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Preface to ”Thermal and Optical Remote Sensing:

Evaluating Urban Green Spaces and Urban Heat

Islands in a Changing Climate”

Urbanization, typified by land-use-land-cover transformation is a major cause of bio-physical,

thermodynamic, surface energy and micro- and macro climate perturbations. These changes

commonly result in environmental deterioration that in turn adversely affects bio-physical processes

and quality of urban life. A major consequence of urbanization is the higher thermal values

compared to the surrounding peri-urban and rural areas, causing the Urban Heat Island (UHI)

effect. In recent decades, above-average heat during summer has become prevalent in global cities,

a trend that is expected to continue. It is anticipated that the intensifying UHI effect, in concert

with increasing anthropogenic activities, will exacerbate the vulnerability of urban landscapes to

climate-related disasters such as floods and heatwaves. Hence, UHIs have become an invaluable

theme in environmental research. A recent proliferation of optical and thermal remotely sensed

datasets offers great potential for understanding the relationship between the urbanization processes

and their respective bio-physical and climatic implications. This book focuses on the theoretical

principles and practical adoption of remote sensing approaches and datasets in understanding the

nexus between urbanization, natural landscapes, urban micro-climate, and climate change. This

book provides a basis for understanding urban ecological and natural patterns, critical for the

management of urban physical, ecological and social processes. Specifically, understanding past,

current, and future Land Surface Temperature (LST) patterns and drivers is critical for, among

others, urban environmental management, urban spatial planning, the optimal and sustainable use of

urban landscapes and climate change mitigation. The book’s first two chapters explore the potential

of downscaling remotely sensed data and improved feature extraction to determine the effect of

urban surface types on thermal characteristics. Chapter one adopts a Step-by-Step Random Forest

Downscaling-Morphological (SSRFD-M) model to relate natural surfaces to LST, while chapter two

proposes the absolute and relative indicators for the detailed derivation of landscape features and

thermal values using Geofen 2 (GF-2) and Landsat 8 Thermal Infra-Red (TIR), respectively. Chapter

three to five adopt the standardized Local Climate Zone (LCZ) typology to relate urban landscape

feature types to thermal characteristics. Chapter three and four use the World Urban Database and

Access Portal Tool (WUDAPT) and the LCZ framework in South Africa (Cape Town, Thohoyandou

and East London) and Zimbabwe (Bulawayo), respectively, while chapter five relates seasonal LCZ

to daytime LST in Riyadh, Saudi Arabia. Chapter six to nine investigate multi-city urban LULC

and the contribution of the climate, urbanization and CO2 to UHI in multiple cities. Chapter six

proposes a Landsat imagery time series approach in Google Earth Engine platform to map built-up

areas in 305 cities, while chapter seven compares Surface Urban Heat Island (SUHI) in relation to the

SUHI fraction’s key drivers in 305 Chinese cities. Chapter eight determines a critical competitive

point of Artificial Surfaces (AS) and Urban Blue-Green Space (UBGS) on LST in 28 cities, while

chapter nine relates the Global Land Surface Satellite (GLASS) Fractional Vegetation Cover (FVC)

to CO2, urbanization, and climate in 32 major cities. Chapter ten to twelve investigate a range of

UHI-mitigation approaches. Chapter 10 explores the value of urban green spaces in mitigating UHI

in Marrakesh, Morocco, while chapter eleven investigates the role roof colours in assimilating surface

temperature. Using vegetation’s morphological Spatial Patter Analysis (MSPA), chapter twelve

adopts ArborCamTM multispectral high-resolution imagery to determine the role of golf courses in
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assimilating urban LST. This book should be of interest to both specialists and generalists interested

in, among others, urban planning, ecological conservation, the urban micro-climate, atmospheric

science, environmental management, and climate change.

John O. Odindi, Elhadi Adam, Elfatih M. Abdel-Rahman, and Yuyu Zhou

Editors
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Step-By-Step Downscaling of Land Surface Temperature
Considering Urban Spatial Morphological Parameters
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* Correspondence: 001631@nuist.edu.cn

Abstract: Land surface temperature (LST) is one of the most important parameters in urban thermal
environmental studies. Compared to natural surfaces, the surface of urban areas is more complex, and
the spatial variability of LST is higher. Therefore, it is important to obtain a high-spatial-resolution
LST for urban thermal environmental research. At present, downscaling studies are mostly performed
from a low spatial resolution directly to another high resolution, which often results in lower accuracy
with a larger scale span. First, a step-by-step random forest downscaling LST model (SSRFD) is
proposed in this study. In our work, the 900-m resolution Sentinel-3 LST was sequentially downscaled
to 450 m, 150 m and 30 m by SSRFD. Then, urban spatial morphological parameters were introduced
into SSRFD, abbreviated as SSRFD-M, to compensate for the deficiency of remote-sensing indices as
driving factors in urban downscaling LST. The results showed that the RMSE value of the SSRFD
results was reduced from 2.6 ◦C to 1.66 ◦C compared to the direct random forest downscaling model
(DRFD); the RMSE value of the SSRFD-M results in built-up areas, such as Gulou and Qinhuai
District, was reduced by approximately 0.5 ◦C. We also found that the underestimation of LST caused
by considering only remote-sensing indices in places such as flowerbeds and streets was improved in
the SSRFD-M results.

Keywords: step-by-step downscaling of LST; land surface temperature; urban spatial morphology

1. Introduction

As an important physical variable driving the energy exchange between the surface
and the atmosphere, the surface temperature (LST) is one of the key parameters for studying
the energy balance of the surface at global or regional scales. Currently, LST is widely used to
assess surface moisture and drought levels [1–4], calculate urban heat island intensity [5–7]
and simulate surface energy exchange [8–11]. In urban areas, the spatial and temporal
heterogeneity of urban surface temperature is obvious due to the extremely complex
surface, the strong differences in three-dimensional spatial geometry and the variety of
surface components and types. Therefore, studies of the urban thermal environment and
other urban-related research fields usually require LST data with a higher spatiotemporal
resolution.

The LST data obtained by thermal infrared remote-sensing technology generally have
the problem of conflicting spatial and temporal resolutions. For example, the Moderate
Resolution Imaging Spectroradiometer (MODIS) LST product has a high temporal resolu-
tion, but the spatial resolution is only 1000 m; Sentinel-3 operates through a binary orbit
with a temporal resolution of fewer than 0.9 days, but the spatial resolution of the LST
product is also 1000 m; the land surface temperature product retrieved from Landsat TIRS
has a spatial resolution of 100 m, but the revisit period is as long as 16 days. Together with
the influence of clouds, the available valid Landsat LST data are even further diminished.

Remote Sens. 2022, 14, 3038. https://doi.org/10.3390/rs14133038 https://www.mdpi.com/journal/remotesensing1



Remote Sens. 2022, 14, 3038

High-temporal-resolution data are difficult to generate for refined surface temperature
studies at an urban scale due to their low spatial resolution, while the high spatial resolution
LST data are unable to study the variation pattern of LST in time due to their low temporal
resolution. To solve the contradiction of spatial and temporal resolutions of remote-sensing
thermal data, scholars have proposed a large number of technical methods from various
perspectives, such as image processing and statistical regression, to obtain land surface
temperature data with high spatial and temporal resolutions.

The statistical regression method has gained wide application in LST downscaling
studies due to its low computational complexity and satisfactory downscaling results. The
application of this method has become relatively mature in suburban and mountainous ar-
eas with simple land covers at a large spatial scale [12,13]. However, there are two problems
that cannot be ignored when applying the statistical method to urban areas with complex
land surface types. Firstly, the larger the spatial resolution span of the downscaling, the
lower the accuracy tends to be. From the available thermal infrared remote-sensing data,
there are lots of LST products with a higher temporal resolution at about 1000-m spatial
resolution. When they are downscaled to the 100-m level or even the 10-m level, the spatial
resolution of the downscaled LST differs from the original resolution by a factor of 10 or
even 100, and the downscaled accuracy decreases as the spatial resolution increases. The
main reason for this problem is that the assumption of a “constant spatial scale relationship”
between LST and the driving factor does not hold when the resolution difference is large.
Secondly, the traditional two-dimensional remote-sensing spectral indices and surface
parameters are not sufficient to accurately describe the spatial pattern of an urban surface.
Currently, commonly used remote-sensing indices for downscaling models, such as the
normalized difference vegetation index (NDVI), normalized difference moisture index
(NDMI), normalized difference water index (NDWI) and normalized difference building
index (NDBI) [14] use surface parameters including the DEM, slope, slope direction, lati-
tude, longitude and surface cover type [15,16], as well as multispectral data [17] describing
the vegetation cover, moisture status and topographic relief of the land surface from the
two-dimensional perspective. In contrast, cities are dominated by buildings and imper-
vious pavements, but the influence of the three-dimensional morphological structure on
local land surface temperature is less considered. In fact, a large number of studies have
demonstrated that urban spatial morphological parameters such as the sky view factor
(SVF), frontal area index (FAI) and building density (BD) are closely related to LST [18–21],
meaning they need to be considered in downscaling models.

To address the above two problems, this study aimed to develop a step-by-step LST
downscaling method by further considering urban spatial morphological parameters to
obtain the urban land surface temperature at a spatial resolution of 30 m with high accuracy.
The paper takes the central urban area of Nanjing, Jiangsu Province, China as the study area,
and selects multi-source remote-sensing data, three-dimensional spatial distribution data
of urban buildings to downscale the Sentinel-3 LST with the spatial resolution of 1000 m
to the resolutions of 450, 150 and 30 m step-by-step using surface 2D and 3D parameters
as driving factors. The downscaling results are evaluated by Landsat TIRS LST at the
resolution of 30 m. Then, the influence of urban spatial morphological parameters on land
surface temperature downscaling is discussed. The step-by-step LST downscaling method
changes the traditional studies that directly downscale LST from a low spatial resolution to
a high one, selecting several spatial resolutions for the intermediate downscaling process.
The intermediate downscaling process is equivalent to supplementing the model with the
land surface information and reducing the difference in spatial resolution, thus ensuring
that the statistical regression model varies less with the spatial scale.

2. Research Review

A lot of research has been carried out on land surface temperature downscaling by
scholars around the world. The main methods used for LST downscaling can be divided into
two categories: image-based spatiotemporal fusion and kernel-driven downscaling methods.
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The image fusion method obtains a high spatial and temporal resolution land of surface
temperature by constructing a model to generate fused images, based on the combined
weight of spectral, temporal and spatial information, by selecting similar images in the
spatiotemporal neighborhood to be fused. Unlike the statistical downscaling method, the
image fusion method does not directly model the relationship between land surface temper-
ature and influencing parameters at low-spatial-resolution scales. Classical algorithms are as
follows. Weng et al. [22] improved the STARFM model to establish the relationship between
MODIS and TM radiometric brightness by linear spectral mixing analysis, and proposed a
spatiotemporal adaptive fusion algorithm (SADFAT) for land surface temperature downscal-
ing. Wu et al. [23] proposed a spatiotemporal integrated temperature fusion model (STITFM)
for estimating high-spatiotemporal-resolution LST from multi-scale polar and geostationary
orbiting satellite observations. The image fusion-based approaches assume that the radiative
brightness for similar pixels behaves consistently at any spatial resolution, while in practice,
the radiative brightness will inevitably vary in space and time. So, this approach generally
performs poorly in urban areas with high-spatial-heterogeneity characteristics.

Kernel-driven downscaling methods can be classified into physical models and sta-
tistical regression methods according to whether the model is physically meaningful or
not. Physical downscaling methods establish the relationship between LST and auxiliary
data by using the physical mechanism of a mixture pixel and the thermal radiation prin-
ciple. In this way, low-spatial-resolution pixels are decomposed to multiple subpixels to
obtain the high-spatial-resolution LST. For example, L.J and Moore [24] developed the
pixel block intensity modulation (PBIM) method to improve the spatial information in
the low-spatial-resolution thermal infrared band by using multispectral data with a high
spatial resolution. Nichol [25] proposed the emissivity modulation (EM) model to improve
the spatial resolution of thermal radiation by using land surface emissivity and land cover
data. Wang et al. [26] downscaled MODIS LST to a 30-m resolution based on the thermal
decomposition equation. However, the design of physical models is usually difficult and
the models are computationally complex and time-consuming.

The basic principle of a statistical regression method is to assume that the relationship
between land surface temperature and driving factors does not change with the spatial
scale. A statistical regression model is built using the low-spatial-resolution LST and the
drivers, after which the high-spatial-resolution drivers are added to the model to predict the
high-spatial-resolution LSTs. Up to now, the statistical regression method is the most widely
used method in LST spatial downscaling studies. Based on the number of driving factors,
statistical regression methods can be divided into single- and multi-factor models. For
example, Distrad models used NDVI as the driver [27], and the TsHARP model used vege-
tation cover instead of NDVI [28]. In addition, Anthony et al. [29] developed a high-resolution
urban thermal fusion (HUTS) technique to downscale Landsat TIRS to 30 m based on NDVI
and surface albedo. Lacerda et al. [30] used the TsHARP model to downscale the MODIS
LST to a high spatial resolution of 10 m. Vaculik et al. [31] downscaled the GOES-R LST
with the resolution of 2000 m to 30 m by establishing a linear relationship between NDVI
and LST. J.M. et al. [32] modified the TsHARP algorithm to downscale MODIS LST data
covering one Spanish farm. However, single-factor models are only applicable to a region
with high vegetation cover; they do not perform well in urban or arid areas, limited by the
predictor variables. Multi-factor models with multiple remote-sensing indices and land
surface parameters as driving factors were gradually proposed and applied. For example,
Liu et al. proposed the G_Distrad model by adding NDBI and NDWI to the traditional
Distrad model [14]. Pereira et al. [33] proposed a geographically weighted regression model
(GWRK) by using NDVI and multispectral data to downscale the ASTER thermal infrared
data for the natural regions and urban areas of Pantanal, Brazil. Considering the complex
nonlinear relationships between land surface temperature and various geophysical parame-
ters in urban areas [12,13], the three-layer structural (TLC) model [34], neural network [35],
support vector machines [6], random forests [36] and other multivariate nonlinear statistical
models have been continuously developed and applied to urban LST downscaling studies.

3



Remote Sens. 2022, 14, 3038

Random forest models have been widely used in urban LST downscaling studies in recent
years because of their low model complexity, fast training speed and ability to effectively
avoid overfitting problems. Li et al. [36] compared three machine learning algorithms,
random forest (RF), support vector machine (SVM) and artificial neural network (ANN), to
the traditional TsHARP method in both urban and suburban areas of Beijing, and found
that the LST downscaling accuracy of the machine learning algorithm was higher than
that of the TsHARP algorithm. Wang et al. [37] compared the downscaling results from
a multiple linear regression model (MRL), TsHARP model and random forest (RF), and
found that the RF model is more suitable for heterogeneous surfaces such as urban areas.
Ebrahimy et al. [38] used an adaptive random forest regression method to downscale
MODIS LST over Iran to 30 m in the GEE platform. Njuk et al. [39] proposed an improved
downscaling method for low-resolution thermal data based on minimizing the spatial
mean bias of random forest, and the results demonstrated that the method reduces the
inherent mean bias in the LST downscaling process and is more suitable for LST down-
scaling applications in complex environments. Here, we comprehensively analyzed most
land surface temperature downscaling methods and built global models and assumed that
the statistical relationships were spatially invariant, however, global models may produce
large errors in local area applications. In recent years, many scholars have devoted their
work to using local models to capture the spatial non-stationary characteristics of land
surface variables, and then established the local relationships between LST and influencing
factors to improve the accuracy of LST downscaling [15].

3. Materials and Methods

3.1. Study Area

The central urban region of Nanjing, Jiangsu Province, China was chosen as the study
area because it contains a variety of underlying surface types such as buildings, vegetation
and water bodies, which helps to carry out land surface temperature downscaling studies of
complex ground cover types. Figure 1 presents a true-color image and building distribution
map of the study area at a spatial resolution of 10 m.

 

Figure 1. Sentinel-2 true-color composite image and building data of the study area (blue line
represents the main urban area of Nanjing; red lines represent the study area boundaries).
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The study area includes several urban administrative districts, including the Qixia,
Xuanwu, Gulou, Qinhuai and Jianye Districts, with an area of approximately 18 × 18 km2.
The study area is located in the central region of the lower Yangtze River, with geographic
coordinates between 31◦14′N and 32◦37′N and 118◦22′E and 119◦14”E. The total built-up
area is approximately 823 km2. Although the study area is near a hilly area, the topography
is flat, and there are many low hills and gentle hills. Nanjing has a humid subtropical
climate with four distinct seasons, abundant rainfall and significant temperature differences
between winter and summer. The average annual precipitation is 1106 mm, and the average
annual temperature is 15.4 ◦C. Nanjing had a population of 10,312,200 at the end of 2019,
with a resident population of 8.5 million, including 7.072 million in urban areas, and an
urbanization rate of 83.2%. Nanjing is one of the economic-center cities in China, with a
regional GDP of $1.6 billion in 2021.

3.2. Data

The Sentinel-3 LST product at a 1000-m spatial resolution for downscaling and Sentinel-2
multispectral image data were downloaded from the ESA website (https://scihub.copernicus.
eu/dhus/#/home, accessed on 14 May 2022). The Landsat LST product at a 30-m spatial
resolution for validation of downscaling results was downloaded from the USGS website
(https://earthexplorer.usgs.gov/, accessed on 30 December 2021). Sentinel-2 visible light
and shortwave infrared bands (B2–B4, B8, B11 and B12) were used to calculate normalized
remote-sensing spectral indices. Nanjing downtown building and wind data were used to
calculate urban spatial morphological parameters. Nanjing wind data from 2016 to 2020
were used to calculate the wind direction frequency, which were downloaded from the
China Air Quality Online Monitoring and Analysis Platform (https://www.aqistudy.cn/
historydata/, accessed on 14 May 2022). The details of all the data involved in this study
are presented as follows.

3.2.1. Landsat LST Product

Landsat LST products were generated by EROS based on a single-channel inversion
algorithm, by using the Landsat C2L1 thermal infrared band and other ancillary data [40,41].
Landsat LST products were resampled from 100 to 30 m for release to users by EROS using
the nearest-neighbor resampling method. The Landsat LST images used in this study were
imaged at 10:37 a.m. on 4 October 2021, with orbital row/column numbers 120/038 [42].

3.2.2. Sentinel-3 LST Product

The Sentinel series is an Earth observation satellite mission of the European Copernicus
program. Sentinel-3 carries a variety of payloads, such as OLCI (sea and land colorimeter)
and SLSTR (sea and land surface temperature radiometer), which are mainly used for
high-precision measurements of the sea surface topography, sea and surface temperatures,
ocean water color and soil properties [43]. Both 3A and 3B satellites in orbit have revisit
periods of less than one day for areas within 30◦ latitude of the equator. SLSTR has six
solar reflection bands (S1–S6) and four thermal infrared bands (S7–S9, F1, F2) with spatial
resolutions of 500 and 1000 m, respectively. The Sentinel-3 LST products are produced
by a split-window algorithm using three bands of S7–S9 and other auxiliary data, and
the products are accurate to 1 K. The LST product of Sentinel-3B SLSTR was selected for
this study, with an imaging time of 10:04 am on 4 October 2021. The Sentinel LST was
resampled to a spatial resolution of 900 m by using the bilinear interpolation method for
downscaling in this study to match the reference LST with a spatial resolution of 30 m.

3.2.3. Sentinel-2 Multispectral Data

Sentinel-2 is a multispectral high-resolution imaging satellite with two satellites in
orbit, 2A and 2B, with a revisit period of five days [44]. Each satellite carries a multispectral
imager (MSI), which can cover 13 spectral bands with ground resolutions of 10, 20 and
60 m and an amplitude of 290 km. The blue, green, red, and near-infrared bands needed for

5



Remote Sens. 2022, 14, 3038

this study are the B2, B3, B4 and B8 bands of the Sentinel-2 satellite, each with a resolution
of 10 m. B11 and B12 are shortwave infrared bands with a resolution of 20 m, resampled to
10 m to match the visible bands.

3.2.4. Urban Building Data

The building data used in this study were provided by Urban Data Corps, obtained in
around 2012. Urban Data Corps is ranked in the top 10 in the big-data field according to the
2017 China Big Data Development Report published by the National Information Center of
China. Urban Data Corps can provide a variety of high-precision data for urban research.

The building vector data contain the polygon of the building distribution, building
floor data and building height data in a shapefile format with the WGS-84 coordinate
system. Comparing the urban building distribution data with satellite images in 2012,
we found that the building location and outline highly overlap with the satellite images,
and the building floor number is also very consistent with the field survey results, which
indicates the high accuracy of the building distribution data. The field survey found that
the ground cover types in most of the study areas, such as Gulou District and Qinhuai
District, did not change significantly between 2012 and 2021, except for Qixia District.
In this study, the building vector data in the shapefile format were firstly converted to
raster data in the TIF format with a spatial resolution of 10 m. After that, the urban spatial
morphological parameters were calculated based on the building raster data and other
auxiliary data using corresponding formulas.

3.3. Calculation of the Downscaling Driving Factor
3.3.1. Calculation of the Remote-Sensing Spectral Index

The L2A-level surface reflectance data from Sentinel-2B were selected for this study to
calculate remotely sensed spectral indices that are closely related to surface temperature,
including the modified normalized difference water index (MNDWI), normalized differ-
ence building index (NDBI), normalized difference built-up and soil index (NDBSI) [28],
normalized difference moisture index (NDMI), normalized difference vegetation index
(NDVI) and soil adjusted vegetation index (SAVI). The calculation process was performed
using SNAP 8.0, a professional piece of software for data-processing in the Sentinel series.
The calculation formula is shown in Table 1.

Table 1. Remote-sensing spectral indices required for downscaling and calculation formulas.

Var. Description Equations

MNDWI Improve the normalized difference water body index to highlight water
body information MNDWI = ρ3−ρ12

ρ3+ρ12

NDBI Normalize the difference building index to highlight building
information NDBI = ρ12−ρ8

ρ12+ρ8

NDBSI Indicate the degree of dryness of the ground surface [45]

IBI =
2×ρ11

(ρ11+ρ8)−
(

ρ8
(ρ8+ρ4) +

ρ3
ρ3+ρ11

)
2×ρ11

(ρ11+ρ8) +
(

ρ8
(ρ8+ρ4) +

ρ3
ρ3+ρ11

)

SI = (ρ11+ρ4)−(ρ8+ρ2)
(ρ11+ρ4)+(ρ8+ρ2)

NDBSI = IBI+SI
2

NDMI Indicate the vegetation moisture NDMI = ρ8−ρ11
ρ8+ρ11

NDVI Highlight vegetation information NDVI = ρ8−ρ4
ρ8+ρ4

SAVI Reduce the sensitivity of vegetation indices to changes in reflectance of
different soils

SAVI = ρ8−ρ4
ρ8+ρ4+L × (1 + L)
L = 0.5

Notes: ρ1–ρ12 denote the surface reflectance of Sentinel-2 bands 1–12.

3.3.2. Calculation of Urban Spatial Morphological Parameters

The building vector data of Nanjing were converted to raster data with a 10-m resolu-
tion to calculate urban spatial morphological parameters including the building density
(BD), frontal area density (FAD), floor area ratio (FAR), mean height (MH) and sky view
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factor (SVF). The SVF was calculated by the raster algorithm. The influence of buildings
within a radius of 100 m was considered when calculating the SVF of each pixel. FAD was
calculated using the building raster data and the wind direction frequency data by a self-
developed raster algorithm with a plot area of 100 × 100 m2. Other spatial morphological
parameters, such as BD, FAR and MH, were calculated using 10-m building raster data and
the corresponding equations in Table 2 with a plot area of 100 × 100 m2.

Table 2. Urban spatial morphological parameters required for LST downscaling.

Var. Description Equations

BD Building Density BD = ∑n
i=1 Ai
AT

Ai indicates the ith building area and AT indicates the calculated plot area

FAD Frontal Area Density

λ f (z) =
n
∑

i=1

A(θ)proj(z)
AT

× Pθ,i

λf(z) indicatestheweightedfrontalareadensity(FAD);
A(θ)proj(z) indicates the projected area at a certain height z

in the wind direction θ, Pθ,i indicates the frequency of the wind direction θ,
i = 1,. . . , 16

FAR Floor Area Ratio FAR = ∑n
i=1 Fi×Ai

AT
FiindicatestheithbuildingfloornumberandAiindicates the ith building area

MH Mean Height MH = ∑n
i=1 Hi

n
Hi indicates the ith building height and n indicates the number of buildings

SVF Sky View Factor

Ψsky = 1 − 360/α
∑

i=1
sin2β × (α/360)

β = tan−1(H/X)
ψsky indicates SVF, β indicates the building height angle, H indicates the building

height, X indicates the calculated radius and is set to 100 m in this study

Note: Except for SVF, the plot area AT calculated by all other parameters takes the value of 100 × 100 m.

3.4. Downscaling LST Method Based on Random Forest

The core idea of surface temperature downscaling is the invariance of the relationship
between LST and driving factors at different spatial resolutions so that the statistical
relationship between LST and the regression kernel at a low resolution can be applied to
a high spatial resolution to complete the downscaling process. The specific formulas are
as follows:

T′
c = f (varc) (1)

ΔT = Tc − T′
c (2)

T′
f = f

(
var f

)
+ ΔT (3)

where varc denotes the low-resolution explanatory variable, varf denotes the high-resolution
explanatory variable, Tc denotes the low-resolution LST, Tc’ denotes the predicted low-
resolution LST, ΔT denotes the simulation residual and Tf’ denotes the predicted high-
resolution LST.

This study used the random forest algorithm to construct the LST downscaling model.
Random forest is an integrated decision tree-based learning algorithm proposed by Breiman
in 2001 as a supervised learning algorithm [32]. The algorithm uses the bootstrap resam-
pling method to randomly select samples from the training sample set. The extracted
bootstrap samples are trained separately for each decision tree, and an algorithm for ran-
domly selecting a subset of features is introduced in the process of splitting the nodes of
the decision tree. The prediction results of each decision tree are counted and voted on
to obtain the final prediction results of the input data. The random forest algorithm has
stronger noise immunity than other algorithms because of the introduction of randomly
selected training samples and randomly selected feature subsets that make the correlation
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among each decision tree smaller. The random forest algorithm is better at handling non-
linear problems than traditional statistical regression algorithms. As long as the number of
decision trees is sufficient, the random forest algorithm can effectively avoid the overfitting
problem, and the training speed is faster. The random forest algorithm can examine the
interaction between features during the training process and output the feature importance,
which is a reference for analyzing the degree of influence of features. In this study, the
experimental dataset was divided into training and validation datasets according to the
ratio of 8:2. The main parameters that need to be set manually to build a random forest
downscaling model using the Pycharm platform include the number of decision trees
(n_estimators) and the maximum number of features (max_features). n_estimators refers to
the number of decision trees built in the random forest, which was set to 700 after testing in
this study. max_feature refers to the maximum number of features selected when building
each decision tree, which was set to log(n_estimators) in this study. Other parameters were
set to default values.

3.5. Step-By-Step Random Forest Downscaling Method (SSRFD)

When the spatial resolution spans a larger range, the downscaling results cannot
accurately characterize the spatial distribution of LST, which tends to underestimate the
surface temperature in building areas and overestimate it for water bodies and vegetated
areas. This study proposed a step-by-step downscaling LST method based on the random
forest model (SSRFD), which achieves a significant increase in the spatial resolution of
LST without excessive loss of accuracy through multiple, small-scale spatial resolution
downscaling processes. During the SSRFD model’s work, each intermediate downscaling
adds additional and finer surface information to the model. In this way, models are trained
to accurately express the relationship between land surface temperature and driving factors.

In this study, the direct random forest downscaling (DRFD) method was performed to
directly downscale 900-m Sentinel-3 LST to a 30-m resolution, and then two downscaling
methods were conducted using the proposed SSRFD method. The first method, named
SSRFD, downscaled the 900-m Sentinel-3 LST to 30 m after 450 m and 150 m sequentially,
where the SSRFD was driven by the six remote-sensing indices mentioned above. The sec-
ond method, named SSRFD-M, downscaled 900-m Sentinel-3 LST to 30 m by the same
process through SSRFD, where five additional urban spatial morphological parameters
were added as the SSRFD driver factors. After that, LST downscaling results of DRFD,
SSRFD and SSRFD-M were compared at a 30-m spatial resolution, which were all evalu-
ated by using the 30-m Landsat-8 LST as the reference. Moreover, the influence of urban
spatial morphological parameters on LST was analyzed based on SSRFD-M at a 30-m
spatial resolution.

3.6. Accuracy Evaluation Methods

Pearson’s correlation coefficient (r), the mean absolute error (MAE) and root mean
square error (RMSE) were used to comprehensively evaluate the downscaling results.
Meanwhile, the maximum/minimum, mean (Mean) and standard deviation (SD) were
calculated to evaluate the spatial variability characteristics of LST images before and after
downscaling. The SD can reflect the spatial variability of thermal features.

4. Results

4.1. Comparison of the Results Obtained with SSRFD and DRFD

To reduce data differences caused by different sensors and LST inversion algorithms
and increase the comparability and verifiability between Landsat-8 and Sentinel-3 LST
products, a simple linear correction was applied to Sentinel-3 LST before the downscaling
work. After performing the linearity correction, the maximum, minimum and mean values
of Sentinel-3 LST changed from 38.80, 27.57 and 35.18 ◦C to 41.25, 30.84 and 37.90 ◦C,
respectively, which were closer to Landsat LST in the range of values. The RMSE of the
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two LST products changed from 3.22 to 1.59 ◦C, indicating that the systematic differences
between Sentinel-3 LST and Landsat LST were reduced to some extent.

Comparative plots of the downscaling results are given in Figure 2, where the 900-m
Sentinel-3 LST was downscaled to 30 m using the DRFD method and SSRFD method. Com-
paring Figure 2b,c with Figure 2a, both results captured finer spatial discrepancy character-
istics and texture features, and the resulting LST distribution is basically consistent with
Landsat LST. However, according to Figure 2b, there are large areas of high-temperature
regions in the study area. The results obtained with DRFD as a whole are significantly
overestimated. For example, the regions along the northwestern coast of the Yangtze
River, Xuanwu Lake and Zijinshan Mountain show obvious temperature overestimation
errors. The difference characteristics between the high-temperature region and the sub-high-
temperature region are less clearly expressed than Landsat LST in Figure 2a. In contrast to
Figure 2b, the results obtained with SSRFD (Figure 2c) captured the spatial distribution
differences and textural characteristics more accurately. The distribution characteristics of
both the building high-temperature zone and the water and vegetation low-temperature
zone are in good agreement with Figure 2a. Overall, the results obtained with DRFD show
an overall underestimation of the high-temperature region and an overestimation of the
low-temperature region, which cannot accurately depict the spatial distribution pattern of
LST in the study area.

 
(a) (b) (c) 

Figure 2. Spatial distribution of LST at 30-m spatial resolution. (a) Landsat reference LST. (b) Down-
scaled LST results of DRFD. (c) Downscaled LST results of SSRFD.

The statistics (Table 3) show that the results from DRFD, with an SD of 2.64, are 0.82
lower than Landsat LST, but their mean value is 1.41 ◦C higher than Landsat LST. This is
consistent with the performance of the DRFD results in Figure 2b, which further illustrates
the overall high surface temperature predicted by DRFD. In comparison, the maximum,
mean and SD of the results from SSRFD are 50.76, 36.78 and 3.73 ◦C, respectively, which
only differ from the corresponding index of Landsat LST by approximately 0.3 ◦C. In
summary, the downscaling results of SSRFD are more accurate, which is also demonstrated
in Figure 3.

Table 3. Statistical values of LST downscaled from DRFD, SSRFD methods and Landsat reference
LST data at a 30-m resolution.

Statistical
Variables

Reference LST/◦C DRFD LST/◦C SSRFD LST/◦C

Maximum 51.06 42.80 50.76
Minimum 13.94 28.95 24.36

Mean 36.50 37.91 36.78
Standard deviation 3.46 2.64 3.73
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Figure 3. Histogram of downscaled LST and Landsat LST at 30-m resolution (black cubes refer to
Landsat LST, red circles refer to downscaled LST obtained by the SSRFD method, blue triangles refer
to downscaled LST obtained by the DRFD method).

According to Figure 3, The histogram curves of SSRFD results fit better with that of the
Landsat LST, as they both have clear “peak” values between 27.5–29 and 37–39 ◦C, which
indicates that the SSRFD results are reasonable overall. The DRFD results differ significantly
from the Landsat LST in terms of histogram shape characteristics, data distribution interval
and data value range, e.g., the “peaks” of the results from DRFD are distributed between
40 and 41 ◦C. Overall, Figure 3 shows that the dense temperature interval of the image
element distribution of DRFD is higher than that of SSRFD LST and Landsat LST.

Furthermore, the corresponding scatterplots of the two downscaling results from
SSRFD and DRFD with Landsat LST are given in Figure 4a,b, respectively. According to
Figure 4, the correlation r value between the DRFD results and Landsat LST is 0.6, while
the SSRFD results improve this to 0.81. The MAE and RMSE values of the DRFD results are
2 and 2.6 ◦C, respectively, while the SSRFD results decrease to 1 and 1.66 ◦C, respectively.
This indicates that using the SSRFD method can obtain a higher-accuracy LST than the
DRFD method when the spatial resolution spans a large range.

  

(a) (b) 

Figure 4. Scatterplots of the correlation analysis between downscaled LST and Landsat reference LST
at a 30-m resolution. (a) Downscaled LST of Sentinel-3 from DRFD method. (b) Downscaled LST of
Sentinel-3 from SSRFD method.
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4.2. Influence of Urban Spatial Morphological Parameters on Downscaling LST
4.2.1. Analysis of the Overall Downscaling Results in the Study Area

To evaluate the influence of urban spatial morphological parameters on LST down-
scaling, the five spatial morphological parameters calculated in Table 2 were introduced
into the driving factors of SSRFD to downscale Sentinel-3 LST from a spatial resolution of
900 to 30 m. The downscaling results were also validated by Landsat LST.

Figure 5a,b shows the correlation plots of Landsat LST with the results from SSRFD
and SSRFD-M, respectively, at a 30-m spatial resolution, where r improves from 0.81 to 0.85
and RMSE decreases from 1.66 to 1.44 ◦C after adding the spatial morphological parameters.
The statistical histograms of Landsat LST and downscaling results are given in Figure 6.
Compared to the SSRFD result, SSRFD-M is more matched with Landsat LST in distribution
shape, especially between 35 and 40 ◦C where buildings and concrete pavements are mainly
distributed. Otherwise, the features with temperatures between 28 and 35 ◦C are mainly
vegetation and water bodies. The curves of the two downscaling results in this interval
are higher than Landsat LST, indicating that there may be some LST overestimation in
downscaling results for vegetation and water body areas. Combined with the analysis of
Figure 5, we conclude that the SSRFD-M model performs better than SSRFD, especially for
dense building areas.

Figure 5. Scatterplots of the correlation analysis between downscaled LST and Landsat LST on the
overall region at a 30-m resolution. (a) SSRFD result. (b) SSRFD-M result.

Figure 6. Histogram of downscaled LST and Landsat LST at a 30-m resolution (black cubes refer to
Landsat LST, red circles refer to the SSRFD results and blue triangles refer to the SSRFD-M results).
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4.2.2. Analysis of Regional Downscaling Results in the Study Area

In Section 4.2.1, we found that the spatial morphological parameters have some
favorable effects on the LST downscaling, especially for building areas. However, we
remained unaware of how the urban spatial morphological parameters affect the LST
downscaling results for different locations within the study. In this section, we intend
to discuss the downscaling results for five subregions at a 30-m resolution to further
analyze the role of urban spatial morphological parameters in the downscaling process.
The distribution of correlations between the downscaling results and Landsat LST for
five subdistricts, Qixia, Gulou, Xuanwu, Qinhuai and Jianye, are given in Figure 7. The
influence of urban spatial morphological features on LST downscaling can be further
verified because of the complexity of the urban ground cover types considered.

 

Figure 7. Scatterplot of correlation analysis between downscaled LST and Landsat LST at a spatial
resolution of 30 m (downscaled LSTs obtained from SSRFD and SSRFD-M correspond to the left and
right panels in a–e).

Figure 7a–c shows that the r value of the SSRFD-M downscaling results for the Gulou,
Qinhuai and Jianye Districts improves from 0.44, 0.51 and 0.34 to 0.61, 0.68 and 0.45, re-
spectively, while the RMSE value decreases from 1.73, 1.69 and 1.81 ◦C to 1.22, 1.21 and
1.41 ◦C, respectively. According to the statistical analysis of different areas, all three areas
are located in a dense area of middle-rise buildings [33], where buildings and impervious
surfaces dominate and the vegetation distribution is relatively low and sparse. There-
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fore, the LST distribution is closely related to the spatial morphological characteristics of
buildings. These figures all exhibit that the downscaling results of SSRFD underestimated
the LST for some regions between 35 and 40 ◦C. According to Figure 7d, r and RMSE
values changed from 0.78 and 1.30 ◦C to 0.83 and 1.14 ◦C before and after considering
spatial morphological parameters in Xuanwu District, respectively, with a slightly smaller
improvement in accuracy relative to the Gulou and Qinhuai Districts. Statistically, among
the Xuanwu District covered by the study area, non-built-up areas such as Zhong Shan
Scenic Area and Xuanwu Lake account for approximately 50% of the district. Therefore,
the inclusion of spatial morphological parameters has less influence on the downscaling
results of these areas. If the downscaling results of building areas in Xuanwu District are
counted separately, the RMSE of SSRFD-M decreases from 1.96 to 1.17 ◦C compared to
the SSRFD results, which proves that SSRFD-M can effectively improve the downscaling
effect in dense building areas. Figure 7e indicates that the SSRFD-M results for Qixia
only improved/decreased r and RMSE values by 0.02/0.06 ◦C, respectively, compared to
SSRFD. The reason for this is mainly the difference in years between Sentinel-3 LST data
and building data. The type of land surface cover in some regions of Qixia has changed
significantly. For example, the eastern side of Ningluo Expressway and the northern side of
Qixia Avenue have changed from natural surfaces to building and road types. The building
data used cannot accurately express the spatial morphological characteristics of these areas
and cannot effectively improve the accuracy of LST downscaling. In addition, we found
that a spatial resolution of 30 m may not be sufficient to show the surface temperature
distribution pattern inside complex building areas.

We further selected five building-dense areas near the western side of Xuanwu Lake,
Xinjiekou, Nanjing Museum, Nanjing Forestry University and the Olympic Sports Center,
for downscaling results comparison, as shown by A, B, C, D and E in Figure 8a, respectively.
A comparative analysis of the downscaling results with and without including spatial
morphological parameters was carried out, and the results are shown in Figure 8b. When
comparing the local downscaling results of SSRFD with SSRFD-M, it can be found that
the regional LST of the vegetation-covered regions in the built-up area changed after
considering the spatial morphological parameters. According to the SSRFD results of
A1–E1, vegetation-covered areas near buildings, such as streets planted with trees and
flowerbeds, showed a clear low-temperature zone (approximately 30–33 ◦C), which was 5–8
◦C lower than the surface temperature of nearby building areas (approximately 35–40 ◦C).
In contrast, the temperature in the corresponding regions illustrated by A2–E2 was only
approximately 3–5 ◦C lower than that of the nearby buildings. No obvious low-temperature
regions appeared in A2–E2, which were more consistent with the Landsat LST. Therefore,
this study infers that the underestimation of LST generated by the SSRFD using only
remote-sensing spectral indices was partially eliminated in SSRFD-M.

4.3. Parameter Importance Analysis of LST Downscaling

The importance of each driver at 90-, 450-, 150- and 30-m resolutions calculated by
the random forest model is shown in Figure 9. According to Figure 9a, the NDBI has the
highest importance at a 900-m resolution without spatial morphological parameters, which
indicates that the NDBI is significantly correlated with LST in urban areas. With the
increase in spatial resolution, the importance of the NDBI tends to decrease, and it drops
to the lowest value (25%) at a 30-m resolution. Vegetation moisture is an important factor
affecting LST in urban areas at any spatial resolution because the importance of the NDMI
is maintained at 28–30% as the spatial resolution changes. The importance of the MNDWI
increases from 11 to 15%, and the NDVI increases from 8% to 11%, which indicates that the
contribution of water bodies and vegetation to LST increases as the resolution increases.
The reason could be that some smaller lakes, green areas and narrow rivers are identified
at a high spatial resolution. Figure 9b shows that the overall importance of the remote-
sensing index did not change significantly in the SSRFD. Among the spatial morphological
parameters, the importance of BD, FAD, FAR and MH decreased with increasing spatial
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resolution, while the SVF increased from approximately 3% to approximately 6%. The
reason for this is that the regional spatial morphological parameters, such as BD, FAD
and FAR, calculated by a single size (100 × 100 m), cannot represent finer architectural
information. Therefore, the regional spatial morphological parameters are less relevant to
LST as the resolution increases. As shown in Figure 9a,b, compared to other remote-sensing
indices (all variations were in a range of 1–3%), there was a significant decrease in the
importance of the NDBI at lower resolutions of 900 and 450 m, from 30 and 29% in Figure 9a
to 22 and 23% in Figure 9b, respectively. The spatial morphological parameters at a low
resolution to some extent compensated for the deficiency of the NDBI in the description of
the spatial morphological features of buildings.

 
(a) (b) 

Figure 8. Spatial distribution of the downscaled LST at the resolution of 30 m in five localities of the
study area (in b, A1–E1 refer to the downscaled LST from SSRFD, and A2–E2 refer to the downscaled
LST from SSRFD-M). (a) Landsat LST. (b) the downscaled LST for representative 5 local area.

Figure 9. Importance of each driver at spatial resolutions of 900, 450, 150 and 30 m. (a) No spatial
morphological parameters added. (b) Spatial morphological parameters added.

5. Discussion

With respect to the scale effect of the land surface temperature downscaling model,
Pu et al. [46,47] concluded that the “constant scale relationship” between LST and driving
factors does not hold under certain conditions. Comparing Figure 2a with Figure 2b for
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the main urban area of Nanjing, when the spatial resolution spans 30 times, the direct
downscaling results cannot accurately represent the spatial distribution of land surface
temperature, and the root mean square error of the traditional DRFD model is 2.6 ◦C
(Figure 4a). This is similar to LST downscaling results in different regions such as that
covered by Njuki et al. [39] in Kenya, Valdes et al. [13] in an arid Antarctic river valley,
Zhu et al. [15] in Beijing and Ebrahimy et al. [38] in Iran. When the Sentinel-3 LST was
downscaled to 450, 300, 150 and 30 m using the DRFD method, respectively, the research
process revealed a phenomenon where r gradually decreases while RMSE increases as the
spatial resolution span increases step-by-step, which is consistent with Zhu et al. (2020) [14]
and Cao (2020) [48]. Using the step-by-step downscaling model (SSRFD), the root mean
square error of the LST downscaling for the whole study area decreases to 1.66 ◦C, and
the accuracy improves by about 1 ◦C (Figure 4b). Tang et al. [16] conducted a second
downscaling procedure using the LST spatial features extracted from the initial downscaling
results and obtained a higher accuracy of downscaling result, similar to the results of this
study. The step-by-step downscaling method reduces the spatial resolution difference
before and after downscaling by adding an intermediate LST downscaling process between
low (e.g., 1 km) and high resolutions (e.g., 30 m), from which we can approximate that the
statistical downscaling model does not change with smaller scales. The SSRFD can obtain
a higher accuracy for LST downscaling and is more suitable for downscaling studies in
urban areas with complex surface coverage and high-LST spatial heterogeneity. However,
900 m was used as the initial resolution in the study, and the step-by-step downscaling of
resolution was performed subjectively by integer multiples of 2, 3 and 5. To obtain better
LST downscaling results, further studies may be needed to determine the optimal spatial
resolution change during stepwise downscaling.

In recent years, due to the continuous development of spatial data-acquisition technol-
ogy, urban 3D spatial distribution data are becoming more and more refined and can be
better used to calculate various urban spatial morphological parameters at different scales.
There are more and more studies selecting urban morphological parameters to analyze the
urban thermal environment. For example, Middel et al. [19] validated the effects of urban
morphology and landscape type on local microclimate zones in the semi-arid region of
Phoenix, Arizona; Qaid et al. [20] further explored the effect of SVF on the thermal environ-
ment of streets with different orientations; Wong et al., Li et al. and Nichol et al. studied the
characteristics of urban spatial morphology in Kowloon Peninsula, Hong Kong and con-
firmed that the urban spatial morphology profoundly affects the urban microclimate [49].
Based on the results of these studies, it appears that the spatiotemporal variability of the
urban thermal environment is closely related to the spatial morphological parameters, and
the influential role of these three-dimensional parameters needs to be considered in-depth
in urban LST downscaling studies. In this study, based on the traditional two-dimensional
surface parameters of the downscaling model, five spatial morphological parameters, SVF,
FAD, FAR, BD and MH, were added to downscale the Sentinel-3 LST to a high spatial
resolution of 30 m. It was found that the urban spatial morphological parameters did affect
the spatial distribution of LST, especially for the built-up areas.

The downscaling errors in the five building-dense areas decreased by 0.51, 0.48, 0.4,
0.16 and 0.06 ◦C (Figure 7). Analysis of the importance of the driving factors showed that
the importance of the urban spatial morphological parameters was lower than that of the
2D remote-sensing spectral index (Figure 9). The reason may be that the factors for BD,
FAD, FAR and MH were calculated through a moving window of 100 × 100 m, making it
difficult to accurately describe the 3D spatial features at a high spatial resolution of 30 m.
Compared to the other four spatial morphological parameters, SVF can be calculated pixel
by pixel, and its importance gradually becomes larger as the spatial resolution increases,
which generally indicates that the role of urban spatial morphological parameters cannot
be neglected for LST downscaling at higher spatial resolutions than 30 m. Li et al. [17]
and Liu et al. [50] also mentioned the necessity of considering urban spatial morphological
parameters in urban LST downscaling.
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In terms of downscaling accuracy validation, due to the lack of real land surface
temperature with a higher spatial resolution, we just downscaled LST to the resolution of
30 m. If there are LSTs at a high spatial resolution, such as the data collected by thermal
infrared sensors loaded on unmanned aerial vehicles or field measurement temperature
probes, LST downscaling for a higher spatial resolution could be performed to further
discuss the influence of morphological parameters.

Finally, a global random forest downscaling model was established in the study.
Considering the characteristics of different urban regions and establishing sub-regional local
models to improve LST downscaling accuracy need to be further discussed. For example,
Stewart et al. [51] proposed to establish local urban climate zones by considering building
and land cover types, an approach that can be used to downscale LST for various climate
zones. More accurate downscaling results may be obtained by further analysis of the
relationship between LST and urban spatial morphological parameters based on local
urban climate zones.

6. Conclusions

This study carried out downscaling LST in urban areas using the SSRFD and DRFD
methods, and the downscaling effects of the two methods were compared and analyzed.
Urban spatial morphological parameters were introduced in the driver to verify their role
in high-spatial-resolution downscaling LST. From the above investigations, the following
conclusions were drawn:

(1) The 900-m LST was downscaled step-by-step on the order of 450, 150 and 30 m.
Compared to the results obtained with DRFD, the r value between the SSRFD results
and Landsat LST was improved by 0.21, and the RMSE value was reduced by 0.94 ◦C.
The SSRFD results more accurately captured the spatial distribution characteristics of
the surface temperature, including the high-temperature zone of buildings and the
low-temperature zone of water and vegetation. The underestimation/overestimation
phenomenon of DRFD resulting in large errors in the high/low temperature zone was
avoided or attenuated when using the SSRFD method.

(2) The results obtained with SSRFD-M were partially significantly improved in the
Gulou, Qinhuai and Jianye built-up areas compared to SSRFD, in which r and RMSE
values improved/decreased by approximately 0.15 and 0.46 ◦C, respectively. The
phenomenon of low-temperature zones in vegetation-covered areas when only remote-
sensing spectral indices were used was improved. The SSRFD-M results to some
extent compensated for the deficiency of remote-sensing spectral indices used for
urban LST downscaling.

In this study, 900 m was used as the initial resolution, and downscaling was carried
out in integer multiples of 2, 3 and 5. Further research is needed to determine the optimal
downscaling resolution change multiples to obtain better downscaling results. In addition,
this paper established a random forest downscaling LST model for the study area as a
whole, while urban climate zones could be divided according to building and land cover
types. More accurate downscaling results may be obtained by further analysis of the
relationship between LST and urban spatial morphological parameters based on urban
local climate zones.
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Abstract: Urban parks have been proven to cool the surrounding environment, and can thus mitigate
the urban heat island to an extent by forming a park cooling island. However, a comprehensive
understanding of the mechanism of park cooling islands is still required. Therefore, we studied
32 urban parks in Jinan, China and proposed absolute and relative indicators to depict the detailed
features of the park cooling island. High-spatial-resolution GF-2 images were used to obtain the
land cover of parks, and Landsat 8 TIR images were used to examine the thermal environment
by applying buffer analysis. Linear statistical models were developed to explore the relationships
between park characteristics and the park cooling island. The results showed that the average land
surface temperature (LST) of urban parks was approximately 3.6 ◦C lower than that of the study
area, with the largest temperature difference of 7.84 ◦C occurring during summer daytime, while the
average park cooling area was approximately 120.68 ha. The park cooling island could be classified
into four categories—regular, declined, increased, and others—based on the changing features of
the surrounding LSTs. Park area (PA), park perimeter (PP), water area proportion (WAP), and park
shape index (PSI) were significantly negatively correlated with the park LST. We also found that
WAP, PP, and greenness (characterized by the normalized difference vegetation index (NDVI)) were
three important factors that determined the park cooling island. However, the relationship between
PA and the park cooling island was complex, as the results indicated that only parks larger than a
threshold size (20 ha in our study) would provide a larger cooling effect with the increase in park
size. In this case, increasing the NDVI of the parks by planting more vegetation would be a more
sustainable and effective solution to form a stronger park cooling island.

Keywords: park cooling island; driving factors; land surface temperate; buffer analysis; Jinan

1. Introduction

The world is currently experiencing rapid urbanization and industrialization, which
has led to dramatic changes in the land use, land cover, and local climatic conditions,
thereby exacerbating urban heat island (UHI) effects [1–4]. The negative effects from UHIs
have significantly increased the energy consumption for cooling, physical discomfort, and
even death [5–7]. It is projected that 60% of the world’s population will live in cities by 2030,
and making cities inclusive, safe, resilient, and sustainable is one of the 17 goals proposed
by the United Nations to transform our world [8]. In recent years, studies on alleviating
the UHI effect have become more popular than its spatial–temporal monitoring [9–12].
Urban parks, which usually have a combination of blue and green spaces, are among the
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most important determinants of mitigating UHI effects [13–16]. Therefore, enhancing the
understanding of the cooling effect provided by parks and the drivers of its variations will
help in developing policies to mitigate UHI and designing future parks.

Urban parks have been proven to considerably mitigate the UHI because of shading
and evaporation effects [17–19]. The land surface temperature (LST) of shaded areas is 19 ◦C
lower than that of unshaded areas [17]. Additionally, urban parks cool their surroundings
through energy exchange [20]. Several previous studies showed that the average LST of
internal urban parks was 1–2 ◦C, and sometimes 4–8 ◦C lower than the surroundings,
thereby generating a “cooling island” [19–23]. A stronger “cooling island” affects a larger
area and provides more outdoor thermal comfort for residents. Consequently, assessing
the park cooling island is the most fundamental and important aspect of our study.

One basic question that needs to be solved in relevant studies is the definition of “park
cooling island”, or the comprehensive depiction of the cooling effect. Park cooling intensity
(PCI) is a commonly used indicator to characterize “cooling islands” [18,23]. In Cao’s
study, the PCI was defined as the LST difference between the inside and outside of parks,
and the LST outside the park was manually set as the average LST of a 500-m buffer [24].
However, the 500-m buffer may not be applicable to other parks in different study areas.
Additionally, other scholars introduced the park cooling distance (PCD) to measure the
park cooling island, which is defined as the spatial extent up to which the park could have
a significant influence [18,22]. PCD is usually identified using buffer analysis [21]. For
instance, the PCD was defined as the distance from the park boundary to the buffer whose
LST difference was less than 0.1 ◦C [25]. The concept of “first turning point” of the LST
curve proposed in Peng’s study was used to define the largest cooling distance (or PCD),
which was the distance between the park boundary and the first turning point [22]. These
two indicators can be treated as absolute features of the park cooling island, such as the
absolute temperature difference and the absolute cooling area. However, the surrounding
thermal environment of a park changes continuously, and the same PCI might occur at
different distances. Additionally, the parks that have the same values of park cooling area
(PCA; or the same cooling effect) might have different sizes, and the differences between
such parks cannot be measured by simply using absolute indicators. Therefore, relative
indicators of the park cooling island—such as the changes in surrounding LST per meter
or the cooling effect per unit area of the park—should be considered in assessing the park
cooling island from the perspective of spatial accumulation [22].

Park characteristics are vital for urban planning and urban climate studies. Numer-
ous studies have explored the relationship between urban characteristics and urban park
cooling islands, and the results showed that the park cooling effect could be affected by the
park’s size, shape, type, greenness, and other factors [25–27]. However, the park cooling
island was mainly characterized by a single indicator of PCI, and the effect of urban park
features on the relative indicators of the cooling island is still uncertain. Additionally, the ef-
fect of the land use/land cover, especially regarding the configuration of park components,
was not fully assessed. A review paper also showed that most studies on cooling effects
are subject to a single park, and only few have explored the cooling effects of parks on the
surrounding environment [28]. These limitations might be attributed to the high cost of
such studies. Fortunately, obtaining detailed characteristics of urban parks is facilitated by
the development of high-spatial-resolution remote sensing or LiDAR [29,30]. For instance,
even an individual tree can be identified using high-resolution images. The thermal in-
frared remote sensing image can be used to retrieve the LST for each pixel [31,32]; this helps
in analyzing the surrounding thermal environment of a park, which is more convenient
than in situ air temperature measurements [33–35]. The explanation of the LST and air
temperature differences remains rooted, and these are only likely to be predicted by fully
coupled surface–atmosphere models [4]. Skin temperature was poorly correlated with both
air temperature and apparent temperature [36]. However, several studies showed that the
relationship between traditional air temperature and LST is statistically significant [37,38].

20



Remote Sens. 2021, 13, 3154

Therefore, using remote sensing images to conduct park cooling island studies can obtain
robust results.

Considering the insufficiencies mentioned above, and to provide implications for the
studies of urban park cooling islands, we selected the case of Jinan city, China to: (1) map
the detailed characteristics of urban parks, including their composition and configuration
features; (2) analyze the features of the park cooling island by comprehensively proposing
and using absolute and relative indicators; and (3) identify the most important urban park
characteristics that determine the variations of the urban park cooling island.

2. Data and Methodology

2.1. Study Area and Data Sources

Jinan, the capital of Shandong province, which is in the eastern part of China, serves
as the political, economic, cultural, educational, and financial center of the region, and
is located to the north of Mount Tai. Jinan is famous for its 72 springs, and is known
as the “City of Springs”. Jinan has a warm, temperate, continental monsoon climate
zone, with four distinct seasons and sufficient sunshine. According to statistics from the
Jinan government, the annual average air temperature of Jinan is 14.2 ◦C. January is the
coldest month, with an average air temperature of 0.2 ◦C, and the highest temperature
was observed in July, with an average air temperature of 28.3 ◦C. The annual average
precipitation is 548.7 mm. By the end of 2019, there were 8.91 million permanent residents
in the city. The green coverage rate of the built-up area is 40.7%, and the per capita park
green area is only 13.1 m2 based on the statistics from Bureau of Forestry and Landscaping
of Jinan. Consequently, building and managing urban parks to maximize their ecosystem
services—such as climate regulation and thermal environment improvement—has become
an urgent problem. The core of Jinan city was selected as the study area, with a size of
295.49 km2 (Figure 1). There are several mountains in the south of Jinan, and to avoid their
effects on the local thermal environment and park cooling islands, we selected 32 urban
parks that were not adjacent to them (Figure 1).

Figure 1. Location of study area: (a) Shandong province, China; (b) Jinan city in Shandong; (c) study parks in Jinan.

High-spatial-resolution GF-2 images (1 × 1 m) acquired on 4 October 2018, from
the Resource and Environmental Science and Data Center, Chinese Academy of Sciences
(https://www.resdc.cn/), were used to manually obtain the detailed vector information of
urban parks. Three cloud-free Landsat 8 images acquired at about 10:47 a.m. local time for
the study area (path 122, row 35, acquired on 17 June 2017-LC81220352017168LGN00, 20
June 2018-LC81220352018171LGN00, and 7 June 2019-LC81220352019158LGN00) were uti-
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lized to retrieve the LST, and were obtained from the geospatial data cloud
(http://www.gscloud.cn/). Using only one Landsat image may yield an uncertain LST
map, as it is subject to the time of satellite overpass. Consequently, the LSTs retrieved
from Landsat 8 images acquired over multiple years were averaged to obtain robust re-
sults (mean LST) regarding the climate. Data pre-processing (radiometric correction and
atmospheric correction) was conducted on the GF-2 and Landsat 8 OLI images prior to the
interpretation and LST retrievals.

2.2. Characterizing Urban Parks

The GF-2 images with high spatial resolution facilitated the procurement of detailed
information inside a park in this study. Based on the local environment and our prior
knowledge, six land cover types (water, trees, shrubs and grass, impervious surfaces,
buildings, and bare soil) were extracted by visual interpretation based on image features
(e.g., color, size, texture, spatial relationship, etc.). An example of the resulting urban park
vector is shown in Figure 2.

Figure 2. (a) GF-2 image (true color) of an urban park. (b) Land-cover map of an urban park.

In this research, six widely used landscape metrics and the normalized difference
vegetation index (NDVI) (Table 1) were employed to measure the urban park features based
on previous studies [21,22], and were classified into two categories: park composition,
and park configuration. The composition metrics include the percentage of landscape
(PLAND), park area (PA), park perimeter (PP), and the average NDVI of the park (PNDVI).
PLAND comprises the water area proportion (WAP), tree area proportion (TAP), shrub and
grass area proportion (SGAP), impervious surface area proportion (ISAP), building area
proportion (BAP), bare soil area proportion (BSAP), and tree and water area proportion
(TWAP). The configurations comprise the park patch density (PPD), park edge density
(PED), and park shape index (PSI). These metrics were selected based on previous studies
and the following principles: (1) easy calculation and understanding; (2) important in both
theory and practice; and (3) comprehensive depiction of urban parks [21,39].
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Table 1. Landscape metrics selected in this study.

Metrics and Abbreviation Calculation Description

Composition

Percentage of landscape, PLAND PLAND = Ai/PA; Ai = area of land cover i; Measures the area proportion of each type of
land cover in the park

Park area, PA PA = area of park Measures the area of the park
Park perimeter, PP PP = perimeter of park Measures the perimeter of the park

the average NDVI of park, PNDVI PNDVI = NDVI of park Measures the NDVI of the park
Configuration

Park patch density, PPD PPD = n/A × 10,000, n = the number of patches in a park Measures the patch density of the park
Park edge density, PED PED = ∑m

i=1 Ei/A × 10, 000, Ei = perimeter of patch i. Measures the shape complexity of the park
Park shape index, PSI PSI = 0.25 × PP/

√
PA Measures the ratio of park perimeter to area

2.3. LST Retrieval

The LST was retrieved from Landsat 8 TIRS images. First, the digital number
(DN) of band 10 (10.60–11.19 um) was converted into the radiation intensity value using
Equation (1) [40]:

Radiance = ML × Qcal + AL (1)

where Radiance is the spectral radiance, ML= the radiance multiplicative scaling factor for
band 10, AL = the radiance additive scaling factor for band 10, and Qcal = the level 1 pixel
value in DN. All scaling factors can be obtained from the header file.

Subsequently, TIRS data can also be converted from radiance to brightness tempera-
ture, which is the effective temperature viewed by the satellite under an assumed emissivity
of unity. The conversion formula is as follows:

T = K2/ ln
(

K1

Radiance
+ 1

)
(2)

where T is the top of the atmospheric brightness temperature (Kelvin), and K2 and K1 are
conversion constants from the metadata.

Finally, LST can be calculated using Equation (3):

LST = T/(1 + (λT/α) ln ε) (3)

where λ is the wavelength of band 10 (=10.9 μm), α = 1.43 × 10−2 mK, and ε is the land
surface emissivity, which is a crucial variable in the LST retrieval [41]. The calculated LST
value (Kelvin) is then converted to ◦C [31].

In this study, land surfaces’ emissivity was estimated using the NDVI threshold
method. NDVI can be calculated using the following equation:

NDVI =
OLI5 − OLI4
OLI5 + OLI4

(4)

where OLI5 and OLI4 represent the atmospherically corrected surface reflectance of bands
5 and 4 for Landsat 8. The land surface emissivity can then be obtained from different
NDVI values [42]. If NDVI was greater than 0.5, the land surface emissivity was 0.99,
whereas if it was smaller than 0.2, the land surface emissivity was 0.97. In other cases:

ε = 0.986 + 0.004 × Fv (5)

where Fv is the vegetation proportion, which can be obtained according to Equation (6):

Fv =

(
NDVI − NDVImin

NDVImax − NDVImin

)2
(6)

where NDVImin = 0.2 and NDVImax = 0.5.
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2.4. Characterizing Park Cooling Island

Urban parks are known to cool their surroundings; however, the cooling effect could
decrease with distance from the boundary of the park, and disappear after a certain
distance [43]. In previous studies, the urban park cooling island included the following
aspects: park cooling intensity (PCI), park cooling distance (PCD), temperature gradient
of park cooling gradient (TPCI), park cooling area (PCA), and park cooling efficiency
(PCE) [24,25,27,43,44]. In this study, the urban park cooling island was divided into four
aspects, as presented in Table 2.

Table 2. Four aspects of the park cooling island in this study.

Park Cooling Island Abbreviation Description

Absolute perspective

Park cooling intensity PCI PCI = DLST − Park LST, where DLST is the LST of the first turning point. PCI measure
the temperature different between park LST and surroundings.

Park cooling area PCA The largest area in which the urban park could have influence on the thermal
environment.

Relative perspective

Park cooling efficiency PCE PCE = (PCI × PCA)/PA, which measures the cooling effect produced by the unit area of
a park.

Park cooling gradient PCG PCG = PCI/PCD, where PCD is the park cooling distance; PCG measures the rate of
temperature increase with distance.

As shown in Figure 3a, the surrounding LST increased with increasing distance from
the park boundary. Subsequently, the LST curve reached the first turning point, after which
the LST changed slightly and even decreased. To characterize the park cooling island,
multiple buffer rings (11 in total) with intervals of 90 m at a distance of 990 m from the
park boundary were created. Considering that the spatial resolution of the resampled
Landsat TIRS is 30 m, the buffer interval was set to 90 m to yield robust results for the
LST of each buffer. We assumed that the thermal environment of the latter buffer was not
influenced by the urban park if the LST difference between two adjacent buffers was lower
than 0.1 ◦C [21]. Moreover, the distance from the park boundary to the former buffer was
defined as the PCD (Figure 3b). The average LST of the buffer with the PCD is treated
as the LST of the first turning point, and the area of the buffer is considered to be the
PCA. Therefore, the temperature difference between the park and the buffer is the PCI.
Consequently, the PCE and PCG can be calculated using the PCA and PCI values.

Figure 3. (a) Illustration of the LST variations. (b) Illustration of the buffer established in this study.

2.5. Statistical Analysis

First, Pearson’s correlation analysis was applied to assess the relationship between the
park LST, four aspects of the park cooling island, and its characteristics, in order to examine
the landscape metric, showing a significant relationship with the park cooling island.
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Subsequently, the ordinary least squares linear regression model was used to explore the
influence of a single urban park feature on the park cooling island. The four aspects of
the park cooling island were the dependent variables, and park features comprised the
independent variables. Finally, the different effects of these landscape metrics on the park
cooling island were tested using a multiple linear regression model. All statistical analyses
were conducted using SPSS software.

3. Results

3.1. Mapping the Characteristics of Urban Parks

A total of 32 urban parks were included in this study. The proportion of land cover
types varied among these parks, as shown in Figure 4a. The size of these parks ranged
from 2.89 to 107.32 ha, with an average area of 20.81 ha. It can be seen that trees are the
most important components of almost every park. Nearly 75% of the parks had a water
area. Shrub and grass, together with bare soil, covered a small area in these parks. The
configuration landscape metrics and NDVI for each park are shown in Figure 4b. For
example, the PSI of these parks ranged from 0.97 to 2.02, with a mean of 1.34, indicating
that the shape of parks varied greatly. More detailed statistics of the urban park features
are presented in Table 3.

Figure 4. (a) The proportion of land cover and (b) landscape metrics for each park, respectively.

Table 3. The statistics of urban park characteristics.

Statistics. PA (ha) PP (km) WAP TAP SGAP ISAP BAP BSAP TWAP NDVI PPD PED PSI

Max 107.32 4.45 0.48 0.96 0.31 0.30 0.22 0.12 1 0.57 0.58 1.73 2.02
Min 2.89 0.79 0 0.37 0 0 0 0 0.45 0.26 0.06 0.51 0.97
Ave 20.81 2.12 0.07 0.71 0.05 0.10 0.05 0.01 0.79 0.43 0.21 0.89 1.34

3.2. Characteristics of the Urban Park Cooling Island

The spatial patterns of the average LST are shown in Figure 5a. High LSTs were
distributed in the central and eastern parts of the city, where dense buildings and industrial
districts exist. Most of the low-LST regions were located in the southern part of the city,
with several mountains providing good vegetation coverage as well as a cooling effect.
Additionally, the Yellow River in the north generated a “blue cold belt”. The highest,
lowest, and mean LST in Jinan city were 48.84, 22.55, and 38.46 ◦C, respectively. Typically,
the LST of urban parks in Jinan city is lower than that of the surrounding areas. The
average LST of all 32 parks was 34.86 ◦C; this was 3.60 ◦C lower than the average LST of
the entire study area, indicating that they provide a cooling effect. Daming Lake Park is a
famous scenic area in Jinan city, attracting thousands of residents and tourists each day to
enjoy the water and classic garden (Figure 5b1). This area was selected to further illustrate
the distribution of the thermal environment. The most important land cover types were
water and trees, with area ratios of 48.16 and 36.97%, respectively. This generated a very
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low-temperature zone inside the park compared to the surrounding areas. As the distance
increased from the park boundary (green circle), the color gradually changed from yellow
to red, indicating an increase in the LST.

Figure 5. (a) The distribution of the average LST, (b1) the GF-2 image of Daming Lake Park, (b2) the land cover of Daming
Lake Park, and (b3) the LST of Daming Lake Park and its surroundings.

To further compare the different LST and PCI scores among these parks, the average
internal LST, corresponding PCI (LST difference between the first turning point and park
LST), and largest PCI (defined as the LST difference between the highest LST of all the
buffers and park LST) are shown in Figure 6. It can be seen that the average LST in
parks varied greatly. For example, park 20 had the lowest internal LST (31.72 ◦C) and
the strongest PCI (7.84 ◦C), while park 31 had the highest LST (37.42 ◦C). The largest LST
difference among these parks was 5.7 ◦C. However, the PCI of park 31 (1.46 ◦C) was larger
than that of park 13, whose PCI (0.85 ◦C) was the weakest. Therefore, the high internal LST
of the park did not imply a low PCI, and the PCI was also influenced by its surrounding
features. Additionally, the average PCA, PCE, and PCG of these parks were 120.68 ha, 0.71,
and 35.45, respectively. The largest PCA, PCE, and PCG were 319.20 ha (park 20), 1.31
(park 20), and 135.28 (park 8), respectively.

Figure 6. The internal LST of 32 urban parks and their PCIs.

In this study, a distance of 990 m with 11 buffers (90 m intervals) was established to
explore the four aspects of the park cooling island based on the changes in the LST of each
buffer. The urban parks were classified into four categories according to the characteristics
of the surrounding LST curves: regular parks, declined parks, increased parks, and other
parks. As shown in Figure 7a, most parks were regular ones, whose surrounding LST had
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the following features: a gradual increase in LST with distance from the park boundary, and
subsequently reaching the first turning point, after which the LST varied slightly. Seven
parks belonged to the second category: declined parks whose surrounding LSTs increased
sharply at the beginning and had an obvious decreasing trend after the first turning point.
The largest LST difference between the first turning point and the later buffers could reach
up to 0.99 ◦C (park 19), and this value was 0.31 ◦C for regular parks. For increased parks
(Figure 7c), the surrounding LSTs increased from the park boundary to the end of the buffer
width and, notably, no decrease in the LSTs was observed. There were also two parks
whose surrounding LSTs had no changing features, and these were treated as other parks.
In particular, the LST increased sharply from 360 to 630 m for park 8. Moreover, there were
several commercial districts with very high LSTs in the buffers, leading to this unusual
phenomenon.

Figure 7. Variation of surrounding LSTs from the urban park boundary: (a) regular parks, (b) decreased parks, (c) increased
parks, and (d) other parks.

3.3. The Effects of Landscape Metrics on the Park Cooling Island
3.3.1. The Relationship between Urban Park Features and LST

Pearson’s correlation analysis was applied to explore the relationships between urban
park features and their internal and surrounding LSTs. Only those results of the coefficients
that are significant are presented in Table 4. Notably, the internal LST of the parks had
negative relationships with PA, PP, and WAP, indicating that large areas and more water
bodies could generate a low LST for the parks. The PSI was positively correlated with the
park LST. Regarding the relationship between park features and surrounding LSTs, the
results showed that the PA had significant positive correlations with the LSTs of all of the
buffers. The coefficients gradually decreased from 90 m (R = 0.73) to 450 m (R = 0.56); they
subsequently became stronger from 450 to 990 m (R = 0.68). The relationships between PP
and surrounding LSTs were not significant from 270 to 540 m, and their positive correlations
were weaker compared to those between PA and LSTs. Similarly to PA, WAP had a positive
relationship with the LST of all buffers. BAP had negative relationships with the LSTs of
buffers between 180 and 450 m, and their correlations were not significant among other
buffers.

Based on the results, PA and WAP were seemingly the two most important factors
that could affect the park and buffer LSTs. However, the effects of PA and WAP on the park
LST were negative, but positive for buffer LSTs. Notably, the park was removed from all
buffers, and the LST of buffers did not include park LST.
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Table 4. The correlation coefficients for urban park features and LST.

Characteristics. Park LST 90 m 180 m 270 m 360 m 450 m 540 m 630 m 720 m 810 m 900 m 990 m

PA −0.73 ** 0.73 ** 0.62 ** 0.59 ** 0.58 ** 0.56 ** 0.58 ** 0.60 ** 0.64 ** 0.67 ** 0.67 ** 0.68 **
PP −0.49 ** 0.48 ** 0.37 * – – – – 0.35 * 0.39 * 0.42 * 0.42 * 0.44 *

WAP −0.47 ** 0.61 ** 0.62 ** 0.61 ** 0.63 ** 0.67 ** 0.66 ** 0.65 ** 0.62 ** 0.59 ** 0.59 ** 0.59 **
BAP – – −0.37 * −0.37 * −0.38 * −0.36 * – – – – – –
PSI −0.39 ** – – – – – – – – – – –

** Significance at the 0.01 level; * significance at the 0.05 level; – not significant.

3.3.2. The Relationship between the Park Features and Park Cooling Island

Based on the results of Section 3.3.1, it can be inferred that large PA and WAP would
generate low park LST and high buffer LST. Consequently, this may lead to a strong PCI.
Therefore, Pearson’s correlation analysis was initially employed to study the relationships
between urban park features and four aspects of park cooling islands. The results of the
coefficients are presented in Table 5. PA had positive effects on the PCI (R = 0.58), PCA
(R = 0.73), and PCG (R = −0.45), but had negative effects on PCE. The relationship between
PP, PCI, and PCG was not significant, and a large PP could lead to a low PCE. In this
study, the effect of TAP on PCI was not significant, and differed from other studies wherein
trees could improve the park cooling effect. Consistent with expectations, the WAP was
positively correlated with the PCI, PCA, and PCG, indicating that more water would
produce a better cooling effect.

Table 5. The correlation coefficients for urban park features and the park cooling island.

Characteristics. PCI PCA PCG PCE

PA 0.58 ** 0.73 ** 0.46 ** −0.45 *
PP 0.26 0.45 * 0.32 −0.61 **

TAP −0.06 −0.43 * −0.09 0.07
WAP 0.79 ** 0.41 * 0.55 ** 0.26
BAP −0.41 −0.14 −0.33 −0.37 *

NDVI 0.46 ** 0.23 0.39 ** 0.06
** Significance at the 0.01 level; * significance at the 0.05 level.

To further assess the effects of the two most important factors (PA and WAP) on the
park cooling island, simple linear regression models were built for the PA, WAP, and PCI,
PCA, PCG, and PCE, respectively. The original result of the linear regression model built
for PA and PCI using all of the park samples was not satisfactory, as the adjusted R2 was
smaller than 0.30. After exploring the scatter diagram between PCI and PA, a PA threshold
(20 ha) was found to divide the parks into two categories. If the PA was smaller than 20 ha
(blue points in Figure 8a), the relationship between the PA and PCI was not significant. In
this case, the PA had little influence on the PCI. However, if the PA was larger than 20 ha,
it had a very strong positive relationship with the PCI. The PCI would increase by 0.7 ◦C
if the PA was 10 ha larger. The threshold of 20 ha for PA was also practical for studying
its relationship with the PCA and PCG. Similarly, parks with areas larger than 20 ha had
significant positive effects on the PCA and PCG. Regarding the effects of PA on PCE, the
latter decreased sharply when PA was smaller than 20 ha, but this rate of decrease was
much lower if the PA was larger than 20 ha.

The relationships between WAP and the park cooling island are shown in Figure 9.
Typically, water has a strong cooling effect owing to its large specific heat capacity. Conse-
quently, more water in the park would generate an obvious cooling island. In this study,
the PCI would increase by 0.89 ◦C if there were a 10% increase in the WAP. If the PA was
larger than 20 ha, the WAP was positively correlated with the PCA. However, the effects
of WAP on PCA were not significant if the PA was less than 20 ha. Compared to the PCI
and PCA, the relationships between WAP and PCG were much weaker. Our results also
showed that no obvious statistical relationships existed between the WAP and PCE. The
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PCE measures the cooling ability produced per unit area of the park and, thus, WAP was
not the dominant factor.

Figure 8. Linear regression models of the PA and (a) PCI, (b) PCA, (c) PCG, and (d) PCE.

Figure 9. Linear regression models of the WAP and (a) PCI, (b) PCA, (c) PCG, and (d) PCE.

4. Discussion

4.1. Characterizing the Urban Park Cooling Island

This study demonstrated a park cooling island in Jinan, China. The primary question
that needs to be resolved involves understanding the entirety of the park cooling island. In
this study, the characteristics of the park cooling island were divided into four aspects—PCI,
PCA, PCG, and PCE—based on previous studies and our research [21,22]. PCI and PCA
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are absolute indicators that reflect the cooling effect of the park as a whole; PCI measures
the temperature differences between the park and its surroundings, and the PCA is the
largest area whose thermal environment can influence the park. In previous studies, the
PCE was used to measure the cooling island [21,27]. However, this is similar to the largest
cooling distance in our study, which is a one-dimensional distance. A large and small
park may have the same PCE, but the area influenced by the two parks could vary greatly.
Consequently, PCA was used instead of PCE in this study. PCG and PCE are different
indicators of a park cooling island that measure the relative cooling effect or cooling ability
per unit of distance or area. For example, a park with a large area might have a large PCI
or PCA but a small PCG or PCE. In our opinion, the four aspects could characterize the
park cooling island in a relatively comprehensive manner.

Upon clarifying the ontology of the urban park cooling island, the next question is
the method of measuring the park cooling island. In this study, popular Landsat 8 remote
sensing images were used to retrieve the LST to characterize the thermal environment.
Buffer analysis has proven to be applicable for studying thermal environments [45,46].
However, the different choices of width and interval of buffers could affect and add more
uncertainty to the results. Many previous studies used 10–20 buffers, each 30 or 60 m
wide [22,27]. As the original spatial resolution of Landsat 8 TIRS was 100 m and resampled
to 30 m, 11 buffers with intervals of 90 m were established to identify the cooling distance
of the park and determine the PCI and PCA in our study. The total width of these buffers
was 990 m, which is larger than that in many previous studies [21,22]. This was because
some parks in our cases had a maximum cooling distance of 630 m, and a buffer width of
300 or 450 m could not facilitate the identification of the PCA. Therefore, the methodology
used in this study to measure the park cooling islands could provide insights or references
for other relevant studies in the future.

4.2. The Effects of Landscape Metrics on the Park LST and Park Cooling Island

During the daytime in summer, our results showed that the park size and WAP had
significant negative relationships with the park LSTs. The results were consistent with
those of other studies that utilized remote sensing to assess the park cooling island [14,23].
The PSI measures the shape complexity of a park. Our results showed that the coefficient
between PSI and park LST was −0.39, indicating that parks with irregular shapes could
have lower LSTs, which was in accordance with earlier studies. Other landscapes—such as
the PED, PPD, and BAP—had little effect on the park LST. However, other studies showed
that the PPD was positively correlated with the park LST, which was not found in this
study [21]. This might be attributable to the differences in the studied parks and different
climate backgrounds.

The characteristics of the park cooling island are as follows: the average, maximum,
and minimum PCIs of the 32 urban parks were 3.60, 7.84, and 0.85 ◦C, respectively, which
is consistent with previous studies [47,48]. Peng’s study showed that the average LST
difference between the inside and surrounding of parks was 3.06 ◦C [22]. Additionally, the
average PCA in our study was 120.68 ha, which was much larger than that in Peng’s study
(81.3 ha). This might be ascribed to the difference in the buffer interval (30 m in Peng’s
study and 90 m in ours). As we proposed a new definition of PCE owing to the limited
current literature, it was difficult to compare the PCE to previous studies.

Among the many landscape metrics and features of a park, the dominant factors that
determine the park cooling island were further evaluated. Multivariate linear regression
models were constructed for this purpose to explore the relative contributions of the
variables to the park cooling island. In these models, landscape metrics were independent
variables, while PCI, PCA, PCG, and PCE were the dependent variables. The proportion
of water was the most important factor in the PCI (Tables 5 and 6), which is consistent
with previous studies [11,49–51]. Water helps to reduce LST owing to its large specific heat
capacity and the enhanced heat exchange occurring between water and the surrounding
environment [52]. Waterbodies are important components of urban parks. However, owing
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to the accessibility of water resources, increasing the water area in the park to enhance
the PCI is unsustainable. The size of the park is another important determining factor
in the PCI (Table 5 and Figure 8) [24]. PA had a positive relationship with the PCI, and
similar results were also obtained in previous studies [24]. In particular, a large park
would produce a strong cooling effect. However, the relationship between the PA and
PCI is not a simple linear relationship. Our results showed that almost no correlation
existed between the PA and PCI for small parks, with only larger parks leading to stronger
PCI for parks larger than a threshold of 20 ha. Similar correlations were also observed
between the green space and LST in previous studies [53,54]. The NDVI was the third most
important urban feature significantly affecting PCI in our study. The NDVI represents the
greenness of the park, and a high NDVI indicates more vegetation [55,56]. Vegetation can
reduce the LST through shadows and evapotranspiration, which has been proven by many
studies [30,57–59]. Consequently, if the PA was smaller than the threshold, increasing the
NDVI of parks by adding more vegetation would provide a stronger cooling effect [54].
However, the tree area proportion was not included in the regression model presented
in Table 6. One possible reason for this was that in our case, almost all of the parks had
relatively high TAP values, and the differences between them were not obvious, thereby not
making it a determining factor. This does not imply that trees are not important in urban
park planning [28,60]. The PA and WAP also had positive effects on the PCA. Moreover,
the effects of the independent variables on the PCG and PCE were not significant, except
that the PP had an obvious negative effect on the PCE (Table 6).

Table 6. Regression results of landscape metrics, NDVI, and PCI, PCA, PCG, and PCE. R2 represents
the proportions of the park cooling island variations that can be explained by the model. Colors
represent the relative contribution of each metric to variations in the park cooling island. Red and
blue represent positive and negative effects, respectively.

Characteristics. PCI PCA PCG PCE

PA 0.61 0.74 0.02 −0.18
PP −0.20 −0.43 0.28 −0.65

SGAP −0.098 −0.10 0.01 −0.16
WAP 0.97 0.56 0.48 0.59
BAP 0.12 0.30 −0.11 −0.12
ISAP 0.17 0.40 −0.29 0.32
BSAP 0.07 0.28 −0.26 0.11

PSI 0.30 0.02 −0.21 −0.02
PPD −0.24 −0.32 0.10 −0.15

NDVI 0.53 0.29 0.23 0.10
R2 0.78 0.63 0.56 0.68

Adjusted R2 0.68 0.45 0.35 0.53

Based on our findings, the WAP, PA, and NDVI (greenness) of the park are the three
dominant factors that determine the PCI. They deserve more attention in future urban park
designs from the perspective of regulating the thermal environment.

4.3. Limitations and Future Research Directions

Our study had several limitations. First, the detailed features of the urban parks were
extracted from high-resolution GF-2 images (1 m). However, the inside and surrounding
LSTs of parks were of relatively low resolution because of the performance of Landsat
8 TIRS. Simultaneously, the LST data only represent the thermal environment when the
satellite transits late in the morning. Temperature is an environmental variable that changes
daily. Therefore, finer spatial and temporal resolution LST data acquired by unmanned
aerial vehicles equipped with high-performance thermal cameras are expected in future
studies. Using both LST and air temperature in the perspective of surface energy balance
may generate more comprehensive and robust results to obtain a better understanding
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of the thermal regime of urban parks [20,61,62]. Second, the number of parks studied
was limited, and studying more parks or changing the studied city may yield different
results. Third, due to the limited availability of data, the effects of socio-economic factors
on park cooling islands were not explored. Future studies can obtain more robust results
by applying big data such as the point of interest (POI).

5. Conclusions

To enhance the understanding of the detailed characteristics of the urban park cool-
ing island and the driving mechanisms of its variations, high-spatial-resolution remote
sensing images (GF-2) were used to extract the detailed land cover types of urban parks,
and landscape metrics were employed to depict the park features. Buffer analysis was
conducted to analyze the four aspects of the park cooling island: PCI, PCA, PCG, and
PCE. Statistical models were constructed to explore the effects of driving factors on the
park cooling island. We found that the average LST of urban parks was approximately
3.60 ◦C lower than that of the surrounding environment, indicating that parks can provide
significant cooling effects. Based on the changing features of surrounding LSTs, the park
cooling island could be classified into four categories: regular, increased, decreased, and
other parks. Additionally, our results showed that the PA, WAP, and NDVI were the three
most important factors that positively affected the park cooling intensity. Theoretically,
increasing the waterbody area is the most effective way to enhance the cooling effects of
urban parks. However, this might not be a sustainable solution because of the limited water
resources, and adding more vegetation to increase the NDVI could prove more feasible.
Unfortunately, there was no significant relationship between the PA and PCI if the area was
smaller than a threshold of 20 ha in our study. The findings of our study provide valuable
insights for the planning and design of urban parks.
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Abstract: The LCZ framework has become a widely applied approach to study urban climate.
The standard LCZ typology is highly specific when applied to western urban areas but generic in
some African cities. We tested the generic nature of the standard typology by taking a two-part
approach. First, we applied a single-source WUDAPT-based training input across three urban areas
that represent a gradient in South African urbanization (Cape Town, Thohoyandou and East London).
Second, we applied a local customized training that accounts for the unique characteristics of the
specific area. The LCZ classification was completed using a random forest classifier on a subset
of single (SI) and multitemporal (MT) Sentinel 2 imagery. The results show an increase in overall
classification accuracy between 17 and 30% for the locally calibrated over the generic standard LCZ
framework. The spring season is the best classified of the single-date imagery with the accuracies 7%
higher than the least classified season. The multi-date classification accuracy is 13% higher than spring
but only 9% higher when a neighborhood function (NF) is applied. For acceptable performance of
the LCZ classifier in an African context, the training must be local and customized to the uniqueness
of that specific area.

Keywords: local climate zones; random forests; neighborhood function; multitemporal classification

1. Introduction

Since before the dawn of civilization, the global population has been increasing both
in isolated as well as connected communities [1,2]. This continuous rise in population has
resulted in civilization and furthermore has created the barrier between urban and rural
regions [3,4]. While urbanization comes with prospects of technologically advanced liveli-
hoods for the inhabitants and easier access to amenities, it brings with it some undesirable
side effects [5]. One of these side effects is the urban heat island (UHI) phenomenon. The
urban heat island is a term coined by [6] to refer to a phenomenon where urban regions
experience warmer surface and atmospheric climatic conditions as compared to their sur-
rounding rural areas. The earliest documentation of this phenomenon was in a 1820 study
on the London climate [7]. While the UHI is created by urban infrastructural developments,
planning and design as well as population growth, it is however projected to be more inten-
sified by climate change through extreme heat waves [8,9]. With anthropogenically-driven
climate change becoming an even bigger threat to livelihoods, there is a need to establish
living conditions that do not exacerbate but adapt to the changing climate. Urban planners
propose that the increase in urban population demands innovation toward sustainable
cities while some propose low energy buildings [10,11]. These are cities that have systems
in place to curb and adapt to the effects of UHI while accommodating as much as 68% of
the global population as projected for 2050 [12,13]. Even with this much awareness being
raised in the urban planning and climate change circles, studies on UHI are still limited
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and only localized in Asia, Europe and North America with very little literature available
on Africa, Mid and South America as well as Oceania [14].

What these limited studies highlight is that the biggest challenge in the study of UHI
has been and is still that of relating the observed surface and air temperature patterns with
the features on the ground [14,15]. This has been addressed primarily by the development
and application of local climate zones to study both surface and atmospheric UHI [16–18].
Local climate zones (LCZ) are regions of homogenous surface features that experience
uniform climatic conditions [19]. The local climate zones typology currently accepted as the
standard framework for classification was designed by [15]. The framework was developed
specifically to study UHI on the hypothesis that surface and atmospheric patterns in UHI
can be attributed to the spatial and structural characteristics of surface features.

Even with the development of local climate zones to address the spatial distribution
challenge, studies are still not evenly distributed geographically. Between 1970 and 2020,
57% of the publications have been in Asia, 23% have been in North America, 14% have
been in Europe and only about 3% have been in Africa [14]. The majority of the African
studies on local climate zones were part of global studies and not particularly focused on
local African cities. Local climate zones studies in Africa have been limited as compared
to the other continents, which creates a big gap in the literature in this area of study [20].
Urban climatology studies in South Africa have focused on a diversity of urban climate
variables ranging from temperature-focused studies, Koppen’s climatic zones and rainfall
and drainage but not local climate zones [21,22]. This current study intended to not only
play a part in filling the gap in the lack of LCZ classifications in South Africa but also
contributing to the knowledge increase in African studies in general.

For the purposes of universal application and generalizability, the standard LCZ was
designed to be culturally neutral [16]. Ref. [23] explored the relationship between culture
and urban form and found them strongly correlated. Urban form is defined by [24] as the
description of the city’s physical characteristics. This covers everything from urban design,
type of building material, arrangement of infrastructure and type of ground material
among others. It was observed in Southwestern Saudi Arabia that cultural laws also
influenced urban form [25]. Seventy-seven metropolitan cities in Asia, US, Europe, Latin
America and Australia were sampled as part of a study to assess urban form across different
continents. This study by [26] found that apart from differences of density and height,
there are urban form features that are common across all the cities and yet there are some
urban form features that are only unique to some cities. This suggests that a classification
framework typology must be flexible enough to allow training based on the standard
classes, combinations of the standard classes as well as the addition of classes that are
unique to that local environment. The flexibility of the standard framework to manipulation
is even more important in African urban regions due to how diverse they are and how
different they are from each other and from western urban regions [27]. This current
study explored the extent to which the standard LCZ framework can be manipulated and
modified to accommodate the uniqueness of an urban area. All this was completed with
the aim of developing a classification protocol that can be possibly applicable to similar
urban regions that do not strictly resemble the cities the standard framework was based on.

While the standard typology remains the same, its implementation over the past
decade since its conceptualization had adopted different methodologies. These approaches
have included in situ measurements, GIS-based mapping as well as remote sensing-based
approaches [28]. Within each approach, there are different sub-methods which can result in
differences in accuracy even within the same general approach. A study on local climate
zones on the Zimbabwean capital Harare adopted a remote sensing approach in attempt
to compare the machine learning technique of support vector machines with the World
Urban Database and Access Portal Tools (WUDAPT) generator approach. The WUDAPT is
a global initiative of online tools to create local climate zone maps for a given city using
a standard methodology [29]. This study by [30] found out that the WUDAPT approach
yielded higher accuracies as compared to the SVM approach. Ref. [28] proposes that
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the GIS-based and remote sensing-based classifications produce different accuracies and
level of detail as a function of scale [31]. The GIS-based method is more suitable for
micro-scale classification, while remote sensing is suitable for larger-scale classification [32].
The WUDAPT approach in general yields higher accuracies as compared to other remote
sensing as well as GIS-based methods. Ref. [28] attributed the accuracy of the WUDAPT
methodology to its generic nature. According to [29], the satellite imagery used by the
online WUDAPT classifier has pixel size of 100–120 m. This is the same size as the minimum
size of a local climate zone training input, which makes the accuracy higher.

The WUDAPT method was developed for global urban morphology data collection
for global climate models [33]. This suggests that it was not designed for implementation at
the local level. For lower mesoscale and local scale climate models, more detail is required
in urban morphology. This has resulted in the use of higher resolution data sources such as
Landsat-8 and Sentinel-2 among others. These products have been used in classifications
using mostly machine learning and deep learning techniques [20,30]. The use of coarser
imagery of 100–200 m resolution uses the surface reflectance values for each pixel at a
size that is comparable to the minimum size of a local climate zone. However, when
finer resolution data of less than 60 m are used, the pixel size becomes much smaller than
the size of the LCZ training input. When the pixel size is smaller than the object, the
variation in pixels belonging to the same class becomes larger [34]. This then necessitates a
neighborhood function kernel to aggregate the pixels to the level of the local climate zone.
At the end, the result is an aggregated value instead of the original classified value.

The first objective of this study was to characterize the spatial designs and layout of
three cities, namely, Cape Town, East London and Thohoyandou that cover a gradient in
urbanization within the South African context. This looks at the historical influences that
shape the morphology and urban form of each of these urban areas. The second objective
was to determine the extent to which the standard LCZ framework covers the nature and
morphology of South African cities. This is by applying the standard LCZ framework as it
is. For this objective to be carried out, a combination of a field survey together with digital
imagery was used to develop a training input of spectrally distinct classes found within
these urban regions, which was the third objective of the study. For this objective, all these
urban regions are assumed to be similar, and only one training is developed using Cape
Town and then applied across the rest of the urban regions. Lastly, a more specific training
is developed for a more customized LCZ classification protocol with each city having its
own training sample.

2. Materials and Methods

2.1. Study Area

The study was conducted in Cape Town, Thohoyandou and East London urban areas
of the Western Cape, Limpopo and Eastern Cape provinces of South Africa, respectively
(Figure 1). These are urban areas of different size, urban form and land-use systems,
representing a gradient across South African urbanization. Their geographical location
and dispersion through South Africa put them in different climatological systems. Cape
Town and East London are coastal cities, while Thohoyandou is a remote inland small town
(Figure 1).
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Figure 1. Geographic location of the Thohoyandou, East London and Cape Town relative to their
respective municipalities, provinces and South Africa in general.

Cape Town, located at the southernmost tip of Africa, experiences a Mediterranean
climate characterized by cold wet winters and hot dry summers [35]. East London experi-
ences a maritime climate with cool winters and mild summers that is moist throughout the
year because of proximity to the ocean [36]. Thohoyandou experiences cold dry winters
and hot wet summers [37]. Cape Town as a city is a monument of the historical occupations
and influences of the diverse people groups who contributed to its development. This
has greatly influenced urban form resembling Portuguese, Indian, Dutch and British ar-
chitecture [38]. The original development of Cape Town into somewhat of an urban area
began with the Portuguese explorers in the 14th century in an area that belonged to the
Khoikhoi people. This was followed by the Dutch period in the 17th century and then
the British period in the 19th century. Finally, the South African period began in the early
20th century and extends to date. The 20th century ushered in rapid urban expansion in
Cape Town from multiple epicenters, resulting in an overall design that is comprised of
multiple administration and suburban residential areas resembling Harris and Ullman’s
(1945) multiple nuclei model [39]. Cape Town currently sits at 400 km2 with a population
density of 17,500 per km2.

East London similar to Cape Town was also developed originally as a harbor town.
However, East London does not have as long a history of cultural diversity from different
developers as cape town. The city has remained a harbor city of mostly British influence in
style, but the expansion outwards into the indigenous communities has brought indigenous
cultural influences into the East London urban form [40]. It is currently sitting at an area of
168.9 km2 and a population density of 2745 per km2.

Thohoyandou, which was developed as a capital for the Venda Bantustan in the latter
half of the 20th century, does not benefit from the diversity of historical western influences
in its urban form and design that East London and Cape Town encompasses [41]. The
development of Thohoyandou was originally for a shopping center and government ad-
ministration offices [42]. Among the three urban areas, Thohoyandou is the most integrated
with features associated with the rural environment. The area of Thohoyandou is 42.62 km2

with a population density of 2051 per km2.
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2.2. Materials and Methods
2.2.1. Sentinel-2 Multispectral Imagery

The Sentinel 2 Top-of-Atmosphere (ToA) (L1C) product was obtained from the Coperni-
cus Open Access Hub (COAH) of the European Space Agency (ESA). Sen2Cor288 algorithm
was used in SNAP to correct for atmospheric interference and thus convert the L1C product
to Sentinel L2A, which is Bottom-of-Atmosphere (BoA) reflectance [43]. Sen2Cor creates
BoA reflectance images, terrain and cirrus corrected reflectance, aerosol optical thickness,
water vapor, scene classification maps and quality indicators for cloud and snow probabili-
ties [44]. The central month image of each season with a cloud coverage filter of less than
0.5% was selected as the most suitable to reflect peak season dynamics (Table 1).

Table 1. Date and seasons for the Sentinel-2 imagery used throughout the classification process.

Sentinel-2

Summer Autumn Winter Spring

Cape Town 25 February 2018 16 May 2018 24 August 2018 2 November 2018
East London 7 January 2018 28 March 2018 6 July 2018 14 September 2018

Thohoyandou 13 December 2018 27 April 2018 26 July 2018 24 September 2018

2.2.2. Definition of LCZ Classification

The standard [15] LCZ classification framework was selected for this study to be
applied across all three urban areas. A remote sensing-based approach was chosen over a
GIS-based approach. A GIS approach to classification would require manual digitization
of the entire image, which is laborious and time consuming. The processing of remotely
sensed data also requires the manipulation and interpretation of digital data [45]. This
tends to be a mathematically complex process due to the heterogeneity of materials and
geometry of the features [46]. However, the advantage of the remote sensing-based route
is that it can be automated. The irregularities of the geometry of the local climate zones
becomes a challenge to both pixel and object-based classifications [45,47,48]. A pixel-based
classification which was adopted for this study overcomes this geometric non-uniformity
challenge by assigning every pixel into a single class based on the reflectance value [49].

This application of Stewart and Oke’s LCZ classification framework was used in two
approaches that differ in the creation of training data. Approach 1 followed strictly the
LCZ region of interest (RoI) creation as outlined by WUDAPT to create a standard training
set based on Cape Town to be applied on all three cities. The application of this remote
training on Thohoyandou and East London indirectly assesses whether the influence of
origin and culture on urban form affects the LCZ classification. This informs whether
there is a need to have a customized training for LCZ classification in South African cities
for all cities or locally for each urban region. Cape Town was chosen because it is the
only urban area of the three that experiences all four seasons and contains all 17 LCZ
standard classes [50]. Theoretically, this means that the impacts of phenology would be
more apparent in Cape Town than in East London and Thohoyandou, which also would
make it ideal for identifying the best season for single image classification across all three
urban regions. In defining these LCZ classes, a separability analysis was performed. A
spectral separability is an assessment of the performance of the Sentinel-2A multispectral
instrument bands to differentiate between the classes of the typology. For the purposes
of this study, histograms, scatter and box plots were used to perform this separability
according to guidelines from [51]. The second approach to the classification still took off
from the traditional [15] typology but explored combinations and subclasses of the standard
typology based on the unique features of each urban region.

i. Model Training
Two types of model training sets were developed for the classification where the first
was standardized and the second was customized to the context of the urban area.
The ground reference data were collected initially using digital globe resources due
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to COVID restrictions and were validated and revised in situ on February and March
2022 in Cape Town, Thohoyandou and East London. Based on a digital globe basemap,
circular regions of interest were made using QGIS having a diameter of 100 m following
the specifications of the standard typology as outlined by WUDAPT. The field campaign
was then used as a manual method to verify the regions of interest (Figure 2). Most
(80%) of the regions of interest were used for training and the remaining 20% were used
for validation. The field campaign was also used to observe and document the unique
elements of each urban region for the discriminations of subclasses to feed into the more
specific training for Approach 2.

Figure 2. Some of the sampled locations across Cape Town, East London and Thohoyandou.

a. Approach 1
The WUDAPT LCZ typology guidelines for the development of training data was
applied. These guidelines are divided into subcategories depending on the scale of
the total area, classification methods and the intended use of the final product [47].
These guidelines have a strict protocol for training with the objective of using the
WUDAPT online LCZ generator as well as a more flexible protocol for developing
training data to be used outside the WUDAPT generator [16]. The development of
these training polygons depends on a combination of general typology elements
such as cover, material, geometry and function taken to different levels of detail
depending on the scale of the imagery and the purpose of the classification. Cities
are then mapped using the scheme of [15], which classifies the urban landscape
into 10 urban and seven natural classes. Each class in the typology represents a
LCZ described in terms of specific landscape parameters of mean building height,
canyon width, aspect ratio, building surface ratio and impervious area. These

40



Remote Sens. 2022, 14, 3594

training areas are used to characterize the reflectance properties of each LCZ, which
is then used to develop a model that assigns every other untrained pixel of the
image into the LCZ classes within the framework.
A three-step sampling method (Figure 3) was adopted from [52]. This block-based
system was developed for LCZ classification at the city block scale primarily as GIS-
based. In this study, this method was used to guide the development of training
samples following the three steps.

Figure 3. An outline of the city block method steps for accurately creating training polygons and
assigning them to different LCZ for the classification [15].

The natural city blocks are easier to assign to LCZ classes because they are homoge-
nous, but the urban classes are much harder even with the physical access to the
area. Urban LCZ metadata variables were thus limited to mean building height
(Hs ), which is the number of stories as collected in the field, mean building height
(BH), canyon width (CW), aspect ratio, building surface ratio and impervious area
(Figure 4). When the number of stories per building is less than 10, every story
is assumed to be 3 m; otherwise, Equation (1) is used for buildings with more
than 10 stories [53]. Buildings with one to three stories were considered low-rise,
four to nine stories were considered mid-rise, and more than nine stories were
classified as high rise (Figure 5). Canyon width is estimated by the average distance
between two buildings. Aspect ratio is estimated by the ratio of the building height
(BH) to the canyon width (W). Building surface fraction (BSF) and impervious
surface fraction (ISF) were estimated using simple calculations in QGIS following
the polygonization method (Figure 4) for areas of built and impervious surfaces.
These variables were all used to assign each one of the blocks into LCZ classes
(Figure 5). Within each block, multiple points were placed at a distance of 200 m
from each other. A circular buffer of 50 m was created around each point, ultimately
becoming the circular LCZ training polygon. Each of these training polygons was
at least 100 m from the next one. A total of 200 training polygons were selected for
the model training.

Building Height (BH) = H_(s) × 3.5 + 9.6 + 2.6 × (H_(s)/25): H_(s) (1)
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Figure 4. A display of the method for mapping the features within each polygon in order to classify
it to the suitable LCZ [53].

Figure 5. A flow diagram of the final stage of the method for assigning training polygons to their
suitable LCZ classes.

b. Local Customized Training Input (Approach 2)
This approach is developed based on the layout and design of each city taking into
account features that are common across all three cities and features that are unique
to the specific urban region. In Thohoyandou, the urbanized city center and the im-
mediate blocks around the city center have rural features integrated into the urban
landscape. The intra-block streets in Thohoyandou are not homogenous in material;
some are asphalted while some are gravel. While in a standard framework, the
building density and height stand out as the main discriminators for local climate
zones, the street canyon material stands out just as significantly in Thohoyandou.
This is also noted by [27], who stated that as a unique general feature, remote
African urban areas tend to have more bare soils than western urban. While this
might not be statistically significant for a highly urbanized and highly westernized
city such as Cape Town, its significance in a small town such as Thohoyandou
cannot be neglected without investigation. However, spectrally separating bare
soil from impervious surfaces in a remote sensing approach at the level of the pixel
(10 m) has inherent confusion in spectral signatures [54]. Therefore, Following
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Jin’s blocking, a GIS approach was developed in order to create a criterion for
separating blocks that are completely asphalted from blocks that are gravel within
the urban area without the inherent confusion of a remote sensing approach. A
digitization process was applied to digital globe imagery to create asphalted and
bare soil inter-street blocks (Figure 6).

Figure 6. Asphalted vs. bare soil (gravel) streets in Thohoyandou urbanized region.

The output of this digitization was used to separate training inputs that are in gravel
blocks from those that are in asphalted blocks. LCZ 3 was the only class observed
to be present in both block types. The buildings within LCZ 9 in Thohoyandou are
also further apart than they are in Cape Town and East London. The space between
houses is thus confused with Shrublands (LCZ 14) due to the dry nature of the
shrublands in Thohoyandou. In order to reduce this confusion, the low plants were
thus combined with shrubs lands to form a single class. Scattered trees were also
combined with dense trees to form a single class. The number of the natural classes
was thus minimized so that the built classes can then stand out more spectrally.
Impervious surface and bare soil were also combined to form a single class. This
is because they are the least represented classes in the area, and combining them
makes them a slightly larger class. This thus makes the updated training set for
Thohoyandou to become LCZ 3a, 3b, 6, 8, 9, 11 & 12, 13 & 14, 15 & 16, 17.
In East London, the ground truthing process in lightweight zones (LCZ 7) revealed
a unique class that is a hybrid between lightweight and compact low-rise (Figure 7).
A unique feature of South African light weight squatter camps is that they have no
designated stand-numbers. This means they have no yards, and it is common for
houses to share walls with their neighbors on all sides except the front. Because of
this nature of South African squatter camps, the integration of LCZ 3 and LCZ 7
in these East London zones happens below the minimum size of the local climate
(100 m). This is thus treated as a unique class and incorporated as LCZ 7a into the
updated East London training, which then becomes LCZ 2, 3, 5, 6, 7, 7a, 8, 9, 10, 11,
13, 14, 16, 17.

43



Remote Sens. 2022, 14, 3594

Figure 7. East London squatter camp types; LCZ 7 showing a standard lightweight region while LCZ
7a shows a hybrid region of concrete and light weight.

ii. Remote Sensing Classification Protocol
The choice of the LCZ classification method is guided by the nature of the data, the
available computational resources and the application purpose [45]. The classification
protocol was performed via a coded script in R on R-Studio using mainly the CARET
package through a Random Forests (RF) classifier. This was designed to extract the
training pixels from the image stack, build predictive models that assign the rest of
the image pixels into the most fitting class based on surface reflectance values and to
validate the assigned pixels. This was performed on a single image stack as well as a
multitemporal image stack.

a. Single Image vs. Multitemporal Classification and Neighborhood Function
The first classification method is the most straightforward application of a LCZ
classification and consists of applying the iterative process on a single date image.
The seasonality was therefore analyzed in terms of meteorological seasons, namely
winter, spring, summer and autumn, each in turn, by one scene at the center of
the season [55]. For the multitemporal approach, accuracies of single-image classi-
fications of each season will therefore be compared with those of a classification
combining images of all four seasons. This is in order to account for the spectral
and spatial changes in the natural vegetation that is caused by seasonal changes.
This has the potential to increase the accuracy of the classification. This eliminates
confusing between seasonal classes such as bare soil in the dry period, which is
covered by low vegetation in the rainy periods.

b. Neighborhood Function
A neighborhood function or contextual classifier can contribute to increased accu-
racies in the classification of urban areas that are internally highly differentiated or
heterogeneous, resulting from historical urbanization patterns that reflect the local-
ity and the culture. In addition, most classification methods, including the original
WUDAPT protocol, do not take this spatial variation into account. Moreover, the
WUDAPT workflow causes a loss of spectral variability information before the
actual classification by resampling the Landsat images during the pre-processing
phase to a spatial resolution of 100 m [56–60]. At 10 m resolution, the sensitivity of
the neighborhood function was tested by increasing the size of the kernel window
for an optimal cell number.

iii. Validation
The ground truth data were randomly split in R into a training (80%) and validation
(20%) set. The validation set is used to validate the model using accuracy metrics. The
first accuracy metric performed was visual comparison of the output with satellite
imagery. The User Accuracy (UA) is the probability that the predicted value is correct;
the Producer’s Accuracy (PA) is the probability that a value in a certain class was
classified correctly. The Overall Accuracy (OA), the Kappa coefficient, is a measure of
the agreement between classification and truth values. All were calculated according to
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the guidelines in [48]. The F1-score was calculated as the harmonic mean of the UA and
PA, which is even more useful when the classes are not balanced.

3. Results

3.1. Local and Remote Standard LCZ Training (Approach 1)
3.1.1. Visual Analysis of the Classification Outputs

A visual inspection of the Cape Town output reveals a clear separation of the built
from the natural classes (Figure 8). What this pattern also reveals is that the compact classes
are rather concentrated next to each other and the open classes are further away. The city
center toward the harbor is composed of compact high-rises and compact mid-rises, as
expected in a modern city such as Cape Town. The agricultural lands up north are also
visible from a visual inspection with minor patches of LCZ 9 through them. What is also
worth noting is the confusion that arises between the paved surfaces and built classes.
Roads at the city center are wrongfully classified as either compact high-rise (LCZ 1) or
heavy industry (LCZ 10).

Figure 8. Cape Town single image classifications across all 4 seasons with standard training according
to WUDAPT guidelines.

When the remote Cape Town-based standardized training is applied on a Thohoyan-
dou multitemporal image, LCZ 3 is completely absent (Figure 9A), but it reappears immedi-
ately when a local standardized training is applied (Figure 9B). Using a local standardized
training shows the Nandoni area to be mostly LCZ 9 with some vegetation; this is in line
with the pre-study survey and google globe imagery that show the area being a rural village.
However, the remote standardized training shows the same area as being mostly composed
of LCZ 8 (Large Open), which is mostly found in the city center. Single-image classification
using remote training shows LCZ 7 (light low-rise) at the city center, which according to
google globe is a misclassification, as Thohoyandou does not have squatter camps, and this
remote training also shows forested environment at the Nandoni region. This is different
from the output of the local training, which is almost in complete agreement with the local
MT classification showing no LCZ 7 at the city center and low plants and sparse trees at
the Nandoni dam area. The application of remote vs. local training in East London does
not yield significant differences in the appearance of classification outputs.
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Figure 9. Single image (C,D) and multi-temporal (A,B) classifications of Thohoyandou using a
standardized remote (A,C) and local (B,D) training.

3.1.2. Single Versus Multi-Seasonal Images and Neighborhood Functions Comparing
Performance of Remote and Local Standard Trainings

While the multitemporal Cape Town image is the most accurately classified with an
overall accuracy of 44%, the spring image has the highest accuracy of the single image
classifications with an accuracy of 42% (Table 2). The difference in Kappa and OA metrics
between the spring image and the multitemporal image is relatively small: 1.6% for Kappa
and 1.4% for OA. This suggests that the spring image could be an acceptable representation
of the Cape Town area when there are no multitemporal data. The spring image OA is
a 6% improvement on the summer classification, which is at 36%. However, even this
6% is mostly due to the natural vegetation (OA-nat), which is 15% higher in spring than
in the summer. The difference between accuracies of the urban classes (OA-urb) is only
2%. This also proves that the effects of phenology are greatest among natural classes, as
expected. The summer image as the least successfully classified has the lowest Kappa at
31.2%, which is a 68.8% disagreement between the training and the output. This indicates
that the least represented classes in the training are not very well classified. According to
the Kappa statistic, the least classified (summer) and the best classified (multitemporal) all
have Kappa values that fall within the same range. This means about 60% disagreement
between training and output, suggesting that only 40% of the data can be relied upon
to produce the observed results. The difference between the F1 score and the OA is also
Indicative of patterns in classification of individual classes, since the F1 is a harmonic
mean of the PA and UA. From Table 2, the summer and autumn images F1-scores and OA
are almost identical which indicates confusion even in the classes which are rather well
classified in other seasons.
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Table 2. Accuracy metrics for single image and multitemporal random forest classifications over
Cape Town.

Metrics SI Summer SI Autumn SI Winter SI Spring Multitemporal

OA 36.20% 40.10% 41.80% 42.70% 44.10%
OA-urb 29.80% 28.70% 31.80% 32.70% 33.80%
OA-nat 47.20% 68.20% 64.30% 63.90% 68.50%
Kappa 31.20% 35.50% 37.20% 38.00% 39.60%

F1–metric 36.50% 40.40% 42.60% 43.20% 45.20%

The confusion matrix of the spring image shows that the built classes have more
confusion than the natural classes (Table 3). While LCZ 3 and LCZ 6 are visually well
represented across all reasons, the confusion matrix reveals that they have the highest
confusion in general. A lot of bare lands in the summer and autumn are classified as built
classes. This trend is also seen in the spring season with LCZ 16 confused with LCZ 9
and LCZ 10. However, the spring image is still the best classified single date image and
is the best season to test the Cape Town based remote training in Thohoyandou and East
London. The other tool that improves the classification is the contextual classifier, and
the optimal kernel size must be determined for application across all urban areas. This
fragmentation (salt and pepper effect) of classes is most visible from the classification
output (Figures 8 and 9).

Table 3. Confusion matrix from the standard LCZ training single date spring image over Cape Town.

Classified
Reference Classes

User’s Accuracy
1 2 3 4 5 6 7 8 9 10 11 13 14 16 17

1 42 15 0 10 8 2 0 63 0 9 0 0 7 0 0 27%
2 27 120 17 61 71 19 41 87 6 44 7 1 9 0 0 24%
3 55 156 506 77 146 326 213 155 55 58 0 0 4 0 0 29%
4 16 46 7 67 96 33 2 46 26 26 6 33 13 2 1 16%
5 43 100 26 82 118 22 22 63 58 13 11 9 54 0 8 19%
6 80 166 75 171 195 352 0 1 315 6 59 59 4 4 0 24%
7 1 46 438 11 5 120 847 103 65 46 0 7 5 0 0 50%
8 53 107 42 48 66 64 107 247 34 116 0 6 13 0 0 27%
9 27 45 82 66 124 180 50 40 462 28 134 229 13 38 0 30%

10 37 34 32 41 57 9 100 218 15 607 0 0 0 99 0 49%
11 3 1 0 25 37 3 1 2 64 0 763 147 88 3 82 63%
13 3 12 27 24 11 46 41 27 106 124 30 702 254 30 0 49%
14 0 6 2 5 9 0 0 22 104 1 0 30 429 0 0 71%
16 0 3 1 9 0 5 65 25 36 17 0 23 130 293 0 48%
17 0 0 0 0 0 0 0 0 0 0 0 0 0 78 929 92%

Producer’s
Accuracy

11% 14% 40% 10% 13% 30% 57% 22% 34% 55% 76% 56% 42% 54% 91%
Overall Accuracy

43%

The neighborhood function aggregates the pixels within a certain threshold into a
single value and results in a smoother output as compared to the raw data classification
(Figure 10). This is tested on Cape Town and the optimal kernel size applied to Thohoyan-
dou and East London to compare their results with Cape Town. The accuracy remains
constant at 42.7% and Kappa at 43.2% for all kernel sizes below 11 cells and reaches its peak
at 13 cells, after which the accuracy starts to decrease (Table 4).
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Table 4. Cape Town classification with 13 pixel neighborhood function.

SI SI + NH MT MT + NH

Kernel Size / 11 × 11 13 × 13 15 × 15 / 11 × 11 13 × 13 15 × 15

OA 42.70% 48.50% 48.70% 48.40% 44.10% 49.10% 49.80% 49.50%
OA-urb/nat 88.80% 91.30% 91.00% 90.50% 87.70% 89.70% 89.40% 89.00%

OA-urb 32.70% 37.10% 37.50% 37.00% 33.80% 38.50% 39.40% 39.40%
OA-nat 63.90% 72.70% 72.70% 72.70% 68.50% 71.70% 71.80% 71.20%
Kappa 38.00% 44.10% 44.40% 44.10% 39.60% 44.90% 45.60% 45.40%

F1–metric 43.20% 49.20% 49.40% 49.10% 45.20% 50.10% 50.90% 50.70%

With a 13 × 13 kernel of 130 m at a resolution of 10 m, the accuracy of the spring single
image classification is improved by 6.0%, and the multitemporal classification is improved
by 5.7%. However, in general, the multitemporal combined with the neighborhood function
still yields higher accuracies than the single image with the neighborhood function. The
highest overall accuracy of the multitemporal is 49.8% at a 13 × 13 moving window size,
bringing the total improvement over the general single image to 7.2%.

Figure 10. Classification output for Cape Town with a neighborhood function of size 13.

Nevertheless, it is only a slight improvement of 1.1% compared to the single-image
classification, which has an overall accuracy of 47.7%. Table 5 also shows that for both
the single and multitemporal classifications, the overall accuracy of the combinations of
both natural and built classes (OA-nat/urb) metric is highest at a kernel size of 11 × 11 or
110 m, indicating that confusion between natural classes and built classes is lower in these
classifications. However, this is only a 0.3% difference from the 13-cell kernel application,
which individually has higher OA-nat and OA-urb. For the purposes of this classification,
a standard 13 cell NH kernel was adopted as the optimal kernel size for comparison across
the three urban regions.

The application of remote training yields the highest results in a Thohoyandou multi-
date stack at 53.2%; however, a local standardized training yields a 7% increase in overall
accuracy and a 10% increase in Kappa. Urban classes are less successfully classified
across the board. However, they are better classified in East London than they are in
Thohoyandou. The use of remote vs. local classification in East London does not seem
to have as big an impact as it does on Thohoyandou. The multi-date classification using
local standardized training is only 2.1% higher than its remote training counterpart. The
single-date classification using remote training yields the lowest overall accuracy, Kappa
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and F1-metric across the board, while the multi-date local training yields the highest values
of the same metrics. There seems to be a similarity in the LCZ layout between Cape Town
and East London, which is seen through the accuracy metrics, which are almost similar for
both remote and local training.

Table 5. Accuracies of single-date and multitemporal classification using remote (local to Cape Town
but remote to Thohoyandou and East London) and local (standard training collected in Thohoyandou
and East London).

CPT Thohoyandou East London

Training Local Remote Local Remote Local

Stack SI MT SI MT SI MT SI MT SI MT

OA 48.70% 49.80% 31.40% 53.20% 54.8186 60.50% 39.10% 41.30% 40.70% 43.40%
OA-urb/nat 91.00% 89.40% 72.90% 81.50% 81.00% 86.20% 91.70% 85.50% 89.00% 84.30%

OA-urb 37.50% 39.40% 16.80% 37.40% 31.00% 34.00% 22.90% 26.10% 34.60% 42.10%
OA-nat 72.70% 71.80% 41.80% 94.00% 75.00% 80.70% 61.90% 72.70% 79.10% 80.60%
Kappa 44.40% 45.60% 22.10% 45.50% 45.7 55.30% 33.30% 35.70% 35.10% 37.60%

F1–metric 49.40% 50.90% 24.00% 53.50% 53.10% 56.30% 33.50% 38.40% 33.90% 40.10%

3.2. Classification Using Local Customized Training Data (Approach 2)
3.2.1. Thohoyandou Classification

a. Random Splitting of Training Data

Using a randomized selection of training and test sample makes the model more
robust, but it does not create an even number of pixels throughout. The challenge even
in the development of the original training protocol was that some classes had better
representation than others. While this can be avoided by creating an even amount of
training samples throughout, there simply is not always enough land area to create regions
of interest in some classes. Other classes also call for a higher number of training due to
their inter-class variability that must be accounted for in the training sample. The output
of the randomly selected training pixels (Figure 11A) shows that classes 14, 15 and 16 do
not have enough representation in the sample. This was solved by joining them to other
classes that have similar spectral signatures. Class 14 was combined with class 13; class 15
was combined with class 16. The result of this ends up with the lowest number of pixels in
the training going from 250 pixels to above 700 (Figure 11B).

Figure 11. Pixels per class for the randomly selected training input for Approach 2 in Thohoyandou
where (A) is unmerged and (B) is merged.

b. Single Versus Multi-Seasonal Classification and Comparison with Standard Training

What has been observed in Approach 1 classifications is still maintained in the Ap-
proach 2 results. This is the observation that the spring image provides the highest accuracy
of all the single image classifications (Table 6). However, natural vegetation is more ac-
curately classified in the winter NH than in any other season, while urban is highest in
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the spring. The multitemporal image that combines all the seasons is the most accurately
classified with an accuracy of 82.68% as compared to 53.2% of Approach 1.

Table 6. Thohoyandou accuracy metrics for SI and MT raw and NH with local customized training.

Summer Autumn Winter Spring Multitemporal

Raw NF Raw NF Raw NF Raw NF Raw NF

OA 60.64 71.74 54.92 71.36 58.25 71.8 59.15 73.42 73.92 82.68
OA-nat 81.65 87.36 79.1 87.44 85.06 87.83 80.61 85.54 83.65 88.58
OA-urb 43.44 62.11 40.92 55.06 42.01 58.61 47.11 63.49 53.2 69.66
Kappa 53.12 65.19 46.08 64.58 50.4 65.69 51.83 67.5 70.31 75.6

F1 score 0.554 0.65 0.5324 0.627 0.5513 0.661 0.5766 0.694 0.695 0.764

What the confusion matrix of the multitemporal classification reveals is that all the
classes are more accurately classified than misclassified except for LCZ 16, which is a
compound class of LCZ 15 and original LCZ 16. The highest confusion of LCZ 16 is with
LCZ 8, which is due to the paved spaces between large open buildings, and LCZ 13, which
is due to the large bare regions in between shrubs (Table 7).

Table 7. Thohoyandou confusion matrix for multitemporal classification.

Classified
Reference

User’s Accuracy
3 6 8 9 11 13 16 17 3a Total

3 738 0 29 0 0 0 17 0 33 817 90%
6 47 1284 1 0 0 186 113 0 110 1741 74%
8 85 0 1138 0 0 156 258 0 0 1637 70%
9 0 0 0 900 0 131 0 0 0 1031 87%

11 0 0 0 0 943 0 29 0 0 972 97%
13 42 11 4 0 57 1416 256 0 0 1786 79%
16 0 0 106 0 0 42 27 0 0 175 15%
17 0 0 0 0 0 0 0 1800 0 1800 100%
3a 188 5 22 0 0 0 0 0 957 1172 82%

Total 1100 1300 1300 900 1000 1931 700 1800 1100 11,131

Producer’s
Accuracy

67% 99% 88% 100% 94% 73% 4% 100% 87%
Overall Accuracy

82.7%

The analysis of the multitemporal classification model reveals that the higher bands
(Band 9—11) of each season are the most important in classifying the pixels (Figure 12).
These are the SWIR (shortwave infrared) bands of the Sentinel 2A image stack.
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Figure 12. Band priority and importance in the class discrimination process for multitemporal stack
in Thohoyandou.

The discrimination between the gravel LCZ 3a and the asphalted LCZ 3 seems to be
very good according to a visual inspection of the classification output (Figure 13). The
confusion matrix also confirms this with 17% of the LCZ 3 classified as LCZ 3a. However,
the highest confusion with LCZ 3a is with LCZ 6. This is due to them sharing similar open
spaces and also their proximity with 11.5% of LCZ 3a pixels classified as LCZ 6.

Figure 13. Thohoyandou classification output for multitemporal with neighborhood function with
local customized training showing asphalted and gravel streets.
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3.2.2. East London Classification

Using a local and customized training input yielded higher overall accuracy and
Kappa values. The highest OA value for East London using Approach 1 was 41.3%, which
has increased to 58.5% using Approach 2 which is a 17.5% increase. However, contrary to
observations from the Approach 1 results, the multitemporal image does not appear to be
the best fit for both built and natural classes. The spring image with a 13-cell neighborhood
function yields the highest overall Kappa, F1-Score, and overall accuracy (Table 8). This is
in agreement with the observation made in Approach 1, where the spring image was the
highest of the seasonal single image classifications. What is also similar is that the summer
image has the lowest values for all the overall metrics. It is worth noting that the spring
image still has the highest number of lowest individual class Kappa values spread out
across built classes; this suggests that the higher overall metrics are due to the perfect and
near perfect classification of the natural classes. The highest individual LCZ Kappa values
are not localized to a single season but spread out through different seasons. A common
trend, however, is that the highest individual Kappa values fall within the classifications
that have been smoothed out with the 13-cell kernel, while the lowest values are within the
raw image classification.

Table 8. East London, individual Kappa and overall accuracy metrics for single image and multitem-
poral raw and neighborhood function with local customized training.

Summer Autumn Winter Spring Multitemporal

CLASS
KAPPA

Raw NH Raw NH Raw NH Raw NH Raw NH

LCZ 2 0.216 0.238 0.422 0.425 0.443 0.457 0.453 0.456 0.436 0.465
LCZ 3 0.331 0.373 0.364 0.586 0.295 0.489 0.236 0.497 0.325 0.454
LCZ 5 0.136 0.009 0.130 −0.008 0.161 0.020 0.152 0.030 0.135 0.065
LCZ 6 0.299 0.419 0.340 0.369 0.295 0.456 0.296 0.456 0.350 0.440
LCZ 7 0.267 0.504 0.391 0.991 0.381 0.873 0.381 0.877 0.455 0.749
LCZ 8 0.555 0.653 0.513 0.612 0.503 0.659 0.502 0.661 0.458 0.516
LCZ 9 0.346 0.410 0.300 0.372 0.264 0.356 0.255 0.356 0.350 0.408
LCZ 10 0.076 0.157 0.149 −0.003 0.154 −0.006 0.157 −0.006 0.147 −0.005
LCZ 11 0.837 0.690 0.856 0.784 0.848 0.765 0.838 0.765 0.853 0.728
LCZ 13 0.417 0.598 0.430 0.665 0.289 0.631 0.275 0.631 0.763 0.936
LCZ 14 0.125 nan 0.145 nan 0.524 1.000 0.512 1.000 −0.070 nan
LCZ 16 1.000 1.000 0.989 1.000 1.000 1.000 1.000 1.000 0.988 1.000
LCZ 17 0.997 1.000 0.964 0.959 0.922 0.873 0.832 0.873 0.972 1.000
LCZ 18 0.435 0.739 0.395 0.434 0.387 0.560 0.335 0.558 0.468 0.651

MAIN
KAPPA 0.431 0.522 0.456 0.553 0.462 0.581 0.445 0.582 0.474 0.570

OA 45.951 53.530 48.305 56.528 46.736 58.401 46.723 58.553 50.240 58.540
F1 0.444 0.497 0.465 0.525 0.467 0.565 0.462 0.567 0.481 0.538

OA-urb/nat 76.800 76.500 68.000 75.600 76.700 75.600 76.700 75.600 77.200 76.300

What the spring neighborhood function image (Figure 14) reveals visually is that LCZ
7 and 7a are in close proximity to LCZ 3. This goes from a strict LCZ 3 and moves into LCZ
7a, which is an integration of 7 and 3, and then ultimately moves into a strict LCZ 7.
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Figure 14. East London classification output for multitemporal with neighborhood function using
local customized training.

4. Conclusions

Cape Town is a multi-nuclei urban region of multi-cultural origin, East London is a
harbor town, and Thohoyandou is a small town that originated as the administrative capital
of the Venda Bantustan. These urban regions represent a gradient within urbanization
in South Africa. These different historical backgrounds contribute to the uniqueness of
the layout and feature type in each region, which is a phenomenon also noted in the
Middle East [25]. These unique features become an element of importance, as they could
potentially explain the poor performance of the standard framework when performed
using multispectral imagery at the local scale in Africa. Cape Town as an urban area
resembles closely the cities of the west; as such, the standard LCZ framework typology
would best fit Cape Town with minimal to no adjustment in the guidelines for RoI creation.
However, the development of a localized and customized training for East London and
Thohoyandou individually creates a classification protocol that considers these unique
local features stemming from influences of their unique origin and cultural evolution as
they herd toward modernization.

The nature of the training input was the major difference between Approach 1 and
Approach 2. Where Approach 1 used a single all-inclusive training input for all three cities,
Approach 2 used a local customized training input for each urban region and yields better
results. The biggest challenge in this study was the lack of a height layer in the stack as
a discriminator for the algorithm. Ref. [61] stated that the presence of a height layer is
essential for cities with LCZs belonging to different height classes (low, mid and high-
rise). What is immediately noticeable in the accuracies metrics is the big difference between
values obtained in homogenous-height Thohoyandou across all LCZs and the heterogenous-
height Cape Town and East London using both Approaches 1 and 2 (Tables 6–8). Without
a height discriminator in the classification stack, there is inter-class confusion within the
compact classes as well as the open ones (Table 3). Ref. [62] addressed the height challenge
by using an abridged version of the LCZ classification that considers surface feature density
but eliminates height altogether. While this land cover-based framework by [62] was also
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proven to explain trends in urban heat islands, the local scale suffers from detail loss. This
compromise of detail over accuracy renders the output less useful and to some degree even
unsuitable for local climate models. The best way to address the height data gap challenge
while maintaining detail resolution remains using locally calibrated training as opposed to
the [62] land cover approach.

Both approaches revealed that a local customized training sample is a better fit for
the random forest LCZ classifier than using a standardized training input for all regions.
This is seen through the classifier performance being better in Approach 2 as opposed
to Approach 1. The literature would also dictate that seasonality would mostly affect
natural LCZ classes because of plant phenology [63–65]. However, as seen in the metric
tables (Tables 3, 6 and 7), urban classes are also classified to varying degrees of accuracy
at different seasons. While the higher short-ware infrared (SWIR) bands are always the
most important in the automated LCZ discrimination protocol, the lower bands range from
minimally important to completely negligible. Studies by [66,67] isolate the variations in
band priority for different seasons as a function of the physical properties of surface features.
This is not limited to biotic but also abiotic features such buildings. The multitemporal
classification was the most accurately classified of all classifications. Ref. [68] stated that the
effects of seasonality are addressed by taking a multitemporal stack which covers classing
during all stages of annual variability. While the actual seasons are classified to varying
degrees, the multitemporal local customized training would still be more representative of
the LCZ classes than using a single image from any season.

The size of the pixel also determines the accuracy. As such, a contextual classifier
(NF) significantly improves the accuracy of the model [69]. While applying a neighbor-
hood function does not change the pixel of the image, it reduces the level of detail in the
classification output. This is seen by visually looking at the raw data output (Figure 9) as
compared to the NF output (Figure 12). The fragmentation is less apparent when the pixel
size is higher than 100 m, as seen when the WUDAPT online generator is used [66]. The
disadvantage is that classifying LCZ with a local-scale pixel size (100 m) reduces the level of
detail that that would otherwise be found in using higher-resolution imagery, which in this
study was 10 m. This is crucial while working with urban climate models. The challenge in
using a contextual classifier is in finding a kernel size that balances detail, accuracy and
aesthetic for the specific goal for which the classification is intended to be used. While
for the purpose of this study, the aim of the NF was to achieve the highest accuracy, the
nested algorithm is flexible enough to modify the kernel size should the purpose of the
classification be different.

An application of these methods in future studies should consider using more training
samples for the less represented classes. In addition, whether the accuracy in Thohoyandou
would improve if a height discriminator is part of the protocol is worth exploring further.
Height is definitely recommended as an important addition to the classification stack for
East London, Cape Town or any other city with mid- and high-rise classes. The findings of
this particular study as well as the methodological protocols would be recommended for
adoption by any future study that aims at studying UHIs in the African context, particularly
investigating the spatial correlation between the patterns that are observed in the UHIs
with the underlying LCZ classification.
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Abstract: Urban growth, typified by conversion from natural to built-up impervious surfaces, is
known to cause warming and associated adverse impacts. Local climate zones present a standardized
technique for evaluating the implications of urban land use and surface changes on temperatures of
the overlying atmosphere. In this study, long term changes in local climate zones of the Bulawayo
metropolitan city were used to assess the influence of the city’s growth on its thermal characteris-
tics. The zones were mapped using the World Urban Database and Access Portal Tool (WUDAPT)
procedure while Landsat data were used to determine temporal changes. Data were divided into
1990 to 2005 and 2005 to 2020 temporal splits and intensity analysis used to characterize transforma-
tion patterns at each interval. Results indicated that growth of the built local climate zones (LCZ)
in Bulawayo was faster in the 1990 to 2005 interval than the 2005 to 2020. Transition level intensity
analysis showed that growth of built local climate zones was more prevalent in areas with water, low
plants and dense forest LCZ in both intervals. There was a westward growth of light weight low rise
built LCZ category than eastern direction, which could be attributed to high land value in the latter.
Low plants land cover type experienced a large expansion of light weight low rise buildings than the
compact low rise, water, and open low-rise areas. The reduction of dense forest was mainly linked
to active expansion of low plants in the 2005 to 2020 interval, symbolizing increased deforestation
and vegetation clearance. In Bulawayo’s growth, areas where built-up LCZs invade vegetation and
wetlands have increased anthropogenic warming (i.e., Surface Urban Heat Island intensities) in the
city. This study demonstrates the value of LCZs in among others creating a global urban land use land
cover database and assessing the influence of urban growth pattern on urban thermal characteristics.

Keywords: WUDAPT; thermal environment; urban climate; local climate zones; intensity analysis;
urban growth

1. Introduction

Urban areas continue to expand in population and built-up extent, with faster rates
in developing countries [1–6]. Whereas urban growth is often considered as a sign of
economic vitality [3], its adverse impacts that include increased air pollution, Surface
Urban Heat Islands, dust and haze, significantly influence urban micro- and macro-climate
and affect urban environmental quality and human health [7,8]. Globally, urbanization
has caused climate modifications, most evident in higher temperatures in urbanized than
the non-urbanized surroundings [9–13]. Such growth often exacerbates heat stress in the
already warming (due to global climate change) urban areas, leading to deterioration of
outdoor thermal comfort [14]. Urban growth and associated surface changes induce near-
surface warming, which increases energy and water demand due to search for indoor and
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outdoor thermal comfort [15–18]. Hence, urban growth assessment techniques that consider
both surface and near surface characteristics and atmospheric gas/pollutant emissions are
valuable in determining the influence of anthropogenic processes on the urban thermal
emissions to inform sustainable urban growth.

Remote sensing offers a variety of data for analyzing spatial and temporal effects
of urban land surface changes on the urban thermal environment. This has largely been
facilitated by advances in sensor development that has improved the quality and avail-
ability of remotely sensed data. For instance, missions such as Landsat offer large archival
data spanning as far back as 1972 at reasonable and improved radiometric, spectral and
spatial resolution, valuable for assessing both large scale and localized temporal and multi-
temporal landscape and environmental patterns [19–23]. A large body of literature has
investigated the impact of land use land cover (LULCs) changes on surface and near surface
temperature, e.g., Kumar and Shekar [24] and Uddin et al. [25]. These studies have indi-
cated that impervious, bare and built-up surfaces result in urban warming while vegetation
and water bodies act as thermal sinks. However, whereas LULC-based techniques and
surface characterization schemes account for the contributions of land surface changes to
temperature dynamics, they often exclude other anthropogenic contributions such as emis-
sion, which are key drivers of temperature changes associated with urban growth. Hence,
schemes that account for both land surface characteristics and gas emissions/pollutants as
drivers of changes in the thermal environment are necessary to adequately explain climatic
changes in such complex environments.

Due to the dependence on LULC schemes, studies on effects of urbanization on
temperature have mostly defined Surface Urban Heat Island (SUHI) as the difference
between “urban” and “rural” temperature [26–31]. In such studies, rural and urban are
vaguely defined by differences in population and built-up extent in a manner that is not
universal [32–34]. However, this separation is no longer always clear cut as traditional and
non-traditional urban and rural land uses increasingly continue to coexist [33]. The tradi-
tional classification scheme is area specific, making it difficult to make global comparisons
as LULC characteristics vary between cities of the same country and between countries.
However, analysis based on Local Climate Zones (LCZ) provide understanding of urban
structures and land uses in a globally standardized manner, useful for understanding the
influence of urbanization on urban climate [33–35]. The LCZ scheme is local and climatic in
nature considering surface cover, three dimensional surface structures (such as height and
density of buildings and vegetation) as well as anthropogenic thermal emissions [8,35–39].
LCZs provide useful information for assessing adherence of cities to the 2030 agenda for
sustainable development Goal 11 [40] both in the form of LULC transitions and anthro-
pogenic emissions effects on climate. Hence, LCZ provide a standard basis upon which the
impacts of urban growth on the thermal environment can be monitored and assessed.

The LCZ scheme emphasizes the difference in temperature among the categories
within and between cities, thus directly linked to climate of an area, while contributing to
the creation of the global urban database [11,32]. Close association between LCZ and LST
shows that LCZs are helpful for examination of evolution of SUHI over time [41]. LCZs are
more conducive to analysis and less prone to confusion because they highlight common ex-
posure characteristics and invite physically based explanations of SUHI magnitude [42–49].
Studies which used LCZs in SUHI analysis mostly focused on short temporal scales
such as diurnal, seasonal and annual, e.g., United Nations General Assembly [40] and
Ardiyansyah et al. [49]. Focus on long term interactions between LCZs and SUHI have
remained understudied, especially in Africa. Furthermore, although Stewart and Oke [33]
showed the effectiveness of LCZs in defining SUHI in cities, application of inter-LCZ
temperature difference to define SUHI has remained minimal, especially in the analysis of
long-term changes. Most of the studies that analyzed the relationship between LCZs and
SUHI either used LST to directly represent SUHI [33,46,49], reclassified LST into different
SUHI categories [45], converted LST into other forms such as Distribution Index [41] or
normalized temperatures [47,50], or used urban to rural temperature gradient [29,48,51,52].
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Of the few studies that used temperature difference between LCZ types to quantify SUHI,
most of them used the Low plants LCZ as a reference against which LSTs of other LCZs
were compared [50,53–55]. A number of studies on LCZ have mainly focused on the current
state and short-term variations as well as contributing to World Urban Database and Access
Portal Tool (WUDAPT), e.g., Cai et al. [32], Cai et al. [36], Danylo et al. [37], Qiu et al. [39],
and Demuzere et al. [56], with little effort towards understanding and explaining their long
term changes that affect a city’s SUHI intensity. In long term analysis, single date imageries
are commonly used to develop static LCZ for each year, ignoring the value of combining
multi-seasonal data for the same analysis. Long term changes provide a better under-
standing of the contribution of human activities to local climate change and assessment of
adherence of city growth patterns to Agenda 2030 for Sustainable Development Goal 11 [39].
Hence, there is a need to use multi-season imageries to generate LCZ and LCZ-based SUHI
to determine long term effects of urban growth on a city’s thermal environment.

Cities in developing countries have been experiencing growth characterized by mas-
sive changes in land surface characteristics and intensification of activities, which have the
potential to pollute the atmosphere and exacerbate changes in local thermal environments.
Although the trends have been observed in different parts of the world, actual changes
vary between and within countries, triggering the need for detailed and city-specific assess-
ments. Hence, in-depth understanding of a city’s specific influences on LCZ is important
for ensuring that further development is climate smart and sustainable. However, available
literature on long term LCZ changes [52,57–59] uses the traditional “from to” change de-
tection approach which lacks in depth analysis to provide detailed understanding of long
term LCZ transitions and their potential impacts on local climate. Although not yet applied
to understand long term LCZ transitions, in depth analysis of changes based on transition
matrices of different periods is better done using intensity analysis than the traditional
“from to” change detection approach. Intensity analysis is useful for effecting classifica-
tions of different time intervals to understand sizes and intensities of temporal changes
among categories [60–63], as it provides details on whether transition from one category to
another deviates from a uniform process [61]. It also identifies time intervals when rate
of change was fast or slow, identifies whether category changes were active or dormant
in a time interval and whether a category was targeted or avoided by changes during an
interval [62,64,65]. Furthermore, it analyzes land changes relative to size of category to
identify systematic transitions over time [62]. As such, it reveals information such as un-
derlying processes associated with changes which ordinary change detection conceals [66].
For instance, Alo and Pontius [67] revealed that protected areas in Ghana experienced
systematic transitions from closed forest to bare and bush fires, while Ekumah et al. [66]
revealed that between 1985 and 2017, human induced LULCs grew at the expense of natu-
ral categories in the Densu Delta, Sukumo II and Muni Pomodze Ramssar sites in Ghana.
Intensity analysis is thus valuable for obtaining an in-depth and detailed analysis and un-
derstanding of long term LCZ changes, especially for cities such as Bulawayo where spatial
and temporal temperature patterns are not yet documented. Combining intensity analysis
and SUHI retrieval in the context of LCZ will therefore provide a detailed understanding
of the effect of urban growth patterns on the thermal environment of cities.

Hence, the aim of this study was to integrate intensity analysis and LCZ-based SUHI
retrieval to provide detailed analysis of the impact of urban growth on the thermal en-
vironment in Bulawayo metropolitan city in Zimbabwe. Specifically, this study sought
to determine long term effect of urban growth on the thermal environment using LCZ
between 1990 and 2020 in Bulawayo city, Zimbabwe. The study also utilized intensity
analysis for an in-depth assessment of the changes in LCZ in Bulawayo between 1990 and
2020. Additionally, and contrary to the broad literature that uses the between rural–urban
difference in temperature, this study enhanced the use of inter-LCZ temperature difference
approach to quantify SUHI intensity and their long term changes.
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2. Methodology

2.1. Description of the Study Area

Bulawayo is the second largest city in Zimbabwe (Figure 1). It is located to the
southeast of the country (Figure 1a) at an elevation of approximately 1358 m above sea
level. The period between October and March is hot and wet with a minimum of 16 ◦C
and maximum of 30 ◦C, with an average temperature of 25 ◦C, while the rest of the year is
cool and dry, with a minimum of 10 ◦C, maximum of 25 ◦C and average temperature of
15 ◦C [68]. Generally, the area receives erratic rainfall, with annual average precipitation of
600 mm that ranges from 199.3 mm to 1258.8 mm, typical of a semi-arid climate. Bulawayo
(Figure 1b) lies in the subtropical steppe (Bsh) according to Koppen climate classification.
The period from December to February is the wettest. Most rain falls from December
to February and the area is vulnerable to droughts due to proximity to the Kalahari
Desert [69,70].

Figure 1. Map of Africa showing the location of Zimbabwe and Bulawayo (a) and map of Bulawayo
showing distribution of training areas (b)—training sites not visible.

2.2. Field Observations of Local Climate Zones in Bulawayo

Since the WUDAPT places little emphasis on field data collection, a survey to identify
and obtain ground truth samples of LCZ categories in the study area was important to
guide digitizing of training polygons in Google Earth Field observations, which allowed
for identification of inter- and intra-category variabilities that could not be adequately
captured from Google Earth. The sample coordinates of each LCZ category (ground truth
data) were obtained between 18 and 27 October in 2020. This experience also guided
selection of training areas for the historical periods using Google Earth in the absence of
field measurements for that period. Field observations increased the validity of the analysis
instead of exclusive reliance on Google Earth retrievals. Generally, 8 LCZ categories were
identified in the study area that fit into the description of LCZs provided by Stewart and
Oke [33]. The categories were three land use-based LCZs, namely Compact low rise (LCZ3),
Open low rise (LCZ6) and Light weight low rise (LCZ7), as well as three land cover-based
LCZs, which were Dense forest (LCZA), Low plants (LCZD) and Water (LCZ G). The study
used LCZs definitions and pictorials provided by Stewart and Oke [33] as reference to
identify similar classes in the study area for global comparability.
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2.3. Multi-Temporal Remotely Sensed Datasets

Multi-temporal Landsat 5, Landsat 7 and Landsat 8 Operational Land Imager datasets
were downloaded from the United States Geological Survey’s (USGS) earth explorer website
for analysis. Cloud free imageries for the wet and dry vegetation periods were downloaded
to minimize compromising effects of atmospheric noise on image radiometric values and
LCZ mapping accuracy. Table 1 shows the imageries used for 1990, 2005 and 2020. In this
study, Landsat thermal, panchromatic as well as bands for monitoring cirrus clouds and
coastal aerosols were not used for analysis. For each year, dry and wet periods were selected
in order to capture seasonal variations in LCZ, especially in areas with vegetation. The post
rain period was chosen to represent the wet biomass period because during that period,
trees and grasses are vibrant after a rainy season. The rainy season was avoided to attain
both temporal and multi-temporal cloud free imagery. Amorim [71] indicated that Surface
Urban Heat Island intensity is influenced by responses of vegetation to rainfall patterns
before the imagery date. Amorim [71] observed that Heat Island Intensities increased
during periods of high biomass, which reduce temperatures in vegetation areas. Therefore,
precipitation patterns of up to 10 days prior to overpass (amounts and rainy days) are
shown in Table 1. Generally, the number of rainy days prior to overpass was higher in
the post-rain than other seasons, with the lowest number in the cool season. Cumulative
rainfall amounts in 10 days before overpass were also low in all seasons (less than 20 mm).

Table 1. Multi-temporal and multi-spectral remote sensing imagery used in the study.

Imagery Date Season
Days to Recent

Precipitation before
Overpass (Days)

Rainy Days in 10 Days
before Overpass (Days)

Precipitation in 10
before Overpass (mm)

Landsat 5 27 April 1990 Post rain 1.0 1.0 4.8
Landsat 7 12 April 2005 Post rain 4.0 6.06 13.1
Landsat 7 21 April 2020 Post rain 1.0 10.0 16.9
Landsat 5 14 June 1990 Cool 27.0 0.0 10.0
Landsat 5 7 June 2005 Cool 22.0 0.0 0.0
Landsat 7 24 June 2020 Cool 2.0 4.0 1.4
Landsat 5 20 October 1990 Hot 1.0 1.0 7.0
Landsat 7 21 October 2005 Hot 99.0 0.0 0.0

Landsat 8 OLI 15 October 2020 Hot 3.0 5.0 6.5

2.4. Mapping of LCZ Using Dry and Wet Season Imagery

The advantage of the LCZ scheme is that their mapping follows an easy and standard-
ized approach for mapping LCZ, which involves downloading of imagery, digitizing of
training sites (for classification and accuracy assessment) on Google Earth and supervised
classification using the random forest (RF) classifier [37,72,73]. Local Climate Zones for
Bulawayo were thus mapped following the WUDAPT L0 procedure [8,36,56,73,74]. The
procedure involves downloading suitable imagery of the study area, on-screen selection
and digitizing of training areas on Google Earth, supervised image classification using the
Random Forest (RF) Classifier and post classification accuracy assessment in SAGA GIS.
The procedure was adopted due to its use of readily available and freely downloadable im-
ageries as well as easy access to the SAGA GIS software for implementation. Additionally,
the steps have been followed in different parts of the world, making it very easy to follow.
Use of the RF classifier makes the procedure attractive as it can perform bootstrapping
analysis which is used to assess quality of the LCZ database [56,75]. The RF model is a
collection of decision trees and each tree is made up of a subset of training dataset for a
subset of predictors [73,76,77]. It is termed RF because its subsets are randomly formed. In
RF classification, the predicted value is the mode of the predictions from all trees. Main
advantages of RF are the use of both categorical and numerical values, the evaluation of
the precision of prediction, the robustness in the presence of outliers, noise, and overfitting.
The RF model can quantify the contribution of each predictor to the total spatial variability
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of the target and assigns a variable importance score to each predictor. Random forest
requires a small amount of training data, yet provides competitive results and can handle a
large volume of input data without deletion, while still capable of identifying important
variables for classification [78–83]. In addition, RF is not sensitive to over-training or noise
and is desirable for multi-source remote sensing and geographical information systems
data [75,81]. LCZ maps were produced for the years 1990, 2005 and 2020 using the same
training areas. These were collected from locations whose LULC category did not change
over time in order to eliminate the effect of differences in ground truth data on mapping
accuracy. The use of the same training areas was made possible by availability of historical
Google Earth imagery where the areas could be clearly identified at different periods. In
order to adhere to the definition of LCZ, which requires that they cover at least a hundred
meters to several kilometers to influence temperature [8,11,41], the maps were resampled
using a 5 by 5 pixels window. A LCZ must be large enough to influence temperature of
an area. In order to quantify the effect of seasonality on mapping accuracy, LCZ maps
were also produced using data for the hot and dry season for comparison with analysis
based on a combination of data from the post rain, cool dry and hot dry periods. Figure 2
provides a summary of the procedure followed. The broken arrow in the figure shows
the approach taken by previous studies which largely skip the iterative step of qualitative
accuracy assessment, further improving accuracy before change detection.

 

Figure 2. Flowchart showing summary of procedures used in this study.

2.5. Accuracy Assessment

The WUDAPT procedure automatically splits training areas into 50% for classification
and 50% for accuracy assessment. A confusion matrix is formulated in a tabular form for the
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purposes of comparing reference class labels (ground truth) with labels for corresponding
pixels on a derived classification of remote sensing imagery [83]. The diagonal values on
the matrix indicate where categories assigned on the classified map correctly corresponded
with ground truth. For example, the matrix shows the number of pixels which were
assigned same LCZ value as observed on the ground as well as those that are misallocated
following classification of remote sensing data. The confusion matrix was used to generate
indicators of accuracy at class level (Producer Accuracy and User Accuracy) as well as
at entire study area level (Overall Accuracy—OA—and Kappa—K). The use of OA and
K with the inclusion of ground data is the most common and reliable way of assessing
accuracy [84]. Accuracy assessment is important for the separation of real changes from
changes due to errors for LCZ maps of different periods. Error analysis was done for all
the study years. Accuracy was also assessed qualitatively by overlaying the produced LCZ
maps with a corresponding Google Earth imagery in combination with expert judgement.
The number of training areas was objectively and iteratively increased in areas where
marked mismatches were observed to capture for intra- and inter-class variabilities using
Google Earth.

2.6. Detection of Long-Term Changes in LCZ in Bulawayo

A 30-year period (1990 to 2020) was selected, as the study aimed at using LCZ dynam-
ics as a proxy for temperature changes in Bulawayo. The World Meteorology Organization
(WMO) recommends a minimum of 30 years for a representative climate change analysis.
The period was further split into two 15 year periods (i.e., 1990 to 2005 and 2005 to 2020) for
understanding of rapid changes that occur at local scale and for intensity analysis purposes.
Additionally, Coppin and Bauer [85] recommended a period of at least 3 years for change
detection involving forests and other vegetation types. In an urban setting, there is a mix
of rapid and slow LCZ making a period of at least 15 years enough to detect effect of all
change trajectories on the climate of an area. A post classification change detection ap-
proach was used. The approach produces a change matrix/table which shows the number
of pixels which were converted to other LCZ types or remained in the same categories in
the considered interval. For instance, the table indicated the number of pixels which were
in LCZ1 at the beginning and remained in the same as well as those that were changed to
other LCZ categories during the same time interval. Although the change matrix is useful
in depicting the quantities and directions of change, it does not adequately explain the
changes [60,85,86], hence the need for intensity analysis.

2.7. Intensity Analysis for In-Depth Characterization of LCZ Changes

Intensity analysis was used to obtain a better understanding of LCZ transitions be-
tween 1990 and 2020 in Bulawayo. It was used to assess locations and intensities of
temporal changes among categories. The analysis was done at the interval, category and
transition levels [87–90] using freely available software on Pontius Clarke University web
page (https://www2.clarku.edu/faculty/rpontius/ (accessed on 15 April 2021)). The site
provides an easy to use Excel sheet where the change matrix for a given time interval is
entered. Varga et al. [91] provide descriptions and defining equations used in the analysis
that were adopted in this study.

2.7.1. Interval Level Intensity Analysis

Interval level was used to determine overall changes per time period for the 1990 to
2005 and 2005 to 2020 time intervals. Overall changes in the interval 1990 to 2005 were
compared with those for the interval 2005 and 2020. This was important to identify which
interval had changes characterized as fast or slow. The change percentage for an interval t
is defined as in Equation (1) [91]:

St =
(size o f changes during interval t)× 100%

size o f studyarea in which changes are occurring
(1)
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St is the uniform intensity in interval t. An interval change is fast if it exceeds uniform
intensity and slow if otherwise.

2.7.2. Category Level Analysis

Changes in gross loss or gain in intensity among different categories was described
by category level intensity analysis during time interval t (where t separately represents
the two interval periods—1990 to 2005 and 2005 to 2020). Category level loss (Lti) and gain
(Gtj) during the interval t are obtained using Equations (2) and (3) as

Lti =
(size o f loss o f category i during interval t)× 100

size o f i at the start o f interval t
(2)

Gtj =
(size o f gain o f category j during interval t)× 100

size o f category j at the end o f interval t
(3)

According to [64], calculation of category persistence (Pti) is done using Equation (4):

Pti =
(size that has maintained category i during interval)× 100%

size o f spatial extent
(4)

St = Lti = Gtj for all categories i and j if changes are uniformly distributed across
spatial extent. Uniform transition assumes category i uniformly changes to other categories
during the time interval. If Lit > St then the loss of category i is active in the interval t
while loss is dormant if Lit < St. Dormant implies that the loss of category i slowed down
or stopped within the interval t. Similarly, gain of category j in the interval t is active if
Gtj > St and dormant if Gtj > St. When two intervals are considered and the status of a
change as dormant or active is same in both intervals, then the category’s loss or gain is
said to be stationary.

2.7.3. Transition Level Analysis

The analysis describes the variation in intensity with which the gain of a particular
category transitions from other categories within a time interval [60]. Transition level
intensity analysis was used to determine whether change of a category avoids or targets
other categories. If the intensity of the change from category i to category j exceeds uniform
intensity, then category i targets j otherwise it avoids.

2.7.4. Retrieval of Changes in SUHI in Response to Long Term LCZ Dynamics

Thermal data of Landsat 5, 7 and 8 were used to compute land surface temperature
(LST) for 1990, 2005 and 2020. Initially, the data were corrected of differences in solar zenith
angles. While Landsat 8 has two thermal infrared bands, a single channel technique was
applied for all the periods to minimize effects of differences in computation algorithms
on LST variations between time periods. Digital numbers of thermal data were converted
to radiances, which were then used to determine brightness temperature (Tb) and surface
temperature (Ts) using Equations (4) and (6), respectively [91–94].

Tb =
K2

ln
(

K1
Lλ

+ 1
) (5)

where K1 takes a values of 607.76, 666.09 and 774.89 W/(m2 srμm), while K2 has values of
1260.56, 1282.71 and 1321.08 W/(m2 srμm), using Landsat 5, Landsat 7 and Landsat 8 data,
respectively. A method based on spectral and blackbody radiance of the thermal infrared
band was used to obtain pixel-based land surface emissivity map (ε) [95]. Emissivity

66



Remote Sens. 2022, 14, 2060

correction was applied on brightness temperature to obtain actual land surface temperature
using Equation (6) [96].

Ts =
TB

1 +
(
λTB
ρ

)
ln ε

(6)

where λ is the central wavelength of emitted thermal radiance (11.5 μm for Landsat 5 and
Landsat 7 and 10.9 μm for band 10 of Landsat 8) and ρ is equal to 1.438 × 10−2 mK. The
procedure above was used to retrieve LST on two different dates so that independent sets
were used for training and accuracy assessment of the developed estimation algorithm.
The spatial structure of LST intensities were used for visual and quantitative analysis of
changes which occurred between 1990 and 2020.

Stewart and Oke [33] defined SUHI as the difference in LST between LCZs. In this
study, we adopted an approach by Dimitrov [97], which defined SUHI as the maximum
temperature difference between LCZs. For each year, the Surface Urban Heat Island was
computed as the difference between the average Ts of LCZ category and the mean surface
temperature of the water LCZ (LCZ G), which was identified as giving the highest LST
difference with other LCZs consistently in all years using Equation (7).

SUHILCZ = LSTLCZ X − LSTLCZ Y (7)

SUHILCZ is the SUHI derived from LST difference between other LCZs (X) and the
Water LCZ (Y). Although studies such as Stewart and Oke [33] used LCZ D as reference,
it was not applicable in this study due to the varying and opposing effects of the LCZ
in different places and seasons for daytime analysis. For instance, agricultural areas had
thermal values that vary in space and time and between seasons, rendering them as heat
sinks in some instances and heat sources in others. As such, during the growing season,
they acted as heat sinks while in the dry season, their heat mitigation value was reduced. In
other areas, they were completely removed, as they turned to dry biomass or bare soil areas.
Similarly, grasslands (also in LCZ D) vary in heat mitigation value depending on season
and maintenance, making them another example of inconsistency of LCZ D. The LCZ G
was chosen as a reference since it was the coolest and more stable than the vegetation based
categories, which have broad seasonal and long term variations in characteristics. Mean
LST per LCZ category was obtained using the Zonal Statistics overlay function in ArcGIS
version 10.2 for each year. Changes in SUHI per LCZ strata were monitored and linked
with observed changes in LCZ from 1990 to 2020 in 15-year intervals.

3. Results

3.1. LCZ Maps Based on Multi-Seasonal Image Analysis

The use of imagery for the wet and dry vegetation periods reduced the confusion
between light weight low rise and low plants in the western areas (Figure 3). The overall
classification accuracies were 98%, 98.2% and 95%, for 1990, 2005 and 2020, respectively.
Visual inspection shows that between 1990 and 2020, light weight low rise LCZ was
spread westwards into areas formerly occupied by low plants. All built local climate zones
increased in spatial coverage while low plants and dense forest LCZ decreased in coverage.
The water LCZ also decreased in coverage during the study period.

Compact low rise increased by 4.33 km2 between 1990 and 2005 and by 2.50 km2

between 2005 and 2020 (Table 2). Similarly, light weight low rise expanded by 21.27 km2

between 1990 and 2005 and by 14.25 km2 between 2005 and 2020. The open low rise LCZ
also showed the same pattern of larger increase in the 1990 to 2005 interval than in the
2005 to 2020 interval. On the other hand, the expansion rate of dense forest between 1990
and 2005 (2.91 km2 in 15 years) was smaller than the depletion rate of the LCZ between
2005 and 2020 (15.25 km2 in 15 years). Low coverage diminished faster in the 1990 to 2005
interval than in the 2005 to 2020 interval.
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Figure 3. LCZ maps produced using multi-seasonal remotely sensed data.

Table 2. Coverage of LCZ categories in 1990, 2005 and 2020.

LCZ Category
Coverage of LCZ Categories in km2 (% in Bracket)

1990 2005 2020

Compact low rise 12.84 (3.0) 17.17 (4.0) 19.67 (4.5)
Dense Forest 38.41 (8.9) 41.32 (9.5) 26.07 (6.0)

Light weight low rise 39.60 (9.1) 60.87 (14.0) 75.12 (17.3)
Open low rise 45.13 (10.4) 74.00 (17.1) 88.56 (20.4)

Water 2.06 (0.5) 1.45 (0.3) 1.26 (0.3)
Low plants 295.42 (68.2) 238.66 (55.1) 222.77 (51.4)

3.2. Changes in LCZs for Bulawayo Using Multi-Temporal (Dry and Wet) Datasets

Table 3 shows that Compact low rise increased by 1.5% between 1990 and 2005 and
a further 2.2% between 2005 and 2020, giving a 30-year expansion of 3.7%. A significant
decrease in coverage was observed in the dense forest LCZ, which experienced a net
reduction of 42% between 1990 and 2020, with greater change in the 1990 to 2005 than 2005
to 2020 periods. Generally, all built-up LCZ increased in coverage between 1990 and 2020,
with larger expansion in the light weight low rise than other built-up LCZs. Sustained
contraction was recorded in dense forest and water LCZs. The low plants LCZ, which
in this study included croplands, grasslands and parks increased by 4.3% over the entire
period, except a 0.9% decrease recorded between 2005 and 2020.

3.3. Intensity Analysis
3.3.1. Category Level Intensity Analysis for 1990 to 2005 and 2005 to 2020 Intervals

All other LCZs except compact low rise were gainers or losers in the 1990 to 2005 and
2005 to 2020 intervals (Figure 4a,b). The gain in Compact low rise LCZ was dormant in
the 1990 to 2005 interval, implying the gain stopped or slowed along the interval. In the
interval 2005 to 2020, the gain of compact low rise was active in the 2005 to 2020 interval.
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Low plants were active losers in the 1990 to 2005 interval and became dormant losers (the
loss of the class was slow or stopped along the interval) in the 2005 to 2020. The water LCZ
was an active loser in both intervals. The light weight low rise LCZ was a dormant gainer
in the initial interval, but turned into an active gainer in the interval 2005 to 2020.

Table 3. LCZ changes from 1990 to 2020 in Bulawayo.

LCZ Category
LCZ Category Changes in km2 (% in Bracket)

1990 to 2005 2005 to 2020 1990 to 2020

Compact low rise 4.33 (33.7) 2.50 (14.6) 6.83 (53.2)
Dense Forest 2.91 (7.6) −15.26 (−37.0) −12.35 (−32.1)

Light weight low rise 21.27 (53.7) 14.27 (23.5) 35.54 (89.7)
Open low rise 28.88 (64.0) 14.50 (19.7) 43.43 (96.2)

Water −0.61 (−29.8) −0.19 (−13.2) −0.81 (−39.1)
Low plants −56.77 (−19.2) −15.89 (−6.7) −72.66 (−24.6)

 

Figure 4. Category level intensity analysis for 1990 to 2005 (a) and 2005 to 2020 (b).

3.3.2. Transition Intensity of Gaining Categories Encroaching into Losing Categories

The expansion of compact low rise LCZ targeted water, open low rise and light weight
low rise between 1990 and 2005 with open low rise LCZ as the most intensely targeted
(Figure 5a). The growth of compact low rise avoided low plants and vegetation LCZs
during the same period. In the 2005 to 2020 interval, the Compact low rise LCZ continued
to target open low rise and lightweight low rise areas (Figure 5b). The intensity of transition
of water to compact low rise was greater in the interval 1990 to 2005 than 2005 to 2020. In
both intervals, the gain of compact low rise avoided low plants and dense forest LCZ areas.

The gain of light weight low rise between 1990 and 2005 targeted low plants and
avoided dense forests and open low rise water and compact low rise LCZ areas (Figure 6a).
Between 2005 and 2020, the gain of Light weight low rise LCZ continued to target low
plants while avoiding other LCZs (Figure 6b).

The gain of the dense forest LCZ in the 1990 to 2005 interval targeted low plants
(Figure 7a). This could imply growth of trees in grasslands such as parks in addition to
other tree planting efforts. The expansion of low plants LCZ targeted dense forest, open
low rise and light weight low rise, while it avoided water and compact low rise in the 2005
to 2020 interval (Figure 7b). The study also noticed slight spectral confusion between light
weight low rise and low plants, especially in the western parts of the study area.
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Figure 5. Transition intensity given gain of Compact low rise from (a) 1990 to 2005 and (b) 2005
to 2020.

 
Figure 6. Transition intensity given the gain of Light weight low rise form (a) 1990 to 2005 and
(b) 2005 to 2020.

Figure 7. Transition intensity given (a) gain of dense forest from 1990 to 2005 and (b) low plants from
2005 to 2020.
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The gain of open low rise LCZ in the 1990 to 2005 interval targeted low plants
(Figure 8a), while in the interval 2005 to 2020 it targeted low plants, water, dense forest and
compact low rise (Figure 8b). The gain targeted dense forest more than low plants LCZ,
which could be due to the nature of the LCZ that consists of a few and well-spaced buildings
surrounded by trees and grass. Expansion into water reveals an adverse environmental
impact, with growth intrusion into wetland areas.

 

Figure 8. Transition intensity given gain of Open low rise from (a) 1990 to 2005 and (b) 2005 to 2020.

3.4. Long Term Changes in the Two Dimensional LST in Response to LCZ Changes

Figure 9 shows expansion of high temperature surfaces between 1990 and 2015. In 1990,
LSTs in the 37.8 to 43.8 ◦C range (Figure 9a) dominated the city, while LSTs below 43.8 ◦C
became uncommon in 2005 (Figure 9b). Visual inspection shows that in 2020, the LSTs
became even higher, with most areas recording values above 46.8 ◦C (Figure 9c). The water
areas were the most stable, with LSTs in the 16.8 to 37.8 ◦C range in 1990, 2005 and 2020.

 

Figure 9. Spatial structure of LSTs in Bulawayo in (a) 1990, (b) 2005 and (c) 2020.
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In each year, SUHI intensities between the Compact low rise and Low plants LCZs
were comparable, although in 2020 the Low plants were slightly warmer (Figure 10). SUHI
intensities increased with built-up density as well as density of tall buildings evidenced by
largest intensity in Compact low rise (e.g., 11.7 ◦C in 2020) and lowest in Open low rise
(10 ◦C). Dense vegetation LCZ areas were cooler than built LCZ in all the periods.

 

Figure 10. Changes in SUHI intensities across LCZs from 1990 to 2020 in Bulawayo.

4. Discussion

Mapping accuracy was very high, exceeding 95% for 1990, 2005 and 2020 LCZ maps.
Accuracy of at least 95% in LCZ mapping were also recorded by Danylo et al. [37] in
Kyiv and Lviv in Ukraine for city specific analysis, which was higher than the below 75%
accuracy they achieved using training data for multiple city mapping. The differences
in accuracy between city level and large scale LCZ mapping approaches demonstrate
that better LCZ maps are generated with city specific efforts than when training areas
of another city are used for LCZ mapping [55]. The high accuracy achieved stresses the
high performance of random forest classifier in comparison to other classifiers such as
support vector machine [75,80,81,83]. RF uses a set of classifiers that make it superior to
individual classifier based approaches [81]. The use of multi-seasonal data also enhanced
discriminability of LCZs in this study, which resulted in high yearly accuracies. LCZ maps
did not show most of the linear features such as roads and rivers due to the large filter used.
As noted by Kotharkar and Bagade [8] and Gal et al. [72], an LCZ must be large enough to
affect an area’s temperature, while use of a large filter removes linear features and expands
urban area. According to Kotharkar and Bagade [8] and Gal et al. [72], shifting to a coarser
scale results in loss of a number of LCZs.

Consistent with global trends, there was a general increase in built LCZ in Bul-
awayo between 1990 and 2020. This is a characteristic of city growth globally typified
by conversion from natural land covers to urban fabric. For instance, in Kigali, Rwanda,
Akinyemi et al. [60] observed an increase in built area from 1% in 1981 to 19% in 2002,
followed by a slight decrease to 18% in 2014. Similar to Bulawayo, and indeed other global
cities trends, Akinyemi et al. [60] showed a general increase in built-up area over a 33 year
period. Whereas the expansion of Built LCZ continued throughout the study period, it
was faster between 1990 and 2005 than between 2005 and 2020. For instance, expansion of
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compact low rise, which coincides with the Central Business District, was slower than other
built LCZs in both intervals. Between 1990 and 2020, lightweight low rise LCZ expanded
faster than other built LCZ. Generally, in Bulawayo, other built LCZ grow around the
Central Business District with light weight low rise spreading to the west and spacious
built-up LCZ spreading to the east. This limits space for further expansion of the Central
Business District (CBD), which explains slowed growth of the corresponding LCZ between
2005 and 2020.

All other LCZs were gainers or losers in the 1990 to 2005 and 2005 to 2020 intervals,
except compact low rise LCZ that was dormant in the 1990 to 2005 interval, implying the
gain stopped or slowed along the interval. In the 2005 to 2020 interval, the gain of compact
low rise was active. Low plants were active losers in the 1990 to 2005 interval and became
dormant losers (the loss of the class was slow or stopped along the interval) in the 2005
to 2020. The water LCZ was an active loser in both intervals. The light weight low rise
LCZ was a dormant gainer in the initial interval, but was an active gainer in the 2005 to
2020 interval. Sustained contraction was recorded in dense forest and water LCZs. The
low plants LCZ, which in this study included croplands, grasslands and parks increased
over the entire period (by 4.3%), although they experienced a decrease (by 0.9%) between
2005 and 2020. This shows that although the LCZ had expanded due to activities such as
deforestation, it was affected by the expansion of built-up between 2005 and 2020.

The expansion of built LCZs between 1990 and 2005 was most prevalent in the open
low rise LCZ. The growth of compact low rise avoided low plants and vegetation LCZs
during the 1990 to 2005 period. In the interval 2005 to 2020, the Compact low rise LCZ
continued to target open low rise and lightweight low rise areas. This may signify growth
of the industrial and CBD to serve the surrounding residential areas, which were also
expanding. The intensity of transition of water to compact low rise was greater in the
interval 1990 to 2005 than 2005 to 2020. In both intervals, the gain of compact low rise
also avoided low plants and dense forest LCZ areas. This may signify adherence to
the Environmental Management Act, which was signed into law in 2013 [98]. The Act
has increased protection of wetlands and the general environment with non-compliance,
especially of business enterprises attracting heavy fines. Avoidance of water areas by
expansion of compact low rise may also be a result of costs associated with construction
in wetlands.

The gain of light weight low rise between 1990 and 2005 targeted low plants and
avoided dense forests, open low rise water and compact low rise LCZ areas. Between
2005 and 2020, the gain of Light weight low rise LCZ continued to target low plants while
avoiding other LCZ. The shift from low plant to light weight low rise indicates the change
from primary production to industry based economy as the city grows. This may have
resulted in expansion of low-income residential areas, which comprise the Light weight
low rise occupied by most of the people who work in the industries and Central Business
District (Compact low rise). The expansion of light weight low rise affecting low plant
LCZ in the western direction may also indicate spreading of low income residential areas
from the Central Business District (compact low rise area), where cost of land is high.
Beside the agricultural land, grasslands are also part of the low plants that were targeted
by the expansion of the densely built-up light weight low rise. Although transition level
shows avoidance, the expansion of light weight low rise into open low rise areas during
both intervals (1990 to 2005 and 2005 to 2020) could indicate increase in built-up density
in an area which previously had few buildings surrounded by enough vegetation to be
classified as open low rise. Such areas have few buildings during early stages of land
allocation with densities increasing with time, thus changing from an open to a densely
packed built-up setting.

The gain of the dense forest LCZ in the 1990 to 2005 interval which targeted low
plants could imply growth of trees in grasslands such as parks in addition to other tree
planting efforts. Over a period of 15 years, the planted and naturally growing trees can
increase in canopy size, density and leaf area, enough to be separable from low plants. The

73



Remote Sens. 2022, 14, 2060

expansion of low plants LCZ targeted dense forest, open low rise and light weight low
rise, while it avoided water and compact low rise in the 2005 to 2020 interval. The spread
into dense forests indicates deforestation, which turns formerly dense forest LCZ into
low plants areas such as grasslands and croplands. As the light weight low rise occupied
formerly low plant areas, demand for areas such as peri-urban agriculture increased. This
may cause communities to spread activities into unused areas by clearing some of the
dense forests. Low plants targeting light weight low rise areas could be associated with
growth of vegetation within the built-up LCZ. The vegetation includes edible vegetation in
small gardens as well as lawns around households. The study also noticed slight spectral
confusion between light weight low rise and low plants, especially in the western parts
of the study area. However, most of the confusion was eliminated through the use of
multi-season data, which increased inter-class discriminability in supervised classification.

The gain of open low rise LCZ in the 1990 to 2005 interval targeted low plants while
in the 2005 to 2020 interval it targeted low plants, water, dense forest and compact low
rise. The gain targeted dense forest more than low plants LCZ, which could be due to the
nature of the LCZ that consists of a few well-spaced buildings surrounded by trees and
grass. Expansion into water demonstrates adverse environmental impact with growth
intrusion into wetlands. The expansion of open low rise into low plant areas could indicate
development of spacious settlements into formerly grassland, bare and agricultural areas.
Furthermore, the expansion into other LCZs could indicate the advantage of wealth, as
this LCZ is mostly occupied by medium to high income strata which can afford land
and develop in any area. The expansion of this spacious LCZ could also be a sign of
economic emancipation which enables residence of the city to purchase tracts of large land.
In Zimbabwe, this includes existing land owners in densely built-up low income areas
but who prefer accommodation in low density built-up areas. Due to increased demand
for such spacious settings, developments encroach into formerly protected LCZs such as
wetlands and dense forests.

Intensity analysis provided details of LCZ transitions in Bulawayo between 1990 and
2020 beyond the usual “from to” change detection analysis. It revealed the tendency of
built-up growth, which was at the expense of vegetation areas, especially low plants. The
analysis also showed that the growth of light weight low rise targeted low plant areas and
completely avoided compact low rise and open low rise areas. This could be associated
with the cost of land in the compact low rise and open low rise, mainly found in the central
business district and low-medium density residential (largely occupied by medium to
high income strata), respectively. The findings of this study emphasize the argument by
Niya et al. [63] that intensity analysis clarifies substantial causes and processes of land
use changes. Additionally, in agreement with Huang et al. [66], intensity analysis can
assess evidence of a particular change and help develop hypothesis concerning processes
of change.

High temperature surfaces expanded while LST temperatures increased between 1990
and 2015. According to Nayak and Mandal [99], urbanization causes temperature change
due to both alteration of land use land cover and greenhouse gas concentrations. Similarly,
in this study, we attributed surface warming to both LCZ transitions and background cause
by anthropogenic activities such as industrial emissions. Blake et al. [100] also reported that
Harare was warming, despite cooling in the decade from 1900 to 2002. The expansion of
high LST areas and increase in LST intensities was largely due to replacement of natural land
covers with built-up LCZs. Buildings and impervious surfaces have high heat absorption
capacities which cause elevation of LSTs, especially where vegetation fraction and surface
wetness are low. High LSTs were recorded in compact low rise areas especially as their
coverage increased over time. This is in agreement with the sentiment that large areas of
densely packed buildings create homogeneous areas with high LST [49]. Therefore, the
growth patterns of Bulawayo have caused warming due to massive replacement of natural
surfaces with buildings and impervious surfaces.
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Each year, SUHI intensities between the Compact low rise and Low plants LCZs
were comparable, although in 2020, the Low plants were slightly warmer. This is because
field observations showed that during the hot and dry seasons, low plant LCZ areas are
characterized by dry vegetation and even bare or close to bare ground in areas that are
cleared at the end of farming seasons. On the other hand, the link between heat stress and
built-up extent is also complex, as buildings also provide shading while on the other hand
reducing ventilation leading to opposite effects on thermal comfort [100,101]. Additionally,
vegetation within built-up LCZs has a heat mitigation effect, which can reduce differences
in SUHI intensities between built-up and natural (land cover based) LCZs.

Surface Urban Heat Island intensities increased with built-up density as well as
density of tall buildings evidenced by largest intensity in Compact low rise. According
to Stewart and Oke [33], built-up LCZs vary in air temperature depending on factors
that include density and height of buildings as well as type and density of vegetation
within built-up areas. Consistent with this study, Lelovics et al. [11] stressed that LCZ2
is warmer than LCZ3, which is warmer than LCZ6. They also concluded that LCZ maps
can distinguish areas based on degree of LULC modification. Contrasts in temperature
between classes with differences in geometry/cover can exceed 10 ◦C, while classes with
few physical differences can be less than 2 ◦C [33]. Similarly, Lau et al. [14] recorded the
highest temperature (38.9 ◦C) and lowest (29.9 ◦C) in land cover LCZs in Hong Kong.
According to Qiu et al. [39], LCZ scheme considers three-dimensional surface structure and
anthropogenic parameters such as heat from human activities that influence temperature.
Based on this understanding, comparatively very high land surface temperatures and SUHI
were observed in the compact low rise area of the city, followed by the densely packed light
weight low rise while the open low rise LCZ was the coolest of the built LCZ.

Dense vegetation LCZ areas were cooler and had lower SUHI intensities than built
LCZ in all the periods. Even as vegetation cover declined, their heat mitigation value
remained remarkably high within artificial LCZs that cause SUHI intensification as the city
grows. Low plants LCZ areas were warmer than Open low rise areas in all the periods.
This could be due to the fact that the Open low rise areas constitute residents of the
middle to high income strata who have resources to ensure that vegetation around their
homes is well-maintained and healthy throughout the year. This is because vegetation in
urban areas serves as temperature refugees in streets and parks providing cooling effect
through evapotranspiration and shading [14]. According to Lu et al. [59], vegetation within
buildings reduces patch sizes of built-up LCZs thus lowering their thermal effect on the
surrounding LCZs. High SUHI in low plants LCZ contradicted with other studies such
as Shi et al. [102] and Lu et al. [59] which had low plants as heat sinks. The disparity was
because open low rise includes natural grassland areas, which in Bulawayo experienced
drying of vegetation during the hot dry season. Low plants also include bare areas and
croplands whose cover during the dry season could be bare or dry vegetation, reducing
the surface cooling effect of latent heat transfer. Therefore, spatial and temporal variations
in the thermal characteristics of low plants significantly reduced their heat mitigation
value in Bulawayo. Higher UHI in 2005 and 2020 may partly be explained by higher
average precipitation around satellite overpass dates in those years than in 1990. This is
also in tandem with Amorim [71], that the heat mitigation value of urban greenery and
SUHI varies with seasons and are increased during wet periods around overpass when the
vegetation biomass is increased.

5. Conclusions

In order to understand the effect of urban growth on the thermal environment, the
study used multi-temporal Landsat data to map LCZ with very high accuracy and retrieve
SUHI for Bulawayo metropolitan city in Zimbabwe for 1990, 2005 and 2020. LST of the
water LCZ were used as reference for quantifying SUHI intensities instead of the subjective
traditional “rural-urban” LST difference. The high LCZ mapping accuracies were attributed
to precise generation of training data and the robustness of the RF classifier, an ensemble
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based technique, compared to single classifier-based approaches. Furthermore, the use
of dry and wet biomass periods significantly improved LCZ mapping accuracy in all
years. In both intervals, i.e., 1990 to 2005 and 2005 to 2020, built LCZs monotonically
expanded at the cost of vegetation- and water-based LCZs. Intensity analysis showed that
the growth of lightweight low rise mainly targeted low plant areas. Deforestation in the city
was expressed by the gain of low plants, which targeted dense forests. Intensity analysis
also showed that the growth of compact low rise occupied mostly by low income strata
avoided eastern direction where there are compact low rise and open low rise generally
characterized by high cost per land unit. Due to expansion of built and polluting LCZs,
the SUHI intensities rose monotonically during the study period. SUHI intensities varied
between LCZs as they intensified with built-up proportion and density of tall building
while decreasing with abundance of healthy vegetation. Based on the findings, the study
concluded that human activities and growth induced LCZ changes have continued to
trigger warming in Bulawayo. SUHI retrieval based on LCZ scheme proved effective in
determining effects of urban growth on the thermal environment.
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Abstract: Using the local climate zone (LCZ) framework and multiple Earth observation input
features, an LCZ classification was developed and established for Riyadh City in 2017. Four land-
cover-type and four urban-type LCZs were identified in the city with an overall accuracy of 87%. The
bare soil/sand (LCZ-F) class was found to be the largest LCZ class, which was within the nature of
arid climate cities. Other land-cover LCZs had a lower coverage percentage (each class with <7%).
The compact low-rise (LCZ-3) class was the largest urban type, as urban development in arid climate
cities tends to extend horizontally. The daytime surface thermal characteristics of the developed
LCZs were analyzed at seasonal timescales using land surface temperature (LST) estimated from
multiple Landsat 8 satellite images (June 2017–May 2018). The highest daytime mean LST was found
over large low-rise (LCZ-8) class areas throughout the year. This class was the only urban-type LCZ
class that demonstrated a positive LST departure from the overall mean LST across seasons. Other
urban-type LCZ classes showed lower LSTs and negative deviations from the overall mean LSTs. The
overall thermal results suggested the presence of the surface urban heat island sink phenomenon as
urban areas experienced lower LSTs than their surroundings. Thermal results demonstrated that the
magnitudes of LST differences among LCZs were considerably dependent on the way the region of
interest/analysis was defined. This was related to the types of LCZ classes presented in the study area
and the spatial distribution and abundance of these LCZ classes. The developed LCZ classification
and thermal results have several potential applications in different areas including planning and
urban design strategies and urban health-related studies.

Keywords: land surface temperature; urban heat island; surface urban heat island; local climate
zones; local climate zone generator

1. Introduction

One of the major consequences of rapid urbanization and urban expansion in the 21st
century is the modification of urban climate [1] by replacing natural covers and structures
(e.g., vegetation and open areas) with urbanized formations [2], e.g., compact and high
buildings. Urbanization processes alter local landscapes in which urban/local climate
characteristics (e.g., airflow, and energy and water exchanges) are modified [3]. This creates
environments within cities that are warmer than their surroundings, which are referred
to as urban heat islands (UHIs). UHIs constitute an essential research topic in urban
climate studies and have received increasing attention as the UHI effect involves serious
environmental concerns, two of which are population growth and climate change [4].

Commonly, a UHI is quantified by the temperature difference between urban and
rural areas. One of the challenges in UHI studies is urban–rural representation because of
the lack of clear boundaries between urban and non-urban (rural) areas [5]. To overcome
this challenge, several urban climate classification schemes have been developed, including
urban terrain zones [6]; the Davenport Roughness Classification [7]; urban climate zones,
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UCZs [8]; and local climate zones, LCZs [4]. One of the main goals of these climate-based
classification frameworks is to classify local landscapes (urban and rural) based on their
surface properties (e.g., land-cover and urban geometry parameters) in such a way that
different local thermal climate characteristics within and around cities can be adequately
captured. In addition, these schemes were introduced to allow for standardized definitions
and to simplify worldwide communication on different urban studies [2,9]. The LCZ
scheme is the most recent, which extends the UCZ scheme, and is considered to be an
international standard framework for urban climate classification because of its wide range
of applications [2,9,10] and its effectiveness in urban thermal analysis [9].

Although the LCZ scheme was originally designed for UHI studies [4], it has several
potential uses in many research and application fields, including weather and climate
modeling, climate change, ecology, and urban planning [4,9]. As Zheng et al. [2] stated,
the LCZ classification is an effective means for facilitating communication among urban
planners, who are not familiar with local climate processes, and climatic researchers, who
are not familiar with urban planning practices, for a better understanding of local climate
and urban management strategies. The LCZ scheme has been applied in a wide range
of urban studies including thermal comfort, energy consumption, human health, urban
planning, and carbon emission [11,12]. For example, Verdonck et al. [13] evaluated the LCZ
classification as an assessment tool for heat stress in Belgium and showed that the LCZ
scheme is valuable when used a heat stress indicator and will help in urban planning for
extreme weather events. Kotharkar et al. [14] demonstrated similar findings by using the
LCZ scheme to explore population vulnerability to heat stress. Yang et al. [15] demonstrated
that cooling and heating loads differed among different LCZs. As Xue et al. [11] explained,
the LCZs is an important tool that can be employed in many research areas related to urban
climate. This is because the LCZ scheme provides a means for classifying urban areas
into different local climate zones, and allowing studies across different applications to
document and compare results in a standardized way [11]. LCZ classification has extended
the concept of urban–rural temperature differences to the neighborhood level (i.e., zone
differences) to provide more details within a city and among cities [12].

LCZ mapping/classification approaches can be grouped into four techniques [1,2,9]: in
situ measurements/sampling, satellite-image-based, GIS-based, and integrated approaches.
In balancing the advantages and disadvantages of different mapping methods, the satellite-
image-based technique is considered a fast and low-cost method for LCZ classification
since it is based on readily available data with continuous spatiotemporal coverage at
reasonable spatiotemporal resolutions [2,9]. A commonly used satellite-image-based LCZ
classification protocol is the World Urban Database and Access Portal Tools (WUDAPT)
scheme [16]. WUDAPT is a community-based project to develop, store, and share consistent
urban climate datasets around the world. WUDAPT has established a protocol to classify
the urban landscape into components using the LCZ classification scheme. This protocol
is recognized as a framework for urban climate/weather research, urban planning, and
public health worldwide as it provides a consistent, fast, reliable, and low-cost framework
(e.g., [1,2,17]). For instance, because the LCZ scheme allows many studies to examine the
spatiotemporal thermal patterns of cities using the WUDAPT framework and land surface
temperature (LST) (e.g., [1,17–19]), the WUDAPT framework enables direct exploration
of how these thermal patterns differ among cities as the urban morphology/texture is
delineated in a standardized manner. WUDAPT contributes substantially to progress in
the urban climate and planning field, as it provides standardized and detailed information
on the fabric and structure of cities globally. However, global demands for more inputs to
WUDAPT and verification of the framework’s applicability are still growing [1,17]. Never-
theless, WUDAPT involves three time-consuming steps: obtaining data, pre-processing,
and accuracy assessment [20]. Recently, Demuzere et al. [20] developed an LCZ Generator
tool that addresses these issues as it requires only a training sample and its reference date.
The LCZ Generator is a new online platform that implements the WUDAPT framework

82



Remote Sens. 2021, 13, 4526

in a reasonable time frame by using Google Earth’s engine computing environment to
perform random forest classification and automated accuracy assessment.

Despite the importance of LCZs and the availability of LCZ maps for cities becoming
an important step in facilitating urban studies [11], a climate-relevant database for the
local climate in Riyadh City has not been established, as UHI studies in Riyadh City are
limited, with only a few studies available (e.g., [21–23]). Furthermore, no studies have been
conducted for the city’s LSTs at the seasonal scale. Wang et al. [9] noted that studies related
to LCZs in arid climate cities are limited, and the LCZ scheme offers greater potential for
further understanding UHIs in these cities. Eldesoky et al. [24] showed that the suitability
of the LCZ scheme varies from one climate region to another. For LCZ classification to
be applied in arid climate cities, they recommended adding subclasses (i.e., combining
two zones into one zone) and additional observation input features to the classification
process. To contribute to the WUDAPT initiative and the promotion of LCZs for arid climate
cities [9], this work aimed to advance our knowledge about Riyadh City’s urban climate
by mapping the local climate using the LCZ classification scheme and LCZ Generator
for the first time. More specifically, the objectives were to (1) map the city LCZs and
(2) evaluate how the LST (using Landsat-8) behaves seasonally (June 2017–May 2018) in
different LCZs in order to investigate Riyadh City’s surface UHI (SUHI) phenomenon. We
further highlighted the importance of defining the region of interest, which can influence
LST differences among LCZ classes and ultimately the intensity of SUHIs.

2. Data and Methods

2.1. Study Area

Riyadh City, the capital of Saudi Arabia (Figure 1), is positioned in an arid climate
type according to the Koppen climate classification. The average air temperature of the city
ranges from 15 ◦C in winter to 35.5 ◦C in summer (Table 1). Spring is the wettest season
with an average precipitation of 22.4 mm, and summer is the driest season with an average
precipitation of <1 mm (Table 1). The city is located at an elevation of approximately
700 m (Figure S1). During the last few decades, the city has experienced significant
population growth from 80,000 in 1952 to 6,700,000 in 2015 [21,25]. Several studies have
examined changes in land cover/use (LCLU) in Riyadh City (e.g., [26–29]) and a few have
looked at future expansion (e.g., [25,30]). According to these studies, the urban area has
substantially increased over the last few decades, with a higher likelihood of significant
future expansions. For instance, population growth has led to spatial expansion of the built
environment from less than 3.5 km2 before the 1950s [21] to 1500 km2 in 2014, and it is
projected to reach 2161 km2 by 2034 [25].

UHIs in Riyadh City are a weak phenomenon [31] and have the characteristics of UHIs
in arid environments [21]. Recently, Sobrino and Irakulis (2020) [32] explored nighttime
SUHIs in 71 urban agglomerations (including Riyadh) across different climate types and
showed that arid climate cities have the lowest nighttime SUHIs. Studies have attributed
this to the high thermal similarity between semi-bare lands and built-up areas in arid
environments [33] and higher vegetation cover within urban areas [21]. Chen et al. [34]
showed that temperature differences between urban and rural areas are reduced as semi-
bare land around urban areas increases.

Table 1. Seasonal averages (1985–2020) of precipitation (Precip), mean temperature (Tmean), max-
imum temperature (Tmax), and minimum temperature (Tmin). Averages were derived from two
weather stations (Figure 1) provided by the Saudi National Center of Meteorology as monthly means.

Season Precip (mm) Tmean (◦C) Tmax (◦C) Tmin (◦C)

Winter 11.2 15.9 22.4 9.4
Spring 22.4 27.1 33.9 19.9

Summer 0.1 35.5 43.4 27.3
Fall 2.7 27.8 34.8 20.0
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Figure 1. A map showing the study area along with weather stations (green triangles), urban growth
limit phase II (white boundary), region of interest/research (black dashed box), and overlapped area
(blue dashed box) covered by Landsat-8 path 166 and 165.

However, rural areas in Riyadh City have been shown to experience a negative day-
time SUHI [21,23]. In arid desert cities, rural areas can display warmer daytime LSTs than
urban areas, resulting in a SUHI sink phenomenon [9,21]. A SUHI sink in arid environ-
ments is due to the “oasis effect” [9], as urbanization in desert cities increases vegetation
cover and water availability, which in turn lead to cooling effects by decreasing sensible
heat flux and increasing latent heat flux and shading [21]. Alghamdi and Moore [21] and
Aina et al. [23] used the urban growth boundary limit phase II (UG-II) to define the region
of interest (Figure 1), yet Aina et al. [27] found that urbanization developments in the
city do not precisely follow the UG-II. Accordingly, we defined the region of interest (i.e.,
research/analysis area) as the outer extent of the UG-II buffered by 3 km (black dashed box
in Figure 1).

2.2. LCZ Definition

The LCZ classification includes 17 classes that can be divided into two major types:
built-up/urban cover and land cover [4]. Not all LCZs can necessarily be found in a city
due to differences in urban planning and strategies (for built cover types) and climate
regimes (for land-cover types) (e.g., [1]). Given the climate and landscape of Riyadh City
(i.e., arid environment), dense trees (LCZ-A), bush and scrub (LCZ-C), and water (LCZ-G)
zones do not exist and were excluded. Some other original LCZ classes, namely compact
high-rise (LCZ-1), compact midrise (LCZ-2), lightweight low-rise (LCZ-7), sparsely built
(LCZ-9), and heavy industry (LCZ-10), had no or very few matches and were not generally
identifiable at the local climate scale used for classification (i.e., 100 m) and thus were not
included. The open midrise zone (LCZ-5) coexisted with the open high-rise zone (LCZ-4),
and both were merged into one LCZ class (LCZ-54, open midrise with open high-rise).
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As Stewart and Oke [4] explained, the LCZ system is flexible and can be adjusted to
create new subclasses (e.g., LCZ-54) using proposed LCZ properties (e.g., sky view factor,
surface cover fractions). However, Stewart and Oke (2012) [4] acknowledged that straight
alignment between LCZ properties is not necessary. Recently, Wang et al. (2018b) [1]
showed that LCZ property value ranges in desert environments do not align with the LCZ
properties proposed in the literature. Alternatively, traffic flow and variability in building
heights can be used to distinguish between adjacent/mixed LCZ classes and create a new
subclassification [4]. Accordingly, Table 2 summarizes the LCZ classification developed
and employed in this work based on the nature of Riyadh City, the authors’ knowledge of
the city, and a field survey. The suitability of this classification scheme was re-evaluated
twice during the training process and post-classification field survey.

Table 2. Adapted LCZs along with the description relative to Riyadh City.

LCZs Description

LCZ-3 Compact low-rise Closely spaced buildings 1–3 stories tall.
LCZ-54 Open midrise with Open high-rise Open arrangement of buildings ≥ 3 stories tall.
LCZ-6 Open low-rise Open arrangement of buildings 1–3 stories tall.

LCZ-8 Large low-rise Large and low buildings 1–3 stories (e.g.,
warehousing, and shopping centers).

LCZ-B Scattered trees Parks and agricultural lands with frequent trees.
LCZ-D Low plants Agricultural lands and grassy parks

LCZ-E Bare rock/paved Impervious ground (e.g., bedrock, asphalt, and
concrete).

LCZ-F bare soil/sand Pervious ground and land with construction in
progress.

2.3. LCZ Classification

The LCZ Generator was used to generate the LCZ classification. One of the main
advantages of the LCZ Generator is that the random forest classifier is fed with 33 Earth
observation input features, whereas the default WUDAPT uses only Landsat-8 data. Studies
have shown that multi-input features improve LCZ classification [20]. For instance, the
WUDAPT method tends to misclassify built-type LCZ classes in arid climate cities, even
when multitemporal and multispectral remotely sensed data are used [1]. Ren et al. [35]
explored the proficiency of the WUDAPT method over 20 Chinese cities and demonstrated
that this issue (i.e., misclassification) is largely related to a lack of building height data.
Another advantage is that the LCZ Generator provides an automated quality control
approach to evaluate training areas and identify suspicious areas that require further
attention. More information and references about the LCZ Generator can be found in
Demuzere et al. [20].

The LCZ Generator requires two inputs: training areas, and the date of the imagery
used to collect the training areas. Google Earth was used for collecting training samples.
The choice of training samples is a leading source of errors in classification processes [36].
Thus, a set of quality control strategies was applied during the digitizing of training areas
as outlined by WUDAPT and Demuzere et al. [20], including (1) avoiding mixed pixels,
feature edges, and sites experiencing changes; (2) between 5 and 15 samples for each LCZ
(9–20, in this work); (3) homogeneous spectral and surface characteristics; and (4) a less
complex polygon shape. In addition, to reduce subjectivity in distinguishing between
low-rise and midrise zones during digitizing training areas, building height data were used
and acquired from the Saudi General Authority for Survey and Geospatial Information.
The data were available for 2017 at a spatial resolution of 10 m. Accordingly, the training
samples and LCZ classification were performed for 2017 using midsummer imagery to
maintain a higher sun elevation angle to reduce shading effects.

Once the training areas file was uploaded to the LCZ Generator online platform,
a random forest classification was performed using the training samples and 33 input
features at 100 m resolution (see [20] for the list of input features). The use of multiple input
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features was within the recommendation of Eldesoky et al. [24]. The LCZ Generator applied
a three-step automated quality control on the training samples to detect samples/polygons
with (1) lower area size (below 400 m2) or complex shape, (2) abnormal average spectral
value compared to other samples in the corresponding LCZ class, and (3) pixels with
abnormal spectral values compared to their LCZ class’s average spectral value. The second
and third steps were applied simultaneously on all input features. These quality control
steps can be used to modify and adjust the initial training samples to reduce possible errors
related to training samples in the classification processes. The initial training samples can
be resubmitted to the LCZ Generator after revision and adjustment, and a minimum of
three iterations is recommended. In this work, five iterations were used, where all the
training samples passed the first two steps of quality control. Concerning the third quality
control step, it was difficult in most cases to identify the reasons for the flagged training
samples. Demuzere et al. [20] acknowledged this issue as the quality control methods are
still experimental. In our case, part of the difficulty was because the third step was applied
to all 33 input features, which were not currently available for users.

2.4. Accuracy Assessment and Filtering

An automated accuracy assessment was performed for the generated LCZ classifi-
cation using the LCZ Generator. The accuracy assessment was based on an automated
cross-validation approach using 25 bootstraps (runs). In each bootstrap (run), 70% of
the training samples (stratified random sampling) were used to train the classifier and
30% for evaluation. Five accuracy metrics were generated over the 25 bootstraps: overall
accuracy (OA), OA for urban LCZ classes only (OAu), OA of the built versus land-cover
LCZ classes only (OAbu), weighted accuracy (OAw), and F1-score. The main advantage of
the bootstrapping procedure is that the accuracy metrics are generated with confidence
intervals. For more details on accuracy metrics and bootstrapping, refer to Demuzere
et al. [37] and Demuzere et al. [20].

Although the classification was performed for features with a 100 m resolution, the
derived LCZ classification did not necessarily have homogenous structures that reflected
the local climate concept [10]. Thus, the initial classification was further filtered to account
for heterogeneity and granularity as an LCZ class does not consist of single isolated
pixels [10,37]. The LCZ Generator executes morphological Gaussian filtering using a
Gaussian kernel with varying standard deviation (σi) values for different LCZs. The σi
values are not fixed values and are expert-driven as they differ among LCZs and cities [37].
However, the current version of the LCZ Generator does not allow users to adjust σi
values. Thus, a majority filter post-classification of 3 × 3 pixels (i.e., 300 m) was used to
reduce granularity and increase homogeneous structures as implemented by WUDAPT
and several studies (e.g., [17,19,38]).

2.5. Evaluating Thermal Characteristics of LCZs Using LSTs

To examine the seasonal variations of thermal characteristics of LCZs, 40 multi-
seasonal and cloud-free Landsat-8 images (Table 3) were obtained from the United States
Geological Survey (USGS). The data were collected as level-2 surface reflectance (i.e., atmo-
spherically, and geometrically corrected), and thus, LSTs were readily available in a surface
temperature band. USGS produces this band using a single band approach with several
atmospheric parameters (e.g., atmospheric transmission, and upwelled/downwelled radi-
ance), thermal radiance band, and emissivity band. For more specific details and equations,
one can refer to Malakar et al. (2018) [39] and USGS (2021) [40]. The Landsat-8 sensor
passes over Riyadh at around 10 am (local time) in two adjacent paths (166 and 165) with a
seven-day difference (Figure 1). This was considered to be an advantage as the overlapped
area (Figure 1) could be sampled twice. To increase data representation and to account for
temporal variation in LSTs within seasons, multi-season LSTs were obtained for each season
(Table 3). This approach of multi-sampling was implemented to minimize any possible
abnormality in LSTs within seasons and to reduce potential bias related to the inclusion of

86



Remote Sens. 2021, 13, 4526

Landsat-8 thermal bands in the LCZ Generator. Since the winter season extends over two
years, LSTs from winter 2017–2018 (Table 3) were selected as more images were available
compared to winter 2016–2017. Data for spring were from 2018 due to the very limited
number of cloud-free images over the city in 2017 (only 4 out of 12 available images in
USGS). Thus, the study period for LST analysis was from June 2017 to May 2018 using
40 Landsat-8 images.

Table 3. Landsat-8 image information used for LST mapping. Cloud cover percentages are in
parentheses.

Season Acquisition Date Path/Row Acquisition Date Path/Row

Summer

20170605 (0.0) 166/43 20170723 (0.0) 166/43
20170614 (0.0) 165/43 20170801 (0.0) 165/43
20170621 (0.0) 166/43 20170808 (0.0) 166/43
20170630 (0.0) 165/43 20170817 (0.0) 165/43
20170707 (2.1) 166/43 20170824 (0.5) 166/43
20170716 (0.0) 165/43

Fall

20170902 (0.0) 165/43 20171011 (0.0) 166/43
20170909 (0.3) 166/43 20171020 (0.0) 165/43
20170918 (0.0) 165/43 20171027 (0.0) 166/43
20170925 (0.0) 166/43 20171105 (4.4) 165/43
20171004 (0.0) 165/43 20171112 (0.04) 166/43

Winter

20171207 (0.7) 165/43 20180115 (0.3) 166/43
20171214 (0.4) 166/43 20180124 (1.5) 165/43
20171223 (2.5) 165/43 20180131 (1.8) 166/43
20171230 (0.3) 166/43 20180209 (0.7) 165/43
20180108 (0.8) 165/43 20180216 (0.3) 166/43

Spring

20180523 (0.0) 166/43 20180414 (0.0) 165/43
20180507 (0.3) 166/43 20180329 (0.1) 165/43
20180430 (0.0) 165/43 20180320 (1.1) 166/43
20180421 (0.0) 166/43 20180313 (0.1) 165/43
20180304 (0.1) 166/43

To assess the differences in LSTs among LCZs, the departure of each LCZ class’s
mean LST from the mean LST of the region of interest (ROI) and the UG-II was computed.
To quantify the differences in LSTs among LCZs, pairwise comparisons were applied
using a two-sample Kolmogorov–Smirnov (K–S) test [41]. The K–S test is a nonparametric
test and was applied to assess significant differences among different LCZs in terms
of the cumulative distribution of LSTs. Although the magnitude/intensity of a UHI
(SUHI) is simply defined as the air temperature (LST) difference between urban and rural,
determining it is not a straightforward task. The current literature does not have a standard
and clear method by which urban and rural areas are defined [32]. This issue is related
to the lack of clear physical and climatic boundaries between urban and rural areas [5].
Additionally, LCZs can be found in urban and rural areas with different spatial coverages
and distributions.

Consequently, this study relied and focused on the overall patterns of LSTs, not on
the absolute magnitude of the SUHI. To investigate the nature of the SUHI, longitudinal
and latitudinal profiles of mean and standard deviation (STD) of LSTs were computed. By
analyzing the spatial patterns of both profiles, the overall spatial patterns of LSTs could
be summarized across the city and SUHI could be reorganized. To minimize possible bias
related to the size and spatial configuration of LCZs, all analyses were performed for both
the ROI and the UG-II.
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3. Results and Discussion

3.1. LCZ Classification

Figure 2 shows the obtained LCZ classification, and Figure 3 presents the distribution
of the accuracy matrices over the 25 bootstraps. The average OA, OAu, OAbu, and OAw of
the LCZ classification were 87, 87, 98, and 95%, respectively. While the average F1-score
for urban-type LCZs ranged from 59% for LCZ-54 (open midrise with open high-rise) to
90% for LCZ-8 (large low-rise), the average land-cover-type F1-score ranged from ~70% for
LCZ-E (bare rock/paved) to 95% for LCZ-F (bare soil/sand). LCZ-54 showed the lowest
average F1-score, and studies have shown that both LCZ 4 and 5 classes are challenging
to map [37]. LCZ-54 recorded a lower average F1-score (a harmonic average of the user’s
and producer’s accuracy, [37]) as the corresponding average user’s accuracy (53%) was
lower than the average producer’s accuracy (94%). LCZ-54 was often confused with LCZ-3
(compact low-rise). The confusion among urban-type LCZs, particularly when the main
distinctions among them were geometric characteristics (e.g., building heights, spacing,
and sky view factor), is a typical issue in LCZ classification due to resampling input data
at 100 m resolution and the limitation of high-quality geometric data [9,37]. Nevertheless,
the OAu indicated a fair overall accuracy (87%) for the urban-type LCZ classes, and all the
average overall accuracy indices exceeded the suggested minimum accuracy of 50% [20].
Moreover, the obtained mean OA (87%) was within the commonly recognized target
accuracy of 85% [9,42].

 
Figure 2. Developed local climate zones (LCZs) of Riyadh for 2017.
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Figure 3. Distribution of the accuracy matrices over the 25 bootstraps for the developed LCZs.
The plot was generated by the LCZ Generator, and the layout was modified for visualization.

Over the region of interest (ROI) and urban growth limit phase II (UG-II), bare
soil/sand (LCZ-F) was the largest LCZ class, covering 68 and 41% of the total areas,
respectively (Table 4). The second-largest LCZ class was compact low-rise zone (LCZ-3),
and it was the most dominant urban type within both the ROI and UG-II, covering 685
(18%) and 657 km2 (37%), respectively. LCZ-54 (open midrise with open high-rise) was
confined to the UG-II (99.6%) and only constituted 1% (17 km2) of the UG-II area. Most
of this class was found within the old city center and along the main commercial roads
(Figures 1 and 2). The main building types within this class were offices and tall residen-
tial apartment buildings. These results are consistent with the findings of Wang et al.
(2018a) [9], who found that bare soil/sand and open low-rise zones were the predominant
LCZs in Phoenix and Las Vegas, USA, as cities in desert environments tended to develop
more horizontally because of abundant land for development. LCZ-6 (open low-rise)
covered 114 km2, 67% (~77 km2) of which was within the UG-II. The zone spread mostly
in the eastern and western outskirts of the city. LCZ-8 (large low-rise) covered 156 km2,
80% (~125 km2) of which was within the UG-II. This zone was occupied mostly by light
industrial activities and was largely limited to the southeastern outskirts in compliance
with city regulations.

Table 4. Area (km2) statistic of LCZs in Riyadh for 2017.

LCZ
ROI UG-II

Area (%) Area (%)

3 685 18 657 37
54 17 <1 17 1
6 114 3 77 4
8 156 4 124 7
B 46 1 30 2
D 79 2 26 2
E 167 4 111 6
F 2633 68 714 41

Total 3897 100 1756 100

LCZ-E (bare rock/paved) accounted for 4% (6%) of the ROI (UG-II) area, consisted
predominantly of asphalt, and was mainly found alongside transportation features (e.g.,
highways, airports, parking lots). Accordingly, LCZ-E could not be regarded as a natural
cover in Riyadh City. LCZs B and D had the lowest area coverages of 46 (30 km2) and
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79 (26 km2) km2, respectively, within the ROI (UG-II). Both classes are human-made (desert
city), and LCZ-B was found over large parks and farming fields with trees (commonly
ornamental trees and palms), whereas agricultural lands and grassy parks constituted
the LCZ-D class. Within the UG-II, both zones were spatially distributed along Wadi
Hanifa (Hanifa valley, Figure 1), where agricultural sites are clustered. LCZ-D had a lower
frequency across the built-up areas as low plant cover within the city was restricted to small
neighborhoods parks, which are difficult to detect and classify at 100 m resolution. Thus,
agricultural activities are suggested as the major contributor to those land-cover classes.

3.2. LST and LCZs

The estimated morning LST demonstrated large seasonal and spatial variability
(Figure 4). Summer recorded the highest mean LST (52 ◦C), followed by fall (46 ◦C),
spring (40 ◦C), and winter (26 ◦C) within the ROI (i.e., the study area as a whole). The UG-
II experienced similar seasonal patterns with mean LSTs about one-degree lower (Figure 4).
Alghamdi and Moore [21] reported similar findings for the city’s UHI due to seasonal
changes in solar inclination. In summer (winter), the sun is at higher (lower) elevation, and
incoming radiation is more (less) direct and concentrated over smaller (larger) areas. As a
result, LSTs are higher in summer and lower in winter. The ROI displayed higher seasonal
LST variability (standard deviation) compared to the UG-II (Figure 4D). LSTs experienced
increasingly higher variability during fall, summer, spring, and winter. This pattern was
observed over both the ROI and UG-II, yet the seasonal differences in variability were
higher over the ROI (Figure 4D). The higher mean LSTs over the ROI could be explained by
its larger area and a higher presence of sand cover compared to the UG-II (Figure 1). The
latter factor might be more important, as sand warms at a higher rate during the daytime
and has high heat capacity [21]. In fact, maximum LSTs were detected over areas with
pure sand cover in all four seasons. Pan et al. [43] reported similar results in Zhangye City,
located in the northern arid region of China. These differences between the ROI and UG-II
highlighted the importance of accounting for possible bias related to the size and spatial
distribution of land cover (i.e., LCZs) in assessing SUHIs.

Figure 4. Mean winter (A), spring (B), summer (C), fall (D) estimated daytime LSTs (◦C) and the
corresponding boxplots (E) with standard deviations (squares).
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Daytime LST exhibited considerable seasonal variability among LCZ classes over both
the UG-II and the ROI (Figure 5). In summer and over the ROI, the LCZ-8, LCZ-E, and
LCZ-F classes displayed the highest mean LST of ~53 ◦C, whereas the LCZ-B class recorded
the lowest mean LST of 49 ◦C. Within the UG-II, LCZ-8 and LCZ-E classes displayed the
highest mean LST of 53 ◦C, and LCZ-B class had the lowest LST of 49 ◦C. The similarity
in summer mean LST values of LCZ-8, LCZ-E, and LCZ-B classes over both the ROI and
UG-II could be due to the observation that more than two-thirds of these classes are within
the UG-II. In fall, the highest (lowest) mean LST of 47 ◦C (43 ◦C) was recorded by the LCZ-8
(LCZ-B) class within both the ROI and UG-II. Over both the ROI and UG-II both LCZ 8 and
D classes exhibited the highest mean winter and spring LST, whereas LCZ-B and LCZ-3
classes showed the lowest mean winter and spring LST. Overall, the large low-rise class
(LCZ-8) had the highest average LST in all seasons. Other studies showed similar findings
for low-rise classes in different cities (e.g., [9,44]). LCZ-B class showed the lowest mean
LST across seasons. This class mainly consists of high-height vegetation (e.g., palms), and
thus, lower average LSTs could be related to shadowing effects.

Figure 5. Boxplots of estimated seasonal daytime LSTs for mapped LCZs in the ROI (right) and UG-II (left).

To further explore differences among the LSTs of LCZs, and between the ROI and
UG-II, the departure of each LCZ from the mean LST was calculated at ROI and UG-II
scales (Figure 6). All LCZs showed similar anomaly directions (positive/negative) over
both the ROI and UG-II and across all seasons, except the LCZ-54 class in summer, LCZ-D
in spring and summer, and LCZ-E in winter. While urban-type LCZs tended to have
large LST departure values (positive and negative) across the ROI (except LCZs 8 and
E, largely distributed within the UG-II), land-cover-type LCZs showed large departure
values over the UG-II, except the LCZ-B class. Thus, it was important to evaluate LSTs
over the UG-II to understand the urban LST variabilities/differences (UG-II) and how
urban LSTs differed from the surroundings (ROI). LCZs 3, 54, 6 (urban types), and B classes
experienced cooler (negative departure) daytime mean LST in all seasons across the ROI.
Similar results were seen across the UG-II, except for the LCZ-54 class during summer. The
LCZ-D class exhibited a lower LST than the average in summer across both the ROI and
UG-II and in spring over the UG-II. The negative departure values were larger across the
ROI for LCZs 3, 54, and B classes compared to the UG-II. This can be attributed to the lower
contribution of these classes to the ROI and the higher seasonal mean LSTs of the ROI.
These classes were largely confined to the UG-II (Table 4), which had lower seasonal mean
LSTs compared to the ROI (Figure 4D). Warm LST deviations (positive departures) were
found for the LCZ-8 class (urban-type) and all land-cover types (except LCZ-B) during
most of the seasons and across both the ROI and UG-II. For these classes, the magnitudes
of LST departures were higher over the UG-II, unlike negative LST deviations.
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Figure 6. Departure from the ROI (right) and UG-II (left) winter (blue), spring (green), summer (red),
and fall (orange) daytime mean LSTs (◦C) for each LCZ class.

To quantify LST differences among LCZs and between different areas of interest/analysis
(ROI vs. UG-II), the K–S test was applied. The results revealed that all LCZs differed
significantly in terms of their cumulative distributions of LSTs (i.e., coming from different
populations) at all seasons within both the ROI and UG-II (Figure 7, upper and mid panels).
This result suggested that the developed LCZs could identify distinctive LSTs among
classes [45]. That is, the developed LCZ classification is suitable for the city, as it groups
distinct LSTs into different zones. The K–S test also revealed significant differences among
LSTs of LCZs over the ROI and those over the UG-II across seasons (Figure 7, lower panel).
This indicated that the definition of the research/analysis area is an important aspect, as
different definitions can result in significantly different LST cumulative distributions. Such
differences might be more related to the spatial configurations of LCZ classes, as they
showed different distributions over the ROI and UG-II (Figure 2). Subsequently, different
definitions would result in different LST magnitudes and, thus, different SUHI intensity.
The results from Figures 6 and 7 revealed the developed LCZs can be used to investigate
daytime SUHIs in Riyadh City. Accordingly, the negative LST departures of urban-type and
the positive LST departures of land-cover type (excluding LCZ-B) were highly suggestive
of SUHI sink presence in Riyadh City.

Figure 7. Results of the K–S tests to compare LCZ classes within each area of interest/analysis (upper
[ROI] and mid [UG-II] panels) and between areas of interests/analysis (lower panel, ROI vs. UG-II).
Cells with “ˆ” (+) indicate significant difference at p < 0.05 (0.1) level. Cells with value of 1 indicate
no significant differences at p < 0.05 or 0.1 levels.
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To further explore the nature of daytime SUHIs (i.e., positive or negative) in the city,
mean and standard deviation (STD) of LSTs for each LCZ class were mapped, and longitu-
dinal and latitudinal profiles were evaluated (Figures 8 and 9). This approach allowed for
a more comprehensive spatial view of the LST profiles, in which LST differences between
urban and surroundings could be evaluated. To account for the observed differences in
LSTs between the ROI and UG-II due to differences in LCZs distribution, the analyses
were performed for both areas. Results in Figure 8 were in line with those in Figure 6 and
clearly showed that urban areas experienced lower daytime mean LSTs across seasons
compared to the surroundings. This indicated that daytime SUHI sink was highly evident.
Longitudinal and latitudinal LST profiles (upper and left sides of each season map in
Figures 8 and 9) provide west–east and north–south, respectively, views of mean LSTs
and indicate the presence of SUHI sink. For instance, the latitudinal (longitudinal) mean
shows the north–south (west–east) profile of LSTs and demonstrates that the mean LSTs
started at higher values over northern (western) areas and decreased toward the south
(east) over the urban area and then increased south (east) afterward. This observed pattern
was seen across all the analyzed seasons, but with different magnitudes, as summer has
higher daytime LSTs followed by fall, spring, and winter, in that order. Generally, both the
ROI and UG-II areas displayed similar profile patterns, and the UG-II tended to show a
detailed profile version of this over the ROI.

Figure 8. Seasonal mean daytime LSTs (◦C) for each LCZ along with longitudinal (right-side of each map) and latitudinal
(upper-side of each map) profiles over the ROI (upper panel) and UG-II (lower panel).
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Figure 9. As in Figure 8, but for STD (◦C).

The consistent profile patterns of low mean LSTs over urban areas across seasons
and both the ROI and UG-II agreed with the results in Figure 6. These combined results
indicated that Riyadh City had daytime SUHI sink during the studied period (June 2017–
May 2018). The urban class types of LCZs 3, 54, and 6 were where lower mean LSTs were
recorded, and these classes were what mostly constituted the urban area. The spatial
distribution of low mean LSTs (Figure 8) corresponded well with the spatial destitution
of these classes in Figure 2. Similarly, higher mean LSTs were recorded over the LCZ 8, E,
and F classes and their spatial distribution (Figure 2) was similar to that of high mean LSTs
(Figure 8). For example, a closer look at the latitudinal and longitudinal profiles showed
that mean LSTs have a peak around the middle of the profiles, and this peak parallels
the area of LCZ-8. This class had the largest positive departure from mean area LSTs
(Figure 6). This was consistent with the findings of Aina et al. [23] and Abulibdeh [46], in
which industrial lands (in our case LCZ-8) in Riyadh had the highest daytime LSTs within
the urban agglomeration. The higher values at the beginning and end of LST profiles
corresponded to areas where the LCZ-F class was primarily distributed.

Generally, profiles of STDs of LSTs showed patterns similar to those found for the
mean profiles, where lower values are over urban areas (Figure 9). LST variabilities (STDs)
were low over urban areas in all seasons over both the ROI and UG-II, and thus, the
daytime SUHI sink appears to have homogenous LSTs. In fall, LSTs had higher variability,
followed by summer and winter across most of the LCZs. Higher STD values were found
mainly over the areas of the LCZ B and D classes across seasons, with higher magnitudes
in summer and fall. The frequent small peaks along the STD profiles of LST (Figure 9)
corresponded to the areas of both classes (Figure 2). In summer and fall seasons, the lowest
mean LSTs were over both classes (Figure 8), more notably in summer. During warm
seasons, evapotranspiration is high (higher sun elevation angle), and most of the heat is
transported as latent heat [47]. Accordingly, low mean LSTs in winter were not found
across LCZs B and D (Figure 8), and both showed positive LST departure values (Figure 6)
as evapotranspiration is lower in this season. This is also combined with the observation
that both classes were distributed largely along Wadi Hanifa, which suggested there was
more heat trapped near the ground during winter. Furthermore, we noticed that there
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was a notable frequency of relatively lower LSTs over the LCZ-3 class coupled with the
presence of small parks and sparse residential vegetation, which were omitted at the 100 m
resolution. Kwarteng and Small [48] detected lower LSTs over residential areas in Kuwait
City due to cooling effects of vegetation, even when the proportion of vegetation was low.

4. Summary and Conclusions

Using the LCZ Generator platform, an LCZ classification was developed for Riyadh
City for 2017, based on multiple Earth observation input features. Eight LCZs were
identified with an overall accuracy of 87%. The bare soil/sand (LCZ-F) class was found to
be the largest LCZ class followed by the compact low-rise zone (LCZ-3), which was the
largest urban-type class. Other LCZ classes were not dominant as each covered less than
8% of the total area. This is within the expected nature of an arid climate city.

The seasonal thermal characteristics of the developed LCZs were analyzed using LSTs
estimated from 40 thermal bands (June 2017–May 2018). The results revealed that the urban
area had lower LSTs as urban-type LCZs had low LSTs and experienced a large negative
departure from the mean area LSTs across seasons. However, the large low-rise (LCZ-8)
class showed the highest seasonal LSTs and tended to demonstrate the largest positive LST
departure. The lowest LSTs were found over the scattered trees (LCZ-B) class, except in
winter, when LCZ-3 had the lowest LSTs. All the thermal analyses suggested the presence
of the SUHI sink and were consistent with the findings of previous research. Studies have
indicated that the intensity of Riyadh’s UHI has experienced a decreasing trend [21,31],
while Aina et al. [23] reported LSTs have increased. Alghamdi and Moore [21] showed
that the daytime UHI in Riyadh transitioned to a UHI sink phenomenon in the early 1990s,
which was explained by increases in vegetation cover within the urban area. This study
further provided seasonal analysis and showed that LSTs and, substantially SUHIs have
seasonal variabilities and their magnitudes depend on how the region of study/analysis is
defined. The latter is more related to the spatial distribution of LCZ classes.

The developed LCZ classification has several potential applications in different areas.
For instance, one city zoning policy requires that light industrial and large storage facilities
be limited to certain areas outside the city. The LCZ-8 class is an example of that policy, and
it illustrates how such a strategy has helped to keep higher LSTs outside the city as that
zone had the highest mean LSTs. This would also highlight the importance of a new urban
design strategy for this zone to mitigate its LSTs, such as increasing spacing and vegetation
cover. Another application of the developed LCZ classification is as data input for studies
of population vulnerability to temperature discomfort and heat stress (e.g., [14]). Other
studies have used the LCZ scheme to model and predict diseases in urban areas (e.g., [49])
as this scheme offers detailed information about urban climate. Accordingly, this developed
LCZ classification can be used to provide more insights into several urban-related issues
(e.g., health hazards and diseases) that have spatial patterns in the city, like those related
to air pollution. Detailed knowledge about these aspects would assist the efforts of urban
and health management not only to mitigate UHI/SUHI effects in the city, but also to
improve the overall life quality. For instance, a better understanding of how the current
urban structures influence the local climate, which contributes to heat stress during heat
waves, would not only help improve heat warring and response systems, but would also
help direct planning efforts for some of the mitigation strategies.

Vegetation’s negative effects on UHIs/SUHIs are well established in the literature, yet
the exact effects on Riyadh City’s UHI/SUHI have not been evaluated, and the results pre-
sented here suggest temporal variability as in the winter case. As Collins and Dronova [50]
showed, the replacement of bare soil cover (LCZ-F) with open structures and vegetation
cover could lead to cooling effects. However, abundance of vegetation cover does not
necessarily mitigate UHIs effects, as the low plant cover (LCZ-D) experienced relatively
warm LSTs in fall and winter in this work. In a study by Collins and Dronova [50], a
similar observation was found but in summer. This can be explained by the work of Li
et al. [51], as they found that the spatial configuration of green space plays an important

95



Remote Sens. 2021, 13, 4526

role in the association between LSTs and vegetation as higher fragmentation and density of
greenspace increase LSTs. These points emphasize the need for further research as they
have received limited attention in arid climate cities.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13224526/s1. Figure S1: A map showing a digital elevation model of the study area. Data
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Abbreviations

Abbreviations Full Name

LCLU Land cover/use
LCZ Local climate zones
LCZs Generator Local climate zone generator platform/tool
LST Land surface temperature
ROI Region of interest
SUHI Surface urban heat island
UG-II Urban growth boundary limit phase II
UHI Urban heat island
WUDAPT World Urban Database and Access Portal Tools
STD Standard deviation
OA Overall accuracy
OAu Overall accuracy for urban LCZ classes only
OAbu Overall accuracy of the built versus land-cover LCZ classes only
OAw Weighted accuracy
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Abstract: Sustainable development in urban areas is at the core of the implementation of the UN 2030
Agenda and the Sustainable Development Goals (SDG). Analysis of SDG indicator 11.3.1—Land-
use efficiency based on functional urban boundaries—provides a globally harmonized avenue for
tracking changes in urban settlements in different areas. In this study, a methodology was developed
to map built-up areas using time-series of Landsat imagery on the Google Earth Engine cloud
platform. By fusing the mapping results with four available land-cover products—GlobeLand30,
GHS-Built, GAIA and GLC_FCS-2020—a new built-up area product (BTH_BU) was generated for
the Beijing–Tianjin–Hebei (BTH) region, China for the time period 2000–2020. Using the BTH_BU
product, functional urban boundaries were created, and changes in the size of the urban areas
and their form were analyzed for the 13 cities in the BTH region from 2000 to 2020. Finally, the
spatiotemporal dynamics of SDG 11.3.1 indicators were analyzed for these cities. The results showed
that the urban built-up area could be extracted effectively using the BTH_BU method, giving an
overall accuracy and kappa coefficient of 0.93 and 0.85, respectively. The overall ratio of the land
consumption rate to population growth rate (LCRPGR) in the BTH region fluctuated from 1.142
in 2000–2005 to 0.946 in 2005–2010, 2.232 in 2010–2015 and 1.538 in 2015–2020. Diverged changing
trends of LCRPGR values in cities with different population sizes in the study area. Apart from the
megacities of Beijing and Tianjin, after 2010, the LCRPGR values were greater than 2 in all the cities in
the region. The cities classed as either small or very small had the highest LCRPGR values; however,
some of these cities, such as Chengde and Hengshui, experienced population loss in 2005–2010. To
mitigate the negative impacts of low-density sprawl on environment and resources, local decision
makers should optimize the utilization of land resources and improve land-use efficiency in cities,
especially in the small cities in the BTH region.

Keywords: land-use efficiency; urban sprawl; Landsat; SDG 11; Google Earth Engine

1. Introduction

According to the United Nations, at present, more than 4 billion people live in urban
areas worldwide, and this number continues to rise [1]. The global urbanization trend lead
to excessive land use change and expansion of urban land [2]. The physical growth of urban
areas is often disproportionate in relation to population growth which results in inefficient
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land use. This type of growth contradicts the principle of sustainability by leading to
several negative impacts such as fragmentation of agro-forest landscape, increase of energy
consumption and carbon emission [3]. Therefore, the efficient use of land resources is
crucial for urban sustainability from ecological and socioeconomic points of view [4].

Several indicators have been developed to examine the impact of urbanization on land
resources [5]. In 2015, the United Nations set out 17 social, economic and environmental
sustainable development goals and 169 specific targets in the Transforming Our World:
The 2030 Agenda for Sustainable Development, which will guide the global development
effort during the period 2015–2030 [6]. Among them, SDG indicator 11.3.1 measures urban
land-use efficiency (LUE), which is the ratio of the rate of consumption of urban land to
the rate of population growth [7]. The production and dissemination of the SDG 11.3.1
indicator can characterize the evolution of urban settlements. By monitoring the spatio-
temporal changes in urban land use efficiency, city authorities and decision makers can
identify new areas of growth and project demand for public goods and services. They can
also formulate policies that encourage optimal use of urban land and effectively protect
natural and agricultural lands. Therefore, the information of LUE evolution is necessary for
providing adequate infrastructure and services for improving living conditions of urban
residents, as well as preserving environmentally sensitive areas from development [4].

Previous studies of urban expansion and sprawl have mainly been based on ad-
ministrative boundaries [8,9]. However, urban areas experienced an outward expansion
exceeding their formal administrative boundaries in a large proportion of cities due to the
poor urban and regional planning and land speculation [10]. A dynamic and functional
definition of urban boundaries was proposed and applied in the LUE analysis framework
produced by UN-Habitat [7]. The use of functional urban boundaries makes it possible to
track changes across human settlements and provides a globally harmonized avenue for
tracking changes in urban settlements in different areas [11]. Unlike administrative bound-
aries, the functional urban area is defined as actual areas where urban growth happens.
Using spatial analysis approaches from the built environment measures extracted from
satellite imagery, the functional urban area can be identified [7]. Hence, the LUE indicators
can be measured using built-up area and population grid data within the boundary of
functional urban area. The produced results can represent the actual prevailing growth
trends in the city and provide accurate aggregates to better inform decision makers at local
and national levels. The use of functional urban boundaries makes it possible to track
changes across human settlements and provides a globally harmonized avenue for tracking
changes in urban settlements in different areas [11].

By collecting a wide range of information about the planet at large spatial scales,
remote sensing can complement traditional data sources to track progress in achieving
sustainable development goals and targets [12]. In particular, the development of free and
open remote sensing data and high-performance cloud-computing platforms has made it
possible to map urban built-up areas or impervious surfaces using Earth Observation data
at the global scale [13–17]. Urban land-cover products derived from remote sensing data
have been used to monitor and assess SDG 11.3.1 trends at national and global scales. The
free and open Global Human Settlement Layer data were used to estimate SDG 11.3.1 in
approximately 10,000 urban centers globally from 1990 to 2015 [11,18]. Based on the 1990,
2000 and 2010 CLUDS datasets, DMSP/OLS night-light data and census data, the spatial
heterogeneity and dynamic trend of urban expansion and population growth in mainland
China during the period 1990–2010 were analyzed in combination with SDG 11.3.1 [19].
These efforts at LUE monitoring at different spatial scales confirmed the applicability of
Earth Observation data for providing consistent information on urban SDG indicators and
informing the formulation of urban land-use policy.

However, the accuracy of Earth observation products can vary between different
regions, which can lead to uncertainties in evaluation results. Efforts have been made
to measure LUE changes using satellite data at the local city scale. Using Landsat and
SPOT images from 1996, 2001–2002 and 2011, the SDG 11.3.1 indicator was evaluated
for four South African cities, and it was demonstrated that the population growth rate
and rate of spatial expansion of small and second-tier cities in Africa was faster than that
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of large cities [20]. Ghazaryan et al. developed an automated classification approach
and monitored urban sprawl and densification processes in western Germany using SDG
Indicator 11.3.1 [21]. Spatiotemporal changes in urban land-use efficiency were analyzed
and urban land lease policy gaps were emphasized to help ensure sustainable urban growth
in fast-growing cities in Ethiopia [22].

Since the reform and opening up which began in 1978, China’s urbanization rate has
increased from 17.9% in 1978 to 60.6% in 2019 [23]. This urbanization process is constantly
accelerating and greatly promotes the nation’ s social and economic development. One
results of the country’s industrialization and urbanization over the past four decades has
been the gradual formation of large urban agglomerations or megalopolises [24,25]. The
Beijing–Tianjin–Hebei (BTH) region is the largest such urban agglomeration in northern
China. Monitoring and analyzing the dynamic changes in urban space is necessary to
understand the urban development processes in this region. Therefore, the objectives of
this study include: (1) to develop an approach to extract urban built-up areas by using
Earth observation data; (2) to analyze urban expansion processes based on remote sensing
products of built-up areas; and (3) to assess the spatial and temporal changes in urban
land-use efficiency in the cities of the Beijing–Tianjin–Hebei urban agglomeration, China.

2. Study Area and Datasets

2.1. Beijing–Tianjin–Hebei Region

The Beijing-Tianjin-Hebei (BTH) region lies between the latitudes 36◦03′ N and
42◦40′ N and the longitudes 113◦27′ E and 119◦50′ E in northern China (Figure 1). It con-
sists of Beijing and Tianjin municipalities, and 11 prefecture-level cities in Hebei Province
(Zhangjiakou, Chengde, Qinhuangdao, Tangshan, Cangzhou, Hengshui, Langfang, Baod-
ing, Shijiazhuang, Xingtai and Handan). Among them, Beijing and Tianjin are megacities
with a population of more than 10 million. The area of this region comprises 218,000 km2,
accounting for 2.3% of China’s land area. The total population of the study area in 2020 is
113 million, accounting for 7.8% of China’s total population.

Figure 1. The geographic location of the Beijing–Tianjin–Hebei region, China.

Since 2014, the coordinated development of the BTH region has become a major
national strategic policy of China. As the center of economic development in the north
of the country, the BTH region plays a significant role in China’s political and economic
development [8]. To realize the coordinated development of the region and build a world-
class urban agglomeration, the urbanization of the region should be developed in a planned
and sustainable way, which requires timely monitoring of the processes and status of urban
growth.
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2.2. Datasets

The datasets used in this study included Landsat satellite images, topographic data,
population data and administrative boundaries. Details of these datasets are described in
the following sections.

2.2.1. Landsat Imagery

The Google Earth Engine (GEE), which can process satellite and other Earth observa-
tion data, is a cloud-based computing platform [26]. The platform stores nearly 40 years
of publicly available global remote sensing images, including Landsat, Sentinel, MODIS
and DMSP/OLS satellite imagery [27]. In this study, Landsat 5 tier-1 surface reflectance
data from 2000, 2005 and 2010 and Landsat 8 data from 2015 and 2020 provided by the
Google Earth Engine were used as the main data source for built-up area extraction. These
datasets were atmospherically corrected using the GEE platform; this processing included
cloud, shadow, water and snow masks.

2.2.2. Built-Up Area Products

Four urban built-up land or land-cover products were used in this study, including
GlobeLand30, GAIA, GHS-Built and GLC_FCS-2020. These all have a spatial resolution of
30 m. The characteristics of these datasets are shown in Table 1.

The GAIA product is a global high-spatial-resolution (30 m) annual artificial sur-
face dynamic data product (1985–2018) released in 2019. GAIA is produced using the
Google Earth Engine platform together with long-time series of Landsat images (nearly
1.5 million scenes) as the main data source and auxiliary data such as night-light data and
Sentinel-1 SAR data [28]. The GAIA dataset reveals the different rates of change in artificial
impervious surface cover in major countries and regions of the world.

The Global Human Settlement Layer (GHSL) was developed by the Joint Research
Centre (JRC) and contains spatial information about human settlements at a global scale [29].
The GHSL uses the core method of symbolic machine learning (SML) for data extraction
and uses Landsat images from the past 40 years as the main data source. The GHSL is
an open and free dataset. The GHS-Built product was used in this study. This product
consists of multi-temporal data extracted from Landsat imagery (consisting of the GLS1975,
GLS1990 and GLS2000 datasets and ad-hoc Landsat 8 data for 2013/2014). There are three
types of land use classified in this product: built-up areas, non-built-up areas and water
bodies.

The GLC_FCS30-2020 data is a global 30 m land-cover product with a fine classification
system for the year 2020 [30]. The GLC_FCS30-2020 dataset is produced based on time-
series of Landsat surface reflectance data (from 2019–2020), Sentinel-1 SAR data, DEM data,
and auxiliary datasets. These data reflect the land cover types found globally (except for
Antarctica) at a spatial resolution of 30 m in 2020.

The GlobeLand30 datasets from 2000, 2010 and 2020 were used in this study. These
data include 10 land-cover types such as artificial land and bare land and cover the land
within the range 80◦ S–80◦ N. The GlobeLand30 data were mainly classified using Landsat
TM\ETM+ images and China Environmental Disaster Reduction Satellite (HJ-1) data based
on a comprehensive pixel–object–knowledge classification method [31].

The data set used in this study are built-up area mapping results from these products.
In the GAIA, GHS-Built, GLC_FCS30-2020, and GlobeLand30 products, the built-up areas
are defined as impervious, built-up, impervious surfaces, and artificial surfaces, respec-
tively. Hence, the four products are reclassified into two land cover types: non-built-up
areas and built-up areas. The non-built-up area includes all other land cover types except
built-up area, such as water, cropland, and forest. The specific reclassification schemes for
each land cover product are shown in Table 2. In order to fuse theses datasets with the
mapping results we derived using Google Earth Engine, the four built-up area products
were re-projected to the same geo-reference system consisting of the WGS-84 coordinate
system and UTM projection and resampled to a spatial resolution of 30 m.
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2.2.3. Population Data

The WorldPop project, which is funded by the Bill & Melinda Gates Foundation, aims
to offer spatial population datasets for Central and South America, Africa and Asia to sup-
port development, disaster response and health applications. The WorldPop data constitute
an open-access gridded population data set (https://www.worldpop.org/ (10 April 2021)),
produced by using a combination of machine learning and asymmetric modeling [32]. In
this study, the population datasets for China for 2000, 2005, 2010, 2015 and 2020, which
have a spatial resolution of 100 m and are based on the WGS84 geographic coordinate
system, were used. The WorldPop population totals for different countries have been
adjusted to match the corresponding official United Nations population estimates obtained
from the Population Division of the Department of Economic and Social Affairs of the
United Nations Secretariat.

2.2.4. Ancillary Datasets

The SRTM (Shuttle Radar Topography Mission) DEM is a digital elevation terrain
model published by NASA and the National Bureau of Surveying and Mapping (NIMA). It
has a spatial resolution of 30 m [33] and can be accessed directly in GEE. The administrative
boundaries, including municipal district boundaries, provincial boundaries and municipal
boundaries, can be obtained from National Geomatics Center of China (http://www.ngcc.
cn/ngcc// (6 March 2021)).

3. Methodology

3.1. Built-Up Area Extraction

Three spectral indices—the normalized difference built-up index (NDBI), normalized
difference vegetation index (NDVI) and normalized difference water index (NDWI)—
were calculated from time-series of Landsat images [34–36]. Annual composite images
were created from the optical, near-infrared, NDVI, NDBI and NDWI bands using the
‘reduce’ method by provided by GEE. The reduce method reduces a collection of images to
an image by performing operation such as summation, median, etc. pixel by pixel. Four
reduce functions—min, max, mean and median—were applied to improve the classification
accuracy [37]. Sample points were selected by visual interpretation using the GEE platform.
A stratified random sampling method was implemented with mapped land cover classes
as strata [38]. The numbers of the sample points were determined based on the areal
proportion of each land cover type. 80% of the sample points were randomly taken as
training samples and 20% as validation sample points. Elevation and slope data calculated
from the SRTM DEM were used as supplementary data; image classification was performed
using the random forest algorithm(RFA) [39]. The number of classification trees in the
random forest classifier is 500, and the remaining parameters are default. The confusion
matrix between the validation samples and the classified products was calculated and the
overall accuracy (OA) and kappa coefficients were obtained [40]. For the dichotomy of built-
up area products (built-up area and non-built-up area) in this study, OA is the accuracy
of the overall pixel being correctly classified, which can directly reflect the proportion
of the correct classification. Kappa coefficient is a statistical index that can measure the
balance of the correct classification of different categories. Omission error refers to the
pixels belonging to the built-up area but classified as non-built-up area. Commission error
refers to the pixels that is not built-up but is classified as built-up area. We tested different
strategies for splitting the training and validation samples. If the classification result meets
the requirement of OA > 0.85 and kappa > 0.8 [41,42], it was exported. The RFA was run
iteratively and classification result with the highest OA was taken as the final output. The
resolution of classification result was 30 m, and the spatial reference system was WGS-84
coordinate system and UTM projection.

The voting method is one of the most commonly used multi-classifier combination
methods [43,44] in which the category with the most votes is taken as the final classification
result. When multiple categories have the same number of votes, one of them is randomly
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selected as the final result. Based on the existing products for classifying urban built-up
land and the classification results obtained from the RFA, a multi-temporal urban built-up
area dataset was generated using the majority voting method. After the voting method had
been applied, a temporal filtering method was used to ensure that the amount of built-up
land in the product exhibited a growing trend [45]. A majority filter with a 3 × 3 window
size was used to remove isolated pixels to obtain the final built-up area products with
30 m resolution, BTH_BU 2000, BTH_BU 2005, BTH_BU 2010, BTH_BU 2015 and BTH_BU
2020 [36]. The data-processing workflow is shown in Figure 2.

 

Figure 2. The workflow used for the generation of the built-up area products in Beijing–Tianjin–Hebei
region from 2000 to 2020.

3.2. Accuracy Assessment

In order to confirm the feasibility of the BTH_BU product for urban expansion analysis
across time, it is necessary to evaluate its thematic accuracy. In this study, confusion matrix
was used to evaluate and compare the accuracy of the built-up area products [46–48]. The
comparative analysis can also provide useful information for applications of these products
in urban expansion and other fields. The confusion matrix compares the consistency of
the land cover categories in the reference data and the data to be verified at a specific
location, and then creates a two-dimensional table that compares the two (i.e., a confusion
matrix). Based on this matrix, several different indices, including the overall accuracy (OA),
kappa coefficient, omission error (OE) and misclassification error (CE), which can measure
the accuracy of the product, can be calculated [49]. The equations used to calculate these
indices are:

OA =
TP + TN

TP + FP + FN + TN
(1)

pe =
(TP + FN)·(TP + FP) + (FP + TN)·(FN + TN)

TP + FP + FN + TN
(2)
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kappa =
po − pe

1 − pe
(3)

CE =
FP

TP + FP
(4)

OE =
FN

TP + FN
(5)

where TP = true positive, TN = true negative, FP = false positive, FN = false negative and
Po = OA. In this study, a true positive result indicated that the built-up area pixels had
been correctly extracted. A true negative indicated that image pixels considered to be
non-built-up areas had been classified as not built-up areas. A false positive meant that
image pixels that did not correspond to built-up areas had mistakenly been extracted, and
a false negative meant that image pixels that did correspond to built-up areas had not been
extracted.

A total of 300 points including 150 classed as built-up land and 150 classed as non-built-
up land were randomly created for each city using ArcGIS 10.5 software (Esri, Redlands,
CA, USA). High-resolution satellite images from Google Earth obtained in the same year as
the Landsat data were used to identify the land-cover types corresponding to these random
points manually. An accuracy evaluation database was then built and used to calculate the
error matrix and accuracy assessment indicators.

3.3. Urban Growth Analysis
3.3.1. Functional City Boundary

Determining the extent of the built-up area is a prerequisite for measuring and com-
paring SDG 11.3.1. Instead of the administratively defined boundaries, the dynamic and
functional urban boundary proposed by UN-Habitat—the actual area within which ur-
ban growth occurs over a defined period of time—was adopted in our study [10]. The
functional urban boundary was obtained using several steps (Figure 3). The BTH_BU
products are reclassified based on the density of built-up area per square kilometer. When
the built-up area density is greater than 50%, it is defined as urban. If the built-up area
density is greater than 0.25 and less than 0.5, it is defined as suburban. If the built-up area
density is less than 0.25, it is considered as rural. The urban and suburban pixels were
then used to determine the fringe open spaces, which are defined as areas within 100 m of
urban and suburban pixels. A polygon was created by merging urban, sub-urban and the
fringe open space pixels. Finally, buffer that extended the area of the polygon by 25% was
created around each feature and the maximum extent of the buffer area was taken to be the
functional urban boundary [7].

 
Figure 3. Urban functional boundary extraction for the city of Hengshui in 2010. (a) reclassification
of built-up pixels, (b)delimitation of fringe open spaces, and (c) urban functional boundary creation.

3.3.2. Change in Urban Built-Up Area

After obtaining the functional urban boundaries of the 13 cities in the study area
in 2000, 2005, 2010, 2015 and 2020, the annual expansion area (AEA, km2) was used to
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quantify the amount and rate of urban expansion in our study [17]. The AE is defined as
follows:

AEA =
Aend − Astart

d
(6)

where Aend represents the urban built-up area at the end of a certain period, Astart is the
built-up area at the beginning of a period and d is the number of years between the start
and end of the period. The AEA can directly measure the annual change of built-up area
and reveal the difference of the expansion amount of a city in different stages.

3.3.3. Change in Urban Form

The changes in urban form were analyzed by calculating compactness and aggregation
indices which are spatial metrics. The compactness (C) of a city’s boundaries is an indicator
that can reflect the form of the city’s space. It is defined as:

C = 2
√

πA/P (7)

where C is the compactness of the city—that is, the compactness of the urban functional
boundary. A is the area of the city and P denotes the length of the city perimeter. The
greater the compactness value, the more compact the city is. A circle is the most compact
shape: the compactness of a space in which each part is highly compressed is 1. In contrast,
less compact shapes tend to be narrow or long. Also, the more complex a shape, the smaller
its compactness.

The aggregation index (AI) of a city is defined as:

AI =
(

gii
max → gii

)
∗ 100 (8)

where AI denotes the degree of aggregation and gii denotes the number of adjacent similar
patches of the same landscape type. The AI is calculated based on the length of the
common boundary between pixels corresponding to the same type of patch. When there
is no common boundary between any of these pixels, the degree of aggregation is the
lowest; when the common boundary between all pixels corresponding to the same type of
patch reaches its maximum value, the aggregation index is the highest. In this study, the
compactness and aggregation index for each built-up area, as defined by the functional
urban boundaries, were calculated for each time period.

3.4. Derivation of LCR, PGR and LCRPGR

The SDG 11.3.1 indicators give the ratio of the land consumption rate (LCR) to the
population growth rate (PGR). The PGR refers to the rate of population change in a
city/urban area over a given period (usually a year). The LCR is defined as the rate
of appropriation of land by urban development. The ratio of land consumption rate to
population growth rate(LCRPGR) is calculated as the ratio of LCR to PGR. SDG 11.3.1
indicators are calculated using the following formulae:

LCR =
ln
(

Urb(t+n)/Urbt

)
y

, (9)

PGR =
ln
(

Pop(t+n)/Popt

)
y

(10)

LCRPGR =
LCR
PGR

(11)

where Popt is the total population of the urban area in the past/initial year, Pop(t+n) is the
total population in the current/final year, Urbt is the total extent of the urban area (in km2)
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for the past/initial year, Urb(t+n) is the sum of the urban areas in the current/final year and
y is the number of years between the two measurement periods.

Ideally, the ratio of land consumption to the population growth rate would be equal to
1, implying that the amount of urban land is increasing at the same rate as the population.
Based on LCRPGR values, cities can be categorized into 5 types. These are shown in
Table 3.

Table 3. City classification based on the ratio of land consumption rate to population growth rate
values.

LCRPGR Value Meaning

LCRPGR < −1 the rate of population decline is greater than the rate of built-up area expansion
−1 < LCRPGR < 0 the rate of population decline is less than the rate of built-up area expansion
0 < LCRPGR < 1 the rate of population growth is greater than the rate of built-up area expansion
1 < LCRPGR < 2 the rate of built-up area expansion is 1–2 times the rate of population growth

LCRPGR > 2 the rate of built-up area expansion is greater than 2 times the rate of
population growth

4. Results

4.1. Accuracy Assessment

Accuracy evaluation indices were obtained for each of these built-up area products for
each study period (Table 4). Among the built-up area products, BTH_BU products had the
highest average OA and Kappa coefficients and the lowest average OE and CE (Table 4). It
shows that the proposed method can effectively improve the extraction accuracy of built-up
area.

Table 4. Overall accuracy assessment for the built-up area products in Beijing–Tianjin–Hebei region
from 2000 to 2020.

Product Year OA KAPPA OE CE

GAIA

2000 0.82 0.64 0.07 0.31
2010 0.84 0.67 0.05 0.29
2018 0.86 0.72 0.05 0.24

Average 0.84 0.67 0.06 0.28
GHS-Built 2000 0.87 0.75 0.04 0.22
GLC_FCS 2020 0.88 0.77 0.05 0.29

Globeland30

2000 0.84 0.68 0.05 0.28
2010 0.85 0.7 0.05 0.26
2020 0.86 0.72 0.04 0.25

Average 0.85 0.7 0.05 0.26

BTH_BU

2000 0.91 0.83 0.05 0.13
2005 0.91 0.83 0.04 0.14
2010 0.94 0.87 0.05 0.08
2015 0.93 0.86 0.04 0.10
2020 0.94 0.89 0.04 0.07

Average 0.93 0.85 0.04 0.11

Figure 4 shows the OA, kappa coefficient, OE and CE of the five remote sensing
products for each city. The classification accuracy of BTH_BU products in 11 out of 13 cities
was the highest. BTH_BU and GlobeLand30 have the smallest variability in classification
accuracy, followed by GLC_FCS and GHS-Built. GAIA has the largest variability in
classification accuracy between the different cities.
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Figure 4. Accuracy assessment results for the built-up area products for each city in the Beijing–Tianjin–Hebei region.
(a)overall accuracy, (b) kappa coefficient, (c)omission error, and (d) commission error.

4.2. Urban Growth Analysis
4.2.1. Changes in Urban Built-Up Area

Figure 5 shows the spatial pattern of urban expansion in the cities in the Beijing–
Tianjin–Hebei region. Different types of urban spatial growth, infilling, edge-expansion,
and leapfrogging, can be observed in these cities. The scattered built-up patches in subur-
ban and rural areas was gradually connected with the central urban area, and thus forming
a larger urban core in large cities.

 
Figure 5. Urban expansion modelled by built-up product (BTH-BU) in each city in the Beijing–Tianjin–Hebei region from
2000 to 2020.
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The annual expansion area (AEA) of urban built-up area showed obvious regional
differences (Figure 6). From 2010 to 2015, the AEA of the Beijing–Tianjin–Hebei built-up
area is much higher than that in other periods. The dramatic changes in these values may
indicate that a fusion between suburban patches and the core urban district or explosive
growth resulting from the sprawl of built-up areas occurred during this period.

 
Figure 6. The area (a) and annual expansion area (b,c) in the built-up area for each city in the
Beijing–Tianjin–Hebei region from 2000 to 2020.

4.2.2. Changes in Urban Form

The changes in the compactness (C) and aggregation index (AI) for each city are shown
in Figure 7. The compactness of all the cities in the Beijing–Tianjin–Hebei region shows a
downward trend, while for the aggregation index (AI) there is an overall upward trend
from 2000 to 2020 (Figure 7). The increasing trend in AI and the decreasing trend in C for all
of the cities indicate that the built-up areas in all of these cities are gradually amalgamating
and the spatial forms of the functional urban areas are becoming increasingly complex [50].

 

Figure 7. The temporal variation in (a) compactness and (b) aggregation index for each city in the
Beijing–Tianjin–Hebei region from 2000 to 2020.

4.3. Spatiotemporal Dynamics of SDG 11.3.1
4.3.1. Variations in LCR, PGR and LCRPGR

The process of urbanization in the Beijing–Tianjin–Hebei region from 2000 to 2020
was analyzed by calculating the LCR, PGR and LCRPGR values (Table 5). The LCR, PGR
and LCRPGR for the region all followed the same trend from 2000 to 2020: a decrease,
followed by an increase, followed by another decrease. The decrease and increase in the
LCRPGR during the period 2000–2015 agrees with the observed trend for all Chinese
cities [51]. As a result of development in the early decades of the 21st century, there was
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also a consistent outward spread of the urban area in the Beijing–Tianjin–Hebei urban
agglomeration. Before 2010, the rate of urban land growth was less than or similar to
urbanization rate of the population. After Beijing hosted the Olympic Games in 2008,
economic development led to rapid urban expansion in the Beijing–Tianjin–Hebei region.
From 2010 to 2015, due to the acceleration in urban expansion and population growth, the
LCR increased to 0.154, the PGR increased to 0.069 and the LCRPGR increased to 2.232. The
urbanization rate of land was 2.232 times of the urbanization rate of population. In 2014,
the National New Urbanization Plan (2014–2020) was issued by the national government and
put forward a coordinated development strategy for the Beijing–Tianjin–Hebei region. As
a guideline for China’s urbanization, the plan emphasized the importance of achieving a
more environmentally and sustainable form of urbanization. During the period 2015–2020,
the rate of increase in urban land and population urbanization slowed down, the LCR
decreased to 0.048, the PGR decreased to 0.031 and the LCRPGR decreased to 1.538.

Table 5. The temporal variation in the land consumption rate, population growth rate, and the ratio
of land consumption rate to population growth rate in the Beijing–Tianjin–Hebei region from 2000 to
2020.

Time Period LCR PGR LCRPGR

2000–2005 0.045 0.039 1.142
2005–2010 0.027 0.028 0.946
2010–2015 0.154 0.069 2.232
2015–2020 0.048 0.031 1.538

The temporal changes in the LCR, PGR and LCRPGR values of each city in the Beijing–
Tianjin–Hebei region were analyzed. In the economically developed areas such as Beijing
and Tianjin, the population growth and urban expansion were more rapid than in most
cities in Hebei province. From 2000 to 2010 and from 2015 to 2020, although Beijing, as
the capital of China, attracted a great inward flow of people, the rate of expansion of the
built-up area was less than the population growth rate and the LCRPGR values were less
than 1. Tianjin, the second largest city in the BTH region, had a higher LCRPGR value
of between 1.0 and 1.5 (Figure 8). From 2010 to 2015, the built-up areas in all the cities
in the Beijing–Tianjin–Hebei region expanded rapidly and their LCRPGR values were all
greater than 1.5. The LCRPGR values for Langfang, Cangzhou, Baoding, Zhangjiakou and
Tangshan have been increasing since 2000. By 2020, the LCRPGR values of these cities were
all greater than 2, indicating that the cities had entered a phase of extensive development.
In Qinhuangdao, the LCRPGR was greater than 2 during the period 2000–2020. Population
growth in Hengshui has been relatively slow. The population growth here was negative
from 2005 to 2010 and the absolute value of the LCRPGR from 2000 to 2020 was greater
than 3. This indicates that a balance was maintained between the rates of urban expansion
and population growth in Beijing and Tianjin. However, development in the cities in Hebei
was unbalanced, with most of these cities underwent a phase of extensive development.
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Figure 8. The temporal variation in the (a) land consumption rate, (b) population growth rate and (c) the ratio of land
consumption rate to population growth rate in each city in the Beijing–Tianjin–Hebei region from 2000 to 2020.

4.3.2. Differences in LCRPGR by City Type

We divided the 13 cities in the study into five categories based on population: very
small cities, small cities, medium cities, large cities, and megacities (Table 6). The LCRPGR
values for cities with different population sizes are shown in Figure 9.

Table 6. Classification of different types of cities in the Beijing–Tianjin–Hebei region.

Type Cities Population

Megacities Beijing, Tianjin ≥10,000,000
Large cities Shijiazhuang 5,000,000–10,000,000

Medium cities Tangshan, Qinhuangdao, Handan,
Xingtai, Baoding, Zhangjiakou 1,000,000–5,000,000

Small cities Canzhou, Langfang 500,000–1,000,000
Very small cities Chengde, Hengshui <500,000

Figure 9. Temporal variation in the ratio of land consumption rate to population growth rate in cities
with different populations in the Beijing–Tianjin–Hebei region from 2000 to 2020.
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Cities of different sizes undergone diverged urbanization processes during the study
period (Figure 9). The LCRPGR values of megacities and large cities in 2015–2020 were
lower than that before 2015, while the LCRPGR value of medium-sized cities, small cities
and very small cities in 2015–2020 is higher than that before 2015. The slowed down
sprawling development of megacities and large cities since 2015 might be attributed to the
implementation of the new urbanization policy. However, the land use efficiency remains
very low in medium, small and very small cities after 2015.

5. Discussion

5.1. Urban Growth Analysis

In this study, a new built-up area product (BTH_BU) was generated for the Beijing–
Tianjin–Hebei (BTH) region by fusing the mapping results with four available land-cover
products—GlobeLand30, GHS-Built, GAIA and GLC_FCS-2020. The accuracy of different
built-up area or land cover products varies across cities. The accuracy of built-up area
mapping mainly depends on the data sources, sample samples and classification methods
employed. BTH_BU and GAIA rely mostly on the spectral features of Landsat data and
a pixel-based classifier, whereas GHS-Built and GlobeLand30 also employ textural and
contextual information about settlements that is obtained from remote sensing images. The
GAIA and GLC_FCS-2020 uses both optical and Sentinel-1 SAR data. Our results showed
that the integrative use of optical and SAR data improved the identification of buildings
in less-dense urban areas. The sensitivity of SAR backscatter to building structures can
help distinguish bare lands or sparse vegetated lands from built-up areas which are often
confused in multispectral images [52]. By fusing the urban mapping results with four
available products with a majority voting method, the BTH_BU takes advantage of different
data products, and thus improved the accuracy of the final classification results.

Using the BTH_BU product and urban land use efficiency indicator, our results re-
vealed diverged changing trends of LCRPGR values in cities with different population
sizes in the study area. The extensive sprawling growth patterns in medium and small
sized cities of this region suggest that economical and efficient use of land resources was
neglected in urban planning and management strategies in these cities [17]. As the third
largest urban agglomeration in China, the urban sprawl trajectory of cities with different
sizes in Beijing–Tianjin–Hebei region can provide implications for other urban agglomera-
tions [9]. Moreover, the urban mapping method and spatio-temporal urban sprawl analysis
workflow using Earth observation data and geospatial technology can be applied to other
cities and urban agglomerations.

5.2. Uncertainties and Limitations

Although the urban sprawl was characterized with the LCRPGR indicator effectively
in our study, there are some limitations which should be considered. Multi-temporal Land-
sat imagery with 30 m spatial resolution was used as the main data source to extract urban
land in this study, which limits the accuracy of built-up area extraction. The application
of high resolution satellite data such as Sentinel-1/2, SPOT-5/6/7 and WorldView-2/3
may provide more detailed and accurate information on urban built-up areas [53,54]. For
built-up area data fusion, different methods such as entropy weighting and performance
weighting and the Dempster-Shafer theory can be applied in future studies [43]. When the
LCRPGR value less than 0 is obtained, it should be interpreted with cautions. If PGR is less
than 0 and LCR is greater than 0, the LCRPGR represents urban expansion and population
loss. If PGR is greater than 0 and LCR is less than 0, it represents the decrease of built-up
area and the increase of population in cities. Moreover, the indicators of SDG11.3.1 only
use land and population as indicators, which may not fully characterize the urbanization
process. Other environmental and economic indicators in SDGs can be used together
with LCRPGR to perform a more comprehensive assessment of the urban development
trajectories and trends.
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6. Conclusions

In this study, a land-cover classification method was developed using a random forest
classifier and Google Earth Engine cloud platform. The built-up area was extracted using
time-series of Landsat imagery, a DEM and other ancillary data of the Beijing–Tianjin–Hebei
region for the years 2000, 2005, 2010, 2015 and 2020. The data were also fused with four
existing land-classification products—GlobeLand30, GHS-Built, GAIA and GLC_FCS-2020
to generate the built-up products BTH_BU 2000, BTH_BU 2005, BTH_BU 2010, BTH_BU
2015 and BTH_BU 2020. An accuracy assessment produced an overall accuracy of 0.93 and
a kappa coefficient of 0.85 for the BTH_BU products. The built-up areas in all of these cities
are aggregating and the spatial forms of the functional urban areas are becoming more
complex. The spatiotemporal dynamics of the SDG 11.3.1 land-use efficiency indicators
were monitored using BTH_BU and population data. The results showed that, for the BTH
region overall, the LCRPGR values were close to 1 from 2000 to 2010 but rose to 2 or higher
after 2010. Diverged changing trends of LCRPGR values in cities with different population
sizes in the study area. The rates of land and population urbanization were found to be
relatively balanced in the megacities of Beijing and Tianjin. Except for the megacities, the
LCRPGR values were greater than 2 after 2010. The small and very small cities had the
highest LCRPGR values after 2015; however, some of these cities, such as Chengde and
Hengshui, experienced population loss. To mitigate the negative impacts of low-density
sprawl on the environment and land resources, local decision makers should optimize the
utilization of land resources and improve land-use efficiency in cities, especially in the
small cities in the Beijing–Tianjin–Hebei region.
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Abstract: Urban heat island (UHI), referring to higher temperatures in urban extents than its sur-
rounding rural regions, is widely reported in terms of negative effects to both the ecological environ-
ment and human health. To propose effective mitigation measurements, spatiotemporal variations
and control machines of surface UHI (SUHI) have been widely investigated, in particular based
on the indicator of SUHI intensity (SUHII). However, studies on SUHI frequency (SUHIF), an im-
portant temporal indicator, are challenged by a large number of missing data in daily land surface
temperature (LST). Whether there is any city with strong SUHII and low SUHIF remains unclear.
Thanks to the publication of daily seamless all-weather LST, this paper is proposed to investigate
spatiotemporal variations of SUHIF, to compare SUHII and SUHIF, to conduct a pattern classifica-
tion, and to further explore their driving factors across 305 Chinese cities. Four main findings are
summarized below: (1) SUHIF is found to be higher in the south during the day, while it is higher in
the north at night. Cities within the latitude from 20◦ N and 40◦ N indicate strong intensity and high
frequency at day. Climate zone-based variations of SUHII and SUHIF are different, in particular at
nighttime. (2) SUHIF are observed in great diurnal and seasonal variations. Summer daytime with
3.01 K of SUHII and 80 of SUHIF, possibly coupling with heat waves, increases the risk of heat-related
diseases. (3) K-means clustering is employed to conduct pattern classification of the selected cities.
SUHIF is found possibly to be consistent to its SUHII in the same city, while they provide quantitative
and temporal characters respectively. (4) Controls for SUHIF and SUHII are found in significant
variations among temporal scales and different patterns. This paper first conducts a comparison
between SUHII and SUHIF, and provides pattern classification for further research and practice on
mitigation measurements.

Keywords: surface urban heat island frequency; surface urban heat island intensity; all-weather land
surface temperature; spatiotemporal variations; factor analysis

1. Introduction

Over half of the world’s population have aggregated in urban areas [1], in particular
with the rapid development of urbanization in recent years. Urbanization brings not only
demographic and socioeconomic advancement, but also some urban environmental issues.
The transformation, from natural surface to impervious areas, introduces evident pertur-
bations to the Earth’s energy balance [2]. These perturbations can possibly be attributed
to low albedo and high thermal capacity of impervious areas compared to evaporative
vegetated cover [3,4]. Coupling with a mass of anthropogenic heat from rapid urbanization,
urban heat island (UHI), with a higher temperature in urban extents than their surrounding
areas, are reported in a large number of cities throughout the world [5–16]. The UHI is
reported to be closely associated with a wide range of environmental issues, including
air pollution [17], biodiversity reduction [18], and increased energy consumption [19,20].
Moreover, The UHI poses a potential threat to resident comfort and even human health,
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with increasing heat-related mortality [21,22], especially when heat waves strike simultane-
ously [23]. Thus, to propose effective mitigation measurements in future urban planning,
extensive exploration of the variations and controls of UHI is necessary.

According to the way and height of observation, the UHI is generally grouped into two
major categories: namely atmospheric (AUHI) and surface UHI (SUHI) [24,25]. The AUHI
includes canopy and boundary UHI [5], which are detected by ground-based and high-
altitude equipment, respectively. The sparse distribution and expensive installation of
these observation measurements pose great challenges to AUHI studies, especially on
a large scale. On the contrary, the SUHI takes advantage of thermal remote sensing with
the capability of large-scale periodic observations [26]. Therefore, SUHI is reported as
the main part of the UHI research from local to global scales [5].

Since Rao [27] first employed satellite-based data in the study of SUHI, a large num-
ber of SUHI studies have been published. Voogt and Oke [25] conducted a literature
review on the application of thermal remote sensing in urban climates, and demonstrated
their advantages in UHI studies. Streutker [28] explored the growth of SUHI in Hous-
ton, Texas from 1989 to 1999 based on an Advanced Very High Resolution Radiometer
(AVHRR). Weng et al. [29] reported that interactions between land surface temperature
(LST) and vegetation largely contribute to the spatial patterns of UHI, based on Landsat
ETM+ thermal observation. Weng et al. [30] summarized the studies of urban climates
based on remotely sensed thermal infrared (TIR) and pointed out that less attention has
been paid to the estimation of UHI parameters. Imhoff et al. [7] analyzed the relationship
between impervious surface area (ISA) and LST, and found great effects from the ecolog-
ical context on the amplitude of SUHII during the summer daytime. Schwarz et al. [31]
reported a large discrepancy and a low correlation among eleven different SUHI indica-
tors, and suggested a combination of several indicators for comprehensive SUHI studies.
Peng et al. [6] investigated SUHI across 419 global big cities and reported different driving
mechanisms between daytime and nighttime. Quan et al. [32] employed the Gaussian
volume model to explore the trajectory of SUHI in Beijing, and found temporal variations
of the UHI centroid. Zhao et al. [33] reported that the efficiency of thermal convection make
a strong contribution to the geographic variations of daytime UHI, and proposed albedo
managements as promising mitigation measurements on a large scale. Zhou et al. [34]
analyzed spatial–temporal patterns of SUHI across 32 major cities in China, and found
that vegetation and anthropogenic heat were closely related to the SUHI during summer
daytime. Lai et al. [35] proposed a four-parameter diurnal temperature cycle (DTC) model,
and characterized 354 Chinese cities into five typical temporal patterns. Manoli et al. [36]
introduced a coarse-grained model based on population and precipitation, and reported
their strong contribution to magnitude of SUHI.

Taking advantage of remote sensing, SUHI intensity (SUHII) has been widely investi-
gated. Despite considerable applications of satellite-based TIR data, TIR measurements
are largely limited by their low tolerance to cloud cover [37–41], resulting in over half
of the missing data [42]. Since there is a hard availability of daily seamless LST directly
from the TIR products, the spatial–temporal variations of SUHI frequency (SUHIF) and
its controls remain largely unknown. To compensate for missing data in the TIR products,
several methods were proposed to reconstruct seamless LST. These methods can generally
be grouped into two broad classes, namely spatial–temporal interpolation [37,41–44] and
model simulation [38–40,45]. The spatial–temporal interpolation refers to two major ways,
including gap-filling based on spatial neighboring or temporal adjacent pixels [37], and
correlation between LST and other data sources. The former way is limited by a deficiency
in adjacent pixels, while the latter one is challenged by the quality of auxiliary data [38]. In
contrast, LST reconstruction based on model simulation benefits from the stability of its
physical or semi-physical model. Liu et al. [38] proposed a hybrid ATC model on the base
of TIR LST, taking into account both the estimation accuracy and efficiency. To compensate
for the limitation of TIR, passive microwave (PMW), with the capability of penetrating
cloud, was employed to estimate all-weather LST. Zhang et al. [40] proposed a tempo-
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ral decomposition-based method including ATC, diurnal temperature cycle (DTC) and
a weather temperature component by combining TIR and PMW to reconstruct all-weather
LST. To compensate for the swath gap of PMW, Zhang et al. [39] modified this method on
the base of reanalysis data at the low–mid latitudes. Thanks to their great efforts, a daily
all-weather LST dataset proposed by Zhang et al. [39,40] for China and its surrounding
areas has recently been released.

Great efforts have been paid to SUHI studies from local to global scales. In particular,
SUHII rather than urban temperature was widely applied as an evaluation indicator in
large-scale studies [46] due to its comparability among different cities. Compared to
quantitative information from SUHII, SUHIF is a frequency indicator to show the number
of occurrences of SUHI effects during a period of time. As the annual average of SUHII
is the most popular temporal scale, the occurrences of SUHI effects during a year were
taken as the major concentration here. However, the spatiotemporal variations of SUHIF
remain largely unknown as a result of the absence of daily seamless LST. Fortunately,
the recent publication of a daily seamless LST dataset across China has provided the data
basis for the investigation on SUHIF. There are three issues about SUHIF requiring further
exploration. Frist, the spatial and temporal variations of SUHIF are not clear. Second,
the relationship between SUHII and SUHIF remains unknown. There are several questions
on their comparisons. Does high SUHII necessarily accompany high SUHIF? Is there any
city with a strong SUHII but weak SUHIF (vice versa)? Can the pattern classification
of these cities based on SUHII and SUHIF generalize their characteristics? Third, there
are some questions on their driving mechanisms which remain unclear. Are controls of
SUHII and SUHIF coincident or different? Do their driving factors vary with different
SUHI patterns?

To address the aforementioned issues, this paper proposed to compare spatial–temporal
variations between SUHII and SUHIF, to identify SUHI patterns, and to explore their driv-
ing factors across 305 Chinese cities. These comparisons can bring insights into the quanti-
tative and temporal characteristics of SUHI. Furthermore, it can provide a foundation for
further exploration, which is closely correlated to heat-related diseases and poses stronger
negative effects on human health, SUHII or SUHIF.

2. Study Area and Data

2.1. Study Area

China is located on the eastern Eurasian continent and on the western Pacific coast
(from 72◦ E to 135◦ E, from 19◦ N to 55◦ N). Thanks to its vast territory, there are great
gradients in terms of temperature and precipitation across China. Additionally, there
is significant economic and social development in China with the implementation of
the reform and opening-up policy. Considerable urbanization brings not only economic
boosts, but also great perturbations to the urban environment. Zhou et al. [5] reported that
the UHI possibly became serious issues under conditions of global warming and rapid
urbanization, especially in China. Accordingly, various natural environments and rapid
urbanization make China an ideal place to conduct studies on SUHI. A total of 305 Chinese
cities (Figure 1) with population over than 500,000 in 2018 were selected. A population
of 500,000 was utilized as the threshold for city selection due to its wide applications in
the difference of small cities and large towns.
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Figure 1. Spatial distribution of the 305 selected cities across China. The background of the map
shows Land use and land cover from MODIS MCD12Q1. The bar plot (b) shows the percentage of
these cities according to five population classifications.

2.2. Data

LST was collected from the daily 1-km all-weather LST dataset for the Chinese land-
mass and its surrounding areas [39,40,47,48], also named TRIMS LST (Thermal and Re-
analysis Integrating Moderate-resolution Spatial-seamless LST), in 2018. This dataset is
available at the National Qinghai-Tibet Plateau Science Data Center (http://data.tpdc.ac.
cn/zh-hans/, accessed on 1 July 2021). Good image quality and accuracy of TRIMS LST
were illustrated according to data validations. The consistency between TRIMS LST and
Aqua MODIS LST was validated. Compared to MODIS LST, the MAE (mean absolute
error) of TRIMS LST is 0.08 K and 0.16 K at day and night. Thanks to the advantages
of the high accuracy and seamless images, TRIMS LST provides a data foundation for
the study on SUHIF.

Land cover, land use (LULC), and Enhanced Vegetation Index (EVI) were collected
from MODIS products in 2018. LULC was collected from the annual 500-m MCD12Q1,
which was produced based on supervised classification and further post-processing. EVI
was collected from 16-Day 500-m MYD13A1 V6 (Version 6), which utilized the blue band
to mitigate effects from atmosphere contamination. These two MODIS data are available at
the Level-1 and Atmosphere Archive and Distribution System (LAADS) Distributed Active
Archive Center (DAAC) (https://ladsweb.modaps.eosdis.nasa.gov/search/, accessed on
1 July 2021).

Total precipitation (TP) was collected from ERA5-Land hourly 0.1◦ × 0.1◦ climate
reanalysis dataset at the European Centre for Medium-Range Weather Forecasts (ECWMF).
A digital elevation model (DEM) was collected from GTOPO30, a global 1-km DEM product.
GTOPO30 is available at the United States Geological Survey (https://earthexplorer.usgs.
gov/, accessed on 1 July 2021). Monthly 1-km nighttime light (NTL) was collected from
the Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer
Suite (VIIRS) Day/Night Band (DNB), available at the NOAA National Geophysical Data
Center (https://ngdc.noaa.gov/eog/download.html, accessed on 1 July 2021). Adminis-
trative boundaries for the 305 Chinese cities were collected from the Global Administrative
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Unit Layers (GAUL). The population of the selected cities was collected from the yearbook
of Chinese cities.

3. Methods

The flowchart was generally grouped into four steps, namely SUHII calculation,
SUHIF estimation, pattern classification and factor analysis (Figure 2).

 

Figure 2. Flowchart of this study. There are four steps, including SUHII calculation, SUHIF estimation, pattern classification
and factor analysis. To make it clear, Tianjin is taken as an example in the flowchart.

3.1. SUHII Calculation

SUHII is commonly defined as a temperature difference between urban and rural
areas (Equation (1)). Before SUHII calculation, two basic preparations were the definition of
these two regions and elimination of the effects from water and DEM. First, urban extents
were defined as urban land cover from MODIS LULC data within the administrative
boundaries of the selected cities. There were two major methods for defining rural extents
for SUHII, namely buffer-based and size-based methods. The buffer-based rural definition
were reported to be limited by the difficulties of buffer selection [46] and the in-adaptability
of one fixed buffer for various cities [35]. Thus, the size-based method was employed to
define rural reference with an equal size of urban extents. Before generating equal-size rural
surroundings, water and ice cover were removed to mitigate their effects on temperature.
Besides, pixels with DEM over ±50 m of the urban average were eliminated. To mitigate
the impacts from human activities, the rural reference was defined as an equal-size ring
distant to urban cores. Nighttime light (NTL) benefiting from a representation of human
impacts was applied to distinguish rural extents. As a twice-size ring was first prepared,
the median NTL of it was used to extract two equal-sized areas with a higher and lower
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NTL respectively. To keep temporal consistency, SUHII was first calculated at a daily scale,
and then temporally aggregated to seasonal and annual scales.

SUHIIi,d = LSTUrban,i,d − LSTRural,i,d , (1)

where i represents the ith city, and d represents the DOY (Date-Of-Year). LSTUrban,i,d
represents average urban LST of the ith city in the dth day.

3.2. SUHIF Estimation

To our knowledge, few studies on SUHIF were conducted due to a lack of daily
seamless LST. Therefore, the selection of the threshold for SUHI was first discussed. 1 K
was selected as the threshold to estimate SUHIF. There were three major reasons for
the selection of 1 K rather than 0 K. First, a large number of large-scale studies on SUHII
have reported that the average of SUHII was approximately 1 K [6–9,34,46,49]. Second,
the selection of 0 K as the threshold was possibly more sensitive to the accuracy of LST,
compared to 1 K. Third, the selection of the threshold was determined on the basis of
the application requirements. After determination of the threshold, SUHIF was estimated
based on daily SUHII from seamless LST under all-weather conditions. According to
the difference between temporal periods, SUHIF was estimated at annual (Equation (2))
and seasonal (Equation (3)) scales, respectively.

SUHIFannual,i = count(i f SUHIIi,d ≥ 1 K), d ∈ (0, dannual) (2)

SUHIFseason.i = count(i f SUHIIi,d ≥ 1 K), d ∈ (dseason,start, dseason,end) (3)

where i represents the ith city, and d represents the DOY (Date-Of-Year). SUHIFannual,i
represents the annual SUHIF of the ith city, SUHIFseason,i represents SUHIF at a certain
season (spring, summer, autumn and winter) of the ith city. dannual represents the number
of days in the year. dseason,start and dseason,end represent the DOY of the start and end date of
a certain season.

3.3. Pattern Classification

This paper was proposed to discuss the consistency and difference between SUHII
and SUHIF, and then to conduct a pattern classification for better characterization of urban
heat island in China. As SUHII and SUHIF represent quantity and temporal information
respectively, they were taken as features for the pattern classification. The K-means cluster-
ing algorithm, aiming at the partition of a dataset into K clusters [50], was employed to
determine the pattern classification. There were two major steps of this iterative algorithm.
First, K objects from the dataset were randomly selected as cluster centers, and each object
was divided into clusters based on its distance to the center. Second, the cluster center
was recalculated when a new object was divided into it. The second step was iterated
until no more new object was grouped into different clusters. Since the number of classes
is important in the K-means clustering algorithm, there are three reasons for the num-
ber selection. (1) According to the Gap statistics, a method to validate the efficiency of
the number, three clusters can distinguish the characteristics of the dataset. (2) Three
classes, namely the low, medium and high patterns, can not only characterize their features
but also provide meaningful information for related researchers, policymakers and even
residents who concern for the surrounding thermal environment and its heat-related illness.
(3) Great differences among these three patterns was found across 305 Chinese cities.

3.4. Factor Analysis

There were five features being selected in the factor analysis, namely EVI difference
(ΔEVI), LST, total precipitation (TP), population (Pop) and NTL. Since these factors have
been widely reported as important controls for UHI [6,7,29,33,34,36,51], a factor analysis
was conducted to explore whether they also largely contributed to the spatiotemporal
variations of SUHIF. ΔEVI was the absolute value of EVI difference between urban and rural
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extents. Two indicators for background climate, LST and TP, were the average of urban and
rural regions. NTL was estimated based on its average within urban areas. Despite various
resolutions of data sources for these factors, the spatial average within certain boundaries
makes them comparable. According to the literature review, the ordinary lest squares
(OLS) with Pearson’s correlation were reported as the dominant methods for investigating
controls for SUHI [52]. The Pearson’s correlation was utilized to explore the relationship
between these selected factors and SUHIF. The factor analysis was conducted in terms of
SUHII, SUHIF, and their comparisons. Despite great efforts on SUHII drivers, limited by
the lack of daily data, the correlation between SUHII and these factors was first conducted
at daily scales. Factor analysis for SUHIF was conducted at annual and seasonal scales.
Additionally, to determine whether the controls for SUHII or SUHIF varied among different
patterns, factor analysis was investigated in terms of pattern classification.

4. Results and Discussion

4.1. Comparison of Spatial Distribution between SUHII and SUHIF

To explore the similarities and differences of geographic variations between SUHII
and SUHIF, two major steps were conducted. They are a qualitative analysis of the over-
all distribution (Figure 3) and further quantitative estimation in terms of latitude and
climate zone-based variations (Figure 4). Figure 3 shows the overall spatial distribution
of SUHII and SUHIF across 305 Chinese cities. At daytime, SUHII is observed in an ev-
ident north–south contrast, with the higher intensity in the south and the weaker one in
the northern regions. According to the previous studies on the driving mechanism, vegeta-
tion is widely reported as an important indicator for daytime SUHII [6,8,53]. Referring to
LULC in Figure 1, a north–south contrast of vegetation distribution is found to be similar to
that of SUHII. This similar distribution possibly suggests that the difference of vegetation
distribution between northern and southern China is related to the north–south contrast of
SUHII. Conversely, an opposite distribution pattern with a weaker intensity in the south,
and a higher one in the northern areas, is found from nighttime SUHII. Despite different
city selections across China, these spatial patterns and diurnal contrasts of SUHII are
consistent with Zhou’s findings [34]. Additionally, the daytime SUHIF shows an increasing
gradient from the north to the southern regions. At night, an inverse gradient of SUHIF
is observed. SUHIF is also found to be higher in the southern regions at day, while they
are higher in the north at night. On the whole, SUHIF is observed to have similar spatial
patterns to SUHII at both day and night.

Furthermore, Figure 4 shows a quantitative analysis based on the latitudinal and
climatic variations of SUHII and SUHIF. Considering the geographic distribution of the se-
lected cities, latitudinal variations were conducted from 20◦ to 50◦ N with an interval
of 5◦. At daytime, there are three primary changing points of SUHII. Daytime SUHII
decreases from 1.14 K at the 50◦ N zone to 0.43 K at the 40◦ N zone, and rises to 3.65 K
at the 20◦ N zone. This decrease from 50◦ N to 40◦ N possibly results from different
vegetation distributions between them. According to Figure 1, vegetation cover of rural
areas in Hegang and Jiamusi (at 50◦ N zone), with high daytime SUHII, are deciduous
broadleaf forests (Figure 1), while cities at 40◦ N zone are mainly surrounded by croplands.
At night, SUHII decreases from 1.31 K at 45◦ N to 0.64 K at 25◦ N, and then increases to
1.33 K at 20◦ N. Nighttime SUHII is observed to have a less significant north–south contrast.
Latitudinal variations of SUHIF indicate similar patterns to that of SUHII, especially at
daytime. Daytime SUHIF decreases from 167.50 at 50◦ N to 121.73 at 40◦ N, and rises to 364
at 20◦ N. Accordingly, due to the latitude between 35◦ N and 20◦ N, more than 200 days in
a year are affected by SUHII over 1 K. Despite general consistency to the low north and
high south patterns of daytime SUHIF (Figure 3), latitudinal analysis provides more details
about the north–south contrast. At night, SUHIF shows greater variations from 25◦ N to
20◦ N compared to nighttime SUHII.
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Figure 3. Spatial distribution of SUHII and SUHIF at daytime (a) and nighttime (b) in China. The spatial maps in the first
row represent SUHII (a1,b1). The second row maps represent SUHIF (a2,b2).

 

Figure 4. Latitudinal and climate zone-based variations of SUHII and SUHIF at daytime and nighttime. The two maps
(a1,b1) show the latitudinal and climatic distributions of the selected cities, respectively. The plots in the first row show
latitudinal variations of SUHII (a2,a3) and SUHIF (a4,a5) based on the combination of their average and variance. The violin
plots in the second row show climate zone-based variations of SUHII (b2) and SUHIF (b3). The daytime and nighttime
patterns are represented based on red and blue colors, respectively.
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The climate zone-based variations were conducted in terms of five major climate types,
namely Temperate Monsoon (TM), Temperate Continental (TC), Subtropical Monsoon (SM),
Tropical Monsoon (Tro-M) and Plateau Mountain (PM) climate. At daytime, the average of
the climate zones from the highest to the lowest are listed as Tro-M, SM, TM, TC and PM,
with values of 3.64 K, 2.17 K, 0.81 K, −0.07 K and −1.21 K, respectively. Stronger daytime
SUHII in the monsoon climate is observed compared to that in TC and PM. In addition,
previous studies reported a larger daytime SUHII in humid-hot cities than cold-drier
ones [6,7,10]. Despite the similar climate variations on average, daytime SUHIF indicates
larger value ranges than that of SUHII. During the day, over 200 of SUHIF in the SM and
Tro-M climate means that a large number of cities in these two climate zones are influenced
by SUHI for more than 200 days in a year. Additionally, the order of average SUHII at
night is listed as TC, Tro-M, TM, SM, and PM, from 1.44 K to −0.94 K. The highest average
of nighttime SUHII is found in the TC climate, whereas that of SUHIF is found in Tro-M.
Compared to daytime SUHIF, the nighttime one indicates larger internal variations in each
climate zone.

4.2. Comparison of Temporal Variations between SUHII and SUHIF

To compare temporal patterns between SUHII and SUHIF, annual and seasonal vari-
ations were conducted. Figure 5 shows the Probability Distribution Function (PDF) and
Cumulative Distribution Function (CDF) of SUHII and SUHIF across the selected cities.
Daytime SUHII is primarily found between 0 and 4 K with an average of 1.53 K. As
Zhou et al. [5] reported that UHI largely challenged the ecological environment and human
health in China, we found that more than 66.87% of Chinese cities suffer from SUHII over
1 K. Nighttime SUHII, mainly varying from 0 to 2 K with an average of 0.95 K, is less
evident than the daytime one. This diurnal contrast was also reported in some previous
large-scale studies [6,8,9]. This contrast is possibly attributed to more driving factors for
daytime SUHI than for the nighttime one [8]. Additionally, rather than an approximate
Gaussian distribution of SUHII, the CDF and PDF of SUHIF indicate different patterns.
There is an aggregation in the highest value range (from 354 to 365) accounting for 8.50%
of daytime SUHIF. Conversely, nighttime SUHIF shows an aggregation within the lowest
value range, accounting for 15.41%. The annual average of SUHIF is 210.88 and 145.27 at
day and night respectively, indicating a strong diurnal contrast. Greater SUHIF is found
at day than at night. To explore more detail about SUHIF across China, the extremum
is excluded from zooming graphs. PDF of SUHIF in the zooming graphs is found to
have an approximately homogeneous distribution, which further illustrates the difference
from SUHII.

Figure 6 shows the seasonal variations of SHUII and SUHIF on the basis of both
seasonal average and value distribution, to provide more information and details. At
daytime, SUHII indicates evident seasonal variations. Over four seasons, SUHII over 1 K
accounts for 63.93%, 92.78%, 58.36%, and 25.90%, respectively. The strongest season of
SUHII is found in summer, with an average of 3.01 K, while the weakest one is found in
winter with 0.39 K. Summer daytime is also widely reported to be the strongest season
of SUHII in a large number of related studies [5], which is possibly attributed to a strong
and negative correlation between ΔEVI and SUHII in the summer [34]. Nevertheless, less
evident seasonal variations are observed from nighttime SUHII. Summer, with an average
of 1.05 K, is found to be the strongest season, while winter with 0.83 K is found to be
the weakest one. This seasonal contrast is also found in some SUHII studies at a global
scale [6,8]. Additionally, daytime SUHIF indicates significant seasonal variations, also
referred to as being strongest in summer and weakest in winter. SUHIF over 80 days in
a season (about 90 days) accounts for about 70.16% of the selected cities in summer, while
a SUHIF less than 20 accounts for 60.32% in winter. For both daytime SUHII and SUHIF,
the extremums are found in summer and winter, while transition seasons (spring and
autumn) are found to have similar variations to each other. Tan et al. [54] reported that
daytime SUHI in summer was responsible for the exacerbation of heat waves and was
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closely associated with heat-related mortality. Thus, the summer SUHI at day, with a strong
intensity (3.01 K) and high frequency (80), should be further explored in terms of driving
factors and mitigation measurements. At night, a similar average of SUHIF during four
seasons (36, 37, 38 and 31) indicates less evident seasonal variations.

Figure 5. Annual variations of SUHII and SUHIF at daytime (a) and nighttime (b). The plots in the first row show the value
distribution of annual SUHII (a1,b1), and the second-row plots show that of SUHIF (a2,b2). PDF and CDF are employed to
show the value distribution across the selected cities. To clearly show their variations, zoom-in images without the extremum
are added for SUHIF.

Figure 6. Seasonal variations of SUHII and SUHIF at daytime (a) and nighttime (b). The discrete distribution as horizontal
bar charts in the first row shows seasonal variations of SUHII (a1,b1) and the second row charts show that of SUHIF (a3,b3).
Percentage over 10% is labelled in the graph. The line plots in the first row show the average of SUHII (a2,b2) and plots in
the second row show that of SUHIF (a4,b4) among the different seasons.

4.3. Pattern Classification Based on SUHII and SUHIF

After comparing their spatial and temporal variations between SUHII and SUHIF
across 305 Chinese cities, further exploration was conducted to determine their relationship
and to conduct a pattern classification (Figure 7). Scatter plots based on SUHII and SUHIF
show that there is no city with a high intensity and a low frequency of UHI (vice versa).
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Despite different value distributions based on their PDF, SUHII and SUHIF of the same city
are observed to have a relative consistency, especially at night. Accordingly, a city with high
SUHI intensity possibly accompanies high frequency. This closer correlation at night results
from the less significant variations of nighttime SUHI. In spite of the consistency between
SUHII and SUHIF, it is noted that they provide two different aspects of information from
quantity and time. Furthermore, the K-means clustering was employed in the attempts of
SUHI pattern classification based on these two important features. This pattern classifica-
tion allows easy characterization and further exploration to determine whether driving
factors vary among these patterns. Three categories, namely the low, medium, and high
patterns, are not only proven by the gap statistics as a rational number of classification, but
are also meaningful to related researchers and decision-makers. The amount of the selected
cities in these three classes is 89, 123, and 93 at day, and 124, 94, and 87 at night. To
further explore the discrepancy of these patterns, grouped statistics were conducted. At
day, the average of SUHII among these three classes is 0.18 K, 1.49 K, and 2.89 K, and that
of SUHIF is 94.06, 210.62, and 323.01. At night, SUHII of three patterns is 0.35 K, 0.93 K,
and 1.82 K, and SUHIF is 28.84, 154.31, and 301.46. Cities labelled into the high pattern, of
which intensity and frequency are found to be much higher than the average of them all,
should attract more attention in both research and practice.

 
Figure 7. Relationship between SUHII and SUHIF at daytime (a) and nighttime (b). The scatter plots show their relationship,
with color representation of three categories, namely the low (L), medium (M), and high (H) patterns. To clearly show
the characteristics of these three categories, the bar charts show the average of SUHII (a1-R,b1-R) and SUHIF (a1-L,b1-L).
The histograms represent the PDF of SUHII (a2,b2) and SUHIF (a3,b3).

Figure 8 shows the spatial distribution of these SUHI patterns in three aspects, namely
the overall, latitudinal, and climate zone-based variations. On the whole, cities labelled
as the high pattern at daytime are densely located in the south of China, while those of
the low one are primarily located in the northern regions. At night, cities of the high
pattern are distributed in the north, while the low ones are mainly in the southern regions.
Although a distribution of the two extreme patterns differ to each other, cities of the medium
pattern are scattered across China at both day and night. Only 86 cities are found to have
consistency patterns during the whole day, and most of the cities accounting for about
71% are found to have a pattern transformation from day to night. This significant diurnal
contrast can be possibly attributed to different driving mechanisms of UHI at day and
night, which has been widely reported in previous studies [6,17,33,35]. Furthermore,
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latitudinal variations of patterns show that cities of the low pattern are mainly located in
the 35–50◦ N zone at day, while those of the high ones are densely distributed from 25◦ to
35◦. Apart from scatter distribution, cities of the medium pattern are further observed to
have an aggregation of around 35◦ N based on the quantitative analysis of their latitudinal
variations. At night, these three patterns are densely distributed in 45◦ N, 35◦ N, and
35◦ N, respectively. Moreover, almost all of cities grouped into the daytime high pattern are
aggregated in the SM climate, according to the climate zone-based variations. Therefore,
the climate characteristics of SM are closely associated with high intensity and frequency
of SUHI. This close relation between SM and the high pattern of SUHI is possibly due
to daytime SUHI being reported to be stronger in humid-hot regions than in cold-drier
ones [6,7,10]. Conversely, there is no complete aggregation of any patterns in one climate
zone at night.

 

Figure 8. Spatial distribution of the aforementioned three categories at daytime (a) and nighttime (b). The maps show
the spatial distribution of three pattern classifications (a1,a2). The line plots show their latitudinal variations (a2,b2). The bar
plots show their climate zone-based variations (a3,b3). Different patterns are represented by colors.

4.4. Factor Analysis of SUHII and SUHIF

To compare the controls between SUHII and SUHIF, and to further explore pattern
effects on controls, the factor analysis was conducted based on SUHII (Figure 9), SUHIF
(Figure 10) and pattern classifications (Figure 11), respectively.
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Figure 9. Relationships between SUHII and potential factors at a daily scale. The heat maps represent their correlation at
daytime (a1) and nighttime (a2). The bar charts (b) show a diurnal contrast of their relationships in terms of each factor
((b1) for ΔEVI, (b2) for T, (b3) for TP, (b4) for Pop, (b5) for NTL). To make the results clear, the correlation with a p-value less
than 0.05 is shown in the bar charts. The fitting lines are employed to clearly show the annual variations in their correlation,
where days with p-values less than 0.05 are found to be over 270 during a year.

Figure 10. Relationship between SUHIF and potential factors in terms of annual and seasonal scales. The heat maps represent
their correlation at daytime (a1) and nighttime (a2). The bar charts (b) show a diurnal contrast of their relationship in terms
of each factor ((b1) for ΔEVI, (b2) for T, (b3) for TP, (b4) for Pop, (b5) for NTL). To make the results clear, the correlation
with p-values less than 0.05 are labeled in the heat maps.
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Figure 11. Comparisons of factor analysis based on SUHII and SUHIF in terms of pattern classifications at daytime (a) and
nighttime (b). There are two temporal scales, namely annual and seasonal scales. I is the abbreviation of SUHII and F is
the abbreviation of SUHIF. To make the results clear, the correlations with p-value less than 0.05 are labeled in the heat maps.

Figure 9 shows the correlation between SUHII and potential factors in terms of a daily
scale. As great challenges on the reconstruction of daily seamless LST, few factor analyses
are conducted on a daily scale. Thanks to the publication of daily all-weather LSTs, this
paper can provide insights into daily-scale analysis of their relationship. At day, ΔEVI
is found to have a significant correlation with daily SUHII. To make the EVI difference
between urban and rural clear, ΔEVI is taken as its absolute value. Accordingly, a posi-
tive correlation in this paper is consistent with a negative one in previous studies [8,9].
Vegetation has been widely recognized to have an important cooling factor [6,8,34,54,55],
owing to its evapotranspiration. Despite its significance on almost every day of the year
(342 days), their correlation coefficients indicate a fluctuation with higher relations in
the two transition seasons. This annual fluctuation of the effects from ΔEVI is also found
in the studies of driving factors across highly populated cities across eastern China, as
proposed by Zhou et al. [9] Temperature and total precipitation are taken as indicators
for background climates across the selected cities, which have been reported as important
controls for UHI [33,36]. A closer correlation between TP and daytime SUHII throughout
the year compared to that in previous studies possibly results from all-weather rather than
clear-sky LST employed in this paper. At night, populations in the selected cities indi-
cates the continuous effects on SUHII. Chakraborty and Lee [8] reported that heat storage
and anthropogenic heat emission (AHE) were closely related to nighttime UHI. A close
association between population and AHE [56] explains the impacts from population on
nighttime SUHII. Besides, an evident diurnal contrast from factor correlation is consistent
with previous studies of UHI controls [6,9,51].

Figure 10 shows the correlation between SUHIF and potential factors at annual and
seasonal scales. At daytime, ΔEVI and TP are found to be significantly correlated to SUHIF,
in particular in spring and autumn. Since ΔEVI is an associated indicator for energy transfer
between urban and rural environments, it influences not only SUHII, but also its frequency.
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SUHIF is found to be closely correlated to precipitation at an annual scale. In previous
studies, the temporal aggregation of clear-sky data was biased sampling with an ignorance
of weather conditions. Here, SUHIF, on the basis of all-weather rather than clear-sky LST,
makes it possible to analyze the relationship between it and precipitation. Manoli et al. [36]
reported that precipitation influences the UHI based on changes in evapotranspiration and
convection efficiency. This close relationship suggests that precipitation makes a strong
contribution not only to the magnitude, but also to the frequency. There are two reasons
why the effects from ΔEVI and precipitation are more significant in the transition seasons
than in summer and winter. First, saturation of daytime SUHIF at summer across most
of the selected cities results in a weaker correlation with continuous variables like ΔEVI
and precipitation. In winter, a dense aggregation of around zero also influences the
factor analysis. Secondly, there are other potential factors that contribute to variations
in SUHIF. At night, the relationships between SUHIF and these factors is observed to
have less seasonal variations than daytime ones. This is possibly as a result of the non-
significant seasonal variations of SUHIF at nighttime. Population is related to daytime
SUHIF throughout the year, whereas NTL is correlated to the nighttime one.

After exploring controls for SUHII and SUHIF respectively, comparisons on factor
analysis were conducted on the basis of pattern classification at annual and seasonal
scales (Figure 11). Two objectives are a comparisons on the controls of SUHII and SUHIF,
exploration on temporal variations and pattern variations of factor analysis. At daytime,
ΔEVI and TP indicate a significant correlation to both intensity and frequency at an annual
scale, while population is found to be presumably irrelevant to their variations. ΔEVI and
TP are widely reported as important factors for explaining spatial and temporal variations
of SUHI [6,9,36]. In spite of the significant correlation at the annual scale, their impacts
are observed to have variations between SUHII and SUHIF among different patterns. On
an annual scale, ΔEVI indicates a closer relationship to SUHII, while temperature and
precipitation indicate a closer relationship to SUHIF. The frequency is estimated on the basis
of daily all-weather LST, which receives considerable impacts from weather conditions.
In the cities classified into the high pattern, vegetation is found to be an important factor
for daytime SUHII, whereas a much lesser correlation is found in the low and medium
patterns. At night, the weak explanation of the selected factors suggest the necessity of
a further exploration into the driving factors for nighttime SUHII and SUHIF. Additionally,
the factor analysis shows evident seasonal variations. At daytime, there are greater impacts
from three important factors (ΔEVI, T and TP) on both SUHII and SUHIF in spring and
autumn, rather than during the extreme seasons. In particular, the cities labelled as the high
patterns in summer, possibly coupled with heat waves to pose great threats on residential
health [57], needs a more comprehensive factor analysis for further mitigations.

5. Conclusions

Great efforts have been devoted to the study of spatiotemporal variations and driving
mechanisms of SUHI from the local to the global scale, due to its close association with
environmental issues and human health. However, studies on SUHIF are largely challenged
by a great number of missing LSTs on a daily scale. There are three issues concerning
SUHIF which remain largely unknown, namely its spatiotemporal variations, pattern
classifications, and driving factors. Additionally, it is unclear whether SUHII and SUHIF
are consistent or different to each other in terms of their variations and controls. Thanks
to the release of daily all-weather LSTs across China, this paper is allowed to conduct
comparisons between SUHII and SUHIF, to conduct a pattern classification and to further
explore their controls.

There are four major findings, which are summarized as follows. First, SUHIF indi-
cates a different north–south contrast between day and night. Cities within the latitude
of 20◦ N to 40◦ N should be have more attention paid to them, since they are found to
have a strong intensity and a high frequency during the day. Despite the overall consis-
tency of spatial distribution, discrepancy between SUHII and SUHIF is observed from
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the climate zone-based variations, especially at night. Second, SUHIF shows a significant
diurnal and seasonal contrast. The difference in SUHIF between day and night is 65.61,
while for SUHII it is 0.58 K. Summer daytime is found to have the highest intensity and
frequency. Third, the selected 305 Chinese cities are grouped into three patterns based on
K-means clustering. After comparative analysis, SUHIF is possibly consistent with SUHII
in the same city. Despite the generally similar spatiotemporal patterns between SUHII
and SUHIF, they provide quantitative and temporal characteristics, respectively. Fourth,
impacts from driving factors on SUHII and SUHIF are found to have significant variations
among different times and patterns. Daytime SUHIF is found to be closely associated with
precipitation in spring and autumn.

In summer, strong urban heat island and heat waves are reported as great contributors
for high heat-related mortality. Therefore, cities classified into the high pattern with both
strong intensity and high frequency during summer should be taken as a research emphasis
in future exploration, to propose targeting mitigation measurements.
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Abstract: After 2000, China’s vegetation underwent great changes associated with climate change and
urbanization. Although many studies have been conducted to quantify the contributions of climate
and human activities to vegetation, few studies have quantitatively examined the comprehensive
contributions of climate, urbanization, and CO2 to vegetation in China’s 32 major cities. In this
study, using Global Land Surface Satellite (GLASS) fractional vegetation cover (FVC) between 2001
and 2018, we investigated the trend of FVC in China’s 32 major cities and quantified the effects of
CO2, urbanization, and climate by using generalized linear models (GLMs). We found the following:
(1) From 2001 to 2018, the FVC in China generally illustrated an increasing trend, although it decreased
in 23 and 21 cities in the core area and expansion area, respectively. (2) Night light data showed that
the urban expansion increased to varying degrees, with an average increasing ratio of approximately
168%. The artificial surface area increased significantly, mainly from cropland, forest, grassland, and
tundra. (3) Climate factors and CO2 were the major factors that affected FVC change. The average
contributions of climate factors, CO2, and urbanization were 40.6%, 39.2%, and 10.6%, respectively.
This study enriched the understanding of vegetation cover change and its influencing factors, helped
to explain the complex biophysical mechanism between vegetation and environment, and guided
sustainable urban development.

Keywords: fractional vegetation cover; urbanization; climate change; vegetation change

1. Introduction

Urban vegetation plays an important role in human life and environmental regulation
in cities [1–4]. As an important part of the urban ecosystem, urban vegetation is the main
producer of the city, participating in regulation of climate change, altering energy and matter
exchange between the surface and atmosphere, and promoting complex biogeochemical
cycles [5–8]. In addition, the effect of urban vegetation on the beautification and purification
of the urban environment has also been concerned [9–11]. Therefore, studying the long-
term dynamic change of urban vegetation and its driving factors can provide theoretical
support for the protection of urban ecological environment.

Climate factors are the main drivers of vegetation change and thus have been a
popular research topic. At present, many scholars have studied the effect of climate
on vegetation and obtained some similar conclusions. Increased precipitation promotes
photosynthesis and improves the absorption and transport of soil nutrients. However,
excessive precipitation inhibits vegetation transpiration. Decreased precipitation indirectly
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affects vegetation activities by regulating hydrothermal conditions, thus leading to the
weakening of photosynthesis and the reduction of organic yield [12–14]. Temperature
change promotes photosynthesis and accelerates the release of soil nutrients in the region
suppressed by temperature. At the same time, accelerated soil water loss, weakened
photosynthesis, and enhanced respiration result in dry matter consumption [15–17]. As
the energy source of vegetation photosynthesis, solar radiation is also an important factor
affecting vegetation growth [18].

In addition to climate factors, the effect of CO2 on vegetation growth cannot be
ignored. Plants can use CO2 to produce organic material through photosynthesis to build
plant tissue [19]. Therefore, increasing CO2 concentration will affect plant growth [20].
CO2 has a different effect on vegetation outside and inside the city. Outside the city,
increased CO2 concentrations affect vegetation growth by speeding up carboxylation in
photosynthesis [21,22]. Inside the city, increased CO2 concentrations cause the greenhouse
effect, which leads to increased temperature and accelerated soil water evaporation. Under
such conditions, the growth of vegetation is mainly affected by soil water [23,24].

It was worth mentioning that urbanization has also gradually become an important
factor affecting vegetation growth [25–27]. Urbanization is a phenomenon that involves
simultaneous changes in the population, economy, and land use patterns [28], and can
often be measured using land cover data [29] and nighttime light data [30]. Land cover data
express urbanization by calculating the change area of impervious surface [29,31]. However,
the spatial resolution of land cover products with a long time series time resolution of one
year is coarse and the information expressed is limited. Nighttime light data represent
urbanization by measuring the night light of cities, towns, and other continuously lit areas,
and can be an explanatory indicator for estimating urbanization dynamics [32]. From
2001 to 2018, China experienced intense urban development and rapid land consumption,
which put great pressure on urban ecosystem functions [33,34]. The effects of urbanization
on vegetation growth are complex. Urbanization can not only directly affect vegetation
growth by promoting land cover change [35], but also indirectly affect vegetation growth
by increasing the impervious layer area. The principle of the latter is that increases in
impervious surfaces reduce the latent heat flux and increase the sensible heat flux, thus
leading to a change in temperature and evapotranspiration processes. Such changes
indirectly promote or inhibit vegetation growth [36,37]. Therefore, accurate knowledge of
the complex nonlinear relationship between urbanization and vegetation can help enhance
the understanding of vegetation changes under urbanization and could be essential for
formulating environmental protection strategies in cities.

Although many studies have focused on the response relationship between urban
vegetation and the environment, the influence of the drivers of long-term vegetation
change in multi-urban areas has been limited [38,39]. At present, scholars have car-
ried out research on the change in vegetation coverage in some cities and the driving
factors [38–40]. Nevertheless, because few cities have been investigated, such work can
only reflect the vegetation driving forces of individual cities; thus, a macroscopic analysis
of China as a whole has not been performed [41,42]. In addition, we also noticed that
vegetation growth is comprehensively affected by climate and human factors; however,
few studies have considered the comprehensive impact of climate factors, CO2, and urban-
ization on vegetation [43–45]. Equally important, coarse-resolution land cover data have
difficulty expressing detailed urbanization information because the land cover type data in
cities have remained unchanged for many years [36].

In this study, we analyzed the effect of climate, urbanization, and CO2 on vegetation in
32 major cities of China using Global Land Surface Satellite (GLASS) fractional vegetation cover
(FVC) in conjunction with climate data from the National Tibetan Plateau Data Center, CO2
from the National Cryosphere Desert Data Center, and nighttime light (NTL) data between
2001 and 2018. Our main objectives were to investigate the following: (1) spatiotemporal
variation in FVC in China’s 32 major cities from 2001 to 2018; (2) differences in FVC variations
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between urban core areas and urban expanded areas; and (3) relative contributions of climate-
related factors, CO2, and urbanization to FVC dynamics.

2. Materials and Methods

2.1. Study Area

China has a vast territory and abundant resources. The terrain is high in the East and
low in the West. China is divided into three steps according to altitude (Figure 1). The
first ladder is mainly distributed in the vicinity of the Qinghai-Tibet Plateau at an altitude
of more than 4000 m. Under the influence of the southwest monsoon, the water content
decreases sharply, and the precipitation is generally less than 150 mm, which decreases
spatially from southeast to northwest. The average annual temperature is below zero. The
average altitude of the second step is 1000–2000 m, and the local terrain highly fluctuates.
The precipitation is mainly between 400 and 1000 mm. The cities in the region include Ho-
hhot, Yinchuan, Xining, Lanzhou, Lhasa, Guiyang, and Kunming. The temperatures range
between 4 ◦C and 15 ◦C, and the radiation ranges between 170 W·m−2 and 190 W·m−2.
The third step is the lowest step at an elevation of less than 500 m, and it has annual
precipitation of more than 1000 mm, although it can reach more than 6000 mm in some
areas. The overall trend decreases from southeast to northwest. The cities in the region
include 25 major cities, such as Beijing and Tianjin. The city with the lowest temperature
and radiation is Harbin, and the city with the highest temperature is Haikou (Table 1).

Figure 1. Positions of the 32 major cities in China, with black dots representing the locations of cities
and yellow dot representing the locations of Waliguan (WLG) stations.
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Table 1. Average temperature, altitude, precipitation, and radiation of 32 major cities in China.

City

Types DEM (m) Precipitation (mm) Temperature (◦C) Radiation (W·m−2)
C E C E C E C E

Harbin 143.2 132.6 563.3 551.6 4.2 4.7 139.7 140.1
Changchun 214.3 211.8 668.9 656.6 5. 5.9 149.5 149.5

Urumchi 823.7 800.3 236.9 239.6 6.2 6.5 177.6 177.4
Shenyang 45.6 47.4 425.9 431.8 7.9 7.9 156.8 157.2
Hohhot 1053.8 1057.3 591.3 591.2 6.9 6.9 169.3 169.6
Beijing 46.6 46.1 504.2 514.1 12.6 12.2 161.0 160.9
Tianjin 5.5 3.5 562.7 580.6 12.9 12.9 162.0 163.9

Yinchuan 1113.5 1110.3 270.2 274.0 9.9 9.9 186.1 185.1
Shijiazhuang 76.5 80.7 431.6 439.3 13.9 13.7 152.2 152.5

Taiyuan 799.3 802.3 363.3 358.5 10.3 10.1 170.1 169.4
Jinan 46.2 77.8 767.9 800.9 14.9 14.7 166.9 166.3

Xining 2261.0 2297.5 485.8 484.9 4.2 4.4 185.0 185.5
Lanzhou 1541.9 1569.8 632.1 640.5 7.5 6.7 181.2 180.8

Zhengzhou 104.2 108.1 598.8 593.4 15.5 15.5 156.4 156.3
Xi’an 411.8 404.6 474.9 473.4 14.9 14.8 159.7 159.7

Nanjing 23.0 18.3 1281.9 1292.1 15.9 15.9 160.1 159.3
Hefei 26.0 27.4 1366.2 1384.6 15.9 15.9 150.1 150.2

Shanghai 5.6 4.6 1214.5 1347.3 15.6 17.5 154.4 155.0
Chengdu 498.8 505.7 1117.2 1136.7 15.9 15.9 134.9 134.2
Wuhan 27.6 27.8 1029.9 1055.3 17.6 17.4 148.8 148.5

Hangzhou 15.0 14.9 1735.1 1732.2 17.8 17.4 154.2 154.1
Lhasa 3655.5 3653.2 569.4 566.8 8.6 8.5 227.0 226.9

Chongqing 265.7 275.8 1069.2 1068.6 18.4 18.5 129.9 129.9
Nanchang 23.9 26.9 1564.7 1566.6 18.6 18.5 155.7 155.4
Changsha 53.2 55.5 1275.2 1275.1 17.0 17.1 148.6 148.9
Guiyang 1111.2 1196.4 1180.1 1173.4 14.8 14.4 129.4 129.7
Fuzhou 14.2 24.6 1334.3 1325.9 20.9 20.3 153.3 153.5

Kunming 1897.8 1916.6 1169.8 1246.5 14.9 14.8 188.6 187.1
Guizhou 14.1 13.9 1764.5 1783.4 21.9 21.8 154.8 153.8
Nanning 83.6 97.9 1244.9 1245.1 20.9 20.9 160.0 159.8
Shenzhen 57.0 68.8 1929.3 1869.5 22.4 22.0 170.8 169.5
Haikou 16.5 17.9 2166.7 2036.3 23.9 23.9 184.7 182.1

2.2. Data Sources

GLASS FVC products: In this study, we used GLASS FVC from 2001 to 2018 produced
by Beijing Normal University. The dataset processing combined Tang et al.’s MODIS
reflectance data preprocessing method and machine learning method [46]. The dataset
has a time resolution of 8 days and a spatial resolution of 500 m [47–49]. Due to the high
stability of annual mean FVC, it is suitable for large-scale data research, and this paper
synthesized the annual mean FVC using the data of 46 scenes throughout the year [20].

NTL products: In this study, we used the harmonized global NTL time series data
from 2001 to 2018. The dataset includes the stepwise calibrated stable DMSP NTL observa-
tions from 2001 to 2013, and the simulated DMSP-like DNs from the VIIRS radiance data
(2014–2018). The temporal resolution of the dataset was one year, and the spatial resolution
was 1000 m [50]. It measures lights from cities, towns, and other continuous lighting areas
at night, and can be an explanatory indicator for estimating urbanization dynamics [32].

Climate products: The first high-resolution meteorological forcing dataset for land
process studies over China, which was produced by the Yangkun team from 2001 to
2018, was used in our research. The data were subjected to rigorous data quality control.
A meteorological dataset covering the China was constructed using station data, satellite
data, and means of convergence in the analysis of the data. These data had a spatial
resolution of 0.1◦ and a temporal resolution of 3 h. Currently, this Chinese regional high-
resolution meteorologically driven dataset has been released at the National Tibetan Plateau
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Science Center. The data provider also freely provides synthesized annual average climate
data [51,52].

CO2 products: CO2 data obtained from the National Cryosphere Desert Data Center
and China Greenhouse Gas Bulletin were used in this study. The data recorded monthly
averages of CO2 at the China Global Atmosphere Watch Baseline Observatory Mount
Waliguan (WLG) over many years. As one of 31 ground stations around the world, the
atmospheric samples collected by WLG can well represent the average atmospheric con-
ditions in China. The data values of the WLG site are monthly mean values. In order to
match the time resolution of other products, we calculated the annual mean value of CO2
by using the recorded values of 12 months each year, and then processed it into a grid
dataset covering China with a time resolution of 1 year and a spatial resolution of 1 km.

Globe30 products: The 30 m land cover datasets in 2000 and 2020 that we used
were from the National Geomatics Center of China. The images used for classification
were 30 m multispectral images, including Landsat satellite and China Environmental
Disaster Reduction Satellite multispectral images, which were generated after synthesizing
a considerable amount of auxiliary data and reference materials. The data include 10 land
cover types, including water, wetland, artificial, tundra, ice, grass, bareland, cropland,
shrub, and forest. The overall accuracy of the third-party evaluation is 83.50% [53].

2.3. Data Preprocessing and Trend Analysis

The time resolution of FVC data was 8 days. In this study, the annual average FVC
data were synthesized by calculating the average of 46 scenes of FVC data every year. To
match the spatial resolution of nighttime light data, the nearest neighbor sampling method
was used to resample vegetation coverage data, climate data, and CO2 data. After the above
processing, all data had the same time resolution (1 year) and spatial resolution (1 km).

To explore the vegetation and NTL data changes, the trends of vegetation and NTL
were calculated using the linear regression method. The following formula expresses the
relationship between them:

Y = k × Year + b (1)

where k is the trend and b is the intercept term. A positive k value represents an increasing
Y trend, while a negative k value represents a decreasing Y trend [54].

2.4. Urban Boundary Extraction

Urban boundary extraction was carried out using automated and manual interven-
tions. The automatic extraction of the urban boundary was divided into three steps.
Step 1: calculate the histogram of the NTL, calculate the position of the point with the most
drastic change in the histogram, and then calculate the NTL value of the corresponding
position as the first threshold for edge extraction. Step two: calculate the gradient of
the NTL, repeat the operation of step one for the gradient data, and calculate the second
threshold of edge extraction. Step 3: Using the thresholds extracted by the first two cloths,
take the NTL between the first and second thresholds as the city extraction result. Finally,
the extraction results were compared with the land cover data and adjusted manually. The
city boundaries extracted from the NTL in 2001 were used as the core area boundaries.
The urban boundaries extracted from the NTL in 2010 were used as the extension area
boundaries. Beijing is taken as an example (Figure 2), with the Figure 2a showing the
boundary of the Beijing core area and Figure 2b showing the boundary of the Beijing
expanded area.
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Figure 2. True color Landsat image of Beijing. (a,b) are images taken from Google Earth in 2001 and
2010, respectively. The polygons on the (a,b) are the core and extension regions, respectively.

2.5. Attribution Analysis

This study used the GLM as the method of attribution analysis. FVC was used as
the dependent variable, and CO2, climate factors, and NTL were independent variables.
The GLM provided a flexible framework that described the relationship between response
variables and explanatory variables well. In addition, the model was not only suitable
for describing linear relationships, but also had a strong ability to describe nonlinear
relationships. The link function can be applied to data with normal, Poisson, gamma,
binomial, and other distributions [55–59]. The response variable in the study is FVC, which
generally follows a normal distribution, so the family set in the model is Gaussian model,
and the link is identity. The corresponding mathematical expression of GLM is as follows:

Y = g(b0 + b1 × x1 + · · · bm × xm) (2)

where Y is the response variable, x is the explanatory variable, b is the regression coefficient,
and g (.) is a link function. The corresponding expression in R language is as follows:

glm(FVC ∼ C + U + P + T + R, family = gaussian(link = ′ identity′ )) (3)

where C, U, P, T, and R represent CO2, urbanization, precipitation, temperature, and
radiation, respectively.

The calculation method of specific contribution is mainly divided into three steps:
Step 1: The mean square (MS) of each explanatory variable were obtained using GLM.

The MS calculation formula is as follows:

MS =
SS
Df

(4)

where Df is the degree of freedom, SS is the sum of squares, and its value is equal to the
explained sum of squares (ESS) increased by addition of an independent variable to the
model. The mathematical expression for the sum of squares is as follows:

ESS = ∑ (ŷ − y)2 (5)

SS = ESS(model2)− ESS(model1) (6)

According to the order in which independent variables enter the model, the MS expres-
sions of each independent variable are as follows, taking CO2 and urbanization as examples:

SSC = ESS(glm(FVC ∼ C) (7)

SSU = ESS(glm(FVC ∼ C + U))− ESS(glm(FVC ∼ C)) (8)
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The SS of other independent variables was also calculated according to the above
method. Finally, MS corresponding to all independent variables was calculated according
to Formula (3).

Step 2: The regression coefficients of each explanatory variable were obtained using
GLM. Firstly, the annual mean values of FVC, CO2, urbanization, precipitation, temperature,
and radiation of 32 cities were calculated and then input into the model. The regression
coefficients of explanatory variables in the corresponding models of different cities were
obtained. The positive and negative effects of explanatory variables were judged by the
positive and negative values of the regression coefficient. When the regression coefficient
is greater than 0, it indicates that there is a positive effect between the variable and the
response variable; when the regression coefficient is less than 0, it indicates that there is a
negative influence between the explanatory variable and the response variable.

Step 3: Use MS to calculate the contribution, the method refers to Tao’s [55], taking
CO2 for example:

ContributionC =
MSC

MSC + MSU + MSP + MST + MSR + MSother
(9)

All analyses were carried out in R Version 3.6.1.

3. Results

3.1. Vegetation Cover Change in China’s 32 Major Cities

From 2001 to 2018, China’s vegetation coverage showed a trend of large-scale growth
overall, although some areas showed a decreasing trend. The areas showing increases
were mainly concentrated in central China, such as Shaanxi Province, Shanxi Province,
Guizhou Province, and Guangxi Province. The areas showing a decreasing trend included
the Yangtze River Delta. The fastest growth rate of vegetation coverage was 0.05/year,
which showed that the greening trend in China was very fast (Figure 3).

Figure 3. Spatial distribution of vegetation coverage trends from 2001 to 2018.

For different cities, the FVC changes can be divided into two categories: FVC changes
that differed greatly between the core area and the expansion area, and FVC changes that
showed limited differences between the core area and the expansion area. Among the
32 cities studied, similar FVC changes between the core area and expansion area were
observed in Urumqi, Beijing, Lanzhou in Northern China, Shenzhen in Southern China, and
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other cities, and they were mainly manifested by a similar slope of FVC change in spatial
distribution; whereas great differences in FVC changes between the core area and expansion
area were observed in Southern China, Shanghai, Hangzhou, Chengdu, Fuzhou, Changsha,
Chongqing, Nanning, Haikou, and other cities, and they manifested as unchanged growth,
an increasing trend in the core area vegetation or a decreasing trend in the expansion area
vegetation coverage (Figure 4).

Figure 4. Spatial distribution of FVC trends in 32 major cities in China from 2001 to 2018, with
dotted lines representing the boundaries of core areas and solid lines representing the boundaries of
extended areas.

In order to further explore the long-term trends of FVC change in 32 major cities
in China, this study quantitatively analyzed the FVC changes in these urban cores and
expansions. FVC changes come in four different ways. The first was the form in which
FVC of both core and expansion areas decreased, which includes 16 cities, namely Harbin,
Tianjin, Shijiazhuang, Zhengzhou, Xi’an, Nanjing, Hefei, Shanghai, Chengdu, Wuhan,
Hangzhou, Lhasa, Chongqing, Nanchang, Fuzhou, and Guizhou. The second was a form
in which both the core area and the expansion FVC increased, and this form includes five
cities, namely Changchun, Urumchi, Beijing, Yinchuan, and Shenzhen. The third was the
form of FVC increased in the core area and decreased in the expansion area, which includes
four cities, namely Shenyang, Xining, Changsha, and Guiyang. The fourth was the form
of FVC decreased in the core area and increased in the expansion area, which includes six
cities, namely Hohhot, Taiyuan, Jinan, Nanning, Haikou, and Kunming (Figure 5).

3.2. Urban Expansion Model

Figure 6 shows the changing trend of NTL in China from 2001 to 2018, and it reflects
the drastic urban expansion process in China from 2001 to 2018. Figure 7 shows the
spatial distribution of NTL trends in 32 major cities in China from 2001 to 2018, and
it reflects the urban expansion patterns of different cities and the differences in urban
development between core and expansion areas. Cities with drastic urban development
in China are mainly concentrated in Eastern China, among which Shanghai, Nanjing,
Yinchuan, Guangzhou, Shenzhen, and other regions had the most drastic urban expansion.
In addition, we can also see that China’s urbanization process was generally fast and widely
distributed in Eastern China. Major urban agglomerations gradually formed in China, such
as the Yangtze River Delta urban agglomerations, Pearl River Delta urban agglomerations,
and the Beijing–Tianjin–Hebei region.
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Figure 5. Temporal series changes in vegetation coverage in 32 Chinese cities from 2001 to 2018.

Urban core areas and expansion areas had great differences in the urbanization process.
The study found that the NTL of 32 major urban core areas in China remained unchanged,
thus reflecting urban core area stability. Some cities’ urban expansion was rapid, such as
Urumqi, Changchun, Yinchuan, Hefei, Chengdu, Wuhan, Nanchang, Changsha, Guiyang,
and others. There was a significant trend of increasing NTL in the expansion area, thus
reflecting the rapid urban expansion pattern of these cities. At the same time, there were
some cities with small differences between the core areas and expansion areas, such as
Beijing, Taiyuan, Lanzhou, Chongqing, Shenzhen, etc. Since urbanization, the area of each
city has changed greatly. The expanded area of Shenzhen increased by 50.7%, and that of
the Hefei expanded area increased by 614.2% (Figure 7).
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Figure 6. Spatial distribution map of the NTL change trend from 2001 to 2018.

Figure 7. Spatial distribution of NTL trends in 32 major cities in China from 2001 to 2018, with
dotted lines representing the boundaries of core areas and solid lines representing the boundaries of
extended areas.

To further explore the relative process of urbanization in 32 cities in China, this paper
used the land cover data in 2000 and 2020 to explore urban changes from the perspective of
land cover transfer in terms of the method and extent. Then, we calculated table statistics
on the area and proportion of the land cover types converted to artificial surfaces in
32 major cities in China between 2000 and 2020. The results on the area and proportion of
land cover types transferred from artificial surfaces showed that all 32 cities had different
degrees of expansion, and the area of artificial surface gain was much higher than that of
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artificial surface loss. Among them, Shanghai had the largest area converted to artificial
surface, followed by Beijing, and the results showed that the scope of urbanization of
Shanghai was enormous between 2000 and 2020. Harbin had the largest proportion of the
area converted to artificial surface, followed by Zhengzhou, which reflected that the degree
of urbanization was intense. The area converted from artificial land to other land cover
types was far less than that from artificial land, and the smallest area was observed in Lhasa.
The results showed that the area converted from artificial land was only 0.6 km2, which
accounted for approximately 1.8% of the Lhasa study area. Kunming had the smallest
proportion of artificially transferred area at approximately 0.1% (Table 2).

Table 2. Statistical table of artificial surface gains and losses in China’s 32 major cities from 2000 to
2020 (Unit: km2).

City

Types Gain Loss

City

Types Gain Loss

Area Ratio Area Ratio Area Ratio Area Ratio

Harbin 354.5 74.9 8.8 1.9 Hefei 281.7 45.5 14.2 2.3
Changchun 136.6 26.6 5.4 1.0 Shanghai 1211.4 30.6 114.4 2.9
Urumchi 34.7 14.8 4.8 2.0 Chengdu 438.2 45.3 10.3 1.1
Shenyang 86.5 12.7 10.4 1.5 Wuhan 280.3 33.2 7.4 0.9
Hohhot 49.9 23.1 5.8 2.7 Hangzhou 400.0 29.9 23.8 1.8
Beijing 1022.8 37.0 39.0 1.4 Lhasa 0.6 1.8 0.1 0.4
Tianjin 547.9 32.6 37.4 2.2 Chongqing 82.1 33.7 3.2 1.3

Yinchuan 59.6 36.5 4.3 2.6 Nanchang 87.8 22.1 3.3 0.8
Shijiazhuang 80.7 21.7 4.6 1.2 Changsha 140.9 38.3 6.0 1.6
Taiyuan 110.2 33.4 2.7 0.8 Guiyang 36.4 18.6 4.5 2.3

Jinan 157.0 32.7 7.5 1.6 Fuzhou 53.4 22.6 2.5 1.1
Xining 25.6 22.5 2.4 2.1 Kunming 180.5 45.7 0.6 0.1

Lanzhou 39.7 21.0 0.9 0.5 Guizhou 508.2 28.6 23.8 1.3
Zhengzhou 272.3 50.7 5.8 1.1 Nanning 75.3 29.2 3.5 1.4

Xi’an 232.9 33.7 9.1 1.3 Shenzhen 316.4 21.7 28.8 2.0
Nanjing 357.1 36.9 10.7 1.1 Haikou 9.1 10.1 0.2 0.2

3.3. Contribution Analysis of FVC Changes
3.3.1. Spatial Distribution of the Main Driving Factors

Two different methods of statistical analysis were applied to determine the contri-
bution of drivers to vegetation in China’s 32 major cities. The methods of analysis used
in Figure 8a,b were different from those in Figure 8c,d. The main difference was that
Figure 8c,d combined the contributions of precipitation, temperature, and radiation, which
were named climate and represented by the green color in the pie chart. Two different
methods were used to show the contributions of different factors to the change in FVC.

Certain regular trends were observed among the dominant factors of vegetation in space.
The contribution of CO2 increased slightly from north to south at close altitudes and exceeded
50% in Haikou and Shenzhen. Precipitation dominated vegetation growth in urban areas in
Northern China, such as Inner Mongolia and Yinchuan in arid and semiarid regions. The
contribution of temperature decreased gradually with increasing dimensionality and steadily
increased with increasing shoreline distance. The contribution of radiation generally increased
with decreasing dimensions and increasing coastline distance. The difference in urbanization
contribution among the 32 cities was not obvious, and the contribution of coastal cities was
slightly higher than that of inland cities. Nevertheless, the overall contribution was similar,
which also reflected the good situation of synchronous development.
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Figure 8. Driving factor contributions in 32 major cities in China: (a) pie chart of five driving factor
contributions in the core region, (b) pie chart of five driving factor contributions in the expansion
region, (c) pie chart of three major driving factor contributions in the core region, and (d) pie chart of
three major driving factor contributions in the expansion region.

The sum of precipitation, temperature, and radiation contributions was greater than
that of CO2, which became the main driving factor of urban vegetation. We found that the
contribution of climate factors to vegetation growth was nearly 50%, which applied to the
core and expansion areas of 32 cities simultaneously. The combination of climate factors
and CO2 explained more than 70% of vegetation growth, indicating that the contribution of
climate factors and carbon dioxide cannot be ignored in the process of vegetation growth.
In comparison, the contribution of urbanization was relatively small and inly explained
approximately 10% of vegetation growth overall.

The contributions of driving factors had similar regular trends but also exhibited
differences. The main factors affecting vegetation growth in the 32 major Chinese cities
were revealed using spatial distribution maps. Figure 9 shows that the FVC in 32 cities
in China was still mainly affected by CO2 and climate factors. According to the leading
factors in the core area, 32 cities were divided into three categories: cities with climate
as the dominant factor, cities with CO2 as the dominant factor, and cities with multiple
factors acting together. The cities with climate as the main factor included Hohhot, Beijing,
Zhengzhou, Shanghai, Lhasa, and Fuzhou; the cities under significant CO2 control included
Shijiazhuang, Xining, Changsha, Chengdu, Guiyang, Kunming, and Shenzhen; the cities
influenced by multiple driving factors included Urumqi, Harbin, Tianjin, and Taiyuan.
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Figure 9. Spatial distribution of driving factor contributions in 32 major urban cities in China.

In addition, the study also found that there were differences in the dominant factors
underlying FVC change between the urban core area and the urban expansion area. For
example, the core area of Xi’an was dominated by climate factors while the expansion area
was dominated by CO2. The core area of Nanjing was affected by many factors, while
the extended area was dominated by CO2. The core area of Nanchang was dominated by
temperature, while the expansion area was dominated by urbanization. In some cities, the
driving factors of FVC change in core and extended areas were consistent. For example, the
change in FVC in the Changchun core area and the extended area was mainly affected by CO2.
The dominant factor of FVC change in the core and extended areas of Lhasa was climate.

3.3.2. Contributions of Major Drivers

Table 3 showed the importance of driving factors to FVC changes in 32 cities. The
driving factors had different effects on the FVC in different urban core areas. In Xining,
Chengdu, Haikou, Shijiazhuang, and Kunming, CO2 contributed greatly and explained
66.3%, 55.2%, 53.8%, 51.6%, and 49.6% of FVC changes, respectively. Cities such as Hefei,
Tianjin, Taiyuan, Nanning, and Xi’an were mainly impacted by urbanization, with a
minimum value of 13.2% and a maximum value of 16.5%. The top five cities affected by
precipitation were Yinchuan, Hohhot, Beijing, Lanzhou, and Guiyang, with contributions
ranging from 21.2% to 37.6%. Temperature had the greatest impact on vegetation in
Lhasa, Zhengzhou, Xi’an, Hangzhou, Fuzhou, and Kunming and explained approximately
21.8–32.7% of the vegetation coverage growth. Radiation played an important role in
Tianjin, Shanghai, Urumqi, Harbin, Taiyuan, and other cities, with a maximum contribution
of 22.4% and minimum contribution of 18.7%.

The relative contribution of driving factors to FVC change in the extended areas
differed from that in the core areas. CO2 contributed the most in Shijiazhuang, Nanning,
Chengdu, Xining, and Kunming and accounted for 52.3–67.2% of vegetation growth.
Urbanization contributed the most in Nanchang, Tianjin, Yinchuan, Nanjing, and Shenyang
and accounted for 14.5–19.3% of the FVC changes. Precipitation contributed the most
in Lanzhou, Yinchuan, Hohhot, Beijing, and Kunming and accounted for 17.7–32.6% of
the FVC changes. Temperature had the greatest impact on vegetation in Zhengzhou,
Lhasa, Hohhot, Guizhou, and Hangzhou and explained 18.3–42.3% of the vegetation
coverage variation. Radiation played an important role in Tianjin, Urumqi, Harbin, Taiyuan,
Shenyang, and other areas and accounted for 15.9–26.4%.
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Table 3. Importance of driving factors to FVC changes in 32 cities. Red shading denotes greater
importance, and blue shading represents lower importance (Unit: %). An asterisk indicates that the
GLM regression coefficient is greater than zero.

City
Drivers CO2 Urbanization Precipitation Temperature Radiation Other

C E C E C E C E C E C E

Harbin 32.5 35.2 10.4 * 13.8 * 10.3 7.8 * 16.2 * 14.0 * 20.1 20.5 10.4 8.7
Changchun 38.2 * 49.1 * 8.4 * 8.9 15.8 * 12.0 * 14.9 * 12.4 * 12.2 10.0 10.6 7.7

Urumchi 37.9 * 35.0 * 11.7 5.9 7.1 * 16.0 * 16.0 * 16.6 * 20.6 20.8 6.7 5.6
Shenyang 41.9 * 29.6 * 10.0 * 14.5 9.6 * 14.9 * 13.5 * 16.7 * 14.8 15.9 10.2 8.5
Hohhot 22.2 28.1 8.7 * 7.5 * 30.3 * 28.7 * 19.3 * 23.4 9.3 * 7.5 * 10.1 4.7
Beijing 26.4 * 29.6 * 9.4 14.2 27.5 * 23.9 * 15.5 13.6 * 12.0 10.3 9.1 8.5
Tianjin 28.2 28.5 15.9 * 15.2 * 6.1 * 10.3 * 16.3 * 10.5 * 22.4 26.4 11.0 8.9

Yinchuan 36.4 * 35.6 * 8.5 15.1 37.6 * 29.7 * 9.4 * 10.9 4.2 5.4 * 3.9 3.2
Shijiazhuang 51.6 67.2 7.7 * 9.6 6.6 * 4.6 * 10.3 * 6.7 * 11.1 6.5 12.7 5.4

Taiyuan 21.0 32.9 14.7 * 12.0 * 9.1 6.7 * 19.0 16.4 18.7 20.3 17.5 11.7
Jinan 33.8 41.8 * 10.9 13.9 * 12.1 10.2 * 18.8 17.7 * 9.1 6.7 15.3 9.7

Xining 66.3 * 53.8 * 8.4 * 14.4 * 7.4 * 15.3 * 8.5 * 6.9 4.4 4.5 * 5.0 5.1
Lanzhou 28.9 31.2 * 12.1 * 10.4 * 23.2 * 32.6 * 13.6 9.5 * 11.5 * 7.5 10.7 8.7

Zhengzhou 25.0 33.1 * 9.4 * 7.8 12.6 * 5.1 * 28.0 42.3 10.6 * 8.2 * 14.3 3.5
Xi’an 30.0 51.1 * 13.2 * 8.2 7.3 * 7.0 * 26.7 14.1 * 13.8 14.1 * 9.0 5.6

Nanjing 31.2 42.6 11.4 * 14.8 * 13.2 * 10.9 10.0 * 9.6 * 12.6 * 11.0 21.6 11.2
Hefei 27.5 49.2 16.5 * 10.4 11.2 10.3 11.5 * 13.7 * 14.9 9.6 18.3 6.8

Shanghai 32.5 44.0 11.6 * 8.9 * 12.6 * 10. 5 * 12.0 * 17.1 21.3 11.8 10.0 7.8
Chengdu 55.2 55.9 * 8.3 * 6.5 7.5 * 11.3 * 11.9 17.0 * 6.7 3.4 10.3 5.9
Wuhan 40.7 40.3 9.1 * 12.1 8.2 * 8.5 15.9 * 17.3 * 12.8 * 11.8 * 13.3 9.9

Hangzhou 28.9 42.8 9.0 * 6.4 * 12.5 16.3 * 24.5 18.3 16.8 9.4 8.3 6.8
Lhasa 27.9 27.4 11.8 * 8.1 * 8.0 * 10.6 * 32.7 35.6 * 7.7 * 8.3 11.9 10.0

Chongqing 38.8 45.9 * 11.2 10.6 12. 3 * 8.8 * 18.0 * 16.4 9.0 9.3 * 10.7 9.0
Nanchang 33.7 * 36.2 9.7 19.3 * 14.3 10.4 15.5 11.2 15.0 15.4 11.7 7.5
Changsha 39.3 50.7 7.6 * 9.2 * 17.2 * 8.4 * 14.8 17.1 * 6.4 * 5.8 14.7 8.7
Guiyang 43.7 45.6 * 8.3 * 11.4 21.2 * 14.5 * 11.0 10.0 * 4.3 * 8.3 * 11.4 10.2
Fuzhou 24.0 * 48.1 11.4 6.6 13.9 16.0 23.3 8.6 14.2 13.4 13.2 7.3

Kunming 49.6 52.3 * 8.8 * 7.4 15.4 * 17.7 * 8.1 7.5 9.4 * 10.2 8.6 5.0
Guizhou 31.9 34.3 10.8 11.6 11.8 11.0 21.8 19.3 9.3 * 11.9 * 14.5 11.9
Nanning 30.1 63.3 * 14.1 * 5.2 11.2 10.0 * 17.5 7.3 11.1 7.2 * 16.0 7.0
Shenzhen 50.1 * 39.4 * 11.0 * 10.8 * 6.9 * 8.8 * 14.9 * 17.0 * 7.6 11.8 9.5 12.1
Haikou 53.8 51.4 * 4.7 * 9.7 * 9.2 * 10.4 * 11.5 7.7 * 15.0 14.4 5.8 6.4

The impacts of the same driving factors on vegetation in the same urban core area and
expansion area were different. Among them, the difference in CO2 in Nanning, Fuzhou,
Hefei, Xi’an, and Shijiazhuang was the largest. Among the top five cities, the largest
difference was in Nanning, where it accounted for 33.3%, and the smallest difference was in
Shijiazhuang, where it accounted for 15.6%. The contribution of urbanization in Nanchang,
Nanning, Yinchuan, Hefei, Xining, and other cities varied greatly and ranged from 6.1% to
9.6%. The precipitation gaps in Lanzhou, Urumqi, Changsha, Yinchuan, Xining, and other
cities were relatively large, with the maximum difference reaching 9.4% and the minimum
difference reaching 7.9%. In Fuzhou, Zhengzhou, Xi’an, Nanning, Hangzhou, and other
cities, there was a large difference in the contribution of temperature, with a difference
between 6.2% and 14.7%. Radiation differed in Shanghai, Hangzhou, Hefei, Shenzhen, and
other cities, and the difference in contribution was 4.2–9.5%.

In the core area, the dominant factor of FVC in 28 cities was CO2, among which the
decrease of FVC in 20 cities was inhibited by CO2, the increase of FVC in 6 cities was
promoted by CO2, and the growth trend of FVC in 2 cities was opposite to the effect of CO2,
namely Nanchang and Fuzhou. The FVC in Nanchang showed a downward trend, while
CO2 as the leading factor played a role in promoting it. In this case, it was considered to be
caused by the inhibition of other factors except CO2. The FVC of Fuzhou core area showed
a decreasing trend, while CO2 as the leading factor played a promoting role. In this case,
it was considered to be caused by the inhibition of other factors except CO2. The rest of

148



Remote Sens. 2022, 14, 839

the four cities’ leading factor was not CO2, including the Hohhot, Beijing, Zhengzhou, and
Lhasa. Among them, the FVC of Hohhot showed a trend of decline, and it mainly promoted
by precipitation. The FVC of Beijing showed an increasing trend, and precipitation as the
leading factor played a promoting role. The FVC of Zhengzhou showed a decreasing trend,
and temperature, as the dominant factor, played an inhibiting role. The FVC in Lhasa core
area showed a decreasing trend, and temperature was the dominant factor, which restricted
the vegetation growth.

In the expansion area, the dominant factor of FVC in 29 cities was CO2, among which
the decrease of FVC in 12 cities was inhibited by CO2, the increase of FVC in 10 cities was
promoted by CO2, and the growth trend of FVC in 7 cities was contrary to the effect of CO2,
including Shenyang, Taiyuan, Xining, Xi’an, Chengdu, and Chongqing. Among them, the
FVC of Shenyang showed a decreasing trend, while CO2 played a promoting role as the
leading factor. In this case, it was considered to be caused by the inhibition of urbanization,
radiation, and other factors. The FVC of Xi’an showed a decreasing trend, while CO2
played a promoting role as the leading factor. In this case, urbanization, temperature,
radiation, and other factors were considered to cause the inhibition. The rest of the three
cities’ leading factor was not CO2, including Hohhot, Beijing, and Zhengzhou. Among
them, the FVC of Hohhot showed an increasing trend, although CO2 was still an inhibition,
with precipitation as the dominant factor, which played an important role in promoting
the FVC. The FVC of Beijing showed an increasing trend, and precipitation as the leading
factor played a promoting role. The FVC of Zhengzhou showed a decreasing trend, and
the temperature as the dominant factor played a restraining role.

4. Discussion

From 2001 to 2018, we found that the vegetation in China generally showed an in-
creasing trend from 2001 to 2018, although the vegetation in cities prevalently decreased.
Eastern China showed increases in FVC and decreases in city clusters, especially in the
Yangtze River Delta urban agglomeration [60]. This finding was in accordance with pre-
vious research results [18,20,61]. In addition, we found that the vegetation coverage in
21 of 32 cities showed a decreasing trend based on an analysis of changes in the FVC in
China’s major cities. This result is also reflected in relevant studies [35]. The FVC of 32
urban expansion areas was higher than that of core areas. It is worth noting that due to
the management of urban green space in recent years, the vegetation in the core areas and
expansion areas of some cities recovered in the later stage of development.

Urbanization explained 10.6% of the variation in vegetation dynamics, which indicated
that the indirect effects generated by urban expansion should not be ignored. We further
confirmed that urbanization could exert both positive and negative impacts on vegetation.
We found that the vegetation coverage in 21 of 32 cities showed a decreasing trend by
analyzing the changes in FVC in China’s major cities. This result is also reflected in relevant
studies [35]. However, an increasing trend in vegetation was detected in recent years in
several cities. The difference might be explained by the changes during the urban devel-
opment period [62]. Cities in the early stage of development might increase impervious
surfaces to support city development at the cost of reducing vegetation coverage [60]. With
the increased demands for better living conditions, more developed cities might increase
urban vegetation [63].

Our results suggested that climate was the main driving factor of vegetation growth
and explained 40.6% of the vegetation variation. Precipitation, temperature, and radi-
ation explained 13.2%, 15.7%, and 11.7% of vegetation growth, respectively. Although
the impacts of precipitation, temperature, and radiation on vegetation were similar, the
responses of vegetation to precipitation, temperature, and radiation exhibited strong spa-
tial heterogeneity. We found that the contribution of precipitation increased from wetter
regions to drier regions (from 9.2–10.4%% in Haikou to 28.7–30.3% in Hohhot) (Table 3).
Our results were similar to those of previous studies in that vegetation in arid and semiarid
regions was dominated by precipitation [64]. However, the impact of vegetation was not
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significantly different between the core areas and expanded areas. Possible explanations
included urban green space management, strengthened irrigation, and other measures,
which decreased the differences in precipitation between the core area and the expansion
area. We also found that the contribution degree generally showed an increasing trend
with increasing latitude and coastline distance [12]. However, a significant difference
was not found between the core area and the expanded area. A possible reason was that
large impervious surfaces in the urban core and expansion areas increased albedo and
temperature; therefore, temperature was no longer the limiting factor [36]. In our research,
radiation mainly affected the vegetation in coastal areas and high altitude areas, which
may be because radiation was stronger at high altitudes. The intensity of radiation was
also strengthened due to the influence of reflectivity in coastal areas.

In addition, the contribution of CO2 to vegetation variation cannot be ignored. CO2
was the dominant factor affecting urban vegetation, and the average driving contribution of
CO2 to urban vegetation was 39.2%. This result was also reported in previous studies [22,65].
By observing the contribution of urban driving factors, we found that CO2 dominated
vegetation growth in 29 cities. The other three cities, namely Hohhot, Zhengzhou, and
Lhasa, were dominated by precipitation, temperature, and radiation. The reason may be
that under favorable hydrothermal conditions, CO2 became the main growth factor of
vegetation by affecting the carboxylation reaction of vegetation. However, Hohhot is located
in arid and semiarid areas, and the influence of precipitation was more important. The
temperature in Lhasa was low, which was the main factor limiting vegetation growth. In
Zhengzhou, temperature was the dominant factor, followed by CO2, which may be related
to increases in temperature under increased albedo. We also found that in the core area,
the dominant factor of FVC in 28 cities was CO2, among which the decrease of FVC in
20 cities was inhibited by CO2, the increase of FVC in 6 cities was promoted by CO2, and
the growth trend of FVC in 2 cities was opposite to the effect of CO2. In the expansion
area, the dominant factor of FVC in 29 cities was CO2, among which the decrease of FVC in
12 cities was inhibited by CO2, the increase of FVC in 10 cities was promoted by CO2, and the
growth trend of FVC in 7 cities was contrary to the effect of CO2. These findings indicated
that CO2 was essential for the growth of vegetation, and its role varies from city to city.

We focused on China’s 32 major cities and quantified the relative contributions of
climate, urbanization, and CO2 to FVC change. However, some uncertainties remained in
this study. First, the interaction between human activities and climate may not have been
fully considered in our research. For example, human activities have changed the types of
underlying surfaces in cities, thereby increasing reflectivity and temperature and causing
changes in vegetation growth. To date, the complex interaction mechanism between human
activities and climate change still needs further discussion [47,66]. Second, although the
effects of climate, CO2, and urbanization on vegetation growth were considered, some
factors, such as nitrogen deposition, topography, tree age, and other driving factors, were
not considered but also affect vegetation growth [21,22,67,68]. Third, it is very complex
to extract urban boundaries from lighting data, as can be seen from the review of urban
mapping technology system based on NTL data in Zhou et al. ‘s research [69]. At present,
a number of scholars have developed a variety of urban extent mapping methods, includ-
ing the cluster-based method [70], method based on the NTL gradient [71], automatic
delineation framework and morphology combined method [72], random forest classifier
method [31], and stepwise-partitioning framework method [73], which have improved the
deficiency of using a single threshold in the past [74–76] and helped to carry out research on
a global scale. In our study, we learned the related ideas of multi threshold extraction, and
extracted the boundaries of 32 cities in China by using the characteristics of data gradient
and divergence. However, this result may be affected by the resolution of the NTL data [69].
Thus, in the future, finer lighting data can be used to achieve more accurate urban boundary
extraction. Finally, due to the lack of CO2 data covering China in a long time series, this
study only used the data of the WLG site as the data of China for calculation. Figure 10
showed the status of CO2 observations at the WLG site from 2001 to 2018. The data at
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the WLG site shows a continuous increase of 2.2 ppm per year. CO2 has spatio-temporal
differences among cities, and the difference in concentrations between Eastern and Western
China ranges from 2 to 4 ppm, meaning the difference is less than 1% [77,78]. It should be
pointed out that the impact of CO2 on vegetation growth obtained in this study is only a
preliminary impact result based on the statistical level of GLM regression equation. In fact,
the specific positive promotion or negative inhibition effects should be further considered
and evaluated by introducing the actual vegetation dynamic growth process model.

Figure 10. Curve of CO2 observation value at Waliguan station from 2001 to 2018. The gray curve
represents the monthly mean value of CO2, the red dot represents the annual mean value of CO2,
and the black line represents the change trend of annual mean CO2.

5. Conclusions

This study quantified the relative importance of precipitation, temperature, radiation,
urbanization, and CO2 on vegetation dynamics over China’s 32 major cities from 2001 to
2018. First, we found that the vegetation in China generally showed an increasing trend
from 2001 to 2018. Nevertheless, the vegetation prevalence in cities decreased, with the
vegetation coverage in 21 of the 32 cities showing a decreasing trend, among which the
FVC in the core area decreased in 23 cities. The FVC in the expansion area decreased
in 21 cities. Second, the changes in NTL data and land cover data indicated that urban
areas continued to expand from 2001 to 2018. Night light data showed that the expansion
areas of 32 cities have increased to varying degrees. A comparison of the area statistics
of expansion and core areas showed that the area increased by more than six times, with
an average increase of approximately 168%. Land cover data showed that various land
cover types changed to artificial surface types over 18 years, thereby increasing the area
of urban impervious surfaces. Third, China has experienced rapid urbanization; however,
the vegetation in China’s 32 major cities was still mainly dominated by climate factors and
CO2 rather than urbanization. The relative contributions of climate, CO2, and urbanization
to FVC variations in China’s 32 major cities were 40.6%, 39.2%, and 10.6%, respectively.

This study evaluated the vegetation change trend and then quantified the contributions
of driving factors (such as precipitation, temperature, radiation, CO2, and urbanization) to
vegetation growth. Further research should consider the contribution of additional influenc-
ing factors on vegetation growth, such as topography. This study performed a change and
attribution analysis of vegetation coverage in China over a long time series, and it enriches
the research on vegetation and driving factors and has reference value for explaining the
complex biophysical mechanism between vegetation and the environment. Moreover, it
represents crucial theoretical research and provides important scientific information for
environmental protection.
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Abstract: The use of vegetation is one of the effective methods to combat the increasing Urban Heat
Island (UHI). However, vegetation is steadily decreasing due to urban pressure and increased water
stress. This study used air temperature measurements, humidity and an innovative advanced earth
system analysis to investigate, at daytime, the relationship between green surfaces, built-up areas and
the surface urban heat island (SUHI) in Marrakesh, Morocco, which is one of the busiest cities in Africa
and serves as a major economic centre and tourist destination. While it is accepted that UHI variation
is generally mitigated by the spatial distribution of green spaces and built-up areas, this study shows
that bare areas also play a key role in this relationship. The results show a maximum mean land
surface temperature difference of 3.98 ◦C across the different city neighbourhoods, and bare ground
had the highest correlation with temperature (r = 0.86). The correlation between the vegetation index
and SUHI is decreasing over time, mainly because of the significant changes in the region’s urban
planning policy and urban growth. The study represents a relevant overview of the factors impacting
SUHI, and it brings a new perspective to what is known so far in the literature, especially in arid
climate areas, which have the specificity of large bare areas playing a major role in SUHI mitigation.
This research highlights this complex relationship for future sustainable development, especially
with the challenges of global warming becoming increasingly critical.

Keywords: urban heat island; land surface temperature; vegetation; built-up; bare soils; Marrakesh

1. Introduction

Today, cities are facing many new challenges and issues. They are increasingly ur-
banised [1], dense and sprawling in order to accommodate demographic growth and the
concentration of activities. This has led to a degradation of the urban microclimate due
to an increase in urban temperatures [2,3]. This phenomenon, known as the urban heat
island (UHI) effect, is intensified by the effects of global warming [4]. Moreover, several
studies [5–7] argue that extreme heat will pose an increased threat to public health, such as
the severe increase in heat-related mortality in urban areas, explained in part by the urban
heat island effect.

Studies on UHI are of central interest to all scientific disciplines, as it affects human
activities, health [8] and ecosystems [9]. UHI has several causes, but it is strongly linked to
a reduction in latent heat at the expense of sensible variation in heat and the removal of
vegetation cover, particularly in urban areas where there is low vegetation cover [10,11].

Vegetation lowers ground surface temperatures by providing shade [12,13]. Trees and
vegetation decrease ambient air temperature through the process of evapotranspiration,
where they release water vapour into the atmosphere [14,15]. In fact, areas with very high
temperatures are characterised either by an absence of vegetation or by predominantly
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artificial impermeable surfaces, such as roads, buildings, pavement, etc. Thus, the prop-
erties of materials used in the construction of urban structures, such as solar reflectance,
heat capacity and thermal emissivity, play a major role in the formation of UHIs. Addi-
tionally, the waste heat generated by factories, air conditioners and motor vehicles, which
are ubiquitous in the city, is an important factor [16]. These negative effects of UHI can
be significantly controlled through sustainable development combined with mitigation or
adaptation measures. The ‘strategic’ planting of trees and vegetation in urban areas is one
of the most effective methods to reduce the effects of UHI, as vegetation cover increases
evaporative cooling while providing shade, reducing solar radiation from the heat-exposed
soil [17].

In their study, [18] found that water bodies and vegetation had the lowest land surface
temperatures, whereas bare ground had the highest ones. However, bare soils are com-
monly considered as all urbanised surfaces, whereas in reality it is necessary to distinguish
bare areas from built up areas because they do not behave the same way when it comes to
heat islands. There are very few studies combining UHI formation with vegetation and
built-up areas, particularly in cities of the Global South and at the neighbourhood level.
Therefore, in this study, we will present the relationship and impact of vegetation and
built-up areas on the presence or absence of UHI, providing insight into this phenomenon.

Two kinds of UHI exist: the canopy layer heat island (CLHI) and the surface urban heat
island (SUHI). While CLHI refers to the warming of the urban air, SUHI describes changes
in surface temperature [19,20] and, influenced mainly by the albedo, land use and building
typology and materials [21]. The most common method used in the literature for SUHI
analysis is the retrieval of land surface temperature (LST) from satellite images [22–29].

Solar radiation warms the earth’s surface, while longwave infrared radiation mostly
heats the atmosphere from the ground up. Given that the land surface’s energy balance
is a complicated process that depends on several factors, the link between LST and air
temperature (Tair) may change over time and space (e.g., surface roughness, cloud cover,
soil moisture and wind speed). In a recent study, when [30] compared LST and Tair
from 2007 to 2013, they found that LST and Tair at daytime are strongly correlated; this
correlation is generally stronger than that of the night time. Satellite LST images can be
used to derive air temperature [31]. On this basis, it can be concluded that the detailed
study of LST can provide a lot of information on the state of UHI and its spatial variation.

In contrast to in situ measurements, which provide sparsely distributed data, satellite
imagery products allow monitoring of the urban heat island with global spatial coverage,
ensuring better analysis of intra-urban spatial variability of UHI, which is closely related to
the distribution of buildings, surface materials and green spaces. Satellite remote sensing
is an excellent tool to study the earth’s surface properties and the effects of UHI [32,33].
In this study, we use an exploratory analysis to investigate the SUHI during the daytime
and its relationship with different factors in order to understand the mitigating factors for
the city of Marrakesh, Morocco in light of the challenges related to climate, environment,
demography and water needs.

2. Study Area

Marrakesh is a semi-arid continental city located in central Morocco (Figure 1). The
area has undergone radical change since it was founded. It was desert land before the occu-
pation, a garden city before colonisation, and now, it has become a tourist city. Marrakesh
has also experienced a rapid urban demographic transition in the last decades as a result of
its economic development. Currently, the city is part of the Marrakesh–Safi region, which
covers 230 km2, with 5 districts (Marrakesh–Medina, Guéliz, Menara, Ennakhil and Sidi
Youssef Ben Ali/SYBA) and 25 neighbourhoods. It is home to 928,850 inhabitants with a
density of 350 inhabitants per km2 [34]. The Medina and Mechewer districts constitute
the centuries-old centre of the city, next to the colonial neighbourhoods of Hivernage and
Guéliz, as well as the military district in colonial times. These French neighbourhoods,
examples of the French colonial urban model with public parks and gardens, squares
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and public places, and trees aligned along the streets [35], were created with a hygienist
objective, synonymous with modernity, civilisation and social progress, and an attractive
reassuring framework and pleasant environment for French people [36]. The other districts
were built after independence. SYBA, an informal working-class neighbourhood from the
1960s, was built around old foundations and later regularised. In the south, Hay Jadid
underwent a similar process after the 1990s. Daoudiate is a planned middle-class neighbour-
hood from the 1970s, as are Issil and Amerchich from the 1980s. Mhamid, Massira, Iziki,
Azli, Hay Hassani and Riad Salam are high-rise working-class neighbourhoods planned in
the 1990s and 2000s and which spill over into predominantly rural neighbourhoods such
as Sidi Ghanem, El Inara, Maata Allah, Azkjjour, Bouaakaz and Al Izdihar. The districts
of Ennakhil North and South, which developed in the palm grove mainly after 2000, are
home to luxury villas and hotels and are relatively unurbanized; however, the palm grove
has completely lost its traditional features, retaining only one layer of low-density palm
trees, leaving large areas of bare soils.

 

Figure 1. Location of the study area, air temperature samples, districts and hexagonal grid used.

Marrakesh is characterised by a semi-arid continental climate. Its average annual
temperature is around 20 ◦C with peaks of around 40 ◦C. Rainfall periods are between
November and April and reach a climatological mean annual total that fluctuates between
150 and 350 mm/year. Outside the rainy season, the atmosphere remains dry with a high
evaporative demand.

Today, the urban growth in Marrakesh has led to an increase in demand for housing,
basic infrastructure, parks, tourist attractions and real estate, often at the expense of
vegetated areas.

The vegetation in the city corresponds largely to the heritage of the colonial pe-
riod and is today in poor condition, with the exception of a few emblematic public and
private parks and gardens, widely recognised in the countries of the North as former
colonial metropolises.
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3. Material and Methods

In order to understand the relationship between and spatial variation in vegetation,
the heat island and built-up areas, we studied the area at the borough, neighbourhood
and hexagonal scales. The borough scale was used because population distribution data
are available at this unique level, and it was compared with the neighbourhood scale,
which is more accurate. We also used a hexagonal grid with polygons of 10 ha, in order to
extract more detailed spatial information about the extent of the vegetation, heat island
and built-up areas in 2020.

The methodological approach can be divided into three steps:
The first step was to measure air temperature and humidity at the near-surface using

a XIAOMI Mijia thermometer (LYWSD03MMC). The temperature measurement range was
from 0 ◦C to 60 ◦C (resolution ± 0.1 ◦C), and the humidity range was from 0% to 99% RH
(resolution ± 1% RH). The sampling points were taking during midday (between 12:00 am
and 14:00 am Greenwich Mean Time) and were carefully selected on the basis of one sample
per location (Table 1) to cover the different land uses of the city. The sample point P7 was
taken at the level of bare ground in Riad Salam district. The other specimen point, P5,
was taken at the level of dense vegetation at Hivernage district, and the sample points P1
and P2 were taken at the level of sparse vegetation at Mechewer district. Additionally, the
specimen points P3 and P4 were taken at the level of an alley in the SYBA and Medina
districts, respectively. The alleyways in the Medina and SYBA districts of Marrakesh are
characterized by narrow streets between dense, neighbouring buildings (ground floor
plus one or two floors) and with an open sky view, often sheltered from the sun. The
sample point P7 is taken at the level of an alley in Issil. The alleys of the Issil district are
characterized by fairly wide alleys; the construction is of the ground floor type plus two
storeys, with an open sky view, often exposed to solar radiation.

Table 1. Air temperature and humidity sampling points.

Sample District X Y
Air Temperature

(◦C)
Humidity

(%)
LST
(◦C)

P1 Mechewer 31.60954 −7.9825 31.5 48 31.26
P2 Mechewer 31.6026 −7.97826 33.4 46 30.51
P3 SYBA 31.60755 −7.97137 33 45 30.96
P4 Medina 31.62393 −7.98717 30.5 49 30.69
P5 Hivernage 31.62195 −8.00576 30.2 50 27.29
P6 Issil 31.64318 −8.0075 34.4 44 31.39
P7 Riad Salam 31.65922 −8.02481 37.4 38 35.47
P8 Sidi Ghanem 31.66696 −8.04049 36.9 40 34.93

The samples were taken during the same daytime period in order to obtain a clear
result on the spatial variation in air temperatures with different land uses.

The thermometer used was covered by a box to protect the temperature sensor from
being influenced by direct or reflected sunlight. The wood box was painted white to better
reflect the sun’s rays. The sides with openings allowed outside air to flow around the
thermometer. The box was raised to a height of 50 cm to measure the temperature of the air
above the ground.

The second step consisted of identifying vegetation cover and built-up and bare soil
areas (Figure 2). In this step, the Sentinel 2A was used for more accurate results in estimating
land use land cover than those generated from the Landsat time series [37]. In this step, three
different stages were carried out: (1) Atmospheric correction and radiometric calibration
were performed for each Sentinel-2A spectral band; in this stage, radiance, reflectance
and brightness temperatures were optimized and dark subtraction was used to remove
the effects of atmospheric scattering from an image. ENVI software was used because
of the very powerful scripts used for this purpose, through the “FLAASH Atmospheric
correction” and “Radiometric calibration” functions. (2) On the corrected and preprocessed
dataset, principal component analysis was performed in order to improve the image
presentation by using a data compression technique to separate the noise components,
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lower the dimensionality of datasets and provide uncorrelated output bands [38]. The
ArcGIS software was used to perform the Principal Component Analysis on a set of raster
bands and generate a single multiband raster as output. (3) The supervised classification
using the Maximum Likelihood Algorithm was used for vegetation sensing, with the
samples selected on the basis of the false colour multispectral composite image where the
vegetation appears in red colour. For built-up sensing, the samples were chosen using
Google Earth satellite imagery [39]. Finally, bare ground refers to stony mineral areas that
have not been built on and not vegetated; basically, the entire area with the exception of
vegetation and buildings.

 

Figure 2. Methodology for the determination of the vegetation cover, built-up areas and bare areas.

The third step concentrated on the calculation of the spatial distribution of LST (land
surface temperature) and NDVI (Normalized Difference Vegetation Index).

In this study, we will calculate these two parameters and their linear regression for the
years studied (1985–1990–1995–2000–2005–2010–2015–2020) using Landsat satellite images.

Images from the Landsat satellite (5, 7, 8) and Sentinel-2A satellite were used in this
study (Table 2). They consist of optical images from 2020 for Sentinel-2A, mainly used to
map vegetation areas and built-up areas, and Landsat, used mainly to map NDVI and LST
indexes. All the images were acquired from the USGS Global Visualization Viewer website
(GloVis) [40]. All the Landsat data were acquired in the morning (between 10:00 am and
12:00 am Greenwich Mean Time).

Table 2. Satellite products used for the study.

Satellite Sensor No. of MS Bands (Nominal Resolution) Period

Landsat 5 TM 6 (30 m)

27 July 1985
9 July 1990

8 August 1995
19 August 2005

16 July 2010
Landsat 7 ETM+ 6 (30 m) 13 August 2000

Landsat 8 OLI/TIRS 8 (30 m)
14 July 2015

12 August 2020
Sentinel-2A 13 (10–20 m) 14 August 2020
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The images were taken during the dry months (June–July) in order to identify the perma-
nent vegetation cover, which is irrigated during this dry season in Marrakesh. Only images
with little or no cloud cover were selected to improve the accuracy of the classifications.

The NDVI values range from −1 to +1. A higher NDVI value indicates healthy and
dense vegetation; a lower NDVI value indicates sparse vegetation [41]. It is expressed
as follows:

NDVI = (NIR − RED)/(NIR + RED) (1)

where RED and NIR represent spectral reflectance measurements acquired in the red
(visible) and near infrared regions, respectively.

The LST index is the key factor for calculating the highest and lowest temperatures of
a specific place [42]. It is calculated by using Land Surface Emissivity, top of atmosphere
brightness temperature and wavelength of emitted radiance.

The LST (◦C) is calculated using two methodologies depending on the sensor used:
TM, ETM+ or OLI.

For the TM and ETM+ sensor, LST is calculated using the following equation:

LST = K2/(ln(K1/Lλ + 1)) − 273.15 (2)

where K1 is the calibration constant 1 in Watts/(m2 × sr × μm) and K2 is the calibration
constant 1 in Kelvin. K1 and K2 are calculated based on the band 6 depending on the sensor
used (Table 3):

Table 3. Values of K1 and K2 for Landsat 5 (TM), Landsat 7 (ETM+) and Landsat 8 (OLI).

Sensor K1 K2

Landsat 5 TM
Band 6 Band 6
607.76 1260.56

Landsat 7 ETM+
Band 6 Band 6
666.09 1282.71

Landsat 8 OLI
Band 10 Band 10
774.89 1321.08

Lλ (Watts/(m2 × sr × μm)) is the TOA spectral radiance, calculated as follows:

Lλ =
LMAXλ − LMINλ

QCALMAX − QCALMIN
× (QCAL − QCALMIN) + LMINλ (3)

where QCAL = Band 6; LMAXλ: Radiance Maximum Band in Watts/(m2 × sr × μm);
LMINλ = Radiance Minimum Band in Watts/(m2 × sr × μm); QCALMIN = Minimum
quantized calibrated pixel value of band 6 and QCALMAX = Maximum quantized cali-
brated pixel value of band 6.

Recurring data for the determination of K1, K2, QCALMIN, QCALMAX, LMAXλ and
LMINλ could be found in the MTL file in the Landsat image folder.

For the OLI sensor, LST (◦C) is calculated using the following equation:

LST = BT/(1+ (W × BT/14380) × ln(E)) (4)

where W = Wavelength of Emitted Radiance of band 10 (11.5 um); BT = Top of Atmo-
sphere Brightness Temperature in ◦C; W = Wavelength of Emitted Radiance and E = Land
Surface Emissivity.

The top of atmosphere Brightness Temperature (BT) is calculated as follows:

BT = K2/(ln(K1/Lλ + 1) − 273.15 (5)

where K1 = calibration constant 1 in Watts/(m2 × sr × μm); K2 = calibration constant 1 in
Kelvin and Lλ = TOA Spectral Radiance (Watts/(m2 × sr × μm)).
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K1 and K2 are calculated based on the band 10 of the sensor Landsat 8 (Table 3).
TOA Spectral Radiance (Lλ) can be calculated as follows:

Lλ = ML × Qcal + AL − Oi (6)

where ML = radiance multiplicative band (3.342 10–4); Qcal = quantized and calibrated stan-
dard product pixel values (Band 10); AL = radiance Add Band (AL = 0.1) and Oi=correction
value for band 10 (Oi = 0.29).

E, the Land Surface Emissivity, can be calculated as follows:

E = 0.986 + PV × 0.004 (7)

where PV = proportion of vegetation, which can be calculated as follows:

PV = [(NDVI − NDVImin)/(NDVImax + NDVImin)]2 (8)

where PV = proportion of vegetation; NDVI = DN values from NDVI image (Calcu-
lated from Equation (1)); NDVImin = minimum DN values from NDVI image and
NDVImax = maximum DN values from NDVI image.

Recurring data for determination of ML, AL, K1 and K2 could be found in the MTL
file in the Landsat image folder.

4. Results

4.1. Initial Results

The Urban Community of Marrakesh has a surface area of 213.31 km2, where vegeta-
tion currently represents 43.32 km2 (20% of the total surface area), the built-up surface area
39.99 km2 (19% of the total surface area) and the remaining 130 km2 (61%) represents bare
areas (Figure 3).

Figure 3. Variation in vegetation in relation to built-up and bare surfaces.
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As regards the total vegetation area, the Ennakhil North district has the largest vege-
tated area, with 995.67 ha. This district also has the second largest surface area (3217.13 ha)
and large surfaces of bare ground (2074.11ha, ~65%). The Mhamid district has the low-
est vegetated area with 2.04 ha, and almost the entire area is occupied by built-up area
(209.75 ha, 68% of total area) and bare ground (95.20 ha, 31% of total area).

As regards the total built-up area, the Medina district is in first place, with an area of
460.09 ha, while the least built-up district is the Mechewer district (47.92 ha).

As regards vegetation density, the analysis of the variation in vegetation on a hexagon
scale showed that the most densely vegetated district is Mechewer (33.54%), with a mean
of 3.17 ha per 10 ha (hexagon), and it is also the district with the highest standard deviation
(3.44 ha). The district with the lowest vegetation density is the Mhamid district (0.66%),
with 0.077 ha per 10 ha (hexagon).

Built-up surface density also varies greatly. The Daoudiate district is the densest one
in terms of construction, with a percentage of approximately 72%, equivalent to 6.93 ha per
10 ha. The least dense district is Ennakhil Sud (4%), equivalent to 6.38 ha per 10 ha.

4.2. Spatial Variation of LST and NDVI

Figure 4 displays the spatial variation in land surface temperature in the study area.
A minimum surface temperature of 25.28 ◦C was recorded at the water basins used for
irrigation, which are located in the Menara and Agdal gardens, and the maximum was
41.45 ◦C recorded in the large area of bare ground located in the northeastern part of
Marrakesh. The range was 16.17 ◦C, the mean was 33.90 ◦C and the standard deviation
was 2.55 ◦C.

 

Figure 4. Spatial variation in land surface temperature.

We can see that the highest temperatures were recorded on bare soils, and the temper-
atures were medium to low in built-up areas and low in vegetated areas.

At the level of the districts (Figure 5), the highest mean LST was observed at Zone
Airport with a mean of 35.30 ◦C (std = 2.33 ◦C), the lowest mean at Guéliz with a mean of
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31.31 ◦C (std = 1.02 ◦C) and the highest LST standard deviation was observed at Ennakhil
North with std = 2.52 ◦C.

Figure 5. Average temperature by district.

Concerning the NDVI, essentially related to the density, type and health of the vegeta-
tion, the Ennakhil North district had the highest average (NDVI = 0.15), and the Mhamid
district recorded the lowest average (NDVI = 0.07).

4.3. Relationship between LST, NDVI, Bare Areas, Vegetated Areas and Built-Up Areas

Figure 6 shows the heat map of the correlation matrix of the different factors studied,
and the correlation is made by studying LST, NDVI, bare area, vegetated area and built-up
area for each hexagon. According to the heat map, NDVI had a close relationship with
vegetation, with a very high positive correlation index of r = 0.94, which proves that the
NDVI calculation processes are correct. The second strongest correlation was between
LST and bare area, with a positive correlation coefficient of r = 0.86, which implies that
the more soil ground there is, the higher the ground temperature will be. The correlation
between LST and NDVI and vegetation areas showed negative mean values of r = −0.48
and r = −0.53, respectively, and, notably, of r = −0.44 with built-up areas.

4.4. Relationship between LST and NDVI from 1985 to 2020

In order to have more detailed information on the relationship between NDVI and LST,
we tracked these two indices over time (Figure 7). In 1985, a strong negative correlation
of r = −0.71 was observed, and by 2020, this correlation had decreased significantly, to
r = −0.48. The correlation between NDVI and LST is getting weaker over the years, which
could be explained by the change in land use of some hexagons from bare or vegetated
areas to built-up areas. This change in land use has resulted in hexagons with medium to
low LST and low NDVI, which is mainly due to the fact that built-up areas have a different
NDVI than bare and vegetated areas.
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Figure 6. Relationship between LST, NDVI, bare areas, vegetated areas and built-up areas.

Figure 7. Relationship between LST and NDVI from 1985 to 2020.
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On the other hand, the detailed analysis of the relationship between LST and NDVI
(Figures 8 and 9) for the year 2020 shows that the hexagons experiencing significant change
and with a low mean LST index and a low NDVI index are hexagons with very high
urbanisation (>60%), such as SYBA, Mhamid and Medina.

Figure 8. Analysis of the relationship between LST and NDVI per built-up area (2020).

Figure 9. Analysis of the relationship between LST and NDVI by neighbourhood (2020).

4.5. Relationship between Observed Air Temperature and LST

The results of measurement of air temperatures (Table 1) show that the point P5,
characterizing a typical green space in the Guéliz district, recorded the lowest temperature
(30.20 ◦C). The highest value is recorded at the point P7, characterizing a bare area from Riad
Salam district (37.4 ◦C). It should be noted that the point characterizing Agdal (P2), with
sparse vegetation—mainly olive trees—has recorded relatively medium air temperatures
(33.4 ◦C), while it was expected to have a lower value. On the other hand, the sample taken
in the Medina district (P4), with old buildings, recorded the second lowest temperature
(30.5 ◦C), while the sample taken in the industrial buildings in the Sidi Ghanem district
(P8) recorded the second highest temperature (36.9 ◦C).
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The comparison between air temperature-observed data with the simulated data of
the land surface temperature LST (Figure 10) shows a very high coefficient of determination
(R2 = 0.8), which explains the close relationship and the connection between them. These
two factors are also connected to the air humidity: the higher the temperature the lower
the humidity, and vice versa.

 
Figure 10. Comparison between observed air temperature and LST.

5. Discussion

Understanding the factors that minimise the adverse effects of UHI is important in the
global context of climate change and the increasing frequency of heat waves.

5.1. Relationship LST, Vegetation, Urban and Bares Areas

The vegetation is recognised as being able to attenuate the urban warming effect, since
plants use part of the energy absorbed for vital processes and then cool the environment
and the surrounding air by producing shade and releasing water vapour [32].

Therefore, the NDVI is widely used as a proxy for monitoring vegetation health
and abundance [43–45]. In Marrakesh, the high negative relationship found between
NDVI and LST suggests that green areas in the city can help mitigate the SUHI effect.
Areas with high NDVI values and relatively healthy and dense vegetation such as grass
or woodlands generally have the lowest temperatures. Medium NDVI values represent
unhealthy and degraded green areas, and the lowest NDVI values represent bare ground
without vegetated areas.

The most practical example is the royal territory in the north of the Mechewer district,
composed mainly of the large centuries-old Agdal Garden and the private royal golf
course (Figure 11). In the private golf course area, composed mainly of grassy areas and
some cypress trees, the vegetation index is high (NDVI > 0.35) and the LST is low, with
temperatures below 30 ◦C. The Agdal Garden, composed mainly of olive trees, relatively
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spaced in the eastern part, has NDVI values of 0.1–0.2 in the eastern part and between 0.2
and 0.35 in the western part of the garden, with temperatures between 32 and 30 ◦C.

Figure 11. The satellite image (A), NDVI (B) and LST (C) of the Agdal Garden and the royal private
golf course.

On this basis, many studies have attempted to understand the relationship and spatial
distribution of LST, built-up areas and vegetation in various metropolitan areas world-
wide [46–50].

In many investigations, UHI variation has been compared to built-up areas and
vegetation [28,46,51–54]. However, although bare soils sometimes occupy large areas of
land, notably, in arid climate cities, bare areas have rarely been considered.

Many other studies have investigated these relationships using indexes such as NDVI
(Normalized Difference Vegetation Index) and NDBI (The Normalized Difference Built-
up Index) on LST [28,55–57]. On the other hand, [58] and [59] indicated that, due to the
complexity of the spectral response patterns of vegetation and buildings, NDBI is unable to
separate urban areas from certain barren lands, and also that NDVI can result in high values
for some types of built-up areas. Therefore, this study presents an innovative method to
overcome these drawbacks and study the effects of vegetation and built-up areas as well as
bare areas on LST and their interactions. The results show that there is a large spatial and
structural variation in neighbourhoods in terms of total area, bare soil areas, vegetation
areas and built-up areas, which directly influences LST, thus explaining the wide variation
in LST at the neighbourhood level, which is consistent with the findings of [60,61].

The neighbourhood of the Zone Airport (Figure 12) recorded the highest mean LST
(35.30◦ C) and is considered the hottest neighbourhood in the city, despite the presence of
a vast and stable green space, the Menara Garden, originating in the 12th century. This
can be explained by the presence of large areas of bare ground, the second highest average
(7.34/10 ha) in this airport district of Marrakesh, much of which is covered by asphalt
pavements with an albedo of about 0.05, which means that only 5% of the light is reflected.
The remaining 95% is absorbed, which is why asphalt pavements are considered to be a
major factor contributing to the increase in SUHI [62].

In contrast, the neighbourhood of Guéliz (Figure 13), with the lowest mean LST
(31.32 ◦C), is characterised by medium to low occupancy of bare ground and medium to
high occupancy of vegetation (23.49 ha) and built-up areas (102.70 ha). This combination
has made this district the coolest in the city. Guéliz, historically called “the European
neighbourhood”, built during the French colonial period to the detriment of the palm
grove, was part of the urban policy of Hubert Lyautey (the first French Resident–General
of Morocco in the 1910s), which consisted of creating new modern cities for the large
French community that settled in Morocco during the colonial period [63]. The area was
planned based on the urban French colonial model, featuring real estate complexes and
luxury villas with small grass gardens for each building accompanied by alignment trees
in the streets. The goal was to provide the city with the necessary hygiene and quality of
life [35]. This translates into a relatively small standard deviation in vegetation variation
in that neighbourhood (Std = 1.06 per 10 ha), which is due to the uniform distribution
of vegetation in the Guéliz district. As far as the type of construction is concerned, the
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district has undergone changes over time in terms of zoning, with certain single unit zones
converted into R +5 building zones (buildings with no more than five floors above the
ground floor).

Figure 12. Neighbourhood of the Zone Airport (upper right, the Menara Garden with a water basin).

 

Figure 13. Panoramic view of the centre of Guéliz.

In their study on the effect of park proximity on the urban heat island effect, [64] found
that smaller scale green spaces can reduce SUHI with a magnitude close to that of larger
parks. Therefore, small-scale green spaces such as those in Guéliz, which consume less
water and take up little urban space, significantly mitigate SUHI in a cost-effective and
sustainable way, explaining why Guéliz is the coolest neighbourhood in Marrakesh.
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Concerning the impact of bare ground areas on surface temperature, very little is dis-
cussed in the literature [65–67], while the correlation analysis between the five parameters
of LST, NDVI, bare area, vegetated area and built-up area showed that LST is mostly related
to bare areas, with a high correlation of r = 0.86. Bare ground areas presented the highest
mean surface temperatures, and the LST map also shows that the bare ground surface area
plays a key role in the LST and built-up areas’ relationship; the larger the bare areas, the
higher the temperatures will be, thus cancelling out the temperature-lowering effect of
small vegetated areas in many cases. The Ennakhil neighbourhood, for example, which
should induce low temperatures, on the contrary posts high average temperatures. These
results have been recently reported in a few studies [18,68].

Furthermore, it is generally accepted that LSTs have an inverse correlation with NDVI,
meaning that vegetation spaces help mitigate the LST, and the denser and larger the space,
the more the SUHI effect decreases [28,69–71]. However, the correlation of LST with
vegetation and NDVI is not strong enough (r < 0.6), with a negative correlation coefficient
of r = −0.53 and r = −0.48, although visually (Figure 4), it can be seen that the green areas
are those characterised by the lowest temperatures.

Moreover, the analysis of the spatial and temporal variation in the LST-NDVI correla-
tion from 1985 to 2020 shows that, over time, this correlation is reduced, mainly due to the
expansion of urbanisation that has a different trend from the LST-NDVI. In other words,
the more buildings the district contains, the lower the correlation.

5.2. Impact of Construction Type on LST

The nature of the construction is another factor influencing heat. Thus, the Quartier
Industriel (Industrial district) in the Sidi Ghanem district (Figure 14), a commercial centre
and artisanal enclave on the outskirts of the city, filled with local designers’ workshops
and trendy boutiques, posts high temperatures (34.68 ◦C) despite the density of built-up
areas. Indeed, the industrial buildings are composed mainly of load-bearing masonry
(bricks, blocks, stones), main frame structures supporting the main floors and roof, and
secondary structural elements including balconies, canopies and metal walkways. This
type of construction has a low albedo, absorbs higher amounts of solar radiation and
converts it to thermal energy, favouring the storage of solar energy [53] and, consequently,
increasing the heat islands despite the density of the buildings. Therefore, several studies
have recommended increasing the albedo of the area to reduce the accumulated heat by
introducing reflective materials with high albedo, especially light-coloured coatings for
building roofs [72–74].

One of the most interesting elements that has emerged from this study is the low LST
of densely built and poorly vegetated neighbourhoods such as the Medina (31.51◦ C) and
SYBA (32.16 ◦C). Most researchers theorise that the gradual replacement of natural surfaces
by built surfaces, through urbanisation, constitutes the main cause of UHIs [46,75,76]. How-
ever, in Marrakesh, the downtown neighbourhoods post some of the lowest temperatures
in the city.

The Medina of Marrakesh (Figure 15), classified as a UNESCO World Heritage Site, was
designed centuries ago, mostly in the 12th century, with an urban morphology consisting
of an assemblage of house courtyards (patios) linked by a hierarchical street network.
Residential houses have massive facades with few openings, yet the courtyards connect the
houses with the outside environment. This compact organic rather than geometric urban
fabric thoroughly adapts to the immediate hot environment by providing shade in all the
narrow and winding streets.
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Figure 14. The Quartier Industrial in the Sidi Ghanem district.

 

Figure 15. The SYBA and Medina district.
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The Sidi Youssef Ben Ali (SYBA) (Figure 15) neighbourhood, located in the south of the
Medina between the Issil River and the ramparts of the Agdal Garden, developed out of a
self-construction phase starting in the 1950s by neo-urban people who could not find places
to live in the saturated Medina in a context of strong rural exodus. The urbanisation of this
sector was clandestine at the beginning, with multi-family dwellings built on small plots
of land (60 to 100 m2), single-storey at the beginning and rebuilt with two or three storeys
in recent decades. This spontaneous extension of the typo-morphology of the Medina
in the northern part of the SYBA district features houses with patios squeezed together
like traditional fabrics, with high densities and a lack of infrastructure. The area has a
compact and dense organisation which has developed in the absence of appropriate urban
planning. This mainly concerns the old district, which had experienced a high density
as a result of large immigration flows, and since then, this district has shown a definite
need for urban recovery, equipment and infrastructure. Due to its geographical location
in the southeast of the city of Marrakesh, close to the Medina and in the heart of three
major natural components, namely The Agdal gardens and their ramparts, Oued Issil
and the vast Hassan II Oasis farmlands to the south, the SYBA district has undergone a
programmed urban evolution to limit its spontaneous expansion and diversify its housing
through projects carried out by ERAC. A number of public and socio-economic facilities
have also been built. Sidi Youssef Ben Ali is a part of the city that some describe as a
countryside within an urban perimeter, as it has, in the past, reflected all the images of
marginalisation and social exclusion. The latter is closely linked to poverty, unemployment
and destitution, which are reflected in individual (public services and facilities) and/or
collective deprivation and in the lack of adequate and dignified housing and fairly paid
jobs. Despite all these elements of social and urban degradation and downgrade, this
neighbourhood demonstrates real qualities in terms of reduction in LST. This is due to the
fact that the dense nature of the buildings in these two districts prevents the heat from
reaching the street canyon, provides shade and also keeps the sky view open. Another
reason could be the construction materials with which the buildings are built, which are
often natural and traditional materials such as natural stones or raw earth.

5.3. Synthesis on the Variation in LST in Marrakesh

Marrakesh is a city characterised by an arid climate, where history and social inequality
have contributed to differences in the city’s districts; these differences mainly concern urban
management, vegetation and the urban development plan. These different parameters have
had a direct influence on surface heat islands and their presence in districts (Figure 16).

Figure 16. Summary of the spatial variation in LST in the city during the daytime.
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In cities with an arid climate, during the daytime, the presence of LST is mainly related
to the presence of bare land [65–67]. For example, in Marrakesh, the Airport Zone and
Sidi Ghanem districts are considered as the hottest districts of Marrakesh, at 35.30 ◦C and
34.68 ◦C, respectively. In these two districts, in addition to large areas of bare lands, there
are asphalt pavements (in the case of the Airport Zone) and metal construction (in the case
of Sidi Ghanem) which retain even more heat due to their low albedo [72–74].

On the other hand, vegetation and built-up areas contribute to the attenuation of the
LST [60,61], as in the case of the districts of Guéliz and Médine. In the case of Guéliz,
which has a relatively different organisation due to its colonial history, it is characterised
by R + 5 buildings, preventing heat from reaching the street gutter, providing shade and
also keeping the view to the sky open. The Guéliz district is also characterised by well-
distributed vegetation, reflected in luxury villas and high-class hotels with a large number
of grassy gardens and small courtyards [63]. This combination has been shown to minimize
temperatures and mitigate the LST [64]. It is important to mention that the presence of
vegetation does not always mean low temperatures; the typology of the vegetation, its
health and density play an essential role in the mitigation (for example, the Agdal Garden
and the Royal Private Golf Course).

In the case of the Medina and SYBA districts, also characterised by low average
temperatures of 31.51 ◦C and 32.16 ◦C, respectively, the very dense urban architecture as
well as the very narrow alleys prevent the sun’s heat from reaching the roof of the street
and providing more shade [77]. The nature of the buildings as well as their construction
materials, mainly natural materials such as straw and clay bricks, act as thermal insulation
and prevent light heat from reaching the surface, thus mitigating UHI [78].

6. Conclusions

Most of the studies dealing with the urban heat island effect take into consideration
the parameters of vegetation and built-up areas, since it is accepted that vegetation helps
reduce UHI while built-up areas have the opposite effect. In this study, we introduced
another factor, bare ground, which is rarely taken into account in studies and which is
even more important in the semi-arid and arid climate where Marrakesh is located. This
study shows that bare areas play a key role in the variation in SUHI, increasing surface
temperatures at daytime. Vegetation, depending on its typology and distribution, also
comes into play in reducing air and ground temperatures. In fact, well distributed smaller
scale green spaces can reduce SUHI with a magnitude close to that of larger parks (case of
the Guéliz district).

On the other hand, the traditional dense urban structures characteristic of Arab Mus-
lim cities such as Marrakesh, with dense buildings and narrow winding streets, help
reduce temperatures. This is the case of the centuries-old Medina district, but also of the
newer SYBA neighbourhood, whose structure imitates that of the old city. In contrast,
the ‘industrial’ buildings generate a higher SUHI effect due to their albedo. The analysis
by neighbourhood shows an imbalance at the city scale with strong inequalities. The
neighbourhoods of dense vegetation and buildings are generally the coolest.

These results will be of great interest to city managers and planners in arid zones faced
with the future challenge of global warming. Although revegetation is of great interest in
reducing SUHI, it is also confronted with the scarcity of water in Marrakesh. In this case,
the choice of urban structures that mitigate the SUHI effect is crucial.
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Abstract: Urban growth, characterized by expansion of impervious at the cost of the natural land-
scape, causes warming and heat-related distress. Specifically, an increase in the number of buildings
within an urban landscape causes intensification of heat islands, necessitating promotion of cool roofs
to mitigate Urban Heat Islands (UHI) and associated impacts. In this study, we used the freely avail-
able Sentinel 2 and Landsat 8 data to determine the study area’s Land Use Land Covers (LULCs), roof
colours and Land Surface Temperature (LST) at a 10-m spatial resolution. Support Vector Machines
(SVM) classification algorithm was adopted to derive the study area’s roof colours and proximal
LULCs, and the Transformed Divergence Separability Index (TDSI) based on Jeffries Mathussitta
distance analysis was used to determine the variability in LULCs and roof colours. To effectively
relate the Landsat 8 thermal characteristics to the LULCs and roof colours, the Gram–Schmidt tech-
nique was used to pan-sharpen the 30-m Landsat 8 image data to 10 m. Results show that Sentinel
2 mapped LULCs with over 75% accuracy. Pan-sharpening the 30-m-resolution thermal data to 10 m
improved the spatial resolution and quality of the Land Surface map and the correlation between
LST and Normalized Difference Vegetation Index (NDVI) used as proxy for LULC. Green-colour
roofs were the warmest, followed by red roofs, while blue roofs were the coolest. Generally, black
roofs in the study area were cool. The study recommends the need to incorporate other roofing
properties, such as shape, and further split the colours into different shades. Furthermore, the study
recommends the use of very high spatial resolution data to determine roof colour and their respective
properties; these include data derived from sensors mounted on aerial platforms such as drones and
aircraft. The study concludes that with appropriate analytical techniques, freely available image data
can be integrated to determine the implication of roof colouring on urban thermal characteristics,
useful for mitigating the effects of Urban Heat Islands and climate change.

Keywords: cool roofs; urban heat islands; land surface temperatures; roof colour; mitigation;
urban growth

1. Introduction

Urbanization, and the associated urban land use and land cover (LULC) spatial
structure transformations influence the urban thermal characteristics [1–3]. This process
is typified by transformation from natural to impervious surfaces such as buildings and
other urban fabrics that alter surface and near-surface temperatures [4,5]. The increase
in temperatures attributable to urban growth are associated with a range of challenges
that include adverse effects on human health, increased water and energy demand and air
pollution [6–8]. As such, urbanization and consequent thermal elevation has been known to
exacerbate in- and out-door ambient thermal discomfort that diminish the quality of urban
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life [9,10]. Hence, it is increasingly becoming desirable to adopt climate-smart approaches
that could enhance sustainable urban living.

Remotely sensed data offer an opportunity to determine urban spatio-temporal vari-
ations and their respective thermal characteristics [11,12]. Additionally, remotely sensed
data allows for analysis at a range of time-scales that include sub-seasonal patterns. Over
the years, technological advancement has facilitated the acquisition of both optical and
thermal data on the same sensor platforms (e.g., Landsat, ASTER and MODIS), valuable
for urban landscape transformation and thermal analysis [13–16]. Hence, these moderate
resolution sensors have been widely used to determine the influence of LULCs on the
thermal environment e.g., [17–22]. However, such moderate resolution datasets suffer from
the mixed pixel problem, especially in urban areas characterized by landscape heterogene-
ity, which compromises their value for detailed surface analysis such as the detection of
individual houses and their thermal properties [23].

Fortunately, recent sensor developments and advancements in computational power
offer an opportunity for improved land surface analysis. For instance, whereas the Landsat
series has over the years improved in spectral and radiometric properties, new generation
sensors such as Sentinel 2 offer data with improved spatial resolution [24–26]. The sensors’
10-m spatial resolution for instance, ref. [27] allows for analysis of complex environments
such as urban areas with reduced mixed pixel effect and high mapping accuracy. Whereas
the Sentinel 2s platform lacks a thermal sensor, its integration with high quality data such as
Landsat has potential to improve our knowledge of the relationship between urban LULCs
and surface temperatures. Recently, Mushore et al. [28] showed that pan-sharpening of
Landsat thermal data improves its Land Surface Temperature (LST) mapping accuracy,
while Kaplan and Avdan [26] used Sentinel 2′s pan-sharpened 10-m to improve 20-m
resolution bands. However, whereas the Sentinel’s 10-m spatial resolution optical data can
be used to derive detailed urban surface features, Landsat thermal data need to be at a
similar spatial resolution for optimal analysis and mapping accuracy.

Several studies have demonstrated that built-up areas absorb and store large amounts
of heat when compared to other LULC types, e.g., [22,27–30]. The thermal effect is en-
hanced by increased building densities that result in large surface areas for heat absorption.
Furthermore, dense high-rise buildings increase heat storage capacity as walls present
even larger surface areas for heat absorption. Buildings also concentrate heat in an area by
retarding its removal by winds [31]. To date, a significant number of studies have dwelt
on the effect of buildings on temperature. For instance, the effect of building density and
height have been widely demonstrated in both the developed and the developing world,
e.g., [28,32–35]. Besides density and height, building materials and other properties such
as roof characteristics influence a built environment’s thermal properties. For example,
Mackey et al. [36] demonstrated that cool roofs surpassed green roofs, street trees and green
spaces in cooling effects in Chicago. However, the adoption of remotely sensed data to
understand the influence of roofing properties on temperature remains limited. Emphasis
has been largely placed on understanding the influence at a broad scale and general LULC
classes on the thermal environment. Focus on localized phenomena that include the effect
of individual houses and their characteristics such as roof properties using freely available
remotely sensed data has remained a grey area.

Studies on the effect of roofs on buildings thermal characteristics have mainly focused
on rooftops with vegetation (i.e., ‘green roofs’) and commonly use data derived from
installed meteorological instruments and analytical models [37–40]. Other studies have
investigated roof characteristics such as roof angle; for instance, Tian et al. [41] compared
the thermal characteristics of curved and flat roofs. Studies on roof colour have established
that white roofs have more cooling effect than grey, red and black roofs [42–44], while
coating coloured roofs with highly reflective materials can increase thermal performance
and energy efficiency of buildings [45]. For instance, Libbra et al. [45] found that the use of
cool roofs can reduce air conditioning energy consumption by 70%. For the same roof type,
variations such as colour and age may also influence their interactions with heat [43,46,47].
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However, due to limitations of the new generation sensors’ spatial resolution, literature on
the influence of roof colour on thermal performance of buildings remains scarce.

Zhao et al. [48] examined daytime and nighttime effects of roof footprints and configu-
rations using high resolution airborne LIDAR and Quickbird satellite data (2.4-m resolution)
and MODIS/ASTER simulated airborne 7-m-resolution surface temperature data. They
observed that rooftop spectral attributes, slope, aspect and surrounding trees affected roof
surface temperature. Although they accurately delineated roof configurations, they did
not segment the roofs by colour. Furthermore, while sensors on aerial platforms such as
drones and airplanes can provide data for detailed analysis of effects of roofs on thermal
characteristics, such data remain expensive and not viable for studies over large spatial
extents. Hence, there is a need to test the value of freely available moderate resolution
optical and thermal datasets to enhance our understanding on the influence of building
roof colour on thermal characteristics, especially in growing cities of developing countries.
Such efforts are necessary to determine the potential adoption of roof type and colour to
mitigate heat islands.

According to Alchapar and Correa [46], roof coating is the most influential morpho-
logical determinant of roof thermal behavior, while Libbra et al. [45] notes that roof colour
controls the absorption of heat during the day and its emission at night. As such, it is
necessary to consider “cool” roofs for UHI mitigation. Hence, in relation to adjacent LUCLs,
this study sought to determine the value of Sentinel 2 10-m resolution and pan-sharpened
Landsat image data in differentiating the influence of roof colour on surface thermal values.

2. Methodology

2.1. Description of the Study Area

The study was carried out in a low-density residential area close to the Central Business
District (CBD) of the capital city of Zimbabwe, Harare (Figure 1). Since the study sought to
determine the influence of roof colour on urban thermal characteristics, it was restricted
to a small spatial extent to limit excessive heterogeneity that typifies urban landscapes.
Also, a large area could have introduced additional variables (e.g., elevation and slope) that
influence thermal characteristics. The area is in a low-to-medium-density residential type,
however, some of the houses, especially towards the CBD, have been turned into offices.
Low-to-medium-density residential areas in Zimbabwe are characterized by spacious
housing units, high land value and higher vegetation density when compared to high-
density residential areas, which are predominantly occupied by the low-income strata.
Since house units in the low-to-medium-density residential areas are generally large, they
are potentially discriminable using 10-m or higher spatial resolution image data. Hence,
based on the 10-m spatial resolution image data, the area was chosen to minimize the mixed
pixel problem that characterizes the high-density residential areas. Furthermore, the area
is dominated by houses with tiles, thus eliminating the effect of other roof types such as
concrete, zinc, aluminium or thatch on the area’s thermal characteristics. This enabled the
study to determine the variability in temperature based on roof tiling of different colours.
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Figure 1. Location of the study area in Southern Africa, Zimbabwe and Harare (a), Harare and the
study area (b) and 10-m resolution natural colour composite showing variations of LULC in the study
area (c).

2.2. Field and Remotely Sensed Datasets

A field survey was conducted to identify the LULCs and roof colours in the area. The
survey revealed that the major LULC classes are grasslands, buildings with heterogeneous
tiled roof colouring, bare soil and roads. The building class was further split into roof
colours in line with the main objective of the study, and a stratified random sampling
approach used to collect the ground control points (GCPs). Non-tiled roofs were categorized
into “Other LULCs”. For each identified category, coordinates of representative covers
were collected using a handheld Global Positioning System. To maximize the spectral and
thermal variability, the hot dry season (mid-September to mid-November) was chosen for
the collection of the well-distributed LULCs’ GCPs as it presents a period of maximum solar
energy with no rainfall cooling effect. The LULC types were verified using a GoogleEarth
image, which was also used to verify the roof colours and to shift the GCPs to the roof
center for classification and validation purposes. The data were split: 70% to be used for
classification and 30% for validation.

Landsat and Sentinel 2 data were downloaded from the United States Geological
Survey’s earth explorer portal at no cost. To minimize variation between field data and
image scenes, cloud-free imagery was collected on dates close to field data collection.
Two Landsat images (scene capture dates: 16 September 2021 and 3 November 2021) and
Sentinel images (scene capture dates: 18 September and 2 November 2021) were used in this
study. The dates were chosen as they correspond to the period of maximum radiation in the
hot season and the proximity of the two sensor dates. The wind was calm and cloudless,
presenting similar weather conditions when data from the same sensor were acquired.
Given that the period is dry, vegetation conditions were assumed to be uniform and largely
maintained by irrigation/watering throughout the periods. Landsat data acquired on the
16th of September were matched with Sentinel data of the 18th of September, a short enough
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period to assume that LULCs did not change. Similarly, Landsat data acquired on the 3rd
of November were matched with Sentinel data of the 2nd of November. This gave the best
compromise to enable relating and blending multi-sensor data with different spatial and
temporal resolutions. The two Landsat images were used to compute the average LST to
minimize randomness associated with a single-date image, while the two Sentinel 2 image
datasets were used for LULC classification. Multi-spectral optical 10-m resolution Sentinel
2 and 3-m resolution Landsat 8 data for each acquisition date were merged into a multi-
layer files using the ‘Layer stacking’ tool in ENVI software. This was done separately for
Landsat 8 and Sentinel 2 data. In order to eliminate the effect of aerosols on reflectance
values, atmospheric correction was done using the Fast Line-of-sight Atmospheric Analysis
of Spectral Hypercubes (FLAASH) module in the ENVI software. Due to the proximity to
the CBD and location in an urban area, the urban aerosol mode was used in FLAASH, which
produced multi-layer reflectance files. Multilayer 10-m resolution Sentinel 2 reflectance
data were required to provide multi-spectral information to enhance separation of features
in supervised image classification. On the other hand, spectral reflectivity bands in the
near-infrared and red range from Landsat 8 were needed for the computation of normalized
difference vegetation index (NDVI), useful for emissivity correction in LST retrieval.

2.3. Separability Analysis

Sentinel 2 10-m resolution bands and the 70% of the field-collected GPS points for
the LULCs and roof colour categories were overlaid in an ENVI version 4.7 environment.
Surface separability was done using the Transformed Divergence Separability Index (TDSI)
based on Jeffries Mathussitta distance analysis. For each paired classes, TDSI ranges
between 0 and 2, with values greater than 1 indicating that two classes are distinguishable
and values close to 2 implying very high separability. Values below 1 and close to 0 suggests
that the classes should be merged. The TDS analysis was necessary to test whether different
roof colours and LULCs could be separated before classification.

2.4. Land Use/Cover Mapping and Retrievals of Roof Colours

The LULCs were derived from Sentinel 2′s 10-m bands based on the 70% GCPs using
the Support Vector Machines (SVM) algorithm in ENVI version 4.7 software. Default
settings of 0.083 and 100 were used for Gamma in kennel function and penalty parameter,
respectively. The SVM uses two classes of training samples within a multidimensional
feature space to fit an optimum dividing hyperplane. It aims to maximize the variability
between the most proximal training samples (support vectors) and the hyperplane [49,50].
To achieve our objective, we chose a Gaussian radial-basis kennel function as it is ideal for
working in an infinite-dimensional space and has a single parameter [49–51]. We classified
the images into eight classes, namely, Roads and Bare, Trees, Grassland, Red roof, Blue
roofs, Green colour roofs, Black roofs and Grey roofs. To display the roof colours from other
LULCS, the Roads and Bare, Trees and Grassland classes were amalgamated into “Other
LULC”. Thereafter, a confusion matrix was generated. A confusion matrix compares the
assigned class labels on the classified map with the location’s actual LULC class observed
in the field (ground truth). The confusion matrix was used to derive the most widely used
accuracy indicators, namely, Overall Accuracy (OA) and Kappa (k) [52].

2.5. Land Surface Temperature Retrieval from Landsat 8 Data

Band 10 of Landsat 8 was used to retrieve LST from thermal infrared data using
Planck’s radiation law-based equation for single-channel Landsat thermal data [53]. Ini-
tially, thermal infrared digital numbers were converted to surface-leaving radiance using
Equation (1);

LI = MI QCAL + AL (1)

where, Ll is spectral radiance at Top of the Atmosphere measured in Watts/m2/srad/μm,
Ml is Band-specific multiplicative rescaling factor, QCAL represents pixel values (Digital
Numbers) and AL is the Band-specific additive rescaling factor. Ml, AL and QCAL are

183



Remote Sens. 2022, 14, 4247

obtained from the metadata downloaded together with the Landsat 8 data. As described
by U.S. Geological Survey [54], the coefficients for converting digital numbers to thermal
radiances were obtained from the metadata file accompanying Landsat 8 data download.

Mumtaz et al. [55] provides an in-depth description of steps for land surface tem-
perature retrieval. The procedures include conversion of thermal radiances to black-
body/brightness temperature followed by emissivity correction to obtain surface tem-
peratures. As such, derived radiances were used in Equation (2) to determine bright-
ness/blackbody temperature.

TB =
K2

ln
(

K1
LII

+ 1
) (2)

where, TB is the brightness temperature (in degrees Kelvins), K2 and K1 area conversion
constants for the thermal band (in this case Band 10), also obtained from the metadata file.
Since brightness temperature over surfaces is calculated by assuming emissivity to be equal
to 1, further analysis must consider actual emissivity which varies with LULC type. This
was achieved through emissivity correction, which converted brightness temperatures to
actual surface temperatures using Equation (3) [53,55].

TS =

⎛
⎝ TB

1 +
(

λ×TB
α

)
ln ε

⎞
⎠− 273.16 (3)

where TS is the LST in Degree Celsius, λ is the central wavelength of emitted radiance
(10.9 μm for band 10 of Landsat 8), ε is the emissivity and α is a constant (1.438 × 10−2 mK).
Due to its simplicity, Equation (4) was used to estimate emissivity from Normalized
Difference Vegetation Index (NDVI) using [55–57];

ε = a + b ln(NDVI) (4)

where a = 1.0094 and b = 0.047. Developed in Botswana, which is close to the study area, the
equation was chosen due to ease of computation, parsimony and proven applicability in a
tropical environment [55]. The NDVI was retrieved using reflectance in the Near Infrared
(Band 5) and Red (Band 4) of Landsat 8 in Equation (5) [53,58];

NDVI =
(NIR − RED)

(NIR + RED)
(5)

where NIR and RED are reflectance in the near-infrared and red ranges [59] derived from
Band 5 and Band 4 of Landsat 8, respectively. The steps above obtained LST at a resampled
resolution of 30 m, requiring further enhancement for analysis of roofs thermal properties
at a local scale.

2.6. Gram-Schmidt Pan-Sharpening Based Method for LST Image Data Pan-Sharpening

Improvement of LST data from 30-m to 10-m spatial resolution was achieved using
the Gram–Schmidt pan-sharpening technique. The Gram–Schmidt method uses weighted
addition of multi-spectral bands to produce a replicated pan-sharpened low-resolution
image. Gram–Schmidt orthogonalization is then used to make all bands of the multi-
spectral low-resolution data orthogonal and scalar products are computed and turned
into covariances [60]. For each band of the low-resolution multispectral data, angles
between the band and the simulated low-resolution panchromatic are computed. Gain
and bias of the high-resolution panchromatic band is used to simulate each low-resolution
panchromatic band. The process is reversed using the same transformation coefficients,
and high resolution pan-sharpened bands are produced [60,61]. Using Gram–Schmidt
transformation, the colours of the composite RGB pan-sharpened bands are near similar
to the respective original images, thus there is minimal distortion of spatial patterns.
The method was chosen because all transform coefficients are computed in the low MS
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resolution, hence are more robust to spatial misalignment of the bands than most other
pan-sharpening methods [60]. In this study, the Sentinel 2′s 10-m resolution Band 2 was
used to improve the Landsat data. The purpose was mainly aimed at producing thermal
data for retrieval of LST at 10-m resolution to match with the products from supervised
image classification.

2.7. Intensity Analysis for In-Depth Characterization of Local Climate Zones Changes

The LST spatial configurations before and after pan-sharpening were compared to
assess the effect of improving spatial resolution on image quality. The root mean-square
error was also used to check the difference after resampling the LSTs to 30-m resolution to
assess the effect on values per pixel. A 30-m resolution Landsat scene was used to derive
NDVI and its correlation with 30-m LST (after resampling using a bicubic convolution) was
obtained using the “Zonal Statistics as a Table” tool in ArcGIS version 10.2, ESRI, Redlands,
California, USA. Similarly, NDVI was calculated using 10-m resolution near infrared and
red Sentinel 2 and correlated with pan-sharpened 10-m resolution LST. The LST correlations
with NDVI before and after pan-sharpening were then compared.

2.8. Linking LULC Types and Roof Colours with LST

Qualitatively, the spatial structure of LULC and roof colours was compared with that
of LST using visual inspections of maps produced from the combination of Sentinel 2 10-m
resolution and Landsat 8 thermal data. For quantitative assessment, field-collected points
corresponding to each LULC and roof colour category were used to extract LST values
using the “Extract values to points” spatial overlay function in ArcGIS version 10.2. The
field-collected points were used instead of overlaying the LST with the retrieved LULC map
to eliminate the effect of classification accuracy on extracted temperatures for the different
categories. Box plots were used to depict the variations of LST between and within LULC
and roof colour categories in the study area. The mean LSTs for the different LULC and
roof colour categories were also used to compare their thermal performances. This was
done to assess the effect of improving resolution on the relationship between LULC and
LST using NDVI as a proxy for LULC spatial patterns.

Figure 2 summarizes the procedures from data collection to linking of roof colours to
LST spatial structures in the study area.

 

Figure 2. Summary of steps followed in the study.
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3. Results

3.1. Separability of LULC and Roofs by Colour

Table 1 indicates that the TDSI values ranged between 1.74 and 2.00, implying that the
LULC and roof colour categories were distinguishable using spectral signatures from 10-m
resolution Sentinel 2 bands. Tarred roads and Trees were the most discriminable classes
while the Green and Grey roofs were least discriminable, as indicated by TDSI values of
2.000 and 1.708, respectively. However, although Green and Grey roofs were the least
separable, the TDSI value was significantly above the separability threshold of 1, hence
guaranteed that the two classes were distinguishable. Among the roof colour categories,
blue and red roofs were the most separable with a TDSI value of 1.995. The trees LULC
category was the most separable from other cover types, with TDSI values ranging between
1.997 and 2.000. Overall, TDSI values greater than 1.7 indicate that the LULC and roof
colour classes in the study area were easily distinguishable.

Table 1. Discriminability of LULC types in the study area using 10-m resolution Sentinel 2 data.

Compared LULC and Roof Classes TDSI

Green-colour roofs and Grey roofs 1.708
Black roofs and Grey roofs 1.769
Black roofs and Green-colour roofs 1.826
Grey roofs and Red roofs 1.835
Black roofs and Tarred roads 1.874
Black roofs and Red roofs 1.920
Green-colour roofs and Red roofs 1.928
Blue roofs and Grey roofs 1.930
Red roofs and Bare areas 1.935
Blue roofs and Green-colour roofs 1.944
Grey roofs and Tarred roads 1.945
Black roofs and Blue roofs 1.955
Grey roofs and Bare areas 1.965
Black roofs and Bare areas 1.970
Grass and Bare areas 1.972
Grass and Red roofs 1.985
Red roofs and Tarred roads 1.985
Grass and Grey roofs 1.986
Green-colour roofs and Bare areas 1.990
Blue roofs and Tarred roads 1.994
Blue roofs and Red roofs 1.995
Black roofs and Trees 1.996
Grass and Green-colour roofs 1.997
Black roofs and Grass 1.998
Blue roofs and Bare areas 1.998
Grass and Tarred roads 1.998
Grey roofs and Trees 1.999
Blue roofs and Grass 1.999
Tarred roads and Bare areas 2.000
Trees and Bare areas 2.000
Blue roofs and Trees 2.000
Green-colour roofs and Trees 2.000
Grasslands and Trees 2.000
Red roofs and Trees 2.000
Tarred roads and Trees 2.000

3.2. Land Use/Cover and Roof Colour Mapping Using 10 M Resolution Sentinel 2 Data

The LULCs presented the houses surrounded by abundant vegetation, a characteristic
of low-to-medium-density residential areas in Zimbabwe (Figure 3a). The study area has
large grasslands, especially in the northeastern regions. The grasslands in the northeast
are mainly sporting grounds. The other open grasslands within built-up areas are school
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grounds while the fragmented grasslands are mainly lawns around houses as well as
unused land. The other abundant vegetation was in built-up areas. Figure 3b shows that
due to narrow widths in relation to the 10-m resolution of the data, most roads, especially
in the black roofs category were not visible.

Figure 3. 10-m resolution (a) LULC map and (b) roof colour map.

3.3. Accuracy of LULC and Roof Colour Retrievals from Sentinel 2 Data

LULC and roof colour categories were mapped with Overall Accuracy (OA) of 84.5%
and Kappa of 0.81. Producer Accuracies (PA) were greater than 75% except for the grey
roofs and tarred roads (Table 2). User Accuracies (UA) were less than 75% for the black
roofs, trees and grey roofs, while greater than 77% for the other categories. The red roofs
were mapped with the highest accuracy of all the other categories (PA and OA greater
than 93%).

Table 2. LULC and roof colour mapping accuracies.

LULC and Roof Colour Category Producer Accuracy (%) User Accuracy (%)

Black roofs 74.44 70.42
Blue roofs 95.79 98.45
Grasslands 92.38 79.66
Green-colour roofs 81.69 90.64
Grey roofs 70.38 69.02
Red roofs 93.43 94.97
Tarred roads 53.47 77.42
Trees 75.96 72.51

3.4. Comparison of 30 M Resolution with Sharpened 10 M Resolution LST Retrievals

Although the study area was small, variations in temperature were observed as some
places were more than 15 ◦C cooler than others. Hotspots were noticed, especially on
the southern half of the area where LSTs close to 49 ◦C were observed. The northern half
was generally cooler, with the dominance of LSTs close to 41 ◦C. There was a general
southeastward warming in the area. Comparison of Figure 4a,b shows that sharpening of
LSTs to 10-m resolution by blending Landsat-derived LSTs with 10-m resolution Sentinel
2 did not compromise the spatial structure of LST and their ranges in the area. The 30-m
resolution LST map was more pixelated than the 10-m resolution, indicating the latter’s
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improved quality. When compared to the 30-m resolution, 10-m LST were retrieved with
high accuracy (RMSE = 0.5 ◦C). Correlation between LULC and NDVI was −0.516 and
−0.999 before and after pan-sharpening, respectively.

 

Figure 4. Spatial structure of (a) LST derived from Landsat thermal data at 30-m resolution (b) LST
sharpened to 10-m resolution.

3.5. Variations of LST with LULC and Roof Colours

Although there were overlaps in temperature between different LULCs and roof
colour categories, their mean LSTs were clearly distinct (Figure 5). The mean LST was
lowest in the trees LULC category followed by blue roof. Highest LSTs were recorded in
green-colour roofs and tarred roads areas. The grasslands LCZ showed greatest variability
in LST, followed by green and red roofs. The order of roof colours from coolest to warmest
based on average LST was blue (36.2 ◦C), black (35.8 ◦C), grey (36.9 ◦C), red (37.4 ◦C) and
green (37.7 ◦C).

Figure 5. Observed variations of LST with LULC and roof colour classes in the study area.
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4. Discussion

Separability of all classes was high, as indicated by a TDSI greater than 1.7. This
was attributed to the strength of the spectral information at the 10-m resolution bands of
Sentinel 2 to distinguish between different LULC and roof colours. As aforementioned,
separability values close to 2 indicate that the classes are sufficiently separable using the
remotely sensed image guided by GCPs [49]. The LULCs and roof colours in the study area
were mapped with 75% and 0.73 accuracy and kappa, respectively. To facilitate effective
separability of the heterogeneous study area, the study focused on a small spatial extent.
Hence, the mapping accuracy was reasonable and comparable with other studies in urban
environments such as Sithole and Odindi [62]. However, in this study, roads, (producer
accuracy < 50%) were not effectively mapped. The low roads-mapping accuracy can be
attributed to their narrow width, that they are largely below 10-m and along the road, and
tree and tree shading, hence camouflage and/or mixed pixel with adjacent features.

Based on validation points, the roof colours were retrieved with reasonable accuracies.
Producer accuracies (PA) ranged between 58 and 95%, while user accuracies (UA) were
between 55 and 91%. The PA and UA values between 55 and 65% could be attributed to
intra-class variabilities, which caused some similarities between different roof colours. For
instance, some fading shades of black were near similar to dark shades of grey. Similarly,
some shades of blue were closer to grey and black. Although not investigated, we speculate
that roof ages and fading influence the similarities in roof colours. This is consistent with
Alchapar and Correa [46] who noted that for a given roof colour, thermal properties can
change due to age. Mapping accuracy could also be influenced by other effects such as
roof shapes, reflectivity [63] and ventilation. For instance, Triano-Juárez et al. [64] observed
variations in thermal properties for the same roof colour depending on reflectivity and
presence of coating materials. On the other hand, Bojić et al. [65] observed differences
between slanted and flat roofs. However, despite the above-named factors that could
influence thermal variability based on roof colouring, our study shows that roof colours
could be mapped with acceptable accuracy. We however suggest that for applications that
require very high mapping accuracy (>90%), the Sentinel 2′s 10-m resolution data may
be insufficient. In this regard, the use of Unmanned Aerial Vehicles derived high spatial
resolution data offers great potential for fine-scale mapping.

Similar LST spatial structure was observed before and after sharpening, while accuracy
of retrieved 10-m resolution LST relative to the original 30-m resolution was high (RMSE
of about 0.5 ◦C). Similar to a recent study by Mushore et al. [28], pan-sharpening also
improved correlation between LST and NDVI. In this study, the LST maps effectively
showed thermal variations. Spatial comparison of the LULC and LST maps showed that
vegetation covers such as large grasslands and trees as well as built-up areas with abundant
vegetation (which characterize most of the study area) had comparatively low temperature,
an indication that even vegetation within built-up areas has heat mitigation value [62].
Zhang et al. [66] also highlighted that vegetation patches and spatial structure combine
in contributing to the reduction in surface temperature of the area they occupy. This
explains the surface-temperature-reduction effect of vegetation even within built-up areas.
Besides latent heat transfer, the shading effect of vegetation, especially trees, lowers surface
temperatures in areas they cover. As such, Zhao et al. [48] noticed the cooling effect of
shadows of surrounding trees on roof-top surface temperatures during daytime.

The grey and red roofs were warmer than the black roofs, but cooler than green-colour
roofs, which were the warmest (Figure 4). Contrary to expectation, black roofs were not
the warmest. This could be attributed to variations in thermal characteristics in relation
to, among others, roof and colour shading. For example, due to age, black roofs colouring
ranged between dark black and grey. Red and green also had higher thermal values. This
finding is consistent with Farhan et al. [44], who found that red roofing had higher thermal
values than white roofing. Our findings show that green-colour roofs were the warmest,
with average LST values close to tarred roads. On the other hand, blue roofs were the
coolest, a finding consistent with Libbra et al. [45], who note that roof colour influences
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surface temperatures and hence could be used to mitigate heat islands. Although not
investigated in this study, pigments on roof materials could have influenced their thermal
behaviour. For example, it was reported that for the same roof colour, cool pigments have
the potential to increase albedo by at least 20% [67]. This may have caused dark roofs to
absorb less than or comparable heat to light-coloured roofs.

5. Conclusions

The 10-m resolution Sentinel 2 data mapped LULC and roofs by colour with reasonable
accuracy. However, findings show that Sentinel 2′s 10-m spatial resolution is still limited
by the mixed pixel problem. Other roof characteristics such as age, shape and coating need
to be investigated for potential improvement in mapping accuracy. Sharpening of LSTs
derived from Landsat to Sentinel’s 10-m resolution improved the LST spatial structure. It
also increased the correlation between LST and NDVI, implying an improved relationship
with LULC. Different roof colour showed variations in mean LST, which highlighted the
contribution of roof colours in mitigating or intensifying the heat island effect. Due to
variations in shades attributed to changes in age, black roofs were not the warmest. Blue
roofs were found to be the coolest while green-colour roofs were the warmest, followed
by red roofs. Grey roofs had a moderate effect, with the cooling effect increasing with
lightness of the grey colour. Overall, the study showed that colour, in combination with
other roof properties, determines a building unit’s thermal characteristics. However, the
study observed that even after pan-sharpening, Sentinel 2′s 10-m spatial resolution was
still coarse for urban roof mapping.

The study observed that even after pan-sharpening, Sentinel 2s 10-m spatial resolution
was still coarse for urban roof mapping. This implies the need to test other higher spatial
resolution datasets, for example those derived from UAVs and aircraft platforms. Future
studies should also consider separating different shades of the same colour, especially in
view of colour changes associated with roof aging. Additionally, the combined effects
of various physical factors, which include roof coating, thickness, ventilation, and shape,
should be included for in-depth analysis of the effect of roofs on the area’s thermal en-
vironment. Among the factors to be included simultaneously is the presence and effect
of any pigment that may affect albedo and heat absorption capacities, even for rooftops
of the same colour. Given the inadequacy of freely available moderate-resolution Land-
sat 8 and Sentinel datasets in mapping thermal properties of rooftops, there is a need to
test other higher spatial resolution datasets, for example those derived from UAVs and
aircraft platforms.
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Abstract: Increased heat in urban environments, from the combined effects of climate change and
land use/land cover change, is one of the most severe problems confronting cities and urban residents
worldwide, and requires urgent resolution. While large urban green spaces such as parks and nature
reserves are widely recognized for their benefits in mitigating urban heat islands (UHIs), the benefit
of urban golf courses is less established. This is the first study to combine remote sensing of golf
courses with Morphological Spatial Pattern Analysis (MSPA) of vegetation cover. Using ArborCamTM

multispectral, high-resolution airborne imagery (0.3 × 0.3 m), this study develops an approach that
assesses the role of golf courses in reducing urban land surface temperature (LST) relative to other
urban land-uses in Perth, Australia, and identifies factors that influence cooling. The study revealed
that urban golf courses had the second lowest LST (around 31 ◦C) after conservation land (30 ◦C),
compared to industrial, residential, and main road land uses, which ranged from 35 to 37 ◦C. They
thus have a strong capacity for summer urban heat mitigation. Within the golf courses, distance to
water bodies and vegetation structure are important factors contributing to cooling effects. Green
spaces comprising tall trees (>10 m) and large vegetation patches have strong effects in reducing LST.
This suggests that increasing the proportion of large trees, and increasing vegetation connectivity
within golf courses and with other local green spaces, can decrease urban LST, thus providing benefits
for urban residents. Moreover, as golf courses are useful for biodiversity conservation, planning
for new golf course development should embrace the retention of native vegetation and linkages to
conservation corridors.

Keywords: ArborCam; high-resolution airborne imagery; morphological spatial pattern analysis;
land surface temperature; golf courses; vegetation structure

1. Introduction

Urban development has transformed the land cover of cities causing profound changes
in the biological and physical characteristics of the transformed surfaces [1,2]. These
changes often result in environmental degradation leading to negative impacts on the
quality of life for city dwellers [3]. One of the consequences of urbanization is the relatively
higher temperature in urban compared to surrounding peri-urban/rural areas, producing
“urban heat islands” (UHIs) [4]. This is due to differences in land use/land cover resulting
from human activities. The combined effect of global warming and UHIs is called urban
heat [5]. Over recent decades, extreme summer heat has become more frequent across many
cities in the world, making urban heat an increasingly important topic in environmental
research [6,7]. It is projected that this problem will increase in many regions of the world
under the influence of climate change [8] and increased urbanization.

Extreme temperatures have serious impacts on human health, such as heat rash, sun-
burn, fainting, and heat exhaustion [9,10], which lower the life quality of city dwellers [11].
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A large number of deaths related to heat occurred during heat waves in Chicago in 1995,
and in 16 European countries in 2003 [9]. Moreover, rising temperatures in urban areas
create an uncomfortable environment for residents that results in increasing demand for
energy for cooling systems in homes during extreme heat events [12]. Therefore, under-
standing the spatial distribution of temperature and underlying drivers associated with
cooling effects in urban landscapes is a key concern for urban planners.

In order to deal with urban heat issues, studies have been undertaken to identify the
dynamics of warming in urban areas [13,14]. In general, an increase in urban green space
results in a cooling effect, while impervious land cover leads to a warming effect [15,16].
Impervious surfaces absorb and retain solar energy, with heat slowly released heat back into
the atmosphere [17]. In contrast, grass, trees, and other vegetation have a natural heating
and cooling cycle that is disrupted by urban structures. Vegetation cools the surrounding
area by providing shade and through evapotranspiration [17–19]. Shaded surfaces may
be 10–25 ◦C cooler than unshaded surfaces [20]. Evapotranspiration can help reduce peak
summer temperatures by 1–5 ◦C [21]. Therefore, the amount and quality of vegetation
in a city can influence the rate of atmospheric CO2 sequestration and the amount of heat
that a city retains [22–25]. Whether urban vegetation occurs as large nature reserves or
as more fragmented and less functionally healthy green spaces for purposes other than
conservation (such as public parks, golf courses, cemeteries, military bases, hospitals,
university campuses, or streetscapes), they are critically important in cooling cities and
making them more livable [26]. Therefore, livable city planning should require a flexible
approach that takes advantage of all opportunities to retain green spaces, combining efforts
both in formal parks and other recreational spaces.

Golf courses are a type of recreational green space established for commercial and
public purposes. They are often a controversial land-use due to their heavy use of water,
chemical herbicides, and exotic ornamental vegetation, and this has led to criticism from
ecologists [27]. However, other studies have emphasized the ecological values of golf
courses for biodiversity conservation [28,29] and for enhancing the connectivity of vegeta-
tion networks in urban landscapes [30]. Although the rough (out of play) vegetated areas
and irrigated lawns in golf courses are expected to play a role in cooling cities, the ecological
value of golf courses in reducing urban heat has been largely ignored by ecologists [31].

Remote sensing-based studies have allowed researchers to assess the spatial distri-
bution of Land Surface Temperature (LST) in urban areas and to establish correlations
between vegetation and urban LST models [32–35]. However, most studies have used low
and moderate-resolution satellite imageries, such as MODIS or Landsat, to calculate LST as
a proxy of urban heat [36,37]. These approaches do not provide information about how veg-
etation characteristics such as fragmentation, vertical structure, and crown health impact
on the local cooling effect. The moderate resolution (30 m) satellite imagery (the Landsat
Thematic Mapper (TM)) sensor limits the capacity to detect vegetation of different height
classes and their associated LST variability. In contrast, airborne high spatial resolution
imagery (0.3 m) has a much greater capacity to detect more detailed vegetation character-
istics such as vegetation height classes [38]. Furthermore, studies that have investigated
variation in LST among urban formal parks, open spaces, and residential gardens [39–41]
have not included golf courses as a separate urban land use. Not surprisingly then, urban
planners often lack information for planning urban development that can help to reduce
heat exposure.

Native vegetation is undervalued and is often lost during urban development unless
it is protected in biodiversity reserves. Remnant vegetation in golf courses is often under
pressure from players who want trees removed that are close to fairways. There is a
need to quantify some of the benefits of this vegetation to the broader community in golf
course management plans in the future. Hence, we explore the value of golf courses and
their vegetation in reducing LST. This study examines the hypotheses that golf courses in
urban landscapes play a role in reducing urban heat, and that vegetation structure (height
class and spatial configuration) influences variations in LST in urban landscapes. Using
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high-resolution airborne ArborCam imagery, we compared the land surface temperature
within golf courses with those of other urban land-use categories, and determined the
influence of vegetation traits and geographic location on the function of golf courses for
urban heat reduction. The study was conducted in the suburbs of Perth, Australia, where
many golf courses retain some native vegetation and provide green connectivity in the
urban landscape [30]. The research examines the potential of using golf courses as a green
space out-side of protected area networks, and will thus inform the planning of vegetation
configuration and vegetation management to optimize cooling at the local and city scales.

2. Materials and Methods

2.1. Study Area
2.1.1. General Description

Perth city is located at latitude −31.953512 and longitude 115.857048 (Figure 1). The
Perth Metropolitan area covers 6418 km2, with a population density of 317.7 people per
square kilometer. The area is in Australia’s southwest corner, a global biodiversity “hotspot”
with outstanding natural environments having the highest concentration of rare and en-
dangered species on the entire continent [42,43].

 
Figure 1. Map showing land use categories and the location of golf courses in the two study regions
of the Perth Metropolitan Region.
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Perth has a Mediterranean-type climate with hot dry summers, lasting from December
to late March, and cool wet winters [22]. Extreme heat events (substantial rises in tempera-
ture, duration, and frequency of very hot days) have increased in Perth over the past two
decades, and are projected to increase in coming years [44]. These events pose health risks
for urban citizens especially the elderly, young, sick, and people from lower socio-economic
areas [45].

Perth has experienced extensive urban expansion since the 1960s and this has caused
sustainability concerns due to the large-scale conversion of natural land to impervious
surfaces [46], which can contribute to an increasingly warming urban environment. It is
projected that by 2030 the annually averaged warming of this region will be about 0.5 to
1.2 ◦C above 1986–2005 levels [47]. Therefore, the Western Australian government issued a
long-term strategic guide for the development of Perth by 2050, which identified reducing
urban heat as one of sixteen aspirations under the strategy for the Planning Commission,
and State and Local Government by expanding the tree canopy in high urban heat risk
areas [45,48].

2.1.2. Spatial Subdivision

This study focuses on the western suburbs (WESROC suburbs in the south) and the
Joondalup suburbs (in the north), covering 16,205 ha (Figure 1). The WESROC suburbs
are a group of old suburbs established prior to the first urban development planning
of Perth (i.e., pre-1950s), and are located west of the city’s central business district and
north of the Swan River. These suburbs are characterized by low to moderate-density
residential areas, recreation areas, nature reserves, and wetlands. Joondalup is a younger
urban area that was developed as a result of northerly urban expansion following extensive
urban development in the 1990s, and is characterized by dense commercial and residential
areas. The suburbs of the two subdivisions, established through different times in the
history of Perth’s planning with different urban designing styles, are representative of
residential suburbs across Perth’s sprawling urban landscape. There are six golf courses in
the WESROC suburbs and one in the Joondalup region (Figure 1). The golf courses vary in
ownership (public, private, and semi-private), size (small < 40 ha, moderate 40–70 ha, and
large > 70 ha), number of holes, and the linkage of golf courses to other vegetation (Table 1).
The Lake Claremont Golf Course was converted to parkland in recent years. Images of
vegetation and environment are readily available online for the respective golf courses
used in this study. Figure 2 shows a typical scene. In general, the tees, fairways, and greens
are reticulated and irrigated during the dry season (November to April) from underground
aquifers. With declining groundwater supplies and a warming climate, the Golf Course
Superintendents Association of Western Australia is collaborating with the Department of
Water to assist golf courses to become more water efficient.

Table 1. Key characteristics of the seven golf courses.

No. Name of Golf Course Size (ha)
Linkage to Other

Vegetation
Golf Course

Type
Number
of Holes

1 Joondalup Resort Golf Club 108.93 No Semi-private 36
2 Wembley Golf Course 128.96 Yes Public 36
3 Cottesloe Golf Club 61.26 Yes Private 18
4 Lake Claremont Golf Course 4.13 Yes Public 9
5 Sea View Golf Club 18.1 No Private 9
6 Nedlands Golf Club 18 No Private 9
7 Mosman Park Golf Course 24.8 Yes Semi-private 9
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Figure 2. Typical scene in a golf course in the study region in summer. The irrigated fairway is
bordered by corridors of vegetation containing tall trees (Eucalyptus), mid-story trees (Acacia, Agonis),
small shrubs, and grasstrees (Xanthorrhoea) (photo by Paul Barber).

2.2. Data Sources and Geospatial Analysis

To provide accurate information about the daytime LST in relation to urban land use,
land cover, and vegetation characteristics, the study used multispectral, high-resolution
airborne imagery, acquired at ~11:00 to 13:00 h on two typical hot late summer days
(10 and 11 March 2020) with a daily maximum temperature at Perth Metro station (number:
009225) of 35.1 ◦C for both days [49] and calm conditions.

High-resolution RGB, seven-band multispectral, and long wave thermal radiation
were acquired concurrently using the custom ArborCamTM vegetation monitoring system
(ArborCarbon Pty Ltd., Perth, Australia). Imagery was acquired on dedicated flights using
a customized Piper PA-28 aircraft with specifications as described in Table 2.

Table 2. Acquisition parameters and resulting image Ground Sample Distance (GSD) for each of the
imaging sensors for the two study areas.

WESROC Joondalup

Acquisition date 10 March 2020 10 and 11 March 2020
Acquisition height 2440 m 3048 m

High-resolution RGB:GSD 0.08 m 0.1 m
Multispectral: GSD 0.24 m 0.3 m

Thermal: GSD 1.0 m 1.25 m

The ArborCam sensor captures seven distinct narrow multispectral bands strategically
located between 450 and 780 nm of the electromagnetic spectrum [50]. Long-wave thermal
Infra-red radiation (Thermal IR 7500–14,000 nm) was converted to LST in degrees Celsius by
applying a standard emissivity correction across the scene of 0.95 to produce a single-band
32-bit raster, with each pixel representing land surface temperature.

All imagery was orthorectified and radiometrically corrected using a series of propriety
image processing workflows. A Digital Surface Model (DSM) was generated using a Struc-
ture from Motion processing technique during orthorectification. This DSM was further
classified to identify ground surface pixels, which were then interpolated to produce a Digi-
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tal Terrain Model (DTM). The difference between the DSM and DTM was calculated to deter-
mine the Feature Height Model. Final imagery was converted to units of surface reflectance
using radiometric targets placed throughout the scene. Finally, vegetation within the scene
was classified using a segmentation and supervised classification approach. The Arbor-
Cam thermal imaging sensor uses a microbolometer with a spectral range of 7.5–14 μm,
and a resolution of 640 × 480 with a 15◦ × 11◦ field of view. Thermal radiance is corrected
and converted to LST on board the camera using a standard emissivity correction of 0.95,
and relative humidity of 50% at 20 ◦C. Linear temperature data are recorded in 16 bits,
with a sensitivity of 0.05 K and a stated accuracy of ±2 ◦C or ±2%. This is a standard
approach for studies of urban land surface temperature. More precise methods of emissivity
correction for individual surface materials require the classification of surface materials,
which is beyond the scope of the current study. The current study is concerned primarily
with the relative differences in LST; therefore, the validation of the reading vs. actual LST is
of lesser value.

2.2.1. NDVI Calculation

Normalized Difference Vegetation Index (NDVI) maps were developed by calculating
the ratio between the red (R) and near-infrared (NIR) using Equation (1) [51]:

NDVI = (NIR − red)/(NIR + red) (1)

2.2.2. Morphological Spatial Pattern Analysis (MSPA)

Morphological Spatial Pattern Analysis (MSPA) was employed in this research for
analysis of spatial configuration of vegetation cover (turf and all other vegetation types)
as described previously [52–54]. In order to undertake the MSPA analysis, the input data
(foreground class) were defined. The binary maps (vegetation and non-vegetation) obtained
from the classification of PlanetScope 3B images were used as input data with the vegetation
being defined as the foreground pixels (green landscape) in the MSPA approach using the
MSPA-Toolbox for ArcGIS. The output of the MSPA analysis includes the seven structural
categories belonging to two groups: (1) urban vegetation patches (Cores, Edge, Perforation,
and Islets) and (2) urban vegetation paths (Bridges, Branches, and Loops) [52–54]. Each
of these categories was described at the pixel level [52–54] and described in ecological
meaning terms based on the concept of “habitat availability” and “graphic theory” [52–54],
and this can be briefly described as:

• Core—The availability of interior forest habitat;
• Islet—The isolated non-Core habitat, or potential stepping stone;
• Edge—The Edge habitat and Edge effects on interior forest habitat;
• Perforation—Edge on forest interior;
• Bridge—The structural connectivity among Core areas;
• Loop—The structural connectivity within a Core area;
• Branch—The structural connectivity that departs from a Core area and arrives at a

connector, to an Edge, or a Perforation.

2.2.3. Land-Use Data

We selected eight land-use categories representing the main components in the urban
landscape, as follows: conservation land (1); golf course (2); green space (3); commercial (4);
industrial (5); residential (6); main road (7); and other land-use (8). This selection of
land-use categories is comparable to those used in ecological research in other urban
landscapes [55,56] and is described in Table 3.
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Table 3. Description of land-use categories.

No.
Land-Use
Category

Description

1 Conservation

Land of Bush Forever areas (described by Department of Planning
[57]); areas of biodiversity conservation significance within National
Parks and State and other, conservation reserves, and all classified

environmental conditions, special control areas, which are of
conservation concerns as dedicated in the Regional Scheme map,

Regional Special Area map, and Local Scheme map as well as
small-parks from the OSM platform.

2 Golf course

Golf courses are a special type of urban green space used for
recreational and commercial purposes. In this study golf courses are
separated for comparison with all other urban green spaces. There

are 7 golf courses distributed in the study area, which are described
in Figure 1 and Table 1.

3 Green space The urban parks and other land used as set aside areas for public
open space, provide for a range of active and passive recreation uses.

4 Commercial

The land is used to provide for a range of shops, offices, restaurants,
and other commercial outlets in defined townsites or activity centers,

a wide variety of active uses on a street level; a mix of varied but
compatible land uses such as offices, showrooms, amusement centers,

eating establishments, and appropriate industrial activities.

5 Industrial Land of industrial activities to provide a broad range of industrial
uses, service and storage activities.

6 Residential

Land-use areas provide for a range of housing and a choice of
residential densities to meet the needs of the community by

facilitating and encouraging high-quality design, built form, and
streetscapes throughout residential areas.

7 Main road
The planned road network of the Western Australian Road (under the
Main Roads Act 1930), and the planning responsibilities are shared by
the Western Australian Planning Commission and local governments.

8 Other land-use

The land-use categories that are not classified as those above. They
include designated land for future industrial development, urban
development, transitional zone following the lifting of an urban

deferred zoning, land of educational institutions, a broad range of
essential public facilities such as halls, theatres, art galleries,

educational, health and social care facilities, accommodation for the
aged, other services, and other mixed land-use.

2.3. Statistical Analysis

To address the first objective (variation in LST among land-use categories and among
golf courses), LST mean values were derived for each of the eight land-use categories using
vector data analysis (zonal statistics) in ArcGIS 10.3 and descriptive statistics in R 3.6.1. The
land-use layer (Figure 1) was used to define zonal boundaries.

To address the second objective (factors influencing the cooling effects of golf courses),
the variation and correlation of LST with each driving factor were derived. We randomly
generated more than 500 random points within the seven golf courses and the study area.
Values for each independent variable were assigned to each point using Extract Multi
Values to Points tool in ArcGIS 10.3. All geographical analyses were conducted using
ArcGis version 10.3 and statistical analyses were performed in R 3.6.1 [58]. Based on the
initial description of the relationship between LST and the variables, a multiple linear
regression model was built with the F-statistic in R 3.6.1 to describe the effects of vegetation
characteristics and geographic location that drive LST.

The explanatory variables examined are listed in Table 4. These variables were subdi-
vided into four groups: vegetation height class, MSPA class, NDVI, and distance to water
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resources (Table 4). Previous studies have explored the distance to the coast as a factor
impacting urban temperature [59]. However, the study area has a network of water bodies,
the ocean, the estuary of the Swan River, and groundwater-derived lakes. These water
bodies are likely to influence the LST, and thus the distance to the water resources (ocean,
lakes, and river) was measured using the near tool in ArcGIS 10.3. The values were added
to random points as an independent variable in the regression analysis. The multiple linear
regression model was performed in R 3.6.1 [58] to determine the relationship between the
dependent variable (LST) and its driving factors (Table 4).

Table 4. Independent variables considered in the multivariate model of LST within golf courses
and other land use categories. The MSPA descriptors are the same as published by the original
workers [52–54].

Variable Description

Vegetation height class
Turf The top layer of a grassy area
0–3 m Vegetation of 0–3 m height
3–10 m Vegetation of 3–10 m height
10–15 m Vegetation of 10–15 m height
>15 m Vegetation of >15 m height

MSPA Class
Bridge The ecological vegetation that connects two Cores, which is equivalent

to the connecting corridor
Core Large-scale natural patches with high connectivity
Edge The transition zone between vegetation and non-vegetation areas
Islet Small natural patches that are isolated and do not connect to each other
Loop Connecting corridor inside a large natural patch
Perforation Unnatural patch inside the Core area

Distance to water
resource

The shortest distance from the sample point to the water resources
(lake, river, and coast)

NDVI Normalized Difference Vegetation Index:
NDVI = (NIR − RED)/NIR + RED)

NIR—reflectance in the near-infrared spectrum
RED—reflectance in the red range of the spectrum

In terms of vegetation variables, previous studies have focused on vegetation cover [59]
and vegetation type (grass, shrubs, and trees) [22]. In this study, more details of vertical
vegetation structure were explored where vegetation was classified into height classes
(Table 4), and spatial vegetation configuration where vegetation was classified into habitat
type (MSPA classes) based on the patch size and their connectivity to other vegetation areas
and they were added to random points for the regression analysis.

3. Results

3.1. Variation in LST among Land-Use Categories and among Golf Courses

Overall, the conservation land was the coolest land-use category (mean LST of ap-
proximately 30 ◦C). Golf courses had the second lowest mean LST (around 31 ◦C) in the
study area (Figure 3A), and thus golf courses in high-density urban areas play a role as cool
islands (Figure 3B). Joondalup Resort Golf Club is shown as an example (Figure 4). The
average LST for industrial, residential, and main road land uses were high, ranging from
approximately 35 to 37 ◦C. The land use types in the order of highest to lowest temperatures
were main roads, residential, industrial, other, commercial, green space, golf course, and
conservation (Figure 3A).
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Figure 3. Variation in the mean values of LST among (A) land-use categories and (B) the seven
golf courses.
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Figure 4. Joondalup Resort Golf Club and surrounds: (A) True color orthomosaic; (B) Land-use
categories; (C) Vegetation height-strata; (D) Day time LST; (E) MSPA classes; (F) NDVI map. Data
were collected in late summer (maximum temperature 35.1 ◦C) on 10 and 11 March 2020.
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Notably, the LST differed markedly between golf courses. The highest mean LST
occurred within Joondalup Resort Golf Club at about 32 ◦C (Figure 3B). Nedlands Golf
Club had the lowest mean LST among studied golf courses (around 29 ◦C). Golf courses
located nearby the coast (Cottesloe Golf Club, Sea View Golf Club, Lake Claremont Golf
Course, and Wembley Golf Course) had similar mean LSTs at about 30 ◦C. Mosman Park
Golf Course had the second highest mean LST (around 31◦C) (Figure 3B). These results
indicate that the golf courses have different capacities to cool their local environments, and
that there may be underlying drivers leading to this variation.

3.2. Factors Influencing Cooling Effects of Golf Courses

There was a positive relationship between LST and distance to water resources
(Figure 5B), which indicates the availability of water bodies can be beneficial on hot summer
days. Moreover, vegetation characteristics can impact cooling. Figure 5C shows the LST in
non-vegetated areas was much higher than any type of vegetation (LST median around
35 ◦C) indicating the role of vegetation cover in providing a cooling effect. Within areas
of vegetation cover, NDVI values reflect vegetation health, and these showed a strong
negative relationship with LST (R = 0.77). This means that green, healthy vegetation has a
good capacity to cool urban areas (Figure 5A) with the example of Joondalup Resort Golf
Club and surrounds illustrated (Figure 4D,F).

Figure 5. Factors affecting Land Surface Temperature: (A) Relationship between LST and NDVI;
(B) Relationship between LST and distance to the water resources; (C) Variation in LST among
vegetation height classes; (D) Variation in LST among MSPA classes.

However, not all types of vegetation have the same cooling effect. The vertical structure
and horizontal configuration of vegetation further determine the capacity of vegetation
for cooling. In general, the taller the vegetation the cooler the LST (Figure 5C and Table 5).
Vegetation of >10 m height had a median LST of around 27 ◦C, 0–3 m high vegetation had
a mean LST of around 29 ◦C, and for turf, the LST was around 33 ◦C (Figure 5C).
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Table 5. Estimates for each independent variable from the multivariate model for predicting the LST.

Variable Coefficient Std. Error z Value Pr (>|Z|)

Intercept 3.830 × 101 2.006 × 100 19.094 <2 × 10−16 ***
Vegetation strata

Non-vegetation 1.640 × 10−2 1.177 × 100 0.014 0.98889
Turf 1.501 × 100 2.033 × 100 0.738 0.46142
3–10 m −1.353 × 100 7.696 × 10−1 −1.758 0.08057
10–15 m −2.068 × 100 8.442 × 10−1 −2.450 0.01531 *
>15 m −1.953 × 100 8.410 × 10−1 −2.322 0.02140 *

MSPA Class
Bridge −1.408 × 100 1.815 × 100 −0.776 0.43904
Core −2.774 × 100 1.741 × 100 −1.593 0.011305 *
Edge −4.151 × 100 1.862 × 100 −2.230 0.02709 *
Islet 2.656 × 10−1 2.166 × 100 0.123 0.90253
Loop −8.312 × 10−1 2.106 × 100 0.395 0.69363
Perforation 2.535 × 100 2.206 × 100 1.149 0.25228

NDVI −1.109 × 101 1.011 × 100 −10.968 <2 × 10−16 ***
Distance to water
resource 8.072 × 10−4 2.525 × 10−4 3.196 0.00166 **

*** p < 0.001; ** p < 0.01; * p < 0.05.

The size of vegetation patches and the linkages among them also influence LST
(Figure 5D). A large vegetation patch, comprised of the outer Edge and Core categories, had
a low LST of 27–28 ◦C. Moreover, the Bridge class that connects two Cores also had a similar
low LST (Figure 5D). The Islet representing small, isolated patches, and the Perforation
representing the inner Edge had the highest LST (Figure 5D).

The multiple linear regression model for predicting LST (Thermal = Vegetation Strata
+ MSPA classes + Distance to water resource + NDVI) had an R-squared value of 0.72 and
an adjusted R-squared value of 0.7 with p < 0.0001 indicating that LST was closely related
to the vegetation variables and distance to water resources. However, in the subset of
vegetation height class variables, only the coefficient of vegetation 10–15 m and >15 m had
p-values < 0.05 (Table 5).

Similarly, among MSPA variables, only the classes representing large patches (Core,
Edge) had p-values of <0.05 (Table 4). This means that taller vegetation (10–15 m and >15 m)
and large patches of vegetation that combine the outer Edge and Core areas had significant
effects on LST. Moreover, the multi-regression model further determined that the important
factors influencing LST were the health of vegetation indicated by the NDVI value and
the distance to water (coefficient p-values < 0.01) (Table 5). This suggests that these six
independent variables are statistically significant predictors of the LST.

4. Discussion

4.1. Golf Courses as Cooling Islands in Urban Environments

The study revealed that urban golf courses had lower day-time land surface temper-
atures than other urban land-use categories, except for conservation land. This means
that in a warming climate, golf courses, with most of their surface area covered with a
combination of vegetation (shrubs and trees), water bodies, and turf, will be cool-islands
and natural havens in cities where most of the surface is dominated by building structures
and heat-absorbing hard surfaces. Green spaces in golf courses include irrigated fairways
and out-of-play areas, but the cooling effects of golf courses are strongest for woodlands
with complex multiple-tiered biomass structures. A similar finding was made for urban
green space in Hong Kong [31,60].

In industrial and commercial land uses, the buildings often have flat concrete or
metallic roofs, as seen in the aerial imagery. Concrete surfaces have low albedo from 0.1 to
0.35 [61]. In contrast, the vegetation acts as a buffer between the ground and solar radiation,
and this helps to reduce the LST [62]. The similarity in LST of golf courses and conservation
land can be explained by similar surface characteristics related to their vegetation cover.
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Previous studies from Sydney (Australia) and Toronto (Canada) showed that mean
temperatures are significantly lower for parks and recreational land uses than for highly
intensive urban land-use such as industrial and commercial areas [41,63]. Thus, future
changes in land-use from forest and grasslands to new urban developments (industrial,
commercial, and residential) are projected to further enhance temperature increases caused
by climate change [63]. The UHI problem is serious in Australia’s hotter cities such as
Perth, Adelaide, and Alice Springs [64]. This is due to the large proportion of impervious
surfaces as a result of urbanization. Other Mediterranean-climate cities are predicted
to have increases in average minimum temperatures compared to other rural areas [65].
Therefore, in hot dry climates, urban planning should pay more attention to designing
cool islands to mitigate the UHI effect and its impact on city residents. With the cool-
ing effects of golf courses identified in our study, we propose that urban golf courses
should be considered as a type of cooling island in urban planning within urban heat
mitigation strategies.

4.2. Vegetation Characteristics Influence Cooling Effects of Urban Green Spaces

Previous studies have confirmed the role of vegetation cover in mitigating urban
heat [22,47,59], which can help to explain why urban areas without vegetation heat up easily
and retain heat [59,66]. The cooling effects of vegetation within urban golf courses have not
been well investigated. For example, the study of microclimate at a sub-tropical golf course
in Hong Kong only investigated the differential cooling abilities of woodland, a rough grass
area, and a bare-concrete rooftop control site within the golf course [31,60]. However, the
role of vertical vegetation structure (vegetation height classes) and the spatial arrangement
of vegetation patches in cooling urban environments is largely unexplored [67].

By using the high-resolution (0.3 × 0.3 m) airborne imagery, our study provides new
insights into the cooling capacities of vegetation of different high classes within golf courses
and other green spaces. This study suggests that tall urban forests (>10 m tall) will have
the strongest effects in reducing urban heat islands, while shorter vegetation, including
turf grass, will be less effective. This provides a new understanding of the relationship
between vegetation and urban heat and indicates that urban heat mitigation strategies
using green spaces should not solely focus on the extent of vegetation coverage but should
also consider the height and vertical structure of the vegetation. Due to the limited space
for vegetation in urban areas, it is necessary to maximize the effects of green space by
maintaining and increasing the number of big trees to regulate temperature and improve
the urban microclimate.

Moreover, our study also explored how vegetation complexity in terms of spatial
configuration and arrangement might facilitate the management of urban heat. The results
showed stronger cooling effects of large vegetation patches (Core area and their outer Edge)
as well as the vegetation paths that link Cores (Bridge) as being more effective vegetation
structures than small, isolated patches (Islet). This finding supports previous studies [68–71]
where large patch sizes reduced LST due to greater shading of the periphery. Furthermore,
larger vegetation patches have more interior areas, which are less affected by the ambient
environment, whereas smaller, isolated patches (Islets) tend to have a greater proportion of
edge areas, and thus are vulnerable to disturbance from the peripheral region [67].

In addition, our study revealed that vegetation connectivity and patch size are im-
portant when designing urban green space. The connectivity of vegetation cover can
contribute to decreasing surface temperature in urban areas [72]. Therefore, increasing
urban vegetation, maintaining large patches of vegetation, and reducing insolation can
help to decrease urban LST. Hence, urban planning should consider the size and con-
figuration of green spaces to operate as cooling islands without becoming masked by
surrounding buildings.

Vegetation health is an important factor influencing its effectiveness in cooling urban
areas. Healthy vegetation patches with NDVI values from 0.6 to 0.8 had the strongest cool-
ing effect (Figure 5A). Therefore, together with maintaining water bodies in combination
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with protecting and restoring big trees in large patches, caring for vegetation health is
vital to ensure the cooling effects of green spaces are optimized. Several abiotic and biotic
disorders pose a threat to urban tree health with some of these, such as Phytophthora,
thriving in irrigated urban parklands [73].

The correlation of LST with impact factors may explain why LST varied among land-
use categories. For example, the proportion of vegetation (without turf) was highest on
conservation land, and most of the vegetation existing as Core or Bridge areas in this
land-use category may explain why the LST was lowest. High vegetation connectivity
appears to be an important factor for conservation land having the strongest capacity to
reduce urban LST. Vegetation within golf courses that is healthy with a high proportion of
tall trees also contributes to the low values of LST in this land-use category. Furthermore,
the golf courses were close to or contained water bodies and this helped to mitigate LST in
summer in our study.

4.3. Implication for Vegetation Management and Urban Planning

This study suggests that urban vegetation management approaches are required to
mitigate urban heat. Golf courses can contribute significantly to the mitigation of LST
in urban landscapes. As large trees play an important role in reducing LST, golf course
managers and designers should pay attention to the conservation of these trees. It is
recommended that golf course managers should not only increase the natural tree canopy
by planting more trees, but also actively protect tall trees and large vegetation patches to
improve the cooling capacity of golf courses. It is important though to always consider the
conflict between turf health and trees when designing or re-designing golf courses. Large
trees provide large amounts of shade with potential negative impacts on turf health when
insufficient light is received.

Urban expansion on undeveloped land containing large patches of native vegetation
that involves tree clearing should embrace tree planting for future cooling effects. This study
suggests that increasing the urban tree canopy should benefit heat mitigation. However, it
will be difficult to reach targets without promoting planting on private land. Nowhere is
this more pressing than in urban environments where there is a scarcity of available land
with native vegetation. The regression equation in this study also provides an indication
of how temperature can be reduced in other urban land-use categories (e.g., residential,
commercial areas) by tree planting and vegetation patch maintenance. Because increasing
vegetation coverage is difficult in some dense urban landscapes, measures to improve the
quality of existing vegetation patches, such as tall tree conservation and irrigation, are
important for mitigating temperature for improving the well-being of city dwellers.

Novel approaches for heat reduction and livable neighborhood policies should em-
brace the importance of developing incentives that promote multipurpose use of land
and that stimulate cooperation among people and different societal sectors to support
urban green space maintenance. Golf courses are an example of commercial land that can
contribute to urban heat reduction that should be integrated into livable neighborhood
policies to improve the life quality of urban citizens.

5. Conclusions

This study develops and demonstrates a robust and objective approach to quantify
and compare variation in LST among urban land-use categories. The research used high-
resolution multispectral airborne imagery to classify vegetation height classes and this
helped to fill gaps in the current literature that compares the LST of different vegetation
types. From our study, it is clear that vertical vegetation structure and horizontal vegetation
configuration and arrangement are important in urban heat reduction. It is also evident that
the vegetation of golf courses can play a beneficial role in helping to reduce urban heating
during hot summer days. Effective management of vegetation for urban heat reduction
and livable neighborhoods should consider the maintenance of big trees and large patches
of vegetation across the urban landscape. Our study is significant because it provides
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insight into the ecological benefits of recreational green spaces such as golf courses in urban
landscapes where such ecological roles are often valued in conservation land. The findings
from this study suggest that planning for further urbanization of peri-urban land should
consider opportunities for the co-planning of golf course development in conjunction with
the retention of functional vegetation corridors.
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