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With the increasing requirements for energy, resources and space, numerous rock
engineering projects (e.g., mining, tunnelling, underground storage, geothermal energy,
petroleum, water conservancy and hydropower) are more often being constructed and
operated in large-scale environments with complex geology. Meanwhile, rock failures
and rock instabilities (e.g., rockbursts, large-scale collapse, slabbing, zonal disintegration
and microseism) occur more frequently, severely threatening the safety and stability of
rock engineering projects. It is well-recognized that rock has multi-scale structures, from
minerals, particles, fractures, fissures, joints and stratification to fault, and involves multi-
scale fracture processes. Meanwhile, rocks are commonly subjected simultaneously to
complex static stress and strong dynamic disturbance, providing a hotbed for the occurrence
of rock failures. In addition, there are many multi-physics coupling processes in a rock
mass, such as the coupled thermo–hydromechanical interaction in fractured porous rocks.
It is still difficult to understand these rock mechanics and characterize rock behavior during
complex stress conditions, multi-physics processes and multi-scale changes. Therefore, our
understanding of rock mechanics and the prevention and control of failure and instability
in rock engineering needs to be furthered. This Special Issue, “Mathematical Problems in
Rock Mechanics and Rock Engineering”, aims to bring together original research discussing
innovative efforts regarding in situ observations, laboratory experiments and theoretical,
numerical and big-data-based methods to overcome the mathematical problems related to
rock mechanics and rock engineering. It includes 12 manuscripts that illustrate the valuable
efforts for addressing mathematical problems in rock mechanics and rock engineering.

The article by Wang et al. [1] aims to investigate the dynamic mechanics and post-
failure characteristics of fault-cemented rock strata by Split Hopkinson pressure bar (SHPB)
dynamic impact tests on cemented rock samples with various particle size distributions
(PSDs). The results show that the breakage ratio and fractal dimension have a linear
relationship regardless of the PSD or strain, and the dynamic strength is negatively linearly
related to the fractal dimension under the PSD effect but positively linearly related to the
fractal dimension under the strain rate effect.

The article by Li et al. [2] aims to analyze the impact of optimizers (Adam, SGD,
RMSprop) and learning rate (lambda and cosine decay modes) on the performance of deep
learning-based algorithms for rock thin-section image classification by using 2634 rock
thin-section images including three rock types—metamorphic, sedimentary and volcanic
rocks. The investigation shows that the cosine learning-rate decay mode is the better option
for learning-rate adjustment during the training process, and the capabilities of the model
using Adam and RMSprop optimizers were more robust than that of SGD.

The study proposed by Li et al. [3] aimed to quantify the degree of coal macroscopic
deformation under different loads using Computed tomography (CT) scans. The results
illustrate that fractures and minerals significantly affect the stress state and displacement
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field distribution features, the maximum principal stresses and shear stresses in different
matrices differ significantly, and the presence of minerals and fractures induce prevalent
shear stress in coal and make coal prone to stress concentration.

Li et al. [4] investigated the effect of temperature on the dynamic properties of marble
using the dynamic and static combined SHPB test device, considering that deep rock will be
impacted by different temperatures and varied disturbance degrees. The results revealed
that the diameter and height of the specimen increased, and the mass and longitudinal
wave velocity dropped as the temperature climbed. The variation laws of the total stress–
strain curves after varied high temperatures are substantially the same, and the peak stress
was negatively correlated with the action temperature.

Khan et al. [5] propose a new predictive model based on artificial intelligence to
quantify the damage factor of rock by thermal treatment followed by subsequent cooling
conditions (slow and rapid). The results show that an ANN-based predictive model is the
most efficient model for quantifying the rock damage factor based on porosity compared
to other models based on multilinear regression (MLR) and the adoptive neural-fuzzy
inference system (ANFIS).

Chen et al. [6] developed a method to obtain the size distribution characteristics of
the real source from the apparent amplitude in doubly truncated distribution using rock
acoustic emission (AE) tests. The results indicate that mineral grains of different sizes and
compositions and different types of discontinuities of rock specimens determine the rock
fracture characteristics and the AE b value. The dynamic b values decreased linearly during
the loading process, which confirms that variations in the b value also depend on the stress.

Yin et al. [7] proposed a pollution evaluation system based on the fractal dimension
theory (Dbox(P)) and the grayscale average algorithm (Ga) in digital image-processing
technology to recognize and analyze the distributions of the smoke–dust cloud and sub-
sequently determine the pollution degrees. The results obviously denote three diffusion
stages of the pollutants, mainly including the generation stage, cloud-formation stage and
the diffusion stage during open-pit rock blasting.

Qiu et al. [8] developed a dataset of 734 samples from previous studies on different
countries’ magmatic, sedimentary and metamorphic rocks to estimate uniaxial compressive
strength (UCS) using three main factors of point load index, P-wave velocity and the
Schmidt hammer rebound number based on an extreme learning machine improved with
a metaheuristic algorithm. The results show that the extreme learning machine with the
whale optimization algorithm (WOA-ELM model) has high accuracy and reliability, which
means that it has broad application potential for estimating the UCS of different rocks.

Qiu et al. [9] aimed to analyze the effect of tunnel distribution on the dynamic response
characteristics of a remote non-adjacent tunnel. The results show that the stress wave
amplitude of the non-adjacent tunnel is closely related to the tunnel distribution, but only
near the sidewalls of the non-adjacent tunnel is the stress wave waveform sensitive to the
tunnel distribution.

Xiong et al. [10] analyze the evolution characteristics of freeze-and-thaw (F&T) damage
based on the T2 spectrum distribution curves of sandstone specimens before and after
F&T weathering cycles. The results show that the quantity of F&T weathering cycles and
confining pressure can significantly influence the pre-peak and post-peak deformation
behaviors of sandstone specimens.

Shahani et al. [11] developed four advanced machine learning (ML)-based intelligent
prediction models, namely Lasso regression (LR), ridge regression (RR), decision tree (DT)
and support vector machine (SVM), to predict c in (MPa) and ϕ in (◦) of rock, with P-wave
velocity in (m/s), density in (gm/cc), UCS in (MPa) and tensile strength in (MPa) as the
input parameters. The results show that UCS and tensile strength were the most influential
parameters in predicting c and ϕ.

Gong et al. [12] studied the dynamic tensile mechanical properties, layered effect
and density evolution characteristics of strain energy for coal using the split Hopkinson
pressure bar (SHPB) technique. The results show that the bedding orientation of the coal has
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a significant effect on its deformation and damage features. The presence of weak planes,
microcracks and laminae causes its shear damage zone to behave with more complexity.

The guest editors hope that the selected papers will help scholars and researchers to
push forward the progress in dealing with the mathematical problems in rock mechanics
and rock engineering.
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the manuscript.
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Effect of Particle Size Distribution on the Dynamic Mechanical
Properties and Fractal Characteristics of Cemented Rock Strata

Jiajun Wang, Linqi Huang *, Xibing Li, Yangchun Wu and Huilin Liu

School of Resources & Safety Engineering, Central South University, Changsha 410083, China;
jjwang@csu.edu.cn (J.W.); xbli@csu.edu.cn (X.L.); wuyangchun1995@csu.edu.cn (Y.W.); lhlblack@csu.edu.cn (H.L.)
* Correspondence: huanglinqi@csu.edu.cn; Tel.: +86-134-6905-9806

Abstract: To investigate the dynamic mechanics and post-failure characteristics of fault-cemented
rock strata, broken rock particles were reshaped to obtain cemented rock samples with various
particle size distributions (PSDs). Split Hopkinson pressure bar (SHPB) dynamic impact tests were
performed on the cemented rock samples under different strain rates. The test results show that
plastic deformation occurs in the cemented rock sample as a result of its porous structure. Therefore,
there is no linear phase in the dynamic stress–strain curves. With an increase in the Talbot index and
mixture type, more large particles were contained inside the cemented rock sample, and the dynamic
strength gradually increased. A power function can effectively describe the relationship between the
strain rate and dynamic strength for various Talbot indices. After dynamic impact, the fragments of
the cemented rock samples exhibit evident fractal laws, and the breakage of the samples includes
breakage of the original rock particle itself and breakage between the rock particles and cementations.
The breakage ratio and fractal dimension both decrease with the increase in the number of mixture
type and Talbot index but increase with the increase in strain rate. It is worth noting that the breakage
ratio and fractal dimension have a linear relationship regardless of the PSD or strain. The relationship
between the dynamic strength and fractal dimension has different response laws for the PSD and
strain rate effects. The dynamic strength is negatively linearly related to the fractal dimension under
the PSD effect but positively linearly related to the fractal dimension under the strain rate effect.
This research work can provide foundation support for investigating the instability mechanism of
fault cemented rock strata under dynamic stress.

Keywords: cemented rock sample; SHPB impact; PSD; fractal dimension

MSC: 74R10

1. Introduction

Faults are common geological structures [1,2] encountered in underground mining
activities. As shown in Figure 1, the roadway advance faces a hidden fault: the fault rock
strata may be in cemented states because the fault zone includes silicate, lime minerals,
mineral water, and broken rock and other components [3]. The dynamic stress induced by the
disturbance of excavation is inevitably loaded onto fault-cemented strata and may cause failure
of the fault’s geological structure. Therefore, investigating the dynamic mechanical properties
of fault-cemented rock strata is vital for understanding fault instability mechanisms.

Cemented rock strata widely exist in various engineering geological conditions [4,5],
and there is much research [3,6–9] on their physical and mechanical properties. Fall et al.
[10,11] studied the strength characteristics of cemented paste backfill (CPB), and suggested
that the uniaxial compression strength (UCS) has an exponential relationship with the solid-
phase mass fraction and a linear relationship with the cement–sand ratio. Jiang et al. [12]
investigated the influence of sodium chloride on the yield stress and strength law of ce-
mented tailings material, and found that the UCS of CPB decreases with an increase in

Mathematics 2022, 10, 2078. https://doi.org/10.3390/math10122078 https://www.mdpi.com/journal/mathematics5
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the initial NaCl concentration. Xu et al. [13,14] conducted triaxial compression experi-
ments on CPB samples, and their results showed that the brittleness and failure pattern
change with increasing cement content. Through acoustic emissions (AE) and computed
tomography (CT) scanning [15], shear cracks have been observed inside rock specimens,
and tensile cracks observed along rock/backfill interfaces. The laboratory testing strength
of CPB material is determined by many factors such as the binder proportion [16], curing
age [17], concentration [18] and cement-tailings ratio [19], whereas the load characteristics
of cemented rock strata under geotechnical engineering conditions are highly complex.
Therefore, investigating the static mechanical properties of cemented rock strata is insuffi-
cient to reveal the instability mechanism.

 
Figure 1. Cemented rock strata in fault zone: excavation for a roadway is shown, with an example of
possible adjacent layering.

A dynamic load [20] is inevitable for cemented rock strata in underground engineering
activities, and much attention [21–24] has been paid to the dynamic mechanical proper-
ties of cemented materials. Cao et al. [25] investigated the effect of the strain rate on
the dynamical mechanical response and failure patterns of cemented tailings composite
specimens; the dynamic strength increases exponentially and the fractal dimension in-
creases linearly with the average strain rate. Tan et al. [26] reported that the dynamic
strength has a power-function relationship with the average strain rate; the failure pattern
shows tensile failure and X-shaped shear failure. When cemented tailings backfill was
reinforced by polyester fiber, the dynamic stress–strain curves exhibited a “double-peak”
phenomenon [27]. Yang et al. [28] proposed that cemented tailings backfill (CTB) experience
shear failure and tensile failure with an increase in the confining pressure. The compression
strength and ultrasonic pulse velocity (UPV) [29] of cemented rock samples increase linearly
with increasing curing time, and the UPV can be applied to the prediction of the UCS of
cemented rock samples. Chen et al. [30] established an exponential correlation between the
dynamic strength and strain rate. The interface shear strength between CPB and rock were
investigated by direct shear tests, which indicated that the strength is time-dependent [31].
Zheng et al. [32] discussed the energy dissipation law of CTB samples after split Hopkinson
pressure bar (SHPB) tests, and the results suggest that the absorbed energy first increases
and then decreases with increasing average strain rate. Wang et al. [33] reported that the
dynamic tensile and shear strengths increase by 72% and 127%, respectively, relative to
static loading strengths. However, these achievements focused on the strength characteris-
tics and failure patterns of cemented rock materials. In actuality, cemented rock is likely to
have fragmented under impact loading. The fragmentation of partial surrounding rock is a
key factor affecting the stability of the rock strata. Therefore, it is necessary to study and
analyze the fragmentation characteristics of cemented rock strata under impact load.

6
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The state of cemented rock materials after failure can indicate the instability mecha-
nism in the cemented rock strata [34,35]. In the present study, fault-broken red sandstone
rocks were cemented and reshaped into specimens for dynamic impact tests. The choice of
the particle fractions in the mixture was considered; we investigated the influence of the
particle size distribution (PSD) on the dynamical mechanical properties of cemented rock
samples and their fractal characteristics. Finally, the functional relationship between the
dynamic strength and the fractal dimension was established, and the influences of the PSD
and strain rate on this relationship were analyzed.

2. Materials and Scheme

2.1. Materials

Broken red sandstones were collected from the fault zone of the Sima coal field in the
Shanxi province of China. The material collected was subjected to a secondary crushing
before manufacturing the cemented rock samples; the sample preparation process is shown
in Figure 2.

 
Figure 2. Sample preparation process (a–e): Sieved red sandstone particles; maximum sizes in each
group are 2, 3, 5, 8 and 10 mm. (f) Cementation material. (g) Specimen molds. (h) Samples for
strength tests: diameter, 50 mm; height, 25 mm.

(a) Rock particle preparation
Rock particles of different sizes were obtained by sieving the crushed granular red

sandstone. In the natural accumulation state of broken rock in the fault zone, the size of the
broken rock pieces follows a continuous distribution. To simulate the continuous nature of
the PSD in the cemented rock samples prepared for testing, the sieved rock particles were
divided into five groups (0–2 mm, 2–3 mm, 3–5 mm, 5–8 mm and 8–10 mm) (Figure 2a–e).

(b) Component proportion
Rock particles of a single size and mixtures of particles of various sizes were used for

specimen preparation. For the mixtures, the PSD of each group in the cemented sample
was described using Talbot’s [36] grading method:

Pi = (
di
dm

)
T
× 100% (1)

where Pi is the mass percentage of rock particles whose size is smaller than di, dm is the
largest particle size (dm = 10 mm) and T is the Talbot index characterizing the distribution

(c) Cementing reshaped sample
After measuring the raw material quantities for specimens of various Talbot indices

(particle size fractions) and cement fractions, the cementation materials (Figure 2f) and
red sandstone particles were mixed with water and stirred, and the slurry mixture was
then injected into molds (Figure 2g). To reduce the number of gas holes in the preparation
process and obtain a uniform distribution of fine particles, the slurry mixture specimens

7
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were vibrated and tamped. After the molds were removed, the cemented rock samples
were cured for 28 days. The finished cemented samples, with a diameter of 50 mm and
a height of 25 mm after manufacturing, are shown in Figure 2h.

2.2. Test Scheme

To investigate the effect of the PSD on the dynamic mechanical properties of cemented
rock samples, the Talbot index and mixture type were varied to realize different PSDs.
In the series of cemented rock samples designated S3, three of the five particle mass groups
(maximum size 2, 3, 5, 8, 10 mm) are chosen in a sequence (i.e., {2, 3, 5}, {3, 5, 8} and {5, 8, 10})
with mass ratios selected to produce three distinct Talbot indices (0.5, 1.0, 2.0); there are nine
S3 sample types in total. Specimens denoted by S4 have four components (i.e., {2, 3, 5, 8}
and {3, 5, 8, 10}) to create two mixture types with three Talbot indices; there are six sample
types. In the S5 series, only one mixture type is possible {2, 3, 5, 8, 10}, and with three Talbot
indices, there are only three types of cemented rock sample. The masses of each component
were calculated for the various Talbot indices and mixture types and are listed in Table 1.

Table 1. Experimental design for different particle size distributions (PSDs).

Sample
Number

Talbot
Index T

Particle Mass (g) Total
Mass (g)0–2 mm 2–3 mm 3–5 mm 5–8 mm 8–10 mm

S3–0.5-I
0.5

44.27 9.95 15.78 / / 70.00
S3–0.5-II / 42.87 12.47 14.66 / 70.00
S3–0.5-III / / 49.50 13.11 7.39 70.00

S3–1.0-I
1.0

28.00 14.00 28.00 / / 70.00
S3–1.0-II / 26.25 17.50 26.25 / 70.00
S3–1.0-III / / 35.00 21.00 14.00 70.00

S3–2.0-I
2.0

11.20 14.00 44.80 / / 70.00
S3–2.0-II / 9.84 17.50 42.66 / 70.00
S3–2.0-III / / 17.50 27.30 25.20 70.00

S4–0.5-I 0.5
35.00 7.87 12.47 14.66 / 70.00

S4–0.5-II / 38.34 11.16 13.11 7.39 70.00

S4–1.0-I 1.0
17.50 8.75 17.50 26.25 / 70.00

S4–1.0-II / 21.00 14.00 21.00 14.00 70.00

S4–2.0-I 2.0
4.38 5.47 17.50 42.65 / 70.00

S4–2.0-II / 6.30 11.20 27.30 25.20 70.00

S5–0.5-I 0.5 31.30 7.04 11.16 13.11 7.39 70.00
S5–1.0-I 1.0 14.00 7.00 14.00 21.00 14.00 70.00
S5–2.0-I 2.0 2.80 3.50 11.20 27.30 25.20 70.00

The total mass of the rock particles in each sample was 70 g and the mass of cement
was 25 g. In addition, Figure 3a–c shows the relationship between the mass percentage and
particle size of the S3, S4 and S5 series samples, respectively. The cemented rock samples
were composed of rock particles of at least three sizes, for a total of 18 types. To explore the
PSD effect, 18 cemented rock samples were subjected to dynamic impact tests at the same
strain rate. To explore the strain rate effect, the S5 series of cemented rock samples were
subjected to impact tests under five different strain rates.
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Figure 3. Particle size distribution (PSD) in cemented rock samples. (a) S3 series (3 component rock
mixture); (b) S4 series (4 components); (c) S5 series (5 components). Mass percentages are cumulative,
showing total mass below the indicated size.

3. Test System and Measurement Principles

3.1. SHPB Experimental Setup

Dynamic impact tests were performed using a modified SHPB system [37]. As shown
in Figure 4, the impact device is composed of a gas cavity, cone-shaped striker, incident
bar, transmitted bar, absorption bar and fixed tailstock. The data acquisition subsystem
includes an acquisition computer, oscilloscope, dynamic strain meter, Wheatstone bridges,
strain gauges and a data line.

 
Figure 4. Testing system: (a) equipment layout; (b) apparatus schematic.
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The rock sample is placed between the incident and transmitted bars. Strain gauges are
installed on both the incident and transmitted bars. During testing, a slowly rising half-sine
wave is generated when the cone-shaped striker impacts the front end of the incident bar;
this wave is generated when high-pressure gas drives the cone-shaped striker against the
incident bar. When the incident wave arrives at the bar–sample interface, part of the wave
amplitude is reflected back into the incident bar (reflected wave), while the remainder
passes through the sample and propagates in the transmitted bar (transmitted wave).
As a result of the time difference between the incident and reflected waves passing the strain
gauges on the incident bar, the incident and reflected wave signals may be distinguished
and recorded. A strain gauge on the transmitted bar also records the transmitted wave
signal. The two sets of strain gauges are connected to Wheatstone bridges, and the pulse
signals are monitored with a dynamic strain gauge and an oscilloscope and passed to
the acquisition computer. The pulse signal set contains primarily the incident strain ε I(t),
reflected strain εR(t) and transmitted strain εT(t). Based on one-dimensional stress wave
theory [38], the axial stress σ(t), strain ε(t) and strain rate

.
ε(t) of the cemented rock sample

are expressed as: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ(t) =
AbEb
2As

[ε I(t) + εR(t) + εT(t)]

ε(t) =
Cb
Ls

∫ t
0 [ε I(t)− εR(t)− εT(t)]dt

.
ε(t) =

Cb
Ls

[ε I(t)− εR(t)− εT(t)]

(2)

where Ab, Cb and Eb are the cross-sectional area, P-wave velocity and Young’s modulus
of the three bars. AS and Ls are the cross-sectional area and length of the cemented rock
sample, respectively.

3.2. Measurement Principles
3.2.1. Fractal Dimension

The concept of a fractal was used in geophysics by Turcotte [39]; the number of
fragments N(r) with a particle size larger than r exhibits a power-function relationship with
r as follows:

N(r) = cr−Df (3)

where c is the proportionality coefficient, and Df is the fractal dimension.
The probability density distribution function [40] of fragments with sizes smaller than

r can be expressed as:

P(r) = 1 −
( rmin

r

)Df
(4)

where P(r) is the probability of fragments smaller than r and rmin is the minimum fragment size.
The total volume of the fragments can be calculated by integrating fragments of

various sizes.

V =
∫ rmax

rmin

Nt

(
4
3

πr3
)

dP(r) ≈
4
3

πNt
Df

3 − Df
r

Df
minr

3−Df
max (5)

where Nt is the total number of fragments of various sizes and rmax is the maximum size of
the fragments.

From Equation (5), the mass of rock fragments with sizes smaller than ri can be
obtained as:

M(r<ri)
=

4
3

πNtρ
Df

3 − Df
r

Df
minr

3−Df
max (6)

where M(r<ri)
is the mass of rock fragments with sizes smaller than ri and ρ is the rock

density. The mass ratio is expressed as follows:

M(r<ri)

Mt
=

(
ri

rmax

)3−Df

(7)
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where Mt is the total mass of rock fragments.
Taking the logarithm of Equation (6), a linear form is obtained:

Ln
(M(r<ri)

Mt

)
=
(

3 − Df

)
Ln
(

ri
rmax

)
(8)

The fractal dimension Df can be calculated by fitting Ln
(

M(r<ri)
Mt

)
and Ln

(
ri

rmax

)
linearly.

3.2.2. Crushing Ratio

The crushing ratio is a significant parameter for the failure of geological features.
Ma et al. proposed a quantitative method to measure the particle breakage degree, and the
breakage ratio (BM) is defined as the variation in all PSD after a dynamic impact, which is
calculated as follows:

BM =
N

∑
i=1

(
wd

i − wo
i

)
(9)

where N is the component range appropriate to the increased particle content after dynamic
impact, ωo

i is the original particle content within a certain range and ωd
i is the corresponding

particle content after the dynamic impact.

4. Test Results

4.1. Dynamic Mechanical Characteristics

The one-dimensional stress wave propagation theory and stress equilibrium in ce-
mented rock samples should be confirmed during SHPB tests [41]. The strain gauge
attached to the incident bar recorded the incident and reflected signals, which were used for
the calculation of the incident and reflected waves. The strain gauge attached to the trans-
mitted bar recorded the transmitted signal, which was used to calculate the transmitted
wave. As shown in Figure 5, the sum of the incident and reflected waves is approximately
equal to that of the transmitted wave. This indicated that the two ends of the cemented
rock sample in the dynamic impact experiment reached a stressed equilibrium condition.

 
Figure 5. Stress equilibrium diagram.

Figure 6 shows the dynamic stress–strain curves of cemented rock samples with
different PSDs; Figure 6a–c shows the S3, S4 and S5 series individually. The curves show
that the dynamic stress first increases and then decreases with strain, which conforms to
a typical dynamic stress evolution law [42]. The dynamic stress curves have no obvious
linear stage, which can be attributed to the abundant pore structures in the cemented
rock sample. Damage and plastic deformation can easily occur in a porous medium,
resulting in a stress that nonlinearly varies with strain under a dynamic load. Figure 7
shows the dynamic stress–strain curves of the S5 series samples with different strain rates
for different Talbot indices. Comparing Figure 7a–c, the dynamic strength increases with
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increasing Talbot index; this suggests that the large particles in the skeleton structure mainly
contributed to the dynamic strength.

  

  

Figure 6. Dynamic stress–strain curves for different PSDs: (a) S3 series; (b) S4 series; (c) S5 series.

  

 

Figure 7. Dynamic stress–strain curves of S5 series samples (i.e., 5 particle size components) under
different strain rates. Talbot indices for the particle size distributions are: (a) T = 0.5; (b) T = 1.0;
(c) T = 2.0.
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4.2. Variation of Fractal Characteristics of Cemented Rock Samples

Under the dynamic impact in the SHPB apparatus, the cemented rock samples broke
into granular particles. The fractal behavior of cemented rock samples can effectively reflect
the fracture characteristics under the dynamic stress, which is an important basis for the
instability mechanism of cemented rock strata. As shown in Figure 8, the cemented rock
samples exhibited a high degree of fragmentation. Nevertheless, intuitively describing
the fragmentation degree of cemented rock samples through fragments is challenging.
Therefore, we classified the fragments and analyzed their fractal characteristics to determine
the fragmentation degree of the cemented rock samples. After sieving and weighing the
fragments, the fractal laws for the cemented rock samples were obtained.

 
Figure 8. Failure and fractal nature of impact fragments of cemented rock samples for different PSDs.
Original samples had Talbot indices 0.5, 1.0, and 2.0. 3-component samples.

Figures 9–11 show the fractal laws describing the fragments from the S3, S4 and S5
series of cemented rock samples, respectively. Table 2 lists the linear fitting formulas
and their R2 values for the fragments from different PSD samples; the R2 of all curves is
greater than 0.9, indicating that the fragments exhibit obvious fractal characteristics after
dynamic impact. When considering the effect of strain rate on the fragmentation degree,
the fragment size decreases with the increase in strain rate, as shown in Figure 12. Figure 13
shows the fractal laws of the S5 series, and Table 3 lists the linear fitting formulas and
goodness-of-fit (R2) for the fragments under different strain rates. The goodness-of-fit
of the linear fitting formulas is credible, which suggests that the fractal phenomenon is
a universal law under different strain rates.
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Figure 9. Fractal characteristics of fragments from S3 series samples: (a) T = 0.5; (b) T = 1.0; (c) T = 2.0.

Figure 10. Fractal characteristics of fragments from S4 series samples.
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Figure 11. Fractal characteristics of fragments from S5 series samples.

Table 2. Fractal fitting of cemented rock samples with different PSDs.

Sample No. Linear Fitting Formula R2

S3–0.5-I Ln
(

M(r<ri)/Mt

)
= 0.699Ln(ri/rmax) + 2.311 × 10−3 0.901

S3–0.5-II Ln
(

M(r<ri)/Mt

)
= 0.891Ln(ri/rmax) + 3.456 × 10−4 0.913

S3–0.5-III Ln
(

M(r<ri)/Mt

)
= 1.473Ln(ri/rmax) + 3.124 × 10−4 0.924

S3–1.0-I Ln
(

M(r<ri)/Mt

)
= 0.738Ln(ri/rmax) + 4.747 × 10−4 0.935

S3–1.0-II Ln
(

M(r<ri)/Mt

)
= 1.114Ln(ri/rmax) + 3.698 × 10−3 0.927

S3–1.0-III Ln
(

M(r<ri)/Mt

)
= 1.521Ln(ri/rmax) + 7.845 × 10−4 0.906

S3–2.0-I Ln
(

M(r<ri)/Mt

)
= 1.284Ln(ri/rmax) + 9.874 × 10−4 0.918

S3–2.0-II Ln
(

M(r<ri)/Mt

)
= 1.547Ln(ri/rmax) + 2.311 × 10−3 0.904

S3–2.0-III Ln
(

M(r<ri)/Mt

)
= 1.623Ln(ri/rmax) + 9.456 × 10−5 0.911

S4–0.5-I Ln
(

M(r<ri)/Mt

)
= 0.748Ln(ri/rmax) + 6.235 × 10−4 0.935

S4–0.5-II Ln
(

M(r<ri)/Mt

)
= 1.112Ln(ri/rmax) + 7.112 × 10−5 0.907

S4–1.0-I Ln
(

M(r<ri)/Mt

)
= 0.937Ln(ri/rmax) + 4.789 × 10−4 0.929

S4–1.0-II Ln
(

M(r<ri)/Mt

)
= 1.214Ln(ri/rmax) + 6.341 × 10−4 0.956

S4–2.0-I Ln
(

M(r<ri)/Mt

)
= 1.278Ln(ri/rmax) + 6.231 × 10−5 0.919

S4–2.0-II Ln
(

M(r<ri)/Mt

)
= 1.438Ln(ri/rmax) + 5.587 × 10−4 0.922

S5–0.5-I Ln
(

M(r<ri)/Mt

)
= 0.889Ln(ri/rmax) + 7.654 × 10−4 0.914

S5–1.0-I Ln
(

M(r<ri)/Mt

)
= 1.254Ln(ri/rmax) + 4.478 × 10−5 0.903

S5–2.0-I Ln
(

M(r<ri)/Mt

)
= 1.337Ln(ri/rmax) + 6.214 × 10−4 0.917
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Figure 12. Failure and fractal nature of S5–1.0-I cemented rock samples under different strain rates.

 

Figure 13. Fractal characteristics of S5 series samples fragments under different strain rates: (a) T = 0.5;
(b) T = 1.0; (c) T = 2.0.
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Table 3. Fractal fitting of cemented rock samples with different strain rates.

Sample No. Strain Rate Linear Fitting Formula R2

S5–0.5-I

39.5 s−1 Ln
(

M(r<ri)/Mt

)
= 0.937Ln(ri/rmax) + 4.799 × 10−3 0.934

48.5 s−1 Ln
(

M(r<ri)/Mt

)
= 0.825Ln(ri/rmax) + 7.245 × 10−4 0.921

55.3 s−1 Ln
(

M(r<ri)/Mt

)
= 0.772Ln(ri/rmax) + 5.719 × 10−4 0.925

74.6 s−1 Ln
(

M(r<ri)/Mt

)
= 0.637Ln(ri/rmax) + 8.742 × 10−5 0.902

84.9 s−1 Ln
(

M(r<ri)/Mt

)
= 0.511Ln(ri/rmax) + 2.171 × 10−3 0.945

S5–1.0-I

38.3 s−1 Ln
(

M(r<ri)/Mt

)
= 1.254Ln(ri/rmax) + 8.445 × 10−4 0.925

47.4 s−1 Ln
(

M(r<ri)/Mt

)
= 1.178Ln(ri/rmax) + 9.824 × 10−5 0.931

54.7 s−1 Ln
(

M(r<ri)/Mt

)
= 1.045Ln(ri/rmax) + 6.631 × 10−3 0.951

73.9 s−1 Ln
(

M(r<ri)/Mt

)
= 0.928Ln(ri/rmax) + 7.741 × 10−4 0.916

82.6 s−1 Ln
(

M(r<ri)/Mt

)
= 0.811Ln(ri/rmax) + 1.123 × 10−3 0.912

S5–2.0-I

37.2 s−1 Ln
(

M(r<ri)/Mt

)
= 1.337Ln(ri/rmax) + 3.214 × 10−4 0.925

47.4 s−1 Ln
(

M(r<ri)/Mt

)
= 1.274Ln(ri/rmax) + 6.321 × 10−4 0.933

53.8 s−1 Ln
(

M(r<ri)/Mt

)
= 1.105Ln(ri/rmax) + 6.341 × 10−5 0.904

72.4 s−1 Ln
(

M(r<ri)/Mt

)
= 0.914Ln(ri/rmax) + 6.539 × 10−4 0.926

80.1 s−1 Ln
(

M(r<ri)/Mt

)
= 0.836Ln(ri/rmax) + 5.117 × 10−2 0.938

4.3. Variation of Breakage Ratio of Cemented Rock Samples

After the broken rock particles are cemented and reshaped, an integral structure has
been formed. Dynamic impact damages not only the cementation structure between rock
particles but also the rock particles themselves [43]. As shown in Figure 14, many breakages
occur in the individual rock particles, which implies that rock particle breakage is a common
behavior during dynamic impact. Breakage ratio is a method applied for calculation of the
particle broken of cemented rock samples, which is of great significance for investigating
the secondary broken of cemented rock samples. Therefore, it is necessary to explore the
breakage law of cemented rock samples.

 

Figure 14. Breakage behavior of rock particles: (a) broken sample after dynamic impact; (b) area 1;
(c) area 2; (d) area 3.
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The breakage ratio was calculated using Equation (8) and the results are shown in
Figure 15. As for the effect of PSD on breakage behavior, the breakage ratio BM (indicating
a change in the PSD) appears to decrease with an increase in the Talbot index in the S3 and
S4 series of cemented rock samples, except for the S5 series of cemented rock samples (as
shown in Figure 15a). A high Talbot index corresponds to more large rock particles in the
cemented rock sample, which verifies that large particles contribute to the formation of the
solid structure of the cemented rock sample. As for the effect of strain rate on breakage
behavior, BM obviously increases with an increase in strain rate (as shown in Figure 15b).

  

Figure 15. Breakage ratio BM of cemented rock samples: (a) various PSD; (b) various strain rates.

5. Discussion

5.1. Effects of PSD and Strain Rate on Dynamic Strength
5.1.1. Effect of PSD on Dynamic Strength

From the test results in Section 4.1, the PSD has a remarkable influence on the dynamic
strength of cemented rock samples. Figure 16a shows the dynamic strength variation of
the S3 series with the PSD, which indicates that the dynamic strength increases with an
increase in both the Talbot index and mixture type; these indicate cemented rock samples
containing more large rock particles, which can create dynamic strength. This behavior is
also seen in the S4 and S5 series (Figure 16b,c).

 
 

Figure 16. Cont.
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Figure 16. Dynamic strength dependence on PSD (Talbot Index) and component mixture type:
(a) S3 series; (b) S4 series; (c) S5 series.

5.1.2. Effect of Strain Rate on Dynamic Strength

Under the action of dynamic impact, the dynamic strength of the rock material follows
the rate effect [44]. Figure 17 shows the variation of dynamic strength with strain rate in
the S5 series of cemented rock samples; Figure 17a–c corresponds to the different Talbot
indices (T = 0.5, 1.0 and 2.0) that denote different PSDs. The dynamic strength and strain
rate in the experimental data are well fitted by the power function.

  

 

= × =d R

= × =d R

= × =d R

Figure 17. Dynamic strength dependence on strain rate in the S5 series samples with different particle
size distributions: Talbot indices (a) T = 0.5; (b) T = 1.0; (c) T = 2.0.

5.2. Effects of PSD and Strain Rate on Fractal Characteristics
5.2.1. Effects of PSD on Fractal Dimension

Figure 18a shows the variation of the fragmentation fractal dimension with PSD of
the S3 series of cemented rock samples, indicating that the fractal dimension decreases
with an increase in the Talbot index and mixture type. Figure 18b,c show the fractal
dimension variation of the S4 and S5 series of cemented rock samples, and the variation
law is consistent with that of the S3 series of cemented rock samples. Compared with
the strength variation, the fractal dimension variation shows an opposite response to the
PSD effect.
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Figure 18. Dependence of the fragmentation fractal dimension on the particle size distribution (Talbot
Index) and component mixture type: (a) Series 3; (b) Series 4; (c) Series 5.

5.2.2. Effect of Strain Rate on Fractal Dimension

In the experimental data, the fractal dimension is seen to increase with strain rate.
Linear fitting functions can describe the relationship between the strain rate and the fractal
dimension of fragmentation products from cemented rock samples. As shown in Figure 19,
the goodness of fit is relatively high for the three types of Talbot index, which suggests the
validity of these linear fittings.
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Figure 19. Dependence of fractal dimension on strain state in the S5 series samples. Particle size
distributions are represented by Talbot indices T = 0.5, 1.0, and 2.0.
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5.3. Relationship between Dynamic Strength and Fractal Dimension
5.3.1. Relationship between Crush Ratio and Fractal Dimension

The breakage ratio reflects the change in the size distribution of rock particles following
the dynamic impact, which can comprehensively reflect the breakage of the original rock
particle itself and the breakage between the rock particles and cement. The fractal dimension
directly reflects the relationship between the fragment mass and fragment size of cemented
rock samples. Therefore, both are related to the breaking characteristics of cemented rock
samples. For variations in either the sample PSDs or the strain rate, the fractal dimension
of fragmentation products increases with the breakage ratio (Figure 20). It is found that the
fractal dimension and breakage ratio are well fitted by linear functions. It is noteworthy
that the slopes of the two fitted curves are equal. This indicates that neither the change in
the internal structure of the cemented rock sample nor the change in the external dynamic
load conditions will change this linear relationship, which further shows that the breakage
ratio and fractal dimension are intrinsically linked and not affected by other factors.

Df BM  R2

f MD B R= + =

Df BM  R2 

Figure 20. Relationship between breakage ratio and fractal dimension following fragmentation.
Breakage ratio BM indicates change in PSD of original rock particles. Blue curve arises from samples
having different initial PSDs; red curve is from different strain rates being applied.

5.3.2. Relationship between Dynamic Strength and Fractal Dimension

Figure 21 shows the effect of the PSD on the relation between dynamic strength and
fractal dimension; the experimental data (Table 2) show that the dynamic strength decreases
as the fractal dimension increases. When the strain rate remains unchanged and only the
PSD of the cemented rock sample is changed, the fractal dimension is negatively correlated
with the dynamic strength, as measured by linear fitting. This phenomenon indicates that
when the external dynamic load conditions remain unchanged, the change in the internal
structure mainly affects the dynamic strength and fractal characteristics of cemented rock
samples. The change in the PSD mainly causes a change in the proportion of large particles,
which directly determines the dynamic strength. The crushing degree of the cemented
rock sample with a high strength was small, corresponding to a low fractal dimension.
Therefore, there is a negative linear correlation between the dynamic strength and the
fractal dimension.
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d fD R= − + =

Figure 21. Relation between dynamic strength and fractal dimension following fragmentation.
Constant strain rate is used, while samples have different PSDs—-based on Table 2.

Figure 22 shows the effect of strain rate on the relation between dynamic strength
and the fractal dimension for samples with different Talbot indices; the experimental data
(Table 3) show that the dynamic strength increases with increasing fractal dimension for
sample sets with different Talbot indices (as shown in Figure 22a–c). When the PSD remains
unchanged and only the strain rate is changed, the fractal dimension is positively correlated
with the dynamic strength, as seen through linear fitting. This phenomenon indicates that
for the same values of the PSD, the strain rate directly determines the dynamic strength
and fractal characteristics of the cemented rock sample, with both exhibiting the same
response characteristics as the strain rate effect. Therefore, a positive linear correlation
exists between dynamic strength and fractal dimension.

  

 

d fD R= − =

d fD R= − =

d fD R= − =

Figure 22. Relation between dynamic strength and fractal dimension: effect of strain rate. (a) T = 0.5;
(b) T = 1.0; (c) T = 2.0.
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6. Conclusions

This study focuses on the dynamic mechanics and fractal characteristics of fault-
cemented rock strata. The broken rock particles were reshaped to obtain cemented rock
samples with variable particle size distributions, and split Hopkinson pressure bar dynamic
impact tests were carried out on the cemented rock samples under different strain rates.
The following conclusions were drawn.

(1) The stress–strain curves show that the dynamic stress first increases and then
decreases with increasing strain. This indicates that plastic deformation occurs because of
the porous structure of the cemented rock sample. Therefore, the stress nonlinearly changes
with strain through the entire dynamic stress–strain curve. The cemented rock sample with
a high Talbot index and mixture type contains more large particles, and its dynamic strength
increases gradually. A power function effectively describes the relationship between the
strain rate and the dynamic strength for various Talbot indices.

(2) By analyzing the relationship between fragment mass and fragment size, it is found
that the fragments of cemented rock samples follow obvious fractal laws after dynamic
impact. The breakage of cemented rock samples includes the breakage of the original rock
particle itself and the breakage between the rock particles and cementations. The fractal
dimension and breakage ratio both decrease with the increase in mixture type and the
Talbot index but increase with the increase in strain rate. It is worth noting that the breakage
ratio and fractal dimension have a linear relationship regardless of the PSD or strain rate.

(3) The PSD and strain rate effects influence the internal structure of the cemented rock
sample and the response to an external load, respectively. The relationship between the
dynamic strength and fractal dimension has different response laws for the PSD and strain
rate effects. The dynamic strength is linearly related to the fractal dimension in a negative
sense under differences in PSD but linearly related positively to the fractal dimension under
differences in strain rate.
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Abstract: Experimental studies were carried out to analyze the impact of optimizers and learning
rate on the performance of deep learning-based algorithms for rock thin-section image classification.
A total of 2634 rock thin-section images including three rock types—metamorphic, sedimentary, and
volcanic rocks—were acquired from an online open-source science data bank. Four CNNs using three
different optimizer algorithms (Adam, SGD, RMSprop) under two learning-rate decay schedules
(lambda and cosine decay modes) were trained and validated. Then, a systematic comparison was
conducted based on the performance of the trained model. Precision, f1-scores, and confusion matrix
were adopted as the evaluation indicators. Trials revealed that deep learning-based approaches for
rock thin-section image classification were highly effective and stable. Meanwhile, the experimental
results showed that the cosine learning-rate decay mode was the better option for learning-rate
adjustment during the training process. In addition, the performance of the four neural networks
was confirmed and ranked as VGG16, GoogLeNet, MobileNetV2, and ShuffleNetV2. In the last step,
the influence of optimization algorithms was evaluated based on VGG16 and GoogLeNet, and the
results demonstrated that the capabilities of the model using Adam and RMSprop optimizers were
more robust than that of SGD. The experimental study in this paper provides important practical
value for training a high-precision rock thin-section image classification model, which can also be
transferred to other similar image classification tasks.

Keywords: rock; rock thin-section image; image classification; convolutional neural network; deep
learning

MSC: 68T07

1. Introduction

Rock type classification, a valuable task, is extremely important in geological en-
gineering, rock mechanics, mining engineering, and resource exploration. While the
characteristics of rocks’ appearance under outdoor conditions often show diversity due
to illumination, shading, humidity, shape, etc., the main way of classifying rock types in
situ is to distinguish rock apparent features with the utilization of auxiliary tools, such
as a magnifying glass and a knife. In contrast, owing to the presence of different mineral
compositions in the rock, the features of color, grain size, shape, internal cleavage, structure,
and other information are visible in rock thin-section images, which can represent specific
rock petrographic information. In any case, it is challenging for geologists to classify both
image formats mentioned above based on their experiences, and it is also time-consuming
and costly. Therefore, it is necessary for researchers to study how to classify rocks efficiently
and accurately.

In the past, many scholars have studied different methods to identify rock types,
which can be summarized into the following categories: physical test methods, numerical
statistical analysis, and intelligent approaches.
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X-ray diffraction (XRD) is a common method of physical testing that can quickly obtain
rock mineral fractions, and rock types can then be classified based on rock mineral-fraction
information. Shao et al. [1] used X-ray powder crystal diffraction to accurately recognize
gneiss rock feldspar, albite, and quartz but could not identify metallic minerals, such as
tourmaline, sphene, etc. Chi et al. [2] analyzed the whole-rock chemical composition by
XRD and then calculated the rock impurity factor, magnesium factor, and calcium factor
based on chemical compositions to make the final classification of marble. However, due to
the limitations of the XRD mineral semiquantitative analysis technique, such as inaccurate
quantification of mineral components, it is still necessary to rely on other methods to verify
the identification results of the XRD mineral semiquantitative method.

Zhang et al. [3,4] utilized a mathematics statistics theory to extract rock lithology
features, Sr and Yb are considered as the classification characteristics of granite rock.
Shaaban and Tawfik [5] adopted a rough-set mathematical theory to classify six types of
volcanic rock, and the proposed model prioritizes computation times and cost. Yin et al. [6]
combined means of image processing and pattern recognition, investigated features of rock
structures in FMI image format, and developed a classification system with 81.11% accuracy.
The rock thin-section image classification effect of four pattern recognition methods was
evaluated by Młynarczuk et al. [7], and finally, the nearest-neighbor algorithm and CIELab
data format were confirmed as the best scheme. The methods mentioned above have good
results for rock classification, but the model performance differs depending on the level
of knowledge of different people. With the convenience of digital image acquisition, it is
possible to accumulate a large dataset. Thus, intelligent algorithms based on large datasets
are widely applied to the classification of rock types. Unlike physical and numerical
analysis methods, intelligent methods involve less or no human interaction and achieve
better generalization.

Marmo et al. [8] introduced image-processing technology and an artificial neural
network (ANN) to identify carbonate thin sections; the model showed 93.5% accuracy.
Singh et al. [9] followed the same method as Marmo: 27-dimensional numerical parameters
were extracted as the neural network input, and the model reached 92.22% precision
for classifying basaltic thin-section images. A support vector machine (SVM) algorithm
was developed by Chatterjee et al. [10]. A total of 40 features were selected out of the
original 189 features as the model input, and six types of limestone were identified with
96.2% performance. Patel et al. [11] developed a robust model based on a probabilistic
neural network (PNN) and nine color histogram features, and the overall error rate of
classification was below 6% on seven limestone rock types. Tian et al. [12] proposed an SVM
identification model with the combination of Principal Component Analysis (PCA) and
obtained 97% classification accuracy. Khorram et al. [13] presented a limestone classification
model in which six features were obtained from segmentation images and used as the input
of the neural network, and the model achieved a higher R2 value. Intelligent methods show
advantages in rock type classification. However, it is worth noting that they heavily rely on
the quality of numerical features extracted by researchers, which directly determines the
final performance of the model.

Convolutional neural networks (CNNs), another intelligent approach, also have great
advantages in image-processing fields. The earliest application of a CNN was designed to
solve the problem of classifying handwritten digital numbers [14], which obtained remark-
able success, and afterward, the achievements of CNNs are blooming everywhere, includ-
ing in object detection [15–19], face recognition [20], natural language processing [21,22],
remote sensing [23,24], autonomous driving [25], and intelligent medicine [26–28].

Recently, many researchers have made great breakthroughs in transferring computer-
based methods to rock class identification and classification. Li et al. [29] used an enhanced
TradaBoost algorithm to recognize microscopic sandstone images collected in different areas.
Polat et al. [30] transferred two CNNs to automatically classify six types of volcanic rocks
and evaluated the effect of four different optimizers. Anjos et al. [31] proposed four CNN
models to identify three kinds of Brazilian presalt carbonate rocks using microscopic thin-
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section images. Samet et al. [32] presented an image segmentation method based on the
fuzzy rule, which used rock thin sections as input and returned mineral segmentation
regions. Yang et al. [33] employed a ResNet50 neural network to classify five scales of rock
thin-section images, and finally, the model obtained excellent performance. Xu et al. [34]
studied petroleum exploration and deep learning algorithms; the ResNet-18 convolutional
neural network was selected to classify four types of rock thin-section images. Su et al. [35]
innovatively proposed a method that consisted of three CNNs, and the final prediction
label was the combination of three CNN results. The proposed model performs well in
classifying thirteen types of rock thin-section images. Gao et al. [36] comprehensively
compared shallow neural networks and deep neural networks on the classification of
rock thin-section images, and the results show that deep neural networks outperform
shallow networks. According to three main types of rock—metamorphic, sedimentary, and
volcanic rock—Ma et al. [37] studied an enhanced feature extraction CNN model based on
SeNet [38], and the model achieved 90.89% accuracy on the test dataset. Chen et al. [39]
introduced ResNet50 and ResNet101 neural networks to construct a classifier to complete
the identification of rock thin-section images, reaching 90.24% and 91.63% performance,
respectively. In addition, some other researchers have studied rock type classification based
on datasets obtained by digital cameras instead of microscopic images [40–42].

Of course, all the methods mentioned above provide great theoretical support for the
automatic classification of rocks, while many focus on only a small number of rock classes
or the subclasses of the three major rocks. To the best of our knowledge, most existing
studies have focused on the neural network’s classification accuracy of rock types instead
of considering how to train networks to enhance the effect of the model. Additionally,
compared to the general images that could be easily distinguished by a CNN, thin-section
images of rocks are special; the composition of mineral crystals in the rock thin-section
image is not uniform in proportion, and there is no clear definition of semantic-level feature
information, such as particle size and shape contour of mineral crystals. Meanwhile, min-
eral crystals fill the whole image so that there is no exact distinction between background
and foreground in the rock thin-section image. Thus, it is essential to study the training
methodologies of the CNN models.

Therefore, in this paper, three kinds of main rocks and their subclasses were selected
as the research objects, not only for systematically evaluating the classification precision of
four kinds of CNN model for three types of rock but also for discussing the influence of the
optimization algorithms (RMSprop, SGD, and Adam optimizers) and learning-rate decay
modes (cosine and lambda learning-rate decay schedules) on the model’s accuracy during
the network training process. Finally, the optimal neural network model and the best
training skills are summarized, which provides a reliable reference for the better realization
of automatic rock class classification.

The structure of this study is as follows: the Section 2 introduces detailed informa-
tion about the dataset, theoretical knowledge of four CNN algorithms, and learning-rate
adjustment methods. The Section 3 depicts model training requirements and the results
analysis of the trained model. The Section 4 evaluates the performance of four algorithms,
optimizers, and the learning-rate decay modes. Furthermore, experimental verification on
another database is carried out to validate the effect of the best-trained model. Finally, the
optimum model, optimization algorithms, and learning-rate adjustment mode are obtained.

2. Materials and Methods

2.1. Dataset

Rock is a geological body formed by a regular combination of one or more minerals
under geotectonic movement according to its formation causes and chemical constituents.
It can be divided into three categories: metamorphic, sedimentary, and volcanic rocks.
Metamorphic rocks are mainly formed by internal forces; in addition to the mineral compo-
nents of the original rocks, there are also some prevalent metamorphic minerals, such as
sericite and garnet. The effect of external forces forms sedimentary rocks, and secondary
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minerals also account for a considerable amount, including calcite, dolomite, kaolinite, etc.
Volcanic rocks are primary minerals formed by the effect of Earth’s internal force and have
more complex compositions (quartz, feldspar, amphibole, pyroxene, olivine, biotite, etc.).
Granite and basalt are the two most widely distributed kinds of volcanic rocks.

The dataset used in this study is a photomicrograph rock dataset acquired from
Nanjing University of China [43] that includes three rock types—metamorphic, sedimen-
tary, and volcanic rocks, which contain 40 subclasses, 28 subclasses, and 40 subclasses,
respectively—and a total of 2634 microscopic images, Figure 1 shows the three types of
rock thin section images.

Figure 1. Three types of microscopic thin-section images: (a,b) metamorphic rocks; (c,d) sedimentary
rocks; (e,f) volcanic rocks.

Table 1 shows the detailed descriptions of the dataset 1. The thin-section images were
photographed under both single-polarized light and cross-polarized light. First, a represen-
tative field of view was selected, and two images, including a single-polarization photo
and cross-polarization photo, were then taken at the position of 0◦, and other microscopic
images were taken every 15◦ under the transmission cross-polarization. Thus, there are a
total of eight or nine images for a single rock thin section, and all photomicrographs are
shown in RGB format with a resolution of 1280 × 1024 or 4908 × 3264 pixels.

2.2. Deep Learning-Based Approaches

Artificial intelligence (AI) technologies have been rapidly developed and widely
applied in many areas in recent years. There is no doubt that they represent a new tech-
nological revolution. Throughout the wave of AI, algorithms play the dominant role, and
the inherent relationships are shown in Figure 2. As a branch of machine learning, deep
learning algorithms have the superiority of powerful self-learning and feature extraction
abilities compared to other machine learning methods.
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Table 1. Detailed descriptions of the dataset.

Class Subclass
Numbers

Subclass Number Total Number Microscopic Image Number

Metamorphic Rock

Mylonite 2

40 972

Hornstone 3
Skarn 3

Marble 3
Serpentine 1
Dolomite 1

Slate 1
Phyllite 2
Schist 9
Gneiss 6

Granulite 3
Amphibole 1

Eclogite 1
Migmatite 1
Cataclasite 1

Others 2

Sedimentary Rock

Clastic rock 5

28 699

Sandstone 6
Shale 6

Limestone 5
Dolomite 1

Siliceous rock 1
Evaporative rock 1

Others 3

Volcanic Rock

Ultrabasic rock 7

40 963
Basic rock 7

Neutral rock 7
Acidic rock 11

Others 8

108 2634

Figure 2. The connection between deep learning and AI [44].

CNNs, which are the main part of deep learning algorithms, were introduced by
Fukushima [45] for the first time. Usually, a convolutional neural network consists of three
parts: convolutional layers, activation layers, and pooling layers. Convolutional layers
are similar to filters, mainly in charge of extracting image features, and the convolutional
layer is also the module with the largest number of parameters. The nonlinearity property
is of great importance for CNNs; otherwise, the forward process could be viewed as
a simple linear operation, which is useless for model convergence and the final model
accuracy. Therefore, activation layers are a necessary module of CNNs, regarded as a kind
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of nonlinearity function. Generally, pooling layers, which aim to reduce the feature map
size, are placed behind the activation layers. The four types of typical activation functions
are as follows:

σ(z) = max(0, z) (1)

σ(z) =
1

(1 + e−z)
(2)

σ(z) =
ez − e−z

ez + e−z (3)

σ(z) =
{

z, z ≥ 0
z
a , z < 0

(4)

Note: Equations (1)–(4) are the ReLU, sigmoid, tanh, and leaky ReLU activation
functions, respectively.

Four classical and well-performed CNN algorithms (VGG16, GoogLeNet, MobileNetV2,
ShuffleNetV2) were used for rock microscopic thin-section classification in this paper, and
the contents of each are depicted in the following sections.

2.2.1. GoogLeNet

GoogLeNet was proposed by the research team at Google Co., Ltd. Mountain View, CA,
USA. [46] and named the champion of the ImageNet competition in 2014, a global vision
challenge competition. In GoogLeNet, the inception network structure, the main highlight
of the work, was first presented and optimized. The architecture of the inception module
is shown in Figure 3a. There are three kinds of convolutional layers with corresponding
kernel sizes (1 × 1, 3 × 3, 5 × 5) and a max pooling layer with a 3 × 3 slide window. The
former feature maps are used as the input of the inception structure, and the final output
equals the concatenation of the result computed by four branches separately. GoogLeNet
is regularly composed of the inception structure, and the prediction step is completed
by the final fully connected layer, which not only ensures the model performance but
also considers the computations of the network. Figure 3b shows the overall architecture
of GoogLeNet.

Figure 3. Network structure: (a) GoogLeNet architecture; (b) inception module structure.

2.2.2. VGG16

VGGNet was proposed by the visual geometry group of Oxford University [47].
Furthermore, Qassim et al. [48] discussed the model speed and size of VGG16 by proposing
a compressed VGG16 network. There are a total of five subnetworks of VGGNet (VGG11,
VGG11-LRN, VGG13, VGG16, VGG19), with numbers 11, 13, etc., indicating the number
of convolutional layers in the VGGNet except for pooling layers, and the VGG16 network
was used in our paper for comparison. Figure 4 shows the architecture of the VGG16
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network. The structure is very simple and easily understandable. Sixteen convolutional
layers are divided into five blocks and then directly connected to each other. Meanwhile,
five pooling layers are interspersed in the middle, and all convolutional layers have the
same convolutional kernel size (3 × 3). Furthermore, multiple 3 × 3 convolution layers
connected in series increase the depth of the network, which guarantees the performance
of the model to some extent, and compared with the use of large convolution kernels, it has
fewer parameters and better nonlinearity.

Figure 4. VGG16 architecture.

2.2.3. MobilenetV2

MobileNet, a lightweight convolutional neural network focused on model compres-
sion compared to the two networks mentioned above, aims to balance accuracy and latency
and its application in mobile devices. MobileNetV1 and MobileNetV2 are the two versions
of MobileNet, and the latter is improved and optimized. Thus, it was selected as the re-
search method in the present paper. Similar to the MobileNetV1 network, MobileNetV2 [49]
still uses the depth-wise separable convolution unit module, as shown in Figure 5. Ad-
ditionally, a bottleneck residual module was developed, which has the same effect as the
residual module in the Residual Network (ResNet [50]). The bottleneck residual module
contains three convolutional layers, as shown in Figure 6b, but the difference is that the
middle convolutional layer of the bottleneck residual module is a depth-wise separable
convolution, and the last layer is a linear convolution operation without an activation layer
to avoid missing much semantic information [49]. Similarly, multiple bottleneck blocks are
connected in an orderly manner in the structure of MobileNetV2, as shown in Figure 6a.

 

Figure 5. Depth-wise separable convolution structure.
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Figure 6. Network structure. (a) MobileNetV2 architecture; (b) bottleneck module structure.

2.2.4. ShuffleNetV2

Floating-point operations per second (FLOPs) are usually adopted as the evaluation
index of network model efficiency. As mentioned in ShuffleNetV2 [51], it is not good enough
to only consider FLOPs since computer memory access cost (MAC), as well as the platform
(such as ARM or GPU), also have an obvious influence on the model running speed. Hence,
four experiments were carried out in ShuffleNetV2 to analyze the factors affecting the
efficiency of the neural network. The experimental results demonstrate that an efficient
network structure should include the following points: (1) Keep the same channel depth
of input and output in convolutional layers; (2) the groups of group convolution should
be well controlled; (3) the number of branches in the neural network structure should
be reduced as much as possible; and (4) element-add operations should also be avoided
properly. Accordingly, two kinds of optimized block units are proposed in ShuffleNetV2,
as shown in Figure 7a, and the architecture of ShuffleNetV2 was formed by regularly
connecting the block units shown in Figure 7b.

Figure 7. Network structure: (a) ShuffleNetV2 architecture; (b) block module structure.

2.3. Learning-Rate Decay Schedules

An appropriate learning-rate decay method is beneficial to the convergence of model
training as well as the final accuracy of the model. Consequently, this paper employed
and analyzed two commonly used learning-rate decay schedules in the deep learning
field: cosine decay and lambda decay modes. The cosine learning-rate decay schedule was
first proposed by Loshchilov et al. [52], and the main theoretical idea is that the learning
rate decreases from the initial value to zero according to the cosine function, as shown in
Equation (5). The lambda learning-rate decay schedule means that the later learning rate
equals the initial learning rate multiplied by a coefficient γ, and γ is the function of training
steps or epochs. The calculation formula is shown in Equation (6).

Lt =
1
2

(
1 + cos

tπ
T

)
L0 (5)
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newl = initiall × γ

γ = 1.0 − epoch
300

(6)

Note: L0 is the initial learning rate; T is the total number of training steps or epochs;
and t is the number of training steps or epochs.

The learning rate setting is important to the convolutional neural network learning
process. For cosine decay and lambda decay (Equations (5) and (6)), if the learning rate is
too low, the learning speed of the neural network will be severely affected, and the training
period will be increased. In contrast, it is not easy to achieve good convergence in the
model training if the learning rate is high enough. Hence, dynamic adjustment strategies
for updating the learning rate are usually adopted. A learning rate warm-up method,
proposed in ResNet, mainly includes two steps: at the beginning of training, the learning
rate is started from a smaller value and changed to the initial learning rate after some
iterations or epochs, and it is then gradually decreased along with the training process. In
this paper, gradual warm-up, a modified warm-up method proposed by Goyal et al. [53],
was selected as the learning-rate adjustment method for the cosine and lambda learning-
rate decay schedules; this method started from a smaller value and gradually increased
with each iteration or epoch until reaching the initial learning rate, instead of always
keeping a small value and then decreasing step-by-step. Figure 8 shows the learning-rate
attenuation process of the cosine and lambda modes. The learning rates of both modes tend
to increase first and then decrease; however, the attenuation process of the cosine decay
mode is smoother than that of the lambda decay schedule.

Figure 8. Gradual warm-up learning-rate curves of cosine and lambda decay schedules.

3. Results

Four methods—GoogLeNet, VGG16, MobileNetV2, and ShuffleNetV2—were all
trained and validated with the same dataset. Three types of deep learning optimizers
and two learning-rate decay schedule modes were employed during the training process.
Finally, the following sections systematically compare and analyze the experimental results
of the four algorithms under different training skills.
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3.1. Training

PyTorch, one of the deep learning algorithm frameworks, was selected as the model
training framework. The total images were divided into training and testing datasets at
a ratio of 8:2. First, the unified default hyperparameters of the four algorithms were as
follows: the input image size was 224 × 224, the total number of training epochs was 300,
and the batch size was 64. The parameters of the optimizer were set as follows: the Adam
optimizer was set with an initial learning rate of 0.0003; the momentum and weight decay
were set at 0.9 and 0.005 for the SGD optimizer; and the initial learning rate and the alpha
of the RMSprop optimizer were 0.0003 and 0.99, respectively. The initial learning rate was
0.0003, and the warm-up epoch was 10. All experiments were trained on an RTX3090 GPU
with 32 GB GDDR GPU memory and an Intel i7-11700 CPU.

3.2. Analysis of the Results

The performance of the model on rock microscopic thin-section images classification
was compared based on three evaluation indices: precision, f1-scores, and confusion matrix.
Precision (P) indicates the proportion of samples in the true positive class among all the
samples that were predicted to be positive classes and is computed as Equation (7). Recall
(R) equals the proportion of all positive samples correctly predicted by the model, shown
as Equation (8). The F1_scores, which consider a balance between precision and recall, are
distributed between 0~1. The closer to 1, the better the model is, as shown in Equation (9).
The confusion matrix, also known as the error matrix, is a standard format for expressing
accuracy represented by an n × n matrix. Each column of the confusion matrix represents a
predicted class, and the sum of the values in this column equals the number of samples
classified as that category. The values on the diagonal line indicate the number of samples
accurately predicted by the model, and the other two remaining values in each column
indicate the number of other classes of rocks that were misidentified.

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

F1_scores = 2 × P × R
P + R

(9)

3.2.1. Results of GoogLeNet

The GoogLeNet classification model was trained with three optimizers (Adam, SGD,
and RMSprop) with the utilization of the cosine learning-rate decay schedule and lambda
decay schedule. In this section, we will analyze and discuss the performance of the
trained model.

1. Cosine learning-rate decay schedule

In this part, the learning-rate adjustment during training was fixed as the cosine decay
mode for all models. Figure 9 shows the training loss curves and the model classification
precision for the three types of rock. Figure 9a shows that the training loss exhibited obvious
gaps for different optimizers. The loss of the model trained under the Adam optimizer
descended the fastest but, finally, had a value closer to RMSprop. In contrast, SGD was
the slowest and had a larger convergence value at the end of training. Figure 9b–d show
the GoogLeNet model’s classification precision for the three types of rock with the use
of the three optimization algorithms. For metamorphic rock, as shown in Figure 9b, the
classification model with the RMSprop optimizer had the highest precision, followed by
Adam and SGD; for sedimentary and volcanic rock, as shown in Figure 9c,d, the model
with the RMSprop and Adam optimizers maintained almost the same precision, while SGD
had the lowest accuracy. In summary, the RMSprop optimizer performed slightly better
than Adam, and SGD was the worst.
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    (a)                                            (b) 

 
    (c)                                            (d) 

Figure 9. (a) Training loss of GoogLeNet under three optimizers; (b) classification precision of
metamorphic rock under three optimizers; (c) classification precision of sedimentary rock; and
(d) classification precision of volcanic rock.

Additionally, performance was further evaluated based on confusion matrixes, as
shown in Figure 10. The confusion matrix clearly revealed the detailed classification results
of the three types of rock for the models trained under different optimizers. Model training
with the RMSprop optimizer obtained the best precision of 97.9% for metamorphic rock
classification, as shown in Figure 10a. Model training with the Adam optimizer obtained
97.8% accuracy for sedimentary rock. For volcanic rock recognition, model training with
the RMSprop and Adam optimizers had the same precision of 98.4%.

Figure 10. Confusion matrixes: (a) RMSprop optimizer; (b) SGD optimizer; (c) Adam optimizer.
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The detailed results are displayed in Table 2. Model training with the SGD optimizer
performed slightly worse than RMSProp and Adam, which is reflected in the conclusions
obtained in Figure 9.

Table 2. Detailed classification results for all rock types.

Rock Types Evaluation
Cosine Decay Schedule

Adam SGD RMSprop

Metamorphic P 96% 93% 98%
F1-scores 0.97 0.95 0.97

Sedimentary P 98% 94% 96%
F1-scores 0.97 0.96 0.97

Volcanic
P 98% 97% 98%

F1-scores 0.98 0.95 0.98

2. Lambda learning-rate decay schedule

This part of the trial was carried out under the lambda learning-rate decay schedule,
which aims to compare with the cosine learning-rate decay mode, and the results are shown
as follows. Figure 11a shows the result of the model training loss; Figure 11b indicates
the model classification accuracy of metamorphic rock trained under the three optimizers;
Figure 11c shows the sedimentary rock identification result; and Figure 11d shows volcanic.

 
(a)                                            (b) 

 
(c)                                            (d) 

Figure 11. (a) Training loss of GoogLeNet under three optimizers; (b) classification precision of
metamorphic rock under three optimizers; (c) classification precision of sedimentary rock; and
(d) classification precision of volcanic rock.
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Figure 12 is the confusion matrix of the classification result on the validation dataset.
Figure 12a shows the result of the GoogLeNet model trained under RMSprop optimization
algorithms; the number of rocks predicted to be metamorphic was 196, of which 188 were
truly metamorphic rock, and 4 were incorrectly predicted (2 belonged to sedimentary, and
the other 2 were volcanic). For sedimentary rocks, the truly predicted number was 136,
and the number of prediction errors was 6 (4 were metamorphic, and 2 were volcanic).
There were 188 samples correctly identified as volcanic rock, and 3 other classes were
misclassified. Similarly, Figure 12b,c show the result of the model trained with the SGD
and Adam optimizers.

Figure 12. Confusion matrixes: (a) RMSprop optimizer; (b) SGD optimizer; (c) Adam optimizer.

According to Figures 11 and 12 and Table 3, it can be summarized, with the same
conclusion compared to the cosine learning-rate decay schedule, that the RMSprop and
Adam optimizers achieved better performance than SGD. In addition, the comparison
result between the two learning-rate decay schedules can also be obtained from Table 3.
The average classification accuracy of the two learning-rate decay modes for the three types
of rock is approximately 96%, and the gap is negligible.

Table 3. Detailed classification results for all rock types.

Rock Types Evaluation
Lambda Decay Schedule

Adam SGD RMSprop

Metamorphic P 98% 94% 98%
F1-scores 0.98 0.94 0.97

Sedimentary P 97% 97% 96%
F1-scores 0.97 0.97 0.97

Volcanic
P 98% 94% 98%

F1-scores 0.98 0.95 0.98

Thus, for GoogLeNet, the influence of the optimization algorithms on the classification
of rock types is more evident compared to learning-rate decay modes.

3.2.2. Results of VGG16

The VGG16 neural network was selected as the method to classify rock microscopic
thin-section images, and the last fully connected layer of the VGG16 structure was changed
to three. The model optimizers and learning-rate decay schedules remained the same as for
GoogLeNet, and the experimental result could also be obtained from the perspective of
two learning-rate decay modes.

1. Cosine learning-rate decay schedule

Likewise, the cosine learning-rate decay mode was adopted in this section. Figures 13 and 14
and Table 4 show the capabilities of the trained models in the classification of three types of rock
microscopic thin-section images. Figure 13 shows the results of the VGG16 model trained under
the three optimizers: (a) is the loss curve during the training iteration, and (b–d) are the prediction
accuracy curves of the three models for metamorphic, sedimentary, and volcanic, respectively.
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(a)      (b) 

    (c)      (d) 

Figure 13. (a) Training loss of VGG16 under three optimizers; (b) classification precision of metamor-
phic rock under three optimizers; (c) classification precision of sedimentary rock; and (d) classification
precision of volcanic rock.

Figure 14. Confusion matrixes: (a) RMSprop optimizer; (b) SGD optimizer; (c) Adam optimizer.
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Table 4. Detailed classification results for all rock types.

Rock Types Evaluation
Cosine Decay Schedule

Adam SGD RMSprop

Metamorphic P 97% 97% 96%
F1-scores 0.97 0.97 0.96

Sedimentary P 95% 95% 96%
F1-scores 0.97 0.96 0.97

Volcanic
P 99% 98% 98%

F1-scores 0.98 0.97 0.97

Figure 14 exhibits the confusion matrix. It could be concluded that the performance of
the trained models under the three optimizers using the cosine learning-rate decay mode
was almost equivalent, and the average precision over the three types of rock all reached
97% of the model trained with the three optimizers, as shown in Table 4.

2. Lambda learning-rate decay schedule

For the lambda decay mode, the models of VGG16 with the use of the RMSprop and
Adam optimizers achieved higher accuracy than SGD in the classification of metamorphic
and sedimentary rock, while for volcanic rock, the result of the trained model with the SGD
optimizer was better than that of RMSprop and Adam, as shown in Figure 15.

 
(a)                                            (b) 

 
(c)                                            (d) 

Figure 15. (a) Training loss of VGG16 under three optimizers; (b) classification precision of metamor-
phic rock under three optimizers; (c) classification precision of sedimentary rock; and (d) classification
precision of volcanic rock.

41



Mathematics 2022, 10, 2317

Figure 16 is the confusion matrix. For volcanic rock, it is clear that the classification
precision of the model trained with the SGD optimization algorithm was higher than that
of the RMSprop and Adam optimizers. A total of 183 samples were predicted as volcanic
rocks, and only 1 was misclassified.

Figure 16. Confusion matrixes: (a) RMSprop optimizer; (b) SGD optimizer; (c) Adam optimizer.

Additionally, the average classification accuracy of the VGG16 model under the two
learning-rate decay modes for the three types of rock was 96.6%, 95.8%, and 98.3% and
96.7%, 95.3%, and 97.6%, respectively, and the difference is small, as shown in Table 5.

Table 5. Detailed classification results for all rock types.

Rock Types Evaluation
Lambda Decay Schedule

Adam SGD RMSprop

Metamorphic P 97% 95% 98%
F1-scores 0.97 0.96 0.96

Sedimentary P 96% 94% 96%
F1-scores 0.98 0.95 0.97

Volcanic
P 97% 99% 97%

F1-scores 0.97 0.97 0.98

Finally, according to the above conclusions, both the optimization algorithms and
learning-rate decay schedules had little effect on the accuracy of the VGG16 model.

3.2.3. Results of MobileNetV2

Similarly, the MobileNetV2 neural network was used and trained with the methods
adopted in the aforementioned networks. The results of the cosine and lambda learning
rate decay modes were analyzed in the following sections.

1. Cosine learning-rate decay schedule

According to Figure 17, it is clear that the classification model using the RMSprop
optimizer obtained the best effect, followed by the Adam and SGD optimizers.

In addition, the specific experimental results are summarized in Figure 18 and Table 6.
Model training with the Adam optimizer achieved an accuracy of 94% in classifying
metamorphic rocks, and RMSProp obtained 94% and 98% performances for sedimentary
and volcanic rocks, respectively. While it can be seen that SGD had an obvious gap
among the three optimizers, the precision was 3~7% lower than that of the RMSprop and
Adam optimizers.
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(a)                                            (b) 

 
(c)                                            (d) 

Figure 17. (a) Training loss of MobileNetV2 under three optimizers; (b) classification precision
of metamorphic rock under three optimizers; (c) classification precision of sedimentary rock; and
(d) classification precision of volcanic rock.

Figure 18. Confusion matrixes: (a) RMSprop optimizer; (b) SGD optimizer; (c) Adam optimizer.
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Table 6. Detailed classification results for all rock types.

Rock Types Evaluation
Cosine Decay Schedule

Adam SGD RMSprop

Metamorphic P 94% 87% 93%
F1-scores 0.94 0.88 0.94

Sedimentary P 92% 90% 94%
F1-scores 0.94 0.91 0.96

Volcanic
P 96% 93% 98%

F1-scores 0.94 0.91 0.95

2. Lambda learning-rate decay schedule

The classification models utilizing lambda learning-rate decay were also trained.
Figure 19 exhibits the training loss and the precision of the test data along with the training
process. It is apparent that the Adam and RMSprop optimizers had a better tendency than
SGD, whether on loss convergence or precision.

 
(a)                                            (b) 

 
(c)                                            (d) 

Figure 19. (a) Training loss of MobileNetV2 under three optimizers; (b) results of metamorphic rock
under three optimizers; (c) results of sedimentary rock; and (d) results of volcanic rock.

Figure 20 indicates the ability of the classification models. The exact evaluation index
value of the models with the application of the three optimizers could be calculated using
Equations (7)–(9), and the results are shown in Table 7. The RMSprop optimizer achieved
93% accuracy for both metamorphic and sedimentary rocks. The highest precision of
volcanic classification was the model using Adam, which achieved 97% performance.
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However, the SGD optimizer had a large gap between the RMSprop and Adam optimizers
for all types of rock. In particular, the accuracy was 84% for metamorphic rock, which was
9% lower than that of RMSprop.

Figure 20. Confusion matrixes: (a) RMSprop optimizer; (b) SGD optimizer; (c) Adam optimizer.

Table 7. Detailed classification results for all rock types.

Rock Types Evaluation
Lambda Decay Schedule

Adam SGD RMSprop

Metamorphic P 92% 84% 93%
F1-scores 0.93 0.85 0.93

Sedimentary P 89% 86% 93%
F1-scores 0.92 0.91 0.94

Volcanic
P 97% 91% 94%

F1-scores 0.94 0.86 0.94

According to Table 7, the average classification accuracy of the MobileNetV2 model
with the employment of two learning-rate decay modes for the three types of rock was
91.3%, 92.0%, and 95.6% and 90.3%, 89.3%, and 94.0%, respectively. Obviously, learning-rate
decay modes had a certain impact on MobileNetV2. For sedimentary rock, the classification
accuracy of the model using the lambda decay method was almost 3% lower than that of
the cosine. In addition, whether it was the cosine learning-rate decay method or the lambda
decay method, the optimizer greatly influenced the model.

3.2.4. Results of ShuffleNetV2

For comprehensive comparison, the ShuffleNetV2 neural network was employed and
trained following the same methods used in the three above algorithms, and the trial results
are depicted in the next sections.

1. Cosine learning-rate decay schedule

As shown in Figure 21, the ShuffleNetV2 model using the SGD optimizer achieved
poor accuracy in classifying the three types of rock microscopic images. Meanwhile, the
loss was also at a higher value at the end of training. Overall, the performance of SGD was
worse than that of the other two optimizers.

Figure 22 and Table 8 show that the metamorphic rock class was accurately classified
with 95% precision by the model using the RMSprop and Adam optimizers. The model
with the RMSprop optimizer achieved 95% precision for sedimentary rock, while in terms
of volcanic rock type, the best result was using Adam, with 98% performance. However,
the model using the SGD optimizer performed worse in the classification of all three types
of rocks. The worst result was for metamorphic rocks, with an accuracy of only 75%, which
was 20% lower than that of RMSprop and Adam.
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(a)      (b) 

    (c)        ( )    

Figure 21. (a) Training loss of ShuffleNetV2 under three optimizers; (b) results of metamorphic rock
under three optimizers; (c) results of sedimentary rock; and (d) results of volcanic rock.

Figure 22. Confusion matrixes: (a) RMSprop optimizer; (b) SGD optimizer; (c) Adam optimizer.
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Table 8. Detailed classification results for all rock types.

Rock Types Evaluation
Cosine Decay Schedule

Adam SGD RMSprop

Metamorphic P 95% 75% 95%
F1-scores 0.95 0.80 0.95

Sedimentary P 92% 85% 95%
F1-scores 0.94 0.88 0.96

Volcanic
P 98% 91% 97%

F1-scores 0.97 0.81 0.96

2. Lambda learning-rate decay schedule

According to Figure 23, it can be concluded that the training loss and the accuracy of
the test dataset during the training process remained the same as those of the model under
the cosine learning-rate decay mode. The performance from excellent to poor ranked as
follows: RMSprop, Adam, and SGD.

 
(a)                                            (b) 

 
(c)                                            (d) 

Figure 23. (a) Training loss of ShuffleNetV2 under three optimizers; (b) results of metamorphic rock
under three optimizers; (c) results of sedimentary rock; and (d) results of volcanic rock.

As stated in Figure 24, regarding the SGD optimizer, the number of samples identified
as metamorphic rocks was 206, of which a total of 22 samples were sedimentary rocks and
46 samples were volcanic rocks. Hence, the accuracy for the classification of metamorphic
rocks was only 67%, as listed in Table 9. Furthermore, the precision of the other two types of
rock was also not good enough based on the confusion matrix result for the SGD optimizer.
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In contrast, the RMSprop and Adam optimizers showed the same effect with an average
accuracy higher than 90%.

Figure 24. Confusion matrixes: (a) RMSprop optimizer; (b) SGD optimizer; (c) Adam optimizer.

Table 9. Detailed classification results for all rock types.

Rock Types Evaluation
Lambda Decay Schedule

Adam SGD RMSprop

Metamorphic P 91% 67% 92%
F1-scores 0.92 0.69 0.93

Sedimentary P 92% 79% 94%
F1-scores 0.93 0.81 0.95

Volcanic
P 96% 80% 97%

F1-scores 0.94 0.76 0.95

Likewise, according to Table 9, the average classification accuracy of the ShuffleNetV2
model with the employment of two learning-rate decay modes for three types of rock
was 88.3%, 90.7% and 95.3% and 83.3%, 88.3%, and 91.0%, respectively. The maximum
difference was the result for metamorphic rock, which exhibited a 5% gap, followed by
volcanic rock (4.3%) and sedimentary rock (2.4%). Therefore, the performance of the
ShuffleNetV2 model was sensitive to the learning-rate decay modes. Additionally, it is
worth noting that the choice of optimizer greatly impacted the model accuracy for the
ShuffleNetV2 network.

4. Discussion

Based on the above experiments, it is worth affirming that CNNs achieve excellent
performance in image classification. Second, the average classification precision of the
model with three optimizers using the cosine learning-rate decay method was better than
that of the lambda decay mode, as shown in Figure 25. The circular dotted line represents
the results of models with the utilization of the cosine learning-rate decay schedule, and
the square solid line shows the lambda decay method. It is clear that the circular dotted
lines are almost always above the solid lines.

However, the performance of the four models also varied. GoogLeNet and VGG16
were more robust than the latter two networks. From our perspective, both the Mo-
bileNetV2 and ShuffleNetV2 networks consist of a depth-wise separable convolution
module, which has a weak ability to extract features from microscopic images, which then
affects the model’s performance. Therefore, GoogLeNet and VGG16 were considered the
best models in our research.

Additionally, Figure 26 shows GoogLeNet and VGG16’s classification precision for
the three types of rock with the use of Adam, SGD and RMSprop. It could be concluded
that the classification effect of the model trained with the SGD optimizer was worse than
that of the other two optimizers for both GoogLeNet and VGG16, which is also basically
consistent with the conclusion of [30].
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Figure 25. Model average precision under two learning-rate decay modes. The left dotted line
indicates cosine learning-rate decay result, and the right solid line is the result of lambda.

Figure 26. Model precision under three optimizers. The dotted line is GoogLeNet, and the solid line
is VGG16.

In summary, the best options for the intelligent classification of rock thin-section
images are the cosine decay mode, RMSprop optimizer, and VGG16 classification model.
The classification accuracies of VGG16 for the three types of rock were 96.7%, 95.3%, and
98.6%, which are higher than that of Harinie et al. [54] (the average accuracy for the three
types of rock is 87%) and He et al. [37] (the average precision of the model is 90.89%). Thus,
the training guidelines proposed in this paper are proven to be practical and effective.

5. Experimental Verification

This section presents supplementary quantitative evaluation results of the best classifi-
cation model on another dataset. A total of 14 images were collected from an identification
report made by the Changsha Research Institute of Mining and Metallurgy (CRIMM) of
China, which did not exist in our training dataset. Specific information about the data is
listed in Table 10.
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Table 10. Detailed descriptions of the validated datasets.

Class Subclass
Numbers

Subclass Number Microscopic Image Number

Metamorphic Rock Dolomite Marble 2
4Marble 2

Sedimentary Rock Quartz Sandstone 2
4Feldspar Sandstone 2

Volcanic Rock
Biotite Granite 2

6Basalt 2
Quartz Diorite 2

14

Figure 27 shows the model classification results of some samples. It could be concluded
that the confidence scores for the overall classification were relatively high, as shown in
Figure 27. Figure 28 indicates the confusion matrix of the final classification results for
all datasets. Five images were identified as metamorphic rock (four were truly classified,
and one volcanic rock image was misidentified). Another volcanic rock was classified as
sedimentary rock, and the remaining four volcanic rock images were correctly classified.
Therefore, two images were misclassified among fourteen images, and the accuracy was
85.7%. It is indicated that the trained model also generalizes well to the other dataset.

Figure 27. Classification results of other data: (a,e) metamorphic rock classification results; (b,d) sedi-
mentary rock classification results; (c,f) volcanic rock classification results.
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Figure 28. Confusion matrix of the final classification results.

6. Limitations and Future Studies

Accurate rock thin-section image classification for various datasets is important in
geotechnical engineering. However, in this paper, only a small number of samples from
the dataset were evaluated, and the experimental studies were conducted only in terms of
comparing accuracy, without analyzing the differences in size and speed of the different
models [55,56]. In the future, more data should be considered in the database. Moreover,
the efficiency of the model should be comprehensively evaluated, and technologies related
to model compression could be studied.

7. Conclusions

In this paper, comprehensive experimental studies on the robustness of deep learning-
based algorithms for the classification of rock thin-section images was carried out, and the
conclusions are summarized as follows:

(1) Four CNN models for rock thin-section image classification were trained under two
learning-rate decay schedules. The differences in the average classification precision
between GoogLeNet and VGG16 were within one percent in both learning-rate decay
modes. For MobileNetV2, the average identification precision for three types of rock
using the cosine learning-rate decay mode were higher than that of lambda: 1%, 2.7%,
and 1.6%, respectively. In addition, the difference for ShuffleNetV2 was the most
obvious. The classification results for three types of rock with the cosine decay mode
were 5%, 2.4%, and 4.3% higher than that of lambda decay mode. Thus, the cosine
learning-rate decay mode is the best option.

(2) GoogLeNet and VGG16 exhibited a more stable performance and achieved a classifi-
cation precision higher than 96%. The average precision of MobileNetV2 was 2~7%
lower than that of GoogLeNet and VGG16. In addition, the result of ShuffleNetV2
was unacceptable, especially for metamorphic and sedimentary rocks. The maximum
accuracy difference for the classification of the two kinds of rocks was up to 13.3%
and 8.4% compared to GoogLeNet.

(3) The importance of optimizers during the neural network training process was eval-
uated. In general, the RMSprop and Adam optimizers had a better effect on model
training. For GoogLeNet, the final model precision with the use of the RMSprop and
Adam optimizers was 1~3% higher than that of SGD. The VGG16 network maintained
almost the same result for the three optimization algorithms.

51



Mathematics 2022, 10, 2317

(4) The best options for the intelligent classification of rock thin-section images are the
cosine decay mode, RMSprop optimizer, and VGG16 classification model, which
could provide an alternative program for similar image classification tasks.

(5) The trained model generalizes well to another dataset, which could reach 85.7%
classification precision.
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Abstract: Computed tomography (CT) scans were performed on samples of an outburst-prone coal
seam at different loading stages. The area and roundness of the CT images were used to quantify
the degree of the coal macroscopic deformation under different loads. A spatial matching algorithm
was used to calculate the three-dimensional (3D) displacement fields of different regions of interest
(ROIs, containing primary fractures, minerals, and only coal) under different loads. The presence of
fractures and minerals were found to promote and inhibit displacement, respectively, and the 3D
displacement field data followed a normal distribution. A meshfree numerical simulation was used
to determine the 3D maximum principal stress, shear stress and displacement fields under different
loads. The following results were obtained: fractures and minerals significantly affect the stress state
and displacement field distribution features, the maximum principal stresses and shear stresses in
different matrices differ significantly, and the presence of minerals and fractures induce a prevalent
shear stress in coal and make coal prone to stress concentration.

Keywords: CT scan; 3D displacement field; 3D stress field; meshfree numerical simulation

MSC: 74-05

1. Introduction

Coal is typically anisotropic, and high sample dispersion makes it challenging to de-
termine the deformation features and stress field patterns of raw coal samples. Considering
the importance of the stress and deformation fields in analysing coal stability, a computed
tomography (CT) scan with a loading function was used to determine the deformation
features of coal under different loads in this study. A novel numerical simulation method
was applied to a three-dimensional (3D) CT model to analyse the coal stress state.

A variety of experimental and theoretical methods have been used to investigate
the internal structure and deformation features of coal over the past few years [1–7],
which has advanced the prevention and control of related hazards. CT scans enable the
noncontact nondestructive testing of samples and can be combined with 3D reconstruction
techniques to quantitatively analyse the coal mesostructure. Kawakata et al. [8] first
used CT to scan the damage state of rock after triaxial loading but the samples were not
loaded during the scanning process. Cao et al. [9] analysed the fracture evolution and
seismic response features of hydraulic fracturing under triaxial loading conditions and
performed CT scans to quantitatively characterise pre-existing and hydraulic fractures.
Fan et al. [10] performed threshold segmentation on CT scan data and statistically analysed
the pore size distribution, throat radius, throat length, and coordination number of the pore
network model. Li et al. [11] experimentally analysed the pore features of coal samples
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with different bursting proneness by low-temperature nitrogen adsorption and desorption,
scanning electron microscopy (SEM) and CT. The results showed that stress exacerbates
the complexity of the pore structure. Li et al. [12] used CT to visualize the evolution
of the fracture features of coal samples under uniaxial and triaxial loading conditions.
Quantitative characterisation of the fractures demonstrated that the grey value, fracture
volume and CT porosity can be used to quantitatively evaluate the degree of damage to
coal. Lu et al. [13] found using CT scans on coal samples under different load conditions
that the expansion of primary fractures and the development of new fractures increase
the coal connectivity. Liu et al. [14] analysed the porosity of coal through CT scans and
NMR experiments and quantitatively characterised the fractal dimension. Tao et al. [15]
analysed the porosity and fracture heterogeneity of coal using a variety of experimental
methods (SEM, carbon dioxide and nitrogen adsorption, and CT scans) and proposed
an index to quantitatively predict coal macrolithotypes. Wang et al. [16–18] used CT
scans to analyse the pore structure and seepage features of coal, which were then used
to conduct a dynamic water injection simulation analysis. Wu et al. analysed the fractal
features of a coal fracture network to find that the porosity is exponentially related to fractal
dimension. Zhang et al. [19] used various experimental methods to perform a multiscale
characterisation of coal samples of different ranks. The results of the aforementioned
studies have revealed the variation features of fractures under stress and the corresponding
influence on gas migration.

Wang et al. [20] analysed two-dimensional (2D) CT scan images of coal samples
as well as 3D reconstruction models to find that the confining pressure and presence of
minerals have significant effects on the features of fracture propagation. Mao et al. [21]
compared digital volumetric speckle photographs with the deformation results obtained
from CT images to determine the deformation features of coal at different loading stages.
Sampath et al. [22] generated a 2D fracture network from CT imaging to study the gas flow
and coal deformation process. Roslin et al. [23] used SEM and CT to analyse pore structure
and carried out numerical simulation based on the reconstruction model.

The 3D deformation features of coal during different loading processes are investigated
in this study. A feature point spatial matching algorithm is used to calculate and analyse
the displacement field. A meshfree numerical simulation of the 3D reconstruction model
is performed to analyse the 3D stress field and the stress states of different matrices (coal,
minerals, and regions near fractures).

2. Materials and Methods

2.1. Sample Preparation

The studied coal samples were taken from the no. 3 coal seam of the Sihe coal mine
in Shanxi Province, China. The coal seam is located at the southern end of the Qinshui
coalfield and presents an outburst risk. The coal samples were cut into ϕ25 mm × h50 mm
cylinders, of which the end faces were polished to ensure parallelism.

2.2. Experimental Device and Methods

The experimental device consists of a microfocus CT scan system and a triaxial stress-
displacement test system. A Vtomex L300 CT scan system with an observation resolution
of up to 500 nm was used. The triaxial stress-displacement test system can perform
uniaxial and triaxial loading tests on ϕ25 mm × h50 mm samples, with a maximum axial
compression of 100 kN, a maximum confining pressure of 30 MPa, and a loading rate range
of 0.1–3 mm/min. The attenuation coefficient of the X-ray intensity and the density of the
material satisfy the following equation [24]:

I′ = Io exp(−μx) (1)

μx = ln(Io/I′) (2)∫
μdl = ln

(
Io/I′

)
(3)
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where Io is the initial intensity of the X-ray; I′ is the intensity of the X-ray after passing
through the material; μ is the attenuation coefficient of the material; and x is the penetration
distance of the ray.

Three sets of phased CT scan tests were performed on the Sihe coal samples under
the loading process, with an axial loading rate of 0.2 mm/min and a CT scan resolution
of 30 μm. The axial stress–strain data were recorded, and the axial compression was
maintained constant during the CT scan.

2.3. Boundary Delineation of 3D CT Model

Figure 1 presents CT images showing highly discernible minerals inside the coal.
Using the minerals as feature points, the Z-axis position in the CT images was recorded to
delineate the upper and lower boundaries of the 3D model. Threshold segmentation was
performed on the CT data to determine the boundaries of the 3D model, thus accurately
delineating the range of the 3D CT model at each stage.

 
Figure 1. Boundary determination of 3D model.

2.4. Displacement Field Algorithm and ROI Delineation

The feature points were used to select a region of interest (ROI) for the 3D model
at each stage, and the 3D displacement field was calculated. A spatial image matching
algorithm was used to measure the displacement field of the 3D ROI under different
loading conditions with high precision. The ROI was determined to be a cuboid of size
4 mm × 4 mm × 2 mm, considering the computational burden, the size of the fractures
and minerals and the excessive number of voxels (more than 1 billion) in the 3D model.
Figure 2 shows the selected ROIs, where ROI1, ROI2, and ROI3 correspond to regions
containing primary fractures, coal only, and minerals, respectively.
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Figure 2. Positions of ROI1, ROI2, and ROI3 (top left: top view of CT image; top right: side view of
CT image) and slices in 3 dimensions of ROI1 (bottom).

3. Results

3.1. Deformation and Failure Features

Considering the large volume of data, Sihe sample 1 was analysed in this study.
Figure 3 shows clear anisotropic features for the failure of the sample along the Z-axis

at the post-peak stage. Figure 4 shows that the distribution of primary fractures and
minerals in the sample had a determining effect on the failure features. Considering the
post-peak 3D model in conjunction with the CT images in Figures 3 and 4 shows that a slip
instability occurred in the sample along the mineral region. The yellow circles in Figure 4
show the damage in the range containing minerals.

  
(a) (b) 

Figure 3. 3D reconstruction model at the initial (a) and post-peak stages (b).
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(a) (b) 

Figure 4. Vertical CT slice at the initial (a) and post-peak (stage 8) stages (b).

Figure 5 shows the stress–strain curve of Sihe sample 1 at the loading stages corre-
sponding to CT scans and the red numbers correspond to the stages of CT scans.

 
Figure 5. Stress–strain curve and corresponding stage of CT scan.

The CT images of the upper and lower end faces and the middle position at each stage
were analysed to determine the changes in area and roundness.

The roundness is calculated as follows:

R =
4S

π × Lmajor
2 (4)

where S is the image area and Lmajor is the length of the major axis of the smallest circum-
scribed ellipse fitted to the image.

The roundness quantifies the change in the shape of a CT image, indicating the degree
of closeness to a perfect circle. A roundness of unity indicates that the image is a perfect
circle. In Figure 6, the points of each curve correspond to the loading stage (red dots)
in Figure 5.
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(a) (b) 

Figure 6. Relationship between axial strain and roundness (a) and area (b) of CT slice.

The calculated roundness was a monotonically decreasing function, and the change in
the roundness was generally consistent with the change in the area. The shape and area
of each part exhibited a large degree of variation during the instability. The coefficient of
variation of the image roundness was calculated to be 0.0473, 0.0097, and 0.0061 for the
three slices, that is, the roundness of the lower slice was significantly larger than those of
the middle and upper slices. The anisotropy of the deformation and failure features of the
sample were very pronounced at the macroscopic scale.

3.2. Results for 3D Displacement Field

The ROIs for each scanning stage were compared with that of the initial state by using
the digital volume correlation module of the Avizo software (i.e., scanning stage 1). Seven
sets of calculation results were obtained for each ROI, as shown in Figure 7. Figure 7a
corresponds to the displacement field of the second loading stage, and so on.

  
(a) stage 2 (b) stage 3 

Figure 7. Cont.
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(c) stage 4 (d) stage 5 

  
(e) stage 6 (f) stage 7 

 
(g) stage 8 

Figure 7. Calculated 3D displacement field at different stages of ROI1.
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Figure 7a shows the displacement field at the compaction stage: the overall displace-
ment was low, and an analysis of the vector direction shows that the transverse displace-
ment was larger than the longitudinal displacement. Comparing Figure 7b with Figure 7a
show that the vector angle was closer to the longitudinal direction than the transverse direc-
tion, indicating a significant compression effect of the load. Compared to the displacement
field in Figure 7a,b, the results in Figure 7c,d show little change, whereas those in Figure 7e
show a pronounced change. The norm of the vector in and near the fracture region is
significantly larger than that in fracture-free regions, indicating a significant increase in
the displacement in the fracture region. Figure 7f corresponds to the peak stress state: a
large displacement was distributed over a significantly wide range, including regions near
the fractures and at the boundary. This result shows that under the peak strength loading,
the internal displacement of the coal sample increased and was distributed over a wide
range. The most significant change in the vector field is shown in Figure 7g: the norm of
the vector field increases dramatically, especially over the fracture region and the nearby
area, where the displacement generally exceeds 300 μm. The displacement in fracture-free
regions generally remains larger than 150 μm.

The displacement fields of ROI2 and ROI3 were calculated, and the post-peak displace-
ment fields were comparatively analysed. Figure 8 shows significant differences among
the post-peak displacement field features of the different ROIs. The displacement field of
ROI2 (basically coal) was most uniform, with a displacement of approximately 150 μm
and large displacements in only small well-defined regions. The distribution features of
the displacement field of ROI3 (containing minerals) were similar to those of ROI1 at the
corresponding stages: the displacement was large over the region near the minerals, and
smaller in the nearby coal region.

  
(a) (b) 

Figure 8. Calculated 3D displacement field at the post-peak stage (stage 8 in Figure 5) for ROI2 (a)
and ROI3 (b).

Figures 9–11 are the statistical results of the displacement at each stage of ROI1, ROI2,
and ROI3.

A statistical analysis showed that the displacement field of each ROI follows a normal
distribution. The displacement fields for ROI1-3 were fitted to obtain the following equation:

y = y0 +
Ae

−4 ln (2)(x−xc)2

w2

w
√

π
4 ln(2)

(5)

where x is the position parameter for the normal distribution and corresponds to the mean
displacement, and w describes the dispersion of the data. The fitting parameters x and w of
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the displacement field of ROI1-3 were statistically calculated at each stage (stage 2 to 8),
and the results are presented in Figure 12.

 
Figure 9. Statistical results for the ROI1 displacement field at different stages (stage 2 to 8).

 
Figure 10. Statistical results for the ROI2 displacement field at different stages (stage 2 to 8).

Table 1 lists the mean displacements for the post-peak stage and the full stress–strain
process of ROI1-3.

Table 1. Mean displacements of different ROIs.

Item Stage ROI1 ROI2 ROI3

Mean
displacement

All stages (μm) 76.887 73.613 66.089
Post-peak stage (μm) 148.336 136.263 117.470
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Figure 11. Statistical results for the ROI3 displacement field at different stages (stage 2 to 8).

  
(a) (b) 

X 

Figure 12. Variation curves of characteristic parameters x (a) and w (b) of the fitted normal distribu-
tions for ROI1-3.

Figure 12 shows the mean and dispersion of the displacement field versus the axial
strain for ROI1-3. Considering these results in conjunction with those presented in Table 1
shows that (1) there is a turning point in the statistics (i.e., the mean and dispersion) of the
displacement field at the compaction stage; (2) the displacement increases monotonically
with the load after the compaction stage; (3) the dispersion in the statistical results of the
displacement field increases steadily with the loading, reflecting an increase in the number
of extreme displacements in the sample; and (4) the displacement fields of different ROIs at
the same stage differ significantly.

3.3. Analysis of Simulation Results

Mechanical tests using the MTS816 rock test system were used to measure the Young’s
modulus and Poisson’s ratio of each sample. The grey value ranges for different matrices
(coal, minerals, and fractures) were determined, and the mechanical test results were used
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to set the variable physical parameters (Young’s modulus and Poisson’s ratio) for different
matrices, as shown in Figure 13. A meshfree numerical simulation of the 3D CT model
under mechanical loading (with stress values corresponding to stages 2–7 in Figure 5) was
carried out by using VG software.

Figure 13. Setting the simulation parameters for different matrices.

The 3D CT model was directly simulated to obtain the 3D shear stress, principal stress,
and displacement fields under different loads, as shown in Figures 14–16. Combining these
results with those presented in Figure 17 clearly shows that the mineral distribution had a
significant effect on the stress field.

Figure 14. Simulated 3D shear stress field under different loads.
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Figure 15. Simulated 3D maximum principal stress field under different loads.

Figure 16. Simulated 3D displacement field under different loads.
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(a) (b) 

Figure 17. Stress state in mineral regions under a load of 10.19 MPa: (a) shear stress (b) maximum
principal stress.

The simulated principal stress and shear stress of the sample under a stress of
10.19 MPa are shown in Figure 18.

Figure 18. Distribution of maximum principal stress and shear stress under a 10.19-MPa load.

Figure 18 shows a very complex coal stress state in the presence of minerals and
fractures. The presence of fractures resulted in both the maximum principal stress and
shear stress being 0 MPa in 0.6984% of the regions in the sample. The influence of the
mineral distribution features resulted in a prevalent shear stress state, where most of the
shear stresses were in the 5-MPa range.

The shear stress distribution was bimodal (except in the fracture region): the minimum
shear stress was 2.517 MPa, and 2.3% of the shear stress ranged between 2.517 and 3 MPa.
More than 95% of the shear stresses were between 3 and 6.4 MPa, and only 1.6% of the
shear stresses were greater than 6.4 MPa, with the maximum shear stress being 11.6 MPa.

The maximum principal stress followed a trimodal distribution. Only 0.89% of the
maximum principal stresses were below 6 MPa, and 3.57% of the principal stresses were
between 6 and 8.57 MPa. The percentage of maximum principal stresses between 8.5 and
8.9 MPa increased rapidly, and 79.5% of the maximum principal stresses were between 8.9
and 10.7 MPa. The maximum principal stresses in 14.34% of the regions were between 10.7
and 12.87 MPa, whereas the maximum principal stresses were higher than 12.87 MPa in
only 1.67% of the regions.
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The changes in the proportions of the maximum principal stress and shear stress
between 10 and 20 MPa and above 20 MPa for each stress state were statistically analysed.
Figure 19 shows that the proportions of the maximum principal stress and the shear stress
above 20 MPa in the sample increased monotonically with the load. For loads above
15.46 MPa, the proportion of the maximum principal stresses higher than 20 MPa increased
rapidly from 1.628% to 51.683%. At the peak stress, the maximum principal stress exceeded
20 MPa in 96.35% of the regions. The proportion of regions with shear stresses above 20 MPa
increased rapidly for loads above 15.46 MPa, but the proportion itself remained very low.
The proportion of the shear stresses between 10 and 20 MPa increased significantly with
the load from 1.5% to 43.457% to 82.739%.

  
(a) (b) 

Figure 19. Proportion of maximum principal stress (a) and shear stress (b) at different pressures.

Two points in the 3D model were selected for each matrix (coal, minerals, and near
fractures), and Figure 20 shows the corresponding maximum principal stress and shear
stress. The different matrices within the sample exhibited significantly different stress
states. The maximum principal stresses in the mineral matrix were higher than those in
the coal matrix, indicating stress concentration in the mineral regions. By comparison, the
stresses in the regions near the fractures were all low.

Figure 20. Shear stresses and principal stresses in different matrices (C—coal, M—mineral, and
F—fracture).

4. Conclusions

The deformation features of coal under stress at macro- and mesoscales was investi-
gated, and a meshless simulation was performed using a 3D CT model to obtain the 3D
principal stress, shear stress, and displacement fields. The main conclusions are given below.
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1. Primary fractures and minerals have a determining influence on the deformation
and failure features of coal and are the key factors producing anisotropic coal defor-
mation. The primary fractures propagate as compression increases and crisscross
new fractures.

2. The ROI displacement field data of different matrices in the coal sample follow a
normal distribution, and the differences in the corresponding deformations under
load are statistically significant. The deformation at the primary fractures increases
substantially with stress, and the mineral region is also prone to large deformation
from stress concentration. The increase in the displacement is promoted by the
presence of fractures and inhibited in the presence of minerals.

3. A highly complex coal stress state forms under an applied stress, and the distribu-
tion of minerals and fractures significantly affects the stress field distribution. The
presence of minerals and fractures produces a prevalent shear stress in the coal that is
mainly concentrated in the vicinity of where these entities are located and is highly
unfavourable for sample stability.

4. To ensure safe field operation, the mineral distribution features in coal seams and
the development level and distribution features of primary fractures should be deter-
mined. Targeted measures can then be taken to improve the stress state and enhance
the safety level.
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Abstract: Deep rock will be influenced by the excavation disturbances of different degrees, which
seriously affects the safety production of underground mines. Considering that deep rock will be
impacted by different temperatures and varied disturbance degrees, this work analyzes the effect
of temperature on the dynamic properties of marble by means of the dynamic and static combined
SHPB test device. The results reveal that as the temperature climbed, the diameter and height of
the specimen increased and the mass and longitudinal wave velocity dropped. The variation laws
of total stress–strain curves after varied high temperatures are substantially the same; the peak
stress was negatively correlated with the action temperature. At 25 ◦C~400 ◦C, the failure mode of
specimens is less affected by temperature. When the temperature is higher than 400 ◦C, the failure
degree of specimens increases with the growth of temperature. At 25~400 ◦C, the above energy varies
minimally. At 400~800 ◦C, with the increase in temperature, the incident energy, transmitted energy
and absorption energy decrease, and the reflection energy increases gradually.

Keywords: high-temperature marble; SEM; dynamic properties; crack propagation

MSC: 74H99

1. Introduction

With the depletion of shallow resources, the development of mineral resources has
migrated to depth. The mining depth worldwide is more than 1000 m. In South Africa,
the depth of gold mines greater than 5000 m is obtained [1–4]. Deep surrounding rock is
in a specified temperature field in practical engineering. Its mechanical properties may
alter under the influence of temperature field. This can have a significant impact on the
development of underground mines [5–10]. Blasting or non-explosive mining disturbance
is extremely vulnerable to the accumulation of brittle rock in a sudden release of elastic
strain energy, which can produce a rock explosion, a loss of mine property, and endanger
the staff safety. Therefore, the examination into marble properties and energy distribution
law of rocks under different disturbance intensities after high temperature can provide a
valuable reference for the identification of rock burst in a deep extraction process.

Extensive research studies have been conducted on rocks subjected to high temper-
atures in order to investigate the impact of temperature on the mechanical properties of
rocks. Chen et al. [11] studied the peak stress, peak strain, and elastic modulus of marble
specimens in response to high temperature. By examining the change in ultrasonic velocity
and porosity of sandstone following thermal treatment, Zhao et al. [12] identified the
temperature influence on sandstone damage. Zhai et al. [13] investigated the influence
of temperature on the peak stress and elastic modulus of marble using the MTS810 test
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system and found that after 800 ◦C, the mechanical properties of marble deteriorated
precipitously. Ni et al. [14] used rock uniaxial compression test to study the mechanical
properties of marble samples after 100 ◦C, 300 ◦C, 450 ◦C, 600 ◦C and 1, 10, 20 different
temperature cycles. It is found that with the increase of temperature and cycles, the failure
mode of the specimen gradually changes from typical brittle failure to brittle plastic failure.
Taking marble as the research object, Huang et al. [15] carried out uniaxial compression test
and acoustic wave test on high temperature rock samples after water cooling and natural
cooling, analyzed and compared the changes of peak strength, elastic modulus, attenuation
coefficient, longitudinal wave velocity and main frequency of rock samples under different
conditions. Zeng et al. [16] used polarized light microscopy to investigate fine-grained
marble after numerous high-temperature cycles, quantified the length, openness, and
number of microcracks, and discussed the crack expansion pattern of specimens after
various thermal cycles. Li et al. [17] used uniaxial compression test to analyze and study
the physical and mechanical properties of jointed sandstone after experiencing different
temperatures, and obtained the variation law of stress-strain curve, peak strength, peak
strain and elastic modulus of jointed sandstone after high temperature with temperature. To
investigate the effect of temperature on rock impact propensity, Zhang et al. [18] conducted
uniaxial compression and fracture electron microscope scanning tests on granite samples
under real-time high temperature (25~850 ◦C) and after high-temperature heat treatment
(25~1200 ◦C).

Using a large-diameter SHPB setup, Xu et al. [19] investigated and analyzed the
dynamic mechanical properties of marble at various temperatures and loading rates in
rock dynamics. They found that the peak strain and peak stress of specimens exhibited
various degrees of loading rate strengthening. Yin et al. [20] conducted an impact test
on sandstone subjected to various high-temperature treatments using a SHPB equipment
and evaluated the influence of temperature on the mechanical properties of sandstone
from a fine perspective. Ping et al. [21] The impact test of sandstone and limestone after
high temperature treatment was carried out by variable cross-section SHPB test system.
The influence of temperature field on rock dynamic properties was studied. Yin et al. [22]
used a self-developed temperature-pressure coupling and dynamic disturbance test sys-
tem to study the impact test of sandstone samples under four temperature levels (20 ◦C,
100 ◦C, 200 ◦C, 300 ◦C) and four axial static pressure levels (0, 20, 60, 80 MPa). Based on the
principle of energy dissipation, the energy dissipation law of rock specimen under dynamic-
static combined loading at different temperatures is calculated. Liu et al. [23] carried out
rock impact compression tests at room temperature under different impact pressures (0.8,
1.0, 1.2 MPa) and under different temperatures (200 ◦C, 400 ◦C, 600 ◦C, 800 ◦C) using a split
Hopkinson pressure bar device to study the high temperature dynamic behavior of deep
skarn. Using MTS652.02 and SHPB test system, Li et al. [24] carried out uniaxial impact
compression test on sandstone samples heated at 800 ◦C, and analyzed the variation of
dynamic characteristics of sandstone in the strain rate range of 17.904~62.600 s−1.Using
SHPB device, Zhang et al. [25] studied the dynamic failure characteristics of sandstone after
treatment at −15 ◦C~1000 ◦C, and analyzed the influence of temperature on the damage
degree and energy dissipation in the failure process of deep sandstone.

In summary, there are extensive studies on the physical and mechanical properties
of high-temperature marble under static and dynamic loading conditions. However, the
effect of temperature on the mechanical characteristics of rocks under combined dynamic
and static conditions is given little attention in the available literature. In order to study the
effect of temperature on the physical and dynamic properties of marble under dynamic
and static combination, the basic physical parameters of marble after different temperature
treatments were measured. At the same time, the stress—strain SHPB test device was
used to study the stress-strain curve, crushing characteristics and the relationship between
energy evolution and temperature of marble specimens.
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2. Specimen Preparation and Test Procedures

The rock specimens were collected at the Dahongshan copper mine in Yuxi, Yunnan,
China. Samples were gathered from the same compacted and homogenous rock block
specimen. The size of the marble sample was determined to be Φ 50 × 50 mm in size in
accordance with the stress uniformity theory and SHPB test sample size reference [26].
Using the SC-200 automatic coring machine, SCQ-300 automatic cutting machine, and
SHM-200 double end grinder, rock samples were cored, cut, and ground for testing. The
vertical error is less than 0.25◦ and both ends of the control specimen are uneven by less
than 0.05 mm. The marble specimen has a compressive strength of 60.75 MPa, a modulus
of elasticity is 38.71 GPa with a density of 2.70 g/cm3.

First, all the marble specimens were separated into 5 groups and the specimens in
each group were numbered for the convenience of recording. Next, the specimen mass,
height, diameter, and longitudinal wave velocity were measured. Subsequently, each group
of samples was placed in an XH7L-12 box resistance furnace with temperatures set to
200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C, respectively. After reaching the specified temperature,
the samples were maintained at a steady temperature for two hours. Before and after
high temperature, the mass, height, diameter, and longitudinal wave velocity of samples
were measured after natural cooling. Finally, the uniaxial impact compression test of the
specimen was carried out and the crack propagation information was recorded using a
high-speed camera.

2.1. Experimental System and Experimental Principle

The test adopts the SHPB test apparatus of the Rock Mechanics Laboratory at Kunming
University of Science and Technology to conduct a dynamic and static combined impact
test on the marble specimen. As depicted in Figure 1, the system consists primarily of three
components: the main equipment, the launch system, and the test system, including power
source, the bullet, the elastic pressure bar, the axial loading device, the support frame,
and the test analysis instrument. The elastic pressure bars consist of both incident and
transmitted bars. The length of the incidence bar is 2000 mm, the length of the transmitted
bar is 1500 mm, the diameter of the elastic bar is 50 mm, the longitudinal wave velocity is
5190 m/s, and the elastic modulus is 210 GPa.

Figure 1. SHPB test equipment.

The motion equation has a decisive influence on the axial motion of particles in the
bar, so it is necessary to discuss the motion equation. The cross-sectional area of incident
bar and transmitted bar is A0, the elastic modulus is E0, and the density is ρ0. Figure 2
shows the schematic diagram of a micro-element before bar deformation.
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Figure 2. Diagram of the differential element before the deformation of bar.

As shown in the above figure, it is assumed that the length of the differential element
is dy and the cross-sectional area is A0. The whole compression bar is in a static equilibrium
state before the impact. When the punch strikes the bar, the bar deforms, and the particles
in the differential element are subject to the left force F1 and the right force F2. The forces
F1 and F2 operating on the differential element are proportional to the stress acting on
the cross-section of the compression bar. In the elastic range, the connection between the
stress and strain of the compression bar follows Hooke’s law, and the strain caused by the
compression bar can be obtained. This strain can be expressed by the particle’s displacement
of the particle, that is, the resistance in the differential element can be expressed by the
particle’s displacement. Let the left end face displacement of the micro element be μ1 and
the right end face displacement be μ2. Then, a stress equation exists [27]:⎧⎪⎨⎪⎩

F1 = A0E0
∂μ1

∂x

F2 = A0E0
∂μ2

∂x

(1)

According to Newton’ s second law, we can obtain the following pressure pulse
motion equation:

A0E0
∂μ1

∂x
− A0E0

∂μ2

∂x
= A0dxρ0

∂2μ1

∂t2 (2)

Assuming that the particle acceleration in the differential element is a constant, the
equation can be simplified as follows:

C2
0

(
∂μ1

∂x
− ∂μ2

∂x

)
=

∂2μ1

∂t2 dx (3)

where C0 is the wave velocity of stress wave in bar, which can be calculated by the following
formula:

C0 =
√

E0/ρ0 (4)

where E0 and ρ0 are elastic modulus and density of elastic bar, respectively.
Since the differential element displacement μ1 and μ2 have the following relationship:

C2
0

∂2μ1

∂x2 =
∂2μ1

∂t2 (5)

Based on the basic theory of wave dynamics, the wave equation in one-dimensional
elastic compression bar is derived.

When the bullet hits the incident bar at a certain impact velocity, a compression strain
pulse ε1(t) will be produced in the incident bar. Under the condition of one-dimensional
stress propagation, the stress pulse, also known as the elastic stress wave, propagates
forward with velocity C0 in the incident bar. When the incident wave propagates to the
interface between the incident bar and the rock specimen, because the wave impedance of
the rock is less than that of the incident bar, part of the pulse is reflected into the incident
bar to form a reflection unloading strain pulse εR(t), and the remaining part generates
a transmitted compression strain pulse εT(t) in the transmitted bar [28]. Strain gauges
adhered to the incident bar and transmitted bar can measure three types of strain pulses
ε1(t), εR(t) and εT(t).
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The displacement of the left and right ends of the specimen is μ1 and μ2, respectively.
The velocities of the incident wave, reflection wave, and transmitted wave on the end
surface are vI , vR, and vT , respectively. The velocities of the left and right ends are v1 and
v2, respectively. According to the theoretical derivation formula:{

v1 = vI + vR = −C0ε I + C0εR = C0(εR − ε I)
v2 = vT = −C0εT

(6)

Displacements are: ⎧⎨⎩ μ1 =
∫ t

0 v1dt = C0
∫ t

0 (εR − ε I)dt

μ2 =
∫ t

0 v2dt = C0
∫ t

0 εTdt
(7)

Assuming that the original length of the specimen is LS, the average strain of the
specimen is:

εS =
μ1 − μ2

LS
=

C0

LS

∫ t

0
(ε I − εR − εT)dt (8)

Then, the force F1 and F2 of sample face 1 and face 2 are:{
F1 = A0E0(ε I + εR)

F2 = A0E0εT
(9)

When the cross-sectional area of the specimen is the same as the area of the elastic
compression bar, the stress at both ends of the specimen is:{

σ1 = E0(ε I + εR)

σ2 = E0εT
(10)

The average stress σS in the sample is:

σS =
(σ1 + σ2)

2
=

E0(ε I + εR + εT)

2
(11)

In summary, the stress, strain, and strain rate of the specimen are obtained [29]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σS(t) =

1
2

E0(ε I(t) + εR(t) + εT(t))

εS(t) =
∫ t

0 (ε I(t)− εR(t)− εT(t))dt

.
εS(t) =

C0

LS
(ε I(t)− εR(t)− εT(t))

(12)

The energy carried by incident wave, reflected wave, and transmitted wave can be
calculated by integrating the measured strain. The integral formula is as follows:

W = A0ρ0C0

∫ t

0
ε2(t)dt (13)

The energy carried by incident wave, reflected wave, and transmitted wave is as
follows: ⎧⎪⎪⎨⎪⎪⎩

WI = A0ρ0C0
∫ t

0 ε2
Idt

WR = A0ρ0C0
∫ t

0 ε2
Rdt

WT = A0ρ0C0
∫ t

0 ε2
Tdt

(14)
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According to the law of conservation of energy, the energy loss in the impact process
can be obtained, and the energy absorbed by the specimen can be expressed as:

WA = WI − WR − WT (15)

where WI represents the energy carried by the incident wave; WR is the energy carried by
the reflected wave; WT is the energy carried by the transmitted wave; and WA is the energy
dissipated in the test, that is, the energy absorbed by the failure of the specimen.

2.2. Model and Principle of One-Dimensional Static and Dynamic Combination Loading

Before the one-dimensional static and dynamic combined loading test, it is necessary
to analyze whether the bar and specimen under axial compression meet the stress wave
transmitted theory on which the device depends.

As shown in Figure 3, deep rock mass under one-dimensional stress is often subjected
to both static stress and dynamic load. Sample micro-force of static and dynamic combina-
tion is shown in Figure 4. According to the assumption of one-dimensional stress wave
in the bar [30], the force–deformation relationship of the micro-element under combined
loading can be obtained:

Figure 3. Schematic diagram of static and dynamic combination.

Figure 4. Sample micro-force of static and dynamic combination.

− ∂(PS + Pd)

∂x
Δx = ρ0A0Δx

∂2u
∂t2 (16)

A0 and ρ are the cross-sectional area and density of the elastic bar, respectively; u is
the displacement of the micro-element after being stressed; and PS and Pd are the static and
dynamic loading of the sample, respectively.

According to stress, strain, and Hooke’s Law:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σ =

PS + Pd
A0

σ = E0ε

ε = −∂u
∂x

(17)
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Combining the above equations yields:

ρ0
∂2u
∂t2 = E0

∂2u
∂x2 (18)

The velocity of incident stress wave in compression bar can be expressed by Formula (4),
then Formula (18) can be expressed as:

∂2u
∂t2 − C2 ∂2u

∂x2 = 0 (19)

The same fluctuation equations derived from the combined dynamic and static loading
experimental system and the conventional SHPB test system illustrate the applicability of
the one-dimensional stress wave theory to the one-dimensional combined dynamic and
static loading experimental system.

2.3. Experimental Procedure

In this experiment, the loading axial pressure of marble was determined to be 6 MPa,
or 10% of its uniaxial compressive strength, based on its uniaxial compressive strength.
The impact of velocity was determined by conducting pre-tests on specimens at room
temperature. The pre-test results show that when the impact pressure is 0.4 MPa, the
specimen is damaged after three times of impact. Therefore, the impact pressure was
set as 0.5 MPa, 0.55 MPa, 0.6 MPa, 0.65 MPa in this experiment. The corresponding
average impact velocities were 15.32 m/s, 18.17 m/s, 21.83 m/s and 23.49 m/s, respectively.
The corresponding average impact velocities were 15.32 m/s, 18.17 m/s, 21.83 m/s, and
23.49 m/s, while the temperature gradients were 25 ◦C, 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C,
respectively. For this reason, this experiment was separated into four groups, with five
pieces in each group undergoing an impact test at a different temperature. Three parallel
tests were designed for each temperature, totaling 60 pieces.

3. Physical Properties of Marble before and after High Temperature

3.1. Apparent Morphological Characteristics of Specimens before and after High Temperature

The apparent diagram of marble specimens treated at different temperatures (25~800 ◦C)
is shown in Figure 5. The diagram shows that the apparent color of marble specimen
heated at 200 ◦C is deepened. When the temperature exceeds 400 ◦C, the color of marble
specimen surface gradually becomes lighter, that is, from light gray to milky white, and a
large number of black spots appear on the specimen surface [31]. At 600 ◦C, the surface of
marble becomes very rough, and many microcracks appear on the surface, indicating that
the mineral composition of marble has undergone phase transformation, which destroys
the original microstructure of the rock. When the temperature reaches 81,000 ◦C, the color
of the specimen becomes white, the volume expansion decreases obviously, and the internal
structure of marble has been seriously damaged.

Figure 5. Apparent morphology of marble specimens after high-temperature treatment.

3.2. Variation in Specimen Mass and Longitudinal Wave Velocity

Figure 6a–d shows the changes in geometric size and physical properties of marble
before and after high-temperature treatment. Figure 6a depicts the relationship between
marble sample height and temperature. The specimen height increases with the increase in
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temperature on the whole. When heated to 200 ◦C~400 ◦C, the specimen height changed
little. When heated to 600 ◦C~800 ◦C, the height of the specimen changes noticeably.
When the temperature was 800 ◦C, the height of the specimen increased from 50.23 mm
before heating to 51.34 mm, with an increase of 2.2%. The fluctuation curve of marble
sample diameter with temperature is shown in Figure 6b The variation in the diameter
with temperature is similar to that of the diameter with temperature. The diameter of a
specimen increases as the temperature rises. At a room temperature of 200 ◦C, the height
of the specimen changed little. At 200 ◦C, the diameter of the specimen increased by
only 0.23 mm. When heated to 400 ◦C, 600 ◦C, and 800 ◦C, the diameter of the specimen
changed drastically. After a high temperature of 800 ◦C, the diameter increased from
52.03 mm before heating to 54.96 mm, with an increase of 5.6%. This is primarily due to
the irreversible thermal expansion of the internal part of the specimen at high temperature.
Therefore, the specimen size will not return to its original state after cooling. Due to
the decomposition of carbonates when the temperature reaches 800 ◦C, the rock strength
rapidly declines, and CO2 gas is emitted during the decomposition process, causing the
expansion of the height and diameter of high-temperature marble and loose particles [32].
Figure 6c illustrates the variation curve of sample mass and temperature. Between the
room temperature and high temperature of 600 ◦C, the mass change in the sample was
not obvious, the loss rate was less than 1%. At 800 ◦C, the mass decreased from 243.59 g
to 234.82 g, reduced by 3.6%. Due to the thermal decomposition of some minerals in
marble caused by the high temperature, the specimen mass changes significantly [33]. The
fluctuation curve of marble longitudinal wave velocity with temperature is depicted in
Figure 6d The longitudinal wave velocity of the sample decreases with the increase in the
overall temperature of the sample. The longitudinal wave velocity of the sample heated
to 400 ◦C changed little, only reducing by 8.6%. When heated to 600 ◦C and 800 ◦C, the
longitudinal wave velocity decreased significantly by 41.27% and 70.62%, respectively.
There are two main reasons for the decrease in rock longitudinal wave velocity after high
temperature. On the one hand, when the rock is subjected to high temperature, the free
water in the pore evaporates to water vapor and the volume of the pore increases. The
pore has a blocking effect on the propagation of longitudinal wave velocity, resulting in a
decrease in wave velocity. On the other hand, there are a large number of cracks in the rock,
which will lead to the further expansion of cracks and the generation of new cracks under
the action of temperature. The higher the temperature, the higher the number of cracks, so
the wave velocity of rock samples decreases significantly after high temperature [34]. The
above result shows that temperature has a significant impact on the physical properties of
marble, and the greater the temperature, the more obvious the impact.

3.3. Influence of High Temperature on the Microstructure of Marble

The change in the internal microstructure of rock can be observed by scanning electron
microscope images. Figure 7 illustrates typical SEM images of granite samples subjected to
varying temperatures. For comparison purposes, all images have the same magnification
(Mag = 500). Even at room temperature (25 ◦C), marble retains its natural cracks. When
marble samples were heated to 200 ◦C, the number of microcracks did neither increase nor
decrease. Compared to the marble at room temperature, the crack width and number of
specimens increased marginally following heat treatment at 400 ◦C, but the increase was
minimal. In the specimens of marble subjected to heat treatments at 600 ◦C and 800 ◦C,
the number and width of cracks rose dramatically. At 800 ◦C, cracks even penetrated the
specimens, and the thermal damage of specimens was serious.
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Figure 6. Changes of physical properties of marble samples after different temperatures.

Figure 7. SEM micrograph of marble after high-temperature treatment.

4. Dynamic Compressive Mechanical Properties of Marble after High Temperature

4.1. Stress–Strain Properties

The total stress–strain curves of marble specimens under different loading speeds at
room temperature and after different high temperatures are shown in Figure 8.

It can be seen from Figure 8 that the total stress–strain curves of marble specimens
treated at different temperatures (T) under different loading rates (v) can be roughly
divided into four stages, namely fissure compaction stage, elastic deformation stage, plastic
deformation stage, and failure stage. In the initial compaction stage, the microcracks in
marble tend to close under external dynamic load. Therefore, in this stage, the stress-strain
curve slightly upward bending, curve slope increases gradually. Under dynamic load,
the stress-strain curves of concave stage are not obvious, but it do exist [35,36]. In the
elastic deformation stage, the strain grows as the stress increases, and their correlation is
approximately linear. At varying temperatures, the slopes of marble specimens vary. In the
plastic deformation stage, as stress increases, the slope of the curve gradually reduces, and
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the rate of slope reduction for marble at different temperatures varies. When peak stress is
attained, the slope of the curve becomes zero. In the failure stage, the stress-strain curve
decreases rapidly, and the slope of the curve is negative. At this time, the bearing capacity
of marble decreases.

Figure 8. Stress–strain curves in marble after high-temperature treatment.

When the impact velocity is constant, the stress-strain curves of marble vary at different
temperatures. Specifically, before 400 ◦C, the stress-strain curves of marble had little
difference. At this time, the failure stage curve of the specimen has a “drop” phenomenon,
indicating that the brittleness of the specimen is obvious within this temperature range.
When the temperature exceeds 400 ◦C, the stress-strain curve of the specimen gradually
shifts to the right, and the slope of the curve slows down in the failure stage, indicating
that the mechanical properties of marble change from brittleness to plasticity. When the
temperature is constant, the stress and strain of marble are similar under different impact
velocities. With the increase of impact velocity, the specimen shows the strengthening effect
of impact velocity, that is, the peak stress increases with the increase of impact velocity.

4.2. The Variation Pattern of Peak Stress

Figure 9 shows the relationship between the peak stress, impact velocity, and tem-
perature of the sample. At the same temperature, the peak stress of the marble specimen
increases as the impact velocity increases, indicating that the impact velocity has a signifi-
cant strengthening effect. The dynamic peak stress (σP) increases linearly with the impact
velocity (v), and the fitting relationship is:

σP = av + b (20)

where a and b are the fitting parameters. The values of marble specimens at different
temperatures are shown in Table 1.
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Figure 9. Relationship between the dynamic peak stress and the impact velocity.

Table 1. Fitting parameters for the peak stress and the impact velocity.

Temperature T/◦C a b R2

25 13.48 −22.42 0.98
200 12.41 −31.01 0.94
400 8.24 24.52 0.98
600 6.09 33.49 0.87
800 7.73 −36.62 0.96

Figure 9 demonstrates that, at the same temperature, the peak stress of the specimen
increases progressively with increasing impact velocity. When the impact velocity remains
unchanged, the specimen’s peak stress steadily falls as the temperature rises.

There are two primary reasons for the analysis: first, the high temperature causes the
expansion stress inside the marble specimen to increase, resulting in the expansion of the
original micro-cracks and the generation of new micro-cracks [37]. Due to the fact that
the primary components of marble are calcite (CaCO3) and dolomite (MgCa(CO3)2), high
temperature will lead to the degradation and decomposition of dolomite structure, thereby
reducing the ability of marble to resist external load damage.

The relationships between dynamic peak stress and the impact velocity of marble
specimens at various temperatures are listed in Table 1. It can be seen from Table 1 that the
minimum fitting correlation coefficient R2 between dynamic peak stress and the impact
velocity of marble specimens at different temperatures is 0.87, indicating that the correlation
between them is obvious. In the fitting formula, coefficient a represents the rate of peak
stress rise with impact velocity. The greater the value of a, the more pronounced the
strengthening effect of impact velocity. In general, with the gradual increase in temperature,
the strengthening effect of impact velocity on marble peak stress is lower.

4.3. Crack Extension Process and Damage Mode

Figure 10 illustrates the axial damage process of marble at a speed of 18.17 m/s and a
temperature of 400 ◦C using a high-speed camera.

Figure 10. Failure process of specimen taken by high-speed camera.
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During the early loading stage of the stress wave, no cracks are detected on the
specimen surface. At 50 μs, as a result of the reciprocating propagation of the stress wave
in the specimen, an obvious crack, referred to as the major crack, appears on the side of the
specimen. At 100~150 μs, the crack length and width gradually expand with time due to
the ongoing action of the stress wave. At 200~300 μs, cracks begin to gather and penetrate
the whole specimen. At 400 μs, the specimen became unstable, and its bearing capacity
drastically dropped. The formation of cracks is mainly due to the dynamic loading induced
stress concentration at the crack tip, such that the stress value at the crack tip exceeds the
tensile strength of the specimen.

Figure 11 depicts the failure modes of marble specimens at 25~800 ◦C under four impact
velocities. At the same impact velocity, the crushing degree at 600~800 ◦C is greater than that
at 25~400 ◦C. It shows that temperature has a significant effect on the fracture characteristics
of the specimen. When the impact velocity is low (15.32 m/s ≤ v ≤ 618.17 m/s), the speci-
men can still maintain a certain bearing capacity at temperatures between 25 ~600 ◦C. At
800 ◦C, the specimen is unstable. At a higher impact velocity (21.83 m/s ≤ v ≤ 23.49 m/s), at
25 ◦C ≤ T ≤ 400 ◦C, the bulk rate of the specimen is higher and the average particle size is
larger. When 600 ◦C ≤ T ≤ 800 ◦C, the specimen suffered from crushing failure, with small
particle size and relatively uniform distribution.

Figure 11. Failure mode of marble after high temperatures.

At the same temperature, with the increase in impact velocity, the fracture surface of
the specimen gradually expands, the degree of fragmentation increases, and the fragment
size decreases [21].

4.4. Energy Analysis of Rocks under Combined Dynamic and Static Loading

In rock engineering, the excavation, fragmentation, and disturbance of rock mass
inevitably involve the inflow, accumulation, dissipation, and outflow of energy, and the
energy changes throughout the entire rock deformation and failure process. Therefore, it
is crucial to examine the failure deformation of rock from the perspective of energy [38].
In the SHPB test, The incident energy (WI), absorption energy (WA), transmitted energy
(WT), and reflection energy (WR) can be calculated using Formulas (14) and (15). Figure 12
depicts the relationship between incident energy, absorbed energy, transmitted energy,
reflected energy, and temperature at various impact velocities.
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Figure 12. Change of energy with temperature under different impact velocity.

Figure 12a–d shows the relationship between the energy and temperature of the speci-
men under different impact velocities. When the impact velocity is constant, the incident
energy increases first and then decreases with the increase of temperature, and reaches
the maximum at 400 ◦C. The reflected energy first decreases and then increases with the
increase of temperature, and the two are quadratic functions with an upward opening.
The transmission energy and absorption energy first increase and then decrease with the
increase of temperature, and the two are quadratic functions with an open downward
direction. With the increase of impact velocity, the incident energy, reflection energy, trans-
mission energy and absorption energy of the specimen increase. The fitting relationship
between temperature and energy at different impact velocities is listed in Table 2.

Table 2. Fitting relationship between temperatures and energies at different impact velocities.

Impact Velocity v (m/s) Fitting Relationship R2

15.32

WI = 244.30 + 0.09T − 1.51 × 10−4T2 0.98
WR = 87.51 − 0.08T + 1.44 × 10−4T2 0.90
WT = 115.35 + 0.10T − 1.96 × 10−4T2 0.91
WA = 41.43 + 0.07T − 1.18 × 10−4T2 0.92

18.17

WI = 356.28 + 0.08T − 1.44 × 10−4T2 0.98
WR = 138.41 − 0.12T + 2.03 × 10−4T2 0.91
WT = 161.91 + 0.05T − 1.15 × 10−4T2 0.98
WA = 55.95 + 0.15T − 2.32 × 10−4T2 0.88

21.83

WI = 427.99 + 0.12T − 2.10 × 10−4T2 0.98
WR = 157.64 − 0.04T + 1.31 × 10−4T2 0.95
WT = 172.91 + 0.09T − 1.62 × 10−4T2 0.98
WA = 97.44 + 0.06T − 1.79 × 10−4T2 0.94

23.59

WI = 577.06 + 0.13T − 2.67 × 10−4T2 0.95
WR = 223.99 − 0.07T + 1.54 × 10−4T2 0.87
WT = 239.89 + 0.17T − 3.22 × 10−4T2 0.99
WA = 113.18 + 0.02T − 9.95 × 10−4T2 0.86
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5. Conclusions

At room temperature and high temperatures (25~800 ◦C), the fundamental physical
properties of marble were determined. SHPB impact compression test was used to measure
the effect of temperature on the dynamic characteristics of marble.

(1) Temperature has a great influence on the physical properties and geometric size
of marble. As the temperature increases, the color of marble specimens gradually
changes from light gray to milky white. The length and diameter of marble samples
increase with the increase of temperature, while the mass and longitudinal wave
velocity decrease with the increase of temperature. From room temperature to 200 ◦C,
the change of physical properties and geometric size of marble is not obvious, but the
change is more obvious at 400~800 ◦C. The higher the temperature, the more obvious
the change.

(2) At the same temperature, the stress-strain curves of marble specimens under different
impact velocities are similar. When the impact velocity is constant, with the increase
of temperature, the curve gradually shifts to the right, the brittleness of the specimen
decreases and the plasticity increases.

(3) The crack propagation of the specimen is completed within 200 μs, and the fail-
ure mode is tensile stress splitting failure. Temperature has significant influence
on the failure mechanism of specimens. In general, when the impact velocity is
constant, when 25 ◦C ≤ T ≤ 400 ◦C, the crushing degree of the specimen is higher
than 600 ◦C ≤ T ≤ 800 ◦C. When the temperature is constant, the crushing degree
increases with the increase of impact velocity, the crushing size decreases gradually,
and the particles tend to be uniform.

(4) When the impact velocity is constant, with the increase of temperature, the changes
of incident energy, transmission energy and absorption energy of the specimen are
similar, and all increase first and then decrease with the increase of temperature. The
relationship between the above energy and temperature is a quadratic function of
opening upward. The transmitted energy decreases first and then increases with the
increase of temperature, and there is a quadratic function relationship between them.
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Abstract: Thermal treatment followed by subsequent cooling conditions (slow and rapid) can induce
damage to the rock surface and internal structure, which may lead to the instability and failure of the
rock. The extent of the damage is measured by the damage factor (DT), which can be quantified in
a laboratory by evaluating the changes in porosity, elastic modulus, ultrasonic velocities, acoustic
emission signals, etc. However, the execution process for quantifying the damage factor necessitates
laborious procedures and sophisticated equipment, which are time-consuming, costly, and may
require technical expertise. Therefore, it is essential to quantify the extent of damage to the rock via
alternate computer simulations. In this research, a new predictive model is proposed to quantify the
damage factor. Three predictive models for quantifying the damage factors were developed based
on multilinear regression (MLR), artificial neural networks (ANNs), and the adoptive neural-fuzzy
inference system (ANFIS). The temperature (T), porosity ( ρ ), density (D), and P-waves were used
as input variables in the development of predictive models for the damage factor. The performance
of each predictive model was evaluated by the coefficient of determination (R2), the A20 index,
the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the variance
accounted for (VAF). The comparative analysis of predictive models revealed that ANN models used
for predicting the rock damage factor based on porosity in slow conditions give an R2 of 0.99, A20
index of 0.99, RMSE of 0.01, MAPE of 0.14, and a VAF of 100%, while rapid cooling gives an R2 of
0.99, A20 index of 0.99, RMSE of 0.02, MAPE of 0.36%, and a VAF of 99.99%. It has been proposed
that an ANN-based predictive model is the most efficient model for quantifying the rock damage
factor based on porosity compared to other models. The findings of this study will facilitate the rapid
quantification of damage factors induced by thermal treatment and cooling conditions for effective
and successful engineering project execution in high-temperature rock mechanics environments.
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1. Introduction

Temperature is an essential consideration that has a significant impact on a rock’s
chemical, physical, and mechanical properties. Underground coal gasification, geothermal
resources, nuclear waste disposal, coal mine gas explosions, underground engineering,
fire reconstruction, and improved oil recovery are examples of rocks being exposed to
high-temperature conditions [1–4]. The interactions of rocks in these projects take place for
a long time and they are continuously exposed to high-temperature ranges, from 500 to
1500 ◦C [5–16]. The long-term exposure to high temperatures yields voids, pores, and
microcracks. It also propagates the lengths of existing microcracks, causing damage to
the integrity and stability of rocks. Moreover, it further impacts the physical, chemical,
and mechanical characteristics of rocks [4,17–23]. Therefore, it is imperative to evaluate
the damages thoroughly induced in rocks from high temperatures or thermal treatments
for the safe execution of engineering projects. Comprehensive investigations in research
studies have been carried out on different rocks subjected to thermal treatments (for various
time exposures and under different cooling conditions) to evaluate rock damage mech-
anisms, thermal cracking, deformation mechanisms, thermal-induced stresses, strength
reductions, and changes in the physical properties under high temperatures [1,3,24–38].
However, long time exposures of rocks and vast contrasts in thermal interactions make it
essential to evaluate and quantify the extent of thermal damage for the safe execution of
engineering projects.

Numerous researchers have investigated the degree of damage using various ap-
proaches. Placido [39] studied concrete samples that were thermally treated up to 500
◦C by thermoluminescence (TL) to measure the degree of damage. Similarly, Chew [40]
performed a number of experiments, such as visual observations, a rock sound test, the
Schmidt hammer test, and ultrasonic pulse velocity, by thermally treating (up to 500 ◦C)
and non-treating concrete samples, and quantifying the extent of damage by TL. These
findings are instrumental in determining the degree of damage to concrete and rock in civil
and mining engineering structures, such as tunnels, highways, buildings, etc. [26,41].

The degree of damage was measured by investigating the development and prop-
agation of microcracks using acoustic emission signals, ultrasonic wave velocities, and
strain measurements [42–44]. The degree of damage was quantified using a thin section
analysis, scanning electron microscope (SEM), and micro-CT scanning [45,46]. However,
the aforementioned techniques for quantifying the extent of thermal damage require dedi-
cated equipment for measuring and observing changes in strain, ultrasonic wave velocities,
acoustic emission signals, and the internal morphology of a rock specimen. The rock
specimens needed for these tests could be prepared according to ISRM Ulusay [47–52]
using sophisticated equipment, which could cause a delay in the quantification process.

Based on the required testing time and economics, researchers generally prefer to
use empirical, statistical, and other machine learning techniques to predict or estimate the
required outputs. These techniques have been developed based on the concept of math-
ematics. These techniques, due to their versatile nature, have been successfully applied
in various engineering fields. Nowadays, these techniques have gained more attention in
solving complex rock engineering problems. In this regard, various researchers use statis-
tical techniques, including simple regression (SR), multiple linear regression (MLR), and
artificial intelligence (AI) techniques comprising artificial neural networks (ANNs) and the
adaptive neuro-fuzzy inference system (ANFIS) to predict the strength and deformational
properties of rocks using physical properties. These properties include density, porosity,
and ultrasonic wave velocities as input variables [53–65]. These studies suggest that artifi-
cial intelligence technique prediction performances are superior to statistical techniques.
Moreover, the above-mentioned literature studies show that statistical approaches, such as
simple regression analysis (SRA) and multivariate regression analysis (MVRA), have been
used to demonstrate a link between physical and mechanical parameters. Additionally,
research studies have utilized soft computing methods, such as fuzzy inference system(s)
(FIS), artificial neural network (ANNs), their combination, and the adaptive neuro-fuzzy
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inference system (ANFIS) to forecast the output parameters (mechanical characteristics)
based on the input parameters (physical properties). The findings of these investigations
indicate that, when compared to statistical methodologies, soft-computing tools are more
accurate for predicting mechanical characteristics. Additionally, Sirdesai, et al. [66] con-
cluded that an ANFIS model was shown to have a higher prediction efficiency than ANNs.
Statistical and soft computing techniques, on the other hand, have been utilized to forecast
the strength and elastic characteristics of untreated specimens. Sirdesai, et al. [66] predicted
the degree of thermal damage from the elasticity modulus using MLR, ANN, and ANFIS
techniques on thermally-treated and slow cooling fine-grained Indian sandstone, up to
1000 ◦C, using porosity ( φ ), density ( ρ ), coefficients of linear and volumetric thermal
expansion (EL and EV), and wave velocities (VP and VS). After a comparative analysis
of models, they proposed that the ANFIS model is the most suitable for the mentioned
purpose because of its better performance over MLR and ANN.

After a detailed study of the literature, it was noticed that there is a lack of research on
the prediction of the extent of damage/damage factors from porosity under slow and rapid
cooling, the selection of the optimized neuron for the best results, comparative analysis
of different algorithm functions in AI, and impoverished performances of ANNs. Thus,
it was imperative to address the mentioned gaps by conducting innovative research on
rocks other than sandstones using statistical and artificial intelligence to predict the extent
of thermal damage.

In this research, the degree of thermal damage DT of granitic rocks was predicted
under the slow and rapid cooling of thermally-treated granite. The physical properties,
such as porosity (Φ), density ( ρ ), temperature, and P-wave velocity (PV) were used as
input variables for multilinear regression (MLR) and artificial intelligence (ANN and
ANFIS) techniques. The adequacy of each model was evaluated based on the mean
absolute percentage error (MAPE), coefficient of determination (R2), A20 index, the variance
accounted for (VAF), and root mean square error (RMSE). The most effective model was
proposed to predict the extent of thermal damage for granitic rocks. The novelty of research
includes the prediction of damage extent based on porosity under cooling conditions,
neuron optimization, comparative analysis of different algorithm functions, and monitoring
the impoverished performances of ANNs as compared to ANFIS.

2. Design of the Experimentation Process

2.1. Sample Preparation

In this study, granite rock samples were used, which were collected from a quarry
located in the Baba G Kandaw district Buner, Khyber Pakhtunkhwa, Pakistan, as shown
in Figure 1. The cores were extracted from the bulk rock samples and waxed to preserve
their initial mechanical properties and avoid mineralogical and size deterioration. The
cylindrical core specimens (with dimensions of 54 × 108 mm) were prepared with high
geometric integrity. The ends of each core were polished carefully with a grinding machine
until the deviation in the flattening of the core end became less than 0.5–0.05 mm [67]. The
cores were then heated to the selected temperatures (25 ◦C, 300 ◦C, 600 ◦C, and 900 ◦C) at
a constant rate of 5 ◦C/min [68], followed by cooling to room temperature. Cooling was
performed in two different ways: exposed to the air for slow cooling and placed in water
for rapid cooling. Based on the cooling conditions, the rock samples were categorized
into seven groups, namely, An, Bn, Cn, Dn, En, Fn, and Gn. The samples were kept as
reference samples; the temperature was assumed as 25 ◦C; Bn, Cn, and Dn samples were
used for slow cooling, and En, Fn, and Gn were used for rapid cooling. According to
detailed petrographic investigations of the granite samples, they were mostly composed of
perthite feldspar, plagioclase, and quartz, with little biotite, muscovite, and opaque oxides
and sulfides. The average rock composition included: K-feldspar (47.29%), quartz (25.18%),
plagioclase (24.38%), muscovite (0.15%), biotite (32.03%), and other (0.97%).

89



Mathematics 2022, 10, 2883

 

Figure 1. (a) Pakistan map and regional geological map showing the distribution of the Cambrian
to Ordovician Swat Granite Gneisses, metasedimentary rocks, ranging in age from Late Proterozoic
to Late-to-Middle Mesozoic and Late Carboniferous to Permian Ambela and the Shewa Igneous
complex; (b) granite boulder; (c) micrographs of the thin sections (cross-polarized light).

2.2. Experimental Procedure and Instrument

A portable ultrasonic nondestructive digital indicating tester (PUNDIT) was used to
compute the ultrasonic parameter, such as the ultrasonic P-wave velocity, ultrasonic S-wave
velocity, and the transit time for each velocity. It is worth mentioning that the test procedure
in this part tested the P-wave velocity of the unheated and post-thermal treatments under
different cooling conditions of rock samples. The density and porosity of rock specimens
were determined before and after heating. The samples were prepared and tested according
to the International Society for Rock Mechanics (ISRM). Ten experimental runs for each
physical property (density, porosity, P-waves, and elastic modulus) were conducted before
and after the thermal treatment and subsequent cooling conditions. The study steps are
shown in Figure 2. The average results obtained from testing the thermally-treated granite
rock samples and subsequent cooling conditions (slow and rapid cooling) for density,
porosity, and P-waves, are presented in Table 1.

Table 1. Thermal damage factors under slow cooling and rapid cooling.

Sample
No.

Cooling
Condition

Temperature
(◦C)

Porosity
(%)

Density
(Kg/m3)

P-Wave
(m/s)

Elasticity
(GPa)

DT ρ DTE

An
Slow

cooling

25 1.33 2681.67 4098.67 20.70 0.00 0.00
Bn 300 3.43 2674.56 4047.56 16.50 0.41 0.19
Cn 600 6.83 2673.17 3916.20 9.10 0.75 0.55
Dn 900 10.83 2671.27 3700.27 3.62 0.86 0.82
An

Rapid
Cooling

25 1.33 2681.67 4098.67 20.70 0.00 0.00
En 300 4.53 2673.09 3747.56 12.73 0.70 0.37
Fn 600 7.63 2672.16 3560.65 7.80 0.82 0.62
Gn 900 13.53 2670.07 3210.27 2.62 0.90 0.87
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Figure 2. Flowchart of the methodology for the prediction of thermal damage.

2.3. Thermal Damage Factor

The thermal damage factor (DT) was used to evaluate the degree of damage induced
by the thermal treatment and subsequent cooling conditions. It is a key parameter and
can induce rock instability and failure when the severity of the damage is maximum. The
thermal damage factor was calculated based on porosity and elasticity using Equation (1)
and Equation (2), respectively. The calculated values are given in Table 1.

DTP =

(
1 − 1 − nT

1 − nT0

)
× 100% (1)

where nT is the porosity after temperature and nTo represents the porosity before temperature.

DTE =

(
1 − ET

E0

)
(2)

where ET is the elasticity at high temperature and E0 is the elasticity at room temperature.

3. Prediction Model

3.1. MLR Model

MLR is commonly used to predict the relevant parameters. MLR is an extended
version of the simple linear regression used in the multiple predictive variables. It can
model the input without variables considering their relationship and form a generalized
equation, as shown in Equation (3) [69,70].

W = C + b1z1 + b2z2 + b3z3 + . . . . . . . . . + bnzn (3)

where the partial regression coefficients are b1 to bn, W is the dependent variable, C is
constant, and z1 to zn are the independent variables.
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3.2. ANN Model

Numerous AI techniques are used globally for prediction; ANN is one of them. It mim-
ics the behavior of the human brain. It is generally a useful tool in pattern recognition, clus-
tering data, and fitting a function. Because of its learning capacity, memory simulation, and
excellent performance owing to features such as categorizing and filtering noisy data, ANN
is a particularly significant sector in geotechnical and mining engineering [64,66,71–79].
Furthermore, it is a promising approach used for solving complicated engineering issues
involving enormous amounts of data or several input parameters, making manual solutions
more difficult. In general, an ANN is made up of components, such as inputs, outputs,
weights, activation, training, and numerous neurons. Experiment-collected test data are
multiplied by weights and applied to the existing activation functions. [77,79].

Mathematically, the basic ANN is expressed as

N = f (Kx + C) (4)

where
K = K1, K2, K3, K4, . . . . . . . . . , Kn

M = m1, m2, m3, m4, . . . . . . . . . . . . , mn

where K, m, and C refer to weights, input, and bias, respectively. The net (L) predicted
values are calculated using Equation (5)

L =
n

∑
i=1

(Ki Mi + C) (5)

In this study, tangent sigmoid was used as the transferred function, which was calcu-
lated using Equation (6)

y = tanh (L) (6)

output = y = tanh(L) = tanh

(
n

∑
i=1

(Ki Mi + C)

)
(7)

Generally, the error of the network expresses the difference between the actual and
predicted values. This error, affected by the number of neuron weights in the hidden layers
(and its value), either increased or decreased. The error of number points (En) can be
calculated by using Equation (8)

En = Actualvalue − Predictedvalue (8)

The total error (ET) can be calculated by using Equation (9)

ET =
1
2∑

n
E2

n (9)

The efficiencies of the ANN networks were assessed using various learning algorithms.
The terms “learning algorithm” and “training algorithm” are used interchangeably. In this
research, regarding the five learning functions, each function had its advantages and disad-
vantages. These functions were Levenberg–Marquardt (LM), BFGS quasi-Newton (BFG),
resilient backpropagation (RP), scaled conjugate gradient (SCG), and conjugate gradient
with Powell/Beale restarts (CBG); they were used as training functions. Additionally, the
performance of ANN was greatly affected by hidden-layer neurons. The performance of
the ANN network was evaluated by using feed-forward backpropagation type of neural
networks, the tangent sigmoid activation function, and numerous neurons. To achieve
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optimum performance of the models, the normalization technique was used by applying
Equation (10).

Xnorm =
(Xactual − Xmin)

(Xmax − Xmin)
(10)

where Xnorm refers to the normalized value, Xactual refers to the measured value, Xmin and
Xmax refer to the corresponding minimum and maximum values of the dataset. The different
numbers of neurons were used for different training functions followed by comparing the
models; the best model was recommended in terms of the training function.

3.3. Adaptive Neural Fuzzy Interface System (ANFIS) Models

The fuzzy logic system was proposed by Zadeh [80] for the first time, which can
be used to predict the solution mechanism for complex engineering problems. Owing
to the shortcoming, it could not define a standardized procedure for designing such a
system. After the advent of the neural network, Jang [81] introduced a new technique
known as an adaptive neuro-fuzzy inference system (ANFIS). This technique mapped
the output and input by exploiting the fuzzy systems and neural network learning and
reasoning proficiencies. Using a combination of fuzzy logic and neural networks, the
ANFIS can effectively solve various complex and non-linear problems in any engineering
field. ANFIS uses fuzzy rules to predict the output from inputs; these fuzzy rules are
developed during the training process. The ANFIS construct and its FIS membership are
derived from training data. Two FISs commonly used Mamdani and Sugeno. The key
distinction between the two is that the Sugeno output membership is linear or constant,
while the Mamdani output membership is triangular, Gaussian, etc. In the present study,
Sugeno FIS was used because it is computationally more efficient than Mamdani. The
procedure of ANFIS can be described in the form of FIS, with two inputs (S) and (T) and
one output (Z). Subsequently, if–then rules of the two-fuzzy were developed, which are
given below:

Rule 1: If S is J1 and y is P1, then Z1 = D1x + F1y + Q1

Rule 2: If x is J2 and y is P2, then z2 = D2x + F2y + Q2

where J1, P1, J2, and J2 refer to the input membership functions for ‘S’ and ‘T’; whereas D1,
F1, Q2, D2, F1, and Q2 refer to the output function parameters.

Numerous scholars have detailed the ANFIS model, consisting of five layers [66,82–84].
Moreover, the ANFIS model uses two learning algorithms, backpropagation and hybrid, to
optimize the result with the minimal value of error between the predicted and estimated
values [79–84]. A hybrid optimization method was used in the present study due to its high
prediction results [61,77]. This model shows excellent performance, but the convergence of
the model was slow due to the high if–and–or relationship.

4. Results and Discussion

4.1. MLR Models

The estimated thermal damage factor based on elasticity and porosity under both
cooling conditions are given in Equations (11)–(14).

DTER = 50.6946 + 0.0005T − 0.0032 ρ − 0.0185 φ − 0.0002PV (11)

DTPR = 211.0464 + 0.00048T − 0.0265 ρ − 0.0789 φ + 0.0001PV (12)

DTES = −61.34 + 0.00094T + 0.06195 ρ + 0.0214 φ + 0.00093PV (13)

DTPS = 162.9 + 0.00094T − 0.04117 ρ − 0.06099 φ + 0.00016PV (14)

Graphically, the experimental and predicted thermal damage factors under each
cooling condition are given in Figure 3. Figure 3a,b illustrate that the experimental and
predicted thermal damage factors based on porosity and elasticity under slow cooling
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conditions yielded R2 values of 0.97 and 0.94, respectively. Similarly, the RMSEs for
porosity and elasticity were 0.061 and 0.083, respectively. On the other hand, Figure 3c,d
show the experimental and predicted thermal damage factors based on porosity under
rapid cooling resulting in R2 and RMSE as 0.97 and 0.056, respectively. In the elasticity case,
the R2 and RMSE were 0.94 and 0.076, respectively.

Figure 3. Experimental and MLR models; (a) porosity-based DT under slow cooling; (b) elasticity-
based DT under slow cooling; (c) porosity-based DT under rapid cooling; and (d) elasticity-based DT

under rapid cooling.
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4.2. ANN Models
4.2.1. Model Design

A total of 2000 networks were generated for various training algorithms, each case
comprising 500 networks. In the presence of a tangent sigmoid function as an activation
function, the feed-forward backpropagation network with 5 training functions (and up to
100 neurons) was tested in the design for each learning algorithm. The model performance
and comparative analysis of the different models were evaluated based on R2, the a20 index,
RMSE, MAPE, and VAF.

4.2.2. ANN Code Compilation in MATLAB

This study compiled self-generated code for ANN for n numbers of networks, keeping
the same training and activation functions for a single loop as shown in Figure 4. A loop
function was introduced in this code, which can run for the desired number of networks.
The activation function overall in this code was fixed, which can be changed according to
the data nature. In the present case, the code was executed for a hundred networks in a
single execution. The number of neurons increased in each successor for each network in a
loop; i.e., for network1, there was one neuron, for network2, there were two neurons, and
so on. In both the hidden and output layers, the same activation function was used.

 
Figure 4. Flowchart of ANN for thermal damage model prediction.
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4.2.3. Network Phases and Regression Models

In this research, the basic structure consisted of four inputs (temperature, porosity,
density, and P-waves) and one output (thermal damage factor) in both cooling conditions,
as was based on porosity and elasticity, as shown in Figure 5. A total of forty data points
were taken as a dataset. The dataset was divided into three parts: training (75%), testing
(15%), and validation (15%). Figure 6a,b show the training, validation, and testing for the
slow cooling thermal damage factor based on porosity and elasticity. Similarly, Figure 6c,d
show a rapid cooling thermal damage factor based on porosity and elasticity. Furthermore,
prior to comparing various ANN models of thermal damage in both cooling conditions, it
was desired to choose the best optimum training function at the first stage for the studied
data. Therefore, five different training functions, namely BFG, RP, SCG, CGB, and LM,
were evaluated to select the best performance training function for the optimum ANN
prediction model.

Figure 5. ANN-developed structure for the thermal damage factor.

Figure 6. Cont.
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Figure 6. Regression model DT, (a) porosity-based DT under slow cooling, (b) elasticity-based DT

under slow cooling, (c) porosity-based DT under rapid cooling, and (d) elasticity-based DT under
rapid cooling.

4.2.4. Model Performance

Table 2 shows the optimum results of each algorithm. In comparison to other functions,
the overall efficiency of the LM function was very high in terms of R2, RMSE, the number
of neurons, and execution timing. As compared to other algorithms, LM converged data
faster. Furthermore, the efficiency of LM for DT based on porosity under slow and fast
cooling was better than the elasticity-based (in terms of RMSE).

Table 2. Performance evaluation of different training algorithms for DT under both cooling conditions.

Cooling Conditions Thermal Damage Based on Training Function R2 RMSE Neuron Time (s)

Slow cooling

Porosity

BFG 0.99 0.03 61 307

RP 0.99 0.24 35 256

SCG 0.99 0.35 32 308

CGB 0.99 0.03 71 289

LM 0.999 0.01 80 65

Elasticity

BFG 0.99 0.03 68 308

RP 0.99 0.25 53 256

SCG 0.99 0.35 93 310

CGB 0.99 0.04 34 291

LM 0.999 0.07 52 43

Rapid cooling

Porosity

BFG 0.99 0.02 72 307

RP 0.99 0.23 64 256

SCG 0.99 0.35 54 308

CGB 0.99 0.03 25 289

LM 0.999 0.02 18 34

Elasticity

BFG 0.99 0.02 14 308

RP 0.99 0.22 4 254

SCG 0.99 0.32 32 310

CGB 0.99 0.03 12 291

LM 0.999 0.012 74 58
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Further, the LM performance was better in slow cooling than in rapid cooling. Figure 7
shows the performance of LM with variations in the number of neurons for the thermal
damage factors in both slow and rapid cooling based on porosity and elasticity. The
optimum neurons for LM with high R2 and low RSME with the least convergent time details
are presented in Table 2, revealing that the optimum neuron numbers in slow cooling based
on porosity and elasticity were 80 and 52, respectively. Similarly, for rapid cooling based
on porosity and elasticity, the optimal neuron numbers were 18 and 72, respectively.

Figure 7. LM optimum number of neurons for (a) porosity-based DT under slow cooling, (b) elasticity-
based DT under slow cooling, (c) porosity-based DT under rapid cooling, and (d) elasticity-based DT

under rapid cooling.

Figure 6a shows that the thermal damage factor based on porosity under slow cooling
conditions revealed correlation coefficients of 0.99, 0.98, 0.99, and 0.99 for training, vali-
dation, testing, and overall, respectively. Similarly, Figure 6b shows the thermal damage
factor based on elasticity under slow cooling conditions revealed correlation coefficients
of 0.99, 0.98, 0.97, and 0.99 for training, validation, testing, and overall, respectively. In
contrast, for rapid cooling conditions, the thermal damage factors based on porosity and
elasticity are shown in Figure 6c,d. These figures also revealed correlation coefficients of
0.99, 0.98, 0.97, 0.98 and 0.99, 0.98, 0.92, 0.97, and 0.98 for training, validation, testing, and
overall, respectively.
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4.2.5. ANN Predicted Models

The effectiveness of the developed ANN models was assessed by comparing the
predicted and actual values, as shown in Figure 8. The porosity and elasticity-based
damage factors in slow cooling conditions are shown in Figure 8a,b, with the corresponding
correlation coefficient value as 0.99; likewise, the RMSE value was recorded as 0.01 and
0.07 for porosity and elasticity-based damage factor, respectively. It indicates that the
porosity-based prediction model outperformed the elasticity-based thermal damage factor
in slow cooling conditions. In addition, the thermal damage factor based on porosity in
rapid cooling (Figure 8c) showed the correlation coefficient and RMSE value as 0.99 and
0.02, respectively.

Figure 8. Experimental ANN model; (a) porosity-based DT under slow cooling, (b) elasticity-based
DT under slow cooling, (c) porosity-based DT under rapid cooling, and (d) elasticity-based DT under
rapid cooling.

Similarly, Figure 8d shows the elasticity-based damage factor in rapid cooling con-
ditions that resulted in the correlation coefficient and RMSE values of 0.99 and 0.09, re-
spectively. It is worth mentioning that the damage factor dependent on porosity and
elasticity in both cooling conditions had almost the same high coefficient of determination
and less RMSE than the elasticity-based value, as shown in Figure 8. Furthermore, the
porosity-based prediction model is more accurate in terms of R2, RMSE, the number of
neurons, and convergent time.
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4.3. ANFIS Models

Similar to ANN, the dataset was divided into three parts, training (75%), testing (15%),
and validation (15%). The flowchart of the ANFIS for thermal damage is shown in Figure 9.
The data division pattern was used in both cooling conditions to measure the thermal
damage factors (porosity, elasticity). The ANFIS models were trained for up to 50 epochs.
The fuzzy interface system (FIS) was generated for models using a sub-clustering algorithm
and a hybrid training algorithm for FIS optimum methods. The linear Gaussian function
was used to predict the thermal damage factor from input under both cooling conditions.
Figure 10 shows the structure of the developed ANFIS model. Table 3 describes the details
of each parameter used during the model’s development.

Figure 9. ANFIS flowchart for thermal damage prediction.
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Figure 10. Proposed ANFIS model for thermal damage factor.

Table 3. The properties of the proposed ANFIS model under both cooling conditions.

ANFIS Parameters

Value (Thermal Damage Factor on Porosity and Elasticity)

Slow Cooling Rapid Cooling

Porosity Elasticity Porosity Elasticity

FIS generator types Sub clustering � � �
Membership function types for each input Gaussian � � �

Type Membership function types for each input Linear � � �
Range of influence 0.5 � � �

Squash Factor 1.25 � � �
Accept Ratio 0.5 � � �
Reject Ratio 0.15 � � �

Number of fuzzy rules 256 � � �
Number of epochs 50 � � �

Number of data point 40 � � �
Number training points 28 � � �

Number of testing points 6 � � �
Number of valid points 6 � � �

Note: �mean valid.

The efficiencies of the developed ANFIS models were analyzed by comparing the
predicted value to the actual value, as shown in Figure 11. Figure 11a shows the porosity-
based DT in slow cooling, which reveals R2 and RMSE values of 0.98 and 0.07, respectively.
Similarly, Figure 11b shows the elasticity-based DT in slow cooling, revealing R2 and RMSE
values of 0.97 and 0.44, respectively. In contrast, Figure 11c shows the porosity-based DT
in rapid cooling, which reveals R2 and RMSE values of 0.98 and 0.88, respectively, while
Figure 11d shows the porosity-based DT in rapid cooling, which shows R2 and RMSE
values of 0.94 and 0.88, respectively. Furthermore, the prediction damage based on porosity
showed higher R2 and lower RMSE values than the elasticity-based. Hence, porosity-based
DT in both cooling conditions gives more reliable results than elasticity-based DT in terms
of high (R2, a20 index) and low RMSE values.
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Figure 11. Experimental and ANFIS models; (a) porosity-based DT under slow cooling, (b) elasticity-
based DT under slow cooling, (c) porosity-based DT under rapid cooling, and (d) elasticity-based DT

under rapid cooling.

5. A Comparative Appraisal of Statistics and Intelligent Technique

The comparison of correlation efficiencies of various developed models was used in
this study to improve the performances of the predicted models. The subsequent perfor-
mance indices, such as R2, MAPE, RMSE, and VAF, were evaluated. An excellent model can
be represented by the following performance indices: R2 = 1, a20 index, MAPE = RMSE = 0,
and VAF = 100%. The performance indices were calculated using Equations (15)–(19).

R2 =
∑n

i=1 (yi)
2 − ∑n

i=1 (yi − k′i)
2

∑n
i=1 (yi)

2 (15)
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MAPE =
1
2

n

∑
i=1

∣∣∣∣yi − k′i
yi

∣∣∣∣× 100 (16)

RMSE =

√
∑n

i=1 (yi − k′i)
n

(17)

VAF =

[
1 − var(y − k′)

var(y)

]
× 100 (18)

a20 − index =
k20

M
(19)

where y is the actual value, k′ is the predicted value, k20 is the ratio of the original and
predicted values in the range of 0.80–1.20, and M is the total datasets.

As a result, the LM-based ANN model was selected compared to LMR and ANFIS.
Table 4 illustrates the performance indices. The performance index values demonstrate that
the ANN model performed better than the MLR and ANFIS approaches in the current study.
The adequacy of ANN is higher than ANFIS and MRL. The most significant limitation of
ANFIS over ANN observed in the present study was that the FIS generator training took a
long time, particularly as the number of inputs and epochs increased, while ANN executed
too fast. Additionally, Figure 12 depicts the predicted and experimental thermal damage
factor dependent on porosity and elasticity under both cooling conditions. In both cases,
the ANN showed a better prediction comparatively than ANFIS and MLR. Furthermore, all
models gave high accuracies at low and high temperatures (below 200 ◦C and greater than
600 ◦C). This fluctuation in prediction and measure value was due to a nonlinear increase
in thermal damage. The ANN model is better than other models and overlaps with the
experimental curve, as shown in Figure 12.

Table 4. Performance indices of the developed models.

Cooling Conditions
Thermal Damage

Based on
Models R2 A20 Index RMSE MAPE (%) VAF (%)

Slow cooling

Porosity

MLR 0.97 0.94 0.061 31.55 91.51

ANFIS 0.98 0.96 0.07 7.4 92.33

ANN 0.99 0.98 0.01 0.14 100

Elasticity

MLR 0.94 0.91 0.93 31.53 91.51

ANFIS 0.97 0.96 0.44 8.96 78.52

ANN 0.99 0.98 0.07 1.18 99.19

Rapid cooling

Porosity

MLR 0.97 0.94 0.91 11.96 94.73

ANFIS 0.98 0.96 0.88 11.56 84.29

ANN 0.99 0.98 0.02 0.36 99.99

Elasticity

MLR 0.94 0.91 0.92 29.53 94.51

ANFIS 0.97 0.96 0.88 15.03 80.68

ANN 0.99 0.98 0.09 1.53 99.75
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Figure 12. Experimental ANN, MLR, and ANFIS models; (a) porosity-based DT under slow cooling,
(b) elasticity-based DT under slow cooling, (c) porosity-based DT under rapid cooling, and (d) elasticity-
based DT under rapid cooling.

6. Limitations and Future Works

Khan et al. [77,78] claim that rock behavior varies depending on the region. In this
study, the granite rock of a specific area was used for thermal damage. The study can be
generalized by considering multiple rocks in different areas. However, in future research,
care should be taken regarding thermal damage prediction as the rock behaviors are
very sensitive and depend on multiple parameters, including mineralogy, physical, and
mechanical properties. The proposed model of this study can also predict DT when rock
input parameters, such as temperature, density, porosity, and P-waves, are available in the
same range. To increase forecasting accuracy, future models should be trained with more
datasets. This research focuses on traditional linear regression model(s) (MLR) and two
artificial intelligence approaches (AI) (ANN and ANFIS). Using other approaches, such as
decision tree, random forest (RF), K-nearest neighbor (KNN), ANN, and the ANFIS model
to anticipate DT values may be investigated in the future. We may also present a greater
database of non-destructive rock index tests to provide a more sophisticated intelligence
approach since generalization is a crucial feature of predictive models.
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7. Conclusions

The study investigated the damage factors from the porosity and elastic modulus
under slow and rapid cooling. It was observed that the extent of damage to granite
increased with the increase in temperature. However, the predominant damages to granite
rock were observed in rapid cooling compared to slow cooling. Three predictive models
were developed to quantify the extent of damages induced by thermal treatment and,
subsequently, cooling conditions based on MLR, ANN, and ANFIS. In order to predict
thermal damage, physical properties, such as temperature, density, porosity, and P-waves,
were used as input variables. The efficiencies of the models were evaluated based on R2,
the A20 index, RMSE, MAPE, and VAF. The optimum training function was determined
based on five different training functions, namely BFG, RP, SCG, CGB, and LM, for porosity
and elasticity under different cooling conditions, to achieve the best ANN prediction model.
It was revealed that the optimum result of the LM algorithm performance is better in terms
of R2, RMSE, the number of neurons, and execution timing. After a comparative analysis
of predictive models, it has been suggested that the ANN-based predictive model is more
efficient in the prediction of damage factors as compared to MLR and ANFIS. It has also
been concluded that the efficacy of the prediction for the damage factor based on porosity is
more predominant than the prediction of the damage factor based on elasticity. Therefore,
it is recommended that damage factor prediction based on porosity should be used in
the future. The findings of this study will facilitate the rapid quantification of damage
factors induced by thermal treatment and cooling conditions for effective and successful
engineering project execution in high-temperature rock mechanics environments. In the
future, we will evaluate thermal damage in the presence of infrared radiation characteristics,
acoustic emissions, and AI applications. These techniques will be adopted to obtain the
real-time damage factor, crack intensity, propagation, and direction due to thermal heat.
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Abstract: The rock acoustic emission (AE) technique has often been used to study rock destruction
properties and has also been considered an important measure for simulating earthquake foreshock
sequences. Among them, the AE b value is an essential parameter for the size distribution char-
acteristics and probabilistic hazard analysis of rock fractures. Variations in b values obtained in
rock AE tests and earthquakes are often compared to establish analogies in the damage process
and precursory analysis. Nevertheless, because the amplitudes measured on the sample boundary
by an acoustic sensor (apparent amplitude) are often used to estimate the b value, which cannot
descript the source size distribution, it is necessary to develop a method to obtain the size distribution
characteristics of the real source from the apparent amplitude in doubly truncated distribution. In this
study, we obtain AE apparent amplitudes by applying an attenuation operator to source amplitudes
generated by a computer with an underlying exponential distribution and then use these simulated
apparent amplitudes to perform a comparative analysis of various b value estimation methods that
are used in earthquakes and propose an optimal b value estimation procedure for rock AE tests
through apparent amplitudes. To further verify the reliability of the newly proposed procedure, a
b value characteristics analysis was carried out on a non-explosive expansion agent rock AE test
and transparent refractive index experiment with red sandstone, marble, granite, and limestone.
The results indicate that mineral grains of different sizes and compositions and different types of
discontinuities of rock specimens determine the rock fracture characteristics, as well as the b value.
The dynamic b values decreased linearly during the loading process, which confirms that variations
in the b value also depend on the stress. These results indicate that the newly proposed procedure for
estimating the b value in rock AE tests based on apparent amplitudes has high reliability.

Keywords: rock acoustic emission; apparent amplitude distribution; b value; completeness ampli-
tude; bootstrap

MSC: 74-05; 86-05

1. Introduction

The power law size distribution relationship of source energy E or seismic moment M0
is an intrinsic characteristic of the frequency-size distribution in statistical seismology; it
can well record the spatial and temporal distribution of rock fractures from a large number
of small-scale ruptures to fewer large-scale ruptures, and it has been widely used in seismic
research. Since there is a logarithmic relationship between the local magnitude M and
the source energy E or seismic moment M0, we can conclude that the local magnitude-
frequency distribution obeys the exponential Gutenberg–Richter (G–R) law [1], which has
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also been widely used for probabilistic seismic hazard analysis [2–7]. The G–R law is
expressed on a logarithmic scale given by

log10(N) = a − bM (1)

where a and b are constants and N is the number of earthquakes that occur in a specific time
window with magnitude ≥ M. More importantly, parameter a reflects the size of the time
window of observation; slope b is an essential tool in seismotectonic studies and seismic-
risk analysis within the same time window in a certain area [5,8], which is often referred
to as the b value. More recently, the b value in the G–R law has also been interpreted as
an indicator of the applied shear stress and material heterogeneity [9–14]. Thus, its correct
computation represents an important challenge in seismology and rock mechanics [15–18].

The selected discontinuities and missing earthquake events in the magnitude-frequency
distribution are the main effects on stable b value estimation, which is why the two ends
of the magnitude-frequency distribution deviate from the G–R law. For some authors, the
right and left end points deviating from the G–R law correspond to the magnitude of com-
pleteness Mc (which is defined as the lowest magnitude at which 100% of the events in a
space–time volume are detected [8,19] and the auxiliary magnitude M0, respectively. Many
different procedures for correctly estimating Mc and M0 have been proposed [8,19–25].
Figure 1 shows that with the value of the assumed Mc starting from the minimum magni-
tude in the catalog and increasing gradually, the corresponding b value and goodness-of-fit
change significantly as Mc ≤ 2 and tend to be stable as Mc ≥ 2. In view of this phenomenon,
some researchers hope to select a sufficiently large Mc to estimate the b value, but for the
statistical value of Mc and b, which will reduce a large number of low-magnitude events
and further lead to a decrease in the space–time resolution of variations in Mc and reliability
and robustness of the b value estimation [26,27]. Therefore, accurately determining Mc has
become the key to stably estimating the b values.

 
Figure 1. The effects of variations of assumed Mc on b value estimation [26]. The FMD and LSR are
abbreviations of frequency-magnitude distribution and least-squares regression, respectively.

In rock mechanics, the acoustic emission (AE) technique is often used to study the
destruction properties of rocks by recording elastic wave information radiated by crack
initiation, propagation, and penetration during rock deformation [28–31]. Additionally, the
AE test method is also an important means to simulate earthquake foreshock sequences
and study focal mechanisms [14,32–42]. Therefore, the space–time variation characteristics
of the b value obtained in rock AE deformation tests have been used to simulate earthquake
precursor characteristics [43–47]. However, unlike the magnitude used in Equation (1)
for b value estimation in seismology, AE equipment records the high-frequency elastic
wave signal of the small-scale rupture, and the AE amplitude is the apparent amplitude
measured by sensors at the sample boundary after attenuation from the seismic source [25].
The corresponding apparent amplitude-frequency distribution does not represent the
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source size distribution. Thus, the frequency-size distribution law of the source signals
collected by the sensors in the rock AE test will be changed owing to the elastic wave
attenuation, and the same deviation will appear at both ends of the amplitude-frequency
as the magnitude-frequency distribution [33,37], which would affect the size of the real
b value. (Here, the analogy with the earthquake is used to define the left and right deviation
points of the amplitude-frequency distribution of the rock AE test as the completeness
amplitude point Ac and auxiliary discontinuous amplitude point A0, respectively.) Al-
though some researchers have long been concerned about the influence of attenuation
on the amplitude-frequency distribution in rock AE tests and have also proposed some
corresponding compensation methods to obtain the equivalent AE magnitude with the
same significance as the magnitude of the earthquake to analyze rock b value character-
istics [44,48], the equivalent amplitude distribution still cannot fully represent the real
frequency-size distribution of rock cracks. To solve this problem, Liu [25] used a statistical
method to prove that the apparent amplitude-frequency distribution retains the source
frequency-size distribution characteristics, wherein the key to estimating the real b value is
to properly truncate the apparent amplitude-frequency distribution. A new b value estima-
tion method called the Fisher optimal split and global search algorithm (FGS) was proposed
to identify the log-linear segment from the apparent amplitude-frequency distribution of
the rock AE test for b value estimation. In addition, because AE acquisition equipment is
very sensitive to the interference of test conditions, such as environmental noise and current
signals, a high threshold value of the signal acquisition is generally set for laboratory rock
AE tests. Thus, the completeness amplitude Ac is usually ignored. Therefore, the complete-
ness of the amplitude data should also be considered when considering how to obtain the
source size distribution characteristic parameters using the apparent amplitude-frequency
distribution in the estimation of the rock AE b value.

Based on the discussion above, firstly, we carried out a synthetic AE simulation test to
compare and analyze the applicability of the completeness magnitude estimation methods
commonly used in earthquakes for the estimation of rock AE completeness amplitude and
proposed an optimal procedure for rock AE b value estimation by combining Bootstrap [8]
and the FGS method which is used for estimating the characteristic parameters of the source
size distribution from the apparent amplitude-frequency distribution. Then, we designed a
static dilation rock rupturing AE test to further verify the reliability of the newly proposed
optimal procedure of b value estimation based on the relationship between the b value
and rock microscopic composition and stress to provide a reliable and accurate b value
estimation procedure for laboratory rock AE tests. As a result, this research can provide
new insights and methods in the analysis of the precursory characteristics in laboratory
rock AE tests and rock mass engineering.

2. Optimal b Value Estimation Procedure Based on Apparent
Amplitude-Frequency Distribution

In rock AE tests, a high threshold is generally set to remove noise interference, and
AE equipment will also define the upper limit amplitude, which will result in a doubly
truncated distribution of apparent amplitude frequency, so the completeness amplitude
Ac in the b value estimation is usually ignored. In this section, generate AE synthetic data
with apparent amplitude and select the estimation method of completeness magnitude
Mc commonly used in seismic research to obtain an optimal algorithm for determining
completeness magnitude Ac, which is a key step for b value estimation. Then, combined
with the nonparametric statistical Bootstrap method, we compared the obtained optimal
algorithm of Ac with the FGS method and determined an optimal procedure of the b value
estimated for the apparent amplitude data.

2.1. Synthetic Catalogues of Rock AE Apparent Amplitude

Because the true underlying completeness amplitude Ac and b values are not known in
a laboratory rock AE test, we designed a specific simulation scheme to randomly generate
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synthetic AE data that can be used to clearly compare five Ac estimation methods [8,23–25].
According to the previous statistical proof and synthetic data generation method [25,49],
we designed to generate data arrays with the same length of source amplitude and amount
of attenuation, which are all in decibels with a round-off interval of 1 dB. The apparent
amplitude after attenuation can be obtained by the subtraction of two randomly arranged
arrays of source amplitude and the amount of attenuation. The specific simulation schemes
are as follows: firstly, as the b value of most papers is equal to about 1 [50], we generated
a source synthetic catalog of i = 1, 2, . . . , N events with amplitudes Ai in decibels by ran-
domly sampling an underlying Gutenberg–Richter distribution with b = 1.0666 and std = 8
(standard deviation) which varies between limits Ai

min ≤ Ai ≤ Ai
max and has a probability

density function p(Ai). Then, we generated an attenuation amount catalog δAi also in
decibels with the same length of Ai, which varies between limits δAi

min ≤ δAi ≤ δAi
max and

has a probability density function p(δAi) that obeys the Poisson distribution (or other forms
including normal, exponential, Gamma, and random uniform distributions). Finally, the
catalog obtained by the subtraction of randomly arranged Ai and δAi was used to model the
amplitude observed at the sample boundary Ai

obs = Ai − δAi. In other words, the interval of
the apparent amplitude that still follows the exponential distribution was [Ai

min − δAi
min,

Ai
max − δAi

max]. In this paper, we set Ai
min = 50 dB, Ai

max = 109 dB, δAi
min = 1 dB, and

Ai
max = 10 dB to make the apparent amplitude range of synthetic data close to that in normal

rock AE experiment. As a matter of fact, the selection of the ranges for source amplitude
and attenuation generation has no effect on the results [49]. In addition, to minimize the
effect of data volume on deviation discussion, a data volume of 100,000 was generated.
Figure 2A shows the apparent amplitude-frequency distribution of generated data.

2.2. Determination of Optimal Estimation Method for Ac and A0

In studies on the earthquake sequence, determining the completeness magnitude Mc
is the priority of the seismic sequence analysis. In fact, the core of various seismic b value
estimation methods is the algorithm for searching for Mc. As some theories in seismic
research are often used in rock AE tests, these Mc estimation methods can also be applied
to estimate the completeness amplitude Ac of the rock AE apparent amplitude-frequency
distribution. Common Mc estimation methods are as follows:

(1) Maximum curvature method (MAXC) [23]
(2) Goodness-of-fit test (GFT) [23]
(3) Mc by b value stability (MBS) [24]
(4) Median-based analysis of segment slope (MBASS) [8]
(5) Fisher optimal split and Global Search algorithm (FGS) [25]

  

Figure 2. Cont.
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Figure 2. Schematic of five methods for determining the completeness amplitude. The amplitude
data are the synthetic AE catalog generated by Section 2.1. (A) MAXC. (B) GFT, the figure shows the
variations of residuals and goodness-of-fit with Ac, and the horizontal dashed lines indicate 90% and
95% confidence. (C) MBS, b value, Δb, and δb variations trend with cut-off amplitude, the vertical
dashed line is Ac determined by MBS method. ΔM = 0.05, dM = 0.25. (D) MBASS. (E) FGS.

These methods have different algorithms for determining the completeness magnitude
Mc. As shown in Figure 2A, the MAXC approach identifies the magnitude corresponding
to the maximum curvature of the cumulative magnitude-frequency distribution as Mc.
In fact, this point is also the magnitude corresponding to the maximum frequency of the
incremental magnitude-frequency distribution. The GFT method in Figure 2B determines
Mc by comparing the goodness-of-fit R of the fitted frequency-magnitude distribution
with that of the actual magnitude-frequency distribution, and the Mc corresponding to
R ≥ 95% confidence is taken as the completeness magnitude (R ≥ 90% confidence can also
be accepted as a completeness magnitude in the actual complex earthquake catalog). The
MBS method selects the starting point of magnitude where the change in the b value tends
to be stable as Mc (Figure 2C), that is:

Δb = |bave − b| ≤ δb (2)

where bave is the average estimated b value from each magnitude within the magnitude
interval [Mco, Mco + dM] and δb is the uncertainty of the b value proposed by Shi [51]. bave
and δb can be obtained from Equations (3) and (4):

bave = ∑Mco+dM
Mco

b(Mco)•ΔM
dM

(3)
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δb = 2.3b2

√
∑N

i=1 (Mi − 〈M〉)2

N(N − 1)
(4)

where b is the b value of the current magnitude Mco, N is the number of events, Mi is
the magnitude corresponding to event Ni, ΔM is the bin width, and <M> is the average
magnitude of all events greater than Mco. The FGS method integrates the Fisher optimal
split and global search algorithms to determine the log-linear segment of the incremental
amplitude-frequency distribution. As shown in Figure 2E, the FGS fully considers the
influence of data volume and goodness-of-fit on the estimation results.

Because the b value is a statistical parameter, the b value estimation will be more
stable and accurate with the increase in data volume, and this conclusion has already
been discussed by many researchers [8,50,52]. Here, we compared the accuracy of b value
estimation using synthetic AE amplitude data generated in Section 2.1 to explore the
differences in the above five completeness amplitude estimation methods under different
data volumes. We randomly generated a source amplitude that obeyed an exponential
distribution with a theoretical b value of 1.0666 and a data volume of 100,000 as [50, 109]
dB and assumed that the attenuation obeyed the Poisson distribution with the interval
of [1, 10] dB. According to the theoretical proof of Liu [25], the amplitude interval that
still obeys the exponential distribution after attenuation is [49, 99] dB. Therefore, the
theoretical completeness amplitude Ac of the synthetic apparent amplitude data is 2.45.
Then, Bootstrap was used to extract 1000 samples from apparent amplitude data with
data volumes of 100, 200, 300, 500, 800, 1000, 2000, 3000, 5000, 8000, 10,000, 30,000, 50,000,
and 100,000. Figure 3 shows the variation in average Ac and average b value of 1000
Bootstrap samples with different data volumes; the error bar in the figure is the Bootstrap
95% confidence limit.

As shown in Figure 3, the accuracy of Ac estimated by the five methods was positively
correlated with the accuracy of the b value, which indicates that selecting an appropriate
Ac is very important for the correct b value estimation. This also proves the availability
of generated synthetic data to simulate real AE data to a certain degree. It can be seen
from the stability of the estimation results that the goodness-of-fit of all methods exceeded
0.9 when the data volume was 3000. Because GFT-90% uses the cumulative amplitude-
frequency distribution to estimate Ac, the goodness-of-fit can reach 0.9 just for a data
volume of 100. An interesting phenomenon is that the accuracy of the Ac and b values
decreased with an increase in the data volume, and only when the data volume was greater
than 300, the results of 1000 Bootstrap samples could be successfully searched. MBASS
is more dependent on the amount of data and requires at least 5000 data volumes to
successfully search the results of 1000 Bootstrap samples. Therefore, these two methods
are not suitable for estimating the Ac and b values. The confidence limits and uncertainty
of MAXC and MBS were consistent when the data volume was less than 3000. However,
when the data volume was greater than 3000, the confidence limits of the MAXC and FGS
methods began to gradually decrease to 0, while the mean Ac and b value estimation of
MBS exceeded the theoretical value, and the uncertainty of Ac was evident. In addition,
because both Ac and b are statistical values, the stability of the statistical results largely
depends on the amount of data. To better search the log-linear segment, the doubly
truncated amplitude-frequency distribution was accepted by FGS, which fully considers
the amplitude distribution characteristics. Therefore, the uncertainty of the Bootstrap
confidence limit was higher than that of other methods when the data volume was small.
However, it can also be seen that the mean Ac and b values of the Bootstrap samples
obtained by FGS were still accurate.
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Figure 3. The variation of Ac and b values estimated by the five methods with different synthetic data
volumes. The theoretical Ac value is 2.45, theoretical b value is 1.0666, and the data volume is 100,000.
Estimated Ac and b values are the mean value of 1000 Bootstrap samples. The error bar is the 95%
Bootstrap confidence limit. (a–e) MAXC, GFT-90%, MBS, MBASS, and FGS, respectively.

The column distribution of Ac obtained by 1000 Bootstrap samples of various com-
pleteness amplitude estimation methods is shown in Figure 4. This shows that MAXC
was the most stable and reliable, followed by the FGS method. Although the estimation
result of the GFT method also seemed very stable, it clearly underestimated the theoret-
ical Ac, which is inconsistent with the actual situation. Similarly, MBASS not only had
unstable results but also overestimated Ac by more than 15% of the samples. The MBS also
overestimated Ac and reached more than 10% of the samples when the data volume was
10,000 and 50,000. From the above analysis, it can be seen that the estimation methods of
completeness magnitude in seismology are also applicable for completeness amplitude Ac
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in small-scale rock AE tests, despite some differences in searching ability, accuracy, and
stability of estimation results among different methods.

Figure 4. Estimation Ac of 1000 Bootstrap samples of five methods with three data volume at
(a) 10,000, (b) 50,000, and (c) 100,000.

As can be seen from the amplitude-frequency distribution in Figure 2, the rock AE
data had an auxiliary discontinuous amplitude point A0 at the end of the high amplitude
segment, which was similar to M0 in the earthquake sequence. Therefore, when estimating
the b value based on the G–R law, the high amplitude data greater than A0 would inevitably
affect the accuracy of the b value estimation. As shown in Figure 2D,E, both the MBASS and
FGS can estimate the auxiliary discontinuous point of the magnitude-frequency distribution;
therefore, which one is more suitable for estimating the auxiliary discontinuous point is
worth further discussing. Figure 5 clearly shows that A0 estimated by MBASS was smaller
than Ac. Therefore, we continued to estimate the third discontinuous point. However, only
a few of the third discontinuous points met the requirements at the amplitude of 90 dB. By
contrast, the FGS method was able to successfully find both end discontinuities, and the
estimation A0 was very close to the theoretical A0 at the amplitude of 99 dB. Compared
with Figure 5a,b, the log-linear segment of the apparent amplitude-frequency distribution
between Ac and A0 identified by the FGS method was much more stable and reasonable
than that of the MBASS method. Therefore, the FGS was more suitable for estimating the
auxiliary discontinuous point A0 at the right end of the apparent amplitude-frequency
distribution in the rock AE.
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Figure 5. Search for Ac and A0 of apparent amplitude-frequency distribution by FGS and MBASS. In
order for MBASS to estimate 1000 Bootstrap samples, we generated 100,000 data volumes. (a) FGS.
(b) MBASS; we also counted the number of third discontinuities of 1000 Bootstrap samples.

2.3. The Optimal b Value Estimation Procedure through Apparent Amplitude-Frequency
Distribution for Rock AE Tests

Because the Bootstrap approach can obtain a reliable estimation and avoid outliers,
here, combined with the Bootstrap, we proposed to use MAXC to estimate the completeness
amplitude Ac and FGS to estimate the auxiliary discontinuous point A0, respectively. How-
ever, after determining Ac and A0, another issue worth discussing was which regression
method we needed to use to estimate the b value of the apparent amplitude-frequency
distribution between Ac and A0.

Most papers still use least-squares regression (LSR), which assumes that the frequency
data errors are Gaussian, to estimate the b value. However, frequencies based on count
data have Poisson sampling uncertainties, which cause bias when using LSR for b value
estimation. Thus, a generalized linear model (GLM) subject to Poisson error can provide
a more accurate fit of count data [45,49,53]. Here, we also used the data generation in
Section 2.1 to compare LSR assuming a Gaussian error and GLM assuming a Poisson
error with apparent amplitude data between Ac and A0 at a 95% confidence limit. As
shown in Figure 6, the confidence intervals of LSR and GLM indicate significantly different
changing trends. The confidence intervals of GLM gradually narrow as the amplitude
decreases, and the whole amplitude show a “trumpet” shape. However, the confidence
interval of LSR remains parallel from small to large amplitudes, which evidently does
not conform to the characteristics of the amplitude-frequency distribution. Maximum
likelihood estimation (MLE) is currently one of the most popular methods for estimating
the b value [54], and it can be seen from Table 1 that the standard deviation and bias of
the b value obtained by this method are also very small. Therefore, once the apparent
amplitude-frequency distribution between Ac and A0 is determined, the MLE is also a
good choice for regression [49]. However, it is worth noting that the MLE does not have
an accurate confidence interval of the doubly truncated amplitude-frequency distribution
and cannot further analyze the uncertainty of the estimation results. Thus, we chose GLM
regression to fit log-linear amplitude of apparent amplitude-frequency between the left end
point Ac identified by MAXC and the right end point A0 identified by FGS, and here we
named this b value estimation procedure as MFBG (MAXC-FGS-Bootstrap-GLM).
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Figure 6. Ninety-five percent confidence limits of log-linear segment identified by MFBG from
synthetic data with 100,000 data volumes. (a) GLM regression assuming Poisson error. (b) LSR
regression assuming Gaussian error.

Table 1. Estimated b values by MFBG when using GLM, LSR, and MLE regression.

Theoretical b Value Estimating Method Estimated b Value Standard Deviation Bias

1.0666
GLM 1.0705 0.0471 0.0039
LSR 1.0714 0.0039 0.0048
MLE 1.0711 0.0233 0.0045

3. Application of MFBG in b Value Estimation of Rock AE Test

To evaluate the performance of the new b value estimation procedure MFBG, a non-
explosive fracturing agent expansion was designed to conduct an AE test on red sandstone,
marble, granite, and limestone. The rock broke and formed a specific failure surface because
the non-explosive fracturing agent was injected into the three pre-drilled holes in the middle
of the specimen (the mass ratio of expansion agent to water is 5:1.7). This experimental
design ensured that the AE signals collected by the sensor were all generated by rock
expansion fractures and did not rely on location technology to identify valid rupturing
data, and a PCI-2 AE system used in this test with six sensors that were tightly attached to
the two sides of rock specimen which parallel to the failure surface to collect the AE signals
radiated during rock failure, and the parameter settings of AE equipment are shown in
Table 2. The specific experimental process, rock sample size, and sensor distribution are
shown in Figure 7.

Six sensors were used in the test: to completely remove the signals of non-rock
fractures and ensure sufficient data volume, we set the AE signals arriving at the same
time every four channels as the rock fracture signal. In this way, we obtained 15 channel
combinations, each of which had 10 b values, and used MFBG to estimate the mean value
of the b values for each channel. Table 3 shows the mean b values of 1000 Bootstrap samples
from the six sensors for red sandstone, marble, granite, and limestone. We can see that the
b values of the four types of rocks decrease successively because the four types of rocks
have different scales of mineral particles, mineral composition, and discontinuity, which
lead to different failure scales under the expansion force.

Table 2. Parameter settings of AE device.

Sampling Rate/MSPS Resonant Frequency of Sensor/KHz Threshold/dB PDT/μs HLT/μs HDT/μs

10 140 40 50 300 200
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Figure 7. Schematic of non-explosive fracturing agent expansion rock AE test. Non-explosive fracture
agent was injected into three boreholes of the specimen, and the fracture surface was formed in the
center of the three boreholes. The label of specimen surface a’ is parallel to a, and b’ is parallel to
b [25].

Table 3. b values of 6 channels of red sandstone, marble, granite, and limestone.

Channels
Mean b Value

Red Sandstone Marble Granite Limestone

1 1.1009 0.8202 0.71992 0.40395
2 1.14325 1.0878 0.74096 0.55178
3 1.1957 1.10356 0.80763 0.59163
4 1.29028 1.15292 0.98828 0.63416
5 1.46777 1.2006 0.99417 0.75007
6 1.8879 1.2024 1.00422 0.82052

Generally, red sandstone with smaller mineral particles binding tightly is beneficial to
the stress increase and the final large-scale fracture formed, but it also limits the initiation
and propagation of rock cracks, resulting in a larger b value, as the number of large-scale
fractures is far less than that of small-scale fractures. In contrast, marble and granite
with larger mineral particles and more defects will have more complex heterogeneity
and internal structure characteristics, which is unbeneficial to the stress increase and
the final large-scale fracture formation, but this also provides the opportunity for crack
propagation and penetration, resulting in the generation of more large-scale fractures with
smaller b values during the rock failure. In particular, the mineral particles composition of
limestone is also small and binds tightly, but unlike red sandstone, there is usually a large
range of joints in limestone, which largely control the scale of rock failure, resulting in the
smallest b value than other rocks. Altogether, the estimated b values of various types of
rock samples are clearly different, which shows that the b value depends on the material
heterogeneity [55–57], which is also the basic idea for verifying the effectiveness of MFBG.

To explore in more detail the reasons why the b values of different types of rocks
showed an interval distribution, we use cross polar light technology to carry out a transpar-
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ent refractive index experiment on rock slices with a thickness of 0.03 mm and the size of
1.7 mm × 1.3 mm to observe rock microstructure and further analyze the relationships be-
tween AE b value characteristics and rock microscopic composition. As shown in Figure 8,
red sandstone is mainly composed of fine-grained quartz, which is tighter than marble
and composed of larger dolomite and calcite. Therefore, the b value of red sandstone was
slightly larger than that of marble. Granite has various mineral particles and defects or
voids, which make it prone to large-scale fractures. Limestone is mainly composed of
calcite and is even tighter than red sandstone. However, owing to the numerous joints
created during deposition, more large-scale fractures are generated. Therefore, the b value
of red sandstone was the largest, followed by marble and granite, and the b value of lime-
stone was the smallest. The results of the four types of rock specimens with b values from
microstructural characteristics are the same as the estimated b value using MFBG, which
indicates that this method is accurate and stable for the estimation of the rock AE b value.

 

Figure 8. Microstructure of rocks obtained from transparent refractive index experiment. (a–d) Red
sandstone, marble, granite, and limestone, respectively. Qt—quartz; Dol—dolomite; Cal—calcite;
Kfs—potash feldspar; Bt—biotite; Pl—plagioclase [58].

The temporal variation characteristics of the b value are often used for seismic hazard
analysis, crack scale failure description, and damage accumulation assessment in rock;
normally, the b value is negatively correlated with the stress. As shown in Figure 9,
we used the new b value estimation procedure recommended in Section 2.3 to estimate
the AE b value with temporal variation and combined energy, amplitude, and strain to
further verify the effectiveness of the MFBG through the internal relationship between
the b value and crack scale development during rock failure. Because the b value is a
statistical value, the accuracy of its estimation results is greatly affected by the data volume.
Therefore, in order to improve the representativeness and the readability of the analysis
results, here we only conduct a special analysis on the granite with the largest data volume
collected. Figure 9c shows that the rock failure under expansion stress was manifested as
a continuous increase in deformation macroscopically, which has experienced the entire
process of compaction of existing defects and microcracks, initiation, propagation, and
interpenetration of new cracks, and finally, the formation of the main fracture [59,60]. In
this process, the appearance of energy and amplitude signals was usually triggered by
a rupturing scale, which in turn led to a decrease or increase in the b value under the
constraints of statistical laws. Furthermore, Figure 9 shows that the temporal variation
characteristics of b values decreased continuously, and especially for the time before 16,550 s
and after 16,600 s that b value almost linearly decreased. This is consistent with Scholz’s
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laboratory experiments [14], which also show that the b value in the size distribution of AE
events decreases linearly with differential stress. Therefore, the MFBG method estimated
the b value in the AE tests can accurately describe the size distribution characteristic of
rock failure.

 

 

Figure 9. Cont.
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Figure 9. Temporal variation of AE b value, energy, amplitude, and strain of (a) red sandstone,
(b) marble, (c) granite, and (d) limestone. Since the development of non-explosive expansion agent
was very slow and few signals were generated in the early stage of the tests, the starting time of the
experimental analysis selected here was different.

4. Conclusions

To research the accurate b value estimation procedure based on apparent amplitude
distribution of rock AE, this paper performs a comparative analysis of various b value
estimation methods that are used in earthquakes by simulated apparent amplitudes. A new
b value estimation procedure was proposed, and its reliability is also further verified on
rock AE testing and a transparent refractive index experiment. The following conclusions
are drawn from this study:

Attenuation causes the two ends of the apparent amplitude-frequency distribution to
deviate from the log-linear relationship. Of course, there also retains a finite amplitude in-
terval that still obeys the G–R law, with the b value being the same as the source. Therefore,
we must search for the log-linear segment in the apparent amplitude-frequency distribution,
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which can represent the source size distribution characteristics. Furthermore, we gener-
ally set the acquisition threshold and maximum output amplitude of the AE equipment,
resulting in a doubly truncated exponential distribution for the rock AE frequency-size
distribution. We also define the left and right end amplitude points deviating from the G–R
law as the completeness amplitude Ac and auxiliary discontinuous amplitude A0, which
correspond to the completeness magnitude Mc and auxiliary discontinuous magnitude
M0 in the earthquake catalog. Additionally, more attention must be paid to the complete-
ness amplitude Ac and auxiliary discontinuous amplitude A0 to obtain the source size
distribution through the b value of the apparent amplitude frequency.

The estimation method of completeness magnitude commonly used in earthquakes
was also suitable for identifying the completeness amplitude in rock AE. Especially, the
MAXC can better estimate Ac, and the FGS can better estimate A0. Moreover, we combined
the Bootstrap approach to propose a new b value estimation procedure named MFBG, which
can better fit the apparent amplitude distribution without any attenuation compensation,
and the effectiveness of the new method was verified by the relationships between rock
crack size distribution and mineral grains and internal structure characteristics under
laboratory rock AE tests and transparent refractive index experiments. This study can
provide new insights and methods for studying the precursory characteristics of laboratory
rock tests and rock mass engineering through the variation of rock AE b value.
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Abstract: Previous studies have revealed that toxic gases and dust (smoke dust) are the most common
pollutants generated by the blasting operations in open-pit mines, which might lead to a threat to
the environment’s condition, health and safety, and properties protection around the blasting site.
In order to deal with the problems, a pollution evaluation system was established based on the
fractal dimension theory (Dbox(P)) and grayscale average algorithm (Ga) in digital image-processing
technology to recognize and analyze the distributions of the smoke-dust cloud, and subsequently
determine the pollution degrees. The computation processes of Dbox(P) and Ga indicate three fitted
correlations between the parameters and diffusion time of smoke dust. Then, a pollution index (Pi)
is put forward to integrate the global and local features of Dbox(P) and Ga, and develop a hazard
classification mechanism for the blasting pollutants. Results obviously denote three diffusion stages
of the pollutants, mainly including generation stage, cloud-formation stage, and diffusion stage. In
addition, it has been validated that the proposed system can also be utilized in single-point areas
within a whole digital image. Besides, there are variation trends of the thresholds T1 and T2 in
binarization with the diffusion of pollutants. With this identification and evaluation system, the
pollution condition of smoke dust can be obviously determined and analyzed.

Keywords: rock-blasting; smoke-dust pollution; digital image processing; fractal dimension; grayscale
average; hazards classification

MSC: 54H30

1. Introduction

With the evolution in industrial fields, the mining industry is confronted with a huge
energy demand, and is gradually emerging as the critical support for technological devel-
opment and progress [1–3]. To adapt to community challenges, ore-deposit extractions are
constantly expanding, especially for open-pit mines [4,5]. Blasting is a conventional excava-
tion measure for the ores crushing on the ground, and also an option for constructing roads,
tunnels and other constructions in mine projects [6]. However, during blasting operations,
there are undesirable consequences engendered, such as seismic waves, explosive flying
scatter (fly rocks), air shockwave, noise, toxic gases, blasting dust, etc. [6,7].

Within these hazards, blasting dust, the PM2.5 and PM10, and some toxic gases, in-
cluding CO, NOx, SO2, H2S, and so on, become prominent components of environmental
pollutants in blasting sites [8]. Most of these toxic gases are released in a range of concen-
trations due to environmental and technical factors [9]. Inhaling a certain amount of these
toxic gases during their diffusion period can be fatal [10]. Furthermore, prior studies have
denoted that it can reach thousands of milligrams per cubic meter for the local blasting dust
concentration in surface mining [11]. The combination of blasting dust with toxic gases,
which is collectively referred to as smoke dust, has attracted extensive attention owing to
its salient hazardousness on air quality in mining sites and detrimental effects on human
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health [12,13]. It has been demonstrated that a fairly high percentage of miners suffer
from respiratory diseases or reduction in respiratory-system immunity due to long-term
exposures to high-concentration dust environments, especially pneumoconiosis [14,15].
In addition, the accumulation of dust reduces the humidity of the atmosphere, which
then increases the ambient temperature [16]. Meanwhile, it is noteworthy that smoke
dust reduces visibility in the mining site, resulting in high working risks and a significant
reduction in production efficiency [17]. Large amounts of dust pollution can depose on
the ground, causing vegetation degradation and animal habitat destruction [18]. With the
characteristic of high concentration and wide range of diffusion it might spread into the
water area for dust clusters, thereby contaminating the downstream areas [8]. Studies over
the past decades have provided important information on the generation and diffusion
mechanisms of smoke dust in open-pit mines. Numerical simulations, for instance, Fluent
software, LS-DYNA etc., were conducted to figure out the smoke dust movement, diffusion
rate, and the time consuming to float out of the pit, validating the effects of vortex action
and the vertical height in the pit on coal-mine dust, and optimizing blasting parameters
at the same time [19,20]. Inspired by the approaches, Tang et al. [21] established a circu-
lating accumulation emission model to analyze dust diffusion, including dust emission,
retention, and diffusion, respectively. Besides, pertinent artificial intelligence systems, such
as particle swarm optimization (PSO) and the long short-term memory (LSTM), were em-
ployed to predict and control dust concentration [22–24]. In terms of the evaluation system
of efficiency of dust reduction with multiple techniques, there are also studies [25,26] in
virtue of some tools (e.g., computational fluid dynamics model (CFD): ANSYS/Fluent 10.0
software, ANSYS, Inc., Pittsburgh, Pennsylvania, USA) mainly aiming at monitoring the
dust diffusion, and then guaranteeing the mitigation of the smoke-dust pollution.

Furthermore, there are increasing concerns that, exposed to high-concentration smoke
dust in open-pit mines, measurement equipment has been a crucial factor for immediately
monitoring the pollution condition. Attalla et al. [9] adopted non-dispersion infrared
(NDIR) and differential optical absorption spectroscopy (DOAS) to examine the diffusion
of fugitive NOx and other pollutant gases. In addition, dust sample sensors, which are
commonly based on ultrasound, optical, and electrochemical sensing elements, have also
emerged as conventional methods for assessing contaminant gases and particulate fractions
of dust emission [2]. With the widespread application of unmanned aerial vehicles (UAVs),
researches were performed to load a series of sensors in the rotary-winged platforms, such
as CO2, NO2, SO2, PM10, etc. [27]. When in the application process, it is essential for the
sampling collection location and source scales to be considered owing to the differences in
fixed-wing and multi-rotor UAVs, and thus the long response time, limited measurement
distance, and the accuracy of sensing elements hindered further use of UAVs.

Recent developments in the field of machine vision have led to a renewed interest
in various industries due to their merits in non-contact measurements, full-visualization
monitoring, and affordable cost [28–31]. In spite of the fact that the related studies on these
vision-based models are currently at an early stage, digital image technology, mainly based
on grayscale features and morphological features, has been widely applied in pollution
analysis and control [32–35]. Dust-pollution measurement models established on the basis
of grayscale features attempted to develop a relationship between the dust concentration
and grayscale features extracted from dust images. Yue et al. [30] presented a photo-
based method for analyzing air pollution using grayscale data. Thereafter, a logarithmic
relation was acquired between the grayscale values and the powder volume by Grasa
et al. [34], providing a calibration curve without any fitting constants. On the other hand,
morphological feature models are inherently associated with the connections between
the morphological features (such as the particle shape, size distribution, and surface
structure) and dust concentration. R. Davies [36] and M. Taylor [37] were convinced
that parameters of concentration and morphology were important in particle detection,
and the latter presented mathematical models to characterize the particles. M. Paphael
et al. [38] estimated the mean particle size utilizing optical parameters, on-line turbidity,
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and solid concentrations. It is also notable for the fractal dimension, another aspect of
morphological features, to describe the space occupancy and the irregularities of granulated
materials [39–42]. To figure out the effects of fractal dimension on the porous texture of coal
dust images, Mahamud et al. [41] conducted experiments to measure particles exposed to
different temperatures. Zhang et al. [42] apply fractal dimension to record the particle size
of crushed specimens and obtain a legible regularity of size distribution in different stress
conditions. Nevertheless, traditional grayscale or morphological models only considere the
local features of pollutants but ignore the global features of their distributions, resulting in
a one-sided evaluation of the pollution environment.

To further present the main advantages and limitations of the technology and equip-
ment of previous studies on the pollutant migration that happened during rock-blasting
operations, an overall comparation between them is summarized as the Table 1:

Table 1. Comparation of previous studies on analysis of smoke dust.

Methods Main Advantages Main Limitations

Numerical simulation methods [19–21] Short research cycle, safety and low
investment Lack of authenticity

Machine learning methods [22–24] Prediction effectiveness High demand for dataset

Measurement equipment for smoke dust [9,28] Visual and clear data with a
reference of existing standard limited measurement distance

Grayscale feature models [32,35] High flexibility; non-contact
measurements

Few field applications for smoke dust
Morphological feature models [36–43]

Overall, all the evidence reviewed here seems to require a comprehensive evaluation
system and distribution analysis for smoke dust pollution caused by blasting operations in
open-pit mines.

In this paper, a vision-based model was established based on the fractal dimension
theory (Dbox(P)) and a grayscale average algorithm (Ga) for smoke dust evaluation in open-
pit mines. Framed pictures were first collected from the video recorded by a UAV, and then,
through a series of image processing operations, Dbox(P) and Ga were separately calculated,
the results of which were fitted by logarithmic and linear functions, respectively. For the
sake of considering both global and local characteristics of pollutants, and fully adopting
simplified expressions to characterize the various generation stages of smoke dust in blast-
ing sites, a pollution index (Pi) was proposed to integrate the Dbox(P) and Ga, developing a
hazard classification mechanism corresponding to four-level regions. With this evaluation
system, the pollution condition of smoke dust can be obviously developed and analyzed,
and eventually adequate preparations in response time and emergency preparedness are
capable of eliminating detrimental effects on health protection and property safety, as well
as improving the environmental quality around the blasting sites.

2. Image Processing Method Based on Grayscale Average and Fractal Dimension

Digital image processing has been successfully applied in the engineering field de-
pending on the difference in the morphological characteristics or the color features of the
research object against the homologous background [44–46]. Based on the technical princi-
ples, and the available devices, it is possible to achieve the monitoring and evaluation of
the smoke-dust. The specific procedures of the algorithm in this research can be illustrated
as a flowchart in Figure 1:
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Pi

Csum cij cij cij
Csum

Gm,n c(i,j, ) c(i,j, ) c(i,j, )

 

Figure 1. Flowchart of the image processing algorithms for extracting features of pollutants, and
establishing an evaluation mechanism for hazards classification of smoke dust during blasting
operations.

As shown in Figure 1, the proposed method can be divided into two parts, including
the modules of image-processing operations and properties analysis, which primarily aim
to acquire the feature image of the pollutants, and relevant calculation results about their
distribution properties. According to the flowchart, pollution conditions in blasting sites
can be analyzed and evaluated through a series of digital images. The specific application
procedures are briefly presented below:

Step one: collect pollutants images of smoke dust at the blasting site, and then the
software reads the images to form a three-dimensional digital matrix Cm×n×3, which
includes pixel values cijk and homologous locations (i, j); m, n represent the image size in
height and width, and the third dimension of the matrix represents three color channels: R,
G and B, respectively.

Step two: based on the image matrix Cm×n×3, extract the main regions where pollu-
tants distribute via Equations (1) and (2) below in accordance with the color characteristics
of the smoke dust [47]. As is usual, the smoke dust pollutants in non-coal mines appear
a brighter color, and thus, compared to several dark backgrounds, the pixel values of
pollutants tend to be higher. Through the screening method, a series of pixels representing
superfluous regions will be removed, whereby the images can be prepared for subsequent
image processing operations.

Csum = cij1 + cij2 + cij3 (1)

Csum > a (2)
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Step three: fulfill further image-processing operations with pertinent programs. Image
graying is enforced using the empirical formula shown in Figure 1, the matrix result of
which is denoted as Gm×n, and by virtue of image graying, the color dimensions are
converted into two dimensions, viz., the image size. Then, binarization was served to
recognize the regions of interest, in which a double-threshold method (T1, T2) was put
forward to improve the performance of the feature extractions, and in this way, pixels
within the gray image that are, respectively, lower or higher than T1 and T2 are assigned
as 0 (black in color), while the intermediate areas between the thresholds are assigned as
1 (white in color). Noise reduction is then adopted to eliminate excrescent noise points
caused by the forming transversion of pollutant images [48].

Step four: calculate the Dbox(P) and Ga of the smoke-dust images to quantitively
analyze the distribution changes of on-site pollutants. In the process, the two-dimensional
box counting method was developed to acquire the fractal property of the pollutants [40].
Within the fractal calculation processes, the binary images are traversed by a slew of
windows, the side lengths of which are decided by the original picture size, and are
incremental pixel by pixel until the width and height reach half of the original length.
Then, for each window, keep a track of the number of square boxes N(ε) intersecting the
pollutant parts as well as the lengths of the boxes ε. Afterwards, instead of the mathematical
definition of fractal dimension theory as Equation (3), a regression method is used to analyze
two groups of the box data through logarithmic processing, which can be expressed as
Equation (4). Obviously, the slope of the regressed equation Dbox(P) is the fractal dimension
of the smoke dust.

Dbox(P) = lim
∈→0

log N(∈)
log 1/ ∈ (3)

log N(∈) = Dbox(P) ∗ log 1/ ∈ + C (C is a regressed constant) (4)

Meanwhile, Ga of the binary images is calculated based on Equation (5), which can
be defined as the division operation between the pixels denoting pollutants and site
background, respectively. When in the calculation process, a grayscale distribution curve is
plotted to develop the pollutants distribution along the directions of horizontal strike.

Ga =
∑h

i=1 ∑w
j=1 bi,j

h × w
(5)

where h and w represent the height and width of smoke-dust images.
Step five: through the computation of the Dbox(P) and Ga of the pollutant, a pollution

index Pi is provided to achieve a comprehensive consideration of Dbox(P) and Ga, and the
integration expression can be depicted as Equation (6):

Pi = Dbox(P) + Ga (6)

Then, according to the change tendency of Pi, it can be more accurate to evaluate
the pollution condition from a quantitative aspect, and with a series of pollutant images
collected from a whole blasting project, the index Pi is capable of dividing into four regions
of pollution levels, Level I~IV, viz. Therefore, the pollutant condition of smoke dust can be
dramatically characterized no matter the period of monitoring or throughout the whole
working process by this research.

3. Algorithm Application of Dbox(P) and Ga with a Fugitive Dust Picture

For the sake of further demonstrating the proposed evaluation method of pollutant
distribution in a blasting site, an image sample with fugitive dust shown as Figure 2 was
applied to validate the effectiveness of the image-processing algorithm, and measurement
of Dbox(P) with Ga. Firstly, the original color image of fugitive dust as Figure 2a was
read, where in the image dust particles emerge distinctly with homologous pixels when
compared to the black background. With the application of the image-processing method,
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the region of the floating dust was arguably extracted to produce a binary image, which can
be visualized as Figure 2b. Based on the binary image, the calculation processes of Dbox(P),
Ga are also displayed in Figure 2c,d, respectively. As for the grayscale distribution, an
ergodic window of 438 × 10 pixels in size was employed to cover the binary image along the
direction of the horizontal, and with the traversal calculations, the grayscale distribution,
cumulative distribution curve, and grayscale average were obtained, the results of which
are displayed in Figure 2e. According to the grayscale parameters, Ga of the whole image is
0.2490, and the dust objects primarily mainly distribute at 220~550 pixels of the horizontal
strike. Similarly, the calculation procedures of Dbox(P) are devised as Figure 2d using the
two-dimensional box counting method. With a series of measuring boxes covering the
binary image, the computation procedures are revealed as the fitted equation in Figure 2f,
and the Dbox(P) of the dust image is 1.977, the R2 of which is 0.9998, embodying a precise
fitting effect when applying it to research objects of fine grains.

Figure 2. Description of the proposed method for the Dbox(P) and Ga of the fugitive dust picture,
including (a) original image of fugitive dust, (b) binary image through a series of image-processing
operations, (c,d) calculation process of grayscale properties and Dbox(P) and (e,f) results of grayscale
distribution, Dbox(P) and Ga of the fugitive dust.

In order to verify the accuracy of calculation results in Dbox(P) and Ga with the pro-
posed binary dust image handled from the original image, the grayscale average distri-
bution of the gray image, remaining quite complete image information with a 256-level
grayscale form, was devised to analyze the change tendency of dust pixels as a comparison
to the binary image, and quantitatively appraise the effectiveness on object segmentation
within the application of image processing. The analysis results can be shown as Figure 3.

As is mentioned with the grayscale parameters, dust particles are primarily distributed
at 220~550 pixels of the horizontal strike in accordance with the binary image. It can be
perceived that the developed trend of the grayscale average from gray image tends to be
consistent, performing a fairly smooth waveform shape. In addition, it is almost coincident
with the high-distribution region of dust particles in any binary image or gray image. While
there is a hysteresis effect for the grayscale parameter of gray image at the boundaries
between research objects and background, producing two hysteresis intervals in the rising
and falling stages of the grayscale average, the area of the hysteresis intervals accounts for
about 5.58% of the total enclosed area by the grayscale distribution line of gray image. It
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is imperative to note the significance turning points, data turning point G1 (90, 25.16) of
gray image embodying a hysteresis effect contrasting to B1 (210, 7.37 × 10−5) of binary
image for the first hysteresis interval, whereas G2 (560, 51.10) illustrates an almost the same
horizontal position with B2 (560, 3.08 × 10−5). A possible explanation for this might be the
low pixel values of edge dust particles in the image (i.e., grayscale value). As a whole, in
spite of the existence of hysteresis intervals, the application image of fugitive dust presents
a validity in the object recognition of dust clouds and other fine-grained substances from a
quantitative aspect.

 

Figure 3. Result comparation on grayscale average between the binary image and grayscale image,
including (a) original image of fugitive dust, (b) grayscale image, (c) grayscale average of binary and
gray image for algorithm validation.

4. Results on the Dbox(P) with Ga and the Pollution Evaluation System of
Blasting Operations

A field experiment for analyzing smoke dust distribution, and evaluating the pollution
condition based on the proposed method, was conducted in a deep open-pit mine with
multi-step terrain production in Xinjiang, China. Shallow hole blasting was adopted for
the ores crushing along the hillside wall, and the whole blasting operations with partial
diffusion were recorded by a UAV platform flying directly above the blasting region with
a fixed height. The platform can be predetermined in an autonomous direction, and
illustrates high-temporal sampled pictures in real time.

A total of 95 images were extracted from the video recorded by the UAV with an
interval of 1 s, which are 640 pixels in width and 368 pixels in height, integrally revealing
the processes of blasting preparation, exploding and diffusion of smoke dust, respectively,
which are shown in Figure 4.

 

Figure 4. Frame pictures of pre-blasting, exploding stage and diffusion stages extracted from the
UAV video data.
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From the images in Figure 4, it can be found that there is an obvious contrast between
smoke dust and the field background throughout the periods of blasting operation. At
the initial stage, debris and dirt deposits on the ground were lifted up due to the shock
wave of blasting, and with the gravity effect, the smoke dust was then dispersed suf-
fering from the wind floating and other meteorological conditions. At this stage, most
distribution regions of the pollutants perform as partially bright in color, while regions
representing the ground surface and the bench tend to be dim. For a clearer description,
a three-dimensional elevation grayscale image was put forward to show the grayscale
distributions and the differences in elevation, as depicted in Figure 5. The elevation range
in Figure 5e extracted from the region presents an exceedingly grayscale difference between
the pollutants and ground surface. By this method, feature extraction of a complicated
environment between the pollutants and background can be fulfilled through a series of
image-processing algorithms proposed in this research.

Figure 5. Grayscale elevation map of smoke dust with homologous calculation processes, including
(a) original image of smoke dust, (b) gray image, (c) image fragment of gray image, (d) digital matrix
of the image fragment, and (e) grayscale elevation map based on the image fragment.

To ulteriorly assess the effectiveness of the proposed method in blasting operations, the
95 images from the blasting work were processed by the image-processing algorithm, and
then served to determine the Dbox(P) and Ga. Within the pollutant images, the computation
processes begin from the 16th image because the 1st~15th images belong to the prior stage
of blasting, and smoke dust is barely distributed in these images. Partial image-processing
results of the 15th, 30th, 45th, 60th, 75th and 90th images are shown as Figure 6:
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Figure 6. Partial visualization results of the image-processing operations, including original images
and binary images, corresponding to the 15th, 30th, 45th, 60th, 75th and 90th images.

Following the image-processing results it can be discerned that at the first stage of
blasting, a large amount of smoke and dust are engendered to form smoke-dust clouds,
mainly due to the explosive at each charge point, such as the 30th picture. At this stage, dust
particles start to float due to the shockwave caused by the explosion, which is much larger
than the gravity of the dust particles, friction between dust particles and rock particles, and
adhesion of dust against other items. Then, with the completion of the blasting operation,
the smoke-dust clouds gradually develop, when in this process the smoke dust continues to
move upward as a consequence of the inertia effect, and the motion track of a large amount
of smoke dust is superimposed, subsequently generating a mushroom or mushroom-like
cloud. In addition, from a qualitative perspective for the pollutant distribution, the amount
of smoke dust appears to have an upward trend with the explosion process, and then enters
into a volatility phase, (60)~(75), for instance. Eventually, as the smoke dust continues to
spread, which mainly interfered with meteorological conditions in this period, especially for
the disturbed wind flow, the distribution is confronted with a certain degree of reduction.

To further describe the amount of pollutant, Dbox(P) and Ga for the 15th~95th smoke
dust images were calculated, and the results with corresponding calculating time are
demonstrated in Table 2.

Table 2. Calculation results of fractal dimension and grayscale average for partial pollutant images.

Pollutant Image
Parameters Calculating

Time of Ga (s)
Calculating Time of

Dbox(P) (s)Ga Dbox(P)

15th 0 0 0.3491 1.5598
30th 0.3317 1.7261 0.3511 1.1595
45th 0.4655 1.7957 0.3521 1.1858
60th 0.5023 1.8376 0.3502 1.1795
75th 0.4777 1.8299 0.3671 1.1735
90th 0.3685 1.7913 0.3541 1.205

According to the results of Ga and Dbox(P), a relatively legible data trend is presented,
which can be summarized as increasing to a peaking value, maintaining a stable fluctuation
within a certain range, and then decreasing with time, respectively. Moreover, it is found
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that there is a discrepancy in calculating time between Ga and Dbox(P), the reasons for which
may be explained by the varying levels of program complexity.

For the sake of further analyzing the Dbox(P) and Ga of the collected frame pictures
from the video footage of field blasting, computations of all images by the proposed
method were carried out and the specific results with related fitting curves can be denoted
in Figure 7:

 
Figure 7. Calculating results of Ga and Dbox(P) with corresponding fitting curves. G1, G2, G3 and D1,
D2, D3 represent fitting curves of grayscale average and fractal dimension, respectively.

It can be easily discovered from Figure 7 that there are characteristic distributions
for 80 image samples (16th~95th) on the basis of the results, which accord with a pattern
consistent with the qualitative description, mainly including three stages: increasing, stable
fluctuations, and decreasing. The fitted equations for the Ga and Dbox(P) are listed in Table 3.

Table 3. Fitting results of Ga and Dbox(P) with related R2 for three stages.

Group Number Fitting Equation of Ga and Dbox(P) R2

G1 (Stage one) G1 = 0.382 ln(x) − 0.9239 0.9165
G2 (Stage two) G2 = −0.0006 x + 0.5212 0.0583

G3 (Stage three) G3 = −1.94 ln(x) + 9.1007 0.8188
D1 (Stage one) D1 = 0.1508 ln(x) + 1.2596 0.5707
D2 (Stage two) D2 = 0.0008 x + 1.771 0.2101

D3 (Stage three) D3 = −0.69 ln(x) + 4.909 0.4978

As illustrated in the fitted equations, for both of the Dbox(P) and Ga, stage one (G1 and
D1) and stage three (G3 and D3) can be appropriately represented by logarithmic fits. Stage
two (G2 and D2) in Figure 7 presents varying data fluctuation within a certain range, and
therefore, a linear fit was employed to demonstrate the relationship between the pollutant
parameters and dust images at different times.

In addition, from the fit coefficients R2 of all fitted equations, it can be found that no
matter Dbox(P) and Ga, there are differences in the logarithmic fit of stage one and stage
three. For example, for the grayscale average, R2 of stage one and three are 0.9165 and
0.8188, and as regards the fractal dimension, R2 is 0.5707 and 0.4978, respectively. It is
distinct that there is a numerical reduction from stage one to stage three, the possible
reasons for which are mainly because of the different causes for the performances of the
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pollutants. Smoke dust in stage one is most likely caused by a dynamite explosion in the
field, whereas smoke dust in stage three is more likely caused by a diffusion effect caused
by meteorological conditions, particularly wind floating.

It is also important to denote that, with reference to the fit coefficient, the fitted
equations of Ga (the maximum is 0.9165) perform better when compared to the Dbox(P) (the
maximum is 0.5707), and this phenomenon elucidates that smoke dust in images reflects
more local features than global features because when in the process, Ga is oriented to one
calculation for a whole digital image, while Dbox(P) is confronted with multiple identical
calculation procedures by a series of detecting boxes covering the image.

Based on the proposals of Dbox(P) and Ga, and while combining the benefits of local and
global features, a pollution condition index (Pi) is developed to assess quantitative changes
and spatial-temporal distributions in smoke-dust images. By this way, an integration of
image parameters consisting of Dbox(P) and Ga can be additionally completed, and in sites,
the mathematical expression of Pi is much more widely applied in engineering computation
to guarantee acquisitions of pertinent information related to the engineering efficiency and
practitioner safety. Pi can be presented as Equation (6) above. On the basis of the equation,
Pi of the blasting images can be drawn as Figure 8:

 

Figure 8. Calculating results of pollution index with fitting curves of pollutants distribution.

The results of the correlational analysis are presented in Figure 8, and the relevant
fitted equations with homologous goodness of fits (R2) are also shown. Compared to
any of the parameters in Figure 7 and the calculated results of fitted equations in Table 3,
data distributions of Pi similarly illustrate the legible diffusion stages of smoke dust:
generation stage, cloud-formation stage and diffusion stage. In the graph, the time intervals
of stages one~three are 16~44 s, 45~84 s and 85~95 s, respectively. The single most striking
observation to emerge from the data comparison is that the data distribution tendency of
Pi is similar to the results of Dbox(P) and Ga. Moreover, the R2 of the fitted curves are 0.8365,
0.0022 and 0.7397, embodying a fair logarithmic relationship for stage one and stage three.
At the same time, it also appears to have a more stable data fluctuation for stage two in
contrast to the single parameter. In brief, the proposal of Pi illustrates an ideal performance
throughout blasting processes, and achieves one mathematical expression corresponding to
three stages of pollution distribution. To observe the performance of the proposed method
of smoke dust evaluation in this research, comparative results are summarized in Table 4.
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Table 4. Comparation of calculation methods.

Method RMSE (PM2.5/PM10/NO2)
R Squared

(PM2.5/PM10/NO2)

Dbox(P) − Ga based method in
this study (Pi1/3) 2.85 × 10−3/5.99 × 10−4 0.8365/0.7397

Liu et al. [32] 38.28/62.51/25.88 0.70/0.462/0.328
Zhang et al. [33] 27.53/56.67/24.54 0.881/0.525/0.393

Li et al. [35] 50.67/65.19/29.88 0.563/0.349/0.070

Three previous studies on estimation of PM2.5, PM10 and NO2 were presented based
on the digital image processing, and RMSE along with R squared values are the metrics
for evaluation models. From Table 4, although the three studies targeted three specific
pollutants, the RMSE values of the proposed method (stage one and stage three) indicate
a fair regression effectiveness when compared to the other these models. Similarly, the R
squared values also reveal that the Dbox(P) − Ga based method is reliable for the analysis
about pollutants migrations in blasting operations. Therefore, the RMSE and R squared
values of the proposed method were confirmed by the comparisons.

Based on the comprehensive pollution index of blasting engineering, the proposed
model can be further utilized in pollution hazard classifications. In this research, an attempt
was made to provide a method to evaluate the pollution condition on site in accordance
with the fitting curves shown in Figure 8, which were divided into four pollution levels,
including the serious, the high, the middle, and the mild, as depicted in Figure 9. Detailed
division procedures are also introduced.

Figure 9. Four-level divisions of smoke dust pollution within the fitting plot, including a pollution
level-pyramid graph representing the pollution condition.

(a) At the start of the blasting (from the 16th image), according to the fitting result of
stage one, the Pi is 1.81, and at stage two of the fluctuation period, the logarithmic
fitting results of stage one and three were extended to intersect with it to generate two
intersection points, the coordinates of which are (39.71, 2.30) and (85.56, 2.31). Thus,
the peak value of the model is dictated as the intersection point between stage two
and three. In this way, the Pi interval is [1.81, 2.31].
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(b) After determining the Pi interval, four equal parts were then calculated and deter-
mined, and the Pi values along with their corresponding occurrence times are Pi1
(20.14 s, 1.935), Pi2 (25.49 s, 2.06), Pi3 (32.19 s, 2.185) and Pi4 (85.56 s, 2.31), respectively.

(c) Based on the Pi values, the distribution graph was divided into four regions. As a
supplementary, the region below 1.81 of the Pi value was also assigned to the first
level, while that above 2.31 was assigned to the last level. Therefore, the whole graph
of pollution distribution is divided into four levels, and a color pyramid is used to
describe it. The detailed division criteria of level I~IV can be presented as Table 5.

Table 5. Divisions criteria of blasting pollution-levels with the homologous pollution regions.

Pi <1.935 1.935~2.06 2.06~2.185 >2.185

Pollution-Level Level I Level II Level III Level IV

By virtue of the critical factor of Pi, the pollution evaluation system can be established
for analyzing the distribution conditions of smoke dust, and provide an approach to develop
a comprehensive program in pollution prevention and control. Different from previous
methods in monitoring smoke dust pollution, the proposed system in this research adopts
a series of digital images, and then fulfills pollution classifications through computations
of Pi in the software. Subsequently, the final pollution levels at the target time point can be
determined.

5. Discussion

5.1. Pollution Evaluation of Single-Point Area with Image Slices

The aforementioned research on Dbox(P), Ga and Pi were conducted by virtue of certain
smoke dust images, in which the computation scope was oriented to the full range of one
blasting image. However, sometimes it is necessary to monitor and evaluate the pollutants
at a single point within a provided image to figure out whether the proposed method is
capable of enforcing the task. Figure 10 demonstrates the application procedures for two
single-point areas in the 30th image chosen from the same video.

As shown in Figure 10 b, two pictures were extracted from the binary image, which
are the bench and diffusion area, and the selected square regions are 50 × 50 and 70 × 70
in size, respectively. Dbox(P) and Ga of the pictures were then calculated, and the fitted
results of fractal dimension are illustrated in Figure 10c,d. Distinctly, Ga of area one and
two are 0.174 and 0.481, and Dbox(P) are 1.5454 and 1.8398. Thus, the pollution indexes (Pi
values) can be calculated, the results of which are 1.7194 and 2.3208. Depending on the
proposed pollution-level evaluation system in the previous section, regions one and two
are supposed to be classified as level I and level IV in smoke dust pollution. Consequently,
in addition to the computation ability for the full range of an image, the proposed system
can be also exceedingly applied in the calculation of a single-point pollution area, thereby
satisfying relevant monitoring tasks. At the same time, the results of these two regions
also demonstrate that it is feasible for the system to accomplish analysis on the pollution
condition of smoke dust through digital images recorded at blasting sites.

5.2. Variation Trends on Binarization Thresholds within Image Processing Operations

In the conversion process from image graying to binarization, double threshold bina-
rization was adopted to extract the pollutant features in an image, the thresholds of which
are denoted as T1 and T2. Nonetheless, it is not always consistent for the threshold values
with the blasting program in progress. Owing to the pollutants with variable quantities,
and the complex background in blasting site, T1 and T2 are also required to adapt to the
optimal image conversion in binarization operation. The thresholds used in this research
are denoted in Table 6.
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Figure 10. Calculation results of Dbox(P) and Ga of two single-point pollution areas in the 30th image,
including (a) original image selected at 30 s from the recorded video, (b) binary image through a series
of image processing operations as described previously, and (c,d) Dbox(P) and Ga of the pollutants in
the selected areas.

Table 6. Threshold values of T1 and T2 with the time nodes of image acquiring.

Thresholds Threshold Values of T1 and T2 in Binarization

T1
1–15 s 16–35 s 36–44 s 45–48 s 49–95 s

<10 100 80 60 <40

T2
1–16 s 17–22 s 23–31 s 32–37 s 38–56 s 57–63 s 64–76 s 77–95 s
>240 180 160 150 140 150 160 >170

It is apparent from this table that there are different numbers of time nodes for T1 and
T2 when choosing threshold values in the process of binarization, where T1 consists of five
nodes while T2 possesses eight nodes. This result may be explained by the fact that there
are more changes happening at the border of the highlight pixels, while the dark regions in
the image mostly representing the background present fewer changes. In other words, the
generation process of smoke dust is inherently more associated with the bright pixels in
the pollutant images.

As for T1, at the first time-interval of 1–15 s, the optimal threshold value tends to be
chosen as less than 10, which is an important parameter for the segmentation between
the pollutants and background. Thereafter, T1 is preferably assigned as 100 in 16–35 s.
Obviously, there is a pretty large increase from the first time-interval to the second, the
reason for which might be the mixture of items produced in the initial stage, which mainly
consist of mud blocks, gravel, dust particles, and so on, illustrated as grayish-black in
morphology. For the sake of capturing the features of items while trying to remove the
background part of the picture, it is essential for the threshold border T1 to be moved up
to 100.

After the first time-interval, the blasting operation began at 16 s, and then there is a
steady decline for T1 value until 49 s with a range of 20. A possible explanation for this
might be that the generation process of pollutants has a relatively stable impact on image
pixels in dark regions. The finding provides some supports for the conceptual premise of the
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generation stage aforementioned in the presentation of image parameters due to the three
time nodes being from 16 s to 48 s, where the time interval defined before the generation
stage is 16–44 s. Moreover, at the time interval of 49–95 s, it appears appropriate for the T1 to
be less than 40 so as to preserve dark-area features of pollutants, and the implication of this
is the possibility that there is also a minor effect on T1 for the pollutant distribution within
the cloud-formation stage and diffusion stage. Potentially, this phenomenon indicates that
in these two stages, there are few variations in the dark features of smoke dust.

Turning now to the T2, it is obvious for it to have a data trend of decreasing and
increasing in succession (>240–140–>170), the reasons for which could be attributed to the
generation of a large amount of smoke dust, inducing the bright features to tend towards
unified in a blasting image, and simultaneously masking the features of other bright areas
in sites so that the grayscale values of bright pixels experience a decrease. Then, with the
fading of time, the diffusion of smoke dust is confronted with a gradual reduction, and the
grayscale distribution of the original image progressively reappears again.

At the pre-blast stage of 1–16 s, T2 was decided as less than 240 to guarantee the
removal of pixels not related to pollutants, which indicates that there are more distribu-
tions of bright pixels in the background part of the original image. On the other hand,
different from the steady declines in T1, T2 emerges at decremental or incremental intervals
throughout the whole time-node. Within the time nodes of 17–22 s, 23–31 s and 32–37 s,
the decreasing of T2 demonstrates that with the start of blasting, smoke dust gradually
covers the bright areas in the background, contributing to a more centralized grayscale
distribution. Additionally, the decremental intervals of T2 depict that the generation of
smoke dust slows down at a later stage. The finding further supports the logarithmic
relationship discussed in the generation stage mentioned above. As for the time nodes from
38–76 s, the selections of T2 also present stable fluctuations similar to the cloud-formation
stage, and in this stage, the steady decline may be explained by the inertial motion of smoke
dust, resulting in different development tracks. Then, at 77–95 s, T2 are chosen at more
than 170, which are in line with the previous description of the diffusion stage, when in
this process the smoke dust is mainly subject to meteorological conditions, suffering from a
sluggish spread.

6. Limitations and Future Studies

The insights gained from this study may be of assistance to evaluate the smoke-dust
pollution caused by blasting operations in virtue of digital image technology, and has gone
some way towards enhancing the understanding of the relationship between the Dbox(P)
wtih Ga, and smoke-dust distribution in digital images. Nonetheless, there are limitations
in this study which could have affected the parameters computation, such as the image
quality, mine topography, illumination condition, shooting distance with angle and so on.
Therefore, further research could also be conducted to determine the effectiveness of more
possible factors existing in blasting sites on the application of the evaluation system.

7. Conclusions

A pollution evaluation system based on digital image-processing technology with the
grayscale average algorithm and the fractal dimension theory was proposed to recognize
the features of smoke dust, and determine the pollution conditions generated by blasting
operations in open-pit mines. By using this method, the dust distribution, grayscale
distribution, fitted curves of fractal dimension, grayscale average and pollution index can be
characterized. These approaches can quantitatively analyze the smoke dust characteristics
by means of a computer. Based on the present study, the following conclusions can
be drawn:

(a) An image example of fugitive dust is employed to illustrate and validate the effective-
ness of the algorithm in dust particles, and in spite of the existence of the hysteresis
intervals, results of fractal dimension (0.9998 in R2 of the fitted equation) and dis-
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tributions with grayscale parameters show that the proposed approach successfully
identifies the dust objects.

(b) A total of 95 pictures of pollutants were extracted for the parameter calculations.
Within the image-processing operations, the grayscale difference between the smoke
dust and background was revealed, which is the essential distinction for feature
extraction of smoke dust. The Dbox(P) and Ga results, as well as the related fitted
curves, were then obtained, and it is clear that three development stages are required
for dust diffusion to emerge. In addition, compared to Dbox(P), Ga demonstrated a
better fitted correlation for the distribution of pollutants, reflecting more local features.

(c) Based on the Dbox(P) and Ga, Pi as well as the fitted results were proposed, simultane-
ously integrating the global and local features of pollutant images. The Pi denoted
three diffusion stages of smoke dust: generation stage, cloud-formation stage, and
diffusion stage corresponding to 16~44 s, 45~84 s and 85~95 s, respectively. Then,
an evaluation system associated with four levels of pollution conditions was also
obtained, of which the Pi values are <1.935, 1.935~2.06, 2.06~2.185 and >2.185. By
this way, the final pollution levels of smoke dust can be determined through the
provided images.

(d) The comparative results of RMSE and R squared values show that the proposed
method (stage one and stage three) presents a fair performance when compared to the
other models. Meanwhile, it also reveals that the vision-based method is reliable for
the analysis about pollutants migrations in blasting operations. Therefore, the RMSE
and R squared values of the proposed method were confirmed by the comparisons.
Therefore, the above improvement significantly evaluates the on-site smoke-dust
pollution with a high accuracy, and achieves a comprehensive bivariate index to avoid
possible measurement errors due to univariate index.
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Abstract: Uniaxial compressive strength (UCS) is a critical parameter in the disaster prevention of
engineering projects, requiring a large budget and a long time to estimate in different rocks or the
early stage of a project. If predicted accurately, the UCS of rocks significantly affects geotechnical
applications. This paper develops a dataset of 734 samples from previous studies on different
countries’ magmatic, sedimentary, and metamorphic rocks. Within the study context, three main
factors, point load index, P-wave velocity, and Schmidt hammer rebound number, are utilized
to estimate UCS. Moreover, it applies extreme learning machines (ELM) to map the nonlinear
relationship between the UCS and the influential factors. Five metaheuristic algorithms, particle
swarm optimization (PSO), grey wolf optimization (GWO), whale optimization algorithm (WOA),
butterfly optimization algorithm (BOA), and sparrow search algorithm (SSA), are used to optimize the
bias and weight of ELM and thus enhance its predictability. Indeed, several performance parameters
are utilized to verify the proposed models’ generalization capability and predictive performance.
The minimum, maximum, and average relative errors of ELM achieved by the whale optimization
algorithm (WOA-ELM) are smaller than the other models, with values of 0.22%, 72.05%, and 11.48%,
respectively. In contrast, the minimum and mean residual error produced by WOA-ELM are less
than the other models, with values of 0.02 and 2.64 MPa, respectively. The results show that the UCS
values derived from WOA-ELM are superior to those from other models. The performance indices
(coefficient of determination (R2): 0.861, mean squared error (MSE): 17.61, root mean squared error
(RMSE): 4.20, and value account for (VAF): 91% obtained using the WOA-ELM model indicates high
accuracy and reliability, which means that it has broad application potential for estimating UCS of
different rocks.

Keywords: uniaxial compressive strength; prediction model; extreme learning machine; metaheuristic
algorithm

MSC: 68T99

1. Introduction

Uniaxial compressive strength (UCS) plays a vital role in rock engineering projects
from design to construction and operation. In general, the UCS can be obtained by conduct-
ing laboratory tests using the approaches provided by the International Society of Rock
Mechanics (ISRM2007) and the American Society for Testing Materials (ASTM2001a) [1].
However, the uniaxial compression test requires high quality and strict specimen size.
Therefore, obtaining a core sample from soft, weak, highly weathered, or fragile rocks is
almost impossible. In addition, direct estimation of UCS in the laboratory is costly, com-
plicated, and time-consuming [2]. Therefore, the precise prediction of UCS is a challenge.
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As a result, proposing a method for obtaining UCS conveniently and quickly to overcome
associated problems and save time and cost is vital.

There are three methods to determine the UCS, including empirical formulation,
multiple regression analysis, and soft computing modeling. Some empirical models with
non-destructive test results to estimate UCS were proposed to overcome the difficulty in
preparing core specimens. Several researchers investigated the relationship between UCS
and other physical properties of rock mass, such as Brazilian tensile strength [3], point load
strength index [4–6], slake durability index [7], Schmidt hammer rebound number [8,9],
and P wave velocity [9–11]. The empirical formulas derived using these techniques are
often applied to the sampling area or the same rock type. Empirical formulas include
multiple fitting forms but usually consider a single factor, ignoring the effects of multiple
factors. Other researchers proposed fuzzy and multiple regression analysis [12–15] to
obtain UCS, hence controlling the aforementioned issues. However, these methods cannot
solve the nonlinear relationship between UCS and other rock parameters; consequently,
the soft computing method was presented to address this issue. Sarkar et al. [16] proposed
an artificial neural network (ANN) model to estimate the UCS using slake durability index,
dynamic wave velocity, density, and point load index. Yagiz et al. [17] predicted UCS using
an ANN model and nonlinear technique. They discovered that ANN models are more
accurate in determining UCS than regression techniques. In addition, Yesiloglu et al. [18]
developed an adaptive neuro-fuzzy inference system (ANFIS) and an ANN to predict UCS,
considering tensile strength, point load index, block punch index, and P-wave velocity as
input parameters. They indicated that the performance evaluation of the ANFIS model
was more precise than others. Gene expression programming (GEP) [19] and Multilayer
Perceptron Neural Network (MLPNN) [20] were utilized to estimate UCS. Li and Tan [21]
suggested a least squares vector machine for the UCS prediction model. Nevertheless,
Mahmoodzadeh et al. [22] utilized machine learning methods to predict UCS, proving that
Gaussian process regression (GPR) performed best. Gupta and Natarajan [23] assessed
the ability of density-weighted least squares support vector machine, extreme learning
machine (ELM), and random forest (RF) to estimate UCS of rocks and concluded that an
improved unique machine learning model has a better predictive capability than other
normal models. Recently, a comprehensive model has been combined with the ANN model
and particle swarm algorithm (PSO) to predict UCS [24]. Fang et al. [25] also put effort into
developing two comprehensive predictive models using hybrid ANN with a imperialism
competitive algorithm (ICA) and artificial bee algorithm (ABC).

These methods are valuable for determining UCS with rock physical properties ob-
tained by non-destructive tests. However, empirical formula measures performed unique
effects with different factors. Multiple regression models cannot map the nonlinear relation-
ship between UCS and influence factors. Machine learning models have a better predictive
capability to estimate UCS than traditional models. Support vector machine (SVM) and
Radial basic neural network (RBF) had good performance with small data [26,27]. However,
the weight and bias of ANN and the hyper-parameters of the machine learning model
demand optimization and have some constraints, such as falling into local minimum and
including a low learning rate [28]. The ELM is a single hidden layer feedforward neural
network introduced by Huang [29]. Some previous studies revealed that ELM is better
than ANN and SVM in overcoming low learning rates and local minimum problems of
regression analysis [30]. Therefore, the ELM is used to map the nonlinear relationship
between UCS and the influential factors. Meanwhile, the ELM requires optimization algo-
rithms to achieve improved performance. The metaheuristic algorithms inspired by the
natural behavior of animals have good performance [31]. Additionally, the datasets for
these associated measures for obtaining UCS come from the same area or rock type and
are short datasets. The simple data mining methods normally do not provide the required
efficiency for small data [32,33]. Hence, a bigger dataset must be established to estimate
UCS. Accordingly, the present study aims to develop a new forecast model that estimates
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UCS using a dataset of various rocks collected from previous research based on an ELM
coupled metaheuristic algorithm.

The main contribution of this paper can be summarized as follows:

1. Collecting a dataset of 734 samples from previous studies of magmatic rocks, sedimen-
tary rocks, and metamorphic rocks in different countries to overcome the problem of
requiring a large budget and a long time to estimate UCS in different rocks or at the
early stage of a project.

2. Optimizing the hidden neurons and activation function between ELM to map the
nonlinear relationship between the UCS and the non-destructive test indices.

3. Utilizing five metaheuristic algorithms (PSO, GWO, WOA, BOA, and SSA) to estimate UCS.
4. Comparing the optimized model to other techniques to prove efficiency.

The remainder of this paper is organized as follows: Section 2 contains the character-
istics and visualization of the dataset; Section 3 describes the mathematical relationships
of the ELM and metaheuristic algorithm; Section 4 describes the optimization procedures
of the ELM optimized by PSO, GWO, WOA, BOA, and SSA; Section 5 contains the statis-
tical evaluation indices of the models; Section 6 summarizes the results of this work and
compares the proposed models’ effectiveness with other approaches; Section 7 contains the
conclusions and recommendations for future research.

2. Dataset

One of the drawbacks of previous studies is that they mainly focused on datasets that
are based on a single rock type. Accordingly, this study collects 734 magmatic, sedimentary,
and metamorphic rock samples in a single dataset (see Supplementary Materials) to develop
the prediction models. Some of these data points are rocks from quarries and natural
outcrops in Turkey [14,34–38] and Iran [1,39], while others are natural outcrops and tunnels
in India [15,40], Malaysia [24,41,42], and China [43]. Previously, the tensile strength, point
load index (Is), block punch index, density, porosity, and P-wave velocity were utilized as
inputs to the numerical models for estimating the UCS. Some studies used the point load
index, P-wave velocity (Vp), and Schmidt hammer rebound number (SRn) to estimate UCS.
Accordingly, this study collects these non-destructive test results when developing the
UCS dataset. Considered ranges of UCS and influence factors are provided in the Table 1
and Figure 1. Table 1 shows brief descriptive statistics of the dataset used in this research.
The SRn ranges from 10 to 72, the maximum value of Vp is 4675 m/s, and its min value is
375 m/s. In addition, the Is value ranges from 0.53 MPa to 23.10 MPa. Moreover, the UCS
ranges from 2.03 MPa to 239 MPa.

Table 1. Brief descriptive statistics of the dataset.

SRn Vp (m/s) Is (MPa) UCS (MPa)

Minimum 10 375 0.53 2.03
Maximum 72 7943 23.10 239.00
Average 42 4675 4.33 75.05

Standard deviation 11.83 1383.14 3.01 44.70

Figure 1 shows a visualization of the collected dataset. There is a wide distribution
of attributes and UCS in the dataset, which means that the collected data include a wide
range of rock types. Meanwhile, it can be noticed that the Pearson’s correlation coefficients
between the UCS and SRn, Vp exceed 0.64, indicating strong correlations. The correlation
between the UCS and Is is 0.42. Moreover, the correlations between the input parameters
range between 0.22 and 0.51, showing slight interactions.
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Figure 1. Visual illustration of the collected dataset.

3. Methods

UCS is a critical parameter for rock-mechanic-related investigations in civil, mining,
and petroleum projects. However, experimentally evaluating this parameter is rather
expensive, complicated, and time-consuming. As a result, previous investigations tended
to develop soft-computing models for rapid UCS estimation. Indeed, this study aims
to propose a generalized numerical model based on the wide-range dataset present to
overcome the complexity of the test procedures. Within the study context, an ELM is
used for mapping the nonlinear relationship between the UCS and the non-destructive
test indices, and a metaheuristic algorithm is utilized to enhance the prediction ability of
the ELM.

3.1. Extreme Learning Machine

The ELM is a single hidden layer feedforward neural network introduced by Huang [29].
The ELM was proposed to solve the time-consuming training problem in feedforward
backpropagation neural networks. Similar to other feedforward neural networks, ELM has
an input, a hidden, and an output layer, as depicted in Figure 2.

For a data set R of D arbitrary distinct training samples R = {(xi, ti)|i = 1, 2, 3, . . . , D},
where xi = [xi1, xi2, . . . xiD]

T and ti = [ti1, ti2, . . . tiD]
T are the inputs and output, ELM

mathematic model is defined by Equation (1).

oi =
L

∑
i=1

βig(xi) =
L

∑
i=1

βig(mixi + ni) (1)

where oi is the output vectors, g(x) is the active function, typically defined as a sigmoid,
sine, or hardlim function as shown in Figure 3, mi is the connection weights between the
hidden layer and the input layer node, ni is the threshold between the hidden layer and the
input layer node, βi is the weight vector between the hidden layer and output layer nodes,
and L is the hidden modes.
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Figure 2. Flowchart of the ELM architecture.

Figure 3. Various types of activation functions of ELM.

According to the two theorems proposed by Huang, when g(x) is infinitely differ-
entiable, the ELM with L hidden nodes and activation function can be fit to achieve a
zero-error approximation of any D samples. Hence, Equation (2) is established.

L

∑
j=1

||oi − ti|| = 0 (2)

According to Equation (2), there exists specific mi, ni, and βi to make the formula (3) hold.

L

∑
i=1

βig(mixi + ni) = ti (3)

The Equation (3) can be simplified in the form of Hβ = T, where H is the output
matrix of the hidden layer of ELM, T is the target matrix. Unlike traditional gradient-based
learning algorithms with fixed input weights and hidden layer bias, the ELM theories claim
that the parameters mi and ni can be assigned randomly. Then, the issue for training the
ELM is transformed into finding a least-square solution. The solution of Equation (3) in
the matrix form is defined in Equation (4). According to the two theorems proposed by
Huang, when the number of samples and hidden modes is the same, Equation (2) can be
established. Therefore, the sample size of the dataset is normally much larger than the
number of hidden neurons, and the pseudo-inverse of matrix H is required.

β̂ = H+T = (HT H)
−1

HTT (4)

where H+ is the Moore-Penrose generalized inverse of H.
Compared to the traditional intelligent algorithm, ELM can be rapidly trained by

determining the number of hidden layers. Indeed, the ELM solves the shortcomings of the
backpropagation gradient descent method represented by easily falling into local minima.
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When solving the weights of the hidden and output layers, a mathematical method with
uniqueness and global optimality is used. Therefore, the ELM has superior performance,
yet shows some shortcomings. The selection of the number of hidden neurons and the
activation function for an ELM model typically follows an iterative approach without a
theoretical basis. For practical problems, the network topology and functions optimization
require an experienced designer or lots of repeated trials, which increases its application
difficulties. In the ELM calculation process, the weights and thresholds of the hidden layer
and output layer are calculated using straightforward mathematical methods. However,
the weights and biases of an ELM model’s hidden and input layer are randomly initialized
between 0 and 1. The random weights and thresholds restrict the mapping performance of
the ELM. Therefore, the enhancement in the ELM is represented by improving the threshold
of random weights generated through the original network, improving the stability of
the network, and fully distilling the nonlinear relationship between input and output. In
this study, various intelligent algorithms are proposed to improve the shortcomings of the
ELM model.

3.2. Particle Swarm Algorithm (PSO)

The PSO algorithm is a bionic intelligent optimization algorithm proposed by Kennedy
and Eberhart [44] in the 1990s. In this algorithm, each solution of the optimization problem
is simplified to a particle, i.e., a bird swarm individual. The algorithm-solving process aims
to find food for each bird swarm individual through group collaboration. The mathematical
model of the PSO algorithm is as follows: based on the problem’s type, the initial population
is set in the D-dimensional search space, and the position and velocity of particles are
determined by pbestt

id and gbestt
d. The selection of pbestt

id and gbestt
d is intended to move

each particle to a different point in the solution area. Finally, the optimal solution is obtained
through a continuous change of velocity and position. Equations (5) and (6) are used to
update the velocity and position, respectively.

vt+1
id = vt

id + c1r1(pbestt
id − xt

id) + c2r2(gbestt
d − xt+1

id ) (5)

xt+1
id = xt

id + vt
id (6)

where vt+1
id is the particle velocity in the t + 1 generation, c1 and c2 are constants between

(0, 2), r1 and r2 are constants between (0, 1), t is the iteration time, and xt+1
id is the position

of a particle in the t + 1 generation.

3.3. Grey Wolf Optimization (GWO)

Grey wolf optimization is a meta-inspired algorithm that simulates the hunting behav-
iors of grey wolves. It was proposed by Mirjalili [45] in 2014. In this method, the wolves
are divided into α wolf, β wolf, γ wolf, and ω wolf according to their fitness from high to
low. The wolf of α, β, and γ leadership search and locate the prey. With the wolf group
evolution, the distance of the prey is reduced, and the ω wolf is guided to track and capture
the prey. The implementation of the grey wolf algorithm is shown in the following steps:

Step 1, surround the prey. Identify and surround the prey before preying. The
following three equations show the distance and updating formulas between the wolf and
prey in each grade of the grey wolf group.

D =
∣∣E · Xp(t)− X(t)

∣∣ (7)

X(t + 1) = Xp(t)− A · E (8)

A = 2 · a · r2 − a
E = 2r1

(9)

where XP and X(t + 1) are the location of prey when the number of iterations is t and t + 1,
respectively, X(t) is the position of a grey wolf when the number of iterations is t, A and E
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are the convergence vector and coefficient vector, respectively, a linearly decreases from 2
to 0, respectively, and r1 and r2 are constants between (0, 1).

Step 2, hunt for prey. Once the prey is surrounded, the wolves begin to hunt. The
optimal, sub-optimal, and third-optimal solutions are α, β, and γ wolves according to the
fitness ranking. Their positions are updated as shown in Equation (8). The first three grades
of wolves guide the other wolves, and Equation (9) is the update mode.

Dα =|C · Xα(t)− X(t)|, X1 = Xα(t)− A1 · Dα

Dβ =
∣∣C · Xβ(t)− X(t)

∣∣, X2 = Xβ(t)− A2 · Dβ

Dγ =|C · Xγ(t)− X(t)|, X3 = Xγ(t)− A3 · Dγ

(10)

X(t + 1) =
X1 + X2 + X3

3
(11)

where X(t + 1) is the position update of ω wolves,Dα, Dβ and Dγ are the distance update
of α, β, and γ wolves and prey, respectively, and X1, X2 and X3 are the position update of
α, β, and γ wolves, respectively.

Step 3, attack prey. Similar to the last two steps, the wolf attacks when the prey is
exhausted. The mathematical model can be expressed as follows (10) and (11), where A is a
random number in the range of [−2a, 2a]. When A is outside [−1, 1], it enhances ergodicity.
In order to approach prey and reduce the value of a, A will decrease, and when A is within
[−1, 1], the grey wolf group attacks.

3.4. Whale Optimization Algorithm (WOA)

The whale optimization algorithm is a nature-inspired algorithm mimicking the mo-
tion of whales when hunting their prey. It was first developed by Mirjalili and Lewis [46]
to solve optimization problems. The algorithm simulates the actions of the humpback
whale in searching the prey and the bubble-net feeding method of encircling prey. The
mathematical model of a whale’s unique action is following:

3.4.1. Encircling Prey

The humpback whale can recognize the location of prey when they enter the target
area or perception space. WOA assumes that the best position (solution) is the target prey.
Once the best search agent is proposed, the rest agents try to update their location toward
the best position (solution) as described in (12)–(14).

DI =
∣∣C · Wp(t)− W(t)

∣∣ (12)

W(t + 1) = Wp(t)− K · DI (13)

K = 2 · k · r2 − k
C = 2r1

(14)

where t is the current iteration, W(t) indicates the position of prey, K and C are coefficient
vectors, Wp is the position of the optimal solution, k is a variable linearly decreasing from 2
to 0, and r1 and r2 are constants between (0, 1).

3.4.2. Bubble-Net Attack Method

This section mainly introduces the shrinking encircling mechanism and spiral update
position. First, the value of K is changed with k decreases by Equation (14) to achieve
the shrinking encircling mechanism, and the whales’ positions are updated according to
Equations (15) and (16). As the whales are close to the prey (best solution), the distance
between the whales and the prey can be calculated. A spiral update equation is then created
to mimic the helix-shaped movement of the whales as follows:

W(t + 1) = DSebt cos(2πt) + Wp(t) (15)
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DS = Wp(t)− W(t) (16)

where DS is the distance between the whale and the prey (current best solution), b is a constant
which defines the shape of the logarithmic spiral, and t is a constant between (0, 1).

According to the previous equation, the whale can have two strategies to move close
to the prey. The mathematical equation is as follows:

W(t + 1) =
{

Wp(t)− K · DI i f p < 0.5
DSebt cos(2πt) + Wp(t) i f p > 0.5

(17)

where p is a random number in (0, 1).

3.4.3. Exploration Phase

Humpback whales randomly search the prey based on the constant variation to obtain
the best solution. This process is mathematically described as follows:

DI =|C · Wrand(t)− W(t)| (18)

W(t + 1) = Wrand(t)− K · DI (19)

where Wrand(t) represents the random whale in the current population.

3.5. Butterfly Optimization Algorithm (BOA)

Inspired by the living habits of butterflies in nature, a butterfly optimization algo-
rithm [47] (BOA) was proposed to simulate butterflies’ foraging and mating behaviors.
Unlike other metaheuristic algorithms, this method’s advantage is that each butterfly has
its unique odor. The butterfly can perceive and analyze the odor in the air to determine the
potential direction of food sources/mating partners. In BOA, the fragrance is formulated
as a function of the stimulus’s physical strength, as follows:

F = cIa (20)

where F is the concentration of aroma emitted by butterflies, c is the sensory mode, I is the
stimulus intensity, and a is the power index dependent on the mode, indicating different
absorption degrees of aroma among different butterflies.

In most cases, it is possible to define a and c within the range of [0, 1]. When a is 1, the
butterfly does not absorb the fragrance. That is, another butterfly perceives the amount of
fragrance emitted by a specific butterfly at the same capacity.

The BOA algorithm is divided into three parts, and the detailed steps are as follows:
Initializes the butterfly population by randomly generating the butterfly position in

the search space and calculating and storing each butterfly’s fragrance and fitness value.
The fitness values of randomly generated butterfly populations are sorted to store the
butterfly in the best position. Butterflies move toward the best position. The position
update equation is as follows:

Xt+1
i = Xt

i + (r2 + pt
best − Xt

i )•F(Xi) (21)

where r is the random number in (0, 1), indicating the best butterfly for current itera-
tions t, and F(Xi) represents the aroma fitness value of the first butterfly at the current
iteration number.

The mathematical model of butterfly population local search stage is as follows

Xt+1
i = Xt

i + (r2 + pt
r1
− pt

r2
)•F(Xi) (22)

where pt
r1

and pt
r2

represent random two butterfly locations for the tth iteration in the search
space, and r1 and r2 are random numbers between (0, 1).
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3.6. Sparrow Search Algorithm (SSA)

Inspired by the group wisdom, foraging and anti-predation behaviors of the sparrow
in nature, Xue [48] proposed the sparrow search algorithm to solve optimization problems.
In the SSA, there are two types of sparrows: producer and scrounger. The producers with
high levels of energy reserves can search for food sources and guide the movement of the
entire population. The position update equation is as follows:

Xt+1
i,j =

{
Xt

i,j · exp ( −i
α·itermax

) i f R2 < ST
Xt

i,j · Q · L i f R2 ≥ ST
(23)

where t is the current iteration, itermax is the maximum number of iterations, Xt
i,j and Xt+1

i,j
indicates the position of a sparrow, i is the number of sparrows, j is the dimension of the
optimization problem, α is the random number in (0, 1), R2(R2 ∈ [0, 1]) is the alarm value,
represents the safety threshold, Q is the random number which obeys normal distribution,
and L is a matrix in which each element inside is 1.

When producers expand the search range to find foods without predators threatening
and enter the wide search mode, if R2 ≥ ST the sparrows quickly move to safe areas when
predators move close to them.

As for the scroungers, if they detect that the producer has found good food, they
immediately move the objective position to get food. On the one hand, if scroungers defeat
the producer, the update formula is as shown in Equation (23). In contrast, if the producer
wins, the scrounger enforces Equation (24).

Xt+1
i,j =

⎧⎨⎩ Q · exp (
Xt

worst−Xt
i,j

i2 ) i f i > n/2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣ · A+ · L otherwhise
(24)

where Xt+1
p is the optimal position of the producer, Xt

worst is the current global worst posi-

tion, A+ = AT(AAT)
−1 and A is a one-dimensional matrix with each element randomly

assigned −1 or 1, when i > n/2, the scrounger with the worst fitness value cannot find the
food.

In SSA, some sparrows, which account for 10% or 20% of the total population, are
assumed to be aware of the danger. In such a case, sparrows at the edge of the group
quickly move forward to the safety area to get a better position, and other sparrows in the
middle group move to others. The mathematical model can be expressed by:

Xt+1
i,j =

⎧⎪⎪⎨⎪⎪⎩
Xt

best + β ·
∣∣∣Xt

i,j − Xt
best

∣∣∣ i f fi > fg

Xt
i,j + λ ·

(∣∣∣Xt
i,j−Xt+1

worst

∣∣∣
( fi− fw+δ) ) i f fi = fg

(25)

where Xbest is the current global best position, β is a step control parameter that obeys the
normal distribution of random numbers with a mean value of 0 and a variance of 1, λ is a
random number in (0, 1), fi, fg and fw are the fitness value of the current sparrow, current
best fitness, and current worst values, respectively, and δ is the smallest constant to avoid
zero-division-error.

4. ELM Optimized by PSO, GWO, WOA, BOA, and SSA

This study uses ELM to map the nonlinear relationship between influence factors and
UCS. However, the weights and thresholds of the hidden and input layers of the ELM
algorithm are random numbers between 0 and 1, which can cause problems. The random
weights and thresholds restrict the mapping performance of ELM. To obtain a reliable
prediction, it is essential to improve the predictability of ELM. Hence, as an optimizer of
weights and thresholds between inputs and hidden layers, PSO, GWO, WOA, BOA, and

153



Mathematics 2022, 10, 3490

SSA are utilized in this study. The development of the optimized ELM to predict UCS has
the following steps:

1. To considerably distill the information governing the relationship between the UCS
and the input variables, a database including 734 samples was developed in this study
and divided into 700 samples for the training and 34 for the testing.

2. Firstly, the training set is used to optimize the ELM model’s hidden layer neurons
and activation function. After that, the test set is input into the trained ELM, and
the obtained results are used to compute the performance metrics, including the root
mean squared error (RMSE). The optimized hidden neurons and activation function
can be determined when the RMSE is minimized.

3. To enhance the ELM model predictability, the PSO, GWO, WOA, BOA, and SSA
are utilized to optimize weights and thresholds between inputs and hidden layers.
Figure 4 depicts a process for optimizing ELM using the multi-algorithm.

4. Compare the predicted results and calculate the statistical evaluation indices to select
the most precise and reliable model.

Figure 4. The process for optimizing the ELM using the PSO, GWO, WOA, BOA, and SSA.

5. Statistical Evaluation Indices

In order to evaluate the accuracy of the proposed prediction models, some statistical
indices, including root mean squared error (RMSE), coefficient of determination (R2),
amount of value account for (VAF), and mean squared error (MSE), are calculated using
Equations (26)–(29).

RMSE =

√
(

1
n
)

n

∑
k=1

(yi − y′
i ) (26)

R2 = 1 − sum squared regression (SSR)
sum of square total (SST)

(27)

VAF =

[
1 − var(yi − y′

i )

var(yi)

]
× 100% (28)

MSE = (
1
n
)

n

∑
k=1

(yi − y′
i ) (29)

where yi is the measured value, y′
i is the predicted value, and n is the number of observa-

tions.
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6. Calculation Results and Discussion

6.1. ELM Parameters Optimization

As previously stated, the variables had distinct units and wide distribution. The data
should be normalized to a value between 0 and 1 before training based on ELM to get good
performance, as shown in Equation (30).

xn =
xa − xmin

xmax − xmin
(30)

where xn is the normalized value, xa is the actual value, xmax and xmin are the maximum
and minimum values of the dataset.

The hidden layer neurons and activation function must be optimized for the ELM. The
RMSE of ELM was utilized to predict a model to tune them. Table 2 and Figure 5 indicate
the effects of the number of hidden layer neurons and activation function.

Table 2. Effects of the number of hidden modes on the ELM performance.

Number of Hidden Modes
RMSE

Maximum Average Standard Deviation

1 68.475 53.568 9.446
2 50.799 27.179 16.706
3 32.572 12.253 9.216
4 12.072 8.396 1.433
5 11.590 8.297 1.330
6 13.803 8.803 1.904
7 12.338 9.709 1.745
8 13.035 10.368 1.801
9 12.875 11.181 0.853

10 15.286 12.113 1.762

 
Figure 5. Effects of the activation function on the ELM performance.

Figure 5 depicts the impact of the number of hidden layer modes on the ELM perfor-
mance. When the number of modes is 5, the standard deviation, maximum, and average
error are the smallest. Therefore, there are five hidden modes in the present study. When
the activation function for the ELM is a hardlim function, the maximum, average, and
standard deviation of error are more significant than the other two functions. The predicted
errors in the other two functions are relatively small when the activation function is the
sigmoid function; hence, the activation function of the ELM model is the sigmoid function.

6.2. Calculation Results and Performance Comparison

A multi-algorithm is applied to enhance the ELM model predictability after optimizing
the parameters of the activation function and the number of hidden neurons. Figure 6
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depicts the predicted results using a single ELM model and ELM optimized by PSO, GWO,
WOA, BOA, and SSA.

 

Figure 6. Performance of single ELM models and hybrid ELM models optimized by PSO, GWO,
WOA, BOA, and SSA. (a) predicted results and relative errors of ELM model; (b) predicted results
and relative errors of PSO-ELM model; (c) predicted results and relative errors of GWO-ELM model;
(d) predicted results and relative errors of BOA-ELM model; (e) predicted results and relative errors
of WOA-ELM model; (f) predicted results and relative errors of SSA-ELM model.

Figure 6a illustrates that only a few predicted values are close to the actual values;
thus, a single ELM model mispredicted UCS. The random generation of the weights and
thresholds of the input and hidden layers can limit the performance of ELM. Figure 6b,f
show that the actual and predicted curves change together, indicating that the optimized
ELM by PSO (PSO-ELM) and SSA (SSA-ELM) can estimate UCS using point load index,
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P-wave velocity, and Schmidt hammer rebound. The predicted performance of an ELM
optimized by the PSO and SSA model is better than a single ELM model. The minimum
and average relative errors of PSO-ELM and SSA-ELM are 0.34% and 0.55%, respectively,
which are smaller than the single ELM model. However, the maximum relative errors of
PSO-ELM and SSA-ELM are 171.62% and 150.67%, respectively, relatively less than the
single ELM model. It indicates that PSO and SSA can relatively enhance ELM predictability,
and PSO-ELM and SSA-ELM models are unstable. Compared to the above two algorithms,
BOA also improves the predictability of ELM. Figure 6d demonstrates that BOA-ELM
predicts better performance than the single ELM, PSO-ELM, and SSA-ELM models. The
minimum, maximum, and average relative errors of BOA-ELM are 0.22%, 72.05%, and
11.48%, respectively, smaller than single ELM, PSO-ELM, and SSA-ELM models. However,
the maximum relative errors of single ELM, PSO-ELM, SSA-ELM, and BOA-ELM are nearly
greater than 50%, indicating that at the lowest value of UCS, its predictive accuracy is
almost awful. This can be utilized if data are lacking in ranges with low UCS values or
if the ELM parameters require further optimization. As shown in Figure 6c,e, nearly all
predicted values are close to actual values, demonstrating that GWO and WOA can further
improve the predictability of the ELM model. At low values, the prediction accuracy of
GWO-ELM and WOA-ELM models is superior to that of the other three algorithms. The
minimum, maximum, and average relative errors of WOA-ELM are 0.22%, 72.05%, and
11.48%, respectively, smaller than the GWO-ELM model and significantly less than the
single ELM, PSO-ELM, and SSA-ELM models.

Figure 7 depicts the residual error results using a single ELM model optimized by
PSO, GWO, WOA, BOA, and SSA. The residual error histograms of six models exhibit
normal distributions. The range of residual errors of the single ELM model is between
0.25 and 22.21 MPa, with a mean of 5.07 MPa. The mean value of residual errors using
PSO-ELM is 3.2 MPa, varying widely from 0.10 to 15.28 MPa. The average residual errors
of BOA-ELM and SSA-ELM are 2.91 MPa (0.06–16.78 MPa) and 3.34 MPa (0.06–16.16 MPa).
The average value of GWO-ELM residual errors is 3.18, ranging from 0.05 to 14.51 MPa. The
minimum, maximum, and average residual errors derived from optimized ELM models are
less than the single ELM model. The maximum residual errors of PSO-ELM, GWO-ELM,
BOA-ELM, WOA-ELM, and SSA-ELM models are less than 20 MPa, and the smallest of
them is 14.51 MPa. The greatest residual error of the WOA-ELM model is 15.41 MPa,
which is relatively bigger than the smallest maximum residual error. The minimum and
mean values of residual errors (using WOA-ELM) are lower than others. It indicates that
a multi-algorithm can improve the ELM model’s predictability, and its best performance
is WOA.

Figure 8 illustrates the R2 results produced by a single ELM model and an ELM
optimized by PSO, GWO, WOA, BOA, and SSA for UCS.

The ELM model produces an R2 value for UCS of 0.682, as depicted in Figure 8a. The
accuracy of optimized ELM models is more than 0.80 and higher than that of a single ELM
model. It is understandable to see that a multi-algorithm can enhance the predictability
of the ELM model. Figure 8b, f shows that the R2 derived from PSO-ELM, SSA-ELM, and
GWO-ELM models are 0.812, 0.827, and 0.835, respectively. The R2 results generated by
the above three models fall between 0.80 and 0.85. Accordingly, three algorithms enhance
the prediction ability of ELM, but the accuracy must be improved. Figure 8d,e reveals
that the R2 of the BOA-ELM and WOA-ELM models is greater than 0.85, indicating their
performance is superior to that of the above three algorithms. Meanwhile, the R2 of the
WOA-ELM model is 0.861, which is higher than the R2 for the ELM and other optimized
ELM models. Therefore, the WOA-ELM model, being a combinatorial approach to the
modeling work, performed best compared to ELM and optimized models.
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Figure 7. Frequency distributions of residual errors utilizing a single ELM model and hybrid ELM
models optimized by PSO, GWO, WOA, BOA, and SSA. (a) residual errors based on ELM model;
(b) residual errors based on PSO-ELM model; (c) residual errors based on GWO-ELM model;
(d) residual errors based on BOA-ELM model; (e) residual errors based on WOA-ELM model;
(f) residual errors based on SSA-ELM model.

158



Mathematics 2022, 10, 3490

Figure 8. UCS results utilizing a single ELM and hybrid ELM models optimized by PSO, GWO,
WOA, BOA, and SSA. (a) R2 of measured and predicted values of UCS using ELM model; (b) R2 of
measured and predicted values of UCS using PSO-ELM model; (c) R2 of measured and predicted
values of UCS using GWO-ELM model; (d) R2 of measured and predicted values of UCS using
BOA-ELM model; (e) R2 of measured and predicted values of UCS using WOA-ELM model; (f) R2 of
measured and predicted values of UCS using SSA-ELM model.

To further compare the proposed models, their performance indices, i.e., RMSE, VAF,
and MSE, were calculated as presented in Table 3. Theoretically, a predictive model is
better when the RMSE and MSE equal 0, and VAF is 100%. Table 3 indicates that the
MSE and RMSE of the ELM model are more significant than those of optimized ELM
models. The VAF value of the ELM model is 73% less than that of optimized ELM models.
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It should be noted that the ELM model must be improved, and the multi-algorithm can
increase the predictability of the ELM model. The RMSE and MSE of the WOA-ELM model
are significantly lower than PSO-ELM, GWO-ELM, and SSA-ELM models, and the VAF
produced by WOA-ELM is also larger than that of the above three models. Comparatively,
the RMSE and MSE of WOA-ELM are smaller than those of the BOA-ELM model. As
previously stated, the relative and residual errors of the WOA-ELM model are smaller than
those of others, and the R2 of the present model is closer to 1 than other models. In this
study, the WOA-ELM model can predict UCS with a higher degree of accuracy than the
ELM and combined ELM models.

Table 3. Performance indices of the proposed predictive models.

Model ELM PSO-ELM GWO-ELM BOA-ELM WOA-ELM SSA-ELM

R2 0.682 0.812 0.835 0.855 0.861 0.827
MSE 44.37 22.65 20.88 18.36 17.61 21.92

RMSE 6.66 4.76 4.57 4.28 4.20 4.68
VAF (%) 73 88 79 92 91 90

7. Conclusions

Predicting UCS is an interesting and challenging exercise. This study first collects
734 samples to conduct a new dataset that includes magmatic, sedimentary, and metamor-
phic rocks and rock-like materials from different countries. The ELM was proposed to map
the relationship between UCS and point load index, P-wave velocity, and Schmidt hammer
rebound number to estimate UCS. In order to further predict UCS, five algorithms (PSO,
GWO, WOA, BOA, and SSA) were applied to improve the predictability of ELM. Based on
the aforementioned statements, the following conclusions are drawn:

• The optimized ELM model consists of five hidden neurons and a sigmoid activation
function.

• Compared to the models proposed above, it can be stated that the predicted perfor-
mance of the six models for predicting UCS from high to low is as follows: WOA-ELM,
BOA-ELM, GWO-ELM, SSA-ELM, PSO-ELM, and ELM. The predicted indices (R2:
0.861; MSE: 17.61; RMSE: 4.20) produced by WOA-ELM illustrate that it is the more
precise model.

• The minimum, maximum, and average relative errors produced by ELM optimized
using the whale optimization algorithm (WOA-ELM) are 0.22%, 72.05%, and 11.48%
smaller than the other models.

• The minimum and mean residual error produced by WOA-ELM are 0.02 and 2.64
MPa, respectively, smaller than other models.

• The results showed that the WOA-ELM model is the best among other techniques
investigated in this study. Its performance indices reveal the high accuracy and
reliability of the new model for predicting UCS.

In all, the hybrid models proposed in this study are suitable for different rocks. Thus,
the proposed WOA-ELM model in this study has broad application potential in predicting
the UCS of various rocks.

The main limitation of this paper is that only one dataset was utilized to evaluate the
results of developed models. Meanwhile, this study did not consider that the proposed
algorithms have some limitations, such as local minima trapping issues and the inability to
exploit local space. To avoid this, additional research will be conducted in the future:

1. The developed model in this study will be applied to other datasets to demonstrate
its generalization ability and robustness.

2. We will present strategies to avoid the problem of local minima trapping issues and
the inability of metaheuristic algorithms to exploit local space and illustrate their
impact on the current model.
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Abstract: When a blasting is executed near two tunnels, the blasting wave will trigger a dynamic
response and damage to the tunnels. Depending on the tunnel distribution, the path of the blasting
wave to the remote non-adjacent tunnels will change. The aim of this study is to analyze the effect
of the tunnel distribution on the dynamic response characteristics of a remote non-adjacent tunnel.
Numerical models of two tunnels were established by PFC2D and three different tunnel distributions
were considered. The two tunnels were divided into the adjacent tunnel and the non-adjacent tunnel
according to their relative distance to the blasting source. The dynamic stress evolution, damage
characteristics and the evolution of strain energy of the non-adjacent tunnel were initially analyzed.
The results show that the stress wave amplitude of the non-adjacent tunnel is closely related to
the tunnel distribution, but only near the sidewalls of the non-adjacent tunnel is the stress wave
waveform sensitive to the tunnel distribution. The larger the tunnel dip, the more severe the damage
to the non-adjacent tunnel. In addition, as the tunnel dip increases, the maximum strain energy
densities (SEDs) in the roof, floor and sidewalls of the non-adjacent tunnel exhibit different trends.
The influence of the wavelength of the blasting wave is further discussed. It is shown that the
dynamic stress amplification factor and damage degree around the non-adjacent tunnel is usually
positively correlated with the wavelength of the blasting wave. Moreover, the release of strain energy
around the non-adjacent tunnel has a positive correlation with the wavelength. The SED variations
in different areas around the non-adjacent tunnel also exhibit different trends with the increase of
tunnel dip.

Keywords: tunnel; dynamic disturbance; strain energy; damage; distribution; crack

MSC: 37M05

1. Introduction

In underground engineering excavation, a large number of tunnels are excavated
in a limited area to reduce the workload and cost [1–3]. These tunnels are important
structures to ensure the safety of underground engineering. However, with the increase
of excavation depth and the number of engineering structures, the stress concentration
around the engineering structures becomes more obvious and a large amount of strain
energy is stored around them. These initial strain energies can induce a high risk of rock
burst, collapse and fracture [4–6]. In addition, the dynamic disturbance in underground
engineering is another major cause of engineering disasters [7–10]. In underground tunnels
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which suffer different distribution, the propagation of stress waves is also complex and
diverse, which makes it very difficult to predict and prevent disasters. Therefore, it is
necessary to understand the dynamic behavior and damage characteristics of underground
tunnels with different distributions.

In recent decades, the static mechanical behavior of underground tunnels has attracted
extensive attention. Some scholars have calculated the stress distribution around the tunnel
by the elastic mechanics and complex function methods [11,12]. They generally believe that
the lateral pressure coefficient and the tunnel cross-section shapes are important factors
affecting stress distribution. For example, Kirsch first obtained the stress distribution
function (Kirsch’s solution) around the circular tunnel under different lateral pressure
conditions based on elastic mechanic theory [12]. Subsequently, the stress distribution
formula of the elliptical tunnel was obtained by using the conformal mapping method of
complex function and the classical Kirsch’s solution [12]. Recently, some scholars have
also solved the stress distribution of specific shape tunnels (such as a rectangular and
semi-circular tunnel) using numerical regression analysis, complex function theory and
numerical simulation [13,14]. For example, Exadaktylos and Stavropoulou [13] adopted
the complex function method to calculate the stress distribution of multiple shapes of
underground tunnels with rounded corners and further verified the theoretical solution
by the FLAC3D numerical simulation. Zhao et al. [14] also obtained the initial function
for solving the stress distribution around the rectangular tunnel by defining a coefficient
related to the height-width ratio. On the other hand, many scholars have studied the failure
mechanism of underground tunnels [15–18]. For example, Zhu et al. [15] analyzed the
influence of lateral pressure coefficient on the failure of a U-shaped tunnel based on RFPA
numerical simulation. The results showed that, when the lateral pressure coefficient is 1,
the roof and floor would suffer shear failure, while when the lateral pressure coefficient
is 4, the sidewalls would suffer tensile failure. Gong et al. [16] also studied the rock burst
mechanism of hard rock tunnels with a circular cross-section. They found that the rock
burst process of deep hard rock tunnels has a typical time effect which can be divided
into four stages and the spalling can further be developed into the rock burst. Si et al. [17]
conducted a series of triaxial compression tests and investigated the spalling mechanism of
sidewalls of D-shaped tunnels. The results show that the spalling will be inhibited and the
depth of the V-notch will be reduced under higher lateral pressure.

Recently, some scholars have paid attention to the dynamic mechanical behavior and
failure characteristics of underground tunnels [19–23]. In general, the dynamic disturbance
or unloading disturbance can prompt the rapid deformation and energy conversion of
surrounding rock in the form of stress waves. Li et al. [19] have indicated that the release
of strain energy is closely related to the failure modes of underground tunnels. The
result shows that, when roof spalling is induced, the release of strain energy will last for
a long time, but when a violent strain rock burst occurs, massive strain energy will be
released instantaneously. Si et al. [20] conducted the triaxial unloading compression test
and investigated the strength-weakening effect of unloading and unloading rate on fine-
grained granite. They found a lower unloading rate more conducive to the improvement
of the bearing strength and the storage of elastic energy. In addition, some scholars have
also analyzed the influence of disturbance location, in-situ stress, disturbance amplitude
and disturbance duration on the dynamic stability of the underground tunnel [24–27]. For
example, Qiu et al. [25] carried out a series of physical model tests on deep tunnels and
they found that, even when the disturbance distance is the same but the disturbance dip
is different, the dynamic stability of deep tunnels varies greatly. Li et al. [26] studied the
effect of stress wave wavelength on the failure model of the deep tunnel and found that the
short stress wave tends to cause spalling and the length stress wave tends to cause rock
burst. Zhu et al. [27] analyzed the failure mechanism of the deep tunnel under different
disturbance amplitudes. The results show that, the larger the disturbance amplitude, the
more serious the dynamic failure. In addition, Kulynych et al. [28] studied the action
process of gaseous products of explosive on rock fracturing behavior and found that the
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effect of rock mass disturbance would gradually decrease with increased relaxation of defect
formation. Slashchov et al. [29] analyzed the relationship between the emanation activity
of radon decay products in mining tunnels and the geological dislocations and believed
that the hidden tectonic disturbances and high-stress concentrations can be determined
by monitoring the gas-dynamic processes in mining tunnels. Arnau et al. [30] compared
the dynamic behavior of a double-decker circular tunnel under train-induced loads with
that of a simple tunnel and the results showed that the soil response would be significantly
different across the frequency range studied. Behshad et al. [31] analyzed the influence of
Dynamic Vibration Absorbers (DVA) on the vibration reduction of a double-deck circular
railway tunnel and found that DVA can effectively reduce the total energy flow acting on
the tunnel when trains pass by.

In underground engineering, numerous tunnels are usually excavated in a limited
area, as shown in Figure 1. These tunnels are locally distributed horizontally, vertically and
obliquely. During the excavation or internal blasting of these tunnels, existing tunnels will
inevitably be affected by the adjacent working area, including the redistribution of static
stress and the dynamic response. Usually, the impact of blasting disturbance in the adjacent
working area is particularly significant. Numerous previous studies have confirmed the
impact of blasting disturbance or dynamic disturbance on adjacent tunnels, which usually
causes local stress surges, triggering rock bursts or surrounding rock spalling [19,24–26].
The object of these studies is usually a single tunnel or the tunnel near the disturbance
source, but little attention has been paid to multiple tunnels, especially the remote non-
adjacent tunnels. Limited studies have analyzed the dynamic behavior of multiple tunnels
under dynamic or unloading disturbances [32,33]. For example, Feldgun et al. [33] analyzed
the dynamic behavior of a rectangular existing tunnel induced by the internal blasting
inside another horizontal parallel tunnel. The results show that the left sidewall of the
existing tunnel will bend under the blasting disturbance. Li et al. [32] also analyzed the
effect of unloading waves caused by neighboring tunnel excavation on the existing tunnel.
The results show that the unloading wave can cause a strong dynamic response of the
existing tunnel and the increase of the unloading rate can amplify the dynamic effect.
However, due to the multiple transmission and reflection of stress waves among multiple
tunnels, the dynamic stability and stress concentration of the non-adjacent tunnel will not
only depend on the amplitude and wavelength of the initial incident wave, but also depend
on the interaction with the adjacent tunnel. Therefore, the tunnel distribution is also an
important factor, which can affect the dynamic response and fracturing behavior around
the tunnels triggered by blasting disturbance [34,35]. For this reason, the main object of
this study is to analyze the influence of tunnel distribution on the dynamic response and
stability of the non-adjacent tunnel under blasting disturbance. Therefore, the numerical
models with the two tunnels were established by the particle flow code (PFC2D) method
and different tunnel distributions were also considered. In addition, the stress evolution,
energy evolution and failure characteristics around the two tunnels caused by blasting
disturbance were analyzed. The effect of stress wave wavelength on the dynamic behavior
of a non-adjacent tunnel is further discussed.
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Figure 1. Mining methods in Kiruna Iron Mine in Sweden [36].

2. Description of Numerical Model

2.1. Description of PFC2D

The discrete element method PFC2D is widely used in rock engineering because it
has the advantage of synchronous microcracks display and does not need to consider the
convergence issue in calculations. PFC2D provides several typical modeling methods to
simulate different mechanical properties of materials, such as the contact bond (CB) model,
parallel bond (PB) model, smooth joint (SJ) model, flated joint (FJ) model, etc. Generally,
the CB model is used to simulate the soil material or the bulk material, because it can
only transfer the force and not moments through the contact between particles. The PB
model is suitable for rock-like materials because it can effectively transmit forces and
moments [37,38]. The SJ model is usually used to simulate structural planes such as joints,
cracks and bedding-in materials. FJ mode is an increasingly popular new modeling method
for rock-like materials because it provides a more realistic ratio between the tensile strength
and compression strength of materials. However, because the FJ model will generate too
many micro-cracks, it also has certain disadvantages in observing the failure mode of
the rock mass. Therefore, the PB model was chosen to simulate the mechanical behavior
of rock mass in this study. As shown in Figure 2a, a series of non-uniform-sized rigid
particles can be seen as the basic constituent element of the PB model, the linear contact is
arranged between the particles and a parallel bond can be conceived as a finite-size concrete
cemented between particles. The mechanical behavior between particles can be assumed to
be produced by a series of linear springs, viscous dashpots and two specific boned elements
(with the normal and shear strengths σc and τc) [38], as shown in Figure 2b.
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Figure 2. Schematic of parallel bond model: (a) composition; (b) mechanical behavior.

For the linear contact, the moment is zero and the contact force can be iterated by:{
Fn = Fl

n + Fd
n

Fs = Fl
s + Fd

s
(1)

where the subscripts n and s denote normal and shear direction, respectively. The subscripts
l and d denote linear spring and dashpot contributions, respectively. It is worth noting
that the contact activation state is determined by the comparison between the contact gap
(gc) and the reference gap (gr). When gc > gr, the linear contact is inactivated and the
calculations of force-displacement is ignored. When gc ≤ gr, the linear contact is activated
and the force components Fl

n, Fl
s , Fd

n , Fd
s of linear contact can be upgraded by the following

equations:
Fl

n = kn(gr − gc) (2)

Fl
s =

{
(F(l)

s )0 − ksΔUs , if the contact is not sliding
μFn , if the contact is sliding

(3)

Fd
n = −2βn

√
mcknvn (4)

Fd
s =

{
−2βs

√
mcksvs , if the contact is not sliding

0 , if the contact is sliding
(5)

where (Fl
s)0 denotes the shear force of linear contact at the last step. ΔUs represents the

relative shear displacement increment. μ denotes the friction coefficient. mc denotes the
effective mass of linear contact. vn and vs denote the relative normal velocity and shear
velocity, respectively. kn and ks denote the normal and shear stiffness of linear contact,
respectively.

For the parallel bond, there is a linear relationship between force and displacement. In
addition, the bending moment Mb is also calculated. The force components Fn, Fs and the
bending moment Mb can be iterated by:

Fn:=Fn − kn A · ΔUn (6)

Fs:=Fs − kn A · ΔUs (7)

Mb := Mb − kn I · Δθb (8)

where A is the area of the parallel bond cross-section. I is the moment of inertia of the
parallel bond. Δθb is the relative rotation increment. kn and ks denote the normal and shear
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stiffness of parallel bond, respectively. The maximum normal and shear stresses acting on
the parallel bond can be calculated:

σmax =
Fn

A
+

∣∣Mb
∣∣R

I
(9)

τmax =

∣∣Fs
∣∣

A
(10)

where R is the radius of the bond cross-section. The failure state of the parallel bond can be
determined by a comparison between these stresses and the tensile and shear strengths{

σmax > σc , failed in tension
τmax > τc , failed in shear

(11)

where the tensile strength is preset manually and the shear strength can be updated by the
Mohr-Coulomb criterion:

τc = c − σ tan φ (12)

where c is the cohesion and φ is the friction angle.

2.2. Modelling Procedure and Calibration of PB Model Parameters

Calibration of the numerical model should be performed to obtain appropriate micro-
parameters of the PB model for matching macroscopic behaviors between the numerical
model and experiment. In this work, the granite specimens from Linglong gold mine were
tested by the uniaxial compression method and the corresponding numerical specimens
were established to calibrate these results. A series of trial and error procedures are executed
by adjusting the microscopic parameters of the numerical model so that the macroscopic
mechanical characteristics of the numerical model, including UCS, elastic modulus and
Poisson, have a good match with that of actual granite. The empirical uniaxial compression
strength (UCS) is about 158.45 MPa, the elastic modulus is 32.3 GPa and the Poisson’s ratio
is 0.258. The corresponding numerical results are listed in Table 1. As shown in Table 1, the
error between the numerical results and the real granite is less than 5%, indicating that the
calibrated numerical model can well represent the real granite. The stress–strain curves
and failure modes of the numerical model and granite are also compared in Figure 3 [24].
These results also show that the numerical model is in good agreement with the testing
result The obtained calibrated micro-parameters of the PB model are listed in Table 2.

  
(a) (b) 

Figure 3. Experimental and numerical results of granite specimen under uniaxial compression:
(a) stress-strain curve; (b) failure mode [24].
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Table 1. Macro mechanical properties of materials.

Mechanical Parameters Granite Numerical Sample Error (± %)

Density (kg/m3) 2740 2740 -
Uniaxial compressive strength (MPa) 158.45 156.58 1.18

Elastic modulus (GPa) 32.3 31.54 2.35
Poisson’s ratio 0.258 0.254 1.55

Table 2. Micro mechanical properties of PB model.

Component Parameters Value

Particle
Density (kg/m3) 2740

Radius (m) 0.06–0.096
Damping 0.1

Linear contact

Modulus Ec (Gpa) 15.7
Stiffness ratio (kn/ks) 1.9
Friction coefficient μ 0.7
Normal damping βn 0

Shear damping βs 0

Parallel bond

Friction angle φ 30◦
Modulus Ec (Gpa) 15.7

Stiffness ratio (kn/ks) 1.9
Tensile strength σc (MPa) 94 ± 10

Cohesion c (MPa) 94 ± 10

The in-situ stress of Linglong Gold Mine was considered in this work. The tunnels are
assumed to be excavated along the direction of minimum horizontal principal stress. Thus,
the linear functions of the maximum horizontal principal stress and vertical principal stress
are presented as follows [39]

σhmax = 0.4612 + 0.0588h (13)

σv = −0.4683 + 0.0316h (14)

where σhmax and σv are the maximum horizontal principal stress and vertical principal
stress, respectively. h is the depth.

The numerical model with dimensions of 48 m × 24 m was established by the
calibrated PB model, as shown in Figure 4. The radius of particles is in the range of
0.06 m–0.096 m. The viscous boundary condition is set to reduce the reflected wave at the
boundary [40]. The depth of 1200 m was investigated. Correspondingly, the horizontal and
vertical stresses applied to the model boundaries are 71.02 MPa and 37.45 MPa, respectively.
Two tunnels excavated before these boundary stresses were loaded. The tunnel modelling
process in this study involves the main factor: tunnel distribution. As shown in Figure 4,
two circular tunnels with the same diameter (4 m) are considered. The distance between the
two tunnel centers is set to 8 m. The tunnel dip β is defined as the angle between the two
tunnel centers and the horizontal direction. As shown in Figure 4a, the tunnel distribution
can be obtained by changing the tunnel dip. In this study, three different tunnel dips were
considered: 0◦, 45,◦ and 90◦.
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(a) (b) 

Figure 4. Schematic diagram of numerical models: (a) numerical model design scheme; (b) measuring
circles setting and partial numerical model (1#—adjacent tunnel, 2#—non-adjacent tunnel).

The real blasting wave is extremely complex and it is almost impossible to completely
reconstruct it through numerical simulation. For this reason, some scholars proposed the
simplified triangular wave method to replace the real blasting wave [24,41,42]. Their results
show that this simplified triangular wave can effectively reflect the effects of blasting.
To this end, the triangular wave method was adopted in this study. Before the blasting,
a borehole with a radius of 0.3 m was first excavated, then a triangle stress wave was
applied to the borehole periphery, as shown in Figure 5. The tunnel close to the borehole
can be regarded as the adjacent tunnel and the tunnel far away from the borehole is the
non-adjacent tunnel. The distance between the borehole location and the adjacent tunnel is
set as 4 m. The peak stress of the triangle stress wave is 3 GPa, the rising time tr is 250 μs
and the total time tm is 1250 μs. The time ratio k = tm/tr, which is defined as the ratio
of rising time to total time, is set to 5. Four measuring circles with a radius of 0.3 m are
arranged around the non-adjacent tunnel. The measuring circles near the non-adjacent
tunnel are named B1, B2, B3 and B4, as shown in Figure 4b.

  

Figure 5. Blasting stress wave.

3. Modelling Results

3.1. Dynamic Stress Characteristics

When a blast is executed, the nearby surrounding rock will directly break into pieces
and the far-field surrounding rock will accumulate or release deformation under the
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attenuated stress wave, causing unexpected damage. Generally, the stress evolution of
surrounding rock induced by the blasting disturbance is mainly manifested in two aspects:
dynamic stress and static stress. In PFC2D, the stress recorded by the measuring circle
actually includes the static part and dynamic part. Figure 6 presents the typical stress–
time curve recorded by measuring circles. It can be seen from Figure 6 that the static
stress before blasting (t < 0 μs) is usually a stable value and the static stress after blasting
will be stabilized again. For expedient analysis, the dynamic part is separated from the
superimposed curve in the subsequent sections. Furthermore, it should be noted that the
tensile stress is positive and the compressive stress is negative.

 

Figure 6. Typical stress–time curve recorded by measuring circle.

In the periphery of the tunnel, the radial stress is usually very small, so only the
tangential stress is discussed in this study. In this section, the dynamic tangential stress was
examined. Figure 7 presents the tangential stress waves around non-adjacent tunnels under
different tunnel dips. As shown in Figure 7, these stress curves generally undergo one or
multiple peaks, of which the compression peak is less than zero and the tensile peak is
greater than zero. It can be found these peaks exhibit different variation trends at different
locations, as follows:

(1) For zone B1, when β = 0◦ and 45◦, the maximum tensile peaks are generally greater
than the maximum compression peaks, so attention should be paid to the tensile
failure of surrounding rock in the vicinity of this zone. When β = 90◦, the tensile
peak is not obvious and the maximum compression peak is 180.4 MPa, which is far
greater than the maximum tensile stress. The result shows that, when β = 90◦, the
compression failure tends to occur near zone B1.

(2) For zone B2, the maximum tensile peak is generally greater than the maximum
compression peak, which indicates that the tensile failure tends to be near this zone.

(3) For zone B3, the stress amplitudes of these curves are commonly smaller than those
of other zones. When β = 0◦ and 45◦, the maximum peak stress is tensile and when
β = 90◦, the maximum stress is compressive. The result is similar to that of zone B1.

(4) For zone B4, the result is similar to that of zone B2, in which the maximum stress is
generally tensile. In addition, it should be noted that, when β = 90◦, the tensile peak
is also not obvious.

(5) Generally, the stress wave waveform will not change significantly in zones B2 and B4,
but the stress amplitude will. In zones B1 and B3, both the waveform and amplitude
of the stress wave will change. In addition, it can be observed that the first peaks of
zones B1, B3 and B4 decrease first and then increase and the first peaks of zone B2
increase first and then decrease.
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(a) (b) 

  
(c)  (d)  

Figure 7. Tangential stress waves around non-adjacent tunnel under different tunnel dips: (a) B1;
(b) B2; (c) B3; (d) B4.

3.2. Damage Characteristics

Figure 8 presents the microcrack distribution under different tunnel dips. As shown in
Figure 8, when β = 0◦, the microcracks were mainly distributed in the right sidewall of the
adjacent tunnel and almost no microcracks were formed in the vicinity of the non-adjacent
tunnel. When β = 45◦, there are some microcracks distributed at the roof, right sidewall
and floor of the non-adjacent tunnel and the vicinity of the adjacent tunnel, while almost
no microcracks are generated between the adjacent and non-adjacent tunnels. Besides, it
can be observed that the failure on the right sidewall of the non-adjacent tunnel is spalling.
When β = 90◦, there are a large number of microcracks generated at the roof, right sidewall
and floor of the non-adjacent tunnel. Obviously, the larger the tunnel dip is, the more severe
the damage to the non-adjacent tunnel caused by blasting disturbance. In addition, it can
also be found that, when β = 90◦, an obvious penetrating failure zone merges between
adjacent and the non-adjacent tunnels. Based on these results, it can be inferred that, when
the tunnel dip exceeds a critical value, the disaster hazard induced by blasting will be more
severe, because the cascading failure tends to occur between multiple tunnels.

Figure 9 shows the development process of this microcrack. As shown in Figure 9,
the microcrack development process can be generally divided into four stages: no crack
generation stage (t < 0.1 ms), rapid microcrack growth stage (t = 0.1–2.5 ms), slow microc-
rack growth stage (t = 2.5–5.6 ms) and stable microcrack stage (t < 5.6 ms). In the no crack
generation stage (t < 0.1 ms), there are almost no new microcracks formations in the models.
In the rapid microcrack growth stage (t = 0.1–2.5 ms), the microcracks will increase rapidly
and the damage caused by this stage is also the most serious. In this stage, the microcrack
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curves of different tunnel dip almost coincide, because the damage of surrounding rock
is mainly concentrated around the borehole and the left sidewall of the adjacent tunnel.
In the slow microcrack growth stage (t > 2.5 ms), the damage begins to occur around
the non-adjacent tunnel as the stress wave propagation. Therefore, the three microcrack
curves gradually separate. In this stage, the growth rate of the microcrack gradually slows
down. In the stable microcrack stage (t > 5.6 ms), the total number of microcracks in the
surrounding rock gradually tends to be stable and the damage of the surrounding rock is
basically completed.

   

(a)  (b)  (c)  

Figure 8. Microcrack distribution under different tunnel dip: (a) β = 0◦; (b) β = 45◦; (c) β = 90◦.

 

Figure 9. Development process of the microcrack.

3.3. Evolution Characteristics of Strain Energy

The blasting disturbance usually causes the accumulation, release and dissipation of
the strain energy. Some studies believe that the evolution of strain energy is a major cause
of disasters and an important feature reflecting the stability of surrounding rock. [4,43–45].
For example, Li et al. [4] assessed the rock burst characteristics around a tunnel based
on an energy index, namely strain energy density (SED). The results show that as a large
amount of strain energy is released, the strain rock burst will occur on the floor and corner.
Luo and Gong [43] also assessed the established invariable feature of the ultimate internal
elastic index based on the law of energy release and dissipation during rock failure. To
accurately evaluate the evolution characteristics of strain energy, the strain energy density
(SED) is applied in this work because it is not affected by the volume of the measuring
area. According to PFC2D, the strain energy stored in linear contact and parallel bond can
be obtained:

Es =
1
2
(
|Fn|2

kn
+

|Fs|2
ks

) (15)
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Es =
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2
(
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∣∣2

Akn
+

∣∣Fs
∣∣2

Aks
+

∣∣Mb
∣∣2

Ikn
) (16)

where Es and Es denote the strain energies of linear contact and parallel bond, respectively.
Fn and Fs denote the normal and shear force of linear contact, respectively. Fn and Fs
denote the normal and shear force of parallel bond, respectively. Therefore, the SED can be
given by:

SED =
∑
m
(Es)i + (Es)i

A′ (17)

where m is the total number of linear contacts in the measuring area. A′ is the area of the
measuring area.

Figure 10 shows the SED-time curve of typical areas under different tunnel dips. As
shown in Figure 10, before the blasting wave arrives (t < 0 μs), some strain energy is accu-
mulated in the surrounding rock and can be regarded as the initial SED. During the blasting,
the SED will increase sharply, then release rapidly and finally reach an approximately stable
value (final SED). In addition, it can be found that, for zones B1 and B3, the maximum
SEDs tend to decrease first and then increase with the tunnel dip. However, for zone B2,
the maximum SEDs increase first and then decrease with the tunnel dip, which is contrary
to the cases of zones B1 and B3. For zone B4, the maximum SEDs are positively correlated
with tunnel dip. Furthermore, it can be found that, after the blasting wave path, the strain
energy does not recover to the initial value, indicating that the blasting disturbance causes
some irreversible deformation and even some severe damage.

  
(a) (b) 

  
(c) (d) 

Figure 10. SED-time curve of typical zones under different tunnel dips: (a) B1; (b) B2; (c) B3; (d) B4.
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4. Discussion

In the past decades, some scholars have realized that the stress wave wavelength
is an important factor affecting and controlling the failure characteristics of surrounding
rock [30,46,47]. For this reason, we will focus on the influence of stress wave wavelength
on the dynamic response and damage characteristics of the non-adjacent tunnel. Generally,
the different stress wave wavelengths can be obtained by adjusting the duration of the
stress wave. Therefore, in this section, the blasting wave amplitude and rise time are kept
the same as those in Section 2.2 and three time ratios k = tm/tr (2.5, 5 and 10) are set.

Usually, the damage behavior of the surrounding rock is controlled by its total stress.
However, the total stress of the surrounding rock is not only related to the dynamic stress
but also closely related to the static stress. In order to accurately evaluate the dynamic
effect caused by blasting disturbance, some scholars generally define a dynamic stress
amplification factor (DSAF) [40,48]. For this reason, a dynamic stress amplification factor is
applied to this work:

ϕ = max(
σ(t)
σs0

) (18)

where ϕ is the dynamic stress amplification factor. σ(t) is the total stress and σs0 is the static
stress before blasting. Figure 11 presents the dynamic stress amplification factor around a
non-adjacent tunnel. As shown in Figure 11, for zone B1, the DSAFs increase slightly at first
and then increase sharply with the tunnel dip β. For zone B2, the DSAFs tend to increase
first and then decrease with the tunnel dip. Especially, when the time ratio k = 10, the
DSFA decreases slightly at first. For zones B3 and B4, the DSAFs tend to decrease initially
and then increase with the tunnel dip, but for the case of k = 2.5, it can be found that the
DSAFs monotonically increase with the tunnel dip. On the other hand, the DSAF generally
increases with the time ratio k, which means that the longer the stress wave wavelength,
the greater the total maximum stress in the surrounding rock.

Figure 12 presents the microcrack distribution in surrounding rock under different
wavelengths. When β = 0◦, there are almost no microcracks around the non-adjacent tunnel,
but when the wavelength increases to a certain extent (e.g., k = 10), the microcracks will
gradually extend from the adjacent tunnel to the non-adjacent tunnel, such as the microcrack
C1. This phenomenon shows that, when the wavelength exceeds a certain critical value,
the instability of adjacent tunnels may lead to instability in non-adjacent tunnels. When
β = 45◦ and β = 90◦, it is clear that, with the increase of time ratio k, the damage around
the non-adjacent tunnel becomes more and more serious. Besides, the interaction between
the two tunnels seems to be more obvious under the higher wavelength. For example,
when β = 45◦, no penetrating failure zone forms between the two tunnels under the smaller
time ratios (e.g., k = 2.5), but does do so under larger time ratios (e.g., k = 10). Certainly,
when β = 90◦, the penetrating failure zones were also formed between the two tunnels,
but it is obvious that the penetrating failure zones increase with the wavelength. These
results show that the long stress wave is more likely to cause damage to the non-adjacent
tunnel than the short stress wave. Therefore, the designing and protecting strategy of
underground engineering can be optimized. For example, for dynamic disturbance with a
short wavelength, the roof and floor of a non-adjacent tunnel should be protected. However,
for dynamic disturbance with a long wavelength, the areas between the adjacent tunnel
and non-adjacent tunnel should also be monitored to determine whether there is a trend of
penetrating failure.
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(a) (b) 

(c) (d) 

Figure 11. Dynamic stress amplification factor under various tunnel dips and wavelengths: (a) B1;
(b) B2; (c) B3; (d) B4.
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Figure 12. Microcrack distribution in surrounding rock under different wavelength.

The rapid release of strain energy is an important index of rock burst intensity. Gen-
erally, more release of strain energy will cause severe rock burst. To further evaluate the
strain energy evolution law before and after blasting, the SED variation is defined, which is
the difference between initial SED and final SED. The value of SED variation greater than
zero represents the accumulation of strain energy and the value less than zero represents
the release of strain energy.

Figure 13 presents the variation of strain energy density before and after blasting. For
zone B1, the SED variations tend to initially increase and then decrease with the tunnel
dip β. Especially, when k = 10, the SED variation directly decreases with the tunnel dip β.
This is the reason that the accumulated deformation of zone B1 tends to increase with the
tunnel dip β, but when the tunnel dip approaches a specific value, some damage will occur
around the zone B1, which leads to the partial deformation recovery of the zone B1 and the
decrease in SED variation. For example, when β = 45◦ and k = 2.5 or 5, there is almost no
damage in zone B1, so the corresponding SED variation is positive; but when β = 45◦ and
k = 10, there is obvious damage in zone B1 (as shown in Figure 12), so the corresponding
SED variation is negative.

For zone B2, as the tunnel dip β increases, the damage to surrounding rock will be
more and more serious. Therefore, the SED variation tends to decrease with the tunnel dip
β (such as in the case of k = 5 and 10). Especially, when k = 2.5, the SED variation exhibits a
trend of decreasing first and then increasing. This is because, when the tunnel dip is 90◦,
the total energy obtained by zone B2 is greater than those of the other dips. Another reason
is that when k = 2.5, the stress wavelength is too short and there is not enough damage
in zone B2. The combination of these two causes leads to the insufficient release of strain
energy. Therefore, the SED variation in the case of β = 90◦ and k = 2.5 is the largest.

For zones B3 and B4, the SED variations decrease with the tunnel dip β. In addition, it
is worth noting that, for zones B2 and B4, the SED variation decreases with the time ratio k.
The results suggest that the strain energy release of the roof and floor will increase with
the wavelength. For zones B1 and B3, there is no simple positive or negative correlation
between the SED variation and wavelength.

In summary, the stress evolution, energy evolution and damage characteristics of
the surrounding rock are closely related to the tunnel dip and stress wave wavelength.
In practical engineering, the effect of the nearby blasting disturbance can be predicted
to a certain extent based on the existing wavelength information of the blasting wave
and tunnel distribution information. For example, in two successive blasting activities
with different charge lengths, the information of the second blasting, such as the damage
and energy evolution characteristics of the roof and floor of the non-adjacent tunnel,
can be effectively predicted based on the first blasting. Therefore, it is very necessary
to evaluate the dynamic response and damage of non-adjacent tunnels with different
tunnel distributions. It should be noted that the real rock stratum may contain a large
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number of random discontinuities (not considered in this study). According to previous
studies [49,50], these discontinuities often affect the mechanical behavior of surrounding
rock widely. Therefore, in our subsequent research, the properties of these discontinuities,
including size, density, distribution and cohesiveness, will be further considered to reveal
the dynamic behavior of the tunnels.

 
 

(a) (b) 

  
(c) (d) 

Figure 13. Variation of strain energy density before and after blasting: (a) B1; (b) B2; (c) B3; (d) B4.

5. Conclusions

This work extends the existing research on the mechanical problem of multiple tunnels
under static load to the dynamic problem, because blasting disturbance often triggers a
different mechanical response from that under static load. In addition, it is also different
from previous studies in that the focus of this work has shifted from a single tunnel or the
tunnel near the disturbance source to a remote non-adjacent tunnel. To study the dynamic
behavior of the non-adjacent tunnel, the numerical models of two tunnels with different
distributions were established by the particle flow code (PFC2D).

The dynamic stress evolution around the non-adjacent tunnel is initially examined. It
can be found that the tunnel distribution can affect the dynamic stress response around
the non-adjacent tunnel. In the roof and floor of the non-adjacent tunnel, the stress wave
waveform is commonly unchanged, while the stress amplitude will change obviously. In
the sidewalls of the non-adjacent tunnel, both the waveform and amplitude of the stress
wave will change obviously. In addition, the damage of the surrounding rock is closely
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related to the tunnel distribution. Generally, the damage around the non-adjacent tunnel
increases with the tunnel dips. When β = 0◦, there is no damage around the non-adjacent
tunnel, but when β = 90◦, there is obvious damage around the non-adjacent tunnel and
the penetrating failure forms between the two tunnels. On the other hand, the evolution
of strain energy was examined. In general, the strain energy density (SED) will undergo
a stage of rapid accumulation and release and the maximum strain energy density in
different areas around the non-adjacent tunnel will show different trends with the increase
in tunnel dip.

The dynamic response and damage characteristic of the non-adjacent tunnel caused by
the blasting wave with different wavelengths was further examined. It can be found that
the tunnel dip has an obvious influence on the dynamic stress amplification factor (DSAF)
and the effect of tunnel dip changes with wavelength. Generally, the DSAF around the non-
adjacent tunnel increases with the wavelength. By observing the distribution characteristics
of microcracks around non-adjacent tunnel under different wavelength, it can be found that
the long wavelength is more likely to induce rock mass damage than the short wavelength.
Subsequently, the SED variation before and after blasting was further analyzed. In the
right sidewall of the non-adjacent tunnel, the SED variations tend to increase first and then
decrease with the tunnel dip. In the roof of the non-adjacent tunnel, the SED variations
tend to decrease with the tunnel dip. In the left sidewall and floor, the SED variations
tend to decrease with the tunnel dip. In addition, the longer the wavelength, the more
conducive to the strain energy release of the roof and floor. Overall, this study provides
some insight into the dynamic behavior of local twin tunnels. Some prediction and analysis,
including stability analysis of surrounding rock, vibration assessment of surrounding rock
and optimization and control of blasting method, can be preliminarily given.
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Abstract: Freeze-and-thaw (F&T) weathering cycles induced by day–night and seasonal temperature
changes cause a large number of rock mass engineering disasters in cold areas. Investigating the
impact of F&T weathering process on the strength and deformation characteristics of frozen–thawed
rocks is therefore of critical scientific importance for evaluating the stability and optimizing the design
of rock mass engineering in these areas. In this research, the evolution characteristics of F&T damage
were analyzed based on T2 spectrum distribution curves of sandstone specimens before and after
F&T weathering cycles. The coupling impact of the quantity of F&T weathering cycles and confining
pressure on pre-peak and post-peak deformation behaviors of sandstone specimens were analyzed
in detail. By introducing the confining pressure increase factor (CPIF), the impact of confining
pressure on the triaxial compressive strength (TCS) of sandstone specimens after undergoing different
quantities of F&T weathering cycles was further investigated. A novel strength evolution model
was proposed that could effectively describe the coupling impact of the quantity of F&T weathering
cycles and confining pressure on TCS of rocks after undergoing the F&T weathering process. The
proposed strength evolution model was cross-verified with experimental data from the published
literature and all correlation coefficients were above 0.95, which proved that the strength evolution
model proposed in this paper was reasonable; in addition, this model has strong applicability.

Keywords: freeze-and-thaw weathering cycles; confining pressure; confining pressure increase factor
(CPIF); strength evolution model; nuclear magnetic resonance (NMR)

MSC: 74-XX; 74L10

1. Introduction

During the construction of rock mass engineering (such as mines, roads, and tunnels)
in cold regions, the recurrence of F&T weathering processes induced by day–night and
seasonal temperature changes causes rapid damage and the deterioration of rock masses
and has initiated a large number of F&T disasters such as rock falls, landslides [1–3], and
the cracking of rock surrounding tunnels [4,5], which has a major impact on the design,
construction, and operation of rock mass engineering in cold areas. The strength and
deformation behaviors of rocks are the theoretical basis for evaluating the stability and
optimizing the engineering design in rock mass engineering [6]. Therefore, investigating
the mechanical properties of rocks after undergoing F&T weathering cycles has great
significance in evaluating the stability and optimizing the design in rock mass engineering
in cold areas.

The impact of F&T weathering process on rock mechanical properties have been
investigated by a considerable number of scholars. These investigation results indicated
that after undergoing the F&T weathering process, the elastic modulus [7–11], uniaxial
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compressive strength (UCS) [7,8,10–14], Brazilian tensile strength (BTS) [15–18], point load
strength (PLS) [15,16], dynamic uniaxial compressive strength (UCSd) [7,8,10,19–22] and
dynamic tensile strength (BTSd) [19,23] of rocks such as sandstone, tuff, gneiss, granite and
shale all decreased as the quantity of F&T weathering cycles increased, but to different
extents. To reveal the change laws in these mechanical parameters with the quantity of F&T
weathering cycles, a sequence of regression analysis models [24,25] and exponential decay
models [15,16,26–28] were proposed based on the relationships between these mechanical
parameters and the quantity of F&T weathering cycles. In addition, Liu et al. [29] regarded
F&T weathering cycles as a kind of fatigue damage and thus established a fatigue damage
model of rocks after undergoing F&T weathering cycles. A prediction model of UCS
of rocks after undergoing F&T weathering cycles was obtained based on this fatigue
damage model. Gao et al. [30] established a UCS evolution model of frozen–thawed rocks
based on the energy evolution characteristics of rock failure. However, these research
findings mainly focused on the uniaxial mechanical properties of rocks after undergoing
F&T weathering cycles and did not consider the impact of the confining pressure on the
mechanical properties of rocks after undergoing F&T weathering process. There is no doubt
that actual rock mass engineering is always in a certain stress field [31,32]. To be closer to
the actual engineering, it is necessary to study the triaxial mechanical properties of rocks
after undergoing F&T weathering cycles.

Recently, scholars have increasingly studied the triaxial mechanical properties of
rocks after undergoing F&T weathering cycles. Tan et al. [9] used granite as the research
object to investigate the impact of the quantity of F&T weathering cycles on uniaxial and
triaxial mechanical properties according to uniaxial compression tests (UCTs) and triaxial
compression tests (TCTs) after granite specimens being underwent F&T weathering process.
They found that both the UCS and TCS decreased exponentially as the quantity of F&T
weathering cycles increased, as did the elastic modulus and cohesion. The relationships
between these mechanical properties and the quantity of F&T weathering cycles were built
according to an exponential function. Wang et al. [31] and Hosseini and Khodayari [33]
also carried out similar studies but took sandstone as the research object; the research
results for both were in accordance with those of Tan et al. [9]. In addition, Hosseini and
Khodayari [33] also found that the rate of reduction in the TCS was less than that of the
UCS at the equivalent quantity of F&T weathering cycles and that the higher the confining
pressure was, the lower the rate of reduction. It was evident that the confining pressure
had a significant impact on the TCS of rocks after undergoing F&T weathering cycles.
To this end, Fu et al. [34] operated a sequences of TCTs after transversely isotropic rocks
underwent an F&T weathering process and found that the quantity of F&T weathering
cycles, bedding plane orientation, and confining pressure had a significant impact on the
TCS of slate. A TCS prediction model for transversely isotropic rocks after undergoing an
F&T weathering process was proposed based on the single discontinuity theory and the
functional relationships between cohesion and internal friction angle and the quantity of
F&T weathering cycles. Seyed Mousavi et al. [35] also carried out similar studies taking
calc-schist rock specimens as the research objects. Finally, an empirical expression among
the TCS, the quantity of F&T weathering cycles, and the confining pressure was obtained
according to experimental results and the prediction model suggested by Fu et al. [34].
Although the prediction model proposed by Fu et al. [34] could effectively reflect the
coupling impact of the quantity of F&T weathering cycles and confining pressure on TCS
of rocks after undergoing an F&T weathering process, this prediction model was based on
transversely isotropic rocks and its applicability was not strong. Therefore, it is necessary
to establish a more applicable strength evolution model to reveal the coupling impact of the
quantity of F&T weathering cycles and confining pressure on TCS of rocks after undergoing
an F&T weathering process. In addition, the above-mentioned studies mainly focused on
investigating the strength-deterioration characteristics of rocks after undergoing an F&T
weathering process and did not deeply investigate the deformation behaviors of rocks,

184



Mathematics 2022, 10, 3841

especially the coupling impact of the quantity of F&T weathering cycles and confining
pressure on deformation behaviors of rocks during the entire loading procedure.

In this study, saturated sandstone specimens were first subjected to different quantities
of F&T weathering cycles, then change laws in the T2 spectrum distribution curves of
sandstone specimens before and after the F&T weathering cycles were investigated. UCTs
and TCTs of sandstone specimens after undergoing different quantities of F&T weathering
cycles were conducted to obtain the UCS and TCS and the corresponding stress–strain
curves. The coupling impact of the quantity of F&T weathering cycles and confining
pressure on the deformation behaviors of rocks were investigated. A novel strength
evolution model that considered the coupling impact of the quantity of F&T weathering
cycles and confining pressure on the TCS of rocks after undergoing the F&T weathering
process was established; the proposed strength evolution model was cross-verified with
experimental data from the published literature.

2. Experimental Materials and Methods

2.1. Rock Specimen Preparation

In this paper, rock specimens of sandstone were taken from the Jiama open pit copper
mine located in the Tibet Autonomous Region of China. The sampling site is shown in
Figure 1a. Figure 1b shows the distribution map for the frozen soil of China. It can be
seen in Figure 1b that the sampling site was on the boundary between the permafrost
regions and seasonal frozen regions; therefore, the rock was subjected to repeated F&T
weathering cycles. Table 1 shows the mineral composition of sandstone obtained via an
X-ray diffraction (XRD) technique.

Figure 1. Location of the sampling site: (a) location of the Jiama open pit copper mine; (b) distribution
map for frozen soil of China.

Table 1. Mineral composition of sandstone specimens.

Rock Type
Mineral Composition

Quartz (%) Kaolinite (%) Feldspar (%) Mica (%)

Sandstone 88.14 7.44 3.05 1.37

Based on the method suggested by the International Society for Rock Mechanics
(ISRM), all rock specimens were processed into a cylinder with a diameter of 50 mm;
we ensured that the flatness of the end surfaces was less than 0.05 mm [36]. Careful
preparations ensured that the maximum deviations of the diameter and height were less
than 0.30 mm and the vertical variance was less than 0.25◦ [36]. In this study, 15 and
60 rock specimens were used in UCTs and TCTs, respectively, and the length/diameter
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ratio of the rock specimens was 2.0 [36]. These specimens were divided into five groups
(labeled A, B, C, D, and E); each group comprised 15 rock specimens (labeled 1, 2 . . . 14,
15). The sandstone specimens from groups A, B, C, D, and E were treated in 0 cycles,
10 cycles, 20 cycles, 30 cycles, and 40 cycles, respectively. As shown in Figure 2a, the
sandstone specimens labeled 1–3 in each group were used in the UCTs. The confining
pressures were 3, 6, 9, and 12 MPa in the TCTs, corresponding to the sandstone specimens
labeled 4–6, 7–9, 10–12, and 13–15 in each group, as shown in Figure 2b.

Figure 2. Rock Specimens: (a) specimens for uniaxial compression tests; (b) specimens for triaxial
compression tests.

2.2. Test Procedures and Experimental Apparatus

All sandstone specimens were divided into five groups and dried in an oven for 48 h
at 65 ◦C. The sandstone specimens that did not undergo F&T weathering cycles were used
directly in the UCTs and TCTs. The other sandstone specimens were placed in a vacuum
pump at a pressure of 0.1 MPa for 4 h and then soaked in distilled water for 24 h. The
saturated specimens then went through the specified quantity of F&T weathering cycles in a
TDS-300 automatic F&T testing machine (as shown in Figure 3a). When the quantity of F&T
weathering cycles reached the specified quantities, the corresponding sandstone specimens
were removed and UCTs and TCTs were conducted using an MTS815 electrohydraulic
servo-controlled rock-testing machine (as shown in Figure 3c).

Figure 3. Experiment instrument: (a) TDS-300 automatic freeze–thaw test machine; (b) MesoMR23-
060H-I NMR system; (c) MTS815 electrohydraulic servo-controlled rock-testing machine.
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2.3. F&T Weathering Cycle Tests

Designed based on the local climate of the sampling site, one F&T weathering cycle in
our tests included freezing the saturated rock specimens at −20 ◦C for four hours and then
thawing in water at +20 ◦C for four hours. The temperature variation curve of the F&T
weathering process is shown in Figure 4. In this study, four groups of sandstone specimens
were subjected to F&T weathering tests corresponding to 10 cycles, 20 cycles, 30 cycles and
40 cycles. To reveal the evolution characteristics of the F&T damage, the MesoMR23-060H-I
NMR system (as shown in Figure 3b) was used to conduct nuclear magnetic resonance
(NMR) tests to obtain T2 spectrum distribution curves before and after the F&T weathering
cycles [37–43].

Figure 4. Temperature variation curves for one F&T weathering cycle.

Figure 5 displays T2 spectrum distribution curves of the sandstone specimens before
and after 20 (as shown in Figure 5a) and 40 (as shown in Figure 5b) F&T weathering
cycles. In the T2 spectrum distribution curves, the T2 relaxation time (horizontal axis) is a
measurement of the internal pore sizes and the porosity component (vertical axis) is the
proportion of the corresponding pore sizes [20]. As can be seen in Figure 5a, after the
sandstone specimens underwent 20 cycles, the peak values of the T2 spectrum distribution
curve increased, indicating that the sizes of the internal pores increased. As shown in
Figure 5b, when the sandstone specimens underwent 40 cycles, the increases in the peak
values were even more significant. In addition, the expansion of the curve to the left
suggested that the sizes of some small pores increased. This demonstrated that in the
early stage of the F&T weathering cycles, the original internal pores and microcracks were
constantly developing. With the increase in the quantity of F&T weathering cycles, in the
later stage of the cycles, in addition to the expansion of original internal pores and the
constant extension of microcracks, new pores and microcracks were generated; i.e., with
the increase in the quantity of the F&T weathering cycles, the accumulated damage to the
inner sandstone specimens constantly increased.

2.4. Uniaxial and Triaxial Compression Tests

UCTs and TCTs were conducted on an MTS815 electrohydraulic servo-controlled rock-
testing machine; axial and circumferential extensometers were used in our experiment to
measure the axial and lateral strains. In our experiment, the displacement-control loading
mode was used at a loading rate of 0.1 mm/min. The measured UCSs and TCSs of the
sandstone specimens are listed in Table 2.
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Figure 5. T2 spectrum distribution curves for sandstone specimens at different quantities of F&T
weathering cycles: (a) 20 F&T weathering cycles; (b) 40 F&T weathering cycles.

Table 2. Uniaxial and triaxial compression test results for sandstone specimens after undergoing
different quantities of F&T weathering cycles.

Quantity of F&T
Weathering Cycles

Confining
Pressure (MPa)

Specimen ID Diameter (mm) Height (mm)
Peak Compressive Strength (Mpa)
Tested Value Average Value

0

0
A1 48.54 100.26 26.94

27.50A2 49.12 100.28 27.51
A3 48.96 99.88 28.05

3
A4 49.06 100.02 48.78

49.34A5 49.14 99.84 47.99
A6 49.02 100.16 51.26

6
A7 48.94 100.10 62.87

63.28A8 49.06 100.14 64.75
A9 49.00 100.28 62.23

9
A10 48.74 100.22 72.12

74.61A11 48.88 100.08 75.46
A12 48.96 100.20 76.25

12
A13 49.48 99.84 83.76

85.08A14 48.94 99.88 85.24
A15 48.04 100.16 86.25
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Table 2. Cont.

Quantity of F&T
Weathering Cycles

Confining
Pressure (MPa)

Specimen ID Diameter (mm) Height (mm)
Peak Compressive Strength (Mpa)
Tested Value Average Value

10

0
B1 49.12 100.02 25.60

24.38B2 49.46 100.02 24.11
B3 48.96 99.84 23.44

3
B4 48.86 100.04 44.88

44.58B5 48.74 100.28 45.58
B6 48.56 100.06 43.28

6
B7 48.52 100.12 56.86

57.57B8 49.10 100.12 57.22
B9 49.04 100.66 58.64

9
B10 49.02 100.18 70.33

68.99B11 48.98 99.94 67.40
B12 48.96 100.24 69.24

12
B13 49.14 99.94 81.88

80.13B14 48.82 99.72 79.55
B15 48.84 100.16 78.96

20

0
C1 49.04 100.02 19.68

20.79C2 48.88 100.10 20.62
C3 49.18 99.90 22.06

3
C4 48.96 100.24 39.12

40.11C5 49.04 100.10 42.89
C6 49.04 100.12 38.33

6
C7 49.08 100.18 52.11

53.25C8 48.76 99.82 54.48
C9 48.52 100.22 53.15

9
C10 48.74 99.98 65.40

64.24C11 48.70 99.86 64.06
C12 49.12 100.14 63.25

12
C13 49.20 100.20 74.59

74.28C14 49.78 99.86 72.66
C15 48.88 99.96 75.58

30

0
D1 49.52 100.16 19.04

18.17D2 48.84 99.88 18.2
D3 49.04 100.02 17.26

3
D4 48.36 100.02 35.18

36.47D5 49.12 99.78 38.97
D6 48.76 100.06 35.26

6
D7 48.82 100.16 48.80

49.29D8 49.06 99.78 50.81
D9 49.92 100.04 48.25

9
D10 48.80 99.86 58.28

59.41D11 49.06 100.02 60.16
D12 49.82 99.90 59.78

12
D13 49.02 100.22 66.62

67.26D14 49.28 100.16 65.37
D15 49.12 99.94 69.78

40

0
E1 48.84 99.84 15.88

16.39E2 48.84 100.04 16.41
E3 48.60 100.20 16.88

3
E4 49.02 100.18 33.06

32.84E5 48.86 99.88 31.78
E6 48.68 100.30 33.68

6
E7 48.76 99.84 45.82

43.94E8 48.98 100.08 42.75
E9 48.68 100.14 43.25

9
E10 48.96 10.14 52.73

52.29E11 48.88 100.02 49.9
E12 49.08 100.14 54.25

12
E13 48.92 100.18 61.77

61.13E14 49.16 99.92 59.38
E15 48.90 100.20 62.25
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3. Experimental Results and Analysis

3.1. Uniaxial Mechanical Properties Variation Characteristics for Sandstone after Undergoing F&T
Weathering Cycles
3.1.1. Stress–Strain Curve

Figure 6 displays the stress–strain curves for the sandstone specimens after undergoing
different quantities of F&T weathering cycles under uniaxial compression conditions.
All of the stress–strain curves had the same variation patterns and could be separated
into five stages during the entire loading process; that is, the compaction stage, elastic
deformation stage, yield stage, failure stage, and strain softening stage. As the quantity of
F&T weathering cycles increased, the stress–strain curves showed three obvious features:
(1) the compaction stage became longer; (2) the slope at the linear deformation stage
decreased, as did the UCS; and (3) the stress-dropping rate of the post-peak decreased.
The main reason was that the length of the compaction stage and the slope of the linear
deformation stage were proportional to the number of microdefects inside the rock [44].
Under the F&T weathering process, water migration and transformation from water to ice
caused microdefects to gradually develop; the number of microdefects increased with the
increase in the quantity of F&T weathering cycles [45,46]. The main reason for the reduction
in the stress-dropping rate of the post-peak was that the F&T weathering cycles caused
the cohesion between the particles to gradually decrease, which caused the sandstone
specimens to become soft and the plasticity to increase.

Figure 6. Stress–strain curves for sandstone specimens after undergoing different quantities of F&T
weathering cycles in uniaxial compression tests.

3.1.2. UCS

Figure 7 shows the changes in the UCS and its reduction ratio for different quantities
of F&T weathering cycles. The reduction ratio for UCS is defined as follows:

η =
σ0 − σN

σ0
× 100% (1)
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where σ0 is the UCS of sandstone specimens without any F&T weathering cycles, σN is the
UCS of sandstone specimens after undergoing N quantity of F&T weathering cycles, and η
is the reduction ratio of the UCS.

As shown in Figure 7, compared with the original average UCS (27.50 MPa), the reduc-
tion ratios were 11.33% (24.38 MPa), 24.41% (20.79 MPa), 33.94% (18.17 MPa), and 40.40%
(16.39 MPa), corresponding to 10 cycles, 20 cycles, 30 cycles, and 40 cycles, respectively.
The reason can be explained as follows: the water migration and transformation from
water to ice under the F&T weathering process caused microdefects to gradually develop
and the sandstone specimens to become more fragmented. It was noticeable that the UCS
exponentially decayed as the quantity of F&T weathering cycles increased, similar to laws
found in the literature [16,26,28]. The experimental data were fitted by the decay model
suggested by Mutlutürk et al. [26]; this decay model is defined as follows:

IN = I0e−λN (2)

where I is the rock integrity, λ is the decay coefficient, and N is the quantity of F&T
weathering cycles.

In this paper, the UCS was regarded as the rock integrity; therefore, the decay model
became as follows:

σN = σ0e−λN (3)

The fitting curves of our test are shown in Figure 7. The model fit well with the
experimental data: the fitting coefficient of determination (R2) was greater than 0.99.

Figure 7. UCS and its reduction ratio for sandstone specimens after undergoing different quantities
of F&T weathering cycles.

3.1.3. Failure Modes

Figure 8 shows the failure modes of the sandstone specimens after undergoing different
quantities of F&T weathering cycles in uniaxial compression conditions. The failure mode
was single inclined plane shear failure when the sandstone specimens did not undergo
F&T weathering cycles. The failure modes became tension-shear comprehensive failure
and splitting failure as the quantity of F&T weathering cycles increased. Tension-shear
comprehensive failure occurred in the sandstone specimens after undergoing 10 cycles
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and 20 cycles and the sandstone specimens were fragmented. Splitting failure occurred
in the sandstone specimens when the quantity of F&T weathering cycles was 30 and 40.
The increase in the number of macroscopic cracks on the surfaces of sandstone specimens
caused them to become more fragmented. The reason why the failure modes changed
with the quantity of F&T weathering cycles was that the F&T weathering process causes
microdefects to gradually develop inside the sandstone specimens, which caused cracks to
be more likely to expand in the axial direction under uniaxial compression conditions.

Figure 8. Failure modes of sandstone specimens after undergoing different quantities of F&T weath-
ering cycles in uniaxial compression tests.

3.2. Triaxial Mechanical Properties’ Variation Characteristics for Sandstone after Undergoing F&T
Weathering Cycles
3.2.1. Stress–Strain Curve

Figure 9 displays the stress–strain curves for the sandstone specimens after under-
going different quantities of F&T weathering cycles under different confining pressures.
Compared with the stress–strain curves of sandstone specimens after undergoing different
quantities of F&T weathering cycles under uniaxial compression conditions, all of the
stress–strain curves had obvious residual strength characteristics. In addition, the variation
characteristics of the stress–strain curves were similar under different confining pressures
as the quantity of F&T weathering cycles increased. All of the stress–strain curves could be
separated into six stages: compaction stage, elastic deformation stage, yield stage, failure
stage, strain softening stage, and residual strength stage. When the confining pressure
was constant, with the increase in the quantity of the F&T weathering cycles, except for a
gradual decrease in the residual strength, the other variation characteristics were similar to
those in uniaxial compression conditions: (1) the compaction stage became longer; (2) the
slope at the linear deformation stage decreased, as did the TCS; and (3) the stress-drop rate
in the post-peak stress decreased. The main reason for these characteristics was the same
as that under uniaxial compression conditions.

Figure 10 displays the stress–strain curves of the sandstone specimens after undergoing
20 F&T weathering cycles at different confining pressures. With the increase in confining
pressure, the stress–strain curves showed four obvious features: (1) the compaction stage
became shorter; (2) the slope at the linear deformation stage increased, as did the TCS;
(3) the stress-dropping ratio of the post-peak decreased; and (4) the residual strength
increased. The main reason was that the length of the compaction stage and the slope of the
linear deformation stage are proportional to the number of microdefects in the rock. Under
the confining pressure, microdefects inside the rock caused by the F&T weathering process
were pre-compression, which caused a decrease in the number of microdefects; the higher
the confining pressure was, the larger the number of microdefects that the pre-compression
had. The main reason for the decrease in the stress-dropping ratio of the post-peak and
the increase in residual strength was that the confining pressure could make the post-peak
deformation behavior of the rocks transition from brittleness to plasticity [47–50].
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Figure 9. Stress–strain curves of sandstone specimens after undergoing different quantities of F&T
weathering cycles under triaxial compression tests: (a) 3 MPa; (b) 6 MPa; (c) 9 MPa; (d) 12MPa.

These variation characteristics indicated that the impact of the quantity of F&T weath-
ering cycles on the pre-peak deformation behavior and residual strength was the opposite
of the confining pressure while the post-peak deformation behaviors were similar to the
confining pressure.

3.2.2. TCS

Figure 11 displays the relationship between the TCS and its reduction ratio and the
quantity of F&T weathering cycles at different confining pressures. It can be seen that
the TCS decreased with an increase in the quantity of F&T weathering cycles when the
confining pressure was constant, which was similar to laws in the uniaxial compression
conditions. Compared with the original average TCS, the reduction ratios were: 9.55%,
18.71%, 26.09%, and 33.45% for 10 cycles, 20 cycles, 30 cycles, and 40 cycles, respectively,
when the confining pressure was 3 MPa; 9.02%, 15.86%, 22.12%, and 30.57% for 10 cycles,
20 cycles, 30 cycles, and 40 cycles, respectively, when the confining pressure was 6 MPa;
7.53%, 13.90%, 20.38%, and 29.91% for 10 cycles, 20 cycles, 30 cycles, and 40 cycles, re-
spectively, when the confining pressure was 9 MPa; and 5.82%, 12.70%, 20.95%, and
30.57% for 10 cycles, 20 cycles, 30 cycles, and 40 cycles, respectively, when the confining
pressure was 12 MPa. At different confining pressures, the variation characteristics be-
tween the TCS of the sandstone specimens and the quantity of F&T cycles were similar
to the UCS. Therefore, the experimental data could be used to fit the model suggested by
Mutlutürk et al. [26]; the fitting results of our tests are shown in Figure 11. The model
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fit well with experimental data: the fitting coefficient of determination (R2) was greater
than 0.98. The decay coefficient was 0.01018, 0.00881, 0.00819, and 0.00778 for 3, 6, 9, and
12 MPa, respectively. The results indicated that the decay coefficient decreased as the
confining pressure increased and that the higher the confining pressure was, the larger the
reduction in the decay coefficient. Therefore, the TCS of the sandstone after undergoing
F&T weathering process was impacted by the confining pressure. Further study of the
impact of confining pressure on the TCS of sandstone after undergoing the F&T weathering
process referred to the definition of the dynamic increase factor [51,52]. The confining
pressure increase factor (CPIF) could be defined as TCS/UCS.

Figure 10. Stress–strain curves for sandstone specimens at different confining pressures (20 F&T
weathering cycles).

Figure 12 displays the CPIF curves of the sandstone specimens after undergoing
different quantities of F&T weathering cycles in different confining pressures. As shown
in Figure 12, the variation characteristics of the CPIF curves were similar under different
confining pressures as the quantity of F&T weathering cycles increased; that is, the CPIF
increased as the quantity of F&T weathering cycles increased. However, the higher the
confining pressure was, the larger the increased amplitude of the CPIF. For example, when
the confining pressure was 3 MPa, the value of the CPIF was 1.79 without F&T weathering
cycles; the CPIF is 2.31 after the sandstone underwent F&T weathering cycles, an increase
ratio of 28.97%; when the confining pressure was 12 MPa, the value of the CPIF was
3.09 without F&T weathering cycles and the CPIF was 4.83 after the sandstone underwent
F&T weathering cycles, an increase ratio of 56.27%. This indicated that sandstone specimens
were more sensitive to the confining pressure after undergoing more F&T weathering cycles.
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Figure 11. TCS and its reduction ratio for sandstone specimens after undergoing different quantities
of F&T weathering cycles: (a) 3 MPa; (b) 6 MPa; (c) 9 MPa; (d) 12 MPa.

Figure 12. Confining pressure increase factor curves at different confining pressures.

These results demonstrated that the UCS of the sandstone after undergoing F&T
weathering process was mainly controlled by the quantity of F&T weathering cycles under
uniaxial compression conditions. The TCS of the sandstone after undergoing the F&T
weathering process was impacted by the quantity of F&T weathering cycles and confining
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pressure under triaxial compression conditions; these two factors had opposite impacts. The
main reason was that the water–ice phase and water migration under the F&T weathering
cycles caused microdefects to gradually develop inside the sandstone specimens, which
induced F&T damage. However, under confining pressure conditions, some microdefects
inside the sandstone specimens were closed, which lessened the damage induced by the
F&T weathering process. Therefore, for the slope engineering of open-pit mines in cold
areas, the application of anchor reinforcement technology to provide pre-stress could lessen
the damage induced by the F&T weathering process and improve the stability of the slope.

3.2.3. Failure Modes

Under different quantities of F&T weathering cycles, the failure modes of the sandstone
specimens had the same evolution characteristics with the change in confining pressure.
Therefore, Figure 13 only shows the failure modes under different confining pressures after
the sandstone specimens underwent 20 F&T weathering cycles. As shown in Figure 13,
under different confining pressures, the failure modes of the sandstone specimens all were
single incline plane shear failure; however, the length of the shear failure plane became
shorter with the increase in the confining pressure. The main reason was that the lateral
deformation was limited under the confining pressure, so the sandstone specimens only
exhibited single inclined plane shear failure. In addition, the higher the confining pressure
was, the more severe the limiting effect, so the length of the shear failure plane became
shorter with the increase in the confining pressure.

Figure 13. Failure modes of sandstone specimens at different confining pressures (20 F&T weathering
cycles).

4. Strength Evolution Model of Rock Specimens Considering the Freeze–Thaw
Weathering Process and Confining Pressure

The experimental results demonstrated that the TCS of rocks after undergoing the
F&T weathering process was impacted by the quantity of F&T weathering cycles and
the confining pressure under triaxial compression conditions. The model suggested by
Mutlutürk et al. [26] could only describe the change in the peak compressive strength
of rocks after undergoing the F&T weathering process at a specific confining pressure,
which did not consider the coupling impact of the quantity of F&T weathering cycles and
the confining pressure. Therefore, it was necessary to establish a novel model that could
reflect the evolution laws of the TCS of rocks after undergoing the F&T weathering process.
The impact of the confining pressure on the TCS could be described by the rock-strength
criterion. The Hoek–Brown strength criterion proposed by Hoek–Brown could describe the
failure of the broken rock mass. The expression of the Hoek–Brown strength criterion is as
follows [53,54]:

σ1 = σ3 +
√

miσciσ3 + σ2
ci (4)

where σci is the UCS, σ1 is the TCS, mi is the material constant, and σ3 is the confining
pressure.

Under the F&T weathering process, the water migration and transformation from
water to ice caused microdefects to gradually develop, which caused the rock specimens to
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become more fragmented. Therefore, the Hoek–Brown strength criterion could be adopted
to describe the impact of the confining pressure on the TCS of rocks after undergoing the
F&T weathering process. According to the expression of the Hoek–Brown strength criterion,
the relationship between the TCS σ1 and the confining pressure σ3 could be simplified
into a quadratic function expression. Based on this simplified relationship and the model
suggested by Mutlutürk et al. [26], this paper proposed a novel strength evolution model
to describe the coupling impact of the quantity of F&T weathering cycles and the confining
pressure on the TCS. The expression of the strength evolution model is as follows:

σ1 =
(

a + bσ3 + cσ2
3

)
exp
[(

d + eσ3 + f σ2
3

)
N
]

(5)

where a, b, c, d, e, and f are fitting parameters determined by the properties of rocks.
Using Equation (5), MATLAB was adopted to fit the experimental data of the TCS of

the sandstone specimens after undergoing different quantities of F&T weathering cycles
and different confining pressures; the fitting surface is shown in Figure 14 and the fitting
parameters are shown in Table 3. As shown in Figure 14 and Table 3, the fitting surface
agreed well with the experimental data: the correlation coefficient was up to 0.992, which
indicated that the proposed model could effectively describe the coupling impact of the
quantity of F&T weathering cycles and the confining pressure on the TCS of the sandstone
after undergoing the F&T weathering process.

Figure 14. Fitting results of TCS of sandstone specimens for different quantities of F&T weathering
cycles and different confining pressures.

Table 3. Fitting parameters of strength evolution model of sandstone specimens.

Fitting
Parameters

a b c d e f R2 RMSE

Value 27.358 7.412 −0.216 1.101 × 10−2 3.257 × 10−4 −6.043 × 10−6 0.992 1.731

To further validate the rationality of the proposed model in this paper, Equation (5)
was adopted to fit the tested value from the published literature [32–35]. The fitting
surfaces are shown in Figure 15 and the fitting parameters are shown in Table 4. As shown
in Figure 15 and Table 4, the fitting surfaces agreed well with the tested value and all fitting
correlation coefficients were above 0.95, which proved that the strength evolution model
proposed in this paper was reasonable; in addition, this model has strong applicability.
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Figure 15. Fitting results of TCS of rocks for different quantities of F&T weathering cycles and
different confining pressures: (a) from [33]; (b) from [34]; (c) from [32]; (d) from [35].

Table 4. Fitting parameters of the strength evolution model of rock specimens from the published
literature.

Data Source
Fitting Parameters

a b c d e f R2 RMSE

[33] 32.242 11.493 −0.580 9.190 × 10−3 1.570 × 10−3 −1.309 × 10−4 0.988 2.249
[34] 34.444 4.333 −0.042 2.314 × 10−2 3.788 × 10−4 −2.546 × 10−7 0.977 4.341
[32] 4.387 5.155 −0.313 8.880 × 10−3 1.500 × 10−3 −9.298 × 10−5 0.992 0.688
[35] 31.680 5.907 0.299 −2.328 × 10−2 1.810 × 10−3 −8.714 × 10−5 0.965 5.817

5. Conclusions

In this paper, the evolution characteristics of the F&T damage of sandstone were ana-
lyzed based on NMR techniques. Uniaxial and triaxial compression tests of sandstone after
undergoing different quantities of F&T weathering cycles were conducted to investigate
the coupling impact of the quantities of F&T weathering cycles and the confining pressure
on the mechanical properties and failure modes. A novel strength evolution model was
proposed to describe the coupling impact of the quantity of F&T weathering cycles and the
confining pressure on the TCS of rocks after undergoing the F&T weathering process. The
following main conclusions could be drawn from this research:

(a). In the early stage of the F&T weathering cycles, original internal pores and microcracks
were constantly developing. As the quantity of F&T weathering cycles increased,
in the later stage of the F&T weathering cycles, in addition to the expansion of the
original internal pores and the constant extension of microcracks, new pores and
microcracks were generated; i.e., the accumulated damage inside the sandstone
specimens constantly increased as the quantity of F&T weathering cycles increased.
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(b). The impact of the quantity of F&T weathering cycles on the pre-peak deformation
behaviors, peak compressive strength, and residual strength was the opposite of
the confining pressure while the post-peak deformation behaviors were similar to
confining pressure. When the confining pressure was constant, with an increase in
the quantity of F&T weathering cycles, the compaction stage became longer while
the slope at the linear deformation stage, the peak compressive strength, the residual
strength, and the stress-dropping rate of the post-peak all decreased. When the
quantity of the F&T weathering cycles was constant, with an increase in the confining
pressure, the compaction stage became shorter and the slope at the linear deformation
stage, the peak compressive strength, and the residual strength all increased, but the
stress-dropping rate of the post-peak decreased.

(c). In the uniaxial compression tests, the failure mode of the sandstone specimens
changed as the quantity of F&T cycles increased. The failure mode was a single
inclined plane shear failure when the sandstone specimens did not undergo F&T
weathering cycles. In the early and later stages of the F&T weathering cycles, the
failure modes became tension–shear comprehensive failure and splitting failure, re-
spectively. In the triaxial compression tests, the failure mode of the sandstone spec-
imens under different confining pressures was a single inclined plane shear failure
regardless of the quantity of F&T weathering cycles experienced. However, the length
of the shear failure plane became shorter as the confining pressure increased.

(d). The variation characteristics of the CPIF curves were similar under different confining
pressures as the quantity of F&T weathering cycles increased; that is, the CPIF in-
creased as the quantity of F&T weathering cycles increased. However, the higher the
confining pressure was, the larger the increased amplitude of the CPIF. This indicated
that the sandstone specimens were more sensitive to the confining pressure after
undergoing more F&T weathering cycles.

(e). A novel strength evolution model that could describe the coupling impact of the
quantity of F&T weathering cycles and the confining pressure on the TCS of rocks
after undergoing the F&T weathering process was proposed. The proposed model
was cross-verified with tested values from the published literature. Fitting surfaces
agreed well with the tested value and all fitting correlation coefficients were above
0.95, which proved that the strength evolution model proposed in this paper was
reasonable; in addition, this model has strong applicability.
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Abstract: The safe and sustainable design of rock slopes, open-pit mines, tunnels, foundations,
and underground excavations requires appropriate and reliable estimation of rock strength and
deformation characteristics. Cohesion (c) and angle of internal friction (ϕ) are the two key parameters
widely used to characterize the shear strength of materials. Thus, the prediction of these parameters is
essential to evaluate the deformation and stability of any rock formation. In this study, four advanced
machine learning (ML)-based intelligent prediction models, namely Lasso regression (LR), ridge
regression (RR), decision tree (DT), and support vector machine (SVM), were developed to predict c
in (MPa) and ϕ in (◦), with P-wave velocity in (m/s), density in (gm/cc), UCS in (MPa), and tensile
strength in (MPa) as input parameters. The actual dataset having 199 data points with no missing
data was allocated identically for each model with 70% for training and 30% for testing purposes. To
enhance the performance of the developed models, an iterative 5-fold cross-validation method was
used. The coefficient of determination (R2), mean absolute error (MAE), mean square error (MSE),
root mean square error (RMSE), and a10-index were used as performance metrics to evaluate the
optimal prediction model. The results revealed the SVM to be a more efficient model in predicting
c (R2 = 0.977) and ϕ (R2 = 0.916) than LR (c: R2 = 0.928 and ϕ: R2 = 0.606), RR (c: R2 = 0.961 and ϕ:
R2 = 0.822), and DT (c: R2 = 0.934 and ϕ: R2 = 0.607) on the testing data. Furthermore, to check the
level of accuracy of the SVM model, a sensitivity analysis was performed on the testing data. The
results showed that UCS and tensile strength were the most influential parameters in predicting c
and ϕ. The findings of this study contribute to long-term stability and deformation evaluation of rock
masses in surface and subsurface rock excavations.

Keywords: angle of internal friction; cohesion; geotechnical parameters; support vector machine;
intelligent prediction
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1. Introduction

The safe and sustainable design of rock slopes, open-pit mines, tunnels, foundations,
and underground excavations needs a proper and reliable estimation of rock strength and
deformation characteristics. Cohesion (c) and angle of internal friction (ϕ) are two widely
used key mechanical strength parameters to characterize a material’s shear strength [1,2].
Thus, the prediction and estimation of these parameters are essential to evaluate the
deformation and stability of any rock formation [3]. The strength parameters c and ϕ can be
obtained directly from laboratory tests (triaxial tests), which are destructive, laborious, and
expensive. In addition, samples of the required quality are difficult to collect, especially in
highly jointed and fragile rocks [2,4]. In rock mechanics and geotechnical engineering, it is
imperative to analyze rock’s performance and estimate its related mechanical properties [5–
7]. Therefore, it is worthwhile to adapt the intelligent approaches for determining c and
ϕ.

One of the earliest adopted failure criterion for determining c and ϕ was the Mohr–
Coulomb (MC) failure criterion.

Due to its mathematical convenience, simplicity, and conventional use in the field of
rock mechanics, the MC criterion is still widely used [1,8–10]. The MC criterion includes
two parameters, c and ϕ. The parameter c is used to identify the bond between rock
particles and the parameter ϕ is related to the internal friction generated along the shear
surface [11]. Before the practical application of the MC criterion, the parameters c and ϕ
need to be estimated [12,13]. In order to evaluate the MC parameters of c and ϕ, triaxial
tests are performed at different confining pressures. However, considering the factors
of time and high cost associated with triaxial tests, there is a dire need for alternative
methods to obtain MC parameters, especially at the preliminary stages of any project,
where triaxial tests results are limited [14–16]. For this reason, efforts have been devoted
to the development of fast and inexpensive methods for indirect estimation. Tests such as
point load test [17], the Schmidt hammer test [18], sound velocity [19], impact strength [20],
or the Los Angeles abrasion test [21] have been used to estimate uniaxial compressive
strength (UCS) indirectly. Some researchers have investigated the applicability of UCS and
uniaxial tensile strength (UTS) for estimating the c and ϕ of rocks in the absence of triaxial
test data [16,22–24]. Additionally, some indirect estimation models have been introduced
for the prediction of c and ϕ. Weingarten and Perkins found a correlation between ϕ and
porosity [25] of sandstone. Plumb [26] determined the correlation between ϕ and neutron
porosity, which was improved by Asquith et al. [27] and Jaeger et al. [28]. Moreover,
Edlmann et al. [29] determined a linear relationship between ϕ and lab-measured core
porosity. Abbas et al. evaluated the correlation of ϕ with compressional waves and gamma
rays using wireline logging data [30,31]. In all cases, c was found to be dependent on ϕ and
UCS, as revealed by Almalikee and Strength [32]. Though the results of these methods have
significant application in estimating c and ϕ, they are not enough for long-term stability
and deformation evaluation of rocks. Therefore, there is still a need to investigate c and ϕ
of rocks using indirect estimation methods (i.e., intelligent approaches).

Recently, intelligent approaches have been widely used in the field of geotechnical
engineering and rock mechanics [24,33–43]. Numerous researchers have used intelligent
techniques, i.e., machine learning (ML) methods, to extend their knowledge for predicting
c and ϕ. Shen et al. applied genetic programming (GP) to predict the c and ϕ of sandstone
rocks. The proposed model provided adequate predictive performance in the absence of
triaxial data [16]. Mahmoodzadeh et al. employed Gaussian process regression (GPR),
support vector regression (SVR), decision trees (DT), and long short-term memory (LSTM)
to predict c and ϕ of intact rocks using three input parameters, i.e., UCS, UTS, and confining
stress (σ3) [24]. Khandelwal et al. implemented different approaches, namely simple and
multiple regression, artificial neural network (ANN), and genetic algorithm (GA)-ANN, to
predict the cohesion of limestone. For this purpose, P-wave velocity, UCS, and Brazilian
tensile strength (BTS) were chosen as inputs [43]. Hiba et al. aimed to construct a predictive
model using actual well-logging data. The study was carried out using two ML techniques,
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namely DT and random forest (RF). Bulk density (ROHB), neutron porosity (NPHI), and
compression time (DTC) were used as input parameters to predict c and ϕ [44]. Kainthola
et al. used an adaptive neuro-fuzzy inference system (ANFIS) and simple linear regression
(SLR) to develop correlations between some basic physico-mechanical properties, including
UCS, UTS, c, ϕ, and P-wave velocity [45]. Based on the above literature, it can be inferred
that some useful, but not fully sufficient, insights have been provided in predicting c and ϕ.
The use of a particular procedure can be appropriate in certain circumstances, but not in
others. More precisely, it has been noted in the literature that only a small amount of work
has been carried out to predict c and ϕ, especially using various types of rocks. Therefore,
there is a need for novel ML-based intelligent methods to provide an accurate predictive
model for predicting rock c and ϕ in order to safely install underground engineering
projects.

In this study, P-wave velocity, density, UCS, and tensile strength are used as input
parameters to predict c (MPa) and ϕ (◦). In addition, four advanced ML-based prediction
models, namely Lasso regression (LR), ridge regression (RR), decision tree (DT), and
support vector machine (SVM), are developed to achieve the desired goals. To enhance
the performance of the developed models, an iterative 5-fold cross-validation method is
used. At present, the use of ML-based intelligent methods in predicting the mechanical and
physical properties of rocks is gaining attention and providing an important contribution
to rock excavation in different geotechnical and mining engineering projects [46–53]. The
performance of the developed models is checked by some analytical metrics such as
coefficient of determination (R2), mean absolute error (MAE), mean square error (MSE),
root mean square error (RMSE), and a10-index. The findings of this study could be helpful
for long-standing stability and deformation evaluation of rock masses in surface and
subsurface rock excavations. Figure 1 depicts the flowchart of the ML-based intelligent
approach in this study.

Figure 1. Flowchart of the ML-based intelligent approach in this study.
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2. Data Curation

In this study, c (MPa) and ϕ (◦), including P-wave velocity in m/s, density in gm/cc,
UCS in MPa, and tensile strength in MPa as input parameters, were predicted by LR,
RR, DT, and SVM from the reported literature [45] for various rocks, namely limestone,
quartzite, slate, and quartz mica schist.

The actual dataset having 199 data points with no missing data was split into 70%
for training purposes and 30% for testing purposes. To enhance the performance of the
developed models, an iterative 5-fold cross-validation method is used. Figure 2 exhibits
the test equipment for rock strength parameter measurement: (A) uniaxial testing machine,
(B) tensile strength test, (C) P-wave velocity, and (D) triaxial test [45]. Figure 2 shows the
histogram representation of the statistical distribution of the input parameters and output
parameters of the actual dataset used in this study. Table 1 shows the lithology-based
minimum and maximum, mean, and standard deviation (STD) values of the dataset.
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Figure 2. The statistical description of the inputs and output parameters of the actual dataset.
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Table 1. Lithology-based minimum and maximum, mean, and standard deviation (STD) values of
the dataset in this study.

Items P-Wave (m/s)
Density
(gm/cc)

UCS (MPa)
Tensile

Strength (MPa)
c (MPa) ϕ (◦)

Limestone
No. of sample 147 147 147 147 147 147

Max 4899.10 2.79 139 17.45 21.60 38.12
Min 3590.70 2.55 95.10 11.7 16.40 27.55

Mean 4092.73 2.65 111.26 13.88 18.99 33.47
STD 429.83 0.06 14.03 1.76 1.73 2.99

Quartzite
No. of sample 150 150 150 150 150 150

Max 6328.14 2.77 237.76 29.85 32.11 42.34
Min 5105.3 2.41 135.24 16.8 19 28.75

Mean 5675.90 2.58 198.52 24.89 25.80 35.95
STD 373.94 0.10 30.36 3.82 3.62 4.00
Slate

No. of sample 150 150 150 150 150 150
Max 5960.12 2.89 186.46 22.96 23.88 38.99
Min 4038.1 2.55 99.1 14.00 14.85 24.57

Mean 4690.12 2.68 141.53 17.85 19.12 31.53
STD 623.37 0.10 24.52 2.68 2.63 4.68

Quartz mica schist
No. of sample 150 150 1150 150 150 150

Max 4000.68 2.85 80.89 9.50 16.78 43.35
Min 2209.34 2.63 40.97 5.20 9.96 28.05

Mean 2938.11 2.72 58.14 7.18 13.13 35.88
STD 464.84 0.05 10.11 1.09 1.59 4.26

3. Developing ML-Based Intelligent Prediction Models

3.1. Lasso Regression

Lasso regression (LR) was proposed in 1986 and 1996 as a biased estimator in the
field of geophysics [54]. Unlike ridge regression (RR), LR has the ability to perform both
feature selection and penalty regularization to improve prediction accuracy. It combats
multicollinearity by selecting the most important predictor from any set of highly correlated
independent variables and removing all other variables. LR uses an L1-norm penalty
term to shrink regression coefficients, some to zero, thus assuring the choice of the most
important explanatory variables [52]. LR has an additional advantage that if a dataset of
size n is fitted to a regression model with p parameters and p > n, the LR model can choose
only n parameters [55]. To obtain estimates of the regression, the following loss function is
minimized with Equation (1) [52]:

β̃ = argminβ‖y − Xβ‖2
2 + λ|β|1, (|β|1 =

p

∑
j=1

|β|1) (1)

The parameter λ can be selected using cross-validation. Though the LR and RR as
given in Equations (1) and (2) bear a resemblance to each other, the results β̃ ridge and
β̃ lasso show significant differences. In the process of shrinking the coefficients, the LR
demonstrates the ability to set some of the coefficients to exactly zero. RR shrinks the
coefficients, but never sets any of them to zero. LR performs variable selection by setting
some coefficients to zero and retaining the coefficients that have a significant impact on
output. Identifying these variables can improve the interpretability of the resulting model,
especially when there is a large number of predictors [51].
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3.2. Ridge Regression

Ridge regression (RR), also known as penalized least squares, provides a reduction in
the variance of the estimated regression coefficients. RR shrinks the coefficients to zero and
makes the estimates more stable than ordinary least squares (OLS) estimates [51]. RR was
presented by Hoerl et al. [56] to enhance the prediction accuracy of the regression model by
minimizing the following loss function Equation (2) [52]:

β̃ = argminβ‖y − Xβ‖2
2 + λ‖β‖2

2, (‖β‖2
2 =

p

∑
j=1

β2
j ) (2)

If λ is equal to 0, the obtained estimates are the OLS of multilinear regression (MLR).
The parameter λ can be selected by using cross-validation. In RR, the L2-norm penalty term
is used to shrink the regression coefficient to a non-zero value to prevent overfitting, but it
does not play the role of feature selection.

3.3. Decision Tree

The decision tree (DT) is a supervised learning hierarchical model in which local
regions are recognized in fewer steps through a series of iterative splits. Internal decision
nodes and terminal leaves form the decision tree. Both classification and regression can be
performed with this method. The regression tree is built in a similar way to a classification
tree, with the exception that the impurity measure used for classification is substituted with
a measure used for regression. Let us state that Xm is the subset of X that reaches node m,
i.e., the set of all x ε X that satisfy the conditions of all decision nodes on the path from the
root to node m. We specify:

bm(x) =
{

1, i f x ε Xm : x reaches node m
0, otherwise

(3)

The mean square error from the estimated value determines a good tree split. In the
regression, let gm be the anticipated value in node m.

Em =
1

Nm
∑t

(
rt − gm

)2bm
(
xt) (4)

Nm = |Xm|∑t bm
(
xt)

The variance at m is associated to Em. In a node, the mean of the desired outputs of
the samples arriving at the node is employed.

gm =
∑t bm

(
xt)rt

∑t bm(xt)
(5)

If a node’s error is satisfactory (Em < θr), a leaf node is generated, and the gm value is
stored. Specifically, a piecewise constant approximation with discontinuities is generated
at the boundary of the leaf. If the error is unacceptable, the data arriving at node m will be
split again so that the sum of the errors in each branch is as small as possible [57,58].

3.4. Support Vector Machine

Support vector machine (SVM) is a supervised learning tool that was originally pro-
posed by Vapnik [59]. SVM is widely used in classification and regression analysis using
hyperplane classifiers. The optimal hyperplane maximizes the boundary between the two
classes in which the support vector is located [50]. It uses a high-dimensional feature space
to construct prediction functions by introducing kernel function and Vapnik’s ε-insensitive
loss function [46]. For a dataset P = {(x1, y2), (x2, y2) . . . (xn, yn)}, where xi ∈ Rn is the input
and yi ∈ Rn is the output, the SVM uses a kernel function to map the nonlinear input data
in a high-dimensional feature space and tries to find the optimal hyperplane to separate
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them. This allows relating the original input to the output through a linear regression
function [60,61], defined as follows:

f (x) = Mv.ϕ(x) + lb (6)

where ϕ(x) is the kernel function, and Mv and lb denote the weight vector and the bias term,
respectively. To obtain Mv and lb, the cost function proposed by Cortes and Vapnik [62]
needs to be minimized as follows:

cos t function = 1
2 M2

v + C
k
∑

i=1

(
ξ−i + ξ+i

)
Subject to :

⎧⎨⎩
yi − (Mv.ϕ(x1) + lb) ≤ ε0 + ξ+i
(Mv.ϕ(x1) + lb)− yi ≤ ε0 + ξ−i

ξ−i , ξ+i ≥ 0, i = 1, 2, . . . ., n

(7)

Equation (4) can be minimized when transformed into dual space using the Lagrange
multiplier method, giving the following solution:

f (x) =
n

∑
i=1

(
∞i − ∞′

i
)

ϕ
(
xi, xj

)
+ lb (8)

where ∞i and ∞′
i are Lagrange multipliers with 0 ≤ ∞i and ∞′

i ≤ C, and ϕ
(
xi, xj

)
is the

kernel function. The choice of the latter is significant to the success of SVR. A large number
of kernel functions was examined in SVM, such as linear, polynomial, sigmoid, Gaussian,
radial basis, and exponential radial basis [63]. Figure 3 shows the basic structure of the
SVM model.

Figure 3. Basic structure of SVM model.

3.5. Hyperparameters

An ML algorithm needs to have optimized hyperparameters for better performance.
These hyperparameters should be calibrated to the data as opposed to being defined
manually. To minimalize the bias related to the random partition of the training and
validation data, k-fold cross-validation was implemented in this paper, where k represents
the number of folds. By using cross-validation, the validity and accuracy of ML models
can be evaluated by partitioning a dataset into different subsets and assessing the accuracy
of the ML model on each subset [64]. The detail of optimized hyperparameters of RR, LR,
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DT, and SVR models is presented Table 2. The λ values for the RR model were randomly
selected in the range of 0.0–1.0, while the λ values for the LR model were kept at 1.0 and
0.01 for c (MPa) and ϕ (◦), respectively. The random_state and capacity constant (C) for
SVM were kept by default in the Python module for c (MPa) and ϕ (◦). Moreover, three
different functions, namely radial basis function (rbf), linear function, and polynomial
function, were checked, and the performance of the rbf function was determined to be the
best.

Table 2. Optimized hyperparameters.

Models Parameters

c (MPa)

Ridge Alpha = 0.0–1.0, n_splits = 5, n_repeats = 3, random_states = 42
Lasso Alpha = 1.0, n_splits = 5, n_repeats = 3, random_states = 42

DT n_splits = 5, n_repeats = 5, random_states = 42, max_depth = 3
SVR n_splits = 5, n_repeats = 5, random_states = 1, C = 1, function = SVR(kernel = ‘rbf’)

ϕ (◦)

Ridge Alpha = 0.0–1.0, n_splits = 5, n_repeats = 3, random_states = 42
Lasso Alpha = 0.01, n_splits = 5, n_repeats = 3, random_states = 42

DT n_splits = 5, n_repeats = 5, random_states = 42, max_depth = 3
SVR n_splits = 5, n_repeats = 5, random_states = 1, C = 1 function = SVR(kernel = ‘rbf’)

4. Model Evaluation

The performance indices play a key role in the assessment of model evaluation. The
most suitable model is one with the highest R2 [65]; the smallest MAE, MSE [66], and
RMSE [65]; and a suitable a10-index [66]. The model evaluation of each investigated model
is evaluated by Equations (9)–(13), as follows.

R2 =
∑n

i=1
(
So − So

)(
Sp − Sp

)√
∑n

i=1
(
So − So

)2
(
(
Sp − Sp

)2 (9)

MAE =
1
N

n

∑
i=1

|So − Sp| (10)

MSE =
∑n

i=1
(
So − Sp

)2

N
(11)

RMSE =

√
∑n

i=1
(
So − Sp

)2

N
(12)

a10 − index =
m10

N
(13)

where So and Sp are the mean values of the actual and predicted values of the angle of
internal friction and cohesion; So and Sp are the actual and predicted values of the angle of
internal friction and cohesion, respectively; m10 signifies the datasets with a value of rate
actual/predicted values between 0.90 and 1.10; and N is the number of datasets.

5. Results and Discussion

We aimed to investigate the ability of developed ML-based intelligent models such
as LR, RR, DT, and SVM to predict rock shear strength parameters, namely ϕ (◦) and c
(MPa), using Python programming. In order to introduce the most suitable prediction
model for predicting targeted output, the selection of appropriate input parameters can be
considered as one of the most essential jobs. In this study, P-wave velocity (m/s), density
(gm/cc), UCS (MPa), and tensile strength (MPa) were chosen as the input parameters for
all developed models. Then, the actual and output values were arranged and plotted in
such a way to examine the performance and correlations of each model. Based on the
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final prediction results, the performance and evaluation of the developed models were
investigated employing different analytical indices such as R2, MAE, MSE, RMSE, and
a10-index. The actual dataset of 199 datapoints was split into 70% for training purposes
and 30% for testing purposes.

Figure 4 shows a comparison of scatter plots and performance plots between the actual
and predicted values of the ϕ (◦) at the test level for the LR, RR, DT, and SVM models.
Based on the test prediction, the R2 of each model is computed. The R2 values of LR, RR,
DT, and SVM models for the ϕ (◦) are 0.606, 0.607, 0.822, and 0.916, respectively.
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Figure 4. Performance plots of LR, RR, DT, and SVM models for the ϕ (◦) at the testing level.

In the same manner, Figure 5 shows a comparison of scatter plots and performance
plots between the actual and predicted values of the c (MPa) at the test level for the LR, RR,
DT, and SVM models. Based on the test prediction, the R2 of each model is computed. The
R2 values of LR, RR, DT, and SVM models for the c (MPa) are 0.928, 0.934, 0.961, and 0.977,
respectively.
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Figure 5. Performance plots of LR, RR, DT, and SVM models for the c (MPa) at the testing level.

The data were split into two parts by DT, as shown in Figures 6 and 7. By averaging
the two closest leaves, the similarity score and gain were computed, and the residuals
were then transferred to the leaf with the maximum score and gain. The learning rate and
maximum depth were set to 1.0 and 3.0, respectively, to prevent model complexity. Once
the prediction results (residuals) were obtained, all data points were run through the model
to produce h(x) and F(x) predictions.
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Figure 6. Decision tree for ϕ (◦).

 

Figure 7. Decision tree for c (MPa).
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Table 3 shows the performance indices of the developed LR, RR, DT, and SVM models
calculated by Equations (6)–(10). In this work, based on the developed LR, RR, DT, and SVM
models, SVM outpaced other models at the testing level with R2 = 0.916, MAE = 0.9094,
MSE = 1.6656, RMSE = 1.2906, and a10-index = 1.00 for the ϕ (◦) prediction and R2 = 0.977,
MAE = 0.5577, MSE = 0.6811, RMSE = 0.8253, and a10-index = 1.00 for the c (MPa) prediction.
Therefore, SVM is an applicable ML-based intelligent approach that can be applied to
accurately predict the ϕ (◦) and c (MPa), as shown in Figure 8.

Table 3. Performance indices of ML-based developed models in this study.

Model
Training Testing

R2 MAE MSE RMSE a10-Index R2 MAE MSE RMSE a10-Index

LR
ϕ (◦) 0.648 2.1653 6.9105 2.6288 1.00 0.606 2.3064 7.4286 2.7255 1.01

c (MPa) 0.941 1.2416 2.6128 1.6164 1.02 0.928 1.1454 2.2188 1.4896 1.02

RR
ϕ (◦) 0.65 2.1298 6.8575 2.6187 1.01 0.607 2.3003 7.4289 2.7256 1.00

c (MPa) 0.946 0.9756 1.5001 1.2248 1.00 0.934 1.0335 1.5405 1.2412 0.99

DT
ϕ (◦) 0.787 1.4562 3.5475 1.8835 1.00 0.822 1.7655 5.2730 2.2963 1.00

c (MPa) 0.976 0.6138 0.6088 0.7803 1.00 0.961 0.8389 1.1151 1.0560 0.99

SVM
ϕ (◦) 0.912 1.0021 1.7958 1.3401 1.00 0.916 0.9094 1.6656 1.2906 1.00

c (MPa) 0.978 0.6957 1.2308 1.1094 1.00 0.977 0.5577 0.6811 0.8253 1.00

Figure 8. Radar plots of performance indices R2, MAE, MSE, RMSE, and a10-index of the developed
predictive models for the (a) ϕ (◦) and (b) c (MPa) at the testing phase in this study.

The dataset used in this study was extracted from published literature [42] where the
authors used an ANFIS and SLR to develop correlations between UCS, tensile strength,
c (MPa), ϕ (◦), and P-wave velocity. For further comprehensive comparison between
intelligent approaches, we used the robust SVM model and predicted c (MPa) and ϕ (◦),
achieving the best results. Recently, few studies have used ML techniques to predict the
c (MPa), ϕ (◦); however, their results are limited to a single type of rock. Moreover, the
authors neglected to evaluate the performance of robust ML approaches for different types
of rocks [16,24,43,44].

6. Sensitivity Analysis

It is crucial to accurately analyze the most important parameters that have a consid-
erable influence on the rock ϕ (◦) and c (MPa), which can be problematic in the design of
the rock structure. Therefore, the cosine amplitude method [67,68] is used for the relative
influence of the input parameters on the output in this study.
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Because of the high accuracy of the SVM model in predicting the ϕ (◦) and c (MPa),
only a sensitivity analysis was performed at the testing level. Figure 9 show the relationship
between each input parameter of the developed model and output. All parameters are
positively correlated, while UCS and tensile strength are the most influential parameters
in predicting the ϕ (◦) and c (MPa). Contrarily, the P-wave velocity and density are less
influential parameters in predicting the ϕ (◦) and c (MPa). The feature importance of each
input parameter is given as P-wave velocity = 0.067, density = 0.066, UCS = 0.068, and
tensile strength = 0.069 for the ϕ (◦). P-wave velocity = 0.067, density = 0.067, UCS = 0.068,
and tensile strength = 0.069 for c (MPa).

 

Figure 9. Sensitivity analysis values of ϕ (◦) and c (MPa).

7. Limitations and Future Work

The performance of the SVM ML-based intelligent approach in predicting ϕ (◦) and c
(MPa) is consistent. Thus, for large-scale rock engineering projects, this work presents a
sufficient basis to overcome the constraints. In order to carry out other projects, the model
proposed in this study should be considered as a foundation and its results should be
reanalyzed, reevaluated, and even reprocessed.

8. Conclusions

In this study, four ML-based intelligent models, i.e., LR, RR, DT, and SVM, were
developed in order to introduce the most accurate prediction model for predicting the ϕ (◦)
and c (MPa). An identical 5-fold iterative cross-validation method was used to improve
the efficiency of each model. The P-wave velocity (m/s), density (gm/cc), UCS (MPa), and
tensile strength (MPa) were the selected input parameters for all developed models. Finally,
the performance of each model was evaluated by R2, MAE, MSE, RMSE, and a10-index
values. The important conclusions drawn from this study are as follows:

1. Based on the estimated results of the developed LR, RR, DT, and SVM models, SVM
outpaced other developed models at the testing level with R2 = 0.916, MAE = 0.9094,
MSE = 1.6656, RMSE = 1.2906, and a10-index = 1.00 for the ϕ (◦) prediction and R2

= 0.977, MAE = 0.5577, MSE = 0.6811, RMSE = 0.8253, and a10-index = 1.00 for the c
(MPa) prediction.

2. According to the sensitivity analysis, UCS and tensile strength were the most influen-
tial parameters for predicting the ϕ (◦) and c (MPa), with coefficient values of 0.068
and 0.069, respectively.
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3. The findings of LR, RR, and DT are also applicable for predicting the ϕ (◦) and c (MPa);
these models can be used conditionally.

Therefore, SVM is an applicable ML-based intelligent approach that can be applied to
accurately predict ϕ (◦) and c (MPa).
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Abstract: The evolution of strain energy density of outburst-prone coal is of great significance for
analyzing the characteristics of energy accumulation and release in coal and rock masses. The
dynamic mechanical properties of coal samples were tested by using the split Hopkinson pressure
bar (SHPB) technique. Dynamic tensile mechanical properties, layered effect and density evolution
characteristics of strain energy for coal were studied. The dynamic failure and crack propagation
process of the specimen were recorded with a high-speed camera. In addition, a digital image
correlation (DIC) method was used to analyze the evolution characteristics of the strain field during
the deformation process of the specimen. The distribution characteristics of the particle fragments
were statistically analyzed. The results show that the bedding orientation of the coal has a significant
effect on its deformation and damage features. The presence of weak planes, microcracks and laminae
causes its shear damage zone to behave more complex. If the crack plane coincides with the high shear
stress plane, the developed shear cracks extend along the weak laminae and the shear damage zones
in BD specimens are not symmetrically distributed. When the laminated surface of the coal sample
is at a certain angle with the impact loading direction, the damage mode is coupled with tensile
and shear damage. The percentage mass distribution of particles and fines increases with increasing
bedding orientation. The effect of water on the dynamic damage of coal samples is significant. Based
on the principle of pressure expansion of wing-shaped cracks, the formula for calculating the dynamic
strength of water-saturated coal samples under dynamic loading was derived.

Keywords: dynamic tensile mechanical property; outburst coal; crack extension; strain energy
density; impact loading

MSC: 74H45

1. Introduction

Engineering fields such as oil well fracturing, mining rock fracturing, protection under
explosion and other catastrophic natural phenomena such as earthquakes and rock bursts
are almost always related to rock fracture and stress wave propagation in rocks under
impact loads. Common geological hazards such as coal and gas protrusion and coal rock
instability in coal mine production also involve deformation, crack expansion, energy
accumulation and release, and damage mechanism of rocks under impact loading [1].
The mechanical properties of rocks under impact loading are quite different from those
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under static loading. Due to the natural complexity of rocks and the inertial effect of
impact loading, theoretical and experimental studies on the dynamic damage of rock
materials are not yet complete. There are still many fundamental problems that need
further exploration and in-depth research. In order to develop rock engineering technology
and prevent the occurrence of catastrophic accidents due to rock damage caused by impact
in engineering, it is necessary to understand the dynamic damage mechanisms of rocks [2].
The study of dynamic mechanical properties of rocks is of great interest to reveal the
damage mechanisms of rocks and guide engineering practice.

The dynamic mechanical properties of coal rock have been studied extensively by pre-
vious scholars. Song et al. [3] studied the deformation and damage processes of rocks under
different loading conditions. A rock matrix-fracture medium model for non-homogeneous
and fractured coal seams was proposed by Zhang et al. [4]. Hao et al. [5] used the crack
volume strain method, and acoustic emission (AE) method were used to analyze the
anisotropy of the crack initiation strength, damage strength, the failure mode and the AE
characteristics of coal reservoir. Li et al. [6] studied the influence of sampling directions
(perpendicular to bedding planes and parallel to bedding planes) on the transient charge
signals of coal. Gong [7] analyzed the crack extension process and crack distribution after
damage in bituminous coal specimens. Liu et al. [8] used an acoustic emission system
to experimentally investigate the mechanical properties and associated acoustic emission
characteristics of loaded coal for different bedding angles, and developed an acoustic
emission-based damage model. The effect of bedding angle on coal permeability was sys-
tematically investigated by Pan et al. [9–12]. Hou et al. [13] carried out Brazilian splitting
tests on bedding coal and analyzed the effects of low temperature cooling fracturing and
bedding orientation on the mechanical properties and fracture morphology of the coal. The
effect of bed texture on the dynamic indirect tensile strength of coal was investigated by
Zhao et al. [14]. Li et al. [15] established a model for the calculation of anisotropic coal
permeability and analyzed the distribution pattern of permeability in arbitrary directions at
different angles to the beds plane. Li et al. [16–18] investigated the effect of circumferential
pressure and bedding angle on the mechanical properties of coal. Liu et al. [19,20] carried
out LNMR and NMR studies of the microstructural characteristics and pore size distribution
of high-grade coals with different bedding structures. Influence of bedding on the fracture
pattern of the coal mass during blasting was investigated Zhao et al. [21]. Yuan et al. [22]
revealed the influence of primary fractures and the bed angle of the coal on its deformation
and damage characteristics. Huang et al. [23,24] used the double-exposure holographic
interference method to observe the evolution of strain field of barite before destruction.
This method uses a pulsed laser as the light source to record the interference fringes of a
pair of images superimposed on a photographic dry plate at very short intervals. However,
it can only measure transient processes, not continuous dynamic processes. Regarding the
study of photomechanical methods, the digital scatter correlation method (DSCM) based on
image recording has obvious advantages in the measurement of deformation fields of rock
specimens [25]. In the early 1980s, DSCM was proposed as an image processing method by
Peters et al. [26] and by Yamaguchi [27]. Skurtveit et al. [28–31] used scattering interference
and digital scattering correlation methods to analyze the fracture evolution of inhomoge-
neous rocks. Song et al. [32–34] used the white-light digital scattering correlation method as
an observation tool to study the deformation field and stress evolution during rock damage
under uniaxial compression. The geological formation process of coal rocks determines
the complex composition, structure and tectonics of coal rocks. Primary structures such
as undulating laminae, linear laminae, lenticular laminae, and secondary structures such
as joints, are widely present in coal rocks [35,36]. Rocks are quasi-brittle materials with
basic mechanical parameters such as tensile strength, compressive strength and fracture
toughness. Since the tensile strength of rocks is much lower than the compressive strength,
tensile damage often occurs first when they are subjected to external loads. As a common
main damage mode of rocks, the study of dynamic tensile deformation damage of rocks is
essential for further understanding of dynamic mechanical properties of rocks.
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In our study, the dynamic mechanical properties of coal samples were tested by using
the SHPB technique. Dynamic tensile mechanical properties, layered effect and density
evolution characteristics of strain energy for coal were studied. The dynamic failure and
crack propagation process of the specimen were recorded with a high-speed camera. In
addition, the DIC method was used to analyze the evolution characteristics of the strain
field during the deformation process of the specimen. The distribution characteristics of
the particle fragments were statistically analyzed.

2. Experimental Setup

2.1. Specimen Preparation

The coal specimens used in the test were selected from the 7135 return air roadway of
Pingmei Shenma coal mine (see Figure 1). The coal type is long bituminous coal. To make
the experimental results comparable, the coal specimens used for the experiments were
obtained from relatively intact bulk coal specimens. The dimensions of the disc specimens
were based on those recommended by the International Society of Rock Mechanics. The
size of coal specimen was Φ50 mm × 25 mm. A total of 90 specimens were selected from the
processed disc specimens. The average diameter was 49.29 mm and the average thickness
was 25.27 mm. The dimensional error was within ±1 mm. The two-end face was polished,
and the unevenness was ±0.05 mm. The maximum deviation of the vertical axis was not
more than 0.25◦. Figure 2 shows the prepared coal specimens with different bedding angles.
In this study, the bituminous coal of Pingdingshan mine was selected and the bituminous
coal samples were tested by X-ray diffractometer produced by Japan Science Electric Co.,
Ltd., which is located in Tokyo Port, Japan. XRD test results of bituminous coal are shown
in Figure 3. All specimens were divided into three groups of 0.45, 0.47 and 0.49 MPa
according to the emission pressure. The specimens were divided into five groups of 15 each
according to the bedding angle (0◦, 22.5◦, 45◦, 67.5◦ and 90◦). Table 1 shows the grouping
of coal samples. There were three specimens used in equivalent test conditions.

Table 1. Grouping of coal samples.

Water Saturated State Natural Grouping Water Saturation Grouping

Bedding Angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦ 0◦ 22.5◦ 45◦ 67.5◦ 90◦

Emission
pressure

0.45
MPa

1-1-1 1-2-1 1-6-1 1-6-4 1-4-1 3-1-1 1-3-1 3-4-1 3-7-1 3-7-2
1-1-2 1-2-2 1-6-2 1-6-5 1-4-2 3-2-1 1-7-1 3-5-1 3-8-1 3-9-1
1-1-3 1-2-3 1-6-3 1-5-1 1-4-3 3-3-1 1-7-2 3-5-2 3-8-2 3-9-2

0.47
MPa

2-1-1 2-3-1 3-4-1 3-6-1 4-1-1 3-4-1 3-4-2 2-4-1 4-3-2 4-6-1
2-1-2 2-3-2 3-4-2 3-6-2 4-1-2 3-4-2 2-2-1 2-4-2 4-4-1 4-6-2
2-1-3 2-3-3 3-4-3 3-6-3 4-1-3 3-4-3 2-2-2 4-3-1 4-4-2 4-8-4

0.49
MPa

4-2-1 4-5-1 4-7-1 4-8-1 4-9-1 5-1-1 5-2-1 5-3-1 6-1-1 6-2-1
4-2-2 4-5-2 4-7-2 4-8-2 4-9-2 5-1-2 5-2-2 5-3-2 6-1-2 6-7-2
4-2-3 4-5-3 4-7-3 4-8-3 4-9-3 5-1-3 5-2-3 5-4-1 6-7-3 6-2-3
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China PingMei ShenMa Group

(a)

(b)

North 7133 working face
7133Return air lane

7135 Return air lane (Sampling location)

7135working face Stop Line

7137Return air lane

7137Transportation lane

7131working face (Completed mining)
7131Return air lane

7131Transportation lane

7135Transportation lane

7137working face (Completed mining)

(c)

Figure 1. Location of outburst coal sampling. (a) The location of Pingmei Shenma Coal Mine in China.
(b) Location of rock sample collection. (c) The coal rock sample was collected at 7135 return air lane.

22.5° 45° 67.5° 90°
0°

Bedding Plane Bedding Plane
Bedding Plane

Bedding Plane
Bedding Plane

 
Figure 2. Actual photos of prepared coal specimens.
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Figure 3. X-ray diffraction pattern of outburst proneness coal.

2.2. Laboratory Devices

Figure 4 shows the structure of the SHPB loading device. Under a certain air pressure,
the punch collides with the incident bar at a certain speed. A stress pulse is generated at
the end of the incident bar. According to the homogenisation condition of the SHPB device,
the stresses and strains at the two interfaces become balanced after several reflections. The
mean stress σ, strain ε and strain rate

.
ε(t) of the specimen can be derived as a function of

time, i.e.,

σ(t) =
[σI(t)− σR(t) + σT(t)]Ae

2AS
(1)

ε(t) =
1

ρeCeLs

∫ 1

0
[σI(t) + σR(t)− σT(t)]dt (2)

.
ε(t) =

σI(t) + σR(t)− σT(t)
ρeCeLs

(3)

where, σI(t), σR(t) and σT(t) are the incident, reflected and transmitted stresses at time t
respectively, ρeCe is the wave impedance of the elastic rod, Ls is the length of the specimen,
and Ae, As are the cross-sectional areas of the elastic rod and the specimen, respectively.
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Doppler 
velocimeter

Computer
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Incident bar Transmission bar Buffer bar
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Figure 4. Dynamic loading device.
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Equations (4) and (5) can be derived from one-dimensional stress wave theory [37].
The load and displacement at the two end faces of the specimen are

p1(t) = EA[ε I(t) + εR(t)] (4)

p2(t) = EAεT(t) (5)

u1(t) = c0

∫ t

0
[ε I(t)− εR(t)]dt (6)

u2(t) = c0

∫ t

0
εT(t)dt (7)

where subscript 1 denotes the left end face of the specimen. Subscript 2 denotes the right
end face of the specimen, I is the incident wave initial, R is the reflected wave initial, and
T is the transmitted wave initials.

From Equations (4)–(7), the following equations can be obtained

εs(t) =
u1(t)− u2(t)

ls
=

c0

ls

∫ t

0
[ε I(t)− εR(t)− εT(t)]dt (8)

.
εs(t) =

dεs(t)
dt

=
c0

ls
[ε I(t)− εR(t)− εT(t)] (9)

σs(t) =
p1(t) + p2(t)

2As
=

EA
2As

[ε I(t) + εR(t) + εT(t)] (10)

In addition,
ε I(t) + εR(t) = εT(t) (11)

Substituting Equation (11) into the three Equations (8)–(10), the following equations
can be obtained

εs(t) =
u1(t)− u2(t)

ls
=

−2c0

ls

∫ t

0
εR(t)dt (12)

.
εs(t) =

dεs(t)
dt

=
−2c0εR(t)

ls
(13)

σs(t) =
p1(t) + p2(t)

2As
=

EAεT(t)
As

(14)

The DSCM method was used to observe the variation of strain field on the surface of
the specimen. Figure 5 shows the principle of digital speckle method. It is necessary to
determine a reasonable method to calculate the correlation coefficient. The standardized
covariance correlation method is the most widely used method in calculating correlation
formula, as shown in the following equation.

S =

M
∑

i=−M

M
∑

j=−M
(F(x, y)− −

F) ∗ (G(x∗, y∗)−
−
G)√√√√ M

∑
i=−M

M
∑

j=−M

[
F(xi, yi)−

−
F
]2

∗ M
∑

i=−M

M
∑

j=−M

[
G(xi

∗, yi
∗)−

−
G
]2

(15)
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Figure 5. The principle of Digital Speckle Correlation Method (DSCM).

2.3. Stress Distribution Analysis in Brazilian Disk

The stress components inside and around the Brazilian disk were calculated, as shown
in Figures 6 and 7. From Figure 8, for any point M in the Brazilian disk, it is known that the
stress component at point M is⎧⎨⎩

σxx = 1
2 σrr +

1
2 σrr cos 2θ = σrr cos2 θ

σyy = 1
2 σrr − 1

2 σrr cos 2θ = σrr sin2 θ

τxy = 1
2 σrr sin 2θ = σrr sin θ cos θ

(16)

when the point M is on the right side of the force, both θ1 and θ2 take positive values,
and both take negative values when on the left side. There is the following relationship
in ΔOMN

r2
2 = r2

1 + D2 − 2r1D cos θ1 (17)

cos θ2 =
D2 + r2

2 − r2
1

2r2D
=

D − r1 cos θ1

r2
(18)

sin θ2 =
√

1 − cos θ2 =
r1 sin θ1

r2
(19)

 
Figure 6. Force state of Brazil disc test.
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Figure 7. Force analysis of the disc. (a) Half plane of infinite plate on the role of P in the level of
vertical load on the boundary AB. (b) The plates on both sides are infinitely long, the width is D, and
the thickness of the plate is l, which is affected by a pair of symmetrical line load P.

 
Figure 8. Force state of the Brazil disc.

Substituting Equations (17)–(19) into Equation (16) yields⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σxx = 2P
πl

[
cos3 θ1

r1
+ (D−r1 cos θ1)

3

(r2
1+D2−2r1D cos θ1)

2 − 1
D

]
σyy = 2P

πl

[
cos θ1 sin2 θ1

r1
+

(D−r1 cos θ1)r2
1 sin2 θ1

(r2
1+D2−2r1D cos θ1)

2 − 1
D

]
τxy = 2P

πl

[
cos2 θ1 sin θ1

r1
− (D−r1 cos θ1)

2r2
1 sin θ1

(r2
1+D2−2r1D cos θ1)

2

] (20)

To further simplify, a coordinate translation is performed. The origin O of the Oxy
coordinate system is translated to the center of the disc.

{
x = r1 cos θ1 − D

2
y = r1 sin θ1

→
⎧⎨⎩ r1 =

√
(x + D

2 )
2
+ y2

cos θ1 =
x+ D

2
r1

, sin θ1 = y
r1

(21)
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Substituting Equation (21) into Equation (20) yields,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx = 2P
πl

{
(x+D/2)3[

(x+D/2)2+y2
]2 +

(D/2−x)3[
(x−D/2)2+y2

]2 − 1
D

}

σyy = 2P
πl

{
(x+D/2)y2[

(x+D/2)2+y2
]2 +

(D/2−x)y2[
(x−D/2)2+y2

]2 − 1
D

}

τxy = 2P
πl

{
(x+D/2)2y[

(x+D/2)2+y2
]2 − (D/2−x)2y[

(x−D/2)2+y2
]2

} (22)

From Equation (22), when y = 0 and x = 0, the stress components on the diameter
ON are

σxx = 2P
πDl (

4D2

D2−4x2 − 1)
σyy = − 2P

πDl
τxy = 0

(23)

The stress component perpendicular to the diameter ON is given by

σxx = 2P
πDl

[
4D2

(D2+4y2)
− 1
]

σyy = 2P
πDl

[
16D2y2

(D2+4y2)
− 1
]

τxy = 0

(24)

The above represents the analytical solution of the stress state at any point inside
the Brazilian disk based on the Airy stress function and the linear elasticity superposition
principle. Figure 9 shows the internal stress distribution of the Brazilian disc.

   

Figure 9. Distribution of stress in Brazil disc.

In Figure 10, on the diameter ON, y = 0 and the tensile stress σyy is a constant. Therefore,
under critical conditions, when the load at the time of damage is Pc, the tensile strength T0
of the material can be obtained as

T0 = − 2Pc

πDl
(25)
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Figure 10. Stress component on the diameter ON.
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3. Experimental Results and Discussion

3.1. Debris Characterisation

Specimens of equal water saturation were analyzed for comparison. The saturation
of the coal specimens was 100%. Figure 11 shows the corresponding histograms of the
mass distribution of coal rock debris particle size groupings. The specimens in each group
had the same water saturation state and were subjected to various velocities of impact
loading. The mass percentages of the debris particle size distribution for each group of
specimens were compared according to the bedding orientation of the specimens. As can
be seen in Figure 11a, the specimens with a bedding orientation of 45◦ had the lowest
percentage mass distribution of particles and fines. As the bedding orientation increased or
decreased from 45◦, the percentage mass distribution of particles and fines increased. In
Figure 11b,c, the particle and fines chip size mass distribution increase and then decrease
as the laminate orientation changes from 0 to 90◦. This means that the percentage mass
distribution of particulate and fines debris was smallest for both sets of specimens when the
lamination orientation is 0 and 90◦. When the lamination orientation was 22.5, 45 and 67.5◦,
the percentage mass distribution of particles and fines was higher than the percentage
mass distribution of debris at the previous two bedding orientations. For the specimens
in Figure 11d,e, except for coal samples with bedding angle of 90◦, the percentage mass
distribution of particles and fines increased with increasing bedding orientation.
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Figure 11. Percentage mass distribution of debris particle size at different lamination angles.
(a) v = 1.737 m/s, (b) v = 2.351 m/s, (c) v = 2.728 m/s, (d) v = 3.309 m/s, and (e) v = 4.008 m/s.

For coal rock fragments with a particle size greater than 5 mm, the fragment scale
ratio distribution is shown in Figure 12. In Figure 12a, for the specimen with the bedding
orientation of 0◦, the length-to-thickness ratio of the debris basically ranged from 1.3 to
6.3, with an average value of 2.64. It was concentrated in the range of 2 to 3.5, mainly
in the form of lumpy debris, including some plate debris, with a representative size of
L:W:D = 3:2:1 (L, W and D are the length, width and density of the debris, respectively). In
Figure 12b, for the specimen with the bedding orientation of 22.5◦, the length-to-thickness
ratio of the debris ranged from 1 to 5.7, with an average value of 2.54. It was mostly in
the form of lumpy debris, with a representative size of L:W:D = 2.0:1.8:1.0. The specimen
with a bedding orientation of 45◦ in Figure 12c had a length-to-thickness ratio of 1.7 to 5,
with an average value of 3.08, with the largest number of plate debris and a slightly smaller
number of block debris, and a representative size of L:W:D = 3:2:1. The specimen with a
bedding orientation of 67.5◦ in Figure 12d had a length-to-thickness ratio of 1.7 to 5, with
an average value of 3.08. The specimen with a bedding orientation of 67.5◦, the length to
thickness ratio of the debris was mainly concentrated in the range of 1~3, with an average
value of 1.99. It basically consisted of blocky debris, containing some plate debris, with a
representative dimension of L:W:D = 2.0:1.5:1.0. The specimen with a bedding orientation
of 90◦ in Figure 12e, the length to thickness ratio of the debris ranged from 1.3~5.2, with an
average value of 2.66. It mainly consisted of blocky debris, containing some plate debris,
with a representative dimension of L:W:D =2.0:1.5:1.0. In addition, it contained plate debris
with dimensions of L:W:D = 2.5:1.3:1.0.
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Figure 12. Debris scale ratio distribution of coal rock specimens with different laminar orientations.
(a) θ = 0◦, v = 3.221 m/s, (b) θ = 22.5◦, v = 3.233 m/s, (c) θ = 45◦, v = 3.308 m/s, (d) θ = 67.5◦,
v = 3.363 m/s, and (e) θ = 90◦, v = 3.15 m/s.

3.2. Evolution Characteristics of Strain Energy Density

Figure 13 shows the crack propagation process and fragment distribution in repre-
sentative outburst-prone coal. When the bedding orientation was 0◦, the coal and rock
specimens underwent complete tensile failure. The failure mode of the coal rock specimen
was mainly tensile failure. For example, in the second row, a tensile crack first occurred
in the radial direction of the specimen, and finally the crack ran through the entire spec-
imen. Figure 14 shows the evolution of the strain field in the dynamic tensile process of
representative outburst proneness coal. In addition to tensile strain localization in the
radial direction, the coal specimens with different bedding orientation also showed strain
localization in other regions. In the second row, tensile strain occurred in the direction
of the bedding of the specimen. In the fifth row, tensile strain localization occurred in
both radial and bedding directions. The size of the strain localization area in the bedding
direction was much more modest than in the radial dimension. When the quantity of the
localized area of the disk specimen surged, i.e., when macroscopic failure occurred, the
localized phenomenon on both sides of the localized zone disappeared immediately.
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Figure 13. Crack propagation process and fragment distribution in representative outburst-prone coal.

In the SHPB test results, the damage modes of BD specimens mainly included shear
and tensile failure. When the BD disc specimen was homogeneous and isotropic, the tensile
damage crack started at the middle of the disc and expanded in a direction parallel to the
impact loading, as shown in Figure 15a. The tensile crack rapidly expanded and divided
the BD disc specimen into two half discs. At this point, the specimen was no longer intact,
resulting in a redistribution of stress around the contact surface at both ends of the specimen.
As the loading continued and the stresses at both ends of the specimen were redistributed,
shear damage zones appeared at both ends of the specimen. Since the specimen was homo-
geneous and isotropic, the shear damage zone was basically symmetrical in distribution.
However, for anisotropic coal rocks that were non-homogeneous and contained laminae,
the damage mode of their BD specimens was more complicated, as shown in Figure 15b.
The tensile breakage mode was still the main damage mode of the specimen, due to the
higher tensile stress to which the coal sample was subjected and its own lower tensile
strength. However, the presence of weak planes, microcracks and laminae caused its shear
damage zone to behave in a more complex fashion. If the crack plane coincided with the
high shear stress plane, the developed shear cracks extended along the weak laminae and
the shear damage zones in BD specimens were not symmetrically distributed, as shown in
Figure 15b. The above experimental results confirm our hypothesis, as shown in the second,
third and fourth rows of Figure 14, where the presence of asymmetric shear damage zones
at both ends of the specimen can be observed in the final damage pattern of the specimen.
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Figure 14. Evolution of strain field in dynamic tensile process of representative outburst-prone coal.
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Figure 15. Comparison of loading and failure modes of layered rock. (a) Homogeneous and isotropic
rocks. (b) Non-homogeneous and anisotropic coal rocks.

Deformation energy evolution was analyzed quantitatively. Based on the final damage
mode of the specimen and the strain field before damage, the calculated deformation field
was divided into the deformation localisation zone and the area outside the deformation
localisation zone. As shown in Figure 16a, the energy analysis area was divided into zone 1
and zone 2 outside the deformation localisation zone (strain energy density was calculated
separately for each region). The elastic deformation energy density formula could be used
to derive the deformation energy density U in the area outside the deformation localisation
zone of the rock specimen

U =
E

2(1 − v2)
(ε2

1 + ε2
2 − 2vε1ε2) (26)

where, E and v are the modulus of elasticity and Poisson’s ratio of the coal rock specimen,
respectively. ε1 and ε2 are the principal strains at the surface of the rock specimen.

Figure 16. Characteristics of deformation localization zone of coal with outburst proneness.
(a) Schematic diagram of energy analysis area. (b) Relative tensile displacement.
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Figure 16b shows a schematic diagram of the relative tensile displacement analysis of
the deformation localisation zone of the coal rock specimen. Figures 17–19 show the energy
evolution curves and tensile displacement evolution curves of coal and rock specimens.
As can be seen from Figure 17, when the impact velocity was 1.303 m/s, the maximum
deformation energy density in the two regions of the specimen was 750 × 106 J/m3

and 580 × 106 J/m3, respectively. The relative tensile displacements of the two sets of
measurement points increased simultaneously with the beginning of the peak in zone 1.
When the impact velocity was 2.112 m/s, the peak values of zone 1 and zone 2 were close
to 470 × 106 J/m3 and 310 × 106 J/m3. When the energy density began to increase, the
relative tensile displacement of the two groups of measuring points also increased at a
relatively stable rate. When the time was increased to 200 μs, the displacement of the two
groups of measurement points had a difference of about 0.05 mm. The relative tensile
displacement increases rapidly as the energy on either side of the specimen positioning
zone reached its peak.
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Figure 17. Deformation energy density and tensile displacement characteristics of coal specimens
with bedding orientation of 0◦. (a) Deformation energy density. (b) Relative tensile displacement.
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Figure 18. Deformation energy density evolution curves of coal specimens. (a) 0◦, (b) 22.5◦, (c) 45◦,
(d) 67.5◦, (e) 90◦.
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Figure 19. Relative tensile displacement evolution of outburst coal specimens. (a) 0◦, (b) 22.5◦, (c) 45◦,
(d) 67.5◦, (e) 90◦.
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It can be seen from Figure 18 that when the bedding orientation was 45◦, the peak
deformation energy density in area 1 and area 2 of the specimen reached 7000 × 106 J/m3,
which was the largest among the five specimens. When the bedding orientation was 90◦,
the peak deformation energy density was about 4000 × 106 J/m3. The time taken for the
specimen to reach peak energy was essentially 100–130 μs.

When the peak of the deformation energy density fell (θ = 0◦), the peak deformation
energy density differed by a factor of 5–7, influenced by the velocity of the impact load
on the specimen. It is speculated that when the bedding orientation is 0◦, because the
cohesion between radial bedding is weak, microcracks would develop rapidly in the coal
rock along the bedding surface. However, the microcracks in other areas of the coal rock
would not be fully developed, so the deformation degree of the specimen would not be
large, resulting in too little energy accumulation. When the bedding orientation gradually
increases, the microcracks would fully develop, the deformation would be significant,
and the accumulated deformation energy would be greater than that when the bedding
orientation was 0◦.

When the bedding direction was 0◦, the relative tensile displacement of the two sets of
measurement points began to increase as the energy began to accumulate (Figure 19). The
relative tensile displacements of the two groups of measurement points in the localized
zone were basically unchanged until the deformation energy density reaches its peak.
When the energy density of zone 1 reached a peak, the relative tensile displacements
of the two groups of measurement points started to grow at the same time. When the
energy density started to grow, the relative tensile displacement of the two groups of
measurement points also started to grow at a relatively stable rate. When the time increased
to 200 μs, the displacement of the two groups of measurement points generated a difference
of about 0.05 mm. The relative tensile displacement of the two groups of measurement
points started to grow relatively slowly, and when the energy density in the area on
both sides of the localized zone reached its peak, the growth of the relative displacement
tensile amount became large rapidly. From Figure 19b it can be seen that, the tensile
displacements of the measured points in the two regions of the specimen started to increase
when the energy density decreased from the peak. There was a difference of about 0.02 mm
between the displacements of the two sets of measurement points at the beginning of the
growth. As the displacement increased, the difference gradually decreased. The relative
tensile displacements of the measurement points bifurcated after the growth started. The
difference decreased briefly in the middle and then continued to increase again. The
difference of about 0.1 mm between the tensile displacements of the two measurement
points was maintained throughout the growth process. The relative tensile displacement of
the measurement points started to increase after the energy density reached its maximum
value (Figure 19c). The relative tensile displacements of the two groups of measurement
points, on the other hand, started to grow only when the energy density reached the second
peak, and there was a difference of about 0.02~0.03 mm. At 160 μs, the displacement of
the original group of measurement points with larger displacement decreased by 0.05 mm
compared to the other group of measurement points. The coal samples with a laminar angle
of 67.5 degrees had a different time for the relative tensile displacement to start growing in
the region, which was influenced by the impact velocity. The higher the impact velocity,
the earlier the growth time. The increasing trend of tensile displacement at different impact
velocities was similar in both regions when the laminar angle is 90 degrees.

3.3. Distribution Characteristics of Coal Specimen Fragments

The residual debris of coal rock was collected and analyzed, and the debris in the range
of 0~0.2 mm, 0.2~0.3 mm and 0.3~5 mm were collected and weighed. The classification
method of rockburst debris is shown in Table 2. The mass percentage of particle sizes of
broken coal specimens are shown in Figure 20. Since the mass percentage distribution
range of each particle size after crushing of coal specimens was large, in order to better
reflect its distribution characteristics, semi-log coordinates are used in the figure. Combined
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with the scale characteristics of semi-log coordinates, the percentages of fragment mass
of natural or water-saturated coal specimens in the size range of 0–0.2 mm can be seen to
vary little with increasing impact velocity (0.4489~0.776%). For natural or saturated coal
specimens with chip particle sizes of 0.2 to 5 mm, however, the percentage chip mass was
significantly increased with increasing impact velocity (3.533~11.879%). The percentage
mass of saturated coal specimens with chip sizes of 0.2 to 5 mm was less than that of natural
coal specimens, except for the coal specimens in which the bedding angle was 45 degrees,
according to the results in Table 2 and Figure 20. This conclusion, therefore, proves the
benefits of water injection for dust removal.

Table 2. Classification criteria and analysis method of rockburst debris.

Rock Debris
Classification

Range of Particle
Size (mm)

Methodology Result

Particle <0.075 Laser particle size analyzer Grain fraction curve

Fine grain

0.075~0.250

Sieving method Fractal results of mass
distribution

0.250~0.500
0.500~1.000
1.000~2.000
2.000~5.000

Medium grain 5.000~30.000 SEM, Scale measurement, 3D
topography scanning

Fractal results of size
distribution

Coarse grain >30.000 Scale measurement, 3D
topography scanning

Fractal result of
reconstructed image
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Figure 20. Statistical mass percentage of particle size of broken coal specimens. (a) 0◦, (b) 22.5◦,
(c) 45◦, (d) 67.5◦, (e) 90◦.

4. Numerical Simulation

4.1. CDEM and Criteria

CDEM has evolved based on the Lagrangian system. It combines the advantages of
both continuous and discrete simulation methods. It can simulate the whole process of
material deformation to cracking. The numerical model in CDEM is shown in Figure 21a.
This numerical model consists of blocks and interfaces. CDEM contains different node
types such as continuous, discrete and hybrid node types, as shown in Figure 21b. One of
the finite element types is shown in Figure 21c.

Figure 21. Cont.
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Figure 21. Schematic diagram of CDEM method and principle. (a) The structure of the numerical
model in CDEM. (b) Node type in CDEM. (c) The element of finite element in CDEM.

CDEM can monitor the contact force, the type of microcracks and the number of
microcracks at various points within the specimen during the test, while the development
of cracks on the surface of the specimen and the displacement of the specimen as a whole
can be observed on a macroscopic level. In CDEM, when the particles are subjected to an
external load, the particles move and change the bonding force between them. When the
bonding force exceeds the bonding strength of the particles, microscopic cracks are created,
and adjacent cracks overlap to form macroscopic visible cracks.

The input parameters used were a uniaxial compressive strength of 27.64 MPa, a tensile
strength of 1.75 MPa, a cohesion of 7.85 MPa, an internal friction angle of 32.64◦, a damping
factor of 0.7, a modulus of elasticity of 2.29 GPa, and Poisson’s ratio of 0.24 obtained from
the tests. The continuous-discontinuous element method establishes the control equations
through a Lagrangian energy system [38–40]. The expressions are as follows

d
dt
(

∂L
∂

.
ui
)− ∂L

∂ui
= Qi (27)

In the formula, Qi is the nonconservative force of the system, and L is the Lagrangian
function, which can be written as

L = ∏m +∏e +∏ f (28)

where, ∏m, ∏e and ∏ f are the work of system kinetic energy, elastic energy and conserva-
tive force.

The energy functional of the unit is
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The damping force and the boundary external force are
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∫

V
μ

.
uidV, QT = −

∫
S

TidS (30)

where, μ is the damping factor and Ti is the surface force on the cell boundary.
From Equations (28)–(30), Equation (27) can be written as
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Using the integral by parts, we get
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The Lagrangian equation is simplified as∫
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When the unit rupture occurs, the above equation can be written as∫
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The final equation is

M
..
u(t) + C

.
u(t) + Ku(t) = F(t) (38)

Solving Equation (38) is the core of CDEM operations. First seeking the elastic force⎡⎢⎢⎣
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Seeking damping force⎡⎢⎢⎣
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The motion equation is ⎧⎨⎩
ai = ( fi + f ′i + f out

i )/mi
vi = vt−1

i + ait
ui = ut−1

i + vit
(41)

For solving CDEM arithmetic problems using Euler forward interpolation methods,
two steps are included in each time step, namely the finite element solution and the discrete
element solution. Throughout the calculation, the degree of equilibrium of the system is
represented by the unbalanced rate.

CDEM uses a time-based dynamic relaxation technique for explicit iterative calculation.
Figure 22 shows the calculation flow.
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Figure 22. Flow chart of CDEM calculation steps.

4.2. Analysis of Dynamic Tensile Characteristics of Coal Based on CDEM

Figure 23 shows the experimental model. The stratification angles are set in five
groups of 0◦, 22.5◦, 45◦, 67.5◦ and 90◦. The whole model consists of 10,429 nodes and
20,544 triangular unit blocks. The substrate and laminar mechanical properties in the
model are shown in Table 3.

Table 3. Parameters of coal specimens involved in numerical calculation.

Medium Parameter Symbol Numerical Value

Coal matrix

material density P [kg/m3] 1301
elasticity modulus E [GPa] 2.29

Poisson’s ratio ν [-] 0.24
cohesion c [MPa] 7.85

tensile strength T [MPa] 1.75
internal friction angle ϕ [◦] 32.64

dilation angle Φ [◦] 15

Bedding structure

normal stiffness n [GPa/m] 10
shear stiffness s [GPa/m] 10

internal friction angle ϕ [◦] 30
cohesion c [MPa] 7

tensile strength T [MPa] 1.5
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(a)

(b)

Figure 23. Numerical model of Brazilian disk coal specimen with different bedding angles. (a) The
angle between the bedding plane and the loading direction is the bedding angle. (b) Models with
bedding angles of 0◦, 22.5◦, 45◦, 67.5◦ and 90◦ respectively.

When applying a velocity load at the upper loading point of the specimen to charac-
terize the applied dynamic load, its loading parameters are

v(t) =
{

vt/t0, (t ≤ t0)
v, (t > t0)

(42)

In the above equation, v is the applied dynamic velocity load, m/s, and t0 is the time
required for the rate load to go from 0 to a given value. Here, the model is uniformly
taken as 60 μs. This rise time is generally taken as the time required for the stress wave to
make five round trips within the specimen, with different loading rates corresponding to
different strain rates.

Figure 24 shows the evolution of the dynamic splitting stress field in the specimen, and
the propagation of the stress waves. In the Figure, the impact velocity v = 4 m/s and the
coal specimen lamination angle θ = 45◦. After the impact load was applied, the stress wave
started to propagate from the upper loading point to the lower boundary, and reached the
lower loading point at 60 μs. Then, the stress waves were reflected from the loading point
below. The overall stress field was symmetrically distributed at 120 μs, and this distribution
pattern was consistent with the theoretical solution above. Stress concentrations in the
middle of the specimen became more concentrated with the superimposed effect of the
stress waves. Crack initiation occurred in the middle of the Brazilian disc specimen at
210 μs. The cracks then continued to expand to the loading boundaries of the upper and
lower layers. Some secondary cracking occurred at the loading point. Cracks of 320 μs
penetrated and the specimen was damaged. Figure 25 shows the displacement field change
and crack extension process for the same specimen. From the evolution of the displacement
field, the characteristics of the stress wave in the specimen can be seen. In contrast, the
middle of the specimen cracked at 210 μs.
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Figure 24. Dynamic splitting stress field evolution of a typical Brazil disk coal specimen under
impact load.

Figure 25. Dynamic splitting displacement field evolution of a typical Brazil disk coal specimen
under impact load.

Figure 26 shows the crack expansion process of coal specimens with impact velocity
v = 4 m/s and bedding angles of 0◦, 22.5◦, 45◦, 67.5◦, and 90◦. The cracks in the coal
specimen first started in the center part along the stratification plane (θ = 0◦), because this
weak surface is prone to stress concentration and subsequent crack expansion occurred
along the stratification plane at the upper and lower loading boundaries. Eventually crack
penetration damage occurred in the specimen. The specimen damage mode was typical of
tensile damage. The specimens exhibited certain shear damage characteristics along the
lamina surface (θ = 22.5◦, 45◦, 67.5◦) but the main damage mode was still tensile damage.
When the stratified planes were perpendicular to the direction of loading (θ = 90◦), the
specimen still exhibited tensile damage characteristics. Simultaneous tensile and shear
damage occurred at an angle to the direction of loading at the split level. The results of this
numerical simulation are consistent with the conclusions obtained from the experiments
carried out. In addition, in the numerical simulations, we also observed some secondary
cracks along the weak surface of the lamina. This was due to the additional shear damage
caused by the laminar surface. This result is consistent with the phenomenon depicted in
Figure 14.
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Bedding angle = 0°

Bedding angle = 22.5°
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2 s 170 s 190 s 210 s 230 s  

Figure 26. Dynamic crack initiation process.

Figure 27 shows comparisons between the numerical simulation results of CDEM
and the experimental results. It can be seen that the damage patterns of the specimens
obtained from the numerical simulations are in good agreement with the experiments. The
failure modes are all standard Brazilian disc failure modes with cracking along the center
of the specimen. The main cracks are tensile cracks and show a tensile-shear compound
fracture pattern at the end of the specimens. It is noteworthy that the simulated 22.5◦
bedding angle coal sample had a more obvious shear effect along the bedding plane,
which is consistent with the experimental primary crack pattern. Figure 28 illustrates
the comparison of the impact velocity-dynamic tensile strength curves obtained from
the experimental and CDEM simulations. It can be noted that the numerical simulation
can calculate a larger range of impact velocities, and the dynamic tensile strength test
dispersion of coal samples with different bedding angles was greater than that of the
experiment. However, in general, the trend that the dynamic tensile strength obtained from
the simulation increased approximately linearly with the increase of impact velocity, and is
consistent with the experimental findings. Both methods show the rate effect of dynamic
tensile strength.
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Figure 27. Comparison of numerical simulation and experimental results. (a) Failure models of coal
specimen with different bedding angles. (b) SHPB test.
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Figure 28. Comparative plots between the impact velocity and dynamic tensile strength curves
obtained from experiments and numerical simulations.

The results of the CDEM simulation show the evolution of the dynamic splitting
stress and strain fields of the Brazilian disc coal sample under impact loading, and the
propagation, reflection and superposition characteristics of the stress waves in the coal rock
specimen, which are in good agreement with the experimental results. This compensates
for the incomplete recording of the crack initiation and extension process due to the limited
frequency of the high-speed camera.

5. Discussion

Figure 29a shows a diagram of the Stefan effect. It is also known as the Stefan-Reynolds
equation. It was first derived by Stefan when analysing the external forces required to
separate two discs immersed in a viscous fluid at a given speed with a small distance
between them. The Stefan effect is a physical phenomenon. When thin discs immersed in
a viscous fluid are separated from each other, a hydrostatic pressure gradient is created
between the discs due to the viscous flow, creating a viscous drag force that prevents the
discs from separating from each other. The understanding of the Stefan effect is not limited
to disc separation. It is clear that any change in the volume of fluid between the discs would
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cause a change in the hydrostatic pressure of the fluid between the discs, which would
cause a viscous fluid to flow, creating a resistance to the movement of the discs [41]. Thus,
coal can be considered as a series of micro-disc systems containing free water (viscous
fluid). When the coal is subjected to dynamic loading, the Stefan effect occurs during the
deformation of the pores due to the presence of free water in the coal micro-pores. This is
shown in Figure 29b. Water does not easily reach the pore tips when dynamically loaded.

Viscous fluids

Disc spacing

Void

Water

Void

Binding power

Binding power

d

(a)

(b)

Void

d

d
d

2
swp

swp

dwp

dwp
sw

dw

sw

dw

Figure 29. Schematic representation of the effect of water on the dynamic expansion characteristics
of cracks in coal. (a) Schematic of the Stefan effect. (b) Dynamically loaded free water forces on
fracture surfaces.

The single dynamic load, the cohesive force F due to the free water surface tension of
the fissure, and the resistance F′ due to the Stefan effect, prevent the fissure from expanding
and fracturing. The force preventing fracture of the fracture is pdw:

pdw = (F + F′)/M =

(
VK

2δ2 cos ϕ
+

3ηr4

2πh3
dvdw

dt

)
/M (43)

where V is the volume of the liquid, K is the surface energy, ϕ is the wetting angle, δ is the
radius of the curved surface of the water, η is the viscosity of the liquid, r is the radius of
two parallel circular plates filled with incompressible viscous liquid in the middle, vdw is
the relative velocity of the separation of the two circular plates, h is the distance between
the two circular plates, and M is the area of the fissure containing water.
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The shear stress τd-sw and the normal stress σd-sw at the main fracture face of the
winged fissure containing pore free water are expressed in Equations (44) and (45) as
shown in Figure 29b:

τd−sw = σd sin β cos β − fd−sw

[
σd cos2 β − psw + pdw

]
(44)

σd−sw = σd cos2(β + θ)− psw + pdw (45)

where, fd-sw is the friction factor of the fracture surface under dynamic water content conditions.
We found that the dynamic tensile strength, breaking strain and peak deformation

energy density of coal rock specimens in the water-saturated state were higher than those
in the natural state when the lamina orientation was the same and the impact velocities
were similar. When the lamina orientation was 0◦ and the impact velocity was less than
3 m/s, the tensile strength of the water-saturated specimens was basically the same as
that of the specimens in the natural state. After the impact velocity exceeded 3 m/s, the
growth rate of the former gradually increased compared with the latter. The difference
between the tensile strength of the water-saturated specimens and the natural state of the
coal rock specimens reached 0.3~0.4 MPa when the lamination orientation was 22.5◦ and
the impact velocity was greater than 2.5 m/s. When the lamination orientation was 45◦
and the impact velocity was 3 m/s, and the strength of the water-saturated specimens was
about 0.1 MPa higher. When the lamination orientation was 67.5◦, the data obtained from
the water-saturated specimens were less and the strengths were slightly lower than those
of the natural state by 0.1~0.2 MPa. When the lamination orientation was 90◦, the tensile
strengths of the water-saturated specimens were higher than those of the natural state by
0.1 MPa after the impact velocity was greater than 3 m/s.

The peak energy density of the water-saturated coal rock specimens was higher than
that of the natural state coal rock specimens, with the former being 1.5 to 2 times higher
than the latter. The energy density of the water-saturated specimens reached its peak at
a time period 10–20% later than that of the natural coal rock specimens. Our preliminary
analysis suggests that this is due to the fact that the crack expansion under impact loading
is much faster than the expansion rate during static loading. The free water in the rock
pores is unable to diffuse into the expanding fracture in an instant, while the effect of
surface tension begins to emerge. The water creates a cohesive force F at the crack face
that prevents crack expansion, resulting in an increase in the stress value when the rock
is ruptured in a water-saturated state. This phenomenon can be explained by the Stefan
effect in physics: when parallel circular flat plates separate at a relative velocity dv/dt, the
viscous fluid generates a counter force F’ to prevent the separation between the plates. The
resistance produced by the Stefan effect can be expressed as Equation (43), η being the
viscosity of the liquid (Pa·s). Coal rock specimens in the water-saturated state have higher
values of η than specimens in the natural state. The stress values of coal rock specimens in
the saturated water state are greater than those of coal rock specimens in the natural state
for similar impact velocities. Due to the presence of water, the crack expansion rate in the
coal rock specimens is suppressed. Therefore, the saturated water specimens have higher
peak stress and peak deformation energy density.

6. Conclusions

In this work, the dynamic tensile properties and evolution characteristics of strain
energy density for coal were investigated using both the SHPB and CDEM methods. The
following conclusions are drawn.

(1) When the laminated surface of the coal sample is at a certain angle with the impact
loading direction, the damage mode is coupled with tensile and shear damage. For
the natural or saturated coal samples with debris particle sizes of 0~0.2 mm, the
percentage of debris mass does not change much with the increase of impact velocity.
In addition, the percentage of fragment mass increases significantly with the increase
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of impact velocity for the natural or water-saturated coal samples with the fragment
size of 0.2~5 mm.

(2) The presence of weak planes, microcracks and laminae cause the shear damage zone
to behave in a more complex manner. If the crack plane coincides with the high shear
stress plane, the developed shear cracks extend along the weak laminae and the shear
damage zones in BD specimens are not symmetrically distributed.

(3) Changes in the difference between the relative tensile displacements of two groups of
measurement points on the localization zone also reflect the evolution of deformation
localization of the specimen. When the deformation localization begins in the center
of the specimen, the displacements of the two groups of measurement points are
relatively consistent at the beginning of the growth, and the difference between them
generally begins to increase in the middle.

(4) The energy accumulated inside the coal rock specimen that causes damage of the
specimen increases with the increase of impact velocity. For medium-grained debris
with a particle size >5 mm, the scale ratio characteristics show that the range of
variation of the scale ratio of coal rock debris is relatively large when the impact
velocity is small. Plate fragments with a length-thickness ratio range of 3~6 are
predominant. When the impact velocity gradually increases, the variation range
of coal rock debris scale ratio gradually decreases, the debris scale characteristics
tend to be stable, and the blocky debris with the length-to-thickness ratio lower than
3 predominates.
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