM) Methodology

The PRISM methodology is a novel risk assessment methodology [13], and it builds
on the synergies of some key properties of both the FMEA and RM methods. Similar to
the FMEA method, PRISM applies three risk assessment factors (probability of occurrence,
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severity of consequences, degree of undetectability). Since the PRISM methodology defines
and visualizes the phenomena of partial risk, the method describes well all the potentially
existing hidden risks that are not taken into consideration by the RPN. Many criticisms
said that the relative importance of the three rating factors is not highlighted in the case
of FMEA [31–36], the PRISM method also solves this problem as well as the latent or
hidden risk problem of FMEA. The method is offered to apply in situations when safety
and reliability has a high priority.

According to [37], based on parametrization, the methodology gives the possibility of
focusing either on the FMEA or PRISM-related assessment results. In the context of the
method, the partial risk is a combination of any two of the applied assessment factors, and
the risk level of an incident can be estimated partially regarding this factor combination.

According to [38], the PRISM methodology can be applied as a sophisticated approach
option of risk analysis in the field of project management, since the partial risks of a certain
project can be estimated and visualized by it.

The structure of the PRISM method is a set of three sub-matrices, as visible in Figure 2.
Some theoretical priority levels are also visualized as previously modeled in Figure 1.

Figure 2. Visualization example of the partial risk map.

Based on the scores of the rating factors, a certain incident can be visualized in the
Partial Risk Map [13]. If a partial risk is in any of the gray cells in at least one of the three
matrices, it will signal the need for control. The location of a partial risk in the map indicates
the direction of the action, mitigation, etc., that should be performed.

Although the basic idea of the PRISM methodology has already been described, the
deeper analysis of the method cannot be executed without the formal description of the
methodology and the definition of aggregation functions for the calculation of the PRISM
number. Based on the formal description, the comparison of the RPNs and PRISM numbers
determined by different aggregation functions can be executed, the differences can be
described, and suggestions can be made for the practical application of the methodology.

2. Materials and Methods

In this section, the focus is on the formal description of different aggregation functions
for the PRISM methodology.

The first step is to define incidents and their characteristics. Denote as m : (o, s, d) a
failure mode or incident that has three characteristics: o probability of occurrence (occur-
rence), s severity of consequences (severity), and d degree of undetectability (detection).
The characteristics have the following values, o ∈ [1, 2, · · · , i], s ∈ [1, 2, · · · , j] and
d ∈ [1, 2, · · · , k]. For every failure mode or incident, some aggregate risk value can be
calculated from the o, s, and d values by applying the ⊗ aggregation function. As mentioned
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in Section 1, this aggregate value is used to prioritize the incidents, and the higher the
aggregated value, the higher the risk of the incident compared to the cases that are assessed
with the same aggregation method.

The risk assessment is three dimensional in the case of FMEA, so the RPN value is a
point in the three-dimensional space represented by Equation (1).

A = (ao,s,d) ∈ N
i×j×k
+ . (1)

Denote r(m) = r(o,s,d) = (o⊗s⊗d) a three-dimensional risk evaluation function of m
incident in the case of FMEA. For the calculation of the RPN, the typical aggregation
method in the industry is the multiplication of o, s, and d values, as shown by Equation (2).

N
3
+ → R: RPN(m) = o·s·d. (2)

The PRISM methodology observes partial risks that describe three paired characteris-
tics of m incident [13]. Formally, the Partial Risk Map can be described, with a set of three
matrices represented by Equations (3)–(5).

Ao,s = (ao,s) ∈ N
i×j
+ . (3)

Ad,s = (as,d) ∈ N
j×k
+ . (4)

Ao,d = (ao,d) ∈ N
i×k
+ . (5)

Since the PRISM methodology calculates the aggregate values of the paired charac-
teristics of m incident, denote p(m) = p(o,s,d) = (o⊗s, o⊗d, d⊗s) as the PRISM pattern of an
incident. The representation of a theoretical PRISM pattern is visible in Figure 3.

Figure 3. The visualization of the PRISM pattern in the partial risk map.

Let M denote the maximal number of m incidents with different risk characteristic
combinations, this can be formulated as follows.

M = |Re(o)|·|Re(s)|·|Re(d)| (6)

In most of the practical cases, o ∈ [1, 2, · · · , 10], s ∈ [1, 2, · · · , 10], and d ∈ [1, 2, · · · , 10];
thus, the value of M is 1000.
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The PRISM number of incident m can be given by selecting the maximal value of the
three aggregates of p(m). Let PRISM(m) denote the PRISM number of a certain incident.
The calculation of the PRISM number is as follows:

PRISM(m) = max{o ⊗ s, o ⊗ d, d ⊗ s}. (7)

In this study, three different formulas are proposed for the PRISM number calculation,
as shown by Equations (8)–(10). Note that, the PRISM method is for considering partial
risks, no formula is previously given for any calculations.

N
3
+ → R: A(m) = max{o + s, o + d, d + s} (8)

N
3
+ → R: M(m) = max{o·s, o·d, d·s} (9)

N
3
+ → R: S(m) = max

{
o2 + s2, o2 + d2, d2 + s2

}
(10)

Let N denote the size of the image set of an aggregation function, i.e., the number of
different output values that can be given by an aggregation function. Applying different ag-
gregation functions can result in different N values. In the cases of the applied A(m), M(m),
and S(m) aggregation functions, the followings can be given, when o ∈ [1, 2, · · · , 10],
s ∈ [1, 2, · · · , 10], and d ∈ [1, 2, · · · , 10]:

NA(m) := |Im(A(m))| = 19 (11)

NM(m) := |Im(M(m))| = 42 (12)

NS(m) := |Im(S(m))| = 52 (13)

In the case of RPN(m), the following formula can be given, when o ∈ [1, 2, · · · , 10],
s ∈ [1, 2, · · · , 10], and d ∈ [1, 2, · · · , 10] :

NRPN(m) := |Im(RPN(m))| = 120 (14)

The generated values of the PRISM numbers are visualized in Figure 4 including the
PRISM pattern representation of four different (m1, m2, m3, m4) incidents. Based on the
PRISM numbers, the ranks of the incidents are also given in Figure 4 as well as the ranks
by the RPNs. The higher the value of the PRISM number, the lower the rank. Changing the
aggregation function could also change the order of incident priorities as well.

Putting more focus on the application of thresholds, there is an option for further
profiling the incident set—instead of only ranking the incidents. As previously described, a
threshold is a maximal value of the aggregated result of different m incident patterns that
cannot be reached or exceeded by the aggregated result of an incident pattern; otherwise, it
signals to the control system. Naturally, the aggregation function of the PRISM number
affects also the threshold surface, and the number of steps can be applied from the least
strict threshold level to the strictest one (in the case of A(m) from 20 to 2, in the case of M(m)
from 100 to 1, and in the case of S(m) from 200 to 2.) The maximum number of different
effective threshold levels naturally equals the number of N.

Based on the number N of the aggregation function, the sensitivity for a given thresh-
old can be characterized. Since the A(m) function has the lowest N value, it has sectioning
with the largest steps available. In the case of the S(m) function, the N value is the highest,
so thresholds can be set by the smallest units. The aggregation function also determines the
threshold surface; thus, it affects the set of incidents that need to be treated.
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Figure 4. The visualization of the PRISM patterns and PRISM numbers in the case of A(m), M(m),
and S(m) functions. Picture part (a) shows all the results of p(m) and PRISM(m) in the case of A(m),
part (b) represents the results for M(m), while part (c) shows the results for S(m).

Figure 5 shows an example for the different threshold surfaces in the case of each of
the applied aggregation functions. A(m) function results in a linear threshold surface, M(m)
results in a convex, and S(m) results in a concave one. In Appendix A, Figure A1 shows
the colored partial risk maps, representing all the possible threshold surfaces related to the
three aggregation functions.
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Figure 5. The example thresholds are set at the 25th percentiles of all the incidents. (a) The threshold
surface in the case of A(m), (b) the threshold surface in the case of M(m), and (c) the threshold surface
in the case of S(m).

In Figure 6, the set of m1, m2, m3, and m4 incidents are profiled by applying increas-
ingly stricter threshold levels until all the PRISM pattern elements exceed this threshold.
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Figure 6. (a) The profile of the incident set in the case of A(m), (b) the case of M(m), and (c) the case
of S(m).

Of course, the ranking by the PRISM number will not change, but further information
on the nature of the risk set can be described as well, which gives a more detailed picture
to the decision-makers.

3. Results

In this section, descriptive statistics of the set of PRISM numbers produced by the
presented aggregation functions and the set of traditional RPN numbers are described and
compared. Some key relations between the aggregation functions of the PRISM method are
also presented in this section. Robustness tests of the rankings based on PRISM numbers
determined by different aggregation functions are described as well.

3.1. Descriptive Statistics

The descriptive statistics of the three different sets of the PRISM numbers and the set
of traditional RPN numbers are shown in Table 1.

Changing to the PRISM aggregation functions from RPN(m), the number of distinct
values (N) drops off from 120 to 19, 42, and 52 for the A(m), M(m), and S(m) versions,
respectively, that also decrease the variability of the values. The coefficient of variation (the
standard deviation over the mean) is between the quarter and the half of the same value
of the traditional RPN. However, the PRISM spreads the values more evenly around the
mean, and the absolute values of skewness are also lower than that for the traditional RPN
(see Figure 7).

Figure 7 shows that, while the traditional RPN has exponential-like distribution with
most of the values close to the lower end of the scale, the PRISM produces more cases on
the upper half of its scale.
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Table 1. Descriptive statistics related to the different PRISM numbers and the traditional RPN number.

A(m) M(m) S(m) RPN(m)

Number of incidents (M) 1000 1000 1000 1000
Mean 13.48 46.32 102.64 166.38

Std. error of mean 0.117 0.791 1.483 5.424
Mode 14 90 181 60

Std. deviation 3.704 25.012 46.901 171.509
Variance 13.721 625.594 2199.668 29,415.400

Coefficient of variation 0.275 0.540 0.457 1.031
Skewness −0.383 0.274 0.044 1.672
Kurtosis −0.398 −0.838 −0.727 2.828

Number of different ranks (N) 19 42 52 120
Range 18 99 198 999

Minimum 2 1 2 1
Maximum 20 100 200 1000

Percentiles
25 11.00 25.00 65.00 42.00
50 14.00 45.00 101.00 105.00
75 16.00 64.00 136.00 240.00

3.2. Comparison of the Methods

The incidents are ranked by the RPN and the PRISM numbers from the highest to the
lowest, ties are resolved by giving the same rank to incidents with the same value—the
arithmetic mean of the ranks, i.e., fractional ranking is applied.

All the three PRISM rankings have high (Spearman’s rho) rank correlation to the
ranking of traditional RPN, ρ(RRPN(m), RA(m)) = 0.820, ρ(RRPN(m), RM(m)) = 0.842, and
ρ(RRPN(m), RS(m)) = 0.778. To evaluate the similarity of the rankings made by the studied
methods, the sum of ranking differences (SRD) method [39] is applied. The sum of ranking
differences (SRD) [40] method assesses ranking methods according to the sum of the
absolute differences in ranks of the objects (i.e., the Manhattan distance) compared to an
ideal ranking (a golden standard). If the ideal rank is not known or cannot be explicitly
determined, the average rank of the objects can be used since the errors of the different
methods cancel each other and the maximum likelihood principle ensures that the most
probable ranking is provided by the average [40]. This method is non-parametric and
robust, and it is used in several fields of science, see, e.g., [41,42]. In contrast to other
statistical methods, such as Spearman’s rho, Kendall’s tau, and Mann–Whitney U test,
the SRD not only provides pairwise comparison but also puts all the assessed rankings
(aggregation methods) into an order according to their similarity (or dissimilarity) to
the golden standard [40]. In this way, SRD also can distinguish groupings and outliers
among the ranking methods. Considering all the possible permutations in a ranking, the
probability distribution of the SRD values can be determined. This probability distribution
is then used to assess the significance of a ranking, i.e., how low is the probability of
receiving this ranking as a random permutation.

For the SRD, no universally applicable ranking can be created as a reference in this
case because the three characteristics of m are not commensurable with each other, and their
relative importance is appraised subjectively. Thus, the average ranking was calculated for
each of the 1000 combinations of o, s, and d values. Alongside the traditional RPN and the
previously introduced three PRISM aggregations, the total sum (o + s + d), and total squared
sum (o2 + s2 + d2) of the three characteristics were used as a rank determining method. This
was necessary to avoid the bias toward the three new PRISM-based approaches (similar
to each other) against the singleton of the traditional RPN. This setting has equal number
of approaches for the pairwise holistic comparison and also for each aggregation. The
normalized SRD distances from this reference are shown in Table 2. For the normalization,
the theoretical maximum of SRD was calculated and it received the value 1 on the scale.
Considering all the possible permutations of the M = 1000 cases, the normalized SRD
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values can be described with a normal distribution with 0.6667 mean and 0.0133 standard
deviation.

Figure 7. The histograms of all the possible results of the assessment algorithms, when o, s, and d
∈ [1,2, . . . ,10]. Picture part (a) shows the histogram of A(m), part (b) shows the histogram of M(m),
part (c) shows the histogram of S(m) while part (d) shows the histogram of RPN(m).

Table 2. Sum of ranking differences compared to the average rankings.

Method Formula SRD

RPN(m) o·s·d 0.2074
A(m) max{o + s, o + d, d + s} 0.0653
M(m) max{o·s, o·d, d·s} 0.0897
S(m) max

{
o2 + s2, o2 + d2, d2 + s2} 0.0967

The average ranking of the three PRISM aggregations is used as a reference when only
these functions are compared to each other. The SRD of the three methods to this reference
is shown in the diagonal of Table 3. The upper triangle of the table gives the pairwise
distance of the methods. From the results, it can be inferred that the additive PRISM gives
the closest ranking to the average, and it is at an equal distance from the other two methods.
The Spearman rho coefficients are in the lower triangle and indicate high rank correlations
between the rankings.
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Table 3. Sum of ranking differences (SRD) between each PRISM aggregation pair in the upper triangle,
SRD compared to the average of PRISM rankings in the diagonal, Spearman’s rho values in the lower
triangle.

A(m) Ranking M(m) Ranking S(m) Ranking

A(m) ranking SRDA = 0.0170 SRDAM = 0.0594 SRDAS = 0.0596
M(m) ranking ρMA = 0.990 SRDM = 0.0606 SRDMS = 0.1182
S(m) ranking ρSA = 0.988 ρSM = 0.957 SRDS = 0.0624

The method-by-method change in ranking or classification can also be visualized with
alluvial diagrams (Figure 8).

Figure 8. The alluvial diagram of the rankings of the three PRISM methods. One node represents the
incidents with the same fractional rank (the value on the node).

The three algorithms rank the most important 79 (28 + 51) cases from the 1000 in the
same way (see Figure 8). After that, there are some rearrangements in the rankings. The
addition and the multiplication have almost the same order in the first half of the possible
1000 cases, multiplication just breaks the ties of the addition; however, the multiplication
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ranks further back some cases in the second half of the cases. The sum of squares produces
a very different order and breaks the ties of the addition in the opposite order than the
multiplication does immediately after the first 79 cases.

Let denote RA(m), RM(m), and RS(m) denote the ranks of m incident according to the
value produced by A(m), M(m), and S(m) aggregation or evaluation functions, respectively.
The rank here means an order of importance and RA(m) � RA(l) ∼ RA(k) means that
incident m is more important than incident l, and incident k has the same importance as l.

In Figure 8, several groups can be identified in which the methods give different
priority orders, for instance, see Equations (15)–(17).

RM(10, 6, 1 . . . 6) ≺ RM(9, 7, 1 . . . 7) ≺ RM(8, 8, 1 . . . 8) (15)

RS(10, 6, 1 . . . 6) � RS(9, 7, 1 . . . 7) � RS(8, 8, 1 . . . 8) (16)

RA(10, 6, 1 . . . 6) ∼ RA(9, 7, 1 . . . 7) ∼ RA(8, 8, 1 . . . 8) (17)

Evidently, any permutation of the scores of m produces the same output value, and
thus, the same rank for the given evaluation function. The points in Equation (17) are on
three perpendicular frontiers of A(m) that are between the concave and convex frontiers of
S(m) and M(m) as the SRD values also indicated in Table 2.

3.3. Effect of the Scale

The ranking can vary not only when the evaluation method is altered but also with the
change of resolution of characteristics of the incidents while the same evaluation method is
maintained. If the resolution of the scale that is used for the specification of the o, s, and d
values decreases from range 10 (RA(m)10, RM(m)10, and RS(m)10) to 6 (RA(m)6, RM(m)6, and
RS(m)6), 5 (RA(m)5, RM(m)5, and RS(m)5), or 4 (RA(m)4, RM(m)4, and RS(m)4), the rank of the
incidents can change even within the same evaluation method. However, according to the
Spearman’s rank correlations (see Table 4), the rankings can maintain most of their priority
order even with a rougher scale, the correlation coefficient between the original and any
investigated lower-resolution scale with the same aggregation is not lower than 0.938. The
correlation is even higher if one switches between methods but keeps the same scale of the
risk factor scores (o, s, and d); see the shaded cells in Table 4. Comparing the SRD values
in the Tables 2 and 4, it can be seen that even using PRISM with fewer steps results in a
lower distance from the golden standard than the cumulative Manhattan distance of the
RPN (0.2073).

Table 4. Spearman rho rank correlations between the ranks determined by additive (RA(m)), multi-
plicative (RM(m)), or sum of squares (RS(m)) aggregations based on o, s, and d scores with 10, 6, 5, and
4 categories on their scale. RM(m)6 means the ranks come from a multiplicative aggregation of score
values on a six-category-long scale. The last row contains the SRD values of the rankings.

RA(m)6 RA(m)5 RA(m)4 RM(m)10 RM(m)6 RM(m)5 RM(m)4 RS(m)10 RS(m)6 RS(m)5 RS(m)4

RA(m)10 0.982 0.981 0.958 0.990 0.980 0.970 0.951 0.988 0.969 0.969 0.943
RA(m)6 0.955 0.965 0.966 0.990 0.932 0.947 0.977 0.993 0.958 0.959
RA(m)5 0.950 0.974 0.949 0.990 0.939 0.966 0.946 0.987 0.939
RA(m)4 0.945 0.954 0.929 0.987 0.951 0.959 0.951 0.989

RM(m)10 0.982 0.981 0.957 0.957 0.939 0.942 0.913
RM(m)6 0.944 0.956 0.956 0.968 0.932 0.930
RM(m)5 0.938 0.936 0.909 0.954 0.900
RM(m)4 0.923 0.924 0.917 0.953
RS(m)10 0.980 0.976 0.954
RS(m)6 0.965 0.968
RS(m)5 0.960
SRD 0.106 0.107 0.143 0.090 0.109 0.124 0.153 0.097 0.129 0.128 0.162
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Figure 9 shows the rankings in the case of range 10 (RA(m)10, RM(m)10 and RS(m)10),
6 (RA(m)6, RM(m)6 and RS(m)6), 5 (RA(m)5, RM(m)5 and RS(m)5), and 4 (RA(m)4, RM(m)4 and
RS(m)4) of the methods, and whether or how they change on transferring from one to the
another. The most robust ranking is made by A(m); here, just a few swaps happen between
neighboring categories. In the case of the other aggregation methods (M(m) and S(m)), the
lower resolution makes the incident skip categories in both directions, which alters the
priority order considerably. The higher the number of crossings on the alluvial diagrams
(Figure 9), the lower is the correlation between the rankings (Table 4).

 

Figure 9. The alluvial diagram of the rankings of the three PRISM methods—addition (a), multiplica-
tion (b), and the sum of squares (c)—when the range of the scores (o, s, d) decreases from 10 to 6, 5,
and 4. Some cases are colored to make them more distinguishable.

4. Discussion

The PRISM method is effective in identifying risks, where there is a high partial risk;
however, the entire risk level does not make any signal for the control system. In the cases
of high partial risks, the possibility of sudden failures can be higher, which can lead to
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unexpected costs, loss of availability, unplanned breakdowns, unnecessary environmental
impacts, etc. Similar to the FMEA methodology, the PRISM method also gives high priority
to those incidents, where all the factor values (o, s, d) are relatively high, but PRISM puts
also more focus on those cases where only two of the factor values are relatively high while
the third one is relatively low [13]. In these cases, a relatively small increase in the value of
the third factor can result in a significant increase in the entire risk level.

Applying different aggregation functions for the calculation of the PRISM number
generates different partial risk maps, with different properties. Instead of conventional
FMEA, which applies multiplication [43] for aggregating the three factors, PRISM creates
the opportunity of application in scenarios related to the risk assessment process.

In the case of the S(m) function (sum of squares), an additional focus exists besides the
attention to partial risks. Since the S(m) function provides a concave threshold surface, the
additional focus is on the higher priority of those incidents, which have a very high value
at one factor. An example for this case is m1 in Figure 5. Applying the S(m) function, the
relative priority of m1 significantly increases; however, when applying other functions for
creating the PRISM number, this incident stays in the background.

This function can be proposed for practical cases, where signaling of very high values
of any factor is important. Since a new trend is unfolding in the automotive industry, special
attention is given to the severity factor in the new AIAG-VDA FMEA handbook [44]. The
S(m) PRISM function can be useful in a risk assessment environment where the focus is on
high-priority incidents that have high severity values. The S(m) function is also offered for
testing, modification, and development in safety-related cases as well, such as in the energy
industry [45], healthcare industry [46], or in the field of compliance management [47].

In the case of the M(m) function (multiplication), the focus is on the “mid-values”
since this function provides a convex surface (see Figure A1). The outputs of the M(m)
function have the highest correlation to the RPN(m) outputs. Thus, the application of M(m)
can be offered in cases where the application experience of RPN is high, but the possible
effects of the partial risks should be useful to be considered. For assessing compliance risks,
multiplication is applied for constructing the risk matrix [17], but the results cannot be as
detailed as applying the M(m) function of the PRISM method.

As is clearly visible in the results, the A(m) function stays between the previously
discussed two functions. Based on the normalized SRD values (see Table 3), the A(m)
function is almost definitely in the center between the M(m) and S(m) functions. This can
be visually proved by Figure 8 since there are significantly more changes in the rankings
between the M(m) and S(m) functions than between the A(m) and M(m) or the A(m) and
S(m) ones. Although an addition function is already applied for creating a risk matrix of o
and s [7], the analysis could be more detailed by applying the A(m) function of PRISM.

The priority order provided by the PRISM method is robust to the resolution of the
scales of the risk factors o, s, and d. If the number of distinct categories decreases from the
conventional 10 to a reasonable low value, the PRISM keeps a high rate of the original order.
This also means that it is applicable for fuzzy approaches, since in fuzzification, reducing
the number of categories of the crisp set to the fuzzy set with help of the membership
function is the same as coherently using broader risk factor categories (in Table 4 and
Figure 9).

Applying any of the PRISM functions, the nature of the incident risk can be described
more precisely than in the case of [30], where only the RPN function is applied. According
to [13,37], the combined application of the traditional RPN and PRISM number can result
in a balanced risk assessment since the effects of partial risks and risk priority number can
be adjusted using any of the PRISM functions.

When more incidents have the same PRISM number, the one that has its value in more
submatrices should be prioritized. As a management tool, the PRISM methodology gives
a better option than traditional RM [17] or FMEA [30] in visualizing the risk assessment
results, and the estimated outcomes after risk reduction actions were executed were more
favorable.

79



Mathematics 2022, 10, 676

Although applying PRISM functions can improve the usability of the partial risk map
methodology [13], other potentials of the method can be developed in future works. Based
on many lessons learned related to other previously created platform risk assessment
methods (FMEA, RM, FTA, HAZOP, etc.), possible development directions of the PRISM
method can be forecasted. Since the most methodological similarity can be identified
between PRISM and FMEA, based on some systematic and rigorous literature reviews
of FMEA developments [28,48,49], some developmental fields can be highlighted for the
PRISM method as well.

Although many criticisms expressed that different combinations of o, s, and d can result
in the same RPN while the hidden risk content behind the RPN is different [21–25,47,50,51],
the PRISM method solves this problem, since it describes hidden risks with different
aggregation functions and visualizes hidden risks via the PRISM pattern. On the other hand,
realizing more potentials for the methodology, one development direction can be of the
future of applying MCDM methods such as AHP [1,52] or ANP [32] or multilevel methods
such as TREF [53] for solving the possible subjective ranking issues of the evaluators.
Another major direction in the future can be to describe the nature and applicability of
different partial risk maps using different aggregation functions in different submatrices of
the map.

5. Conclusions

Risk assessment and mitigation is an evergreen topic among practitioners and scholars.
One of the most widespread tools to evaluate and prioritize risky incidents is FMEA, which
condenses several risk factors into one variable, the RPN. However, this simple condensing
operation neglects a lot of information about the investigated incidents. Several methods
try to enhance this risk evaluation and prioritization process by balancing between the
information loss and handling a multicriteria decision-making problem.

The PRISM method and some of its possible aggregation functions are studied in this
paper to describe how it relates to the traditional FMEA and which properties of the PRISM
method and its functions make it suitable for risk evaluation and prioritization in different
cases. The PRISM method can focus the user’s attention to such incidents where just some
of the risk factors are high and the RPN of the traditional FMEA falls below the stimulus
threshold of the process but a small change in the lower value factor(s) would launch up
the aggregated value. Choosing the appropriate aggregation method can fine-tune this
feature of the PRISM, increasing (S(m)) or decreasing (M(m)) its sensitivity toward these
kinds of incidents.

Though the PRISM can reveal some hidden potential risks, it cannot tell how one can
eliminate or mitigate these risks, the PRISM is just a risk assessment method and not a risk
management tool. Thus, it cannot decide for the user where (on what level) the threshold
should be drawn, but the priority order given by the PRISM and resource constraints can
specify a set of incidents to be treated.

As a limitation of the PRISM, it can be stated that its capability depends on the exacti-
tude of its inputs: although the uncertainty or fuzziness in the determination risk factor
values does not radically change the priority order of the incidents, a biased evaluation of
o, s, or d can turn the focus of risk management to a wrong direction. The effects of biased
risk factor evaluation or using weights for these factors in the aggregation is a possible
topic of future research.
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Appendix A

Figure A1. Colored visualization of the possible thresholds of the partial risk maps. (a) The threshold
surfaces in the case of A(m), (b) threshold surfaces in the case of M(m), and (c) threshold surfaces in
the case of S(m).
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Abstract: Outsourcing is one of the major challenges for production firms in the current supply chain
management (SCM) due to limited skilled workers and technology resources. There are too many
parameters involved in the strategic decisions of the outsourcing level, quantity, quality, and cost.
The outsourcing process removes the burden of capital investment; however, still it creates crucial
concerns related to inventory control and production management by adding extra inventories.
The semi-finished products are outsourced for a few processes due to limited resources and then
returned to the manufacturer for the finishing operations. The article is based on the mathematical
modeling and optimization of the process outsourcing considering imperfect production with variable
quantity for the effective supply chain management. The numerical experiment was performed based
on the data taken from the industry for the application of the proposed outsourcing-based SCM
model. The results are significant in finding optimal production and outsourcing quantity with a
minimum total cost of SCM. The sensitivity analysis was performed to see how important the effect
of input parameters is on the total cost. The research is an important contribution in developing a
mathematical model of process outsourcing in SCM. The research study is beneficial for managers
to find the economic feasibility of process outsourcing for managing inventory and supply chain
between manufacturer and outsourcing vendor.

Keywords: process outsourcing; inventory management; imperfect production; mathematical
modeling; supply chain management

1. Introduction

In the present socio-economic scenario, outsourcing is a dominant production
mode that is rampant around the globe. To compete in this technologically advanced
age, the market is saturated in terms of product variety and product life cycle [1].
Further, to take advantage of the competitor, an organization must focus on specialized
processes and outsource other activities [2]. Nowadays, it is difficult to meet all
customers’ needs; therefore, the basic objective of outsourcing should be flexibility
enhancement and letting the organization focus on their specialized activities [3].
Initially, firms would usually outsource the non-specialized activities, but how each
activity can be outsourced irrespective of the specialized or non-specialized activity
has changed with the times [4].

Outsourcing has become the prime attention of organizations due to several
advantages, e.g., low initial investment, reduction of cost, and enhanced customer
services [2]. In the basic production order quantity model, it is assumed that a complete
lot of products that are produced are non-defective; however, in real-life productions,
there are some defective items. These defective products are discarded, while others
are reprocessed to ensure good-quality products. An example of outsourcing is an
anime figure designing company in Japan that outsources its production activities
to its CM. They outsource the coloring process, which is a difficult task and usually
takes more time to complete the duplicated figure. The CM to which this company
outsources its activities reduces the estimated amount by about 25%.
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Outsourcing in a supply chain (SC) is an epithet of economic globalization, which,
on the other hand, decentralizes the SC and encounters the OPM with uncertainty. A
few years back, a survey conducted by Deloitte depicted that almost 71% of a pool of
600 executives from worldwide companies observe SC risk as a significant factor affect-
ing the company’s strategic decisions [5]. Particularly, the original product manufacturer
(OPM) designs a new product due to technological advantage in developed countries.
Later on, it outsources its manufacturing to a contract manufacturer from a developing
country. The advantages are obvious, such as freeing up the capital, labor cost reduction,
and worker productivity [6].

Several researchers have attempted to deal with yield uncertainty in which they
have typically used multiplicative fashion to model it. However, these researchers have
assumed a case in which the items produced are exactly equal to the ordered quantity,
which is physically not always possible. A production environment that follows make-
to-order scenario may face a lack of the Requisite products. Still, there is certain
research work in which the researchers have picked production and order quantity
of their own choice [7,8]. In these cases, the optimization of both the production
as well as of order quantity is equally important. Several researchers have done
work on product outsourcing, but very little work is available on process outsourcing
and its mathematical model’s development. The purpose of this project takes into
consideration the process of outsourcing in an imperfect environment for optimization
to minimize the cost. Organizations with restricted resources require outsourcing to
satisfy customer demands. Additionally, in the proposed research, the mathematical
models for the supply chain are developed and tested using the data, which provides a
platform to the decision makers to minimize total cost by optimizing the lot size and
outsourcing quantity.

Due to certain restrictions, i.e., production programing in some SMEs, which
produces some kind of special products as per make-to-order policy or manufacture
commodities, reprocessing of imperfect products is not possible. Therefore, such orga-
nizations outsource the reprocessing of these imperfect products to some other firms,
i.e., repair stores. Moreover, reprocessing these imperfect products, some specific
operations i.e., welding, milling/lath machines, or any other kind of equipment that
may not be available at the facility and purchasing of that equipment, may not reason-
able. On the other hand, imperfect products have a significant value to a company,
and therefore, the rework of imperfect items is outsourced. It is assumed that in the
after-repair process, the products are as good as perfect ones, especially in the case of
remanufacturing. It is considered that the HC of repaired products is higher than the
initial HC [9–11]. Additionally, it is assumed that in a repair shop, the repair process is
always under control, and all the imperfect products can be repaired. Furthermore, the
repaired items are added to inventory in the same production cycle.

2. Literature

Outsourcing is considered as a prime factor to gain the best possible perfor-
mance by an organization [12]. For flexible, low-cost production in a supply chain,
outsourcing from suppliers is critical. In this regard, better supplier selection as an
outsourcer is important. Kumar et al. developed a logical method in which, for multi-
objective modeling, they used three different types of fuzzy logic and some hard
constraints. In addition to this, they also opted for goal programming for the problem
solution [13]. To simultaneously find the order quantity and formulation impression,
more sophisticated fuzzy multi-objective methods have been considered by [14]. In
another study, [15] developed a model in which the consumer needs to determine the
goods that need to be ordered, the amounts, the suppliers, and the times. To find the
best suppliers and how to assign orders among them, Karpak et al. [16] used goal
programming, evaluating trade-offs between multiple objectives, such as cost, quality,
and delivery, simultaneously.
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Next, outsourcing strategies are also one of the important aspects of production
business schemes of specific operations. While outsourcing some of their operations,
the organizations can have a special focus on their core operations. In conventional
outsourcing, only the non-specialized activities are outsourced except the activities
that may have a competitive advantage [17–19]. In a production environment, differ-
ent researchers have modeled several optimal batch problems considering different
production conditions to minimize the total system cost. For instance, E.W. Taft [20]
is among the pioneers who developed Economic Production quantity (EPQ) inven-
tory model. Subsequently, this basic model was modified and expanded by other
researchers. Previous research studies have shown that small perturbations in parame-
ters of EOQ and EPQ models do not impose any significant impact on the solution of a
problem. Owing to this, the Economic Production quantity (EPQ) model emerged as
an optimal substitute, which shows promising results for a production environment
when applied with some assumptions.

In an actual production environment, the system runs with some imperfections.
The imperfections in a production system produce low-quality items for several rea-
sons, namely defects in raw materials, changes in machine capabilities, backorders,
rework, and differences in the experience of the operators. Some research studies
are available in the literature in which the proposed models have considered these
imperfections. For example, Jamal et al. [21] studied the EPQ model to obtain the op-
timum Batch size. The proposed model is considered a re-work process after several
production cycles. Expanding the contributions of Jamal et al. [21], Sarkar et al. [22] for-
mulated the same problem with additional terms of backorders. The model proposed
by Cardenas-Barron [23] encompasses numerous parameters. The model undertakes
the reworked production quantities and other production system defects. Wee et al. [24]
adopted the same methodology and developed a model that considered the develop-
ment of refurnished products with non-conformities. It was concluded that in repeated
manufacturing cycles, there is an effective way to reprocess faulty products. The data
obtained confirmed the critical aspects could be more related to the manufacturing
cost and the service expenditures of the process. An identical model was presented
by [25], which focused on the inflation effect. It was shown that the prolonged use
of the manufacturing units could potentially damage the smooth operating of the
system, i.e., could produce defects in the system. The focus of the research was on how
to overcome the defects produced during the smooth operation and to reprocess the
defective products. The overtime of the workers could be the potential reason for the
introduction of defects into the system, or it could be due to unrealized reasons. Lastly,
the study of Talizadeh et al. [26] is emphatic towards dealing with imperfection in an
outsourcing supply chain environment.

Another factor in outsourcing is optimally tweaking the resources. In this area,
Alvarez and Stenbacka [27] and Benaroch et al. [28] researched flexible sourcing models
for finding the optimal expected time to change resources. The outsourcing cost per
transaction in their considered dynamic models is variable. Inderfurth and Kelle [29]
and Spinler and Huchzermeier [30] took the outsourcing strategy when both cost and
demand are not certain. Liu and Nagurney [31] put forward a model with a global
outsourcing and quick-response mechanism. Vibrational inequality theory was used for
investigation by considering uncertainty in cost and demand. Some cases were analyzed
to take both demand and production costs into account. Nosoohi and Nookabadi [32]
developed a model of outsourcing for the industrialist to study optimal ordering policy
under the uncertainty of customer demand and final processing costs. They used
different options contracts for neutralizing the effect of uncertainty in cost parameters.
Chen et al. [33] studied the outsourcing and coordination mechanism for two Stackelberg
game models by considering numerous uncertainty parameters, such as disruption risk,
demand, and capacity. They concluded that the manufacturer will not be interested
in outsourcing if the disruption-risk/production capacity is low/high. Zhao et al. [34]
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studied a situation where an industrialist outsources a portion of his production to
a supplier. They considered the ordering behavior of companies that outsource their
products over long distances. Min [35] considered the usual outsourcing techniques
of logistics operations in factories of the United States and recognized the significant
elements of outsourcing in logistics operations.

Research has also been carried out on outsourcing risk from various perspectives.
Lacity et al. [36] stated that risk is the degree to which a transaction exposes a party
to a chance of damage or loss. Qin et al. [37] studied the risks linked with ITO in
Chinese institutions and concluded that mismatch in culture and goals, limited choice
of vendors, and IT literacy are the significant risks. Oh et al. [38] utilized the stock
market’s reaction to study the perceived transactional risks linked with ITO engage-
ment. They determined the market’s reaction based on the cultural similarity with the
vendor and the asset specification of the IT resources. Earl [39] pinpointed the role
of inexperienced staff, lack of innovation, organizational learning, and hidden costs
as risks in outsourcing. Gewald and Dibbern [40] determined the levels of perceived
risk as well as benefits for finding the extent to which banks would select to outsource
their processes.

Research on service outsourcing has been carried out widely by different re-
searchers. Choi et al. [41] performed research and suggested service outsourcing as
a critical topic in service supply chain management. Tsai et al. [42] examined the
potential risks structural relationships that can lead to failure in an outsourcing rela-
tionship. Typically, business is linked with forward and reverse flows of products. Yet,
customers are vastly involved in the service process. The valuation of the service level
is critical to the market demand [43]. Nowadays, outsourcing is a major development
in the service industry for increasing the level of service. Chen et al. [44] considered
an outsourced supply chain that consists of one original equipment manufacturer,
one contract manufacturer, and a retailer. They studied the results of encroachment
on the profit. Akan et al. [45] investigated two outsourcing settings, namely order
fulfillment and call center, and examined how asymmetric demand information will
affect the two parties. Xin et al. [46] compared the proactive inventory of relief items
both in the presence and absence of outsourcing. They concluded that social efficiency
improvement depends on the monitoring costs and the perishable rates under the
outsourcing strategy. Wu et al. [47] investigated the incentives for information shared
with two retailers in Cournot competition and with multiple suppliers in Bertrand
competition. Li et al. [48] also studied the service channel choice. Huang et al. [49]
investigated the quality risk from the viewpoint of a 4PL and considered asymmet-
ric information in between 3PL and 4PL. Zhang et al. [50] discussed the retailer’s
information-sharing strategies when the service is delegated to the retailer or under-
taken by the manufacturer. Yue and Ryan [51] carried out a comparison between single
sourcing and multi-sourcing. They found that buyers always desire single sourcing
to multi-sourcing. Ching et al. [52] used time-based competition for analyzing the
model of outsourcing to multiple make-to-order suppliers. Ding et al. [53] used the
customized integration service chain model for evaluating the business performance
and found that it extends the service supply chain with multiple service providers
in the oilfield service industry. Summing up the literature on outsourcing, an ample
amount of work has been done by various researchers in service as well as manufac-
turing streams considering imperfection, outsourcing strategies, supplier selection,
risk assessments of outsourcing products, etc., as illustrated in Table 1. However,
mathematical modelling of outsourcing the processes with attributes of imperfection
and recycling has not been pondered by any researcher, and this work provides insight
into this gap.
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Table 1. Authors Contribution.

Author Corporate SC
Outsourcing

Recycling Imperfection
Outsource

Modeling
Process Product Single Multiple

Ching et al. [51] x x x
Ding et al. [52] x x

Yue and Ryan [50] x x x x x x
Choi et al. [40] x x x
Stenbacka [26] x x x x x
Nosoohi and

Nookabadi [31] x x x

Chen et al. [32] x x x x x
Talizadeh et al. [26] x x x x x x

Proposed Study x x x x x x

3. Mathematical Modelling

A supply chain management model was developed, considering manufacturer and
multi-vendor, to deal with the inventory and production control by modelling process
outsourcing operation. The assumptions, notations, and model formulation are part of
mathematical modelling. The centralized inventory diagram of the proposed mathematical
model is given in Figure 1.

3.1. Assumptions

Before proceeding with the modeling, the following assumptions are considered:

• Due to a lack of in-house resources, the manufacturer outsources certain operations;
• The demand of customers is only fulfilled in phase 3;
• The demand and production rates are known and constant;
• A single type of item is considered in the model;
• Raw material holding cost per unit item is smaller than the unit holding cost of work

in process;
• Phase A has a higher production rate than phase 2, which is higher than phase 3;

therefore, there are no shortages. (P1 > ∑ Pvi > P3 > D);
• The inspection is performed during the production and rework phase;
• The scrape is zero in the production phase as well as in the rework phase;
• The rate of reworking is the same as the production rate;
• Inventory holding cost is based on the average inventory;
• The screening cost is considered negligible in this model.

As shown in Figure 1, there are three production phases to the inventory diagram.
Manufacturer activities are included in phase 3, whereas outsourcing processes are repre-
sented in phase 2. T1, T2, and T3 are the three portions of the total time T, which are further
subdivided into t1, t2, t3, t4, t5, t6, t7, t8, and t9. The customer demand rate is denoted by
“D”. In the first and third phases Imax1 and Imax3 represent maximum inventories, Imax11
and Imax31 represent the inventories produced after the rework of defective parts, and Imax12
and Imax32 indicates production Quantities without defective items. In the second phase,
Imax2i indicates the maximum inventory level of the ith outsourcer, Imax2i1 indicates inven-
tory produced after the rework of defective parts for ith outsourcer, and Imax2i2 indicates
ith outsourcer production quantity without defective items. The manufacturer produced
amount Q1 in the first phase, which is distributed into n number of vendors in optimal
Quantities Q21, Q22, . . . , Q2n. In the second step, vendors perform operations and send it
back to the manufacturer. Finally, the products enter the manufacturer’s third phase, where
they are turned into final products and distributed to customers.
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Figure 1. Inventory diagram of the supply chain management considering process outsourcing.

3.2. Notation

The decision variables are “Q, Q1, Q2, Q3, . . . , Qn”. Q is the production quantity
for manufacture. Q1 is the production quantity for the first vendor, Q2 is the production
quantity for the second vendor, and Q3 is the production quantity for the third vendor,
while Qn is the production quantity for nth vendor. To express the mathematical model
discussed in this study, certain notations were adopted in this research. The table below
contains and explains these notations.

3.3. Modelling

The SCM model is divided into three phases (first, second, and third phases). Raw
material inventory decreases when production starts during time t1, t4, and t7 in phases
1, 2, and 3, respectively, and similarly, the quantity of products continues increasing
and approaching its maximum level. The first and the last phase is of the manufacturer
and the second phase include all vendors. The demand of the customer is fulfilled only
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in the third phase. The objective function of our model is to minimize the total cost
of supply chain TC, which is equal to the total cost of the manufacturer and total cost
of vendors.

TC = TCm + ∑ TCvi (1)

In addition,
∑ TCvi = TCv1 + TCv2 + TCv2 + . . . TCvn (2)

The cost of manufacturer is given as

TCm = Sm + PCm + Hm + CEm + ICm (3)

Similarly, the cost of the ith vendor will be

TCvi = Svi + M2i + Hvi + CEvi + ICvi (4)

where i = 1, 2, 3, . . . , n.

3.3.1. Cost of Manufacturer and Outsourcer

The manufacturing process is divided into two phases: phase 1 and phase 3.
Both phases have their own set of costs. The setup cost, production cost, holding
cost, carbon emission cost, inspection cost, and rework cost are all included in the
manufacturing cost.

Setup Cost

This is a fixed cost that is unaffected by quantity or time. This cost includes costs such
as tool setup, changeovers, and so on. It is the cost of setting up the production system for
the first time. Manufacturers’ setup costs are determined by

Sm =
sm × D

Q
(5)

Similarly, vendors’ setup costs can be shown as

Svi =
svi × D

Q
(6)

Manufacturing and Rework Cost

This cost is primarily dependent on the demand for manufactured goods. Pro-
cessing, machine, labor, and material costs are all included in this cost. For the same
phase, the manufacturing cost per unit item and the reworks cost per unit item are
assumed to be equal. As a result, the manufacturing and rework costs for phases A and
C are provided.

Phase A Manufacturing Cost

M1 = m1 × D × (1 + α1) (7)

Phase C Manufacturing Cost

M3 = m3 × D × (1 + α3) (8)

Manufacturing and rework cost for outsourcer is given in Equation (9)

M2i = m2i × D(1 + α2i) (9)
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Holding Cost

Holding cost is the cost incurred through carrying an inventory of raw material and
semi-finished and finished goods. This cost also includes the transportation cost of semi-
finished goods between manufacturer and supplier. Mathematically, this can be depicted
from Equation (10).

Hm =
Q
2
(hmX + hr1 + hr3) (10)

where

X =

{
D
(1 − α1)

P1

}
(1 + 2α1) +

α2
1D
P1

+

(
1 − D

P1
− α1D

P1

)
+

D
P3

(
1 − D

P3
− α3

)
(1 + 2α3) +

α2
3D
P3

(
1 − D

P3

)
+

(
1 − D

P3
− α3D

P3

)2

(11)

The derivation of holding cost is given in Appendix B for all three phases. Similarly,
the holding cost of outsourcers is given in Equation (12):

Hvi =
Q
2
(hviYi + hr2i) (12)

where i = (1, 2, 3), and

Yi =
Q2i
2

{
D(1 + α2i)

P2i
(1 + 2α2i) +

α2
2iD
P2i

+

(
1 − D

P2i
− α2iD

P2i

)}
(13)

Carbon Emission Cost

During the production process, carbon emission occurs. Minimized carbon emission
is of great concern for not only government and industries, but the customer also demands
green products. This production model includes carbon emission costs for managerial
concerns. For the manufacturer, the cost of carbon emission per unit production can be
represented by Equation (14):

CEm = em × fm × D (14)

For outsourcers, it is shown by Equation (15):

CEvi = evi × fvi × D (15)

Inspection Cost

To ensure customers receive 100% good products, inspection is done at all the
phases of manufacturing. Defective parts are sent back for rework, and good items are
sent for packing. The cost of inspection for the manufacturer is given in Equation (16):

ICm = (I1 + I3)× D (16)

For vendors, the inspection cost will transform, as represented in Equation (17):

ICvi = I2i × D (17)

Total Manufacturing Cost

Overall manufacturing cost is the addition of setup cost, production cost, hold-
ing cost, carbon emission cost, and inspection cost of the manufacturer. According to
Equations (5), (7), (8), (10), (12) and (14), the total cost of the manufacturer in Equation (3)
can be represented as Equation (18):

TCm =

[
Q
2
(hmX + hr1 + hr3) +

smD
Q

+ M1D(1 + α1) + M3D(1 + α3) + em fmD + (I1 + I3)D
]

(18)
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Total Cost of Outsourcers

Similarly, the general equation for the total cost of all the vendors can be shown as
Equation (19) by inserting the Equations (6), (9), (11), (13), and (15) in Equation (4):

TCv = MR

[
n

∑
i=1

[
Q
2
(hviYvi + hr2i) +

sviD
Q

+ m2iD(1 + α2i) + evi fviD + I2iD
]]

(19)

Total Cost of the Supply Chain

Combining Equations (18)–(19) into Equation (1) to obtain the overall cost of the
supply chain, Equation (20) is as follows:

TC =
[

Q
2 (hmX + hr1 + hr3) +

sm D
Q + M1D(1 + α1) + M3D(1 + α3) + em fmD + (I1 + I3)D

]
+MR

[
n
∑

i=1

[
Q
2 (hviYvi + hr2i) +

svi D
Q + m2iD(1 + α2i) + evi fviD + I2iD

]] (20)

The first-order derivative can be written as

TC′ =
[

1
2
(hmX + hr1 + hr3)− smD

Q2

]
+ MR

[
n

∑
i=1

[
1
2
(hviYvi + hr2i)− sviD

Q2

]]
(21)

3.3.2. Constraints

The actual manufacturing system has some constraints. The following constraints are
defined to make the mathematical model behave like a real-life scenario. Both equality and
non-equality constraints are included.

Production constraint
Total production quantity at all three phases is the same:

Q1 = Q2 = Q3 (22)

where,

Q2 = Q21 + Q22 + Q23 + . . . + Q2n =
n

∑
i=1

Q2i (23)

Demand constraint
Q = Q1 = Q2 = Q3 ∼= D (24)

Space constraint
c ∗ Q ≤ Cm (25)

c ∗ Q2i ≤ Cvi (26)

To avoid shortage

P1 ≥
n

∑
i=1

P2i ≥ P3 ≥ D (27)

Non-negativity constraint
Q1, Q2, Q3 ≥ 0 (28)

3.3.3. Algorithm

The problem at hand is a complex quadratic problem. Because no existing basic
optimization method can solve the problem, this study presents a solution algorithm to
solve the model.

Step 1
Define the function

TC (Q, Q2i), shown in Equation (19) noted Q = ∑Q2i
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Define the derivative of the function
TC’ (Q, Q2i), shown in Equation (20)
Step no 2
Initially, guess

Q0 = 1

where
Q0 = Q21 + Q22 + Q23 . . . + Q2n

Find
TC (Q0)

Then,
TC’ (Q0), noted Q0 = Q21 + Q22 + Q23 . . . + Q2n

Step no 3
Find

Q1 = Q0 − TC (Q0)/TC’ (Q0)

Then,

Q2 = Q1 − TC (Q1)/TC’ (Q1) and so on . . . Qr+1 = Qr − TC (Qr)/TC’ (Qr)

Step no 4
Stop iteration when

Qr+1 = Qr

Step no 5
When Qr+1 = Qr, it means Qr is optimal, represented as Q *
As we know,

Q = Q21 + Q22 + Q23 . . . + Q2n

To find
Q *21, Q *22, Q *23 . . . , Q *2n

Repeat the same steps for each Q2i.
Finally,

Q * = Q *21 + Q *22 + Q *23 . . . + Q *2n

for n number of outsourcers.

4. Numerical Example

To check the model validity, a numerical example was performed for which the
data were acquired from the previous literature review based on the automobile spare-
part industry. Parameters such as production rate, demand, setup cost, holding cost,
and manufacturing cost were taken from the paper of Sarkar et al. (2014) [1]. The data
of carbon emission in tons per unit item production were taken from work done by
E. Bazan and M.Y. Jaber (2016) [2]. The inspection data were collected from the research
study of Sarkar (2016) [3]. Parameters such as defective rates and marginal cost were
taken directly from the industry because they depend on industrial conditions and
state regulations. All the data for the manufacturing phase are collected in Table 2,
given below.
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Table 2. Manufacturing data for phase 1 and phase 3 (spare-part-manufacturing industry).
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For the second phase of vendors, the data are given in Table 3, considering only
three vendors.

Table 3. Outsourcing data (spare-part-manufacturing industry).

P
h

a
se

2
O

u
ts

o
u

rc
e

rs

P
ro

d
u

ct
io

n
R

a
te

M
a

n
u

fa
ct

u
ri

n
g

C
o

st

H
o

ld
in

g
C

o
st

S
e

tu
p

C
o

st

R
e

w
o

rk
C

o
st

In
sp

e
ct

io
n

C
o

st

C
a

rb
o

n
E

m
is

si
o

n
C

o
st

D
e

fe
ct

iv
e

s

C
O

2
E

m
is

si
o

n
/I

te
m

1 450 6 56 45 6 9.5 23 0.04 0.18
2 550 7 50 50 7 10 23 0.04 0.2
3 580 8 47 55 8 10.5 23 0.04 0.22

5. Results and Discussion

The mathematical model is a single-objective constraint nonlinear model. Sequen-
tial quadratic programming (SQP) methodology is used to solve objective functions.
The formulation was coded in MATLAB16, and optimum values of total cost and pro-
duction quantities were calculated in the optimization toolbox. There are four decision
variables in this model. One Q * is for the manufacturer and Qbi * for ith outsourcer,
where i = (1, 2, and 3). When the product comes out from phase A, it is sent to the
outsourcer for further processes that are unavailable in the manufacturing firm. Total
* is distributed to vendors such that it gives minimum TC. This mathematical model
helps managers to make the best decision in the production of optimal quantity for the
manufacturer and the shipment of optimum quality of products to outsourcers that
will give the optimum value of TC for the overall supply chain. The output values
generated from MATLAB for both experiments are given in Table 4.

Table 4. Mathematical model outputs for different sources of data.

Data Collection
Resource

Total Cost (TC)
Manufacturer

Optimal Quantity
(Q)

1st Outsourcer
Optimal Quantity

(Q21)

2nd Outsourcer
Optimal Quantity

(Q22)

3rd Outsourcer
Optimal Quantity

(Q23)

Research paper USD 48,332.87 41.27 parts 12.9 parts 13.8 parts 14.6 parts

6. Sensitivity Analysis

Sensitivity analysis is used to learn about a variable that has a significant impact
on total production costs and decision variables. Each input parameter is adjusted
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within the range of (+50 percent to −50 percent) with a 25% increment to examine the
sensitivity of variables. The data compiled in Table 5 show the sensitivity analysis of the
manufacturer. The sensitivity analyses of all the variables are presented in Appendix A
Tables A1–A7.

Table 5 shows the output values of four decision variables as well as the % change in
TC values

Table 5. Sensitivity analysis of input parameters.

Parameters % Age Change
Decision Variables

% Change in the Total Cost
Q Q21 Q22 Q23

sm

−50 40.35 12.5741 13.49 14.2817 −0.38
−25 40.81 12.71 13.65 14.45 −0.19
25 41.72 12.99 13.95 14.78 0.19
50 42.17 13.12 14.10 14.94 0.37

hm

−50 45.40 14.09 15.19 16.12 −1.55
−25 43.19 13.43 14.45 15.31 −0.76
25 39.59 12.34 13.24 14.01 0.72
50 38.10 11.89 12.74 13.47 1.42

M1

−50 41.27 12.85 13.80 14.62 −3.91
−25 41.27 12.85 13.80 14.62 −1.96
25 41.27 12.85 13.80 14.62 1.96
50 41.27 12.85 13.80 14.62 3.91

M3

−50 41.27 12.85 13.80 14.62 −2.53
−25 41.27 12.85 13.80 14.62 −1.27
25 41.27 12.85 13.80 14.62 1.27
50 41.27 12.85 13.80 14.62 2.53

I1

−50 41.27 12.85 13.80 14.62 −3.10
−25 41.27 12.85 13.80 14.62 −1.55
25 41.27 12.85 13.80 14.62 1.55
50 41.27 12.85 13.80 14.62 3.10

I3

−50 41.27 12.85 13.80 14.62 −2.79
−25 41.27 12.85 13.80 14.62 −1.40
25 41.27 12.85 13.80 14.62 1.40
50 41.27 12.85 13.80 14.62 2.79

em

−50 41.27 12.85 13.80 14.62 −5.71
−25 41.27 12.85 13.80 14.62 −2.86
25 41.27 12.85 13.80 14.62 2.86
50 41.27 12.85 13.80 14.62 5.71

P1

−50 39.44 12.30 13.19 13.95 0.79
−25 40.63 12.66 13.59 14.38 0.27
25 41.67 12.97 13.94 14.76 −0.16
50 41.94 13.05 14.03 14.86 −0.27

P3

−50 41.65 12.97 13.93 14.75 −0.15
−25 41.39 12.89 13.84 14.66 −0.05
25 41.20 12.83 13.78 14.59 0.03
50 41.15 12.81 13.76 14.57 0.05

D

−50 30.82 9.58 10.31 10.93 −47.11
−25 36.70 11.42 12.28 13.01 −23.41
25 44.99 14.02 15.05 15.92 23.24
50 48.12 15.01 16.09 17.02 46.36

MR

−50 34.27 10.73 11.45 12.09 −29.31
−25 38.34 11.97 12.82 13.56 −14.59
25 43.50 13.52 14.55 15.42 14.53
50 45.25 14.05 15.14 16.06 29.02
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Table 5. Cont.

Parameters % Age Change
Decision Variables

% Change in the Total Cost
Q Q21 Q22 Q23

Hr1

−50 42.29 13.16 14.15 14.99 −0.41
−25 41.77 13.00 13.97 14.80 −0.20
25 40.78 12.71 13.64 14.44 0.20
50 40.32 12.56 13.48 14.27 0.40

Hr3

−50 42.74 13.29 14.30 15.15 −0.59
−25 41.99 13.07 14.04 14.88 −0.29
25 40.59 12.65 13.57 14.37 0.29
50 39.94 12.45 13.36 14.13 0.57

The data presented in Table 5 and Appendix A Tables A1–A7 conclude the following points:

• Increase in the demand rate “D” increases the total cost TC. The total cost is more
influenced by the demand rate. Changing the demand value by 50% can result in a
change of 47% in the total cost.

• When the marginal cost MR increases, it increases the TC. It is the second important
metric that has a greater impact on TC. Changing the MR by 50% will change the TC
by 29%.

• High carbon emission will increase the total cost. It is the third biggest variable, with a
TC variation of 5.7 percent.

• Increase in the manufacturing cost increases the TC. It can impact TC by 3.9% when
varying by 50%.

• Inspection cost (I1, I2i, I3) can cause change if there is a 3.5 % change in the TC. Holding
cost of inventory (hm, hvi), raw material holding cost (hr1, h2v,i), and setup cost (sm, svi)
also have a direct impact on the total cost. Increasing these costs can increase the total
cost (TC).

• Certain variables have zero impact on decision variables but can cause a significant
effect on the total cost. These parameters are MR, Ia, Ic, Ibi, em, ebi, Ma, Mc, and Mbi.

• Production rate (P1, P2i, and P3) has an inverse impact on the total cost. When the
production rate increases, then the total cost decreases.

The parameters that managers are worried about are those that have a significant
impact on TC. The initial investment is planned to keep these variables under control.
One of them is the expense of setup and carbon emissions. Reusable energy sources
are used to reduce carbon emissions costs. To reduce rework costs, inline inspection
should be strictly followed. To minimize rework costs, inline inspection should be
followed strictly, and similarly, to minimize inspection costs, a traditional, human-
based inspection can be regulated by automation and technology.

Table 6 shows what effect the decision variables have on the objective function TC
when we change their values from the optimum value suggested by our model. It can
be seen that iteration number 6 is the only optimal value of Q for the minimum TC.

The below Figure 2 shows the relation of production lot size and total cost of the
supply chain.

Figure 3 depicts the graphical representation of sensitivity analysis. The graphical
representation indicates that the marginal and demand lines have a higher impact
on the total cost %. A minor change in one of these variables will have a significant
influence on the total cost. The other variables have a slight impact on the total cost as
well. Only when the marginal and demand rates are changed significantly does the
total cost abruptly alter. The lines of all the other variables can be recognized through
different colors and markers. The marginal rate and demand have a significant impact
on output, as this graph indicates. Similarly, the third line is the carbon emission cost
line, which has the third greatest impact on total cost and can affect the overall cost
with a tiny modification. The manufacturing cost is the fourth item in this category,
and similarly, holding cost is the next factor that has higher impact on the total cost.
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When the production rate increases, the total cost decreases. The sensitivity analysis for
production rate is shown in Appendix C Figure A1. A separate graph of the sensitivity
analysis of major parameters, such as holding cost, setup cost, and carbon emission
cost, is also given in Appendix C Figures A2–A4.

Table 6. Effect of decision variables on TC.

Iteration Q Q21 Q22 Q23 TC

1 30 9.413829 10.02195 10.56422 48,755.3
2 32 10.02961 10.69199 11.2784 48,600.8
3 34 10.64312 11.36237 11.99451 48,487.96
4 36 11.25424 12.0331 12.71265 48,409.84
5 38 11.86283 12.70421 13.43296 48,360.94

6 * 41.27 12.9 13.8 14.6 48,332.87
7 42 13.07191 14.04756 14.88053 48,334.14
8 44 13.67213 14.71983 15.60804 48,349.78
9 46 14.26932 15.39249 16.33818 48,381.41
10 48 14.86333 16.06557 17.0711 48,427.02
11 50 15.45406 16.73904 17.8069 48,484.95

* Optimal run to achieving the lowest TC.
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Figure 2. Total cost TC with respect to production lot size Q.
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Figure 3. Graphical representation of sensitivity analysis.

7. Conclusions

Process outsourcing has been mathematically modelled for successful management of
supply and inventory between manufacturer and multi-vendor. The total cost of supply
chain is minimized with the optimization of the production quantity and outsourcing
quantity. The parts are outsourced to the vendor and returned back to the manufacturer
for remaining operations. The process has been modelled and optimized for effective
SCM. The process outsourcing model is one of the significant contributions of the proposed
research, which is important for the understanding of the managers and decision makers
about the optimal production quantity and managing optimal outsourcing quantity among
various vendors. An extra inventory is created at the lower end of the manufacturer, which
is managed and controlled well using mathematical modelling for the smooth flow of
products in SCM.

The imperfection is modelled in the proposed manufacturer and vendor-based SCM.
Inspection is performed on all production and outsourcing quantities, where the defective
items are reworked. The sensitivity analysis shows a dramatic relationship; i.e., the change in
market demand shows a high-rise curve, the marginal rate of the vendor is also very significant
for the management of the outsourcing operation in SCM, and carbon emission cost has an
intermediate impact on the total cost, while other all factors have a very low impact on the total
cost of SCM. The managers need to see the significant cost parameters for the management of
outsourcing in SCM.

Outsourcing is a very important operation of the manufacturing firm. There are too many
new research ideas and contributions available in the current field for the development of the
outsourcing process in the SCM. The model can be extended by considering variable demand
pattern, i.e., price or advertisement cost depending on demand, time-based demand, quality
as a function of demand, etc. The deterministic model can be converted into a probabilistic
one if the product’s demand follows a certain distribution function. Stochastic modelling can
be utilized to reflect the real scenario of the market demand pattern as a new paradigm with
process outsourcing operations in the proposed SCM. Process outsourcing was modelled in the
research study; however, research can be performed to model product outsourcing. Overall,
the research work is an important direction in the management of outsourcing and inventory
between manufacturers and vendors for effective SCM.
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Abbreviations

Notation Description

M Index for manufacturer
vi Index for ith vendor
TC The total cost of the supply chain
TCm The total cost of the manufacturer
TCvi The total cost of ith vendor
Hm Holding cost of manufacturer
Hvi Holding cost of vendor i
hm Holding cost per unit item of manufacturer
hvi Holding cost per unit item of an ith vendor
hr1 Unit holding cost of raw material for manufacturer of first phase
hr3 Unit holding cost of raw material for manufacturer of third phase
hr2i Unit holding cost of raw material for vendors of second phase
Sm Setup cost of manufacturer
Svi Setup cost of vendor i
sm Setup cost per unit item of manufacturer
svi Setup cost per unit item of an ith vendor
PCm Overall production cost of manufacturer
M1 Production cost of the manufacturer for first phase
M3 Production cost of a manufacturer for third phase
M2i Production cost of the ith vendor for second phase
m1 Production cost per unit item of phase 1 for manufacturer
m3 Production cost per unit item of phase 3 for manufacturer
m2i Production cost per unit item of an ith vendor
D Constant rate of demand
P1 Production rate of phase 1
P3 Production rate of phase 3
P2i Production rate of phase 2 for ith vendor
CEm Carbon emission cost for the manufacturer
CEvi Carbon emission cost for ith vendor
fm Carbon emission cost per ton CO2 emission for manufacturer
em Carbon emission per unit item production for the manufacturer
fvi Carbon emission cost per ton CO2 emission for outsourcer i
evi Carbon emission per unit item production for outsourcer i
α1 Rate of rework of first phase for the manufacturer
α3 Rate of rework of third phase for manufacturer
α2i rate of rework of second phase for the ith outsourcer
MR Marginal cost of outsourcers
ICm Inspection cost for the manufacturer
ICvi Inspection cost for ith vendor
I1 Inspection cost per unit item at first phase
I3 Inspection cost per unit item at third phase
I2i Inspection cost per unit item at second phase for ith outsourcer
c Capacity of each item (%)
C T capacity of manufacturer inventory (%)
Cvi Total capacity of ith vendor inventory (%)
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Appendix A.

Table A1. Sensitivity analysis for setup cost of manufacturer and outsourcers.

Parameters % Age Change
Decision Variables

% Change in the Total Cost
Q Q21 Q22 Q23

Sm

−50 40.35 12.58 13.49 14.28 −0.38
−25 40.81 12.71 13.65 14.45 −0.19
25 41.72 12.99 13.95 14.78 0.19
50 42.17 13.12 14.10 14.94 0.37

Sv1

−50 37.85 9.17 13.93 14.75 −1.46
−25 39.70 11.17 13.86 14.67 −0.67
25 42.65 14.33 13.76 14.57 0.59
50 43.91 15.66 13.72 14.53 1.13

Sv2

−50 37.60 12.98 9.86 14.77 −1.51
−25 39.59 12.90 12.00 14.68 −0.69
25 42.76 12.81 15.38 14.57 0.61
50 44.11 12.78 16.80 14.53 1.17

Sv3

−50 37.39 12.99 13.95 10.45 −1.57
−25 39.49 12.91 13.86 12.72 −0.72
25 42.85 12.81 13.75 16.28 0.64
50 44.27 12.77 13.71 17.79 1.21

Table A2. Sensitivity analysis for holding cost of manufacturer and outsourcers.

Parameters % Age Change
Decision Variables

% Change in the Total Cost
Q Q21 Q22 Q23

hm

−50 45.40 14.09 15.19 16.12 −1.55
−25 43.19 13.43 14.45 15.31 −0.76
25 39.59 12.34 13.24 14.01 0.72
50 38.10 11.89 12.74 13.47 1.42

hv1

−50 42.42 14.07 13.77 14.58 −0.45
−25 41.80 13.42 13.79 14.60 −0.22
25 40.80 12.35 13.82 14.63 0.21
50 40.38 11.90 13.83 14.65 0.41

hv2

−50 42.40 12.82 15.00 14.58 −0.43
−25 41.80 12.84 14.37 14.60 −0.21
25 40.80 12.87 13.30 14.63 0.20
50 40.37 12.88 12.85 14.65 0.40

hv3

−50 42.41 12.82 13.77 15.82 −0.42
−25 41.81 12.84 13.79 15.18 −0.21
25 40.79 12.87 13.82 14.11 0.20
50 40.36 12.88 13.83 13.64 0.39

Table A3. Sensitivity analysis for manufacturing cost of manufacturer and outsourcers.

Parameters % Age Change
Decision Variables

% Change in the Total Cost
Q Q21 Q22 Q23

M1

−50 41.27 12.85 13.80 14.62 −3.91
−25 41.27 12.85 13.80 14.62 −1.96
25 41.27 12.85 13.80 14.62 1.96
50 41.27 12.85 13.80 14.62 3.91

M3

−50 41.27 12.85 13.80 14.62 −2.53
−25 41.27 12.85 13.80 14.62 −1.27
25 41.27 12.85 13.80 14.62 1.27
50 41.27 12.85 13.80 14.62 2.53
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Table A3. Cont.

Parameters % Age Change
Decision Variables

% Change in the Total Cost
Q Q21 Q22 Q23

M21

−50 41.27 12.85 13.80 14.62 −2.23
−25 41.27 12.85 13.80 14.62 −1.11
25 41.27 12.85 13.80 14.62 1.11
50 41.27 12.85 13.80 14.62 2.23

M22

−50 41.27 12.85 13.80 14.62 −2.60
−25 41.27 12.85 13.80 14.62 −1.30
25 41.27 12.85 13.80 14.62 1.30
50 41.27 12.85 13.80 14.62 2.60

M23

−50 41.27 12.85 13.80 14.62 −2.97
−25 41.27 12.85 13.80 14.62 −1.48
25 41.27 12.85 13.80 14.62 1.48
50 41.27 12.85 13.80 14.62 2.97

Table A4. Sensitivity analysis for inspection cost of manufacturer and outsourcers.

Parameters % Age Change
Decision Variables

% Change in the Total Cost
Q Q21 Q22 Q23

I1

−50 41.27 12.85 13.80 14.62 −3.10
−25 41.27 12.85 13.80 14.62 −1.55
25 41.27 12.85 13.80 14.62 1.55
50 41.27 12.85 13.80 14.62 3.10

I3

−50 41.27 12.85 13.80 14.62 −2.79
−25 41.27 12.85 13.80 14.62 −1.40
25 41.27 12.85 13.80 14.62 1.40
50 41.27 12.85 13.80 14.62 2.79

I21

−50 41.27 12.85 13.80 14.62 −3.39
−25 41.27 12.85 13.80 14.62 −1.70
25 41.27 12.85 13.80 14.62 1.70
50 41.27 12.85 13.80 14.62 3.39

I22

−50 41.27 12.85 13.80 14.62 −3.57
−25 41.27 12.85 13.80 14.62 −1.78
25 41.27 12.85 13.80 14.62 1.78
50 41.27 12.85 13.80 14.62 3.57

I23

−50 41.27 12.85 13.80 14.62 −3.75
−25 41.27 12.85 13.80 14.62 −1.87
25 41.27 12.85 13.80 14.62 1.87
50 41.27 12.85 13.80 14.62 3.75

Table A5. Sensitivity analysis for carbon emission per unit item of manufacturer and outsourcers.

Parameters % Age Change
Decision Variables

% Change in the Total Cost
Q Q21 Q22 Q23

em

−50 41.27 12.85 13.80 14.62 −5.71
−25 41.27 12.85 13.80 14.62 −2.86
25 41.27 12.85 13.80 14.62 2.86
50 41.27 12.85 13.80 14.62 5.71

ev1

−50 41.27 12.85 13.80 14.62 −1.48
−25 41.27 12.85 13.80 14.62 −0.74
25 41.27 12.85 13.80 14.62 0.74
50 41.27 12.85 13.80 14.62 1.48
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Table A5. Cont.

Parameters % Age Change
Decision Variables

% Change in the Total Cost
Q Q21 Q22 Q23

ev2

−50 41.27 12.85 13.80 14.62 −1.64
−25 41.27 12.85 13.80 14.62 −0.82
25 41.27 12.85 13.80 14.62 0.82
50 41.27 12.85 13.80 14.62 1.64

ev3

−50 41.27 12.85 13.80 14.62 −1.81
−25 41.27 12.85 13.80 14.62 −0.90
25 41.27 12.85 13.80 14.62 0.90
50 41.27 12.85 13.80 14.62 1.81

Table A6. Sensitivity analysis for demand, marginal, and production rate of manufacturer and
outsourcers.

Parameters % Age Change
Decision Variables

% Change in the Total Cost
Q Q21 Q22 Q23

P1

−50 39.44 12.30 13.19 13.95 0.79
−25 40.63 12.66 13.59 14.38 0.27
25 41.67 12.97 13.94 14.76 −0.16
50 41.94 13.05 14.03 14.86 −0.27

P3

−50 41.65 12.97 13.93 14.75 −0.15
−25 41.39 12.89 13.84 14.66 −0.05
25 41.20 12.83 13.78 14.59 0.03
50 41.15 12.81 13.76 14.57 0.05

P21

−50 41.15 12.82 13.76 14.57 0.05
−25 41.17 12.82 13.77 14.58 0.04
25 41.42 12.90 13.85 14.67 −0.06
50 41.60 12.95 13.91 14.74 −0.13

P22

−50 40.92 12.75 13.69 14.49 0.14
−25 41.05 12.79 13.73 14.54 0.09
25 41.53 12.93 13.89 14.71 −0.11
50 41.79 13.01 13.98 14.80 −0.21

P23

−50 40.83 12.72 13.65 14.46 0.18
−25 41.00 12.77 13.71 14.52 0.11
25 41.56 12.94 13.90 14.72 −0.12
50 41.85 13.03 14.00 14.82 −0.23

D

−50 30.82 9.58 10.31 10.93 −47.11
−25 36.70 11.42 12.28 13.01 −23.41
25 44.99 14.02 15.05 15.92 23.24
50 48.12 15.01 16.09 17.02 46.36

MR

−50 34.27 10.73 11.45 12.09 −29.31
−25 38.34 11.97 12.82 13.56 −14.59
25 43.50 13.52 14.55 15.42 14.53
50 45.25 14.05 15.14 16.06 29.02

Table A7. Sensitivity analysis for holding cost of raw material of manufacturer and outsourcers.

Parameters % Age Change
Decision Variables

% Change in the Total Cost
Q Q21 Q22 Q23

hr1

−50 42.29 13.16 14.15 14.99 −0.41
−25 41.77 13.00 13.97 14.80 −0.20
25 40.78 12.71 13.64 14.44 0.20
50 40.32 12.56 13.48 14.27 0.40
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Table A7. Cont.

Parameters % Age Change
Decision Variables

% Change in the Total Cost
Q Q21 Q22 Q23

hr3

−50 42.74 13.29 14.30 15.15 −0.59
−25 41.99 13.07 14.04 14.88 −0.29
25 40.59 12.65 13.57 14.37 0.29
50 39.94 12.45 13.36 14.13 0.57

hr21

−50 41.66 12.97 13.93 14.76 −0.16
−25 41.46 12.91 13.87 14.69 −0.08
25 41.08 12.79 13.74 14.55 0.08
50 40.89 12.74 13.68 14.48 0.16

hr22

−50 41.74 12.99 13.96 14.79 −0.19
−25 41.50 12.92 13.88 14.70 −0.10
25 41.04 12.78 13.72 14.53 0.10
50 40.81 12.71 13.65 14.45 0.19

hr23

−50 41.77 13.00 13.97 14.80 −0.20
−25 41.52 12.93 13.89 14.71 −0.10
25 41.03 12.78 13.72 14.53 0.10
50 40.79 12.71 13.64 14.44 0.20

Appendix B.

Appendix B.1. Mathematical Modelling

There are three phases to the inventory diagram. The manufacturer phases are
shown in phases 1 and 3, whereas the outsourcer phase is shown in phase 2. T1, T2,
and T3 are the three portions of total time T (T = T1 + T2 + T3). These three phases
of the manufacturer are further broken into t1, t2, t3, t4, t5, t6, t7, t8, and t9 such that
T1 = t1 + t2 + t3, T2 = t4 + t5 + t6, and T3 = t7 + t8 + t9. Thus, the total cycle time can
be written as T = t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9. From Figure 1, it can be shown
as t1 = Q

P1
t2 = α1Q

P1
t3 = Q

D

[
1 − D

P1
− α1D

P1

]
t4 = Q

P2i
t5 = α2i Q2i

P2i
t6 = Q2i

D

[
1 − D

P2i
− α2i D

P2i

]
t7 = Q

P3
t8 = α3Q3

P3
and t9 = Q

D

[
1 − D

P3
− α3D

P3

]
. The customer demand rate is denoted by

the symbol D. The mathematical modelling of each phase is explored in depth below.

Appendix B.2. Phase 1

From Figure A1, the total inventory of phase 1 is equal to the area under the curve,
which is

Total inventory of first phase = Inv1 = Δ123 +�2345 + Δ356 + Δ467 (A1)

where area of triangle is represented by symbol (Δ), and area of rectangle is represented by
symbol (�), where the subscript represents specific area locations from Figure A1.

Now,

Δ123 =
1
2

Imax11 × t1 (A2)

Imax12 = Q(1 − α1) (A3)

Imax11 = Qα1 (A4)

slope = tan θ =
perpendicular

base
, which implies P1(1 − α1) =

Imax12

t1
(A5)

Δ123 = Q2
(

1 − α1

2P1

)
(A6)

�2345 = t2 × Imax12 (A7)
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�2345 =
α1Q
P1

× Q(1 − α)

�2345 =
Q2α1(1 − α1)

P1
(A8)

Δ356 =
1
2

t2 × Imax11 (A9)

Δ356 =
Q2α1

2

2P1
(A10)

Δ467 =
1
2

t3 × Imax1 → [Imax1 = Imax11 + Imax12] (A11)

Δ467 =
Q2

2

[
1 − D

P1
− α1D

P1

]2
(A12)

Area from 2–4 to 2–7 of the figure, total inventory of first phase will be

Inv1 = Δ123 + Δ2345 + Δ356 + Δ467 (A13)

= Q2
(

1 − α1

2P1

)
+

Q2α1(1 − α1)

P1
+

Q2α1
2

2P1
+

Q2

2

[
1 − D

P1
− α1D

P1

]2
(A14)

Inv1 = Q2

{
1 − α1

2P1
+

α1(1 − α1)

P1
+

α1
2

2P1
+

1
2

[
1 − D

P1
− α1D

P1

]2
}

(A15)

Now, divide the upper equation by the total cycle time of phase A
[

T1 = Q
D

]

Iavg1 = Q2

⎧⎪⎨⎪⎩
1−α1
2P1

+ α1(1−α1)
P1

+ α1
2

2P1
+ 1

2

[
1 − D

P1
− α1D

P1

]2

T

⎫⎪⎬⎪⎭ (A16)

Iavg1 = Q

{
D(1 − α)(1 + 2α)

2P1
+

α1
2D

2P1
+

1
2

[
1 − D

P1
− α1D

P1

]2
}

(A17)

Raw material inventory for phase 1:

Δ128 =
1
2

t1 × Q1 (A18)

InvR1 =
Q2

2P1
(A19)

IavgR1 =
InvR1

T
=

QD
2P1

(A20)

Appendix B.3. Phase B

From Figure A1, the first outsourcer total average inventory is given as

Iavg21 =
Δ8910 +�9101112 + Δ101213 + Δ111314

T2
(A21)

From Figure A1, the second outsourcer total average inventory is given as

Iavg22 =
Δ151617 +�16171819 + Δ171920 + Δ182021

T2
(A22)
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From Figure A1, the third outsourcer total average inventory is given as

Iavg23 =
Δ222324 +�23242526 + Δ242627 + Δ252728

T2
(A23)

Total average inventory of phase 2 = Iavg21 + Iavg22 + Iavg23 . . . Iavg2n (A24)

Δ8910 = Q2
(

1 − α2i
2P2i

)
(A25)

�9101112 =
Q2α2i(1 − α2i)

P2i
(A26)

Δ101213 =
Q2α2i

2

2P2i
(A27)

Δ111314 =
Q2

2

[
1 − D

P2i
− α2iD

P2i

]2
(A28)

Iavg21 =
Δ8910 +�9101112 + Δ101213 + Δ111314

T2
(A29)

Iavg21 = Q

{(
D(1 − α21)(1 + 2α21)

2P21

)
+

Dα2
21

2P21
+

1
2

(
1 − D

P21
− α21D

P21

)}
(A30)

Similarly, for outsourcer 2, the average inventory is

Iavg22 = Q

{(
D(1 − α22)(1 + 2α22)

2P22

)
+

Dα2
22

2P22
+

1
2

(
1 − D

P22
− α22D

P22

)}
(A31)

Further, for phase 2 and vendor 3, inventory is written as

Iavg23 = Q

{(
D(1 − α23)(1 + 2α23)

2P23

)
+

Dα2
23

2P23
+

1
2

(
1 − D

P23
− α23D

P23

)}
(A32)

The general form of average inventory for the ith, outsourcer is given as

Iavg2i = Q

{(
D(1 − α2i)(1 + 2α2i)

2P2i

)
+

Dα2
2i

2P2i
+

1
2

(
1 − D

P2i
− α2iD

P2i

)}
(A33)

Let Yi =

(
D(1 − α2i)(1 + 2α2i)

P21

)
+

Dα2
2i

P2i
+

(
1 − D

P2i
− α2iD

P2i

)
(A34)

Iavg2i =
Q
2
(Yi) (A35)

Raw material inventory for phase 2, vendors is

Δ91016 =
1
2

t4 × Q21 (A36)

InvR2i =
Q2i

2

2P2i
(A37)

IavgR2i =
InvR2i

T
=

Q2iD
2P2i

(A38)
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Appendix B.4. Phase C

The inventory of phase C can be found in Figure A1 as

Δ293031 =
Q2

2P3

[
1 − α3 − D

P3

]
(A39)

Δ313334 =
Q2α3

2

2P3

[
1 − D

P3

]
(A40)

�30313233 =
α3Q2

P3

[
1 − α3 − D

P3

]
(A41)

Δ323334 =
Q2

2D

[
1 − D

P3
− α3D

P3

]2
(A42)

Equations (A37)–(A40) imply total average inventory of phase C is

Iavgc = Δ293031 + Δ313334 +�30313233 + Δ323334 (A43)

Iavg3 = QD

{
1

2P3

[
1 − α3 − D

P3

]
[1 + 2α3] +

α3
2

2P3

[
1 − D

P3

]
+

1
2D

[
1 − D

P3
− α3D

P3

]2
}

(A44)

Raw material inventory of manufacturer for phase 3 is given as

Δ(8n+9,8n+10,8n+15) =
1
2

t7 × Q3

InvR3 =
Q3

2

2P3
(A45)

IavgR3 =
InvR3

T
=

Q3D
2P3

(A46)

Now, total average inventory of manufacturer will be

Iavgm = Iavg1 + Iavg3

Iavgm = Q
{

D(1 − α1)(1 + 2α1)

2P1
+

α1
2D

2P1
+

1
2

[
1 − D

P1
− α1D

P1

]}
+ QD

{
1

2P3

[
1 − α3 − D

P3

]
[1 + 2α3] +

α3
2

2P3

[
1 − D

P3

]
+

1
2D

[
1 − D

P3
− α3D

P3

]2
}

(A47)

Iavgm =
Q
2

[{
D(1 − α1)(1 + 2α1)

P1
+

α1
2D

P1
+

[
1 − D

P1
− α1D

P1

]}
+ QD

{
1
P3

[
1 − α3 − D

P3

]
[1 + 2α3] +

α3
2

P3

[
1 − D

PC

]
+

1
D

[
1 − D

P3
− α3D

P3

]2
}]

(A48)

Let

X =

[{
D(1 − α1)(1 + 2α1)

P1
+

α1
2D

P1
+

[
1 − D

P1
− α1D

P1

]}
+ QD

{
1
P3

[
1 − α3 − D

P3

]
[1 + 2α3] +

α3
2

P3

[
1 − D

PC

]
+

1
D

[
1 − D

P3
− α3D

P3

]2
}]

(A49)

Iavgm =
Q
2

X (A50)

Thus, Equation (A35) is the total average inventory for ith outsourcer, and Equation
(A43) is the total average inventory for the manufacturer.

The Equations (A5), (A15), (A29), (A35), (A42) and (A43) gives the total cost of the
supply chain in Equation (A44) below.
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TC =
[

Q
2

(
hmX + hr1D

P1
+ hr3D

P3

)
+ smD

Q + m1D(1 + α1) + m3D(1 + α3) + em fmD + (I1 + I3)D
]

+MR

[
n
∑

i=1

[
Q2i
2 (h2iYi + hr2i) +

svi D
Q2i

+ m2iD(1 + α2i) + evi fviD + I2iD
]] (A51)

Appendix C.

Figure A1. Sensitivity analysis graph for production rate and total cost.

Figure A2. Sensitivity analysis graph for carbon emission and total cost.

108



Mathematics 2022, 10, 1142

Figure A3. Sensitivity analysis graph for holding cost and total cost.

Figure A4. Sensitivity analysis graph for setup cost and total cost.
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Abstract: Foodbank networks provide adequate infrastructure and perform logistics activities to
supply food to people in need on a day-to-day basis. However, in the case of a sudden event, such
as a natural disaster, they must reconfigure themselves to quickly and fairly satisfy the needs of the
affected people, despite the rapid changes in supply and demand, as much as possible. In contrast to
most of the studies in the humanitarian logistics literature, which have focused on aid distribution—
the downstream part of the supply chain—this paper extends the field of view upstream, explicitly
considering supply (or, in the case of foodbanks, donors). To this end, we compare several network
design strategies in order to assess the potential benefits of centralized decisions in a context where,
in practice, there exists no formal protocol to support bank coordination. We propose a mathematical
formulation for the design of such logistics processes, including collection, transshipment, and aid
distribution, over a network of foodbanks inspired by the real case of Bancos de Alimentos de México
(BAMX). The case considers several categories of food and encompasses restrictions on their mixture
to ensure the nutritional quality of the delivered food, distinct from other models in the literature.
Finally, we assess the differences in the strategies through the use of effectiveness and efficiency
performance metrics.

Keywords: humanitarian logistics; relief distribution; network design problem; food banks

MSC: 90B90

1. Introduction

Humanitarian organizations devote their best efforts to helping vulnerable people
improve their situation, fighting against poverty, inequality, and discrimination [1]. Access
to water, food, medical supplies, and other products are among the immediate needs of
vulnerable communities, constituting the primary goal of foodbanks. Food banking systems
obtain surplus food and distribute it to the people in need, involving all society sectors
such as civil, governments, and businesses in the process. Foodbanks acquire donated food
that in most of the cases would otherwise be spoiled, usually from farms, manufacturers,
distributors, retail stores, consumers, and other sources, to make it available to people in
need [2].

Foodbank networks offer adequate logistics to provide food sources to people in need
on a day-to-day basis through a network of community agencies such as school feeding
programs, homeless shelters, soup kitchens, after-school programs, and other non-profit
programs that support people in need. Furthermore, one of the most important goals of a
foodbank is to provide an acceptable nutritional status to the population in need [3]. Indeed,
having “something to eat” is not sustainable or sufficient to prevent malnutrition [4]. The
ability to offer people a balanced proportion of macronutrients and micronutrients has been
shown to have a major impact on the vulnerability of individuals and entire populations
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facing diseases and health risks [5]. Foodbanks must, therefore, manage the diversity of
surplus food provided by donors to achieve “balanced” deliveries to the population, in
order to align with the Sustainable Development Goals for 2030 identified by the United
Nations [6].

Conceived to mitigate the continuous needs of a given population, these networks
must be reconfigured upon the arrival of sudden events, such as natural or man-made
disasters, that provoke sudden variations, both in the demand (for example, the number
and the needs of the affected population) and the supply (for example, the number of
donors and the quantities they supply). This inbound part of the supply chain, which has
received limited attention in the humanitarian logistics literature, is the key to improving
effectiveness in the case of foodbanks, therefore increasing their ability to better satisfy the
needs of the affected population, as well as to do so in a timely manner.

In this context where food banks must quickly reorganize their logistics—which
are designed for day-to-day operations—to cope with the humanitarian consequences
of a natural disaster, the contributions of this paper are twofold. First, it proposes a
mathematical formulation that spans the entire supply chain (from donors to communities)
to solve the logistic planning problem. Then, it empirically compares multiple network
reconfiguration strategies to shed some light on how the food banks should reorganize
their responsibilities with respect to the day-to-day model, and to identify specific decisions
that should be prioritized to achieve the highest performance in terms of satisfaction of
the affected people’s demand and balance of delivered food. To ground the analysis on
a real-world logistic network configuration and its requirements, we consider the case of
Bancos de Alimentos de México (BAMX), a foodbank network in Mexico.

The remainder of this paper is structured as follows: Section 2 discusses relevant
studies in the recent literature devoted to humanitarian aid distribution with emphasis on
papers related to food bank operations. Section 3 presents BAMX, describes its day-to-day
operations, and details how these operations would be challenged in the case of a sud-
den humanitarian crisis. Section 4 proposes a mathematical model for BAMX’s logistics.
Section 5 describes the experimental design used to compare the different network config-
urations. Section 6 presents the results, where the impacts of the distinct reconfiguration
decisions are assessed. Section 7 discusses the managerial insights obtained from the results.
Finally, Section 8 presents the conclusions, as well as some future research.

2. Literature Review

The food distribution modeling literature is extensive [7,8], although most of it is
dominated by studies focused on for-profit organizations; comparatively, little work has
considered non-profit food distribution networks [9]. Contrarily to the profit case, where
networks are optimized with respect to cost or food travel time, non-profit operations seek
objectives such as equity [10]. This section contains two parts. The first part reviews the
notion of fairness in distribution, whereas the second part focuses on food banks operations
and the alternative distribution structures proposed in the literature.

Equity or fairness is one of the major decision-making issues in humanitarian opera-
tions. The theoretical notion of fairness in humanitarian aid distribution has recently been
discussed, and there is still no universal agreement on a definition or metric. Sengul Orgut
et al. [11] have stated that equity has two dimensions in the food distribution network
context: quantity received per person and quality (or type) of the food received.

Quantity seems to be the prime aspect when addressing relief distribution and its
success. Review papers have claimed that most studies tackle the problems of equity in
distribution using fairness constraints [12–15]. Anaya-Arenas et al. [16] have discussed
the importance of fairness in relief distribution and how it can be defined. Sengul Orgut
et al. [17] have presented two robust optimization models focused on the equitable and
effective distribution of donated food over a foodbank’s service area, considering only the
bank-to-community section of the network. The first model allowed the demand point
capacities to vary over given ranges, to control the tradeoff between the total amount of
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food distributed and the robustness of the solution concerning the capacity variations. The
second model controlled the overall equity in the system while seeking to maximize the
total amount of food shipped. Their results showed that by sacrificing equity at certain
locations that may generate a bottleneck in the network, they can considerably increase the
total distribution, while most demand points continue to receive food equitably.

Papers dealing with the quality of the distributed food must incorporate multiple
types of products and their characteristics [18–20]. Ross, Campbell, and Webb [21] have
conducted a survey of 137 foodbanks and concluded that the quality of the distributed
food (such as the nutritious value) needs to be improved, which justifies food banks
efforts to limit the donation of unhealthy food while minimizing the negative effects on
the quantity of the total donated foods [22,23]. For instance, Gómez-Pantoja et al. [20]
have proposed a model for the foodbank resource allocation problem which considers
inventory management, product–beneficiary compatibilities, and balanced nutrition in
terms of calorie consumption. In summary, food banks are more and more concerned by the
attributes of the food they deliver, stressing the need for models able to separate products
into categories according to their respective contributions to the individual needs.

If we focus now on the transportation facet of aid distribution, many optimization
models have been suggested to improve transportation planning in humanitarian logistics,
especially during the last 20 years. Leiras [24], Anaya-Arenas et al. [13], and Yáñez-
Sandivari et al. [25] have reviewed 228, 500, and 178 articles related to relief distribution
networks, respectively. These studies pointed out that most of the proposed models remain
theoretical, with less than 15% of them being tested on real data [24]. These reviews show
that most studies have focused on two areas: network design (see, for example, [26–28])
and delivery routing problems (see, for example, [29,30]). They also indicated that limited
research had been devoted to the upstream part of the humanitarian supply chains, an
area that is central to our work. The material convergence problem becomes even more
challenging in the case of a decentralized organization such as BAMX, where each bank in
the network operates with a high level of autonomy and, in practice, decides the resources it
is willing to engage to support other banks in the network. Whereas the literature from the
cooperation perspective of vertical logistics is quite extensive [31–34], academic research
on horizontal cooperation in logistics remains limited, especially in terms of humanitarian
logistics [25].

As is the case in humanitarian logistics, most of the research concerning food banks has
focused on their operations, proposing various models that reflect alternative distribution
structures. A recent review on decision support models for managing food aid supply
chains (Mahmoudi et al. [35]) has concluded that most studies only consider the resource
allocation or transportation between two tiers of the food aid supply chain (for example,
between donors and food banks), whereas very few of them have explored this problem as
a whole, as it is the case of our paper. In addition, none of the works studied contemplates
transshipment between the banks. In the next paragraphs, we have grouped relevant papers
into four categories according to the structure of the distribution network they propose.

Resource allocation problems (RAP). The aim is to plan the allocation of supplies
among communities or charities over a period or a set of periods. In most of the cases,
the problem seeks to maximize the utility of the delivered food. Sengul Orgut et al. [11]
considered the allocation of available donations to charities over one month as a single
period problem. Sengul et al. [17] extended the previous problem to incorporate variability
on the charity capacities. These works do not handle donations that are assumed to be
available at banks and consider food as a single commodity. Gómez-Pantoja et al. [20]
also dealt with a resource allocation problem, but they modeled food demand in a more
detailed manner. Indeed, they considered product-beneficiary compatibilities, balanced
nutrition, and priority of beneficiaries to decide who will be served, what kind of products,
and how many of them will be supplied. Alkaabneh et al. [19] addressed a similar food
allocation model where supply is uncertain, so the models’ objective is to maximize the
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expected utility of charities. However, all of the resource allocation problems adopt a rather
strategic perspective and they do not consider the transportation of the food.

Location-routing problems (LRP). They seek to simultaneously determine (1) the
location of intermediate food distribution points (FDP) where charities or people in need
travel to grab the food, and (2) the routes that, starting at the bank’s warehouse, visit
food collection points (donors) and FDP’s. Naji-Azimi et al. [36] and Boostani et al. [37]
proposed Location-Routing problems seeking to locate satellite distribution centers in
the context of humanitarian logistics. Concerning food banks, Davis et al. [38] studied a
version of the Location-Routing problem where the objective is to minimize the number of
FDPs and transportation costs. Similar situations were presented in Solak et al. [39] and in
Reihaneh et al. [40], but they proposed different solution approaches. All of the mentioned
location-routing works consider food as a single commodity.

Sequential Resource Allocation (SAR) problems. This family of problems also aims
to build routes mixing collection and distribution of food in such a way that it is required
to set the quantity of food to collect (usually at the first or the firsts stops) and the quan-
tity to deliver at the charities or communities. Gunes et al. [41] studied a deterministic
version of this problem and proposed various approaches to model it. Lien et al. [9] and
Balcik et al. [42] addressed versions of a SAR where the demand at each delivery point is
not known in advance, the challenge of the problem is therefore to decide the amount of
food to be left at each delivery stop in order to minimize the wasted (unused) food at the
time that equity is maximized. A similar context is presented in Eisenhandler and Tzur [43]
and Eisenhandler and Tzur [44], where the food bank decides which charities to visit, in
what order, and how much to pick up or distribute to each donor or charity. The SAR has
been extended to multiple periods in the so-called food rescue problem (FRP). The FRP
is a multi-period problem where food suppliers and charities are chosen in order to form
routes that meet the required service levels in such a way that the total transportation cost
is minimized and operational constraints are satisfied [45,46]. The routes depart from a
depot, collect food from suppliers, and deliver it to charities before returning to the depot.

Location-routing and SAR problems are based on mixed-routes that visit donors and
distribution points or charities. Therefore, they are appropriate for modelling situations
where donors and charities are geographically close. To cope with situations where the
geographical scope of the problem covers a whole region or even a country, food banks often
adopt structures inspired by two-stage distribution networks, the first stage encompassing
collection and transportation of food to banks, and the second stage the distribution of food
to charities or communities.

Two-stage Supply Chain problems. Horne and Downs [26] proposed a 2-echelon relief
distribution network where aid travels from a warehouse to points of distribution (POD)
or break-of-bulk points (BOB) to which people in need (or agencies) travel to grab the aid.
Martins et al. [47] is probably the closest work to ours. They considered a multi-period,
multi-echelon food bank supply chain network for the collection of food donations and
their distribution to charitable agencies. Contrarily to our problem, Martins et al. [47] did
not consider transportation of food to communities. Indeed, charities travel and collect
food at their designated food bank on specific days. Moreover, in Martins et al. [47], the
donors to banks assignments are given and cannot be modified. Furthermore, although
they considered several families of products to distribute, they are handled independently
because transportation and storage capacities at banks are dedicated to each family of
products. From a transportation standpoint, that means that a donor offering products of
two families should be visited for collection two times or by different means.

Table 1 reports the main attributes of the reviewed works, including the type of
distribution network they propose, the manner in which they model food (single or multiple
commodity), the constraints they consider concerning the execution time, and lastly, the
nature of the objective to optimize (F = equity, E = efficiency, T = transportation cost,
A = access cost for charities to deliver, U = utility of the food delivered, W = waste, S = a
multicriteria function encompassing the three aspects of sustainability).
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Table 1. Main attributes of reviewed papers presenting food aid distribution models.
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Table 1 shows that, to the best of our knowledge, no previous work simultaneously
encompasses decisions on both stages of the food banks supply chain, including food
transshipments between banks. Furthermore, Horne and Downs [26] consider a single
donor (the warehouse) and a single commodity, for which there is no limitation on the
supply. Therefore, food transshipment between PODs or BOBs is not necessary. As Martins
et al. [47], our paper considers multiple nutritional products but, as will be shown later,
we intend to achieve this by imposing a restriction limiting the proportion of each type
of product in the delivered food. This restriction is used by BAMX to deliver a balanced
proportion of macronutrients and micronutrients to prevent malnutrition. Finally, it is
worth mentioning that our problem is different from all of the papers reviewed in at least
1 of the following aspects: (1) we consider an urgent situation where operations must be
achieved within a target deadline or makespan, and (2) we do not only seek a solution to
a problem, but to assess the impact that the decisions taken at each stage of the supply
chain (for example, assignment of donors to banks, food transshipment between banks,
and assignment of communities to banks) have on the total performance of the network.

3. Problem Description

Bancos de Alimentos de México (BAMX) is a Mexican non-profit civil organization,
member, and co-founder of the Global FoodBanking Network (GFN). BAMX is the only
foodbank network in México and the second largest in the world, federating more than
50 foodbanks distributed across the country. BAMX is focused on rescuing food that would
otherwise be spoiled at manufacturing plants, farms, supermarkets, restaurants, and hotels,
with the aim of fighting hunger. Over 25,000 people staff the network, 90% of whom are
volunteers. BAMX supported more than 1.137 million Mexicans in 2018 [48].

On a day-to-day basis, BAMX works in a decentralized manner. Donors, the start of
the BAMX supply chain, are assigned to specific banks, and each bank covers the needs of
a geographical region. Donor-to-bank assignments are made according to their distance,
the demand for the donor’s products within the area covered by the bank, and the bank’s
logistic capabilities. The bank processes the donor’s products by validating them and
returning reports and acknowledgments of the goods they have received to the donor.
Each bank, which is responsible for a demand region, organizes and coordinates deliveries
to individuals in need in relevant communities. Additionally, it produces forecasts of its
region’s needs and receives a budget from the headquarters to ensure its operations. As
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manpower is mostly provided by volunteers, the budget is basically devoted to logistics
expenses (for example, warehouses, truck hire, fuel). However, as the volume and the
nature of the products supplied by each donor vary greatly, it is almost impossible to achieve
a donor-to-bank assignment that perfectly matches the supply and demand. Moreover,
as BAMX seeks to deliver a balanced proportion of macronutrients and micronutrients
to prevent malnutrition, lateral transshipments between banks may need to be organized
to achieve the right quantity and mixture of products required by each community. The
receiving bank bears the cost of such transshipments within their operating budget.

However, on the arrival of a sudden man-made or natural disaster such as floods
provoked by a hurricane strike or an earthquake, food banks must adapt their day-to-day
operations to cope with the event’s consequences, which can last from several days up to a
few weeks. During that period, the needs in the affected region rapidly increase so that
the capacity of the local bank in charge of the area exceeds. On the other end of the supply
chain, solidarity and generosity typically cause the number and volume of donations to
grow very quickly, which leads to several managerial challenges, as (1) the donors may be
outside of the affected region and scattered across the whole country; (2) new donors that
have never collaborated with BAMX need to be assigned to a specific bank; (3) the growing
number of donations may exceed the bank’s capacities, in terms of transportation, storage,
or handling resources; and (4) products donated by new donors to a bank, or the extra
quantities from regular donors, may or may not fit the nutritional restrictions targeted by
BAMX. To put it mildly, the rather decentralized logistic plans designed to cope with the
day-to-day operations by BAMX are not adequate for the extraordinary requirements of
sudden humanitarian situations.

In such situations, BAMX’s central logistics management (CLM) office must make
quick decisions to adapt the network to the surging supply and demand. However, accord-
ing to the managers of the organization, specialized protocols for these kinds of situations
do not exist. Indeed, although each bank is willing to cooperate, the arrival of a disaster
triggers a rather unstructured process, where some more proactive banks contact other
banks or make available part of their resources, while other rather reactive banks wait to
see how their help is specifically requested. The timeframe (see Figure 1) for BAMX to draw
up a collection plan, collect donations at donor locations and move them to the selected
banks, process items at banks, and deliver food to communities is indeed very short, with
the goal being to provide first relief to the people in need as soon as possible after the event.
In this context, the lack of formal collaborative processes and the urgency of the matter
may result in a poorly organized cooperative logistic plan, where most of the decisions are
made after the collection of donations has started (or, in some cases, even finished), thus
reducing the effectiveness and the aid that the network can bring to people.

Figure 1. BAMX’s response to a sudden natural disaster.

4. A Mixed-Integer Linear Programming Formulation

The BAMX supply chain can be modeled as a two-echelon distribution network,
composed of three sets of nodes—donors, foodbanks, and the communities to which
aid must be delivered, denoted as D, B, and C, respectively—and three sets of oriented
arcs, representing the transitable roads connecting donors to foodbanks (set A), banks
to banks (set N), and banks and communities to communities (set M). As is the case
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in most works devoted to two-echelon relief distribution networks [17,49], the goal is
to decide the assignments of donors to banks and banks to communities, as well as the
quantities of products transported from donors to banks, between banks, and from banks to
communities, in order to satisfy the demand of the communities as much as possible, while
respecting the desired proportion of nutrients in the products delivered to communities
and some additional operational restrictions. However, our aim is not only to find the
optimal solution, but to also consider the extent to which different organizational strategies
(such as levels of decision centralization) impact the network performance. Therefore, it is
necessary to elaborate a formulation that captures the assumptions and practices observed
at BAMX, and which can model more flexible configurations, as is detailed in the Numerical
Experiments section.

A donor can supply only one bank and each bank can receive goods from several
donors in the regular (day-to day) plan. Donations must be processed by the original
recipient bank, which is responsible for delivering reports to the donor institutions, and
transshipments between banks are allowed. Two operational phases are considered: (1) do-
nation collection and processing, and (2) donation re-allocation, and donation delivery.
We assume that each bank must complete phase (1) before to begin phase (2). Moreover,
if one bank receives food from other banks during phase (2), deliveries cannot start un-
til all the receptions have been completed. Food needs to be processed only when it is
directly received from a donor. As per the assignments of communities to banks, BAMX
follows a single sourcing strategy, meaning that each community receives food from a
single bank. This method has been also reported in the literature. Sengul Orgut et al. [11,49]
and Martins et al. [47], among others, describe food bank networks having the same struc-
ture as BAMX, and the single sourcing strategy is used by their partner organizations. In
our case, BAMX justified the use of this strategy because it allows better contact with the
communities, and better knowledge and control on the communities’ needs. Even more
importantly, it helps in developing a trustful relationship with the communities. BAMX
considers that a single source is easier to manage and overall, the advantage of single
source outweighs the fact that it is not optimal from a transportation perspective.

Indeed, several communities can be visited into a single route starting from a given
bank. Each bank’s official team plans the delivery to a list of communities, which will be
visited in succession by a convoy of vehicles. However, schedules for vehicles and the
assignment of vehicles to routes are beyond the scope of the proposed work.

BAMX needs to plan food collection and transportation to banks, processing at banks,
and deliveries to communities, in such a way that the latest delivery is performed within a
maximum time Tmax. The model considers various types of transport vehicles, defined in
a set O, including owned vehicles and those of third-party companies (3PL), mostly Less-
Than-TruckLoad partners. Each type of available vehicle has a given capacity. Notice also
that the distance to be traveled by a vehicle depends on the vehicle’s type. 3PL companies
only consider the distance from the pickup location (the donor) to the destination (the
bank) whereas owned vehicles must travel from the bank to the donor and back. Costs are
computed according to the travelled distances, but since 3PL’s rates per kilometer are much
higher than the owned vehicles’ cost per kilometer, in most of the cases using 3PL is more
expensive. The acquisition of additional vehicles is not considered in the short span of the
problem’s planning horizon. Therefore, only variable transportation costs are considered.
Multiple trips are not allowed. Indeed, as our goal is not to find the optimal distribution
plan, but to discuss the impact of reconfiguration tactics on the network performance, this is
an assumption that we deem acceptable. Furthermore, this assumption is also in alignment
with the BAMX’s objective of a fast response. Nonetheless, this assumption may be relaxed
when the actual distribution plans are executed.

As per the quality of the distributed food, the model considers a set F of the various
types or families of food and restricts their mixture to provide a balanced diet. This is
achieved by ensuring that the quantity of each type of food f (for example, sugary drinks)
delivered to each community does not exceed the proportion given by parameter Fprop f ,
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which is set by BAMX. The units of food that do not meet these proportions may not be
delivered. Notice that these restrictions ensure a minimum level of quality, whereas the
demand at each community is expressed as kilograms of food, independently of its type.

Banks must complete the collection of donations, donation processing, and reception
of all of the food coming from other banks before shipping food to the communities.
Finally, each bank has a limited budget. When food is transported between banks, the
one receiving the food assumes the expenses. Table 2 lists the sets and indices used in the
model formulation.

Table 2. Sets and indices used in the model formulation.

Indices or Sets

d ∈ D Index and set of donors
b ∈ B Index and set of food bank
c ∈ C Index and set of communities to deserve
f ∈ F Index and set of food types
o ∈ O Index and set of vehicle types

A Set of arcs connecting nodes (d, b) : (d ∈ D, b ∈ B)
N Set of arcs connecting nodes (i, j) : (i ∈ B, j ∈ B, i �= j)
M Set of arcs connecting nodes (i, c) : (i ∈ B ∪ C, c ∈ C)

Several sets of variables are used to formulate the model. Sets of continuous variables
xo f db, yo f ij, and zobic decide the quantities of each food type f ∈ F shipped using vehicles
of type o ∈ O from donors to banks, between banks, and from banks and communities
to communities, respectively. Binary variables szbc represent the assignment of banks to
communities. Auxiliary variables αxdb, αyij, and αzbc, which, similarly to the assignment
ones, are set to one only if food is transported between the referred nodes. Integer variables
(vxodb, vyoij, and vzobc) determine the number of trucks of each type allocated by each bank
to perform food transportation from donors, to or from other donors, and to communities,
respectively. Auxiliary continuous variables wxb, wyb, and wzc represent the latest arrival
time of food shipped from donors to banks, from a bank to another bank, and from banks
to communities, respectively. Finally, the continuous variable uc computes the percentage
of unmet demand at each community. Sets of variables are defined in Table 3.

Table 3. Sets of variables used in the model formulation.

If there is a figure in wide page, please release command
Variables

xo f ij
Kilograms of food type f ∈ F shipped on vehicles of type o ∈ O
from donor i to bank j | (i, j) ∈ A

yo f ij Kilograms of food type f ∈ F shipped on vehicles of type o ∈ O from bank i to bank j | (i, j) ∈ N

zo f bij
Kilograms of food type f ∈ F shipped on vehicles of type o ∈ O
from node i to community j | (i, j) ∈ M , originally shipped from bank b ∈ B

θ f bc Kilograms of food type f ∈ F delivered at community c ∈ C
szbc Takes value of 1 if bank b ∈ B is assigned to community c ∈ C; zero otherwise
αxdb Takes value 1 if food is shipped from donor d to bank b | (d, b) ∈ A ; zero otherwise
αyij Takes value 1 if food is shipped from bank i to bank j | (i, j) ∈ N ; zero otherwise

αzbij
Takes value 1 if food is shipped from bank b ∈
B and uses the arc connecting node i to community j | (i, j) ∈ M ; zero otherwise

vxoij Number of vehicles of type o ∈ O assigned to donor i from bank j | (i, j) ∈ A
vyoij Number of vehicles of type o ∈ O assigned to bank i from bank j | (i, j) ∈ N
vzob Number of vehicles of type o ∈ O assigned to bank b ∈ B for delivery to communities
wxb Latest arrival time of food shipped from donors to bank b ∈ B (minutes)
wyb Latest arrival time of food shipped from banks to bank b ∈ B (minutes)
wzc Latest arrival time of food shipped from a bank or community to community c ∈ C (minutes)
uc Unmet demand at community c ∈ C (expressed as a percentage)
u Mean unmet demand over all the communities

umax The largest unmet demand over all the communities
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Finally, the parameters and constants reported in Table 4 are used in the formulation.

Table 4. Parameters used in the model formulation.

Parameters

Don f d Kilograms of food type f ∈ F offered by donor d ∈ D
Bcapb Capacity in kilograms of food that bank b ∈ B can process

Fprop f Maximum proportion of food type f ∈ F a bank can deliver
Vcapo Capacity of vehicles type o ∈ O in kilograms
Vavob Number of vehicles of type o ∈ O available at bank b ∈ B
Vsp Mean transportation speed

Demc Demand in kilograms of food at community c ∈ C
Tidoij Distance (km) between donor i and bank j | (i, j) ∈ A , using vehicle of type o ∈ O
Tibij Distance (km) between bank i and bank j | (i, j) ∈ N
Ticij Distance (km) between node i and community j | (i, j) ∈ M
Tpb Processing time of a metric ton (1000 kg) of food at bank b ∈ B

Tmax Latest arrival time allowed in the network for food delivery to a community
Budb Available budget for bank b ∈ B

Tco f b
Transportation cos t of food type f ∈ F
per kilometer, using vehicle of type o ∈ O for bank b ∈ B

The model’s objective is to minimize the average fraction of unmet demand computed
as u = ∑c∈C uc/|C|. However, to avoid the case where the average shortage is minimized
by sending more supplies to small or low-demand communities, we also minimize the
largest unmet demand, umax = max

c
(uc). The formulation is expressed as follows:

minimize U = u + umax (1)

subject to:

∑
o∈O

∑
j ∈ B

(i, j) ∈ A

xo f ij ≤ Don f i ∀ f ∈ F, i ∈ D (2)

∑
o∈O

∑
f∈F

∑
i ∈ D

(i, j) ∈ A

xo f ij ≤ Bcapj ∀ j ∈ B (3)

∑
i ∈ D

(i, j) ∈ A

vxoij ≤ Vavoj ∀ o ∈ O, j ∈ B (4)

∑
j ∈ B

(i, j) ∈ N

vyoij + vzoj ≤ Vavoi ∀ o ∈ O, i ∈ B (5)

∑
f∈F

xo f ij ≤ Vcapovxoij ∀ o ∈ O, (i, j) ∈ A (6)

∑
f∈F

yo f ij ≤ Vcapovyoij ∀ o ∈ O, (i, j) ∈ N (7)

∑
j∈C

zoiij ≤ Vcapovzoi ∀ o ∈ O (i, j) ∈ M (8)

θ f bc ≤ Fprop f

⎛⎜⎜⎜⎝ ∑
o∈O

∑
i ∈ C ∪ B
(i, c) ∈ M

∑
w∈F

zowbic

− ∑
o∈O

∑
j ∈ C

(c, j) ∈ M

∑
w∈F

zowbcj

⎞⎟⎟⎟⎠

∀ f ∈ F, b ∈ B, c ∈ C (9)

θ f bc ≤ ∑
o∈O

∑
i ∈ C ∪ B
(i, c) ∈ M

zo f bic − ∑
o∈O

∑
j ∈ C

(c, j) ∈ M

zo f bcj ∀ f ∈ F, b ∈ B, c ∈ C (10)

∑
o∈O

∑
c ∈ C

(b, c) ∈ M

zo f bbc ≤ ∑
o∈O

∑
i ∈ D

(i, b) ∈ A

xo f ib + ∑
o∈O

∑
i∈B

yo f ib

− ∑
o∈O

∑
j∈B

yo f bj

∀ f ∈ F, b ∈ B (11)
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∑
o∈O

∑
j ∈ B

(b, j) ∈ N

yo f bj ≤ ∑
o∈O

∑
i ∈ D

(i, b) ∈ A

xo f ib ∀ b ∈ B, f ∈ F (12)

∑
o∈O

∑
j ∈ C

(i, j) ∈ M

zo f bij ≤ ∑
o∈O

∑
j ∈ C ∪ B
(j, i) ∈ M

zo f bji ∀ f ∈ F, b ∈ B, i ∈ C (13)

∑
i ∈ B ∪ C
(i, j) ∈ M

αzbij ≤ 1 ∀ j ∈ C, b ∈ B (14)

∑
j ∈ C

(i, j) ∈ M

αzbij ≤ 1 ∀ i ∈ C, b ∈ B (15)

∑
j∈B

αxij ≤ 1 ∀ i ∈ D (16)

∑
o∈O

∑
f∈F

xo f ij ≤ Bcapjαxij ∀ i ∈ D, j ∈ B (17)

∑
i∈B

szij ≤ 1 ∀ j ∈ C (18)

∑
o∈O

∑
i ∈ C ∪ B
(i, c) ∈ M

zo f bic − ∑
o∈O

∑
j ∈ C

(c, j) ∈ M

zo f bcj

≤ ∑
f∈F

∑
d∈D

Don f dszbc

∀ b ∈ B, c ∈ C, f ∈ F (19)

∑
o∈O

∑
f∈F

xo f ij ≤ Bcapbαxij ∀ (i, j) ∈ A (20)

∑
o∈O

∑
f∈F

yo f ij ≤ Bcapiαyij ∀ (i, j) ∈ N (21)

∑
o∈O

∑
f∈F

zo f bij ≤ ∑
f∈F

∑
d∈D

Don f dαzbij ∀ b ∈ B, (i, j) ∈ M (22)

Tidoij
Vsp αxij + ∑

w∈O
∑

f∈F
∑

i ∈ D
(i, j) ∈ A

Tpb
1000 xw f ij ≤ wxj ∀ o ∈ O, (i, j) ∈ A (23)

Tibij
Vsp αyij + wxi ≤ wyj ∀ j ∈ B, (i, j) ∈ N (24)
Ticij
Vsp αziij + wyi ≤ wzj ∀ j ∈ C, (i, j) ∈ M (25)
Ticij
Vsp αzbij + wzi ≤ wzj

∀ b ∈ B,
(i, j) ∈ M|(i /∈ B)

(26)

wzc ≤ Tmax ∀ c ∈ C (27)
∑

o∈O
∑

i ∈ D
(i, j) ∈ A

∑
f∈F

Tco f bTidoibxo f ib

+ ∑
o∈O

∑
j ∈ B

(b, j) ∈ N

∑
f∈F

Tco f bTibbjyo f bj

+ ∑
o∈O

∑
(i,j)∈M

∑
f∈F

Tco f bTicijzo f bij

≤ Budb

∀ b ∈ B (28)

1
Demc

(
Demc − ∑

f∈F
∑

b∈B
θ f bc

)
≤ uc

∀ c ∈ C (29)

uc ≤ umax ∀ c ∈ C (30)
xzbc, szbc, αxdb, αyij, αzbic ∈ {0, 1} ∀ (b, c) ∈ A, (b, c) ∈ M,

(i, j) ∈ N, (i, c) ∈ M
(31)

xo f db, yo f ij, zo f bic, wxb, wyb, wzc, r f b, uc ≥ 0 ∀ o ∈ O, f ∈ F,d ∈ D, b ∈ B, c ∈ C, (i, j) ∈ N, (i, c) ∈ M (32)
vxodb, vyoij, vzob ∈ Z+ ∀ o ∈ O, d ∈ D, b ∈ B, (i, j) ∈ N (33)

Constraints (2) ensure that the flow of each type of food from each donor d ∈ D to
banks b ∈ B is not greater than the donor’s offer Don f d. Constraints (3) enforce that the
food flow received at each bank b ∈ B is not greater than its capacity Bcapb for processing
donations. As the food only needs to be processed once by the network, food shipped
between banks does not impact the recipient bank´s capacity Bcapb.

Constraints (4) require that the number of vehicles of every type o ∈ O assigned by
a bank b ∈ B. to collect food from all of its donors d ∈ D is not greater than Vavob, the
number of vehicles available for each vehicle’s type. As mentioned before, multiple trips
are not allowed; however, once all of the food collected from donors is received—in the
first transportation phase of the supply chain—and processed by the banks, the vehicles
can be used to transport the donations to other banks or communities (in the second trans-
portation phase). Constraint (5) limits the usage of vehicles in the second transportation
phase. Since banks can simultaneously send food to other banks and communities, both
usages are considered together for the transportation capacity of the second transportation
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phase. Constraints (6)–(8) limit the flow of food across the different stages of the network,
considering the number of vehicles assigned and their capacity Vcapo.

The quality of the food delivered to communities is handled by Constraints (9) and
(10). Constraints (9) ensure that the food sent by each bank to the communities it serves
respects the proportions set by the parameter Fprop f by computing the total amount of
food delivered at the community and setting an upper bound for the proportion allowed
of each food type. However, as it is possible that the available quantity of a given type
is lower than its bound, all of the available food would most probably not be delivered.
For this reason, Constraints (10) compute the actual quantity of each food type that can be
delivered at each community, setting another upper bound on θ f bc.

Constraints (11) establish the flow balance between banks and communities, whereas
Constraints (12) establish the balance of the flows between banks, and Constraints (13)
concern the flow balance between communities. Constraints (14) and (15) limit a single arc
in set M to be used to reach and leave each community c ∈ C, respectively. Constraints (16)
limit each donor d ∈ D to supply at most one bank b ∈ B, and Constraints (17) identify
which of these assignments are made, using the bank capacity Bcapb as a flow upper
bound. Constraints (18) require that each community c ∈ C be assigned to, at most, one
bank b ∈ B through the binary variable szbc. Constraints (19) ensure that a bank b ∈ B
can deliver food to a community c only if c is assigned to bank b by the variable szbc.
The first and second terms in equation (19) compute the community’s food inflow and
outflow, respectively. The right-hand side of the equation bounds their difference by the
community-to-bank assignment variable multiplied by a “Big quantity”, which is set to the
sum of the donations available. Therefore, if the community is not assigned to the bank
(szbc = 0), the food coming to the community cannot be greater than the food leaving the
community. Otherwise, the difference between the inflow and the outflow provides the
quantity delivered at the community. Notice that it might be helpful for a bank to use a route
that visits a community which is not assigned to it in order to reach other communities,
particularly these within the disaster zone. Therefore, Constraints (19) do not forbid the
flow through the communities when szbc = 0. In such cases, Constraints (19) ensure that the
community’s outflow is not lower than the inflow, meaning that no food can be delivered.
Therefore, Constraints (19) and (13) work together to ensure flow continuity, thus allowing
banks to use communities that are not assigned to them as passthrough nodes.

Constraints (20)–(22) help to track which arcs are being used to transport food by
setting the associated auxiliary variables αxdb, αyij, and αzbic to 1, respectively. Constraints
(19)–(22) use the total donation supply or bank´s capacity as flow upper limits. Together,
Constraints (23)–(27) ensure that all the activities of collection, processing, and delivering
to communities are completed within a maximum timespan Tmax. Constraints (23) track
the latest arrival times wxb. of each food type f ∈ F transported from donors d ∈ D to
each bank b ∈ B, which includes the travel time Tidodb/Vsp and processing time at banks,
Tpb. The latest times wxb can be interpreted as the time at which shipments to a bank are
consolidated for shipment to another node. Constraints (24) track the latest arrival times
wyb of food type f ∈ F transported from banks i ∈ B to banks b ∈ B with the addition
of the previous arrival times wxi. This represents the time at which the delivery to the
communities c ∈ C can start for every bank b ∈ B. Similarly, Constraints (25) track the time
wzc in which food f ∈ F arrives from a bank b ∈ B to a community c ∈ C, and Constraints
(26) track the time wzc for the cases in which the transportation is between communities.
Constraints (27) limit the arrival time wzc to every community c ∈ C to Tmax, ensuring that
food arrives to the communities on time, thus limiting the length of the distribution routes.

Constraints (28) limit the expenditures of each bank b ∈ B to their budget Budb.
Constraints (29) track the fraction of unmet demand uc at each community c ∈ C, and
Constraints (30) calculate the largest proportion of unmet demand among banks in the
network. Notice that uc measures only the total quantity of food delivered at the community
since the quality is ensured by Constraints (9) and (10). Finally, Constraints (31) and (32),
and (33) define the domains of variables.
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5. Numerical Experiments

The objective of this section is to empirically assess the extent to which network
design decisions at different stages of the supply chain may contribute to achieving better
performance under a disaster scenario, assuming that the current structure of the supply
chain will need to be modified in response to a disaster. By doing so, we intend to
identify the decisions having the highest impact on the network effectiveness, such that
managers can focus their efforts on them. First, the instances designed to reproduce the
distribution process of an organization such as BAMX are described. Then, different
network reconfigurations focusing on specific types of decisions are proposed and their
impact on both system effectiveness and efficiency are assessed by solving a testbed of
random instances.

5.1. Instances

To generate a comprehensive testbed, we followed a two-step process. First, instances
representing the regular (such as day-to-day) operations of an organization such as BAMX
were generated. Then, for each instance, the effect of a random disaster was applied, such
that regular supply and demand, as well as the state of the transit arcs, is affected. The
instances were designed to emulate common scenarios discussed and validated with the
logistics managers of BAMX. However, they do not correspond to a particular event faced
by BAMX in the past.

Let us start by describing the regular instances. A regular instance consists of a set
with |B| = 15 banks, |D| = 45 donors, and |C| = 15 communities uniformly located in a
1000 km × 1000 km territory. To each community, we associate a random demand that
represents the needs of the surrounding population. To this end, two kinds of demand
distributions are used: a uniform distribution where each community’s demand is drawn
from a U(d,d) distribution, and a distribution where the demand assigned to communities
is inversely proportional to the square of their distance to the territory’s center. We refer to
the latter as a “dense” distribution as it concentrates demand near the center of the territory
(see Figure 2).

Figure 2. Representation of a “uniform” distribution (left) and a “dense” distribution (right). The size
of the circles C representing the communities is proportional to the size of the community’s demand.

The total demand of the network is computed as the sum over all of the communities
and, to emulate the historical performance of the bank network, the total network supply is
set to satisfy only 90% of the total demand. For this supply, 3 types (|F| = 3) of food are
considered. A total of 2 possible profiles of supply mixes are considered: a “good” mix,
where the proportions of the three food types supplied by the donor match those targeted
by the parameter Fprop f (70%, 20%, and 10%), and a “bad” mix (50%, 30%, and 20%),
which has a higher proportion of products of types 2 and 3 than desired. The total quantity
offered by each donor is drawn from a probabilistic distribution. Again, two profiles of
distribution (uniform and dense) are considered. In the latter, supplies available for each
donor are inversely proportional to the square of their distance to the territory’s center. We
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assume the bank’s capacity, budget, and quantity of owned vehicles to be tied together
as a single factor of network resources, in order to represent the size of each bank. The
distribution of these network resources can be uniform or dense. In addition to the owned
vehicles, rented vehicles with the same speed but different travel costs are available.

Then, to simulate the effect of a disaster, a point is selected as the disaster’s epicenter.
Two cases are considered: a “centered” case, where the disaster is on the center of the
territory, and a peripheral case, where it strikes on the edge of the mapped territory. In
both cases, the affected area is generated by drawing a circular area around the disaster’s
epicenter, which contains at least 10% of the communities. Within the affected zone, we
define a critical zone around the same epicenter but with half the radius of the affected area.
To model the fact that traveling an arc in the disaster zone is more difficult, we decided
to increase the arc’s length and keep the vehicle speed constant. Hence, the length of arcs
connected to any node located within the affected zone is increased by 20%. However, if
the arc connects to at least one node in the critical zone, the length of the arc is increased by
50%, instead of 20%.

Once the disaster zone is created, the disaster demand—which refers to the increase
in demand of the affected communities—is generated. To this end, the demand of the
communities inside the affected and critical zones is multiplied by a disaster factor, the
value of which is set to 2. The total donations to the network are increased accordingly and,
to simulate the existence of an emergency budget, the monetary resources of the banks are
increased by 20%.

As described above, several instance features, such as the demand distribution, might
use two alternative distributions or parameters. Adopting the design of experiment termi-
nology, we refer to these features as factors, and to the available choices as levels. Since
each of the five factors has two possible levels (which are arbitrarily denoted as low and
high), up to 32 combinations of levels of the five factors are possible. Each combination
is referred to as a scenario. The five factors, their corresponding model parameters, and
their levels are reported in Table 5. Finally, a Monte Carlo approach was used to sample the
chosen random distributions in each scenario, in order to generate the desired number of
regular and disaster replicates.

Table 5. Factors and levels considered to generate the scenarios.

Factor Related Parameters Levels (Low/High)

DDO Don f d Uniform/dense

QDM Don f d
Good (70%, 20%, 10%)/bad
(50%, 30%, 20%)

DDE Demc Uniform/dense
DNR Bcapb, Budb, and Vavob 0 = uniform/1 = dense
DL Demc, Tidodb, Tibij, and Ticic 0 = centered/1 = peripheral

DDO: distribution of donations; QDM: quality of donation mixture; DDE: distribution of the demand; DNR:
distribution of network resources (capacity, budget, and vehicles); DL: disaster location.

All of the computations were performed on a 64-bit Windows computer with a Ryzen
5600 @ 4.6 GHz CPU and 16 GB RAM. The Gurobi v9.0 software was used to solve
the formulation. Computational times depended strongly on the network configuration,
ranging from an average time of 0.4 s. up to 82 s. All of the instances were solved to
optimality. These computational times were deemed as short and, therefore, acceptable by
the BAMX manager, in the context of planning the response to a natural disaster.

5.2. Experiments

As our objective was to shed some light on how the foodbanks in the network should
re-organize their operations, with respect to the day-to-day model, we first solved each
regular or day-to-day instance. These solutions provide the donor-to-bank assignments, the
community-to-bank assignments, and the food quantities that flow through the network,
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constituting our baseline. We then solved the corresponding disaster versions of the
instances. Three types of network reconfigurations were proposed. Each configuration
allowed for the reviewing of specific decisions with respect to the day-to-day solution. To
this end, the problem formulation was solved, but only variables related to the decisions
allowed by the reconfiguration were free; the remainder were set to the values produced in
the day-to-day solution. The motivation for this strategy is that, in a decentralized network
such as that of BAMX, each change or modification implies a series of calls and negotiations
between bank managers. Considering the limited time available to redesign and implement
the changes in the network, it is of utmost importance to identify the modifications or
aspects to negotiate that maximize the outcome and the potential added value that longer
discussions may achieve.

From a practical standpoint, considering network changes based on the supply chain
levels is a straightforward way to segment network reconfigurations. Therefore, three
possible reconfigurations (low, mid, and high level) are proposed with respect to the day-
to-day solution (referred to as configuration 1). A low-level reconfiguration (configuration
4) corresponds to the case where only distribution decisions (banks to communities) are
modified. Furthermore, the single-source assumption is relaxed, such that several banks are
allowed to send food to the same community. The implementation of such modifications in
practice is rather easy, as they involve coordination between two or among a low number
of banks. In a mid-level reconfiguration (configuration 3), shipments of products between
banks can be modified, but distribution decisions remain the same as in the day-to-day
case. In a high-level reconfiguration (configuration 2), assignments of donors to banks can
be modified. It is worth noting that banks are generally reluctant to allow others to interact
with “their” suppliers. A bank would only be open to such a possibility if doing so would
result in an important improvement in network performance. Finally, we also propose a
full reconfiguration alternative (configuration 5), where all of the previous modifications
are allowed. Figure 3 illustrates the reconfiguration alternatives.

Figure 3. Considered reconfiguration alternatives. The gray boxes identify the part of the network in
which changes are allowed, with respect to the day-to-day solution.

6. Numerical Results

We first analyzed how the network performance metrics were impacted by the factors
characterizing the different scenarios. To this end, Table 6 reports the average unmet

demand
=
U and the maximum unmet demand maxU, as well as the half of their confidence

intervals at 95% (HW), when each factor was set to its low and high levels. We also report

Δ
=
U and ΔmaxU, which are the changes in

=
U and maxU, respectively, when a given factor

changes from its low to high level while keeping all other factors constant. Note that only

the results for which Δ
=
U and ΔmaxU show a statistically significant difference are reported.
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Table 6. Sensitivity analysis of the scenario factors.

Factor Level
=
U HW (

=
U) Δ

=
U max U HW (max U) Δmax U

DDO
low 41.60% ±1.65% −5.57%

60.42% ±2.22% −4.19%high 36.49% ±1.43% 56.23% ±2.23%

QDM
low 37.23% ±1.56%

3.62%
56.99% ±2.23%

high 40.85% ±1.52% 59.66% ±2.22%

DDE
low 42.10% ±1.66% −6.11%

55.31% ±2.35%
6.04%high 35.99% ±1.40% 61.35% ±2.09%

DNR
low 37.79% ±1.47%

2.51%
54.07% ±1.79%

8.52%high 40.30% ±1.64% 62.59% ±2.55%

DL
low 40.70% ±1.43% −3.32%

63.07% ±2.04% −9.48%high 37.38% ±1.66% 53.59% ±2.33%

DDO: distribution of donations; QDM: quality of donation mixture; DDE: distribution of the demand; DNR:
distribution of network resources (capacity, budget, and vehicles); DL: disaster location.

Table 6 shows that all of the factors similarly impacted the network performance, with
two exceptions. Firstly, QDM did not seem to affect the metric maxU. Secondly, DNR
and DL had a much greater impact than other factors on the metric maxU. This larger
effect can be explained, at least partially, by the fact that disasters increase the demand and
transportation costs in the affected zone. Therefore, banks with relatively low resources
exhaust their budget rapidly when they are within the disaster zone; hence, a network
where resources are unevenly distributed is more susceptible to bottlenecks caused by
banks with limited capacity, and banks with low availability of resources have a greater
impact on the performance of the network than the location of the disaster.

Regarding the remaining factors, a poor food mix quality provided by the donors
reduced the aid distributed by the network. If one type of product is less available, it limits
the quantity of the other types that can be delivered, even if the banks have plenty of them.
Although the model tries to correct unbalance on the mix of the donations by reassigning
donors to banks or by transferring food between banks, these activities incur logistic costs
that in some cases exceed the available budget or the amount of food that a bank can

process. On average, instances having a “bad” composition of food mix increased
=
U by

3.62% but had no significant increase in maxU. Furthermore, the factors DDE and DDO

showed similar impacts on
=
U and maxU, which means that the performance of the network

is sensitive to the location of the demand and the location of the supply. These effects were
diminished when the demand was equally distributed among the communities. Finally,
it is worth mentioning that analysis of variance of the full factorial experimental design

indicated that the disaster scenarios only explained 12.3% of the variation of
=
U and 18.7%

of the variation of maxU, while the configurations explained 80% and 64%, respectively.
Next, we analyzed how the different reconfigurations affected the effectiveness and the

efficiency of the network. Table 7 reports, for each configuration, the average computational

time T in seconds to solve each instance to optimality, effectiveness metrics
=
U and maxU

and the metrics related to efficiency Don, the ratio between quantities actually delivered
to communities and the available donations, and Bud, the average usage of each bank’s
budget. These are relevant metrics for the banks, as spending their entire budget on a
single response operation will leave them vulnerable to future disasters. Higher values
of Bud indicate that more resources of the network are spent, but not necessarily that the
cost is translated to higher performance. Therefore, we also report an efficiency metric,
E = (1 − U)/Bud, based on the percentage of met demand and the percentage of budget
spent among banks. Additionally, we measured the usage of the flexibility granted by each
network reconfiguration, in order to quantify its potential. In the case of the first stage
(donation collection), we report DB, which is computed as the percentage of donors whose
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assignment has changed with respect to the day-to-day operations. Regarding the second
level (transshipment), BB reports the percentage of donations received by each bank that is
transferred to another bank. Finally, BC provides the ratio between the number of goods
delivered from each bank to communities that it does not serve in the regular operations
and its total output flow.

Table 7. Aggregated results produced by each configuration to the 320 instances.

Conf. T

=
U max U

Don Bud E DB BB BB
% hw % hw

0 – 19.4% ±1.4% 31.9% ±4.7% 87.2% 38.0% 2.1% - - -
1 0.4 55.8% ±1.1% 75.2% ±1.1% 49.7% 83.3% 0.5% - - -
2 25.7 27.9% ±1.1% 70.4% ±1.1% 80.9% 98.2% 0.7% 91.5% - -
3 0.15 48.13% ±1.1% 54.9% ±0.6% 54.8% 99.9% 0.5% - 16.7% -
4 58.04 44.54% ±1.2% 65.0% ±2.1% 58.2% 96.8% 0.6% - - 27.4%
5 82.0 19.99% ±1.5% 25.9% ±2.5% 87.3% 99.1% 0.8% 86.8% 18.7% 20.1%

Before starting the performance analysis, let us briefly discuss the reported compu-
tational times. As it was mentioned earlier, times depend strongly on the configuration
applied, varying from a fraction of a second for configurations 1 and 3 up to 82 s. in the
case of configuration 5.

Table 7 shows that, compared to the day-to-day performance (configuration 0), the
levels of unmet demand were significantly higher in disaster scenarios when the baseline
configuration used (configuration 1). Indeed, the results obtained for the day-to-day
scenarios are uniquely presented as an upper bound for reference on how much the
performance of the network could be diminished in a disaster setting—even if the ratio of
total available donations to total demand remained basically the same—and to identify
differences in the use of the network. Table 7 also shows that the best performance, in

terms of
=
U and maxU, was achieved by the most flexible configuration (configuration 5),

although the results in
=
U produced by configuration 2 were close. The better performance

of configurations 2 and 5 can be explained, as shown by metric DB, by their ability to
perform the re-assignment of donors to banks.

Figure 4 shows, for both levels of the factor DNR, the results for maxU. It can be
seen that when the resources were densely distributed (for example, DNR = 1), the results
produced by configuration 2 were greatly deteriorated. The poorest performances were
produced by configurations 1 (the baseline) and 4, which demonstrated that reassigning
communities to banks alone is ineffective in the rebalancing of supply and demand in the
case of a disaster.

As per the efficiency-oriented metrics, configurations 2 and 5 had the highest percent-

age of donations delivered (Don), consistent with the results obtained for
=
U and maxU,

whereas configuration 1 and 3 achieved the poorest values. Concerning the budget uti-
lization Bud, configurations 1 and 4 had the lowest values, whereas configurations 2, 3,
and 5 were close to 100% budget utilization. The efficiency indicator E showed, again,
that configurations 2 and 5 offered the best results under disaster scenarios, displaying the
highest amount of demand satisfied per percentage of budget spent for both levels of the
network resource distribution factor. On the other hand, configuration 3 was among the
least efficient. To summarize, a network reconfiguration in the highest level of the distribu-
tion chain is beneficial for performance and more cost-effective than reconfigurations in the
lower levels.
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Figure 4. Confidence intervals for maximum unmet demand (α = 0.05).

7. Discussion

Altogether, the numerical results of the experiments demonstrated that the transition
from day-to-day operations to a crisis is critical from a logistics planning standpoint.
Moreover, a significant deterioration of the network performance can be expected if the
network does not adapt its configuration, even if the total amount of donated food increases
in the same proportion as the demand.

To cope with urgent situations, such as those in the aftermath of a natural disaster,
the decentralized management approach, as practiced by BAMX, needs to be replaced by
cooperative strategies focused on the reallocation of resources to achieve a higher and fairer
fulfillment of the needs of the affected people. The results confirmed that situations where
resources, such as capacity and budget, are unevenly distributed throughout the network,
although efficient in day-to-day operations, tend to cause bottlenecks in the lowest-capacity
nodes, which may cause high levels of unmet demand in the disaster zones, depending
on the distribution strategy used. This may suggest that an alternative strategy, in which
specific resources for emergencies are managed in a centralized rather than decentralized
manner, should lead to better results.

Our experiments also indicated that a partial reconfiguration, limited to the re-
assignment of food donors to banks, can yield very good results in a budget-balanced
network and, as such reallocations are the most efficient, the negotiations between man-
agers to cope with urgent situations should focus on them. Furthermore, the food mixture
constraints can be better handled if they are considered within the upper-level decisions of
the distribution chain; that is, during the planning of food collection from donors. Once
a donation of the wrong mix reaches a bank, it becomes very costly, in terms of time and
money, to execute redistribution among banks, creating a bottleneck in the network.

We also observed that trying to adapt the distribution part of the supply chain to
mitigate an imbalance in food mixture and availability leads to transport routes that are
too expensive or require too much time, delaying delivery beyond the acceptable target.
Whereas donors can be reassigned easily to a new bank, banks often need to create less
efficient routes to distribute to other regions. However, this conclusion strongly depends
on the topological characteristics of the considered instance.

To summarize, the proposed mathematical model and its various configurations can
be used to help guide foodbank managers in the challenging process of adapting their
day-to-day operations to cope with the extreme requirements in the aftermath of a natural
disaster. Considering the short time available to make decisions and the fact that, in practice,
there is no formal protocol to support bank coordination, knowing that a rather small set of
decisions have the most impact on network performance may help managers to focus first

129



Mathematics 2022, 10, 1420

on these decisions and establish prioritized lines of action, in order to better respond to
disaster situations.

8. Conclusions

We considered the problem of re-organizing foodbank logistics to cope with the
extraordinary needs resulting from the occurrence of a natural disaster. Inspired by the
real case of Bancos de Alimentos de México (BAMX), a food bank network in Mexico, this
paper contributes a mathematical formulation that extends existing ones to encompass the
whole supply chain, from donors to communities. Furthermore, it considers several types
of products and incorporates restrictions on their proportions to guarantee the quality of
the food delivered to communities from a nutritional perspective. Finally, it empirically
analyzed the performance of five different options for network reconfiguration in terms of
effectiveness and efficiency. From a practical standpoint, the empirical results offer insights
that can be useful guiding foodbank managers in the challenging process of adapting
their day-to-day operations to cope with the extreme requirements in the aftermath of
a natural disaster. In particular, the experiments showed that the demand satisfaction
levels at the communities served by the foodbanks may decrease drastically when the
distribution of the demand changes, even if there is a rise in food supply and budget to
cope with it. Additionally, the results showed that an uneven distribution of network
resources can have a negative impact on the performance of a foodbank network when
the day-to-day configuration is used or when only the upper section of the supply chain
is modified. Finally, the results demonstrate that different network configurations from
the centralized decision-maker perspective can lead to interesting results. As expected,
giving responsibility to the whole range of decisions to the CLM offers the most effective
performance. Despite this, the results showed that a network configuration focused only on
the reassignment of food donors to the banks gives similar results in most scenarios. This is
because the model can better deal with the food mixture constraints if they are addressed in
the upper level of the distribution chain, which may give different results in networks that
lack constraints of this type. Once a donation of the wrong mix reaches a bank, it tends to
become too costly, in terms of time and money, to redistribute to other banks, thus creating
a bottleneck in the network. With the prior knowledge of this, the process of negotiation
between banks and the CLM can be accelerated, thereby improving the crucial response
time when a disaster strikes, which may also help in the implementation of long-term
interbank cooperation policies for the organization.

This work raises the need for additional research in certain directions. First, it is
necessary to address the fairness of the measures taken by the CLM from the perspective
of the individual banks, as well as the impact on performance when there is resistance to
cooperation. Second, the variable nature of the donation volumes could be considered in a
stochastic approach to the presented model. This implies a shift of focus from response
execution to response planning. Finally, this work focuses on the first response offered by
food banks to relief the affected people in the aftermath of a natural disaster. However,
it does not consider the continuity of the operations between this first response and the
moment the communities get back to normal and the food banks return to their day-to-day
activities. Additional research is required to develop models supporting decision makers in
this dynamic transition where the population’s needs, and the consequences of the disaster
dynamically evolve.
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Abstract: The Capacitated Arc Routing Problem (CARP) is a combinatorial optimization problem,
which requires the identification of such route plans on a given graph to a number of vehicles that
generates the least total cost. The Dynamic CARP (DCARP) is a variation of the CARP that considers
dynamic changes in the problem. The Artificial Bee Colony (ABC) algorithm is an evolutionary
optimization algorithm that was proven to be able to provide better performance than many other
evolutionary algorithms, but it was not used for the CARP before. For this reason, in this study,
an ABC algorithm for the CARP (CARP-ABC) was developed along with a new move operator for
the CARP, the sub-route plan operator. The CARP-ABC algorithm was tested both as a CARP and
a DCARP solver, then its performance was compared with other existing algorithms. The results
showed that it excels in finding a relatively good quality solution in a short amount of time, which
makes it a competitive solution. The efficiency of the sub-route plan operator was also tested and the
results showed that it is more likely to find better solutions than other operators.

Keywords: capacitated arc routing problem; dynamic capacitated arc routing problem; artificial bee
colony algorithm; evolutionary optimization; move operator

MSC: 68W50; 90B06; 90B20; 90C27; 90C35; 90C59; 90C90

1. Introduction

The Capacitated Arc Routing Problem (CARP) is an NP-hard combinatorial optimiza-
tion problem that was first introduced by Golden and Wong in [1]. The CARP requires
determining the least cost route plans on a graph of a road network for vehicles subject to
some constraints. It has many applications in real life, for instance, in winter gritting [2,3]
or in urban solid waste collection [4,5]. Since the CARP is an NP-hard problem, instead of
exact methods, mainly heuristics and meta-heuristics (e.g., [6–10]) are considered in the
literature to find solutions. The existing methods are either too slow or do not give enough
good quality solutions, so there is still room for improvements.

The standard CARP assumes a static problem, which is not the closest to real life,
where changes may happen during the execution of the solution. These changes modify
the instance, and thus, may have an effect on the feasibility and optimality of the current
solution [11]. For this reason, the Dynamic CARP (DCARP), which is a variation of the
CARP that takes into account dynamic changes, is a better approach. To make the model
of the problem under consideration closer to the real-life problem, the changes should be
made based on the collected information about the vehicles and the roads. For instance,
information can be provided by the drivers of the vehicles about the executed tasks, by the
GPS of the vehicles about their current position, and (indirectly) by traffic patrol drones [12]
about the current state of the roads.

The Artificial Bee Colony (ABC) algorithm is a swarm intelligence-based algorithm
for optimization problems [13]. It was successfully applied on multiple combinatorial
optimization problems that are similar to the CARP [14–19] and was shown that the ABC
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algorithm provides better performance than most of the evolutionary computation-based
optimization algorithms [16]. However, the ABC algorithm was never applied before,
neither on the CARP nor on the DCARP.

In our previous work [20], we collected all the possible events and analyzed their ef-
fects on the model. Based on the results, a data-driven DCARP framework with three event
handling algorithms and a rerouting algorithm (RR1) was developed. The framework uses
‘the ‘virtual task” strategy [21] to be able to use static CARP solvers for DCARP instances.

The contributions of this work are as follows:

1. The definition of the first ABC algorithm for the CARP (CARP-ABC).
2. The definition of a new small step-size move operator for the CARP, the sub-route

plan operator, which is utilized in the CARP-ABC algorithm.
3. The definition of a new method for creating initial population, the RSG. The purpose

of the RSG is to create random but feasible solutions for the CARP quickly.
4. Numerical experiments to test the CARP-ABC algorithm on a variety of CARP and

DCARP instances. The same experiments were performed with other algorithms
for CARP, then the results were compared. The results showed that for both CARP
and DCARP instances, the CARP-ABC algorithm excels in finding a relatively good
quality solution in a short amount of time.

5. Numerical experiments to test the efficiency of the sub-route plan operator within the
CARP-ABC algorithm, on a variety of CARP instances. The results showed that the
sub-route plan operator is more likely to find a better solution than the other operators,
especially when a greater modification is needed on the current solution (since it is a
randomly generated solution and/or it is a solution of a larger CARP instance).

The rest of the paper is structured as follows. In Section 2, the related works are
presented. In Section 3, the basic concepts related to the proposed CARP-ABC algorithm is
introduced. In Section 4 and Section 5, the algorithm and the sub-route plan move operator
are formulated in detail, respectively. In Section 6, the experiments and their results are
discussed. The paper is concluded in Section 7.

2. Related Works

In this section, the related works are introduced. In Section 2.1, the algorithms that
were developed for CARP are presented. In Section 2.2, the approaches for DCARP are
summarized. In Section 2.3, the ABC algorithms that were developed for problems that are
similar to the CARP are presented.

2.1. Algorithms for the CARP

As it was mentioned in Section 1, there are mainly approximate approaches (i.e.,
heuristics and metaheuristics) for the CARP. For this reason, only the methods that belong
to that category are mentioned in this subsection.

2.1.1. Heuristics

Golden et al. developed the first heuristic algorithms for the CARP, namely, the
path-scanning and the augment-merge [22]. Other notable heuristics for the CARP are
the parallel-insert method [23], Ulusoy’s tour splitting method [24], the augment-insert
method [25], the path-scanning with ellipse rule [26] and the path-scanning with efficiency
rule [27].

2.1.2. Metaheuristics

The metaheuristic algorithms for the CARP can be divided into two main categories
(with some exceptions): trajectory-based and population-based.

From the trajectory-based algorithms, the notable ones are the guided local search
algorithm [28], the tabu search algorithms [29,30], the variable neighborhood search al-
gorithm [31], and the greedy randomized adaptive search procedure with evolutionary
path relinking [32]. It must be mentioned that in [29], two versions of the tabu search
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algorithm (TSA) were proposed (TSA1 and TSA2), from which the latter performed better.
In [33], a global repair operator was developed and embedded into the TSA, creating the
repair-based tabu search (RTS), which outperforms the TSA.

From the population-based algorithms, the notable ones are the genetic algorithm [34],
the memetic algorithms [6,35], and the ant colony optimization algorithms [8,36,37]. From
these, the Memetic Algorithm with Extended Neighborhood Search (MAENS) [6] is the
most popular one, even though it only gives relatively good quality solutions and also has
slow runtime. There are multiple solutions that try to improve some parts of the MAENS
(e.g., [9,10]), but these improvements do not really increase the overall performance of
it. The Ant Colony Optimization Algorithm with Path Relinking (ACOPR) [8] gives only
relatively good quality solutions, but currently it has the fastest runtime on most of the
CARP instances from the benchmark test sets.

The Hybrid Metaheuristic Approach (HMA) [7] is a population-based algorithm
that utilizes a randomized tabu thresholding procedure as a part of its local refinement
procedure. The HMA gives the best quality solutions among all existing algorithms and
has faster runtime than MAENS, but it is still relatively slow on some real-life based CARP
instances. The ACOPR gives only relatively good quality solutions, but currently, it has the
fastest runtime on most of the CARP instances from the benchmark test sets.

2.2. Approaches for the DCARP

Despite the importance of the DCARP, the number of studies about CARP (or ARP)
that consider dynamic changes in the problem during the execution of the solution are
relatively small [20,21,38–45]. Moreover, there are only three studies that consider more
than two type of changes [20,21,42] and only two of them (including our previous work)
considers all the critical changes that can happen [20,21]. (For a more detailed comparison
see [11,20].) Critical changes or events may change the problem to such an extent that the
current solution is not feasible anymore, so handling them is essential. Both [20,21] propose
a framework for the DCARP that, instead of using complex specialized algorithms, allows
the use of any static CARP solvers for solving a DCARP instance.

To the best of our knowledge, the data-driven solution for the DCARP introduced
in [20] is the only data-driven approach for DCARP or even CARP.

2.3. The ABC Algorithm and Its Applications

The original ABC algorithm was proposed by Karaboga in [13]. In [46], Karaboga and
Görkemli proposed a new definition for the search behavior of the onlooker bees, which
improved the convergence performance of the algorithm. For this reason, the new version
of the ABC algorithm was named quick ABC (qABC).

The ABC algorithm was introduced as an algorithm for multivariable and multi-modal
continuous function optimization, but later it was successfully applied on other types of
optimization problems as well. Karaboga and Görkemli introduced an ABC and a qABC
algorithm for combinatorial problems (CABC and qCABC, respectively) and applied them
to the Traveling Salesman Problem (TSP) [14,15]. Both algorithms use the Greedy Sub Tour
Mutation (GSTM) operator [47], which was developed to increase the performance of a
genetic algorithm (GA) that solves the TSP. It was proven that the GSTM is significantly
faster and and more accurate than other existing mutation operators [47]. Furthermore, it
was shown that the ABC and the qABC algorithm provide better performance than many
evolutionary computation-based optimization algorithms [16]. Since the TSP is similar to
the CARP, in the hope that an ABC algorithm with a mutation operator such as GSTM will
perform well, we developed the CARP-ABC algorithm (Section 4) with the sub-route plan
operator (Section 5).

There are also ABC algorithms for the Vehicle Routing Problem (VRP) [48] and its
variations [17,18]. However, there is only one ABC algorithm for the CARP and even that
is for just a variation of CARP, the undirected CARP with profits [19]. Therefore, to the
best of our knowledge, currently there are no ABC algorithms, neither for the CARP nor for
the DCARP.
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3. Problem Formulations

This section introduces basic concepts related to the proposed CARP-ABC algorithm
to help to understand how it works. The concepts are introduced only briefly, for a more
detailed description the corresponding works are referred to.

In this section, first, the static CARP, then the (data-driven) DCARP is formulated. It is
followed by the introduction of the basic ABC algorithm and the existing move operators
for CARP (which are used in the proposed CARP-ABC solution). The notations used for
the CARP and the DCARP are collected in Table A1 in Appendix A.

3.1. The CARP

In the existing works, as the input graph, some assume an undirected graph [7],
others assume a directed graph [8,49], and other ones a mixed graph [6,34]. In this work,
a directed graph is assumed, in which undirected edges are regarded as two oppositely
directed edges.

The (directed) graph of the CARP can be described the following way: G = (V, A), with
a set of vertices V and a set of arcs (directed edges) A. A set of tasks T ⊆ A is also given,
which defines the arcs that have tasks assigned to them. If the graph of a CARP instance
contains (undirected) edges, then an edge is added to A as a pair of arcs, one for each direction.
For instance, if (vi, vj) is an edge and vi, vj ∈ V, then the arcs (vi, vj) and (vj, vi) are added to
A. Similarly, if (vi, vj) is an edge with tasks assigned to it and vi, vj ∈ V, then the arcs (vi, vj)
and (vj, vi) are added to T. The graph also has a special vertex v0 (v0 ∈ V), the depot, and a
dummy task t0 = (v0, v0), the significance of which is explained later.

The tasks are performed by a fleet of w homogeneous vehicles of capacity q. Every
vehicle starts and ends its route at the depot (v0). Each task must be performed in a single
operation, and each vehicle can satisfy at most as many demands as its maximum capacity.

The graph can be mapped to a road network where the arcs are road segments. Some
of the road segments have tasks. To fulfill the tasks, different amounts but the same type of
demand must be served. Each arc is characterized by the following functions:

• head: the head vertex of the arc;
• tail: the tail vertex of the arc;
• dc: the dead-heading or traversing cost, the cost of crossing the arc.

In addition, each task is characterized by the following functions:

• id: the unique identifier of the task, which is a positive integer;
• dem: (positive) demand, which indicates the load necessary to serve the task;
• sc: service cost, which is the cost of executing the task and crossing the arc (i.e., dc is

included in sc).

Although an edge is regarded as two oppositely directed arcs, if a task is assigned to
it, then the task should be executed only once, in either direction. Let t ∈ T be a task of one
of the arcs of an edge, then let inv(t) denote the inversion of t, the other task of the edge. If
head(t) and tail(t) are the head and the tail vertexes of t, then head(inv(t)) = tail(t) and
tail(inv(t)) = head(t) are the head and the tail vertexes of inv(t). The dc, dem and sc values
are the same for t and inv(t).

Let the total number of tasks that have to be executed by at least one of the vehicles be
denoted by n. The value of n depends on the composition of T: if T only contains arc tasks
from edges, then n = |T|/2, if T only contains arc tasks from arcs then n = |T|.

The minimal total dead-heading cost between two vertices is provided by the mdc :
V × V → N function, which uses Dijkstra’s algorithm as the search algorithm. For instance,
mdc(vi, vj) denotes the minimal total dead-heading cost traversing from vertex vi to vertex
vj, where vi, vj ∈ V.

A CARP instance (I) is defined as follows:

I = (V, v0, A, T, n, w, q, head, tail, dc, id, dem, sc, inv, mdc) (1)
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3.1.1. Solution Representation

A solution for a CARP instance is expressed as a set of route plans. The route plans are
sequences of the t ∈ T tasks that need to be executed in the given order. The consecutive
tasks are connected by the shortest paths, which is provided by the mdc function. Therefore,
a solution S for a CARP instance can be expressed the following way:

S = {r1, r2, . . . , r|S|} (2)

where |S| is the number of route plans and rk (k ∈ {1, 2, . . . , |S|}) is the k-th route plan
within the solution S. The k-th route plan can be expressed the following way:

rk = 〈t0, tk,1, tk,2, . . . , tk,lk , t0〉 (3)

where lk is the number of (not dummy) tasks and tk,i is the i-th task within the k-th route
plan. It must be noted that here, k is an index, which is only used to identify a specific route
plan in the solution. The order of the route plans within the solution has no effect on the
quality of the solution.

Since every route starts and ends in the depot, the dummy task t0 – which represents
the vehicle being in the depot – is added also as the first and the last element of the route
plan sequences. Its id, dc, dem and sc are set to 0, and both the head and the tail vertexes
are the depot vertex.

For the solution representation of the CARP, a natural encoding approach can be used,
just like in most vehicle routing problems. This means that all route plans can be encoded
as an ordered list of ids of the tasks, so a solution can be represented as the concatenation
of these lists. However, every route plan starts and ends with the dummy task t0, so if
the encoded route plans are concatenated, then there are consecutive dummy tasks in the
resulting list. For the sake of simplicity, only one of each consecutive dummy task is kept
in the encoded solution. Figure 1 shows an example of a solution representation.

0 1 4 10 0 8 2 7 3 0 6 9 5 0

Figure 1. An example of a solution representation for a CARP instance with 10 required tasks, where
0 is the id of the dummy task. In this example, there are 3 routes. The first route services the tasks
with ids 1, 4 and 10. The second services the tasks with ids 8, 2, 7 and 3. The third services the tasks
with ids 6, 9 and 5.

3.1.2. Objective and Constraints

The objective of the CARP is to minimize the total cost of the solution S subject to some
constraints, which are defined in this section. The total cost of a solution S (i.e., TC(S)) is
calculated with the following formula (Equations (4)–(6)):

TC(S) =
|S|
∑
k=1

DC(rk) + SC(rk) (4)

DC(rk) = mdc
(
t0, head(tk,1)

)
+

lk−1

∑
i=1

mdc
(
tail(tk,i), head(tk,i+1)

)
+ mdc

(
tail(tk,lk ), t0

)
(5)

SC(rk) =
lk

∑
i=1

sc(tk,i) (6)

where DC(rk) and SC(rk) are the total dead-heading and service cost of the route plan rk.
The solution S has to satisfy the following constraints. First, each route plan starts and

ends at the depot. Second, each task is executed exactly once. Therefore, the total number
of tasks executed on each route plan (excluding the dummy task t0) is equal to n:
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|S|
∑
k=1

lk = n (7)

Moreover, a task cannot be executed more than once, neither in the same route nor in an-
other route:

ta,i �= tb,j, ∀(a, i) �= (b, j) (8)

where ra and rb are route plans within S, ta,i is the i-th task in the route plan ra, and tb,j is
the j-th task in the route plan rb. If a task t has an inverse (i.e., ∃inv(t)), then either t or
inv(t) is executed. Both cannot be executed in the same solution. Third, the total demand
served each route plan does not exceed the capacity (q) of the vehicle:

lk

∑
i=1

dem(tk,i) ≤ q, ∀k ∈ {1, 2, . . . , |S|} (9)

3.2. The Data-driven DCARP

There are various approaches for DCARP, but in this work, the data-driven version of
DCARP is considered, which was recently formulated in [20].

In this problem, instead of one static CARP instance, there is a series of DCARP
instances (i.e., a DCARP scenario [21]) that needs to be solved. A DCARP scenario is
denoted by I = 〈I0, I1, . . . , Ii, . . . , Im−1〉, where m is the number of DCARP instances
within the scenario (i.e., the number of dynamic events that occurred and changed the
previous DCARP instance is m − 1). Each Ii (Ii ∈ I) DCARP instance contains all the
information about the current problem. The previous DCARP instance Ii−1, the execution
of the accepted solution for Ii−1 and the occurred event(s) define the next DCARP instance
Ii, where 0 < i < m. The initial instance (I0) can be viewed as a static (data-driven) CARP
instance, since initially every vehicle is in the depot (in good state) and no task has been
executed yet.

For a data-driven DCARP instance, information needs to be stored about all the
vehicles and route plans. For each vehicle, the current location and state have to be known.
Furthermore, identifiers are needed to be used for the vehicles and the route plans, since a
vehicle may follow multiple route plans (one after another) and it is important to know for
each route plan whether a vehicle already executed it, its execution is still in progress, or a
vehicle still needed to be assigned to it to start its execution.

Instead of the number of vehicles (w), a set of identifiers of all the vehicles is needed
to be defined, which is denoted by H. The set of the identifiers of the (currently) free
vehicles is denoted by Hf (Hf ⊆ H), which is initially equal to H. The identifier of a vehicle
is added to Hf , if the vehicle finishes the execution of a route plan, and the identifier is
removed, when a new route plan is assigned to the vehicle. If the execution of all the tasks
is finished and all the vehicles are returned to the depot (i.e., there are no broken down
vehicles outside on the roads), then Hf = H, otherwise Hf ⊂ H.

The set of identifiers of all the route plans is denoted by R, and the set of identifiers
of the route plans that currently cannot be modified and not executed by any vehicle is
denoted by Re (Re ⊆ R). When a new route plan is created, its identifier is added to R, and
when the execution of it is finished or suspended (due to vehicle breakdown), its identifier
is added to Re. If the execution of all the route plans is finished and there are no more tasks
to execute, then Re = R, otherwise Re ⊂ R. The identifier is removed from Re only if the
vehicle which is assigned to it was broken, but got fixed and can continue the execution
of the plan. The function that defines which vehicle is assigned to a specific route plan is
denoted by rv : R → H.

To store the current location of the vehicles in the instance, the virtual task strategy
introduced in [21] is used, which replaces the executed tasks in each route plan with “virtual
tasks”. A “virtual task” is an arc whose head is the depot vertex v0 and tail is the current
location of the vehicle, vertex v (v ∈ V). For the sake of simplicity, it is assumed that when
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an unexpected event occurs, every vehicle is located exactly at a vertex. Since this task
is “virtual”, it cannot be traversed, for this reason, it has an infinite traversing cost (i.e.,
dc(v) = ∞). Furthermore, since it is a “task”, there is a demand and a service cost assigned
to it, which are calculated according to the provided data: the service cost is the total cost
produced by the vehicle so far (i.e., it is the sum of traversing and serving cost of the arcs
that were crossed or served by the vehicle) , and the demand is the total demand served
by the vehicle so far. A route plan can have at most one virtual task. Therefore, if a route
plan already has a virtual task, then it is updated taking into account the arcs traversed
and the tasks executed since then by the corresponding vehicle. The set of all virtual tasks
is denoted by Tv (Tv ⊆ T), and the function that defines which virtual task belongs to a
specific route plan is denoted by rt : R → Tv.

The set of arc tasks that need to be executed is denoted by T. If according to the
gathered information a task t (t ∈ T) was executed by the vehicle h (h ∈ H), then in the
new DCARP instance t needs to be removed from T. Furthermore, the virtual task of the
route plan of the vehicle (e.g., tk,v, where rv(k) = h and tk,v ∈ Tv) needs to be updated. The
new virtual task is generated in such a way that t is included in it (along with the other
tasks the vehicle executed and arcs the vehicle traversed). If t has an inverse (i.e., ∃inv(t)),
then it is removed from T as well. Accordingly, the total number of tasks that have to be
executed (n) is decreased by one or two.

The initial DCARP instance (I0) is similar to a static CARP instance. The sets of the
route plan identifiers (R) and the function rv are created and filled only after the solution is
found for I0. The set Hf is initially equal to H, then based on rv, all the vehicle identifiers
that are assigned to a route plan are removed from Hf . At this stage, the sets Re and Tv are
empty sets, therefore the function rt is an empty function as well. According to these, the
initial DCARP instance (I0) is defined as follows:

I0 = (V, v0, A, T, n, w, q, H, head, tail, dc, inv, dem, sc, mdc) (10)

The subsequent DCARP instances (Ii, where 0 < i < m) are defined as follows:

Ii = (V, v0, A, T, Tv, n, q, H, Hf , R, Re, rt, rv, head, tail, dc, inv, dem, sc, mdc) (11)

3.2.1. Structure of a Scenario

A new DCARP instance is constructed and added to the DCARP scenario, when an
unexpected event happens that changes the current problem to such an extent that it has
effect on the currently executed solution. In [21] all the possible events (based on realistic
assumptions) were collected and analyzed based on their effect.

It is assumed that the roadmap, the number of vehicles, and the maximum capacity of
the vehicles cannot change (at least during the execution of the solution). Therefore, V, v0,
A, head, tail, inv, q and H are the same in all the DCARP instances of a DCARP scenario.

It is assumed that roads can become closed/opened (it changes dc, thus mdc, too), the
traffic can decrease/increase (it changes dc and in some cases sc, thus mdc, too), tasks can
get cancelled/added (it changes T, n, dem, and sc) and vehicles can breakdown/restart
(it changes Re), which are unexpected events. The expected events are the events that
normally occur during the execution of the solution: a task is executed (it changes T), a
vehicle moves (it changes Tv, thus rt, too), or a vehicle returns to the depot (it changes Hf
and in some cases rv). The affected components are updated only when a new instance
is constructed. If rerouting is performed, then R and rv may change, but the changes are
visible only in the next DCARP instance. Therefore, T, Tv, n, Hf , R, Re, rt, rv, dem, sc, dc,
and mdc may be different among the DCARP instances of a DCARP scenario.

Since due to the unexpected events some components of the DCARP instance change,
the optimal solution may change, too. It is one’s choice to construct a new DCARP instance
and reroute when there might be a better solution available, but the current solution is still
feasible. However, constructing a new DCARP instance and rerouting is necessary when
the current solution is not feasible anymore.
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3.2.2. Solution Representation

For each DCARP instance, the solution representation is mainly the same as for static
CARP instances. The only difference is that if the route plan has a virtual task assigned
to it, then the virtual task is the second task within the route plan (since the first task is
always the dummy task t0). For instance, if the route plan rk = 〈t0, tk,1, tk,2, . . . , tk,lk , t0〉 has
an identifier k (k ∈ R) and there is a virtual task tv,k assigned to it (i.e., rt(k) = tv,k), then
tk,1 = tv,k.

3.2.3. Objective and Constraints

For each DCARP instance, the objective and the constraints are mainly the same, as
well as for static CARP instances. The only difference is at the second constraint, which
requires that the total number of tasks in the solution S (excluding the dummy task t0)
is equal to the sum of the number of tasks that still need to be executed (n) and the total
number of virtual tasks (|Tv|):

|S|
∑
k=1

lk = n + |Tv| (12)

The attributes of a virtual task guarantee that a solver will always place the virtual
task right after the dummy task within a route plan of a (nearly optimal) solution, so there
is no need to add a constraint regarding it.

3.2.4. Finding a Solution

The data-driven DCARP framework allows rerouting when a critical event (i.e., an
unexpected event that may change the feasibility of the current solution) occurs. These
events are the task appearance, the demand increased and the vehicle breakdown.

The data-driven DCARP framework allows the use of static CARP solvers by con-
verting the current data-driven DCARP instance into a static CARP instance. After a
(sufficiently good) solution is found by the CARP solver, the solution is converted into a
data-driven DCARP solution.

Converting a data-driven DCARP instance into a static CARP instance works as
follows: the sets of vehicle and route plan identifiers (i.e., H, Hf , R, and Re) are omitted,
along with the related functions (rt and rv). Furthermore, all virtual tasks related to finished
and suspended route plans are removed from T. For instance, if rt(k) = tv,k (tv,k ∈ T) is the
virtual task of the route plan with identifier k (k ∈ R) and k ∈ Re, then tv,k is removed from
T (i.e., T \ {tv,k}).

Converting a static CARP solution into a data-driven DCARP solution works as
follows: the virtual tasks that are related to finished and suspended route plans are added
to the solution in separate route plans to keep track the total cost of the DCARP scenario.
Furthermore, if there are any new route plans within the solution, the framework gives
them identifiers and also attempts to assign each of them to a free vehicle. For the other
route plans, it can be easily determined which route plan identifier belongs to which route
plan, based on the virtual task within them.

3.3. The Basic ABC Algorithm

This section introduces the basic ABC algorithm for combinatorial problems, based
on [16]. Just like in the original ABC algorithm [13], the artificial bees are classified into the
three groups:

• employed bees, who are exploiting the food sources;
• onlooker bees, who are making the decision about which food source to select;
• scout bees, who are randomly choosing a new food source.

In the ABC algorithm, a food source is corresponded to a solution and the nectar
amount of a food source is corresponded to the fitness of a solution.

The ABC algorithm is an iterative process with four phases in total. It begins with the
initial phase, then it iterates three bee phases (always in the same order) until a predefined
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termination criterion is met. In the initial phase, the population is initialized with randomly
generated food sources. In the first phase, the employed bee phase, the employed bees are
sent to the food sources, where they determine the nectar amounts of the food sources. In
the second phase, the onlooker bee phase, the probability value of the sources are calculated
based on their nectar amount, then the onlooker bees are sent to the preferred food source
to find neighboring food sources and determine their nectar amount. In the third phase,
the scout bee phase, the exploitation process of the sources exhausted by the bees are
stopped and the scout bees are sent out to randomly discover new food sources within the
search area. In each phase, the best food source found so far is memorized. The phases are
described in more detail in the subsections below.

3.3.1. Initialization Phase

In the initialization phase, the parameters and the population are initialized. The
parameters of the ABC algorithm can be defined as follows:

• sn: the number of food sources, which is also the number of the employed bees and
onlooker bees (i.e., for every food source, there is only one employed bee);

• limit: the number of trials after which a food source is assumed to be abandoned;
• a termination criterion.

The population is initialized by randomly generating sn number of food sources and
assigning one employed bees to each of them. The employed bees evaluate the fitness of
these solutions.

3.3.2. Employed Bee Phase

At this phase, each employed bee xi generates a new food source xnew in the neigh-
borhood of its current position. Once xnew is obtained, it will be evaluated and compared
to xi. If the nectar amount of xnew is equal to or higher than that of xi, xnew replaces xi
and becomes a new member of the population, otherwise xi is retained. In other words, a
greedy selection mechanism is employed between the old and the new candidate solutions.

3.3.3. Onlooker Bee Phase

An onlooker bee evaluates the nectar information taken from all the employed bees
and selects a food source xi depending on its probability value pi calculated by the
following expression:

pi =
f iti

∑sn
j=1 f itj

(13)

where f iti is the nectar amount (i.e., the fitness value) of the i-th food source xi. The higher
the value of f iti is, the higher the probability of that the i-th food source is selected.

Once the onlooker has selected her food source xi, she produces a modification on xi
by using a local search operator. The local search operator randomly selects a position in
the neighborhood of xi. As in the case of the employed bees, if the modified food source has
a better or equal nectar amount than xi, the modified food source replaces xi and becomes
a new member in the population.

3.3.4. Scout Bee Phase

If a food source xi cannot be further improved through a predetermined number of
trials limit, the food source is assumed to be abandoned, and the corresponding employed
bee becomes a scout. The scout produces a food source randomly.

In the basic ABC algorithm, in each cycle, at most one scout bee goes outside to search
for a new food source.

3.4. Move Operators for the CARP

In population-based evolutionary algorithms, to enrich the diversity of the population,
move operators with different levels of step-size are utilized to generate new, neighboring
solutions. These move operators can be divided into two main categories: small step-size
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operators and large step-size operators. Small step-size operators can modify the position
and/or the direction of the tasks within one or two route plans. In contrast, large step-size
operators are able to modify more than two route plans. The most commonly used small
step-size operators in the literature, which are used in this work as well, are inversion,
(single) insertion, swap, and two-opt operators [6–8]. In this work, a novel small step-size
operator is used as well, the sub-route plan operator, which is introduced in this work, in
Section 5. The only large step-size operator used in this work is merge-split, which was
introduced in [6]. It is called a large-step-size operator, since it is able to modify more than
two route plans.

The inversion and the sub-route operators can only change the direction and the order
of the tasks within one route plan, so they do not change the feasibility of the solution.
In contrast, the insertion, the swap, and the two-opt operators may change the amount
of demand that needs to be served in some of the route plans, so the feasibility of the
solution may change, too. For this reason, based on the settings, the output solution of
these operators could be different. If infeasible solutions are not accepted and the calculated
output solution is infeasible, then the operator returns the original, input solution instead
(assuming that the input solution is a feasible solution).

3.4.1. Inversion Operator

The inversion operator randomly selects a task t ∈ T within the input solution. If this
task has an inverse (i.e., ∃inv(t) ∈ T), then the operator replaces t with inv(t) within the
solution, else it returns the input solution.

3.4.2. Insertion Operator

The insertion operator randomly selects a task t1 ∈ T, then replaces (inserts) it before
or after another randomly selected task t2 ∈ T within the input solution. The selected tasks
can be in different route plans or in the same route plan, but they cannot be the same tasks
(i.e., t1 �= t2).

It creates two potential output solutions, based on where t1 is inserted (before or after
t2). If t1 has an inverse, then the operator creates other potential output solutions, which
contains the inverse task of the task (i.e., inv(t1)) instead of t1. It selects the solution as the
output solution which has the smallest total cost among the potential output solutions.

3.4.3. Swap Operator

The swap operator randomly selects two tasks (t1 and t2, where t1, t2 ∈ T), then
replaces them with each other (i.e., swaps them). Similarly to the insertion operator, the
selected tasks can be from the same route plan or different route plans, but they cannot be
the same tasks.

It creates potential output solutions, which contain one or two inverse task(s) of the
selected tasks instead of the task(s). All the four possible combinations are considered.
It selects the solution as the output solution which has the smallest total cost among the
potential output solutions.

3.4.4. Two-Opt Operator

The two-opt operator randomly selects two route plans (e.g., r1 and r2) of the solution.
Based on the selected two route plans, two cases exist for this move operator. If the selected
two route plans are the same (i.e., r1 = r2), then a sub-route plan (i.e., a part of the route
plan) is selected randomly and its direction is reversed. If the selected two route plans are
different (i.e., r1 �= r2), then these two route plans are randomly cut into four sub-route
plans, and then two new potential output solutions are generated by reconnecting the four
sub-route plans and the best one from them is selected. For example, r1 and r2 are cut
into sub-route plans r11 r12 and r21 r22, respectively. Two new solutions are generated by
connecting them in the following ways: (1) r11 with r22 and r21 with r12 and (2) r11 with
reversed r21 and reversed r12 with r22.
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3.4.5. Merge-split Operator

As it was mentioned before, the merge-split operator can make large changes in the
solution (e.g., it can modify the order of all the tasks within one or more route plans), so it is
considered a large step-size operator. This operator randomly selects x number of different
route plans in the input solution, where x is a random number (1 ≤ x ≤ |S|). It obtains an
unordered list of tasks by merging the tasks of the selected route plans into one list, and
then sorts this unordered list with a path scanning heuristic (e.g., [22], which is used in this
work as well). The obtained ordered list is then optimally split into new route plans using
Ulusoy’s splitting procedure [24].

The ordered list is constructed by the path scanning heuristic the following way. First,
an empty path is initialized, then, the affected tasks are added one by one into the current
path, until no tasks are left in the unordered list. In each iteration, only those tasks are
taken into account that can be added to the current path without breaking the capacity
constraint. If there are no any tasks like that, then the depot is added to the current path
and a new path is initialized (that becomes the current path). When a task or the depot is
added to the current path, the task/depot is connected to the end of the current path with
the shortest path between them. If there are multiple tasks that can be added, the one that
is closest to the end of the current path is added. If there are multiple tasks that are closest
to the end of the current path, then one of the following rules are applied to determine
which task should be added next:

1. maximize the distance between head(t) and v0;
2. minimize the distance between head(t) and v0;

3. maximize the term dem(t)
sc(t) ;

4. minimize the term dem(t)
sc(t) ;

5. use rule 1, if the vehicle is less than half-full, otherwise use rule 2.

In the rules above, t (t ∈ T) is a task and v0 (v0 ∈ V) is the depot. In one run, only one
of the rules can be used. Therefore, the path scanning heuristic is ran five times, which
results in five ordered lists.

The Ulusoy’s splitting procedure creates five new candidate output solutions from the
five ordered lists by splitting the lists into route plans. How the procedure works is best
summarized in [50]. The procedure starts with constructing the Directed Acyclic Graph
(DAG) from the ordered list. A DAG is a graph with arcs that represent feasible sub-tours
of one giant tour. Next, the shortest path through the graph is calculated, which gives
the optimal partition of the giant tour into feasible route plans. As the final step, a new
candidate solution is created from the untouched route plans of the input solution and the
route plans returned by the procedure. From the five candidate solutions the best one is
chosen and returned by the operator.

4. The Proposed ABC Algorithm for CARP (CARP-ABC Algorithm)

In this chapter, the ABC algorithm developed for CARP (CARP-ABC algorithm) is
presented. The notations used for the CARP-ABC algorithm are collected in Table A2 in
Appendix A.

The algorithmic description of the main CARP-ABC algorithm can be seen in Algorithm 1.
The main algorithm can be divided into four main phases: initialization, employed bee,
onlooker bee, and scout bee phases. The algorithm begins with the initialization phase,
then enters a cycle, where it repeats the mentioned phases in the respective order until the
termination criterion is satisfied (line 4). In the initialization phase (line 2), the colony (C),
the age of the solutions within the colony (A), the global best solution (S∗), and its age (α∗)
are initialized. In the employed bee phase (line 6), local search is performed around the
members of the colony. In the onlooker bee phase (line 7), a more in-depth local search
is performed around one solution from the colony. In the scout bee phase (line 8), global
search is performed.
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Algorithm 1: Main CARP-ABC algorithm.
input : I; ncs, nmi, ngsl , nlsl , nsal ∈ N

1 begin

2 C,A, S∗, α∗ ← initializationP(I, ncs);
3 t ← 0;
4 while t < nmi ∧ α∗ < ngsl do

5 C̄ ← C;
6 C, P ← employedBP(I, C, nlsl);
7 C ← onlookerBP(I, C, P, ncs, nlsl);
8 C,A, S∗, α∗ ← scoutBP(I, C̄, C,A, S∗, α∗, nsal);
9 t ← t + 1;

10 return S∗;

The parameters of the algorithm are the followings:

• I: a CARP instance;
• ncs: the size of the colony, the number of solutions in the population;
• nmi: the maximum number of iterations of the algorithm;
• ngsl : the global search limit, the maximally allowed number of consecutive iterations

in which the currently known global best solution is not improved;
• nlsl : the local search limit, the maximally allowed number of consecutive iterations in

which the currently known local best solution is not improved in the employed bee
phase and the onlooker bee phase of the algorithm;

• nsal : the solution age limit, the maximally allowed number of consecutive iterations of
the algorithm in which a solution is kept in the population;

• a termination criterion, which in default is that either the nmi or the ngsl is reached.

4.1. Initialization Phase

The algorithmic description of the initialization phase of the CARP-ABC algorithm
can be seen in Algorithm 2. The algorithm in this phase first initializes the sets for the
solutions Si for i = 1, 2, . . . , ncs and their age (lines 2–3). To guarantee an initial population
with certain quality and diversity, the solutions are generated randomly by using the
Random Solution Generation (RSG) algorithm for CARP (line 6), which is introduced in
this work (in Section 4.1.1). Other population based evolutionary algorithms usually use the
Randomized Path-Scanning Heuristic (RPSH) [22] to generate initial solutions. However,
our experiments showed that, in the case of the CARP-ABC algorithm, it does not improve
the convergence speed of the algorithm, so only the RSG is used.

After the initialization of the colony, the algorithm selects the solution Si ∈ C with the
best (highest) fitness value by using the selectBestSolution function (line 11). The fitness of a
solution Si is defined by its total cost TC(Si) (it needs to be as small as possible). Therefore,
the fitness value of a solution Si is computed by the following fit function:

f it(Si) =
LB

TC(Si)
(14)

where LB is the lower bound of the solution (i.e., the total service cost of all the tasks,
involving only one of each tasks which has an inverse). Its value ranges between 0 and 1.
Solutions with greater fitness values are preferred, since greater fitness value means that
the total cost of the solution is closer to the lower bound.
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Algorithm 2: initializationP (Initialization Phase of the CARP-ABC algorithm).
input : I; ncs ∈ N

1 begin

2 C ← ∅;
3 A ← ∅;
4 i ← 1;
5 while i ≤ ncs do

6 Si ← RSG(I);
7 αi ← 0;
8 C ← C ∪ Si;
9 A ← A∪ αi;

10 i ← i + 1;
11 S∗ ← selectBestSolution(C);
12 α∗ ← 0;
13 return C,A, S∗, α∗;

4.1.1. Random Solution Generation Algorithm

As the first step, the algorithm generates ncs random permutations, which contain
positive integers from 1 to n (i.e., the id of every arc task and one of the two ids of every
edge task) in random order. As the next step, the algorithm reads the ids in the permutation
one-by-one from left to right, while summing up the demand of the corresponding tasks.
If the task assigned to the currently read id would break the capacity constraint of the
current route plan, the algorithm inserts a “0” (the id of the dummy task t0) before the id
of the task in the sequence (i.e., the task is added to a new route plan). After it is finished
with separating the ids of the tasks into route plans, the algorithm checks each task in the
solution and, if it has an inverse task, then randomly (e.g., with 0.5 probability) replaces
the id of the task with the id of its inverse. As the final step, the algorithm inserts a “0” as
the first and last task of the solution to make it a valid solution.

4.2. Employed Bee Phase

The algorithmic description of the employed bee phase of the CARP-ABC algorithm
can be seen in Algorithm 3. The algorithm in this phase, for each employed bee, generates
new candidate solutions in the neighborhood of Si with each small step-size operator, then
evaluates and selects the best solution (lines 2–11). In this phase, only the inversion operator
(line 6) and the sub-route plan operator (line 7) are used, because only these operators
guarantee that the new candidate solution will be feasible. It is repeated until the known
best local solution S∗

i cannot be improved within the defined number of iterations (i.e., its
age reached nlsl). If the fitness value of the new candidate solution S∗

i is greater than or
equal to the fitness value of the current solution Si, the new solution replaces the current
one in the population (lines 14–15).

As the next step, the algorithm calculates the winning probability values pi for the
solutions Si (lines 16–19). The probability values pi are calculated with the same function
as in the basic ABC algorithm (Equation (13)).
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Algorithm 3: employedBP (Employed Bee Phase of the CARP-ABC algorithm).

input : I; C = {S1, S2, . . . , Si, . . . , Sncs}; nlsl ∈ N

1 begin

2 forall Si ∈ C do

3 S∗
i ← Si;

4 α∗i ← 0;
5 while α∗i < nlsl do

6 Si,1 ← inverse(I, Si);
7 Si,2 ← subRoutePlan(I, Si);
8 S′

i ← selectBestSolution({S∗
i , Si,1, Si,2});

9 if f it(S∗
i ) < f it(S′

i) then

10 S∗
i ← S′

i ;
11 α∗i ← 0;
12 else

13 α∗i ← α∗i + 1;
14 if f it(Si) < f it(S∗

i ) then

15 Si ← S∗
i ;

16 P ← ∅;
17 forall Si ∈ C do

18 pi ← f it(Si)

∑ncs
j=1 f it(Sj)

;

19 P ← P ∪ pi;
20 return C, P;

4.3. Onlooker Bee Phase

The algorithmic description of the onlooker bee phase of the CARP-ABC algorithm can
be seen in Algorithm 4. The algorithm in this phase, depending on the pi values, selects a
solution Si with the selectSolution function. This function first performs a roulette selection
Int(

√
ncs) times to select Int(

√
ncs) number of solutions from the colony. Next, it compares

the selected solutions to each other and selects the best one from them (i.e., the one with the
greatest fitness value).

As a next step, the algorithm generates ncs number of new candidate solutions Si,j
in the neighborhood of Si (i.e., one solution for each onlooker bee) with the merge-split
operator (lines 5–6). It generates new candidate solutions in the neighborhood of these
solutions with the small step-size operators, until the known best local solution S∗

i,j cannot
be improved within the defined number of iterations (i.e., the age of the solution, α∗i,j,
reaches nlsl) (lines 7–21). In this phase, all the small step-size operators (i.e., inversion,
insertion, swap, 2-opt, and sub-route plan) are applied to S′

i,j, which is the best solution
that was found in the previous iteration (lines 11–15). From the resulted solutions, the
best one is chosen with the selectBestSolution function as the new S′

i,j (line 16). If the new
S′

i,j is better than the currently known best solution in the neighborhood of Si,j (i.e., S∗
i,j),

then it is set as the new best solution S∗
i,j (lines 17–19). Otherwise, the age of S∗

i,j (i.e., α∗i,j)
is increased by one (lines 20–21). After the search ends in the neighborhood of Si,j, it is
checked whether the best solution found (i.e., S∗

i,j) is better than the best solution found in
the whole neighborhood of Si (i.e., S∗

i ). If S∗
i,j has a higher fitness value and is also feasible

(its total excess demand is zero), then it will be set as the new S∗
i (lines 22–23).

If the best solution found in this phase (i.e., S∗
i ) is better than the current solution Si,

then Si is replaced by S∗
i in the colony (lines 25–26).
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Algorithm 4: onlookerBP (Onlooker Bee Phase of the CARP-ABC algorithm).

input : I; C = {S1, S2, . . . , Si, . . . , Sncs}; P = {p1, p2, . . . , pi, . . . , pncs}; ncs, nlsl ∈ N

1 begin

2 Si ← selectSolution(C, P);
3 S∗

i ← Si;
4 j ← 1;
5 while j ≤ ncs do

6 Si,j ← mergeSplit(Si);
7 S∗

i,j ← Si,j;
8 S′

i,j ← Si,j;
9 α∗i,j ← 0;

10 while α∗i,j < nlsl do

11 Si,j,1 ← inverse(I, S′
i,j);

12 Si,j,2 ← insert(I, S′
i,j);

13 Si,j,3 ← swap(I, S′
i,j);

14 Si,j,4 ← twoOpt(I, S′
i,j);

15 Si,j,5 ← subRoutePlan(I, S′
i,j);

16 S′
i,j ← selectBestSolution({Si,j,1, Si,j,2, Si,j,3, Si,j,4, Si,j,5});

17 if f it(S∗
i,j) < f it(S′

i.j) then

18 S∗
i,j ← S′

i,j;
19 α∗i,j ← 0;
20 else

21 α∗i,j ← α∗i,j + 1;
22 if f it(S∗

i ) < f it(S∗
i,j) ∧ totalExcessDem(S∗

i,j) = 0 then

23 S∗
i ← S∗

i,j;
24 j ← j + 1;
25 if f it(Si) < f it(S∗

i ) then

26 Si ← S∗
i ;

27 return C;

4.4. Scout Bee Phase

The algorithmic description of the scout bee phase of the CARP-ABC algorithm can
be seen in Algorithm 5. The algorithm in this phase increases the age of unchanged
solutions (lines 3–4) and sets the age to zero for new solutions (lines 8–9) within the colony.
Furthermore, if there is an abandoned solution (i.e., a solution which could not be improved
through a predetermined number of trials, which is called nsal), the algorithm replaces it
with a new solution (lines 5–7), which is generated by using the RSG algorithm (as in the
initialization phase).

In this phase, the algorithm also updates the global best solution, S∗. First, the best
solution of the new colony is selected with the selectBestSolution function as solution S′
(line 10). If S′ is better than S∗, then S′ is set as the new global best solution (lines 11–13).
Otherwise, the age of S∗ (i.e., α∗) is increased by one (lines 14–15).

147



Mathematics 2022, 10, 2205

Algorithm 5: scoutBP (Scout Bee Phase of the CARP-ABC algorithm).

input : I; C̄ = {S̄1, S̄2, . . . , S̄i, . . . , S̄ncs}; C = {S1, S2, . . . , Si, . . . , Sncs};
A = {α1, α2, . . . , αi, . . . , αncs}; S∗; α∗, nsal ∈ N

1 begin

2 forall Si ∈ C do

3 if f it(Si) = f it(S̄i) then

4 αi ← αi + 1;
5 if αi = nsal then

6 Si ← RSG(I);
7 αi ← 0;
8 else

9 αi ← 0;
10 S′ ← selectBestSolution(C);
11 if f it(S∗) < f it(S′) then

12 S∗ ← S′;
13 α∗ ← 0;
14 else

15 α∗ ← α∗ + 1;
16 return C,A, S∗, α∗;

4.5. Computational Complexity Analysis

In this section, the computational complexity of the proposed CARP-ABC algorithm is
discussed. The computational complexity is expressed by using the big-O notation. For
the sake of simplicity, approximations are used and the constant values are omitted. The
computational complexity of the whole algorithm depends on the given parameter values
and the complexity of the input CARP instance, mainly on n (i.e., the number of tasks that
have to be executed).

4.5.1. Initialization Phase

The computational complexity of the initialization phase is O(ncs ∗ n + ncs), in which
O(n) is the complexity of the RSG algorithm and O(ncs) is the complexity of selecting the
best solution. O(n) is multiplied by ncs, because RSG is executed ncs times to create the
initial population.

Within the RSG algorithm, the complexity of generating a random permutation of the
task identifiers is O(n), assuming that the Fisher–Yates shuffle algorithm [51] is used for
it. After a permutation is generated, the algorithm iterates over each element, which also
has O(n) as complexity. Therefore, the complexity of the RSG algorithm is around O(2 ∗ n),
which is O(n) if the constant multiplier is omitted.

4.5.2. Employed Bee Phase

The computational complexity of the employed bee phase is O(ncs ∗ nlsl ∗ (n + log n +
nmax) + ncs), in which the complexity of the local search is O(nlsl ∗ (log n + n + nmax)). The
complexity of the probability calculation is O(ncs) (assuming, that the sum of the fitness
values is calculated only once). O(nlsl ∗ (log n + n + nmax)) is multiplied by ncs, because
the local search is executed for all the ncs members of the population.

Within the local search, the complexity of the inversion operator is O(n) and the
complexity of the sub-route plan operator is O(log n + n + nmax). Within the sub-route
plan operator, the complexity of selecting a route plan is O(log n), since in the worst case
|S| = n (i.e., every task is on a separate route). After a route plan is selected, one of the
methods of the operator is executed. From the methods, the sub-route plan rotation method
has the greatest complexity, which is O(n + nmax), since in the worst case lk = n (i.e., there
is only one route plan in the solution).
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4.5.3. Onlooker Bee Phase

The computational complexity of the onlooker bee phase is O(ncs + ncs ∗ (log n + n +
nlsl ∗ (n + log n + nmax))), in which the complexity of selecting a solution from the colony
is O(k ∗ ncs) or O(ncs) is the constant k is omitted. The complexity of the main search is
O(ncs ∗ (log n + n + nlsl ∗ (n + log n + nmax)).

Within the main search, the complexity of the merge-split operator is O(log n + n),
because the complexity of selecting the number of route plans is O(log n) and the complex-
ity of the other components of the operator (i.e., selecting the route plans, collecting the
affected tasks, and executing the RPSH) is O(n). The complexity of RPSH is O(n), since
in the worst case all the n tasks are affected in the solution. After the merge-split operator
returns a solution, search is performed around this solution. The complexity of this search
is O(nlsl ∗ (n + log n + nmax)), because the complexity of the sub-route plan operator is
O(log n + n + nmax) and the complexity of the other operators (i.e., inversion, insertion,
swap, and two-opt) are O(n).

4.5.4. Scout Bee Phase

The computational complexity of the scout bee phase is O(ncs ∗ n + ncs), because in
the worst case, all the solutions have to be replaced in the colony for exceeding nsal), so
RSG is executed ncs times. Next, the best solution is chosen from the colony, which has
Ocs complexity.

4.5.5. Whole Algorithm

The computational complexity of the whole CARP-ABC algorithm is composed of the
complexity of the initialization phase and the multiplication of the other phases by nmi,
since in the worst case the algorithm runs till the maximum number of iterations is reached.
If the duplications are removed, then it is the following: O(ncs ∗ n + ncs + nmi ∗ (ncs ∗ nlsl ∗
(n + log n + nmax) + ncs + ncs ∗ (log n + n + nlsl ∗ (n + log n + nmax)))).

If the parameters of the CARP-ABC algorithm and the sub-route plan operator are
set to a fixed value, then the computational complexity is the following: O(n + log n).
Therefore, the time complexity of the CARP-ABC algorithm is mostly linear but it contains
components with logarithmic time complexity (e.g., when a route plan is selected).

5. Sub-Route Plan Operator

The sub-route plan operator is based on the GSTM operator for TSP [47]. The main
differences between the modified version and the original version are due to the differences
between the TSP and the CARP. Therefore, the modified version works with arcs instead
of nodes. Furthermore, since the solution for a TSP is always one route plan, while the
solution for a CARP (usually) consists of more than one route plan, the modified version
takes into account only a part of the solution (one route plan) instead of the whole solution.

The sub-route plan operator is a complex move operator which consists of two different
greedy search methods (greedy reconnection and sub-route rotation) and a method that pro-
vides distortion. In all three methods, inversion of the affected tasks is considered. Inversion
of the tasks has real importance when a sequence of tasks is inverted in the sub-route rotation
method because when the execution order of the tasks changes, the direction in which the
tasks are executed should be changed too, to keep the traveling cost minimal. The used
notations within this chapter are collected in Table A3 in Appendix A.

5.1. The Main Algorithm

The algorithmic description of the main algorithm of the sub-route plan operator can
be seen in Algorithm 6. As input, a CARP instance I, a solution S of I, and the parameters
of the algorithm are expected. The parameters are the following:

• the reconnection probability (prc);
• the correction and perturbation probability (pcp);
• the linearity probability (pl);
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• the minimum length of the sub-route plan (lmin);
• the (maximal) size of the neighborhood of a task arc that is considered (nmax).

Algorithm 6: subRoutePlan (main algorithm of the sub-route plan operator).

input : I; S; prc, pcp, pl ∈ R; lmin, nmax ∈ N+

1 begin

2 rk ← selectOne(S);
3 if lk ≥ lmin then

4 lmax ← max({lmin, toInt(
√

lk)});
5 r′k ← rk;
6 l ← randInt(lmin, lmax);
7 s ← randInt(1, lk − l + 1);
8 e ← s + l − 1;
9 r∗k ← 〈tk,s, . . . , tk,e〉;

10 r#
k ← removeSubRoutePlan(r∗k , rk);

11 prand ← randFloat(0, 1);
12 if prand ≤ prc then

13 r′k ← greedyReconnection(I, rk, r∗k , r#
k);

14 else

15 prand ← randFloat(0, 1);
16 if prand ≤ pcp then

17 r′k ← distortion(I, r∗k , r#
k , s, pl);

18 else

19 r′k ← subRoutePlanRotation(I, rk, s, e, nmax);
20 S ← (S \ rk) ∪ r′k;
21 return S;

The maximal length of the sub-route plan (lmax) is determined after the route plan is
selected. In the proposed CARP-ABC algorithm, the parameters of this algorithm are given
as constant values, so only I and S are expected.

In the first step of the algorithm, a route plan rk is selected from the solution S (line 2),
then, if the number of (not dummy) tasks within rk is sufficient (i.e., lk is greater than or
equal to lmin, line 3), the algorithm proceeds to the next step. Otherwise, it returns the input
solution S unchanged (line 21).

In the following step of the algorithm, the parameters are initialized and the (sub-
)route plans are generated. The maximum length of the sub-route plan (lmax) is determined
based on the number of tasks within rk (lk) and the predefined minimum length of the
sub-route plan (lmin) (line 4), and the new route plan (r′k) is initialized (line 5). The length of
the sub-route plan l is determined randomly based on lmin and lmax (line 6). The position
index of the starting task of the sub-route plan (s) is randomly selected taking into account
l (line 7). The position index of the ending task of the sub-route plan (e) is determined by
s and l (line 8). The sub-route plan r∗k is constructed by taking the sub-route plan that is
enclosed by the tasks tk,s and tk,e from rk (line 9). The route plan without r∗k is denoted by
r#

k (line 10).
As the next step of the algorithm, a random number is generated (prnd) between 0

and 1 (line 11), which determines the operation of the operator. If prnd is less than or equal
to the predefined reconnection probability prc (i.e., prnd ≤ prc, line 12), then the greedy
reconnection method is executed (line 13, Section 5.2), otherwise, a new random number is
generated (line 15). If the new value of prnd is less than or equal to the predefined correction
and perturbation probability pcp (i.e., prnd ≤ pcp, line 16), then distortion is added to rk
(line 17, Section 5.3), otherwise, the sub-route plan rotation method is executed (line 19,
Section 5.4). As the final step, the solution S is updated by removing the old route plan rk
and adding the new one, r′k (line 20), then the updated solution is returned (line 21).
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5.2. Greedy Reconnection Method

The greedy reconnection method inserts r∗k into the position within r#
k that generates

the least amount of increase in the total cost of the route plan.

5.2.1. Algorithm

The algorithmic description of the greedy reconnection method within the sub-route
plan operator can be seen in Algorithm 7. As input, the CARP instance I, the original route
plan rk of the solution S, the selected sub-route plan r∗k , and the truncated route plan r#

k (i.e.,
rk without r∗k ) are expected.

Algorithm 7: greedyReconnection (algorithm of the greedy reconnection method
within the sub-route plan operator).

input : I; rk; r∗k ; r#
k

1 begin

2 r′k ← rk;
3 i ← 1;
4 while i ≤ l#

k + 1 do

5 rk,i ← insertSubRoutePlan(r∗k , r#
k , i);

6 if TC({rk,i}) < TC({r′k}) then

7 r′k ← rk,i;
8 i ← i + 1;
9 return r′k;

In the first step of the algorithm, the new route plan r′k is initialized with the current
route plan rk (line 2). The position index i that is used to find the best position for insertion
of r∗k into r#

k is initialized as well (line 3). The value “1” refers to the first (not dummy) task
within r#

k (i.e., t#
k,1). The value “0” would refer to the first dummy task (t0) and “l#

k + 1” to
the last dummy task within r#

k (assuming l#
k is the number of not dummy tasks within r#

k).
In the following step, the algorithm checks each position within r#

k to find the best one to
insert r∗k into (lines 4–8). In each iteration, before task t#

k,i within r#
k , it inserts r∗k with the

insertSubRoutePlan function (line 5). The total cost of the resulting route plan (rk,i) is then
compared with the total cost of r′k (line 6). If rk,i is better than r′k (i.e., it has lower total cost),
then it becomes the new value of r′k (line 7).

In the final step of the algorithm, r′k is returned by the function (line 9).

5.2.2. Example

For a better understanding of the method, see the following example. Let the selected
route plan be rk = 〈t0, tk,1, tk,2, . . . , tk,13, t0〉 and the length of the sub-route plan be l = 3.
Based on these, let the selected starting and ending task be tk,s = tk,5 and tk,e = tk,7,
then the selected sub-route plan is r∗k = 〈tk,5, tk,6, tk,7〉 and the route plan rk without r∗k is
r#

k = 〈t0, tk,1, tk,2, tk,3, tk,4, tk,8, tk,9, tk,10, tk,11, tk,12, tk,13, t0〉. Let us assume that inserting r∗k
between tk,8 and tk,9 in r#

k results in the least amount of increase in the total cost of the
solution, then r′k = 〈t0, tk,1, tk,2, tk,3, tk,4, tk,8, tk,5, tk,6, tk,7, tk,9, tk,10, tk,11, tk,12, tk,13, t0〉 will be
the new k-th route plan in the solution.

The example discussed in the previous paragraph is depicted in Figures 2 and 3. In
both figures, the arc tasks served within a route plan are depicted with solid lines, and the
other arcs, which are only traversed, are depicted with dashed lines. The original route
plan rk can be seen in Figure 2. In Figure 3, the sub-route plan r∗k and the truncated route
plan r#

k are shown, highlighted with red and blue colors, respectively. The selected starting
and ending tasks (tk,s and tk,e) are depicted with thicker lines.
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Figure 2. Example route plan rk.
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Figure 3. Greedy reconnection method: (a) sub-route plan r∗k subtracted from route plan rk;
(b) sub-route plan r∗k connected to the route plan r#

k .

5.3. Distortion Method

The distortion method takes the tasks in r∗k and inserts them one-by-one into r#
k ,

starting from the position index s, and by rolling or mixing with the predefined linearity
probability (pl). Rolling means selecting the current last task in r∗k and mixing means
selecting a random task in r∗k .

5.3.1. Algorithm

The algorithmic description of the distortion method within the sub-route plan opera-
tor can be seen in Algorithm 8. As input, the CARP instance I, the selected sub-route plan
r∗k , the truncated route plan r#

k (i.e., rk without r∗k ), the position index s of the starting task
of r∗k within the original route plan rk, and the linearity probability pl are expected.
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Algorithm 8: Distortion (algorithm of the distortion method within the sub-route
plan operator).

input : I; r∗k ; r#
k ; s; pl

1 begin

2 i ← s;
3 r′k ← r#

k ;
4 while |r∗k | �= 0 do

5 prnd ← randFloat(0, 1);
6 t ← t∗k,|r∗k |

;

7 if prnd ≤ pl then

8 j ← randInt(1, |r∗k |);;
9 t ← t∗k,j;

10 r′k ← insertTask(t, r′k, i);
11 r∗k ← removeTask(t, r∗k );
12 i ← i + 1;
13 return r′k;

In the first step of the algorithm, the position index i is initialized with s (line 2) and
the new route plan r′k is initialized with the truncated route plan r#

k (line 3). While there are
tasks in r∗k , the algorithm executes the following steps (lines 4–12). First, a random number
is generated (prnd) between 0 and 1 (line 5) and the last task is selected from r∗k into t (line 6).
If prnd is less than or equal to pl , then the value of t is changed into a random task from r∗k
(lines 7–9). The selected task t is then inserted into the position i in r′k with the insertTask
function (line 10) and removed from r∗k with the removeTask function (line 11). The task is
always inserted right after the previously inserted task. When r∗k runs out of tasks (i.e., all
the tasks within it have been inserted into r′k), the algorithm returns r′k (line 13).

5.3.2. Example

For a better understanding of the method, see the following example. Let the selected
route plan be rk = 〈t0, tk,1, tk,2, . . . , tk,13, t0〉 and the length of the sub-route plan be l = 3.
Based on these, let the selected starting and ending task be tk,s = tk,5 and tk,e = tk,7,
then the selected sub-route plan is r∗k = 〈tk,5, tk,6, tk,7〉 and the route plan rk without r∗k is
r#

k = 〈t0, tk,1, tk,2, tk,3, tk,4, tk,8, tk,9, tk,10, tk,11, tk,12, tk,13, t0〉. The length of r∗k is three, so in this
case the algorithm has three iterations. Let the linearity probability be pl = 0.2.

In the first iteration, let the random number be prnd = 0.1. Since it is smaller than pl ,
a random task is selected from r∗k . Let the selected task be tk,6. In this case, the new route
plan is r′k = 〈t0, tk,1, tk,2, tk,3, tk,4, tk,6, tk,8, . . .〉 (i.e., tk,6 is inserted between tk,4 and tk,8) and
r∗k = 〈tk,5, tk,7〉 (i.e., tk,6 is removed).

In the second iteration, let the random number be prnd = 0.8. Since it is greater than
pl , the currently last task is selected from r∗k , which is tk,7. In this case, the new route plan
is r′k = 〈t0, tk,1, tk,2, tk,3, tk,4, tk,6, tk,7, tk,8, . . .〉 (i.e., tk,7 is inserted between tk,6 and tk,8) and
r∗k = 〈tk,5〉.

In the third iteration, since only one task left in r∗k , regardless of the value of prnd, tk,5
is selected. Therefore, r′k = 〈t0, tk,1, tk,2, tk,3, tk,4, tk,6, tk,7, tk,5, tk,8, . . .〉 and r∗k = 〈tk,5〉. Since
r∗k is now empty, the algorithm returns r′k.

5.4. Sub-route Plan Rotation Method

The sub-route plan rotation method selects one neighbor task randomly from the
neighbors of tk,s and tk,e (tk,s∗ and tk,e∗ , respectively), then inverts the sequence of tasks
enclosed by tk,i and tk,i∗ (including tk,i∗ in the sequence), where (i, i∗) ∈ {(s, s∗), (e, e∗)}.
The inversion of the sequence is performed in such a manner, that tk,i and tk,i∗ (or inv(tk,i∗))
become direct neighbors in the new route plan r′k.
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5.4.1. Algorithm

The algorithmic description of the sub-route plan rotation method within the sub-route
plan operator can be seen in Algorithm 9. As input, the CARP instance I, the original route
plan rk, the position index s of the starting task and the position index e of the ending task
of r∗k within the original route plan rk, and the size of the neighborhood nmax are expected.

Algorithm 9: subRoutePlanRotation (algorithm of the sub-route plan rotation
method within the sub-route plan operator).

input : I; rk; s; e; nmax
1 begin

2 s∗ ← selectNeighborTask(rk, s, nmax);
3 e∗ ← selectNeighborTask(rk, e, nmax);
4 r′k ← rk;
5 forall (i, i∗) ∈ {(s, s∗), (e, e∗)} do

6 r′k,i ← 〈〉;
7 if i < i∗ then

8 r′k,i ← 〈t0, tk,1, . . . , tk,i〉 · 〈tk,i∗ , tk,i∗−1, . . . , tk,i+1〉 · 〈tk,i∗+1, . . . , tk,lk , t0〉;
9 j ← i∗;

10 while i < j do

11 if ∃inv(tk,j) then

12 r′k,i ← replaceTask(tk,j, inv(tk,j), r′k,i);
13 j ← j − 1;
14 else

15 r′k,i ← 〈t0, tk,1, . . . , tk,i∗−1〉 · 〈tk,i−1, tk,i−2, . . . , tk,i∗ 〉 · 〈tk,i, . . . , tk,lk , t0〉;
16 j ← i − 1;
17 while i∗ ≤ j do

18 if ∃inv(tk,j) then

19 r′k,i ← replaceTask(tk,j, inv(tk,j), r′k,i);
20 j ← j − 1;
21 if TC({r′k,i}) < TC({r′k}) then

22 r′k ← r′k,i;
23 return r′k;

In the first step of the algorithm, one position index of the nmax closest neighbor tasks is
selected randomly for both tk,s and tk,e (s∗ and e∗, respectively) with the selectNeighborTask
function (lines 2–3) and the new route plan r′k is initialized with the original route plan rk
(line 4). In the next step, for all (i, i∗) ∈ {(s, s∗), (e, e∗)}, the following steps are executed
(lines 5–22). First, the potential new route plan r′k,i is initialized with an empty sequence
(line 6), then, based on the relationship between i and i∗, a sub-route plan is selected and
inverted. If tk,i is before tk,i∗ (i.e., i < i∗) in rk, then tk,i is directly followed by tk,i∗ (or
inv(tk,i∗)) in r′k (lines 7–8). Otherwise, if tk,i∗ is before tk,i in rk, then tk,i∗ (or inv(tk,i∗)) is
directly followed by tk,i in r′k (lines 14–15). In both cases, each task that has an inverse and
is within the inverted sub-sequence, is replaced by its inverse task in the new route plan r′k
with the replaceTask function (lines 9–13, lines 16–20). From the sub-route plan rotations,
the one that has the lowest total cost is chosen (lines 21–22) and returned by the algorithm
(line 23).

5.4.2. Determining the Neighborhood

The neighbors are determined according to the predefined size of the neighborhood
(nmax). The distance between arc task tk,i and another arc task is calculated based on their
order within rk and whether the other arc task has an inverse task (i.e., it is from an edge
task) or not. Let tk,j be an arc task in rk that is not tk,i (i.e., tk,i �= tk,j). If tk,j is before tk,i in rk
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(i.e., j < i) and has inverse task (i.e., inv(tk,j) ∈ T), then the distance between the two arc
tasks is the shortest path between the head vertices of tk,j and tk,i, so it can be calculated
with the expression mdc

(
head(tk,j), head(tk,i)

)
. The shortest path is calculated starting from

head(tk,j), because during the sub-route plan rotation tk,j gets reversed (i.e., it gets replaced
by its inverse in the route plan) and it is known that the head vertex of the task is the
same as the tail vertex of the inverse task (i.e., tail

(
inv(tk,j)

)
= head(tk,j)). If the task does

not have inverse, then the shortest path is calculated starting from tail(tk,j). If tk,j is after
tk,i in rk (i.e., j > i) and has inverse task, then mdc

(
tail(tk,i), tail(tk,j)

)
is calculated. If the

task does not have inverse, then the shortest path is calculated ending at head(tk,j). The
reasoning behind what expression to use in each case is summarized in Table 1.

Table 1. Summary table about what expression to use to calculate the distance between an arbitrary
arc task tk,j from the route plan rk and tk,i (i ∈ {s, e}).

Is tk,j before or after tk,i in rk? Does tk,j Have Inverse Task? Expression

before yes mdc
(
head(tk,j), head(tk,i)

)
before no mdc

(
tail(tk,j), head(tk,i)

)
after yes mdc

(
tail(tk,i), tail(tk,j)

)
after no mdc

(
tail(tk,i), head(tk,j)

)
5.4.3. Example

For a better understanding of the method, see the following example. Let the selected
route plan be rk = 〈t0, tk,1, tk,2, . . . , tk,13, t0〉, the length of the sub-route plan be l = 3, and
the size of the neighborhood be nmax = 5. (At this method, l only defines the distance
between the two selected arc tasks, it has no effect on the length of the rotated sub-route
plans.) Based on these, let the selected two arcs task be tk,s = tk,6 and tk,e = tk,8. Let us
assume that all the arc tasks in rk are from an edge task, so they all have inverse task.

The route plan, the selected arc tasks, and their neighborhood are illustrated on
Figure 4. The arc tasks served within the route plan are depicted with solid lines, and the
other arcs, which are only traversed, are depicted with dashed lines. The arc tasks tk,s and
tk,e and their neighborhood are highlighted with red and blue color, respectively. Only
the arc tasks that are completely covered by the ellipses are part of the neighborhood. It
must be noted that the ellipses are only for representational purpose. Since identifying the
neighborhood is quite complex due to the distance calculation, this yields to that the shape
that covers only the neighbor arc tasks varies. Based on this, for tk,s, the set of the neighbor
arc tasks is {tk,2, tk,3, tk,7, tk,8, tk,11}, and for tk,e, it is {tk,4, tk,6, tk,7, tk,9, tk,10}.

For tk,s, let us assume that the selected neighbor task is tk,2 (i.e., tk,s∗ = tk,2), then the
sub-route plan is r∗k = 〈tk,2, tk,3, tk,4, tk,5〉 (Figure 5a). Since tk,s∗ precedes tk,s (i.e., s∗ < s),
the sub-route plan is reversed in a manner that in the new route plan inv(tk,s∗) is directly
followed by tk,s. The reversed sub-route plan is 〈inv(tk,5), inv(tk,4), inv(tk,3), inv(tk,2)〉,
therefore the new route plan is r′k = 〈t0, tk,1, inv(tk,5), inv(tk,4), inv(tk,3), inv(tk,2), tk,6, . . .〉
(Figure 5b).

For tk,e, let us assume that the selected neighbor task is tk,10 (i.e., tk,e∗ = tk,10), then
the sub-route plan is r∗k = 〈tk,9, tk,10〉 (Figure 6a). Since tk,e∗ is after tk,e (i.e., e < e∗), the
sub-route plan is reversed in a manner that in the new route plan inv(tk,e∗) directly follows
tk,e. The reversed sub-route plan is 〈inv(tk,10), inv(tk,9)〉, therefore the new route plan is
r′k = 〈t0, tk,1, . . . , tk,8, inv(tk,10), inv(tk,9), tk,11, . . . , tk,13, t0〉 (Figure 6b).
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Figure 4. Nearest neighbors of the arc tasks tk,s (tk,6) and tk,e (tk,8) within the route plan rk, when
nmax = 5.
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Figure 5. Rotation of the sub-route plan enclosed by tk,s∗ and tk,s: (a) An arc task (here tk,2) is randomly
selected as tk,s∗ from the neighbor list of arc task tk,s (tk,6), thus a sub-route plan is obtained; (b) The
sub-route plan is inverted, so inv(tk,s∗ ) will be directly followed by tk,s in the new route plan r′k.
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Figure 6. Rotation of the sub-route plan enclosed by tk,e and tk,e∗ : (a) An arc task (tk,10) is randomly
selected as tk,e∗ from the neighbor list of arc task tk,e (tk,8), thus, a sub-route plan is obtained; (b) The
sub-route plan is inverted, so tk,e will be directly followed by inv(tk,e∗ ) in the new route plan r′k.

6. Experiments

The proposed CARP-ABC algorithm (ABC algorithm from now on in this section)
along with the sub-route plan operator was implemented in Python (3.6) in the Spyder
(4.2.1) development environment. To compare the ABC algorithm with other static CARP
solvers, the HMA and the ACOPR were also implemented. To test the ABC algorithm and
the HMA as complete rerouting algorithms within the DCARP framework and compare
them to the minimal rerouting algorithm RR1, the implementations from our previous
work [20] were used. Python programming language was chosen for the implementation,
because the DCARP framework will be supported in the future with the PM4Py process
mining platform, which is written in Python. The experiments were performed on a laptop
PC with Windows 10 operation system, equipped with an Intel(R) Core(TM) i5-3320M 2.60
GHz 2-core CPU and 8 GB of RAM.

It must be signified, that the HMA and the ACOPR were implemented based on their
algorithmic description (in [7] and in [8], respectively), because the original implemented
version of them is not available. Therefore, the implementations used in this work might
have errors that decrease the effectiveness of these algorithms.

In this section, first, the setups of the experiments are specified (Section 6.1). Next,
the results of the CARP experiments (Section 6.2), the results of the DCARP experiments
(Section 6.4), and the results of the operator experiments (Section 6.3) are discussed, in the
respective order.

6.1. Experimental Setups

For the CARP experiments, five CARP instances of different sizes were used. The ABC
algorithm, the HMA, and the ACOPR were run 30 times with a time limit set to 10 min and
applied to the CARP instances, independently, then the recorded outputs were compared
and analyzed.

For the DCARP experiments, one CARP instance of medium size was used. Since
the initial DCARP instance is fundamentally a static CARP instance and the HMA is the
currently known the most accurate metaheuristic for CARP, the HMA was used to obtain
the initial solution. The travel and service logs and the events were generated with the
algorithms introduced in [20]. For each event type, 15 events were independently generated,
then executed on the initial instance, creating new DCARP instances. The RR1 algorithm,
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the ABC algorithm, and the HMA were run with a time limit set to 1 min and applied to
these instances, independently, then the recorded outputs were compared and analyzed.

For the operator experiments, three CARP instances of different sizes were used. The
sub-route plan operator and the other small step-size operators for CARP (i.e., inversion,
insertion, swap, and two-opt) were used as local search operators within the employed bee
phase of the ABC algorithm. The employed bee phase was chosen instead of the onlooker
bee phase so the efficiency of the operators can be measured on solutions of different
qualities, not only on good quality solutions. The (modified) ABC algorithm was run 30
times with a time limit set to 10 min and applied to the CARP instances, independently,
then the recorded outputs were compared and analyzed.

At the CARP and the DCARP experiments, during the execution of each algorithm,
the new global best solution and the time it took for the algorithm to find the new global
best solution (i.e., the elapsed time since the beginning of the execution of the algorithm)
were recorded and analyzed. At the operator experiments, during the execution of the
algorithm, the number of search trials in which the move operators found a better local
best solution (i.e., S∗

i ) was recorded and analyzed.
The used instances and the parameter settings of the used algorithms are specified in

the subsections (in Section 6.1.1 and in Section 6.1.2, respectively).

6.1.1. Used Instances

To test the CARP solvers, benchmark test sets are often used in the literature. These
test sets can be divided into two main categories: synthetic (e.g., containing randomly
generated instances) [52–54] and real-life based (containing examples based on real road
networks and tasks) [2,28,29].

Since testing an algorithm on all the instances would be time-consuming, only the
following five instances were selected for the CARP experiments:

• “kshs1” from the KSHS set [54];
• “egl-e1-A” and “egl-s1-A” from the EGL set [2];
• “egl-g1-A” and “egl-g2-A” from EGL-Large set [29].

For the DCARP experiments, only the “egl-e1-A” instance was used. For the operator
experiments, the “egl-e1-A”, “egl-s1-A”, and “egl-g1-A” instances were used.

The EGL and the EGL-Large sets originate from the data of a winter gritting application
in Lancashire (UK). The EGL set contains 24 instances in which two different graphs are
combined with various attribute values. The instances “egl-e1-A” and “egl-s1-A” were
selected to represent one of each graph. The EGL-Large set contains 10 instances in which
the graph is the same but the number of task edges is 347 in 5 instances and 375 in the other
5 instances. The instances “egl-g1-A” and “egl-g2-A” were selected to represent one from
both kinds of instances.

The attributes of all the five selected instances are briefly summarized in Table 2. These
CARP instances were selected to represent CARPs of very different sizes, thus requiring
very different complexity levels to solve them. It can be seen, that the “kshs1” instance is a
small synthetic CARP instance, which means a small search space for the algorithm, so for
problem difficulty it can be put into the easy category. The EGL instances are real-life based
CARP instances, so they are naturally more complex. Based on their size, the difficulty of
the “egl-e1-A” instance is medium, the difficulty of the “egl-s1-A” instance is hard, and the
difficulty of the instances “egl-g1-A” and “egl-g2-A” are very hard.
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Table 2. Attributes of the used CARP instances.

Name kshs1 [54] egl-e1-A [2] egl-s1-A [2] egl-g1-A [29] egl-g2-A [29]

Number of vertices 8 77 140 255 255
Number of task edges 15 51 75 347 375

Number of other edges 0 47 115 28 0
Number of vehicles 4 5 7 20 22

Capacity of the vehicles 150 305 210 28,600 28,000
Lower bound of the total cost 8705 1468 1394 553,696 604,228

Total cost of the best solution 1 14,661 3548 5018 992,045 1,088,040
1 Based on the literature.

6.1.2. Parameter Settings

The ABC algorithm was tested with multiple parameter settings. Based on the results,
the following settings provided the best quality results without unnecessarily increasing
the running time of the algorithm, thus these are used in the experiments:

• ncs: 10;
• nmi: 10,000;
• ngsl : 100;
• nlsl : 20;
• nsal : 20.

According to the investigation in [47], the ideal parameter values for the GSTM
operator are the followings: prc = 0.5, pcp = 0.8, pl = 0.2, lmin = 2, lmax = Int(

√
n), and

nmax = 5, where n is the number of cities. In the experiments, the same parameter values
are used for the sub-route plan move operator. The only difference is that n is the number
of tasks within the selected route plan.

For the HMA and the ACOPR, the optimal parameter settings defined by the corre-
sponding works [7,8] were used. For the RR1, no parameters are needed.

6.2. Results of the CARP Experiments

The charts on Figures 7–9 show the convergence speed of 30 independent runs of the
algorithms for the selected instances. As it was mentioned before, for these, the new global
best solution and the time it took for the algorithm to find the new global best solution
were recorded. The y-axis shows the total cost of the solution, and the x-axis shows the
elapsed time since the algorithm started running in seconds. The different colors indicate
the outputs of the different algorithms. The colored lines indicate the average convergence
speed and the colored areas cover all the values that were recorded (i.e., the areas are
enclosed by the minimum and maximum values). The closer the line is to the intersection
of the axes, the better the convergence speed of the algorithm.

In the case of the “kshs1” instance (Figure 7), it can be seen that the convergence speed
of the ACOPR and the ABC algorithm is around twice as fast as the speed of the HMA.
However, even though the speed of the ACOPR and the ABC algorithm is nearly the same,
the ACOPR algorithm has failed to find the best solution in 30 runs, thus making the ABC
algorithm the best solver for CARPs of small size like the “kshs1” instance.
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Figure 7. The convergence speed of 30 independent runs of HMA, ACOPR, and ABC algorithms on
the “kshs1” instance, plotted on one chart.

Figure 8. The convergence speed of 30 independent runs of HMA, ACOPR, and ABC algorithm on
the “egl-e1-A” instance, plotted on one chart, with time limit (t ≤ 600 s).

In the case of the “egl-e1-A” instance (Figure 8), the differences between the con-
vergence speed of the algorithms start to show. It can be seen that in all cases, the ABC
algorithm provides better solutions and faster, than the ACOPR algorithm. The HMA
algorithm has a very slow cycle time, thus it has a very slow convergence speed as well. If
time is not taken into account, the HMA can generally provide better solutions than the
other algorithms.
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Figure 9. The convergence speed of 30 independent runs of HMA, ACOPR, and ABC algorithm on
the “egl-s1-A” instance, plotted on one chart with time limit (t ≤ 600 s).

In Table 3, the total cost of the globally best solution within different time limits
is examined, based on 30 independent runs of the ABC algorithm and the HMA. The
calculated statistics are the following: minimum (Min.), maximum (Max.), average (Avg.),
and standard deviation (Std.). It can be seen that within 1 min, the ABC algorithm always
provided better solutions. Within 5 min, in some cases, the HMA algorithm found better
results (it has smaller Min. value), but in average the ABC algorithm still performed better
(it has smaller Max. and Avg. values). Nevertheless, within 10 or more minutes, the HMA
algorithm provided better solutions. Regardless of the time limit, the ABC algorithm is
slightly more stable than the HMA algorithm, in terms of how much the solution varies for
different runs (it has smaller Std. values).

Table 3. Statistics of the total cost of the globally best solution of the HMA and the ABC algorithms
on the “egl-e1-A” instance, within different time limits.

Algorithm Statistic Value
Output at Different Time Limits

≤1 min ≤5 min ≤10 min

ABC

Min. 3835 3651 3651
Max. 4021 3887 3872
Avg. 3894.9 3812.5 3796.23
Std. 38.02 68.90 65.70

HMA

Min. 3731 3582 3582
Max. 4357 4133 4133
Avg. 4091.6 3821.5 3802.4
Std. 184.92 140.69 148.10

In the case of the “egl-s1-A” instance (Figure 9 and Table 4), the differences between
the convergence speed of the HMA and the ABC algorithm is more complex. It can be seen
that before 200 s, the ABC algorithm performs better, between 200 and 400 s they perform
around the same, then after 400 s the HMA performs better.
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Table 4. Statistics of the total cost of the globally best solution of the HMA and the ABC algorithms
on the “egl-s1-A” instance, within different time limits.

Algorithm Statistic Value
Output at Different Time Limits

≤1 min ≤5 min ≤10 min

ABC

Min. 5635 5398 5398
Max. 5977 5903 5883
Avg. 5876.53 5752.87 5708.5
Std. 66.73 131.41 130.64

HMA

Min. 5507 5235 5235
Max. 6628 6611 6401
Avg. 6176.57 5738.67 5459.87
Std. 355.71 440.63 209.63

The results were similar for the “egl-g1-A” and “egl-g2-A” instances (Figure 10 and
Tables 5 and 6). In most of the runs, the set time limit was not enough for the HMA to
improve its initial solution, so only its initial solution was recorded. That is why the graph
for the HMA looks like a straight line in Figure 10. As a result of this, in the measured time
period, the ABC algorithm performed better than the HMA after around 100 s.

Table 5. Statistics of the total cost of the globally best solution of the HMA and the ABC algorithms
on the “egl-g1-A” instance, within different time limits.

Algorithm Statistic Value
Output at Different Time Limits

≤1 min ≤5 min ≤10 min

ABC

Min. 1,272,733 1,224,289 1,222,579
Max. 2,069,358 1,299,609 1,274,297
Avg. 1,370,687.2 1,266,411.97 1,244,482.33
Std. 161,727.50 19,121.17 13,385.36

HMA

Min. 1,245,358 1,245,358 1,245,358
Max. 1,380,727 1,380,727 1,380,727
Avg. 1,323,545.83 1,323,544.97 1,323,519.2
Std. 32,452.85 32,452.53 32,443.37

Table 6. Statistics of the total cost of the globally best solution of the HMA and the ABC algorithms
on the “egl-g2-A” instance, within different time limits.

Algorithm Statistic Value
Output at Different Time Limits

≤1 min ≤5 min ≤10 min

ABC

Min. 1,389,720 1,349,032 1,343,764
Max. 1,897,513 1,416,208 1,385,876
Avg. 1,527,504.47 1,386,266.17 1,366,140.43
Std. 163,125.66 7587.12 11,848.98

HMA

Min. 1,356,204 1,356,204 1,356,204
Max. 1,478,279 1,478,279 1,478,279
Avg. 1,429,353 1,425,706.43 1,424,908.2
Std. 30,287.61 33,358.28 34,299.91
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Figure 10. The convergence speed of 30 independent runs of HMA, and ABC algorithm on the
“egl-g1-A” instance, plotted on one chart with time limit (t ≤ 600 s)

Based on the results, it can be concluded that the ABC algorithm can provide a good
enough solution within a short amount of time. Since it has a small cycle time, the best
global solution can be updated more frequently. The ABC algorithm is better than the
ACOPR algorithm in all aspects. The ABC algorithm has faster convergence speed and
finds better quality solutions, than the ACOPR algorithm. Furthermore, it is competitive
with the HMA, when the running time of the algorithms is set to a short time interval.

6.3. Results of the Operator Experiments

The results of the operator experiments are summarized in Table 7. In each row, the
percentage of the number of trials is shown, in which the operator (specified by the column
header) found a better solution, compared to the total number of trials in which a better
solution was found for the instance (that is specified in the first column). For the sake of
simplicity, let us call this measure efficiency. It can be seen that the sub-route plan operator
has the highest efficiency in all the three cases, thus, among the examined operators, it has
the highest chance to improve the current solution, regardless of the problem size.

A correlation can be observed between the size and complexity of the CARP problem
and the efficiency of the operators. As it was mentioned before, the complexity of the
“egl-e1-A” instance is medium, the “egl-s1-A” instance is difficult, and the the “egl-g1-A”
instance is the most difficult. By increasing the size of the problem, the efficiency of the
inversion and the sub-route plan operator increases compared to the other operators, and
by decreasing the size of the problem, the efficiency of the insertion, the swap, and the
two-opt operators increases compared to the other operators.

Table 7. The efficiency of the move operators compared with each other within the CARP-ABC
algorithm, measured on instances of different sizes.

Instance
Efficiency of the Operators

Inversion Insertion Swap Two-Opt Sub-Route Plan

egl-e1-A 15% 26% 17% 16% 27%
egl-s1-A 16% 23% 16% 16% 29%
egl-g1-A 20% 19% 13% 8% 40%
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Based on the results, it can be concluded that the sub-route plan operator is more likely
to find a better solution than the other operators, especially when a greater modification
is needed on the current solution (since it is a randomly generated solution and/or it is a
solution of a larger CARP instance).

6.4. Results of the DCARP Experiments

The results for the task appearance events, the demand increase events, and the vehicle
breakdown events for the “egl-e1-A” instance can be seen in Table 8, Table 9, and Table 10,
respectively. In all the three tables, the first few columns contain the parameter values that
can be used to reconstruct the event data components of the problem:

• the travel and service log (with crc);
• the task appearance event (with nt_arc, nt_dem, and nt_sc);
• the demand increase event (with dit_arc, dit_dem_inc, and dit_sc_inc);
• the vehicle breakdown event (with vb_id).

The best total cost calculated by the RR1 rerouting algorithm, the ABC algorithm,
and the HMA are contained by the last three columns. The best total cost of each run is
highlighted with bold font.

The results of all the events are summarized in Table 11. It can be seen that in total,
the ABC algorithm performed better than the other examined algorithms (RR1 and HMA).
The HMA performed better only at the vehicle breakdown events, but the difference is
negligible. The RR1 algorithm gave the best results in nearly the same amount of times as
the ABC algorithm, in case of task appearance and vehicle breakdown events.

It is not shown in the tables, but the RR1 algorithm has the shortest run time (in the
test cases, it was always less than one second). The run time of the other algorithms (ABC
and HMA) is approximately the same whether a DCARP or a CARP instance is used as
input, since it is the complexity of the problem that mainly defines the convergence speed.

Based on the results, similar conclusions can be made as in the CARP experiments.
The ABC algorithm outperforms the HMA for a certain period of time, but then the HMA
slowly takes over the lead. If time is the priority, then in the case of task appearance and
vehicle breakdown events, the RR1 algorithm should be used. If time and the quality of the
solution are equally important, then the ABC algorithm should be used for all events. If the
quality of the solution is the priority, then the HMA should be used.

Table 8. The best total costs of 15 independent runs, calculated by the RR1, ABC, and HMA within
one minute, after the occurrence of a random task appearance event in the “egl-e1-A” instance.

#
Parameter Values Outputs of the Algorithm

crc nt_arc nt_dem nt_sc RR1 ABC HMA

1 315 (25, 75) 58 16 3889 3702 3941
2 315 (46, 45) 67 12 3700 3705 3799
3 356 (43, 42) 11 11 3720 3645 3883
4 379 (42, 57) 20 14 3704 3647 4091
5 406 (2, 1) 62 32 3642 3658 3671
6 409 (73, 74) 40 25 4077 3991 4202
7 419 (9, 8) 37 26 3693 3709 3709
8 427 (32, 31) 5 58 4248 4227 4235
9 436 (24, 22) 64 4 3667 3667 3667

10 439 (15, 14) 99 7 3872 3905 3905
11 457 (6, 5) 46 8 3714 3714 3714
12 490 (41, 40) 207 9 3764 3764 3764
13 517 (22, 75) 66 24 3866 3866 3841
14 520 (21, 51) 89 2 3767 3767 3767
15 522 (39, 35) 67 7 3622 3622 3622
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Table 9. The best total costs of 15 independent runs, calculated by the RR1, ABC, and HMA within
one minute, after the occurrence of a random demand increased event in the “egl-e1-A” instance.

#
Parameter Values Outputs of the Algorithm

crc dit_arc dit_dem dit_sc RR1 ABC HMA

1 326 (32, 34) 36 36 4318 3931 4171
2 344 (54, 52) 11 11 3749 3648 3907
3 345 (50, 52) 15 15 3753 3636 3678
4 374 (52, 54) 9 9 3747 3630 3814
5 376 (68, 66) 32 32 4036 3762 3930
6 384 (44, 45) 18 18 3905 3668 3905
7 415 (46, 47) 9 9 3975 3590 3590
8 431 (44, 59) 11 11 3885 3632 3766
9 449 (32, 35) 12 12 4280 3636 3683

10 468 (35, 32) 65 65 4334 4326 4326
11 490 (44, 46) 2 2 3636 3550 3550
12 490 (32, 33) 28 28 4289 3760 3674
13 493 (59, 44) 5 5 3879 3626 3553
14 516 (35, 32) 24 24 4293 3756 3572
15 545 (35, 41) 13 13 3775 3657 3559

Table 10. The best total costs of 15 independent runs, calculated by the RR1, ABC, and HMA within
one minute, after the occurrence of a random vehicle breakdown event in the “egl-e1-A” instance.

#
Parameter Values Outputs of the Algorithm

crc vb_id RR1 ABC HMA

1 305 2 4124 4217 4737
2 311 1 4060 4012 4365
3 342 2 4204 4126 4585
4 344 0 4096 4112 4303
5 364 0 4096 4112 4241
6 399 4 4004 4020 4308
7 430 1 3966 3966 3966
8 451 2 4282 4261 4261
9 463 0 3718 3652 3639
10 490 2 4282 4261 4261
11 495 2 4282 4261 4261
12 506 0 3621 3621 3585
13 507 1 3874 3736 3572
14 523 2 4261 4261 4261
15 540 2 4282 4282 4282

Table 11. The total number of the best outputs (and their percentage compared to the total number of
outputs) of the algorithms RR1, ABC, and HMA summarized for the “egl-e1-A” instance, for each
event type.

Event Type
Outputs of the Algorithm

RR1 ABC HMA

Task appearance 9 (60%) 10 (67%) 6 (40%)
Demand increase 0 (0%) 11 (73%) 7 (47%)

Vehicle breakdown 7 (47%) 8 (53%) 9 (60%)

Total 16 (36%) 29 (64%) 22 (49%)
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7. Conclusions and Future Work

In this study, an ABC algorithm for the CARP (CARP-ABC) was developed along
with a new move operator, the sub-route plan operator, which is utilized by the proposed
CARP-ABC algorithm. The CARP-ABC algorithm was tested both as a CARP and a DCARP
solver, then, its performance was compared with other algorithms. The results showed
that for both CARP and DCARP instances, the CARP-ABC algorithm excels in finding a
relatively good quality solution in a short amount of time. It makes the algorithm highly
competitive with the currently most accurate CARP solver, the HMA, when the running
time of the algorithms is limited to around one minute.

In the future, the CARP-ABC algorithm will be improved upon, to increase the accu-
racy of the algorithm without increasing its runtime. The goal is to make the algorithm
better than the HMA, even when the running time is unlimited.
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Abbreviations

The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony
ACOPR Ant Colony Optimization Algorithm with Path Relinking
CARP Capacitated Arc Routing Problem
DAG Directed Acyclic Graph
DCARP Dynamic Capacitated Arc Routing Problem
GA Genetic Algorithm
GPS Global Positioning System
GSTM Greedy Sub Tour Mutation
HMA Hybrid Metaheuristic Approach
MAENS Memetic Algorithm with Extended Neighborhood Search
NP-hard Non-deterministic Polynomial-time hard
RPSH Randomized Path-Scanning Heuristic
RSG Random Solution Generation
TSP Traveling Salesman Problem
VRP Vehicle Routing Problem

Appendix A

This appendix shows all the notations that are used in this work, categorized by the
context where they appear and along with their meaning.
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Table A1. Notations used in the CARP and the DCARP.

Notation Meaning

G graph G = (V, A)
V set of vertices
v0 the depot (v0 ∈ V)
A set of arcs
T set of tasks (T ⊆ A)
t0 the dummy task t0 = (v0, v0)
n the number of tasks that have to be executed
inv(a) the inverse of arc a ∈ A
head(a) the head vertex of arc a ∈ A
tail(a) the tail vertex of arc a ∈ A
dc(a) the dead-heading cost of arc a ∈ A
id(t) the identifier of the task t ∈ T
dem(t) the demand of task t ∈ T
sc(t) the serving cost of task t ∈ T
mdc(vi , vj) the minimal total dead-heading cost from vertex vi to vj (vi , vj ∈ V)
w the number of vehicles
q the maximum capacity of a vehicle
rk the k-th route plan
lk the number of tasks on the k-th route plan
t(k, i) the i-th task in the k-th route plan
DC(rk) the total dead-heading cost of the route plan rk
SC(rk) the total service cost of the route plan rk
I a CARP instance
S a solution for the CARP instance I
TC(S) the total cost of solution S
Tv set of virtual tasks (Tv ⊆ T)
H set of identifiers of all the vehicles (|H| = w)
Hf set of the identifiers of the (currently) free vehicles (Hf ⊆ H)
R set of identifiers of all the route plans
Re set of identifiers of the route plans whose execution stopped (Re ⊆ R)
rt(k) the virtual task of the k-th route plan (k ∈ R, rt(k) ∈ Tv)
rv(k) the identifier of the vehicle that is executing the k-th route plan (k ∈ R, rv(k) ∈ H)
m the number of DCARP instances within a DCARP scenario
I a DCARP scenario, a set of DCARP instances (|I| = m)
Ii the i-th DCARP instance within a DCARP scenario (0 ≤ i < m)
Si the accepted solution for the i-th DCARP instance
TC(Si) the total cost of solution Si

Table A2. Notations used in the CARP-ABC algorithm.

Notation Meaning

ncs the size of the colony
nmi the maximum number of iterations
ngsl the global search limit
nlsl the local search limit
nsal the solution age limit (within the population)
C the current colony, a set of solutions (C = {S1, S2, . . .}, |C| = ncs)
C the previous colony
A set of the age of the solutions within C (A = {α1, α2, . . .}, |A| = ncs)
P set of probability values of the solutions within C (P = {p1, p2, . . .}, |P| = ncs)
I a CARP instance
S∗ the currently known globally best solution
S′ the best solution found within one iteration
S∗

i the best solution found in the neighborhood of Si ∈ C
S′

i the best solution found within one iteration, in the neighborhood of Si ∈ C
S∗

i,j the best solution found in the neighborhood of Si,j (Si,j is a neighbor of Si ∈ C)
S′

i,j the best solution found within one iteration, in the neighborhood of Si,j (Si,j is a neighbor of Si ∈ C)
α∗ the current age of S∗
α′ the current age of S′
α∗i the current age of S∗

i
α′i the current age of S′

i
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Table A3. Notations used in the description of the sub-route plan operator.

Notation Meaning

prc the reconnection probability
pcp the correction and perturbation probability
pl the linearity probability
prnd a random number between 0 and 1
lmin the minimum length of the sub-route plan
lmax the maximal length of the sub-route plan
l the selected length of the sub-route plan (lmin ≤ l ≤ lmax)
tk,s the selected starting task of the sub-route plan
tk,e the selected ending task of the sub-route plan
nmax the (maximal) size of the neighborhood of a task arc
tk,s∗ the selected task from the neighborhood of tk,s
tk,e∗ the selected task from the neighborhood of tk,e
r∗k the selected sub-route plan within a route plan rk
r#

k the route plan rk without the sub-route plan r∗k
r′k the resulting route plan
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Abstract: In this study, a model and solution are shown for controlling the inventory of a logistics
warehouse in which neither satellite positioning nor IoT solutions can be used. Following a review
of the literature on path planning, a model is put forward using a drone that can be moved in all
directions and is suitable for imaging and transmission. The proposed model involves three steps. In
the first step, a traversal path definition provides an optimal solution, which is pre-processing. This is
in line with the structure and capabilities of the warehouse. In the second step, the pre-processed path
determines the real-time movement of the drone during processing, including camera movements
and image capture. The third step is post-processing, i.e., the processing of images for QR code
identification, the interpretation of the QR code, and the examination of matches and discrepancies
for inventory control. A key benefit for the users of this model is that the result can be achieved
without any external orientation tools, relying solely on its own movement and the organization of
a pre-planned route. The proposed model can be effective not only for inventory control, but also for
exploring the structure of a warehouse shelving system and determining empty cells.

Keywords: drone; inventory management; GA model; route planning; warehouse

MSC: 90B05

1. Introduction

In large, lightly structured warehouses in logistics centers, especially those where
different products from several companies are stored, it is often difficult to pinpoint the
exact location of stored goods. This is primarily the case when storage is not carried out with
the help of automatic forklifts, or when errors occur in the registered and actual location of
the goods due to mistakes during the picking process. To make matters worse, it is very
difficult or in some cases impossible to use GPS-based identifications in these warehouses.
If Time of Flight (ToF) cameras are not available, the positioning of the automatic devices is
not possible. In this study, a model capable of updating the stock-on-hand registry using
a drone is introduced, and the proposed model applies to a specific warehouse.

Storage (loading and unloading) and picking, unit load formation, and labeling take
place in the warehouse building. In the warehouse, a double shelving system is used.
Between the double shelves, there is a wide corridor in which the drone can travel. A shelf
is divided into rows or compartments (cells). Within one compartment there can be one,
two, or three locations created. Each unit stored in these locations is identified with a QR
code that contains all the important data that are relevant to our solution.

Driving down the aisle, the drone searches for the QR codes placed on the outer
cartons, and as soon as the drone camera finds one, a photo is taken and it is sent to
a processing device (in our study, it is a large capacity tablet). According to the proposed
model, the drone knows its exact location in the warehouse, i.e., the 3D data inside the
warehouse are defined. This and the QR code or codes sent (in the case of a multi-cell
location) can tell the inventory management model exactly where the product is located,
or if the location is empty. Further processing depends solely on the capabilities of the
application, which is beyond the scope of this study.
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The mid-range drone and its camera can take a good quality picture from the middle
of the aisle and identify the stored goods in the picture based on the blue and red colors
used on the shelves. This helps the drone to move forward, backward, up, and down in
the middle of the aisle, with no right-to-left movement. At the end of the aisle, the dock is
manually placed where the battery can be charged and replaced.

After this introduction, an optimal route is described that is optimized primarily for
the operating time of the drone, i.e., the drone will continue checking the locations until its
battery wears out.

Based on the literature review, we have identified a gap in the research, as we have
not encountered an approach such as ours to inventory accounting; therefore, we can say
that the drone inventory based on this paper can be considered as a development in the
existing discussion in this field.

Our study is founded on the following research question: How can warehouse stocking
be automated by drones? Within this question, we pose a sub-question: How can the time
of stocking be optimized by drones? In this study, we aimed to develop an algorithm to
mathematically answer these questions; thus, we have proposed a model for automated
warehouse stocking.

2. Path Planning

Our analysis suggests that there are very different approaches to path planning for the
problem we are considering. In general, these studies focus primarily on a specific problem.
Furthermore, the solutions that are used also vary (e.g., [1]).

To begin with, we investigated several solution methods. According to the literature,
studies have used the Swarm Intelligence approach to solve, for example, the collision
avoidance problem of robots in 3D media such as water [2] using a velocity-matching
method. The route planning used in this paper is based on the ant algorithm. Our investi-
gations have shown that this solution does not provide sufficient convergence and that the
motions in our problem are different from it, but several elements of the basic model can
be incorporated into our model. A similar and similarly unsuccessful attempt based on
swarm intelligence is presented in [3], where an evolutionary algorithm was also chosen
as the suitable approach. Another approach that can be used concerns automatic parking
systems. It essentially provides a similar baseline for the path selection in a planar domain
to the vertical-plane path-search algorithm. Of course, the authors focus primarily on the
narrow setting, i.e., they focus on maneuvering, and their path-finding algorithm focuses
on finding a parking space, although this is solved using a less well-known RRT (Rapid-
exploring Random Trees) algorithm. The chosen method for the model in [4] provides
a useful solution in this direction. In this paper, the route planning of UAVs (Unmanned
Aerial Vehicles) under terrain conditions is considered. The path is based on a polynomial
model, a solution whereby only discontinuous linear motions need to be simulated. The
advantage of their method is that it improves the initial population after construction using
an ACO.

Several articles deal with logistics inventory control models and propose a specific
solution. In their article, F. Benes et al. describe that, in the case of large outdoor ware-
houses, general identification methods are lengthy and inadequate. One way to easily and
quickly determine the inventory is to deploy a UAV (unmanned aerial vehicle) for product
identification. In this case, however, there is a problem in determining the location of the
goods. A drone moves at a higher altitude, which can lead to a situation where we cannot
accurately determine the location of the goods. This paper deals with the development
of the definition of the correct flight level, which is suitable for distinguishing one of the
identified elements at a distance of at least 2 m. The evaluation is based on an RSSI (re-
ceived signal strength indicator) value. The experiment proved that the two objects can be
distinguished even at the maximum reading distance of the selected passive UHF RFID
tags [5]. This solution does not provide a suitable solution, since in this case the products
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are placed in one flat, whereas we need to check the inventory of a warehouse with a shelf
system (3D).

Indoor drone or unmanned aerial vehicle (UAV) operations in automated or pilot-
controlled drone use cases are addressed by Kurt Geebelen et al. Automated indoor
flights have stricter requirements for stability and localization accuracy compared to classic
outdoor use cases, which rely primarily on (RTK) GNSS for localization. In this paper, the
effect of multiple sensors on 3D indoor-position accuracy is investigated using the OASE
flexible sensor fusion platform. This evaluation is based on real drone flights in an industrial
laboratory, with mm-accurate ground truth measurements provided by motion capture
cameras, which enable the sensors to be evaluated based on their deviation from ground
reality in 2D and 3D. The sensors considered in the research are: IMU, the sonar, SLAM
camera, ArUco markers, and Ultra-Wideband (UWB). The article shows that with this setup,
the achievable 2D (3D) indoor localization error varies from 4.4 cm to 21 cm depending on
the sensor set selected. They also include cost/accuracy tradeoffs to indicate the relative
importance of different sensor combinations depending on the (engineering) budget and
use case. These laboratory results were validated in a Proof-of-Concept deployment of
an inventory-scanning drone with more than 10 flight hours in a 65,000 m2 warehouse.
By combining the laboratory results and real-world deployment experience, the different
subsets of the sensors represent a minimum viable solution for three different indoor use
cases, considering accuracy and cost: a large drone with low weight and cost constraints,
one or more medium-sized drones, and a swarm of weight- and cost-constrained nano
drones [6]. Our solution also eliminates these flight inaccuracies, as the drone takes a picture
from the approaching position, which is processed by software (which extracts the QR code
from it). Therefore, the inaccuracies recommended in the article are negligible in our case.

As part of their research project, A. Rhiat, L. Chalal and A. Saadane developed a proto-
type named “Smart Shelf” that simulates a smart warehouse where mobile robots with grips
managed by the ROS “Robotic Operating System” can autonomously navigate through
inverse kinematics and different obstacles between other robots; on the other hand, RFID
and iBeancon technology have a Smart Shelf to manage stocks. All items on the shelf are
identified by RFID tags. The connection of the robots must be applicable to the various
predefined or non-obstacles to optimize their search and items they encounter and to
accessing the local network through a predefined map in the database. In addition, the
embedding of Bin Packing Optimization techniques helps to improve the utilization of
static volumes. Optimization algorithms can take into account some robotic constraints,
including accessibility, improving the quality of placements and minimizing damaged
goods. Their project aims to minimize human intervention and gain time [7]. We consider
the solution very useful; it can also be used in our case. However, a problem is caused by
the fact that we are inspecting the stock during the storage process, while material handling
is taking place. Therefore, we have to discard this solution as well, since it is not possible to
use the Smart Shelf during the material-handling process.

Haishi Liu et al. show that tobacco companies must regularly take inventory of fin-
ished products as well as raw and auxiliary materials, and drones with radio frequency
identification (RFID) readers are becoming a major application trend for inventory applica-
tions. Under the condition of ensuring the accuracy of the inventory, this paper considers
the limitations of the drone’s physical performance, the limitations of the RFID reader,
etc., and presents the power of the drone with respect to modeling and a task-planning
model for the UAV. An inventory library equipped with an RFID reader is recommended.
Thus, considering the problem whereby the greedy strategy in the traditional differential
evolution (DE) algorithm causes the loss of location information preserved by other indi-
viduals, we propose a hybrid DE algorithm based on lion swarm optimization. Finally,
the proposed algorithm was verified by environmental modeling based on data from the
tobacco industry warehouse [8]. This solution is already similar to our model, but our
proposed Generation Algorithm (OGA) simplifies the solution.
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Our study also concerns the determination of optimal routes. The location search
strategies used during picking can also provide a good basis, as the goal is to work as
quickly and accurately as possible. Based on this, two basic strategies are distinguished: in
the case of the strategy regarding the increasing horizontal location coordinates, the order of
visiting each storage location corresponds to the increase in the horizontal coordinates of the
storage sites. The zoning strategy is a variation of the strategy of increasing the horizontal
location coordinates, in which the scaffolding field is first divided into (even-numbered)
superimposed zones, and storage locations within each zone are accessed in ascending order
of the horizontal location coordinates [9]. However, regarding warehouse robotization, in
many cases, besides route planning, the other task is to balance the size of the robot fleet
and the load stabilizing between the robots, which is not the case of this study [10].

Moving to the next aisle is a manual movement, as the aisles may not be processed
in a sequential way, there may be a closed aisle, or the next aisle might be in another part
of the building. This adds another aim to our proposed model of enabling the drone to
recognize its own position.

These types of solutions are already used in several places, mainly for large multina-
tional companies. There are some excellent solutions such as the Eyesee system developed
by the Hardis Group, a comprehensive drone inventory solution that includes a drone
capable of flying unmanned and equipped with a system for automatically capturing and
identifying barcode data and handling the collected data via Amazon Web Services [11].

A similar problem is analyzed in [12], involving the target tracking of a drone moving
in a defined closed area, but this goes beyond the scope of our study, as their goal is to
recognize the target and choose its speed; however, it is still of relevance. The article
chooses the Fuzzy solution, which is a viable option for this study as well, since in many
cases the position of the QR code within the given location is not clear and the camera
unfortunately does not see it in all cases. For this reason, fuzzy control after the basic and
deterministic movement should be incorporated into the model. This can also be applied
to differences due to columns. The authors of [13] solve the positioning of a drone in
a GPS-free environment using a ToF camera used in robotics and self-guidance. However,
this approach demands considerable investment into hardware as well. The camera is
installed on the ceiling, and this monitors the positioning of the drone in the x, y direction
and changes in height. Important technical solutions are presented to prevent interference
from rotors. With the use of Gaussian function filtering, it was feasible to accurately analyze
the situation in 3D. The article also provides an exact algorithm as a solution. Another
methodology worth considering for closed-area drone control is presented in [14]. The
authors use a voxel model and perform two types of route calculations: one for the shortest
route and the other for the cheapest route.

Their problem is mainly the use of obstacle-avoidance image analysis, for which they use
the distance transformation method for an abnormal image laid down by A. Rosenfeld and
J. L. Pfaltz in Distance Functions on Digital Pictures, from the journal Pattern Recognition [15].
The obstacles, in the form of shelves, are assumed to be fixed, which is problematic because
this is not always the case. Their approach keeps the drone safe from the obstacle within
an effective range. Another article suggests a search for known trajectory options [16]. In
their proposal, a usable genetic algorithm is used, which would be very useful in choos-
ing the optimal crawl route for our study as well. The initial population is selected by
a randomly generated greedy algorithm. An interesting solution is a low-complexity,
machine-learning-based algorithm for optimizing the location of DBSs (drone base sta-
tions) [17] based on minimizing the collective wireless reception signal strength experienced
by active terminals. The proposed algorithm reduces propagation loss in the system and
provides a lower bit error rate compared to the Euclidean cost comparison. The main result
of this study is the creation of a model that can provide input for a genetic Algorithm and
can even be effective as a precise tool. This is pre-operation processing, as all processing can
start with the knowledge of the optimum. The second result is a clear position-definition
that is in-service and real-time.
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3. Materials and Methods

The first step in creating a model is to clarify the notations and their content; therefore,
a complete parameter exploration was carried out. The data set was defined with the
help of practitioners. The basic data collected were grouped according to their roles in
the model. Then, after selecting the parameters needed, it was important to capture their
dimensions. In the second step, we created a parametric model of the warehouse and the
factory parameters of the drone we wanted to use, improved with the data we had found.
We created a manageable simplified model of motion and velocity (the simplification was
within reason). The next step was to work out a practical positioning strategy. Then,
we created a mathematical model of the operation. After that, the necessary items and
environment for the optimization were selected.

During the testing of the GA method, we encountered some inconsistencies, which
caused the model to undergo several manual tunings (the main reasons were the discrepancy
between the factory and real drone parameters and the not necessarily smooth motion, which
could have been due to several reasons, e.g., temperature and stock saturation problems).
These inconsistencies, as they required relatively small modifications, were easily eliminated.

3.1. Known Data

In this section, we provide the mathematical model of the problem and the associated
known and unknown data. The known data include the most important parameters of the
warehouse and the drone: specifically, they were provided by the warehousing company,
and the drone parameters are given in the technical specifications. Tables 1 and 2 summarize
the data used for the model and provide the notations. We will use each index consistently
for the same data, so we will also provide a table of indexes.

Table 1. Summary and notation of known data.

w = w
[
wx , wy

]
The size of the warehouse

he The vertical distance between the storage shelves

hh Horizontal distance between storage shelves

m The number of storage shelves

hw The width of the corridor

hc The width of the road

n The number of compartments within the rows

r The number of rows of shelves

D = D
[
dx , dy, dz

]
The position of the dock. dz = 0

Pl = Pl
[
plx , ply, 0

] The position of shelf P1 is indicated by the red circle in Figure 2. If l is odd, it denotes the left shelf row of the aisle; if l is
even, it denotes the right shelf row.

Rk = Rk(i, j) Shows the compartment in the i-th row and j-th column of the k-th shelf (k = 1; 2)

Ck = Ck
[
cix , ciy, ciz

] The starting position of the middle guide path between the two shelves, e.g., ckx =
p2l+1,x+p2l+2,x

2 , etc., and (l = 0, . . . r − 1 ).
In Figure 2, it is indicated by a green square. ckz =

he
2 , where the z coordinate is equal to half the height of the shelf.

¯
Ck =

¯
Ck

[
cix , ciy, ciz

] The end position of the middle guide path between the two shelves. ckx =
p2l+1,x+p2l+2,x

2 , etc., and (l = 0, . . . r − 1 ).
In Figure 2, it is indicated by a green square. ckz =

he
2 . Here, the z coordinate is equal to half the height of the shelf.

Tw
At full charge, the operating time of the drone. During this time, a person must get from the charger to the compartments
and back

TPH Time for taking a picture

Vh Horizontal forward speed

Va Speed of ascent

Vd The rate of descent is Va ≈ 0.99 Vd; therefore, the two are considered to be equal.

Vr Rotation speed (degrees)

Δt Indicates the operating time that must be left on arrival at the charger in case of intermediate charging.

Tch Charging time
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Table 2. Table of indexes.

k, k1 The number of the shelving system

i, i1 Indicate the rows of the shelving system

j, j1
Indicate the columns of the shelving system (as an example, see the Rk = Rk(i, j)
in the previous table)

v Indicates the subindex of the consecutive compartments

u The running index of the charges

The schematic structure of the shelving system is shown in Figures 1–4.

Figure 1. The floor plan of the warehouse with the dimensions. (Source: self-edited figure).

Figure 2. Shelf system details. (Source: self-edited figure).

Figure 3. Structure of a shelf. (Source: self-edited figure).
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Figure 4. The shelving system to be tested. Black shelves indicate compartments that have already
been checked. The green circle is the start position of the examination, the red square is the center of
the corridor (reference point). The red circles are reference points. (Source: self-edited figure).

3.2. Variable Data

Search for the
S = S((k1i1 j1), (k2i2 j2), . . . , (k2mni2mnj2mn)) (1)

series of compartments, where(
kl1 il1 jl1

) �= (
kl2 il2 jl2

)
ha l1 �= l2. (2)

The drone passes over all the compartments of the two shelving systems during
operation. The series of compartments S describes the order of these compartments where
the first parameter is the shelf system number (1 or 2) and the other two are the number of
shelves (rows) in the shelf system and the number of compartments (columns) within it.

The drone needs to be charged from time to time so it may not be possible to process
the two shelf systems with one charge (especially when the batteries are not fully charged
from the start). For this reason, the series of compartments S must be divided into parts that
can be processed with one charge, i.e., the drone contains compartments processed during
operation. (Table 3 shows summary and notation of variable data). Thus, the processing
time consists of three parts:

• The drone travels to the first compartment to be processed;
• It processes the compartments;
• It returns to the charger.
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Table 3. Summary and notation of variable data.

x =
[

xk,i,j

] The number of processing sequence (as the drone moves between
each compartment)

Tf = Tf (S) The execution time for the S-compartment series visit

tP = tP
(
Ś
)

The dockless execution time of the Ś series

tT,Rk(ip ,jp) The time from the dock to the starting point
(
ip, jp

)
tRk(iq ,jq),T The travel time from

(
iq, jq

)
to the dock

tRk1 (i1,j1),Rk2 (i2,j2)
The travel time from one compartment in one row to another
compartment in another row

TRk1 (i1,j1),Rk2 (i2,j2)(C)
Time from one row compartment to the other row compartment
with a front-of-row change

TRk1 (i1,j1),Rk2 (i2,j2)
(
C
) Time from one row compartment to another row compartment

with end of row change

p Number of charges—1

The following correlations illustrate the abovementioned 3 points. The drone goes to
the charger when it arrives at a compartment in which the available operating time for the
previous compartment is still greater than Δt, but in the case of the current compartment it
is already less, i.e., the operating time falls below a predefined level.

In addition, it must be fulfilled that the sum of each subchain must be equal to the
entire chain, since each compartment must be examined in S order.

Mark the series of compartment tests carried out simultaneously in a corridor

S̆ = S̆
((

kpip jp
)
, . . . ,

(
kqiq jq

)) ⊂ S (q ≥ p) q, p ∈ N
+ (3)

if the shelving system is to be changed, it will change either in the direction of C or in the
direction of C.

Let S̆ denote the corridor change in G, i.e.,

G =

{ (
kp, kp+1, 0

)
, i f it changes in direction C(

kp, kp+1,−1
)
, i f it changes in direction C

(4)

Let
Ś = Ś

(
S̆1, G1, S̆2, . . . , Gf−1, S̆ f

)
(5)

then, the execution time of the Ś series is from the charger to the charger

Tf
(
Ś
)
= tT,Rk(ip ,jp) + tP

(
Ś
)
+ tRk(iq ,jq),T (6)

if the following is met
0 ≤ Tw − Tf

(
Ś
) ≤ Δt (7)

Let

S = S((k1i1 j1), (k2i2 j2), . . . , (k2mni2mnj2mn)) =
r

∑
u=1

Śu (8)

where every Śu
0 ≤ Tw − Tf

(
Śu
) ≤ Δt (u = 1, . . . , r − 1). (9)

The last one no longer needs to meet this condition.
The final report must also include a flight to the charger. For this reason, S must be

supplemented with the D drone charger in the appropriate places. Its location will be
determined by a later algorithm (Target Function Generation Algorithm). The function
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Tf
(
Śu
)

represents the operating time of the drone from a charger to the next charger. The
sum of these yields the total operating time.

Then the execution sequence is as follows:

Sv = Sv
(
D, Ś1, D, . . . , Śr, D

)
. (10)

Then the goal is

T =
r

∑
u=1

Tf
(
Śu
) → min! (11)

If Tf (Sv) is minimal, then Sv is the optimal route

3.3. The Speed of the Drone

The speed of the drone is determined by knowing the speed of horizontal travel
and the speed of vertical travel by projecting it on a diagonal path, as shown in Figure 5.
The red arrow indicates velocity as a vector and its magnitude is the magnitude of the
current velocity.

Figure 5. Drone speed (source: self-edited figure).

Ascension:
Ve =

√
v2

h + v2
a (12)

α = arctan
y
x

, β = arctan
va

vh
(13)

Descension:
Ve =

√
v2

h + v2
d (14)

β = arctan
vd
vh

(15)

It follows that the ascension speed of the drone is:

V1(x, y) = Ve· cos(β − α) = Ve· cos
(

arctan
va

vh
− arctan

y
x

)
(16)

It follows that the descension speed of the drone is:

V2(x, y) = Ve· cos
(

arctan
vd
vh

− arctan
y
x

)
(17)

Let iv, jv denote the indices of the compartment corresponding to the location of
the drone, and iv+1, jv+1 denote the indices of the next compartment to be examined by
the drone.

If
x = abs(jv − jv+1)·hh (18)

y = abs(iv − iv+1)·he. (19)

If x = 0, then
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If iv − iv+1 > 0
V3(x, y) = Vd (20)

If iv − iv+1 < 0
V4(x, y) = Va (21)

then it follows that the speed of the drone is:

V = V(x, y) =

⎧⎪⎪⎨⎪⎪⎩
jv − jv+1 ≥ 0 és x �= 0 akkor V2(x, y)
jv − jv+1 < 0 és x �= 0 akkor V1(x, y)
jv − jv+1 ≥ 0 és x = 0 akkor V3(x, y)
jv − jv+1 < 0 és x = 0 akkor V4(x, y)

(22)

Thus, substituting (iv − iv+1)·hh for x, and substituting (jv − jv+1)·he for y, we obtain
the following

V1 = V1((jv − jv+1)·hh, (iv − iv+1)·he) =

= Ve· cos
(

arctan
(

va

vh

)
− arctan

(
abs(iv − iv+1)·he

abs(jv − jv+1)·hh

))
(23)

V2 = V2((iv − iv+1)·hh, (jv − jv+1)·he) =

= Vd· cos
(

arctan
(

vd
vh

)
− arctan

(
abs(iv − iv+1)·he

abs(jv − jv+1)·hh

))
(24)

This depends on the horizontal and vertical travel distances.

3.4. The Length and Time of Each Route

The drone begins all processing by centering the two shelving systems, as shown in
the green circle’s position in Figure 6. This point denotes the center of the bottom row
(which can be adjusted if necessary). The drone can take the best shot from the center of
the compartments. The steps of processing include:

• The drone travels to the first compartment to be processed;
• It processes compartments;
• It travels back to the charger.

Figure 6. Route and guides. The green circle is the start position of the examination; the blue line is
the route of drone; the red square is the center of the corridor (reference point). The red circles are
referece points. (source: self-edited figure).
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3.4.1. The Journey and Time from the Dock to the Starting Point

It consists of three parts (Figure 6):

• Step 1. the drone travels from the charger to the starting point between the shelves (as
indicated by the green circle);

• Step 2. the drone travels to the first compartment to be processed;
• Step 3. its camera is turned in the correct direction.

Step 1. Time to reach the starting position of the shelves
Distance of compartment Rk = Rk(i, j) from charger:

dT,Rk(i,j) = dT,C + dC,Rk . (25)

Rk = Rk(i, j) compartment access time from charger:

tT,Rk(i,j) = tT,C + tC,Rk , (26)

where dT,C is the path between the docking station and the starting position of the middle
guide path between the two shelves to the green square.

dT,Ck =

√(
he

2

)2
+ (ckx − dx)

2 +
(

cky − dy

)2
(27)

tT,C is the time required to reach the starting position of the middle guide path between
the Dock and the two shelves:

tT,Ck =
he

2Va
+

√
(ckx − dx)

2 +
(

cky − dy

)2

Vh
. (28)

Step 2. Distance and time from the starting position of the shelves to the starting
compartment.

Distance and time from the center to the starting compartment:

dCk ,Rk =

√
((j − 1)·hh)

2 + ((i − 1)·he)
2 (29)

tCk ,Rk =
dCk ,Rk

V((j − 1)·hh, (i − 1)·he)
+

90
Vr

+ TPH (30)

Step 3. The camera
Where 90

Vr
is the camera rotation time.

The way to the starting position:

tT,Rk(i,j) = tT,Ck + tCk ,Rk =

=
he

2Va
+

√
(ckx−dx)

2+(cky−dy)
2

Vh
+

√
((j−1)·hh)

2+((i−1)·he)
2

V((j−1)·hh ,(i−1)·he)
+

90
Vr

+ TPH

(31)

3.4.2. The Time to Travel to the Dock from a Given Point Can Be Determined Similarly

This is the reverse of the previous since

• Step 1—first, rotate the camera to the home position.
• Step 2—go to the starting point of the shelving system.
• Step 3—go to the charger.
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Summarized as follows:

tRk(i,j),T = tRk ,c + tCk ,T =

=
90
Vr

+

√
((j − 1)·hh)

2 + ((i − 1)·he)
2

V((j − 1)·hh, (i − 1)·he)
+

he

2Vd
+

√
(ckx − dx)

2 +
(

cky − dy

)2

Vh

(32)

3.4.3. The Length and Time of a Point-To-Point Route

The path and time between the next two compartments are determined as shown in
Figure 7. Due to the middle plane, it is sufficient to determine the distance between the
two compartments by creating a Pythagorean theorem. It is enough to calculate the speed
for the time and by dividing the distance we obtain the time. In addition, the camera can
rotate if necessary (180◦). This can be determined by subtracting the position of the shelf
system of the two compartments and then taking the absolute value. This is 0 if the 2 cells
are in the same shelving system and 1 if the two compartments are in a separate shelving
system. If the rotation time is multiplied by this value, it will either rotate or not as per our
need. At the end, the time of photography is added.

Figure 7. Compartment to compartment. The green circle is the start position of the examination; the
blue line is the route of drone; the red square is the center of the corridor (reference point). The red
circles are referece points. (source: self-edited figure).

Let us take (kviv jv), (kv+1iv+1 jv+1) as the two points. Their distance is:

d((kviv jv), (kviv+1 jv+1)) =

√
((jv − jv+1)·hh)

2 + ((iv − iv+1)·he)
2 (33)

Time spent on this route by the drone:

tP1((kviv jv), (kv+1iv+1 jv+1)) =

=

√
((jv − jv+1)·hh)

2 + ((iv − iv+1)·he)
2

V((jv − jv+1)·hh, (iv − iv+1)·he)
+

abs(kv − kv+1)·180
Vr

+ TPH

(34)

where
abs(k1 − k2)·180

Vr
(35)

is the rotation of the camera.
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3.4.4. From One Compartment to Another Compartment

When considering change from one compartment in one row to another compartment
in another row, we used the following steps (See Figure 8):

• Step 1—first, the drone moves to the starting point of the shelving system;
• Step 2—then, it moves to the starting point of the next shelving system;
• Step 3—then, it moves to the starting compartment of the queue.

Figure 8. From compartment to compartment to another row. The green circle is the start position
of the examination; the blue line is the route of drone; the red square is the center of the corridor
(reference point). The red circles are referece points.

The situation is similar if the change is made at the other end of the shelving system.
Let

a(j) =
{

j − 1, i f C is the point under test
n − j, i f C is the point under test

(36)

TRk1
(i1,j1),Rk2

(i2,j2)(C) = tRk1
,Ck1

+ tCk1
,Ck2

+ tCk1
,Rk1

=

=
dRk1

,Ck1
V(a(j1)·hh ,(i1−1)·he)

+
90
Vr

+
hc
2 +abs(k1−k2)·(hw+hd)+

hc
2

vh
+

+
dCk2

,Rk2

V(a(j1)·hh, (i2 − 1)·he)
=

=
dRk1

,Ck1

V(a(j1)·hh, (i1 − 1)·he)
+

hc + abs(k1 − k2)·(hw + hd)

vh
+

+
dCk2

,Rk2
V(a(j2)·hh ,(i2−1)·he)

+
90
Vr

+ TPH

(37)

Similar to the optimal path, calculate the

TRk1
(i1,j1),Rk2

(i2,j2)
(
C
)
= tRk1

,Ck1
+ tCk1

,Ck2
+ tCk1

,Rk1
(38)

Let

tRk1
(i1,j1),Rk2

(i2,j2) = min
(

TRk1
(i1,j1),Rk2

(i2,j2)(C), TRk1
(i1,j1),Rk2

(i2,j2)
(
C
))

(39)

Taking into account that there may be two consecutive compartments to being exam-
ined within a row or between different rows, the function tP is composed of two parts, of
which only the current one is always included. If there are two opposing shelving systems,
then if kv+1 = kv + 1 and mod(kv, 2) = 1, or kv = kv+1 + 1 and mod(kv, 2) = 0, or kv+1 = kv,
then

tP((kviv jv), (kv+1iv+1 jv+1)) = tP1((kviv jv), (kv+1iv+1 jv+1)) (40)

otherwise
tP((kviv jv), (kv+1iv+1 jv+1)) = tRkv (iv ,jv),Rkv+1

(iv+1,jv+1)
(41)
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Execution time of the Śu sub-sequence (without docking):

tP
(
Śu
)
=

q−1

∑
v=p

tP((kviv jv), (kv+1iv+1 jv+1)). (42)

Tf
(
Śu
)
= tT,Rk(i,j) + tP

(
Śu
)
+ tRk(i,j),T (43)

3.5. The Constraints

Based on the above, the sum of the compartment variables is exactly the sum of the
number of cells from 0 to the number of cells −1.

Two conditions must be provided in the model’s conditional framework:

1. Each number of compartments must be different;
2. The row numbers must take all values starting from 0 up to the total number of cells

(i.e., the row numbers must increase one by one);

This can be specified by two group conditions. The value of the variable cells must
not be negative (since it is an entry sequence); therefore,

0 ≤ xkij. (44)

The value of xkij can be clearly bounded from above:

xkij ≤ r·m·n. (45)

Each number must be different if you are looking at different compartments:

k, k1 ∈ [1, . . . , r], i, i1 ∈ [1, . . . , m], j, j1 ∈ [1, . . . , n]. (46)

If (i.e., two compartments are different), then

1000k1 + 100i1 + j1 �= 1000k2 + 100i2 + j2,

xk1,i1,j1 �= xk2,i2,j2 .
(47)

In summary, the mathematical model

k, k1 ∈ [1, . . . , r], i, i1 ∈ [1, . . . , m], j, j1 ∈ [1, . . . , n]
0 ≤ xkij ≤ r·m·n

xkij �= xk2,i2,j2 i f 1000k + 100i + j �= 1000k1 + 100i1 + j1,

T =
p
∑

u=1
Tf
(
Śu
) → min!

(48)

4. The Solution Method

The computational model can be further simplified by

0 ≤ xkij ≤ r·m·n (49)

The constraint can be replaced by the

0 ≤ xkij ≤ mtp· r·m·n (50)

(e.g., may be mtp = 100), and use the following routine as the nonlinear constraint. This is
important for the genetic algorithm. Then, it is sufficient that all values are different.
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4.1. The Objective Generation Algorithm (OGA)

Step 1.
Construct a random set of

S = S((k1i1 j1), (k2i2 j2), . . . , (k2mni2mnj2mn)) (51)

compartments where (
kl1 il1 jl1

) �= (
kl2 il2 jl2

)
, if l1 �= l2. (52)

Each compartment should be tested once and only once.
Step 2.
Let u = 0, Sv = ∅,
and g = (k1i1 j1) the first item in the series (if any).
Step 3.
If there are no more items in the series, continue from Step 5.
If there are, then

u := u + 1
Śu = ∅

(53)

Step 4.
Add element g of the series to the subsequence.

Śu := Śu + {g} (54)

Calculate the value of
Tf
(
Śu
)

(55)

If
Tw − Tf

(
Śu
)
> Δt (56)

take the next element g and continue from Step 4.
If

Tw − Tf
(
Śu
) ≤ 0 (57)

i.e., the drone would not return with the addition of the new element, then

Śu := Śu − {g}
T := T + Tf

(
Śu
)

Sv := Sv +
{

D, Śu
} (58)

Then proceed to Step 3.
If

0 ≤ Tw − Tf
(
Śu
) ≤ Δt (59)

Then take the next item g and continue from Step 3.

T := T + Tf
(
Śu
)

Sv := Sv +
{

D, Śu
} (60)

Step 5.
Let

Sv := Sv + {D} (61)

At this point, the task list was completed with the charges, and the total processing
time T was obtained.

4.2. Determining the Optimal Route

We used an evolutionary algorithm for the solution.
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Step 1. Set the initial parameters (population number, number of steps, etc.).
The formation of the initial population, i.e., each chromosome, will be one

S = S((k1i1 j1), (k2i2 j2), . . . , (k2mni2mnj2mn)) (62)

series.
Step 2.
Run the algorithm by determining the fitness value for each individual in the popula-

tion using the Target Function Generation Algorithm (OGA). This should also be built into
factory algorithms.

Step 3.
After stopping the algorithm, we evaluate the result and program the obtained optimal

solution (Sv) into the drone together with the necessary camera rotations and photography.

5. Results

The model and procedure described above leads to the following results.
The first result is in an enclosed double-bay warehouse that does not have a satellite

positioning system nor an IoT positioning system; the inventory can be checked automat-
ically using a mid-range drone. It follows that the above model generally handles the
movement of the drone in the aisles of a double-bay warehouse between the charging
station (dock) and the corresponding starting compartment, and the last compartment and
the dock. The outlined procedure provides a near-optimal route-planning method that can
scan as many compartments as possible relative to the operating time of the drone and
ensures a safe return to the starting point. Since the warehouse solution does not require
a complete optimal solution, a well-tested OGA device can clearly be used.

The results can be divided into two parts: in the first part, a route-optimizing model
was created. The characteristics of the warehouse were considered, such as the unified
double-shelf system structure and the resolution of a compartment up to three parts. The
drone was able to take photos from the middle of the aisle, so there was no need to move
out of the bisecting plane towards the shelving systems. This was a simplifying condition
discovered during the study in the logistics decenter. The drone was not responsible for
finding the QR codes associated with the compartments, nor was it responsible for evalu-
ating whether there were any goods placed in it. All these tasks can be easily performed
by employing software to evaluate the photos, which could further accelerate the process.
Another possible option is to take a picture of two opposite compartments in a row by
rotating the camera, provided that it happens in a shorter time. This is influenced by
specific values of the parameters. The first result obtained is the route optimization; this
should be the procedure carried out prior to the launch of the drone.

The second result is on-the-fly control: after launching the drone from the dock, it
receives instructions where to go, how to get there, and what activities to perform there
(if camera rotation and photography are needed). The drone is instructed in real time
for the next task for each position, while (of course) internal energy level monitoring is
also performed.

6. Discussion

During our research of the literature, we came across several solutions related to
optimal road planning. Most of them solve the problem with the help of neural networks. In
their paper, Andrey V. Gavrilov and Artem Lenskiy propose a model for a new biologically
inspired mobile robot navigation system. The novelty of their work is the combination
of short-term memory and online neural-network learning using the event history stored
in this memory. The neural network is trained with a modified error backpropagation
algorithm that uses the principle of reward and punishment when interacting with the
environment [18]. The robot navigation mechanism is one of the most challenging research
topics in mobile robots, which requires the robot to find the right path and travel from
its current position to the target position without encountering obstacles. In their paper,
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Cheng and Cheng use the intelligent method of reinforcement learning to find a solution to
the abovementioned problem. It considers the distances detected by a laser beam and the
relative movement angle as the input of the neural network model, and the action posture
of the robot as the output. This neural network model is trained by a deep Q-learning
network (DQN) algorithm through positive and negative feedback rewards defined by
task-specific learning goals. In this sense, the trained model helps the robot determine the
appropriate steps to take in each state to safely reach the target without manual intervention.
According to the results achieved on the simulation platform, the trained neural network
model successfully moves the robot from a random starting point to a random destination,
which proves the effectiveness of the DQN algorithm in the field of robotic navigation. [19]
These models could also be applied to our problem, but it should be considered that the
drone must not move in a plane, but in space. This would greatly complicate the solution.
In fact, the solution we provide provides a simpler, more efficient solution. In particular,
the application of neural networks would have required many examples, which we did not
have at our disposal.

Another task from the research was to create an image processing and inventory
analysis and a recording software that can be used for the task. The first task in Image
Processing is to recognize the QR code itself and to identify the specific compartment.
The identification of the compartment is provided by the routing model, and the route
itself must be known to the processing application. Hence, automatically received photos
are taken according to the route activities. The shelf system and the compartment where
the photo was taken can be assigned to each photo by the application. This is a simple
synchronization task.

The processing of the images is not very complicated, as most QR code readers are
able to validate, and of course, interpret the data in the code. However, the fact that
a compartment may be divided into several sub-compartments in a manner not previously
known, so that several QR codes may have to be recognized, complicates the situation. It
is also important that the QR code of another compartment should not be included in the
photo and should not be handled by the recognizing application either. This can be easily
prevented, as the shelf system is uniformly colored in most logistics centers—there were
blue columns and red shelves in the warehouse we examined. With the help of these colors,
the cells can be delimited, and the division can be determined based on the expected size
by linear image processing. In other words, based on the image, one can see how many
QR codes to search for, which can be easily carried out with the QR code search procedure.
(Focusing was included into the shooting time of the drone).

The final processing application checks whether the actual unit load in the given
compartment meets the requirements based on the position and QR code and indicates the
compliance or deviations to the warehouse operator accordingly.

7. Conclusions

In this paper, we presented a model of a drone-driven inventory control solution.
As a result of the method and with the help of the implemented application, the time of
inventory testing can be greatly reduced, and the task can be performed with the help
of an average human resource. A task that had once taken several days to complete can
now be completed in about two days with this solution. In addition, the platform solution
currently used, which endangers personal safety, can be avoided. It is obvious that in the
case of the entire warehouse, the use of several drones can further reduce this time, and
erroneous picking due to human errors can be eliminated by frequent inspections, so that
the use of drones can also reduce the resulting losses.

Determining location based on QR code recognition is not a viable option, and one
of the best known and most widely used methods is the Viola–Jones object detection
framework. The mentioned framework provides an efficient way to focus the detection
process on specific parts of the image. Based on our solution design, the initial state already
shows a possible solution, and the intermediate states will always be possible solutions and
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a good GA procedure is sufficient to apply a parameter reduction solution. In reality, there
are many “good” paths to choose from. However, our tests show that the path depends
significantly on the relationship between the underlying data.

At the beginning of our article, a full parameter exploration was performed. The
range of data was defined with the help of practitioners, and then the basic collected data
were grouped according to their role. Once the required parameters had been selected,
it was important to record their dimensions. Next, we created a parametric model of
the warehouse and the factory parameters of the drone to be used, improved with the
data we had found. We created a manageable, simplified motion and speed. The next
step was to develop a practical positioning strategy. Then, we created a mathematical
model of the operation and assigned the theorems and determined environment needed
for optimization.
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Abstract: This paper studies a single-machine problem with resource allocation (RA) and deterio-
rating effect (DE). Under group technology (GT) and limited resource availability, our goal is to
determine the schedules of groups and jobs within each group such that the total completion time
is minimized. For three special cases, polynomial time algorithms are given. For a general case, a
heuristic, a tabu search algorithm, and an exact (i.e., branch-and-bound) algorithm are proposed to
solve this problem.
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1. Introduction

With the development of economy, the research on the group technology (denoted by
GT) problem involves a variety of fields, especially in the supply chain management,
information processing, computer systems, and other industries (see Ham et al. [1],
Wang et al. [2]). Yang [3] and Bai et al. [4] investigated single-machine GT scheduling
with learning and deterioration effects. Lu et al. [5] studied the single-machine problem
with GT and time-dependent processing times (i.e., time-dependent scheduling), i.e., the
processing time of jobs and setup time of groups are time-dependent. For the makespan
minimization subject to release dates, they presented a polynomial time algorithm. Wang
et al. [6] examined the single-machine problem with GT and shortening job processing
times. For the makespan minimization with ready times, they demonstrated that some
special cases were optimally solved in polynomial time. Liu et al. [7] studied the single-
machine problem with GT and deterioration effects (denoted by DE), i.e., the processing
time of jobs are time-dependent and setup time of groups are constants. For the makespan
minimization with ready times, they proposed a branch-and-bound algorithm. Zhu et al. [8]
discussed the single-machine problem with GT, resource allocation (denoted by RA), and
learning effects. For the weighted sum minimization of makespan and total resource con-
sumption, Zhu et al. [8] proved that the problem remains polynomially solvable. In 2018,
Zhang et al. [9] discussed the single-machine problem with GT and position-dependent
processing times. In 2020, Liao et al. [10] considered the two-competing scheduling prob-
lem with GT and learning effects. In 2021, Lv et al. [11] addressed single-machine slack
due date assignment problems with GT, RA, and learning effects. In 2021, Xu et al. [12]
investigated the single-machine problem with GT, nonperiodical maintenance, and DE.
For the makespan minimization, they proposed some heuristic algorithms.

Recently, Oron [13] and Li and Wang [14] considered a single-machine scheduling
model combining RA and DE. Later, Wang et al. [15] discussed a scheduling model
combining GT, RA, and DE. Under the single-machine setting, the objective is to minimize
the weighted sum of makespan and total resource consumption. Wang et al. [15] showed
that some special cases remain polynomially solvable. In 2020, Liang et al. [16] considered
the same model as Wang et al. [15] for the general case; they provided heuristic and
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branch-and-bound algorithms. In 2019, Wang and Liang [17] studied the single-machine
problem with GT, RA, and DE concurrently. For the makespan minimization under the
constraint that total resource consumption cannot exceed an upper bound, they proved
that some special cases remain polynomially solvable. For the general case, they provided
heuristic and branch-and-bound algorithms.

This paper conducts a further study on the problem with GT, RA, and DE, but the
objective cost is to minimize the total completion time under the constraint that total
resource consumption cannot exceed an upper bound. For three special cases, polynomial
algorithms are given. For the general case, upper and lower bounds of the problem are
given, then the branch-and-bound algorithm is proposed. In addition, a tabu search
algorithm and numerical simulation analysis are given.

The rest of this paper is organized as follows: Section 2 presents a formulation of
the problem. Section 3 gives some basic properties. Section 4 studies some special cases.
Section 5 considers the general case, and we propose some algorithms to solve this problem.
Section 6 presents the numerical simulations. The conclusions are given in Section 7.

2. Problem Statement

The following notation (see Table 1) will be used throughout this paper. There are
ñ independent jobs. In order to exploit GT in production (see Ji et al. [18]), all the jobs
are classified into m̃ (m̃ ≥ 2) groups (i.e., Ω1, Ω2, . . . , Ωm̃) in advance according to their
processing similarities. All the jobs in the same group must be processed in succession on
a single machine. Assume that the single machine and all jobs are available at time zero.
Let J̆hj be the job j in group Ωh, and the number of jobs in group Ωh is ñh, i.e., ∑m̃

h=1 ñh = ñ.
The actual processing time of J̆hj is:

pApt
hj =

(
ςhj

r̃hj

)η

+ θt, (1)

where ςhj (resp. r̃hj ≥ 0) is a workload (respective amount of resource) of J̆hj, η > 0 is a
constant, θ ≥ 0 is a common deterioration rate, and t ≥ 0 is its starting time. The actual
setup time of Ωh is:

sApt
h =

(
oh
r̃h

)η

+ μt, (2)

where oh (respectively, r̃h) is a workload (amount of resource) of Ωh, and μ ≥ 0 is a
common deterioration rate. Obviously, the parameters ñ, m̃, ςhj, ñh, oh, η, θ, and μ are given
in advance, and the resource allocation r̃hj and r̃h are decision variables. Our goal is to find
the optimal group schedule π̄∗

Ω, job schedule π̄∗
h (h = 1, · · · , m̃) within Ωh, and resource

allocation R∗ (i.e., r̃hj and r̃h) such that a total completion time,

t̂ct(π̄Ω, π̄h|h = 1, · · · , m̃, R) =
m̃

∑
h=1

ñh

∑
j=1

C̄hj (3)

is minimized subject to ∑m̃
h=1 ∑ñh

j=1 r̃hj ≤ Ṽ, ∑m̃
h=1 r̃h ≤ Ũ, where Ṽ and Ũ are given constants

(there is not any constraint between the r̃hj variables and the r̃h variables, and ∑m̃
h=1 ∑ñh

j=1 r̃hj

and ∑m̃
h=1 r̃h are independent from each other). By using the three-field notation (see

Gawiejnowicz [19]), the problem can be denoted by
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1

∣∣∣∣∣pApt
hj =

(
ςhj

r̃hj

)η

+ θt, sApt
h =

(
oh
r̃h

)η

+ μt,
m̃

∑
h=1

ñh

∑
j=1

r̃hj ≤ Ṽ,
m̃

∑
h=1

r̃h ≤ Ũ, GT

∣∣∣∣∣t̂ct,

where 1 denotes the single machine, the middle field is the job and group characteristics,
and t̂ct is the objective function (this problem is abbreviated as Pt̂ct) . Wang et al. [15] and
Liang et al. [16] considered the problem

1

∣∣∣∣∣pApt
hj =

(
ςhj

r̃hj

)η

+ θt, sApt
h =

(
oh
r̃h

)η

+ μt, GT

∣∣∣∣∣α1 × Cmax + α2

m̃

∑
h=1

ñh

∑
j=1

r̃hj + α3

m̃

∑
h=1

r̃h,

where αl ≥ 0 (l = 1, 2, 3) is a given constant and Cmax = max{C̄hj|h = 1, . . . , m̃; j =
1, . . . , ñh}. Wang and Liang [17] studied the problem

1

∣∣∣∣∣pApt
hj =

(
ςhj

r̃hj

)η

+ θt, sApt
h =

(
oh
r̃h

)η

+ μt,
m̃

∑
h=1

ñh

∑
j=1

r̃hj ≤ Ṽ,
m̃

∑
h=1

r̃h ≤ Ũ, GT

∣∣∣∣∣Cmax.

Table 1. Symbols.

Notation Meaning

ñ (resp. m̃) number of jobs (respective groups)
Ωh group h
J̆hj job j at group Ωh
ñh number of jobs belonging to Ωh, i.e., ∑m̃

h=1 ñh = n̄
ςhj workload of J̆hj (a positive value which represents job parameter)
r̃hj amount of resource assigned to J̆hj

pApt
hj

actual processing time of J̆hj

oh workload of Ωh (a positive value which represents group parameter),
h = 1, 2, . . . , m̃,

r̃h amount of resource allocated to Ωh

sApt
h

actual setup time of Ωh
C̄hj completion time of J̆hj
[j] jth position in a schedule

t̂ct = ∑m̃
i=1 ∑ñh

j=1 C̄ij total completion time

π̄Ω group schedule
π̄h job schedule in Ωh
Π schedule of jobs and groups, i.e., Π = (π̄Ω, π̄h|h = 1, . . . , m̃)

3. Basic Results

For a given schedule Π, stemming from Wang et al. [15] and Liang et al. [16], by a
mathematical induction, we have
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C̄[1][1] =

(
o[1]
r̃[1]

)η

+

(
ς[1][1]

r̃[1][1]

)η

+ θ

(
o[1]
r̃[1]

)η

=

(
ς[1][1]

r̃[1][1]

)η

+ (1 + θ)

(
o[1]
r̃[1]

)η

,

C̄[1][2] = C̄[1][1] +

(
ς[1][2]

r̃[1][2]

)η

+ θC̄[1][1]

=

(
ς[1][2]

r̃[1][2]

)η

+ (1 + θ)

(
ς[1][1]

r̃[1][1]

)η

+ (1 + θ)2

(
o[1]
r̃[1]

)η

,

...

C̄[1][ñ1]
=

ñ[1]

∑
j=1

(1 + θ)
ñ[1]−j

(
ς[1][j]

r̃[1][j]

)η

+ (1 + θ)ñ[1]

(
o[1]
r̃[1]

)η

,

C̄[2][1] = C̄[1][ñ1]
+

(
o[2]
r̃[2]

)η

+ μC̄[1][ñ1]
+

(
ς[2][1]

r̃[2][1]

)η

+ θ

(
C̄[1][ñ1]

+

(
o[2]
r̃[2]

)η

+ μC̄[1][ñ1]

)

=

ñ[1]

∑
j=1

(1 + μ)(1 + θ)

ñ[1]−j+1 (
ς[1][j]

r̃[1][j]

)η

+ (1 + μ)(1 + θ)ñ[1]+1

(
o[1]
r̃[1]

)η

+(1 + θ)

(
o[2]
r̃[2]

)η

+

(
ς[2][1]

r̃[2][1]

)η

,

C̄[2][2] = C̄[2][1] +

(
ς[2][2]

r̃[2][2]

)η

+ θC̄[2][1]

=

ñ[1]

∑
j=1

(1 + μ)(1 + θ)
ñ[1]−j+2

(
ς[1][j]

r̃[1][j]

)η

+ (1 + μ)(1 + θ)ñ[1]+2

(
o[1]
r̃[1]

)η

+(1 + θ)2

(
o[2]
r̃[2]

)η

+ (1 + θ)

(
ς[2][1]

r̃[2][1]

)η

+

(
ς[2][2]

r̃[2][2]

)η

,

...

C̄[2][ñ2] =

ñ[1]

∑
j=1

(1 + μ)(1 + θ)ñ[1]+ñ[2]−j

(
ς[1][j]

r̃[1][j]

)η

+ (1 + μ)(1 + θ)ñ[1]+ñ[2]

(
o[1]
r̃[1]

)η

+

ñ[2]

∑
j=1

(1 + θ)ñ[2]−j

(
ς[2][j]

r̃[2][j]

)η

+ (1 + θ)ñ[2]

(
o[2]
r̃[2]

)η

,

...

C̄[m̃][ñm ] =
m̃

∑
h=1

ñ[h]

∑
j=1

(1 + μ)m̃−h(1 + θ)∑m̃
l=h ñ[l]−j

(
ς[h][j]

r̃[h][j]

)η

+
m̃

∑
h=1

(1 + μ)m̃−h(1 + θ)∑m̃
l=h ñ[l]

(
o[h]
r̃[h]

)η

.

According to the above equations, we have
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t̂ct = ∑m̃
i=1 ∑ñh

j=1 C̄[i][j]

=
m̃
∑

h=1

ñh
∑

j=1

⎡⎣ñ[h]

∑
l=j

(1 + θ)l−j +
m̃
∑

k=h+1
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎤⎦( ς[i][j]
r̃[i][j]

)η

+
m̃
∑

h=1

⎡⎣ m̃
∑

k=h
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎤⎦( o[h]
r̃[h]

)η
.

(4)

Lemma 1. For a given schedule Π of Pt̂ct, the optimal resource allocation R∗(π̄Ω, π̄h|h = 1, · · · , m̃) is

r̃∗[h][j] =

⎡⎣ñ[h]

∑
l=j

(1 + θ)l−j +
m̃
∑

k=h+1
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

(ς[h][j])
η

⎤⎦
1

η+1

m̃
∑

h=1

ñh
∑

j=1

⎡⎣ñ[h]

∑
l=j

(1 + θ)l−j +
m̃
∑

k=h+1
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

(ς[h][j])
η

⎤⎦
1

η+1
× Ṽ (5)

for h = 1, · · · , m̃; j = 1, · · · , ñi, and

r̃∗[h] =

⎡⎣ m̃
∑

k=h
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−ñ[k]+

k
∑

ξ=h
ñ[ξ]

(o[h])
η

⎤⎦
1

η+1

m̃
∑

h=1

⎡⎣ m̃
∑

k=h
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−ñ[k]+

k
∑

ξ=h
ñ[ξ]

(o[h])
η

⎤⎦
1

η+1
× Ũ (6)

for h = 1, · · · , m̃.

Proof. Obviously, Equation (4) is a convex function with respect to r̃[h][j] and r̃[h]. It is obvi-

ous that in the optimal solution all resources should be consumed, i.e., ∑m̃
h=1 ∑ñh

j=1r̃[h][j] −
Ṽ = 0 and ∑m̃

h=1 r̃[h] − Ũ = 0. As in Wang and Liang [17], Shabtay and Kaspi [20], and
Wang and Wang [21], for a given schedule, the optimal resource allocation of the problem
Pt̂ct can be solved by the Lagrange multiplier method. The Lagrangian function is

Q(κ, υ, R) = ∑m̃
h=1 ∑ñh

j=1 C̄[h][j] + κ
(

∑m̃
h=1 ∑ñh

j=1r̃[h][j] − Ṽ
)
+ υ

(
∑m̃

h=1 r̃[h] − Ũ
)

=
m̃
∑

h=1

ñh
∑

j=1

⎡⎣ñ[h]

∑
l=j

(1 + θ)l−j +
m̃
∑

k=h+1
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎤⎦( ς[h][j]
r̃[h][j]

)η

+
m̃
∑

h=1

⎡⎣ m̃
∑

k=h
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎤⎦( o[h]
r̃[h]

)η

+ κ
(

∑m̃
h=1 ∑ñ

j=1r̃[h][j] − Ṽ
)
+ υ

(
∑m̃

h=1 r̃[h] − Ũ
)

,

(7)

where κ ≥ 0 and υ ≥ 0 are the Lagrangian multipliers. Differentiating Equation (7) with
respect to r̃[h][j] and κ, then

∂Q(κ,υ,R)
∂r̃[i][j]

= δ − η

⎡⎣ ñ[i]

∑
l=j

(1 + θ)l−j +
m̃
∑

k=h+1
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎤⎦
× (ζ[h][j])

η

(r̃[h][j])
η+1

= 0

(8)
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and
∂Q(κ, υ, R)

∂κ
=

m̃

∑
h=1

ñh

∑
j=1

r̃[h][j] − Ṽ = 0. (9)

By using Equations (8) and (9), it follows that

r̃[h][j] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
η

⎛⎝ñ[h]

∑
l=j

(1 + θ)l−j +
m̃
∑

k=h+1
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎞⎠
κ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1
(η+1)

×
(

ζ[h][j]

) η
η+1 (10)

and

κ
1

η+1 =

∑m̃
h=1 ∑ñh

j=1

⎡⎣η

⎛⎝ñ[h]

∑
l=j

(1 + θ)l−j +
m̃
∑

k=h+1
(1 + μ)k−i

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎞⎠(
ζ[h][j]

)η

⎤⎦
1

η+1

Ṽ
. (11)

From Equations (10) and (11), then

r̃∗[h][j] =

⎡⎣ñ[h]

∑
l=j

(1 + θ)l−j +
m̃
∑

k=h+1
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

(ς[h][j])
η

⎤⎦
1

η+1

m̃
∑

h=1

ñh
∑

j=1

⎡⎣ñ[h]

∑
l=j

(1 + θ)l−j +
m̃
∑

k=h+1
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

(ς[h][j])
η

⎤⎦
1

η+1
× Ṽ.

Similarly, Equation (6) can be obtained.

By Lemma 1, substituting Equations (5) and (6) into t̂ct = ∑m̃
h=1 ∑ñh

j=1 C̄hj, we have

t̂ct =
m̃
∑

h=1

ñh
∑

j=1

⎡⎣ñ[h]

∑
l=j

(1 + θ)l−j +
m̃
∑

k=h+1
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎤⎦( ς[h][j]
r̃[h][j]

)η

+
m̃
∑

h=1

⎡⎣ m̃
∑

k=h
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎤⎦( o[h]
r̃[h]

)η

= Ṽ−η

⎛⎜⎜⎝ m̃
∑

h=1

ñh
∑

j=1

⎛⎝ñ[h]

∑
l=j

(1 + θ)l−j +
m̃
∑

k=h+1
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎞⎠
1

η+1

(ς[h][j])
η

η+1

⎞⎟⎟⎠
η+1

+Ũ−η

⎛⎜⎜⎝ m̃
∑

h=1

⎛⎝ m̃
∑

k=h
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎞⎠
1

η+1

(o[h])
η

η+1

⎞⎟⎟⎠
η+1

.

(12)

Lemma 2. For Pt̂ct, the optimal job schedule π̄∗
h within group Ωh(h = 1, · · · , m̃) is the non-

decreasing order of ζh〈j〉, i.e., ζh〈1〉 ≤ ζh〈2〉 ≤ · · · ζh〈ñh〉.

Proof. From Equation (12), for group Ω[h], the objective cost is:

ñh

∑
j=1

⎛⎝ñ[h]

∑
l=j

(1 + θ)l−j +
m̃

∑
k=h+1

(1 + μ)k−h
ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎞⎠
1

η+1

(ς[h][j])
η

η+1 =
ñh

∑
j=1

x[h][j]y[h][j],
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where x[h][j] =

⎛⎝ñ[h]

∑
l=j

(1 + θ)l−j +
m̃
∑

k=h+1
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎞⎠
1

η+1

and

y[h][j] = (ς[h][j])
η

η+1 . The term x[h][j] is a monotonically decreasing function of j, by the HLP

rule (Hardy et al. [22], i.e., the term
ñh
∑

j=1
x[h][j]y[h][j] is minimized if sequence x[h][1], x[h][2], . . . ,

x[h][ñh ]
is ordered non-decreasingly and sequence y[h][1], y[h][2], . . . , y[h][ñh ]

is ordered non-
increasingly or vice versa), for the group Ω[h](h = 1, · · · , m̃), if ζhj is a non-decreasing
order, i.e., ζh〈1〉 ≤ ζh〈2〉 ≤ · · · ζh〈ñh〉, the result can be obtained.

4. Special Cases

By Lemma 2, for group Ωh, the optimal schedule π̄∗
h is the non-decreasing order of

ζh〈j〉, i.e., ζh〈1〉 ≤ ζh〈2〉 ≤ · · · ζh〈ñh〉. From Equation (12), let

X = Ũ−η

⎛⎜⎜⎝ m̃

∑
h=1

⎛⎝ m̃

∑
k=h

(1 + μ)k−h
ñ[k]

∑
l=1

(1 + θ)
l−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎞⎠
1

η+1

(o[h])
η

η+1

⎞⎟⎟⎠
η+1

and

Y = Ṽ−η

⎛⎜⎜⎝ m̃

∑
h=1

ñh

∑
j=1

⎛⎝ñ[h]

∑
l=j

(1 + θ)l−j +
m̃

∑
k=h+1

(1 + μ)k−h
ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎞⎠
1

η+1

(ς[h][j])
η

η+1

⎞⎟⎟⎠
η+1

.

In this section, we study some special cases (i.e., the cases of parameters ςhj, oh, and
ñh have some relationship, then X (Y) is minimized or a constant) which can be solved
in polynomial time. The special cases stemmingfrom the parameters ςhj, oh, and ñh have
some relationship.

4.1. Case 1

If oh = o and ñh = ñ
m̃ = n̈ (h = 1, · · · , m̃), from Equation (12), it follows that

Ũ−η

⎛⎜⎜⎝ m̃

∑
h=1

⎛⎝ m̃

∑
k=h

(1 + μ)k−h
ñ[k]

∑
l=1

(1 + θ)
l−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎞⎠
1

η+1

(o[h])
η

η+1

⎞⎟⎟⎠
η+1

= Ũ−ηoη

⎛⎝ m̃

∑
h=1

(
m̃

∑
k=h

(1 + μ)k−h
n̈

∑
l=1

(1 + θ)l+(k−h)n̈

) 1
η+1

⎞⎠η+1

is a constant (i.e., Ũ, o, η, μ, θ, n̈, and m̃ are given constants, and this term is independent of
these parameters). Let

Yhρ =

{
1, if Ωh is assigned to ρth position
0, otherwise

(13)

and

Θhρ =
n̈

∑
j=1

(
n̈

∑
l=j

(1 + θ)l−j +
m̃

∑
k=ρ+1

(1 + μ)k−ρ
n̈

∑
l=1

(1 + θ)l−j+(k−ρ)n̈

) 1
η+1

(ςh〈j〉)
η

η+1 . (14)
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The optimal group schedule can be translated into the following assignment problem:

Min
m̃

∑
h=1

m̃

∑
ρ=1

ΘhρYhρ (15)

s.t.
m̃

∑
ρ=1

Yhρ = 1, h = 1, . . . , m̃, (16)

m̃

∑
h=1

Yhρ = 1, ρ = 1, . . . , m̃, (17)

Yhρ = 0 or 1, h, ρ = 1, . . . , m̃. (18)

Thus, for the special case oh = o and ñh = ñ
m̃ = n̈ (h = 1, · · · , m̃), the problem Pt̂ct can

be solved by:

Theorem 1. If oh = o and ñh = ñ
m̃ = n̈ (h = 1, · · · , m̃), Pt̂ct is solvable by Algorithm 1 in

O
(
ñ3) time.

Algorithm 1: Case 1
Step 1. For group Ωh (h = 1, . . . , m̃), optimal job schedule π̄∗

h can be determined
by Lemma 2, i.e., ςh〈1〉 ≤ ςh〈2〉 ≤ · · · ςh〈ñh〉.
Step 2. Calculate Θhρ (h, ρ = 1, . . . , m̃), and determine optimal group schedule π̄∗

Ω
by using Equations (15)–(18).
Step 3. Optimal resource allocations r̃∗hj and r̃∗h are calculated by Equations (5)
and (6) (see Lemma 1).

Proof. Time of Step 1 is O(∑m
h=1(ñh log ñh)) ≤ O(ñ log ñ). Steps 3 needs O(ñ) time. For an

assignment problem, Step 2 needs O
(
m̃3) ≤ O

(
ñ3) time. Thus, the total time is O

(
ñ3).

4.2. Case 2

If ςhj = ς and ñh = ñ
m̃ = n̈, h = 1, · · · , m̃, j = 1, 2, · · · , ñh, we have:

Lemma 3. For Pt̂ct, if ςhj = ς and ñh = ñ
m̃ = n̈ (h = 1, · · · , m̃; j = 1, · · · , ñh), then the optimal

group schedule π̄∗
Ω is the non-decreasing order of oh, i.e., o(1) ≤ o(2) ≤ . . . ≤ o(m̃).

Proof. From Equation (12), if ςhj = ς and ñh = ñ
m̃ = n̈,

Ṽ−η

⎛⎜⎜⎝ m̃

∑
h=1

ñh

∑
j=1

⎛⎝ñ[h]

∑
l=j

(1 + θ)l−j +
m̃

∑
k=h+1

(1 + μ)k−h
ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎞⎠
1

η+1

(ς[h][j])
η

η+1

⎞⎟⎟⎠
η+1

= Ṽ−ηςη

⎛⎝ m̃

∑
h=1

n̈

∑
j=1

(
n̈

∑
l=j

(1 + θ)l−j +
m̃

∑
k=h+1

(1 + μ)k−h
n̈

∑
l=1

(1 + θ)l−j+(k−h)n̈

) 1
η+1

⎞⎠η+1

is a constant (i.e., Ṽ, ς, η, μ, θ, n̈, and m̃ are given constants, and this term is independent of
these parameters).

From Equation (12) and the above analysis, it can be proved that minimizing t̂ct is
equal to minimizing the following expression:

198



Mathematics 2022, 10, 2983

Ũ−η

⎛⎜⎜⎝ m̃
∑

h=1

⎛⎝ m̃
∑

k=h
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−ñ[k]+

k
∑

ξ=h
ñ[ξ]

⎞⎠
1

η+1

(o[h])
η

η+1

⎞⎟⎟⎠
η+1

= Ũ−η

⎛⎜⎜⎝ m̃
∑

h=1

⎛⎝ m̃
∑

k=h
(1 + μ)k−h n̈

∑
l=1

(1 + θ)
l−n̈+

k
∑

ξ=h
n̈
⎞⎠

1
η+1

(o[h])
η

η+1

⎞⎟⎟⎠
η+1

= Ũ−η

⎛⎝ m̃
∑

h=1

(
m̃
∑

k=h
(1 + μ)k−h n̈

∑
l=1

(1 + θ)l+(k−h)n̈
) 1

η+1

(o[h])
η

η+1

⎞⎠η+1

.

(19)

Similar to Lemma 2,
(

m̃
∑

k=h
(1 + μ)k−h n̈

∑
l=1

(1 + θ)l+(k−h)n̈
) 1

η+1

is a monotonically de-

creasing function of h, and by the HLP rule (Hardy et al. [22]), Equation (19) can be mini-
mized by arranging groups in the non-decreasing order of oh; this completes the proof.

Thus, for the special case ςhj = ς and ñh = ñ
m̃ = n̈ (i = 1, · · · , m̃; j = 1, · · · , ñh), the

problem Pt̂ct can be solved by:

Theorem 2. If ςhj = ς and ñh = ñ
m̃ = n̈ (h = 1, · · · , m̃), Pt̂ct is solvable by Algorithm 2 in

O(ñ log ñ) time.

Algorithm 2: Case 2
Step 1. For group Ωh (h = 1, · · · , m̃), optimal job schedule can be obtained in any
order.
Step 2. Optimal group schedule π∗

Ω is the non-decreasing order of oh.
Step 3. Optimal resource allocations r̃∗hj and r̃∗h are calculated by Equations (5)
and (6) (see Lemma 1).

4.3. Case 3

For any groups Ωx and Ωy, if ox ≤ oy implies ñx ≥ ñy, we have:

Lemma 4. For any groups Ωx and Ωy of Pt̂ct, if ox ≤ oy implies ñx ≥ ñy, the optimal group
schedule π̄∗

Ω is non-decreasing order of oh.

Proof. Similar to the proof of Liang et al. [6] (see Equation (12)).

For this special case, i.e., for any groups Ωx and Ωy, if ox ≤ oy implies ñx ≥ ñy, Pt̂ct
can be solved by:

Theorem 3. For any groups Ωx and Ωy, if ox ≤ oy implies ñx ≥ ñy, Pt̂ct is solvable by
Algorithm 3 in O(ñ log ñ) time.

Algorithm 3: Case 3
Step 1. For group Ωh (h = 1, . . . , m̃), the optimal job schedule π̄∗

h can be
determined by Lemma 2, i.e., ςh〈1〉 ≤ ςh〈2〉 ≤ · · · ςh〈ñh〉.
Step 2. The optimal group schedule π∗

Ω is the non-decreasing order of oh.
Step 3. The optimal resource allocations r̃∗hj and r̃∗h are calculated by Equations (5)
and (6) (see Lemma 1).
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5. A General Case

For Pt̂ct, we cannot find a polynomially optimal algorithm, and the complexity of
determining the optimal group schedule is still an open problem; we conjecture that this
problem is NP-hard. Thus, B&B (i.e., branch-and-bound, where we need a lower bound
and a upper bound) and heuristic algorithms might be a good way to solve Pt̂ct.

5.1. Upper Bound

For the t̂ct minimization, any feasible solution can be proposed as a upper bound
(denoted by UB). Similar to Section 3, the group sorting method can be used as the heuristic
and then this solution is improved by using the pairwise interchange method.

For a better comparison, an alternative or complementary to Algorithm 4 is proposed,

a tabu search (denoted by
︷︸︸︷

ts ) algorithm (i.e., Algorithm 5) can be used to solve Pt̂ct.

Algorithm 4: Upper Bound
Step 1. For group Ωh (h = 1, · · · , m̃), an internal optimal job schedule π∗

h
(Lemma 2) is: ςh〈1〉 ≤ ςh〈2〉 ≤ · · · ςh〈ñh〉.
Step 2. Groups are scheduled by the non-decreasing order of oh, i.e.,
o(1) ≤ o(2) ≤ . . . ≤ o(m̃).
Step 3. Groups are scheduled by the non-increasing order of ñh, i.e.,
ñ<<1>> ≥ ñ<<2>> ≥ · · · ≥ ñ<<m̃>>.
Step 4. From Steps 2 and 3, the smallest value t̂ct (see Equation (12)) is selected as
an original group schedule π̄Ω.
Step 5. Set k = 1.
Step 6. Set s = k + 1.
Step 7. The new group schedule can be obtained by exchanging the kth and sth
groups (denoted as π̄∗

Ω), and when t̂ct of π̄∗
Ω is smaller than π̄Ω, π̄Ω is updated by π̄∗

Ω.
Step 8. If s < m̃, then set s = s + 1, go to step 7.
Step 9. If k < m̃ − 1, then set k = k + 1, go to step 6; otherwise, STOP. Output the
group schedule π̄∗

Ω of the best group schedule found by the heuristic algorithm
and its objective value t̂ct.
Step 10. According to Lemma 1, calculate the resource allocation by
Equations (5) and (6).

Algorithm 5:
︷︸︸︷

ts
Step 1. For group Ωh(h = 1, · · · , m̃), an internal optimal job schedule π∗

h can be
obtained by Lemma 2, i.e., ςh〈1〉 ≤ ςh〈2〉 ≤ · · · ςh〈ñh〉.
Step 2. Let the tabu list be empty and the iteration number be zero.
Step 3. Choose an initial group schedule by the Steps 2–4 of Algorithm 4, calculate
its value t̂ct (see Equation (12)) and set the current group schedule as the best
solution π̄∗

Ω.
Step 4. Search the associated neighborhood of the current group schedule and
resolve if there is a group schedule π̄∗∗

Ω with the smallest objective value in
associated neighborhood and it is not in the tabu list, where the neighborhood is
generated by the random exchange of any two groups.
Step 5. If t̂ct(π̄∗∗

Ω ) < t̂ct(π̄∗
Ω), then let π̄∗

Ω= π̄∗∗
Ω . Update the tabu list and the

iteration number.
Step 6. If there is not a group schedule in associated neighborhood but it is not in the

tabu list or the maximum number of iterations is reached, output the local optimal
group schedule π̄Ω and t̂ct(π̄Ω). Otherwise, update tabu list and go to Step 4.

Step 7. According to Lemma 1, calculate the resource allocation by
Equations (5) and (6).
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5.2. Lower Bound

Let π̄Ω =
(
π̄Ωp, π̄Ωu

)
be a group schedule, where π̄Ωp (respectively π̄Ωu) is the sched-

uled (respectively unscheduled) part, and there are r groups in π̄Ωp. From Equation (12)
and Lemma 4, the lower bound (denoted by LB) of Pt̂ct is

LB = Ṽ−η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r
∑

h=1

ñh
∑

j=1

⎛⎜⎜⎜⎜⎜⎝
ñ[h]

∑
l=j

(1 + θ)l−j +
r
∑

k=h+1
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−j−ñ[k]+

k
∑

ξ=h
ñ[ξ]

+

m̃
∑

k=r+1
(1 + μ)k−h

ñ<<k>>

∑
l=1

(1 + θ)
l−j−ñ<<k>>+

r
∑

ξ=h
ñ[ξ]+

k
∑

ξ=r+1
ñ<<ξ>>

⎞⎟⎟⎟⎟⎟⎠

1
η+1

(ς[h]〈j〉)
η

η+1

+
m̃
∑

h=r+1

ñh
∑

j=1

⎛⎜⎜⎜⎜⎝
ñ[h]

∑
l=j

(1 + θ)l−j+

m̃
∑

k=h+1
(1 + μ)k−h

ñ<<k>>

∑
l=1

(1 + θ)
l−j−ñ<<k>>+

k
∑

ξ=h
ñ<<ξ>>

⎞⎟⎟⎟⎟⎠
1

η+1

(ς(h)〈j〉)
η

η+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η+1

+Ũ−η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r
∑

h=1

⎛⎜⎜⎜⎜⎜⎝
r
∑

k=h
(1 + μ)k−h

ñ[k]

∑
l=1

(1 + θ)
l−ñ[k]+

k
∑

ξ=h
ñ[ξ]

+

m̃
∑

k=r+1
(1 + μ)k−h

ñ<<k>>

∑
l=1

(1 + θ)
l−ñ<<k>>+

r
∑

ξ=h
ñ[ξ]+

k
∑

ξ=r+1
ñ<<ξ>>

⎞⎟⎟⎟⎟⎟⎠

1
η+1

(o[h])
η

η+1

m̃
∑

h=r+1

⎛⎝ m̃
∑

k=h
(1 + μ)k−h

ñ<<k>>

∑
l=1

(1 + θ)
l−ñ<<k>>+

k
∑

ξ=h
ñ<<ξ>>

⎞⎠
1

η+1

(o(h))
η

η+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η+1

,

(20)

where ςh〈1〉 ≤ ςh〈2〉 ≤ · · · ςh〈ñh〉, o(r+1) ≤ o(r+2) ≤ . . . ≤ o(m̃) and ñ<<r+1>> ≥ ñ<<r+2>> ≥
· · · ≥ ñ<<m̃>> (remark: o(h) and ñ<<h>> (h = r + 1, . . . , m̃) do not necessarily correspond
to identical group).

From the UB (see Algorithm 4) and LB (see Equation (20)), a standardized B&B
algorithm can be given.

6. Computational Result

A series of computational experiments were performed to evaluate the effectiveness

of the UB, B&B, and
︷︸︸︷

ts algorithms, and the
︷︸︸︷

ts algorithm was terminated after 2000 it-
erations. The proposed algorithms were coded in the C++ language and performed on
a desktop computer with CPUInter®Corei5-10500 3.10 GHz, 8 GB RAM on Windows®

10 operating system. The following parameters were randomly generated: ζhj is uniformly
distributed in [1, 100]; oh is uniformly distributed in [1, 50]; θ and μ are uniformly distributed
in (0, 0.5), (0.5, 1); Ũ = Ṽ = 500; ñ = 100, 150, 200, 250, 300; m̃ = 12, 13, 14, 15, 16 (at least
one job per group); η = 2. For each combination (ñ, m̃, and θ(μ)), there were 10 randomly
generated replicas and the maximum ĉpu time for each instance was set to 3600 s. For the
B&B algorithm, average and maximum ĉpu time (in seconds), and average and maximum

node numbers were given. The error bound of UB and
︷︸︸︷

ts algorithms is given by:

t̂ct(Y)− t̂ct(Opt)
t̂ct(Opt)

,

where Y ∈ {UB,
︷︸︸︷

ts }, t̂ct(Y) is a value t̂ct by Y, and t̂ct(Opt) is an optimal value by a
B&B algorithm. The computational results are given in Tables 2 and 3. From Tables 2 and 3,
it is easy to see that the B&B can solve up to 300 jobs in a reasonable amount of time, and

UB performs very well compared to
︷︸︸︷

ts in terms of error bound. When ñ ≤ 300, the
maximum error bound is less than 0.001559 (i.e., relative error ≤ 0.1559%).
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7. Conclusions

This paper investigated the group problem with deterioration effects and resource
allocation. The goal was to determine π̄∗

Ω, π̄∗
h (h = 1, · · · , m̃) in Ωh and R∗ such that t̂ct is

minimized under ∑m̃
i=1 ∑ñh

j=1 r̃ij ≤ Ṽ and ∑m̃
i=1 r̃i ≤ Ũ. For some special cases, we demon-

strated that this problem remains polynomially solvable. For the general case, we proposed
some algorithms to solve this problem. As a future extension, it is interesting to deal with
group scheduling with two scenarios based on processing times (see Wu et al. [23]) and
delivery times (see Qian and Zhan [24]).
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Abstract: Risk-mitigation decisions in risk-management systems are usually based on complex risk
indicators. Therefore, aggregation is an important step during risk assessment. Aggregation is impor-
tant when determining the risk of components or the overall risk of different areas or organizational
levels. In this article, the authors identify different aggregation scenarios. They summarize the
requirements of aggregation functions and characterize different aggregations according to these
requirements. They critique the multiplication-based risk priority number (RPN) used in existing
applications and propose the use of other functions in different aggregation scenarios. The behavior of
certain aggregation functions in warning systems is also examined. The authors find that, depending
on the aggregation location within the organization and the purpose of the aggregation, considerably
more functions can be used to develop complex risk indicators. The authors use different aggregations
and seriation and biclustering to develop a method for generating corrective and preventive actions.
The paper provides contributions for individuals, organizations, and or policy makers to assess and
mitigate the risks at all levels of the enterprise.

Keywords: risk assessment; flexibility; multilevel structure
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1. Introduction

Risk aggregation plays an important role in various risk-assessment processes [1,2].
Risks can be aggregated for several purposes. It can happen at the lowest level of the
systems (processes, products) during the calculation of a complex indicator from the factors.
The overall risk value of certain areas can be formed, but risk can also be aggregated
along the organizational hierarchy. In the following, we present a novel methodology
of aggregation that can be used for different purposes. Aggregation can be considered a
method for combining a list of numerical values into a single representative value [3,4].
Traditionally, the risk value is calculated based on a fixed number of risk components.
Failure mode and effect analysis (FMEA), which is a widely used risk-assessment method,
includes three risk components: the occurrence (O), detectability (D), and severity (S) [5–7].
Various methods that increase the number of risk components have been introduced
in the literature. The use of four risk components was proposed by Karasan et al. [8]
and Maheswaran and Loganathan [9], and Ouédraogo et al. [10] and Yousefi et al. [11]
used five risk components. In contrast to a fixed number of components, Bognár and
Hegedűs [12] developed the partial risk map (PRISM) method, which flexibly considers
only the FMEA components that are actually needed in the risk-assessment process. The
total risk evaluation framework (TREF) method generalizes this idea and can flexibly
handle an arbitrary number of risk components [13].
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In addition, various methods and analyses for aggregating risk components have
been proposed, such as the vIsekriterijumska optimizacija i kompromisno resenje (VIKOR)
method [14,15], the technique for order preference by similarity to the ideal solution
(TOPSIS) method [16,17], the elimination and choice expressing the reality (ELECTRE)
method [18,19], the evaluation based on the distance from the average solution (EDAS)
method [20,21], the preference ranking organization method for enrichment evaluations
(PROMETHEE) method [22,23], the Gray relational analysis (GRA) method [24,25],
the MULTIMOORA method [26,27], the TODIM (Portuguese acronym for interactive
multi-criteria decision making) method [28,29], and the sum of ranking differences (SRD)
method [30,31]. These methods use different perspectives and various procedures to
aggregate the values of distinct risk components into a single representative risk value.

Conventional risk management systems evaluate risk by calculating the risk priority
number (RPN) as an aggregated risk indicator.

Risk indicators can be aggregated further through additional steps. These aggregations
can be performed along the hierarchy of the organization, the hierarchy of the processes, or
other logical operations.

In terms of aggregation, a common feature of the methods is that these methods
provide aggregated values at only one level. The TREF method [13] and the new FMEA [32]
consider two levels: the risk-component level and the aggregated value level. No existing
methods can handle more than two levels; however, in practice, there are often more than
two aggregation levels, and different types of corrective/preventive actions may be needed
at the risk component level and the aggregated value level.

Moreover, one of the main constraints of existing methods is that these approaches do
not consider risks in different levels of the process hierarchy. However, corrective/preventive
actions can be prescribed at each hierarchy level, and different corrective/preventive actions
may be needed at various process hierarchy levels. In summary, because the relationships
between the process hierarchy levels (causes and effects across levels) are not addressed by
existing methods, flexible, total system-level risk assessments have not yet been addressed.
There is no work in the literature that deals with the multilevel case in general, as it is presented
in this paper. Filipović [33] dealt with the multilevel case, but the domain was limited to the
insurance area and the standard (Solvecy II) solution. Bjørnsen and Aven [2] provide a good
summary of the general issue of aggregation; however, they do not deal with corrective and
preventive actions [2]. They have presented different (oil and gas industry, stock investment,
national, societal) cases.

In general, it can be concluded that none of the publications in the literature deals
with the general approach as it is described in this paper. The most frequently missing
components are as follows.

• Risks are aggregated, however, only on two (error mode and functional error, effect)
or on three (cause, error mode, effect) levels. This is the general approach in risk-
management of production systems.

• Although there is a hierarchical (vertical) aggregation, the model is not suitable for
area-based (horizontal) aggregation and the opposite.

• The model is specific to a given area, for example insurance, bankruptcy risk, and
production.

• Model/framework does not establish a link between the aggregation of risks and
the generation of corrective, preventive measures. For this reason, the previous
aggregation methods (including FMEA) can be considered as a special case of the
aggregation model presented in this paper.

Motivated by the above analyses and literature reviews, we highlight the contributions
of this study to existing risk-assessment methods as follows:

C1 A multilevel framework known as the enterprise-level matrix (ELM), which consists
of three matrices, is proposed to evaluate risk at different enterprise levels. The three
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matrices are the risk-level matrix (RLM), the threshold-level matrix (TLM), and the
action-level matrix (ALM).

C2 The proposed framework aggregates not only the risk components but also the
overall risk indicators of the process components at all levels of the corporate process
hierarchy. Thus, appropriate corrective/preventive actions can be prescribed at each
process hierarchy level, as different types of corrective/preventive actions may be
needed at the process and corporate levels.

C3 We use data-mining methods such as seriation and biclustering techniques to simul-
taneously identify risk components/warnings and process components to select an
appropriate set of corrective/preventive actions.

The remainder of this paper is structured as follows. Section 2 introduces the pre-
liminary details and the requirements and characterizations of the aggregation functions.
Section 3 demonstrates a practical example of the proposed approach. Section 4 summarizes
the paper.

2. Preliminaries

We use the following terminology throughout this work.
Risk component: the input of the aggregation. The risk components can be primary data, such
as the occurrence, severity, and detection, which are often called factors. (The term “factor”
refers to the most commonly used aggregation method: multiplication.) The components
can also be aggregated values, such as vertical risk aggregation in an organization. This
case is the mean of the RPNs of a product, process, or organization.
Aggregated value: the result of the aggregation. The aggregated value is typically a scalar
value; however, it can also be a vector, such as when the risk cannot be characterized by
one number.

2.1. The Set of Enterprise-Level Matrices (ELM)

This study proposes three multilevel matrices: the risk-level matrix (RLM), threshold-
level matrix (TLM), and action-level matrix (ALM). These matrices are all multidimensional
matrices, with the columns representing the risk components and their aggregations at all
levels and the rows representing the process components and their aggregations at all levels.
The risk-level matrix (RLM) specifies the risk values of all risk and process components. For
all risk values (i.e., for each cell) in the RLM, a threshold value is specified in the threshold-
level matrix. The threshold-level matrix includes specific thresholds for all risk values;
however, a generic threshold can also be specified for all process and risk components. A
corrective/preventive action occurs if a risk value is greater than or equal to the specific
threshold value. The action-level matrix contains the specific corrective/preventive actions
for mitigating the risk values; these actions can be specific for the given process and risk
component or generic for each process and risk component.

The proposed set of multilevel matrices, denoted as the enterprise-level matrix (ELM),
helps decision-makers evaluate and assess risk at all levels of the enterprise. In addition,
data-mining methods, such as seriation and biclustering, are used to select the set of
corrective/preventive tasks.

2.1.1. Risk-Level Matrix

Table 1 specifies the structure of the hierarchical risk-evaluation matrix, hereafter
denoted as the risk-level matrix (RLM), where the columns specify the risk components
and the rows specify the process components. The rows and columns can both be aggre-
gated; therefore, the aggregation level can be specified for both the rows, such as process
component ⇒ process ⇒ process area ⇒ . . . ⇒ enterprise-level process, and the columns,
such as risk component ⇒ aspect ⇒ . . . ⇒ enterprise-level risk component.
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Definition 1. Denote I (J) as the aggregation level of a row (column). Denote RI,J ∈ R
(nI×mJ)
+ as

an nI x mj risk-level matrix, where nI (mJ) is the number of rows (columns) in aggregation level
I (J).

Definition 2. Let RI,J be a risk-level matrix and denote rI,J(i, j) as the risk value of risk component
j = 1, 2, . . . , mJ of process component i = 1, 2, . . . , nI in process level I and factor level J. Denote
rI,J(i, ·) as the set of risk components (in process level I and factor level J); rI,J(·, j) as the set of
processes in process level I and factor level J; rI,·(i, jI,·) as the set of factor levels; and r·,J(i, j) as the
set of process levels (I = 1, 2, . . . , N, J = 1, 2, . . . , M).

The elements of the next level of the RLM can be calculated as follows:

rI+1,J(i, j) = SI(rI,J(·, j), v) (1)

rI,J+1(i, j) = SJ(rI,J(i, ·), w) (2)

where SI and SJ are at least monotonous aggregation functions and v and w are weight vectors.

Table 1 shows a risk-level matrix with two risk components, two process components,
two factor levels, and two process levels.

Table 1. The structure of a risk-level matrix.

Risk-Level Matrix

Aspects

a1 = Quality a2 = Environment

Risk Components
Aggr.

Risk Components
Aggr.

f1 f2 f3 f4

Pr
oc

es
s

p1

Process c1 r1,1(1, 1) r1,1(1, 2) r1,2(1, 1) r1,1(1, 3) r1,1(1, 4) r1,2(1, 2)

Components c2 r1,1(2, 1) r1,1(2, 2) r1,2(2, 1) r1,1(2, 3) r1,1(2, 4) r1,2(2, 2)

Aggregated values r2,1(1, 1) r2,1(1, 2) r2,2(1, 1) r2,1(1, 3) r2,1(1, 4) r2,2(1, 2)

p2

Process c3 r1,1(3, 1) r1,1(3, 2) r1,2(3, 1) r1,1(3, 3) r1,1(3, 4) r1,2(3, 2)

Components c4 r1,1(4, 1) r1,1(4, 2) r1,2(4, 1) r1,1(4, 3) r1,1(4, 4) r1,2(4, 2)

Aggregated values r2,1(2, 1) r2,1(2, 2) r2,2(2, 1) r2,1(2, 3) r2,1(2, 4) r2,2(2, 2)

Example 1. Following the structure of this multilevel matrix, arbitrary factor and process levels
and arbitrary numbers of risk and process components can be specified. For example, in the case of
the traditional FMEA method, let I be an arbitrary process level and J be an arbitrary factor level.
Suppose that the FMEA can be calculated at process level I and factor level J. In this case, we have
mJ = 3, namely, the severity (S), occurrence (O), and detection (D). Suppose ∀i ∈ {1, 2, . . . , nI}
and ∀j ∈ {1, 2, . . . , mJ}, vi = wj := 1, rI,J(i, j) ∈ {1, 2, . . . , 10}, i := 1, . . . , n; then,

rI,J+1(i, j) =
mJ

∏
j:=1

rI,J(i, j) (3)

rI+1,J(i, j) =
nI

∏
i:=1

rI,J(i, j), (4)

where rI,J+1(i, j) is the vertical aggregation of risk component i in process level I, and rI+1,J(i, j) is
the horizontal aggregation of risk component i in process level I. In this case, the traditional risk
priority number indicates the process risk in process level I + 1 for an arbitrary risk factor j.

It should be noted that the RLM extends traditional risk-evaluation techniques, such
as the FMEA method, to model all levels of process and risk components as one matrix.
The RLM allows different kinds of aggregation functions; however, to compare the risk
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values in different aggregation levels, aggregated values should be used to normalize the
values to the same scale as the risk values. The FMEA approach considers only two levels,
and only risk components can be aggregated (i.e., multiplied) into an RPN. Hierarchical
frameworks, such as the total risk evaluation framework (TREF), consider risk components
in multiple aggregation levels.

Example 2. The TREF approach considers mJ ∈ {2, 3, 4, 5, 6}, vi, wj ∈ R+, rI,J(i, j) ∈ {1, 2, . . . ,
10}, ∑n

i:=1 vi = 1, and i := 1, . . . , n and uses four types of functions:

• S(1)
I (RI,J, v) = ∏nI

i:=1 rI,J(i, j)vi is the weighted geometric mean of the process components.

• S(2)
I (RI,J, 1) = max({rI,J(1, j), . . . , rI,J(nI , j)}) is the maximum value of the process risks.

• S(3)
I (RI,J , v) = Median({RI,J , v}) is the weighted median of the process risks.

• S(4)
I (RI,J , v) =

√
∑nI

i:=1 virI,J(i, j)2 is the weighted radial distance of the process risks.

In the case of ∀i, j, vi = 1/nI, the aggregation functions S(1)
· , S(3)

· and S(4)
· produce the unweighted

geometric mean, unweighted median and unweighted radial distance of the risk components.

The TREF approach considers more than three risk components and multiple aggrega-
tion functions. However, the RLM can be applied to extend the TREF because the RLM
specifies aggregations for both risk components and process levels.

Definition 3. Let RI,J be a risk-level matrix. Denote TI,J ∈ R
(nI×mJ)
+ as a threshold-level matrix.

A risk event occurs in process i of risk factor j if RI,J(i, j) ≥ TI,J(i, j). Formally, the risk event
matrix (REM) is EI,J ∈ {0, 1}(nI×mJ), with

eI,J(i, j) =

{
1, eI,J(i, j) ≥ tI,J(i, j)
0, eI,J(i, j) < tI,J(i, j)

. (5)

A corrective/preventive task should be prescribed if ∑i ∑j eI,J(i, j) ≥ μI,J , where μI,J ∈ Z,
with I = 1, 2, . . . , N and J = 1, 2, . . . , M.

Remark 1. Threshold values can be arbitrary positive values; however, they should be specified
within a specified quantile of risk values.

Definition 4. Denote aI,J(i, j) ∈ A as the i, j cell of the corrective/preventive task at process level
I and factor level J, where A is the set of corrective/preventive tasks. Each aI,J(i, j) ∈ A specifies
a quadruplet: aI,J(i, j) = (pI,J(i, j), tI,J(i, j), cI,J(i, j),RI,J(i, j)), where 0 ≤ pI,J(i, j) ≤ 1 is the
relative priority of the corrective/preventive task (e.g., if and only if the impacts of the risk events
should be mitigated: pI,J(i, j) ← eI,J(i, j)), where t, c,R denote the time (t), cost (c), and resource
(R) demands, respectively.

Example 3.

1. In the case of the traditional FMEA approach, thresholds are specified only in the second level.
Furthermore, the same threshold is usually specified for all processes. If the risk values are
between [1, 10], the critical RPN is usually defined as the product of the average risk factors,
5 × 5 × 5 = 125 [34,35]. Formally, we have T1,2(., .) = 125. Different corrective/preventive
actions can be specified for each process component. However, in this case, the aim of these
corrective/preventive actions is to mitigate the RPN, and distinct corrective/preventive actions
are not specified for each risk component. Formally, we have aI,J+1(i, .) = aI,J(i, .).

2. The TREF method specifies the thresholds of the risk components in the first factor level
and their aggregations in the second level; however, these thresholds are the same for all
processes. This method proposes the use of six risk factors in the first level. Formally, we
have [T1,1(., 1), T1,1(., 2), . . . , T1,1(., 6)] = [t1, t2, . . . , t6]. This method proposes several
aggregation approaches, and, similar to the traditional FMEA technique, this method specifies
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the threshold of the next factor level. Formally, T1,2(., .) = t1,2. A warning is generated if
either a risk-component value or the aggregated value is greater than the threshold. In addition,
the TREF method allows warnings to be generated manually due to a seventh factor, namely,
the criticality factor, where a value of 1 indicates that the process is critical process that must
be corrected regardless of the risk value.
Due to the column-specific thresholds, different corrective/preventive actions can be specified
to mitigate each risk component and its aggregations. Nevertheless, in this case, common
corrective/preventive actions are specified to mitigate the risk components.

3. On the one hand, the new FMEA method considers three factors in the first factor level. On
the other hand, the new FMEA method specifies the threshold for the first factor level; however,
corrective preventive tasks are carried out if at least two factors are greater than a threshold
(based on the action priority logic [36]).

4. The ELM can be used to specify cell-specific corrective/preventive actions. In general, these
actions can be row-specific (process component-specific), such as in the FMEA method, or
column-specific, such as in the TREF method; importantly, different corrective/preventive
tasks can be specified for various cells.

Theoretically, the FMEA and TREF methods can both be used in different process levels;
however, neither of these methods aggregate the risk values of the processes. The vertical ag-
gregation, which is performed by all risk-assessment techniques, indicates which processes
must be corrected. In addition, if the TREF method is followed, corrective/preventive
tasks can be specified to decrease the risk-component value. In other words, different
corrective/preventive tasks can be specified to decrease the severity or occurrence of a
process risk. However, no existing methods provide the general severity or occurrence of
the processes performed by a company. The proposed RLM and REM allow us to specify:

• specific thresholds for all processes; and
• specific thresholds for all risk components simultaneously.

These thresholds can be specific for all factor and process levels. The vertical ag-
gregation result indicates the aggregated value of the risk component. The horizontal
aggregation result indicates the aggregated value of the process risks.

Traditional methods, the new FMEA approach, and the TREF method can all be mod-
eled by the ELM. In addition, the ELM allows a company to determine specific thresholds
and corrective/preventive actions for each risk value and risk event. Corrective/preventive
actions can be prioritized, allowing sets of different activities to be incorporated into ex-
isting processes. Another advantage of the ELM is that all risk levels are included in the
same matrix; therefore, complex improvement projects or processes can be specified to
simultaneously mitigate risks at all levels.

2.1.2. Specific Processes

An improvement process is a set of corrective/preventive tasks. This study focuses
on the first phase of developing an improvement process, namely, process screening. In
this phase, the set of tasks in the improvement process with the greatest impact on risk
mitigation is specified. In the proposed algorithm, we have the following steps.

step 1 The risk priorities of all corrective/preventive tasks are specified.

step 2 The seriation technique [37] is used to simultaneously reorder the rows (process
components) and columns (risk components), yielding a set of risk and process
components with high risk priorities.

step 3 The biclustering technique, which uses a bicluster to specify the mitigated risk and
process components, is proposed. This set of corrective/preventive actions specifies
the set of tasks included in the improvement process.

step 4 After screening, conventional process and project management methods are used to
schedule the correction tasks according to time, cost, and resource constraints.
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In our study, multilevel matrix representations and data-mining techniques, such as seri-
ation and biclustering, are integrated into screening and scheduling algorithms to determine
the set of corrective/preventive tasks that mitigate enterprise risks at all aggregation levels.
Although these algorithms performed well in general cases, this is the first study that attempts
to combine these techniques to improve the whole risk-assessment process.

Step 1—Specification of the task priority matrix

Definition 5. Let P = PI,J ∈ [0, 1]nI ,mI , I = 1, 2, . . . , N, J = 1, 2, . . . , M be a (task) priority
matrix. Depending on the decision, pI,J(i, j) is either pI,J(i, j) = eI,J(i, j), or

pI,J(i, j) =

{
1 , if rI,J(i, j) > tI,J(i, j)
(tI,J(i, j)− rI,J(i, j))/rmax

I,J , otherwise

where rmax
I,J is the maximal possible risk value at aggregation level (I, J).

The task priority matrix P is either binarized or 0–1 normalized, with greater numbers
indicating higher priority tasks at all aggregation levels. In step 2, seriation is applied,
which uses combinatorial data analysis to find a linear arrangement of the objects in a
set according to a loss function. The main goal of this process is to reveal the structural
information [37].

Step 2—Seriation of the task priority matrix

In general, the goal of a seriation problem is to find a permutation function Ψ∗ that
optimizes the value of a given loss function L in an n × m dissimilarity matrix D:

Ψ∗ = arg min
Ψ

L(Ψ(D)). (6)

In this study, the loss function is the Euclidean distance between neighboring cells.
Simultaneous row and column permutations to minimize a loss function is an NP-complete
problem, which is directly traceable to a traveling salesman problem [37]; therefore, hierar-
chical clustering [38], which is a fast approximation method, is used to specify blocks of
similar risky processes and risk components. Seriation identifies a set of risky processes
and risk components; however, it does not delimit these blocks.

Step 3—Specification of risky blocks in the task priority matrix

Definition 6. A block is a submatrix of the task priority matrix that specifies risky processes (as
rows) and risk components (as columns) simultaneously. A selected block in which the median of
the cell elements is significantly greater than both the nonselected processes and risk components
represents a risky block.

Risky blocks are identified with the iterative binary biclustering of gene sets (iB-
BiG) [39] algorithm. This algorithm assumes that the utilized dataset is a binary dataset; if
this assumption is not valid, the first step is to binarize the dataset based on a given thresh-
old (τ). Because E is a binary matrix, if P = E, then P is also a binary matrix; otherwise, the
threshold is based on the judgment of the decision makers.

The applied iBBiG algorithm balances the homogeneity (in this case, the entropy) of the
selected submatrix with the size of the risky block. Formally, the iBBiG algorithm maximizes
the following target function, with the binarized dataset of matrix P denoted as B,

max ← score := (1 − HB)α

{
∑i ∑j [B]i,j , if tr(B) > τ

0 , if Med(B) ≤ τ
, (7)

where score is the score value of the submatrix (bicluster, risky block) B ⊆ B. HB is the
entropy of submatrix B, tr = Med(B) is the median of bicluster B, α ∈ [0, 1] is the exponent,
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and τ is the threshold. If τ or α increases, we obtain a smaller but more homogeneous
submatrix. Previous studies [39] have suggested that the balance exponent (α) should be
set to 0.3.

Risky blocks may overlap. However, based on the score value of the risky blocks, they
must be ordered.

Step 4—Specification of corrective/preventive processes

The risky blocks specify the set of risky processes and risk components that must
be mitigated simultaneously across all aggregation levels, as well as the set of correc-
tive/preventive tasks in the activity-level matrix.

If there is more than one risky block, the scores of the risky blocks can be ranked. If
the set of corrective/preventive tasks and their demands are specified, the task order is a
scheduling problem that can be solved with the method described in [40].

Step 1 ensures that risks are addressed at all aggregation levels. Step 2 identifies risky
blocks, and step 3 specifies the set of risky processes and risk components in all aggregation
levels. Finally, step 4 specifies the set of processes, and the process proposed in [40] is used
to schedule these processes according to time, cost, and resource constraints.

2.2. Requirements of the Aggregation Functions

To evaluate and assess risks at all aggregation levels, appropriate aggregation functions
must be selected. We limit our analysis to scalar aggregation values. Several content and
mathematical requirements can be set for different aggregation functions.

1. Objectives: What are the objectives of risk management? The aggregated value is
an indicator that reflects the basis underlying managerial or engineering decisions.
Different aggregation functions have distinct component risk scales. As a result, a top-to-
bottom approach is proposed instead of the traditional bottom-to-top approach when
scale definition is an early step. This requirement can be used to classify aggregation
functions, such as summation type (total risk), average type (mean or median risk), or
distance (from a given value) type aggregated risk indicators. This expectation indicates
that there is usually no best or worst aggregation function, and the applied aggregation
function depends on the situation and the purpose of the aggregation.

2. Validity: The validity is determined according to the nature of the components
and processes via the aggregated risk of the components. For example, in the case
of extremely high severity, such as nuclear disasters, natural disasters, or war, the
severity is excluded, and the probability is used as the primary risk indicator. In
more frequent cases, the ‘severity × probability’ is calculated as the expected value.
In this case, the aggregation is either the most characteristic value (no aggregation)
or an estimation of the expected value. The ‘expected’ value can be interpreted in
broader terms that extend beyond probability theory approaches [41–45]. Another
scenario is when the risk in multiple areas is combined. In this case, the expected
total risk is the sum of the risks in the areas, as discussed above. The traditional
RPN calculation (occurrence × severity × detection) can be viewed as an expected
value if the occurrence and detection are independent. The introduction of additional
components (such as multiplication factors) might cause difficulties in interpreting
the aggregated value as an indicator. Smart weighting can be used to address this
problem.
Next, we formulate the mathematical requirements. The mathematical requirements
guarantee a lack of distortion.

3. Monotonicity: When one component has a higher risk value than the other compo-
nents, the aggregated risk value cannot be less than the largest risk value [41,44].

4. Symmetry: When the components’ risk values have symmetric distributions with the
same mean, the distribution of the aggregated values is also symmetric [41,44].

5. Uniformity, linearity: When the components have a uniform distribution, the distri-
bution of the aggregated values should also be uniform [41,44].
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The above requirements appear to be logical; however, the requirements are difficult
to satisfy, and it is not certain that these requirements are adequate, contrary to the
literature. For example, in the case of additive or multiplicative models, the values
near the mean appear more frequently because these values originate from not only
medium-medium risk value combinations but also small–large and large–small risk
value combinations.

6. Scale fit: Aggregation operations should be performed with the applied scale values [46].
7. Scale end point identity: The result should be in the same interval as the components

(if they are equal) or a common scale if the components have different scales. On
the one hand, this requirement helps in assessing the resulting risk, which is a psy-
chological advantage. On the other hand, successive aggregations between different
hierarchal levels may distort the result if the components have different scales [47].

2.3. Characterization of Potential Aggregation Functions

In practice, the characteristics of the applied aggregation function must be considered
when determining wi. For example, how the applied aggregation function handles distri-
bution asymmetry and component outliers must be considered. The properties of some
aggregation functions were described by [48].

A preliminary evaluation of various aggregation functions is included in Table 2. We
assume that the components have a scale of [1, 10] and that the number of components is n.

Table 2. Characterization of risk aggregation functions.

Aggregation Function Advantages Disadvantages

Sum Easy to calculate and relatively good
linearity.

Fits additive components only. The resulting scale is not identical
to the scale of the components ([1, 10]), which can be an advantage
in determining the total risk. The result is a sum rather than an
average, and the resulting value is greater than the components’
risks when there are more areas or processes. This characteris-
tic is critical for managing the risks of several or a few areas in
managerial work.

Arithmetic mean Easy to calculate and relatively good
linearity. The resulting scale is identi-
cal to the components’ scale ([1, 10]).

Fits additive components only. The components must be mea-
sured on the same interval scale. This function does not return
the full risk; for example, it does not take into account the need to
manage the risks of several or a few areas.

Product Fits with multiplicative models,
such as the expected values of the
probability (occurrence) and sever-
ity. This is the most commonly used
aggregation method

Poor linearity. Does not map to the original [1, 10] scale and
instead maps to the interval [1, 10n].

Product/10n−1 Correction to the product function.
The resulting scale ([1/10n−1, 10]) is
close to the original scale (e.g., [1,
10]).

Poor linearity; mapping to almost the same scale does not help.
This function tends to output extremely small values.

Geometric mean Normalizes values in different
ranges; thus, various scale intervals
can be applied. The resulting scale
is identical to the components’ scale
([1, 10]).

Not easy to calculate in practice. This function fits better with
multiplicative models than with other models.

Radial distance /
√

n Moderately good linearity when
compared to the linearity of other
functions.

The calculation is not easy in practice.

Median The resulting scale is the same as the
components’ scale, and this function
can also be used on ordinal scales.

The calculation is not easy in practice. The scale is relatively
rough and can be considered correct only for homogeneous risk
components.
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Table 2. Cont.

Aggregation Function Advantages Disadvantages

Maximum Easy to calculate. The large values
focus attention on critical areas.

Poor representation of the total risk population.

Minimum Easy to calculate. Poor representation of the total risk population.

Number of values
over threshold

Easy to calculate. This method fo-
cuses attention on critical areas.

Poor representation of the total risk population.

Range and standard
deviation

Easy to calculate. These approaches
show the range or dispersion of the
risk components.

Does not output the risk level.

Quantile Outputs the top occurrence values Does not output the risk level.

3. Practical Example

Our example shows the risk-management system used by a real company. At the
request of the company, we have changed some information.

3.1. Research Plan

The research objective was to test different aggregation functions in various aggre-
gation situations. We evaluated functions that approximately satisfied the requirements
discussed in Section 2.2. To select the aggregation functions, we considered the results of
a previous study [13]. The basis of the examination is shown in Table 1. Due to the large
number of possible cases, we analyzed only the cases shown in Table 3. The focus of each
risk component is referred to as its “component”; at the lowest aggregation level, these
components can be a part of a product or process.

At higher aggregation levels, the risk component is the result of lower-level aggrega-
tions, e.g., the RPN.

Table 3. Examination plan.

No. Aggregation Situation Number of Components Function Remark

1 Aggregation of different risk
components of the same en-
tity (process or product com-
ponent) at the lowest level.
(The horizontal aggregation
is shown in Table 2, 1a.).

Number of risk components:
6, namely, the occurrence,
severity, detection, control,
information, and range.

Arithmetic mean, corrected
product, geometric mean, ra-
dial distance, median, min-
imum, maximum, range,
number of values over warn-
ing threshold, and sum.

This is the most commonly
used aggregation method for
calculating the RPN of the
components of a product
or process. This approach
shows the overall risk of a
subprocess or product com-
ponent.

2 Aggregation of the same risk
components of different enti-
ties (process or product com-
ponent) at the lowest level.
(The vertical aggregation is
shown in Table 2, 2a.).

Number of entities (subpro-
cesses or product compo-
nents): 1–4.

Same as in 1. This method shows the over-
all risk in specific levels.

3 Further (vertical) aggrega-
tion of 1a (1b).

The aggregated values from
1, namely, the number of enti-
ties (subprocesses or product
components)

Sum, arithmetic mean, and
number of values over
threshold.

This method shows the total
risk in a certain level (within
the limitations of the applied
function).
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Table 3. Cont.

No. Aggregation Situation Number of Components Function Remark

4 Further (horizontal) aggrega-
tion of 2a (2b).

The aggregated values from
2; thus, there are 6 risk
components, namely, the oc-
currence, severity, detection,
control, information, and
range.

Sum, arithmetic mean, and
number of values over
threshold.

This method shows the total
risk in a certain level (within
the limitations of the applied
function).

5 Aggregation of all risk com-
ponents at higher levels
(Figures 1 and 2).

Number of risk components:
6; number of entities (sub-
processes or product compo-
nents): 1–4.:

Arithmetic mean, geometric
mean, radial distance, me-
dian, number of values over
warning threshold, and sum

This method shows the total
risk in a certain level (within
the limitations of the applied
function).

5 Aggregation of warnings
(Figure 3).

Number of entities. Sum and number of values
over threshold

This method shows the total
risk in a certain level (within
the limitations of the applied
function).

6 Generating preventive ac-
tions (Figure 4).

Number of entities. Arithmetic mean, geometric
mean, median, maximum,
and corr. product

This step selects the thresh-
old for the optimal preven-
tive action.

3.2. Process Hierarchy

To demonstrate the proposed matrix-based risk analysis, we use a three-level hierarchy.
The detailed hierarchy is described below:

4. Production

4.1. Customer orders - order processing

4.1.1. Start processing order
4.1.2. Entry production control form

4.5. Production preparation

4.5.1. Product engineering
4.5.2. Product planning

5. Logistics

5.1. Purchasing

5.1.1. Offer request
5.1.2. Demand form
5.1.3. Place order
5.1.4. Receive material on time

5.2. Warehouse management

5.2.1. Vehicle arrival
5.2.2. Unloading
5.2.3. Unwrapping, inspection.

In this example, each subprocess has 2–4 failure modes. At the lowest level, we used
six risk components (namely, the occurrence (O), severity (S), detection (D), control (C),
information (I), and range (R)) to describe the risk.

3.3. Results of the Matrix-Based Risk Assessment
3.3.1. Bidirectional Aggregation

The results obtained at the lowest level are shown in Figure 1.
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Figure 1. Results of bidirectional aggregation at the lowest level.

In Figure 1, the aggregation directions are indicated by the arrows. In one case, we first
performed horizontal aggregation (1a). This approach is consistent with common practice:
the RPN is typically calculated as a product function by using risk components such as the
occurrence and severity. These RPNs can be aggregated further (1b). The other case is the
opposite scenario. First, we aggregated the same risk components for different subprocesses
(2a); then, the resulting indicators were aggregated by using different functions (2b). There
are two interesting ways to view the results:
1. Determining which functions should be used in different aggregation situations; and
2. Comparing the results of the two aggregation directions.
Ad1. The aggregated values obtained from the same data by using different functions differ
significantly. Due to the limited extent of this paper, it is not possible to interpret all the
results. However, we discuss some important results. No linear results were obtained with
the product and corrected product (interval [1/10n−1, 10]) functions. Based on preliminary
theoretical considerations, it is still interesting to determine how the results deviate from
the aggregated values. In this respect, the arithmetic, geometric mean, and median methods
appear to perform better. However, because the risk components at this level differ, additive
models (such as the sum, mean, and median approaches) cannot be applied. Thus, our
recommendation is to use the geometric mean method. When aggregating values in the
next levels, we work with homogeneous data; thus, the indicators provided by aggregation
functions based on the additive model (such as the sum, mean, median, and frequency) can
be interpreted.
Ad2. The values of the two aggregation direction were compared.
In Figure 1, we connected the corresponding data obtained with different aggregation
directions. For example, the arithmetic mean is 1.96–1.96, the geometric mean is 1.86–1.8,
and the median is 1.77–1.97. Surprisingly, the two aggregation directions led to nearly
identical results. However, this finding cannot be generalized, as it depends on the data.
The next level of aggregation is combining production and logistics. The aggregation results
along the entire hierarchy are shown in Figure 2.
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Figure 2. Results of multilevel aggregation.

3.3.2. Aggregating Warnings

Warnings can also be aggregated. We aggregated the warnings along the hierarchy, as
shown in Figure 3.

Figure 3. Results of multilevel warning aggregation.

The function results can be summarized as follows:
One issue with the product function is apparent: strong bias. As a result, warnings may

result in Type I or Type II errors. Normalization of the product to the interval [1/10n−1, 10] is
not a good solution because this distortion remains. Although 10, as the largest scale value,
is psychologically advantageous for judging the risk, in practice, small aggregated risk
values are generated, even if there are only a few small values among the component risks.
This result can be observed in the prod/10n−1 lines in Figure 1. These low values lead to
cumulative bias during further aggregations. Thus, for expected value-type aggregated risk
values or heterogeneous components, we recommend the geometric mean or potentially
the radial distance as opposed to the product. As a result of the above findings, horizontal
aggregation is proposed for the lowest level, while vertical aggregation is proposed for
higher levels. As it can be seen in the Figures 2 and 3, the multi-level aggregation can be
implemented with risk values and warnings as well. Combining this with the two-way
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(horizontal and vertical) aggregation directions offers a versatile, multipurpose application
opportunity that cannot be found in the literature. A further option to use this hierarchical
structure is to generate risk mitigation countermeasures.

3.3.3. Generating Preventive Actions

Following the four steps of the proposed method (Section 2.1.2), first, the aggregated
risk values were calculated by using the six risk components and the failure modes in the
lowest evaluation level. Five aggregation methods, namely, (1) the (arithmetic) mean, (2)
geometric mean, (3) median, (4) maximum, (5) and product normalized to the interval
[1, 10] methods, were used to calculate the values of the rows (process components) and
columns (risk components). The processes, subprocesses, and failure modes are highlighted
in Figure 4. In addition, the background color of each cell indicates the risk level, with red
cells indicating higher risk values and green cells indicating lower risk values.

The aggregated values are calculated in two ways, as shown in Figure 4. The left side
of Figure 4 shows the first method, in which the risk values of the process components are
aggregated first, whereas the right side of Figure 4 shows the opposite calculation method.

Figure 4. Risk-level matrix for production processes.
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A comparison of the results shown in Figure 4 indicates that the different aggregation
methods result in the same trends in the aggregated risk values. This finding was confirmed
by the seriation results, in which the process and risk components were calculated at the
same level, and the biclustering results, in which the sets of risk and process components
were selected simultaneously. Therefore, only the first aggregation mode was considered.

To specify the set of risk/process components that must be mitigated, we use two
methods. In the first approach, which is an unsupervised method, a predefined threshold
matrix is not necessary. In this case, we want to identify the set of risk/process components
and their aggregations that are greater than a specified quantile. In contrast, a threshold
matrix is specified in the supervised risk evaluation method, with the risk event matrix
specifying the risk values of the risk and process components to be mitigated. However,
because the risk and process components have common corrective/preventive tasks, this
set should also be collected by seriation and biclustering methods.

Figure 5 shows the seriation (step 3) and biclustering (step 4) results for two thresholds
(τ = 0.5 (Med) and τ = 0.75 (Q1)).

Figure 5. The unsupervised risk evaluation results. The seriated and biclustered risk-level matrices
with τ = 0.5 (Med) and τ = 0.75 (Q1) are shown.
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Figure 5 identifies two overlapping τ = 0.5 (Med) biclusters and one overlapping
τ = 0.75 (Q1) bicluster. Increasing the value of τ leads to smaller, cleaner biclusters. Because
the risk/process components and their aggregations are both considered, the selected and
omitted rows and columns must discussed.

The seriation and biclustering results indicate the set of risk and process components
and their aggregations. The results show that the risk values in the production preparation
process (4.5) and the risk components during the product engineering (4.5.1) and production
engineering (4.5.2) processes should both be mitigated. However, the customer orders
(4.1) and their subprocesses were not selected. Although both biclusters identified risk
component information (I), neither specified the detection (D) value. The maximum
aggregation metric, which identifies the riskiest process and risk components, is always
applied to the bicluster; however, the production metric, which is used in the FMEA
approach, is never applied. The results also show that if there are several risky processes in
a higher aggregation level, the mean and median cannot be used to identify the risks to be
mitigated.

Figure 6 shows specific thresholds for the risk components and their aggregations. A
risk value should be mitigated (red background cells) if its value is greater than or equal to
the threshold value. In this example, thresholds are specified for the risk components and
their aggregations; however, thresholds are not specified for the process components and
their aggregations. Therefore, common thresholds are assumed for all kinds of processes.

Figure 6. The supervised risk evaluation results. The seriated and biclustered risk-level matrices for
different risk events are shown.
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Figure 6 shows the seriated and biclustered risk-level matrices for different risk events.
In this case, two overlapping biclusters can be specified for both the α = 0.3 and α = 1.0
parameters that indicate the sets of risk components and their aggregations, as well as
the sets of process components and their aggregations. If the risk-level matrix is seriated
and biclustered according to the binary values of the risk event matrix, the set of specified
risk/process components is similar to the set generated by the unsupervised risk evalua-
tion method (see Figure 5). Additionally, in this case, two overlapping biclusters can be
identified. However, the Q1 and Med biclusters are identical. In this case, the purity can be
increased by increasing the value of the α parameter. Regardless of whether the threshold
matrix is included or excluded, the identified risk values that should be mitigated specify
the set of corrective/preventive improvement tasks (see Figure 7). Figure 7 shows part of
the matrix of corrective/preventive actions. Five tasks, namely, (1) feedback on customer
communication, (2) feedback on internal communication, (3) meeting deadlines and faster
recognition, (4) more frequent updates, and (5) improving forecasts, are considered in
the failure mode level, whereas the maintaining requirements and increasing discipline,
training, and bonuses tasks are considered in the aggregated levels. It is important to
note that corrective/preventive actions do not need to be specified for all cells. Because
the maximal values are corrected if and only if one of the risk/process components must
be corrected, corrective/preventive actions should be specified only for the risk/process
components.

Figure 7 shows the selected cells for parameters α = 0.3 and α = 1.0.

Figure 7. The matrix of corrective/preventive actions for α = 0.3 and α = 1.0.

In this practical example, both selections required aggregated corrective/preventive
tasks, such as maintaining requirements and increasing discipline, training, and bonuses. This
result indicates that not only should failures be corrected or prevented but also that these
failures should be prevented at higher risk and process levels.

4. Summary and Conclusions

A real-world example is used to demonstrate the proposed novel multilevel matrix-
based risk assessment method for mitigating risk. The paper contributes three key findings
to the literature. (C1) The proposed set of multilevel matrices, known as the enterprise-
level matrix (ELM), supports the whole risk assessment process, including identifying
the risks (e.g., the RLM), evaluating the risks (e.g., the TLM), and determining the cor-
rective/preventive actions for risk mitigation (e.g., the ALM). (C2) The multilevel matrix
structure allows decision makers to address the process and risk components and their
multipurpose aggregations in the same matrix. As a result, the process components, all
levels of the process and risk components, the aggregated risk values and the risk areas in
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all levels of the enterprise can be evaluated simultaneously. The proposed matrix-based
method does not limit the number of risk components or the number of levels in the ag-
gregation hierarchy. In addition, to the best of our knowledge, this is the first method that
aggregates both the risk and process components to evaluate risks at different process levels.
(C3) By employing seriation and biclustering methods, the risk-level and threshold-level
matrices can both be reordered to identify warnings or risks for the process and risk com-
ponents simultaneously. If more than one aggregation method is employed to aggregate
the risk/process components, the employed data mining method, namely, the biclustering
and seriation method, selects the appropriate aggregation functions, which indicate the
risks in higher process and risk aggregation levels. The employed data-mining method
specifies multilevel submatrices that identify the process components, processes, process
areas, risk components and risk areas simultaneously. According to the proposed multilevel
submatrices, including the RLM and TLM, the appropriate corrective/preventive actions
can be proposed based on the ALM matrix to mitigate risks at different levels.

In this work, we ignored the case where there is a dependency between risk com-
ponents. This is a limitation compared to real cases and opens research opportunities in
the future. In the practical example, we omitted the weighting of the risks. However,
this limitation can be easily solved by using formulas containing weights. A practical
implementation limitation is that the choice between two types of aggregation direction
and several functions is a time-consuming process.
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Nomenclature
AHP Analytical Hierarchy Process
ALM Action-Level Matrix
ANP Analytical Network Process
Cr Criticality factor
CI Consistency Index
CR Consistency Ratio
f Vector of risk factors
EDAS Evaluation Based on the Distance from the Average Solution
ELECTRE Elimination and Choice Expressing the Reality
ELM Enterprise-Level Matrix
FMEA Failure Mode and Effects Analysis
Fuzzy FMEA Fuzzy Failure Mode and Effects Analysis
GRA Grey Relational Analysis
ISO International Standardization Organization
K Invention function
MULTIMOORA Multiplicative Form of the Multiobjective Optimization by Ratio Analysis
n Number of risk factors
PROMETHEE Preference Ranking Organization Method for Enrichment Evaluations
RAP Risk Aggregation Protocol
RI Random Consistency Index
RLM Risk-Level Matrix
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RPN Risk Priority Number
SRD Sum of Ranking Differences
T Threshold vector
TLM Threshold-Level Matrix
TODIM TOmada de Decisao Iterativa Multicriterio
TOPSIS Technique for Order Preference by Similarity to the Ideal Solution
TREF Total Risk Evaluation Framework
S( f , w) Risk aggregation function
VIKOR VIsekriterijumska optimizacija i KOmpromisno Resenje
w Vector of weights
(W1)− (W3) Warning rules
WS Warning System

References

1. Bani-Mustafa, T.; Zeng, Z.; Zio, E.; Vasseur, D. A new framework for multi-hazards risk aggregation. Saf. Sci. 2020, 121, 283–302.
[CrossRef]

2. Bjørnsen, K.; Aven, T. Risk aggregation: What does it really mean? Reliab. Eng. Syst. Saf. 2019, 191, 106524. [CrossRef]
3. Pedraza, T.; Rodríguez-López, J. Aggregation of L-probabilistic quasi-uniformities. Mathematics 2020, 8, 1980. [CrossRef]
4. Pedraza, T.; Rodríguez-López, J. New results on the aggregation of norms. Mathematics 2021, 9, 2291. [CrossRef]
5. Fattahi, R.; Khalilzadeh, M. Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP

methods under fuzzy environment. Saf. Sci. 2018, 102, 290–300. [CrossRef]
6. Liu, H.C.; Liu, L.; Liu, N. Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Syst. Appl.

2013, 40, 828–838. [CrossRef]
7. Spreafico, C.; Russo, D.; Rizzi, C. A state-of-the-art review of FMEA/FMECA including patents. Comput. Sci. Rev. 2017, 25, 19–28.

[CrossRef]
8. Karasan, A.; Ilbahar, E.; Cebi, S.; Kahraman, C. A new risk assessment approach: Safety and Critical Effect Analysis (SCEA) and

its extension with Pythagorean fuzzy sets. Saf. Sci. 2018, 108, 173–187. [CrossRef]
9. Maheswaran, K.; Loganathan, T. A novel approach for prioritization of failure modes in FMEA using MCDM. Int. J. Eng. Res.

Appl. 2013, 3, 733–739.
10. Ouédraogo, A.; Groso, A.; Meyer, T. Risk analysis in research environment–part II: weighting lab criticity index using the analytic

hierarchy process. Saf. Sci. 2011, 49, 785–793. [CrossRef]
11. Yousefi, S.; Alizadeh, A.; Hayati, J.; Baghery, M. HSE risk prioritization using robust DEA-FMEA approach with undesirable

outputs: A study of automotive parts industry in Iran. Saf. Sci. 2018, 102, 144–158. [CrossRef]
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Abstract: Motivated by some practical applications of post-disaster supply delivery, we study a
multi-trip time-dependent vehicle routing problem with split delivery (MTTDVRP-SD) with an
unmanned aerial vehicle (UAV). This is a variant of the VRP that allows the UAV to travel multiple
times; the task nodes’ demands are splittable, and the information is time-dependent. We propose a
mathematical formulation of the MTTDVRP-SD and analyze the pattern of the solution, including
the delivery routing and delivery quantity. We developed an algorithm based on the simulation
anneal (SA) framework. First, the initial solution is generated by an improved intelligent auction
algorithm; then, the stochastic neighborhood of the delivery route is generated based on the SA
algorithm. Based on this, the model is simplified to a mixed-integer linear programming model
(MILP), and the CPLEX optimizer is used to solve for the delivery quantity. The proposed algorithm
is compared with random–simulation anneal–CPLEX (R-SA-CPLEX), auction–genetic algorithm–
CPLEX (A-GA-CPLEX), and auction–simulation anneal–CPLEX (A-SA) on 30 instances at three scales,
and its effectiveness and efficiency are statistically verified. The proposed algorithm significantly
differs from R-SA-CPLEX at a 99% confidence level and outperforms R-SA-CPLEX by about 30%. In
the large-scale case, the computation time of the proposed algorithm is about 30 min shorter than that
of A-SA. Compared to the A-GA-CPLEX algorithm, the performance and efficiency of the proposed
algorithm are improved. Furthermore, compared to a model that does not allow split delivery, the
objective function values of the solution of the MTTDVRP-SD model are reduced by 52.67%, 48.22%,
and 34.11% for the three scaled instances, respectively.

Keywords: multi-trip; split delivery; auction mechanism; simulated annealing; mixed-integer linear
programming model

MSC: 90C11

1. Introduction

The purpose of any post-disaster relief activity is to deliver requested (or even urgent)
supplies and services to a place and within the time frame needed while trying to ensure
minimal costs [1]. A disaster often results in road destruction or special traffic control,
which poses great challenges for ground transportation and rescue. Therefore, the use
of UAVs may be a good choice. The development of many technologies has made it
feasible for rescue organizations to implement UAV delivery. Carbon fiber has enabled
the development of lightweight airframes [2]. Lithium polymer batteries have a relatively
high energy density, effectively increasing the flight time of UAVs [3]. GPS can be used for
UAV navigation [4]. Technologies such as light detection and image processing can identify
obstacles and targets [5]. In fact, a number of large enterprises have begun to use UAVs to
complete deliveries, such as Amazon, Google, and Alibaba.

This study is motivated by the use of UAVs for the emergency delivery of supplies to
a disaster area for post-disaster relief. Each disaster camp has a demand and urgency for
supplies. Rescue supplies are centrally stored in a depot on the outskirts of the disaster
area. UAVs bring relief supplies to the disaster camps for delivery. Each UAV needs to
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perform multiple trips due to its limited single-load capacity and battery power, resulting
in the need to constantly return to the depot to replenish supplies and batteries. When a
UAV runs out of power, the depot replaces the battery with a new fully charged one [6,7],
ensuring that the UAV can be dispatched again with negligible time consumption in the
process. Another challenging issue is that the urgent needs of disaster camps for supplies
vary continuously over time and are discrete with supply delivery work. In fact, this is
similar to a soft time window constraint, where different moments and different delivery
quantities gain different revenues and have different costs for the UAV. We model this new
variant as a multi-trip time-dependent vehicle routing problem with split delivery, which
is based on the classic multi-trip vehicle routing problem (MTVRP), which also takes into
account the following characteristics: multiple trips per UAV, time-dependent urgency,
split delivery, and a UAV battery power limit.

For the vehicle routing problem with multiple trips, Taillard et al. [8] first introduced
multiple trips into the vehicle routing problem (VRP) and proposed a tabu search heuristic
algorithm for this problem. They proposed the MTVRP in order to extend the standard VRP
and obtain high-quality solutions for a series of test problems. Salhi et al. [9] proposed a
new hybrid genetic algorithm for the MTVRP problem with encouraging results. Mingozzi
et al. [10] argued that the MTVRP was proposed because of the consideration of vehicle
capacity constraints and maximum travel time constraints, and they proposed an exact
solution algorithm that divided the solution into two parts—the feasible route for the
vehicle and the travel departure schedule. In fact, exact approaches for the MTVRP and its
variants are rare, and a discussion thereof is omitted due to space constraints. Interested
readers are referred to [11–13]. Paradiso et al. [14] also focused on the MTVRP with time
windows and proposed an exact solution framework that relied on column generation,
column enumeration, and cutting planes. However, they proposed a significant point:
that MTVRPs with different side constraints require special formulations and solution
methods to solve them, which means that MTVRPs themselves generate different variants
depending on different constraints, and each variant requires special models to model, as
well as special approaches to its solution.

The studies cited above only investigated the vehicle routing problem while consid-
ering multiple trips. The time-dependent characteristic and split delivery were not taken
into consideration in their studies. However, the MTVRP is the basis for the study of such
variant problems.

The time-dependent characteristic has different interpretations. Donati et al. [15]
and Ichoua et al. [16] described travel speed as time-dependent, or rather, travel time
as time-dependent. Sun et al. [17] improved a time-dependent travel speed model in
the background of delivery services under city congestion. They verified the realism and
superiority of the proposed model through an experimental case study. There are many
more studies investigating time-dependent travel time [18,19], and some other studies
describing costs as time-dependent [20]. However, the time-dependent characteristic
considered in this paper—from the practical point of UAV emergency supply delivery—is
that the information of the task is time-varying, while the speed of the UAV is constant. The
relationship between speed, load, and power consumption of UAVs was thoroughly studied
by Liu et al. [21]. Similarly, Nguyen et al. [22] proposed a time-dependent characterization
of demand and described it with two conditional assumptions. They proposed a taboo
search metaheuristic algorithm that introduced an elite solution set and a frequency-based
memory diversification strategy with encouraging results. Later, they added constraints for
both the inbound and outbound traffic with success in [23]. However, they did not describe
the dependence of the task demand on time and whether demand can be met multiple
times much. These points are necessary for consideration in the UAV emergency supply
delivery problem.

The introduction of a split-delivery constraint in the VRP problem was first proposed
by Dror and Trudeau [24], who used a heuristic algorithm to find a cost reduction of
almost 14% with split deliveries. Nowak et al. [25] pointed out that split delivery means
delivering certain loads in multiple trips rather than one trip. Their study also focused
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on analyzing the extent to which the benefits of split delivery are related to the size of the
load, the cost of the load, and the frequency of the load destination. Some other researchers
limited split delivery to specific dimensions, such as the demand for a single task being
satisfied in at most two [26] or three [27,28] times. Lai et al. [29] investigated the problem
of unlimited times of split delivery in city services and developed a tabu search algorithm
by combining dynamic programming, neighborhood search, and perturbation processes.
They also analyzed the impact of split delivery on the back of the favorable results achieved
by the algorithm. Naturally, the main focus of their study was on the combination of split
delivery and the VRP, which may not describe the actual situation in disaster relief well.

The MTTDVRP-SD problem is NP-hard because it contains the MTVRP as its special
case, and the MTVRP is NP-hard [30]. It is interesting to note that this problem develops its
unique characteristics and difficulties by modeling various practical features together, and
that this is a blind spot in the current research. Now, we briefly analyze the difficulties of
the MTTDVRP-SD model. First, the solution should include not only the delivery routing
order, but also the delivery quantity. At the same time, the delivery routing order implicitly
includes the arrival time of the UAV. Therefore, the solution computation process includes
two layers of optimization for the delivery routing and delivery quantity, leading to a huge
solution search space. In particular, as the size of the problem increases, it is difficult for
traditional algorithms to achieve a trade-off between solution quality and computation
time. Second, the feasibility check for trips includes the demand constraint of the disaster
camp, the load constraint of the UAV, and the maximum battery power constraint. It is
possible to make infeasible trips to deliver to remote camps that exceed the battery power
that is feasible if the UAV is loaded with a small quantity of supplies, but then it is necessary
to check that the camps’ supply demands are met. The feasibility check of the solution
requires a thorough evaluation of the UAV’s trip allocation and careful scheduling of the
UAV’s routing and dispatch of supplies. These challenging characteristics necessitate a
rigorous investigation of the problem in order to propose suitable models and design
tailored algorithms.

Considering both the use of delivery vehicles (i.e., UAVs) in the practical transportation
industry and the theoretical gap in terms of modeling in the current study, we investigate a
problem model that is more adapted to the emergency rescue scenario. Due to the com-
plexity of the problem, we try to design a new heuristic algorithm (named A-SA-CPLEX)
based on the intelligent auction mechanism, the simulated annealing (SA) algorithm, and
the CPLEX optimizer. Specifically, the main contributions of this paper can be summarized
as follows.

• A formal description of the UAV emergency supply delivery problem is provided.
This problem is described as a new variant of the MTVRP problem, denoted as
MTTDVRP-SD, and it is modeled as mixed-integer programming (MIP). MTTDVRP-
SD considers the actual problem characteristics more comprehensively and defines
the time-dependent urgency function explicitly as a piecewise linear function. The
solution to the MTTDVRP-SD problem (i.e., the UAV’s delivery pattern) consists of
the delivery routing and delivery quantity, i.e., it contains two decision variables.

• The A-SA-CPLEX algorithm is proposed. Firstly, an intelligent auction mechanism
that integrates single-task auctions and a pre-authorization mechanism are developed
to construct a feasible and better solution in a short time. Then, the combination of the
SA algorithm with the CPLEX optimizer is proposed to further improve the quality of
the solution. This can effectively improve the efficiency of the iteration of solutions.

• In SA, the transformation of the MILP model can be achieved by first generating a
random delivery routing and then bringing it into the MTTDVRP-SD model. At this
point, the CPLEX optimizer can be used to find the optimal solution of the MILP
model, which is the optimal delivery quantity under random delivery routing. The
combination of the delivery routing and the delivery quantity constitutes the new
solution, and the iteration continues.
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• Experiments were carried out under an emergency supply delivery scenario. Then,
we derived a large number of random instances of three different sizes for testing the
proposed algorithm and compared it with three other algorithms. The experimental re-
sults show that our approach can efficiently solve the problem. Lastly, we additionally
investigated the advantages of the MTTDVRP-SD model.

The remainder of this paper is organized as follows. Section 2 provides the formal
description and a mathematical model of the problem. The heuristic algorithm is explained
in Section 3, followed by extensive descriptions of the experimental results in Section 4.
Finally, the conclusion and possible directions of future studies are discussed in Section 5.

2. Problem Definition and Formulation

In this section, we describe the MTTDVRP-SD in detail and present a mathematical
model of the problem.

2.1. Basic Definition

Let V = {1, 2, . . . , NV} denote the set of disaster camps (i.e., task nodes) and let
{0} denote the supply depot node, which is the starting or ending point of a trip. The
MTTDVRP-SD is defined over a complete directed graph G = (V

′
, E), with node set

V
′
= V ∪ {0} and arc set E = {(i, j) : i, j ∈ V, i �= j}. Each node i ∈ V is associated with a

supply demand mi, an urgency for supply demand ei, and a two-dimensional coordinate
(xi, yi). Note that the supply demand of the node changes with the step-by-step delivery of
UAVs, and the urgency is additionally affected by time, which is described in detail later.
Additionally, each arc (i, j) ∈ E that can be traveled by UAVs is associated with a Euclidean
distance Dij.

Let G denote UAVs with a speed S, a rated load capacity L, a rated battery power W,
and self-weight G. Note that the energy consumption of the UAV’s battery depends on its
self-weight and the load that it carries, which will become smaller step by step once the
supplies have been delivered to the task nodes. Specifically, the energy consumption can
be viewed to vary linearly with loading and self-weight [31,32]. Additionally, during the
delivery task, the speed of the UAV is constant.

A trip is defined as a sequence of node visits that starts from the depot, progresses
along a sequence of task nodes, and returns to the depot. After selecting the appropriate
sub-route and assigning a delivery task, the UAV will load the corresponding supplies
in order and exchange the batteries at the depot. Then, it will go to visit the assigned
nodes and deliver the supplies one by one. For each trip, UAVs have constraints on the
rated weight and rated battery power. Therefore, multiple trips are necessary with the
limited UAVs available. Let R denote the set of possible trips for a UAV, and let the pair
(k, r), k ∈ U, r ∈ R denote the r-th trip of the k-th UAV.

2.2. Time-Dependent Task Information

In fact, many types of supplies are needed in a disaster relief situation, including food,
water, medicine, etc. However, in order to facilitate emergency response and effective
implementation of rescue, we do not over-calculate the need for various types of supplies,
nor do we conduct precise delivery. It is a more common practice to synthesize various
supplies into a single rescue package [33], i.e., to integrate them into a single supply
delivery operation. To simplify the problem, the supply demand of task nodes is unitized.
Considering that the maximum loading capacity of a UAV may be smaller than the supply
demand of a single node, we propose a splittable delivery method for demand, i.e., the
supply demand of a single node may be satisfied in multiple trips. Figure 1a shows that
the supply demand of a task node is satisfied with three deliveries.

In the aftermath of a large-scale natural disaster, the urgency of supply demands
can vary between task nodes due to differences in casualties, degree of house destruction,
and economic levels [34]. On the other hand, the urgency of the task node becomes
progressively greater over time, which may be due to secondary injuries caused by hunger,
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cold, and aggravation of conditions. As relief supplies are gradually replenished, the
urgency decreases again. Figure 1b shows the change in urgency when the supply demands
of a task node are met with three deliveries.
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Figure 1. Illustration of the task information changes in the process with three deliveries. (a) Changes
in the demand in the delivery process. (b) Changes in the urgency in the delivery process.

The supply demand mi(t) of the task node i will not change until the supplies are
received, but the urgency ei(t) will increase linearly with time; at the moment of receiving
the supplies, such as the moment t1, t2, t3, the supply demand and urgency of the task
node will decrease accordingly, but the decrease in urgency is related to the amount of
supplies delivered qkr

i and the initial urgency ei(0). Note that, at the moment t3, the supply
demands of the task node i are all satisfied, the delivery task of the node is considered to be
completed, and the urgency becomes 0 directly. The formula is expressed in Equations (1)
and (2). In fact, the delivery and reception of supplies and the change in node information
are not done in the same instant, which is due to the time delay in the process of the delivery
of supplies and the distribution of supplies, but this is not considered in this paper.

mi(t+) =

{
mi(t−)− qkr

i , xkr
i = 1,

mi(t−), others.
(1)

ei(t+) =

⎧⎪⎪⎨⎪⎪⎩
0, mi(t+) = 0,

ei(t−)− ei(0)
mi(0)

× qkr
i , mi(t+) > 0 and xkr

i = 1,

ei(t0) + a × (t − t0), others.

(2)

where t0 denotes the moment when the last supply demand of the task node was met; t−
and t+ mathematically denote the left and right convergence of moment t, respectively.

The objective of the model is to find the minimal-cost solution that satisfies the task
nodes’ demand constraints, maximum loading constraints, and maximum battery power
constraints. Unlike the usual objective function of the VRP and its variant problems, which
considers minimizing the total travel distance or working time, the cost is defined as
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the damage duration of the task node, which is calculated with the urgency and rescue
waiting time.

2.3. Mathematical Formulation

In this section, we formulate the MTTDVRP-SD as an MIP model to optimize the
UAV delivery patterns (in terms of delivery routing and delivery quantity). The decision
variables are defined by i, j ∈ V

′
, k ∈ U, r ∈ R. To simplify the model formulation, the

binary decision variable xkr
ij is used to denote the delivery route, but a transformation

is required. If xkr
ij = 1, indicating that the trip (k, r) visits node j from i, then node j is

added to the delivery route of UAV k; otherwise, it is not added. The delivery quantity
corresponding to the delivery routing is denoted by discrete decision variables qkr

j .
The MIP model will discussed in detail below.

f = min{max
i∈V

∫ Tend
i

0
ei(t) dt} (3)

t ∈ N (4)

∑
k∈U

∑
r∈R

qkr
j = mj(0), ∀j ∈ V (5)

Nk
R ≥ 1, ∀k ∈ U (6)

0 ≤ lr
k(t) < Lk, ∀k ∈ U, r ∈ R, t (7)

lr
k(str

k) > 0, ∀k ∈ U, r ∈ R (8)

Tkr
j = xkr

ij × Tkr
i + xkr

ij × Dij/Sk, ∀i, j ∈ V
′
, k ∈ U, r ∈ R (9)

etr
k = str

k + ∑
i∈V′

∑
j∈V′

xkr
ij × Dij/Sk = Tkr

0 , ∀k ∈ U, r ∈ R, i �= j (10)

str+1
k =

{
etr

k, ∀r ∈ R
0, ∀r /∈ R

, ∀k ∈ U, r + 1 ∈ R (11)

0 ≤ wr
k(t) ≤ Wk, ∀k ∈ U, r ∈ R, t (12)

wr
k(t) =

∫ t

tr
k

δ × (lr
k(τ) + G)dτ, ∀k ∈ U, r ∈ R, t (13)

∑
i∈V′ \{j}

xkr
ij = {0, 1}, ∀j ∈ V, k ∈ U, r ∈ R (14)

∑
j∈V′ \{i}

xkr
ij = {0, 1}, ∀i ∈ V, k ∈ U, r ∈ R (15)

∑
j∈V

xkr
0j = 1, ∀k ∈ U, r ∈ R (16)

∑
i∈V

xkr
i0 = 1, ∀k ∈ U, r ∈ R (17)
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∑
k∈U

∑
r∈R

∑
i∈Vi\{j}

xkr
ij ≥ 1, ∀j ∈ V (18)

∑
k∈U

∑
r∈R

∑
j∈V′ \{i}

xkr
ij ≥ 1, ∀i ∈ V (19)

0 < qkr
j ≤ Lk, ∀j ∈ V, k ∈ U, r ∈ R (20)

qkr
j ≤ mj, ∀j ∈ V, k ∈ U, r ∈ R (21)

xkr
ij ∈ {0, 1}, ∀i, j ∈ V, k ∈ U, r ∈ R (22)

Equation (3) is used to minimize the maximum duration damage among all task nodes,
which is calculated by the integral of the urgency over time. Equation (4) represents time as
a set of discrete sequences belonging to natural numbers. Equation (5) ensures that all task
nodes’ demands are met. Equation (6) indicates that all UAVs belong to at least one trip.

Equation (7) guarantees that the loading of the UAV does not exceed its limit at any
moment. Equation (8) indicates that the loading of the UAV at the start of any trip is strictly
greater than 0. Equation (9) represents the calculation of the arrival time for node j during
the r-th trip of the k-th UAV, which is a recursive formula. Equations (10) and (11) represent
the calculation of the end and start time of a trip, respectively.

Equation (12) ensures that the UAV can go back safely, i.e., the energy consumed at
any given moment does not exceed the limit. Equation (13) represents the calculation of the
energy consumption of the UAV. Under the condition of constant UAV speed, the power is
linearly related to the loading and self-weight, while the loading changes with the delivery
of supplies, so it is a segmented linear function. Energy consumption is the product of
power and time. More details can be found in the work of Liu et al. [21].

Equations (14) and (15) require that all nodes, including the depot, will be arrived
at and left at most once during a trip. Equations (16) and (17) ensure that all trips start
and end at the depot. Equations (18) and (19) guarantee that all task nodes will be arrived
at and left at most once during the whole rescue process. Equations (20)–(22) define the
ranges of the decision variables.

3. Approaches

This section proposes a solution algorithm based on SA. An initial solution is first
constructed by a developed auction algorithm that integrates single-task auctions and a
pre-authorization mechanism. Then, the SA algorithm combined with the CPLEX optimizer
is applied to improve the initial solution.

3.1. Solution Representation

The delivery route and delivery quantity are the fundamental building blocks of
the solution representation. In Section 2.3, the transformation from a binary decision
variable xkr

ij into a delivery route was described. Each UAV has multiple sub-trips, and the
quantity of supplies delivered to each node is determined. Each sub-trip of the UAV has a
schedule that is directly related to the objective function and can be computed recursively
by Equation (9) with the time complexity of O(|R|). The test regarding the feasibility of the
solution must include two aspects, namely, the schedule corresponding to each sub-trip
and the corresponding quantity of supplies to be delivered. An example of a solution to
the MTTDVRP-SR is depicted in Figure 2, including some brief descriptions.
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Figure 2. Example of a solution with three UAVs and less than 11 nodes.

3.2. Auction for Constructing the Initial Solution
3.2.1. Designed Mechanism

In the auction process, there are mainly two kinds of roles, i.e., an announcer and
bidders. The work of the announcer is to publish tasks and assign them, and the bidders’
work is to bid on the tasks and accept them. Consequently, we will focus on the interactions
between the different roles to illustrate the auction mechanism.

Considering the problem of task assignment in the UAV swarm, the key point is to
allocate each task to the proper UAV at the right time. In this work, we use an auction
mechanism to determine the delivery routing and quantity for each UAV. As is the case
in auction activities, the first step is to analyze the task requirements and determine the
number and type of UAVs, and we carry out this work in the preparation stage. The
following stages are announcing, bidding, pre-authorization, and authorization.

1. Announcing.
The main work of this phase is for the announcer to delete the assigned tasks and
update the information about the unassigned tasks. Note that the task information
includes the price after constantly bidding for, in addition to the two-dimensional
coordinates, supply demand, and urgency of the task mentioned in the model. Finally,
they are published for all bidders.

2. Bidding.
In this stage, each bidder (i.e., UAV) calculates the bidding value based on its status
parameters (including the current position, speed, loading, remaining battery, com-
pletion time of the last task) and task information. Different loadings of UAVs lead
to different energy consumption levels, so UAVs may obtain different rewards for
the same task. In addition, the calculation should obey the common predefined rules.
After getting the bidding value, bidders send the values to the announcer for bidding.
The timing of a UAV’s request for auction is the completion of the currently assigned
task.

3. Pre-authorization.
After the announcer receives the bidder’s bid value, it selects the appropriate UAV
for contract pre-authorization according to the predefined selection strategy. Since
there are multiple UAVs bidding for the same task, the pre-authorization phase ends
with all UAVs getting a task that they are satisfied with. Then, the announcer sends
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the complete task information to the winning UAV and records the result of this
pre-assignment. The UAV will also be involved in the next auction after receiving a
pre-authorized task and can be re-selected for a task with a higher revenue, but there
can only be one pre-authorized task at a time.

4. Authorization.
The UAV is not considered authorized to perform the task until it receives authoriza-
tion for that task. In this stage, UAVs need to verify that they have been pre-authorized.
If a pre-authorization has been obtained, then it is directly transformed into an au-
thorization; otherwise, an auction is requested from the announcer. Note that the
UAV is only authorized for one task until the deadline for the completion of the
authorized task.

3.2.2. Bidding Value

In the auction mechanism mentioned before, the announcer selects the proper UAV
based on the bidding values. Consequently, the calculation of the bidding values is sig-
nificant for the efficiency. In the bidding process, whether a candidate UAV can satisfy
the energy constraint is the most important factor, and we describe this effect with a
step function.

φ(wr
k(t)− pw) =

{
1, wr

k(t)− pw ≥ 0,
0, others.

(23)

where pw is the estimated power consumption.
Another factor that should be taken into consideration is the duration damage of

tasks, and it should be as small as possible. In addition, the urgency decreases when the
supply requirements of the task node are delivered. The greater the delivery, the greater
the decrease in urgency and the greater the revenue. Therefore, we calculate the revenue
revenuekr

i of UAV uk for the task vi at r-th trip with the following equation.

revenuekr
i = φ(wr

k(t)− pw)× (
∫ t

0
ei(τ)dτ +

ei(0)
mi(0)

× qkr
i ) (24)

As a bidder, the UAV will choose the task i with the highest net revenue for bidding.
In addition to the value of the revenue, the bidding value bidkr

i for the task i also needs to
consider the price of the task itself with the following equation.

bidkr
i = revenuekr

i − max
j∈V\{i}

{revenuekr
j − pj}+ ε (25)

3.2.3. Selection Strategies

In the pre-authorization phase, the announcer receives the bid information from the
UAV and completes the assignment of tasks. In the auction process, the announcer will
pre-authorize different tasks for different UAVs. The key to this phase is the selection
strategy for task assignment. The announcer receives all UAVs’ bids and constructs a set
BID. Then, the announcer selects the bidder with the maximal bidding value for task i. If
bidkr

i is selected, it must meet the following constraint.

bidkr
i ≥ bidk

′
r
′

i , ∀bidkr
i , bidk

′
r
′

i ∈ BID (26)

In the auction process, what we need to pay attention to is that when the bidding
value is 0, the corresponding UAV will not be treated as a valid bidder, and it will not be
added to the BID set. When a UAV k is pre-authorized for task i, the price pi of task i is
updated to its bid value with following equation.

pi = bidkr
i (27)
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A case exists with more than two UAVs bidding for the same task, but the task can
only be pre-authorized for one UAV. At this moment, the UAV that is not pre-authorized
needs to go back to the bidding stage and re-enter the bidding based on the latest task
prices, while the pre-authorized UAV does not have to.

3.3. Simulated Annealing Integrated with CPLEX

We propose simulated annealing integrated with CPLEX (SA-CPLEX) to further
improve the quality of the initial solution. The outline of SA-CPLEX is presented in
Algorithm 1. The SA algorithm was first proposed to solve combinatorial optimization
problems by Kirkpatrick et al. [35], and it provides an effective way of solving the TSP and
VRP problems, which are difficult to deal with when using traditional methods [36]. The
SA algorithm is a stochastic search algorithm based on the Monte Carlo iterative solution
strategy, and its main idea is based on the similarity between the annealing process of solids
in physics and general combinatorial optimization problems. Stochasticity is reflected in
accepting a worse solution with a certain probability instead of accepting only the current
optimal solution. With random factors introduced into the search process, it can avoid being
prematurely trapped in a local minimum, and the global optimal solution can possibly
be obtained.

Algorithm 1: Proposed Algorithm.

Input : (V
′
, E), U, R; T0, T

′
, β, MaxInnerIter;

Output : SOL∗, f ∗.

1 Constructing Initial Solution SOL0, including SOL_Route0 and SOL_Quantity0;
2 Initial: inneriter ← 0, and SOL∗, SOL

′ ← SOL0;
3 Calculate f ∗, f

′
from SOL0;

4 temp ← T0;
5 while temp > T

′
do

6 Search SOL_Route in the neighborhood of SOL_Route
′
;

7 Calculate SOL_Quantity from SOL_Route by CPLEX;
8 while SOL_Quantity is no solution do
9 if inneriter == MaxInnerIter then

10 SOL_Route ← SOL_Route∗;
11 SOL_Quantity ← SOL_Quantity∗;
12 break;

13 inneriter ← inneriter + 1;
14 Calculate SOL_Quantity from SOL_Route by CPLEX;

15 SOL ← SOL_Route, SOL_Quantity;
16 Calculate f from SOL;
17 delta_ f = f − f

′
;

18 if delta_ f < 0 then

19 SOL
′ ← SOL;

20 f
′ ← f ;

21 if f < f ∗ then
22 SOL∗ ← SOL;
23 f ∗ ← f ;

24 else if rand < exp(delta_ f /temp) then

25 SOL
′ ← SOL;

26 f
′ ← f ;

27 temp ← temp × β;

Four parameters—T0, T
′
, β, and MaxInnerIter—are defined for the SA algorithm. T0,

T
′
, and β(0 < β < 1) are the typical parameters used in SA for, respectively, the initial
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temperature, the final temperature, and the cooling factor. MaxInnerIter represents a
threshold of the number of non-solutions at a particular temperature. The general structure
of SA comes from Kirkpatrick et al. [35].

First, the initial solution SOL0 is constructed by an improved auction algorithm. We
initialize inneriter, SOL∗, SOL

′
, f ∗, f

′
, temp as shown in lines 2∼4, and all of them will be

updated in the following calculation process. When the current temperature temp is greater
than the final temperature T, the search process will continue. As mentioned previously,
the solution SOL is composed of the delivery route SOL_Route and the delivery quantity
SOL_Quantity, but only the former generates a new neighborhood solution according to
different search operators (as described in Section 3.3.1). SOL_Quantity is based on the
determination to convert the model into an MILP, and the optimal delivery quantity is
found by the CPLEX optimizer (as described in Section 3.3.2).

Due to the specificity of the model, including the multiple trips and separable demands,
the solution space is huge, which leads to the generation of many infeasible neighborhood
solutions and the consumption of an unnecessarily large amount of computing power, i.e.,
after the new SOL_Route is determined, no feasible SOL_Quantity can be found, so internal
iterations such as those in lines 7∼14 are necessary. However, when the number of internal
iterations reaches the threshold of MaxInnerIter, we reset the neighborhood solution to the
current optimal solution and reduce the temperature to avoid the deadlock phenomenon.

When the new neighborhood solution SOL is generated, we compute its objective
function value f and cause it to differ from the initial value f

′
of the current temperature,

which is denoted as delta_ f (line 17). If the objective function value is improved (delta_ f is
less than 0), SOL

′
is replaced by SOL. If the current optimal objective function value f ∗ is

improved ( f < f ∗), SOL∗ and f ∗ will be replaced by SOL and f , respectively (lines 18∼23).
If SOL is worse than SOL

′
, a random number rand (0 < rand < 1) is generated and

compared with exp(delta_ f /temp) (line 24). This operation introduces a stochastic factor to
the search process, which can effectively prevent it from being trapped in a local optimum.
If rand is less than exp(delta_ f /temp), we will accept SOL and update SOL

′
, f

′
according

to lines 25∼26. At the end of the search round, we need to decrease the temperature and
continue iterating.

3.3.1. Random Search of Delivery Routing

The proposed algorithm uses a random neighborhood structure that features seven
types of moving operators, including Swap-Single, Move, Insert, Delete, Swap-All, 2-Swap-
Single, and 2-Swap-All. Figure 3 illustrates how we implement all moves in the solution
representation to generate a new neighborhood delivery routing. In Figure 3, black dots
indicate the depot, light blue indicates the task nodes, and red and blue indicate the task
nodes that are about to perform the moving operators.

The first operator is focused on the swap of two routing nodes on the same UAV and
randomly selects only one UAV. However, for Swap-All, all UAVs will perform Swap-Single,
2-Swap-Single focuses on swapping four different routing nodes on the same UAV, and
2-Swap-All means that all UAVs will perform 2-Swap-Single. Move is done by selecting
one position randomly and moving it into the position before another randomly selected
position, but the node being moved cannot be a depot. The following two operators are
Insert and Delete. Insert is used by selecting a random node and converting it into a random
position. Delete is similar to it, but the deleted node cannot be a depot or a node that has
only been visited once in the current solution.

The search intensity of these seven operators gradually increases, and all of them are
used randomly and repeatedly until no further improvement is obtained. Implementing
these moves will change the solution structure. It is not only limited to the route sequence,
but also the times at which nodes are visited (as explicitly done by Insert and Delete). When
the delivery route is determined, the time for the UAV to visit each node is also determined.
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Figure 3. Illustration of the creation of a new delivery routing sequence using seven operators.
(a) Swap-Single. (b) Move. (c) Insert. (d) Delete. (e) Swap-All. (f) 2-Swap-Single. (g) 2-Swap-All.
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3.3.2. Exact Search of Delivery Quantity

In Section 2.3, there are two types of decision variables for the MTTDVRP-SD. If both
decision variables are considered together, the solution search process can be very difficult.
In Section 3.3.1, we first generate a new SOL_Route with seven moving operators. When
SOL_Route is determined, the value of the decision variable xkr

ij can be determined based

on the representation of the solution shown in Figure 2. Then, by bringing xkr
ij into the

MTTDVRP-SD, a simplification of the MILP model is achieved and can be solved directly
by the CPLEX optimizer. At this time, the optimal delivery quantity under this delivery
route can be found, and the combination of the delivery route and delivery quantity forms
a new neighborhood solution, which then participates in the next iteration round.

The degraded model is composed of Equations (3), (5), (7), (8), (12), (13), (20), and (21).
However, the objective function (Equation (3)) needs to be rewritten, as shown in the
following.

f = min{max
j∈V

∑
nj
n=1 (ej(Tn

j ) + ej(Tn−1
j ))× (Tn

j − Tn−1
j )/2} (28)

where nj denotes the times at which node j was visited; Tn
j denotes the time at which node

j was visited for the n-th time, and T0
j = 0, j ∈ V. According to Equation (2), ej(Tn

j ) can be
calculated as follows.

ej(Tn
j ) = ej(Tn−1

j ) + α × (Tn
j − Tn−1

j )− ej(0)
mj(0)

× qn
j (29)

where qn
j denotes the delivery quantity of node j accepted for the n-th time, and it is

different from the definition of qkr
j . However, they can be transformed into each other.

When SOL_Route is determined, we can calculate how many times each node is visited, the
time of the the visits, and the number of qn

j . Then, we sort the multiple visit times of node j,
and we can establish the relationship between (k.r) and n. Based on this relationship, the
transformation between qn

j and qkr
j can be achieved.

Until now, this simplified model has still not become a standard MILP model. We need
to introduce a new decision variable C to convert the Minimax of the objective function
into a minimum value problem. Then, we reformulate the objective function of Equation (3)
as shown in Equation (30) and add NV + 1 constraints, as in Equation (31).

f = min c (30)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑n1

n=1 (e1(Tn
1 ) + e1(Tn−1

1 ))× (Tn
1 − Tn−1

1 )/2 ≤ c
...

∑
nNV
n=1 (eNV (T

n
NV

) + eNV (T
n−1
NV

))× (Tn
NV

− Tn−1
NV

)/2 ≤ c
c ∈ R

(31)

Using the above method, the model is successfully degraded to a standard MILP
model, which can be solved exactly by the CPLEX optimizer. This can quickly find the
optimal SOL_Quantity under a new SOL_Route or demonstrate that there is no feasible
solution while favorably reducing the computational resources of the search process.

4. Experiments and Discussion

The proposed algorithm was coded in C++, and the MILP model was solved with IBM
ILOG CPLEX Optimization Studio 22.1.0.0. All of the experiments were conducted using
Visual Studio 2022 platform, the CPU was an Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz
3.00GHz, and the OS was Windows 7.
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4.1. Test Instances for the MTTDVRP-SD

To illustrate how the MTTDVRP-SD behaves in general, we averaged the results
of some randomly generated instances of each scenario. The scenarios were conducted
on three different scales, which are displayed in Table 1. Each instance consisted of a
rectangular area of 4000 × 4000 m. We generated 10 random instances for each scale of the
scenario. In each instance, the disaster camps were uniformly distributed throughout the
area and were given a uniform random demand of 6∼10 units; the initial urgency of the
disaster camps was a random value in the range of 0.1∼0.4, and the parameter of urgency
changed over time α = 0.0002; the depot was randomly located at the boundary location
of the area. We ran the A-SA-CPLEX algorithm 30 times per instance and calculated the
average, standard deviation, and average runtime for these 30 runs. The same was true for
the implementation of the comparison algorithm and the comparison model.

Table 1. Parameters of instances.

Scale Number of Task Nodes (NV ) Number of UAVs (NU )

Small 30 3
Medium 50 5

Large 100 10

The parameters of the UAVs were derived from some public sources and scaled
accordingly to fit the case scenario. The maximum capacity of each UAV was in the
range of 14∼17 units, which included the payload and self-weight, with the self-weight
G = 2 units. The average speed of each UAV during the task was constant, between
15∼20; the maximum battery capacity was a random value between 6000∼7000. In this
section, unless mentioned otherwise, when running the SA part, the initial temperature
was Y = 500, the final temperature was Y

′
= 0.1, the cooling factor was Δ = 0.999, and the

number of rounds was Λ = 10,000.

4.2. Results of the A-SA-CPLEX Algorithm

In this section, we use the instance s_1 as an example to illustrate the solution process
of the A-SA-CPLEX algorithm and to show the optimal solution. Figure 4 shows the
convergence trend of the A-SA-CPLEX algorithm. The objective function values in the
figure are the solutions after each iteration of the algorithm, instead of recording only
the optimal solution for the current iteration. As can be seen, the algorithm experiences
an intense oscillation in the early stages, which is because the SA algorithm has a higher
probability of accepting poorer solutions at the beginning of the iteration, which helps to
jump out of the local optimal solution. After about 5000 iterations, the algorithm reaches a
plateau and obtains a current iterative optimal solution with an objective function value
below 400.

Figure 5 gives information about the optimal delivery routing and delivery quantity
found by the A-SA-CPLEX algorithm, and the arrival time of the task node is implicitly
represented by the delivery routing. In Figure 5, the three lines together consist of the
solution, and they represent the execution schemes of UAVs u1, u2, and u3, respectively.
The red circles indicate depots, the blue circles indicate task nodes, and the numbers in
the circles are the serial numbers of the nodes. The numbers below the red circles indicate
the quantities of supplies loaded from the depot for this trip, and the numbers inside the
brackets indicate the maximum loading capacity of that UAV. The numbers below the blue
circles indicate the quantity of supplies delivered to that task node. Under this optimal
dispatching strategy, the maximum duration damage is 359.71 among all task nodes. From
the solutions, each UAV made multiple trips, with UAV u1 making six trips, u2 making
four trips, and u3 making five trips. On the other hand, the supply demands of the existent
task nodes were distributed and delivered; for example, task nodes v10, v12, v13, v17, v18,
and v24 were split into two deliveries.
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Figure 4. Convergence trend of the A-SA-CPLEX algorithm in the instance s_1.
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Figure 5. Solution of the instance s_1.

4.3. Comparative Analysis of the Algorithms

To explore the performance of the algorithm, ten instances for each different scale were
randomly generated with the method described above and used to conduct the experiment.
For each instance, the results of the proposed algorithm were used for a comparison
with the results of other algorithms. The compared algorithms included the R-SA-CPLEX
algorithm, A-SA algorithm, and A-GA-CPLEX algorithm. The R-SA-CPLEX algorithm
is an improvement of the random initial feasible solution using the proposed SA-CPLEX
method. The A-SA algorithm optimizes the initial solution constructed by the proposed
auction method using only SA. The A-GA-CPLEX algorithm uses the GA framework for
solving; however, the initial population is composed of the initial solution constructed by
the proposed auction method and some random feasible solutions.

Table 2 presents all of the experimental results obtained by the four algorithms for
30 instances in three scales. Each algorithm was run 30 times, and the average results are
displayed. The first column of the table contains the three scales of the instance. The second
column contains the names of all instances. Column 3∼5, 6∼8, 9∼11, and 12∼14 show
the statistical results, which include the average and standard deviation of the objective
function value, as well as the average runtimes of the four algorithms. The last three
columns show the relative reduction in the average value of the objective function for each
of the two compared algorithms with respect to the proposed algorithm. The subsequent
tables have similar meanings.

Before analyzing the results of the four algorithms further, we performed a statistical
analysis of the performance of the A-SA-CPLEX algorithm and the comparison algorithms.
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Although presenting the results of multiple optimizations of an algorithm as an average
and standard deviation is a valuable way to proceed, statistical analysis is important for the
investigation of significant differences in performance between algorithms and to overcome
randomness [37]. Therefore, in this paper, the Wilcoxon rank-sum test was used to perform
nonparametric statistical tests to test the significance of the results for all 30 instances of the
three scales mentioned above.

The p-value is a form of output from the Wilcoxon rank-sum test. If the p-value of two
random datasets after the Wilcoxon rank-sum test is less than 0.01, the two datasets can be
considered statistically significant at the 99% confidence level, i.e., significantly different;
conversely, the two datasets are not accepted as significantly different at the 99% confidence
level. The results of the Wilcoxon rank-sum test are shown in Table 3. In all instances, the
p-values of the results of the A-SA-CPLEX and R-SA-CPLEX algorithms were less than 0.01,
while the p-values with the A-SA algorithm were greater than 0.01. For the A-GA-CPLEX
algorithm, there were two large-scale instances with p-values greater than 0.01, while those
of all other instances were less than 0.01. Therefore, it can be concluded that at a 99%
confidence level, it can be considered that A-SA-CPLEX is significantly different from the
R-SA-CPLEX algorithm, while it is not significantly different from the A-SA algorithm.
For most instances, the A-GA-CPLEX can be considered significantly different from the
R-SA-CPLEX algorithm at the 99% confidence level. In the following, we further analyze
the performance of the different algorithms.

For small-scale instances, the proposed algorithm in this paper shows a decrease
of 27.11% to 39.39% in the objective function value compared to the solution of the con-
ventional R-SA-CPLEX algorithm. For the other two scale instances, this decrease is also
significant. In the medium-sized instances, this decrease ranges from 28.30% to 44.25%,
while in the large scale, it ranges from 14.41% to 35.63%. Since the value of the objective func-
tion decreases by around 30% for the solutions at the three scales, it can be demonstrated
that the proposed algorithm has a great advantage over the conventional R-SA-CPLEX
algorithm in terms of the quality of the solutions. The probable reason is that, for the
MTTDVRP-SD model, which includes a two-layer optimization of delivery routing and
delivery quantity, the solution space is large, and the form of the solution has a great
influence on the solution search.

The performance improvement of the proposed algorithm is also significant compared
to that of the A-GA-CPLEX algorithm. In small-scale instances, the objective function value
of the A-SA-CPLEX algorithm decreases by 21.42%∼31.54% compared to the A-GA-CPLEX
algorithm. Similarly, in the medium-scale instances, there is a decrease of 28.46%∼41.34%.
However, in the large-scale instances, there are two instances (l_5 and l_10) where both
algorithms have the same performance. This is because both algorithms cannot continue
optimizing the initial solution constructed by the auction algorithm. Further, in comparison
with the R-SA-CPLEX algorithm, the computational results of the A-GA-CPLEX algorithm
are shown to be superior in 22 instances. This is because with the design of the A-GA-CPLEX
algorithm, the initial population contains an initial solution constructed by the auction
algorithm. However, for the R-SA-CPLEX algorithm, the initial solution is constructed
randomly. This indicates that the initial solution is important in the MTTDVRP-SD.

On the other hand, we can see that the quality of the solution of the proposed algo-
rithm is basically not improved compared to that of the A-SA algorithm. This is because
we transformed the problem model into an MILP model when we determined the neigh-
borhood solution of the delivery route using the SA method. In terms of the quality of the
solution, it is about the same at this point to use the SA method or the CPLEX optimizer to
determine the delivery quantity; the main difference may be the computing time.
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Table 3. Results from the Wilcoxon test.

Scale Name

p-Value

R-SA-CPLEX
vs.

A-SA-CPLEX

A-GA-CPLEX
vs.

A-SA-CPLEX

A-SA
vs.

A-SA-CPLEX

Small
Scale

s_1 <0.01 <0.01 0.27
s_2 <0.01 <0.01 0.14
s_3 <0.01 <0.01 0.72
s_4 <0.01 <0.01 1.00
s_5 <0.01 <0.01 0.00
s_6 <0.01 <0.01 0.72
s_7 <0.01 <0.01 0.14
s_8 <0.01 <0.01 0.72
s_9 <0.01 <0.01 1.00

s_10 <0.01 <0.01 0.07

Medium
Scale

m_1 <0.01 <0.01 1.00
m_2 <0.01 <0.01 0.47
m_3 <0.01 <0.01 0.72
m_4 <0.01 <0.01 0.47
m_5 <0.01 <0.01 0.72
m_6 <0.01 <0.01 0.47
m_7 <0.01 <0.01 0.14
m_8 <0.01 <0.01 0.27
m_9 <0.01 <0.01 0.47

m_10 <0.01 <0.01 1.00

Large
Scale

l_1 <0.01 <0.01 0.27
l_2 <0.01 <0.01 0.14
l_3 <0.01 <0.01 0.47
l_4 <0.01 <0.01 0.72
l_5 <0.01 1.00 1.00
l_6 <0.01 <0.01 1.00
l_7 <0.01 <0.01 0.47
l_8 <0.01 <0.01 0.72
l_9 <0.01 <0.01 0.14

l_10 <0.01 1.00 1.00

Analyzing the computation time of the four algorithms in different scale instances, we
can see that the computation time of the R-SA-CPLEX algorithm is less than that of the
proposed algorithm. However, in the small- and medium-scale instances, this computing
time advantage is only about 15 s. In the large-scale instances, this advantage is about
three times faster, close to 2 min. To some extent, it shows that the disadvantage of the
computational speed of the proposed algorithm compared to the R-SA-CPLEX algorithm
becomes more and more obvious as the problem size increases, but it is still within an
acceptable range. For the A-GA-CPLEX algorithm, the runtime is longer compared to
that of the A-SA-CPLEX algorithm. In both the small- and medium-scale instances, this
runtime disadvantage is less pronounced, at less than 1 min. However, at a large scale, this
disadvantage is more than 10 min. Unfortunately, the disadvantage of the computational
speed of the A-SA algorithm becomes very obvious. As the scale of the problem increases,
the computing time of the A-SA algorithm increases exponentially. In the large-scale
instances, the computation time of the A-SA algorithm is about nine times greater than
that of the A-SA-CPLEX algorithm, and the average time taken is about 34 min. This is
unacceptable for emergency rescue problems.
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Furthermore, by analyzing the standard deviation of the objective function for each
instance, we can clearly conclude that the A-SA-CPLEX and A-SA algorithms are more
stable than the R-SA-CPLEX algorithm. The stability of the solution is also very important
for life-related optimization problems, such as an emergency rescue.

4.4. Comparative Analysis of the Models

In a previous paper, we learned that the main innovations of the MTTDVRP-SD model
are the multiple trips of UAV, the time dependence of task information, and split delivery.
In the following, we will illustrate the practicality and superiority of the MTTDVRP-SD
model in terms of theoretical analysis or experimental validation. The superiority of using
multiple trips is obvious. First, the cost of manufacturing UAVs is expensive in comparison.
Under a fixed cost, the problem may not find a solution if a UAV is not reused [31]. Second,
in the emergency rescue environment, rescue teams often have a higher capacity for raising
life supplies than UAVs. This makes it difficult to find enough UAVs to enable a single
departure, meaning that the sum of all task demands is less than the single-load capacity of
all UAVs. Regarding the time dependence of the task information, this is a mathematical
description of an earthquake disaster area and it is necessary. On the other hand, regarding
the necessity of split delivery, we intend to conduct an experimental verification. The
30 instances of different scales from the previous subsection were still chosen and solved
with the proposed A-SA-CPLEX algorithm. The experiment was repeated 30 times for each
instance, and the average, standard deviation, and average runtime were calculated. The
difference was that the comparison model did not allow split delivery, and the comparison
model can be noted as MTTDVRP.

Table 4 shows the benefits of allowing split delivery. We can see that in all 30 random
instances, allowing split delivery produces a solution that is less damaging to the task
nodes, with at least a 20% reduction in this damage. The standard deviations of the
objective functions of the two models were also analyzed, and it was found that the
standard deviation of the MTTDVRP-SD model was relatively smaller and more stable.
However, the runtime of the algorithm under the MTTDVRP model was longer, although
the difference in solution time between the two models is not obvious from the results in
Table 4.

The model comparison results for the three different scale instances were analyzed
separately and represented in the form of box plots [38], as shown in Figure 6. We can see
that as the instance went from a small and a medium to a large scale, the median results
of the two model comparisons decreased from 52.67% to 48.22%, and then to 34.11%. To
a certain extent, this indicates that the superiority of the MTTDVRP-SD model over the
MTTDVRP gradually decreases as the problem’s scale increases. However, in large-scale
instances, there is still an advantage of about 34%. The reason for this phenomenon may be
that as the problem size increases, the number of UAVs and tasks increases, but the area
of the region remains the same, which leads to a greater spatial density of tasks and, later,
partially offsets the advantage of split delivery a bit.
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Table 4. Results of comparing the two models under three scale instances.

Scale Name

MTTDVRP MTTDVRP-SD Comparison

Avg. f Std. f Runtime
(s)

Avg. f Std. f Runtime
(s)

(MTTDVRP-
MTTDVRP-SD)

/MTTDVRP

Small
Scale

s_1 796.58 199.13 43.90 379.94 33.54 62.89 52.30%
s_2 778.40 98.70 40.88 389.44 36.56 52.14 49.97%
s_3 780.39 128.11 39.93 379.61 42.26 56.47 51.36%
s_4 683.31 112.03 41.06 308.69 33.85 59.36 54.82%
s_5 988.15 151.05 44.11 423.13 31.31 63.12 57.18%
s_6 667.37 126.28 39.91 327.07 24.55 57.45 50.99%
s_7 922.82 0.00 37.63 380.34 32.91 72.79 58.79%
s_8 803.23 136.57 42.21 377.18 28.39 63.35 53.04%
s_9 704.70 138.34 41.23 367.75 32.46 58.44 47.81%
s_10 767.07 100.14 41.63 359.30 32.59 61.17 53.16%

Medium
Scale

m_1 932.62 83.57 56.53 494.73 42.15 70.99 46.95%
m_2 1031.15 149.39 52.02 503.44 42.38 76.18 51.18%
m_3 818.79 69.40 48.11 454.33 44.68 78.15 44.51%
m_4 993.61 122.41 47.04 470.72 35.24 76.01 52.63%
m_5 826.90 92.17 47.26 486.28 50.02 70.91 41.19%
m_6 902.68 143.82 46.46 505.97 38.13 72.44 43.95%
m_7 1117.83 112.30 47.40 523.73 44.76 79.34 53.15%
m_8 794.84 106.87 49.55 447.71 48.42 70.84 43.67%
m_9 1105.22 135.88 45.93 558.33 55.95 73.75 49.48%

m_10 972.37 135.99 46.65 482.05 46.48 89.90 50.43%

Large
Scale

l_1 1015.89 104.89 96.20 616.36 38.67 141.19 39.33%
l_2 1028.96 95.56 99.79 676.99 49.94 158.01 34.21%
l_3 1210.82 128.89 100.10 799.10 65.71 172.20 34.00%
l_4 1003.74 96.57 101.56 653.81 37.81 145.75 34.86%
l_5 963.91 56.80 99.06 727.50 0.00 628.22 24.53%
l_6 990.26 112.83 91.14 630.77 53.80 141.48 36.30%
l_7 1028.96 100.01 97.89 717.09 60.83 152.97 30.31%
l_8 1177.57 86.40 102.51 789.39 51.37 167.56 32.96%
l_9 1103.27 109.39 96.21 713.99 48.66 142.03 35.28%

l_10 1026.62 121.50 95.62 815.60 0.00 526.58 20.55%
Note: Avg. is an abbreviation for average and Std. is an abbreviation for standard deviation.
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Figure 6. A box plot showing the model comparison results for the three scale instances.

5. Conclusions

In this paper, we consider a variant model of the VRP (i.e., MTTDVRP-SD) that is
more suitable for post-disaster emergency delivery scenarios. Based on the VRP, new
conditions, such as multiple trips of a UAV, task information changing over time, and
splittable task demands, are considered. It is also necessary to satisfy the UAV loading and
maximum power constraints. We propose a mathematical description of the MTTDVRP-
SD based on undirected graphs and decompose the optimization process into two layers
of optimization—delivery routing and delivery quantity—but both of them are related.
Based on the SA framework, we developed an efficient A-SA-CPLEX algorithm to further
optimize the initial solution generated by the improved intelligent auction algorithm. We
first determined the random delivery routing neighborhood based on the SA algorithm,
and then mathematically transformed the original model into an MILP problem that can
be solved quickly by the CPLEX optimizer, thus greatly improving the computational
efficiency. Finally, numerical experiments were conducted. Instance s_1 was used as an
example to illustrate the solution process of the A-SA-CPLEX algorithm and to show the
optimal solution. The effectiveness and efficiency of the proposed algorithm were verified
by comparing four algorithms in 30 examples of three scales: small, medium, and large. The
results of the Wilcoxon rank-sum test showed that the proposed algorithm was significantly
better than the R-SA-CPLEX algorithm and the A-GA-CPLEX algorithm, and that it was
comparable to the A-SA algorithm at the 99% confidence level. On the other hand, the
computational efficiency of the proposed algorithm was better compared to that of the
R-GA-CPLEX algorithm and was slightly weaker compared to that of the R-SA-CPLEX
algorithm, but still within an acceptable range. However, the computational efficiency
of the A-SA algorithm was significantly lower than that of the proposed algorithm and
decreased exponentially as the problem’s scale increased. We also explored the advantages
of the MTTDVRP-SD model, theoretically analyzed the advantages of multiple trips and
time dependence, experimentally analyzed the advantages of split delivery, and attained
some valuable conclusions.

There are more powerful algorithms that can be developed to effectively solve
the MTTDVRP-SD. Naturally, for each particular problem, we need more realistic modeling
for the details of the problem in order to generate higher application value. In the future,
we will consider conducting research on such problems in dynamic scenarios while taking
more practical aspects, such as hardware, into account.
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Notations

Some of the parameters involved in the model and their meanings are as follows.
Indices

i, j Index of task nodes’ serial numbers, i, j ∈ V
k Index of UAVs’ serial numbers, k ∈ U
r Index of UAV departures, r ∈ R
Sets

U Set of UAVs
V Set of task nodes
V

′
Set of nodes, a supply depot node is added compared to V

R Set of UAV trips
Parameters

NU Number of all UAVs
NV Number of all task nodes
Nk

R
The maximum number of trips of the UAV k

Dij Euclidean distance between task nodes i and j
(xi, yi) The two-dimensional coordinates of the task node i
(x0, y0) The two-dimensional coordinates of the depot 0
α Parameters of urgency over time
Wk The maximum safety energy of the UAV k
Lk Upper limit of the loading capacity of the UAV k
G Self-weight of the UAV k
δ Parameters of UAV’s energy consumption with time and weight
Sk Speed of the UAV k
Variables

t Discrete time series
Tkr

i The moment when node i is visited in the r-th trip of UAV k
Tend

i The moment when the supply demands of node i are fully satisfied
mi(t) The supply demand of the task node i at moment t
ei(t) The urgency of the task node i at moment t
str

k Start time of the r-th trip of the UAV k
etr

k Finish time of the r-th trip of the UAV k
dk

i Euclidean distance from the UAV k to the task node i
wr

k(t) The remaining energy of the r-th trip of the UAV k at moment t
lr
k(t) The loading of the r-th trip of the UAV k at moment t
(xk(t), yk(t)) Two-dimensional coordinates of the UAV k at t moments

xkr
ij

Binary decision variable, if the UAV k makes its r-th trip from node i to node j,
xkr

ij =1; otherwise, xkr
ij = 0

qkr
j

Decision variables, the quantity of supply delivered by the UAV k on its r-th trip
to task node i
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Abstract: Increasing energy demand and the detrimental environmental impacts of fossil fuels have
led to the development of renewable energy sources. Rapid demand growth for wood pellets over
the last decade has established wood pellets as a potential renewable energy source in a globally
competitive energy market. Integrated decision making including all stakeholders in the wood
pellet supply chain (WPSC) is essential for a smooth transition to commercially viable wood pellet
production. In this aspect, this study aims to suggest a decision support system for optimizing
biomass-based wood pellet production supply chain network design (WPP-SCND). The WPP-SCND
decision system minimizes the total supply chain (SC) cost of the system while also reducing carbon
emissions associated with wood pellet SC activities. All objective parameters, including biomass
availability at the supply terminals, market demand, and biomass production, are considered fuzzy
to account for epistemic uncertainty. A fuzzy flexible robust possibilistic programming (fuzzy-FRPP)
technique is developed for solving the suggested uncertain WPP-SCND model. The case findings
show that the imprecise nature of the parameters has a significant impact on the strategic and tactical
decisions in the wood pellet SC. By investing almost 10% of the total cost, robust decisions within the
wood pellet SC can be obtained. It is established that the fuzzy-FRPP technique successfully provides
robust decisions and achieves a balance between transportation costs, emissions costs, and economies
of scale when making capacity decisions. Although the suggested decision support system is used
to manage the production and distribution of wood pellets, the insights and solution methodology
may be extended to the production of other biofuels. The proposed research may be valuable to
authorities involved in planning large-scale wood pellet-related production-distribution projects.

Keywords: fuzzy optimization techniques; wood pellet supply chain; flexible programming; linear
programming

MSC: 90C05; 90C08; 90C11

1. Introduction

Major worldwide issues include the energy crisis, population growth, food scarcity,
resource depletion, and global warming [1,2]. Given these conditions, recovering resources
from waste is essential for reducing dependence on nonrenewable energy sources [3].
A circular economy (CE) plays a crucial role in this regard since it supports the transition
from a linear to a circular framework defined by return operations of waste resources. CE
seeks to make all operations circular, where no “disposable trash” is produced, and all
outputs are inputs for other systems [4,5]. However, a CE alone may not be sustainable.
Switching to a bioeconomy (BE) based on renewable resources in conjunction with circular
economy (CE) will not only reduce environmental stress but also make CE feasible, resulting
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in a circular bioeconomy (CRBE) [6]. CRBE entails converting waste materials into products
with added value, such as food, biomass, and bioenergy, in order to conserve virgin
natural resources. CRBE has both economic and environmental benefits, as recovery of
bio-based wastes or byproducts encourages potential reutilization, transforming wastes
into marketable goods with added value and enabling economic growth [6,7].

Multiple studies have emphasized the potential importance of biomass in meeting
the world energy need through CRBE [8–10]. The promotion of CRBE in the context of
energy production is supported by the valorization of accessible biomass through biofuel
production. Biofuels are carbon-neutral fuels that are more environmentally friendly than
fossil fuels [11,12]. Governments throughout the world, however, are taking initiatives to
reduce fossil fuel utilization and greenhouse gas (GHG) emissions [13]. In this context,
wood pellets are considered a viable energy source due to their multiple advantages,
including their high heat value, low moisture content, and portability [14]. Wood pellets
are equivalent to other biofuels such as biodiesel and bioethanol in terms of traded volume
and are one of the most commonly traded commodities in the world [10]. The market
outlook for wood pellets is relatively optimistic: the worldwide pellet market is projected
to reach 54 million tons by 2025 [13].

Historically, forest companies were able to profit from their massive harvesting opera-
tions, which pushed resources to wood pellet processing plants and then to other markets
following a push production system. Now, the push production business strategy is eco-
nomically unsustainable for both the industry and the forest-dependent communities in
light of the current extremely volatile global economy [15]. In addition, sawmill waste,
which is often used to manufacture wood pellets, is desired biomass for a range of processes
and hence insufficient for meeting demand [13]. Therefore, manufacturers have had to
discover new sources of biomass for the manufacturing of wood pellets. In this context, fol-
lowing the CRBE, biomass such as forest harvesting byproducts and agricultural leftovers
(wheat straw, rice husk, and bagasse) has tremendous potential to replace sawmill waste.
To compete in the market, these feedstock sources are often geographically distributed and
must be supplied to wood pellet production facilities cost-effectively, since high production
costs are the major barrier to the commercialization of wood pellets [16]. Furthermore,
the transportation of biomass and wood pellets in a wood pellet supply chain (WPSC)
contributes significantly to carbon emissions. As a result, effective WPSC network design
is essential for a quick transition to a circular bioeconomy.

Additionally, wood pellet production SCs are more susceptible to parameter un-
certainty than commercial SCs due to highly volatile business dynamics: Wood pellet
feedstocks are dependent on primary goods that are largely seasonal, whereas biomass pric-
ing, and logistics costs, are influenced by international variations in fossil fuel prices [17].
Most prior studies do not include the integration of uncertainties associated with biomass
supply and transportation, wood pellet manufacturing, and market demand in the opti-
mal design of WPSC. In contrast, most of the previous WPSC design literature has used
deterministic methodologies (see: Boukherroub et al. [13], Méndez-Vázquez et al. [16],
Mansuy et al. [18], Shabani et al. [19], Kanzian et al. [20], etc.). Failure to account for the
uncertain environment during the planning phase may result in a WPSC design that is less
than optimal or impractical. Effective uncertainty management related to the materials and
operations utilized in the manufacture of wood pellets throughout the whole supply chain
allows all stakeholders to enjoy additional economic advantages, which strengthens the
operations’ sustainability.

Keeping in mind the abovementioned challenges for a successful transition to a circular
bioeconomy, this study addresses the following questions:

• Research question 1: How can an integrated decision support system that efficiently
collects, transports, and converts massive quantities of various biomasses into wood
pellets be developed in a sustainable manner to support the transition to a circu-
lar bioeconomy?
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• Research question 2: How can robust decisions for strategic and tactical levels in a
wood pellet SC be acquired in a highly uncertain environment?

To answer these research questions, a multi-period wood pellet production supply
chain network design (WPP-SCND) model employing a linear programming approach
is proposed. The purpose of the suggested optimization model is to minimize the value
of the economic objective while taking into account the associated environmental impact
costs. The suggested WPP-SCND model decreases the environmental effect and total
cost of wood pellet production and distribution while fulfilling demand, resulting in a
low-carbon bioeconomy.

The remainder of this research is structured as follows. The subsequent section surveys
related works. Section 3 explains the research methodology adopted in this study. Section 4
provides the WPP-SCND optimization model and case study results analysis. The work is
concluded in Section 5.

2. Research Context

Researchers and practitioners are focusing their attention on renewable energy gen-
eration because of the global energy crisis. As a result, there has been increased interest
in incorporating circular bioeconomy principles into the development of wood waste-to-
energy chains.

Given this context, several researchers have used mathematical modeling-based meth-
ods to apply principles of circular bioeconomy considering various types of wood waste.
Méndez-Vázquez et al. [16] proposed a nonlinear mixed integer programming (MIP) model
to efficiently locate biofuel pellet processing plants in a circular bioeconomy setting. The
objectives of overall systems cost reduction and GHG emissions minimization were con-
sidered in designing a low-carbon WPSC network. The principles of circular bioeconomy
were employed by Mansuy et al. [18] in using fire-killed forest trees in two Canadian forest
management units to develop and optimize supply scenarios to meet different pellet plant
capacities under multiple operational, ecological, and economic constraints. The authors
provided their findings using a deterministic mixed-integer linear programming (MILP)
model. Shabani et al. [19] examined various optimization methods for reducing total wood
pellet production system costs, as well as conducting a comprehensive analysis of various
wood pellet SC-related decisions such as location-allocation and capacity of wood pellet
processing facilities, transportation modes, and optimal biomass mix. Kanzian et al. [20]
developed a deterministic MILP model for minimizing total wood biomass supply costs
to heating plants by considering transportation, processing, and storage costs. The opti-
mization model provided decisions for allocating wood chips to the selected terminals and
plants. An et al. [21] devised a strategic and tactical decision-making mathematical model
for the design of the lignocellulosic biofuel supply chain, taking into account different types
of wood waste as biomass. This study highlights the most economically significant aspects
at all levels of the circular bioeconomy. Vasković et al. [22] used the VIKOR multi-criteria
decision technique to rank the energy chain of wooden biomass supply and select the
best variant in a circular bioeconomy. Cambero and Sowlati [23] proposed a determinis-
tic multi-objective MILP forest-based biomass SC model that takes into account all three
dimensions of sustainability to maximize net present value, CO2 emissions savings, and
societal welfare. Trochu et al. [24] address the circular bioeconomy under environmental
policies by targeting recycled wood materials from the construction and demolition of
buildings. The proposed MILP model minimizes the cost of the wood recycling SC by
deciding the optimal locations and capacities of wood processing facilities. All aforemen-
tioned research addressing the circular bioeconomy by considering different types of wood
waste-to-energy generation settings has presented solutions in a deterministic environment
while neglecting the related uncertainties.

A few researchers have integrated uncertainty in the planning phase of designing a
wood pellet supply chain. In this domain, Mobini et al. [25] developed a simulation model
that takes into account the stochastic uncertainty of the environment to assist SC managers
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in planning a wood pellet SC by encompassing the entire echelon from biomass collec-
tion to wood pellet delivery to clients. Akhtari and Sowlati [26] also considered stochas-
tic uncertainties in the wood pellet SC by proposing a hybrid simulation–optimization
technique named recursive optimization-simulation. Using this solution approach, the
authors integrated strategic, tactical, and operational plans for the wood pellet SC. Boukher-
roub et al. [13] adopted a generic approach using LogiLab simulation software to choose
the best raw material, optimal quantity allocations, and most optimal locations of wood
pellet production facilities in order to design a profitable wood pellet SC taking into ac-
count economies of scale. Yılmaz Balaman et al. [27] proposed a fuzzy approach-based
framework for strategic and tactical level planning in waste biomass-based energy pro-
duction investments that optimizes several forms of waste, including numerous types of
production technologies, in consideration of circular economy principles. A summary of
research related to WPSC network design is provided in Table 1.

Investigating wood pellet production-related studies demonstrates that these stud-
ies offer comprehensive systems for the wood pellet supply chain but that only a few
of them have taken into account the uncertainties associated with biomass availability,
transportation, production, and market demand. Because of these uncertainties, some of
the supply chain configurations may be impractical or less than optimal. According to
Pishvaee et al. [28], there are two types of uncertainties: stochastic and epistemic. Stochastic
uncertainty is appropriate for instances when historical data on an uncertain parame-
ter are available for accurately estimating probability distribution, which is not the case
in the majority of cases involving wood waste management. As a result, the stochastic
method is inappropriate for the considered problem. According to Torabi et al. [29], fuzzy
programming is the most effective technique for dealing with imprecise parameters for
which stochastic approaches are inapplicable. Keeping this in view, in this study, fuzzy
possibilistic programming (FPP) is employed to manage the uncertain parameters of the
WPP-SCND model. The FPP approach does not need historic information on ambiguous
parameters; rather, a probability distribution for the uncertain parameter is built based on
the experience of experts. Moreover, the concept of flexible programming is incorporated
into FPP to relax the WPP-SCND model’s uncertain constraints, such as biomass-to-pellet
conversion, biomass availability, and wood pellet demand. Since the robustness of the
strategic and tactical decisions of the WPP-SCND model is essential, fuzzy flexible robust
possibilistic programming (fuzzy-FRPP) is proposed by combining the robust programming
(RP) technique with flexible FPP.

To the best of the author’s knowledge, Yılmaz Balaman et al. [27] are the only re-
searchers to use a fuzzy solution approach to design a wood pellet SC network considering
circular bioeconomy principles. Although epistemic uncertainty is adequately addressed
in that research using a fuzzy technique, it does not claim to offer robust solutions in an
uncertain environment, which is essential for the sustainability of the wood pellet SC. To
bridge this research gap, this study presents a decision support system for a wood pellet
production SC in an unpredictable environment and adds to the existing literature on the
design of WPSC networks in the following ways:

• Proposing a multi-period WPP-SCND optimization model that takes into account epis-
temic uncertainty in input parameters to obtain reliable integrated strategic and tactical
decisions that take into account the effects of WPSC activities on the environment and
the economy.

• Proposing a fuzzy-FRPP solution to tackle the uncertain environment and obtain
robust WPSC decisions by taking advantage of both flexible and robust programming
techniques under a highly uncertain environment.

Providing a solution that allows for wood pellet SC management to quantify the
economic impacts of carbon emissions associated with wood pellet SC activities in order to
design policies accordingly.
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3. Research Methodology

As discussed in the above section, this study aims to provide a decision support
system for wood pellet production managers by integrating economic and environmental
aspects in the background of a circular bioeconomy. That implies that the study should
provide a comprehensive overview of SC performance in an uncertain environment for the
optimization model objectives. The research methodology used in this study is provided in
Figure 1.

Introduction to residual waste-to-wood pellet production and 
problem descriptionStep 1

Development of fuzzy-
FRPP technique and its 

implementation to 
WPP-SCND 

mathematical model

Development of fuzzy flexible robust 
possibilistic programming (fuzzy-

FRPP) solution methodology 

(Section 3)

Development of wood pellet 
production supply chain network 

design (WPP-SCND) model 
obtaining its fuzzy-FRPP equivalent 

form

(Section 4)

Step 2

Step 4

Step 3 LINGO coding of model and case study example to validate 
WPP-SCND mode and fuzzy-FRPP approach

Results analysis, final conclusion, and future direction of 
research

 
Figure 1. Research methodology employed for the study.

In the first step, the theoretical foundation for the investigation is established. This
section provides a comprehensive explanation of essential principles and issues in a wood
pellet manufacturing and distribution system, as well as determines the study’s goals,
which are described explicitly and simply in a problem statement. In light of the mentioned
issues, the research questions are developed. The second step involves developing a
mathematical model in line with the problem statement and research questions. The WPP-
SCND model is designed in this stage to reduce the cost of wood pellet manufacturing
as well as the environmental impact of the related operations. To handle the uncertainty
in the WPP-SCND model, a fuzzy-FRPP solution combining FPP, flexible programming,
and robust programming is proposed. After that, the fuzzy-FRPP equivalent form of
the WPP-SCND model is coded in LINGO optimization software. In the third stage, to
answer the research questions and validate the proposed mathematical model and solution
approach, a comprehensive quantitative analysis is undertaken using a case study. Finally,
at the last stage, the conclusion and limitations of the study, as well as future research
directions, are provided.
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3.1. Why Are Linear Programming and Fuzzy-FRPP the Most Appropriate Solution Strategies for
the Proposed WPP-SCND Model?

In the first part of this study, a linear programming approach is used to achieve
the aims of cost and carbon emissions reduction in a wood pellet SC in a circular bioe-
conomy scenario. The benefit of the linear programming approach is that it is based on
simple algebraic formulations and provides better insights into complex systems by always
guaranteeing global optimal solutions.

In the second part, to address the problem of an uncertain environment associated with
the WPP-SCND model parameters, this study integrates FPP, RP, and flexible programming
to develop fuzzy-FRPP. Each technique offers the following distinct advantages to deal
with uncertainty:

• FPP is the best choice when there is epistemic uncertainty in the collected data and
stochastic methodologies cannot be used because there are no previous data [33].
Epistemic uncertainty affects WPP-SCND model elements such as biomass-to-wood-
pellet conversion, production costs, wood pellet demand, and biomass availability. To
nullify the effect of uncertainty, FPP is best suited. However, FPP simply gives the
average value of the unknown parameter and cannot account for fluctuations [28]. This
drawback can be overcome by merging RP with FPP to form fuzzy robust possibilistic
programming (fuzzy-RPP).

• Robust programming makes the WPP-SCND model objective independent of average
value and also integrates feasibility and optimality robustness. Hence, the incorpora-
tion of FP within robust programming will form fuzzy-FRPP.

• Flexible programming enables managers to integrate flexibility into uncertain con-
straint goals. The level of flexibility in these soft constraints can be decided by
the manager.

Hence, the fuzzy-FRPP approach can efficiently minimize the risk due to operational
uncertainty/epistemic uncertainty.

3.2. Generic Formulation of Fuzzy-FRPP Solution Approach

To address the challenge of uncertainty linked with WPP-SCND model parameters,
a solution called fuzzy-FRPP is proposed here. Generic form of fuzzy-FRPP approach is
provided below:

3.2.1. Fuzzy Possibilistic Programming

A generalized version of an optimization model containing imprecise parameters is
presented in Equation (1) to understand the composition of possibilistic programming:

Min T = F̃ × g + H̃ × o
Subject to D × g ≤ Ṽ,

E × g = 0,
S × o ≤ T̃ × g,
U × o ≥ 1,
o ≥ 0, g ∈ {0, 1},

(1)

In Equation (1), F, H, V, and T are the parameters tainted with epistemic uncertainty
and follow the trapezoidal fuzzy number (TFN). The membership function of F̃ can be
developed as follows:

μF̃(n) =

{
n−F1
F2−F1

F1 ≤ n < F2
F4−n
F4−F3

F3 < n ≤ F4
(2)

μF̃(n) =
{

1 if F2 ≤ n ≤ F3
0 otherwise,

where n ∈ R.
(3)
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(a) Expected value (ExV)

Under the FPP technique, uncertain parameters of the objective are transformed into
the crisp form using the ExV operator [34] as follows:

d(F̃, 0̃1) =
1
4
(F1, F2, F3, F4) (4)

(b) Me-measure

Me-measure, proposed by Xu and Zhou [35], was applied to translate uncertain con-
straints into crisp form. Using Me, SC managers can interactively incorporate their prefer-
ences in the range of pessimistic and optimistic approaches as below:

Me
{

F̃ ≥ n
}
= Nec

{
F̃ ≥ n

}
+�×

[
Pos

{
F̃ ≥ n

}
− Nec

{
F̃ ≥ n

}]
(5)

In Equation (5), � represents the preference of SC managers on the spectrum of
pessimistic-optimistic. The Me for F̃ ≤ n and F̃ ≥ n is obtained as follows:

Me
{

F̃ ≤ n
}
=

{
�× n−F1

n2−F1
, F1 ≤ n ≤ F2

�+ (1 −�)× n−F3
n4−F3

, F3 ≤ n ≤ F4
(6)

Me
{

F̃ ≤ n
}
=

⎧⎨⎩
0, n ≤ F1
�, i f F2 ≤ n ≤ F3
1, n ≥ F4

(7)

Me
{

F̃ ≥ n
}
=

{
�+ (1 −�)× F2−n

F2−h1
, F1 ≤ n ≤ F2

�× F4−n
F4−h3

, F3 ≤ n ≤ F4
(8)

Me
{

F̃ ≥ n
}
=

⎧⎨⎩
1, n ≤ F1
�, i f F2 ≤ n ≤ F3
0, n ≥ F4

(9)

Using Me, the ExV of F̃ is obtained as:

EVMe[F] =
+∞∫
0

Me{F ≥ n} × dn −
0∫

−∞

Me{F ≤ N} × dn (10)

EVMe[F] =
1 −�

2
× (F1 + F2) +

�
2
× (F3 + F4) (11)

Using Equations (6)–(9), Me for F̃ ≤ n and F̃ ≥ n is obtained as:

Me
{

F̃ ≤ n
}
≥ J ⇔ �+ (1 −�)× n − F3

F4 − F3
≥ J ⇔ n ≥ (J −�)× F4 + (1 − J)× F3

1 −� , (12)

Me
{

F̃ ≥ n
}
≥ J ⇔ �+ (1 −�)× F2 − n

F2 − F1
≥ J ⇔ n ≤ (J −�)× F1 + (1 − J)× F2

1 −� , (13)

Using the ExV and Me provided in Equations (4), (12) and (13), the uncertain parame-
ters of Equation (1) are transformed into a certain form as below:
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Min ExV[T] =
[

1−�
2 × (F1 + F2) +

�
2 × (F3 + F4)

]
× g +

[
1−�

2 × (H1 + H2) +
�
2 × (H3 + H4)

]
× o

Subject to D × g ≤
[
(J1−�)×V1+(1−J1)×V2

1−�
]
,

E × g = 0,
S × o ≤

[
(J2−�)×T1+(1−J2)×T2

1−�
]
× g,

U × o ≥ 1,
o ≥ 0, g ∈ {0, 1}, 0.5 ≤ J1, J2 ≤ 1, 0 ≤ � ≤ 1

(14)

3.2.2. Fuzzy Flexible Possibilistic Programming

In the next stage, the FPP equivalent form presented in Equation (14) is modified by
integrating flexibility in its constraint. The modified FPP form is as below:

Min ExV[T] =
[

1 −�
2

× (F1 + F2) +
�
2
× (F3 + F4)

]
× g +

[
1 −�

2
× (H1 + H2) +

�
2
× (H3 + H4)

]
× o

Subject to D × g≤̃
[
(J1−�)×V1+(1−J1)×V2

1−�
]
,

E × g = 0,
S × o≤̃

[
(J2−�)×T1+(1−J2)×T2

1−�
]
× g,

U × o ≥ 1,
o ≥ 0, g ∈ {0, 1}, 0.5 ≤ J1, J2 ≤ 1, 0 ≤ � ≤ 1

(15)

where � is the pessimistic–optimistic parameter, J1 and J2 depict SC manager level of
confidence, and ≤̃ integrates flexibility in the uncertain constraints target.

Min ExV[T] =
[

1−�
2 × (F1 + F2) +

�
2 × (F3 + F4)

]
× g +

[
1−�

2 × (H1 + H2) +
�
2 × (H3 + H4)

]
× o

Subject D × g ≤
[
(J1−�)×V1+(1−J1)×V2

1−�
]
+
[

u1+u2+u3+u4
4

]
(1 − λ1)

E × g = 0,
S × o ≤

[
(J2−�)×T1+(1−J2)×T2

1−�
]
× g +

[{
i1+i2+i3+i4

4

}
(1 − λ2)

]
× g

U × o ≥ 1,
o ≥ 0, g ∈ {0, 1}, 0.5 ≤ J1, J2 ≤ 1, 0 ≤ � ≤ 1, 0 ≤ λ1, λ2 ≤ 1

(16)

Equation (16) is the equivalent form of the FPP approach for the uncertain model provided in
Equation (1). The constraint target uncertainty sign ≤̃ is substituted with

[
u1+u2+u3+u4

4

]
(1 − λ1)

and
[{

i1+i2+i3+i4
4

}
(1 − λ2)

]
× g terms. In these terms,u1, u2, u3, u4 and i1, i2, i3, i4 are TFN

for ũ and ĩ, respectively, and represent constraint flexibility margins. Further, λ1 and λ2
represent the level of confidence of the SC manager specifically for uncertain constraint
flexibility margin parameters ũ and ĩ. The FPP formulation provided in Equation (16)
perfectly tackles the operational uncertainty. Nevertheless, there are two drawbacks of the
FPP method. First, the deviation of the objective from ExV of uncertain parameters cannot
be controlled. Second, it will take longer to achieve global optimal as the number of flexible
equations in the optimization model increases. A modified method called fuzzy RPP is
suggested to address these problems.

3.2.3. Flexible Robust Possibilistic Programming (FRPP)

To address the shortcomings of flexible FPP, the RPP-II formulation developed by
Pishvaee et al. [28] is further integrated into the flexible FPP formulation provided in
Equation (16) as follows:
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Min ExV[T] +�(Tmax − ExV[T]) + Φ1

[[
(J1−�)×V1+(1−J1)×V2

1−�
]
− J1

]
+

Φ2

[[
(J2−�)×T1+(1−J2)×T2

1−�
]
− J2

]
× g + π1

[[
u1+u2+u3+u4

4

]
(1 − λ1)

]
+ π2

[{
i1+i2+i3+i4

4

}
(1 − λ2)

]
× g

Subject to ExV[T] =
[

1−�
2 × (F1 + F2) +

�
2 × (F3 + F4)

]
× g +

[
1−�

2 × (H1 + H2) +
�
2 × (H3 + H4)

]
× o

Tmax = F4 × g + H4 × o
D × g ≤

[
(J1−�)×V1+(1−J1)×V2

1−�
]
+
[

u1+u2+u3+u4
4

]
(1 − λ1)

(17)

E × g = 0,
S × o ≤

[
(J2−�)×T1+(1−J2)×T2

1−�
]
× g +

[{
i1+i2+i3+i4

4

}
(1 − λ2)

]
× g

U × o ≥ 1,
o ≥ 0, g ∈ {0, 1}, 0.5 ≤ J1, J2 ≤ 1, 0 ≤ � ≤ 1, 0 ≤ λ1, λ2 ≤ 1

In Equation (17), Tmax represents the worst-case value of the objective, while the
second term of the objective minimizes deviation for the worst case scenario, thus providing
optimality robustness; � is the scaling factor of optimality robustness, which can range
between 0 and 1. The disparity between the worst possible value and the value utilized
within uncertain constraints is minimized by the third and fourth terms, which incorporate
feasibility robustness into the results. Finally, the fifth and sixth terms are the penalties for
deviating from the soft constraint’s target value.

4. Mathematical Model and Case Results

4.1. Working Framework of the WPP-SCND Model

The mathematical model of the wood pellet supply chain is described in this section.
The WPP-SCND model reduces the overall system cost by first choosing the best locations
for biomass processing facilities and then allocating the optimal amounts to facilities during
each planning period. Biomass in the form of sawdust and agricultural waste is delivered
from supply terminal a to pelletization plant b, where it is converted into wood pellets.
Following that, wood pellets are provided from pelletization facility b to distribution center
c, whence they are transferred to market m to meet energy demands. This model not only
reduces the system cost but also accounts for the carbon emissions related to raw material
collection, transportation to pelletization facilities, and transportation of wood pellets from
pelletization plants to market centers in terms of carbon penalty.

Figure 2 illustrates the structure of the WPP-SCND model.

Figure 2. Working framework of WPP-SCND optimization model.
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4.1.1. Notations

In this section, the notations used in the WPP-SCND model are presented.
Indices

k Index for raw material types
a Index for raw material collection points
b Index for pelletization plant
c Index for distribution center
m Index for marketplace
q Index for the capacity level of pelletization plant
r Index for the capacity level of the distribution center
t Index for the period

Decision Variables
Qabkt Amount of raw material type (k) transported from collection point (a) to pelletization plant (b) in time (t)

Qbct Amount of pellets transported from pelletization plant (b) to distributor (c) in the time period (t)

Qcmt Quantity of pellet supplied from the distributor (c) to marketplace (m) during the time (t)

Xa 0 if supply terminal (a) is not selected, 1 if supply terminal (a) is selected

Ybq 0 if the plant (b) with capacity (q) is not selected, 1 if the plant (b) with capacity (q) is selected

Zcr 0 if distribution center (c) with capacity (r) is not selected, 1 if distribution center (c) with capacity (r) is selected

Parameters
∂̃ins

a Cost of constructing (a) biomass supply terminal (a)

∂̃ins
bq Cost of constructing pelletizing facility (b) with capacity (q)

∂̃ins
cr Cost of constructing distribution center (c) with capacity (r)

p̃cakt The purchasing cost of biomass (k) at supply terminal (a) in time (t)

ε̃hnd
a Quantity of CO2 emissions during raw material handling at biomass supply terminal (a)

H̃hnd
a Cost of biomass handling at biomass supply terminal (a)

ε̃b Quantity of CO2 emissions during raw pellet production at location (b)

etax Carbon emission tax

sũpakt The available quantity of raw material type (k) at the collection point (a) in time (t)

dẽmmt Pellets demand in market m during the period (t)

capbq Production capacity of the pellets plant with level (q)

capcr Storage capacity of the distribution center c with level (r)

δ̃ The conversion factor for biomass to pellets

p̃db Wood pellets production cost at pelletization plant (b)

τ̃ab The shipping cost of supplying raw material from the supply terminal (a) to the pelletization plant (b)

τ̃bc Transportation cost of moving pellets from pelletization plant (b) to distribution center (c)

τ̃cm Transportation cost of moving pellets from the distribution center (c) to market (m)

ε̃ab Quantity of carbon emissions during raw material transportation from supply terminal (a) to pelletization plant (b)

ε̃bc Quantity of carbon emissions during transportation of pellets from pelletization plant (b) to distribution center (c)

ε̃cm Quantity of carbon emissions during transportation of pellets from the distribution center (c) to market (m)

4.1.2. Assumptions

• The homogenous fleet of vehicles is assumed to be available at all echelons of the
supply chain.

• Allowable cargo is less than one truckload.
• The regional collection of biomass is assumed to be available at potential locations of

supply terminals.
• The distances between the collecting points and the pelletization plants, as well as

between the pelletization plants and the demand zones, are known.
• A CO2 emission tax is imposed under local government policy for all stakeholders.

I. Objectives functions of the WPP-SCND model:

(a) Total supply chain cost objective
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The first, second, and third terms of the objective function represent the costs of
establishing a supply terminal, pelletization plant, and distribution center:

A

∑
a
(∂̃ins

a × Xa) +
B

∑
b

Q

∑
q
(∂̃ins

bq × Ybq) +
C

∑
c

R

∑
r
(∂̃ins

cr × Zcr) (18)

The fourth term of the objective function illustrates the cost of purchasing biomass,
handling costs, and handling-related emissions penalties:

A

∑
a

B

∑
b

K

∑
k

T

∑
t

[
( p̃cakt) + (ε̃hnd

a × etax) + H̃hnd
a

]
× Qabkt (19)

The fifth term shows the total wood pellet production cost and the CO2 emissions tax
imposed during pellet production:

A

∑
a

B

∑
b

K

∑
k

T

∑
t

[{
( p̃db) + (ε̃b × etax)

}× Qabkt
]

(20)

The sixth, seventh, and eighth terms illustrate the total SC transportation cost in the
WPP-SCND model:

A

∑
a

B

∑
b

K

∑
k

T

∑
t
[τ̃ab × Qabkt] +

B

∑
b

C

∑
c

T

∑
t
[τ̃bc × Qbct] +

C

∑
c

M

∑
m

T

∑
t
[τ̃cm × Qcmt] (21)

The total carbon emissions tax that is incurred during the transportation of raw
material and wood pellets among processing facilities of the WPP-SCND model is provided
in the ninth, tenth, and eleventh terms of the objective function:

A

∑
a

B

∑
b

K

∑
k

T

∑
t

[
(ε̃ab × etax)

]× Qabkt +
B

∑
b

C

∑
c

T

∑
t

[
(ε̃bc × etax)

]× Qbct +
C

∑
c

M

∑
m

T

∑
t

[
(ε̃cm × etax)× Qcmt

]
(22)

II. Constraints of the WPP-SCND model

The biomass supply constraint is provided by Equation (23). It represents that the
amount of biomass type ‘b’ at a supply terminal should be greater than the amount of
biomass carried from the supply terminal to pelletization facilities:

B

∑
b

Qabkt ≤ sũpakt × Xa ∀a, k, t (23)

Equation (24) represents the biomass-to-wood pellet conversion constraints, which
also limit the system in that the amount of wood pellets delivered to distributors should
not exceed the total amount manufactured at a pelletization facility:

A

∑
a

K

∑
k

Qabkt × δ̃ ≥
C

∑
c

Qbct ∀b, t (24)

Equation (25) depicts demand constraints, which bound the system to fulfill the
demand of all markets:

C

∑
c

Qcmt ≥ dẽmmt ∀m, t (25)
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Equation (26) requires that the total amount of wood pellets provided to market
from a distribution center not exceed the entire amount of wood pellets supplied from a
palletization factory to that distribution center:

B

∑
b

Qbct ≥
M

∑
m

Qcmt ∀c, t (26)

Equations (27) and (28) represent the processing capacity and storage capacity restric-
tions of pelletization plants and distribution centers, respectively:

A

∑
a

K

∑
k

Qabkt ≤
Q

∑
q

capbq × Ybq ∀b, t (27)

B

∑
b

Qbct ≤
R

∑
r

capcr × Zcr ∀c, t (28)

Equations (29) and (30), respectively, limit the system to a single capacity level for all
operational pelletization plants and distribution centers:

Q

∑
q

Ybq ≤ 1 ∀b (29)

R

∑
r

Zcr ≤ 1 ∀c (30)

Equations (31) and (32) are the non-negativity and binary constraints, respectively:

Qabkt, Qbct, Qcmt ≥ 0 ∀a, b, c, m, k, t (31)

Xa, Ybq, Zcr ∈ {0, 1} ∀a, b, q, c, r (32)

4.1.3. Equivalent Fuzzy-FRPP Form of WPP-SCND Model

Using the systematic conversions of the uncertain model provided in Sections 3.2.1,
3.2.2, and 3.2.3, the equivalent fuzzy-FRPP form of the WPP-SCND model is provided below:

Minimize Exp
[

f cost]+ χ
[

f cost,MAX − Exp
[

f cost]]+
psup × A

∑
a

K
∑
k

T
∑
t

[{
(ψsup−λ)supakt(1)+(1−ψsup)supakt(2)

1−λ

}
− supakt(1)

]
Xa+

pdem × M
∑
m

T
∑
t

[
demmt(4) −

{
(ψdem−λ)demmt(4)+(1−ψdem)demmt(3)

1−λ

}]
+[

pconv ×
{

A
∑
a

K
∑
k

Qabkt ×
(

(ψconv−λ)δ(1)+(1−ψconv)δ(2)
1−λ

)
− δ(1)

}] (33)

Exp[ f cost ] =
A
∑
a

[{
1−ξ

2

(
∂ims

a(1) + ∂ins
a(2)

)
+ ξ

2

(
∂ims

a(3) + ∂ins
a(4)

)}
× Xa

]
+

B
∑
b

Q
∑
q

[{
1−ξ

2

(
∂ins

bq(1) + ∂ims
bq(2)

)
+ ξ

2

(
∂ims

bq(3) + ∂ins
bq(4)

)}
× Ybq

]
+

c
∑
c

R
∑
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and constraints (26)–(32).

4.2. Case Study to Validate Fuzzy-FRPP-Based WPP-SCND Model

To assess the efficacy of the WPP-SCND model and fuzzy-FRPP solution approach, a
Pakistan-specific case study is presented in this section. Pakistan’s economy is suffering as
a result of a serious energy crisis. Utilities’ electricity supply falls well short of demand. The
current shortage surpasses 6000 megawatts. Natural gas, the country’s second-largest fuel
source after biofuels, is also becoming increasingly scarce. Generally, the shortage imposes
substantial costs on the economy, estimated at around 2% of GDP each year, through
reduced productivity, exports, and jobs. In this grim situation, using locally accessible
second-generation biomass to generate energy can support the shrinking economy of the
country. In this context, four types of locally available biomass are utilized to manufacture
wood pellets that may be used to generate energy in a variety of ways. These biomasses
include sawmill dust, rice husk, wheat straw, and bagasse. The Punjab province is chosen
for this case because it is the most fertile region in Pakistan and meets the majority of
the country’s agricultural needs. For the given case, nine potential locations for biomass
supply terminals, four possible sites for pelletization plants, and three potential sites for
distribution hubs are considered to meet the energy demands of five major markets of the
province. Furthermore, 2 capacity levels are considered for each pelletization plant, 35 and
50 thousand tons, while 2 capacity levels are evaluated for each distribution center, 40 and
60 thousand tons. The following are the key tactical and strategic decisions provided by the
WPP-SCND model: minimum number of operational supply terminals, pelletization plants,
and distribution hubs; capacity levels of operational pelletization plants and distribution
hubs; and optimal quantities of allocated biomass from supply terminals to pelletization
plants, wood pellets to be supplied from plants to distribution hubs, and pellets transported
to demand zones from distribution hubs.

The WPP-SCND model efficiently provides answers to the following questions while
designing the wood pellet supply chain:

• Which supply terminals should be selected to purchase biomass?
• What are the optimal quantities and mix of biomass (sawmill waste, wheat straw, rice

husk, and bagasse) to supply to the production plant in each planning period?
• Where should wood production plants and distribution centers be located considering

the economies of scale?
• What quantity is produced/processed at each operational facility in each planning period?

Figure 3 shows all potential wood pellet production SC sites for the given case study.
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Figure 3. Potential wood pellet production SC sites for the given case.

4.2.1. Data Collection and Analysis for the WPP-SCND Model

For the proposed WPP-SCND model, datasets are mostly collected from regional
government departments. The availability of rice husk, wheat straw, and bagasse biomass in
each division of the province is acquired from the federal agriculture marketing department
(http://www.amis.pk/, accessed on 10 May 2021) Pakistan. The potential of sawdust
production is estimated after analyzing the reports provided by the provincial agriculture
department (https://agripunjab.gov.pk/, accessed on 10 May 2021) and the forest, wildlife,
and fisheries department (https://fwf.punjab.gov.pk/, accessed on 10 May 2021). The
purchase cost of biomass and its handling costs are decided based on the locally collected
information. Further, input parameters such as the construction cost of the pelletization
plant and distribution hub were decided after analyzing published articles and regional
industries [36,37]. Since railways infrastructure is not very reliable, only the roadway
mode of transportation is assumed for the given case. The transportation matrix for each
tier is obtained from Google Maps and is also considered an imprecise parameter in the
computational analysis. Transportation costs among wood pellet processing facilities were
decided in consultation with local logistics companies. The considered wood pellet SC
comprises the shipping of biomass among supply terminals and pelletization plants and the
handling of supplied biomass at each pelletization plant. It also entails the transportation of
wood pellets from production plants to the distribution hub and then from the distribution
hub to the wood pellet markets. Further, a homogenous fleet of vehicles with 45 tons of
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load-carrying capacity is considered. Emissions during transportation between wood pellet
production sites are adapted from Gonela et al. [38]. A government tax of USD 10/ton is
assumed following a report by the World Bank [39].

In this research, all objective parameters, including biomass availability at the supply
terminals, market demand, and biomass production, are considered fuzzy to account for
epistemic uncertainty. For each uncertain parameter, a TFN is developed. In order to obtain
a TFN for each uncertain parameter, 4 random numbers (a1, a2, a3, a4) between 0.25 and
0.75 following uniform distribution are generated. Using these random numbers, the TFN
of an uncertain parameter is obtained according to Equations (39)–(42). For instance, if F̃ is
a parameter having trapezoidal distribution, four points TFN of F̃ are obtained using the
following set of Equations (39)–(42) [40,41]:

F1 = (1 − a1)× Fmost (39)

F2 = {1 − (a1 × a2)} × Fmost (40)

F3 = {1 + (a3 × a4)} × Fmost (41)

F4 = (1 + a4)× Fmost (42)

Appendix A includes the most likely datasets utilized for the computational analysis
of the WPP-SCND optimization model.

4.2.2. Results and Discussion on Research Questions

(a) Research question 1: How can an integrated decision support system that efficiently
collects, transports, and converts massive quantities of various biomasses into wood
pellets be developed in a sustainable manner to support the transition to a circu-
lar bioeconomy?

The first research question, which aims to provide a decision support system for
the efficient design of WPSC, is discussed here. To answer this research question, first, a
WPP-SCND optimization model is proposed, and then, a fuzzy-FRPP solution is suggested.
After that, the collected datasets and corresponding fuzzy-FRPP form of the WPP-SCND
model given in Equations (26)–(38) are solved using the LINGO optimization solver. As
previously stated, the fuzzy-FRPP approach comprises several interactive parameters such
as χ (scaling multiplier for optimality robustness), λ (constraints optimistic-pessimistic
factor), ξ (objective optimistic-pessimistic factor), ψsup, ψdem, ψconv (confidence level for
constraint parameters), Ωsup, Ωdem, Ωconv (soft constrain margins), and psup, pdem, pconv

(penalties for violating uncertain constraints). All of these parameters’ values are defined
following the real-time environment. The value of the scaling multiplier for optimality
robustness (χ) controls the deviation over and above the ExV of the WPP-SCND model and
may vary between 0 and 1. Further, the value of the optimistic–pessimistic parameter (λ)
decides the inclination of the manager between the two extremes of the worst-case scenario
and best-case scenario. If λ = 0, then the approach of the manager is pessimistic, and Me
becomes equal to Nec. If λ = 0.5, then the attitude of the manager is compromising, and Me
becomes equal to Cr. Lastly, if λ = 1, then the manager is more inclined toward the optimistic
side, and Me becomes equal to Pos. Finally, the values of the target violation penalties
(ψsup, ψdem, ψconv,psup, pdem, pconv) are decided based on real-time information. Considering
a scaling multiplier for optimality robustness of 0.5 and a confidence interval of 0.75 for
uncertain constraints and objective parameters, and adopting an optimistic approach,
results of the WPP-SCND model are obtained to answer the following research questions:

For the given values of the parameters, a minimum total cost of USD 113,137,700
for both planning periods is obtained. For the given set of parameters, ExV cost of
USD 102,773,900 is attained. However, ExV cost only computes results based on the
average value of an imprecise parameter, which is not reliable. Therefore, the fuzzy-FRPP
method given in Equation (33) is utilized to obtain robust results. According to this method-
ology, the robustness of results is enhanced by adding penalties for the violation of the
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target value due to uncertainty. For the given case, USD 6,909,209 is incurred as a penalty
to increase the optimality, while a penalty of USD 3,454,605 is imposed to enhance the
feasibility of the WPP-SCND model. The analysis of the total cost of the considered wood
pellet supply chain system is shown in Table 2.

Table 2. Breakdown of the total cost of the wood pellet SC according to the fuzzy-FRPP approach.

ExV Cost
(Thousand USD)

Optimality
Robustness
Cost (USD)

Feasibility
Robustness Cost

(USD)

Total Cost
(USD)

102,773,900 6,909,209 3,454,605 113,137,700

λ = 1.0, ψsup, ψdem, ψconv = 0.75.

Comprehensive results for the specified settings of parameters depicting all strategic
and tactical level decisions are illustrated in Figure 4. The obtained findings show that
seven potential biomass supply terminals have been chosen out of nine. Because the supply
terminals in Lahore and Multan have the greatest facility installation costs of all, they
are not operational. The Rawalpindi supply terminal gathers biomass from the southern
districts of the Punjab, whilst Sargodha and Faisalabad cover the center and western
portions. Gujranwala mostly serves the western portions of Punjab, whereas DG Khan
and Bahawalpur serve the southern regions. It is also found that to reduce the SC cost in
terms of transportation and emissions due to transportation, supply terminals having the
maximum potential of biomass are made operational.

All four of the pelletization facilities in Rawalpindi, Bahawalpur, Lahore, and Sahiwal
are chosen for the second echelon of the wood pellet SC. One of these, the Lahore plant,
was put into operation with a 50,000-ton processing capacity. The other plants were all
installed with a 30,000-ton processing capacity. The Rawalpindi supply terminal supplies
all biomass to its pelletization plant. Because the Lahore pelletization plant is designed
to operate with the maximum pelletization capacity/period biomass, supplies from the
biomass supply terminals in Sargodha, Faisalabad, and Gujranwala are sent to Lahore
during both planning periods. The Sahiwal biomass terminal also supplies all of its biomass
to its pelletization plant. Lastly, supplies from the DG Khan and Bahawalpur supply points
also send their biomass to the pelletization plant located in Bahawalpur. Decisions made in
the second tier of the supply chain show that to reduce the cost associated with emissions
and transportation, the optimization model preferably chose all the pelletization plants
located closest to their supply locations. It is also noticed that among the four types of
available biomass, sawmill dust was the least preferred due to its high purchase cost.

In the third tier, the Rawalpindi pelletization facility sent its wood pellets to the
Multan distribution center in the first planning period and the Lahore distribution center
in the second planning period. Further, in the first planning period, Bahawalpur did not
manufacture any pellets, but in the second period, it delivered pellets to the distribution
centers in Sargodha and Multan. Lahore only produced wood pellets during the first
planned period, sending them to its own distribution facility and the Sargodha distribution
center. During the first planning period, the Sahiwal pelletization facility delivered its
pellets to Sargodha and Lahore, whereas during the second, it sent all of its pellets to the
Lahore distribution center. For the final echelon of WPSC, the distribution facilities in
Lahore and Sargodha were made operational with higher capacity levels, while Multan’s
facility was chosen with a lower capacity level. Wood pellets from the Lahore distribution
center met the energy needs of its market zone as well as the Gujranwala market. The
Sargodha distribution facility sent wood pellets to the market zones of Faisalabad and
Rawalpindi. Finally, Multan’s distribution hub meets the energy demands of its market
zone as well as the market in Faisalabad.
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(a) 

 
(b) 

Figure 4. WPP-SCND model decisions using fuzzy-FRPP during (a) first time period t1 (b) second
time period t2.
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(b) Research question 2: How can robust decisions for strategic and tactical levels in a
wood pellet SC be acquired in a highly uncertain environment?

Herein, the second research question aims to deal with an uncertain environment and
provide robust decisions for strategic and tactical planning for a WPSC network design.
To attain this goal, the fuzzy-FRPP approach is proposed that provides not only robust
but also cost-efficient optimal solutions under uncertain environments. To evaluate the
quality of the results provided by the fuzzy-FRPP approach, its results are compared
with a counterpart solution methodology named FRPP. Further, an explanation of how a
subjective approach to dealing with risk impacts the results of the fuzzy-FRPP technique is
also provided in this section.

I. Comparative analysis of FPP and fuzzy-FRPP approach to analyze the impact of robustness

In this part, a comparison of the FPP and fuzzy-FRPP approaches is presented for
evaluating the impact of robustness. As described in Section 3.2, the FPP approach makes
decisions based on the ExV of imprecise parameters of the objective, but fuzzy-FRPP consid-
ers costs of flexibility margins in constraints, as well as feasibility and optimality robustness.
A comparison of the two methodologies demonstrates that high-cost location decisions,
such as pelletization plant installation and distribution hubs, do not vary. However, in
terms of capacity decisions, the decisions regarding the two approaches differ. This is
because fuzzy-FRPP adds resilience to model decisions by selecting wood pellet production
facilities with larger aggregate capacities. In order to achieve the goal of a higher aggregate
capacity, either small-capacity facilities in several locations or larger-capacity facilities in
fewer sites are chosen. Additionally, it was demonstrated that when making capacity deci-
sions, the fuzzy-FRPP approach successfully strikes an equilibrium between transportation
costs, emissions costs, and economies of scale.

A detailed analysis of the results shows that the majority of the location decisions
made by the two methodologies are similar. In the first echelon, instead of Multan, the
Rawalpindi biomass supply terminal is made operational in FPP. Further, the Rawalpindi
pelletization facility was not chosen for the second tier of the WPP-SCND model; instead,
the Bahawalpur pelletization facility was placed into operation with a greater capacity
level. Finally, in the last tier of FPP decisions, all three distribution centers were chosen,
with the Multan distribution center becoming operational with a lower processing capacity.
The FPP technique operates with lower aggregate capacity, and therefore, the total cost is
lower than the fuzzy-FRPP approach.

II. Impact of change in objective and constraint pessimistic–optimistic (λ) factor on the
total cost of the WPP-SCND model

Since the values of the interactive parameters are decided based on real-time dynamics,
therefore, a sensitivity analysis for multiple scenarios is provided to establish the effective-
ness of provided model and solution technique. For this purpose, a comprehensive analysis
is provided to examine the impact of combined variation in the objective pessimistic-
optimistic factor (ξ) and constraints pessimistic–optimistic (λ) factor on the total cost of the
WPP-SCND model. Using various combinations of these interactive parameters multiple
global optimal solutions are provided in Table 3. Pessimistic–optimistic factor (λ) is one
of the key parameters that provide information about the attitude of the decision maker
in an uncertain environment. If the value of λ = 0, then the decision maker has adopted
a risk aversion approach and they are planning for the best-case scenario, and if λ = 0.99,
then the decision makers are planning by keeping the best-case scenario; λ = 0.5 provides a
compromise between the two extremes. The results provided in Table 3 are in line with this
proposition. Analysis of the results shows that as λ increases from 0.1 to 0.9 for each value
of the confidence level of the decision maker, the overall system cost of the WPP-SCND
model decreases. This is because higher values of λ provide an optimistic approach as a
results model provides the minimum possible cost. It is also seen that as the value of the
objective pessimistic–optimistic factor (ξ) increases, the total SC cost also increases.
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Table 3. Effect of variation in objective pessimistic–optimistic factor (ξ) and constraint pessimistic-
optimistic (λ) factor on the objective of the WPP-SCND model.

Objective
Pessimistic–Optimistic Factor

(ξ)

Constraint Pessimistic–Optimistic Factor (λ)

0.1 0.3 0.5 0.7 0.9

Total Supply Chain Cost for WPP-SCND Model ($)

0.1 110,558,900 107,803,400 102,954,400 92,339,250 51,491,180

0.3 112,457,100 110,077,900 106,041,300 97,033,580 61,243,520

0.5 114,465,400 112,753,700 109,570,000 102,617,700 73,082,560

0.7 116,655,000 115,383,100 112,368,000 108,399,400 86,763,080

0.9 118,495,700 117,913,800 116,871,600 114,465,400 102,617,700

III. Impact of uncertainty handling technique on the WPP-SCND model facilities capacity
level decision and scalability aspect

Strategic planning decisions regarding facility placement and capacity are crucial for
determining the performance of the system. Therefore, the WPP-SCND model considers the
capacity level decisions in the wood pelletization plant echelon and distribution and storage
echelon of the WPSC. The suggested model aims to find the optimal tradeoff between the
capacity levels and the total number of facilities in each supply chain tier. In addition, it is
also important to strike a balance between logistics costs and economies of scale to make
WPSC decisions that are both cost-effective and environmentally sustainable. For instance,
increasing the number of low-capacity facilities (wood pelletization plant and distribution
and storage center) can lower transportation costs, but ignoring economies of scale may
raise total system costs. On the contrary, economies of scale will be more advantageous if
fewer facilities with more capacity are placed into operation. In this instance, nevertheless,
longer distances between facilities may result in higher system costs overall.

Herein, the impact of a specific type of uncertainty handling of the WPP-SCND model
facility capacity level decision is observed. Each solution provides capacity decisions by
striking a balance between the robustness of the solutions and the objective value of the
WPP-SCND model. In this background, a comparative analysis of WPP-SCND model
capacity decisions for the following three solution approaches is provided: (i) deterministic
approach, (ii) FPP approach, and (iii) fuzzy-FRPP approach. Figure 5 shows the operational
number and capacity levels of wood pelletization plants and distribution and storage
facilities against each solution. The results indicate that the WPP-SCND model with a
deterministic approach chooses the fewest number of facilities and the lowest capacity
levels in each wood pellet SC tier. This is because neither penalties for constraint vio-
lation nor a flexibility margin is included in the deterministic method, and the model
only attempts to find an efficient balance between economies of scale and transportation
costs; the deterministic approach thus has the lowest overall WPSC costs. For the second
solution, FPP, the WPP-SCND approach yields greater overall costs than the deterministic
method. This is because the FPP approach acknowledges epistemic uncertainty by using a
possibilistic distribution for each uncertain parameter that may vary within a certain range,
but it does not also include the constraint violation penalty factor. As a consequence, the
overall WPSC cost is more than that of the deterministic approach but lower than that of the
fuzzy-FRPP approach. Finally, the fuzzy-FRPP methodology has the greatest overall cost
of all available solution approaches. This is because fuzzy-FRPP takes into consideration
not just the epistemic uncertainty in the WPP-SCN D model’s uncertain parameters but
also the constraints violation penalties. In order to decrease the surge in overall WPSC
costs, the model chooses wood pellet processing facilities with greater capacities. This
approach not only allows the WPP-SCND model to avoid constraint violation penalties but
also minimizes the system’s overall logistics cost.
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Figure 5. Impact of specific uncertainty handling technique on the WPP-SCND model’s facility
capacity level decision.

The uncertainty associated with critical WPP-SCND model parameters further ham-
pers the scalability of wood pellet production. Analyses of the results indicate that the
scalability of wood pellet production is significantly dependent on biomass type, biomass
cost, biomass availability, biomass yield, and scalable wood pellet production method. For
instance, the production yield of wood pellets is highly dependent on the kind of biomass
and its manufacturing process. In this context, the suggested WPP-SCND model accounts
for the uncertainty regarding biomass supply and biomass production. In line with this,
the fuzzy-FRPP technique provides efficient solutions by including the biomass supply and
yields penalty violations into the objective function of the optimization model. In addition
to the previously indicated critical factor for the scalability of wood pellet manufacturing,
the robust design of the logistics network is a crucial aspect in the biofuels sector. The
disruption of the logistics network may be caused by both natural and man-made disasters.
Wood pellet biomass supply disruptions may impact biomass production (e.g., natural
disasters), material processing capacity (e.g., underinvestment), transportation network
(e.g., damaged roads), and biomass demand for competing sectors (e.g., increased demand
due to material competition).

5. Conclusions, Limitations, and Future Research Directions

This research proposed a multi-period wood pellet production distribution using
residual wastes as biomass. The provided optimization model aims to minimize the
environmental effect and total cost of wood pellet collection, manufacturing, and supply
while satisfying the target market’s need for wood pellets for the sustainable growth of
a wood waste-based bioeconomy. Because biomass used for wood pellets is a residual
product that is primarily seasonal, and because biomass purchasing and transportation
costs are related to fossil fuels, a very dynamic environment exists. To deal with this
uncertain environment, a fuzzy-FRPP technique is developed. The fuzzy-FRPP technique
not only permits flexibility in the target of constraints with imprecise parameters but also
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incorporates resilience into the WPP-SCND model results. Fuzzy-FRPP is an interactive
solution that contains 12 parameters. The scope of the suggested approach is significantly
expanded since choosing the values of the parameters would allow decision makers to
make decisions in line with their preferences. Although the proposed decision support
system is employed to manage wood pellet production and distribution, the results and
solution may be used for the synthesis of other biofuels (bioethanol, biodiesel, biomethane,
etc.). The most important findings of this study are as follows:

• It is observed that for situations where epistemic uncertainty is largely associated with
the collected dataset, the fuzzy-FRPP approach will always provide robust decisions
with a slight increase in overall system cost. According to the computational analysis
of the case study, the outcomes may be protected against uncertainty by spending an
additional 10%.

• Comparing the results of the FPP and fuzzy-FRPP approaches shows that the latter
favors adopting a centralized SC structure by making fewer facilities with a greater
capacity level operational, while the former favors decentralizing the wood pellet
SC structure.

• It was also discovered that the two largest expenses associated with WPSC were the
installation of the wood pellet plant and the cost of producing wood pellets. This
demonstrates that by exploring alternative, cost-effective wood pellet manufactur-
ing processes, wood pellet fuels may be made more economically competitive with
fossil fuels.

This study also has some limitations that give a roadmap for future research in this
field. This study does not explore any form of contract mechanism that may play a key
role in overcoming uncertainty among WPSC stakeholders. The consideration of a contract
mechanism between suppliers of wood-based biomass and wood pellet-manufacturing
plants is therefore another way to broaden the scope of this research. Additionally, cooper-
ation across WPSC stakeholders is essential for reducing the uncertainty associated with
biomass supply and enhancing the economic viability of wood pellets in comparison with
fossil fuels, and extending this research by employing LCA-based environmental impact
assessment could be valuable. In addition, for the scalable production of wood pellets, it
is essential to address the uncertainties associated with biomass supply, biomass yields,
and wood pellet production technology. However, the uncertainty associated with pellet
production technology is not addressed in this study. This investigation may be expanded
by addressing the scalability of cost-effective wood pellet production technologies. Further,
this research does not consider the risk associated with the disruption perspective. The
integration of SC disruption within the proposed model will also enhance the utilization
of this research in practical scenarios. Furthermore, the utilization of this research can be
enhanced by considering sustainability.
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Appendix A

Tables A1–A7 provide the most likely values of the input parameters of the WPP-SCND
model. Due to space limitations, only information about key parameters is provided.

Table A1. Quantity of raw material available at each supply terminal in period t (tons).

K1 (Straw Mil) K2 (Bagasse) K3 (Rice Husk) K4 (Wheat Husk)

T1 T2 T1 T2 T1 T2 T1 T2

A1 7800 7540 9230 17,260 21,190 29,878 35,880 32,292

A2 7800 7280 6760 12,641 42,900 60,489 16,380 14,742

A3 5200 5720 5252 9821 20,020 28,228 16,640 14,976

A4 4160 3900 5252 9821 24,700 34,827 15,600 14,040

A5 7800 8320 10,400 19,448 26,000 36,660 10,400 9360

A6 5200 5850 7280 13,614 33,800 47,658 39,000 35,100

A7 10,400 10,400 9880 18,476 7800 10,998 41,600 37,440

A8 5200 6500 6760 12,641 35,100 49,491 26,000 23,400

A9 5200 6240 6890 12,884 39,000 54,990 20,800 18,720

Table A2. Pelletization capacity of the plant (tons/period).

Q1 Q2

B1 35,000 50,000

B2 35,000 50,000

B3 35,000 50,000

B4 35,000 50,000

Table A3. Distribution center storage capacity (tons/period).

R1 R2

C1 40,000 60,000

C2 40,000 60,000

C3 40,000 60,000

Table A4. Pellet demand in each market zone (tons).

T1 T2

M1 12,000 14,400

M2 14,000 16,800

M3 16,000 19,200

M4 16,000 19,200

M5 12,000 14,400
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Table A5. Transportation cost of biomass between biomass supply terminal and pelletization plants
(USD/ton-km).

B1 (Pelletization
Plant)

B2 (Pelletization
Plant)

B3 (Pelletization
Plant)

B4 (Pelletization
Plant)

RAWALPINDI A1 6 574 359 401

SARGODHA A2 232 370 188 186

FAISALABAD A3 301 321 181 102

GUJRANWALA A4 212 474 92 363

LAHORE A5 359 413 10 171

SAHIWAL A6 401 243 171 5

MULTAN A7 520 100 338 180

D.G. KHAN A8 615 183 438 279

BAHAWALPUR A9 599 8 430 244

Table A6. Transportation cost of wood pellets between pelletization plants and distribution centers
(USD/ton-km).

C1 C2 C3

RAWALPINDI B1 332 218 517

BAHAWALPUR B2 427 381 100

LAHORE B3 10 188 338

SAHIWAL B4 171 230 181

Table A7. Transportation cost of wood pellets between pelletization plants and distribution centers
(USD/ton-km).

M1 M2 M3 M4 M5

LAHORE C1 10 181 331 92 338

SARGODHA C2 187 91 232 221 291

MULTAN C3 338 242 520 395 8
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