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Preface: Remote Sensing Applications in Ocean Observation
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The launch of Seasat, TIROS-N and Nimbus-7 satellites equipped with ocean observa-
tion sensors in 1978 opened the way for remote sensing applications in ocean observation.
After more than 40 years of development, the application of satellite remote sensing in the
ocean has expanded from marine environmental observation to the extraction of ocean
dynamic information, and from traditional analysis methods to the use of artificial intelli-
gence technology. With remote sensing technology, the parameters of the ocean surface,
such as ocean chlorophyll-a (Chl-a), sea surface temperature (SST), sea surface height (SSH),
sea surface wind (SSW), sea surface salinity (SSS), sea ice and sea surface current, can
be observed.

SST was one of the first ocean variables studied by earth observation satellites. The
first satellite instrument to sense SST was an infrared sensor that used channel combining
to correct for atmospheric attenuation of infrared signals from the ocean surface [1]. Besides
the infrared SST, imaging microwave radiometers with SST capabilities can also be used [2].
With improvements in the performance of satellite radiometers and SST retrieval algorithms,
accurate, global, high-resolution, frequently sampled SST fields have become the basis
for many research and operational activities. In 1982, the first SST product was made
available for operational use, was the Multi-Channel SST (MCSST), which was derived
from the advanced high-resolution radiometer (AVHRR) onboard the NOAA series of
satellites [1,3–5]. A nonlinear algorithm was later used to generate another SST product,
named the Nonlinear SST (NLSST), or the Pathfinder SST [6]. These algorithms have
also been applied to other satellite infrared sensors, such as the MODIS onboard the
Aqua and Terra satellites [7]. Data from these datasets have been widely used in various
ocean and atmospheric studies, such as those on ocean fronts [8–10], ocean–atmosphere
interactions [11], variability and long-term changes [12–16] and ocean modeling [17,18].
This Special Issue contains several articles on SST applications, which will be introduced in
the later sections.

Following the successful demonstration of quantitative estimations of Chl-a derived
from the Coastal Zone Color Scanner (CZCS) onboard the Nimbus-7 satellite, the Chl-a
products derived from the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) onboard
the Orbview-2 satellite were made available for public use in September 1997. The two
Moderate Resolution Imaging Spectroradiometers (MODISs) onboard the Terra (since 200)
and Aqua (since 2002) satellites provide the same products. The Chl-a product was derived
using bio-optical algorithms such as the chlorophyll 2 algorithm (OC2) and chlorophyll 4
algorithm (OC4) for SeaWiFSs [19] and the chlorophyll 3 algorithm (OC3) for MODISs [20].
These ocean color sensors provide not only Chl-a products, but also several other ocean-
water-quality products and colored dissolved organic matter, turbidity, dissolved organic
carbon and suspended sediment concentration [21]. These missions provided data of excep-
tional quality and continuity, allowing scientific investigation of a variety oceanographic
research topics [22]. For a description of remote sensing methods and statistical techniques
for evaluating ocean color, refer to [23]. The good-quality SeaWiFS data were also compared
with data from other ocean color sensors [24–28]. As there are several ocean color sensors,
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new algorithms for ocean Chl-a products have been proposed [29]. In addition to the
band ratio algorithm, artificial intelligence models have been applied to retrieve Chl-a data
from ocean color sensors, including models based on neural networks [30–32], machine
learning [33–37] and deep learning [38,39]. This Special Issue also presents several articles
detailing applied research using ocean color sensors. These will be introduced in later
sections.

Satellite altimeters measure sea surface height from space with an accuracy of approxi-
mately 2 cm [40,41], making altimeter data useful for various ocean studies [42,43]. The
TOPEX/Poseidon altimeter provided sea surface height data from 1992 to 2005, and its
follow-up satellites, the Jason series, have since provided continuous data. These high-
quality data have allowed oceanographers to conduct many studies, such as those on
ocean circulation [44], ocean currents [45,46], oceanic eddies [47–49], ocean tides [50,51], sea
surface waves [52,53] and sea level change [54–57]. To reflect the practicability of satellite
altimeter data in the study of ocean dynamics, this Special Issue has gathered several
studies using satellite altimetry, which will be introduced in later sections.

Similar to satellite altimeters using radar signal, satellite scatterometers provide wind
field data over the oceans [58,59]. Satellite scatterometers are not only applied to study
weather and ocean–atmosphere interactions, but also land and ice [60]. This Special Issue
includes an article that introduces the application of a scatterometer onboard a China–
French satellite to identify sea ice.

Besides the above-mentioned applications in ocean observation, this Special Issue
presents various advanced ocean remote sensing technologies and their applications, in-
cluding the use of artificial intelligence (AI) technology to explore ocean information [61–64]
and reconstruct missing values [65,66]. The applications of ocean remote sensing detailed
in this Special Issue include methods for the observation of changes in the ocean environ-
ment [67–77] and fishing ground [78], as well as the dynamics of the ocean, such as internal
tides [79], internal waves [80,81], eddies and wakes [82,83], upwelling [84,85], ocean cur-
rent [86–89] and even bibliometric analysis applied to oil detection and mapping [90]. A
brief overview of the articles collected in this Special Issue is given below.

AI has been widely used for image classification. Fuzzy logic is a method of reason-
ing that resembles human reasoning. This approach is similar to how humans perform
decision making. Thus, fuzzy logic can be treated as a kind of AI technology. The clas-
sification of seawater is very important for the study of ocean water color, because the
various substances contained in seawater cause differences in seawater color. Therefore,
the classification of seawater color can help us determine and systematically understand
the substances contained in seawater. However, currently there is no commonly recognized
template for the classification of water color. Therefore, Jia et al. [61] used a synthetic
hyperspectral dataset of plankton, aerosols, clouds and marine ecosystems for unsuper-
vised classification to categorize global ocean waters into 15 classes, resulting in a set of
fuzzy logic optical water pattern schemes. These schemes were applied to several satellite
multispectral sensors, including the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS),
Medium-Resolution Imaging Spectrometer (MERIS), Moderate-Resolution Imaging Spectro-
radiometer (MODIS), Operational Land Imager (OLI), Visible Infrared Imaging Radiometer
Suite (VIIRS), Multispectral Instrument (MSI) and Ocean and Land Colour Instrument
(OLCI), and are considered more appropriate than existing optical water-type classification
methods for global oceans.

Oil spills have always been an important issue in environmental protection efforts.
However, it is difficult to automatically distinguish between man-made (spill) and natural
(seep) oil slicks from synthetic aperture radar (SAR) images using limited datasets. Amri
et al. [62] introduced the application of deep learning for automated offshore oil slick
detection in SAR images. The data used were derived from a large database of real and
recent oil slick monitoring for both types of oil slicks. Compared with the monomodal
model, the proposed method yields a detection performance of up to 94% and reduces
the false-positive rate by 14% to 34%. These results provide new solutions to improving
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the detection of natural and man-made oil slicks by providing tools that allow image
interpreters to more efficiently monitor global ocean surfaces. Such a tool would speed up
oil slick detection tasks, helping researchers to keep up with the continuous acquisition of
sensors.

SAR images can be used not only for oil spill detection, but also for ship detection.
With the development of artificial intelligence and big data technology, the data-driven
convolutional neural network (CNN) has been widely used in ship detection. However, the
accuracy of ship detection, feature visualization and analysis when using CNN methods
need to be further improved. Geng et al. [63] proposed a two-stage ship detection method
for land-contained sea area without the traditional sea–land segmentation process. Based
on Sentinel-1 SAR images, the proposed method is suitable for ships smaller than 32 × 32
in size and can achieve a very high accuracy.

SST plays an important role in air–sea interactions, which have a significant impact on
global change. Satellite-remote-sensing-derived SST data are often used as input for numer-
ical forecasting models, but the results produced by numerical forecasting models often
deviate from the observation data. In this era of big data, artificial intelligent technology
can also be used to correct the bias of numerical forecast products. Fei et al. [64] presented
an SST correction method with a convolutional long short-term memory network with
multiple attention mechanisms. The method has been tested in the South China Sea and
can effectively reduce errors.

Developing a system for accurately estimating changes below the sea surface from
data on the sea surface is a challenge in ocean remote sensing. Dong et al. [65] applied
the machine learning method of artificial intelligent technology to subsurface salinity
reconstruction. The input parameters were SSS, SST, SSH and SSW, all of which can be
obtained from satellite remote sensing. The parameters also included marine geographic
information, that is, longitude and latitude. The Argo data were used to train and validate
the machine learning model. The results show that reconstructed subsurface salinity is
mainly affected by wind speed and its location, and better estimation accuracy is obtained
in winter and autumn due to weaker stratification. This study offers new insight into
oceanic observations.

Sargasso is abundant in the Caribbean Sea. To assess the presence and abundance of
Sargasso algae from satellite ocean color data, atmospheric corrections are first required.
However, atmospheric correction procedures commonly used in ocean waters need to
be adjusted when dealing with Sargassum’s emergence, because the non-zero water re-
flectance in the near-infrared band caused by Sargassum’s optical signature may lead
its misidentification as aerosols. Schamberger et al. [66] relied on the local uniformity
of aerosol reflectance between Sargassum and Sargassum-free regions, overcoming this
difficulty by interpolating aerosol and sunlight reflectance between nearby Sargassum-free
pixels. The proposed method was shown to generate more reasonable aerosol and sunlight
reflectance estimations.

The Geostationary Ocean Color Imager (GOCI) is the first operational geostationary
ocean color sensor designed to monitor short-term and small-scale changes in the Northwest
Pacific. Atmospheric corrections are especially important for small-scale short-term changes.
To examine the uncertainty of GOCI-derived normalized water-leaving radiance (nLw)
products, He et al. [67] applied the nLw data provided by Aerosol Robotic Network Ocean
Color (AERONET-OC) to analyze the results of two GOCI algorithms. The results show
that the nLw data generated by the GOCI Data Processing System were slightly better than
those of the Sea-Viewing Wide-Field-of-View Sensor Data Analysis System (SeaDAS) in
the visible band; however, the average relative error percentage in the blue band was over
30% for both algorithms. Both algorithms perform better at noon, and worse in the early
morning and early evening. It is speculated that the uncertainty in the nLw measurement
comes from the aerosol model, the near-infrared water-leaving radiometric correction
method, and the bidirectional reflectance distribution function correction method in the
corresponding atmospheric correction procedure.
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In addition to atmospheric corrections, correcting detected clouds is critical for visible-
light remote sensing because they severely impede the radiative transmission of visible
light. However, cloud occlusion on turbid waters is prone to misjudgment, resulting in the
loss of non-cloud pixel data. Lu et al. [68] proposed an improved GOCI cloud-masking
method for turbid water. Compared with other existing cloud-masking methods, this
improved method can more realistically identify the spatial location and shape of clouds
and thus preserves more accurate turbid water pixels.

Unlike traditional passive ocean color remote sensing technology to detect phytoplank-
ton and suspended particles on the sea surface, lidar technology is also used to simulate the
biogeochemical processes of the upper ocean, providing data on the vertical distribution of
suspended particles and the optical properties of the ocean. Zhang et al. [69] presented a
new optical method to distinguish between water with different concentrations of algae
through data generation (the initial width of the laser beam and the width decay rate) using
the marine Scheimpflug lidar system. The applications of backscattered intensity and laser
beam width measurements are explored with spatial resolution with millimeter accuracy
over distances of up to several meters.

The application of satellite observation in studying typhoons has become a research
hotspot in recent years. Strong typhoons enhance turbulent mixing, causing sediment
re-suspension and promoting Chl-a blooms. Li et al. [70] found that the three late-autumn
typhoons in the northwest of the South China Sea had limited responses to Chl-a, with
only a slight increase of 23%, but a 280% increase in total suspended sediment (TSS).
However, in the southern region, approximately 100 km away from the typhoon track,
after the typhoon passed, the concentrations of TSS and Chl-a increased by 160% and 150%,
respectively, showing different mechanisms for the increase in Chl-a concentration. This
study contributes to a further detailed evaluation of the biological responses induced by
typhoons.

The Chl-a and SST products from MODIS Aqua were used to study the events of
harmful algae bloom (HAB) in the Arabian Gulf [71]. The results of the study show that the
highest Chl-a concentration was in the Strait of Hormuz, with an average of 2.8 mg m−3,
which was 1.1 mg m−3 higher than the average of the entire study area. While the shallow-
water region showed a strong positive correlation between Chl-a and SST, the deep-water
region showed the opposite, with a negative correlation.

Seagrass meadows play a key role in supporting high levels of biodiversity, but are
constantly threatened by human activity. To understand changes in the distribution of
seagrass meadow, Xu et al. [72] used Landsat-8 OLI imagery (1974–2019) to assess large-
scale changes in seagrass (Zostera marina L.) in the Caofeidian shoal port in the northern
Bohai Sea from reclamation activities. By mapping changes in the distribution of seagrass
meadows, it was shown that changes in seagrass meadows increased rapidly as the amount
of land reclaimed increased. Storm surges caused by typhoons were shown to be causing
habitat degradation. Fortunately, a land reclamation project created an artificial “coastal
dam” that buffered seagrass meadows from wave action and provided relative shelter,
which has resulted in a substantial increase in habitat since 2012.

In July–August 2021, a severe marine heat wave (MHW) occurred over a wide area of
the Pacific Northwest, including the entire Sea of Japan and parts of the Sea of Okhotsk [73].
These MHWs are the largest observed since satellite measurements of global SST began in
1982. The MHWs in summer 2021 were observed at the sea surface and occurred with a
stable shallow oceanic surface boundary layer. The distribution of MHWs is closely related
to the sea surface heat flux, indicating that MHWs are mainly generated by atmospheric
forcing. The atmospheric westerly jet moved extremely northward, and MHWs developed
rapidly under the atmospheric high-pressure system close to the sea surface, which is re-
lated to the northwestward expansion of the North Pacific Subtropical High. Subsequently,
as the westerly jet shifted southward, the MHWs weakened and then contracted abruptly,
synchronizing with the rapid deepening of the ocean surface boundary layer.
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Thermal discharge from power plants is a form of ocean pollution. It needs to be
monitored. Zhang et al. [74] analyzed the thermal discharge of the Daya Bay Nuclear Power
Plant (NPP) in China. To determine temporal and spatial patterns and factors affecting heat
emissions, Landsat imagery acquired for the period 1993–2020 was used. SST data were
retrieved from Landsat imagery using the radiative transfer equation and split window
algorithm. The retrieved SST data were then used to analyze seasonal and interannual
variations in areas affected by thermal discharge from the NPP, as well as the effects of
the installed capacity of the NPP, tides and wind on the spread of thermal discharge. The
analysis showed that with the increase in the installed capacity of the NPP, the SST increases.
There is a significant linear correlation between SST and the installed capacity of an NPP.
Tides affect areas of the warming zone, and the low tide has a greater impact. Regardless
of whether the wind is favorable or adverse, the tides affect the warming zone more than
the wind.

Based on satellite-observed SST data, Argo observations and model reanalysis results,
Qiao et al. [75] investigated the upper ocean response to Super Typhoon Goni (2015) in the
western North Pacific. The results show that the maximum SST cooling caused by Goni was
larger than that caused by most typhoons, which is related to the enhancement of turbulent
mixing caused by Goni. On the right side of the typhoon’s path, the Goni-induced diapycnal
diffusivity in the upper ocean increased by three orders of magnitude and persisted for at
least 9 days after Goni’s passage. In contrast, the diapycnal diffusivity on the left side of
the typhoon path did not show a significant change. The enhancement of turbulent mixing
was consistent with the Goni-induced near-inertial kinetic energy, which suggests that the
enhanced turbulent mixing was caused by Goni-induced near-inertial waves.

Sea ice plays an important role in global climate change issues. Therefore, methods of
detecting sea ice are also valued in ocean telemetry. Li et al. [76] introduced an improvement
of the Bayesian Sea ice detection algorithm for the rotating fan-beam scatterometer CSCAT
on the China–France Ocean Satellite (CFOSAT). This also serves as a guide for the recently
launched dual-frequency rotating fan-beam scatterometer WindRAD.

Fishing grounds have a significant relationship with the marine environment. The use
of satellites to observe changes in the marine environment has often been used for fishery
management. Ding et al. [77] used satellite-derived SST, SSW, Chl-a and reanalysis data to
explore the relationship between the observed aggregation of large fish and environmental
factors. In the winter of 2017, the bottom water of the fishing grounds in the East China
Sea was abnormally warm, and there was a significant cooling caused by the eastward
movement of the Yellow Sea Cold Current with intensified northwesterly winds. Unusually
warm fisheries may have provided a suitable environment for warm fish, resulting in the
observation of large fish assemblages. This abnormal temperature change may be related
to changes in local ocean circulation.

Although the ocean internal solitary wave (ISW) is a phenomenon that occurs under
the sea surface, it modulates the convergence and divergence of the sea surface. Therefore,
by observing the roughness of the sea surface, the characteristics of ISWs can be detected.
Combining SAR images and mooring stations located between offshore islands with rough
topographic features, Liu et al. [78] presented the characteristics of ISWs observed in the
northern Yellow Sea during the summers of 2018 and 2019. ISWs with vertical displace-
ments of up to 10 m induced prevailing high-frequency temperature variations. SAR
images show that ISW intensity exhibits a clear spring–neap cycle corresponding to the
local tidal forcing. The propagation speed derived from SAR images is consistent with the
Korteweg–de Vries (KdV) model. The prevalence of ISWs in the study area is believed to
play a crucial role in the regulation of vertical heat and nutrient transport and thus the
biogeochemistry cycle.

Multi-satellite altimeter data from 1993 to 2020 were used to study the model-1 semidi-
urnal diurnal tides in the Sulu and Sulawesi Seas [79]. To extract multiple coherent internal
tides separately, a practical plane wave analysis method was used. The complex radiation
paths and interference patterns of internal tides were revealed, showing the spatial contrast
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between the Sulu and Sulawesi Seas. Mode-1 semidiurnal tides in the Sulawesi Sea are
efficiently generated by the Sulu and Sangchi island chains, creating a spatially inhomoge-
neous disturbance pattern in the deep basin. These high-energy semidiurnal internal tidal
beams contribute to the frequent occurrence of solitary waves (ISWs) in the study area.

Following similar techniques to [79], Wang et al. [80] used satellite altimeter data
to study internal tides and explore the difference between the semidiurnal and diurnal
internal tides on the East China Sea Shelf. The semidiurnal and diurnal internal tides
exhibited distinct temporal trends. The semidiurnal internal tides increased by an order
of magnitude, while the diurnal internal tides followed quasi-spring–neap cycles with a
generally stable intensity. These internal tides probably originated from the shelf–slope
area in northeastern Taiwan. Time-varying stratification was the most important factor
for the internal tidal magnitude. Although both semidiurnal and diurnal internal tides
were mode-1-dominated, the semidiurnal internal tide intensified at the sea surface and
the diurnal internal tide intensified at the bottom.

Satellite altimeter data can be used not only to observe internal tides but also to
observe core rings. Meunier et al. [81] reconstructed the 3D structure of the Loop Current
Rings (LCRs) in the Gulf of Mexico using satellite altimeter data and a large set of ARGO
float profiles. Between 1993 and 2021, 40 LCRs were detected in altimetry, and their
3D thermohaline structures were determined. The dynamically correlated variables and
their cumulative effects on the heat, salt and energy balances in the Gulf of Mexico were
discussed. The results show that LCRs have a significant effect on these balances.

Satellite altimeter data can also be used to detect mesoscale eddies. Mesoscale eddies
can be found in the global ocean and have been studied on global and regional scales. Hao
et al. [82] investigated the spatiotemporal variation and generation mechanism of mesoscale
eddies across Indonesian seas. Eddies were detected from altimetry sea-level anomalies.
The Sulu Sea, Sulawesi Sea, Maluku Sea and Banda Sea were the main eddy-generating
areas. More than 80% of eddies are short-lived, with a lifespan of less than 30 days. The
eddies exhibit high spatial inhomogeneity, with typical amplitudes and radii of 2–6 cm and
50–160 km, respectively. Approximately 48% of the eddies in the Sulawesi Sea are highly
nonlinear, compared to less than 30% in the Sulu and Banda Seas. In the Sulu and Sulawesi
Seas, barotropic instability of the mean flow dominates the eddy generation, while in the
Maluku and Banda Seas, baroclinic instability is slightly greater.

As the visible trajectory information left by moving objects on the sea surface, wake
has developed into one of the key detection targets of ocean visible-light remote sensing. In
the case of slow ship speed, deep draft and the existence of clouds and fog, due to the low
reflectivity of the sea surface and interfering objects, the wake target signal is weak and
the signal-to-noise ratio is low. To solve the above problems, Ying et al. [83] calculated the
difference in noise equivalent reflectance of eight bands commonly used in oceanographic
remote sensing and found that the index is generally in the order of 10−4 and stabilizes
within a certain range of values. This research has helped to improve the ability of imaging
systems to detect weak wake signals.

Coastal upwelling is important for coastal ecosystems because it increases nutrients
and supports plankton growth in the upper ocean. Huang et al. [84] used the SST data
of the Himawari-8 geostationary satellite to map the upwelling area on the east coast
of Taiwan in summer during the southwest monsoon season, which provides favorable
conditions for upwelling. The results show that the range of upwelling was larger from
June to August, but the upwelling duration was longest in the north center from May to
September.

In addition to using satellite remote sensing SST data, data from other sources can also
be applied for the study of upwelling. Li et al. [85] analyzed the spatial distribution, vari-
ability and possible forcing mechanisms of the upwelling off Manaung Island, Myanmar,
using multisource satellite remote sensing data and the World Ocean Atlas 2018 (WOA18)
temperature and salinity dataset. The results show that upwelling occurs in February,
peaks in March and decays in May, and this upwelling is caused by the rise of seawater at
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depths below 100 m. The evolution of upwelling was mainly induced by remote forcing
from the equator, while local wind forcing also contributed to enhancing the strength of the
upwelling.

Whether the East Australian Current (EAC) has a seasonal intrusion has been debated.
Xie et al. [86] applied Topographic Position Index (TPI)-based image processing techniques
and a 26-year satellite SST dataset to quantitatively map the EAC in northern New South
Wales (NSW). The results show that EAC intrusion exhibited seasonal cycles, being closer to
the coast in austral summer than winter. The spatial analysis also showed that the EAC had
a seasonal shift upstream of 29◦40′S latitude and a seasonal expansion downstream. This
study confirmed the seasonality of EAC intrusion observed in long-term remote sensing
data. The findings provide new information on seasonal upwelling and shelf circulation
off the NSW coast.

During June and July 2010, an anomalous branch of the Kuroshio Current near Taiwan
in the western North Pacific was observed meandering eastward around 21◦N [87]. This
branch carries high-Chl-a waters into the nutrient-poor North Pacific Subtropical Gyre from
125◦E. The thermohaline characteristics of this branch are similar to those of the Kuroshio.
This branch has an average surface speed of 0.5 m s−1, as shown by satellite altimeter data,
Lagrangian drifters and Japan Meteorological Agency meridian cruise transects at 137◦E.
The branch appears to be associated with a surface cyclonic wind anomaly to the north at
approximately 22–24◦N.

The change that occurs in the Kuroshio Current as it passes through the Luzon Strait
is a frequently discussed topic. Sun et al. [88] used multiple remote sensing datasets,
combined with in situ drift observations, to analyze the Kuroshio intrusion into the South
China Sea through the Luzon Strait. The results show the presence of a strong Kuroshio
branch and accompanying anticyclonic eddy (ACE) in the winter of 2020–2021. Both
the orographic negative wind stress curl southwest of Taiwan and the westward Ekman
transmission through the Luzon Strait had higher values than the historical maximum.
Hence, wind forcing is considered to be the main mechanism of this event.

Using coastal radar to observe the oceans is another form of ocean remote sensing
technology. Lu et al. [89] used coastal high-frequency radar observations, satellite tracking
drifters and numerical models to explore the ocean current variations in the northern
Taiwan Strait in summer. The results show an obvious interaction between the intra-diurnal
tides and ocean currents northwest of Taiwan. As the tide changed f high tide and low tide,
the change in direction of the nearshore current occurred before the change in the offshore
current. The drifter trajectories showed that there were three different drifting paths in the
Taiwan Strait in summer. The regional ocean modeling system model was applied to clarify
the factors influencing the three pathways. Simulation results and high-frequency radar
data show that the difference in the drift path is caused by the transition of tidal ebb and
flood and the difference in the speed of nearshore and offshore ocean currents.

In addition to analyzing observed data or using numerical models, marine researchers
can also apply bibliometric and network analysis to analyze research trends. Oil spill
detection and mapping (OSPM) is an extremely relevant problem due to spills’ environ-
mental impact on coastal and marine ecosystems. Vasconcelos et al. [90] evaluated the
scientific literature from the last 50 years from a scientific point of view. The authors
conducted a literature review on OSPM applications to perform bibliometric and network
analysis to assess research and trends in this scientific field. Data were taken from the
Scopus database, and then bibliometric tools were used to obtain information and reveal
quantitative patterns in the literature. The findings indicate that the detection of oil in
the ocean has undergone tremendous development over the past few decades and that
there is a close relationship between technological developments aimed at detection and
improvements in remote sensing data acquisition methods.
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Abstract: The classification of natural waters is a way to generalize and systematize ocean color
science. However, there is no consensus on an optimal water classification template in many
contexts. In this study, we conducted an unsupervised classification of the PACE (Plankton, Aerosols,
Cloud, and Ocean Ecosystem) synthetic hyperspectral data set, divided the global ocean waters into
15 classes, then obtained a set of fuzzy logic optical water type schemes (abbreviated as the U-OWT
in this study) that were tailored for several multispectral satellite sensors, including SeaWiFS, MERIS,
MODIS, OLI, VIIRS, MSI, and OLCI. The consistency analysis showed that the performance of
U-OWT on different satellite sensors was comparable, and the sensitivity analysis demonstrated the
U-OWT could resist a certain degree of input disturbance on remote sensing reflectance. Compared
to existing ocean-aimed optical water type schemes, the U-OWT can distinguish more mesotrophic
and eutrophic water classes. Furthermore, the U-OWT was highly compatible with other water
classification taxonomies, including the trophic state index, the multivariate absorption combinations,
and the Forel-Ule Scale, which indirectly demonstrated the potential for global applicability of the
U-OWT. This finding was also helpful for the further conversion and unification of different water
type taxonomies. As the fundamental basis, the U-OWT can be applied to many oceanic fields
that need to be explored in the future. To promote the reproducibility of this study, an IDL®-based
standalone U-OWT calculation tool is freely distributed.

Keywords: ocean color; water type taxonomies; trophic state; inherent optical properties; Forel-Ule
Scale

1. Introduction

Since the first ocean color-aimed spaceborne instrument, the Coastal Zone Color
Scanner Experiment (CZCS), was launched in 1978, together with subsequent ocean color
satellite programs SeaWiFS, MODIS, MERIS, VIIRS, OLCI, etc., the synoptic and accurate
measurement of ocean ecosystems on a global scale has become a reality [1]. Ocean color
remote sensing has been widely applied to and revolutionized many fields of oceanography,
such as oceanic modeling, ocean physics, biogeochemical cycles, fisheries, water quality,
and natural and man-made hazards [2,3]. The classification of natural waters using different
water type taxonomies is a way to generalize and systematize the science of ocean color [3].
Because of the desire to move toward water classification based directly on satellite data [4],
some water classification schemes have relied on the apparent optical properties (AOPs),
namely reflectances (various ratios of upwelling to downwelling intensity) and diffuse
attenuation functions [5]. Jerlov introduced an ocean water classification based on spectral
optical attenuation depth (the inverse of the diffuse attenuation coefficient), and he divided
the observations into five open oceanic and nine coastal water types [6,7], which laid
the foundation for the AOP-based optical water type (OWT) classification. Moore et al.
proposed a fuzzy logic-based OWT scheme that was used for blending class-specific

Remote Sens. 2021, 13, 4018. https://doi.org/10.3390/rs13194018 https://www.mdpi.com/journal/remotesensing13



Remote Sens. 2021, 13, 4018

Chlorophyll (Chl) inverse algorithms by the membership weight [8]. Over the past 20 years,
much effort has been devoted to AOP-based OWT schemes, which have been developed
based on huge spectral reflectance datasets from in situ measurements or satellite data (see
Section 2.3.1 for more details) [9–30].

Although the existing AOP-based OWT schemes were effective and elegant in their
respective contexts, from the authors’ point of view, there is still the possibility of mak-
ing some improvements based on the following aspects. First, some existing AOP-based
OWT schemes that were developed from in situ or satellite data may include uncertainties.
Specifically, in situ data may contain uncertainties caused by experimental and environ-
mental factors, such as calibration, dark signal, data processing, deployment strategies,
and sea and sky states. The uncertainties of satellite data can be introduced by a variety of
factors, such as pre-launch characterization of the sensor, atmospheric and bi-directional
corrections, geo-location, and contamination by adjacent pixels [31]. Furthermore, the
spatial mismatches arise when matching up in situ data and satellite data: horizontally, in
situ data often cover an area of 1−10 m while ocean color satellite pixels are often more
than 100 m; vertically, in situ measurements are usually conducted on discrete depths
while satellite measurements represent a water column weighted average [31]. Thus, there
are some potential uncertainties when the in situ data-based OWT schemes are applied
to satellite data. Second, the spatial and temporal distributions of the in situ or the pixel
spectra affect the representativeness of water classifications [30,32]. For instance, the in situ
data were mostly collected in the Northern Hemisphere, with few data points representing
very oligotrophic gyre areas [33]. On the contrary, when developing OWT schemes based
on satellite data, the pixels corresponding to oligotrophic waters cover a large proportion of
the overall spectrum. As a result, the satellite data-based-OWT schemes performed better
in open oceans, while the in situ data-based OWT schemes often worked better in coastal
waters [19]. Third, with the development of hyperspectral remote sensing technology, some
of the existing OWT schemes that initially were developed within limited multispectral
bands may not encompass all characteristic bands reflecting the bio-optical features of
water. Fourth, the existing OWT schemes were mostly designed for one specific ocean color
instrument, such as SeaWiFS [11,13,14,17,22], MODIS [10,15], MERIS [15,16,19,20,30], or
OLCI [18]; thus it is difficult to migrate these OWT schemes to other satellite sensors. There-
fore, it is necessary to develop an OWT scheme that is measurement error-free, suitable for
the global ocean waters, and multi-satellite sensors.

In addition to the AOP-based OWT schemes, there are other water classification tax-
onomies that are suitable for quantitative water quality evaluation, such as the trophic
state index (TSI) [34], the absorption coefficient ternary diagram [4,5,34], and the Forel-
Ule Scale [23,35–37]. Further introduction to these water classification taxonomies is in
Section 2.4. Although the abovementioned water classification taxonomies are commonly
used, to the best of our knowledge, scant effort has been applied to exploring the relation-
ships and correspondences between the AOP-based OWT schemes and other water type
taxonomies which will hinder their comparison and unification in many cases.

Against the above background, the aims of this study were to: (1) develop a fuzzy
logic AOP-based OWT scheme (abbreviated as the U-OWT hereafter) for global oceans and
multi-satellite sensors; (2) test the robustness and reliability of the U-OWT; (3) explore the
relationships between the U-OWT and other water classification taxonomies; (4) apply the
U-OWT to the global oceans preliminarily.

2. Materials and Methods

2.1. Materials
2.1.1. Synthetic Data

The Hydrolight simulated hyperspectral data set (350−800 nm, 5 nm resolution) that
was created by the first NASA PACE (Plankton, Aerosol, Cloud, and Ocean Ecosystem)
Science Team (NNH13ZDA001N-PACEST) was downloaded from PANGAEA [38]. This
data set contains 714 measurement error-free hyperspectral synthetic sea surface remote
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sensing reflectance Rrs(λ) (sr−1), total absorption atot(λ) (m−1), phytoplankton absorption
aph(λ) (m−1), CDOM absorption ag(λ) (m−1), and detrital absorption ad(λ) (m−1) with a
solar zenith angle of 30◦. The Hydrolight model run was constrained with a set of in situ
aph(λ)) spectra collected from NASA’s SeaBASS repository, using the principles outlined in
IOCCG Report No. 5 [31]. Because the above in situ aph(λ) spectra were selected from more
than 4000 SeaBASS spectra, and together with the random combination of optically active
constituents, this synthetic data set was expected to cover all possible natural ocean water
IOP-AOP scenarios [30,39], theoretically without duplicate data. This data set was used for
the U-OWT scheme development and the IOPs analysis of each U-OWT class.

The Hydrolight synthesized Rrs(λ) and Chla data set with the sun zenith angle of
30◦ from IOCCG Report No. 5 [31] was used for exploring the robustness and the water
quality properties of the U-OWT. The data set contains 500 Rrs(λ) and IOPs spectra pairs
for testing and comparing ocean color algorithms. It covers a wide range of natural waters
with discrete Chla concentrations from 0.03 to 30 mg/m3. The data set was used for the
consistency analysis of the U-OWT among different multispectral satellite sensors, and the
water quality parameter analysis of each U-OWT class.

2.1.2. In Situ Data

The NOMAD (NASA bio-Optical Marine Algorithm Data set) version 2 data set
is a publicly available, global, high quality in situ bio-optical data set for use in ocean
color algorithm development and satellite data product validation activities [40]. The
data set includes surface water-leaving radiance Lw, surface downward irradiance Es,
and Chla concentration data. After the data filtering, 1052 qualified SeaWiFS-band Rrs(λ)
(Rrs = Lw/Es) and Chla data pairs were retrieved from the NOMAD data set.

The CCRR (Coast Colour Round Robin) in situ data set was collected to test algorithms
and to assess their accuracy for retrieving water quality parameters [41]. A total number of
336 MERIS level 2 Rrs(λ) and Chla match-ups were extracted from this data set. The Rrs(λ)
and Chla data pairs from the NOMAD and the CCRR data sets were used for exploring the
water quality properties of each U-OWT class.

Two data sets containing in situ Rrs(λ) and FUI data pairs were used for exploring
the relationship between the U-OWT and the Forel-Ule Scale [39]: the first data set was
collected from 612 sites covering coastal and oceanic waters around the world [42], the
second data set was collected from 195 sites in coastal and oceanic waters off China [43].
Specifically, the hyperspectral Rrs(λ) spectra of these data sets were interpolated to OLCI
bands to calculate their dominant OWT (the water class with maximum membership) of
the U-OWT.

2.1.3. Satellite Images

Two Landsat-8 OLI and Sentinel-3A OLCI images overpassing Pearl River Estuary on
23 October 2017 were downloaded from the USGS EarthExplore and the EUMETSAT Earth
Observation Portal, respectively. The scene center times of the OLI image and the OLCI
image were UTC 2:53 and UTC 2:34, respectively; thus, the two images can be regarded as
approximately concurrent. The water in Pearl River Estuary is highly turbid and optically
complicated [44]; thus, this area was suitable for testing the performance of the U-OWT.

The ESA OC-CCI climatology monthly composite Rrs data set (version 4.2) [45], with
4 km nominal spatial resolution at the equator, was downloaded from the ESA OC-CCI ftp
server. As a level 3 binning product, the OC-CCI was composited from multiple sensors
(SeaWiFS, MODIS, MERIS, and VIIRS) to SeaWiFS Rrs bands and values. The data set was
used to study the global seasonal variability of the relative U-OWT indicators from 1998 to
2019 [46].

2.1.4. Other Data

The relative spectral response functions RSR(λ) of several multispectral satellite sen-
sors were obtained to convolute the hyperspectral Rrs(λ) to the multispectral Rrs(λ). Specif-
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ically, the RSR(λ) of SeaWiFS, MERIS, MODIS-Aqua, MODIS-Terra, OLI, VIIRS-NPP, OLCI-
S3A, and OLCI-S3B were downloaded from the NASA Ocean Biology Processing Group.
The RSR(λ) of MSI-S2A and MSI-S2B were downloaded from the ESA Sentinel website (see
Data Availability Statement for more information).

2.2. Development of the U-OWT

(1) The 714 PACE synthetic Rrs spectra were normalized by their Root-Sum-Squares
(RSS) [15]:

nRrs(λ) =
Rrs(λ)√

∑i
1 Rrs(λi)

2
(1)

where nRrs(λ) is normalized remote sensing reflectance, index i represents the total number
of wavelengths, ranging from 1 to 91, and λ represents the wavelength varying from 350
to 800 nm, with 5 nm intervals. The Rrs(λ) spectral shape characteristics are highlighted
after the normalized transformation and are more related to the absorption than to the
backscattering [11,14].

(2) The optimal clustering number of nRrs(λ) was estimated using the gap statistic
method [47]. This step was accomplished using the “clusGap” function in the R® platform.
Repeated experiments with the gap method determined that the optimal clustering number
was 15.

(3) The spherical k-means clustering (skmeans) method [48] was used to cluster
714 nRrs(λ) spectra into 15 groups. The skmeans is an unsupervised clustering method that
employs cosine dissimilarity:

d(x, p) = 1 − cos(x, p) = 1 − 〈x, p〉
|x||p| (2)

where d(x, p) is the cosine dissimilarity between the feature vectors x (here, the nRrs spectra)
and centroids p (here, the nRrs mean of each group). The skmeans partitions data into a
given number k of groups via minimizing d(x, p) over all samples x to cluster centroids p.
Compared to the ordinary k-means method, the skmeans is more suitable for clustering
nRrs(λ) spectra, because the cosine dissimilarity places emphasis more on the spectral shape
rather than on the spectral amplitude. In addition, the skmeans method was ran 10 times
to reduce the effects of random initialization of unsupervised clustering [48]. Finally, the
714 nRrs(λ) spectra (and their original Rrs(λ) spectra) fell into 15 groups (OWT1–OWT15)
according to their most frequent clustering results. This step was accomplished using the
R® package “skmeans”.

(4) After the unsupervised clustering of each Rrs(λ)/nRrs(λ) spectrum that had a 5 nm
interval, the cubic spline interpolation was used to create the hyperspectral Rrs(λ) with
1 nm increments (350−800 nm, 451 bands).

(5) In order to obtain the different multispectral satellite sensors’ Rrs(λ) spectra for
each OWT group, spectral bandpass integration was performed on each hyperspectral
Rrs spectrum:

Rrs-multi(λ) =

∫ λ2
λ1

Rrs-hyper ∗ RSR(λ)dλ∫ λ2
λ1

RSR(λ)dλ
(3)

where Rrs-multi(λ) is the band-averaged multispectral remote sensing reflectance, Rrs-hyper
is the hyperspectral remote sensing reflectance spectrum. RSR(λ) represents the relative
spectral response function of the multispectral satellite sensor. λ is the specific multispectral
wavelength between 400−800 nm, i.e., the visible to near-infrared wavelength. λ1 and
λ2 are the lower (400 nm) and upper (800 nm) limits of integration, respectively. In this
paper, several commonly used multispectral satellite sensors, including SeaWiFS-SEASTAR,
MODIS-Aqua, MODIS-Terra, VIIRS-NPP, OLI-Landsat 8, MERIS-ENVISAT, MSI-Sentinel
2A, MSI-Sentinel 2B, OLCI- Sentinel 3A, and OLCI- Sentinel 3B, were selected to develop
their corresponding U-OWT schemes.

16



Remote Sens. 2021, 13, 4018

(6) For each multispectral sensor, the Rrs-multi(λ) spectra of each OWT group were
normalized to determine the nRrs-multi(λ) spectra.

(7) Finally, the nRrs-multi(λ) mean and covariance of each OWT were calculated, which
are two key statistics for the OWT membership function calculation [13]. Then, the squared
Mahalanobis distances of each OWT were acquired [8]:

Z2
i = (nRrs − Mi)

tCov−1
i (nRrs − Mi) (4)

where Z2
i is the squared Mahalanobis distance, nRrs is the multispectral normalized remote

sensing reflectance of a target spectrum or a target pixel, Mi is the nRrs mean of the ith OWT,
t represents the transpose of the vector (nRrs–Mi), and Cov−1

i is the inverse covariance
matrix of the ith OWT. In this study, a common weighted covariance matrix was used for
the membership calculation of all 15 OWT classes [8].

Then, the membership function was obtained:

fi = 1 − Fn

(
Z2

i

)
(5)

where fi is the members belonging to the ith OWT, Fn(Z 2
i

)
is the cumulative Chi-square

distribution function with n degrees of freedom. Here, for each satellite sensor, n equals
their multispectral band numbers. After the membership calculation, three other OWT
indicators were also obtained: first, the dominant OWT was defined as the OWT of
maximum membership [14]; second, the total membership was defined as the sum of OWT
membership; third, the normalized membership was defined as the ith OWT membership
divided by the total membership [8]; thus, the normalized membership is constrained
between 0 to 1.

In addition, a 3-sigma denoising mechanism was used in the OWT membership calcu-
lation, i.e., a too-small membership (membership less than 0.01, approximately equal to
the 3-sigma threshold) was regarded as a small probability event, and this membership
was assigned the value 0. This denoising processing removed many outliers and simplified
the calculation. The OWT membership, dominant OWT, total membership, and normal-
ized membership calculation procedures were all implemented in the IDL® development
environment. The above steps are depicted in Figure 1.

2.3. Reliability Analysis of the U-OWT
2.3.1. Existing AOP-Based OWT Schemes

In order to compare the U-OWT with other AOP-based OWT schemes and to indirectly
prove the rationality of the U-OWT, 9 OWT schemes from the previous studies were
selected. They were acquired from Jerlov (1968) [6] (JL68), Moore et al. (2009) [10] (MO09),
Moore et al. (2014) [13] (MO14), Wei et al. (2016) [15] (WE16), Jackson et al. (2017) [19]
(JK17), Pitarch et al. (2019) [23] (PT19), Coastal [49] (CST), GLaSS 5C [49] (G5C), and GLaSS
6C [49] (G6C). Brief introductions to these OWT schemes appear in Table 1, and the mean
reflectance vectors of each OWT class from other OWT schemes are shown in Figure S1.
Different OWT schemes had their own reflectance shape and point spread; specifically,
the reflectance mean vectors determined the spectral shape, and the covariance matrixes
determined the spectral point spread [13]. Considering that it is not easy to compare
different point cloud distributions, we calculated the memberships of the reflectance mean
vectors from other OWT schemes in the U-OWT context. This method illustrated the
relationships between other OWT schemes and the U-OWT scheme to a large extent.

The Jerlov OWT scheme was initially suggested by the form of irradiance trans-
mittance through 1 m of seawater; therefore, the Jerlov water types cannot be directly
compared to the U-OWT. Solonenko and Mobley derived the total absorption a(λ) and the
total scattering b(λ) for each Jerlov water type in the wavelength range of 300−700 nm [50].
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The backscattering ratio B is defined as the backscattering coefficient bb divided by the total
scattering coefficient b:

B = bb/b (6)
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Figure 1. Workflow of the U-OWT development.

Table 1. Introduction to different AOP-based water classification schemes.

Source Abbreviation AOP Type Sampling Area Band Setting
OWT Class

Number

Jerlov (1968) [6] JL68 Irradiance transmittance
for surface water/% Global oceans 310–700 nm,

Δ = 25 nm 10

Moore et al. (2009) [10] MO09 Subsurface remote sensing
reflectance/sr−1 Global oceans SeaWiFS 6 bands 8

Moore et al. (2014) [13] MO14 Subsurface remote sensing
reflectance/sr−1

Coastal and
inland waters MERIS 10 bands 7

Wei et al. (2016) [15] WE16 Normalized remote
sensing reflectance Global oceans MODIS 9 bands 23

Jackson et al. (2017) [19] JK17 Remote sensing
reflectance/sr−1 Global oceans SeaWiFS 6 bands 14

Pitarch et al. (2019) [23] PT19 Remote sensing
reflectance/sr−1 Global oceans SeaWiFS 6 bands 21

Coastal [49] CST Subsurface remote sensing
reflectance/sr−1 Coastal waters SeaWiFS 5 bands 16

GLaSS 5C [49] G5C Subsurface remote sensing
reflectance/sr−1 Inland waters OLCI 13 bands 5

GLaSS 6C [17,49] G6C Subsurface remote sensing
reflectance/sr−1 Inland waters OLCI 13 bands 6
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However, the exact B values for the Jerlov water types were unknown. In the natural
world most oceanic particles have backscatter ratios between 0.001 (e.g., very large phy-
toplankton) and 0.1 (e.g., very small mineral particles) [3]. To derive the bb, we assumed
B = 0.001, 0.01, and 0.1 to represent the different scenarios as much as possible. Gordon
et al. proposed the relationship between the subsurface remote sensing reflectance rrs(λ)
and the inherent optical properties a(λ) and bb(λ) [51],

rrs(λ) = 0.0949
bb(λ)

a(λ) + bb(λ)
+ 0.0794

(
bb(λ)

a(λ) + bb(λ)

)2
(7)

The semianalytical relationship between the subsurface remote sensing reflectance
rrs(λ) and the surface remote sensing reflectance Rrs(λ) proposed by Lee et al. (2002) [52] is
as follows:

rrs(λ) =
Rrs(λ)

0.52 + 1.7Rrs(λ)
(8)

Following Equations (6)–(8), the Rrs(λ) of all Jerlov water types were obtained, then
we interpolated the Jerlov OWT Rrs(λ) to the SeaWiFS multispectral bands and calculated
their memberships in the U-OWT context.

For the other OWT schemes (MO09, MO14, CST, G5C, and G6C) displaying with
the form of rrs(λ), Equation (8) was applied to convert their water type means rrs(λ)
corresponding to different band settings to Rrs(λ). Then, each water type of MO09, MO14,
CST, G5C, and G6C was compared with the SeaWiFS 6-band, MERIS 10-band, SeaWiFS
5-band, OLCI 13-band, and OLCI 13-band U-OWT schemes, respectively. Likewise, for the
OWT schemes (WE16, JK17, PT19) with the form of Rrs(λ) or nRrs(λ), each water type of
WE16, JK17, and PT19 was directly compared with the MODIS-A 8-band, SeaWiFS 6-band,
and SeaWiFS 6-band U-OWT scheme, respectively.

2.3.2. Consistency Evaluation of U-OWT Performance on Different Sensors

The consistency performance of the U-OWT on different multispectral sensors was
still unknown. To this end, the IOCCG Hydrolight Synthetic Chla and Rrs(λ) data pairs
(sun zenith angle = 30◦) were used as a consistent set of evaluation benchmarks for all
sensors. Specifically, 75 hyperspectral Rrs(λ) corresponding to Chla = 0.3, 3 and 30 mg/m3

were selected. The above hyperspectral Rrs(λ) were convoluted to different multispectral
band settings, then the dominant OWT and average memberships of the U-OWT were
calculated to explore the consistency between different sensors. The trophic state indexes
(TSIs) corresponding to Chla = 0.3, 3, and 30 mg/m3 were equal to 18.7, 41.4, and 63.9,
which represent the oligotrophic, mesotrophic, and eutrophic water states, respectively
(see Section 2.4.1).

In addition, two concurrent OLI and OLCI images, which were taken overpassing
Pearl River Estuary on 23 October 2017, were selected to evaluate the consistency between
the two sensors with the biggest difference in band settings (4 bands for OLI and 13 bands
for OLCI) from a spatial distribution perspective. Before the membership and dominant
OWT calculations of the above two level 1 images, they were atmospherically corrected
using the C2RCC module embedded in the SNAP® platform to transform the top of
atmosphere reflectance to the surface remote sensing reflectance (Figure S2).

2.3.3. Sensitivity Analysis of the U-OWT

As a local sensitivity analysis method, the one factor at a time (OAT) method [53]
was used in this study to evaluate the robustness of the U-OWT scheme by varying
the input Rrs(λ). The Rrs(λ) values in the wavelength ranges 400–500 nm (blue bands),
500–600 nm (green bands), 600–700 nm (red bands), and 700–800 nm (near-infrared bands)
were regarded as factors [25]. For the 15 U-OWT Rrs(λ) mean vectors of the multispectral
sensors, the perturbation range changed from −100 to 100%, with 10% increments. In this
process, the dominant OWT and the memberships of that 15 Rrs(λ) were recalculated to
evaluate the robustness of the U-OWT. Three sensors, OLI, MODIS-A and OLCI, were
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selected to conduct the above sensitivity analysis, which equipped the minimum (4 bands),
the medium (8 bands) and the maximum (13 bands) band numbers.

2.4. Other Water Classification Taxonomies
2.4.1. Chla-Based TSI

In this section, the synthetic (SeaWiFS 6 bands for IOCCG) and in situ (SeaWiFS
6 bands for NOMAD and MERIS 9 bands for CCRR) Chla samples, together with their
multispectral Rrs(λ) data pairs, were used to determine the relationship between the U-
OWT and the water quality parameter (Chla concentration). Meanwhile, the trophic state
index (TSI) [34] was used to evaluate the trophic state of the dominant OWT of the U-OWT:

TSI(Chla) = 10
(

6 − 2.04 − 0.68 ln Chla
ln 2

)
(9)

where Chla is the concentration of Chla in micrograms per liter. The water trophic state is
regarded as oligotrophic, mesotrophic and eutrophic when TSI < 30, 30 ≤ TSI < 50, and
TSI ≥ 50, respectively [37].

2.4.2. IOP-Based Classification

Water color classification schemes are primarily based on absorption rather than
scattering, as scattering contributes more to brightness but less to color [3]. The seawater
absorption coefficient can be subdivided into four principal parts [54]:

atot(λ) = aw(λ) + aph(λ) + ag(λ) + ad(λ) (10)

where atot(λ), aw(λ), aph(λ), ag(λ), ad(λ) are the absorption coefficients of total, pure seawater,
phytoplankton, colored dissolved organic matter (CDOM), and non-algal particles (NAPs),
respectively. An optical classification based on aph(λ), ag(λ), and ad(λ) was proposed by
Prieur and Sathyendranath [54]. For 440 nm, the contributions of phytoplankton, CDOM,
and NAP to the total absorption after subtracting the water contribution were defined:

η
(

aph

)
=

aph(440)
atot(440)− aw(440)

× 100% (11)

η
(
ag
)
=

ag(440)
atot(440)− aw(440)

× 100% (12)

η(ad) =
ad(440)

atot(440)− aw(440)
× 100% (13)

At a given wavelength, the ternary plot is a way to illustrate the relative proportions
of each absorption subdivision to the total value [55]; it shows how different subdivision
constituents dominate absorption [3]. In this study, the absorption spectra corresponding to
the 714 raw Rrs(λ) of the PACE synthetic data set were retrieved to explore the relationship
between the U-OWT and the absorption properties.

2.4.3. Forel-Ule Scale

In order to explore the relationship between the U-OWT and Forel-Ule Scale, a hue
angle and Forel-Ule Index (FUI) retrieval workflow was used for the visible bands of OLCI;
the steps are summarized below:

(1) CIE tristimulus calculation:

X = ∑11
i=1 xi ∗ Rrs(λi) (14)

Y = ∑11
i=1 yi ∗ Rrs(λi) (15)
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Z = ∑11
i=1 zi ∗ Rrs(λi) (16)

where X, Y, Z are CIE tristimulus variables, Rrs(λi) denotes the OLCI multispectral remote
sensing reflectance spectra, and xi, yi, zi are linear conversion coefficients to calculate the
chromaticity values based on OLCI bands (Table A1) [36].

(2) CIE chromaticity coordinates calculation:

Chrx =
X

X + Y + X
(17)

Chry =
Y

X + Y + X
(18)

where Chrx and Chry are chromaticity coordinates.

(3) Hue angle calculation. The hue angle under the Woerd and Wernand (2015) definition
(namely the first hue definition) [36] is obtained:

αOLCI = 90 − ATAN
(
Chrx − 1/3, Chry − 1/3

) ∗ 180/π (19)

where αOLCI is the hue angle under the first hue definition, ATAN denotes the arctangent
function. To reduce the color difference between the hyperspectral true color and the
multispectral sensor band setting, a systematic deviation (Δ) is defined as the hyperspectral
hue angle αhyper minus the multispectral hue angle, and Δ is the function of the multispectral
hue angle [36]. For OLCI sensor:

Δ = αhyper − αOLCI � f (αOLCI) (20)

If b = αOLCI / 100, Δ can be approximated by [36]:

Δ = −12.508 b5 + 91.635 b4 − 249.848 b3 + 308.656 b2 − 165.482 b + 28.561 (21)

Therefore, the corrected hue angle can be obtained:

αhyper = αOLCI + Δ (22)

Then, the transformed hue angle under the Wang et at. (2018) definition (namely, the
second hue definition) is calculated [37,56]:

α = 270 − αhyper (23)

The only difference between the first and the second hue definition is that as the hue
angle increases, the FUI also increases under the second hue definition, whereas the FUI
decreases under the first hue definition (Figure 2). The second hue definition is more
coordinated between the hue angle and the FUI. Therefore, the following analysis in this
study is under the second hue definition.

(4) FUI determination. Based on the transformed hue angle, the FUI was calculated
using the FUI look-up table (LUT, Table A2): the transformed hue angle was pointed
toward the nearest LUT 21 class standard hue angle, and the FUI corresponding to
that standard hue angle was what we wanted [57].
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Figure 2. The CIE 1931 chromaticity diagram. The white point located at (x, y) = (1/3, 1/3). The first
hue definition is the angle between the vector to a point and the positive y’-axis (at y = 1/3), giving
higher angles in an anti-clockwise direction [36]; the second hue definition is the angle between
the vector to a point and the negative x’-axis (at x = 1/3), giving higher angles in a clockwise
direction [37].

2.5. Global Ocean Applications of the U-OWT

The U-OWT scheme was applied to the ESA-OC-CCI v4.2 Rrs Monthly Climatology
(1998–2019) data sets to explore the global seasonal variability of ocean optical classes.
Specifically, the dominant OWT and memberships of each U-OWT class for each month
were calculated. For brevity, the memberships of January, April, June, and September
are shown in this paper, to represent the seasonal variability. What is more, the monthly
Shannon index of the U-OWT normalized memberships was calculated to evaluate the
ocean optical diversity [14,20]. For a given bin:

H = −
N

∑
i=1

Pi ∗ ln(Pi) (24)

where H is the Shannon diversity index, Pi is the normalized membership of each optical
water type of the U-OWT, and N denotes the number of optical classes; here, N = 15. If
the 15 optical water types have the same membership, i.e., 1/15, H reaches a maximum
value of ln(15) = 2.7, which means the maximum optical diversity; in contrast, if one bin is
composed of only one optical class, H reaches a minimum value of 0, which indicates the
minimum optical diversity.

3. Results

3.1. U-OWT Cluster Analysis

The mean normalized remote sensing reflectances nRrs(λ) of 15 U-OWT classes for
the PACE hyperspectral sensor and different multispectral sensors are depicted in Figure 3.
For the original hyperspectral U-OWT scheme, the nRrs(λ) spectra of different classes were
well separated from others. The peaks of OWT1-15 increased from blue wavelength to
near-infrared wavelength: the nRrs(λ) peaks of OWT1-3 were located near 410nm; the
nRrs(λ) peaks of OWT4-6 were located near 490 nm; the nRrs(λ) peaks of OWT7-12 were
located near 560 nm; the nRrs(λ) peaks of OWT13-15 were 700–800 nm. In addition, another
spectral peaks for OWT1-12 classes was observed near 685 nm, and the value of this
peak increased gradually from OWT1 to OWT12. The 685 nm mark is often used in the
calculation of fluorescence line height (FLH) and maximum Chlorophyll index (MCI),
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which are the indicators of the biological activity of phytoplankton [58]. Therefore, the
increasing 685 nm peak values may imply gradually stronger phytoplankton signals from
OWT1 to OWT12. OWT13-15 did not show obvious 685 nm peaks, and we deduced that
they were turbid water types and were more influenced by suspended sediments and
organic particles [10], causing the light availability to decrease for the primary producers,
thus limiting Chla concentration [23].

 

 

 

 

Figure 3. Mean nRrs(λ) spectra of U-OWT classes 1–15 corresponding to the hyperspectral (PACE)
and different multispectral (SeaWiFS, MERIS, MODIS-A, OLI, VIIRS-N, MSI-S2A, and OLCI-S3A)
satellite sensors.

As the set of U-OWT schemes of multispectral sensors were converted from the PACE
hyperspectral scheme, the shape and magnitude of the multispectral U-OWT nRrs(λ) were
similar to the original hyperspectral scheme, especially for the multispectral sensors with
relatively more band numbers, e.g., OLCI and MERIS. On the contrary, the U-OWT schemes
of the multispectral sensors with fewer band numbers lost some spectral characteristics of
the original hyperspectral scheme, e.g., OLI, which had only four visible bands.
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3.2. Reliability of the U-OWT
3.2.1. Inter-Comparison with Other AOP-based OWT Schemes

Regarding OWT schemes aiming at global ocean classification, including JL68, MO09,
WE16, JK17, and PT19, they showed good correspondence with the U-OWT. Each class
corresponded to one or more specific U-OWT classes, and the correlations were relatively
high (membership > 0.5). The OWT classes of JL68, MO09, and JK17 approximately corre-
sponded to OWT1-10 of the U-OWT successively; however, they had no corresponding
classes with OWT11-15 of the U-OWT. Specifically, JL68, MO09, and JK17 appeared to
classify oligotrophic water classes redundantly, i.e., they had several OWT classes corre-
sponding to OWT1-4 of the U-OWT; while for the mesotrophic and eutrophic waters, one
of their OWT classes often corresponded to several OWT5-10 classes of the U-OWT. It is
worth noting that when the backscattering ratio B varied, the above phenomena were still
valid for the JL68 scheme. As for WE16, its OWT classes well corresponded to OWT1-15 of
the U-OWT successively, though there was only WE16.OWT19 corresponded to OWT13-15
of the U-OWT. OWT1-17 of PT19 were well related to OWT1-12 of the U-OWT; however,
OWT18-21 of PT19, i.e., the CDOM-dominated classes [23], had no correspondence with
the U-OWT (Figure 4). In general, the U-OWT showed good comparability with other
global ocean-aimed OWT schemes, which indirectly proved the representativeness and
reliability of the U-OWT.

Though the U-OWT had good correlation with other ocean-aimed OWT schemes, the
correlation with the OWT schemes for the inland and coastal waters (including MO14, CST,
G5C, and G6C) was not significant. Many classes of these inland and coastal water-aimed
OWT schemes did not have classes corresponding to the U-OWT (Figure 4).

3.2.2. Consistency Analysis between Different Multispectral Sensors

For the 75 IOCCG oligotrophic, mesotrophic and eutrophic synthetic spectra (each
trophic state had 25 spectra), their dominant OWT (Figure 5) and average OWT mem-
berships (Figure 6) under the U-OWT context, which were calculated between different
multispectral sensors, showed relatively good consistency, although the dominant OWT
calculated under a few sensors’ U-OWT schemes was not equal to the majority counterparts,
the deviations were fewer than three dominant OWT classes.

For the two concurrent OLI and OLCI images, their spatial distribution patterns of the
OWT1-12 memberships were similar, although the membership values around the rims
of OWT1-9 were higher in the OLI image (Figure 7a), and the membership values around
the rims of OWT10-12 were higher in the OLCI image (Figure 7b). From the perspective
of the dominant OWT, both the OLI and OLCI images had similar spatial distributions
and values for the oligotrophic (OWT1-5) and eutrophic (OWT9-12) water types, however,
there was significant inconsistency in the spatial distributions in the mesotrophic water
types (OWT6-8) (Figure 8). The band settings of different multispectral sensors, specifically
the band numbers and the band locations, may have affected the U-OWT performance
between sensors.

 
(a)                                                     (b) 

Figure 4. Cont.
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(c)                                                  (d) 

 
(e)                                                    (f) 

 
(g) 

Figure 4. Cont.
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(h)                                                     (i) 

Figure 4. The U-OWT memberships of each water class (represented by mean nRrs(λ) vector) corresponding to different
AOP-based OWT schemes: (a) JL68 (B = 0.1), (b) MO09, (c) WE16, (d) JK17, (e) PT19, (f) CST, (g) MO14, (h) G5C, and (i) G6C.
The relationships of the U-OWT with JL68 (B = 0.01) and with JL68 (B = 0.001) are not shown here, because of their high
similarity to the JL68 (B = 0.1).

 

 

 Rrs

Figure 5. The U-OWT dominant OWT of the IOCCG synthetic Rrs(λ) for different water trophic states:
(a) 25 Rrs(λ) spectra with Chla = 0.3 μg/L (oligotrophic), (b) 25 Rrs(λ) spectra with Chla = 3 μg/L
(mesotrophic), (c) 25 Rrs(λ) spectra with Chla = 30 μg/L (eutrophic).

3.2.3. Sensitivity Analysis

The local sensitivity of the U-OWT schemes corresponding to OLI, MODIS, and OLCI
are seen in Figures S3 and S4, and Figure 9, respectively. Taking OLCI as an example, the
perturbation of Rrs values in the wavelength range of blue bands (400–500 nm) mainly
affected the oligotrophic and mesotrophic water classes (OWT1-8), in terms of the dominant
OWT and the membership values. The increase in blue band Rrs values could have
decreased the OWT class numbers, while the decrease in blue band Rrs values could have
increased the OWT class numbers. Additionally, the perturbations of the green bands
(500–600 nm), red bands (600–700 nm), and near-infrared bands (700–800 nm) Rrs values
mainly affected the mesotrophic (approximately OWT5-10), eutrophic (approximately
OWT9-12), and over-eutrophic (approximately OWT13-15) U-OWT classes, respectively. In
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addition, according to the membership sensitivity analysis, the OLCI U-OWT scheme can
endure nearly ±30% Rrs(λ) perturbations on different wavelength ranges.

 

 

 

Figure 6. The U-OWT average memberships of the IOCCG synthetic Rrs(λ) for different water
trophic states: (a) 25 Rrs(λ) spectra with Chla = 0.3 μg/L (oligotrophic), (b) 25 Rrs(λ) spectra with
Chla = 3 μg/L (mesotrophic), and (c) 25 Rrs(λ) spectra with Chla = 30 μg/L (eutrophic).

  
(a)                                                   (b) 

Figure 7. The U-OWT memberships of the Pearl River Estuary’s (a) Landsat-8 OLI image on 23 October 2017, and
(b) Sentinel-3A OLCI image on 23 October 2017. The memberships of U-OWT13/14/15 are not shown here because of their
negligible values. The land and cloud pixels are masked.
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Figure 8. The U-OWT dominant OWT of (a) the Pearl River Estuary’s Landsat-8 OLI image on
23 October 2017, and (b) the Pearl River Estuary’s Sentinel-3A OLCI image on 23 October 2017. The
land and cloud pixels are masked.

 

 

 

 Rrs Rrs

Figure 9. The U-OWT dominant OWT and membership changes in 15 OLCI mean Rrs(λ) vectors
under the variations in (a,b) the blue bands (400–500 nm), (c,d) the green bands (500–600 nm), (e,f) the
red bands (600–700 nm), and (g,h) the near-infrared bands (700–800 nm).
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The above phenomena were also detected in the OLI and MODIS U-OWT schemes.
However, the OLI and MODIS U-OWT schemes could only endure nearly ±10 and ±20%
Rrs(λ) perturbations on different wavelength ranges, respectively. That may be due to the
fewer band numbers of these two sensors. Generally, the sensitivity of the U-OWT was
influenced differently by the OWT classes, sensor types, and wavelength ranges [25].

3.3. Relationships to Other Water Type Taxonomies
3.3.1. Relationship to the Chla-Based TSI

The synthetic and in situ data showed that each U-OWT class corresponded to a
different Chla concentration range, whose values had an exponential increment (Figure S5).
The in situ measurements were globally located, and the high-numbered OWT samples
were mainly in the coastal regions, while the low-numbered OWT samples were mainly in
the open ocean waters (Figure S6). The Chla concentrations of oligotrophic water classes
(OWT1-4), mesotrophic water classes (OWT5-9), and eutrophic water classes (OWT10-12),
were mainly in the ranges of 0.01–1, 1–10, and >10 mg/m3, respectively. The synthetic
and in situ data did not contain enough OWT13-15 spectra samples; thus, the Chla con-
centrations of OWT13-15 are not shown here. However, it was expected that the Chla
concentrations of OWT13-15 were greater or roughly equal to OWT10-12. In addition,
the Chla concentrations of the adjacent OWT classes had overlapping intervals, which
indicated that the Chla inversion algorithms corresponding to the adjacent OWT classes
can be weighted blended based on memberships to improve the Chla inversion accuracy
in the full concentration range.

We regarded the water bodies with TSI < 30, 30 < TSI < 50, and TSI > 50 as oligotrophic,
mesotrophic, and eutrophic states, respectively [37]. From the analysis of the synthetic data
set, OWT1-4 of the U-OWT represented oligotrophic waters, OWT5-6 were transitional
between oligotrophic and mesotrophic states, OWT7-8 were mesotrophic waters, OWT9-
10 were transitional between mesotrophic and eutrophic waters, and OWT11-12 were
eutrophic waters (Figure 10a). The above phenomena were also confirmed by the in situ
observations (Figure 10b). Although in the synthetic and in situ data sets, there were not
enough Rrs(λ) spectra and Chla pairs corresponding to OWT13-15 classes, these water
classes were expected to belong to eutrophic waters.

  
(a)                                                    (b) 

Figure 10. The relationships between the U-OWT and Chla-based TSI. (a) Scatterplot of data pairs of Chla-based TSI
and U-OWT dominant OWT from the IOCCG synthetic SeaWiFS convolutional Rrs(λ) (N = 500). Two boxes with black
dashes mark the dominant OWT5-6 (transition between oligotrophic and mesotrophic waters) and the dominant OWT9-10
(transition between mesotrophic and eutrophic waters). The points are plotted with 85% transparency to show the data
density. (b) Chla-based TSI distributions of NOMAD and CCRR in situ measurements corresponding to different U-OWT
dominant OWT (OWT1-OWT12). OWT13/14/15 are not shown here because of the lack of observations.
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3.3.2. Relationship to the Absorption Properties

The mean atot(λ), aph(λ), ag(λ), and ad(λ) spectra of the PACE synthetic data for each U-
OWT class appear in Figure 11, and they were highly spectrally dependent. The magnitude
of absorption varies linearly with the concentration of the absorbing material [3]; therefore,
the exponential increase in the absorption spectra may illustrate the increasing absorption
materials for the U-OWT classes. Because of the presence of Chla, two peaks of the aph(λ)
spectra were in the blue and red wavelength regions [3], one was near 440 nm, and another
was near 680 nm. The ag(λ) values were high in the blue wavelength and decreased
exponentially to the red regions. The ad(λ) spectra were very similar to the ag(λ), but with
a more gently decreasing slope. The total absorption was composed of pure water and
three individual absorption components; thus, it had an exponential decreasing slope and
two peaks around the blue and red regions.
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Figure 11. Average total absorption coefficients atot(λ), average phytoplankton absorption coefficients
aph(λ), average gelbstoff coefficients ag(λ), and average non-algal particles absorption coefficients
ad(λ) of each U-OWT class.

Similar to a ternary plot of the individual absorption contributions, a line chart depict-
ing the contributions of aph(440), ag(440), and ad(440) to total absorption after subtracting
water contribution is in Figure 12. From OWT1 to OWT11, η(aph) and η(ad) decreased
gradually, while η(ag) increased gradually and exceeded η(aph) and η(ad). The transition
was at OWT12; in this water class, η(aph) and η(ad) increased while η(ag) decreased. At
OWT13-15, the comparison between the individual contributions was η(aph) > η(ad) > η(ag).
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Figure 12. The contributions of the phytoplankton absorption coefficient at 440 nm aph(440), CDOM
absorption coefficient at 440 nm ag(440), and non-algal particle absorption coefficient at 440 nm ad(440)
to total absorption atot(440) after subtracting water contribution aw(440) for each dominant OWT class
of the U-OWT. The error bars are the standard deviations of corresponding individual contributions.

3.3.3. Relationship to the Forel–Ule Scale

Analysis of the IOCCG synthetic data showed that in the oligotrophic water types,
i.e., OWT1-6, one U-OWT class roughly corresponded to one FUI class; in the mesotrophic
water types, i.e., OWT7-10, one U-OWT class often corresponded to several FUI classes; in
the eutrophic water types, i.e., OWT11-15, one FUI class corresponded to several U-OWT
classes (Figure 13a). In other words, for the purpose of water quality assessment, the
distinguishable abilities of the U-OWT and FUI were equal in oligotrophic waters, FUI was
better in mesotrophic waters, while the U-OWT was better in eutrophic waters. The in situ
data from the global oceans and offshore China also confirmed the case (Figure 13b).

(a)                                               (b) 

y x

y x

y x

Figure 13. (a) Hue angle distribution of each U-OWT class from the PACE synthetic data set (N = 714). The separations of
adjacent FUI are shown with dashed lines. (b) Scatterplot of data pairs of FUI and U-OWT dominant OWT from the in situ
measurements collected from 612 sites covering coastal and oceanic waters around the world (N = 612) and 195 sites in
coastal and oceanic waters off China (N = 195). The points are plotted with 85% transparency to show the data density.
FUI ≤ 6, 7 ≤ FUI ≤ 9, and FUI ≥ 10 represent oligotrophic, mesotrophic, and eutrophic waters, respectively [37].

In addition to the spectral analysis of comparison between the U-OWT and the FUI,
one OLCI image overpassing the Pearl River Estuary was processed for the spatial consis-
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tency analysis of the U-OWT and FUI. Figure 14 shows that the dominant U-OWT class had
a spatial pattern that was high consistent with the FUI, especially in terms of the boundary
distribution of the corresponding OWT and FUI classes. Similar to the spectral consistency
analysis, the FUI had a better ability to distinguish in mesotrophic waters than the U-OWT.
For instance, in the waters off Hong Kong, the U-OWT only classified waters into one class,
i.e., OWT8; however, the FUI classified the same areas into three classes, i.e., FUI7-9. The
U-OWT has its limitations; even so, its dominant OWT classes can potentially be regarded
as water quality indicators that are as useful as the FUI.

 

Figure 14. The (a) U-OWT dominant OWT and the (b) FUI spatial distributions of the Sentinel-3A
OLCI image taken overpassing the Pearl River Estuary on 23 October 2017. The land and cloud pixels
are masked.

3.4. Global Applications of the U-OWT

The U-OWT scheme was applied to the level-3 ESA-OC-CCI climatology monthly
Rrs data to obtain the global oceanic dominant OWT (Figure 15), monthly OWT mem-
berships (Figure 15), and Shannon indexes of normalized memberships (Figure 16). The
dominant OWT and memberships showed that most ocean waters were occupied by the
two clearest water classes, i.e., OWT1 and OWT2. In addition, the OWT1 ocean regions
corresponded to the subtropical gyres surrounded by the OWT2 waters. The monthly
variations in subtropical gyres over the past 20 years were obtained: the subtropical gyres
in the Northern Hemisphere had a smaller area in January (Northern Hemisphere winter)
than in July (Northern Hemisphere summer), while the subtropical gyres in the Southern
Hemisphere had a larger area in January (Southern Hemisphere summer) than in July
(Southern Hemisphere winter). The OWT classes belonging to mesotrophic and eutrophic
waters were mainly located off the shores, including China coastal waters, Red Sea–Persian
Gulf, West Africa coastal waters, North Sea–Baltic Sea, East Coastal waters of the United
States, Caspian Sea, Black Sea, Argentine Sea, Bering Strait, etc. More details of these
coastal areas must be studies in the future. Generally speaking, the closer to the coast, the
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higher the eutrophic degree of the water bodies. The optical properties of some offshore
areas were the result of land–sea interaction. The coastal waters were affected both by
runoffs from land sources and by marine factors such as currents and tides.

 

Figure 15. Global U-OWT dominant OWT monthly variability based on the ESA-OC-CCI v4.2
climatology monthly Rrs (1998–2019).

  

(a)                                                  (b) 

Figure 15. Cont.
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(c)                                                (d) 

Figure 15. Global U-OWT memberships of (a) January, (b) April, (c) July, and (d) October, based on the ESA-OC-CCI v4.2
climatology monthly Rrs (1998–2019). The memberships of OWT13/14/15 are not shown here because of their negligible
low values.

 

Figure 16. Global monthly variability in the U-OWT normalized membership Shannon index based
on the ESA-OC-CCI v4.2 climatology monthly Rrs (1998–2019).

The ocean optical diversity was observed from the Shannon index; the higher Shannon
index indicated higher diversity in the OWT classes, and vice versa. The Shannon index
appeared to be relatively high in the transition areas between different dominant OWT
classes, and this phenomenon was especially obvious in the edge areas of gyres. As the
optical diversity was related to the biological diversity [14,20], further studies are needed
to explore the bio-optical properties of the U-OWT Shannon index.
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4. Discussion

4.1. How Many Optical Water Types in the World?

According to the Section 3.2.1, the AOP-based OWT schemes which were designed
for inland and coastal waters, including MO14, CST, G5C and G6C, did not show good
consistency and compatibility with the U-OWT. We speculated that these optically complex
water-aimed OWT schemes may contain some unique water types, which the U-OWT does
not yet include. At the same time, several ocean-aimed OWT schemes, including JL68,
MO09, WE16, JK17, and PT19, were quite compatible with the U-OWT, and most of their
water classes could be explained by OWT1-12 of the U-OWT. However, compared to the
U-OWT scheme, other ocean-aimed OWT schemes had relatively more oligotrophic water
classes and fewer mesotrophic and eutrophic water classes. From the authors’ point of
view, one of the most important applications of the optical water classification is in the
class-specific algorithms blending for the in-water constituents, such as Chla and total
suspended substance (TSS). The coastal and inland waters are more optically complex than
the oceanic waters, and some conventional inversion algorithms developed for the clear
oceanic waters do not perform well in these turbid waters; thus, class-specific algorithms
are urgently needed for these mesotrophic and eutrophic waters. Previous ocean- aimed
OWT schemes largely relied on huge in situ and remote sensing spectra samples, and the
clear water spectra occupied large proportions of their clustering samples, which affected
the water class clustering processes and led to more clear water types in the final OWT
schemes. The U-OWT was based on the synthetic spectra, which did not contain repeated
spectra samples. Therefore, the U-OWT was not affected by the occurrence frequency of
spectra, and more turbid water types could be distinguished, and the optical properties of
the optically complex waters could be more comprehensively represented by the U-OWT.

In general, the optical water type numbers of most AOP-based oceanic schemes were
between 8 and 23, while the optical water type numbers of most inland and coastal aimed
schemes were between 3 and 15. Although the water type numbers of most OWT schemes
were determined by the mathematical methods, some trade-offs must be considered: on
the one hand, too few classifications may not fully reflect the spectral characteristics of
different water bodies; on the other hand, too many classifications will reduce the efficiency
of OWT calculation, especially when involving many spectra or satellite data. According
to the sensitivity analysis of the U-OWT, OWT1-12 classes were mainly distinguished
by the visible wavelength, while the OWT13-15 classes were mainly distinguished by
the near-infrared region. The OWT13-15 classes had relatively high nRrs(λ) magnitude
in 700–800 nm, which indicated that these water types were highly turbid. Because of
the insufficient in situ samples corresponding to the OWT13-15 classes, their bio-optical
properties were not fully explored in this study. In highly turbid coastal and estuarine
waters, optical variability can be determined for wavelengths longer than 670 nm and
cannot be captured by a sensor like SeaWiFS [14]. However, for some satellite instruments
that are equipped with near-infrared bands, such as MERIS, MSI and OLCI, they can well
detect the highly turbid water types; thus, the OWT13-15 classes of the U-OWT scheme
may be more distinguishable using these sensors.

Some previous AOP-based OWT schemes were compared with the U-OWT. However, be-
cause of the difficulty in obtaining the raw OWT spectra data, some OWT schemes proposed
by previous literatures were not included in such comparisons, such as Vantrepotte et al. [11],
Shi et al. [12], Mélin and Vantrepotte [14], Ye et al. [16], Hieronymi et al. [18], Monolisha et al. [20],
Spyrakos et al. [21], Uudeberg et al. [25], Xue et al. [26], Zhang et al. [27], Balasubramanian et al. [28],
and da Silva et al. [29] The adaptability of the U-OWT in inland waters also deserves to be explored,
and some unique OWT classes for inland waters may be added to the present U-OWT scheme in
the future.

4.2. Unification of Different Water Type Taxonomies

One of the most intuitive water type taxonomies is the multivariate combination of in-
water constituents, such as phytoplankton, detritus, CDOM, and sediment. These in-water
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constituents can be further subdivided into diverse groups, according to the species, sizes,
shapes, builds, etc. [3]. However, accurate and synoptic in situ measurement of the in-water
constituents is difficult. Thus, from a remote sensing perspective, IOPs and AOPs can
be regarded as the indirect indicators of water properties. The absorption and scattering
(backscattering) are the most important IOPs, and they are dependent on the in-water
constituents. Taking the radiative transfer model as a bridge, different kinds of AOPs, such
as ocean color, radiances, and reflectances can be expressed as the functions of IOPs, and
vice versa [59]. Likewise, from in situ or remote sensing observations, in-water constituents
can be inversely modeled by AOPs [60]. In general, the interrelationships between AOPs,
IOPs, and in-water constituents are explicit. To date, many commonly used water type
taxonomies are based on AOPs, IOPs, or in-water constituents, such as the fuzzy logic
classification of AOPs spectra, the Forel–Ule Scale, the absorption ternary plot, and the
Chla-based TSI. However, the interrelationships between these water classification systems
are still ambiguous. To the best of our knowledge, there is no consensus on a universal fuzzy
logic AOP-based OWT scheme, and this may hinder the further comparison and integration
of different kinds of water type taxonomies. Though different water classification systems
have their own characteristics and application scopes, the compatibility of these water type
taxonomies is helpful for their inter-comparison and mutual-conversion.

In addition to the Chla-based TSI and the individual absorption proportions, the U-
OWT showed high coordination with the Forel–Ule Scale. As the Forel–Ule Scale is known
for its applicability to global ocean and inland waters, thus, the U-OWT was indirectly
proven to have the potential to be applied globally. In essence, this indicated that the
core components of the U-OWT fuzzy logic classification scheme—OWT class mean nRrs
vectors and covariance matrixes, were well suitable. At the same time, the U-OWT also
showed its difference from and superiority to the Forel–Ule Scale: the FU scale mainly
relies on the visible wavelength; thus, it cannot distinguish the spectral characteristics
on near-infrared bands, where optically complex waters have non-negligible signals [60].
However, the eutrophic water classes (especially OWT13-15) of the U-OWT can distinguish
those optically complex waters. Meanwhile, the fuzzy logic OWT scheme is a bridge and
intermediary with many application fields (see Section 4.3); thus, it is expected the U-OWT
will have a wider applicative perspective.

4.3. Future Prospects of the U-OWT

Broader applications of the U-OWT can be explored based on the direct U-OWT calcu-
lation indicators—OWT membership, OWT normalized membership, total membership,
and dominant OWT. One obstacle to the promotion of the fuzzy logic OWT method is
that there are few ready-made tools; thus, the authors of this study developed a freely dis-
tributed U-OWT calculation tool, and all the above direct OWT indicators can be calculated
by the readers. Some indirect OWT parameters derived from the direct OWT indicators are
also valuable, such as the Shannon index of the normalized membership.

The fuzzy logic OWT framework was initially introduced by Moore et al. [8], and
it has been widely used in bio-optical algorithms blending, such as Chla [11,15,16,22,30]
and TSS [28]. In optically complex waters, it is difficult to inverse in-water constituents
over entire concentration ranges, and it may be more realistic to use a series of branching
algorithms to deal with this problem, rather than a single, all-purpose algorithm [60]. The
fuzzy logic OWT schemes can seamlessly integrate such a series of branching inversion al-
gorithms of different water classes, the membership-weighted blending retrievals from the
class-specific algorithms showed smooth and continuous patterns [8], which were superior
to some conventional means. In the field of IOPs inversion, the spectral slope values of
the absorption or backscattering spectra were usually regarded as a constant for all water
states. However, the spectral slope of IOPs are related to different water types [31]; thus, the
U-OWT scheme may play an active role in the IOPs inversion. In addition, the OWT total
membership can be used in the uncertainty assessment of in situ spectra or remote sensing
images [6,18,22]. This study also showed that the U-OWT was highly coordinated and com-
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patible with the TSI and Forel–Ule Scale, therefore, the dominant OWT of the U-OWT can
be regarded as an indicator of water quality assessment [20,23,25,28,29]. What is more, the
OWT schemes were helpful in the biogeochemical province partition of the oceans [61–63],
the marine mesoscale features (water mass, eddy, plume, etc.) extraction [13,23,28], and
the ocean biological diversity analysis [14,20]. All the areas where previous OWT schemes
have been applied are worth applying the U-OWT, and more application scenarios are also
expected in the future.

5. Conclusions

In this study, we conducted an unsupervised classification of the PACE synthetic
hyperspectral data set, then obtained a fuzzy logic optical water type scheme (abbreviate
as the U-OWT). The U-OWT divided the oceanic and coastal waters into 15 classes, from
OWT1 to OWT15. The low-numbered classes represented clear oligotrophic water types,
and the high-numbered classes represented turbid eutrophic water types. Specifically, the
OWT13/14/15 classes were sensitive to the over-turbid waters with high near-infrared
reflectance signals. Compared to OWT schemes from previous studies, the U-OWT was
not affected by the frequency of clustering spectral samples, thus, it could distinguish
more mesotrophic and eutrophic state water types. The U-OWT classified water bodies
according to the spectral shapes; thus, it could resist a certain degree of disturbance from
input Rrs values.

The U-OWT was tailored for several commonly used multispectral satellite sensors,
including SeaWiFS, MERIS, MODIS, OLI, VIIRS, MSI, and OLCI. The reliability analysis
showed that the performance of U-OWT were consistent between different satellite sensors.
If necessary, the U-OWT can also be extended to more multispectral ocean color instruments.

The relationships of the U-OWT with other water classification taxonomies, including
Chla-based TSI, multivariate absorption combinations, and the Forel–Ule Scale, were also
analyzed. The results showed that the U-OWT was well compatible with other water
type taxonomies: OWT1-4 of the U-OWT represented oligotrophic state waters, OWT5-6
were transitional between oligotrophic and mesotrophic states, OWT7-8 were mesotrophic
state waters, OWT9-10 were transitional between mesotrophic and eutrophic waters, and
OWT11-15 were eutrophic state waters; OWT1-15 had the exponentially increasing trend
of the absorption coefficients pairs, and there was a significant magnitude gap between
OWT13-15 and OWT1-12, which may illustrate the distinctive properties of the highly
turbid OWT13-15 classes; one U-OWT class roughly corresponded to one FUI class in the
oligotrophic water types, one U-OWT class corresponded to several FUI classes in the
mesotrophic water types, and one FUI class corresponded to several U-OWT classes in the
eutrophic water types. Our analysis demonstrated that the U-OWT had the potential to be
universally applied to global ocean waters, and it was also helpful for the inter-comparison
and unification of the U-OWT and other water classification taxonomies.

In addition to the class-specific algorithm blending, more application scenarios of
the U-OWT deserve to be mined in the future. Although the U-OWT was suitable for
ocean water classification, its applicability to inland waters needs to be further explored.
Additionally, an IDL®-based U-OWT calculation tool was made freely available, so the
relative indicators of the U-OWT can be calculated by the readers.

Supplementary Materials: The following are available online at http://www.mdpi.com/s1, Figure S1:
Mean vectors of the AOP-based OWT schemes from previous studies, Figure S2: True color compos-
ites of two concurrent (23 October 2017) Landsat-8 OLI and Sentinel-3A OLCI images, Figure S3: The
U-OWT sensitivity analysis under OLI context, Figure S4: The U-OWT sensitivity analysis under
MODIS-A context, Figure S5: The relationships between the U-OWT and Chla concentrations, and
Figure S6: Locations of NOMAD and CCRR in situ measurements and their dominant OWT. A
standalone U-OWT calculation tool designed for different multispectral sensors’ Rrs spectrum file
(with text format) and image file (with tiff format) is freely distributed as a supplementary material.
This tool can calculate dominant OWT, OWT membership, normalized membership, and total mem-
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bership on each multispectral Rrs spectrum or pixel. The IDL® version 8.5 was used in the U-OWT
calculation tool development.r
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Appendix A

Table A1. Linear coefficients to calculate the chromaticity values based on OLCI bands [36].

ith Band 1 2 3 4 5 6 7 8 9 10 11

λi(nm) 400 413 443 490 510 560 620 665 673.5 681.25 708.75
xi 0.154 2.957 10.861 3.744 3.750 34.687 41.853 7.323 0.591 0.549 0.189
yi 0.004 0.112 1.711 5.672 23.263 48.791 23.949 2.836 0.216 0.199 0.068
zi 0.731 14.354 58.356 28.227 4.022 0.618 0.026 0.000 0.000 0.000 0.000

Table A2. The FUI look-up table under the second hue definition [57].

FUI a FUI a FUI a

1 40.467 8 170.463 15 222.115
2 45.196 9 181.498 16 227.629
3 52.852 10 191.835 17 232.830
4 67.169 11 199.038 18 237.352
5 91.298 12 205.062 19 241.759
6 122.585 13 210.577 20 245.551
7 151.479 14 216.557 21 248.953

38



Remote Sens. 2021, 13, 4018

References

1. Werdell, P.J.; Behrenfeld, M.J.; Bontempi, P.S.; Boss, E.; Cairns, B.; Davis, G.T.; Franz, B.A.; Gliese, U.B.; Gorman, E.T.; Hasekamp,
O.; et al. The Plankton, Aerosol, Cloud, Ocean Ecosystem Mission: Status, Science, Advances. Bull. Am. Meteorol. Soc. 2019, 100,
1775–1794. [CrossRef]

2. IOCC. Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology; Reports of the International Ocean-Colour Coordinating
Group, No. 7; Platt, T., Hoepffner, N., Stuart, V., Brown, C., Eds.; IOCCG: Dartmouth, NS, Canada, 2008.

3. Mobley, C.; Boss, E.; Roesler, C. Ocean Optics Web Book. Available online: https://www.oceanopticsbook.info/ (accessed on
11 August 2021).

4. Uudeberg, K.; Aavaste, A.; Koks, K.L.; Ansper, A.; Uusoue, M.; Kangro, K.; Ansko, I.; Ligi, M.; Toming, K.; Reinart, A. Optical
water type guided approach to estimate optical water quality parameters. Remote Sens. 2020, 12, 391. [CrossRef]

5. Mobley, C.D.; Stramski, D.; Bissett, W.P.; Boss, E. Optical Modeling of Ocean Waters: Is the Case 1–Case 2 Classification Still
Useful? Oceanography 2004, 17, 60–67. [CrossRef]

6. Jerlov, N.G. Optical Oceanography; Elsevier Oceanography Series 5; Elsevier: Amsterdam, The Netherlands, 1968.
7. Jerlov, N.G. Marine Optics; Elsevier Oceanography Series 14; Elsevier: Amsterdam, The Netherlands, 1976.
8. Moore, T.S.; Campbell, J.W.; Feng, H. A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms.

IEEE Trans. Geosci. Remote Sens. 2001, 39, 1764–1776. [CrossRef]
9. Martin Traykovski, L.V. Feature-based classification of optical water types in the Northwest Atlantic based on satellite ocean

color data. J. Geophys. Res. 2003, 108. [CrossRef]
10. Moore, T.S.; Campbell, J.W.; Dowell, M.D. A class-based approach to characterizing and mapping the uncertainty of the MODIS

ocean chlorophyll product. Remote Sens. Environ. 2009, 113, 2424–2430. [CrossRef]
11. Vantrepotte, V.; Loisel, H.; Dessailly, D.; Mériaux, X. Optical classification of contrasted coastal waters. Remote Sens. Environ. 2012,

123, 306–323. [CrossRef]
12. Shi, K.; Li, Y.; Li, L.; Lu, H.; Song, K.; Liu, Z.; Xu, Y.; Li, Z. Remote chlorophyll-a estimates for inland waters based on a

cluster-based classification. Sci. Total Environ. 2013, 444, 1–15. [CrossRef]
13. Moore, T.S.; Dowell, M.D.; Bradt, S.; Verdu, A.R. An optical water type framework for selecting and blending retrievals from

bio-optical algorithms in lakes and coastal waters. Remote Sens. Environ. 2014, 143, 97–111. [CrossRef]
14. Mélin, F.; Vantrepotte, V. How optically diverse is the coastal ocean? Remote Sens. Environ. 2015, 160, 235–251. [CrossRef]
15. Wei, J.; Lee, Z.; Shang, S. A system to measure the data quality of spectral remote sensing reflectance of aquatic environments. J.

Geophys. Res. Ocean. 2016. [CrossRef]
16. Ye, H.; Li, J.; Li, T.; Shen, Q.; Zhu, J.; Wang, X.; Zhang, F.; Zhang, J.; Zhang, B. Spectral Classification of the Yellow Sea and

Implications for Coastal Ocean Color Remote Sensing. Remote Sens. 2016, 8, 321. [CrossRef]
17. Eleveld, M.; Ruescas, A.; Hommersom, A.; Moore, T.; Peters, S.; Brockmann, C. An Optical Classification Tool for Global Lake

Waters. Remote Sens. 2017, 9, 420. [CrossRef]
18. Hieronymi, M.; Müller, D.; Doerffer, R. The OLCI Neural Network Swarm (ONNS): A Bio-Geo-Optical Algorithm for Open

Ocean and Coastal Waters. Front. Mar. Sci. 2017, 4. [CrossRef]
19. Jackson, T.; Sathyendranath, S.; Mélin, F. An improved optical classification scheme for the Ocean Colour Essential Climate

Variable and its applications. Remote Sens. Environ. 2017, 203, 152–161. [CrossRef]
20. Monolisha, S.; Platt, T.; Sathyendranath, S.; Jayasankar, J.; George, G.; Jackson, T. Optical Classification of the Coastal Waters of

the Northern Indian Ocean. Front. Mar. Sci. 2018, 5. [CrossRef]
21. Spyrakos, E.; O’Donnell, R.; Hunter, P.D.; Miller, C.; Scott, M.; Simis, S.G.H.; Neil, C.; Barbosa, C.C.F.; Binding, C.E.; Bradt, S.; et al.

Optical types of inland and coastal waters. Limnol. Oceanogr. 2018, 63, 846–870. [CrossRef]
22. Hieronymi, M. Spectral band adaptation of ocean color sensors for applicability of the multi-water biogeo-optical algorithm

ONNS. Opt. Express 2019, 27, A707–A724. [CrossRef]
23. Pitarch, J.; van der Woerd, H.J.; Brewin, R.J.W.; Zielinski, O. Optical properties of Forel-Ule water types deduced from 15 years of

global satellite ocean color observations. Remote Sens. Environ. 2019, 231, 111249. [CrossRef]
24. Soomets; Uudeberg; Jakovels; Zagars; Reinart; Brauns; Kutser. Comparison of Lake Optical Water Types Derived from Sentinel-2

and Sentinel-3. Remote Sens. 2019, 11, 2883. [CrossRef]
25. Uudeberg, K.; Ansko, I.; Põru, G.; Ansper, A.; Reinart, A. Using Optical Water Types to Monitor Changes in Optically Complex

Inland and Coastal Waters. Remote Sens. 2019, 11, 2297. [CrossRef]
26. Xue, K.; Ma, R.; Wang, D.; Shen, M. Optical Classification of the Remote Sensing Reflectance and Its Application in Deriving the

Specific Phytoplankton Absorption in Optically Complex Lakes. Remote Sens. 2019, 11, 184. [CrossRef]
27. Zhang, F.; Li, J.; Shen, Q.; Zhang, B.; Tian, L.; Ye, H.; Wang, S.; Lu, Z. A soft-classification-based chlorophyll-a estimation method

using MERIS data in the highly turbid and eutrophic Taihu Lake. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 138–149. [CrossRef]
28. Balasubramanian, S.V.; Pahlevan, N.; Smith, B.; Binding, C.; Schalles, J.; Loisel, H.; Gurlin, D.; Greb, S.; Alikas, K.; Randla, M.;

et al. Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters. Remote Sens. Environ.
2020, 246, 111768. [CrossRef]

29. da Silva, E.F.F.; Novo, E.M.L.d.M.; Lobo, F.d.L.; Barbosa, C.C.F.; Noernberg, M.A.; Rotta, L.H.d.S.; Cairo, C.T.; Maciel, D.A.; Flores
Júnior, R. Optical water types found in Brazilian waters. Limnology 2020, 1–12. [CrossRef]

39



Remote Sens. 2021, 13, 4018

30. Vandermeulen, R.A.; Mannino, A.; Craig, S.E.; Werdell, P.J. 150 shades of green: Using the full spectrum of remote sensing
reflectance to elucidate color shifts in the ocean. Remote Sens. Environ. 2020, 247, 111900. [CrossRef]

31. IOCCG. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications; Reports of the International
Ocean-Colour Coordinating Group, No. 5; Lee, Z.P., Ed.; IOCCG: Dartmouth, NS, Canada, 2006.

32. Arnone, R.; Wood, M.; Gould, R. The Evolution of Optical Water Mass Classification. Oceanography 2004, 17, 14–15. [CrossRef]
33. Claustre, H.; Maritorena, S. The Many Shades of Ocean Blue. Science 2003, 302, 1514–1515. [CrossRef] [PubMed]
34. Carlson, R.E. A tophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [CrossRef]
35. Novoa, S.; Wernand, M.R.; Woerd, H.J.v.d. The Forel-Ule scale revisited spectrally_preparation, protocol, transmission messure-

ments and chromaticity. J. Eur. Opt. Soc. Rapic Publ. 2013, 8, 1–8. [CrossRef]
36. Woerd, H.J.; Wernand, M.R. True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS,

MODIS, MERIS and OLCI. Sensors 2015, 15, 25663–25680. [CrossRef] [PubMed]
37. Wang, S.; Li, J.; Zhang, B.; Spyrakos, E.; Tyler, A.N.; Shen, Q.; Zhang, F.; Kuster, T.; Lehmann, M.K.; Wu, Y.; et al. Trophic state

assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sens. Environ. 2018, 217, 444–460. [CrossRef]
38. Craig, S.E.; Lee, Z.; Du, K. Top of Atmosphere, Hyperspectral Synthetic Dataset for PACE (Phytoplankton, Aerosol, and ocean

Ecosystem) Ocean Color Algorithm Development. Available online: https://doi.org/10.1594/PANGAEA.915747 (accessed on
20 October 2020).

39. Wang, S.; Lee, Z.; Shang, S.; Li, J.; Zhang, B.; Lin, G. Deriving inherent optical properties from classical water color measurements:
Forel-Ule index and Secchi disk depth. Opt. Express 2019, 27, 7642–7655. [CrossRef] [PubMed]

40. Werdell, P.J.; Bailey, S.W. An improved in situ data set for bio-optical algorithm development and ocean color satellite validation.
Remote Sens. Environ. 2005, 98, 122–140. [CrossRef]

41. Nechad, B.; Ruddick, K.; Schroeder, T.; Blondeau-Patissier, D.; Cherukuru, N.; Brando, V.E.; Dekker, A.G.; Clementson, L.; Banks,
A.; Maritorena, S.; et al. CoastColour Round Robin datasets, Version 1. Available online: https://doi.org/10.1594/PANGAEA.84
1950 (accessed on 10 February 2021).

42. Wang, S.; Lee, Z.; Shang, S.; Li, J.; Zhang, B.; Lin, G. Data File 1.csv. Available online: https://doi.org/10.6084/m9.figshare.7355
903.v1 (accessed on 15 February 2021).

43. Wang, S.; Lee, Z.; Shang, S.; Li, J.; Zhang, B.; Lin, G. Data File 2.csv. Available online: https://doi.org/10.6084/m9.figshare.7355
906.v1 (accessed on 15 February 2021).

44. Wang, J.; Tong, Y.; Feng, L.; Zhao, D.; Zheng, C.; Tang, J. Satellite-Observed Decreases in Water Turbidity in the Pearl River
Estuary: Potential Linkage With Sea-Level Rise. J. Geophys. Res. Ocean. 2021, 126. [CrossRef]

45. Sathyendranath, S.; Jackson, T.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Clements, O.; Cipollini, P.; Danne, O.; Dingle,
J.; et al. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Global chlorophyll-a data products gridded on a
sinusoidal projection, Version 4.2. Available online: https://catalogue.ceda.ac.uk/uuid/99348189bd33459cbd597a58c30d8d10
(accessed on 22 December 2020).

46. Sathyendranath, S.; Brewin, R.J.W.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Cipollini, P.; Couto, A.B.; Dingle, J.;
Doerffer, R.; et al. An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change
Initiative (OC-CCI). Sensors 2019, 19, 4285. [CrossRef]

47. Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B 2001,
63, 411–423. [CrossRef]

48. Hornik, K.; Feinerer, I.; Kober, M.; Buchta, C. Spherical k-means clustering. J. Stat. Softw. 2012, 50, 1–22. [CrossRef]
49. Zuhlke, M.; Fomferra, N.; Brockmann, C.; Peters, M.; Veci, L.; Malik, J.; Regner, P. SNAP (Sentinel Application Platform) and the

ESA Sentinel 3 Toolbox. Sentinel-3 for Science Workshop 2015, 734, 21.
50. Solonenko, M.G.; Mobley, C.D. Inherent optical properties of Jerlov water types. Appl. Opt. 2015, 54, 5392–5401. [CrossRef]

[PubMed]
51. Gordon, H.R.; Brown, O.B.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic radiance model of

ocean color. J. Geophys. Res. 1988, 93, 10909. [CrossRef]
52. Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm

for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [CrossRef] [PubMed]
53. Morio, J. Global and local sensitivity analysis methods for a physical system. Eur. J. Phys. 2011, 32, 1577–1583. [CrossRef]
54. Prieur, L.; Sathyendranath, S. An optical classification of coastal and oceanic waters based on the specific spectral absorption of

phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnol. Oceanogr 1981, 26, 671–689. [CrossRef]
55. Babin, M. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in

coastal waters around Europe. J. Geophys. Res. 2003, 108. [CrossRef]
56. Wang, S.; Li, J.; Shen, Q.; Zhang, B.; Zhang, F.; Lu, Z. MODIS-Based Radiometric Color Extraction and Classification of Inland

Water With the Forel-Ule Scale: A Case Study of Lake Taihu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 907–918.
[CrossRef]

57. Wang, S. Large-scale and Long-term Water Quality Remote Sensing Monitoring over Lakes Based on Water Color Index.
Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2018.

58. Gower, J.F.R.; Doerffer, R.; Borstad, G.A. Interpretation of the 685nm peak in water-leaving radiance spectra in terms of
fluorescence, absorption and scattering, and its observation by MERIS. Int. J. Remote Sens. 1999, 20, 1771–1786. [CrossRef]

40



Remote Sens. 2021, 13, 4018

59. Fan, Y.; Li, W.; Calzado, V.S.; Trees, C.; Stamnes, S.; Fournier, G.; McKee, D.; Stamnes, K. Inferring inherent optical properties and
water constituent profiles from apparent optical properties. Opt. Express 2015, 23, A987–A1009. [CrossRef] [PubMed]

60. IOCCG. Remote Sensing of Ocean Colour in Coastal, and Other Optical-Complex, Waters; Reports of the International Ocean-Colour
Coordinating Group, No. 3; Sathyendranath, S., Ed.; IOCCG: Dartmouth, NS, Canada, 2000.

61. Longhurst, A.; Sathyendranath, S.; Platt, T.; Caverhill, C. An estimate of global primary production in the ocean from satellite
radiometer data. J. Plankton Res. 1995, 17, 1245–1271. [CrossRef]

62. IOCCG. Partition of the Ocean into Ecological Provinces: Role of Ocean-Colour Radiometry; Reports of the International Ocean-Colour
Coordinating Group; No. 9; Dowell, M., Platt, T., Eds.; IOCCG: Dartmouth, NS, Canada, 2009.

63. Devred, E.; Sathyendranath, S.; Platt, T. Delineation of ecological provinces using ocean colour radiometry. Mar. Ecol. Prog. Ser.
2007, 346, 1–13. [CrossRef]

41





Citation: Amri, E.; Dardouillet, P.;

Benoit, A.; Courteille, H.; Bolon, P.;

Dubucq, D.; Credoz, A. Offshore Oil

Slick Detection: From

Photo-Interpreter to Explainable

Multi-Modal Deep Learning Models

Using SAR Images and Contextual

Data. Remote Sens. 2022, 14, 3565.

https://doi.org/10.3390/rs14153565

Academic Editor: Merv Fingas

Received: 12 June 2022

Accepted: 19 July 2022

Published: 25 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Offshore Oil Slick Detection: From Photo-Interpreter to
Explainable Multi-Modal Deep Learning Models Using SAR
Images and Contextual Data

Emna Amri 1,2,*, Pierre Dardouillet 1, Alexandre Benoit 1, Hermann Courteille 1, Philippe Bolon 1,

Dominique Dubucq 2 and Anthony Credoz 2

1 LISTIC Laboratory, Polytech Annecy-Chambery, University of Savoie Mont Blanc,
F-74944 Annecy le Vieux, France; pierre.dardouillet@univ-smb.fr (P.D.); alexandre.benoit@univ-smb.fr (A.B.);
hermann.courteille@univ-smb.fr (H.C.); philippe.bolon@univ-smb.fr (P.B.)

2 TotalEnergies S.E., Avenue Larribau, F-64018 Pau, France; dominique.dubucq@totalenergies.com (D.D.);
anthony.credoz@totalenergies.com (A.C.)

* Correspondence: emna.amri@univ-smb.fr; Tel.: +33-0751-394-533

Abstract: Ocean surface monitoring, emphasizing oil slick detection, has become essential due to its
importance for oil exploration and ecosystem risk prevention. Automation is now mandatory since
the manual annotation process of oil by photo-interpreters is time-consuming and cannot process
the data collected continuously by the available spaceborne sensors. Studies on automatic detection
methods mainly focus on Synthetic Aperture Radar (SAR) data exclusively to detect anthropogenic
(spills) or natural (seeps) oil slicks, all using limited datasets. The main goal is to maximize the
detection of oil slicks of both natures while being robust to other phenomena that generate false
alarms, called “lookalikes”. To this end, this paper presents the automation of offshore oil slick
detection on an extensive database of real and recent oil slick monitoring scenarios, including both
types of slicks. It relies on slick annotations performed by expert photo-interpreters on Sentinel-1 SAR
data over four years and three areas worldwide. In addition, contextual data such as wind estimates
and infrastructure positions are included in the database as they are relevant data for oil detection.
The contributions of this paper are: (i) A comparative study of deep learning approaches using SAR
data. A semantic and instance segmentation analysis via FC-DenseNet and Mask R-CNN, respectively.
(ii) A proposal for Fuse-FC-DenseNet, an extension of FC-DenseNet that fuses heterogeneous SAR
and wind speed data for enhanced oil slick segmentation. (iii) An improved set of evaluation
metrics dedicated to the task that considers contextual information. (iv) A visual explanation of
deep learning predictions based on the SHapley Additive exPlanation (SHAP) method adapted to
semantic segmentation. The proposed approach yields a detection performance of up to 94% of
good detection with a false alarm reduction ranging from 14% to 34% compared to mono-modal
models. These results provide new solutions to improve the detection of natural and anthropogenic
oil slicks by providing tools that allow photo-interpreters to work more efficiently on a wide range of
marine surfaces to be monitored worldwide. Such a tool will accelerate the oil slick detection task
to keep up with the continuous sensor acquisition. This upstream work will allow us to study its
possible integration into an industrial production pipeline. In addition, a prediction explanation is
proposed, which can be integrated as a step to identify the appropriate methodology for presenting
the predictions to the experts and understanding the obtained predictions and their sensitivity to
contextual information. Thus it helps them to optimize their way of working.

Keywords: oil slicks; data fusion; offshore detection; SAR images; meteorological data; deep learning;
AI explanation
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1. Introduction

Throughout the era of offshore data, the detection of oil slicks originating from an-
thropogenic (spills) or natural (seeps) sources has always been a long-standing challenge.
Offshore oil slick monitoring is a relevant topic for a broad audience, including scien-
tists, environmentalists, and local authorities. The devastating effects of marine pollution,
including the deterioration of aquatic ecosystems, make oil slick detection a mandatory
task [1].

Previous studies [2,3] have highlighted the usefulness of Remote Sensing (RS) technol-
ogy for offshore monitoring. In particular, Synthetic Aperture Radar (SAR) technology has
been identified as an effective technology for detecting marine pollution [4,5]. The main
advantage of SAR technology is that it is independent of sunlight, weather, and clouds and
allows for global coverage. These results provide new solutions to improve the detection
of natural and anthropogenic oil slicks by providing tools that allow photo-interpreters
to work more efficiently on a wide range of marine surfaces to be monitored worldwide.
Such a tool will accelerate the oil slick detection task to keep up with the continuous sensor
acquisition. This upstream work will allow us to study its possible integration into an
industrial production pipeline. Nevertheless, slick detection has remained a challenge
due to the high variability of their nature, shape, and extent. Oil slicks have no typical
characteristics and vary according to the environment and surrounding conditions, which
makes their detection very complex. As oil slicks are present on the sea surface, their shape
depends on weather conditions and their source (e.g., an elongated dark patch if the origin
is a moving ship or a random pattern if it comes from a platform or natural seepage). In ad-
dition, the acquisition time of the SAR image containing the oil is delayed relative to the
time of its appearance. Thus, the shape of the oil slick then has time to evolve significantly
with the help of weather conditions that influence the physio-chemical properties of the oil
slick (e.g., fragmentation of the slick into droplets, dissolution in seawater, etc.). Another
challenge is the potential confusion with similar patterns such as algae, low wind areas,
and up-welling [2].

Indeed, multiple studies such as Brekke et al. [4], Alpers et al. [2], Solberg et al. [6], and
Espedal [7] point out that improving slick detection using SAR requires the inclusion of
more ancillary contextual information such as meteorological information. Finally, from an
application point of view, an additional challenge relates to the fast processing of large
quantities of data to assist human experts in real-time monitoring. Such an aim is actually
no more feasible by sole human experts when considering the high spatial resolution and
high revisit frequency of the sensors required for the task.

The state-of-the-art on this topic involves manual inspection, pattern detection, and
thresholding methods based on various feature categories [8,9]. However, the latter exhibit
poor generalization behavior and lack robustness against false detection due to lookalikes.

Neural networks and, more particularly, deep neural networks (DNNs) [10] have
recently shown an increasing interest in improving over classical approaches both in terms
of detection accuracy and generalization capability [11]. However, those works rely on the
sole use of SAR images.

In this paper, we study offshore oil slick detection using deep neural network ap-
proaches in a supervised manner, taking full advantage of massive annotated datasets
of real recent slicks monitoring scenarios manually annotated by human experts (photo-
interpreter). The objective is to provide new solutions to improve the detection of natural
and anthropogenic oil slicks by providing tools that allow photo-interpreters to work more
efficiently on a wide range of marine surfaces to be monitored worldwide. This tool will
speed up their detection task to keep up with continuous sensor acquisition. As this is a
difficult task with many challenges, including high target variability and the potential for
false alarms, providing rapid predictions should be valuable.

To this end, we consider multi-modal deep learning approaches, allowing heteroge-
neous data fusion taking into account SAR images and wind information.
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To the best of our knowledge, this is the first study combining meteorological informa-
tion with SAR data and evaluating the impact of wind speed on slick detection on a broad
collection of data spanning different regions in the world with a wide diversity of real slick
cases. This upstream work will allow us to study its possible integration into an industrial
production pipeline.

This paper presents the following contributions: first, a slick detection performance
analysis of structurally different deep neural networks is conducted. Second, a new deep
neural network model structure considers the fusion of SAR information with wind speed
information. Third, a refined performance analysis method is proposed, taking into account
contextual factors such as wind speed and human infrastructure position. Finally, model
prediction explanations are proposed. It relies on adapting the SHAP [12] method to the
semantic segmentation problem and allows the input features contributing to the local
decision to be highlighted.

1.1. Offshore Oil Slick Detection and the Related Literature
1.1.1. Oil Slick Observation on the Sea Surface

Oil slicks observed on the sea surface are commonly of two types: spills and seeps.
The causes of oil spills can be discharges of crude oil from tankers, offshore platforms,
ships, drilling rigs, and spills of refined petroleum products or used oil. On the other hand,
seeps are naturally occurring oil flows that escape from the ground through soil fractures
and sediments to the sea surface.

These differences in nature lead to variations in oil slick characteristics, such as vis-
cosity and thickness, resulting in different behaviors and increasing the variability of oil
slick observations.

The observation of offshore oil slicks is conducted mainly by RS, specifically by active
sensors such as SAR. SAR technology relies on ElectroMagnetic (EM) signals sensitive to
the sea surface roughness. The intensity of SAR images is related to the strength of the
backscattered radar signal. In more detail, the energy transmitted by the SAR sensor is
backscattered with characteristics that highlight the properties of the areas involved. In the
case of a calm sea, most of the transmitted energy is reflected away from the radar, resulting
in minimal backscatter to the sensor and a darker area on the resulting image. Conversely,
in the case of a rough surface due to wind, a more significant part of the EM energy is
backscattered from the surface [2] and thus yields a brighter area with speckle noise.

Further, if an oil slick appears, it dampens the waves on the sea surface, reducing
the surface roughness and the corresponding radar backscatter. This is due to the viscous
damping of short gravity/capillary waves (wavelengths of a few centimeters) by the oil
slick or oil/water mixture, whose viscosity is much higher than water [2]. As a result,
oil slicks appear on SAR images as dark patches compared to the surrounding clean sea,
as illustrated in Figure 1. Slick characteristics are widely variable, such as the contrast
value, which depends on the local sea state, the slick type, the image resolution, the SAR
frequency, and the incidence angle.

Besides the oil slicks on the sea surface, several phenomena referred to as lookalikes
can generate similar radar signatures (low backscatter areas) that can yield false alarms (FA).
This generally originates from algal blooms, sargassum, and upwelling [4]. More generally,
any patch that is darker than the surrounding area could be an oil slick. Illustrations of
spills, seeps, and lookalikes are shown in Figure 2.
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Figure 1. Illustration of SAR backscatter with different sea roughness. The wind conditions at the
time of the data collection constrain the backscattered energy properties [13]. (A) represent strong
winds (winds > 10 m/s), (B) represent ideal winds (7 m/s> Winds > 3 m/s) and (C) represent weak
winds (winds < 3 m/s).

Figure 2. Examples of oil slicks marked in yellow polygons (a–i) and lookalike phenomena (j–l)
extracted from Sentinel-1 data.

To summarize, the main factors involved in oil slick detection from SAR images are
related to contextual information such as wind conditions, sensor characteristics, and the
presence of lookalikes.

1.1.2. Contextual Data: Impact on Oil Slick Detection

In oil slick detection, numerous studies have emphasized the importance of contextual
information as the main factor impacting the monitoring of offshore oil slicks using SAR im-
agery. The study proposed by Brekke et al. [4] highlights the interest in weather conditions,
distance from ships, and infrastructure position (platform, pipeline, etc.). Meteorological
weather conditions are emphasized, namely wind speed, which affects the oil slick profile
(oxidation, biodegradation, dispersion, sedimentation, etc.) and changes its characteristics
(size, shape, etc.) [14]. In addition, wind speed impacts the backscatter contrast between
the sea and slick areas. On the one hand, oil slicks tend to scatter gradually into smaller
parts at moderate wind speeds and disappear as wind speed increases. On the other hand,
local low wind speeds can generate areas of low backscatter and, therefore, lookalikes [15].
Observing the effect of wind on slick characterization reveals the apparent importance of
this information in the slick detection and characterization process.

Moreover, during oil slick manual detection by the photo-interpreters, the evaluation
can be adjusted by taking the instantaneous wind speed into account. According to
Fingas et al. [3], the wind speed range for oil detectability is (1.5 m/s, 6–10 m/s). Beyond
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this range, the oil signature will be further removed. The most accepted limits are 1.5
to 10 m/s. La et al. [16] and Brekke et al. [4] have further refined this range, a summary
of which is provided in Table 1. However, it may remain specific to small-scale, local
studies that do not permit generalization. As a general rule, these experiments report
the requirement for moderate wind speeds. This paper considers a trade-off between the
proposed wind speed ranges that seems relevant to our large-scale study.

Table 1. Range of wind speeds for oil slick detection according to the literature.

Wind Speed m/s Reference Year

1.5 to 6 [3] 2014
2 to 7 [16] 2018
2.09 to 8.33 [17] 2017
3 to 7–10 [4] 2005

Further, in the process of oil spill detection, the photo-interpreters are informed about
the positions of the infrastructure since pollution can originate from human activities.
The deballasting of the ship hold is easily recognizable thanks to the strong backscattering
point created by the ship at the end of the oil slick when the SAR image is captured.
The geometry of the oil slick is also generally straight along the ship’s path due to the speed
effect. Oil spills can also originate from underwater infrastructures and conduits (pipes)
designed to carry oil. For the situations mentioned above, ship and platform positions can
be spatially detected based on the diffraction points observed in the SAR images. This can
help distinguish anthropogenic oil from natural oil based on the distance of the slicks from
the infrastructure in the area [2].

1.1.3. Classical Methods for Oil Slick Detection

The state-of-the-art of offshore oil slick monitoring is extensive. A brief classification of
the main approaches is presented below based on the surveys proposed by Alpers et al. [2],
Brekke et al. [4], and Al-Ruzouq et al. [18].

Entirely Manual Inspection: Oil slick detection on SAR images is essentially manual.
Operators (photo-interpreters) are trained to analyze images to detect oil slicks versus
lookalikes and differentiate between natural and anthropogenic oil. The class assignment
(spill, seep, sea including lookalikes) is based on the following features: the contrast level
with the surroundings, the homogeneity of the surroundings, the wind speed, the oil
platforms, ships and natural slicks in the proximity, as well as the shape and edge of the
patch. This detection method is tedious, time-consuming, and costly regarding resources.

Conventional Approaches: This category of approaches focuses mainly on three steps:
the first is to detect the dark patterns, the second is to extract their features, and the
third is to classify them [3]. Conventional features can belong to several categories, such
as geometric, statistical, and polarimetric features [4,19,20]. Such approaches, however,
exhibit poor generalization behavior and lack robustness against lookalikes [18,21].

Semi-Automatic Approaches: Some processing stages of the conventional approaches,
such as dark pattern detection, can rely on machine learning. For instance, the integration of
Neural Networks improves the traditional process. Nevertheless, such a general approach
still has limited generalization behaviors and keeps high false alarm rates [2].

1.1.4. Deep Learning Methods for Oil Slick Detection

Various facts have directed the search for the automation of oil detection toward
end-to-end approaches driven by deep Convolutional Neural Networks (CNNs). Among
these is overcoming the shortcomings of conventional approaches reported by state-of-
the-art; lack of studies on both oil types, lack of relevant features to distinguish oil slicks
from lookalike phenomena and the limited generalization capability. The remarkable
results of CNN-based approaches have led to dramatic advances in the state-of-the-art for
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fundamental computer vision problems such as object detection, object localization, and
semantic and instance segmentation [22–24]. Several studies have compared deep learning
techniques to classical classifiers and indicated better performance with deep learning
techniques [20,25]. The studies report the ability of CNNs to perform both feature extraction
and classification, allowing the exploration of relevant features for better discrimination
between the oil slick and background patterns. The ability of the CNN network to leverage
the extensive existing data can ensure a certain level of generalization capability [18].

Table 2 reports examples of recent NN models applied to oil slick detection and seg-
mentation from Sentinel-1 images, indicating the type of oil spill targeted by the study along
with the number and size of the used images. Various models of NNs are proposed; some
perform semantic segmentation, such as Unet [26], and others perform object detection and
instance segmentation, such as Mask R-CNN. It should be noted that few annotated SAR
data are available, which limits supervised learning of large models and explains the use of
Transfer Learning (TL) strategies, i.e., representations of data preliminary learned in other
tasks and domains.

Table 2. Commonly used CNN models for oil slick detection.

Architecture Crop Number Image Size Spill & Seep TL

OFCN/UNet [26] 713 160 × 160 spill -
Fully CNNs [27] - 128 × 128, 2048 × 2048 spill -
Mask R-CNN [28,29] 9302 512 × 512 spill and seep �
DeepLab [30] 677 1252 × 609 spill -
DeepLabv3+ [11] 1002 321 × 321 spill �
AutoEncoders [25] - 256 × 256, 384 × 384 spill -
GANs [31] - 256 × 256 spill -

2. Materials and Methods

2.1. Oil Slicks Segmentation Methods

In this study, we consider both transfer learning and full model learning (learning
from scratch). For the first method, the model is pre-trained on a different dataset and task
and is next transferred and fine-tuned for oil slick detection on dedicated datasets. As for
the second method, we focus on model optimization exclusively performed on the data of
interest without any pre-training.

Since the goal is to find the precise location of oil slicks in SAR images, standard object
detection methods are not appropriate because they commonly provide object bounding
boxes that may be too large compared to the thin oil slicks to be detected. In this case,
the segmentation of oil slick instances is more relevant. Such a strategy opens wide doors to
a variety of approaches. In this work, a comparison is made between a convolutional neural
network, for instance, segmentation: Mask Region-Based Convolutional Neural Networks
(Mask R-CNN [32]) with object segmentation capability and a semantic segmentation
neural network Fully Convolutional DenseNet (FC-DenseNet [33]). Instance and semantic
segmentation methods are comparable in this case study since we do not face occlusion
issues of oil slicks on the sea surface. Consequently, applying connected components to the
semantic segmentation predictions yields instance segmentation.

As for our experimental strategy, we first compare the performance of models using
only SAR data in order to identify the best parameter configuration (number of layers,
learning rate, etc.). Then, we investigate heterogeneous data fusion strategies to fuse wind
speed information with SAR information.

2.1.1. Instance Segmentation: Mask R-CNN

Mask R-CNN is a multi-task model that generates bounding boxes of the target object
regions, as well as masks for object classification and segmentation. The first step is to
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extract features r from the input x using the parameter set θb, such that fb(x, θb) = r. Then,
the features are passed to several heads fti (r, θti ) = yti , with ti referring to the i − th task.

The model is shown in Figure 3. Nevertheless, this complex deep architecture must be
trained by transfer learning when targets are scarce. As described in a previous study [28],
the parameters of a pre-trained model are transferred from the COCO dataset [34]. Subse-
quently, we gradually adjust the transferred weights on our data, starting with the heads
and moving towards the backbone. This whole process is achieved while reducing the
learning rate as described in the following.

Figure 3. Mask R-CNN architecture. RPN stands for region Proposal Network, ROI stands for Region
Of Interest.

2.1.2. Model Parameters Configuration

The implementation from Abdulla [35] was adopted to accommodate the Mask R-
CNN model. Several experiments were performed to select the parameters and adapt the
problem properly; the main ones are described below.

Backbone selection: The backbone network could be any CNN designed for image
classification, such as ResNet-50 or ResNet-101.

Loss selection: Since oil slicks are scarce and diverse, one needs to down-weight easy
examples and focus the training on hard ones. Thus, we use the focal loss [36] instead of
the cross-entropy (CE) for mask loss computation. This loss is also more adapted than CE
for highly imbalanced classes. It is formulated as follows: L(pt) = −αt(1 − pt)λlog(pt)
where pt is the model’s slick detection probability. The role of the αt and λ parameters is to
down-weight easy examples (error loss) and thus focus training on hard negatives [36].

Learning strategies: as reported in [28], relevant optimization of Mask R-CNN can be
achieved with multiple training phases. This decomposition can give us training flexibility.
The primary approach is to train all the networks in a single stage. A second approach
consists of two steps: training the model heads first while using transferred weights for the
rest of the network, then fine-tuning all networks. Finally, the three-step learning strategy
trains the model heads over a few epochs first while also using transferred weights. Then,
all but the first four ResNet layers are trained over additional epochs. Finally, the entire
network is fine-tuned while reducing the learning rate. For this work, the approach used is
to train the model based on the three-step learning strategy.

2.1.3. Semantic Segmentation: FC-DenseNet

We propose a refined version of the FC-DenseNet model [33], a well-known extension
of densely connected convolutional networks (DenseNets) [37]. The DenseNets architecture
has been proposed to maximize feature reuse and limit the model depth and computa-
tional costs compared to the classical U-net structure [38]. The FC-DenseNet extends
the DenseNets classification architecture to perform semantic segmentation by adding
an upsampling path to perform pixel-level classification. This architecture belongs to the
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category of encoder-decoders, as shown in Figure 4. It is built from dense blocks and
sampling operations.

Figure 4. Architecture of the enhanced FC-DenseNet version. Orange blocks are convolutions, DB:
dense blocks, TD: transitions down (2 times spatial downscale), TU: transitions up (2 times spatial
upscale), C corresponds to the concatenation operation, and the dashed lines are skip connections.

This architecture uses the so-called skip connections, allowing the transmission of
low-level feature maps from the encoder to the decoder. The decoder thus performs a
concatenation of the low-level abstract feature provided by the encoder with the high-level
semantic feature available in the decoder. This results in a more refined and more accurate
prediction map that fully exploits the details of the high-resolution first model features.
Moreover, skip connections facilitate the model learning by transmitting the gradient
error directly to the first layers of the model and thus reducing gradient fading. Similarly,
at the dense block level, skip connections are used. All previous layer feature maps are
concatenated and used as inputs for each layer, and their feature maps are used as inputs
for all subsequent layers. Each layer generates an activation map designed according to
a connectivity pattern that iteratively concatenates all feature outputs in a feed-forward
approach, according to Equation (1) [33]:

fl = Hl({ fl−1, fl−2, . . . , f0}, θl) (1)

where fl indicates the output feature map of the lth layer. It is computed by applying a
non-linear transformation Hl on the concatenation of the previous layers’ feature maps
fl−1, fl−2, . . . , f0. Hl is a non-linear transformation defined as a convolution with trained
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parameters θl , followed by a ReLU and dropout. It then maximizes feature reuse and
facilitates the training of deep structures.

2.1.4. Model Parameters Configuration

Intensive experiments were conducted to search for the best model and to select the
appropriate parameters. The main ones are described below.

• Optimizer: Different gradient-based optimization algorithms of objective functions
have been introduced so far, such as Stochastic Gradient Descent (SGD) [39], Adam [40],
and RMSprop [40]. Driven by the work of Kingma et al. [40], we use the Adam algo-
rithm in our work. It is computationally efficient, requires little memory, is invariant
to the diagonal scaling of gradients, and is well suited to large problems in terms of
data and/or parameters. We consider an initial learning rate of 0.00005 to begin the
learning. Subsequently, a learning rate decay policy is applied: it is reduced by a factor
of ten if the validation loss has not improved in the last 150 epochs. This latency time
does not result in an over-fitting, thanks to the dropout existing in all the model layers.

• Loss function: An extreme imbalance is observed between foreground (slicks) and
background (sea) classes on the considered data collections. A set of losses has been
experimented with, such as focal loss [36], dice loss [41], and cross-entropy. The main
objective is to select a loss taking into account the class imbalance, focusing the training
on difficult cases. The loss chosen based on the experiment is the sum of the dice loss
and the cross-entropy.

• Batch size: Batch size, rather than optimizing the network from one sample at a time,
leading to non-optimal solutions, averaging the errors over a set of samples has proven
to be more efficient. We use a batch of 4 samples due to hardware limitations.

• Model depth and width: We experiment FC-DenseNet with various hyper-parameter
combinations controlling model depth (number of dense blocks) and width (number
of neurons per layer, also referred to as growth rate). Experiments show that a higher
depth gives the best results. We chose to set the number of dense blocks to 5 and the
number of feature maps per layer to 16. Thus, the total number of parameters of the
corresponding model is about 8 M.

2.1.5. FC-DenseNet Model Enhancements

We propose an improved version of the FC-DenseNet model based on several opti-
mizations listed below.

• Layer initialization: The choice of initial parameter values for gradient-based optimiza-
tion is very crucial. Following [42], we chose random orthogonal initial weights to
start with complementary operators and to accelerate the convergence compared to
a Gaussian initialization. Such an approach indeed leads to faithful gradient prop-
agation, even in deep non-linear networks, by combating exploding and vanishing
gradients. Further, regarding the initialization of the last linear classification layer, it is
common to use a bias b = 0. However, Lin et al. [36] point out that this could cause
instability during training for obtaining class probabilities. Therefore, for training, we
initialize the bias of the last layer as b = −log((1 − c f )/c f ), where c f = 1/C where C
is the number of classes.

• Non-linearity: In the original FC-DenseNet model, ReLU(x) = max(0, x) is considered
as an activation function. Its main advantage is the non-saturation of its gradient,
which leads to faster convergence of the training process [43]. Improved versions
of ReLU activation have been proposed, such as Leaky-ReLU [44]. Such activation
enables the transformation of the negative input signal instead of canceling it as for
ReLU. This activation can interest classical model structures with no or few skip
connections to avoid losing important information. However, the dense blocks of
the model allow all the data to be shared across layers with dense connections, thus
maximizing feature reuse before applying activation functions and justifying the use
of RELU.

51



Remote Sens. 2022, 14, 3565

• Model regularization: Original FC-DenseNet relies on batch normalization with large
batch size. However, small batch size is required to handle large images while work-
ing with limited GPU memory. In this situation, batch normalization is discarded.
A chosen alternative is the use of Spectrum Restricted Isometry (SRIP) weights regu-
larization [45] for all but the last layer. This regularization technique does not induce
additional computation at test time and provides notable advantages: it ensures feature
normalization while maintaining the orthogonality of neuron parameters throughout
the training, which is complementary to the initialization strategy [45]. This approach
then ensures that neural kernels act in a complementary way, which is relevant when
dealing with few feature maps per layer as for the FC-DenseNet structure.

• Skip connection compression: It aims at reducing the size of the features passed from the
encoding part to the decoding one. Actually, for the vanilla FC-DenseNet, the dimen-
sions of the low-level features outing from the encoder to be fused with the decoder
features are higher than their counterpart. A compression then allows for a balance of
feature dimensions and reduces model complexity on the decoder side. In this work,
compression consists of 1 × 1 convolutions. The compression ratio is adjusted so that
the feature maps of the skip connections and the previous dense block have the same
size before they are concatenated.

• Upsampling: Transposed convolutions are generally considered but tend to introduce
checkerboard artifacts on the outputs [46]. An alternative is to separate upsampling to
a higher resolution from convolutions to compute features. We then first resize the
image using nearest-neighbor interpolation and then apply 2D convolution layers as
proposed in [47].

2.1.6. Detecting from Heterogeneous Sources, Fuse-FC-DenseNet

Since the radar backscatter at the sea surface is deeply affected by the wind speed,
as detailed in Section 1.1.2, the fusion of wind speed with SAR information is an exciting
approach for oil detection. In this work, the fusion of wind and SAR data is performed in
two different ways, as illustrated in Figure 5 (1 and 2).

(1) Early fusion: Wind and SAR modalities are considered at the same level. Thus,
the network input consists of the SAR data channel and the corresponding wind
speed channel, resampled during the data processing step to match the SAR im-
age resolution.

(2) Late fusion: The SAR and wind modalities are considered as two specific input chan-
nels with their separate layers before their fusion. In this approach, while keeping the
enhanced FC-DenseNet structure for the SAR data, the wind modality is introduced
in subsequent dense blocks along the model encoding path. The merging process is
performed after the second or third block so that the wind features at their original
scale are fused with the SAR features when the latter reach a similar resolution after
a few downscaling steps along the encoding section. As for the general DenseNet
approach, this fusion operation consists of concatenating the features of each channel.
Regarding the processing of wind channels, several strategies can be investigated.
In this paper, we consider two approaches: (i) applying a simple average pooling to
adjust feature scales and (ii) applying mean clustering and then extracting higher-level
features with a dense block.
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Figure 5. Fuse-FC-DenseNet architectures that fuse heterogeneous data, wind, and SAR information.
The left branch is the wind branch, and the operations surrounded by red dotted lines are the different
ways to fuse the wind speed information with the SAR information. (1) represents the early fusion,
(2) represents the late fusion. The operations surrounded by red dotted lines are selected depending
on the experiment.

2.2. Experimental Data

The experimental data considered in this work are acquired over four years (2015–2019)
in three separate study areas shown in Figure 6. The training, validation, and test datasets
were acquired in these three areas but differed in acquisition date and coverage. This
location diversity enriches our database with a larger area to explore and more variety
in terms of statistics (weather, infrastructure, etc.). Below is a description of all the data
considered in our study.

• Sentinel-1 SAR data: Acquired by the European Space Agency (ESA) organization in
Interferometric Wide-swath Mode, C-band (5.40 GHz) and with a 10 m resolution
per pixel. The level of signal backscattered by the sea surface is higher for vertically
polarized waves (V) than for horizontally polarized waves (H) [48]. Hence, vertical
polarizations for transmission and reception (VV channel) are selected as they are
generally preferred to the HH channel for ocean studies [49]. A set of 1428 images is
considered in this study.

• Slick annotation (Ground Truth): Human experts performed manual annotation of natu-
ral and anthropogenic oil slicks. The considered classes are: sea, spill, and seep. Impor-
tantly, this study is based on real-world monitoring scenarios. Under these conditions,
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the photo-interpreters cannot provide accurate annotations on object boundaries due
to the fuzzy contours of the slicks and the annotation rhythm. Therefore, the annota-
tions show sharp transitions that do not reflect the actual slick shape. Further, slick
annotation is performed by five photo-interpreters, revealing a diversity of annotation
criteria. For example, some slick annotations do not match the black slick perfectly
and are shifted by a few pixels. Others account for small slick patches separated from
the main slick and displaced. The difference is shown in Figure 2a–j. Figure 7 shows
an example of image annotation. One can then consider that annotation is noisy but
satisfies operational monitoring requirements.

Figure 6. Location maps of the considered Areas Of Interest (AOI) captured from the Sentinel-1
sensor: (a,b) two areas of the Atlantic Ocean coast are located in Southern Africa (Nigeria and
Namibia), (c) the Mediterranean Sea in Western Asia (Lebanon). The orange areas are used for
training and validation, and the yellow area is used for testing.

Figure 7. Example of slick annotation on a Sentinel-1 image on 21 January 2020 in the Nigeria area,
where annotations are highlighted in green.

• Wind speed information: Wind speed estimates for each SAR image are also provided.
The estimation is performed based on empirical Geophysical Model Functions (GMFs),
relying on the relationship between the backscatter and the wind speed. For C-
band and VV polarization, several variants of GMFs named CMODs have been
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developed [50]. The CMOD5 variant is a version that has been used successfully as an
improvement of the above variants. It is formulated as Equation (2):

σ0
CMOD5(V, φ, θ) = b0(1 + b1 cos φ + b2 cos φ)1.6 (2)

where the variables are:

σ0
CMOD5: backscatter value of the model CMOD5,

V: wind speed (m/s),
φ: relative direction between the radar look direction and the wind direction,
θ: angle of incidence,
b0, b1, b2: functions of wind speed V and incidence angle θ.

CMOD5 estimates the radar backscatter in a scene as a function of the surface wind
speed (V) and the angle that the wind makes with respect to the direction of the pulse
(φ) and the incidence angle (θ) [51]. However, for surfaces such as slick areas, the wind
speed is underestimated due to the wave damping effect. This discrepancy has been
considered at the model performance assessment step.
In our context, SAR and wind resolutions are 10 and 100 m per pixel, respectively, such
that wind is upsampled by a factor of 10 using linear interpolation when required. An
example of a Sentinel-1 SAR image before and after adaptation to CMOD5 is shown
in Figure 8.

Figure 8. Illustration of the wind information associated with the SAR image on 21 January 2020
in the Nigeria area. The SAR image with slicks and lookalike phenomena on the left, on the right,
the associated wind speed data.

• Infrastructure Position: This information is known using global referencing, which
represents support for photo-interpreter analysis [4]. Through the use of infrastructure
position, we further improve the evaluation of model performance in terms of de-
tecting anthropogenic oil. The types of infrastructure considered are pipelines, wells,
ports, platforms and ships. For each of them, there is a possibility of leakage accorded
to the experts. The location of the infrastructures is associated with the SAR images,
as shown in Figure 9.

Figure 9. Illustration of the position of infrastructures associated with the SAR image on 15 October
2018 in the Lebanon area. On the left, SAR image, on the right, the associated infrastructures position.
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To summarize, for each SAR image available in the dataset, the associated wind speed,
infrastructure position and slick annotation are provided.

2.2.1. Data Preprocessing

To enable heterogeneous data processing, we describe below the preprocessing of each
data and its purpose.

• SAR Data: The preprocessing of initial SAR data consists of low-level transformations
to improve the qualitative and quantitative interpretation of image components, thus
facilitating the visibility of slicks for photo-interpreters. SAR preprocessing can be
grouped into four processes: radiometric calibration, geo-referencing, filtering, and
masking [18].

(1) First, radiometric correction and calibration: Its purpose is to remove or minimize
radiometric distortions and to ensure the correlation of pixel values with the
backscatter coefficient of the reflecting surface [52]. Thus, quantitative measure-
ments (backscattered microwave energy) restored from image pixel values can
be compared with object characteristics in multi-temporal SAR images acquired
with different sensors and SAR modes [53].

(2) A geo-referencing step of the SAR data is then performed to correct eventual
geometric distortions and to locate each pixel of the image on the Earth [54]. This
step is also applied to all the considered data sources to ensure their alignment.

(3) A speckle noise filtering step is then performed. As reported by [3,55], such
noise must be reduced in order to facilitate the analysis and interpretation of the
data. An optimal speckle filtering technique should preserve useful radiometric
information and avoid the loss of features, such as the local mean of backscatter,
texture, edges, and point targets [56]. Several filter types have been used in
previous studies to reduce speckles and enhance SAR images for oil slicks, such as
Lee, Frost, Kuan, median, and Lopez [57]. The considered preprocessing pipeline
relies on such filters, but its detailed implementation remains confidential.

(4) The final preprocessing step consists of masking the land and shorelines from the
SAR images. This process restricts sea surface analysis and prevents land from
interfering with oil slick detection [58].

• Wind data: For each 10 m resolution SAR image, the associated wind intensity map
is provided with the same geographic coverage but at 100 m resolution. Therefore,
to align the two modalities, bi-linear interpolation is applied to the wind map. How-
ever, the wind speed is underestimated over the slick areas due to the wave damping
effect. Then, specifically for the test set and evaluation process but not for the training
set, the wind speed, in the vicinity of 50 m around the annotated slicks, is merged
within the slick area, relying on iterative median filtering.

• Infrastructure data: It is based on the infrastructure position; a map that represents
the proximity of existing infrastructure in the neighborhood for each pixel is realized.
These distance maps will be considered only in the evaluation process.

2.2.2. Preparation of the Training/Validation Datasets

After processing the different data modalities separately, an alignment of each SAR
image with the corresponding slick annotations, wind speed map, and infrastructure
distance map is performed. Then, datasets of heterogeneous data are built for training,
validation, and testing sets. The strategy is described below.

(1) Dataset Splitting: Following our previous study [28], both training and validation sets
rely on the same geographical areas. However, they do not share the same images;
each has a different capture date and sea coverage. A third area (Nigeria) is chosen
for testing to validate the generalization capability of the model.

(2) Image Crop Selection: We built a collection of smaller image crops of 512 × 512 pixels
from the large images of the training and validation datasets. This resolution is a
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compromise between the size of the layer, the field of view of the model, and the
memory constraints of the GPUs (NVidia V100 16 Gb).
The crop selection strategy takes into account the slick annotations and ensures the
presence of slicks within crops following the logical function presented in Equation (3):

Cslick(X, Y) = ¬B(X) ∧ (E(Y) > T) (3)

where ∧ and ¬ are the logical AND and NOT operators, respectively, X is a random
crop in a large SAR image, Y is the corresponding annotation, B(X) a Boolean function
that checks if there is a border (no data area) inside the crop, E(Y) is the entropy
function used to check the sea and slick classes statistics within the crop, and T is a
threshold fixed heuristically to 0.3.
Further, to make the model robust against slick lookalikes, an additional crop selection
of such potential patterns is built from the slick-free image areas. Since no specific
annotation reports them, we rely on a heuristic reported in Equation (4), the objective
of which is to choose crops with contrasting patterns:

Clookalikes(X) = ¬B(X) ∧ V(X) ∧ ¬E(Y))) (4)

where ∧ is the logical OR operator, B(X) and E(Y) correspond to the ones described
in Equation (3), and V(X) is a Boolean function that randomly selects the crop that
probably contains lookalikes based on the normalized variance of the pixel values.
A minimal variance threshold fixed on the basis of experiments must be reached to
highlight a contrasted area.

(3) Data Augmentation: It is applied to increase the variability in the dataset artificially.
It is comprised of random horizontal and vertical flipping and ±90◦ random rotation
in both training and validation datasets [59].
Table 3 outlines the details of the training and validation datasets. A total of 85% of
the crops in the dataset belong to the training set. We notice that the oil slicks are
small to medium in size compared to the large sea area, covering less than 11% of the
total area. This emphasizes the strong imbalance in the number of slicks pixels and
the clean sea pixels that include lookalikes.

Table 3. Statistics of the training and validation dataset consisting of crops with a size of
512 × 512 pixels.

Spill Seep Sea Total

Image crops number 1.964 244 860 3.068

Studied area surface (hm²) 251,200 21,900 7,769,500 8,042,600

Surface rate 3.12% 0.27% 96.6% 100%

2.2.3. Test Dataset

Many images are captured in an additional region close to Africa that has not been
used for training/validation. This region provides the opportunity to test the generalization
ability of our models through a variety of meteorological conditions. Table 4 indicates the
characteristics of the test set. It contains 214 oil slicks that give a broad representation of
the shape and variation in slick type (spill, seep). One must highlight that this diversity is
originally compared to state-of-the-art, which is mainly limited to a single type of oil slicks.
This data collection also contains several lookalikes phenomena, such as windless areas.
The cost of preparing this data limits the number of samples available, but it represents
relevant real-world monitoring and annotation scenarios.

57



Remote Sens. 2022, 14, 3565

Table 4. Statistics of the test dataset.

Spill Seep Sea Total

Slick instances number 150 64 - 214

Studied area surface (hm²) 49,771 25,622 267,112,507 267,187,900

Surface rate 3.12% 0.27% 96.6% 100%

Figure 10 shows the distribution of oil slick annotations as a function of wind speed,
slick size, and proximity to infrastructure. Regarding wind speed, most slicks have been
annotated at medium wind speeds (3 m/s), few were annotated at very low wind speeds,
and none at wind speeds above 6 m/s. As for the size of the slicks, it varies from a few hm²
to 10.000 hm². The proximity to infrastructure ranges from being very close to being 70 km
away from one. This figure illustrates the diversity of the targets and the strong imbalance
of their behaviors, which explains the difficulty of their detection.

Figure 10. Distribution of slick instances in the test dataset as a function of (from top to bottom)
wind speed (m/s), slick size (hm²), and infrastructure proximity (km).

2.3. Performance Assessments

A set of metrics adapted to the task and operational context is selected. The first
category corresponds to standard measures considered for semantic segmentation and
object detection. These metrics are reported by taking into account contextual information
such as the size of the slick, the local wind speed, and the position of infrastructures. We
also rely on ROC curves to visualize the trade-off between detector hit (true positive) rates
and false alarm (false positive) rates. The second category of metrics relies on a visual
explanation of the model predictions.
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2.3.1. Standard Metrics

Semantic Segmentation Quality Metric (pixel-level): A pixel-level classification metric
such as the Intersection over Union (IoU) is the most used metric to evaluate models in
image segmentation tasks [60]. However, its relevance is moderate in our case since the
annotation is noisy.

Standard Object Detection Metrics (instance level): Such metrics describe the detection
potential of the model better rather than the segmentation quality. Detection rates and the
associated false positives and negative rates are thus computed. Further, in the proposed
context, the fragmentation of a single slick in multiple detection instances is not an issue.
Therefore, if more than one prediction intersects the same annotated slick, detection is con-
sidered valid for this slick. The number of well-detected instances is calculated according
to Equation (5).

DetectedInstances =
N

∑
i=1

�Gti∩Pred �=∅ (5)

where N is the number of annotated slick instances, Pred is the predicted instances, and �

is the indicator function.
Receiver Operating Characteristic curves (ROC): These curves are used to characterize

a model segmentation quality in a more detailed way. Such ROC curves are obtained
by plotting the True Positive Rate (TPR) as a function of the False Positive Rate (FPR),
thus quantifying the performance of a detector as its discrimination threshold varies.
In other words, ROC curves describe the trade-off between detector hit rates and false
alarm rates [61].

2.3.2. Prediction Explanation Methods

Several model explainability techniques have been proposed to facilitate the un-
derstanding of complex model predictions. The best known, according to the study of
Linardatos et al. [62], are listed below.

• Class Activation Maps (CAM)-based methods, e.g., Grad-CAM [63,64], are designed
to generate heat maps of the input, indicating which areas most influence the network
decision. It relies on a linear combination of activation maps of a given layer, weighted
with the gradient of the class score, with regard to the feature map activation. CAM-
based methods have some drawbacks: first, explanation precision is limited given
that the produced heatmap is computed based on low-resolution activation maps
and further upsampled to match the original image size. Second, it does not provide
information on negative contributions (inhibition effects).

• Local Interpretable Model-agnostic Explanations (LIME) [65] is a model-agnostic
method that aims to locally (e.g., for one set of inputs) approximate the complex
model to a more easily understandable one. This method aims to produce visual
artifacts that provide a good understanding of the model choice. However, the LIME
method can be criticized for its lack of stability and the discrepancy of its results with
human intuition.

• Layer-wise Relevance Propagation (LRP) [66] uses calculation rules to backpropagate
the score of a specified output of the network until the first layer, thus showing areas
that affected the network decision for the specific output. This method is specific to
neural networks and may not provide a trustworthy comparison when applied to
different network architectures, as the score backpropagation will proceed differently.
Moreover, the backpropagation through FC-DenseNet architecture can lead to conflicts
caused by skip connections.

• SHapley Additive exPlanation (SHAP) [12] is a game-theory-inspired method that
attempts to enhance interpretability by computing the importance values of each
input feature on individual predictions. By definition, the Shapley value calculated
by SHAP is the average marginal contribution of an input feature to a model output
across all possible coalitions. Different methods are proposed for estimating Shapley
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values, such as KernelSHAP or DeepSHAP [12]. They provide results demonstrating
the expressiveness of SHAP values in terms of discrimination ability between different
output classes and better alignment with human intuition compared to many other
existing methods [62]. Several works have adopted the SHAP method for image
classification or object detection [67,68].

In this work, explanations are based on the SHAP method, mainly because it is one
of the most comprehensive and relevantly used methods in the literature for visualizing
interactions and feature significance. SHAP is not only model agnostic but also applies to
any data.

However, SHAP must be adapted to the semantic segmentation problem. To do so,
we use an algorithm based on the KernelSHAP function [12], computing model-agnostic
explanations linked to a specific input image. The proposed workflow is illustrated in
Figure 11. It can be summarized by the following steps:

(1) The first step aims at creating groups of pixels, or super-pixels, from the input image.
The method result shows the contribution of each super-pixel in the model’s deci-
sion. Experiments have shown that relying on super-pixels of equal size and shape
generates clearer explanations. Moreover, hexagonal super-pixels allow for a more
natural explanation than square super-pixels, mainly due to the higher number of
direct neighbors of each super-pixels. Thus, explanations presented in this paper rely
on a grid of super-pixels shaped as a regular hexagon.

(2) Then, masking is applied to the input image super-pixels in order to generate several
masked samples, as shown in Figure 11. Note that masking super-pixels with the zero
value is often considered in this step but is avoided in our case, as it would introduce
ambiguity with the target (dark oil slicks). Thus, the explanations presented in this
paper are based on a grid of super-pixels shaped like a regular hexagon.

(3) The third step is to feed the resulting masked samples through a semantic black-box
image segmentation model, which yields prediction probability maps for each sample.

(4) The fourth step is to select the pixel and class of interest (e.g., the pixel highlighted in
red in Figure 11 and the class “slick”), for which the explanation of the model decision
is to be conducted.

(5) After that, explanation computation based on Shapley values computation rules is
applied [69], considering the mask and the pixel-level decision for every sample.
In more detail, the Kernel SHAP algorithm estimates the impact of each super-pixel
on the probability that the selected pixel belongs to the selected class (e.g., slick).

(6) Finally, a heat map explanation is generated, highlighting the areas (super-pixel) of
the input image that contributed positively (excited) and negatively (inhibited) to the
model decision.

Figure 11. Overview of SHAP adaptation to image semantic segmentation.
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The result is obtained as an image, presenting the interpretation of the model decision
for a given local (pixel level) classification. The interpretation (SHAP values) regarding a
selected pixel (outlined in red on prediction matrices) is shown on the right in Figure 11.
A SHAP value is assigned to each super-pixel, and these values are assigned to a color
range. Red colors are attributed to a super-pixel decreasing the prediction value for the
given class (inhibition, negative contribution to the class probability), and green colors
are attributed to a super-pixel increasing this value (excitation, positive contribution to
the class probability). The intensity of the color is directly linked to the amplitude of the
SHAP value.

3. Results

In this section, the first part concerns the experiments conducted exclusively on
SAR images using the selected deep neural network architectures. A presentation and
comparison of the results are established. The second part discusses the fusion of SAR
and wind information by the proposed Fuse-FC-DenseNet model. The identification of
the most suitable approach is conducted with respect to the baseline model that relies on
only the SAR information. The third part focuses on interpreting the results of both models
(trained on SAR data alone and trained on SAR and wind speed data) by the adapted SHAP
explanation method.

All comparisons and assessments of the results presented are based on the expertly
selected test set presented in Section 2.2.3. It consists of SAR monitoring images of a real
monitoring case with 214 slick instances of both types (spills and seeps) with various sizes,
shapes, and slick characteristics.

3.1. Evaluation of SAR Data Experiments
3.1.1. Evaluation of Models Based on SAR Data

The evaluation of the proposed approaches is established on a test set of 214 in-
stances of spill and seep, shown in Figure 4. The test set contains large SAR images
(10,000 × 10,000 pixels) that are never seen during the training and validation of the models.
It can also be noted that the test set belongs to an entirely new area (which was not included
in the training/validation sets), implying a variation in the context. Thus, the performance
of the models includes their generalization capabilities. The performance presented in
Table 5 shows the instance and pixel level metrics of the enhanced FC-DenseNet and Mask-
RCNN models. It shows that the improved FC-DenseNet model has a detection rate of
0.93%, while the Mask-RCNN model has a rate of 0.83%. However, the Mask-RCNN model
has a slightly lower number of false alarms in the test set. In terms of pixel-level metrics,
the improved FC-DenseNet significantly outperforms the Mask-RCNN in terms of IoU,
precision, and recall.

Table 5. Results of FC-DenseNet versus Mask R-CNN on a test set of 214 slicks.

Metrics FC-DenseNet Mask R-CNN

Instance level
Good detection number 198 177

Miss-detection number 16 37

False-detection number 1658 1103

Pixel level
IoU Slick 0.3 0.06

Precision 0.42 0.33

Recall 0.53 0.06

Figure 12 shows an illustration of the result of a test image containing different slicks.
The predictions of both models are shown together with the ground truth. Predictions
in red are placed under the yellow ones for a more trustworthy visualization. As we
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observe, Mask R-CNN fails to detect more annotated oil slicks and overlaps less with
expert annotations (IoU 0.06). On the other hand, the improved version of FC-DenseNet
covers the surface of slicks better (IoU 0.3). In terms of miss-detection rates, Mask R-CNN
misses 2.3 times more slick instances than FC-DenseNet. More in-depth analysis shows
that the spill miss-detection rate is around 40% lower than the seep miss-detection rate for
both models. This can be explained by the fact that the spill instance in our training set is
higher than the seep instance. Regarding false alarm rates, the enhanced FC-DenseNet is
higher and can be observed in the bottom part of Figure 12.

Figure 12. An example of FC-DenseNet (red) and Mask R-CNN (yellow) prediction on Sentinel-1
images where green polygons represent manual slick annotations. A zoom in on an area of interest
is placed at the bottom. Note that since Mask-RCNN is systematically within FC-DenseNet ones,
Mask-RCNN masks are applied above FC-DenseNet to facilitate analysis.

We observe that in the case of huge oil slicks, as seen in Figure 13, the improved
version of the FC-DenseNet detection is fragmented. One general reason for this is the lack
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of large slicks in the training database. In addition, the detection is performed on image
crops of 512 × 512 pixels for training and applied in a sliding window fashion on large test
images. The models, therefore, only have a partial view of large slicks. In the situations
where a slick extends over the entire crop area, its detection will be inhibited by the lack
of contextual information. This could be combated by training on larger image crops but
requires more memory on the GPUs.

Figure 13. Sample of large slick and the corresponding prediction of FC-DenseNet and Mask R-CNN.
Same legend as Figure 12.

3.1.2. Evaluation Based on Contextual Data

Figures 14 and 15 show the results of the two approaches as a function of wind speed
level and slick size. Similar general behaviors can be noted for both models, detecting slicks
over the full range of wind speed and slick size. For both models, false detection areas are
greater than 20 hm2 and mostly correspond to windless areas, but their rate decreases as
wind speed increases.

Figure 16 shows the distribution of the predictions of the two models regarding the
proximity of the slicks (spill and seep) to infrastructure (ship, platform, pipeline, etc.).
The information on proximity to infrastructure mainly relates to spill type, representing
150 instances in the test database. The improved version of FC-DenseNet model detects
149/150 spill instances, missing only one instance.

Figure 14. Detection performance of the improved version of FC-DenseNet and Mask R-CNN as a
function of wind speed (m/s). Green bars represent good detection; blue shows missed detection.
False alarms are represented by gray bars on a logarithmic scale.
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Figure 15. Detection performance of FC-DenseNet and Mask R-CNN as a function of ground truth
size (hm²), same legend as Figure 14.

The first two bars ([0, 20] km) in Figure 16 shows both spill and seep instances, indi-
cating that few slicks near the infrastructure are missed (blue). The R-CNN mask behaves
similarly, detecting fewer slicks and missing some slicks farther from the infrastructure
([30, 40] km). The information on the proximity of the infrastructure represents relevant
information for identifying the oil slick, notably the oil spill. This information serves as a
reassurance to experts about the existence and type of slick.

Figure 16. Detection performance of FC-DenseNet and Mask R-CNN as a function of infrastructure
proximity (km), same legend as Figure 14.

As enhanced FC-DenseNet shows a better IoU value, reasonable detection rate, and
miss-detection rate, this model is chosen as the baseline for the following experiments.
An additional argument for this choice is also based on the fact that it is fully trained on
the target data, unlike Mask R-CNN, which is pre-trained on other data.

3.2. Evaluation of Data Fusion Models

In this section, models conducting heterogeneous data fusion (SAR and wind speed
information) are evaluated and compared against the SAR-based baseline model referred
to as TSAR. Building upon the fusion strategies illustrated in Figure 5, several experiments
have been performed. The most pertinent ones are reported in the following. T0 corre-
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sponds to early fusion (the first arrow of Figure 5, only an upsampling of the wind maps
is applied). Late fusion experiments correspond to the second arrow on the same figure,
and we derive experiments T1, T2, T3, which systematically apply a subsampling (pooling)
of the wind data to match the feature size of the SAR feature maps in later blocks. Those
experiments differ in terms of feature extraction strategies on the wind information and
fusion step positioning with respect to the SAR branch. Relevant experiment summaries
are reported in Table 6, and the global results are presented in Table 7 and discussed in
the following.

Table 6. Experiment descriptions.

Name Description

TSAR Enhanced FC-DenseNet baseline model relying exclusively on
SAR data

T0 Early fusion of upsampled wind data at the same level as the
SAR data

T1 Average pooling of the wind data and fusion with SAR data after
dense block 2 (late fusion)

T2 Average pooling and Denseblock applied to the wind data prior
fusion with the SAR data after dense block 2 (late fusion)

T3 Average pooling and Denseblock applied to the wind data prior
fusion with the SAR data after dense block 3 (late fusion)

Table 7. Comparison of the FC-DenseNet results on a test set of 214 slicks using only SAR data with
different data fusion models.

Metrics Only SAR Early Fusion Late Fusion

TSAR T0 T1 T2 T3

Instance
level

Good detection number 198 198 200 201 192

Miss-detection number 16 16 14 13 22

False-detection number 1658 1357 1376 1430 1094

Pixel
level

IoU slick 0.30 0.22 0.31 0.28 0.21

Precision 0.42 0.35 0.42 0.38 0.24

Recall 0.53 0.38 0.55 0.49 0.60

3.2.1. Early Fusion Experiment

When directly fusing SAR information with the upsampled wind data and provid-
ing this as a unified input to the model, the mitigated results are reported in Table 7.
The number of good detection remains the same, and an 18% reduction of false detections
is observed. This is consistent with the process of photo-interpreters using wind data to
identify suspicious slicks and distinguish them from lookalikes. However, such an early
fusion model reduces the IoU metric by 0.1 and also lowers precision and recall. The distri-
bution of model detection as a function of wind speed and slick size is represented by the
detection plots in Figure 17. Interpretations are similar to the baseline model.
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Figure 17. Detection performance of Fuse-FC-DenseNet as a function of wind speed (m/s) and
ground truth size (hm²), early fusion case.

Figure 18 shows a local comparison of the baseline SAR-based model and the early
fusion strategy (displayed on top). The number of false detections of the baseline model is
more noticeable, especially outside of the fine manual annotations.

Figure 18. An example of the baseline SAR-based enhanced FC-DenseNet (red) and the early
fusion version (blue) predictions to be compared with the green polygons representing the photo-
interpretation slick annotation.

Compared to the baseline model, the early fusion indicates a decrease in the IoU value.
It may be noted that this limitation may be due to the manipulation of two data channels at
the same scale. Meanwhile, the wind modality is highly interpolated. Extracting the fine
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resolution patterns do not seem appropriate. The fusion of wind data at a more appropriate
scale should yield more insights.

3.2.2. Late Fusion Experiments

As shown in Table 7, in the case of late fusion at the block 2 levels (experiments T1
and T2), the detection rate (93.4%), IoU (0.31), precision (0.42), and recall (0.55) improve
over the early fusion experiment T0 and can reach or outperform the baseline. Further,
by comparing the late fusion experiments, we notice that the later we fuse wind information
with SAR, the lower the false detections at the price of a slight decrease in the number of
good detection and a limited increase in the number of false detections. The slick IoU also
decreases. However, the results are based only on selecting the most likely class between
sea and slick and, therefore, they do not focus solely on slick probability levels, and further
analysis is required.

Regarding the number of false detections, we notice that they are often either around a
large slick or grouped in the no-wind areas and fringed in small fragments such as Figure 19,
showing an example of false detections of an improved version of the FC-DenseNet. A post-
processing step of the dilation-erosion operation can be applied to minimize the number of
false alarm instances.

Figure 19. False alarm samples for the improved baseline version of the FC-DenseNet model (TSAR).
False alarms are marked in red and slick annotations are marked with green polygons. (A,B) represent
false alarms around a slick, and (C–E) represent other false alarms.

Finally, for all the fusion experiments, a decrease in the number of false detections is
observed. This then confirms the importance of wind speed for slick detection, especially
for distinguishing slicks from lookalikes.

3.2.3. ROC Curves Analysis

To better understand the prediction of the considered improved version of FC-DenseNet
models, particularly their false detections, the slick probability maps outing from the model
are analyzed. Figure 20 shows an example with a heat map representing the slick probability
levels. One can visually observe that the slick inner surfaces generally have a high probability
(red) and that the low probability values are always on the boundaries of the slicks (yellow).
Given the quality of the annotation reported in Section 2.2, the IoU level remains strongly
proportional to the quality of the ground truth boundary and cannot reach very high values.
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Figure 20. Example of a prediction probability map of the improved version of FC-DenseNet model.

For a larger-scale investigation, these slick probability maps are considered to plot the
ROC curves aggregating all the predictions on the test database for the different late fusion
models. ROC curves for the fusion experiments are shown in Figure 21.

Figure 21. ROC curves of fusion experiments (T0, T1, T2, T3). The threshold measurements marked
on the blue curves are identical for all curves. The solid point represents the 0.5 threshold.

Experiment T1 shows high values for each threshold measure compared to the other
fusion experiments curves, which have a similar shape. It also shows a lower FPR for
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almost the entire range of TPR, we can assume that this fusion model provides the best
segmentation quality.

Moreover, there is a noticeable gap between the late fusion experiments and the early
fusion ones. This gap shows that late fusion is more appropriate in our context, as both
input channels present too different characteristics to be considered at the same level in
the architecture.

One can note that slick detection improvement can be made by selecting an adjusted
threshold on the slick probability map instead of choosing the most probable class for every
pixel. The threshold involves a different trade-off between TPR and FPR and thus can be
decided by the domain experts.

3.3. SHAP Explanation

Explanation of the network decision processes can be made using the SHAP adaptation
proposed in Section 2.3.2. This method is used to compare two models of interest: one
corresponds to the TSAR experiment, and the other corresponds to the T1 late fusion
experiment. Then, based on the explanations obtained from the two model predictions on a
varied set of the same pixels from the same input images, one can receive insights into the
model behaviors and their differences in terms of the effective field of view and sensitivity
to neighboring patterns. The following will focus on the three main observed behaviors
illustrated in Figures 22–24. These figures show the input images, a set of explained pixels
(red circles), the applied features delimitation, and the explanation maps:

• For a pixel classified as sea, as for explained pixels in Figures 22a,c and 23a: the surface
affecting the decision of the networks is large and depends on the presence of slicks
(or lookalikes) in the entire image. Specifically, a general observation reveals that
the prediction is mainly influenced by the presence of oil slicks in the vicinity of the
explained pixel: a positive impact (reinforcing the classification of the pixel as slick)
in the case of a relatively close slick and a negative one in the case of a distant slick.
However, their contribution to the decision is extremely low and always countered by
the considered pixel area. As a result, the prediction associated with the slick class is
always close to 0%.

• For a pixel classified as slick, as for the explained pixel in Figures 22b, 23c, and 24b: the
prediction is based on a limited area centered around the considered pixel. The maxi-
mal SHAP value in these cases is the highest observed (about 0.5). Typically, the net-
work prediction for the pixel is impacted by one input feature containing mainly black
pixels, which is enough to classify the pixel as a slick, with a probability above 80%.

• For a pixel located on a slick edge or within a narrow slick, as for the explained pixel
in Figure 23b,d: networks tend to detect and base their decision on the slick edge or
the narrow slick length. This shows that networks can detect the slick edges around
the selected pixel in all observed images, which significantly influences their decision.
The impact of each area containing a slick edge tends to decrease as the area moves
away from the pixel.
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(SAR image)

(a)

(b)

(c)

Figure 22. Results of SHAP explanation function. (a) SHAP images for pixel number 1, classified
as sea; (b) SHAP images for pixel number 2, classified as slick; (c) SHAP images for pixel number 3,
classified as sea. (SAR image) right: SAR image, left: SAR image with a grid of white super-pixels
representing the SHAP input. The ground truth is outlined in green and the pixels considered are
numbered and circled in red. For SHAP image rows, right corresponds to the information obtained
through the network TSAR, and left corresponds to information obtained through the T1 experiment.
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(a)

(b)

(c)

(d)
Figure 23. Results of SHAP explanation function, showing effects of slick edges on networks. (a)
SHAP images for pixel number 1, classified as sea; (b) SHAP images for pixel number 2, between slick
and sea; (c) SHAP images for pixel number 3, classified as slick; (d) SHAP images for pixel number 4,
between slick and sea. Similar legend to Figure 22.
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(a)

(b)
Figure 24. Results of SHAP explanation function, showing the difference between both studied
experiments. (a) SHAP images for pixel number 1, classified as a slick by TSAR model and as sea by
T1; (b) SHAP images for pixel number 2, classified as slick. Same legend as Figure 22.

4. Discussion

Based on the results obtained, we can confirm the ability of deep learning to detect both
types of oil slicks (natural and anthropogenic) in a large-scale and real-world application,
which contrasts with previous work dedicated to single types of oil slicks.

The result evaluation based solely on the SAR data shows a good detection rate but
notable false alarms. The false alarms obtained can be divided into two categories: the first
represents false alarms related to several lookalikes, such as low wind areas, algal blooms,
and upwelling, as shown in Figure 19C–E, and the second represents false alarms related to
small spots around an oil slick annotation, as shown in Figure 19A,B. These small oil slick
patches, confirmed by photo-interpreters, are related to environmental effects, particularly
meteorological conditions that influence the physicochemical properties of the oil slick,
inducing its dispersion (fragmentation into droplets) and spreading process. These small
oil slicks are also noticeable in Figure 15, where we can see the presence of false alarms
ranging in size from 0 to 500 hm².

One observation is that the ground truth annotation made by the photo-interpreters
is not perfect and suffer from imprecise boundaries, as shown in Figure 2, revealing a
diversity of annotations that position our detection task in a noisy reference context [70], as
mentioned in Section 2.2. Hence the validation process requires a second pass of expertise
on the large images to check the false alarms and eventually correct the annotations
to integrate some false alarms as real slicks. We are thus, in a real context, allowing a
continuous progression of the models and improvement of the annotations. This also
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becomes apparent in the prediction probability maps obtained by the models, as shown
in Figure 20, where the lowest probabilities are always found on the slick boundaries.
The imprecision of the annotation boundaries is apparent in the slick IoUs limited to 0.31
in Table 5 and also in the prediction probability maps obtained by the models, where
the lowest probabilities are always found on the slick boundaries, as shown in Figure 20.
Despite this, the semantic and instance segmentation models are quite capable of detecting
slicks but suffer from false alarms.

To further reduce false alarms, we proposed Fuse-FC-DenseNet models that allow
the fusion of wind speed and SAR data. Comparing the early and late fusion strategies
using ROC curves shows that fusing wind data later in the models provides a satisfactory
trade-off between good detection and false alarm rates. It can be noted that fusing wind
speed data later in the model, approaching its resolution, provides better results than fusing
too early, which causes the layers to learn inconsistent features, leading to undesired results.
The obtained results with Fuse-FC-DenseNet have a better detection rate, and its detection
better matches the photo interpretations (up to 93% of the dataset targets are detected).

Late fusion experiments improve the performance while reducing false detections in
the range of 14% to 34%. Regarding the late fusion experiments (T1 and T3), the comparison
is made based on the trade-off between good detection and false detection. T3 shows a
lower false alarm rate and detection rate than the single-modality (SAR) model results.
This comparison is based on oil distribution in the dataset (214 oil instances). In the end,
the choice of the best model is to be decided by the end-users to find the best compromise,
taking into account the global costs that may include on-site verification flights.

Explainable Results

Going further, based on the comparison of the explanations presented in Section 3.3, it
is possible to understand the effect of wind speed data on the model predictions. Figure 24a
shows a lookalike that corresponds to waves. More precisely, one focuses on the explanation
of the pixel of interest. This lookalike is detected as a slick only by the network that does
not manage wind speed information (TSAR). The explanatory maps for both models show
the impact of near-pixel areas on their decisions, increasing the probability of the pixel
classification as a slick. However, the T1 model that performs SAR and wind fusion gives
more importance to contextual information: other dark patches in the image harm the
classification of the considered pixel as a slick. The interpretation of this phenomenon
is linked to the presence of wind speed data in the network decision process: the T1
experiment can better differentiate slicks and lookalikes in this configuration, which makes
contextual information more reliable. For all interpretations, the T1 model shows a higher
intensity of the SHAP value than the TSAR (red and green intensity in the SHAP images).

The proposed explanation method already provides valuable information to under-
stand better and compare models. Its application to oil slick detection is interesting and
aims to provide monitoring teams with additional information to help in the diagnosis of
automated alarms. Several case studies and extensions of this approach are under consider-
ation but are beyond the scope of this paper and will be discussed in future publications.

5. Conclusions

Deep learning for health, safety, and the environment is an active research trend,
and oil spill monitoring is a relevant case study. To address this task, we demonstrate the
interest in optimized semantic segmentation models based on the improved version of FC-
Densenet and an instance segmentation approach transferred from another domain, Mask
R-CNN. We evaluate and compare them relying on Sentinel-1 SAR imagery depending on
domain expert photo-interpreters and taking into account contextual information regarding
wind speed and proximity to human activities. First, we show the relevance of these
approaches and propose a set of dedicated metrics that allow refined comparison of the
models in various contextual situations in worldwide real-monitoring scenarios. Both
models can detect slicks, but the improved version of FC-DenseNet has a better detection
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rate, and its detections better match the photo interpretations. Further, this paper shows the
models applicability to detect oil slicks (both natural and anthropogenic), thus contrasting
with previous work dedicated to a single slick type. In addition, we propose Fuse-FC-
DenseNet model to fuse SAR and wind speed data to improve performances and diminish
false alarm rates.

Compared to the baseline model, a decrease in false alarms is observed for all the
fusion experiments. This then confirms the importance of wind speed for slick detection,
especially for distinguishing slicks from lookalikes. The proposed Fuse-FC-DenseNet
networks are capable of improving performance while reducing false detections in the
range of 14% to 34%. As for human experts, such data fusion helps the models select
relevant information to provide enhanced predictions and better distinguish oil slicks from
lookalikes. The model predictions would be integrated into the industrial production
pipeline to provide ready predictions to photo-interpreters. This will speed up the oil slick
detection task and keep up with continuous sensor acquisition.

Finally, to offer ready-made predictions that are understandable by the photo-interpreters
and enable human validation, we propose an extension of the SHAP explanation method that
allows semantic segmentation predictions to be explained. It also allows a refined comparison
of model behaviors on local decisions and their sensitivity to neighboring patterns in the data.

This work yields several insights, including the possibility of further studying explain-
ability by extending analyses and explanations using the SHAP technique. In addition,
different spatial organizations of the super-pixels can be tested, and analysis based on
variability in the size of the contextual information can be established.

Another perspective may be to adapt the data fusion model further by introducing
infrastructure position data as additional information during the learning process. The aim
is to train the network to detect oil slicks and discriminate between spills and seeps.
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The following abbreviations are used in this manuscript:
AI Artificial Intelligence
EM ElectroMagnetic
FA False Alarms
FC-DenseNet Fully Convolutional DenseNet
GMF Geophysical Model Functions
Mask R-CNN Mask Region Based Convolutional Neural Network
SAR Synthetic Aperture Radar
SHAP SHapley Additive exPlanation
ROC Receiver Operating Characteristic
RS Remote Sensing
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Abstract: Synthetic aperture radar (SAR) is a significant application in maritime monitoring, which
can provide SAR data throughout the day and in all weather conditions. With the development
of artificial intelligence and big data technologies, the data-driven convolutional neural network
(CNN) has become widely used in ship detection. However, the accuracy, feature visualization, and
analysis of ship detection need to be improved further, when the CNN method is used. In this letter,
we propose a two-stage ship detection for land-contained sea area without a traditional sea-land
segmentation process. First, to decrease the possibly existing false alarms from the island, an island
filter is used as the first step, and then threshold segmentation is used to quickly perform candidate
detection. Second, a two-layer lightweight CNN model-based classifier is built to separate false
alarms from the ship object. Finally, we discuss the CNN interpretation and visualize in detail when
the ship is predicted in vertical–horizontal (VH) and vertical–vertical (VV) polarization. Experiments
demonstrate that the proposed method can reach an accuracy of 99.4% and an F1 score of 0.99 based
on the Sentinel-1 images for a ship with a size of less than 32 × 32.

Keywords: SAR; CNN; Sentinel-1; ship detection

1. Introduction

Ship detection plays a crucial role in maritime transportation, maritime surveillance
applications in fishing, and maritime rights maintenance. Synthetic aperture radar (SAR),
as active remote sensing, is most suitable for ship detection because it is sensitive to hard tar-
gets. Furthermore, SAR works throughout the day and in all weather conditions. In recent
years, many SAR satellites, such as Radarsat1/2, TerraSAR-X, Sentinel-1, COSMO-SkyMed,
and GF-3, have been providing a wide variety of SAR images with different resolutions,
modes, and polarizations for maritime application, thereby enabling ship detection.

According to previous research, ship detection usually involves land-ocean segmentation,
preprocessing, prescreening, and discrimination. Constant false alarm rate (CFAR) [1–4],
as a traditional method, is typically used in ship detection. Furthermore, these methods
are dependent on the statistical distribution of sea clutter, which is difficult to accurately
estimate because of sea waves and ocean currents. Besides, the window size of protection
and background influences the detection effectiveness. Land-ocean segmentation is also
unavoidable, thereby causing poor robustness for SAR imagery in those methods. These
traditional ship-detection methods require extensive calculations to address the parameters of
statistical distribution, which is not sufficiently flexible and intelligent, and the detection speed
does not meet actual needs.

At present, with the development of big data and deep learning technologies, convolu-
tional neural networks (CNN) are widely used in mapping ice-wedge polygon (IWP) [5,6],
identifying damaged buildings [7], classifying sea ice cover and land type [8–10], and so on.

Remote Sens. 2021, 13, 1184. https://doi.org/10.3390/rs13061184 https://www.mdpi.com/journal/remotesensing79



Remote Sens. 2021, 13, 1184

Those CNN models successfully developed an automatic extraction framework for high
spatial resolution remote sensing applications in a large-scale application. However, those
CNN models need the input data and ground truth annotation one-to-one correspondence.
In some research fields, the ground truth data are not easy to obtain due to lack of expert
knowledge and time consumption. Besides, a growing number of researchers are beginning
to study object detection based on convolutional neural network (CNN) methods. Single-
stage methods, such as a proposed region-based convolutional network (R-CNN) [11],
Fast R-CNN [12], and Faster R-CNN [13], and two-stage methods such as SSD [14], YOLO
V1/V2/V3/V4 [14–18], and RetinaNet [19], have exhibited impressive results on various
object detection benchmarks based on PASCAL VOC [20] and MS COCO [21] datasets.
However, the natural images differ from the SAR images, which are produced through a
coherent imaging process that leads to foreshortening, layover, and shadowing. Apart from
the image mechanisms, targets in SAR images vary, such as ghosts, islands, artificial objects,
island, or a harbor that displays similar backscattering mechanisms to ships, which lead
to a high rate of false alarms. Therefore, to apply the deep learning algorithm to the SAR
data, researchers have constructed SAR Ship Detection Dataset [22], SAR-Ship-Dataset [23],
OpenSAR [24], and high-resolution SAR image dataset [25] containing Sentinel-1, Radarsat-
2, TerraSAR-X, COSMO-SkyMe, and GaoFen-3 images. These datasets vary in polarization
(HH, HV, VH, and VV), resolution (0.5, 1, 3, 5, 8, and 10 m), incidence angle, imaging mode,
and background.

Compared with the PASCAL and COCO datasets, the SAR datasets have a low volume.
When training the object detectors for ship detection in SAR images, finetuning or transfer
learning is widely used. These CNN methods have been used for target detection in SAR
images, ship detection [26], and land target detection [27], and have performed better than
the traditional methods.

The deficiency of the method is that average precision is low because the models fail
to consider the SAR image mechanisms [22]. However, the pretraining time and detection
speed of classical object detectors usually do not meet the requirements of real-time ship
detection, maritime rescue, and emergency military decision-making. In recent years,
many researchers have paid attention to ship detection using CNN objectors. A grid
CNN was proposed and proved to improve the accuracy and speed of ship detection [28].
Receptive pyramid network extraction strategies and attention mechanism technology
are proved to improve the accuracy of ship detection [29]. These methods have relatively
deep convolutional layers, hundreds of millions of parameters, and involve a long training
time. Besides, in the data-driven CNN model, it is not easy and time-consuming to obtain
the true value of the target bounding box corresponding to the input image. Therefore,
these methods do not meet the requirements of fast processing, real-time response, and
large-scale detection.

To achieve low complexity and high reliability through a CNN, some researchers have
begun to split the images into small patches in the pre-screening stage and then use a rela-
tively lightweight CNN model to classify the patches. Thereafter, the classification results
are mapped onto the original images. A two-stage framework involves pre-screening and
a relatively simple CNN architecture have been proposed [30,31], but in the pre-screening
stage where a simple constant false alarm rate detector is used. As mentioned, the CFAR
detector falls into a large number of calculations to solve the parameters of the statistical
distribution and ignores small targets. Six convolutional layers, three max-pooling layers,
and two full-connection layers are proposed to ship classification based on GF3-SAR im-
ages [26]. In these methods, CFAR and Ostu are typically used to obtain candidate targets
in the pre-screening stage, and then a simple CNN model is used to reduce false alarms
and recognize the ship. Unfortunately, time consumption is increased when sea-land
segmentation and CFAR detector are applied in the pre-screening stage. Although the
Ostu improves the speed of the pre-screening stage, the threshold may not work effectively
and may cause an excessive number of false alarms. After the SAR image preprocessing,
the CNN model can perform ship detection from all patches, but the accuracy of ship
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detection needs to be improved for the small-level ship. Besides, scholars had analyzed and
discussed the ship detection in the CNN method, but the feature visualization and analysis
of ship detection in both VH and VV polarization were less discussed, which is important
in understanding ship detection through the CNN method. Thus, in this letter, we are
mainly concerned with ship detection accuracy and feature visualization and analysis by
using the VH and VV polarization.

Considering these difficulties, we propose a two-stage ship-detection method. In the
first stage, Lee and island filters are used to reduce the noise and false alarms. Then, an
exponential inverse cumulative distribution function (EICDF) [32,33] is applied to quickly
estimate the segmentation threshold and obtain candidate detection results with relatively
few false alarms. Then, all candidates are put in a lightweight CNN to accurately recognize
the ships. Finally, the feature visualization and analysis of ship detection are carried out by
the Grad-class activation mapping (Grad-CAM). The main contributions of the work are
as follows:

1. The first ship detection method for SAR images is proposed. To quickly obtain candi-
date detection results, this study presents a fast threshold segmentation for candidate
detection, which has been proved to reduce false alarms, obtain all candidate ships
with different scales, and save time in the offshore area.

2. Most detectors consist of deep architecture and millions of parameters, thereby re-
sulting in complex extraction features and lengthy pretraining time. In this study, a
simple lightweight CNN architecture, which is fast and effective, was proposed to
detect the ship.

3. The Grad-CAM was introduced to explain and visualize the CNN model, and then
analyze the great attention pixel when the ship and false alarm were predicted.

The rest of this paper is organized as follows. In Section 2, we present the details of the
dataset, data pre-processing, and the proposed method. Section 3 reports the experiment
results. Sections 4 and 5 present the discussion and conclusions, respectively. Finally, a
summary of this paper is provided.

2. Dataset and Proposed Methodology

In this section, first, the Sentinel-1 SAR images are introduced in detail. Second,
the data progress, candidate targets, and dataset conduction are described. Third, the
lightweight CNN model is presented.

2.1. Dataset

In this section, three Sentinel-1 SAR images located in the East Sea of China and one
Sentinel-1SAR image located in the Huanghai Sea were used in the experiment as shown
in Figure 1. The SAR images contain VH and VV polarizations with a pixel resolution of 10
m × 10 m, and the real resolution is 22 m × 20 m in azimuth and range. The information
of SAR images includes the acquisition time of the image, the swath width, and the image
mode is presented in Table 1.

2.2. Data Pre-Processing

In the section, the process of Sentinel-1 SAR images is described in detail. Figure 2
shows the complete workflow of ship detection. The workflow consists of four steps: pre-
processing, candidate target and dataset construction, CNN model building, and training
and ship detection.
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Figure 1. Image coverage of three Sentinel-1 images: (a) 23 June 2020; (b) 11 July 2020; (c) 17 July
2020; (d) 13 February 2021.

Table 1. Detailed information of Sentinel-1.

No. Time Image Mode Polarization
Resolution (Azimuth ×

Range)
Swath (km) Position

1. 23 June 2020 IW VH, VV 22 × 20 250 East China Sea
2. 11 July 2020 IW VH, VV 22 × 20 250 East China Sea
3. 17 July 2020 IW VH, VV 22 × 20 250 East China Sea

4. 13 February
2021 IW VH, VV 22 × 20 250 Huanghai Sea

Figure 2. Workflow of ship detection.

The presence of speckle noise in SAR images causes difficulty in interpretation, thereby
degrading the image quality. Therefore, the refined Lee filter [34] was used to improve
the quality of the image and eliminate the coherence noise before the SAR image input
(Figure 3a). In previous research, land-ocean segmentation was unavoidable in the pre-
process to reduce the false alarms from land, harbor, and island. In the SAR images, the
false alarms are mainly from stones, rocks, artificial targets, and island can usually provide
similar backscatter coefficients of ships. Therefore, the island filter is applied to reduce the
false alarms from the island, which is proved effective [30,35], as shown in Figure 3b. The
ship candidates on the dark sea surface are reserved, and similar changes are visible on the
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edge of the island and reef (see Figure 3c). In summary, the false alarm of the island and
reef is reduced more than that of the ship, leading to an increase in the ship-island contrast.
To achieve ship target enhancement, we applied the morphological process consisting of
erosion and dilation to improve contrast (see Figure 3d). Generally, the ship for detection
is assumed to fit a permanent distribution, and then the threshold is calculated through
probability density function. Similar to the CFAR method, after the morphological process,
the image is similar to exponent distribution, and then the threshold is estimated by EICDF
method with the input image mean value and a priori value of 0.999. The segmentation
result is shown in Figure 3e. Finally, eight-connected domain processing was applied in
the segmentation, and the preliminary result is shown in Figure 3f. After eight-connected
domain processing, we can get the minimum bounding rectangle of the candidate target.
Then, we can obtain all candidate slices according to the minimum bounding rectangle.
Noteworthy, taken the centroid of the target as the origin, the slices are extended to 32 × 32
for the minimum bounding rectangle less than 32 × 32 and the slices are resized 32 × 32
for the minimum bounding rectangle of more than 32 × 32.

Figure 3. Pre-processing of SAR image: (a) SAR image, (b) image of island filter, (c) image of Gaussian
filter, (d) image of the morphological process, (e) binary image, and (f) candidate result.

2.3. Candidate Detection

In this section, the candidate detection is discussed in detail based on the threshold
calculation. In the candidate detection stage, the SAR images acquired on 11 July 2020 (No.2)
and 17 July 2020 (No.3) were used. The two SAR images were cropped into 1000 × 1000
sub-images, with 50% overlap, then all sub-images were preprocessed according to the
data-process method described above. Figure 4a shows four SAR image background
scenes with the size of 1000 × 1000 in the flow of candidate detection. Scene 1, screen
2, and screen 3 include different land and islands and different scale ships, and scene 4
includes ships in inhomogeneous conditions. The contrast between the candidate target
and sea background of the SAR data is more obvious after data preprocessing. Thus, we
had an opportunity to detect the targets using the traditional method. The CFAR was
proved available when it was used to detect the candidates in [30]. However, the CFAR
was usually slow due to the parameter calculation of the sliding window in the entire
image. In addition, the parameter estimation may not work well under the inhomogeneous
conditions of the sea background. Thus, the threshold segmentation was considered to
save time and avoid excessive calculation. In previous studies, the Otsu method was one of
the most successful technologies used in image segmentation. However, the method was
not effective in cases where the difference of the variance in object and background was
significant [36]. In our experiment, the image presented exponential distribution (Figure 4c)
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after the morphological process (Figure 4b), and the EICDF could effectively estimate the
threshold. To quantitatively compare the effectiveness of the method, we further discuss
the aforementioned methods. Figure 4d–f shows the candidate results of the Ostu, CFAR,
and EICDF methods. The results indicated that the ships and false alarms can be detected
in both methods. The remarkable difference was the EICDF estimation with less time cost
and false alarms compared with Otsu and CFAR. Table 2 lists the number of candidates
and time cost. Our goal was to detect all ships with the least time cost and false alarms.
In the four different screens, although all of the ships were detected in both methods, the
number of false alarms and time cost were different. CFAR had a large number of false
alarms and time cost than Otsu and ELCDF. The number of candidates was closer in Otsu
and ELCDF, but ELCDF took less time than Ostu. Hence, it is proved that the ELCDF is
effective with the least time cost and candidates.

Figure 4. Progress of candidate detection: (a) original image, (b) morphological process, (c) histogram and probability
density function, (d) candidate detection by Otsu method, (e) candidate detection by constant false alarm rate (CFAR)
(applying Gaussian distribution and the probability of false alarm is 0.0001), and (f) candidate detection by exponential
inverse cumulative distribution function (EICDF).

Table 2. Calculation of candidates and time.

Method Number of Candidates Time (s)

Scene 1
Otsu 112 0.153
CFAR 236 46.137

ELCDF 92 0.051

Scene 2
Otsu 26 0.034
CFAR 232 46.567

ELCDF 29 0.009

Scene 3
Otsu 63 0.008
CFAR 206 49.428

ELCDF 49 0.002

Scene 4
Otsu 8 0.034
CFAR 207 46.027

ELCDF 10 0.011
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2.4. Policies for Construction of Ship Detection Dataset

As a result of data pre-processing in Section 2.2, all targets contain false alarms and
ships can be detected by ELCDF from the sub-images of No. 2 and No. 3, as shown in
Figure 4f. Figure 5 presents the details of the false alarm and ship slices. For most of the
ship slices, the backscatter intensity is relatively larger than the false alarms, and the rest
are dark sea surface pixels distributed in the edges and corners. By contrast, the false
alarm slices vary widely, some targets have strong backscatter intensity and the other has
relatively weak backscatter intensity.

Figure 5. Candidate target: (a) false alarm and (b) ships.

A dataset including both false alarm slices and ship slices is constructed to make the
CNN model more robust in the training stage. The policies of the dataset construction are
considering both ships of different sizes and non-ship objects with a very similar shape
and structure to that of a ship. Hence, we divide both the ship and false alarm slices into
different categories, and the detailed categories are listed as follow:

The false alarms are divided into four categories:
False alarm #1: The characteristics of this type of false alarm mainly come from

artificial targets such as cross-sea bridges, tall buildings, lighthouses and others, which are
similar to the ship slices, as shown in the first two rows in Figure 5a. Most of these targets
have strong scattering intensity across the center.

False alarm #2: The characteristics of this type of false alarm mainly come from the
land targets, where has a bright ridge line as shown in the third row of Figure 5a.

False alarm #3: The characteristics of this type of false alarm mainly come from natural
targets such as small islands, reefs, and rocks, as shown in the fourth row of Figure 5a. Most
of those targets are similar to the medium-level ship in the third row of Figure 5b, which
has low scattering intensity across the center and is surrounded by a dark sea surface.

False alarm #4: The characteristics of this type of false alarm mainly come from
azimuth ambiguity as explained in [37], which usually brings a great challenge in ship
detection through the traditional method. This type of false alarm is distributed at the
center of the slice, close to the backscattering intensity of the ships, as shown in the fifth
row of Figure 5a.

The ships are divided into three categories:
Ship #1: The characteristics of these ships have a strong scattering intensity and a

large-level size, as shown in the first two rows in Figure 5b.
Ship #2: The characteristics of these ships have a strong scattering intensity and a

medium-level size, as shown in the third and fourth row in Figure 5b.
Ship #3: The characteristics of these ships have a low scattering intensity and a small-

level size, which is similar to the ghost, as shown in the fifth row of Figure 5a,b.
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After the pre-process and candidate detection by the VH and VV polarizations of No.
2 and No. 3 SAR images, then, labeled the false alarm and ship by comparing manually
the SAR image and the Google Earth high-resolution optical image, and by considering
the scattering characteristics and context information of targets. The results of a dataset
of the ship and false alarms are listed in Table 3. VH and VH polarization have a total of
4198 false alarm slices and 3132 ship slices.

Table 3. Pre-process detection result.

Name Number of Slices Polarization

False alarms 4198
VH, VVShips 3132

2.5. CNN Model

As mentioned, the classic object detectors tend to have deep convolutional layers and
more training parameters, which often take a long time to train. In this letter, we introduce
a two-layer lightweight CNN model similar to the classic LeNet-5 model [38], called the
modified LeNet-5 (M-LeNet). Detailed information on the proposed CNN model is listed
in Table 4. The CNN model contains convolution, MaxPool, rectified linear units (ReLU),
dropout, and full-connection layers.

y = φ

(
∑

i
wixi − θ

)
. (1)

Table 4. Details of M-LeNet model.

Name Layer Type Input Size Kernel Size Output Size

Input Input - - 1 × 32 × 32
C1 Convolution + ReLU 1 × 32 × 32 3 × 3 16 × 32 × 32
P1 MaxPooling + Dropout 16 × 32 × 32 2 × 2 16 × 16 × 16
C3 Convolution + ReLU 16 × 16 × 16 3 × 3 32 × 16 × 16
P2 MaxPooling + Dropout 32 × 16 × 16 2 × 2 32 × 8 × 8

FC1 Fully connected +
ReLU + Dropout 32 × 8 × 8 - 512

FC2 Fully connected +
ReLU + Dropout 512 - 128

FC3 Fully connected 128 - 2

In general, the convolution operation computes its output as a nonlinear function φ of
the weighted sum of its inputs and of a bias term θ, as shown in Equation (1).

In the previous studies, the input size was set to 60 × 60, 64 × 64, and 128 × 128,
respectively [26,30,31,39]. In this letter, the input size was set to 32 × 32 to reduce the
calculation and simplify the model. As the length and width of some marine objects in
this study were larger than 32 pixels, the resize process was applied in the pre-process
stage to ensure the same input size. To limit the number of weights to learn, all the filter
kernels were set to 3 × 3. In the beginning, 16 convolutional kernels of size work on the
input images to extract features, after which the outputs are downsampled by max-pooling
kernels with a size of 2 × 2. Then, the second convolutional layer filters the outputs
of the first pooling layer with 32 filter kernels. Thereafter, the convolutional layers are
downsampled by the second pooling layer to shrink the feature maps. Finally, three fully
connected layers (FC1 with 512 output neurons, FC2 with 128 output neurons, and FC3
with 2 output neurons) take the outputs of the dropout layers as input, and then the softmax
function is used to predict the labels of the targets after the final output vector. The strides
of all the convolutional layers and all the pooling layers are set to 1 and 2, respectively.
Furthermore, overfitting may occur easily when a neural network is trained on a small
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dataset. The dropout layer [27] is used for every max-pooling and fully connected layer
to prevent overfitting and improve the performance of the neural network. Furthermore,
rectified Linear Unit (ReLU) is used for every convolutional layer and fully connected layer
to prevent a vanishing or exploding gradient. The mathematical derivation of the forward
and backpropagation algorithm was proved and discussed in [40].

The cross-entropy loss function is used to minimize the error between the ground
truth and the CNN prediction output, which can be written as follows:

L(w) =
1
m

m

∑
i=1

P
(

y(i)
∣∣∣x(i); w

)
, (2)

where w is the trainable weight parameter, m represents the total number of training
samples, and yi, xi refer to the true label and predicted label of the ith example, respectively.

3. Experimental Results and Analysis

For the comprehensive evaluation of the ship detection result using the proposed
method, two sub-images of the No. 1 SAR image acquired on 23 June 2020 located in
the East China Sea area were clipped, as shown in Figure 6a–d. The sizes of the two sub-
images were 3791 × 2847 and 2589 × 1565. Besides, a sub-image of 4339 × 3258 was also
clipped from the No.4 SAR image acquired on 13 February 2021, located in the Huanghai
Sea area, as shown in Figure 7a,b. Figure 6 shows that the land and island contain sea
areas in both regions. The azimuth ambiguities are often caused by the sampling of the
Doppler spectrum at finite intervals of the pulse repetition frequency (PRF) due to the
acquisition mode of two channels [37]. Thus, in the SAR images, a small amount of “ghost”
appears around the ship in high-speed movement, but is not negligible in ship detection.
Figure 6e,f shows the azimuth ambiguities caused by ships moving at high speed. In
general, the scattering intensity of co-polarization (see Figure 6b,d) is higher than that of
cross-polarization (see Figure 6a,b). Thus, the same targets may present different scattering
intensity in VH and VV polarization. The characteristic of the target in VH polarization is
less than that in VV polarization, especially for the small targets. In previous studies, the co-
polarization data were also selected for ship detection. However, the VH polarization is less
influenced by azimuth ambiguities. Thus, in PolSAR images, the azimuth ambiguity was
usually suppressed by two cross-polarization channels [37]. However, in previous studies,
the performance of ship detection by VH and VV polarization was less discussed. Thus,
considering the characteristics of dual-polarization SAR in marine imaging, we utilized VH
and VV to detect the ship using the CNN method. Figure 8 shows the candidate results of
ship detection based on the method described in Section 2.3. The sub-image with complex
background presents that all ships can be detected, and false alarm caused by land, island
and azimuth ambiguity also can be detected. There are 122 true ships and 244 false alarm
targets in the sub-images of No. 1 SAR image and 17 true ship and 137 false alarm targets
in the sub-image of No. 4 SAR image. The ground truth can be obtained by using SAR
expert knowledge interpretation and Google Earth in order to evaluate the performance
of the proposed method in the next section. It should be noted that the interpretation
of those ground truth is to identify false alarms by comparing the SAR image with the
high-resolution optical image on Google Earth and then identifying the ship based on the
scattering characteristics and context of the ship on the SAR image.

3.1. Training Details

In this section, the implementation of the hardware and platform is introduced in our
experiments. We perform the experiments on the Ubuntu 14.04 operating system with
an 11.9 GB memory NVIDIA TITAN Xp GPU. Inspired by the hyperparameters set of the
literature [23,41,42], the learning rate, batch size, max epoch, moment, and momentum were
set at 0.01, 32, 0.9, 1000, and 0.0005, respectively. Considering the SAR characteristics, we
discarded the data augmentation in our experiment [43]. A set of optimal hyperparameters
for a learning algorithm list in Table 5.
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Figure 6. Sub-images of No. 1 image vertical–horizontal (VH) and vertical–vertical (VV) polarizations
in the East China Sea area. The red rectangle in (e,f) shows the azimuth ambiguities caused by ships
in VH and VV polarization.

Figure 7. Sub-images of No. 4 image VH and VV polarizations in the Huanghai Sea area.

Figure 8. Results of candidate detection. (a,b) The sub-image of the No. 1 SAR image located in the
East China Sea area. (c) The sub-image of the No. 4 SAR image location in the Huanghai Sea area.
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Table 5. The hyperparameters settings.

Hyperparameters Value

Learning rate 0.01
Momentum 0.9

Weight decay 0.005
Epochs 1000

Batch size 32
Learning rate scheduler StepLR (step size = 200, gamma = 0.1)

Optimizer SGD
Loss function cross-entropy

To compare with our method, we also introduced machine-learning methods such as
KNN, SVM, RF, and the classic CNN LeNet-5 method, which was commonly used and
showed good performance in the classification task. In this letter, KNN, SVM, and random
forest (RF) were implemented on the Ubuntu 14.04 operating system and Scikit-learn in
Python. The parameters of KNN, SVM, and RF can be set with the default parameters.
Besides, the classic CNN LeNet-5 method was also used. The hyperparameters of LeNet-5
were set as the M-LeNet. To ensure similarity in input data, these data were normalized to
0 and 1, with the values of mean and variance set to 0.5.

The training and validation samples are listed in Table 6. In all methods, the training
and validation sample comes from 11 July 2020 (No. 2) and 23 July 2020 (No. 3), and the
ratio is set at 8:2 in the training stage. In the testing stage, the test sample comes from the
SAR data acquired on 23 June 2020 (No. 1) and 13 February 2021 (No. 4).

Table 6. The information of training, validation, and test data.

Samples Location SAR Image Width × Heigh False Alarm Ship

Training and
validation

East China Sea
11 July 2020 25,138 × 8667

4198 313217 July 2020 25,493 × 16,718

Testing East China Sea 23 June 2020 3791 × 2847, 2589
× 1565 244 122

Huanghai Sea 13 February 2021 4339 × 3258 137 17

3.2. VH Polarization Results

In this section, we first conducted the experiments on VH polarization by KNN,
SVM, RF, LeNet-5, and our method. Figure 8 shows the candidate results of the ship
and false alarm. Apart from the true ship, many false alarm targets are detected in the
land and island areas. As mentioned above, in order to detect ships more accurately,
a lightweight CNN method is proposed. Meanwhile, the KNN, SVM, RF, and classic
LeNet-5 methods were introduced to indicate the effectiveness of our methods. Figure 9
shows the results of different methods through which all ships could be detected and false
alarms were reduced further. The KNN method presents more false alarms and fewer true
ships than the other methods. The performance of different machine learning methods
was discussed [30,44]. Noi and Kappas [44] confirmed that when the number of training
samples increases from 1267 pixels to 2619 pixels (each class has 135 polygons) in land
cover classification experiments, the accuracy of SVM and RF is significantly better than
that of KNN. Wang et al. [30] also demonstrated that the performance of KNN is less than
that of RF and SVM in ship detection. Thus, the performance of RF and SVM is reasonably
better than that of KNN. In the CNN method, the performance of M-LeNet is better than
that of the LeNet-5 method.
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Figure 9. Sub-image 1 (up) and sub-image 2 (down) detection results of VH polarization in the East China Sea area.
(a–e) KNN, SVM, RF, LeNet-5, and M-LeNet, respectively. (f–j) KNN, SVM, RF, LeNet-5, and M-LeNet, respectively. (Red
rectangle: ship, red rectangular box with arrow: false alarm, and blue rectangle: missed ship).

To quantitatively evaluate the performance of KNN, SVM, RF, LeNet-5, and M-LeNet,
we introduced the evaluation indicator, such as accuracy, precision, recall, and F1 score. In
these evaluation indicators, the F1 score is the weighted average of precision and recall,
and is usually more useful than accuracy. The equations are as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
, (3)

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

F1 Score = 2 × Recall × Precision
Recall + Precision

, (6)

where true positive (TP) means that the ships are correctly predicted, true negative (TN)
means that the ships are predicted to be false alarms, false positive (FP) means that the
actual class is a false alarm and the predicted class is the ship, and false negative (FN)
means that the actual class is the ship but the predicted class is a false alarm. In the CNN,
the input data are the slices, the output is the probability of ships and false alarms. Hence,
the evaluation performance is based on the number of ships and false alarms. Then, the
accuracy, precision, recall, and F1 score were evaluated based on ground truth and the
number of predictions of the ship and false alarm slices.

In addition, the number of missed ships and the number of false alarms were also
calculated. In the sub-images, 122 true ships were obtained through expert knowledge
interpretation using the SAR scattering mechanism. Table 7 presents the detailed evaluation
indicators. RF provides the best evaluation indicators compared with KNN and SVM for
the machine learning method. M-LeNet presents the best evaluation indicators for the
CNN method. The number of the least missed ship is one in the RF method, and the
number of the most missed ship is five in the KNN method. The number of the least false
alarms is zero in M-LeNet, and the number of the most false alarms is eleven. The false
alarm mainly occurs in the land areas in the lower-left corner of the image, which shows
a structure similar to a ship, with low surrounding background. Furthermore, the false
alarms caused by azimuth ambiguity are also incorrectly detected. Compared with VV
polarization, VH polarization has lower backscattering, especially for small targets. Thus,
the poor performance of this type of ship fails to be detected in the CNN methods, as
indicated by the blue rectangles in Figure 9. The CNN method generally exhibits better
performance than the machine learning method. Although several ships are missed, the
overall performance of M-LeNet is better than that of RF. The reason is that the RF classifier
based on the statistical model is sensitive to the image pixels, while the convolution and
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pooling kernel operations lead to the small targets miss detailed texture information and
rich semantic information in the CNN method. Thus, the performance of small target
detection in RF is better than that of M-LeNet and the performance of false alarm detection
in M-LeNet is better than that of RF. Although the number of correct ship detections by
M-LeNet is not as much as that of RF, the false number of ship detections is less than that
of RF and LeNet-5. The comprehensive evaluation indicators such as the F1 score, accuracy,
and recall show better performance than RF. M-LeNet showed the best performance with
an F1 score of 0.99 and an accuracy of 99.40%. Besides, in order to show our CNN model
more transferability, a SAR image located in the Huanghai Sea area was used to test the
performance of ship detection. In order to quickly evaluate the accuracy, a sub-image
with the size of 4339 × 3258 was clipped. In the sub-images, 17 true ships were obtained
through expert knowledge interpretation and Google Earth. Although the number of the
ship is less than the sub-images in No. 1, the VH and VV polarization shows different
sea background. Figure 10 shows the detection results and Table 8 presents the detailed
evaluation indicators. The LeNet-5 presents better performance than KNN, SVM, and
RF with an F1 score of 0.90 and an accuracy of 98.05%. The M-LeNet shows the best
performance in those methods with an F1 score of 0.97 and an accuracy of 99.35%.

Table 7. Detailed evaluation index of VH polarization in the East China Sea area.

Polarization Method Accuracy (%) F1 Recall Precision Correct False Miss

VH

KNN 95.20 0.94 0.96 0.91 117 11 5
SVM 96.98 0.96 0.98 0.94 119 7 3
RF 98.81 0.98 0.99 0.98 121 3 1

LeNet-5 97.60 0.97 0.95 0.98 116 2 6
M-LeNet 99.40 0.99 0.98 1.0 120 0 2

The best evaluation criteria are highlighted in bold and underlined in each column.

Figure 10. Sub-image detection results of VH polarization in the Huanghai Sea. (a–e) represent KNN,
SVM, RF, LeNet-5, and M-LeNet, respectively. (Red rectangle: ship, red rectangular box with arrow:
false alarm, and blue rectangle: missed ship).

Table 8. Detailed evaluation index of VH polarization in the Huanghai Sea area.

Polarization Method Accuracy (%) F1 Recall Precision Correct False Miss

VH

KNN 96.10 0.82 0.82 0.82 14 3 3
SVM 97.75 0.84 0.76 0.92 13 1 4
RF 94.16 0.67 0.53 0.90 9 1 8

LeNet-5 98.05 0.90 0.82 1.0 14 0 3
M-LeNet 99.35 0.97 0.94 1.0 16 0 1

The best evaluation criteria are highlighted in bold and underlined in each column.
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3.3. VV Polarization Results

Figure 11 shows the detection results of VV polarization. Similar to VH polarization,
the more false alarms were reduced, the more ships were retained. In sub-image 1, the
more false alarms mainly appeared in Figure 11a,b,d. In sub-image 2, the false alarms
mainly existed in Figure 11f,g. Figure 11 shows that RF performs best in machine learning
and M-LeNet performs best in deep learning. To quantitatively compare the performance
of different methods, we calculated the accuracy, precision, recall, and F1 score. Table 9
presents the results of the evaluation indicators. The number of the least missed ship is
zero in the RF and SVM method, and the number of the most missed ship is ten in the
LeNet-5 method. The number of the least false alarms is three in M-LeNet, and the number
of the most false alarms is twenty-one in the KNN method. RF and SVM could detect
all the true ships, but a few false alarms were retained compared with VH polarization.
Similar to the performance of VH polarization, KNN had more missed ships and false
alarms. LeNet-5 performed worst with more missed ships. Although the number of missed
ships in the M-LeNet method was more than that of RF and SVM, the comprehensive
evaluation indicators showed the best performance with an F1 score of 0.98 and an accuracy
of 98.2%. The characteristics of false alarms caused by azimuth ambiguity are similar to
those of the true ship, so distinguishing the false alarms is difficult. Although the M-LeNet
method could reduce false alarms caused by azimuth ambiguity more effectively than
other methods, the false alarms still existed. In [31], 680 ships and 170 ghosts were selected
for training; the experiments on the Sentinel-1 images showed encouraging results, but
further improvement is needed. In our experiment, the number of ghosts was under
0.2%, which indicated a great imbalance for ship and ghost training samples. Thus, the
predicted performance for the ghost is poor. Figure 12 shows the detection result and
Table 10 presents the evaluation index of VV polarization in the No.4 sub-image of the
Huanghai Sea area. Different from the VH polarization in Figure 10, the VV polarization
image shows an inhomogeneous pattern in the SAR scene due to other marine phenomena
that may exist in the images, e.g., moderate-to-high wind, upwelling, and eddies [45,46].
In those methods, the RF shows the better performance with an F1 score of 0.97 and an
accuracy of 99.35% than other methods. Although the M-LeNet achieves an F1 score of 0.92
and an accuracy of 98.05%, the M-LeNet enables all ships detected in the inhomogeneous.

Figure 11. Sub-image 1 (up) and sub-image 2 (down) detection results of VV polarization in the East China Sea area:
(a–e) show KNN, SVM, RF, LeNet-5, and M-LeNet, respectively. (f–j) represent KNN, SVM, RF, LeNet-5, and M-LeNet,
respectively. (Red rectangle: ship, red rectangular box with arrow: false alarm, and blue rectangle: missed ship).

Table 9. Detailed evaluation index of VV polarization in the East China Sea area.

Polarization Method Accuracy (%) F1 Recall Precision Correct False Miss

VV

KNN 91.59 0.89 0.94 0.85 115 21 7
SVM 95.80 0.95 1.0 0.90 122 14 0
RF 97.00 0.96 1.0 0.92 122 10 0

LeNet-5 94.89 0.93 0.92 0.94 112 7 10
M-LeNet 98.20 0.98 0.98 0.98 119 3 3

The best evaluation criteria are highlighted in bold and underlined in each column.
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Figure 12. Sub-image detection results of VV polarization in the Huanghai Sea area. (a–e) represent KNN, SVM, RF,
LeNet-5, and M-LeNet, respectively. (Red rectangle: ship, red rectangular box with arrow: false alarm, and blue rectangle:
missed ship).

Table 10. Detailed evaluation index of VV polarization in the Huanghai Sea area.

Polarization Method Accuracy (%) F1 Recall Precision Correct False Miss

VV

KNN 95.20 0.81 1.0 0.68 17 8 0
SVM 96.98 0.85 0.82 0.88 14 2 3
RF 99.35 0.97 0.94 1.0 16 0 1

LeNet-5 98.05 0.92 0.94 0.89 16 2 1
M-LeNet 98.05 0.91 1.0 0.85 17 3 0

The best evaluation criteria are highlighted in bold and underlined in each column.

3.4. CNN Feature Visualization Analysis

Deep neural networks have enabled unprecedented breakthroughs in classification,
semantic segmentation, and object detection task. Although those CNN networks enable
superior performance, interpreting and visualizing them are difficult due to the lack of
decomposability into intuitive and understandable components [47]. CAM was proposed
to identify discriminative regions by a restricted class of image classifications and to gain
a better understanding of a model. However, any fully connected layer of the model
was removed, and instead of global average pooling (GAP) to obtain the localization of a
class [48]. Thus, altering the model architecture was unavoidable, training is needed again,
and the available staffing scenarios are restricted. Grad-CAM improved the CAM by using
the gradient information flowing into the last convolutional layer of CNN to understand
the importance of each neuron for a classification decision [49]. Similar to CAM, Grad-CAM
uses the feature maps produced by the last convolutional layer of a CNN. In CAM, we
weigh these feature maps using weights taken out of the last fully connected layer of the
network. In Grad-CAM, we obtained neuron importance weight using ac

k (Equation (5))
calculated based on the global average pool, with the gradients over the height dimension
(indexed by i) and the width dimension (indexed by j). Therefore, Grad-CAM obtained the
class discriminative localization map Lc

Grad−CAM without a particular model architecture
because we can calculate gradients through any kind of neural network layer we want.
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Lc
Grad−CAM performs a weighted combination of forward activation maps, and follows it

by ReLU to obtain the final class discriminative saliency map, as shown in Equation (6).

ac
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

, (7)

Lc
Grad−CAM = ReLU

(
∑
k

ac
k Ak

)
, (8)

where weight ac
k is the feature map k of a target class. Ak

ij represents feature map k. Ak is
the feature map of a convolutional layer, Lc

Grad−CAM ∈ Ru×v of height v, and width u for

any class c, yc is the feature map Ak of a convolutional layer, i.e., ∂yc

∂Ak
ij

. Detailed information

can be found in [49].
The output of Grad-CAM is a “class-discriminative localization map,” i.e., a heatmap

where the hot part corresponds to a particular class. Figures 13 and 14 show the Grad-CAM
visualization heatmap for “false alarm” and “ship” of VH and VV polarization, respectively.
The heatmap represents the image region with the greatest attention from CNN for the
correct prediction of images belonging to a particular class. Figures 13a and 14a show great
attention through the CNN prediction of images belonging to false alarms. These image
slices belong to the same area of the VH and VV polarization, which contain buildings
near the sea-land, small island, reef, and azimuth ambiguity. The heatmap of false alarms
shows that the surrounding background was conducive to the false alarm recognition. The
azimuth ambiguity presented different characteristics in VH and VV polarization; a similar
phenomenon has been discussed in Section 3. Fortunately, the azimuth ambiguity could be
observed in the first row in VH and VV polarization. The azimuth ambiguity scattering
intensity in VV polarization was more obvious than that in VH polarization. Furthermore,
the false alarm in VV polarization presented different characteristics. One focused on the
surrounding background from the heatmap, and another focused on the azimuth ambiguity
itself, which was why the azimuth ambiguity of false alarm could not predict better in
polarization. Figures 13b and 14b show great attention through the CNN prediction of
images belonging to the ship. The different scale ships with high scattering intensity had
an important contribution to ship recognition than the surrounding sea surface, which was
different from the false alarm in the VH and VV polarization.

Figure 13. Visualization of VH polarization: (a) heatmap of false alarm and (b) heatmap of ship.
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Figure 14. Visualization of VV polarization: (a) heatmap of false alarm and (b) heatmap of ship.

4. Discussion

The performance of ship detection in CNN methods proves its great potential in
different backgrounds such as incidence angles, wind speeds, sea states, and ocean dynamic
parameters that mainly influence the backscattering coefficient between the ocean surface
and the ship [23,50,51]. Besides, the scattering characteristics of ghosts caused by azimuth
ambiguity when the ship is moving at high speed is similar to the characteristics of the
ship, thereby causing difficulty in distinguishing between the ship and ghost in a single-
polarization image. The CNN method also shows great potential. In this study, the
performance of lightweight CNN does not completely suppress the ghost due to the lack
of adequate training samples in VV polarization. Fortunately, the ghost in VH polarization
is less affected, and thus, the performance of lightweight CNN shows the best result in VH
polarization. Future work will be conducted to add the training samples of the ghost.

In the object detectors, the size of small targets is less than 32 × 32 for nature im-
ages [21]. However, the SAR images are different from the nature images, and the size
of the ship is usually much less than 32 × 32, especially for ships operating offshore.
Figure 15 shows the size of the ship in the test SAR image. Almost all ships have an area
of less than 32 × 32, and most ships have an area of less than 24 × 25. The SVM and RF
methods based on statistical characteristics show good performance with the fewest ships
missed, especially the small ships in VV polarization; however, some false alarms cannot
be avoided. The PFN module and feature fusion strategy are often used to improve the
detection accuracy and reduce the false alarms of the small target [26,42,52]. Furthermore,
those modules always integrate into the VGG16 and ResNet-50 networks [42,53]; the CNN
models are complex and have many parameters to train. The PFN module and feature
fusion strategy show effectiveness for small goals in object detectors, but may show poor
effectiveness for much less than 32 × 32. Thus, in this study, we provide a dataset and
two-stage method for ship detection with the SAR image, where even extremely small
ships can be completely recognized in the first stage. In the second stage, the different scale
candidates in the test SAR images can be accurately detected by considering context back-
ground information. The best and stable performance of ship detection is demonstrated by
M-LeNet, which can reduce the false alarms and missed ships, and obtain higher precision
in VH and VV polarization than other methods in different ocean areas and scenarios.

In the previous studies, the ship detection using sentinel-1 SAR images was carried
out by Wang et al. [54]. The performance of ship detection can reach an accuracy of 98.07%
and an F1 score of 0.90 by Faster RCNN, thus, the number of false alarms was detected to be
relatively large [54]. The accuracy could reach 90.05% based on YOLOv2 for imagery [55].
The test precision and F1 score were 91.3% and 0.92 for detecting multiscale ships and
small ships, when using the GF-3 dataset, respectively [42]. In [29], the attention module
was used to improve the performance of ship detection, the recall, precision, and F1 score
could reach 0.96, 96.4%, and 0.96, respectively. Although the performance of ship detection
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was improved, the model complexity had increased. To reduce model complexity, a simple
CNN was used to detect the ship, and the accurate rate of ship detection was 97.2% when
using the spaceborne image [30]. The lightweight CNN was proposed to improve the
accuracy and F1 score in our experiments. The performance of lightweight CNN shows that
the best result can reach an accuracy of 99.4% and an F1 score of 0.99 based on Sentinel-1
images. Figure 15 shows the most ship has an area of less than 24 × 25 pixel. The test
accuracy and F1 score also demonstrate the proposed method can detect the small-level
ship. To sum up, the proposed method can detect the ship effectively in contrast to that
with the detector above. Unfortunately, it was rarely analyzed and visualized the feature
to gain a better understanding of a model in the previous studies. In order to understand
and visualize the model, the Grad-CAM was used, and the result demonstrated it could
help us understand the mechanism of how the ship and false alarm was predicted by
the lightweight CNN model work. Hence, based on the visualization and analysis of the
Grad-CAM, it can be used to help to detect the ship with the weakly unsupervised method
in future work.

Figure 15. Area of the ship in test data.

From the above discussion, the lightweight CNN we proposed can show good perfor-
mance in different ocean areas and scenarios. The difference with those detectors [29,54,55]
does not need the input data and ground truth bounding box one-to-one correspondence,
and only labeled in ship and no-ship. Besides, the CNN model we proposed is simplified as
a shallow convolution neural network and improves efficiency in comparison with Faster
RCNN, SSD, and Yolo, etc. However, comparing with those detectors, the CNN model we
proposed is not end-to-end. To obtain the detect result, the data preprocess first needs to
be applied to SAR images, then the lightweight CNN is used to accurately detect the ship.
Although, the proposed method shows an accuracy of 99.4% and an F1 score of 0.99, how
to simplify the data preprocess and integrate it into the CNN model to achieve end-to-end
training is worth considering in future work. Besides, the ocean surface is modulated and
complexed by ocean dynamics processes such as wind, waves, upwelling, and eddies, as
well as sea state. Due to the limited data for training, it cannot cover all sea state conditions.
The CNN model was not truly explored with comparably limited training data by Zhang
et al. [5]. Hence, in order to make the CNN model to have more generalization capability,
more data should be added in future work.

5. Summary and Conclusions

In this paper, the two-stage ship detection method is proposed in a complex back-
ground, i.e., in the offshore area. First, the SAR data pre-process contains the image filter,
island filter, and threshold segmentation. The island filter is proposed to improve the ship
contrast using a convolutional kernel, and threshold segmentation is proposed for slice
production and candidate detection for time-saving. Second, the CNN model is proposed
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for slice fine classification and recognition. The experiment demonstrates that compared
with the KNN, SVM, RF, and LeNet-5 methods, the proposed method can obtain stable
accuracy in VH and VV polarization. Furthermore, although the proposed method cannot
eliminate the false alarm caused by azimuth ambiguity in VV polarization because the few
ghosts of false alarms sample in the training stage are insufficient to maintain the balance
between the ship and false alarm, the false alarm caused by azimuth ambiguity in VH
polarization give a little contribution. The detection performance shows better results in
both VH and VV polarization for the ship size of much less than 32 × 32. Fortunately, the
CNN interpretation and visualization of the ship and false alarm are accurate predictions
through Grad-CAM visualized analysis. The experiments demonstrate that the high scatter-
ing intensity of the ship itself provides an important contribution to ship recognition rather
than the surrounding sea surface in VH and VV polarization. However, the surrounding
sea surface is useful for false alarm recognition in VH and VV polarization.
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Abstract: Sea surface temperature (SST) has important practical value in ocean related fields. Nu-
merical prediction is a common method for forecasting SST at present. However, the forecast results
produced by the numerical forecast models often deviate from the actual observation data, so it is
necessary to correct the bias of the numerical forecast products. In this paper, an SST correction
approach based on the Convolutional Long Short-Term Memory (ConvLSTM) network with multiple
attention mechanisms is proposed, which considers the spatio-temporal relations in SST data. The
proposed model is appropriate for correcting SST numerical forecast products by using satellite
remote sensing data. The approach is tested in the region of the South China Sea and reduces the root
mean squared error (RMSE) to 0.35 ◦C. Experimental results reveal that the proposed approach is
significantly better than existing models, including traditional statistical methods, machine learning
based methods, and deep learning methods.

Keywords: SST; bias correction; deep learning; ConvLSTM; 3D-C BAM

1. Introduction

Oceans take up almost 71% of the entire surface of the globe, and are closely related to
human activities. Sea surface temperature (SST) is the water temperature near the surface
of the ocean. SST is an important physical quantity for global climate studies [1], marine
ecosystem studies, and related applications. The forecast accuracy of SST is essential for
marine disaster prevention, navigation, ocean fishery [2], and other ocean-related cases.
SST prediction methods can be classified into two major categories [3]. One category is the
numerical model, which is based on physics [4]. The other category is data-driven models,
based on data analysis. With the improvement and development of the numerical model,
the accuracy of numerical prediction has been improved. However, the numerical model
cannot completely describe various physical processes in the ocean [5,6]—an uncertainty
of the initial field [7,8]—and calculation errors exist in the numerical solution process of
the model. Therefore, the prediction results of numerical forecast products need to be
further corrected.

Currently, there are mainly three kinds of methods for numerical forecast products cor-
rection: traditional statistical methods, machine learning based methods, and deep learning
methods. Statistical post-processing [9] is the typical one, such as model output statistics
(MOS) approach [10,11], Kalman filtering [12,13], and Bayesian probability decision [14],
all of which have achieved some results. As the machine learning, deep learning develop-
ment [15], and computing performance improved, data-driven approaches were introduced
into numerical forecast product correction, such as SVM [16], BP neural network [17], and
CNN [18]. However, current methods for numerical forecast products correction have
weaknesses, as they do not include the spatio-temporal relationships among the datasets.
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Meanwhile, observation data of buoys in the ocean have been lacking for a long time. Since
the launch of satellites equipped with ocean observation sensors, ocean remote sensing
data observed from satellites have been widely used in in coastal erosion calculation [19],
offshore oil spill [20], disaster warning [21], and other related research. Therefore, we con-
sider combining deep learning methods with numerical models [22] and applying satellite
data into numerical prediction models for SST numerical forecast products correction.

In this paper, we propose a new hybrid SST correction model, which not only takes
into account the influence of spatial distribution of the dataset, but also takes into account
the importance of temporal information. This approach is inspired by the outstanding
performance of the ConvLSTM in capturing the spatio-temporal relationships and the at-
tention mechanism in improving feature utilization. Combining these novel methodologies
together will create a more effective model to correct SST as it will create a greater synergy
than the individual models on their own.

In recent years, with the rapid development of machine learning, deep learning
methods have been widely used in many fields, such as natural language processing [23],
audio classification [24], community detection [25], and image restoration [26]. Some
researchers have already used these methods in areas related to our research. For example,
Shi et al. [27] proposed the ConvLSTM method for precipitation prediction. D. Liu et al. [28]
proposed a combination of empirical mode decomposition (EMD) algorithm and encoder
decoder long short-term memory (EN-DE-LSTM) architecture for water flow prediction.
Z.I. Petrou et al. [29] proposed an encoder–decoder network with a convolutional long
short-term memory unit for sea ice prediction. Chen.R et al. [30] proposed the hybrid
CNN-LSTM model for typhoon forecasting, which improved the accuracy of typhoon
forecasting. A. Y. Winona et al. [31] use the so-called LSTM method to forecast the sea
level and X. Kun et al. [32] proposed LSTM-Attention temperature prediction model I by
combining LSTM with Attention mechanism in order to make full use of historical data
and improve the accuracy of temperature prediction.

Our new hybrid SST correction model can be used to correct SST numerical forecast
products more accurately. 3DCNN is used to determine the spatial relations of various ma-
rine variables. Simultaneously, 3D-CBAM model is used to improve the utilization of spatial
features and marine environmental features. ConvLSTM is used to determine the spatio-
temporal relationships of the data. The attention model is used to assign the weight of
historical information. Our proposed model can effectively determine the spatio-temporal
dependencies between SST field data, and at the same time introduce an attentional mecha-
nism to correct the ConvLSTM output by learning the appropriate weights at each step,
thus achieving high-precision SST correction. A series of experimental results show that
the proposed method can achieve better accuracy in SST correction.

The contributions of this paper include:

1. We propose a new hybrid model for SST correction, which uses satellite remote sensing
observation data and spatio-temporal data of sea surface variables. The performance
of our model is then evaluated;

2. The attention mechanism is used to assign weights to the information in the dataset,
which reflect the influence of spatio-temporal information on the SST correction, so
that the key information is highlighted and thus we obtain better correction results;

3. Taking the South China Sea area (10◦N–15◦N, 125◦E–130◦E) as an example, the ac-
curacy rate was improved by 41.9% after the correction. We analyze the influence
of input sequence with different time steps, different model parameters and other
variables on the correction effect through the experiments. Experiments on the dataset
of the South China Sea show that our new hybrid model is more effective than existing
methods, including some classical machine learning methods.

The paper is structured in the following manner: Section 2 takes a look at the current
state of correction methods for numerical forecast products and deep learning in the
discipline; Section 3 elucidates the central problems of this paper; Section 4 introduces
the new hybrid SST correction model; Section 5 introduces the evaluation scheme, the
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experimental set-up, and presents the experimental results; and, finally, Section 6 concludes
this work and deals with recommendations for future work.

2. Related Work

Our research focuses on bias correction of SST numerical forecast products. In order
to improve the accuracy of numerical forecast products, many scholars have proposed
several methods to correct numerical prediction results. For example, Vannitsem et al. [10]
and Tian et al. [11] used the mode output statistics (MOS) approach to establish a linear
statistical relationship between model predictions and actual observations to improve SST
forecasting accuracy, respectively. Krishnamurti et al. [33] used multiple regression to
determine coefficients from multi-model forecasts and observations to improve weather
and seasonal climate forecasts. Xu et al. [34] used the classical moving average method to
analyze and correct the temperature forecast of the model, which improved the forecast
accuracy to a certain extent. Libonati et al. [12] and Pelosi et al. [13] used Kalman filter
to improve the quality of ensemble forecast in view of the existing deviation of ensemble
forecast. X. Zhang et al. [35] proposed a method for correcting wave height prediction
results of SWAN model based on Gaussian process regression (GPR).

With the continuous development of technology, the theory of machine learning
has shown its extraordinary ability and great potential in the field of ocean and weather
prediction and correction [36]. The correction model based on machine learning can
capture the nonlinear variation [37] between the numerical model simulation results and
the observation, so as to obtain more accurate model correction results. For example, J. Zeng
et al. [16] used SVM to correct the weather forecast model, and the accuracy was effectively
improved. Wang A et al. [38] designed a Random Forests-based adjusting method to correct
the output of the WRF model and the RMSE of wind achieved an average decrease of 40%
compared with the WRF model.

In addition, deep learning has injected fresh blood into artificial intelligence and
machine learning. Deep learning is used to extract potential features and learn complex
relationships in meteorological and oceanographic data, which provides a new idea for
ocean and weather forecast and correction [39]. For example, Makarynskyy [40] improved
wave parameter short-term forecasts based on artificial neural networks. Xu X. et al. [41]
presented an ordinal Distribution Autoencoder (ODA) model, which can effectively correct
numerical precipitation prediction based on ECMWF and SMS-WARMS model meteorolog-
ical data. T. Wang et al. [42] proposed a residual single-hidden layer feedforward neural
network, which is able to obtain effective corrections of numerical models. Rasp S et al. [43]
proposed a flexible alternative based on neural networks to correct 2 m temperature. A.
Sayeed et al. [18] used convolutional neural network (CNN) as post-processing technology
to improve mesoscale weather research and prediction (WRF) daily simulated output. A.
N. Deshmukh et al. [44] applied a wavelet neural network in improving numerical ocean
wave predictions of significant wave height and peak wave period. It can be seen that deep
learning has shown some potential in the temperature correction of model prediction, but
it is still in the initial research and application stage. The above research also indicates the
potential of machine learning in the correction of numerical model results.

However, there is little work to correct the forecast of SST. Zhang R used artificial
neural network BP model to correct SST [17]. Yang X Q et al. [45] applied the prognostic
trend (PT) correction method to reduce systematic errors in coupled GCM seasonal fore-
casts. Han Y.K. [46] proposed a new error-correction model based on the AR(p). Zhang
P.J. [47] tried to correct numerical prediction SST product using GHRSST, and established
a correction method for SST model prediction in the South China Sea—the effect of SST
forecast correction was quite significant. The above methods for SST correction do not
consider the temporal and spatial correlation between SST data. Therefore, we consider
combining deep learning with the numerical model, using the deep learning method to
mine the temporal and spatial correlation of SST data and correcting forecast products to
improve forecast accuracy.
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We attempt to use the deep learning method to mine the spatio-temporal relationship
between SST forecast data and carry out the correction of daily mean SST in the study
area. On the one hand, it is helpful to obtain more accurate prediction results, and on the
other hand, it is also an exploratory application of the deep learning correction model in
oceanography.

3. Problem Definitions

Our goal is to use historical ocean data and reanalysis data as truth values to modify
model forecast data and establish an SST correction model. SST data is a time series data
without considering spatial information. In order to analyze and obtain the time sequence
relationship between the data, historical ocean data at multiple times should be used for
correction. However, SST and other marine environmental variables are spatial fields at
any time, so SST correction can be defined as a spatial-temporal series correction problem.
Different from previous methods that take the SST of a single site as the model input data,
this paper corrects the SST within the region as a whole, that is, a matrix, to facilitate the
model to extract the temporal and spatial correlation of SST.

The input data with multiple elements can be represented as a matrix W × H × C × T,
where W and H represent longitude and latitude, C represents the number of elements, and
T represents the length of time series. SST and sequence of marine environmental variables
T = T1, T2, · · · , T, where |T| is the SST sequence length of time, Ti(1 ≤ i ≤ |T|, i ∈ Z) is
the marine environmental variables matrix of all the record points of day i in the region,
which is a W × H × C matrix. The sequence of these matrices is the input to the model.
The SST correction problem can be defined as a series of historical marine environmental
variables data of the previous N days Xt−n(n = 1, 2, 3 · · ·), used to correct the SST at time
t, where Xt−n(n = 1, 2, 3 · · ·) is a sequential matrix, which is W × H × C × N. Define the
current moment to be corrected as t, and the SST and marine environment variable of the
current moment to be corrected as Xt. Yt is the corrected SST value and n is the previous
days before the current time, each time step is 1 day. Xt−n is the grid data set of each
variable at the predicted time and the previous n days.

The model can also be expressed as:

YW×H
t = f

(
XW×H×C×N

t−n , XW×H×C
t

)
, n = 1, 2, 3 · · · . (1)

This is our target function, where f is the final model learnt by the historical data. On
this basis, we design and train the deep learning model. During the training, the data is
divided into two parts. First, we train our model with the training set, where the “truth
value” is known, and use it to adjust the parameters in the model. Finally, we use the test
set to evaluate the correction effect of the training model. Figure 1 shows the data structure
of SST and the related variables.

Figure 1. The structure of spatio-temporal variables sequence.
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4. Method

In order to solve the problem of SST numerical prediction correction, we propose a
new hybrid model for SST correction, which is based on ConvLSTM and the 3DCBAM
model with attention mechanisms. It makes full use of the spatio-temporal information
and marine environmental variables information.

4.1. The Framework of the New Hybrid SST Correction Model

The framework of the new hybrid SST correction model is shown in Figure 2, which is
mainly divided into five stages: spatial feature extraction, spatial and channel attention
mechanism, time-dependent learning, time attention mechanism, and output results. The
main idea is to use convolution operation to extract and integrate spatial features of multiple
variables, and use CBAM mechanism to improve the utilization rate of the spatial features
of a 3D convolution network and show the importance of different environmental variables
to the results. At the same time, ConvLSTM is used to learn the spatiotemporal relationship
in the process of SST change, and attention mechanism is used to adjust the importance of
information at different historical moments in variables. It not only considers the spatial
correlation of SST field data, but also the time dependence between SST field data at
different time and the interaction between marine environmental variables. Therefore, it
can correct SST more accurately.

t nX − t 2X − t 1X − tX

tY

3 DC 3 DC 3 DC 3 DC

 

Figure 2. The framework of 3DCBAM-ConvLSTM method.

Therefore, the whole SST forecast revision model can be expressed as follows:

YW×H
t = AT(ConvLSTM(CBAM(C3D(Xt, Xt−n)))), n = 1, 2, 3 · · · . (2)

For historical series data X, the Xt composed of SST data and other marine environmen-
tal variables at any time of t is grid data with W × H ×C specifications. Therefore, the input
of the whole model is a five-dimensional tensor, which is expressed as B × T × C × W × H.
Here B is the number of a batch of training samples, and T is the length of sequence
data. W and H are the width and length of the SST field, and C is the number of marine
environmental variables. In our experiments, length H and width W are longitude and
latitude. The length of the time step can be obtained through the sliding window. For
example, if the historical data of the past three days are used to correct the SST of the day,
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then the length of the time step is 4, that is, the value of T. In the experiments, in addition
to SST, salinity and water velocity u and water velocity v are added, so C is here 4. The
five-dimensional tensor serves as input to the model.

As the correction of SST is a regression problem, this paper chooses MSE as the loss
function. The calculation formula is shown in Equation (3), where n represents the number
of points in grid data, ŷi is the truth value of the point i, and yi is the revised value of the
point i. The training set is input into the model, and N iterations are carried out until the
model converges.

LOSS = ∑n
i=1

(yi − ŷi)
2

n
. (3)

4.2. Spatial Feature Extraction with 3D-CBAM

In the spatial feature extraction part, we use 3D convolution to extract spatial features
from the input training data. 3D convolution is developed on the basis of 2D convolu-
tion [48]. 3D convolution is achieved by convolving a three-dimensional kernel with a cube
formed by stacking multiple continuous matrices. Through this construction, the feature
map of the convolution layer is connected with the previous layer to capture spatial infor-
mation. The input of 3D convolution is sample X, X ∈ RB×T×H×W×C. The 3D convolution
operation C3D mainly completes the spatial feature extraction and it can be computed as:

C3D(X) = ∑P−1
p=0 ∑Q−1

q=0 ∑R−1
r=0 ω(p, q, r) ∗ X, (4)

where ∗ and ω(p, q, r) represent the convolution operation and kernel, and P, Q, R represent
width, height, and temporal length of the data.

Then, we use 3D-CBAM attention mechanism to improve the utilization rate of the
spatial features of the 3D convolution network and to show the importance of different
environmental variables to the results. Convolutional Block Attention Module (CBAM)
is a simple and effective attentional module that can be directly applied to a feedforward
convolutional neural network, consisting of a channel attentional module and a spatial
attentional module [49]. Figure 3 shows the structure of the 3D CBAM attention module.

− − −

 

Figure 3. 3D convolutional block attention module.

The input of CBAM is F = C3D(X), X ∈ RB×T×H×W×C, the feature map from a
previous 3D convolution layer. The 3D CBAM will apply channel attention module (CAM)
and spatial attention module (SAM) in sequence to the input F. As shown in Figure 3, the
CBAM can be designed as:

CBAM(F) = SAM(CAM(F)). (5)

The channel attention module of 3D-CBAM pays attention to which feature plays a role
in the final correction result. Firstly, we apply the global max pooling and global average
pooling based on width, height, and time to the input feature matrix F, respectively, and we
get Favg and Fmax. Both Favg and Fmax are one dimensional feature maps: Favg ∈ RB×1×1×1×C

and Fmax ∈ RB×1×1×1×C. Then, multilayer perceptron (MLP), a fully connected layer is
used to efficiently combine the channel statistical information Favg and Fmax. To reduce
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the parameter resources, the hidden size of MLP is set to RC/r, where r is defined as the
reduction rate, and the formula is shown below:

Fmlp_avg = MLP
(

Favg
)
= W2

(
relu
(
W1
(

Favg
)))

, (6)

Fmlp_max = MLP(Fmax) = W2(relu(W1(Fmax))), (7)

where W1 ∈ RC/r×C
1, W2 ∈ RC×C/r stands for the MLP weights and relu represents the

active function ReLU, respectively. W1 and W2 are shared by both Favg and Fmax.
After obtaining the statistical information Fmlp_avg and Fmlp_max by MLP, the prob-

ability prediction matrix, which is the importance of each channel, can be obtained by
element-wise summing and passing through the sigmoid function. Finally, the matrix
generated by a sigmoid function is element-wise multiplied with the input matrix F to
obtain the output, which is calculated by equation:

CAM(F) = F × σ
(

Fmlp_avg + Fmlp_max

)
, (8)

where σ is the sigmoid function. Figure 4 shows the flowchart of CAM.

 

Figure 4. Channel attention module.

The feature matrix Fc = CAM(F), which is output by the channel attention module,
is taken as the input feature matrix of a spatial attention module. Firstly, we use global
max pooling and global average pooling based on the channel to get two feature maps:
Fc_avg ∈ RB×T×H×W×1 and Fc_max ∈ RB×T×H×W×1. Then, they are concatenated at the
channel dimension and passed through a 3 × 3 × 3 convolution to generate a feature
descriptor. The spatial attention feature is generated through sigmoid activation function.
Then, we multiply the spatial attention matrix with the input matrix Fc to obtain the output
result, which is calculated by equation:

SAM(Fc) = Fc × σ
(

f 3×3×3
conv

([
Fc_avg; Fc_max

]))
, (9)

where σ is the sigmoid function. Figure 5 shows the flowchart of SAM.

 

Figure 5. Spatial attention module.
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4.3. Time Feature Extraction with Attention Mechanism

SST forecast correction is actually a spatio-temporal series problem with historical
information as the input and revised SST as the output. LSTM has a strong ability to
modeling time series data. ConvLSTM [27] inherits the merits of convolution operator
and retains the advantages of LSTM to capture long-term memory, and can also reduce
the redundancy of the fully connected structure. So that, ConvLSTM is used to model the
temporal and spatial correlation of SST data. The input of the ConvLSTM in correction
model is X = CBAM(F), X ∈ RB×T×H×W×C. The formula is shown in Equation (10):

H = ConvLSTM(X), (10)

where H consists of the results ht computed by ConvLSTM for each sample x of input
data X, x ∈ RT×H×W×C. At each moment, since the interval time of data is one day, the
ConvLSTM unit accepts the input xt, t = 1, 2, · · · T at the moment of t, the state of the
hidden layer at the last time ht−1, and the state of the memory cell at the last time ct−1
as inputs, and outputs the hidden state ht and the cell state ct. The calculation process is
as follows:

ht = ot·tanh(ct) , (11)

ct = ft·ct−1 + it·tanh(wxc ∗ xt + whc ∗ ht−1 + bc). (12)

As shown in Equations (10) and (11), ∗ and · denote the convolution operator and
Hadamard product. w is the weight matrix, bc is the offset, and tanh represents the
activation function.

The ConvLSTM forgets and remembers the input information through four gates.
The forgetting gate determines what information should be discarded from the ct−1 of the
previous moment, the input gate determines what new information should be stored in
the memory of the ConvLSTM, and the output gate determines what information should
be selected from the ct to be passed as output to the next ConvLSTM unit. The involved
computation is given as follows in Equations (12)–(14):

it = σ(wxi ∗ xt + whi ∗ ht−1 + wci·ct−1 + bi) , (13)

ft = σ
(

wx f ∗ xt + wh f ∗ ht−1 + wc f ·ct−1 + b f

)
, (14)

ot = σ(wxo ∗ xt + who ∗ ct−1 + wco·ct + bo) , (15)

where it indicates the input gates, ft indicates the forgotten gates, ot indicates the output
gates, and ct indicates the cell state. In the above formulas, σ is the active function sigmoid,
xt represents the moment’s input, ht−1 represents last time’s hidden state, w is the weight
matrix, and b is the offset from the input gate to the output gate, which are the characteristics
that the ConvLSTM model must learn during training.

In order to improve the quality of the model by giving different weights to different
parts of the model and make the model more focused on the parts that are more relevant to
the task, a temporal attention layer is added after the ConvLSTM layer. To make full use
of the hidden layer state of each step of the ConvLSTM model, we allocate the temporal
attention weight to the hidden state of each time step, and adjust the final ConvLSTM
output and thus obtain better correction results.

The attention [50] module assigns weight coefficients to the outputs of the ConvL-
STM layer. It pays more attention to the features that contribute more to the important
information and ignores useless information to reduce the calculations of the network
and save storage space. The attention mechanism shown in Figure 6 provides an effi-
cient way to aggregate the output sequence of ConvLSTM layer and it implements the
following equation:

AT(ht) =
exp(W·ht)

∑T
t=1 exp(W·ht)

. (16)

108



Remote Sens. 2022, 14, 1339

Figure 6. The ConvLSTM layer and attention layer.

The attention layer takes the output ht of each iteration of ConvLSTM as input. At time
t, normalized weights AT(ht) are computed by the softmax function through the weight W
and the output ht of the ConvLSTM, the calculation formula is shown in (16).

Yt = ∑T
t=1 ht AT(ht). (17)

Finally, the output Yt can be obtained by multiplying the attention weight AT with the
hidden layer state ht. The calculation formula is shown in (17).

5. Experiments and Results

5.1. Data Preparation and Evaluation Metrics

The HYbrid Coordinate Ocean Model (HYCOM) [51] is a data-assimilative hybrid
isopycnal-sigma-pressure (generalized) coordinate ocean model. The US Navy Operational
Global Ocean Prediction System based on the HYCOM model is a relatively advanced and
widely used ocean prediction system [52]. In the experiments, we use HYCOM model
forecast product from National Oceanic and Atmospheric Administration (NOAA) as
the prediction data to be corrected. The HYCOM model prediction product used in our
experiments is a prediction product of 24 h in the future, which is reported every 3 h and
includes ocean temperature, salinity, and current structure. Its horizontal resolution is
1/12◦ and the temporal resolution is 3 h.

There is a lack of ocean observation data to support our experiments, SST products
data is a relatively good choice as the truth value. We use the NOAA OI SST [53] Analysis
version 2(v2), which is acquired from the NOAA’s National Climatic Data Center (NCDC)
with a high spatial resolution of 0.25◦ × 0.25◦ as truth values to evaluate correction accuracy.
Liu et al. [54] showed that NOAA OI SST is the best one among the SST products when
they were compared with in situ SST data This dataset was generated from several data
sources including SST data from the Advanced Very High Resolution Radiometer (AVHRR),
sea-ice data, and in situ data from ships and buoys. In order to unify the spatial and
temporal resolution of the forecast data and remote sensing observation data, we average
the HYCOM data daily and the daily average HYCOM model forecast data is interpolated
to OI SST data grid points by using bilinear interpolation method. We select a dataset from
January 2019 to December 2019, that covers the area from 8◦N to 12◦N in latitude and
110◦ E to 114◦ E in longitude. Figure 7 shows the location of test area.
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(a) (b) 

Figure 7. The location of test area: (a) Satellite image of the test area location, the box is the test area;
(b) SST map of the test area location, the box is the test area.

Due to the obvious discrepancy of data value, we apply a normalization to each input
sequence of data before inputting it into our model. The normalization operation can not
only improve the convergence speed of the model, but also improve the accuracy of the
model and prevent the gradient explosion of the model. The normalization function is
shown in Equation (19):

X =
X − Xmin

Xmax − Xmin
. (18)

After correction, the output data and the truth would go through a de-normalization.
The parameters of the de-normalization are based on the temperature span of the original
input sequence of data.

In order to verify the validity of the new hybrid SST correction model, this study
evaluated the model with four indexes, namely mean square error (MSE), root mean square
error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).
MSE, RMSE, MAE, and MAPE can be defined as:

MSE(y, ŷ) =
1
n ∑n

i=1(yi − ŷi)
2, (19)

RMSE(y, ŷ) =

√
1
n ∑n

i=1(yi − ŷi)
2 , (20)

MAE(y, ŷ) =
1
n ∑n

i=1|yi − ŷi|, (21)

MAPE(y, ŷ) =
1
n ∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, (22)

where yi represents the actual observed value, ŷ represents the average of the actual
observed values, and ŷi represents the correction value.

The model is built by Pytorch. In order to prove the effectiveness of the model
proposed in this paper, all SST data were divided into two parts. The dataset from January
2019 to September 2019 is used as the training set to train the parameters of the new hybrid
SST correction model, and the remaining dataset from October 2019 to December 2019
is used as the verification set to verify the learning effect of the model. We adjusted the
shape of the training data and the input data to the required Tensor format in the Pytorch
framework. Then the parameters of the new hybrid SST correction model were defined,
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including the input step length, the length of input sequence, the hidden layers, the length
of output sequence, and the number of neurons in each layer. In our experiments, the
convolution part of the model includes a Conv3D layer and a Batch Normalization layer.
The main function of the Batch Normalization layer is to make the distribution of the input
data of each layer in the network relatively stable, to accelerate the model learning speed,
alleviate the problem of gradient disappearance, and have a certain regularization effect.
When the network is set up, the size of the convolution kernel in Conv3D layer is 3 × 3 × 3
and the size of the convolution kernel in the convolution attention in the 3D-CBAM part of
the model is 3 × 3 × 3. The activation function of all layers is ‘relu’, which can keep the
convergence speed of the model in a steady state. In the ConvLSTM part of the model,
due to the short sequence selected in the experiment, only a single layer ConvLSTM was
selected, the number of neurons in the hidden layer was 32, and the number of neurons in
the output layer was 1. After the model parameters are defined, we select MSE and Adam
as the loss function and optimizer. Then, the appropriate training times are defined to start
training the model. After the model training is completed, the test data is input into the
model for testing, and the output results of the model are reversely normalized to obtain
the deviation of SST. The effect of correction is tested by comparing the evaluation metrics
before and after deviation correction.

5.2. Comparison of Correction Methods

In order to prove the validity of the proposed new hybrid SST correction model, the
experimental results will be compared with two traditional machine learning methods for
SST correction. They are Linear Regression (LR) and Support Vector Regression (SVR),
respectively. The LR model has the advantages of strong anti-interference ability and fast
training speed, but it cannot simulate nonlinear relations, as the accuracy is not very high,
and it is easy to lack fitting. The SVR model has good generalization performance, it is
not easy to overfit, and it can achieve good performance with less data. However, SVR is
sensitive to missing data, parameters, and kernel function.

The process of realizing the two methods in this paper is to expand all samples into
the form that the algorithm can handle, and use the machine learning package, sklearn,
for correction analysis. In order to match the input form of these methods, SST and
ocean variables were generally regarded as independent features, thus the spatial-temporal
relationship between variables could not be considered in these methods. For both LR and
SVR, we combined vector of SST, SSS, and water current u and v of HYCOM forecasts for
days n, n-1, n-2, n-3 as 4 × 4 features for one-day correction. The performances of these
two methods are shown in Table 1. For SVR, we use the Radial Basis Function (RBF) kernel
for correction, which can realize nonlinear mapping with few parameters.

In addition, we set up the comparison experiment, which only considers the temporal
relationship without considering the spatial relationship, namely, compared with the
traditional sequence model LSTM to enhance the contrast. For the LSTM network, we set
the learning rate = 0.01, epochs = 300, timestep = 3, and use SST, SSS, and water current
u and v for one-day correction. Our new hybrid correction model also compares the
traditional sequence model LSTM and its improved model ConvLSTM, which considers
temporal relations and spatial relations.

Furthermore, we develop and compare a series of models with the new hybrid SST
correction model (3DCNN-CBAM-CONVLSTM-AT), because there were fewer methods
previously used to correct SST. These include an improved ConvLSTM model that combines
3D-convolution, a ConvLSTM model that only adds temporal attention mechanism (AT),
and a ConvLSTM hybrid model where both 3D-convolution and AT are added. Here,
we set the experimental parameters learning rate = 0.01 and epochs = 300, the size of
convolution kernel in Conv3D layer is 3 × 3 × 3, and used three days of historical data
for SST correction. The input data form of these models is consistent with our new model
input data.
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Table 1. The experimental results of SST correction. Bold entries show the best results.

MAPE MAE MSE RMSE Improve

Forecast 1.6118 0.4587 0.3600 0.6000
Linear Regression (LR) 1.4592 0.4075 0.3005 0.5482 8.67%
Support Vector Regression (SVR) 1.3767 0.3832 0.2536 0.5036 16.17%
LSTM 1.2781 0.3553 0.2115 0.4599 23.35%
CONVLSTM 1.1679 0.3312 0.1842 0.4292 28.47%
CONVLSTM-AT 1.1071 0.3139 0.1623 0.4028 32.92%
3DCNN-CONVLSTM-AT 1.0033 0.2839 0.3600 0.3690 38.5%
3DCNN-CBAM-CONVLSTM-AT 0.9546 0.2641 0.1239 0.3520 41.33%

Table 1 shows the experimental results of different correction methods for SST correc-
tion. When we use the traditional machine learning method to correct SST, the accuracy
of SVR is higher than Linear Regression; the RMSE value is 0.5036 and the MAE value is
0.3832. The accuracy is not greatly improved after the correction.

Among other deep learning models, 3DCNN-ConvLSTM-AT has the best results; the
RMSE value is 0.3690 and the MAE value is 0.2839. However, our new hybrid correction
model can achieve a level where the MSE value is 0.3520 and the MAE value is 0.2641 in
the correction experiment, which is better than the other models.

It can be seen from Table 1 that the effects of LSTM are better than traditional ma-
chine learning methods, which illustrates the importance of time correlation in SST data.
However, the original LSTM does not consider the spatial relations in data. The result
of ConvLSTM, an improved method, is better than the result of LSTM, which verifies
the importance of spatial correlation to SST correction. Experimental results show that
ConvLSTM-AT model, which adds attention mechanism, has better performance than
ConvLSTM. Attention mechanism can assign different weights to historical data, allowing
the model to focus more on the parts that are more important, thus improving the quality of
the model. We compared the results of 3DCNN-CONVLSTM-AT with CONVLSTM-AT, in
which 3DCNN-CONVLSTM-AT added a convolution layer. With the same parameters and
the same input, the RMSE of ConvLSTM-AT and 3DCNN-CONVLSTM-AT were 0.4028
and 0.3690, respectively. 3DCNN-ConvLSTM-AT has a higher correction accuracy than
ConvLSTM-AT. The experimental result shows that the addition of the convolution layer
can improve the accuracy of SST correction to a certain extent. The main reason for this is
that the local features extracted from input data through ConvLSTM’s own convolution
operation is not obvious enough. A convolution layer is added into the model, which
improves the feature extraction ability of the model and makes the spatial features of the
data more obvious in the ConvLSTM model, which is beneficial to improve the accuracy of
SST correction.

After adding 3D-CBAM attention mechanism on the basis of the 3DCNN-CONVLSTM-
AT model, the RMSE index is 0.3520, and the correction effect is the best in our experiments.
3DCBAM mechanism and AT mechanism were used based on ConvLSTM in our new
hybrid correction model to improve the utilization rate of spatial features, environmental
variables, and historical time series information.

To further prove the effectiveness of our new hybrid SST correction model, we visu-
alize the correction results, forecast results, and the truth in Figure 8, which shows the
comparison of the revised SST of several models. To put things into places in the overall
view, there is high similarity between the correction that is shown in Figure 8i and the truth
that is shown in Figure 8a. Combined with Figures 8 and 9 and Table 1, it can be seen
intuitively from the figure that the result of the new hybrid SST correction model is closest
to the truth value. The new hybrid correction model further extracts spatial features and
adds weights to environmental information and spatial features to improve information
utilization, making the model closer to reality and containing more comprehensive infor-
mation, and finally improving the accuracy of SST prediction. In conclusion, compared
with LR, SVR, and other traditional machine learning correction methods, as well as deep
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learning methods LSTM, ConvLSTM, and ConvLSTM-AT, the new hybrid correction model
has the best performance in SST correction, which verifies the effectiveness of this method.

For SST correction, Zhang et al. [47] proposed a new bias correction model for sea
surface temperature in 2020, which used satellite remote sensing data for correction of the
numerical forecast model on SST in the South China Sea as well. After being corrected, the
RMSE of the SST forecast results was dropped from 0.8 ◦C to 0.5 ◦C, reducing by 37.5%,
whereas the RMSE of our model is approximately 0.35 ◦C after being corrected, reducing
by 41.33%. The SST correction by our new hybrid SST correction offers higher accuracy.

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 8. The experimental results of different methods for SST correction. (a) Truth; (b) forecast;
(c) linear regression; (d) SVR; (e) LSTM; (f) CONVLSTM; (g) CONVLSTM-AT; (h) 3DCNN-
CONVLSTM-AT; (i) 3DCNN-CBAM-CONVLSTM-AT.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 9. The comparisons of difference between the truth and the correction output. (a) Difference
between the truth and the forecast; (b) difference between the truth and the linear regression result;
(c) difference between the truth and the SVR result; (d) difference between the truth and the LSTM
result; (e) difference between the truth and the CONVLSTM result; (f) difference between the truth
and the CONVLSTM-AT result; (g) difference between the truth and the 3DCNN-CONVLSTM-AT
result; (h) difference between the truth and the 3DCNN-CBAM-CONVLSTM-AT result.
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5.3. Complexity and Training Time Analysis

The experimental environment is Windows10, Intel Core i5 11, 2.4 GHz, 16G RAM,
with algorithm implementation using python3.

Table 2 lists the training time and the parameters of models used in the experiment.
It can be found that the training parameters of the new hybrid SST correction model are
about three times less than those of ConvLSTM, which makes the training much faster
and more suitable for practical application. Our proposed new hybrid SST correction
model consumes the least time and has fewer parameters. The parameter of 3DCNN-
ConvLSTM-AT model is close to that of the new hybrid SST correction model, indicating
that the 3D-CBAM module is very small and the training time of the model is reduced.
Our proposed new hybrid SST correction model consumes the least time and has fewer
parameters, and it has good performance.

Table 2. The number of network parameters and training time for each model.

Parameters Train(s) Test(s)

LSTM 13,601 271.52 0.55
CONVLSTM 44,993 236.98 0.46
CONVLSTM-AT 46,079 437.67 0.94
3DCNN-CONVLSTM-AT 13,197 272.57 0.55
3DCNN-CBAM-CONVLSTM-AT 13,560 223.15 0.43

5.4. Parameters Analysis
5.4.1. Time Step Analysis

In the previous experiments to determine the model structure, the previous three days
of data is used to correct the SST according to expert empirical knowledge. Time step is
an important parameter for the model to learn time series character. Considering that the
size of timestep has an impact on the accuracy of SST correction, timestep = 1, 3, 5, 7, 10,
15 is used to correct SST in our experiments to determine the appropriate timestep for
SST correction.

Timestep represents the information of the time dimension, which has an impact
on the performance of the model. Figure 10 shows the variation of the model of several
evaluation indicators with the timestep size. When timestep = 3, RMSE is 0.35, which is
better than others when timestep = 1, 5, 7, 10, and 15. It is obviously seen from the figure
that timestep = 3 works best to revise SST. When the timestep is greater than 10, the results
of correction tend to be stable, and the time information has less influence on the revised
results. When correcting SST, the information of temporal dimensions should be moderate,
as too much or too little will affect the performance of the model. To sum up, timestep = 3
is used in this paper to correct SST.

5.4.2. Learning Rate Analysis

Learning rate is an important hyperparameter, which determines whether and when
the objective function converges to the local minimum. The proper learning rate can make
the objective function converge to the local minimum in the proper time. Then we adjust the
learning rate and other hyperparameters within the fixed model frame. The first step is to
drop from 0.1 to 0.001, at a speed of 10. Then, when the learning rate is at the level between
0.01 and 0.001, the training and validation loss of the model will be in a steady state. The
experiment is conducted by adjusting the learning rate, and the experimental results are
shown in Figure 11. The figure shows that RMSE, MAPE, and other indicators change
with the learning rate. According to RMSE, the optimal learning rate is 0.01. According to
MAPE, the optimal LR is 0.004. Thus, the best learning rate in our data set is at the level
between 10−2 and 10−3.
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Figure 10. The experimental results of the new hybrid SST correction model in different timesteps.
The units of RMSE, MAE, and MSE are ◦C, the unit of MAPE is %, and the unit of timestep is day.

Figure 11. The experimental results of the new hybrid SST correction model in different learning rate.
The units of RMSE, MAE, and MSE are ◦C and the unit of MAPE is %.

5.4.3. Epochs Analysis

In order to determine the best epochs for the dataset, different epochs were set for the
experiments. The experimental results are shown in Figure 12. The figure shows that RMSE
reaches a stable state at 300 epochs. Therefore, 300 epochs are suitable for our experiments
with consideration of model accuracy and performance.
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Figure 12. The experimental results of the new hybrid SST correction model in different epochs. The
units of RMSE, MAE, and MSE are ◦C and the unit of MAPE is %.

6. Conclusions

In this paper, the new hybrid SST correction model is applied to correct the HYCOM
forecasts and it is evaluated for its performance. Our proposed model combines spatio-
temporal information and marine environmental variables information to correct the SST
forecast and improve the accuracy of the SST forecast. The model defines the SST correction
problem as the spatio-temporal series regression problem, which mainly consists of three
parts: first, 3D convolution and 3D-CBAM are used to improve the utilization rate of spatial
features and marine environmental variables. Secondly, time and space characteristics of
SST were extracted by ConvLSTM. Thirdly, the attention mechanism is used to enhance the
historical temporal information. What is more, the new hybrid SST correction has a better
correction effect than the other models we compared in this paper, and it can reduce the
RMSE of the HYCOM forecast results by 41.33%.

As for future development, further refinements to the new hybrid SST correction
model will be undertaken. Our study only corrects the temperature of the sea surface,
but the subsurface temperature in the inner ocean is much more important. Therefore,
in the next step, we consider extending the model to three-dimensional space to realize
the forecast correction of ocean internal temperature. Meanwhile, in this paper, we only
revised the forecast data for the next day due to the limitation of forecast data. For future
development, our correction model can be considered to improve and apply to correct the
forecast of three days, five days, or one month into the future.
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Abstract: Accurately estimating the ocean’s interior structures using sea surface data is of vital
importance for understanding the complexities of dynamic ocean processes. In this study, we
proposed an advanced machine-learning method, the Light Gradient Boosting Machine (LightGBM)-
based Deep Forest (LGB-DF) method, to estimate the ocean subsurface salinity structure (OSSS)
in the South China Sea (SCS) by using sea surface data from multiple satellite observations. We
selected sea surface salinity (SSS), sea surface temperature (SST), sea surface height (SSH), sea surface
wind (SSW, decomposed into eastward wind speed (USSW) and northward wind speed (VSSW)
components), and the geographical information (including longitude and latitude) as input data to
estimate OSSS in the SCS. Argo data were used to train and validate the LGB-DF model. The model
performance was evaluated using root mean square error (RMSE), normalized root mean square
error (NRMSE), and determination coefficient (R2). The results showed that the LGB-DF model had a
good performance and outperformed the traditional LightGBM model in the estimation of OSSS. The
proposed LGB-DF model using sea surface data by SSS/SST/SSH and SSS/SST/SSH/SSW performed
less satisfactorily than when considering the contribution of the wind speed and geographical
information, indicating that these are important parameters for accurately estimating OSSS. The
performance of the LGB-DF model was found to vary with season and water depth. Better estimation
accuracy was obtained in winter and autumn, which was due to weaker stratification. This method
provided important technical support for estimating the OSSS from satellite-derived sea surface data,
which offers a novel insight into oceanic observations.

Keywords: machine learning; ocean subsurface salinity structure; South China Sea; satellite remote
sensing data

1. Introduction

Ocean salinity, a vital parameter of seawater, plays a significant role in understanding
marine ecosystems, ocean dynamics, and climate changes [1–5]. For example, ocean salinity
can be used as an indicator for the hydrologic cycle, which provides valuable insights
into the understanding of global water cycle features [6–8]. Changes in ocean salinity may
also play a role in the formation of water masses [9–11]. To better understand the role of
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ocean salinity in dynamic ocean processes and climate changes, it is necessary to clarify the
vertical structure of ocean salinity.

As the largest marginal sea of the Western Pacific, the South China Sea (SCS) has
several straits along its border that connect to the Sulu Sea, the Java Sea, and the Indian
Ocean (Figure 1a). The deepest water (around 5000 m) is found in the Eastern part of
the SCS, while extended continental shelves (less than 200 m) have been found in the
Western and Southern regions [12]. In the climatological mean, the sea surface salinity
(SSS) in the SCS is north-south oriented: the SSS decreases from 34.0 psu in the north to
32.7 psu in the south (Figure 1b). The maximum SSS is in the Northern part of the SCS,
which is related to the intrusion of the Kuroshio water through the Luzon Strait from the
Pacific [13–15]. A low salinity tongue extends from the Southern part of the SCS, reaching
as far as 10◦N, which is closely related to the freshwater discharge from the Mekong and
Rajang Rivers. Due to its special geographical location, the spatial distribution of the
salinity in the SCS has significant features which are closely related to El Niño–Southern
Oscillation (ENSO) [16–19], Asian monsoons, and the Pacific Western boundary current
system [15,20]. Previous studies have suggested that the variability of the salinity in the SCS
has a significant influence on the regional circulation and climate changes [21–23]. However,
due to the lack of observations, little is known about the spatial and temporal variability of
the salinity in the SCS. This has greatly limited the research on the thermohaline structures
in the SCS. Therefore, it is of great importance to accurately retrieve the ocean subsurface
salinity structure (OSSS), which remains a challenging problem for researchers.

Figure 1. (a) Bathymetry (m) and geography of the SCS and (b) spatial distribution of long-term
mean SSS (from January 2010 to December 2019) from Argo in the SCS. The three black boxes denote
the study regions used in this study. The red line represents the location of transect used in this study.

Early studies on the estimation of ocean thermohaline structures in the SCS were usually
based on numerical modeling and data assimilation [24–28]. For example, Chao et al. [24]
modeled the interannual variations of thermal structure in the SCS by a three-dimensional
primitive equation and found warming of the upper ocean during El Niño in the 1980s.
Chu et al. [25] used the Princeton Ocean Model (POM) to investigate the seasonal variation
of the thermal structure in the SCS. As researchers realized that the decreasing of dissolved
oxygen was likely associated with the slowdown of thermohaline circulation, Li and Qu [26]
analyzed the thermohaline circulation in the SCS on the basis of the available historical
oxygen data. In order to provide better initial and boundary conditions for numerical
simulations, assimilation methods have been used. Xiao et al. [27] performed an assimila-
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tion experiment for the Southern SCS, and the altimeter data were assimilated into POM.
Shu et al. [28] focused on correcting temperature in the mixed layer by projecting sea surface
temperature (SST) onto subsurface observations based on the optimal interpolation in the
SCS using the POM. Although numerical ocean models offer important tools for estimating
ocean thermohaline structures, these dynamical models are computationally expensive, as
simulating physical governing equations demands intensive computational resources.

In recent decades, remote sensing technology has experienced a remarkable and rapid
advancement that has provided large amounts of useful satellite-derived sea surface data,
such as SSS, SST, and sea surface height (SSH). These well-sampled surface observations
have significantly improved our understanding of upper ocean dynamic processes. Al-
though satellite observations have been confined to the surface, they can be used to infer
information about the vertical structures of the ocean, such as temperature and salinity
structures [29–34]. Previous studies suggested that many oceanic subsurface phenomena
have surface manifestations [35–40]. For example, the SSH was determined by the seawater
density field, and the overall integrated effect of thermohaline is constrained by the SSH, ac-
cording to observations [36]. There was a high correlation between temperature and salinity
variables in the ocean; that is, the vertical distribution of the salinity could be deduced from
the SST [37]. The thermocline was associated with the warming or cooling of surface ocean
water through seasonal warming and the surface stratification or upwelling in deeper wa-
ters caused by offshore seawater transport [38]. Vernieres et al. [39] and Lu et al. [40] have
demonstrated that there is a close link between the SSS and subsurface salinity structures.
A number of methods, such as linear regression of variables, and statistical and dynamic
methods, have been used to estimate vertical ocean temperature and salinity structures
using satellite-derived sea surface data [41–44]. For example, Carnes et al. [41] inferred
the global subsurface thermohaline structure using SSH and SST through a least-squares
regression method. Based on the empirical orthogonal function (EOF) method, Maes and
Behringer [45] estimated the vertical salinity structure in the Western Pacific Ocean by
using sea level anomaly (SLA) and SST. Chu et al. [46] proposed a parametric model based
on a layered structure that successfully reproduced the subsurface thermal structure in
the SCS using SST. A coupled pattern reconstruction (CPR) method was proposed for
estimating the subsurface temperature profiles from SSH and SST, which was shown to
provide a substantial improvement [47]. Guinehut et al. [44] successfully reconstructed
global temperature and salinity fields at a high resolution based on sea surface data and
in situ measurements through a linear regression method. Yang et al. [48] developed a
new method based on a transfer function and a neural network to estimate vertical profiles
of the salinity in the global ocean from the SSS observed by the Soil Moisture and Ocean
Salinity (SMOS) satellite, which was reasonable in contrast with climatology. Considering
the spatial non-stationarity feature, a satellite-based geographically weighted regression
model was proposed to estimate the subsurface temperature anomaly (STA) of the Indian
Ocean by combining satellite-derived sea surface data and Argo in situ data, which has
a significant improvement over the linear regression model [34]. Although the estima-
tion accuracy of subsurface thermohaline structures based on satellite-derived sea surface
data was much better than that of the numerical model-based data assimilation, further
improvements are possible.

With the rapid development of machine-learning technology, it has been extensively
employed in the fields of ocean and atmosphere [49–52]. A number of machine-learning
approaches, such as the artificial neural networks (ANN) [53–55], self-organization map-
ping (SOM) [56,57], support vector machine (SVM) [58,59], random forests (RF) [34,60,61],
and extreme gradient boosting (XGBoost) [62], have been widely used to retrieve vertical
thermohaline structures of the ocean. Ali et al. [53] used an ANN method to estimate the
vertical thermal structure from SST, SSH, wind stress, net radiation, and net heat flux data.
This model could successfully reconstruct the ocean subsurface thermal structure. The
SOM neural network has been applied to SST, SSH, and SSS data to estimate the STA [56].
Considering the data space correlation, Chen et al. [57] combined the SOM method with
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an EOF analysis to reconstruct the subsurface thermal structure by using the SST, the
SSH, the longitude (LON), the latitude (LAT), and the month in the North-Western Pacific
Ocean. Furthermore, machine-learning algorithms such as SVM, RF, and XGBoost were
used to estimate the STA from surface remote sensing observations, which proved that
the SSS and sea surface wind (SSW) were helpful in improving the accuracy of the estima-
tions [34,58,60,62]. K-means clustering and feed-forward neural network were combined
to estimate the subsurface temperature and achieve promising results in the deep ocean by
taking the distribution of the ocean fields into consideration [63]. Based on a stacked long
short-term memory (LSTM) neural network method, Buongiorno Nardelli [64] developed
a model to estimate the ocean hydrographic profiles in the North Atlantic Ocean using
surface remote sensing observations. Recently, Jiang et al. [65] proposed a bidirectional
long short-term memory (Bi-LSTM) framework to estimate and analyze the subsurface
temperature and salinity in the global ocean. A back-propagation neural network (BPNN)
method was used to estimate the thermal structure in the North Pacific Ocean from sea
surface data, such as SSH, SST, SSS, SSW, and sea surface velocity (SSV) [66].

As compared to temperature, relatively few attempts have been made to estimate OSSS
from satellite-derived sea surface data using machine-learning methods [62,67,68]. For
example, Gueye et al. [67] proposed a neural network model-based SOM for reconstructing
salinity profiles of the tropical Atlantic Ocean from satellite-derived sea surface data.
Salinity profiles in the Pacific Ocean can be estimated from satellite-derived sea surface data
using a generalized regression neural network with the fruit-fly-optimization algorithm
(FOAGRNN) [68]. Su et al. [62] proposed XGBoost for retrieving subsurface thermohaline
anomalies of the global ocean, including the STA and the subsurface salinity anomaly (SSA).
These existing studies focused on large-scale ocean regions or the global ocean.

To the best of our knowledge, in the SCS, there are no related studies conducted to
estimate the OSSS from satellite-derived sea surface data using machine-learning methods.
In this study, we proposed a Light Gradient Boosting Machine (LightGBM)-based Deep
Forest (LGB-DF) method to estimate OSSS in the SCS from satellite-derived sea surface
data, including SSS, SST, SSH, SSW (decomposed into eastward wind speed (USSW)) and
northward wind speed (VSSW) components), and the geographical information (LON and
LAT). To evaluate the performance of the LGB-DF model, another popular machine-learning
model, LightGBM, was also used to estimate the OSSS in the SCS.

The rest of the paper is organized as follows. The data and methods are presented
in Section 2. The evaluation of the model performance in estimating OSSS in the SCS is
presented in Section 3. Finally, the discussion and conclusions are provided in Section 4.

2. Data and Method

2.1. Data

As an important part of the Indian–Western Pacific Ocean warm pool, salinity changes
in the SCS play an important role in regulating the regional and global climate system [69].
Therefore, we selected the SCS (105◦E–121◦E and 5◦N–23◦N) as our study area.

In this study, we used two sources of ocean observational data: the sea surface data
from satellite observations, such as SSS, SST, SSH, and SSW, combined with geographical
information (LON and LAT); and gridded Argo data. The SSS data were obtained from the
SMOS with a spatial resolution of 0.25◦ latitude × 0.25◦ longitude [70]. The SST data were
obtained from the National Oceanic and Atmospheric Administration (NOAA), which
consisted of optimal interpolated data observed by the satellite radiometer with a spatial
resolution of 1◦ latitude × 1◦ longitude [71]. The SSH data were obtained from the Archiv-
ing, Validation, and Interpretation of Satellite Oceanographic data (AVISO) project with
a spatial resolution of 0.25◦ latitude × 0.25◦ longitude [72]. The SSW data were obtained
from Cross-Calibrated Multi-Platform (CCMP) gridded data, which are combined with
multi-source data using a variational analysis method (VAM) to produce high-resolution
(0.25◦ latitude× 0.25◦ longitude) gridded analyses [73]. The subsurface salinity data were
obtained from the new version of the Roemmich–Gilson Argo Climatology (RG-Argo) data
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with a spatial resolution of 1◦ latitude × 1◦ longitude [74], which includes 58 vertical levels,
but only 44 levels were used as training labels as well as to evaluate the model performance
on the estimation of the OSSS.

Considering the differences in data resolution and time period between the input and
output data available in the SCS, all data used in this study were processed into monthly
averaged data and interpolated to a resolution of 0.5◦ latitude × 0.5◦ longitude with the
same coverage of the SCS and the time period from January 2010 to December 2019. It
should be noted that, in order to ensure uniformity, data points were deleted if any variable
was null at the same point. All the data used in this paper are shown in Table 1.

Table 1. Summary of the data used in this study.

Index Input Variable Data Source Output Variable Data Source Time Range Time/Spatial Resolution

Data

SSS SMOS
Salinity

(2.5–1000 m)
Argo 2010–2019

Monthly
0.5◦ × 0.5◦

SST NOAA
SSH AVISO
SSW CCMP

2.2. Method
2.2.1. The LGB-DF Model

Deep Forest (DF) is an advanced decision-tree ensemble algorithm based on random
forest, proposed by Zhou and Feng in 2017 [75,76]. Recently, the DF model has been widely
used in many fields to prove its robustness in classification and prediction tasks [77–82].
A DF model would have great potential if it could go deeper. The LightGBM method has
been shown to have the ability to estimate the ocean’s subsurface information [83–87]. This
inspired us to propose an improved DF model based on LightGBM (LGB-DF) method
to estimate the OSSS in the SCS using satellite-derived sea surface data. In this study,
the estimators (random forest and completely-random tree forests) of the DF model were
replaced with the LightGBM to increase the accuracy of the model. The model code was
based on the code of the open-source DF. The LGB-DF model was implemented and tested
for all cases using Python programming on an Intel(R) Core(TM) I9-9940X CPU.

The flowchart for the proposed LGB-DF model is shown in Figure 2. The LGB-DF
model had an important procedure: cascade structure, which could enhance the repre-
sentational learning ability. In this study, the cascade structure of the LGB-DF model was
constructed using two LightGBM (Figure 2). The number of trees in each forest was set to
150, and the maximum depth of each tree was set to 6. Having almost no adjustable hyper-
parameters was also one of the advantages of the LGB-DF model. As shown in Figure 2,
the LGB-DF model processed the variables, layer by layer, in the cascade structure. In
detail, the variables were input into the first layer, and each subsequent layer of input was
spliced from the output of the preceding layer and the initial variable until the last layer to
estimate the OSSS. To reduce the risk of overfitting, the vector produced by each estimator
was generated by k-fold cross validation. Subsequently, the information in the last layer
would be averaged as the estimation result. As compared to exiting machine-learning
algorithms, the LGB-DF algorithm has the following advantages: fast speed, high accuracy,
strong robustness, and simple implementation.

2.2.2. Experimental Setup

The flowchart of applying the LGB-DF model to estimate the OSSS is shown in Figure 3.
The model setup was divided into three steps. The first step was the building of the training
datasets. The satellite-derived sea surface data, such as SSS, SST, SSH, SSW (USSW and
VSSW), and the geographical information (LON and LAT) were selected as input data for
the LGB-DF model. The Argo data were used as training and testing labels. The second
step was to train the model. The training data (from January 2010 to December 2018) were
input into the LGB-DF model to obtain the output. Here, we used the grid search method
to determine the optimal parameter combination for the LGB-DF model. Finally, with the
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optimal parameter combination of the LGB-DF model, we estimated the OSSS in the SCS
using sea surface data from the testing set (from January 2019 to December 2019).

 

Figure 2. Flowchart for the LGB-DF model.

 

Figure 3. The flowchart of the OSSS estimation in the SCS using the LGB-DF model.
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In addition to the LGB-DF model, we also set up a traditional machine-learning model
(LightGBM) as a comparison to the LGB-DF model. Since the selection of input variables
has an important impact on the performance of the model, three different combinations of
sea surface parameters (three, five, and seven parameters) were used as LGB-DF model
inputs to estimate the OSSS in the SCS. In this study, we evaluated the performance of
the LGB-DF model through statistical metrics, such as root mean square error (RMSE),
normalized root mean square error (NRMSE), and determination coefficient (R2).

3. Results

3.1. Validation of Satellite-Derived SSS and SST

The accuracy of a machine-learning model is sensitive to the original input data [65].
Before utilizing the LGB-DF model to estimate OSSS in the SCS, the satellite-derived
SSS and SST data were briefly validated by comparing them with the Argo data. As
shown in Figure 4a, the seasonal variation of the satellite-derived SSS averaged over the
SCS had good agreement with the Argo-derived SSS. For example, both of them showed
that the maximum SSS value (>33.5 psu) occurred in April, and the minimum SSS value
(<33.1 psu) occurred in November. The difference between the Argo SSS and satellite SSS
varied from −0.02 psu to 0.14 psu. As for SST, the satellite-derived SST also showed good
agreement with the Argo SST data on a seasonal scale (as shown in Figure 4b). In the SCS,
the maximum SST value (>29.8 ◦C) occurred in May, whereas the minimum SST value
(<26.3 ◦C) occurred in February. The difference between the Argo SST and satellite SST
varied from −0.2 ◦C to 0.2 ◦C. Although the satellite data showed good agreement with the
Argo observed data, some discrepancies were still observed, which may be due to different
depths of measurement.

Figure 4. Comparison of the Argo (dashed black line) and satellite (solid blue line) for (a) the monthly
mean SSS and (b) SST in the SCS from January 2010 to December 2019.

3.2. Identification of Input Variables

Previous studies had suggested that sea surface data could be used to infer ocean
subsurface information with surface manifestations [37,55,62,86]. To determine the optimal
combination of input variables for the LGB-DF model, a correlation analysis was con-
ducted. Here, we only considered the absolute value of Pearson’s correlation coefficients
and focused on the magnitude of the correlation coefficients. The OSSS has a correlation
with the sea surface variables at 50m, 100m, 500m, and 1000m of depth (Figure 5). The
correlation coefficient between the OSSS and the SSS was relatively high at each depth, up
to approximately 0.6. The correlation coefficients between the OSSS and SST/SSH/USSW
(individually) were relatively small, approximately 0.2, while the VSSW was the lowest. As
shown in Figure 5, the correlation coefficients between the OSSS and SSS/SSH/VSSW (indi-
vidually) gradually decreased with depth, suggesting that SSS, SSH, and VSSW could play
more important roles in the upper ocean. SST played a greater role in shallow and deeper
layers, while the USSW performed better in the mid-ocean layers. The correlation analysis
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between the OSSS and sea surface parameters at different depths elucidated the impact of
SSS, SST, SSH, and SSW on OSSS and explained the reasons for the selected variables.

Figure 5. Correlation coefficients between the sea surface parameters (SSS, SST, SSH, USSW, and
VSSW) and the Argo-observed OSSS at 50 m (blue), 100 m (orange), 500 m (green), and 1000 m (red)
from January 2010 to December 2019.

As mentioned above, the unique geographical location and sparse observational
data complicated the estimate of the OSSS in the SCS. Satellite-derived sea surface data
captured most of the important features observed by the Argo surface data, providing
an unprecedented opportunity to estimate OSSS in the SCS. Moreover, previous studies
had suggested that geographical information could improve the estimation accuracy of
the ocean subsurface information [67,86]. Therefore, we selected SSS, SST, SSH, SSW, and
geographical information (LON and LAT) as the input variables to estimate the OSSS in
the SCS.

3.3. Accuracy Comparison between the LGB-DF Model and LightGBM Model

To illustrate the improved performance of the LGB-DF model, we compared the LGB-
DF model to the LightGBM model in terms of RMSE and R2. For the LGB-DF model and
LightGBM model, the average RMSE and R2 at all depth levels were 0.0320/0.9398 and
0.0398/0.9150, respectively. The OSSS estimated by the LGB-DF model had relatively lower
RMSE and higher R2 values not only on average but also at each depth level (Figure 6),
indicating that the LGB-DF model was more accurate than the LightGBM model for the
estimation of the OSSS in the SCS.

Figure 6. The average RMSE (psu) and R2 of OSSS estimated using the LGB-DF model and LightGBM
model at different depth levels in 2019 (the bars indicate the RMSE (psu) of the OSSS and the lines
indicate the R2 of the OSSS).
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Another important issue in the estimation of the OSSS is the selection of input vari-
ables for models. Previous studies have suggested that the SSW and the geographical
information could improve the accuracy of subsurface thermohaline estimates [62,67,85].
To further examine the influences of the SSW and the geographical information on the
OSSS estimation in the SCS, we designed three sets of experiments with different input
parameter combinations (Case 1, Case 2, and Case 3). In Case 1, we selected SSS, SST, and
SSH as input parameters. In addition to the above parameters, we also selected SSW as
an input parameter for Case 2. In Case 3, the geographical information (LON, LAT) was
added as well as SSW.

The comparisons showed that both the SSW and the geographical information im-
proved the estimation accuracy of the LGB-DF model in the SCS. The vertical mean RMSE
and R2 of the 7-parameter model in Case 3 were 0.0320 and 0.9398, respectively. For the
5-parameter model in Case 2, the vertical mean RMSE and R2 were 0.0520 and 0.7569,
respectively. For the 3-parameter model in Case 1, the vertical mean RMSE and R2 were
0.0615 and 0.7150, respectively. The LGB-DF model in Case 3 (SSS, SST, SSH, USSW, VSSW,
LON, and LAT) produced significantly lower RMSE values than the LGB-DF models in
Case 1 (SSS, SST, and SSH) and Case 2 (SSS, SST, SSH, USSW, and VSSW) at all depths,
while the R2 values were higher than other cases (Figure 7). All these indicated that adding
SSW and the geographical information significantly improved the estimation accuracy of
the OSSS in the SCS using the LGB-DF model.

Figure 7. The estimation accuracy of the OSSS at different depths by the LGB-DF model based on
(a) RMSE (psu) and (b) R2 in different cases in 2019.

3.4. Evaluation of the LGB-DF Model

Based on the optimal parameter combination, the LGB-DF model was employed to
estimate OSSS in the SCS. Next, we evaluated the performance and stability of the LGB-DF
model from different aspects. Figure 8 shows the comparison of the LGB-DF-estimated
OSSS and Argo-observed OSSS at depths of 50, 100, 500, and 1000 m in 2019; there were
no significant differences between them. The LGB-DF model estimated OSSS showed
good agreement with the Argo-observed OSSS at all depths. Most salinity features could
be effectively reconstructed via sea surface data using the LGB-DF model. For example,
at 50 m depth, both showed that there was a relatively high salinity tongue (>34.2 psu)
in the northeast SCS. Relatively low salinity (<33.5 psu) was observed in the southeast
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SCS (Figure 8a,e). The spatial distributions of the salinity at 100 m depth were similar
to those at 50 m depth (Figure 8b,f). With increased depth, salinity tended to be stable.
Below 500 m depth, the salinity varied from 34.4 psu to 34.6 psu. These spatial distribution
features were well reconstructed by the LGB-DF model. From a horizontal point of view,
the LGB-DF model had good performance in the estimation of OSSS in the SCS. More
detailed descriptions of the LGB-DF model performance are discussed in the next section.

Figure 8. Argo-observed (a–d) and LGB-DF-estimated (e–h) yearly mean salinity at different depths
(50, 100, 500, and 1000 m) in 2019.

To further evaluate the validity of the LGB-DF model, the accuracy of the OSSS es-
timation was quantitatively evaluated using the performance measures of RMSE and R2

at different depths (Table 2). The RMSE could visually reflect the true errors at different
depths. We employed the Argo-observed salinity at the same depth levels to validate the
estimation results. As shown in Table 2, the RMSE value of the LGB-DF model exhibited dif-
ferences at different depths; for example, RMSE = 0.1269 psu and R2 = 0.9181 at 50 m depth,
RMSE = 0.0841 psu and R2 = 0.7919 at 100 m depth, RMSE = 0.0112 psu and R2 = 0.9645 at
500 m depth, and RMSE = 0.0044 psu and R2 = 0.9744 at 1000 m depth. The RMSE of the
LGB-DF model decreased with depth due to the decreased range and standard deviation of
the OSSS at deeper depths.

To improve the comparability of the model accuracy at different depths, we normalized
the RMSE values to the relative error, i.e., NRMSE, dividing RMSE by the standard deviation
of the Argo salinity at that depth. As shown in Figure 9, the NRMSE values increased
from the surface to approximately 70 m, and then decreased from 70 m to 150 m, and
then increased from 150 m to approximately 350 m, finally decreased from 350 m to 500 m,
and stabilized from 500 m to 1000 m depth; whereas an opposite trend was observed
in R2. At approximately 70 m depth, the NRMSE value was the highest, while the R2

was the lowest. This indicated that the estimation accuracy of the LGB-DF model was
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lowest at approximately 70 m depth. This was likely due to 70 m being approximately
the depth of the thermocline layer in the SCS [64], where the temperature and salinity
changed more drastically with depth than in the layers above or below. This led to the
difficulty of reconstructing the OSSS in the SCS. Although the estimation accuracy at
approximately 70 m was relatively low, the LGB-DF model was generally satisfactory. This
also suggested that the LGB-DF model could accurately estimate the OSSS of the SCS using
satellite-derived sea surface data with satisfactory performance.

Table 2. Vertical distributions of RMSE (psu) and R2 for the LGB-DF model at different depths
in 2019.

Depth (m) RMSE R2

30 0.0547 0.9893
50 0.1269 0.9181
70 0.1533 0.7526

100 0.0841 0.7919
200 0.0310 0.9418
300 0.0249 0.9043
400 0.0153 0.8829
500 0.0112 0.9645
600 0.0100 0.9788
700 0.0087 0.9789
800 0.0066 0.9792
900 0.0047 0.9818

1000 0.0044 0.9744

Figure 9. The estimation accuracy of OSSS in terms of NRMSE and R2 at different depths by the
LGB-DF model in 2019.

Next, to further evaluate the vertical performance of the LGB-DF model, we also com-
pared the model estimated vertical salinity profiles with the Argo-observed salinity profiles
in typical regions. Based on the characteristics of bathymetry and salinity distributions, we
selected three typical boxes with a size of 2◦ × 2◦, namely, Boxes A, B, and C (Figure 1).
Box A (116◦E~118◦E and 19◦N~21◦N) was located along the continental slope south of
China. Box B (110.5◦E~112.5◦E and 15◦N~17◦N) was situated in the region of the East
Vietnam eddy. Box C (114◦E~116◦E and 9◦N~11◦N) was located in the Southern SCS. The
vertical salinity profiles estimated by the LGB-DF model generally coincided with the Argo-
observed profiles (Figure 10a–c). The vertically averaged RMSE and R2 values between
the LGB-DF estimation and the Argo observation were 0.0131 psu and 0.9950 for Box A,
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0.0228 psu and 0.9942 for Box B, and 0.0594 psu and 0.9820 for Box C, respectively. Our
comparison showed that the salinity difference between the LGB-DF estimation and the
Argo observation for Box C was larger than those for Box A and Box B, and the maximum
difference reached as high as 0.2 psu at approximately 70 m depth (Figure 10d). Although
there were some differences, the LGB-DF model estimated salinity profiles were in good
agreement with the Argo-observed salinity profiles. This result also demonstrated that the
LGB-DF model was reliable and performed well in the estimation of OSSS in the SCS.

Figure 10. Comparison of the LGB-DF-estimated and Argo-observed salinity profiles averaged
at different depths in Boxes (A–C) in 2019 (a–c) and their differences (d); Box A (116◦E~118◦E,
19◦N~21◦N), Box B (110.5◦E~112.5◦E, 15◦N~17◦N), and Box C (114◦E~116◦E, 9◦N~11◦N).

In addition, we selected a transect passing through the SCS from the southwest to
the northeast to further evaluate the performance of the LGB-DF model. Figure 11 shows
the comparison of the Argo-derived OSSS and LGB-DF model estimated OSSS in this
transect. The results showed that the spatial distribution of OSSS from the LGB-DF model
estimation was in good agreement with the Argo observations. Most of the observed
significant features of the OSSS in this transect could be accurately reconstructed by the
LGB-DF model. For example, in the upper 100 m, both of them showed that the salinity
changed dramatically with depth, ranging from 33.1 psu at the surface to 34.5 psu at 100 m.
The maximum salinity occurred between 100 m and 150 m in depth. Below 150 m, the
salinity changed slightly but tended to be stable, ranging from 34.4 psu at 300 m depth to
34.6 psu at 1000 m depth. Figure 11c shows the salinity differences between Argo-observed
and LGB-DF model estimated data (namely, Argo observation minus LGB-DF estimation).
The results showed that the major differences (exceeding 0.25 psu) were present at a depth
from 40 m to 150 m, between 9◦N and 14◦N, with Argo values less than the estimated
salinity value; whereas Argo values more than the estimated salinity value were present at
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a depth from 40 m to 150 m, between 16◦N and 19◦N. Overall, the spatial distribution of
the salinity from the LGB-DF model estimation had a very similar pattern as compared to
the Argo observations, further indicating that the LGB-DF model had good performance in
the estimation of the OSSS in the SCS.

Figure 11. Argo-observed OSSS, LGB-DF-estimated OSSS and the differences between them, along a
transect passing through the SCS from southwest to northeast. The black contours are, from top to
bottom, 33.5 psu, 34.0 psu, and 34.5 psu, respectively.

The accuracy of the estimation by the model could also be evaluated directly using a
density scatter plot. Therefore, we also calculated density scatter plots of the salinity from
the Argo observations and LGB-DF model estimations to evaluate the performance of the
LGB-DF model. The scatter distribution of the salinity from the LGB-DF estimation and
the Argo observations at different depths for all geographical locations in 2019 is shown
in Figure 12. Most of the scatter points were distributed evenly and densely along the
line near 1:1 with a low RMSE. The RMSE values between the Argo-observed salinity and
LGB-DF model estimated salinity were 0.0809 psu at 50 m depth, 0.0449 psu at 100 m depth,
0.0023 psu at 500 m depth, and 0.0012 psu at 1000 m depth. These also indicated that the
estimated results by the LGB-DF model were reliable.

As previously discussed, the LGB-DF model had good performance in the yearly mean
OSSS estimation in the SCS. However, the question of how it would perform in different
seasons remained. In this study, we selected February, May, August, and November, all in
2019, to represent the winter, spring, summer, and autumn seasons of the year, respectively.
Our quantitative evaluation of OSSS estimation for different seasons at the different depth
levels (30, 50, 70, 100, 200, 300, 500, 600, 700, 800, 900, and 1000 m) in terms of the NRMSE
and R2 results are shown in Figure 13.

Generally, the NRMSE values in different seasons showed first an uptrend and then a
downtrend, with a turning point appearing at 70 m. The highest NRMSE values occurred
at 100 m in February and May at 0.3864 and 0.4085, respectively, and at 70 m for August
(0.4603) and November (0.4587). The trend features of R2 were unstable and fluctuated.
They first fluctuated in the upper 500 m layer and then showed an uptrend from 500 m
to 1000 m. The estimation accuracy of the LGB-DF model varied with the seasons. The
average NRMSE (R2) in February and November were 0.2052 and 0.2204 (0.9505 and 0.9377),
respectively, which was lower (greater) than those in May and August. This indicated that
the estimation accuracy in winter and autumn was better. The average NRMSE in May
was 0.2676, and the average R2 was 0.9112, which was the largest (smallest) value in four
seasons. The average NRMSE and R2 in August were 0.2646 and 0.9147, respectively. In
general, the lower accuracy occurred in May and August, and the higher accuracy occurred
in November and February, which could have been related to the different performances
of the salinity at seasonal scales due to changes in the monsoonal circulation system.
Specifically, the monsoon system dominated the summer pattern, and the winter pattern
determined the climate of the SCS. The warm and humid southwest monsoon from the
equator produced heavy precipitation and associated river runoff from mid-May to mid-
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September, resulting in a double circulation pattern [14]. The dynamic ocean process was
significant in May and August, resulting in poor model estimation. The results showed that
there were low NRMSE and high R2 values in all four seasons, indicating that the LGB-DF
model had good seasonal applicability to estimate the OSSS in the SCS.

 

Figure 12. Density scatter plots of the salinity from LGB-DF estimations and Argo observations at
(a) 50 m, (b) 100 m, (c) 500 m, and (d) 1000 m in 2019. The color bar represents the density of the
scatter plots, with values closer to 1 indicating more scatter plots in the salinity range.

Figure 13. Performance measures by NRMSE and R2 values of LGB-DF model for OSSS estimation at
different depths in the SCS in 2019. Blue indicates February (winter), orange indicates May (spring),
green indicates August (summer), red indicates November (autumn), the histograms display the
NRMSE, and the lines display R2.
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4. Conclusions

Accurately estimating the vertical structure of ocean salinity in the SCS is of great
importance for understanding oceanic processes due to its significant role in marine ecosys-
tems, ocean dynamics, and climate changes. However, there is still a great lack of ob-
servational salinity data in the SCS due to the in situ observation being challenging and
expensive. In this study, we proposed an LGB-DF model to estimate OSSS in the SCS. The
developed LGB-DF model was used to reconstruct the OSSS in the SCS using satellite-
derived sea surface data (SSS, SST, SSH, and SSW) and the geographical information
(LON and LAT) as input data and in situ Argo data as label data. The LGB-DF-estimated
results were measured for accuracy and reliability by RMSE, NRMSE, and R2 using the
Argo observational data.

Comparisons showed that the OSSS estimated by the LGB-DF model had relatively
lower RMSE and higher R2 values, not only on average but also at each depth level, as
compared to the LightGBM model, indicating that the LGB-DF model accurately estimated
the subsurface salinity of the SCS and outperformed the LightGBM model. This was at-
tributed to the LGB-DF model combining the characteristics of deep learning and ensemble
models to solve complex problems. In addition to SSH, SST, and SST, SSW and geographical
information were two necessary parameters for accurately estimating the OSSS in the SCS
and significantly improved the estimation accuracy of the LGB-DF model.

The results showed that the LGB-DF model had good performance in the estimation
of the OSSS in the SCS with an area-averaged RMSE value of 0.0320 psu and an area-
averaged R2 value of 0.9398. The estimated salinity by the LGB-DF model and the Argo
observed salinity both showed consistent spatial distribution at various depths in 2019.
The performance measures showed that the performance of the LGB-DF model also varied
with depth, with better performance in shallow layers due to the physical state relative
to the surface being easily described. The performance of the LGB-DF model also varied
with seasons: the average NRMSE (R2) values in winter and autumn were lower (greater)
than those in other seasons, indicating a better estimation accuracy was obtained in winter
(NRMSE = 0.2052, R2 = 0.9505) and autumn (NRMSE = 02204, R2 = 0.9377). Although
complex dynamic processes and the strong monsoon climate increase the difficulty of local
OSSS estimation, our LGB-DF model had good performance in estimating the OSSS in
the SCS according to satellite-derived sea surface data. This study demonstrated that the
reconstruction of the subsurface salinity structure in the SCS using satellite observations
based on the LGB-DF model was reliable and accurate.

Although the LGB-DF model has good applicability to estimate the vertical structure
of the ocean salinity from the satellite-derived sea surface data, some discrepancies were
observed in primarily two aspects. Data errors existed between the observed values and
the true values due to objective factors such as the observation equipment itself and the
environment. In the data processing, we interpolated the remote sensing data and Argo
data to unify the resolution, which also caused errors. The estimation model error was
also noted. The relationship between the sea surface data and the subsurface salinity could
vary due to dynamic processes, such as subsidence and upwelling. Furthermore, as a
data-driven method, the LGB-DF model was highly dependent on training data, which
could underestimate or overlook the signal of some large anomalous events.

In future studies, we will further improve the estimation accuracy by using more
accurate data and more advanced deep-learning methods combined with oceanic dynamic
mechanisms to provide more explanatory results.
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Abstract: The invasive species of brown algae Sargassum gathers in large aggregations in the
Caribbean Sea, and has done so especially over the last decade. These aggregations wash up on
shores and decompose, leading to many socio-economic issues for the population and the coastal
ecosystem. Satellite ocean color data sensors such as Sentinel-3/OLCI can be used to detect the
presence of Sargassum and estimate its fractional coverage and biomass. The derivation of Sargas-
sum presence and abundance from satellite ocean color data first requires atmospheric correction;
however, the atmospheric correction procedure that is commonly used for oceanic waters needs to
be adapted when dealing with the occurrence of Sargassum because the non-zero water reflectance
in the near infrared band induced by Sargassum optical signature could lead to Sargassum being
wrongly identified as aerosols. In this study, this difficulty is overcome by interpolating aerosol and
sunglint reflectance between nearby Sargassum-free pixels. The proposed method relies on the local
homogeneity of the aerosol reflectance between Sargassum and Sargassum-free areas. The performance
of the adapted atmospheric correction algorithm over Sargassum areas is evaluated. The proposed
method is demonstrated to result in more plausible aerosol and sunglint reflectances. A reduction of
between 75% and 88% of pixels showing a negative water reflectance above 600 nm were noticed
after the correction of the several images.

Keywords: Sargassum; atmospheric correction; aerosols; OLCI

1. Introduction

Sargassum is an algal invasive species originally found in the Sargasso Sea, which is
located in the northwest of the Atlantic Ocean facing the State of Florida, USA between 20◦
N and 35◦ N. Since 2010, Sargassum has been found in large quantities elsewhere, typically
in the south of the Caribbean Sea as far as Brazil, but also as far as West Africa. The spatial
extent of Sargassum presence can possibly be explained by global climate changes, especially
by the increase of oceanic water temperatures, by the modifications of hydrodynamical
conditions and by the farming of deforested zones [1,2]. Once washed up on beaches,
Sargassum decomposes, producing a gas impacting inhabitants’ health, tourism and the
coastal environment. Scientific researches are conducted to gain an understanding of
the evolution of the Sargassum [3,4]. Remote sensing techniques can provide interesting
information regarding standing stock forecasts in terms of spatial location, period of
occurrence and abundance [5].

The presence of floating Sargassum can be detected using satellite imagery due to
the increased water reflectance caused by Sargassum in the red and near infrared (NIR).
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Hu [6] has proposed the Floating Algae Index (FAI) applied to MODIS data to detect
Sargassum aggregation using the red edge signal. However, the interpretation of such
an index can be challenging due to the fact that Sargassum and cloud optical signature
could both lead to high FAI values. Wang and Hu [7] modified the FAI to provide the
Alternative Floating Algae Index (AFAI), which is less sensitive to the presence of cloud
edges or thin clouds. Based on the AFAI, these authors were able to infer the fractional
coverage of Sargassum in the Gulf of Mexico. Wang and Hu’s method was adapted to
ENVISAT/MERIS data by Gower et al. [8,9] through the Maximum Chlorophyll Index
(MCI). The MCI was then adapted for the data acquired by the Ocean Land Color Imager
(OLCI) sensor onboard the Sentinel-3 satellite platform. The current Sargassum reflectance
indices use the top of atmosphere reflectance corrected for the Rayleigh scattering as inputs.
This is because there is currently no reliable atmospheric correction that can be applied to
derive the above water reflectance for the specific case of the presence of floating algae [9].
Although the aerosol correction may have a weak influence on the Algal Indices (AFAI and
MCI) [6], which are based on spectral reflectance differences, such a correction remains
necessary for applications that deal with the above water reflectance values, such as the
derivation of Sargassum fractional coverage and the consideration of the immersion depth
of the Sargassum aggregations. The performance of the atmospheric correction procedure
is therefore of critical importance for providing relevant products related to Sargassum
properties.

While the Rayleigh (i.e., molecular) atmospheric scattering component is well known
in theory, the correction of top-of-atmosphere reflectance for the aerosol reflectance remains
a challenging task because their optical properties cannot locally be predicted. Standard
atmospheric correction methods over open ocean waters assume the water reflectance
to be small in the near infrared (NIR) domain [10–12]. If the water reflectance is close to
zero for such oceanic water, the top-of-atmosphere reflectance is mainly ascribed to the
aerosol reflectance in addition to the Rayleigh scattering component. The derivation of
the aerosol reflectance is carried out in the NIR domain based on the comparison between
satellite measurements and reflectances simulated using various models of aerosol optical
properties. Then, the aerosol models are used to estimate the aerosol reflectance in the
visible domain. In the presence of Sargassum, such a common procedure cannot apply
because Sargassum induce a strong water reflectance in the near infrared bands due to their
optical signature in the red-edge part of the spectrum. Therefore, the NIR aerosol reflectance
could be overestimated regarding pixels containing Sargassum (called “Sargassum pixels”),
as compared with Sargassum-free areas, when using standard atmospheric correction
procedures [13]. Other methods such as ACOLITE [14] can be considered to correct aerosol
reflectance in the presence of algal blooms. In this paper, an extension of a given standard
atmospheric correction method (POLYMER [15]) is proposed to derive the water reflectance
from satellite data over oceanic waters containing Sargassum. The POLYMER method has
the advantage of taking into account sunglint as well as absorbing inhomogeneous aerosols.
The standard POLYMER algorithm has been successfully applied in the past to various
satellite sensors, including ENVISAT/MERIS, Sentinel-2/MSI and Sentinel-3/OLCI data
for Sargassum-free waters [15,16].

This paper is organized as follows: the study area, the Sentinel-3/OLCI satellite data
and the methodology used to adapt the standard atmospheric correction in the presence
of Sargassum are outlined in Section 2. The evaluation of the performance of the Sargas-
sum-dominated area detection and the benefits of the proposed atmospheric correction
procedure are presented in Section 3. Finally, the consistency of the proposed atmospheric
correction methodology is discussed in Section 4.
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2. Materials and Methods

2.1. Study Area

The study area is located in the Lesser Antilles Islands (Figure 1), off which an in-
creasing amount of Sargassum aggregation has been observed in the Caribbean Sea since
2010.

 
(a) (b) 

Figure 1. (a) Area of interest for the study: the Caribbean Sea; (b) Focus on the lesser Antilles Islands.

2.2. Satellite Data

The Ocean Land Color Instrument’s (OLCI) satellite sensor, which is onboard the
Sentinel-3 satellite platform, provides images at a spatial resolution of 300 m for 21 spectral
bands from the visible to near infrared, namely from 400 to 1020 nm. OLCI is highly
appropriate for providing reliable ocean color observations thanks to its high radiometric
sensitivity. Two satellite platforms were launched in 2016 and 2018, respectively, providing
a 1-day temporal resolution [17].

Five Sentinel-3/OLCI images were analyzed for this study; they were acquired on
8 July 2017 13:00, 27 June 2018 14:24, 9 May 2020 14:00, 14 September 2020 14:20 and
28 December 2020 13:55. These images were selected because they exhibit numerous
occurrences of Sargassum and were captured during different years and seasons. The
Level-1 data product, namely the Top Of Atmosphere radiance, was downloaded from
the Copernicus website [18]. Figure 2 shows the Red-Green-Blue (RGB) composite of the
processed Sentinel-3/OLCI image acquired on 8 July 2017 13:00.
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Figure 2. NIR-G-B composite image of the Sentinel-3/OLCI satellite data acquired on 8 July 2017 at
13:00.

2.3. In Situ Data

In situ measurements are important to correctly interpret satellite observations, es-
pecially to validate the proposed adjustment of the atmospheric correction procedure in
the presence of Sargassum. Although in situ data were not collected for the current study,
Ody et al. [18] were able to gather in situ data of Sargassum aggregations through two
cruise campaigns in the western Atlantic Ocean between Brazil and the Caribbean Sea in
the summer and autumn of 2017, which is the same period as the satellite image processed
here. The above water reflectances were collected by Ody et al. using deck observations of
Sargassum aggregations. Water reflectances were recorded for many Sargassum aggregations
associated with their abundance (fractional coverage at the metric scale [12]). Although Ody
et al.’s data cannot be rigorously used as a validation dataset in the current study, they will
be used in Section 4 to discuss the benefits and the consistency of the proposed atmospheric
correction method to correctly provide water reflectance in the presence of Sargassum.

2.4. Methodology
2.4.1. Standard Procedure for Atmospheric Correction over Oceanic Waters

The main steps of the atmospheric correction procedure that can typically be used
above oceanic waters are reiterated here. The Level-1 satellite data consist of top-of-
atmosphere radiance (LTOA) that first need to be normalized by the cosine of the so-
lar zenithal angle (θs) and the extraterrestrial solar irradiance (Es) to provide top-of-
atmosphere reflectance (Equation (1)).

ρTOA(λ) =
πLTOA(λ)

cos(θs)Es(λ)
(1)

ρTOA can be decomposed as a sum of various terms (Equation (2)):

ρTOA = toztNO2

(
ρmol + Tρgli + ρaer + ρcoupl + tρ+w

)
(2)
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where toz is the transmittance of the ozone and tNO2 the transmittance of the nitrogen
dioxide, ρmol is the Rayleigh molecular scattering, ρgli is the sunglint reflectance weighted
by the direct transmittance T, ρaer is the reflectance of the aerosols, ρcoupl accounts for the
various coupling terms between the sunglint, the molecules and the aerosols, t is the total
(i.e., direct and diffuse) transmittance for atmospheric scattering and ρ+w is the reflectance
just above the air-water interface (i.e., water reflectance).

Some of the atmospheric contributions can be accurately predicted using either ancil-
lary data or theoretical calculations. Those contributions consist of the ozone transmittance
toz(λ), which is determined based on the total ozone concentration as provided by ECMWF
data (European Centre for Medium-Range Weather Forecasts), and of the Rayleigh molec-
ular scattering reflectance based on the atmospheric pressure at sea level. These inputs
are stored in look-up tables to save computational time. The correction for the sunglint is
performed using the ECMWF wind speed data that is derived from the sea surface rough-
ness model by Cox and Munk (1954, [19]). The top-of-atmosphere reflectance can then
be corrected by the ozone transmittance, the Rayleigh scattering effects and the sunglint
reflectance. The resulting reflectance is hereafter referred to as ρ′. The aerosol reflectance
ρaer, the coupling term ρcoupl, and the residue of sunglint reflectance that has not been
totally corrected by Cox and Munk models are gathered under the notation ρag. Thus, the
reflectance ρ′ can be written based on Equation (2) as follows (Equation (3)):

ρ′(λ)= ρag(λ) + t(λ)ρ+w(λ) (3)

If the water reflectance spectrum is assumed to be known, then ρag could be derived
through the term ρ′ − tρ+w. The basic principle of the commonly used POLYMER algo-
rithm [15] relies on the modeling of the atmosphere reflectance and the residual sunglint
reflectances, namely the term ρag, as a polynomial function of λ and ρmol to best represent
the atmospheric signal even at high latitude (Equation (4)):

ρag(λ) ≈ t0

(
λ)c0 + c1λ−1 + c2ρmol (4)

where the coefficients c0, c1 and c2 are estimated by the least square fitting of the satellite
measurements and t0 is the total transmittance due to the Rayleigh scattering. The water
reflectance ρ+w in the visible domain can then be derived as (Equation (5)).

ρ+w(λ) =
ρ′(λ)− ρag(λ)

t(λ)
(5)

2.4.2. Extension of the POLYMER Algorithm to Sargassum-Dominated Waters

The spectral reflectance of pure Sargassum (Figure 3) is highly similar to land vegetation
reflectance. The main feature is observed in the NIR bands where the reflectance strongly
increases. A lower increase of the reflectance is observed in the green. Absorption properties
of Sargassum can be observed through the decrease of the reflectance in the blue and the red
bands. Although the proportion of Sargassum content in a given pixel is weak in the open
ocean, typically lower than 5% as revealed from MODIS satellite data analysis using the
monthly mean of the AFAI index [7], water reflectance remains high, especially in the NIR
domain. As highlighted in Section 2.4.1, the aerosol reflectance is commonly derived from
the reflectance measured in the NIR domain where the water reflectance is supposed to be
negligible. Therefore, the influence of Sargassum on the standard atmospheric correction
procedure could lead to overestimating the term ρag in the expression of ρ′ (Equation (3))
because Sargassum optical signature is wrongly ascribed to an aerosol signal rather than an
oceanic signal in the NIR part of the spectrum.
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Figure 3. Spectral reflectance of pure Sargassum [20].

The spectral variation of ρ′, ρag and ρ+w are shown in Figure 4a for a pixel containing
only water (i.e., Sargassum-free pixel). The spectral decrease of ρag is consistent with the
typical spectral decrease of aerosol reflectance with a wavelength in the red and near
infrared spectral bands [10,21]. In the case of Sargassum-dominated water (Figure 4b), ρag
exhibits a minimum value at 500 nm and increases from 500 nm to 800 nm, which is neither
consistent with the usual spectral variation of aerosol reflectance, which typically varies
as a decreasing power law, nor with the sunglint reflectance, which is fairly spectrally flat.
Only a few types of aerosols, such as desert dust absorbing aerosols, might exhibit a steep
increase in the reflectance with a wavelength from the blue to red/NIR range [22]. In any
case, a minimum value of the aerosol spectral reflectance (here around 500 nm), as observed
in Figure 4b (orange line), is not realistic from a physical point of view. The aerosol and
sunglint effects are then theoretically overestimated for the case of Sargassum-dominated
waters. The derived water reflectance ρ+w thus shows negative values (Figure 4b), which
is not realistic from a physical point of view. Consequently, Sargassum-dominated waters
require a specifically dedicated atmospheric correction procedure.

 
(a) (b) 

Figure 4. Reflectance corrected for Rayleigh molecular scattering (ρ′), reflectance of aerosol and
sunglint (ρag) and above water reflectance: (a) for a Sargassum-free area; (b) for a Sargassum-
dominated area.

Since the determination of aerosol and sunglint reflectance (ρag) is challenging over
Sargassum-dominated areas, we propose an extension of the POLYMER atmospheric cor-
rection procedure, which will hereafter be named POLYMERext. This method relies on
the idea of exploiting the value of ρag, which can be estimated over Sargassum-free waters
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using the standard method. The ρag reflectance over Sargassum-dominated areas is esti-
mated by interpolating a ρag that has been derived using Sargassum-free waters located
in the vicinity of the Sargassum waters. Then, the interpolated value of the aerosol and
sunglint reflectance (ρag) is subtracted from the top-of-atmosphere reflectance measured
over the Sargassum-dominated areas. The underlying assumption of such a method is
the consideration of a homogeneous spatial distribution of aerosols over the entire area
(i.e., Sargassum-dominated area and its Sargassum-free neighborhood). To proceed in such
a way, the Sargassum-dominated areas need to be first identified (i.e., flagged) and their
inconsistent ρag values need to be removed. The method used to identify Sargassum dom-
inated areas (or pixels), which is a necessary preliminary step prior to interpolating the
aerosol-glint reflectance ρag, is described in the next section (Section 2.4.3). The method
used to interpolate the Sargassum-free ρag for Sargassum-dominated areas is the MatLab
function called “fillmissing”, which uses a linear interpolation between the closest ρag values
that have been estimated for Sargassum-free areas. It should be noted that, even though the
satellite data used in this study does not contain significant desert dust contamination, the
applicability of the proposed method is mainly driven by the validity of the POLYMER
method over Sargassum-free waters and thus is applicable to the case of the occurrence of
moderate desert dust aerosols, especially since the red to NIR bands are not significantly
affected by the aerosol absorption.

2.4.3. Implementation of a Flag Dedicated to the Identification of Sargassum Pixels

Clouds could lead to overestimation of the number of pixels containing Sargassum if
they are wrongly identified, so cloud-contaminated pixels should be discarded from the
analysis. The first step is then to flag pixels contaminated by clouds. The clouds are filtered
using the method developed by Nordkvist et al. [23] for MODIS data because this method
was found to be performant, including for the case of thin clouds. They demonstrated that
pixels free of cloud, including thin cloud, can be identified using the Rayleigh-corrected top-
of-atmosphere reflectance acquired at bands 748 nm and 869 nm (respectively, λi and λj).
For the purpose of the current study, which is based on Sentinel-3/OLCI data, ρ′ (Equation
(3)) is used to identify the cloud-free pixels, including for thin cloud conditions. It should
be noted that the proposed method does not detect the cloud shadows, but it should be
highlighted that cloud shadows could be eliminated using an infrared sensor such as
SLSTR following the method described by Fernandez-Moran et al. [24]. The criterion and
threshold values used by Nordvist et al. to distinguish cloud-free pixels were revisited here
to match with OLCI sensor spectral specifications as follows (Equation (6)):

⎡
⎣ρ′(865)

t(865)
< 0.0045 OR

ρ′(865)
t(865)
ρ′(754)
t(754)

< 1.01

⎤
⎦ AND

[
ρ′(865)
t(865)

< 0.06
]

(6)

Two methods are proposed to identify and detect the occurrence of Sargassum in this
study. The first method, called “reflectance thresholding”, is based on the fact that pixels
containing Sargassum show an increase of the Rayleigh-corrected reflectance ρ′ between the
red and the NIR band (Figure 3). The criterion that has been established is based on the
reflectance ρ′ at bands 665 nm, 681 nm, 754 nm and 779 nm (Equation (7)).

max
[
ρ′(665), ρ′(681)

]
< max

[
ρ′(754), ρ′(779)

]
(7)

The occurrence of Sargassum can also be detected using algal index thresholding. The
MCI [8] is here used for the Rayleigh-corrected reflectance as follows (Equation (8)):

MCI = ρ′(709)−
[

ρ′(681) +
(
ρ′(754)− ρ′(681)

)× 709 − 681
754 − 681

]
(8)

The index value corresponding to Sargassum free waters, which is further called MCI
background, is subtracted from the MCI to derive the MCI deviation δMCI = MCI −
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MCIbg. The MCI background is determined using a median filter whose purpose is to
reduce noise on the MCI. It should be noted that such a median filter is relevant when
the large majority of pixels defining the filter are Sargassum-free pixels. Our tests showed
that a filtering window of 167 × 167 pixels (50 km × 50 km) is satisfactory for fulfilling
such a condition. The histogram of δMCI shows two modes (see Section 3.1.2): one can
be identified as the Sargassum-free pixels and another one corresponding to higher δMCI
consists of the Sargassum-dominated pixels. A threshold value of δMCI can be derived in
between the two modes to detect a Sargassum-dominated areas from Sargassum-free areas.

2.4.4. Flowchart of the Atmospheric Correction Algorithm Proposed for Sargassum
Dominated Waters

The flowchart of the methodology proposed for adjusting the POLYMER standard
atmospheric correction for Sargassum-dominated areas (POLYMERext) is shown in Figure 5.
The Rayleigh molecular scattering correction of the top-of-atmosphere Level-1 reflectance
is performed similarly over Sargassum-free and Sargassum-dominated areas. Thin clouds
pixels are identified and masked. Then, the pixels containing Sargassum are identified and
flagged. The aerosol and sunglint reflectances for the flagged Sargassum-dominated pixels
are estimated through the interpolation of the derived aerosol and sunglint reflectances, as
described in Section 2.4.2.

Figure 5. Flowchart of the POLYMERext procedure to correct the top-of-atmosphere reflectance over
Sargassum-dominated areas.

3. Results

3.1. Evaluation of the Performance of the Thin Cloud Masking and Sargassum Identification
3.1.1. Cloud Masking

Lands pixels are provided by the POLYMER algorithm. The thin cloud mask obtained
using the method described in Section 2.4.3 is then used to eliminate cloud-contaminated
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pixels. The thin cloud mask applied to the OLCI reflectance data can be seen in Figure 6b
and can be compared with the NIR-G-B composite data acquired by Sentinel-3/OLCI on
8 July 2017 at 13:00 (Figure 6a). Pixels containing land, water (including Sargassum) and
cloud are colored in green, blue and white, respectively.

(a) (b) 

Figure 6. Data acquired by Sentinel-3/OLCI on 8 July 2017 at 13:00 (a) Level-1 data in NIR-G-B
composite; (b) Water-land-cloud mask. Pixels containing land are in green, cloud-free pixels are in
blue and cloud pixels are in white.

Figure 6 shows that the contribution of thin clouds, which are not observable on the
NIR-G-B image (Figure 6a), is significant over the study area (Figure 6b).

3.1.2. Identification of Sargassum Areas

The identification of Sargassum-dominated areas is performed using a threshold value
on the δMCI. For that purpose, the histograms of δMCI values over entire Sentinel-3/OLCI
scenes were analyzed. For each scene, its histogram is represented in Figure 7. Those
histograms have the same first significant peak. Three modes can be observed. The highest
peak that is observed for the lowest values of δMCI is mostly related to Sargassum-free
pixels, which represent a large majority of pixels across the entire scene. The second and
third modes that are observed for the highest values of δMCI are mostly linked to the
occurrence of Sargassum within the pixels. The difference between the two peaks could
be due to the aggregation density. A threshold value could thus be determined between
those two modes to distinguish pixels containing Sargassum from Sargassum-free pixels.
The threshold-adopted value is the value of the threshold observed between the two modes,
which has been decreased by 30% to make sure not to omit any Sargassum-dominated pixels
(Figure 7). The threshold value of 0.002 is then determined (Figure 7). Such a threshold
value has been estimated based on the histogram obtained for the image acquired on 8 July
2017 at 13:00 (in black in Figure 7). However, it was found to be a relevant value for several
other acquisitions, namely Sentinel-3/OLCI data of 27 May 2018 14:24, 9 May 2020 14:00,
14 September 2020 14:20 and 28 December 2020 13:55.
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Figure 7. Histograms (number of occurrences) of δMCI for each of the Sentinel-3/OLCI scenes. The
histograms are represented for 8 July 2017 13:00 (black line), 27 May 2018 14:24 (yellow line), 9 May
2020 14:00 (green line), 14 September 2020 14:20 (magenta line) and 28 December 2020 13:55 (cyan
line). The red vertical line shows the threshold value of 0.002 that has been adopted for this study.
Such a value is 30% lower than the minimum value of δMCI observed between the two modes (blue
vertical line).

The comparison between the two approaches that have been proposed in Section 2.4.3
to detect the presence of Sargassum within the pixels, namely the reflectance thresholding
approach and the δMCI thresholding approach, is shown in Figure 8.

Sargassum aggregation edges are better detected in the whole scene when using the
reflectance thresholding approach (red color in Figure 8b). However, some aggregations
are largely underestimated on the right side of the image relative to the δMCI thresholding
approach, as observed in Figure 8c. The method using the δMCI thresholding approach
detects the main aggregations but leaves out many pixels on the edge of the Sargassum
aggregation. In addition, a threshold value is likely to change depending on the image
processed, thus leading to an overestimation or an underestimation of the Sargassum-
dominated pixels. On the one hand, omitting Sargassum-dominated pixels can be an
issue for the interpolation of the aerosol and sunglint reflectance performed during the
atmospheric correction procedure. On the other hand, an overestimation of Sargassum-
dominated pixels does not prevent the proposed atmospheric correction method. Then, a
hybrid approach has been considered using both approaches to increase the performance
of Sargassum detection. The Sargassum flags obtained using both the reflectance and δMCI
thresholding methods are merged to optimize the number of Sargassum aggregations
detected over the entire scene.
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Figure 8. Sargassum identification using the two approaches proposed in this study (i.e., reflectance
thresholding approach and δMCI thresholding approach) for the 8 July 2017 13:00 scene: (a) for the
OLCI entire scene, (b) for a sub-area located westward of the Dominica Island and (c) for a sub-area
located in the southeast of the scene. The results for each approach are presented using a different
color: red color is used for the reflectance thresholding method and orange color is used for the δMCI
thresholding approach. If both approaches agree, pixels are colored in green. Land pixels are colored
in white while Sargassum-free pixels (i.e., water only) are colored in blue. Clouds are also colored in
blue to enhance the visibility of Sargassum areas.

3.2. Benefit of the Proposed Atmospheric Correction Procedure Relative to a Standard Procedure

The standard atmospheric correction procedure (POLYMER) is compared to the pro-
posed method (POLYMERext) to evaluate the improvement made for investigating the
detection of Sargassum in oceanic waters (Figure 9).

Figure 9. Reflectance corrected for the Rayleigh scattering (ρ’), reflectance of aerosol and sunglint
(ρag) and reflectance of above surface water for a pixel containing Sargassum derived for the case
where (i) the standard POLYMER atmospheric correction procedure is used and (ii) the proposed
POLYMERext is used.
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The above water reflectances (ρ+w) derived from both the standard and adapted POLY-
MER atmospheric correction algorithm are fairly similar in the spectral range 412 nm–
620 nm. Beyond 620 nm, significant discrepancies are observed between the two methods.
The standard method provides negative values of ρ+w (i.e., <−0.001) from 650 nm that are
likely to be due to the overestimation of the aerosol and sunglint reflectance (ρag) by the
standard POLYMER algorithm as a result of the occurrence of Sargassum. The interpolation
of ρag derived for Sargassum-free pixels and applied to Sargassum pixels, as proposed by the
POLYMERext method, leads to a consistent spectral decrease of ρag over Sargassum areas
(Figure 9). In addition, ρ+w values remain positive and consistent with the spectral signature
of Sargassum (i.e., increase of ρ+w in the red-edge part of the spectrum, Figure 3).

The analysis of the entire scene reveals that approximately 85% of the negative values
of ρ+w between 620 and 681 nm derived by the standard approach have been corrected
using the POLYMERext algorithm. Similarly, the values of ρag that showed a spectral
increase with wavelength in the red/NIR bands when using the standard method have been
replaced by spectrally consistent ρag values derived by the adapted approach. Figure 10
compares ρag(754)/ρag(681) for Sargassum-dominated areas using POLYMER (Figure 10a)
and POLYMERext algorithms (Figure 10b). The values are mostly higher than 1 when
using POLYMER, which means an increase of ρag in the NIR domain (Figure 10a). The
proposed algorithm POLYMERext is able to correct for those values, which become lower
than 1 (Figure 10b). Several artefacts remain visible on the far east of the scene; they can be
attributed to the strong impact of the glint in this area.

  
(a) (b) 

Figure 10. Spectral ratio of the aerosol and sunglint reflectance ρag(754)/ρag(681) over Sargassum-
dominated areas in the scene acquired on 8 July 2017 13:00: (a) using POLYMER algorithm; (b) using
POLYMERext algorithm.

Therefore, the above water Level-2 reflectance derived for the adapted method is now
optically relevant for improving the assessment of the Sargassum biomass using algal index.

Table 1 shows the percentage of negative reflectance values that has been corrected us-
ing POLYMERext on Sargassum-dominated areas for the five scenes presented in Section 2.2.
It is observed that more than 75% of the negative reflectance (between 620 and 681 nm)
were corrected using POLYMERext for Sargassum-dominated areas. It should be noted
that the cloud coverage is more significant (about 50%) on 27 May 2018 14:24 and on 14
September 2020 14:20, which could explain the lower efficiency of the algorithm for these
two scenes.
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Table 1. Percentage of negative reflectance values corrected between (620 and 681 nm) by using
POLYMERext on Sargassum-dominated areas.

Date of the Scene
Percentage of Negative Reflectance Values

Corrected between (620 and 681 nm)

8 July 2017 13:00 83%
27 May 2018 14:24 76%
9 May 2020 14:00 88%

14 September 2020 14:20 75%
28 December 2020 13:55 79%

4. Discussion

The extension of the POLYMER standard algorithm proposed in this study to perform
atmospheric correction over Sargassum-dominated areas is important to enable the satellite
data processing and monitoring of Sargassum variation with time and space from remote
sensing techniques, especially when the above water reflectances are used rather than
spectral reflectance differences. The POLYMERext procedure relies on the assumption that
the aerosol and sunglint reflectance ρag is spatially homogeneous over the Sargassum areas
relative to adjacent Sargassum-free areas. The relevance of such an assumption has been
investigated. For that purpose, the standard atmospheric correction algorithm has been
applied over a Sargassum-free area to provide ρag values (Figure 11a). Then, a rectangular
sub-area within this area was considered as a test area. Since the area is Sargassum-free
waters, ρag inside such a test area can be considered as the reference ρag, hereafter referred
to as ρag_ref. Then, in a second step, ρag over the test area was estimated as it could not
be correctly retrieved using the standard POLYMER algorithm. Thus, the POLYMERext
method was used and ρag from the surrounds of the test area was linearly interpolated
in the test area, hereafter referred to as ρag_test. The difference between ρag_test values and
ρag_ref values are calculated to provide the Relative Root Mean Square Error (noted RRMSE).
The relevance of the assumption made on the spatial homogeneity of ρag using these errors
could be determined. Practically, an area was selected within the Sentinel-3/OLCI image
acquired on 8 July 2017 at 13:00 without pixels containing clouds, without Sargassum and
without anomalous spectral variation of ρag. Then, a 300 × 80 pixel rectangle (90 km ×
24 km) was defined inside this area. It should be noted that the size of a 300 × 80 pixel
rectangle is larger than the typical size of Sargassum aggregation [20]. The reflectance ρag
is interpolated for such 300 × 80 pixel area. A transect of the area for the 200th line is
represented in Figure 11b, which shows ρag, ρag_test and ρag_ref at 560 nm for the study
area. The mean relative RRMSE error between the interpolated ρag values and the reference
ρag values (i.e., Sargassum-free areas) varies between 0.09% and 11% inside the rectangle
area. Such a low discrepancy confirms that the assumption made on the spatial local
homogeneity of the aerosol is reliable.

The fill missing data method used could be improved because the interpolation is only
made along lines and uses only two available values for the interpolation that can amplify
uncertainty. An improved version of our approach might be to use the mean x and y of the
first few pixels before the gap and the first few pixels after the gap for the interpolation, to
do this both horizontally and vertically. Then, the shortest or nearest or the mean of the
two interpolations weighted by gap length or distance is selected.
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(a) (b) 

Figure 11. (a) Location of the test area (white rectangle); (b) Transect (200th line) of the Sargassum-free
area for ρag_test (560 nm) values and ρag_ref

(560 nm) values.

The measurement of in situ data within Sargassum-dominated waters at the same date
and location as a satellite data, called “match-up” data, is a challenging task because of
the various scales of observation, typically a 300 × 300 m2 area covered by the satellite
observation versus a few meters covered by ship observations. However, the above water
reflectance derived from the adapted atmospheric correction method was compared with
the reflectance spectra measured during previous field experiments that occurred in 2017
in the western Atlantic Ocean (i.e., same study areas and time period as the current
study) [18]. The typical water reflectances measured over Sargassum aggregation areas
are shown in Figure 12a. Each reflectance spectrum corresponds to an abundance of
Sargassum (in %) determined based on water sample analysis. Even though the in situ data
cannot be used as a rigorous validation of the proposed atmospheric correction method,
they are helpful for analyzing the consistency of the estimated above water reflectance.
Figure 12b shows (i) two in situ measurements, (ii) the proposed POLYMERext algorithm
and (iii) the standard POLYMER algorithm for a pixel containing Sargassum. Such a figure
highlights the inconsistency of the standard atmospheric correction procedure because of
the negative reflectance values between 681 nm and 709 nm. The water reflectance derived
from the POLYMERext atmospheric correction approach shows more similarities with the
in situ reflectance measurements than the water reflectance derived from the standard
algorithm, especially for the case of 5% Sargassum abundance in the spectral range 681
nm–754 nm. Such a comparison with the in situ data thus corroborates the relevance of the
adjustments proposed in this study for the atmospheric correction procedure. It should
also be highlighted that in situ sampling carried out across the Atlantic Ocean in previous
studies did not reveal evidence of the occurrence of any other invasive species competitive
with Sargassum [25–27]. Thus, although it might be theoretically possible, it is unlikely that
other species could lead to the same red/NIR spectral features as Sargassum over our study
area based on Ody et al.’s [20] in situ observations and other studies [25–27].
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(a) (b) 

Figure 12. (a) Above water reflectance (ρ+w) measured in situ in Sargassum-dominated areas in
the Atlantic Ocean [20]. The different spectra correspond to different Sargassum abundances (%);
(b) comparison of the spectrum water reflectance measured in situ when the abundance is 4.6, 4.8 and
5% with the reflectance derived from the standard and adapted atmospheric correction procedure.

5. Conclusions

In this study, an adaptation of a standard atmospheric correction procedure, namely
POLYMER, is proposed to correct the surface reflectance of pixels containing Sargassum.
This method requires, first, a mask of thin clouds over the entire scene; the POLYMER
standard procedure is only applied to the Sargassum-free area. Then, the aerosol reflectance
over Sargassum-dominated areas is interpolated based on its value determined over the
Sargassum-free area located in the vicinity of Sargassum waters. The proposed method
assumes the spatial homogeneity of the aerosol reflectance, which has been shown as a
relevant assumption. The proposed POLYMERext procedure was successfully applied to
Sentinel-3/OLCI data, for which the inconsistencies in the spectral variation of the aerosol
reflectance (i.e., increase from visible to NIR bands) vanish. A reduction of between 75%
and 88% of the pixels showing a negative water reflectance above 600 nm were noticed after
the correction of the five images. The efficiency of the correction is fairly related to the cloud
coverage. The more clouds, the less effective is the method. The comparison between the
in situ data and the water reflectance derived over Sargassum areas based on the improved
atmospheric correction corroborates the relevance of the proposed method. Therefore,
relevant estimates of Sargassum variables such as biomass and fractional coverage could
be further derived based on the methodology developed in this study. This method can
also be applied to other satellite sensors, such as Aqua/MODIS, Terra/MODIS, SUOMI-
NPP/VIIRS and Sentinel-2/MSI.
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Abstract: The geostationary ocean color imager (GOCI), as the world’s first operational geostationary
ocean color sensor, is aiming at monitoring short-term and small-scale changes of waters over
the northwestern Pacific Ocean. Before assessing its capability of detecting subdiurnal changes
of seawater properties, a fundamental understanding of the uncertainties of normalized water-
leaving radiance (nLw) products introduced by atmospheric correction algorithms is necessarily
required. This paper presents the uncertainties by accessing GOCI-derived nLw products generated
by two commonly used operational atmospheric algorithms, the Korea Ocean Satellite Center (KOSC)
standard atmospheric algorithm adopted in GOCI Data Processing System (GDPS) and the NASA
standard atmospheric algorithm implemented in Sea-Viewing Wide Field-of-View Sensor Data
Analysis System (SeaDAS/l2gen package), with Aerosol Robotic Network Ocean Color (AERONET-
OC) provided nLw data. The nLw data acquired from the GOCI sensor based on two algorithms and
four AERONET-OC sites of Ariake, Ieodo, Socheongcho, and Gageocho from October 2011 to March
2019 were obtained, matched, and analyzed. The GDPS-generated nLw data are slightly better than
that with SeaDAS at visible bands; however, the mean percentage relative errors for both algorithms
at blue bands are over 30%. The nLw data derived by GDPS is of better quality both in clear and
turbid water, although underestimation is observed at near-infrared (NIR) band (865 nm) in turbid
water. The nLw data derived by SeaDAS are underestimated in both clear and turbid water, and
the underestimation worsens toward short visible bands. Moreover, both algorithms perform better
at noon (02 and 03 Universal Time Coordinated (UTC)), and worse in the early morning and late
afternoon. It is speculated that the uncertainties in nLw measurements arose from aerosol models,
NIR water-leaving radiance correction method, and bidirectional reflectance distribution function
(BRDF) correction method in corresponding atmospheric correction procedure.

Keywords: geostationary ocean color imager (GOCI); GDPS; SeaDAS; normalized water-leaving
radiance; atmospheric correction

1. Introduction

Remote sensing of ocean color has proven to be an efficient and irreplaceable tech-
nique in monitoring the ocean environment in the last two decades, contributing to biogeo-
chemistry, physical oceanography, ocean-system modeling, fisheries, and coastal manage-
ment [1]. Although polar-orbiting ocean color sensors (e.g., MODIS, SeaWiFS, MERIS) are
well suited for observing seasonal or annual variations of ocean phenomena on a global
scale, their once-per-day-time coverage cannot resolve diel variability. With greater tem-
poral resolution than traditional polar-orbiting ocean color sensors, geostationary ocean
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color sensors may provide an alternative when observing the ocean environments that
vary on short temporal scales [2–4]. Geostationary ocean color imager (GOCI), the first
geostationary ocean color mission, was designed to focus on an area of 2500 × 2500 km2

centered around the Korean Peninsula. It acquires multispectral images with a 500 m
ground resolution eight times per day [4–6]. The GOCI data have been successfully used in
monitoring and characterizing short-term and small-scale ocean phenomena, such as red
tides, green algae, particulate organic carbon flux (POC), total suspended matter (TSM),
diurnal variation of water turbidity or aerosol optical depth and PM2.5, surface circulation,
surface tidal currents and plume [7–15]. As with any ocean color sensors, the successful
application of GOCI data depends on the quality of its data products, especially the nor-
malized water-leaving radiance (nLw) or the remote sensing reflectance (Rrs) [16], which is
mainly up to atmospheric correction.

Atmospheric correction is a fundamental step to remove the atmospheric influence
and extract the water information. The atmospheric correction for GOCI data has been
mainly performed using two operational algorithms: the Korea Ocean Satellite Center
standard atmospheric correction algorithm, which can be achieved in the GOCI Data
Processing System (GDPS) (hereafter, GDPS algorithm) [6], and the NASA standard atmo-
spheric correction algorithm, which can be realized in Sea-Viewing Wide Field-of-View
Sensor Data Analysis System (SeaDAS/l2gen package) (hereafter, SeaDAS algorithm) [17].
Huang et al. [18] found that the GDPS algorithm shows better performance in retrieving
Rrs and aerosol optical information over the Yellow Sea region than the SeaDAS algorithm,
although low accuracies were discovered at blue and near-infrared (NIR) bands, which is
consistent with the research results of Concha et al. [19,20]. Kim et al. [19,21] evaluated the
chlorophyll concentration derived from GOCI radiometric data acquired from the GDPS
algorithm using 130 matchups between GOCI data and field data and concluded that the
surface radiometric outcome needs to be improved primarily for clear waters and for the
blue bands (412, 443, and 490 nm). Lamquin et al. [22] proved relative agreement between
GOCI-derived seawater reflectance products based on GDPS algorithm and medium res-
olution imaging spectrometer (MERIS) and moderate-resolution imaging spectrometer
(MODIS) results. Li et al. [23] also demonstrated that remote sensing reflectance, the
concentration of standard chlorophyll-a, and suspended particulate matter products pro-
duced by the GDPS algorithm have the best agreement with in situ data in Liaodong Bay.
Qi et al. [24] determined typical types of diurnal changing patterns in cyanobacteria blooms
of Taihu Lake using SeaDAS algorithm-based GOCI products. However, Wu et al. [25]
declared that either the GDPS algorithm or SeaDAS algorithm-based Rrs could not be
retrieved successfully in the highly turbid coastal waters. Moreover, many studies have
used the GDPS algorithm or SeaDAS algorithm, as well as improved algorithms, to retrieve
other products, such as colored dissolved organic matter (CDOM) absorption coefficient,
the diffuse attenuation coefficient, and chlorophyll-a concentration [6,16,21,22,26,27].

At present, most studies validated the feasibility and applicability of atmospheric
correction algorithms on account of limited in situ data or time-limited ship-measured data.
In this study, we will assess the uncertainties of GOCI nLw(λ) produced by GDPS algorithm
and SeaDAS algorithm through comparing with field measurements from four AERONET-
OC sites, namely, ARIAKE_TOWER, Ieodo_Station, Socheongcho, and Gageocho_Station,
located within the GOCI observation range ranging in a rather long observation period
covering both clear and turbid water (Figure 1; more details about these four sites are pre-
sented in Section 2.2), and aim to give data users an impression of how much uncertainties
could exist in the surface radiometric data derived from these two operational atmospheric
correction algorithms in different waters, and at different observation time (GOCI can
provide eight every-hour observations daily). The paper is constituted as follows: Section 1
introduces the background of GOCI data processing; the data resources and methods used
in the research are described in Section 2; in Section 3, the comparison results between
GOCI-derived nLw(λ) based on different algorithms and nLw(λ) at four AERONET-OC
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sites are presented with corresponding figures and tables; Sections 4 and 5 discuss the
performance of the two algorithms and propose viewpoints and suggestions.

Figure 1. The distribution of chlorophyll-a concentration in the GOCI observation area (data from MODIS-Aqua) and the
location of four AERONET-OC sites (Ariake, Ieodo, Socheongcho, Gageocho). The zoom-in figures at four sites are exhibited
on the right side together with the color bar.

2. Materials and Methods

2.1. GOCI Data

The GOCI, launched on 26 June 2010 by the Republic of Korea, is the first geostationary
spaceborne ocean color sensor. It provides images with 500 m ground resolution at hourly
intervals up to eight times per day (from 00:16 UTC to 07:16 UTC) at eight spectral bands
(six visible bands: 412, 443, 490, 555, 660, 680 nm, and two near-infrared bands: 745,
865 nm) around the Korean Peninsula [13,16,21,26]. The GOCI Level 1B (L1B) data are
available for downloading from the KOSC website (http://kosc.kiost.ac.kr/). Data from
17 October 2011 to 5 March 2019 are collected in this study.

2.2. AERONET-OC Data

The AERONET is an assembly of ground-based remote sensing aerosol networks,
which also supports marine applications through a new component called AERONET-
OC through providing nLw data measured by the SeaPRISM autonomous radiometer
systems deployed on offshore platforms. The SeaPRISM system acquires the radiance
from the sea and the sky at viewing zenith angles of 40º and 140º with a relative az-
imuth angle of 90º, and then the nLw can be further calculated [28]. As shown in
Figure 1, there are four AERONET-OC sites located within the GOCI’s footprint: ARI-
AKE_TOWER (Ariake, 33.104◦ N, 130.272◦ E, PIs: Joji Ishizaka and Kohei Arai, time
span: 19 April 2018–5 March 2019, number of data: 503), Ieodo_Station (Ieodo, 32.123◦ N,
125.182◦ E, PIs: Young-Je Park and Hak-Yeol You, time span: 1 December 2013–27 March
2018, number of data: 42), Socheongcho (37.423◦ N, 124.738◦ E, PI: Young-Je Park, time
span: 13 October 2015–30 November 2018, number of data: 165) and Gageocho_Station
(Gageocho, 33.942◦ N, 124.593◦ E, PIs: Jae-Seol Shim and Joo-Hyung Ryu, time span:
17 October 2011–16 May 2012, number of data: 31). The Level 2.0 nLw data (obtained
based on the f/Q correction [29]), which is cloud screened and quality assured, at the
above four sites were downloaded from the AERONET-OC website (https://aeronet.gsfc.
nasa.gov/, accessed on 21 December 2020). Note that the mean nLw (660) values with
standard deviations at Ariake, Ieodo, Socheongcho, and Gageocho sites are 7.7876 ± 3.8878,
4.8363 ± 3.2161, 1.1993 ± 1.2842, and 1.0931 ± 0.6589 W/m2 · sr · μm, respectively, which
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implies the descending water turbidity. In addition, with the purpose to reveal the turbidity
of four sites synoptically, annual average chlorophyll-a concentration based on MODIS-
Aqua data were obtained from Ocean Color Website (https://oceancolor.gsfc.nasa.gov/,
accessed on 21 December 2020) and visualized after logarithmic calculation in Figure 1.
Both statistical calculation results of nLw at 660 nm wavelength and chlorophyll-a concen-
tration distribution shown in Figure 1 illustrate that seawater at Ariake is most turbid, and
become increasingly clear from Ieodo, to Socheongcho, to Gageocho sites.

Although the spectral band of AERONET-OC and GOCI data are not exactly the
same (Table 1), comparable wavelengths of 412, 443, 490, 660, and 865 nm for both data
were selected for comparison purpose in this study. The main difference is at 667 nm for
AERONET-OC and 660 nm for GOCI. However, no spectral interpolation was performed
here since we believe that the spectral difference is acceptable considering that the GOCI
bandwidth is 20 nm. Hereafter, we use the wavelengths of GOCI in the following text for
the sake of simplicity.

Table 1. GOCI spectral bands and corresponding wavebands of AERONET-OC data.

GOCI AERONET-OC

Band# λ (nm) Δλ(nm) Band# λ (nm) Δλ (nm)

B1 412 20 B4 412 10
B2 443 20 B6 443 10
B3 490 20 B7 490 10
B4 555 20 - - -
B5 660 20 B16 667 10
B6 680 10 - - -
B7 745 20 - - -
B8 865 40 B21 865 10

2.3. Methods

The GOCI L1B products (top-of-atmosphere radiance) were first processed into L2
products (surface water radiometric data, nLw(λ)) by both GDPS and SeaDAS/l2gen, and
then we matched and assessed these two kinds of GOCI nLw(λ) data (nLw_xxx) with
AERONET-OC nLw(λ) data (nLw_AERONET-OC).

2.3.1. Conversion to L2 Products

GOCI L1B data were processed both with the GDPS (Version 1.4.1, South Korea) and
the SeaDAS/l2gen package (Version 7.5.3, United States). GDPS is a software for GOCI data
processing dedicated to GOCI distributed by KOSC (http://kosc.kiost.ac.kr/eng/p30/
kosc_p31.html, accessed on 1 October 2020) through which L2 data, including nLw, colored
dissolved organic matter (CDOM), the diffused attenuation coefficient of down-welling
irradiance (Kd), as well as ancillary information such as solar and sensor zenith angles and
azimuth angles, can be obtained from L1B data [6]. The GDPS employed KOSC standard
atmospheric algorithm to achieve data conversion. It is theoretically based on the SeaWiFS
(NASA) standard atmospheric correction method developed by Gordon and Wang in 1994
(hereafter GW94) [30], with partial modification in aerosol models and additionally uses
an iterative process to correct NIR reflectance alternatively in the case of case-2 waters [31].
As for aerosol models in GDPS, the GDPS algorithm adopts only 3 from 12 aerosol models
used in GW94, namely, M99, M50, and C50, to reduce the processing time and avoid the
image discontinuity problem. For the NIR correction model in turbid case-2 waters, it
adapts an empirical relationship between normalized water-leaving reflectance (ρw) at
660 nm, 745 nm, and 865 nm [32].

SeaDAS distributed by NASA is a comprehensive software package for the processing,
display, analysis, and quality control of ocean color data (https://seadas.gsfc.nasa.gov/).
It can apply the standard NASA atmospheric correction algorithm [33] to the GOCI data
through its multisensor L1 to L2 generator (l2gen). SeaDAS algorithm is also initially based
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on GW94 and has undergone a series of improvements [17,34,35]. When treating nonblack
pixels, it first retrieves ρw(443) and ρw(555) based on the “black-pixel” assumption. Next, it
obtains an initial estimate of the chlorophyll concentration and total absorption coefficient
at 660 nm, a(660), via a bio-optical model and empirical relationship [17]. Then, particulate
backscattering at 660 nm, bbp (660), can be derived from a(660) and ρw (660), which can
make a further step to calculate the total backscattering of NIR bands. Finally, ρw values of
at NIR bands are recalculated on the basis of the above steps, and this procedure will cycle
until convergence is reached.

Both GDPS and SeaDAS output L2 processing flags reflecting warnings or errors
generated concerning the data quality [20,36]; we applied these flags in the following data
matchup procedure.

2.3.2. Matchup Procedure

Through trial, a space–time window with 5 × 5 pixels and ±0.5 h was utilized to
match GOCI data and AERONET-OC data. Specifically, the proposed space–time window
is a compromise between minimizing geophysical variability and navigation error and
ensuring a sufficient amount of data for statistical analysis. To process the matchup data,
we followed the satellite validation protocol described in Bailey and Werdell [36] (Figure 2).
We discarded GOCI pixels flagged as land, cloud edge in GDPS, and failure in products
in SeaDAS. To minimize the influence of outliers, we also discarded those GOCI pixels
whose values are outside ± 1.5 standard deviations of their respective median values.
For the remaining data within the matchup window, we calculated arithmetic means for
comparison. As GOCI observation times are every hour from 00:16 UTC to 07:16 UTC,
whereas the time of AERONET-OC data is irregular; there may be a situation in which
several AERONET-OC data matched simultaneously with one GOCI acquisition data. For
each GOCI data, only temporally closest AERONET-OC data were first considered for
availability. A total of 307 pairs of matchups were found between GDPS-derived data
(nLw_GDPS, stands for the nLw results of the GDPS algorithm) and nLw_AERONET-OC,
and 294 pairs between SeaDAS-derived data (nLw_SeaDAS, stands for the nLw results
of SeaDAS algorithm) and nLw_AERONET-OC. For the GDPS algorithm, 221, 22, 55,
and 9 matchup data were obtained at Ariake, Ieodo, Socheongcho, and Gageocho, Ieodo,
respectively; for the SeaDAS algorithm, 193, 24, 68, and 9 matchup data were obtained at
the four sites.

Figure 2. Flowchart of exclusion criterion and matchup procedure. Median, median of valid pixel
values; σ, standard deviation of valid pixel values; NSP, number of selected pixels; NTP, number of
total pixels.
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2.3.3. Accuracy Indicator

In order to quantify comparison results, we use mean absolute error (MAE) and mean
percentage relative error (MPRE) to evaluate the accuracy of nLw_xxx (either nLw_GDPS
or nLw_SeaDAS) in contrast to in situ observations (nLw_AERONET-OC) as follows:

MAE =
∑N

i=1|nLw_AERONET − OC(i)− nLw_xxx(i)|
N

(1)

MPRE =
100
N

N

∑
i=1

|nLw_AERONET − OC(i)− nLw_xxx(i)|
nLw_AERONET − OC(i)

(2)

where, nLw_AERONET-OC(i) and nLw_xxx(i) denote the nLw_AERONET-OC and nLw_xxx
of the i-th matchup, respectively, and N denotes the total number of matchup pairs.

3. Results

3.1. Comparison between nLw_xxx and nLw_AERONET-OC

The performance of the GDPS algorithm and SeaDAS algorithm varies from site to site
(Figures 3 and 4). Figure 3 shows that most of the matchup points between nLw_SeaDAS
and nLw_AERONET-OC are located below the 1:1 line, while the majority of the matchups
between nLw_GDPS and nLw_AERONET-OC falls approximately evenly on both sides of
the 1:1 line, although several matchups apparently lied below 1:1 line at Ariake site and
with larger variance at Socheongcho site. Comparison results between nLw_SeaDAS and
nLw_AERONET-OC indicate that relatively larger variance exists at Ariake and Gageo-
cho sites than that between nLw_GDPS and nLw_AERONET-OC; besides, nLw_SeaDAS
contains evident negative values at shorter wavelengths (e.g., 412-490 nm) at Ariake,
Socheongcho, and Gageocho sites, while nLw_GDPS embodies negative values yet in less
quantity at Ariake and Socheongcho sites. Therefore, to some extent, the GDPS algorithm is
capable of higher stability and accuracy than the SeaDAS algorithm, particularly in turbid
water (e.g., Ariake site).

Table 2. The MAE (W/m2·sr·μm) and MPRE (%) of each site between nLw_AERONET-OC and
nLw_xxx for all matchup pairs

Site Ariake Ieodo Socheongcho Gageocho

AERONET-OC vs. GDPS

MAE 2.0713 2.8250 2.0816 1.7582

MPRE 28.9892 29.7820 67.6869 56.0459

N 1098 87 210 35

AERONET-OC vs. SeaDAS

MAE 3.2454 2.9215 2.4304 2.1949

MPRE 39.2502 17.9286 74.1094 57.0899

N 943 96 270 36

Figure 4 reveals the density distribution of relative error between nLw_xxx and
nLw_AERONET-OC. At each site, 75% of matching pairs between nLw_SeaDAS and
nLw_AERONET-OC have relative errors less than zero, while the median values of relative
error between nLw_GDPS and nLw_AERONET-OC are approximately zero at Ariake,
Ieodo, and Socheongcho sites and slightly higher at Gageocho site. Both matching results
exhibit long tail at Socheongcho and Gageocho sites, indicating that both algorithms entail
large uncertainty in clean water. The two figures suggest that compared with the GDPS
algorithm, the SeaDAS algorithm underestimates nLw, in general, especially at Ariake and
Socheongcho sites. The related MAE and MPRE values of four sites between nLw_xxx and
nLw_AERONET-OC summarized in Table 2 also support this result and further illustrate
the degree of deviation. MAE between nLw_GDPS and nLw_AERONET-OC is smaller than
MAE between nLw_SeaDAS and nLw_AERONET-OC at all four sites. Moreover, MPRE
between nLw_GDPS and nLw_AERONET-OC is also less than that between nLw_GDPS
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and nLw_AERONET-OC at Ariake, Socheongcho, and Gageocho sites, however, conversely
at Ieodo site, due to overestimated nLw_GDPS at 660 nm wavelength.

Figure 3. Scatterplots between nLw_GDPS and nLw_AERONET-OC (left column), and nLw_SeaDAS
and nLw_AERONET-OC (right column) at Ariake, Ieodo, Gageocho, and Socheongcho sites, respectively.

Figure 4. Violin plots of relative error distribution of nLw_GDPS (shown in blue) and nLw_SeaDAS
(shown in pink), compared to nLw_AERONET-OC at Ariake, Ieodo, Socheongcho, and Gageocho
sites. The dotted lines represent the upper quartile, median, and lower quartile. The statistical infor-
mation between nLw_GDPS (nLw_SeaDAS) and nLw_AERONET-OC at each site was summarized
in Table 2.
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In conclusion, nLw_GDPS shows better agreement with nLw_AERONET-OC than
nLw_SeaDAS. Noteworthy, two issues are discovered through the above analysis—one is
that some blue band values of nLw_GDPS and nLw_SeaDAS are negative; the other is that
the relative errors of nLw_GDPS and nLw_SeaDAS are even higher than 100% at Socheong-
cho and Gageocho sites, which are sites with clear waters. Overall, the applicability and
serviceability of the GDPS algorithm are better than the SeaDAS algorithm regardless of
turbidity in our research area; nevertheless, the stability of both the GDPS algorithm and
SeaDAS algorithm in clean water is worthy of attention.

The performance of the GDPS algorithm and SeaDAS algorithm also varies with
wavelengths, as shown in scatterplots of Figure 5 and violin plots of Figure 6, as well
as statistical results listed in Table 3. As shown in Figure 5, for nLw_GDPS, the highest
accuracy was found at 660 nm band among all bands, while at shorter wavelengths, nLw
matching results are influenced by several underestimated valuations. More explicitly,
when nLw_AERONET-OC is greater than 15, 20, 28 W/m2·sr·μm at 412, 443, 490 nm
wavelengths, respectively, nLw_GDPS is underestimated and slightly affects the overall
results. Given this consideration, nLw_GDPS is well matched with nLw_AERONET-OC
at all wavelengths except 865 nm. Similarly, the nLw_SeaDAS at 660 nm shows the best
agreement with the nLw_AERONET-OC, although there still exists a linear underestimation
trend; however, it can be observed that the underestimation issue is becoming severe with
decreasing visible bands, and the performance is worse than nLw_GDPS at shorter bands.
On the contrary, better performance at 865 nm was found with nLw_SeaDAS than that
with nLw_GDPS.

Table 3. The MAE (W/m2·sr·μm) and MPRE (%) of nLw(λ) between nLw_AERONET-OC and
nLw_xxx for all matchup pairs.

λ (nm) 412 nm 443 nm 490 nm 660 nm 865 nm

AERONET-OC vs. GDPS

MAE 2.6553 2.8279 2.8016 1.6127 0.1550

MPRE 44.1857 31.7500 22.1521 41.9414 37.7339

N 304 305 305 298 218

AERONET-OC vs. SeaDAS

MAE 3.9288 3.9614 4.3641 1.7531 0.1452

MPRE 63.3289 47.5962 32.6843 42.8915 36.9046

N 287 287 292 291 188

In Figure 6, the mean value of relative error distribution between nLw_GDPS and
nLw_AERONET-OC is close to 0 from 412 to 660 nm and a bit lower than 0 at 865 nm,
while that of nLw_SeaDAS and nLw_AERONET-OC is close to 0 only at 865 nm band
and approaches −20% at visible bands. Moreover, as Table 3 shows quantitatively, for all
matchup pairs, the MAE between nLw_GDPS and nLw_AERONET-OC are 2.66, 2.82, 2.80,
1.61, and 0.16 (W/m2·sr·μm) at 412, 443, 490, 660, and 865 nm, respectively; meanwhile,
the MAE between nLw_SeaDAS and nLw_AERONET-OC are 3.93, 3.96, 4.36, 1.75, and 0.15
(W/mˆ2·sr·μm) at the corresponding wavelengths. The MPRE between nLw_GDPS and
nLw_AERONET-OC are 44.19%, 31.75%, 22.15%, 41.94%, and 37.73% at 412, 443, 490, 660,
and 865 nm, respectively; and the MPRE between nLw_SeaDAS and nLw_AERONET-OC
are 63.33%, 47.60%, 32.68%, 42.89%, and 36.90% at the corresponding wavelengths. Clearly,
MAE between nLw_xxx and nLw_AERONET-OC shows larger mean values at shorter
bands, whereas MPRE shows larger mean values at both shorter and NIR bands.

Overall, both nLw_GDPS and nLw_SeaDAS show better agreement with nLw_AERONET-
OC at 490 nm and 660 nm bands, followed by 865 nm and 443 nm bands, and poorest
performance at 412 nm. The nLw data generated from the GDPS algorithm perform better
than that from the SeaDAS algorithm at visible bands in this study area, while the SeaDAS
algorithm is slightly better than the GDPS algorithm at the near-infrared band of 865 nm.
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Figure 5. Scatterplots between nLw_GDPS and nLw_AERONET-OC (left column), and nLw_SeaDAS
and nLw_AERONET-OC (right column) at 412, 443, 490, 660, and 865 nm, respectively. The color bar
represents the number of matchup pairs. Note that the data at 865 nm are only from the Ariake site.
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Figure 6. Violin plots of relative error distribution of nLw_GDPS (shown in blue) and nLw_SeaDAS
(shown in pink), compared to nLw_AERONET-OC, at 412, 443, 490, 660, and 865 nm (note that
the data at 865 nm are only from the Ariake site). The dotted lines represent the upper quartile,
median, and lower quartile. The statistical information between nLw_GDPS (nLw_SeaDAS) and
nLw_AERONET-OC at each wavelength is summarized in Table 3.

The GOCI data were acquired eight times per day; therefore, we also analyzed the
relative errors between nLw_GDPS and nLw_AERONET-OC at different times from 00 to
07 UTC at one-hour intervals in Figure 7 in order to investigate whether the performance of
the GDPS algorithm and SeaDAS algorithm changes with time. The statistical information
of nLw_GDPS (nLw_SeaDAS) and nLw_AERONET-OC at each hour is also summarized
in Table 4. From the 25, 50, and 75 percent percentile lines, nLw_GDPS performs better at
02, 03, and 04 hours, followed by 01 and 05 hours, and worst at 00, 06, and 07 hours. As
for nLw_SeaDAS, it performs better at 02 and 03 hours, followed by 01 and 04 hours, and
worsens at 05, 06, 07, and 00 hours. This means both algorithms behave better at noon and
worse in the early morning and late afternoon.

Figure 7. Violin plots of relative error distribution of nLw_GDPS (shown in blue) and nLw_SeaDAS
(shown in pink), compared to nLw_AERONET-OC from 00 to 07 (UTC) at one-hour intervals. The
dotted lines represent the upper quartile, median, and lower quartile. The statistical information of
nLw_GDPS (nLw_SeaDAS) and nLw_AERONET-OC at each hour is summarized in Table 4.
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Table 4. The MAE (W/m2·sr·μm) and MPRE (%) at different times between nLw_AERONET-OC and nLw_xxx for all
matchup pairs.

Time 00 01 02 03 04 05 06 07

AERONET-OC vs. GDPS

MAE 1.7705 2.2657 1.9321 2.0722 2.2548 2.5361 2.0484 3.7610

MPRE 48.7573 40.8977 31.9189 26.9986 34.9606 42.5066 18.8008 32.2694

N 96 311 425 289 155 146 4 4

AERONET-OC vs. SeaDAS

MAE 2.2521 2.5500 2.6899 2.9287 3.7351 4.3946 4.7275 5.0621

MPRE 78.5825 44.7390 39.0737 36.4317 47.2525 62.7846 55.5676 22.6875

N 73 259 351 341 165 139 13 4

Overall, the nLw_GDPS turns out slightly better than the nLw_SeaDAS with lower
MAE and MPRE at each time (Table 4). However, for both algorithms, the relative errors at
00, 01, 05, 06, and 07 can even exceed 100% and approach 200%, which cannot be ignored
in data applications.

3.2. Comparison between nLw_GDPS and nLw_SeaDAS

The nLw(λ) values derived from the GDPS algorithm and SeaDAS algorithm are
also compared, and the result is presented by the density scatterplots in Figure 8. The
nLw_GDPS and nLw_SeaDAS agree with each other well, with r2 of 0.6465, 0.7340, 0.7988,
0.8971, and 0.7760 at 412, 443, 490, 660, and 865 nm, respectively. Notably, nLw_GDPS and
nLw_SeaDAS show better correlation at 660 nm and degrade as the wavelength moved
to the blue end of the spectral range, which is consistent with the information reflected in
Figure 5. From the linear regression results (red solid lines) and 1:1 line (red dashed lines)
between nLw_GDPS and nLw_SeaDAS in Figure 8, it can be observed that the nLw_GDPS
values are primarily greater than the nLw_SeaDAS at visible bands shorter than 660 nm,
while smaller at NIR band of 865 nm.

Figure 8. Density scatterplots between the GDPS-derived (abscissa) and SeaDAS-derived (ordinate) nLw values at 412, 443,
490, 660, and 865 nm bands. The color bar stands for the number of matchup pairs. The red solid lines are derived by linear
regression between nLw_GDPS and nLw_SeaDAS. The red dashed lines are 1:1 lines.
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4. Discussion

Although the GDPS algorithm and SeaDAS algorithm are both based on the atmo-
spheric correction scheme developed by Gordon and Wang [30], their actual atmospheric
correction processors are with different aerosol models, different near-infrared (NIR) water-
leaving radiance corrections, and different vicarious calibration gains [18–20,31–33,37];
thus, as Section 3.2 indicated, the nLw_GDPS and nLw_SeaDAS show some deviations.
When comparing with nLw(λ) data of four AERONET-OC sites in terms of clear and
turbid water, nLw_GDPS shows better accuracy than nLw_SeaDAS. The nLw_GDPS val-
ues are underestimated at 865 nm. However, when nLw_AERONET-OC at 865 is larger
than 0.5 W/m2·sr·μm, a rather good agreement, albeit with a larger standard deviation,
was observed at shorter bands. On the other hand, the nLw_SeaDAS values show better
agreement at 865 nm but performing progressively worse toward short bands. The rea-
son that the nLw_GDPS shows an overall better accuracy than nLw_SeaDAS is that the
aerosol models in GDPS algorithm consider more coarse particles than that in SeaDAS
algorithm. As aerosol reflectance of coarse aerosol particles has a smaller spectral slope,
the underestimated nLw at 865 nm and a smaller spectral slope of aerosol reflectance
could just lead to reasonable nLw values at green and blue bands for GDPS algorithms.
Thus, even though SeaDAS algorithm uses 80 aerosol models based on AERONET ob-
servations [35], and the GDPS algorithm only uses three aerosol models (M99, M50, and
C50) in atmospheric correction [31], our results show that GDPS algorithm performs better
in correcting atmospheric signal and hence extracting nLw signal at the research sites
than SeaDAS algorithm. The GDPS strategy is appropriate for estimating a comparative
accurate surface contribution (the MPRE of all bands is ranging from 22% to 44%), and for
a long-term further improvement goal, a group of more exact aerosol models is still needed.
As mentioned before, the nLw_SeaDAS values at 865 nm agree well with AERONET-OC
data. Because the AERONET-OC does not have the measurements at 745 nm, we speculate
that if the nLw_SeaDAS values at 745 nm are also accurate, the degraded accuracy of
nLw_SeaDAS with decreasing wavelength may arise from the incorrect extrapolation of
aerosol reflectance approximation from NIR to short visible bands by the exponential
spectral function (this was used by both GDPS and SeaDAS algorithms). However, if the
nLw_SeaDAS values at 745 nm are not accurate, then the aerosol model selected using
aerosol contribution at two NIR bands of 865 nm and 745 nm would not be appropriate.
The aerosol properties in this study area can be further studied since aerosol properties
are of high spatiotemporal variations [38], and it influences the accuracy of nLw retrieval
and affects the vicarious calibration process of ocean color sensors. It is worth mentioning
that the validation at 865 nm is particularly challenging since water-leaving radiance is
relatively small as compared to the reflected sky radiance at the air–sea interface. A better
validation at 865 nm will be helpful in better understanding the sources of nLw retrieval
errors over turbid water.

As indicated in Figure 6 in Section 3.1, the mean relative error of nLw_SeaDAS
at 865 nm is close to zero, while an apparent underestimation of nLw_GDPS can be
observed. This indicates that the NIR correction model in the SeaDAS algorithm works
better, and that of the GDPS algorithm can be further improved. In the GDPS algorithm,
an empirical relationship between ρw at 660 nm, 745 nm, and 865 nm is adopted, and
its empirical coefficients were derived using in situ data in turbid waters around Korean
Peninsula [21,39]. Since the correlation between red and NIR bands is not immutable
but varies with concentrations of TSM, CDOM, and chlorophyll-a [40], a dataset covering
different seasons and various water properties will be needed for further improving the
NIR correction method of the GDPS algorithm. It is also worth noting that the optical
saturation issue of water reflectance appears earlier at short bands with increasing turbidity,
and water-leaving reflectance at 660 nm and NIR band can alter incompatibly in waters
with different optical properties since 660 nm is close to the second peak of the chlorophyll
absorption spectrum [41,42]. Concerning this problem, the GOCI-II mission added a 709 nm
band and used it as a substitution for 660 nm in a later NIR correction model [42].
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Based on comparison with nLw data from four AERONET-OC sites, we observe that
the nLw_GDPS performs better with the MPRE around 30% in turbid water at Ariake
and Ieodo, while worse with the MPRE larger than 55% in clearer water at Gageocho and
Socheongcho; the nLw_SeaDAS is underestimated with the MPRE among 18–39% in clear
water and 57–74% in turbid water. Combing with results in Figure 6 and Table 3, it is
discovered that except for the 865 nm band, the errors mostly come from the 412 nm band.
The farther the band is from NIR bands, the larger the error is since the estimation accuracy
degrades with a longer distance extrapolation. Comparing with turbid water, it seems a
better accuracy of nLw at 412 nm is more difficult to achieve in clear waters. Although
from scatterplots (Figure 5), the nLw_GDPS agree well with AERONET-OC data in an
overall trend, the MPRE is still among 18–55%, and it is far from the ideal goal of 10%.
There is still a way to go in improving the atmospheric correction in this study area.

It can be clearly observed that the relative errors of nLw_GDPS and nLw_SeaDAS
vary with hours in Figure 7. The better performance of nLw_GDPS and nLw_SeaDAS are
at 02 and 03 UTC (11:00 and 12:00 for Korean local time) of one day, and the farther away
from noon, the greater relative errors are. This error might be partly from incorrect aerosol
estimations. The changing humidity due to solar illumination can affect the aerosol optical
properties, low solar altitudes in the early morning and late afternoon can also lead to
increasing aerosol contributions, and these will both bring more uncertainties in aerosol
estimations in geostationary ocean color remote sensing. This error might be also partly
caused by the bidirectional reflectance distribution function (BRDF) correction method,
which is used to remove the solar-viewing dependence and nonisotropic distribution of the
in-water light field [29,43], and the measured nLw values are more affected by low solar
altitudes in the early morning or late afternoon. Both the GDPS algorithm and SeaDAS
algorithm use the BRDF correction method of Morel and Gentilli [19,31,33,37], based on
the chlorophyll concentration estimation. Results in Figure 7 indicate that the atmospheric
correction algorithm in GDPS and SeaDAS algorithms is necessary to be improved when
applied to GOCI data with a large solar zenith angle [44], especially when the observed
time is far away from noon, since the relative errors at 00, 06, and 07 hours are even over
100% and approach 200%.

5. Conclusions

In this study, we assessed the nLw(λ) products generated from the GDPS algo-
rithm and SeaDAS algorithm with AERONET-OC data from October 2011 to March
2019. The nLw_GDPS and nLw_SeaDAS are, respectively, matched and compared with
nLw_AERONET-OC at four AERONET-OC sites of Ariake, Ieodo, Socheongcho, and
Gageocho. Results show that the performance of the GDPS algorithm and SeaDAS algo-
rithm varies with measure time, seawater turbidity, and spectral bands.

The nLw_GDPS is of better accuracy both in turbid and clear water, although with
underestimations at the 865 nm band. The nLw_SeaDAS data are underestimated in
both clear and turbid water, and the underestimation worsens toward short visible bands.
Additionally, the negative nLw_SeaDAS values at blue bands are evident. The nLw data
generated from the GDPS algorithm perform better than that from the SeaDAS algorithm
at visible bands in this study area, while the SeaDAS algorithm performs better than the
GDPS algorithm at the NIR band of 865 nm. A better near-infrared water-leaving radiance
correction is needed for the GDPS algorithm, while aerosol optical properties and aerosol
model selections can be further investigated for the SeaDAS algorithm in this study area.

The GDPS and SeaDAS algorithms perform better at noon (02 and 03 UTC) and worse
in the early morning and late afternoon. The relative errors for both processors at 00, 06,
and 07 even approach 200%. Thus, a better atmospheric correction performance is required
for GOCI data acquired in the early morning and late afternoon.

The GDPS-generated nLw data are slightly better than that with SeaDAS at visible
bands; however, the mean percentage relative errors for both algorithms at blue bands
are over 30%. The nLw data derived by GDPS is better both in clear and turbid water,
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although underestimation is observed at the NIR band (865 nm) in turbid water. The
nLw data derived by SeaDAS are underestimated in both clear and turbid water, and the
underestimation worsens toward short visible bands. Generally, based on the combination
of the NIR correction model and aerosol model setting, the GDPS algorithm performs better
than the SeaDAS algorithm in this study area. The comparison results lead us to recommend
GDPS as a first choice when processing GOCI data. However, its aerosol models and near-
infrared water-leaving radiance correction method in atmospheric correction procedure
can be further improved to ensure higher quality data in the further improvement in GDPS.
Note that we applied the GDPS 1.4.1 version to process GOCI L1b data in this research. The
latest GDPS 2.0 version with improvement for red wavelengths is available at the time of
publication, but its corresponding algorithm theoretical basis document (ATBD) in English
is not currently available. The performance of the improved algorithm adopted in GDPS
2.0 will be further explored and discussed in our future work.

The analysis performed in this study so far is based on a limited dataset from finite
sites (four available sites), and the analysis results can only represent the current study area.
The water and aerosol conditions in different regions are diverse, and therefore, further
analysis might be needed for a performance assessment of the normalized water-leaving
radiance in other oceanic regions with various seawater properties.
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Abstract: Clouds severely hinder the radiative transmission of visible light; thus, correctly masking
cloudy and non-cloudy pixels is a preliminary step in processing ocean color remote sensing data.
However, cloud masking over turbid waters is prone to misjudgment, leading to loss of non-cloudy
pixel data. This research proposes an improved cloud masking method over turbid water to classify
cloudy and non-cloudy pixels based on spectral variability of Rayleigh-corrected reflectance acquired
by the Geostationary Ocean Color Imager (GOCI). Compared with other existing cloud masking
methods, we demonstrated that this improved method can identify the spatial positions and shapes
of clouds more realistically, and more accurate pixels of turbid waters were retained. This improved
method can be effectively applied in typical turbid coastal waters. It has potential to be used in cloud
masking procedures of spaceborne ocean color sensors without short-wave infrared bands.

Keywords: cloud masking; turbid water; remote sensing; spectral variability

1. Introduction

Spaceborne sensors observe the Earth from above the top of atmosphere (TOA); hence,
the presence of clouds is often inevitable in optical remote sensing images [1]. Effective
ocean color and other surface information can only be extracted from cloudless pixels of
satellite remote sensing images, as clouds can block the visible light emerging from the
ocean to the sensor. Therefore, the detection and masking of cloud pixels is an essential and
important step before further processing in various optical remote sensing applications [2].

Current statistical threshold cloud masking algorithms are mostly based on the analy-
sis of optical and physical characteristics of cloud pixels, such as brightness temperature
and reflectance variation, at different bands [3–7]. In infrared remote sensing, the algorithm
package called APOLLO (AVHRR Processing scheme Over cLouds, Land and Ocean) has
been used since the late 1980s, and its physics is the backbone of a series of cloud detec-
tion schemes for AVHRR (Advanced Very High Resolution Radiometer) heritage sensors.
In APOLLO, the spatial coherence and dynamic visible threshold tests were conducted
after a gross cloud check involving five daytime or nighttime tests. If the reflectance test
ratio at near-infrared and visible bands is lower than 1.6 over land or larger than 0.75 over
sea or the thin cirrus test using brightness temperatures at 11 μm and 12 μm fail, pixels
are flagged as clear [8]. Subsequent studies were conducted to improve and document the
APOLLO [9–11]. Thereinto, pixel properties, such as spectral and spatial variability [12,13],
and multi-spectral polarization properties [14–17] are further considered. In operational
processing of ocean color remote sensing, a threshold of Rayleigh-corrected reflectance
(ρrc) at near-infrared bands is commonly used in cloud masking. For example, a threshold
method of ρrc(865 nm) ≥ 0.028 is used to automatically mask cloud pixels in standard
atmospheric correction for the Geostationary Ocean Color Imager (GOCI) sensor. Consid-
ering band registration errors or cloud movements, it also masks out their neighboring
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(up, down, left, and right) pixels [18]. A threshold method of ρrc(869 nm) ≥ 0.027 is
used by the Moderate-resolution Imaging Spectroradiometer (MODIS) onboard NASA’s
Earth Observing System (EOS) Aqua and Terra satellites [19–21]. For simplicity, hereinafter,
we call these cloud masking procedure the NIR threshold method. Generally, such methods
perform well over open ocean water, but clear pixels with optical characteristics of complex
seawater are often mistaken as clouds over coastal water areas [22,23].

Complex water optical conditions affected by high phytoplankton biomass, intense
blue-green algal (cyanobacteria) blooms, high suspended matter concentrations, or some
anthropogenic factors [24–27] can lead to the failure of the standard threshold method in
cloud masking. This often occurs in populated coastal waters, inland lakes, and estuaries.
These waters usually have high reflectance at red and near-infrared bands well beyond
standard thresholds due to significant contributions from high suspended matter concen-
trations and eutrophication. The mistaken discrimination of water and cloud reflectance is
more likely to lead to the loss of cloudless pixels.

Existing cloud masking methods over coastal waters with complex optical properties
can be divided primarily into two categories: threshold methods and machine learning
algorithms. For sensors with infrared bands, considering that water absorbs strongly
in the short-wave infrared (SWIR) spectral range, progresses have been made in cloud
detection methods over turbid coastal waters. For the MODIS sensor, Wang and Shi
suggested using the threshold reflectance of 0.0235 and 0.0215 at 1240 nm and 1640 nm [28].
For sediment-laden water in Greenland fjords, Hudson et al. used a difference threshold of
0.05 between TOA reflectance at 645 nm and that estimated at 865 nm, using an empirical
relationship to classify turbid water from cloud pixels [29].

For some sensors without SWIR bands, such as the GOCI and Sea-viewing Wide Field-
of-view Sensor (SeaWiFS), the credibility of standard cloud identification methods is further
diminished [30,31]. Wang and Shi proposed the use of Rayleigh-corrected reflectance
ratios of two NIR bands and a Rayleigh-corrected reflectance threshold at 865 nm [28].
Firstly, thick cloudy pixels are masked out with ρrc(865 nm) > 0.06. Then, for pixels with
ρrc(865 nm) ≤ 0.06 and ρrc(865 nm) ≥ 0.027, pixels with ρrc(745)/ρrc(865 nm) ≤ 1.15 are
also identified as clouds. For simplicity, hereinafter, we call this the Wang and Shi method.
Nordkvist et al. also proposed a threshold method for cloud recognition based on spectral
variability of Rayleigh-corrected reflectance over coastal waters [32]. This algorithm is
based on standard ocean color wavelengths. It makes use of the lower spectral variability
of clouds compared to that of water. Firstly, the Rayleigh-corrected reflectance of pixels
at the four bands of 412 nm, 660 nm, 680 nm, and 865 nm was derived, and then spectral
variability εmax was calculated as the maximum value of the reflectance at these four bands
divided by the minimum value following

εmax =
MAX[ρrc(412 nm), ρrc(660 nm), ρrc(680), ρrc(865 nm)]

MIN[ρrc(412 nm), ρrc(660 nm), ]ρrc(680), ρrc(865 nm)]
. (1)

The combination of εmax and ρrc(865 nm) is used to identify whether the pixel is
cloudless or not. When εmax exceeds 2.5 and ρrc(865 nm) ≥ 0.027, pixels are classified as
clouds. For simplicity, hereinafter, we call this the Nordkvist et al. method.

In addition, machine learning algorithms, such as support vector machine (SVM) [33],
artificial neural networks [34], image segmentation, and deep convolutional neural network
(CNN) [35–38], were also used in many studies in different waters. Machine learning
methods usually bring good performance through a large amount of training data; however,
their performance is also limited by the time and space range of their training samples.

The first geostationary ocean color sensor GOCI launched in June 2010 is equipped
with eight spectral bands ranging from visible to near infrared (412 nm–865 nm) [22], and a
second mission GOCI-II with 13 bands (380 nm–865 nm) was launched in February 2020.
They can acquire 8/10 images daily with a spatial resolution of 500/250 m [39]. They offer
good opportunities for researchers to study diurnal variabilities of coastal environment
parameters. However, standard GOCI atmospheric correction processing systematically
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masks out data over very turbid waters and requires further corrections [40]. We also
observed that in sediment-dominated particularly turbid waters, such as the Hangzhou
Bay of China, existing cloud masking methods designed for coastal waters also often
mistake turbid water pixels as clouds. Thus, in this study, to acquire more water surface
pixels in GOCI processing over turbid coastal water, an improved threshold-based cloud
masking algorithm is proposed based on the spectral variability of the Rayleigh-corrected
reflectance of GOCI. Its performance was further compared with other existing methods.
In this paper, the improved cloud mask method is first described. Then, its feasibility is
demonstrated. Finally, the performance of the algorithm is evaluated and compared based
on image interpretation in different GOCI scenarios.

2. Materials and Methods

2.1. GOCI Data

The GOCI Level 1B data products used in this study were provided by Korean
Ocean Satellite Center (KOSC) at http://kosc.kiost.ac.kr/eng/ (accessed on 4 June 2021).
The Rayleigh-corrected reflectance at eight spectral bands (412 nm, 443 nm, 490 nm, 555 nm,
660 nm, 680 nm, 745 nm, 865 nm) was processed using the GOCI Data Processing System
(GDPS version 1.4.1). GDPS is an officially recognized data processing system for GOCI
data by KOSC.

In ocean color remote sensing, the optical properties of water constituents can be
retrieved under the premise of an accurate atmospheric correction. The GOCI standard
atmospheric correction algorithm [41] was developed based on the theoretical basis of the
SeaWiFS standard atmospheric correction algorithm [42], though partially different in the
turbid water near-infrared (NIR) correction method and the aerosol models. In the GOCI
standard atmospheric correction procedure, the multiply scattered Rayleigh (molecular)
reflectance is first removed from the TOA reflectance of ρTOA(λ) following

ρTOA(λ) = ρr(λ) + ρa(λ) + ρra(λ) + {tdv
r (λ)× tdv

a(λ)× tdv
ra (λ)}(λ) ρw (λ), (2)

ρrc(λ) = ρTOA(λ)− ρr(λ)

= ρa(λ) + ρra(λ) + {tdv
r (λ)× tdv

a(λ)× tdv
ra (λ)}(λ)ρw(λ),

(3)

where ρr(λ) means multiply scattered Rayleigh reflectance, ρa(λ) means multiply scattered
aerosol reflectance, and ρra(λ) means reflectance of interactively scattered between aerosols
and molecules. In addition, tdv

r (λ) means diffuse Rayleigh transmittance from the sea sur-
face to the sensor, tdv

a(λ) means diffuse transmittance of aerosols from the sea surface to the
sensor, similarly, tdv

ra (λ) represents diffuse transmittance of Rayleigh and aerosol interac-
tion from the sea surface to the sensor, and ρw(λ) represents water-leaving reflectance [18].
Then, cloud masking is performed using Rayleigh-corrected reflectance (ρrc(λ)) to retain
cloud-free pixels. After that, aerosol contribution is estimated and removed, and, finally,
the surface reflectance of the ocean is obtained. Thus, correctly masking cloudy and
non-cloudy pixels is a preliminary step in processing ocean color remote sensing data.

2.2. An Improved Cloud Masking Method

As a preliminary check of existing cloud masking methods, we applied the NIR
threshold method and the Nordkvist et al. method over the turbid water around the
Hangzhou Bay and Yangtze River (120–124◦E, 29.5–33◦N) of China. Figure 1a shows the
RGB image composited from the GOCI Rayleigh-corrected reflectance at 680 nm, 555 nm,
and 443 nm at 05:16 (Coordinated Universal Time, UTC) on 10 February 2020. Figure 1b
shows the pseudo-color images of ρrc(865 nm). The red isolines represent the pixels with
the threshold of ρrc(865 nm) = 0.027 used in the NIR threshold method, and the white
pixels were masked with εmax ≤ 2.5 used by the Nordkvist et al. method.
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(a) (b) 

Figure 1. (a) The RGB image composited from GOCI Rayleigh-corrected reflectance at 680 nm, 555 nm, and 443 nm at
05:16 (UTC) on 10 February 2020; (b) the pseudo-color image of ρrc(865 nm). The red isolines in Figure 1b represent
ρrc(865 nm) = 0.027, and the white pixels represent the pixels with εmax ≤ 2.5.

In standard ocean color data products, pixels with ρrc(865 nm) ≥ 0.027 are often
masked as clouds. The red isolines in Figure 1b represent ρrc(865 nm) = 0.027. We can
see that a large number of cloudless coastal turbid water pixels with ρrc(865 nm) values
higher than the red isolines can be mistaken as cloudy ones in standard ocean color
data products [43]. By contrast, the Nordkvist et al. method performs better in most
coastal turbid waters. Most cloudless coastal turbid water pixels are correctly recognized,
but cloudless pixels with very turbid water or silt coast are still misjudged as clouds.
Therefore, it is necessary to further improve existing cloud masking methods over very
turbid water. In this paper, we propose an improved cloud masking scheme by combining
additional threshold methods with the Nordkvist et al. method to address this problem.

Clear water pixels generally have low Rayleigh-corrected reflectance at the 865 nm
band and high spectral variations and can be easily distinguished from cloud pixels by
the NIR threshold method. However, for coastal turbid water pixels with complex optical
characteristics, their Rayleigh-corrected reflectance values are generally higher than that of
clear water at red and near-infrared bands and lower than that of clouds at short visible
bands. These turbid water pixels are easily mistaken as clouds by the standard NIR
threshold method.

To demonstrate the difference of spectral variability between turbid water and cloud
pixels, eight samples of Rayleigh-corrected spectral reflectance were selected around
sediment-dominated Hangzhou Bay from the GOCI data acquired at 07:16 (UTC)
on 10 May 2018. Their spectral Rayleigh-corrected reflectance at 8 bands are shown
in Figure 2a, and the sample locations are shown in Figure 2b. The arithmetic mean values
of 3 × 3 pixels centered at each sample were used in order to reduce the random noise
effects of the satellite data.
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(a) (b) 

Figure 2. (a) Spectral variation of Rayleigh-corrected reflectance at 8 bands from eight typical GOCI samples in turbid
waters around Hangzhou Bay of China. The εmax values calculated according to Equation (1) in Nordkvist et al. method are
also labeled. (b) Locations of eight typical samples indicated in red crosses and blue circles on the GOCI RGB image at
07:16 UTC on 10 May 2018. The circles represent water samples visually selected, and the crosses represent clouds.

As seen from Figure 2a, the sampled Rayleigh-corrected reflectance of thick cloud
pixels has higher magnitudes and smaller spectral variations. The spectral reflectance
of thin clouds and over cloudless turbid water is close, especially at red bands, and
the primary difference can be observed in the blue spectral range, such as at 412 nm.
We also observed that the ρrc(412 nm) values of most turbid waters are generally over
0.07. In terms of correctly distinguishing cloudy and non-cloudy pixels with turbid water,
we tested whether a threshold of ρrc(412 nm) > 0.07 in combination with εmax < 2.5 and
ρrc(865 nm) ≥ 0.027 can effectively retain water pixels.

It is known that the spectral characteristics of clear water and turbid water are differ-
ent. Samples in clearer water generally have larger ρrc(412 nm) and smaller ρrc(660 nm),
and it is just the reverse in turbid water. The ρrc(412 nm) values in clear water can be
larger than 0.07. This could cause some of the turbid water pixels to be mistaken as clouds.
Based on sampled reflectance data over clear and turbid water, we observed that the ratio
of ρrc(412 nm)

ρrc(660 nm)
can be used to discriminate clear and turbid water in our cloud masking

procedure. Therefore, with the purpose of distinguishing the clear water pixels from cloudy
ones correctly, a second threshold of

ρrc(412 nm)

ρrc(660 nm)
> 1 (4)

in combination of εmax < 2.5 and ρrc(865 nm) ≥ 0.027 is performed.
In brief, our improved cloud masking procedure is concluded as the following:

Step 1. calculate the Rayleigh-corrected reflectance at the four bands of 412 nm, 660 nm,
680 nm, and 865 nm;

Step 2. calculate the εmax according to Equation (1), which was proposed by Nordkvist et al.;
Step 3. pixels satisfying either of the following two conditions (1 or 2) are masked as clouds:

(1) ρrc(412 nm) > 0.07 and εmax < 2.5 and ρrc(865 nm) ≥ 0.027;

(2) ρrc(412 nm)
ρrc(660 nm)

> 1 and εmax < 2.5 and ρrc(865 nm) ≥ 0.027.

For simplicity, hereinafter, we call this the improved method in this study.
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3. Results

3.1. Comparison of Four Cloud Masking Methods Using Selected Samples

The cloud masking effects of the NIR threshold method, Wang and Shi method,
Nordkvist et al. method, and the improved method in this study were compared. These
four methods were, respectively, applied and tested using visually selected samples in
the inland lake water and turbid coastal water off the mouth of Yangtze River, which are
typical turbid waters in China.

A total of 136 samples were visually selected from the GOCI data acquired at 02:16
(UTC) on 19 October 2014, 01:16 (UTC) on 19 August 2017, 06:16 (UTC) on 11 May
2018, and 04:16 (UTC) on 19 November 2019 around Lake Tai, Hangzhou Bay, and the
coastal area of Jiangsu Province of China. The sample locations are indicated in Figure 3.
These samples include cloudy ones covered by thick clouds and cloud-free ones over turbid
water, as well as lakes in different weather conditions and near narrow straits. The circles
represent visually selected cloudless samples, and the crosses represent cloudy ones. As a
performance comparison demonstration, we applied four cloud masking methods to these
visually selected 136 samples.

  
(a) (b) 

  
(c) (d) 

Figure 3. Positions of (a) 45 samples selected on 19 October 2014, (b) 24 samples selected on 19 November 2019,
(c) 36 samples selected on 11 May 2018, and (d) 31 samples selected on 19 August 2017. The background images are
RGB ones synthesized using Rayleigh-corrected reflectance at three bands of 443 nm, 555 nm, and 680 nm. The circles
represent water samples visually selected, and the crosses represent clouds. Red and bright cyan represent the clouds
identified by conditions 1 and 2 in the improved cloud masking method in this study, respectively.

180



Remote Sens. 2021, 13, 2722

The scatter plot of ρrc(865 nm) versus εmax for these 136 samples is shown in Figure 4.
The vertical dashed line is ρrc(865 nm) = 0.027, which represents the standard cloud
masking threshold method instandard atmospheric correction procedure. The horizontal
dashed line represents a threshold of 2.5 for εmax used in the Nordkvist et al. method.
It is clear that the standard NIR method using ρrc(865 nm) ≥ 0.027 is not enough in coastal
waters, as many cloudless samples (circles) are with ρrc(865 nm) ≥ 0.027. The Nordkvist
et al. method using εmax < 2.5 and ρrc(865 nm) ≥ 0.027 can mask all the cloudy samples,
while some cloudless samples indicated by blue circles in the fourth quadrant of Figure 4
will be incorrectly masked. These usually correspond to samples in lake water, near narrow
straits, and near land.

 

Figure 4. Scatter plot of ρrc(865 nm) versus εmax for 136 visually selected samples as shown in
Figure 3. The circles represent water samples visually selected, and the crosses represent clouds. Sam-
ples with ρrc(412 nm) exceeding a threshold of 0.07 are indicated in red, and those with ρrc(412 nm)

ρrc(660 nm)
exceeding a threshold of 1 are marked in bright cyan.

In Figure 4, by applying the improved cloud masking method in this study, samples
with ρrc(412 nm) > 0.07 are indicated in red, and those with ρrc(412 nm)

ρrc(660 nm)
> 1 are marked in

bright cyan. If the visually selected cloud pixels do not pass these two threshold tests,
they are masked in black, and the visually selected water pixels are in blue. It can be seen
that all crosses visually selected as clouds are correctly masked by the improved method in
this study. Combining with the sample positions in Figure 3, we can see that ρrc(412 nm)

> 0.07 works primarily in very turbid yellow colored water, and the ρrc(412 nm)
ρrc(660 nm)

> 1 takes
effect primarily in clearer green colored water.

In Figure 5, by applying the Wang and Shi method, samples with ρrc(865 nm) > 0.06
are indicated in bright cyan, and those with ρrc(412 nm)

ρrc(660 nm)
< 1.15 in combination with

ρrc(865 nm) ≤ 0.06 and ρrc(865 nm) ≥ 0.027 are marked in red. We can see that all
crosses visually selected as clouds are correctly masked; however, one red circle and many
bright cyan circles, which are supposed to be water pixels, are mistaken as clouds.
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Figure 5. Scatter plot of ρrc(865 nm) versus ρrc(745 nm)/ρrc(865 nm) for 136 visually selected
samples as shown in Figure 3. The circles represent water samples visually selected, and the crosses
represent clouds. Samples with ρrc(745 nm)

ρrc(865 nm)
< 1.15, ρrc(865 nm) ≤ 0.06, and ρrc(865 nm) ≥ 0.027 are

indicated in red, and those with ρrc(865 nm) exceeding a threshold of 0.06 are marked in bright cyan.

Therefore, based on our 136 visually selected samples, it is clear that the improved
method in this study performs better than the other three methods. To further check the
general application of the four cloud masking methods, we then applied them in different
GOCI scenes.

3.2. Performance Comparison Over Typical Turbid Waters

Figure 6a shows the RGB image composited by Rayleigh-corrected reflectance at the
three bands of 443 nm, 555 nm, and 680 nm at 05:16 (UTC) on 10 February 2020. White
pixels in the RGB image are clouds. Figure 6b–e shows the results of the four cloud
masking methods. Pixels identified by cloud masking methods are also indicated as white.
Compared with the RGB image in Figure 6a, we can see that the NIR threshold method
as well as the Wang and Shi method masked both clouds and land as clouds. The NIR
threshold method masked almost all turbid coastal water (yellow colored water) as clouds
in Figure 6b. The Wang and Shi method masked most of the turbid coastal water as clouds
in Figure 6c. The Nordkvist et al. method is better in retaining turbid coastal water pixels,
but it still misjudged some very turbid water pixels as clouds in the coastal water of Jiangsu
Province of China as indicated by the red rectangle in Figure 6d. The improved method
in this study performed better than the other three methods. It can mask almost all cloud
pixels with fewer misjudgments over almost all turbid water pixels. It is worthy to note
that there is thin fog in the upper right corner of the image in Figure 6a. The water here is
clearer, which is indicated by the RGB color in Figure 6a. The Wang and Shi method can
retain more pixels over this foggy clear water area. The NIR threshold method masked
more pixels. The Nordkvist et al. method and the improved one in this study masked less
than the NIR threshold method and more than the Wang and Shi method.
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Figure 6. Comparison of four cloud masking methods in turbid coastal water off the mouth of Yangtze River at 05:16 (UTC)
on 10 February 2020. The images are (a) the RGB image composited by GOCI-derived Rayleigh-corrected reflectance at
443 nm, 555 nm, and 680 nm; the cloud masking results using the NIR threshold method (b); Wang and Shi method (c);
the Nordkvist et al. method (d); and the improved method in this study (e). Clouds are indicated as white. The red rectangle
marks the turbid coastal water of Jiangsu Province of China.

Figure 7 shows cloud recognition results of the four different cloud masking methods
applied to the GOCI data at 01:16 (UTC) on 19 August 2017. All four methods performed
well in clear water off the coast. For the inland lake water indicated by the left red rectangle,
by comparing it with the RGB image in Figure 7a, it can be observed that the NIR method
retained the fewest water pixels and misjudged most water pixels as clouds, followed
by the Wang and Shi method and then by the Nordkvist et al. method; the best was the
improved method in this study. In addition, it is not difficult to see that the Nordkvist et al.
method is prone to misjudge water near the land edge and in narrow water channels as
clouds. This can also be seen in the mouth of the Yangtze River and the Hangzhou Bay of
China indicated by the right red rectangle in Figure 7d.
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Figure 7. Comparison of four cloud masking methods over Lake Tai and coastal water around Hangzhou Bay of China at
01:16 (UTC) on 19 August 2017. The images of (a–e) are the same as Figure 6. Clouds are indicated as white. The smaller red
rectangle (left one) marks the location of Lake Tai. The bigger red rectangle (right one) marks turbid coastal water around
the mouth of Yangtze River and Hangzhou Bay of China.

To further verify the adaptability of the improved cloud masking method in hazy
weather conditions, Figure 8 compares the results of the four cloud masking methods on
6 January 2020. Comparing the RGB image in Figure 8a with the water area around the
mouth of Yangtze River, indicated by the right smaller red rectangle, and the west part
of Hangzhou Bay, indicated by the left bigger red rectangle in Figure 8b–e, the results of
the Nordkvist et al. method show serious misjudgments in water near land edges and
in narrow water channels. The improved method in this study performed better than
the others.

To quantitatively evaluate the performance of the four cloud masking methods,
the clear pixel numbers recognized by the different methods over the selected turbid
water regions as indicated in Figures 6–8 are listed in Table 1. The clear pixel percentage
is the ratio of the non-cloudy pixels to the total pixels in the selected region. Based on
these five selected regions, the improved method in this study can retain a higher num-
ber of clear pixels with an average clear pixel percentage of 92.77%, which is 19%, 55%,
and 89% higher than that of the Nordkvist et al., the Wang and Shi, and the NIR threshold
methods, respectively.
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Figure 8. Comparison of four cloud masking methods over coastal water around the mouth of Yangtze River and Hangzhou
Bay of China on 6 January 2020. The images of (a–e) are the same as Figure 6. Clouds are indicated as white. The smaller red
rectangle (right one) marks the location around the mouth of Yangtze River, and the bigger red rectangle (left one) marks
the west part of Hangzhou Bay of China.

Table 1. Comparison of clear pixel numbers recognized by four cloud masking methods over selected turbid water regions
as indicated in Figures 6–8.

Region Date Total Pixel Number
Clear Pixel Percentage

NIR Threshold Wang and Shi Nordkvist et al. This Study

Lake Tai
Hangzhou Bay 19 August 2017

17,952 4.23% 28.67% 65.61% 79.77%

35,321 9.65% 40.25% 82.59% 94.63%

Subei coastal 10 February 2020 83,659 2.88% 33.59% 70.65% 99.37%

Hangzhou Bay
Yangtze River 6 January 2020

30,056 0.00% 29.12% 77.65% 92.12%

15,836 0.01% 55.41% 71.47% 97.95%

Averaged clear pixel percentage 3.35% 37.41% 73.59% 92.77%

3.3. Performance Comparison Over Other Areas

As the improved cloud masking method in this study is designed for turbid waters,
in this section, illustrations are given to demonstrate whether it performs as well as other
methods in water areas other than the coastal waters off the mouth of Yangtze River, such
as waters with high chlorophyll concentrations or clear water. For the above purpose, we
selected GOCI scenarios acquired in Bohai of China and the water area off the south of the
Korean Peninsula.

Figure 9a shows the RGB image composited by GOCI Rayleigh-corrected reflectance
in Bohai at 03:16 (UTC) on 1 April 2019. As seen from the RGB color, the water in Bohai is
dominated by high chlorophyll concentrations. It is surrounded by silt and tidal flats along
the coast of Bohai, as shown in the red rectangle.
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Figure 9. Comparison of four cloud masking methods over Bohai of China at 03:16 (UTC) on 1 April 2019. The images of
(a–e) are the same as Figure 6. Clouds are indicated as white. The red rectangle marks a typical region of silt and tidal flats
along the coast of Bohai.

Comparing the cloud recognition results of four cloud masking methods in Figure 9b–e,
it can be seen that all the four cloud masking methods perform well in waters with high
chlorophyll concentrations in Bohai. The NIR threshold method as shown in Figure 9b
misidentified the sediment-dominated turbid water and shallow water over the tidal
flats along the shorelines as clouds. The Wang and Shi method (Figure 9c) and Nord-
kvist et al. method (Figure 9d) can correctly recognize most of the turbid water pixels,
while the cloudless shallow water pixels over the tidal flats along the shorelines were still
misidentified as clouds. By comparison, the improved cloud masking method in this study
can delineate the spatial location and morphology of clouds more accurately and retain
more turbid water pixels (Figure 9e).

Figure 10a shows the RGB image composited by GOCI Rayleigh-corrected reflectance
off and around the south of the Korean Peninsula at 03:16 (UTC) on 18 April 2019.
The water along the southern coast of the Korean peninsula as indicated by a red rectangle
in Figure 10 is turbid with sediments composed of fine sand and silt [44]. The water over
the southeast of the Korean Peninsula is clear open water, and the southwest water is
affected by turbid water from Yangtze River.
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Figure 10. Comparison of four cloud masking methods over water area off the south of the Korean Peninsula at 03:16 (UTC)
on 18 April 2019. The images of (a–e) are the same as Figure 6. Clouds are indicated as white. The red rectangle marks the
coastal turbid water area around the Korean Peninsula.

In comparison to the RGB image in Figure 10a, the four cloud masking methods
in Figure 10b–e all perform well over clear water toward the southeast of the Korean
Peninsula, and this is also the same case in medium turbid water toward the southwest
of the Korean Peninsula. As for the water with high sediment concentrations in the
red box, the NIR threshold, Wang and Shi method, and Nordkvist et al. method all
have misjudgment at different levels. The results of the improved method in this study
(Figure 10e) agree well with the cloud distribution shown in the RGB composite image
(Figure 10a). Therefore, our improved cloud masking method can be successfully applied
over not only turbid waters but also clear waters.

It is worthy to note that there is thick cloud and thin fog in the upper left corner of
the image in Figure 10a. Over this area, the four cloud masking methods show similar
results in Figure 10b–e, while they show little difference along the edge between thick
cloud and thin fog. It is difficult to judge visually whether it is cloudy or not along the edge.
To reduce the misjudgment error, it is recommended to discard these edge pixels by
masking out the pixels neighboring the cloud pixels (up, down, left, and right) according
to the GOCI algorithm theoretical basis document [18].

The clear pixel numbers recognized by the different methods over the selected water
regions as indicated in Figures 9 and 10 are listed in Table 2. Based on these two selected
regions, the improved method in this study can retain a higher number of clear pixels with
an average clear pixel percentage of 98.66%, which is 14%, 51%, and 61% higher than that
of the Nordkvist et al., the Wang and Shi, and the NIR threshold methods, respectively.
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Table 2. Comparison of clear pixel numbers recognized by four cloud masking methods over selected water regions as
indicated in Figures 9 and 10.

Region Date Total Pixel Number
Clear Pixel Percentage

NIR Threshold Wang and Shi Nordkvist et al. This Study

Bohai Bay 1 April 2019 31,104 31.77% 36.97% 85.58% 99.88%

Korean Peninsula 18 April 2019 57,449 41.85% 56.99% 81.85% 97.43%

Averaged clear pixel percentage 36.81% 46.98% 83.72% 98.66%

4. Discussion

The improved cloud masking method is achieved by combining the spectral vari-
ability threshold of εmax by Nordkvist et al. with two other thresholds of ρrc(412 nm)

and ρrc(412 nm)
ρrc(660 nm)

proposed in this study. In order to further discuss the necessity of the new
threshold scheme and consider whether the same effect can be achieved by simply relaxing
or tightening the εmax threshold in the Nordkvist et al. method, we made a simple attempt
as shown in Figure 11.

 
Figure 11. (a) GOCI RGB images (680 nm, 555 nm, 443 nm) acquired at 02:16 (UTC) on 4 October 2014; (b) cloud masking
results using Nordkvist et al. method; (c) cloud masking results after adjusting the εmax threshold value in Nordkvist
et al. method to 1.5; (d) cloud masking results after adjusting the εmax threshold value in Nordkvist et al. method to 3.5;
(e) cloud masking results using the improved method in this study. Clouds are indicated as light green. The red rectangle
marks the turbid coastal water of Jiangsu Province of China. The black rectangle indicates the foggy or thin cloudy water
area off the south of Shandong Peninsula.

It can be seen from Figure 11 that if the εmax threshold value in the Nordkvist et al.
method is set to be larger than 2.5, many cloudless coastal turbid water pixels are misjudged
as clouds (Figure 11d). If the εmax threshold value is set to be smaller than 2.5, many
cloudless turbid water pixels, such as the water pixels in lakes, narrow rivers and coastal
channels, and near land, are retained (Figure 11c). However, thin cloud pixels over turbid
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water are also mistaken as water pixels as indicated in the red rectangle. The improved
method in this study (Figure 11e) performs well in both lakes and coastal turbid waters.
Thus, by simply changing the εmax threshold in the Nordkvist et al. method, it is difficult
to achieve the same effect over turbid water as well as the improved method in this study.
This also proves the practicability and effectiveness of the improved cloud masking method
in this study.

The improved method in this study can perform well over thin cloudy yellow colored
turbid water pixels. It is also worthy to note that, as indicated by the black rectangle,
the improved method in this study seems to retain some foggy and thin cloudy pixels over
clearer waters. By comparison, the Nordkvist et al. method performs better here. Note that
the performance evaluation in this study is primarily based on manual visual judgements.
It is difficult to discriminate the thin clouds and foggy pixels from clear pixels. This may
bring some errors in performance evaluations and comparisons. If users want to apply the
improved method in this study primarily onto clearer water, we recommend adjusting the
threshold value of ρrc(412 nm)

ρrc(660 nm)
to smaller than 1 to remove thin cloud pixels. The specific

value needs to be adjusted by regional water samples.
The improved cloud masking method in this study is designed for GOCI, and typical

operational ocean color sensors have similar spectral bands in the visible and near-infrared
range. Therefore, the improved method in this study is supposed to be applicable to
almost all ocean color sensors. Here, we test the improved method in this study using
MODIS data.

Figure 12a shows MODIS (onboard Aqua) RGB images (645 nm, 555 nm, 469 nm)
acquired on 10 February 2020, almost synchronized with the GOCI data in Figure 6.
By using the Nordkvist et al. method and the improved method in this study (Figure 12b,c),
the improved method in this study performs better over the Hangzhou Bay and Yangtze
River coastal area than the Nordkvist et al. method. However, it seems to mask out all
pixels in the Subei coastal area. If we modify the ρrc(412 nm) threshold value from 0.07
to 0.09, most water pixels in the Subei coastal area are retained. This implies that if one
applies the improved cloud masking method in this study to ocean color sensors other
than GOCI, the ρrc(412 nm) threshold value may need to be slightly adjusted. Different
sensors observe the ocean with different viewing angles, and this may lead to the deviation
of Rayleigh-corrected reflectance at 412 nm.

Although this improved cloud masking method generally performs better compared
to other threshold methods, misjudgments may still occur in the presence of large amounts
of aerosols in the atmosphere. The cloud masking methods easily mistook the aerosol-
laden pixels as turbid water ones. This improved cloud masking method could be further
refined based on the spectral variability analysis of a number of samples with aerosols
over the coastal region. Due to huge changes in clouds, their shape aspect is not cur-
rently considered. Cloud edge and continuity aspects may need to be further improved
in the future. In addition, combined with an accurate cloud masking method, feasible
techniques to reconstruct missing data, such as the DINEOF (Data Interpolating Empirical
Orthogonal Functions), are promising to be used to restore more water pixels obscured by
clouds [45,46].
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Figure 12. (a) MODIS (onboard Aqua) RGB images (645 nm, 555 nm, 469 nm) acquired on 10 February 2020; (b) cloud
masking results using Nordkvist et al. method; (c) cloud masking results using the improved method in this study;
(d) cloud masking results using the improved method in this study after adjusting the ρrc(412 nm) threshold value from
0.07 to 0.09. Clouds are indicated as white.

5. Conclusions

The geostationary ocean color sensor GOCI offers good opportunities to study diurnal
variabilities of coastal environment dynamics. However, existing cloud masking methods
often mistake turbid water pixels as clouds in sediment-dominated particularly turbid
waters, such as the coastal area of Jiangsu Province and the Hangzhou Bay of China.
In this study, based on 136 samples selected from the GOCI data on four individual days,
the spectral variability of Rayleigh-corrected reflectance over turbid water and cloud pixels
was analyzed. According to the characteristics of the Rayleigh-corrected reflectance at
412 nm and 660 nm bands, an improved cloud masking method combining two threshold
tests of ρrc(412 nm) > 0.07 and ρrc(412 nm)

ρrc(660 nm)
> 1 with the Nordkvist et al. method was

proposed in this study.
The cloud masking effects of the NIR threshold method, Wang and Shi method,

Nordkvist et al. method, and the improved method in this study were further compared
and evaluated. These four methods were, respectively, applied and tested in inland
lake water, sediment-dominated and phytoplankton-dominated turbid coastal waters,
and clearer waters. Results show that the improved method in this study performs better
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than the others over typical turbid water and can effectively retain more turbid water pixels.
However, the improved method in this study sometimes may not be able to mask out thin
foggy pixels over clearer water.

The improved cloud masking method in this study is designed for GOCI based on
typical ocean color spectral bands in the visible and near-infrared range. Thus, it can be
applied to almost all ocean color sensors, especially for those without SWIR bands. It can
retain more effective coastal water information in data products of ocean color remote
sensing processing in support of various optical remote sensing studies and applications.
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Abstract: Quantification of the horizontal patterns of phytoplankton and the distribution of sus-
pended particles across the sea’s surface has been greatly improved by traditional passive oceanic
color remote sensing technology. Lidar technology has already been proven to be effective positive
remote sensing technology to construct high-resolution bathymetry models. Lidar technology signif-
icantly improves our ability to model biogeochemical processes in the upper ocean and provides
advanced concepts regarding the vertical distribution of suspended particles and oceanic optical prop-
erties. In this paper, we present a novel optical approach to measuring the scattering intensity and
characteristics of suspended particles within small angles backwards and distinguish water medium
with different attenuation coefficients by a laboratory demonstration of the ocean Scheimpflug lidar
system. The approach allows the direct determination of the scattering intensity over a small angle at
the backward direction (175.8~178.8◦) with an angular resolution of 0.38. Corrections for the effects
of refraction at the air-glass-water interface were demonstrated. The data production (initial width
and width attenuation rate of the laser beam) of the ocean Scheimpflug lidar system were utilized to
distinguish water with different algae concentrations. Application for the measurement of backward
scattering intensity and laser beam width were explored in distances up to several meters with spatial
resolutions of millimeter precision.

Keywords: lidar; remote sensing sensors; backward scattering intensity; ocean Scheimpflug lidar;
volume scattering function

1. Introduction

Researchers are able to study large-scale horizontal patterns of phytoplankton and
the distribution of suspended particles across the sea’s surface and no longer want to
just observe the ocean for short periods in small places, spurred by advances in spaced
platforms, air–ground telecommunications, and marine detection technology [1–3]. In
terms of ocean color remote sensing, optical properties and the distribution of particles are
key parameters for estimating upper ocean primary production and for quantifying the
spatial distributions of specific constituent concentrations from satellites [3,4]. Inherent
optical properties (IOPs, including the volume scattering function (VSF) and the absorption
coefficient) of aquatic medium play vital roles in optical oceanography. Remote sensing
of water constituents based on traditional ocean color remote sensing technology are
determined by the light field underwater [5]. Improvements in ocean color observations, the
distribution of particles, and the visibility of water are benefit from the study of these optical
properties, especially the measurement of the backward scattering coefficient bb [6,7].

The dynamic range of VSF variability and the true value of the absorption coefficient
in the ocean are little known, largely due to the practical difficulty in carrying out the direct
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measurement of these parameters [8]. Researchers must apply radiative transfer models
to study the property of suspended particles. Current radiative transfer models, which
were created more than 40 years ago, are based on a limited set with coarsely resolved
angular distribution of scattering intensity [9,10]. Furthermore, the nature properties of the
suspended particulate matter in the oceans can be retrieved from the study of the ocean
water VSF [11].

Commercial instruments have been widely used for the in situ measurement of water’s
optical properties and the validation of the remote sensing data, e.g., Laser In Situ Scattering
and Transmissometer (LISST), HydroScat Optical Backscattering Sensor (HydroScat-6),
and Environmental Characterization Optics (ECO) [12–14]. All these devices are able to
measure scattering at a few fixed angles or measure scattering intensity over a narrow range
in the forward direction under manual operation. In terms of these point measurement
devices, the shipborne platform is the only reliable platform to carry out the observation of
oceanic water properties with a large demand for labor.

Lidar technology has already proven to be effective positive remote sensing technology
that produces high-resolution models of bathymetry [15]. Lidar technology significantly
improves our ability to model biogeochemical processes in the upper ocean and provides
advanced conceptions about the vertical distribution of suspended particles and oceanic
optical properties [16,17].

The predominant positive remote sensing technology for atmospheric and aquatic
applications are based on the time-of-flight method by utilizing pulsed lasers, which
have been widely used in the observation of atmospheric constituents such as aerosols,
molecules, and meteorological parameters including temperature and wind [18–21]. In
the manufacture of a Scheimpflug lidar, a high-power continuous-wave (CW) laser rather
than a pulsed laser is utilized. In terms of traditional pulsed lidar systems, the spatial
resolution is determined by the width of laser pulses, calculated by the time-of-flight
method. The range resolution of a Scheimpflug lidar system is achieved through a triangu-
lation method [22–24]. With further research and exploration of the Scheimpflug lidar, the
application fields of the Scheimpflug lidar cover spectroscopy techniques for entomological
applications based on elastic and inelastic lidar [25–28], remote sensing of atmospheric
aerosol and particles by utilizing multi-channel Raman lidar [29], gas monitors by perform-
ing differential absorption lidar [30,31], and the detection of aquatic and vegetation by
operating the hyperspectral lidar [26,32].

Gordon studied the influence of multiple scattering on the optical characteristics of sea
water detected by marine lidar [33]. Walker formulated entirely analytical lidar equations
for a turbid water medium that included beam spreading and pulse stretching. The lidar
equations were reduced to simple algorithms which served as useful engineering models
for systems study by accompany the lidar equations with simplified approximations [34].
Roddewig derived the diffuse attenuation coefficient of downwelling irradiance (Kd) in
Yellow Lake by analyzing two sets of airborne lidar data. Reddewig compared the cal-
culated lidar Kd values with the eight-day-averaged Kd measurement retrieved by the
moderate resolution imaging spectrometer (MODIS) and converted the Kd measurements
to the Secchi disk depth [35].

Spurred by the old Scheimpflug principle, a novel and compact 2D Ocean Scheimpflug
lidar system was developed for the profile measurements of water medium based on
the Scheimpflug lidar system to distinguish water medium with a different attenuation
coefficient. The Scheimpflug lidar presented in this paper is a laboratory demonstration
system. The effective measurement range was 1.31–4.54 m with a spatial resolution of
0.36–4.8 mm. The backward scattering angles varied from 175.5 to 178.8◦, the angular
resolution was from 72 mrad to 80.8 mrad. The future Scheimpflug lidar system will be
packaged in compact housing and configured to the research ship (Dongfanghong-3, which
is affiliated with the Ocean University of China) to carry out long-term observation of
water properties over a large sea area (300 sailing days/year; coverage area: northwest
Pacific Ocean, Yellow Sea, Indian Ocean). When applied to the field ocean observation, the

196



Remote Sens. 2021, 13, 2390

measurement range of the Scheimpflug lidar system can be modified to profile the optical
parameters of ocean water from 2 to 30 m in depth.

The general principle and detailed specification of the ocean Scheimpflug lidar system
are introduced in Section 2. The methodology for data processing and the Monte Carlo
simulation are described in Section 3 to provide a detailed explanation of the processing of
the data production and the validation data. Measurement data and validation data are
described in detail in Section 4. Section 5 presents the discussion and conclusion of the
laboratory experiment and data analysis.

2. The Ocean Scheimpflug Lidar System

2.1. General Principle

The Scheimpflug lidar system is a novel lidar system based on the Scheimpflug
principle. The Scheimpflug principle states that in a scenario with infinite focal depth,
to satisfy the Scheimpflug principle, the object plane, the lens plane, and image plane
should be interested in the same point. In this scenario, there is no relationship between
the focal depth and the optical aperture of the optical system. Figure 1 illustrates a typical
Scheimpflug lidar system that has a lens (lens plane) and object planes that are not parallel,
and three points (i.e., the image plane, object plane, and the lens plane) intersect at the
Scheimpflug intersection point. The backscattering echo signal can be collected by the
lens and detected by the tilted 2D CMOS sensors when a laser beam transmits into the
water media. In a Scheimpflug lidar system, CMOS pixels correspond with the illuminated
volume. Continuous-wave laser sources are common light sources that have been widely
employed for range-resolved measurements using the Scheimpflug principle. All the
configurations of the Scheimpflug lidar system significantly reduce the cost and the system
complexity and differ from conventional lidar systems by utilizing the pulsed light.

 
Figure 1. Scheme diagram of the Scheimpflug imaging principle.

2.2. Specifications of the Scheimpflug Lidar System

A typical lidar system includes a laser transmitting system, a receiving system, and a
photoelectric detection system. In this section, detailed specifications of the Scheimpflug
lidar system are introduced.

2.2.1. Transmitter

The integration time of the CMOS camera is short, since the output signals of the
CMOS camera are easily affected by the radiant power fluctuations of a laser over a
short period of time. The light source of the ocean Scheimpflug lidar system was a dual
wavelength DPSS laser operating at 491 and 532 nm with an average energy of 50 mW
at each wavelength (Cobolt Calypso 04-01, Cobolt Inc., Solna, Sweden). The laser had a

197



Remote Sens. 2021, 13, 2390

very low intensity noise, achieved by running a single frequency to alleviate competing
modes and subsequent mode beating. The coherence length of the laser utilized in the
Scheimpflug lidar was typically over 100 m.

2.2.2. Receiver

According to the Scheimpflug principle, it is difficult to determine the focal length
of the lens. To obtain the focus length of the lens, the Hinge rule was introduced into
the design of the lidar system. According to the Hinge rule, there should be another
intersection in which the image plane is displaced to the effective center of the lens, and
the front focal plane of the lens and the object plane will coincide. In terms of a typical
Scheimpflug lidar system, the laser beam transfer in the water medium is the “object plane”,
the telescope is the “imaging lens” and the “image plane” is typically a square CMOS array
detector. Details of the geometrical relations between the Scheimpflug principle and Hinge
rule is illustrated in Figure 1.

The backscattering light was collected by a 25.4 mm plane convex glass with a focus
length of 10 cm. The DPSS laser operated at 532 nm with a narrow bandwidth of less than
1 MHz. To suppress the background radiation, such as fluorescence excited by transmitted
laser and possible multi-scattering sunlight, a 532 nm interference filter (FL532-3, Thorlabs
Inc., Newton, NJ, USA) with a 3 nm full-width at half maximum (FWHM) was utilized in
the Scheimpflug lidar system. The CMOS sensor was mounted at 45◦, tilted to the glass
plane to satisfy the Scheimpflug principle.

2.2.3. Detector

The imaging detector utilized in this system is a 5 Megapixel Monochrome CMOS
sensor (CS505MU, Thorlabs Inc., Newton, NJ, USA) with extremely low noise (<2.5 e−
RMS Read Noise) and high sensitivity. The CMOS was packaged by compact housing
to provide passive thermal management. The global shutter scans the entire field of
view simultaneously, allowing for imaging of fast-moving objects. These features make
it ideal for low-light imaging applications. The size of the monochrome CMOS sensor
was 2448 × 2048 pixels (approximately 5.0 megapixel, pixel size: 3.54 μm × 3.54 μm). The
quantum efficiency was approximately 72%, over 525–580 nm. A polarizer was configured
in front of the lens making it only receive the co-polarized echo signal. The FOV of the
Scheimpflug lidar system was 35.4 μrad.

3. Experiment and Methodology

3.1. Experimental Setup

The configuration of the ocean Scheimpflug lidar system during the laboratory mea-
surements of the water attenuation coefficient is illustrated in Figure 2. The imaging
detector and telescope were configured by fulfilling the Scheimpflug principle and the
Hinge rule. A black plastic tank with a 90 mm diameter glass window on its side was filled
with water. The distance from the ocean Scheimpflug lidar system to the water-filled tank
was approximately 1.3 m. The ocean Scheimpflug lidar system was mounted to make sure
the laser beam was perpendicular to the surface of the tank. When the laser illuminated a
cross-section of an object in the water, a photo of the echo signal could be obtained on the
CMOS camera.
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Figure 2. Configuration of the ocean Scheimpflug lidar system during the laboratory measurements of
the water attenuation coefficient: (a) top view of the Scheimpflug lidar system; (b) overall appearance
of the Scheimpflug lidar system; (c) configuration of the laboratory measurement campaign.

The laser beam was collimated using an achromatic fiber collimator (PAF2-7A, Thor-
labs Inc., Newton, NJ, USA) before it was transmitted into the air and a 1.3 m long tank
filled with water medium (the collimator was unable to collimate the laser beam to a
parallel light strictly. The waist of the laser beam as focused at approximately 5 m away
from the collimator. Thus, the laser beam of the Scheimpflug lidar system converged within
the measurement range). The telescope in this system is an imaging lens with a diameter
of 25.4 mm and a focus length of 100 mm (LB1676-A, Thorlabs Inc., Newton, NJ, USA).
The distance between the center of the imaging lens and the “object plane” was 0.105 m as
shown in the Figure 3. The angle α is the tilt angle between the lens plane and the object
plane, and the tilt angle was set to 87◦ in our lidar system. The tilt angle β of the image
plane to the lens plane was set to 45◦, while the image plane was 132◦ off the optical axis.
Thus, the laser beam can image onto the detector surface with a 48◦ tilt angle off the optical
axis. The range calibration and the range correction were performed using Equation (1) as
illustrated in Figure 3.

Z =
L[D(sin β − cos β tan θ) + L′]

D(cos β + sin β tan θ) + L′ tan θ
(1)

where L′ = L tan β/cos θ. f is the focal length of the receiving telescope, L is the distance
of the center of the image plane to the lens plane, β is the tilt angle of the image plane to
the lens plane, and θ is the intersection angle between the scattering light and the laser
beam. The focal length of the receiving telescope can be obtained by Equation (2) which is
fulfilled with the Hinge rule.

f =
L tan β

tan β sin θ + cos θ
(2)
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Figure 3. The scheme diagram of the measurement range correction.

In terms of the ocean Scheimpflug lidar system during the experimental measurements,
the emitted laser beam and scattering light travelled through at least two interfaces (the
interface between the water and glass window and the interface between the glass window
and air). The actual distance was no longer consistent with the theoretical distance as
Figure 3 illustrated.

For the convenience of system adjustment, a black board was placed in the tank to
terminate the beam and to increase the intensity of backscattering echo. In the calibration
campaign, fifteen distinct distances were chosen to validate the distance accuracy of the
Scheimpflug lidar system. The backscattering echo from the hard target was calibrated to
measure the relationship between pixels’ position on the CMOS camera and distances, and
it is possible to deduce the other distances from the corresponding pixel number (details
in the Appendix A). The curves illustrated in Figure 4 depict a theoretical relationship
between pixel number and distance. The red curve is the data without taking the glass
window into consideration, and the blue curve is the calibrated data. The black dots are
experimental test data, which coincide well with the theoretical curve. It can be concluded
from the Figure 4 that the distance range of the Scheimpflug lidar system is approximately
1.40–2.80 m. The average range resolution is approximately 1 mm at 1–3 m. The range
resolution is determined by the focal length and the tilt angles. Thus, the parameters of the
Scheimpflug lidar system should be considered according to specific applications.

 

Figure 4. Relationship of the pixel and measurement distance.

3.2. Imaging Processing

During the configuration of a Scheimpflug lidar system, the divergences of the laser
beam should be minimized to promise the range resolution and effective range distance.
Mei L et al. discussed the importance of divergences of the transmitted laser beam to the
atmospheric Scheimpflug lidar [25]. In our setup, the measurement range of the ocean
Scheimpflug lidar system is limited to 4.54 m, and it is possible to achieve minimized
divergence of the transmitted laser beam by aligning an achromatic fiber collimator (PAF2-
7A, Thorlabs Inc., Newton, NJ, USA).
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The image width in different distances (pixel) can be obtained by finding the 1/e
maximum along vertical pixels as illustrated by the white, solid lines in Figure 5a. Part of
the data of the CMOS imaging sensor (each square represents a CMOS pixel with 12 bits
ADC resolution) are selected for fitting with a Gaussian curve. The laser beam width
mentioned in this manuscript is different from the whole halo in a scattering medium due
to the multiple scattering process. The traditional definition of the laser beam width is the
whole width at transversal direction including the laser beam defined in this manuscript
and the halo around the laser beam (the halo width is affected by the sensitivity of detector).
The beam width at a related distance can be obtained by finding the 1/e maximum intensity
value of the Gaussian fitting curve, while the intensity information can be retrieved by
finding the maximum intensity value of the fitting curve. By fitting the curves along the
laser beam traveling direction, the intensity profile and the beam width profile can be
constructed as illustrated in Figure 5c,d.

 
Figure 5. The scheme of the method to retrieve the width of the laser beam from the raw data:
(a) part of the data of the CMOS imaging sensor (each square represents a CMOS pixel with 12 bits
ADC resolution); (b) the transversal data relative to the laser beam travel direction were extracted to
calculate the laser beam width by Gaussian curve fitting; (c) the profile of laser beam intensity which
was constructed by collecting all the intensity peaks of the Gaussian curve fitting; (d) the profile of
laser’s beam width which was constructed by collecting all the beams widths of the Gaussian curve
fitting at 1/e of intensity peak.

3.3. Monte Carlo Simulation

Monte Carlo simulations have been proven by previous studies to model the probabil-
ity of different outcomes in a process that cannot easily be predicted due to the intervention
of random variables and the accuracy has been verified experimentally. It is a technique
that is used to understand the impact of risk and uncertainty in prediction and forecasting
models, and it has been widely used to simulate the influence of different lidar measure-
ment modes, different water parameters, and different laser polarization characteristics on
photon transmission in seawater [36,37]. The Monte Carlo simulation method can guide
the measurement and analysis of field experiments and can well show the distribution
characteristics of laser light under water under different water optical characteristics. In
this paper, the Monte Carlo simulation method was used to simulate the detection of water
bodies to verify the measurement results of this lidar.

The laser beam was set perpendicular to the water’s surface, and the photons scat-
tered after colliding with the water medium. During simulation, the position of the photon
should be confirmed first to see whether it is involved in the receiving field. If the photon is
not involved in the receiving field, it will not track the path of the photon sequentially. Oth-
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erwise, the photon scattering path and the scattering points to the detector are determined
according to the law of refraction, and then the energy directly scattered into the receiver
will be calculated according to the analytical probability. The remaining photons within
the FOV will continue to scatter. The analytical probability of the Monte Carlo method can
be expressed as:

P(z) = β(θ, z)
A

n2(h + d/n)2 exp[−c(z)d]TatmTwaterw(z) (3)

where A represents the area of the FOV at the water’s surface, h represents the distance
from detector’s surface to the water’s surface, d is the depth of the scattering photon within
the water medium, β(θ, z) is the volume scattering function at the water depth z, c(z)
and w(z) are the attenuation coefficient and weight coefficient of the seawater at depth z,
respectively. Tatm and Twater are the Fresnel transmittance of the atmosphere and water,
respectively. w(0) = 1, and wn+1(z) = wn(z)w0(z) where n and n + 1 are the n times and
n + 1 times scattering [38].

Due to the differences in the attenuation and scattering properties, the multiple
scattering processes vary sharply when the laser beam transmits in different water medium,
which affects the lidar echo signal. Based on Walker and McLean models, Howard Gordon
model, and ocean lidar equations, semi-analytical Monte Carlo simulation methods were
used to analyze the effects of lidar observation modes on lidar echo signals, and the
relationship between the lidar extinction coefficient α and seawater optical parameters was
established [38,39].

Stokes, Mueller, and Meridian methods are typical methods to establish a polarized
Monte Carlo simulation model for the radiative transmission of polarized lasers in water,
and the model method was used to simulate the process of polarized laser radiation
transmission in the sea under typical water conditions to analyze the polarization state
of light.

When the polarized light collides with particles, the scattering angle and azimuth
angle were obtained through a combination of the Stokes parameter and Mueller matrix.
The Stokes parameter was used to characterize the polarization characteristics, while
the Mueller matrix was used to characterize the change in polarization state and form a
4 × 4 phase function matrix. The Stokes parameter S = [ S0 S1 S2 S3 ]

T was used
to describe the polarization state of the laser, S0 was the light intensity information, S1
and S2 were the linearly polarized light components in the x-axis and 45◦ directions, and
S3 was the circularly polarized light component. The meridional plane of the incident
Stokes parameter was defined as the x–z plane, that is, the azimuth was 0. Assuming that
the incident light was linearly polarized, the Stokes parameter was S = [ 1 1 0 0 ]

T .
The polarization characteristics were simulated by the Stokes parameter. The polarization
scattering phase function (probability density function) composed of the azimuth angle θ
and ϕ can be expressed as:

f (θ, ϕ) = M11(θ) + M12(θ)[S1 cos(2ϕ) + S2 sin(2ϕ)]/S0 (4)

M(θ) =

⎡
⎢⎢⎣

M11(θ) M12(θ) 0 0
M12(θ) M11(θ) 0 0

0 0 M33(θ) M34(θ)
0 0 −M34(θ) M33(θ)

⎤
⎥⎥⎦ (5)
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M(θ) is the Mueller matrix of the spherical particle, when the radius of the scattering
spheres in the scattering medium is small (in the case of Rayleigh scattering). In the case of
Rayleigh scattering, the elements in M(θ) can be expressed as:

M11(θ) =
3

16π (cos2 θ + 1)

M12(θ) =
3

16π (cos2 θ − 1)

M33(θ) =
3

8π cos θ

M34(θ) = 0

(6)

The cumulative distribution function of the scattering angle θ can be expressed as:

P(0 ≤ ϑ ≤ θ) = 2π
∫ θ

0
M11(ϑ) sin ϑdϑ = ξ (7)

The scattering angle θ can be solved by the above formula, where ξ is a random
number uniformly distributed from 0 to 1. The cumulative distribution function of azimuth
ϕ can be expressed by the following formula:

P(0 ≤ φ ≤ ϕ) =

∫ ϕ
0

[
1+ M12(θ)

M11(θ)
S1 cos(2φ)+S2 sin(2φ)

S0

]
dφ∫ 2π

0

[
1+ M12(θ)

M11(θ)
S1 cos(2φ)+S2 sin(2φ)

S0

]
dφ

= 1
2π

[
ϕ + M12(θ)

M11(θ)
S1 cos(2φ)+S2 sin(2φ)

S0

]
= ξ

(8)

In the simulation presented in this manuscript, both the scattering coefficients of
pure water and suspended particles were considered. When the laser transmitted into
the water medium, the light will be scattered by the water molecules and suspended
particles. The scattering coefficient b(λ) is defined as the ratio of the scattering energy
within per unit length in the medium to the incident energy. The scattering coefficient
included the scattering coefficient of pure water bwater(λ) and the scattering coefficient
of particles bparticles(λ). The scattering coefficient of pure water was based on the model
established by Morel in 1997 [40], while the scattering coefficient of plankton was based on
the model mentioned by Gordon in 1983 [41]. Petzold established scattering coefficient of
three typical sea waters based on in situ measurement data [42].

4. Results

The key feature of the results obtained by the ocean Scheimpflug lidar system was
high-range resolve. Objects separated in space can be measured simultaneously with
this technique, especially the measurement of water optical parameter profiles with high
resolution. To alleviate the influence of laser energy fluctuations in the raw data of ocean
Scheimpflug lidar systems, long-term observation campaigns based on three typical water
mediums were carried out. The backscattering signal time series profiles of the ocean
Scheimpflug lidar system with 10 s exposure time during validation experiments are
illustrated in Figure 6. The color in Figure 6 represents the intensity of the echo signal
detected by CMOS. The maximum value of the color bar illustrated in Figure 6a was 10,
while the maximum value of the color bar depicted in Figure 6b,c was 35. We can conclude
that there were no large variations in the output signal of the CMOS camera over long time
periods (16 min), and it is not essential to configure a channel for energy monitor when
there was no significant impact upon the magnitude of the output signal from the CMOS
camera, especially when the integration time of the CMOS camera was short (10 s) during
the entire laboratory experiment campaign.
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Figure 6. The backscattering signal time series profiles of the ocean Scheimpflug lidar system with 10 s exposure time
during validation experiments: (a) the measurement medium was deionized water; (b) the measurement medium was tap
water; (c) the measurement medium was river water (the river water samples were taken from the river inside the campus
of the Ocean University of China as Figure A2 shows).

Water backscattering images were measured with a 10 s exposure time during night-
time to characterize the profile of the transmitted laser beam under three typical water
mediums as shown in Figure 7. The color in Figure 7 represents the intensity of the echo
signal detected by CMOS. The maximum value of the color bar illustrated in Figure 7a
was 6, while the maximum value of the color bar depicted in Figure 7b,c were 30 and
45, respectively. The echo signal intensity of deionized water was the weakest for the
main signal resource, which was the Rayleigh scattering signal of the water molecules
as Figure 7a shows. The backscattering images obtained by the ocean Scheimpflug lidar
system indicate the intensity of the multi-scattering processing in water medium during the
small angle at backward direction. The laser beam could transmit through the whole tank
when the measurement medium was tap water as Figure 7b shows. The laser beam could
only transmit a short distance when the measurement medium was river water due to the
high attenuation coefficient of suspended particles in the river water. From the illustration
of Figure 7, we can conclude that the initial width of the laser beam had a maximum
value when the medium was river water due to the strong multi-scattering processing.
The width of the laser beam obtained by the Scheimpflug lidar system (retrieved by the
method mentioned in Section 3.2) decreased slowly, and it transmitted through the whole
tank filled with the deionized water. The lidar system performed perfectly when the tank
was filled with tap water. The upward curvature in the laser beam width obtained by the
Scheimpflug lidar system was the cause of a slight displacement of the CMOS camera, and
a detailed analysis can be found in Appendix B.

Width and intensity information of a laser beam can be obtained by utilizing the
method mentioned in Section 3.1. Then, the width variation profiles can be constructed
by calculating the transversal raw data step by step. Figure 8a,b depict the laser beam
width obtained by the Scheimpflug lidar system (retrieved by the method mentioned in
Section 3.2) and intensity as a function of distance, respectively. The red lines are the
data obtained by the Scheimpflug lidar system when the measurement medium is tap
water. The black lines represent the echo signal of river water detected by CMOS. The
blue lines depict the changes in the laser beam width obtained by the Scheimpflug lidar
system and intensity with distance when the measurement medium is deionized water.
The spatial resolution of the Scheimpflug lidar system changed with distance. In Figure 8,
data points of the curves were calculated by an averaged 50 raw data points. Figure 8
depicts the laser beam width obtained by the Scheimpflug lidar system (retrieved by the
method mentioned in Section 3.2) and intensity as a function of distance. The laser beams
could transmit through the whole tank and the laser beam width obtained by Scheimpflug
lidar system decreased relatively moderately when the measurement mediums were tap
water and deionized water. The laser beam could only transmit a short distance and the
laser beam attenuated sharply when the measurement medium was river water due to the
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abundance of suspended particles and colored dissolved organic matter (CDOM) in the
river water. The width variation profiles of laser beam showed different characteristics
under three typical water mediums as Figure 8 shows. The initial width and attenuation
rate of laser beams could be effective tools to distinguish water medium with different
attenuation coefficient.

Figure 7. Intensity-range maps under three kinds of water mediums over a 10 s time window with a
range interval of approximately 1.32–2.50 m: (a) the intensity-range maps under the measurement
medium was deionized water; (b) the intensity-range maps under the measurement medium was
tap water; (c) the intensity-range maps under the measurement medium was river water.

 

Figure 8. (a) Relationship between the laser beam width and the measurement range. (b) Relationship
between the laser beam intensity and the measurement range.
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To verify the ability of ocean Scheimpflug lidar system to distinguish algae at different
concentrations by utilizing its data products including the initial width and width attenu-
ation rate of laser beam, three typical algae in China’s coastal area (including Isochrysis
galbana, Platymonas subcordiformis, Nitzschia closterium) were used during the labora-
tory observation experiments. The size distributions of the three algae are listed in Table 1.
Isochrysis galbana are a species of Haptophyta, and are nearly spherical in shape. The size
of Platymonas subcordiformis and Nitzschia closterium are close to long sticks.

Table 1. Size distribution of three typical algae at China coastal area.

Name Size Distribution (μm)

Isochrysis galbana
Length: 4.4~7.1
Width: 2.7~4.4

Thickness: 2.4~3.0

Platymonas subcordiformis
Length: 11.0~14.0

Width: 7.0~9.0
Thickness: 3.5~5.0

Nitzschia closterium
Length: 12.0~23.0

Width: 2.0~3.0
Thickness: 2.4~3.0

Figure 9 depicts the relationship between initial beam width and beam width attenua-
tion rate obtained by the Scheimpflug lidar system (retrieved by the method mentioned in
Section 3.2) under different mediums. The blue dots represent the data when the measure-
ment medium is Isochrysis galbana. The data production of the Platymonas subcordiformis
was illustrated by the red dots. The initial width information of Platymonas subcordi-
formis are larger than other algae. It is unreliable to distinguish the Isochrysis galbana and
Nitzschia closterium according to the initial width of laser beam. However, it is reliable
to distinguish the species of algae by taking both the initial width and attenuation rate
into consideration.

 

Figure 9. Relationship between the initial beam width and beam width attenuation rate under differ-
ent medium. The black dots represent the water with Nitzschia closterium at different concentrations;
the blue dots represent the water with Isochrysis galbana at different concentrations; the red dots
represent the water with Platymonas subcordiformis at different concentrations.
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Validation

Monte Carlo simulations have been widely used to simulate the influence of different
lidar measurement modes, different water parameters, and different laser polarization
characteristics on photon transmission in seawater. The Monte Carlo simulation method
utilized in this paper is depicted in Section 3.3 in detail. In this section, the simulated data
are illustrated for the validation of Scheimpflug lidar system.

The intensity-range maps simulated by the Monte Carlo method under three water
mediums with different attenuation coefficients are illustrated in Figure 10. The color in
Figure 10 represents the intensity of the echo signal detected by the CMOS. The maximum
value of the color bar illustrated in Figure 10a was 15, while the maximum value of the
color bar depicted in Figure 10b,c were 20 and 225, respectively. The intensity-range maps
under the measurement mediums with an attenuation coefficient was 0.2 m−1, 0.4 m−1,
2 m−1. From Figure 10, we can find a similar tendency between the simulated data by
the Monte Carlo method and the measured data by the Scheimpflug lidar under different
water mediums. The laser beam transferred through long distances (up to 4 m) when
the attenuation coefficient was 0.2 m−1. The backscattering echo signal within a 2 m
measurement range could be detected with an attenuation coefficient that was 0.4 m−1.
When the attenuation coefficient was 2 m−1, the maximum distance of the echo signal
decreased to 0.375 m. The initial widths of the laser beam illustrated in Figure 10c were
broader than the simulation data shown in Figure 10a,b due to the multiple scattering
processes varying sharply in different water mediums, which were closely related to the
attenuation coefficient.

 

Figure 10. The intensity-range maps simulated by the Monte Carlo method under three different wa-
ter mediums with different attenuation coefficients: (a) the medium with attenuation coefficient was
0.2 m−1; (b) the medium with attenuation coefficient was 0.4 m−1; (c) the medium with attenuation
coefficient was 2 m−1.

To quantify the difference of simulated data and measured data, laser beam infor-
mation (e.g., width and intensity information) were retrieved by the utilized methods
mentioned above as Figure 11 shows (the initial width of the measured data were normal-
ized to the simulated data). Figure 11a depicts the changes in laser beams under water
medium with different attenuation coefficients. The solid lines (red line represents river
water; blue line means tap water; black line depicts deionized water) represent the width
information obtained by the Scheimpflug lidar, and the dotted lines (red line represents
the attenuation coefficient is 2 m−1; blue line means the attenuation coefficient is 0.4 m−1;
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black line depicts the attenuation coefficient is 0.2 m−1) mean the data were simulated by
the Monte Carlo method. The original absorption coefficient, scattering coefficient, and
the attenuation coefficient utilized in this manuscript were obtained from the references
as shown in Table 2 [34]. By comparing the simulated data and the measured data, we
can conclude that the measured data changed faster with distance than the simulated
data, which was mainly due to the attenuation coefficients of the measured medium being
larger than the attenuation coefficients during the simulation work. However, there was a
singular situation of the width information when the measured medium was tap water.
The multi-scattering processing was dominant in the attenuation process rather than the
absorption process in the tap water medium (the width of the laser beam obtained by the
Scheimpflug lidar system (retrieved by the method mentioned in Section 3.2) indicated the
backscattering intensity of the water medium).

Figure 11. Comparison of measured data obtained by the Scheimpflug lidar and data simulated
by the Monte Carlo method: (a) laser beam width (note that the scale is too large to see the small
changes in the beam width simulated by the Monte Carlo method when c = 0.2 m−1); (b) intensity of
the laser beam.

Table 2. Water optical properties.

Water Types a (m−1) b (m−1) c (m−1)

Pure sea water 0.0405 0.0025 0.043

Clear sea water 0.114 0.037 0.151

Coastal sea water 0.179 0.219 0.398

Turbid sea water 0.366 1.824 2.190

It is practically difficult to quantify the optical parameters (including the attenuation
coefficient, backscattering coefficient, and absorption coefficient) of water medium. The
simulated data can only be used for qualitative analysis of the trends in changes of the data.
The measured data had good consistency with the simulated data in most cases.

A spectrophotometer has been proven to be good choice to satisfy the demand of
precision measurements in the research of organic chemistry, biochemistry, environmental
protection, water testing industry, etc. The long optical system inside the spectropho-
tometer ensures high accuracy and good stability of the instrument. A high-resolution
Spectrophotometer (U-3900H, Hitachi Inc., Tokyo, Japan) was operated during the labora-
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tory observation experiments to obtain the absorbance that indicates the absorbability of
the measured medium to the light, then the absorption coefficient α could be calculated.
The GF/FTM filter membrane with a 0.7 μm pore diameter was used to filter the 100 mL
measurement medium as shown in Figure 12.

 

Figure 12. Filter membrane obtained by filtrating three kinds of water bodies.

Results from the data obtained by the spectrophotometer (including the absorbance
(blue lines) and absorption coefficient α (red lines)) and the ocean Scheimpflug lidar system
(including the attenuation rate of laser beam width (green lines) and attenuation rate of
laser beam intensity (black lines)) were illustrated into one figure to study the correlation
among the various results as shown in Figure 13. Figure 13a illustrates the variation in the
spectrophotometer and ocean Scheimpflug lidar system retrieval results when the water
was mixed with different concentration Nitzschia closterium. Figure 13b depicts the profiles
when the water was mixed with different concentrations of Isochrysis galbana. Figure 13c
shows the trends in the measurement results with different concentrations of Platymonas
subcordiformis. As Figure 13 illustrates, the data production of the Scheimpflug lidar
system were consistent with the results obtained by the spectrophotometer. By establishing
the correspondence between lidar results and spectrophotometer results, the lidar data
product can be utilized to obtain the absorption coefficient of the measured medium.

 

Figure 13. Correlation between the results of spectrophotometer and the data production of the ocean Scheimpflug lidar
system: (a) the water with Nitzschia closterium at different concentrations; (b) the water with Isochrysis galbana at different
concentrations; (c) the water with Platymonas subcordiformis at different concentrations. Note that the concentration level is
defined by adding 100 mL of high concentration algae culture solution into the water tank step by step. The concentrations
of algae are relative only.
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5. Discussions and Conclusions

In this paper, a laboratory demonstration of the ocean Scheimpflug lidar system was
developed with a particular focus on the optical parameters measurement of the aquatic
environment. The range resolution of our Scheimpflug lidar system was achieved by
utilizing the triangulation method rather than the time-of-flight method commonly used
in conventional lidar systems. By positioning the detector, telescope, and the transmitted
laser beam in a configuration that fulfills the Scheimpflug principle (in this scene that
infinite focal depth can be obtained) and the laser beam can thus be imaged clearly onto
the detector.

The conclusions may be summarized as follows:

• A novel optical approach was developed to measure the scattering intensity and to
quantify the characteristics of the suspended particles within small angles at back-
wards and distinguish water medium with different attenuation coefficients.

• The work aimed to verify the capability of the Scheimpflug system to distinguish
different water mediums with different optical parameters.

• Intensity-range maps simulated by the Monte Carlo methods under three different
water mediums with different attenuation coefficients were developed.

From the carried out experimental verification, we can conclude that the results of im-
proved Scheimpflug lidar system showed good agreement with the theoretical simulation.
In all cases, the spatial distribution of the laser beam intensity deduced from the Monte
Carlo simulations was found to be very close to the one measured experimentally. The
field validation of the Scheimpflug lidar system is the essential work for the future.

In terms of high-precision ocean color remote sensing, IOPs of water medium play
a key role in modulating aquatic light field. Unlike the traditional approaches that use a
special periscope prism for the measurement of the scattering intensity, the Scheimpflug
lidar system allows the direct determination of the VSF over a small angle in the backward
direction with high angular resolution. However, the influence of intensity due to the
backscattering angles have been ignored in this paper. When it comes to the measurement
of VSF, the influence of backscattering angles cannot be ignored.

Polarization lidar systems have been widely utilized in the detection of the distribution
of atmospheric aerosols and clouds [21,43]. In a typical polarization-sensitive lidar system,
echo signals are easy affected by the scattering particles along the laser beam. In this paper,
a polarizer was utilized in the ocean Scheimpflug lidar system to make an echo signal
with a single polarized direction. Multi-channels with polarization identification and the
size measurement of suspended particles will continue to be researched and developed in
subsequent work.

The intensity-range maps simulated by the Monte Carlo method under three different
water mediums were slightly different from the data measured experimentally due to the
inaccurate settings of the attenuation coefficients.
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Appendix A

In a typical ocean Scheimpflug system, the echo signal travels through at least two
interfaces (the interface between water and a glass window and the interface between
a glass window and air). The specifications of the water Scheimpflug lidar system are
fixed including the distance between the center of the CMOS camera and the Scheimpflug
intersection x, the distance between the telescope center and the Scheimpflug intersection
y, the perpendicular distance between the laser beam and the center of the lens H, the
angle between the lens plane and the object plane α, the angle between the lens plane and
the plane of CMOS camera β, the distance between the center of the lens and the center of
CMOS camera D, the horizontal distance between the center of the lens and the window
glass d1, and the thickness of the window glass d2. The corrected distance d can be derived
from the following equation:

D′ =

√[
p(z) +

y
cos β

]2
+ y2 − 2·

[
p(z) +

y
cos β

]
·y

cos γ =
D2 + D′2 − p2(z)

2·D·D′

ξ1 = 90◦ − (α − γ)

H′ = d1· tan ξ1

sin ξ2 =
n2

n1
sin ξ1 =

n2

n1
cos(α − γ)

sin ξ3 =
n3

n2
sin ξ2 =

n3

n1
cos(α − γ)

H′′ = d2· tan ξ2

H′′′ = H − H′ − H′′

d3 =
H′′′

tan ξ3

d = d1 + d2 + d3

Appendix B

The size of the monochrome CMOS sensor utilized in the Scheimpflug lidar system was a
2448 × 2048 pixel array (approximately 5.0 megapixels, pixel size: 3.54 μm × 3.54 μm). A typ-
ical Scheimpflug lidar system has a lens (lens plane) and object planes that are not parallel
and three planes that intersect at the Scheimpflug intersection line as Figure A1 shows. MN
is a line on the object plane in the real-world coordinate system which represents the laser
beam width at distance L, and M′N′ is the image of the line in the image coordinate system.
O′′ is the intersect point of the Scheimpflug lidar system. O′′ M′ is the theoretical centerline
of the CMOS. O′′ G′ is the actual centerline of the CMOS. Thus, the G′M′ represents the
distance between the centerline of the CMOS sensor and the laser beam. In addition, the
relationship between MN and M′N′ is related to the distance and the pixel number. The
relationship is illustrated in Figure 4. It is difficult to avoid the CMOS camera without a
little displacement during the configuration. In our opinion, the slight displacement of the
CMOS was the cause of the upward curvature in the laser beam width. Data gridding and
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data interpolation were utilized during the data processing. Hence, the upward curvature
in the laser beam width would not affect the results of laser beam width in the manuscript.

Figure A1. The relationship between the image and the real-world coordinate system. MN is a line
on the object plane in the real-world coordinate system, and M′N′ is the image of the line in the
image coordinate system. O′′ is the intersect point of the Scheimpflug lidar system. O′′ M′ is the
centerline of the CMOS in theory. O′′ G′ is the actual centerline of the CMOS.

Appendix C

 

Figure A2. Photograph of the river inside the campus of the Ocean University of China where we
sampled the river water.
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Abstract: Strong typhoon winds enhance turbulent mixing, which induces sediment to resuspend
and to promote chlorophyll-a (Chl-a) blooms in the continental shelf areas. In this study, we find
limited Chl-a responses to three late autumn typhoons (typhoon Nesat, Mujigae and Khanun) in the
northwestern South China Sea (NWSCS) using satellite observations. In climatology, the Chl-a and
total suspended sediment (TSS) concentrations are high all year round with higher value in autumn in
the offshore area of the NWSCS. After the typhoon passage, the Chl-a concentration increases slightly
(23%), while even TSS enhances by 280% on the wide continental shelf of the NWSCS. However,
in the southern area, located approximately 100 km from the typhoon tracks, both TSS and Chl-a
concentrations increase 160% and 150% after typhoon passage, respectively. In the deeper area, the
increased TSS concentration is responsible for the considerable increase of the Chl-a. An empirical
analysis is applied to the data, which reveals the TSS and Chl-a processes during typhoon events.
The results of this study suggest a different mechanism for Chl-a concentration increase and thus
contribute toward further evaluation of typhoon-induced biological responses.

Keywords: total suspended sediment; chlorophyll-a bloom; typhoon; South China Sea; along-
shore current

1. Introduction

Typhoons inject substantial amounts of energy into the ocean and initiate various
ocean processes, e.g., mixing and near-inertial oscillations (NIOs). During typhoon passage,
the main response of the upper ocean is related to wide-scale cooling. Hu and Kawmura [1]
found that the cold core with a sea surface temperature (SST) difference greater than
2 ◦C compared to the surrounding areas may be observed using an Advanced Very High
Resolution Radiometer (AVHRR) sensor. Since 2010, typhoon-forced near inertial waves
have been a research focus for many projects [2]. Guan, et al. [3] examined the upper
ocean dynamic response to typhoon Megi (2010) with the presence of a strong internal tide.
Sun, et al. [4] found that the waveguide effect of the background shear flow redistributed
the NIOs energy after the typhoon passage and trapped energy in the area of the typhoon’s
negative vorticity. Typhoons induce the oceanic geostrophic response, which perturbs the
underlying ocean eddy field [5]. Typhoon intensity can then be strengthened by the warm
ocean mesoscale eddy [6].

In addition to the physical typhoon-induced interactions, biogeochemical interactions
between the typhoon and ocean occur under the enhanced mixing and transport of water
and nutrients. In 2004, enhanced chlorophyll-a (Chl-a) concentrations were revealed in the
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central South China Sea (SCS) in November 2001 after the passage of typhoon Lingling [7].
The NIOs induces uplift of nutrients and Chl-a into the mixed layer from below, leading
to a surface Chl-a increase [8,9]. High winds can induce upwelling, and cold eddies
often promote the considerable growth of phytoplankton after a typhoon [10]. Chl-a
concentrations increase after typhoon passage and remain at a high concentration for
around 5 days before beginning to return to initial conditions [11,12]. Moreover, Wang [13]
showed that increases of Chl-a concentration occur after 70% of the typhoons in the SCS
based on 16 years of data.

The SCS is one of the areas most affected by typhoons anda local typhoon birth-
place [14]. Typhoons generated in October and November are known as late autumn
typhoons in the SCS, which may have a stronger impact on their local environment because
of their high intensity. Chl-a concentrations during this period increase over the entire SCS,
but they remain at a high level (~0.3 mg m−3) in the coastal region [15]. Previous studies
have described Chl-a blooms induced by late autumn typhoons. For example, the Chl-a
concentration increased by 226% on the 7th day after the passage of typhoon Nesat (2011),
associated with the near-inertial baroclinic shear instability [16]. The maximum increase of
chlorophyll-a (Chl-a) concentration induced by typhoon Mujigae (2015) occurred in the
shelf sea of the NWSCS, with features of unusual surface cooling [17,18].

Moreover, the SCS sits in the East Asian monsoon region, with northeasterly winds
prevailing in winter and southwesterly wind in summer. Previous studies have indi-
cated that a southwestward coastal current is present west of Guangdong throughout the
year [19,20]. In summer, the occurrence of southwest monsoons is an important factor in
the formation of the southwestward coastal current on the shelf [21], while the northeasterly
wind-induced southwestward flow prevails over the continental shelf of the northern SCS
in winter [22]. Sufficient nutrition and Chl-a are transported by the southwestward current
from the Pearl River Estuary in the autumn and winter. Thus, the Chl-a concentration is
very high on the continental shelf of the northwestern South China Sea (NWSCS).

Furthermore, the monsoon winds could mix the offshore waters well to the bottom
in winter [23]. As the maximum Chl-a concentration is observed in the subsurface water
(50–70 m), the vertical mixing effect would transport the Chl-a in the subsurface layer up
to the surface layer and cause the Chl-a concentration to increase [24–26]. The prevailing
winds produce onshore Ekman transport, which consists of freshwater discharge from
the Pearl River. Thus, the coastal current also plays an important role in transporting the
Pearl River water and sediment. In the NWSCS, there is a seasonal coastal upwelling
system, which occurs from April to September with the strongest upwelling period in June
and July [27].

Strong typhoon winds would induces sediment to resuspend and to promote Chl-a
blooms in continental shelf areas. However, Lü, et al. [28] found that a high total suspended
sediment (TSS) near the shore and a lack of nutrients in the bottom resulted in no Chl-a
bloom in the shelf area. This study aims to investigate the mechanisms for Chl-a increase
during three late autumn typhoons (Nesat (2011), Mujigae (2015) and Khanun (2017))
landed in the NWSCS.

This paper is organized as follows. Section 2 describes an introduction to the data and
methods including algorithms for retrieval of the colored dissolved organic matter (CDOM)
and TSS concentrations from satellite observations. Sections 3 and 4 present the analysis
of the monthly variation in TSS and Chl-a concentrations and the distribution of the TSS
and Chl-a concentrations during typhoon passage in the NWSCS. Section 5 discusses the
Pearl River water transport, mixing, and upwelling effects to the Chl-a blooms. Section 6
contains a summary.

2. Materials and Methods

2.1. Study Area

The SCS is one of the largest semi-closed marginal seas of the northwestern Pacific
Ocean as shown in Figure 1. It connects the Pacific Ocean, the East China Sea, and the
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Indonesian Seas via the Luzon Strait, the Taiwan Strait, and the Karimata Strait, respectively.
A deep basin with a maximum depth of about 5500 m sits in the center of the SCS. The
wide continental shelf with a depth less than 200 m is distributed around the basin, which
occupies about 48% of the total area [29,30].

Figure 1. Study area and typhoon tracks in the NWSCS. Black curves with color dots (every 6 h)
represent the typhoon tracks of typhoon Nesat (2011) Mujigae (2015), and Khanun (2017). Color dots
on the black curves represent the typhoon intensity. The typhoon passing times are coded by month
(first two digits), day (the middle two digits), and hour (the last two digits in red). Pink polygons
represent the study area consisting of two subareas: Yuexi (A1) and Qiongdong (A2). Numerals on
the isobaths are in m.

The study area sits in the NWSCS. We divide it into two sub-areas: Yuexi (A1) and
Qiongdong (A2) as shown in Figure 1. A1 is featured by a broad continental shelf. In the
north of A1, the largest river system in South China, the Pearl River Estuary is located.
The previous studies have shown that a southwestward coastal current dominates the
shelf circulation of the NWSCS in autumn and winter [29]. Qiongdong coastal upwelling
occupies the area of about 20–50 km from the coastline of A2 [31–33], and it is a seasonal
coastal upwelling system occurring from April to September with the strongest upwelling
period in June and July [23].

2.2. Late Autumn Typhoons

There were three late autumn typhoons—Nesat (2011), Mujigae (2015), and Khanun
(2017)—which made landfall on the southwest coast of China during 2010–2019. The ty-
phoons Nesat (2011), Mujigae (2015), and Khanun (2017) originated from the Pacific Ocean
(Table 1), moved northwestward, crossed the continental shelf of the NWSCS, and made
landfall on the southwest coast of China. The tracks of the typhoons, as shown in Figure 1,
are downloaded from the Tropical Cyclone Data Center of the China Meteorological Ad-
ministration (CMA) (http://tcdata.typhoon.org.cn, accessed on 4 March 2021) [34,35]. The
typhoon center locations, minimum pressure, and two-minute mean maximum sustained
wind near the typhoon center are collected at a temporal resolution of 6 h.

Table 1. Summary of typhoon cases passing over the study area.

Typhoon Date Category Origin

Nesat 24–30 September 2011 Typhoon Pacific Ocean

Mujigae 02–05 October 2015 Super typhoon Pacific Ocean

Khanun 11–16 October 2017 Typhoon Pacific Ocean
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2.3. Satellite Ocean Color Data

The daily Chl-a data for the typhoon periods and the monthly data from 2004 to 2019
are downloaded from http://oceandata.sci.gsfc.nasa.gov/ (accessed on 7 February 2021).
The dataset is a level-3 product with a spatial resolution of 4 km from the moderate
resolution imaging spectroradiometer (MODIS) onboard satellites Terra and Aqua (Table 2).
The data from the two platforms are merged for improving the coverage of the Chl-a
data [36]. The average Chl-a concentration from the Terra and Aqua satellites is estimated
and used in this study. The monthly mean Chl-a concentration from 2004 to 2019, with a
spatial resolution of 4 km, are derived from http://oceandata.sci.gsfc.nasa.gov/ (accessed
on 5 October 2020).

Table 2. Details of the ocean color data used in this study.

Time Period Data
Temporal

Resolution
Spatial

Resolution
Satellite/Sensor

19–31 September 2011 Chl-a, Rrs645 daily 4 km Terra,
Aqua/MODIS

20 September–31
October 2015 Chl-a, Rrs645 daily 4 km Terra,

Aqua/MODIS

01–31 October 2017 Chl-a, Rrs645 daily 4 km Terra,
Aqua/MODIS

2004–2019 Chl-a, Rrs412,
Rrs555, Rrs645 monthly 4 km Terra

Aqua/MODIS

The Chl-a concentration varied with isobaths (z) in the study area was estimated using
the following equation:

CChl−aMean(z) =
∫ ∫

CChl−a(x, y, z) dxdy. (1)

where CChl-a(x,y,z) is the Chl-a concentration obtained from daily Chl-a data.
In order to estimate the Chl-a concentration variation during the typhoon events, the

Chl-a concentration anomaly is estimated with respect to a climatological mean:

AcChl−aMean(z) = CChl−aMean(z)− Cc(z). (2)

where Cc(z) is the climatological mean (2004–2019) for Chl-a concentration varied with
isobaths. The climatological mean for Chl-a concentration (Cc(z)), e.g., for October, was
estimated by

Cc(z) =
1
16 ∑2019

i=2004 Cc(z, t)|t=10 (3)

where Cc(z,t) is the monthly mean Chl-a concentration varied with isobaths (z) from 2004
to 2019. Cc(z,t) is estimated by using Equation (1) from monthly Chl-a concentration.

The MODIS reflectance (Rrs) data at 412, 555, and 645 nm with a spatial resolution of
4 km are obtained from http://oceandata.sci.gsfc.nasa.gov/ (accessed on 7 February 2021)
and used to calculate the TSS concentration (Section 2.4) and CDOM (Section 2.5).

2.4. TSS Retrieval

Remote sensing techniques have been applied to quantify the TSS concentration.
Empirical relationships between TSS concentration and equivalent reflectance values were
established with the linear, polynomial models, and even artificial neural networks [37,38].
Various algorithms for estimating the TSS have been developed using Rrs (443), Rrs (488),
Rrs (555), and Rrs (645) data [39–41]. As the suspended concentration is high in the
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continental shelf area, especially near the Pearl River estuary, the TSS concentrations (CTSS)
are estimated with retrieval algorithms using Rrs (645) data [41]:

CTSS = 0.6455 + 1455.7 × Rrs645. (4)

TSS concentration varied with isobaths (z) and anomaly could be estimated from
Equations (1) and (2).

2.5. CDOM Retrieval

Satellite ocean color sensors (e.g., MODIS) offers global coverage of CDOM. The
amount of CDOM is expressed by the absorption coefficient at 400 nm. The CDOM
absorption coefficient at 400 nm is estimated by using monthly Rrs (412) and Rrs (555)
data [42,43]:

aCDOM(400) = 0.2355 × R−1.3423, (5)

where R = Rrs(412)/Rrs(555).

2.6. Sea Level Anomaly and Geostrophic Current

Satellite altimeter sea level anomaly (SLA) data are downloaded as a gridded product
from the Copernicus Marine Environment Monitoring Service (CMEMS). The temporal
resolution is daily and monthly, and the spatial resolution is 0.25◦ in latitude and longitude
with global ocean coverage. The data merged from multiple altimetry sensors are computed
with respect to a twenty-year mean.

The daily geostrophic current is provided by the Copernicus Marine Environment
Monitoring Service (CMEMS). The monthly mean geostrophic current velocities are calcu-
lated using monthly mean SLA data:

u = − g
f

∂η

∂y
, (6)

v =
g
f

∂η

∂x
, (7)

where g is the acceleration of gravity, f is the Coriolis parameter and η is monthly mean
SLA, respectively.

2.7. Sea Surface Wind and Ekman Pumping

The sea surface wind data at 10 m above the sea surface are obtained from the CMEMS
at http://marine.copernicus.eu/ (accessed on 24 April 2021). The data are a level-2 product
with a spatial resolution of 25 km, measured by the Advanced Scatterometer (ASCAT)
instrument on the EUMETSAT Metop-A satellite. The monthly sea surface wind data from
2010 to 2019 with a spatial resolution of 0.25◦ are obtained from CMEMS. The climatological
sea surface wind is calculated from monthly sea surface wind data.

The velocity of Ekman pumping is calculated by [44]:

We =
1

ρ f
(∇× τ), (8)

where f, ρ and τ are the Coriolis parameter, the seawater density and the wind stress, respectively.
A finite difference scheme is applied to calculate wind stress curl [45]:

∇× τi,j =
1

R cos ϕi,j

((
τy
)

i+1,j −
(
τy
)

i−1,j

2Δλ
−

(τx cos ϕ)i,j+1 − (τx cos ϕ)i,j−1

2Δϕ

)
, (9)

The wind stress curl is determined as [46]:

τ = ρaCDU|U|, (10)
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where ρa, CD, and U are the air density, the drag coefficient and the 10 m wind, respectively.
The drag coefficient is calculated as [47]:

CD =

{
(0.75 + 0.067U)× 10−3 0 < U ≤ 26 m s−1

2.5 × 10−3 U > 26 m s−1 . (11)

3. Climatological and Time Series Analyses

3.1. Monthly Variations of TSS and Chl-a Concentrations

Figure 2 shows the monthly TSS concentration averaged for 2004–2019 varied with
isobaths (z) in A1 and A2. The depth-averaged TSS values decrease with the depth
increase in A1 throughout the year. The averaged TSS concentration in the summer half
year is higher than 3 mg L−1 in the offshore area. In the winter half year, the high TSS
concentrations extend to the shelf area with a depth of ~100 m.

Figure 2. Climatological monthly mean TSS concentration. Time series of ocean surface TSS concentration variation with
isobath depth in A1 (a) and A2 (b). Mean climatological monthly mean TSS concentration with a depth less than 80 m in
A1 (c) and A2 (d). Error bars in (c,d) are standard deviations of TSS. Color codes for TSS concentration (logarithmic scale)
are in mg L−1.

In A2 (Figure 2b), low TSS concentration of <0.1 mg L−1 occurred in the offshore and
shelf areas in the summer half year. However, a very high TSS concentration of >1.0 mg L−1

is also observed, of which the range extends to the areas as deep as 100 m.
Figure 2c,d show that the monthly TSS concentrations in both A1 and A2 in the winter

half year are much higher than that in the summer half year. The TSS concentration in A1 is
about 3.0 mg L−1, almost twice as that in A2. Moreover, a relatively high TSS concentration
(>2 mg L−1) sustains during late autumn period in A2, and is twice as that of the remainder
of the year.
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From Figure 3, one can see that the monthly mean Chl-a concentrations in A1 and
A2 decrease as the depth increases throughout the year. In A1 (Figure 3a), higher Chl-
a concentrations (>1 mg m−3) appear in the offshore area with depths less than 40 m.
Meanwhile, the Chl-a concentrations in the shelf area (40–200 m) show clear annual
variations. In the summer half of the year from April to August, Chl-a concentrations
higher than 0.5 mg m−3 are distributed in the areas with depths less than 40 m. In contrast,
in the autumn, the main areas of high Chl-a concentrations have depths < 100 m. The
Chl-a concentrations in areas with depths of 100–200 m in the autumn (~0.4 mg m−3) are
more than twice as that in the summer half year. The concentrations in the deep-sea areas
(>200 m) are much lower.

Figure 3. Climatological monthly mean Chl-a concentration variation with isobath depth in A1 (a) and A2 (b) and at depths
less than 80 m (c,d). Error bars in (c,d) are the STD of Chl-a. Color codes for Chl-a concentration (logarithmic scale) are in
mg m−3.

From Figure 3b, one can see that in A2, the Chl-a values in the offshore areas are
much lower than that in A1, and higher Chl-a concentrations are observed in March and
October. However, the Chl-a concentrations in the shelf area (40–100 m) are slightly higher
(~0.6 mg m−3) than that in A1. Moreover, annual variations in Chl-a concentrations are
observed not only in the shelf area but also in the offshore areas.

The high Chl-a concentrations are distributed in the areas with depths less than 80 m
in A1 and A2 as shown in Figure 3c,d. The Chl-a concentrations in both A1 and A2 in the
autumn are much higher than that in the summer half year. In the summer half year, the
mean Chl-a concentrations in A1 and A2 are 0.9 and 0.4 mg m−3, respectively, with 1.4 and
0.9 mg m−3 in the winter half year, respectively. Furthermore, two Chl-a concentration in
A2 peaks occur in March and October.
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In general, the distribution of TSS and Chl-a concentrations in A1 are comparable,
i.e., high TSS and Chl-a concentrations are mainly concentrated in the offshore area through-
out the year. In the autumn, relatively high TSS and Chl-a concentrations are found in the
shelf area due to a well-mixed water column. The TSS and Chl-a concentrations concur-
rently increase after September. The mean TSS and Chl-a concentrations in October reach
3.1 mg m−3 and 1.4 mg L−1, respectively.

In A2, the distributions of TSS and Chl-a concentrations are similar from April to
December. The lower TSS concentrations (<1.0 mg L−1) occur in March, whereas the Chl-a
concentration peaks at 0.8 mg m−3. Moreover, in contrast to the higher Chl-a, remarkably
lower TSS concentrations (<0.1 mg L−1) in the offshore area are observed from April
to August. The high TSS concentrations (>1.5 mg L−1) are accompanied by high Chl-a
concentrations (>1 mg m−3), of which the distribution extends to the depth as 100 m as
observed in October.

3.2. TSS and Chl-a Concentrations in A1 during the Typhoon Period

The time series of TSS concentrations varied with isobaths (z) on the continental shelf
in A1 during typhoons Nesat (2011), Mujigae (2015) and Khanun (2017) are shown in
Figure 4. The TSS concentration in the offshore area (<40 m) was 6.3 mg L−1 before Nesat
(2011), Mujigae (2015), and Khanun (2017) arrived. This phenomenon is also shown in
Figure 2a, since the monthly mean TSS was high in the offshore area, especially in the
winter. The TSS concentration in the offshore area increased significantly to as high as
20.0 mg L−1, after typhoons’ landfall (red curves in Figure 4b,d,f). The significant increase
of TSS was also observed at a depth of 80 m. In the basin water, the TSS concentration
increased slightly. Ten days later, the TSS concentration for three cases reduced gradually
to the previous level.

Figure 5 shows time series of Chl-a concentration during the typhoon periods. The
Chl-a concentration increased slightly in the offshore areas during the typhoon period,
e.g., ~1.0 mg m−3 for typhoon Mujigae (2011). The Chl-a concentrations increased about
1.5 mg m−3 in the shelf area. In the basin area, the Chl-a concentrations showed only slight fluc-
tuation. Ten days after the typhoon passage, the Chl-a concentrations increased significantly.

Interestingly, the mean Chl-a values only increased 23% in the offshore areas after the
typhoon passage. However, that of TSS concurrently increased by 280% (13.6 mg L−1). In
contrast, the Chl-a concentration increased by 200% (1.3 mg m−3) at the depth of 60 m, while
TSS concentration increased by 450%. Thus, there is no Chl-a bloom even with enhanced
TSS, which is different from the feature in the shelf region and many previous literatures.

3.3. TSS and Chl-a Concentrations in A2 during the Typhoon Period

Figure 6 shows how the time series of TSS concentration responded to typhoons Nesat
(2011), Mujigae (2015), and Khanun (2017) in sub-region A2. There was a remarkable
response of TSS concentration to typhoons at the depth of 100 m. After Mujigae (2015)
passed, high TSS concentrations were observed at 200 m depth (Figure 6c,d). Moreover,
the maximum increase of the TSS concentration was shown in the shelf area (i.e., ~100 m);
it increased by 5.7, 3.7, and 0.6 mg L−1 for Nesat (2011), Mujigae (2015), and Khanun
(2017), respectively. The TSS concentration only increased by about 0.3 mg L−1 in the
offshore areas. Ten days after the typhoon passage, the TSS concentration decreased to a
background level.
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Figure 4. Time series of TSS varied with isobaths (z) on the continental shelf of A1 (a,c,e). TSS
concentration anomaly along the continental shelf (b,d,f). (a,c,e) are from Equation (1). X-axis
indicates the concentration varied with isobaths (z). Y-axis indicates the time during the typhoon
event. (b,d,f) are from Equation (2). Data are limited to the depth of 1000 m. Black lines in (a,c,e)
represent passing times of typhoons Nesat (2011), Mujigae (2015) and Khanun (2017), respectively.
Color codes for TSS concentration (logarithmic scale) are in mg L−1. In (b,d,f), black, red and green
curves represent the Chl-a concentrations before, and after typhoon passage, respectively. The legend
indicates the observation time of satellite.
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Figure 5. Time series of Chl-a concentration varied with isobaths (z) on the continental shelf of
A1 (a,c,e). The Chl-a concentration anomaly along the continental shelf is shown in (b,d,f). (a,c,e) are
from Equation (1). X-axis indicates the concentration varied with isobaths (z). Y-axis indicates the
time during the typhoon event. (b,d,f) are from Equation (2). Data are limited to the depth of 1000 m.
Black lines in (a,c,e) represent passing times of typhoons Nesat (2011), Mujigae (2015) and Khanun
(2017). Color codes for Chl-a concentration (logarithmic scale) are in mg m−3. In (b,d,f), black, red
and green curves represent Chl-a concentration before and after typhoon passage, respectively. The
legend indicates the observation time of satellite.
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Figure 6. Time series of TSS concentration varied with isobaths (z) on the continental shelf of A2 (a,c,e). TSS concentrations
anomaly along the continental shelf (b,d,f). (a,c,e) are from Equation (1). X-axis indicates the concentration varied with
isobaths (z). Y-axis indicates the time during the typhoon event. (b,d,f) are from Equation (2). Data are limited to the depth
of 1000 m. Black lines in (a,c,e) represent passing times of typhoons Nesat (2011), Mujigae (2015) and Khanun (2017). Color
codes for TSS concentration (logarithmic scale) are in mg L−1. In (b,d,f), black, red, and green curves are Chl-a concentration
before and after typhoon passage, respectively. The legend indicates the observation time of satellite.

Figure 7 shows the time series of the Chl-a concentration during the three typhoon
periods. The maximum increase of Chl-a concentration occurs concurrently with that of TSS
in the shelf area. The concurrent phenomenon indicates that the high level concentration of
Chl-a is the result of the high level concentration of TSS. The Chl-a concentrations increase
by about 1.0, 3.0, and 0.5 mg m−3, respectively. In the basin area, however, the Chl-a
concentrations show only slight fluctuations.
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Figure 7. Time series of Chl-a concentration varied with isobaths (z) on the continental shelf
of A2 (a,c,e). Chl-a concentrations anomaly along the continental shelf (b,d,f). (a,c,e) are from
Equation (1). X-axis indicates the concentration varied with isobaths (z). Y-axis indicates the time
during the typhoon event. (b,d,f) are from Equation (2). Data are limited to the depth of 1000 m.
Black lines in (a,c,e) represent passing times of typhoons Nesat (2011), Mujigae (2015) and Khanun
(2017). Color codes for Chl-a concentration (logarithmic scale) are in mg m−3. In (b,d,f), black, red
and green curves are Chl-a concentrations before and after typhoon passage, respectively. The legend
indicates the observation time of satellite.

In October, the background TSS and Chl-a concentrations (Figures 2b and 3b) were
high in the shelf area, e.g., ~2.0 mg L−1 and 1.0 mg m−3, respectively. In all three typhoon
cases, typhoons enhanced Chl-a concentrations in the offshore and shelf areas by 160% and
150%, respectively.

4. Empirical Analysis of Temporal Variations

We divide the study area into two sub-areas: the continental shelf and the basin area
and calculate the mean TSS and Chl-a concentration of shelf area with a depth less than
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100 m in A1, and with a depth less than 200 m in A2. Here we use a Rayleigh function to fit
the time series of TSS and Chl-a concentration:

y = A
(t + T)

σ2 exp

(
− (t + T)2

2σ2

)
+ Δ (12)

where A is the coefficient of the TSS and Chl-a concentration; t is the time (d); T is the time
lag (left-ward shift with a positive value); σ2 is the variance of TSS and Chl-a concentration.
Δ is a background concentration of TSS and Chl-a.

Figure 8 shows the TSS concentrations 10 days before and after typhoons Nesat (2011),
Mujigae (2015), and Khanun (2017). The TSS concentration in the shelf area of A1 was about
2–7 mg L−1 before typhoon landfall (Figure 8a). After typhoon landfall, the maximum of
TSS concentration was as high as 22 mg L−1, then decreased to 3 mg L−1 within 10 days.
Figure 8b shows that in the basin area of A1, the mean TSS concentration increased from
0.7 to 0.8 mg L−1 during typhoon passage.

Figure 8. Rayleigh function fits of TSS time series increase after typhoon passage in A1 (a,b) and A2 (c,d). The colored
symbols show the observations on the continental shelf (a,c) and basin area (b,d). The solid curves are the Rayleigh function.
Averaged depths are upper 100 m and 200 m for (a) and (c), respectively.

In the shelf area of A2, the mean TSS concentration remained lower than 1 mg L−1

before typhoon landfall (Figure 8c), peaked to 5 mg L−1 and then reduced to 1 mg L−1

after typhoon passing. In the basin area, the mean TSS concentration (~0.7 mg L−1) only
showed slight fluctuations (Figure 8d).

The empirical function explains the TSS variation process during typhoon events very
well, especially for the shelf of A1. The coefficient of TSS concentration in A1 is as high as
90 mg L−1 with R2 value of 0.69 (Table 3), which means that TSS concentration could reach
about 25 mg L−1 during typhoon events. In the basin, the coefficient of TSS concentration
decreases to 10 mg L−1.
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Table 3. Summary of TSS and Chl-a decrease in A1 and A2.

Area
ΔTSS

(mg L−1)
ATSS

(mg L−1)
T

(d)
σ2 R2 ΔChl-a

(mg m−3)
AChl-a

(mg L−1)
T

(d)
σ2 R2

A1
Offshore

2.5 90 2 2.5 0.69
2.6 6 2 2 0.44

Shelf 0.3 6 2 3 0.39
Basin 1 10 2 2.5 0.45 0.1 0.3 2 3 0.37

A2
Shelf 0.8 20 3 3 0.11 0.2 6 3 2 0.23
Basin 0.8 0.8 3 3 0.12 0.12 1 3 2 0.37

Fore Chl-a, we divided A1 into three sub-areas: the offshore (<40 m), shelf (<100 m),
and the basin area. One can see that the time series Chl-a concentrations in the offshore area
(Figure 9a) changed slightly. The Chl-a concentrations after typhoon landfall were even
lower than those six days before typhoon passage in the case of typhoon Mujigae (2015).
Moreover, in the case of typhoon Khanun (2017), Chl-a concentrations decreased from 2.9
to 2.4 mg m−3 during typhoon passage. Figure 9b shows that the Chl-a concentrations
increased from ~0.5 to ~1.0 mg m−3 in the shelf area. In the basin area (Figure 9c), the Chl-a
concentrations increased from ~0.1 to ~0.15 mg m−3.

Figure 9. Rayleigh function fit of time series Chl-a concentration in A1 (a–c) and A2 (d,e). The colored symbols show the
observations on the continental shelf (a,b,d) and open sea (c,e). Blue lines are the Rayleigh function.

Time series Chl-a concentrations in the offshore and shelf area of A2 are shown in
Figure 9d. The Chl-a concentrations increased significantly after typhoon passage, from 0.2
to about 1.0 mg m−3. However, the Chl-a concentrations increased slightly in the basin
area (Figure 9e).

Rayleigh function fits revealed the Chl-a variation process during typhoon events.
The coefficient of the Chl-a concentration is as high as 6 mg m−3 with R2 value of 0.44
(Table 3). The R2 value is not so high, and the main reason is the data missing during the
passage of typhoon.
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5. Discussion

5.1. Pearl River Water Transport

Previous studies have revealed that typhoons result in substantial increases of TSS and
Chl-a concentrations [7,10,48]. An offshore bloom exhibited a Chl-a peak of 0.7 mg m−3

relative to a background of 0.1 mg m−3 before landfall of typhoon Damrey [49]. The
maximum Chl-a concentration was enhanced to approximately 7.5 times the climatological
value after the typhoon Nuri (2008) [50,51]. Li, et al. [19] found that the Chl-a concen-
tration in the offshore area increased three times in five days after landfall of typhoon
Mangkhut (2018). The maximum Chl-a concentration in the offshore area resulted from the
suspended particulate matter from runoff or mixing [52–54]. Hu, et al. [55] found that the
photochemical reactions would transfer sedimentary organic matter into dissolved organic
matter and affect ultimate fate in aquatic ecosystems. The resuspended sediments on the
continental shelf would release inorganic nutrients under the effect of sunlight within a
few hours [56–58].

However, in the current study, the TSS concentration in the offshore area of A1
(Figure 4) was very high due to the strong wind during autumn typhoon events, whereas
the Chl-a concentration only increased by 23% (about 0.3 mg m−3) compared with the
monthly mean Chl-a value (Figure 2). In the shelf area, the TSS concentration increased by
four times, whereas the Chl-a concentration increased twice with respect to the climatologi-
cal value. It remains unclear, therefore, why the increment of Chl-a concentration was so
different between the offshore and shelf area during these late autumn typhoon events.

The CDOM, considered as the powerful indicators represents the degree riverine
plumes to be affected by terrestrial inputs [43,59]. Figure 10a shows the climatological
CDOM distribution of the study area in July. One can see that CDOM (aCDOM) is mainly
distributed in the offshore area. Huang, et al. [60] observed high nutrient contents and TSS
concentrations in the offshore area in summer and the terrestrial organic matter contributed
38% of TSS in the Pearl River Estuary. Lao, et al. [61] found that the nitrate content along
the coast of A1 was strongly influenced by discharges from local urban areas and the
westward flow of diluted Pearl River water. Therefore, it is reasonable to attribute summer
CDOM to influences of local urban area discharges and Pearl River water.

Figure 10b shows that in October the CDOM is much higher than that in July and
distributed over the shelf area. As above mentioned, the coastal current with the Pearl
River water flows southwestward [62]. Combined with the climatological geostrophic
current (Figure 10c,d), one can concludes that the Pearl River water transported by the
alongshore current supplies the phytoplankton in the offshore area of A1, which results in
a high Chl-a concentration in the winter half year (Figure 3a).

Figure 10e,f show the geostrophic current before and after typhoon Mujigae (2015), which
reversed the geostrophic current direction, compared with the climatological geostrophic
current in July (Figure 10c). The climatological geostrophic current in October (Figure 10d)
flows southwestward at a velocity as high as 0.3 m s−1.

Lü, et al. [28] found no Chl-a bloom in the nearshore and shelf areas in mid-latitude
regions during a typhoon event with the characteristics of coastal downwelling and in-
sufficient sunshine. Here, we find that Chl-a increase during three late autumn typhoons
(Nesat (2011), Mujigae (2015) and Khanun (2017)) landed in the NWSCS and aim to investi-
gate the mechanisms. However, this study area sits in the low latitudes with the sufficient
sunshine. The mixing effect (Section 5.2) is strong in the monsoon season in the offshore
area, especially during typhoon periods, implying that the downwelling effect is weak.
Thus, the case of no Chl-a bloom is seldom seen.
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Figure 10. CDOM aCDOM (a,b), monthly mean SLA (c,d), and daily SLA (e,f) in the NWSCS. (a) and
(c) climatological data in July from 2010 to 2019. (b) and (d) climatological data in October from 2010
to 2019. (e) SLA on 24 September 2015. (f) SLA on 4 October 2015. Arrows in (c–f) represent the
geostrophic currents. Numerals on the isobaths are in m.

Furthermore, Huang, et al. [63] found that the offshore area of A1 was mainly impacted
by the Pearl River water, and nutrition are sufficient to feed phytoplankton in winter. Thus,
the balance of nutrition could explain why late autumn typhoons only had a slight effect
on the Chl-a concentration in the offshore of A1.

The water on the offshore and shelf area originated from the same source [19], and
the coefficient of Chl-a concentration for the offshore and shelf areas of A1 are similar,
about 6 mg m−3. The Chl-a increments in the offshore area (1.4 mg m−3) and the shelf area
(1.3 mg m−3) are almost the same.

In A2, unusually high TSS concentrations were observed in the offshore area for
three cases with a weaker sea surface wind (~100 km away from the typhoon track).
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Zheng, et al. [64] found that the upper layer current turned southwestward after typhoon
passage in the shelf area of A2. Figure 10e,f show the same result, i.e., the current trans-
ported the shelf water with high TSS from A1 into the offshore and shelf areas of A2,
which induced the high TSS in A2. The transported TSS induced an increase of Chl-a
concentration in the shelf area of A2 (Figure 10d).

5.2. Upwelling Effect and Mixing

Typhoon with strong winds would induce upwelling and mixing, which are impor-
tant to nutrient transport. Figure 11 shows the Ekman pumping velocity on 2, 3, and
4 October 2015. The upwelling before typhoon passage was weak (about 1 × 10−6 m/s) in
A1 and A2. On 4 October, when typhoon Mujigae (2015) reached A1, upwelling became
stronger. The upwelling velocity for the whole layer was as high as 2 × 10−5 m s−1, repre-
senting an increase of twenty times. Because A2 is far away from the typhoon track, the
upwelling effect changed little. Wang, et al. [65] pointed out that the pumping velocity in
the upper layer was as high as 1 × 10−4 m s−1 during typhoon Washi (2005) using mooring
observation data. The Ekman pumping velocity for the other two typhoons was almost the
same. The ocean surface cooling reached ~5 ◦C after the typhoon events [16,17].

Figure 11. Sea surface wind (arrows) and Ekman pumping velocity (colored) in the NWSCS. The unit of velocity (color bar)
is m s−1. (a–d) were captured at 13:45 UTC on 2 October, 2:16 UTC on 3 October, 13:24 UTC on 3 October, and 1:55 UTC on
4 October 2015, respectively.

In addition to Ekman pumping, the mixing effect during the typhoon event is also
important. The climatological wind speed in October is about 10 m s−1, whereas about
3 m s−1 in July. The mixing forced by the prevailing wind is another reason for the
CDOM distribution in the shelf area (Figure 10a,b). A high nutrient concentration has
been observed in the bottom water (~40 m) of the offshore area (in A1) [66]. The nutrients
would be transported to the surface layer by the mixing effect together with the Ekman
pumping. Moreover, wind-induced upper water mixing during the winter in the NWSCS
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may also provide subsurface nutrients as the ultimate marine end-member for offshore
surface waters [67].

6. Conclusions

In this study, we investigate the response of TSS concentration and Chl-a blooms
to late autumn typhoon events over the NWSCS. Three cases of typhoons Nesat (2011),
Mujigae (2015) and Khanun (2017) in October are examined using satellite observations.
The major findings and results are summarized as follows.

The high TSS and Chl-a concentrations are mainly concentrated in the offshore area
throughout the year. They concurrently increase after September. The mean TSS and Chl-a
concentrations in October are 1.4 mg L−1 and 3.1 mg m−3, respectively. In the upwelling
area (A2), in contrast to high Chl-a, a considerably low TSS concentrations (<0.1 mg L−1)
occur from April to August in the offshore area. High TSS concentrations (>1.5 mg L−1)
accompanied by high Chl-a concentrations (>1 mg m−3) occur in March and October.

The mechanisms of Chl-a concentration increase, induced by late autumn typhoon
events vary throughout the study area. The alongshore currents play different roles in
Chl-a blooming on the track and adjacent area, which would reduce the Chl-a blooming
in the NWSCS during late autumn typhoon events. Chl-a concentrations on the typhoon
tracks increase 1.4 mg m−3 (23%), with TSS concurrently increasing by 13.6 mg L−1 (280%)
in the offshore area. The Chl-a bloom is restrained by the alongshore current from the
Pearl River Estuary with the sufficient nutrition. However, in the upwelling area, the Chl-a
bloom in the shelf area is mainly associated with TSS transported from the typhoon track.
The empirical analysis is applied to the time series TSS and Chl-a concentration data. The
results show that the Rayleigh function describe the TSS and Chl-a variation process during
typhoon events well. With three late autumn typhoons cases, this study contributes toward
further evaluation of typhoon-induced biological responses.
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Abstract: The catastrophic implication of harmful algal bloom (HAB) events in the Arabian Gulf is a
strong indication that the study of the spatiotemporal distribution of chlorophyll-a and its relationship
with other variables is critical. This study analyzes the relationship between chlorophyll-a (Chl-a)
and sea surface temperature (SST) and their trends in the Arabian Gulf and the Gulf of Oman along
the United Arab Emirates coast. Additionally, the relationship between bathymetry and Chl-a and
SST was examined. The MODIS Aqua product with a resolution of 1 × 1 km2 was employed for
both chlorophyll-a and SST covering a timeframe from 2003 to 2019. The highest concentration of
chlorophyll-a was seen in the Strait of Hormuz with an average of 2.8 mg m−3, which is 1.1 mg
m−3 higher than the average for the entire study area. Three-quarters of the study area showed a
significant correlation between the Chl-a and SST. The shallow (deep) areas showed a strong positive
(negative) correlation between the Chl-a and SST. The results indicate the presence of trends for both
variables across most of the study area. SST significantly increased in more than two-thirds of the
study area in the summer with no significant trends detected in the winter.

Keywords: Arabian Gulf; Gulf of Oman; MODIS; algal blooms; chlorophyll-a; SST; bathymetry

1. Introduction

The Arabian Sea is one of the most essential bodies of water not only for the local
economy, but also for the global one, because it serves as a route to a significant portion of
the world’s oil supply. The ecosystems of the Arabian seas (Arabian Gulf (thereafter AG),
Gulf of Oman (thereafter GO), and Arabian Sea) are fragile, and susceptible to pollution.
Among these pollutants are algal blooms, particularly red tide [1–3]. The bloom’s growth
and biomass depend on the availability of nutrients in the surface layer. Therefore, the pro-
cesses by which the nutrients reach the surface are of crucial importance. The main source
of nutrients to the surface layer is the deep water, which is rich in nutrients [4]. The transfer
of these deep nutrients is affected by wind-induced or thermohaline upwelling, vertical
diffusion, deepening of the surface layer, and vertical overturning [4]. In the Arabian
Sea, the transfer of nutrients is related to the summer (southwest) and winter (northeast)
monsoon seasons. The distinct direction of the summer monsoon from the southwest,
which is almost parallel to the Oman coastline in the northern Arabian Sea, produces a
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strong coastal upwelling system that highly contributes to bringing the nutrient-rich deep
water to the surface and supporting phytoplankton blooms [5–7]. The northeast monsoon
drives convective mixing in the northern Arabian Sea, resulting in an upward transport of
nutrients from the base of the mixed layer and upper thermocline [2,8–10]. These processes
make the conditions conducive for phytoplankton growth and development in the AG
and GO all year around. The timely identification of the location and extent of the blooms
is crucial for assessing and managing the coastal environment as well as forecasting and
mitigating their negative impact [11].

Mapping, monitoring, and forecasting algal blooms in an efficient manner is critical for
mitigating their impacts. However, monitoring of algal blooms using traditional methods,
such as near coastal line and shipboard measurements, is very difficult because of spatial
and temporal data gaps. These problems can be addressed using remote sensing data,
which offer a supplement to local measurements by providing comprehensive coverage of
large areas, which are reliable data and are regularly updated.

Satellite ocean color data, remote sensing techniques, and algorithms are widely
used for the detection, measuring, mapping, monitoring, modeling, and managing of
phytoplankton blooms because satellite earth observation derived from various sensors
provides a synoptic view of the ocean, both spatially and temporally [12]. The main
limitation of these sensors is their inability to penetrate clouds, which makes their data
limited to only clear-sky conditions [13,14]. To fill in the gaps of remote sensing data, several
interpolation techniques are employed. One of these techniques is the data interpolating
empirical orthogonal function (DINEOF) method, which is used to reconstruct the monthly
mean datasets [15]. Other interpolation techniques are also used which are simpler and
computationally less expensive. These techniques can be very useful, especially in regions
and/or times where clouds do not cover a significant portion of the study area [16].

Numerous studies have been conducted to investigate and assess the spatial and tem-
poral distribution of phytoplankton and red tides from remotely sensed data. For example,
Brewin [17] used MODIS/Aqua data to assess the spatial and temporal distribution of
Chl-a in the Red Sea. The operational Chl-a algorithm, National Aeronautics and Space
Administration (NASA) OC3, and the Color Index (CI) algorithm developed by Hu [18]
were employed in the study. The OC3 algorithm is a polynomial function that relates the
remote sensing reflectance at wavelengths 443, 488, and 547 nm to the Chl-a concentration.
The CI is defined as the difference between the reflectance in the green region and the blue
and red regions of the visible spectrum. Their results revealed that OC3 and CI-derived
Chl-a concentrations were comparable to the in situ measurements and to other areas in
the global ocean.

Nezlin [19] and Tang [20] investigated the seasonal and inter-annual variations of
surface Chl-a concentration and their causes in the Black Sea and southwest of the Luzon
Strait in the South China Sea, respectively, from CZCS data collected during the period
1978 to 1986. They concluded that remotely sensed data are useful in detecting Chl-a
concentration over large areas. MERIS and MODIS data have been used by Gurlin [21]
to estimate Chl-a concentrations in turbid water of the Fremont Lakes State Recreation
Area in Nebraska, USA. Gower [22] and Gower [23] studied the global algal blooms from
MERIS data using the maximum Chl-a Index (MCI).

Cannizzaro [24] used SeaWifs and MODIS data for the detection of the toxic dinoflag-
ellate, Karenia brevis, in the Gulf of Mexico. Hu [25] used the Floating Algae Index (FAI) to
characterize the cyanobacteria (Microcystis aeruginosa) blooms primarily in Taihu Lake,
China, using MODIS time series of nine years (2000 to 2008). Anderson [26] demonstrated
the combined use of the empirical harmful algal blooms (HABs) models, MODIS/Aqua
data, and a regional ocean model for the prediction of the toxic Pseudo-nitzschia bloom
events in the Santa Barbara Channel.

SST is one of the main factors that affects the growth of phytoplankton in oceans,
especially at an optimum temperature when the correlation is significantly high [27].
However, as Nurdin [28] reported, an excessive increase in SST would hinder the growth
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of phytoplankton. Another factor that affects the growth of phytoplankton is the amount
of nutrients loaded with the freshwater from river discharges. Jutla [29] found a positive
correlation between seasonal river discharges, SST, and Chl-a and vice versa in the coastal
Bay of Bengal region. Seawater current is also one of the main factors that drive the Chl-a
concentration in the water bodies. Kouketsu [30] and Chu [31] suggest that in the Kuroshio
Extension the cyclonic eddies are related to high area-averaged Chl-a concentration and
anti-cyclonic eddies are often related to low area-averaged Chl-a.

The existence of large spatial and temporal gaps in in situ measurements hamper the
complete understanding of Chl-a behavior. Our work utilizes satellite data that provide
regular long-term temporal and spatial continuity to comprehend the pattern and change
of Chl-a characteristics in both space and time. The main goal of this study is to examine
the spatiotemporal variability of Chl-a and other oceanography variables over the AG and
GO for the period span between 2003 and 2019. The spatiotemporal analysis elucidates
the impact of the SST on the growth of phytoplankton over the region. Additionally, we
investigated the variability of both SST and Chl-a over the coastal areas of the UAE using
the empirical orthogonal function (EOF). The objectives of this research are to (i) conduct
frequency analysis of the mode of the variability in SST and Chl-a and their relationship
with regional wind circulations, and (ii) investigate the presence of trends in both variables
and their seasonal decomposition.

2. Study Area and Dataset

2.1. Study Area

The study area is shown in Figure 1. The area covers the AG and GO along the UAE
coasts (1318 km). The AG is located in the Middle East between latitude 24.0◦ N and
30.0◦ N and longitude 48.0◦ E and 56.5◦ E. The AG is separated from the northern Indian
Ocean by the Strait of Hormuz and the GO [3,6]. The AG is 990 km long with a maximum
width of 338 km and an average depth of 36 m for much of the Arabian coast and 60 m
depth along the Iranian coast [32,33]. The GO is situated between 22.0◦ N to 26.0◦ N and
56.5◦ E to 61.7◦ E. The GO is 320 km wide between Ra’s Al-Ḥadd in Oman and Gwādar Bay
on the Pakistan–Iran border. It is 560 km long and connects with AG through the Strait of
Hormuz [34]. Although the AG is located entirely north of the Tropic of Cancer, its climate
is tropical in the summer and temperate in the winter (Reynolds, 1993). The climate of the
AG has two main seasons: winter (December to March) and summer (June to September),
and two transition periods, fall (October to November), and spring (April to May) [35].
In the summer, the air temperature reaches up to 51◦C with an average of 41 ◦C, while
in winter the air temperature drops to as low as 15 ◦C [33]. Due to the surrounding arid
climate, evaporation surpasses the combination of precipitation and runoff resulting in
hypersaline water mass production [36]. The climate of the GO and the northern Arabian
Sea is significantly influenced by the summer and winter monsoons driven by land–sea
latent heat differences. The summer monsoon occurs from July to September and the
winter monsoon from November to April [5,7]. The SST is a considerably variable in both
Gulfs due to the effects of the surrounding landmass and air temperatures [37].

2.2. Dataset
2.2.1. Chl-a Data

To characterize the spatial and temporal distribution of algal blooms along the coast
of the UAE, daily remotely sensed Chl-a concentration and SST were obtained for the
period between 2003 and 2019. Level 2 product with a spatial resolution of 1 × 1 km2

of the Chl-a concentration from MODIS onboard Aqua satellite were downloaded from
the NASA MODIS standard products at https://oceancolor.gsfc.nasa.gov/cgi/browse.pl.
These data are in the netCDF-4 format (.nc), which contains multi-object files [38]. The
Band Select of Data Conversion tool from Sentinel Application Platform (SNAP) was used
to extract the products of both Chl-a and SST and mosaicked using the Geospatial Data
Abstraction Library (GDAL) merge tool by pyQGIS. The Chl-a data contain gaps mainly
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due to the inability of the sensors to perpetrate through clouds. From the study period
(1 January 2003 to 31 December 2019), out of 6208 days, 6149 daily imageries were available
in the archive. Out of the available daily images, 217 images were found to be covered
by clouds for more than 75% of the study area. The temporal distribution showed that
the daily images were missing around 5% of the study area every day before January
2018 (Figure 2B). The spatial distribution suggested that the area that failed to be covered
consistently was the northwestern tip (Figure 2A). The areal coverage drops to below
75% during only a few days for a small number of months. Due to a lack of sufficient
data, the areas with a dataset that are missing more than 75% (~5% of the study area) of
their observations were masked out before the analysis was conducted. The areal average
amount of missing data over the entire Arabian Sea was recorded as 16.3%. The month of
July had most of the missing data, including on seven occasions wherein the daily images
failed to cover more than 25% of the study area. Moradi [39] also suggested that the data
of July included the highest missing values in the region followed by August and June.

Figure 1. Map of the study area with bathymetric data of the Arabian and Oman Gulfs and the location of the three sections
(UAE Arabian Gulf (AG) Coast, UAE Gulf of Oman (GO), and Strait of Hormuz) that were used for the empirical orthogonal
function (EOF) analysis.

2.2.2. SST Data

Level 2 product with a spatial resolution of 1 × 1 km2 of the SST from MODIS
onboard Aqua satellite was downloaded from the NASA MODIS standard products at
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl. For the MODIS data, thermal channels
31 (10.780 to 11.280 μm) and 32 (11.770 to 12.270 μm) are particularly suited to estimate
the surface temperature [40]. The MODIS sea surface temperature data have been widely
validated for open waters and therefore are widely accepted as accurate [37,41–45].
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Figure 2. (A) Spatial distribution of the missing data of the Chl-a concentration across the study
area. (B) Temporal distribution of the missing data of the Chl-a concentration (black line represents a
daily fraction of missing area and the blue line represents the number of days in a month with data
coverage fraction greater than 75%).

The SST data have relatively better coverage than the Chl-a data described above.
The study spanned for a period (1 January 2003 to 31 December 2019) of 6208 days, out
of which 6144 daily images were available in the archive. The notable missing data from
the archive is that only 10 days of data were available for the months of November and
December 2014. However, only 19 daily images out of the available 6144 imageries had
a missing area of more than 75% of the study area (mainly due to clouds). The temporal
distribution of the missing data shows that the cloud coverage is much higher in the winter
months (from November to April), as shown in Figure 3B. The areal coverage drops to
below 75% during only a few days for a small number of months. The spatial distribution
of the missing data indicates that the northwestern tip of the study area is the area with
the most missing data (~6%). The areal average of missing data was 2.4%. The amount
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of missing data decreases as you move from the northwestern to the southeastern corner
(Figure 3A). Interestingly, from January 2018 to December 2019, there was no significant
missing data (images covered more than 98% of the study area). That is likely due to an
enhancement of the product processing algorithm.

Figure 3. (A) Spatial distribution of the missing data of SST across the study area. (B) Temporal
distribution of the missing data of SST (black line represents a daily fraction of missing area and the
blue line represents the number of days in a month with data coverage fraction greater than 75%).

2.2.3. Bathymetry Data

The bathymetric data, the Global Relief Model referred to as ETOPO1, which is an
improved model of the ETOPO2v2 Global Relief Model, were used in the study. The data
are developed by the National Geophysical Data Center (NGDC) of the National Oceanic
and Atmospheric Administration (NOAA). The ETOPO1 has two versions—Ice Surface
and Bedrock. The Ice Surface version includes the top of the ice sheets (Antarctica and
Greenland), while the Bedrock version depicts the base of the ice sheets [46]. For this study,
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the Bedrock version was used. The vertical datum is referenced from the mean sea level
and the World Geodetic System of 1984 (WGS 84) datum was used as a horizontal datum.
The spatial resolution of the data is one arcminute with global coverage. The bathymetry
of the study area shows a shallow AG and a much deeper GO (Figure 1).

3. Methodology

3.1. Filling Missing Data

Cloud cover significantly obscures surface information; therefore, it is very important
to retrieve the Chl-a and SST under overcast skies. The biggest challenge in retrieving the
Chl-a and SST is to eliminate cloud contamination. Figure 4 presents how the missing data
values and gaps of Chl-a and SST are filled. To fill the missing values of Chl-a, the daily
Chl-a data for the study period (2003 to 2019) are used to develop the monthly composites
of each Julian day. Then, the missing data values and gaps of the daily data are filled with
the corresponding monthly composite values. MODIS cloud-free data composite image
(SST, monthly composite product) was employed to fill in these missing pixels’ values
of SST. This method was used because the amount of missing data is not as significant
relative to the other regions of the world where cloud cover is a major issue. For example,
Li [47] found that only 2872 daily snapshots were useful out of 3653 imageries in the Gulf
of Maine. However, in this study, only 217 days of Chl-a had missing data covering more
than 75% of the study area out of 6149 obtained daily images. The northwestern part of the
study area was found to have significant gaps in the data. For this reason, the area which
covers ~5% of the total study area was masked from the analysis. The average missing data
across the study period for Chl-a was around 10%. Conversely, the average missing data of
SST is ~2% of the study area after excluding the northwestern part of the study area.

Figure 4. Presents how the data values of Chl-a and SST are filled. (A) Monthly composites of the
Julian day. (B) Original daily data with missing values and gaps (black spots are missing values).
(C) Filled data.

3.2. Empirical Orthogonal Function (EOF) Analysis

The primary application of EOF is that it helps in understanding the spatial patterns
of variability in spatiotemporal data by examining the EOF coefficient maps. Secondly, it
can be used to reduce the dimension of the components by using the optimal number of
components that explain the majority of the variability in the spatiotemporal dataset [48,49].
The EOFs analysis was conducted over the coastal areas of the UAE, the AG Coast, Strait
of Hormuz, and GO Coast (Figure 1) to examine the spatial variability of the SST and
Chl-a concentration.

The raw data matrix F is arranged in a matrix format M × N, where M is the time
series dimension and N is the space dimension. The covariance matrix R is calculated
using Equation (1). Then, the eigenvalues are solved with Equation (2), which provides the
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information about the amount of variability explained by each component [48]. The highest
three components were selected for this study as they explain more than three-quarters of
the variability in both Chl-a and SST.

R = FtF (1)

RC = CΔ (2)

Δ is a diagonal matrix containing eigenvalues λi of R where i is the length of the time
series ranges from 1 to p (size of M). The column vectors of C are the eigenvectors of R that
corresponds to the eigenvalues λi which contain information about the spatial distribution
of the eigenvalues.

The raw data can be reconstructed from the EOFs and the eigenvectors using
the following:

F =
p

∑
i=1

→
c i(EOFi) (3)

The amount of variability explained by one EOFs component a can be estimated as a
fraction of the total variability using Equation (4).

σa =
λa

∑
p
i=1 λi

(4)

3.3. Correlation Analysis

The Pearson correlation coefficient (PCC) statistical tool was used to evaluate the
impact of SST on Chl-a concentration. If the value approaches 1/−1, it indicates that the
relationship is strongly positive/negative, and if the coefficient is closer to 0, it indicates
that the relationship between the variables is weak. Cross-correlation was conducted
to assess the possible lag time of the impact of the SST over the formation of the Chl-a
concentration. The mathematical formula used is obtained from Pearson [50]:

r =
1

n − 1

n

∑
i=1

[(
xi − x

Sx

)(
yi − y

Sy

)]
(5)

where n is the sample size, xi and yi are records of the variables (SST and Chl-a in this case),
x and y are the average values of the variables, and Sx and Sy are the standard deviations
of the variables.

3.4. Correlated Seasonal Mann–Kendal Trend Test

The corrected seasonal Mann–Kendal trend test was used to investigate the presence
of a significant trend in the data. This test was a modified version of the original Mann–
Kendal test to accommodate seasonally correlated data. The adjustment was used by
Hirsch [51] and Libiseller [52] to reduce the seasonal autocorrelation in the dataset. The
Mann–Kendall scores are first computed for each month separately as follows:

Si =
ni−1

∑
k=1

ni

∑
j=k+1

sgn
(
xij − xik

)
(6)

where sgn() is a sign function obtaining the sign of real number, xij and xik are monthly
series values for the periods k and j, respectively, and i represent the month. The variance
for each month is given by:

Var(Si) =
ni(ni − 1)(2ni + 5)− ∑

gi
p=1 tip

(
tip − 1

)(
2tip + 5

)
18

(7)
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where gi is the number of tied groups for the ith month and tip is the number of observations
in the pth group for the ith month. Then, the Mann–Kendall score and variance for the
entire series are computed as follows:

S′ =
m

∑
i=1

Si (8)

Var
(
S′) = m

∑
i=1

Var(Si) (9)

where Si is the Mann–Kendall score of an individual month and m, the number of months
in this study, is 12. Similarly, Var(S′) is the variance of individual months. The seasonal
adjusted Mann–Kendall test statistics for the series (ZSK) is given by:

ZMK =

⎧⎪⎪⎨
⎪⎪⎩

S′−1√
VAR(S′)

if S′ > 0

0 if S′ = 0
S′+1√
VAR(S′)

if S′ < 0
(10)

Finally, for the areas with a significant trend, the magnitude of the trend was computed
using a linear model (y = α + βx). Moreover, trend analysis was conducted over the summer
and winter months separately to assess the influence of seasonality.

4. Results and Discussion

4.1. Spatiotemporal Distribution of Chl-a and SST

The spatial distribution of the long-term average of Chl-a concentration was unevenly
distributed across the Arabian Sea. The Chl-a concentration was high in the coastal
areas and the Strait of Hormuz (Figure 5A). The coastal hotspots of Chl-a concentration
are usually created due to the loading of nutrients with the discharge from the Wadis
and artificial loading of nutrients from agricultural and aquaculture activities around
the shores [3,5]. The areal average concentration of Chl-a in the Strait of Hurmuz was
2.8 mg m−3, whereas the areal average concentration across the entire study area was
1.7 mg m−3. The seasonal distribution shows that February and March are the months with
the highest Chl-a concentration, especially in the Strait of Hormuz and GO (Appendix A).
The main reasons for such a high concentration of Chl-a in the Strait of Hormuz are seasonal
upwelling, mixing of the AG and GO, and the high concentration of pollutants and river
discharge from the northern coast [53]. Over the study period of 17 years, 2008 and 2009
showed peak concentration of Chl-a with an average concentration of 2.4 mg m−3 and
2.1 mg m−3, respectively (Appendix C). This period includes the red tide events that were
reported by Richlen [54]. Moreover, the seasonal mean distribution showed a distinct
pattern between winter and summer. The winter had a higher concentration of Chl-a,
which was clearly observed in the Strait of Hormuz (Figure 5C). However, in summer, the
coastal areas exhibited a relatively high concentration of Chl-a (Figure 5E).

Unlike Chl-a concentration, the spatial distribution of the average SST for the period
2003 to 2019 shows a uniform linear increase in the west–east direction, as shown in
Figure 5B. The GO experienced an average SST of about 26 ◦C, which makes it the hottest
region in the study area. The areal average SST over the entire study area was around
25 ◦C. A difference of ~3 ◦C was observed between the hottest region (GO) and the coldest
region (northwestern AG) in the long-term average of SST. The monthly distribution of SST
showed very little spatial variability (Appendix B). The annual average suggests that the
hottest years were 2018 and 2019 with an average SST of 26. 3 ◦C and 26. 4 ◦C, respectively
(Appendix D). The AG and GO experience different winter and summer temperature
patterns. The southern AG was warmer than GO in the summer (Figure 5F), whereas the
GO was warmer than AG in the winter (Figure 5D).
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Figure 5. Spatial distribution of the long-term average of (A) Chl-a concentration, (B) SST, (C) long-term winter Chl-a
average, (D) long-term winter SST average, (E) long-term summer Chl-a, and (F) long-term summer SST average across the
Arabian Sea (Arabian and Oman Gulfs) during the study period (1 January 2003 to 31 December 2019).

The temporal distribution of the Chl-a concentration suggests that different parts of
the Arabian Sea express different seasonal variability. The shape of the seasonal cycle
appears to be a smooth sinusoidal curve with relatively smaller amplitude in the case of the
AG coast of UAE and a more pointed shape with a higher variability for both the Strait of
Hormuz and the GO. The UAE’s coast across the AG experiences small seasonal variability
with the peak concentration seen in November and the lowest concentration observed
in May (Figure 6A). The highest variability is seen in the time series of the GO with the
peak concentration observed in February and the lowest reported in May (Figure 6C).
In the summer of 2012 (April, May, and June), the entire region experienced the lowest
concentration of Chl-a (Figure 6). After that point, the Chl-a concentration was above
normal in winter and below normal in the summer, especially in the Strait of Hormuz and
the GO.
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Figure 6. The time series of Chl-a concentration across different sections of the Arabian Sea (A) UAE Arabian Gulf coast,
(B) Strait of Hurmuz, and (C) Gulf of Oman coast (the red line is the seasonal cycle, which is the average of each month; the
blue line is the anomaly, which is the difference between monthly average and seasonal cycle).

The temporal distribution of SST reveals different behaviors among the three sample
regions. The UAE’s AG coast showed a smooth sinusoidal seasonal cycle with the highest
variability between winter and summer (Figure 7). The SST ranges from 19 ◦C in January to
as high as 31 ◦C in September. The GO showed a bimodal seasonal cycle with peaks in June
(30 ◦C) and September (30 ◦C) and February as the coldest month with 21 ◦C (Figure 7).
This bimodal cycle is due to the decrease of the temperature during the southwest monsoon
that occurs from June to September [55]. The time series showed that the Arabian Sea, in
general, experienced cooler than usual winters between 2005 and 2008. Towards the end of
the study period (2014 to 2019), the summers became hotter than the typical summer. The
northeast monsoon is the main reason for cool SST across the entire AG and the GO from
November to March [56].

4.2. Variability in Chl-a and SST

The best way to display the EOFs components as meaningful indicators is to represent
them as homogeneous correlation maps. The homogenous correlation map of the EOFs’
first component is the correlation of the raw data with the expansion coefficient of the first
component of EOFs [57]. With regard to the mode of variability of the Chl-a concentration,
the first three components captured 74% of the variability on average. The first component,
which explains 42% of the variability, had a strong relationship in the Strait of Hormuz and
GO, as shown in Figure 8A. The first component is related to the northeast monsoon winds
that move heat from the surface of the Arabian Sea, which occurs from early November to
March. Lower solar radiation and increased salinity create convective mixing that drives
upward transport of nutrients [2]. The availability of nutrients with optimal atmospheric
conditions results in excessive growth of phytoplankton biomass. The second component,
with an average variability of 24%, had the reverse impact of the first component with the
western coast of the UAE affected significantly more than the rest of the area (Figure 8B).
The spikes of Chl-a concentration over the coast of UAE (AG) at the end of 2004, 2007,
and 2018 to 2019 were related to the second component (Figure 8D). The third component,
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responsible for 8% of the variability, was highly related to the Strait of Hormuz, which
captured the peaks in Chl-a concentration observed in 2008 to 2009 (Figure 8D). The 2008
to 2009 algal blooms were catastrophic to the infrastructure of the countries in the AG,
especially in the water supply system and tourism industry. The blooms dissipated in
August 2009 about nine months after they first appeared on the coast [54].

Figure 7. The time series of SST across different sections of the Arabian Sea (A) UAE Arabian Gulf coast, (B) Strait of
Hurmuz, and (C) Gulf of Oman coast (the red line is the seasonal cycle, which is the average of each month; the blue line is
the anomaly, which is the difference between monthly average and seasonal cycle).

The first three EOFs modes of SST captured more than 96% of the variability in the
dataset. The first EOF component, which represents the annual seasonal component of
SST, accounts for more than 94% of the variability, as shown in Figure 9A. The entire study
area showed a strong homogeneous correlation coefficient of more than 0.9. This means
that the EOF first component is highly influenced by the annual periodicity that reaches its
peak in summer and its lowest in winter. The spatial variability is very small, indicating
that the seasonal variability is uniform across the entire area. This shows that the annual
variability of the SST (that represents 95% of the total variability) showed a very small
spatial variability across the coasts of the UAE. This is evident in the fact that the entire
UAE coast demonstrates an interquartile range of only 0.7 ◦C in the long-term average SST.
However, the second EOF component of SST, accounting for 1.07% of the total variance,
showed a significant spatial variability (Figure 9B). The UAE’s AG coast is positively
correlated, whereas the GO coast is negatively correlated. The second component seems
to capture the impact of the southwest monsoon with a spatial variability that is oriented
in the east–west direction. The southwest monsoon decreases the temperature of the GO,
causing a bimodal cycle. The southwest monsoon does not have a significant impact on the
SST of the AG; on the contrary, SST increases during that period. This result is in line with
the findings of Nandkeolyar [56]. The third component of SST also revealed a significant
spatial variability, whereas the Strait of Hormuz is negatively correlated and the rest of
the coasts are positively correlated. The spatial variability is oriented in the north–south
direction (Figure 9C).
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Figure 8. Spatial distribution of the homogenous correlation map of the first three EOFs components of the Chl-a concentra-
tion ((A–C), respectively), and their time-series component (D).

Figure 9. Spatial distribution of the homogenous correlation map of the first three EOFs components of the SST ((A–C),
respectively), and their time-series component (D).
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4.3. Correlation of Chl-a and SST

The correlation coefficient of Chl-a and SST indicates that around 75% of the study
area exhibits significant correlation as shown in Figure 10A. The coastal area of western
UAE showed a significant positive correlation which suggests that the SST affects the
concentration of Chl-a. However, more than half of the study area indicated that SST
negatively influenced the Chl-a concentration in the AG and GO, whereas more than a
quarter of the area showed a positive relationship. The southern coast of the AG showed a
significant positive correlation coefficient of 0.44 on average and standard deviation (SD)
of 0.15. The areas with positive correlation had an average Chl-a of 1.36 mg m−3 (SD
of 0.51 mg m−3) and an average SST of 25.39 ◦C (SD of 0.61 ◦C). On the other hand, the
negatively correlated areas had an average correlation coefficient of −0.33 (SD of 0.09). The
negatively correlated areas have shown a compact distribution of the correlation coefficient
despite covering an area almost twice the size of the positively correlated areas. This shows
that the variability in the negatively correlated areas is small relative to the positively
correlated places. The average Chl-a of the negatively correlated areas was 1.66 mg m−3

(SD of 0.66 mg m−3) and the average SST was 25.18 ◦C (SD of 0.77 ◦C). Additionally, cross-
correlation analysis revealed that the best correlation between Chl-a and SST was found
without any lag, i.e. the largest area with a significant correlation coefficient (Figure 10B).

Figure 10. (A) The spatial distribution of the correlation coefficients over the Arabian and Oman Gulfs. (B) The relationship
between the percentages of the area with a significant correlation coefficient and the time lag of the SST (zero meaning
without any lag).

The spatial distribution of the correlation indicates that the UAE’s AG coast showed
a positive correlation between the Chl-a concentration and the SST and especially coasts
near the Abu Al Abyad and Sir Baniyas islands. However, the northeastern coast of the
UAE (from Dubai northward) showed a significant negative correlation covering around
one-third of the study area. Along the coasts of the GO and the Strait of Hormuz, the
correlation was almost uniform, with more than 80% of the area showing a negative
correlation. Detailed summary statistics of the correlation in the three regions are shown in
Table 1.

Moreover, the relationship between the Chl-a concentration and the SST was highly
dependent on the bathymetry of the seawaters. This relationship is due to the difference
in gaining the solar heat between the shallow (warmer) and deeper portions (colder) of
the sea. The deeper sea areas have greater thermal memory; in turn, they require a longer
time to heat and never reach the optimum temperature for algal blooms (Chl-a) growth.
Therefore, the surface water in the middle (deep) sea generally gains lower temperature
than the surface water near the shore [16]. All the areas that showed a significant positive
correlation were in the shallow coastal areas. On the contrary, the deeper areas seem
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to have an inverse relationship between Chl-a and SST (Figure 11). In the areas where
the depth of the sea is less than 20 m below sea level, the average correlation coefficient
between Chl-a concentration and SST was 0.43, whereas an average correlation of −0.34
was found in waters deeper than 40 m. Moreover, the areas that did not exhibit a significant
correlation have an average depth of 33 m and a median of 28 m below the sea level. This
means an increase in SST increases the concentration of Chl-a in shallow water with less
than 20 m depth, while an increase in SST tends to decrease the concentration of Chl-a in
the deeper waters below 40 m sea level. The full relationship between the bathymetry and
the correlation of the Chl-a and SST concentration is shown in Figure 11B.

Table 1. Basic statistics of the variables in the three main regions of interest.

UAE-Arabian Gulf Strait of Hormuz UAE-Gulf of Oman

Average Median Average Median Average Median

SST (◦C) 26.0 26.0 25.2 25.1 26.2 26.2

Chl-a (mg m−3) 2.00 1.8 2.8 2.6 2.3 2.0

Depth (m) −22.8 −20.0 −56.7 −60.0 −104.7 −96.0

Correlation Coefficient (CC) 0.09 0.27 −0.36 −0.36 −0.41 −0.42

Area with positive CC (%) 47.60 0.01 0.00

Area with negative CC (%) 30.77 80.68 81.85

Figure 11. (A) Bathymetry of the Arabian Gulf and Gulf of Oman. (B) The relationship between the correlation coefficient
and the depth of the seawater.

The relationship between bathymetry, Chl-a, and SST follows a U-shaped curve with
the shallow and very deep seas having higher Chl-a and SST, respectively, as shown in
Figure 12. The shallow waters experienced the highest Chl-a concentration in terms of
average and median values. The deeper areas were observed to have the highest SST
(Figure 12). Eventually, as the depth increases, both Chl-a and SST start to decline rapidly
until 20 m below sea level. Then, the Chl-a concentration remains relatively stable while
SST decreases until it reaches 24.7 ◦C at a depth of 70 m. Then, the SST begins to increase,
reaching more than 26 ◦C at the depth of >95 m while the Chl-a also rises but at a lower
rate, reaching 1.8 mg m−3 from 1.4 mg m−3. The deepest region is the GO with the highest
SST was also one of the areas with a high concentration of Chl-a.
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Figure 12. The relationship between the Chl-a and SST with respect to the depth of the seawaters using (A) the long-term
average and (B) the long-term median of Chl-a and SST.

4.4. Trend Analysis

Mann–Kendal trend analysis was carried out to investigate the possibility of a signifi-
cant trend in both variables (Chl-a and SST) over the span of 17 years. The Chl-a showed
a decreasing trend in most areas, except on the coast of Abu Al Abyad Island, which is
located in the western part of the UAE. This is mainly due to nutrient leaching from the
orchards’ soil and aquafarming drainage that contains nutrients useful for algae growth.
Overall, 21% of the study area had a significant trend in Chl-a concentration. The majority
(95%) of this area experienced a decreasing trend in the concentration of the Chl-a with an
average of −0.28 mg m−3 per decade rate of decline (Figure 13A). The decreasing trend
appears to increase in areas with higher average Chl-a concentration (Figure 13B). This
suggests that the concentration of Chl-a is decreasing and at a higher rate in areas with
a relatively high concentration during the last two decades. However, the areas with
the highest concentration of Chl-a (Strait of Hormuz and the GO) did not experience a
significant trend. In the places where the trend was increasing (Abu Abyad Island), the
trend rate was increased as the average concentration increased. This is mainly due to
the agricultural and aquaculture activities involved in Abu Abyad Island and the results
suggest that the activities have increased over time (Figure 13B).

Figure 13. (A) Spatial distribution of the estimated trend using linear regression over the Arabian and Oman Gulfs for Chl-a
and (B) scatter plot of the estimated rate of trend versus the long-term average of Chl-a concentration. Red points represent
a positive trend and blue points represent a negative trend (n = 35,358).
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The trend test indicated that 52% of the study area, mainly located in the northern
part, experienced a significant SST-positive trend (Figure 14). The average rate of increase
in these regions is estimated as 0.91 ◦C per decade. Most of the areas that showed an
increasing trend are places with relatively lower mean SST. As the long-term average SST
decreases, the rate of trend increases sharply, as shown in Figure 14B. This means that the
cooler regions of the AG are experiencing an increase in temperature at an alarming rate.

Figure 14. (A) Spatial distribution of the estimated trend using a linear regression model over the Arabian and Oman Gulfs
for SST and (B) scatter plot of the estimated rate of trend versus the long-term average of SST (n = 85,693).

The trend in both the winter and summer seasons has been further analyzed to
investigate the seasonality of the trends. The time series is divided into two six-month
periods of summer and winter. Summer months (May to October) are categorized as very
hot and humid and the winter months (November to April) are characterized by relatively
cooler months (Appendix B). The seasonal trend analysis of the Chl-a indicated that 18%
and 13% of the study area have a significant trend for the months of summer and winter,
respectively. Less than 1% of the area with a significant trend showed a positive trend. The
Abu Abyad Island and its surroundings showed an increasing trend in both seasons. This
further supports the aforementioned reasoning that the higher concentration of Chl-a near
the island is not related to climatological phenomena but to activities on the island. The
spatial distribution showed that the trend in the winter is concentrated in the coastal area
located between Qatar and UAE, whereas in summer, the trend is experienced further from
the seashore (Figure 15A,B). The rate of decline was higher during summer with an average
rate of −0.41 mg m−3 compared to the average rate of −0.22 mg m−3 in winter. Similar to
the results of the trend analysis, the areas with higher average Chl-a concentration (Strait
of Hormuz and GO as shown in Figure 2B) did not show a significant trend in both seasons
over the last two decades.

Figure 15. Spatial distribution of the seasonal trend of Chl-a in (A) winter (November to April) and (B)summer (May
to October).
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The seasonal trend analysis of the SST showed that the winter months had no signifi-
cant trend over the entire area (Figure 16A). On the contrary, the summer was the dominant
season of the trend. The summer months demonstrated an increasing trend in more than
two-thirds of the study area (Figure 16B). The results indicated that the summer months are
becoming hotter at a rate of higher than 1.0 ◦C per decade in half of the area. Around 20%
of the study area (almost all of them located in the northeastern tip) exhibits an increasing
trend rate higher than 1.5 ◦C per decade. The regions that are warming at a higher rate
are the areas with relatively lower average SST. Previous studies also reached a similar
conclusion, which indicates that the summer months are becoming hotter at a much higher
rate [56,58]. Piontkovski [58] showed that the trend of SST in June and July was more than
double the trend of average annual SST.

Figure 16. Spatial distribution of the seasonal trend of SST in (A) winter (November to April) and (B) summer (May
to October).

5. Summary and Conclusions

The ecosystems of the Arabian seas (Arabian Gulf, Gulf of Oman, and Arabian Sea)
are fragile and susceptible to pollution. Among these pollutants are algal blooms. The most
effective approach for estimating the Chl-a concentration and assessing the spatiotemporal
distribution of algal blooms is the employment of remotely sensed data and remote sensing
techniques. This study analyzed the spatiotemporal variability of the Chl-a concentration
and SST in the Arabian Gulf and the Gulf of Oman along the UAE coasts. The correlation
between the Chl-a and SST is also investigated as it sheds light on the impact of the SST
on the growth of phytoplankton. The variability of both Chl-a and SST is also examined
using the empirical orthogonal function (EOF) analysis, which helps in understanding the
impact of major wind currents in the area.

The spatial distribution of the Chl-a concentration showed that the highest concen-
tration was observed in the Strait of Hormuz with an average of 2.8 mg m−3, which is
1.1 mg m−3 higher than the average for the entire study area. The Gulf of Oman was also
the hottest region with an average of 26 ◦C, which is one degree hotter than the average
of the total area. Moreover, SST showed a uniform gradient in the northwest to southeast
direction. The summer months (May to October) were the hottest months, with an average
of ~31 ◦C, whereas in the winter months (November to April), the SST reached as low
as ~19 ◦C.

The first EOF component of Chl-a is related to the northeast monsoon winds (Novem-
ber to March), which cools the sea surface. The Chl-a concentration increased in the Strait
of Hormuz and the Gulf of Oman due to the availability of nutrients in addition to the
optimal atmospheric conditions. The spikes in concentration over the coast of UAE (AG) at
the end of 2004, 2007, and 2018 to 2019 were related to the second component.

Three quarters of the study area experienced a significant correlation between the
Chl-a and SST. The coastal areas of western UAE and Qatar showed a significant positive
correlation, which suggests that the SST affects the concentration of Chl-a. However, more
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than half of the study area indicated that SST negatively influenced the Chl-a concentration
in the Arabian Gulf and the Gulf of Oman, especially areas in the deep sea. Furthermore,
the correlation coefficient and the bathymetry of the seas showed a strong relationship.
The shallow areas had a strong positive correlation between the SST and Chl-a, whereas
the deeper areas were inclined to have a negative correlation.

Lastly, trend analysis was carried out to investigate the presence of significant trends
using the correlated seasonal Mann–Kendal trend test. The Chl-a data showed the presence
of a trend in just 21% of the study area, of which 95% indicated a decreasing trend. Most of
the area with a decreasing trend is located in the southern region, which is closer to the
coasts of the UAE and Qatar. The rate at which the trend is decreasing is also related to the
average Chl-a concentration. Higher average values of Chl-a concentration are associated
with a higher rate of decline, and vice versa. The SST also showed the presence of a
significant trend in more than 52% of the study area. However, in this case, an increasing
trend is observed. Similarly, the rate of trend showed an inverse relationship with the
average SST, the higher the average SST, the smaller the rate of increase, and vice-versa.

The main limitations of the study are the missing data due to cloud cover and the
relatively short period of the dataset (2003 to 2019). Even though a mature technique
of filling the data was followed, a relatively large amount of missing data can cause
uncertainty in the results. The conclusions of this research were similar to previously
conducted studies. However, the authors feel that these limitations are worth mentioning.
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Appendix A

Figure A1. The spatial distribution of the average monthly Chl-a concentration across the Arabian and Oman Gulfs.
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Appendix B

Figure A2. The spatial distribution of the average monthly sea surface temperature (SST) across the Arabian and Oman
Gulfs (N.B. the color bar scale varies from figure to figure).
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Appendix C

 

 

 

 

Figure A3. The spatial distribution of the annual average Chl-a concentration across the Arabian and Oman Gulfs.
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Appendix D

 

 

 

 

Figure A4. The spatial distribution of the annual average SST across the Arabian and Oman Gulfs.
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Abstract: Seagrass meadows play critical roles in supporting a high level of biodiversity but are
continuously threatened by human activities, such as sea reclamation. In this study, we reported on a
large seagrass (Zostera marina L.) meadow in Caofeidian shoal harbor in the Bohai Sea of northern
China. We evaluated the environmental impact of sea reclamation activities using Landsat imagery
(1974–2019) by mapping seagrass meadow distribution changes. ISODATA was adopted for the
unsupervised classification and mapping of seagrass beds. The error matrix developed using the in
situ data obtained from acoustic surveys for Landsat 8OLI image classification was 87.20% accurate.
The maps showed rapidly increasing changes in seagrass meadows as the amount of reclaimed
land increased. Some seagrass meadows experienced large-scale changes, and sea reclamation
has been suggested as the main factor responsible for habitat loss, which results from physical
damage, excessive sedimentation, and increased turbidity caused by reclamation. In addition,
habitat degradation may have resulted from three storm surges induced by typhoons in 1992–1998.
Fortunately, land reclamation, forming an artificial “longshore bar”, buffers seagrass meadows from
wave actions, providing relatively sheltered conditions, which has allowed a large habitat increase
since 2012. These were the largest eelgrass meadows (3,217.32 ha), with a peripheral area of ~100 km2,
in the Bohai Sea of northern China in 2019. However, the existing largest eelgrass beds in China are
threatened by trawling, clam harvesting (especially clam sucking), channel dredging, and culture
pond construction. Our work will help coastal managers monitor the environmental impacts of
reclamation activities on seagrass meadows on a large spatio-temporal scale and will also provide
information for seagrass restoration using artificial “longshore bars”.

Keywords: seagrass; Zostera marina L.; remote sensing; reclamation; spatial and temporal changes

1. Introduction

Seagrasses form productive plant communities, providing habitats, foods, and nurs-
eries for a variety of marine organisms [1–7]. However, with multiple stressors threatening
these aquatic plants, seagrass meadows have been declining worldwide since 1990 at a rate
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of 7% per annum [8]. Many studies have been conducted to effectively understand changes
in seagrass habitats’ spatial distributions and temporal fluctuations [9–11]. There are
72 species of seagrass in six families and 14 genera worldwide [12]. However, five species
within three genera are found in temperate northern China according to the national
seagrass resource survey (2015–2020), but only the seagrass Zostera marina L. (eelgrass)
is found at our study site. Seagrass monitoring and protection programs exist in North
America, Europe, and Australia, and many countries have established seagrass monitor-
ing networks (e.g., Seagrass Watch and Seagrass Net). However, limited investigations
have been performed in northern China. Although there are preliminary investigations
in Shandong Province, northern China, most research has been carried out in the past
decade [13,14]. At present, seagrass research mainly focuses on its distribution in China,
and the national seagrass resource survey (2015–2020) will be finished in 2021. Seagrass
distributions in China have only been conducted using Sonar scanning [15], scuba diving,
and direct sampling at limited depths and areas during low tides. Consequently, there is
little information on the historical seagrass distribution in China. Even though underwater
applications of satellite remote sensing are subject to several limitations, including cloud
cover, wavelength-specific water column attenuation, and spatial and spectral resolutions
of the sensors [16], satellite remote sensing is an effective tool for monitoring and man-
aging seagrass beds, and it is now used to complement conventional surveying methods
because of the large coverage area, rapidity, and repeatability of observations [17]. Com-
pared with in situ sampling surveys, mapping seagrass using remote sensing provides a
more spatially comprehensive representation of seagrass distributions [10,18,19]. Remote-
sensing techniques have been used successfully to analyze the spatial extents of seagrass
areas [18–23].

Seagrass ecosystems are disappearing at an alarming rate worldwide [24] because of
natural disturbances and anthropogenic activities [8,25,26]. A large number of seagrass
ecosystems have contracted sharply or disappeared in China according to the national
seagrass resource survey (2015–2020), and this is mainly attributed to human disturbances
caused by fishing, aquaculture, and land reclamation [27]. In general, land reclamation re-
sults in the complete, irrecoverable removal of seagrass meadows from natural habitats [28].
Owing to urban construction, as well as port and industrial construction, China’s total
reclamation area increased from 8241 km2 to 13,380 km2 during 1990–2008, with an annual
increase of 285 km2. Therefore, with the rapid development of harbors and ports, assessing
the impact of reclamation activities on seagrass meadow distributions has become more
and more important. However, data on the impacts of land reclamation on seagrasses in
China are limited. Land reclamation was conducted in Caofeidian coastal waters from
2002 to 2012, covering an area of >200 km2 [29]. According to local fishermen, there was
abundant Z. marina distributed in the reclamation area before 2003. In addition, coastal
ecosystems are influenced by the extreme climatological events, such as typhoons [11,30],
and our study area was severely affected by storm surges induced by typhoons [31].

Seagrass monitoring has been conducted using conventional survey methods with
GPS that provides limited information on spatial patterns and temporal dynamics in the
habitats. These methods do not provide historical distribution information. However,
satellite remote sensing provides more frequent data on seagrass distributions over wide
ranges of temporal and geographical scales [11,18–23]. Understanding changes in eelgrass
distributions during the last 46 years and analyzing its natural and man-made causes are
essential for the conservation, management, and restoration of Z. marina beds. This study
aimed to monitor seagrass distribution changes in the study area using historical satellite
images from 1974 to 2019 and to elucidate the causes of these changes. We mapped changes
in the eelgrass distribution over the last 46 years and analyzed their natural and man-made
causes using remote sensing, sonar, and in situ survey methods. Our work provides new
seagrass distribution data from temperate northern China and fundamental information
for implementing appropriate seagrass restoration and conservation strategies.
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2. Materials and Methods

2.1. Study Sites

The Bohai Sea is a semi-enclosed sea on the northern coast of China. It is often
divided into Liaodong Bay, Bohai Bay, Laizhou Bay, and the Central Area. The Bohai Sea is
connected to the Yellow Sea by the Bohai Strait [32]. As a semi-enclosed sea, there is a low
water exchange rate in the Bohai Sea, and it takes more than 20 years to renew 90% of the
water in the Bohai Sea, leading to a weak self-purification capacity and a low environmental
carrying capacity [32]. In recent years, with rapid industrial and agricultural development,
port construction, and increased urbanization, the impacts of human activities on the
marine ecological environment have increased. The Bohai Sea is seriously polluted, and the
functions of the marine ecosystem are degraded and damaged [32]. The Caofeidian shoal
used to be in the Luanhe River Delta [33,34], but owing to erosion by tides and waves,
a barrier island lagoon system eventually formed (Figure 1). The system consists of the
Caofeidian islands, including Caofeidian, Yaotuo, Getuo, Longdao, and other sand islands
and sandbars, with a zonal distribution [35]. The width of the tidal flat in this system is
approximately 15–25 km, and the lagoon experiences irregular semidiurnal mixed tides [36].
The average water depth of lagoon is approximately 0–5 m, with a maximum water depth
of 22 m [37]. At low tide, a large area of the tidal flat is exposed, while at high tide, only the
barrier islands are visible. However, the barrier islands are severely affected by erosion
resulting from storm surges, waves, and currents [38], resulting in morphological changes
to the Caofeidian islands [39], with some islands even disappearing. Moreover, since 2003,
large-scale land reclamation from the waters of Caofeidian has caused extreme damage to
the barrier island lagoon system. Reclamation directly destroys the habitats of intertidal
organisms and has large impacts on intertidal communities. The salinity ranged from
31.4 to 34.6 psu at the study site in the Bohai Sea. The sediments at the study site were
mainly (93.28 ± 4.52%) composed of sand (0.063–2.0 mm) [40].

Figure 1. The study area in the northern coast of the China (2002 and 2018). On the basis of changes
in the spatial distributions of the seagrass beds, the study area was divided into three areas (A–C) for
research (2002).

2.2. Sonar Survey of the Seagrass Distribution in 2018

A sonar survey method, using the BioSonics MX echosounder (Biosonics Inc., Seattle,
WA, USA) from August 5 to 13, 2018, was used to acquire sonar data, and it was applied to
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areas B and C. The echosounder, with a 204.8 kHz transducer, was set to operate at pulse
rate of 0.4 ms and 5 pings s−1. The ship route is parallel, with a spacing of ~500 m, and the
ship speed was set to at 3–4 knots (Figure 2). To acquire information regarding the seagrass
status (presence/absence, coverage, canopy height, and water depth), sonar data were
analyzed using BioSonics Visual Habitat software (BioSonics Inc.). After mask creation,
the interpolation analysis using Topo to Raster was applied using ArcMap 10.2.2 software
(ESRI Inc., Redlands, CA, USA). The mask was selected as a type of boundary without a
field. The parameters of plant coverage, canopy height, and water depth were selected as
fields, respectively, and the type was selected as PointElevation. Vegetation with a canopy
height > 0.2 m was considered seagrass.

Figure 2. The ship route, with a spacing of ~500 m, for the acoustic survey of the seagrass distribution.

2.3. Seagrass Distribution Changes Inferred from Satellite Remote-Sensing Data
2.3.1. Satellite Image Analysis

In total, 29 satellite images from Landsat Multi-spectral Scanner (MSS)/Thematic
Mapper (TM)/Enhanced Thematic Mapper (ETM+)/Operational Land Imager (OLI) were
used to examine the long-term changes in the seagrass beds from 1974 to 2019 in the study
area (Table S1). The satellite images that were taken during the period (May–September)
in which seagrasses with high biomasses were selected for analysis. In addition, satellite
images, taken during low tide (<1 m, Table S1), were selected and analyzed to determine
the minimum distortion of the seagrass spectrum by the water column [41,42]. The seagrass
beds in the study area were easily visible, because the canopy was exposed above the water
level during low tide (Figure 3).

The two visible bands (green and red) and the near-infrared band were used to
analyze the Landsat images. In addition, wedge-shaped gaps in some Landsat 7ETM+
images were filled [43]. Geometric and radiometric corrections were applied using ENVI
5.2 image processing software (EXELIS Inc., McLean, VA, USA). The FLAASH module
was used to make atmospheric corrections [44]. Three masks were created to eliminate
the unvegetated areas and to focus on the three specific areas of interest, A, B, and C
(Figure 1). The unsupervised classification using ISODATA within ArcMap 10.2.2 software
was applied to analyze for seagrass. In addition, because sea reclamations were easily
visible in satellite images, to understand the temporal and spatial distributions of the
reclamation from 2002 to 2014 in the study area, visual observations were used.
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Figure 3. Field photo of a seagrass bed at the study site in the Bohai Sea (Photo by Xiaomei Zhang;
tide height of 0.73 m on 8 June 2019, acquired at Shaleitien Tao Station using wxtide47 software).

2.3.2. Accuracy Assessment

Field data are usually used to assess classification accuracy, but there was no syn-
chronous related ground truth data for the past 46 years. Consequently, we used the
two visible bands (green and red) and the near-infrared band (described in detail in the
satellite image analysis section) to determine the seagrass beds in satellite images lacking
in situ field data. A Landsat 8OLI (29 June 2018) image was taken within 7 weeks of the
in situ data obtained by the acoustic survey, and the acoustic data were used to assess
the accuracy of the classifications of the Landsat 8OLI image using those bands. We used
raw points acquired from acoustic data as verification points [45]. Points with canopy
heights ≥ 0.2 m were defined as in the vegetated class; otherwise, they were defined as in
the unvegetated class. The accuracy of the classification was assessed based on an error
matrix (overall accuracy) [45], and it was calculated using the ratio of the number of points
named to the same class (unvegetated or vegetated) in both the remotely derived classifica-
tion and the acoustic data, divided by the total number of compared verification points.
Depending upon the application, classification accuracy levels of ≤60, 70, and ≥80% may
be unacceptable, marginally acceptable, and acceptable, respectively [20].

2.4. Field Survey of Eelgrass Population

To investigate the biological parameters of eelgrass at the six sites (Figure 4), three
sediment cores were randomly collected at each site to investigate the density (shoots m−2)
and height (cm) of vegetative shoots, as well as the above- and below-ground biomasses
[g m−2 dry weight (DW)] of total shoots on 21 August 2019. Samples from the study site
were filtered through a 5-mm sieve carefully in situ, and the shoots were kept. The number
of shoots was determined in the laboratory, and shoot height and both above- and below-
ground biomasses (DW) were measured.

Water temperature (◦C), salinity (ppt), dissolved oxygen content (DO, mg L−1), depth (m),
pH level, and chlorophyll content (μg L−1) were measured using a multi-parameter wa-
ter quality sonde (YSI 6600, USA) at the six sites during the seagrass sampling period
(Figure 4).
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Figure 4. Field survey sites of eelgrass biological parameters in the study area. The red triangles
(A–F) represent seagrass sampling sites.

2.5. Statistical Analyses

Results are presented as means ± SDs. Canopy height, and plant coverage of Z. marina
over depths were modelled using generalized additive models (GAMs), which are an
extension of generalized linear models that do not require the assumption of a particular
response variable distribution along the environmental gradient [46]. The GAMs were built
in R 4.0.2 [47] using the package “mgcv”. For remote-sensing data, Pearson’s correlation
coefficient between seagrass area and sea reclamation area was determined. Pearson’s
correlation analyses were considered significant at a probability level of p < 0.05.

3. Results

3.1. Sonar Survey of Seagrass Distribution in 2018

As illustrated in Figure 5A, we determined the seagrass distribution using canopy
height data. The seagrass bed area was 2,916.81 ha in August 2018, and the peripheral
area was ~100 km2. Similarly, we obtained plant percentage cover (Figure 5B) and water
depth (Figure 5C) data. As illustrated in Figure 5B, the plant percentage cover map was
very similar to the seagrass distribution map (Figure 5A). Most of the seagrasses were
distributed at a depth of <3 m. There was a divide between seagrass beds (Figure 5A,B),
and the general distribution pattern was caused by deeper water (>6 m) in the divide.

The variations in canopy height and Z. marina coverage over depths were analyzed.
In response to water depth, canopy height and plant coverage exhibited the same trends,
which are shown in Figure 6. The canopy height (p < 0.001) and plant coverage (p < 0.001)
significantly increased with depth in shallow zones (<2.5 m) but decreased in deeper zones
(>2.5 m) (Figure 6).
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Figure 5. Eelgrass distribution map of plant canopy height (A), coverage (B), and water depth (C)
generated from the interpolation analysis of the study area in August 2018. The area marked by the
red polygon in A is the peripheral area of the seagrass beds. The red polygon in C marks the area
used for the interpolation analysis.
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Figure 6. Response curves (thick, solid lines) of Zostera marina L. canopy height (A) and coverage (B) to water depth. Fitted
model plots for depth corresponding to the reduced GAM for canopy height (m) and plant coverage (%). The solid lines
show the GAM regressions fitted to each relationship, with dotted lines indicating the confidence interval of the mean
trend line.

3.2. Seagrass Distribution Changes Inferred from Satellite Remote-Sensing Data

The accuracy of the classification, at 87.20%, was acceptable (Table 1) [20]. Two major
seagrass beds were classified on the Landsat 8OLI image (Figure 7), which was consistent
with the sonar results (Figure 5A). Thus, it was possible to classify seagrass beds with a
high accuracy using Landsat 8OLI image-based classifications.

Table 1. The classification-accuracy assessment performed using verification points from acoustic data.

Verification Points from
Acoustic Data

No. Points
No. Points Same

Class to
Classification

No. Points
Different Class to

Classification

Accuracy of
Classification

Total verification points 128,619 112,155 16,464 87.20%
Vegetated class points 37,153 28,659 8494 77.14%

Unvegetated class points 91,466 83,496 7970 91.29%

The unsupervised classification (ISODATA) method applied to the Landsat 8OLI
images produced a reliable accuracy level for this study area, and it was also used to analyze
Landsat MSS/TM/ETM+ images from 1974 to 2019. There was a divide between seagrass
beds, and the general distribution pattern (A, B, and C) was maintained consistently over
the past 46 years (Figure 1). The area of seagrass beds ranged from 937.71 to 4,527.54 ha
and averaged 2,487.65 ± 945.81 ha from 1974 to 2019 (Figures 8 and 9). The beds were
largest in 1986 and smallest in 2009. There were, in general, declines in the seagrass bed
areas from 1986 to 2009, and a large increase occurred in 2013. In A, there were large
declines in the seagrass bed area in 1992–1998 and 2000–2011, and eventually, seagrass
disappeared in 2011. Seagrass began to colonize B from 1979, and the seagrass bed area
averaged 861.13 ± 356.29 ha from 1979 to 2019. Seagrass began to colonize C from 1984,
and the seagrass bed area averaged 158.86 ± 149.42 ha from 1984 to 2012, and there was a
large increase in 2013.
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Figure 7. Seagrass distribution acquired from unsupervised classification (ISODATA) using Landsat 8OLI (29 June 2018) images.

The total area of reclamation reached 205.21 km2 from 2002 to 2014 (Figures 10 and 11).
In the years following 2003, when the infrastructure construction began, the reclamation
area in the study region substantially increased. The reclamation area increased significantly
in 2008–2011, but it decreased in the following years. As the reclamation area increased,
the intertidal zone area in the study region decreased annually, and seagrass beds also
underwent a considerable reduction (Figures 8 and 9). Pearson’s correlation coefficient
between the seagrass area of A and sea reclamation area was determined and revealed a
significant negative correlation (p < 0.05, R = −0.8588).
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Figure 8. Changes in the spatial distribution of seagrass beds in the study area from 1974 to 2019.
In the satellite images, the seagrass beds and unvegetated seawater are represented by green- and
cyan-colored pixels, respectively.
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Figure 9. Changes in the areas (ha) of seagrass beds (A–C) in the study area from 1974 to 2019 as estimated by a satellite-
image-based analysis.

Figure 10. Spatial-temporal distribution of land reclamation in the study area from 2002 to 2014.

Figure 11. Reclamation area (ha) in the study region from 1974 to 2019 as estimated by satellite-image-based analysis.
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3.3. Field Survey of Eelgrass Population

Salinity (31.11–32.08 psu) and pH (8.40–−8.58) varied slightly within sites. The dis-
solved oxygen levels of sites C (5.43 ± 0.19 mg L−1) and D (5.09 ± 0.22 mg L−1) were
higher than those of other sites (2.93 ± 0.61 mg L−1–3.90 ± 0.14 mg L−1). This may occur
because the former sites have strong water exchange capacities, being in a channel having
a depth of more than 10 m. The chlorophyll content changes within sites were mostly slight
(2.00 ± 0.36 μg·L−1 m−2–6.49 ± 0.27 μg·L−1 m−2).

Total biomass, plant height, and total shoot density varied slightly within the sites on
21 August 2019 (Table 2).

Table 2. Total biomass, belowground biomass, plant height, and shoot density values of eelgrasses at
six sites in the study area on 21 August 2019.

Site
Total Biomass
(g m−2 DW)

Belowground
Biomass Ratio to

Total Biomass (%)
Plant Height (cm)

Total Shoot
Density

(shoots m−2)

A 189.35 ± 54.05 38.26 ± 8.77 56.71 ± 20.93 152.84 ± 20.36
B 352.85 ± 160.24 37.72 ± 15.38 70.55 ± 15.50 305.68 ± 146.84
C 214.19 ± 37.68 26.82 ± 1.71 78.44 ± 9.37 141.08 ± 35.27
D 263.49 ± 177.27 26.29 ± 8.88 92.11 ± 12.03 211.63 ± 153.74
E 229.74 ± 12.36 31.81 ± 7.39 68.86 ± 10.56 235.14 ± 40.73
F 134.66 ± 18.90 37.37 ± 1.35 42.00 ± 10.68 223.38 ± 53.88

4. Discussion

Remote sensing is a useful tool for long-term monitoring of large seagrassbeds [10,11,48,49]
that is able to estimate past changes [9]. In this study, we analyzed 46 years of seagrass
distribution changes beginning in 1974 using 29 satellite images and the accuracy of classi-
fication was 87.20%, which is acceptable [20].

The seagrass distribution in this study area underwent large changes over the past
46 years. Seagrass distribution changes are usually affected by many factors, and coastal
development, degraded water quality, and climate change are the main reasons for the
loss of global seagrass beds [8]. In particular, extreme climatic events, such as typhoons
and tsunamis, are involved in the large-scale die-off of seagrass beds [30,50,51]. Typhoons
greatly influence sediment erosion and burial dynamics, which are the main reasons for
seagrass loss [52]. In our study area, there were three storm surges induced by typhoons
(September 1992, August 1994, and August 1997) in 1992–1998, accounting for 50% of
the storm-surge-related disasters since 1960 [31]. The typhoon-related storm surge that
occurred in September 1992 was the largest in the study area since 1949 [31], and it killed
208 people. Consequently, the seagrass bed loss in A from 1992 to 1998 may be related to
the three storm surges induced by typhoons, which led to physical disturbances, such as
shoot and rhizome uprooting, and damage from sediment erosion or burial. Seagrass
beds are able to recover in large disturbed areas [53], and in particular, eelgrass grows
quickly through both sexual and asexual reproduction [54]. However, seagrass beds in
our study area did not recover and continually decreased. It is possible that the shoots,
rhizomes, and seeds in the sediment were completely uprooted and removed by typhoon-
related storm surges [11]. In addition, the islands of Caofeidian, providing shelter from
oceanic waves and forming the ideal lagoon habitats for Z. marina, suffered severe erosion
induced by typhoon-related storm surges, waves, and currents [55], and some islands
disintegrated, which may have resulted in the severe erosion of seagrass habitats by waves
and currents [39]. Lewis [56] reported that seagrasses have substantially retreated in the
Tampa Bay (FL, USA) because of the disappearance of longshore bars, which may be
particularly vulnerable to storm events. The reduction or disappearance of sand bars in
our study area is related to storm surges [57]. According to records, the storm surge wiped
out Dawang Island, which was ~10 km from Longdao Island, in 1949 [58].
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Reclamation in seagrass habitats might unexpectedly place previously unaffected
coastal ecosystems at risk [59]. In the present study, reclamation was the chief reason for
seagrass loss in area A, because 205.21 km2 of the seagrass bed was directly and irreversibly
buried by reclaimed land (Figures 10 and 11). However, there has been a large increase
in seagrass beds in area C since 2012, when the main land reclamation was completed.
Lu et al. [36] reported that the mean velocity of ebbing tides in C decreased by 2 to 10% after
reclamation, resulting in a slight deposition, of 0.01–0.10 m, after one year. The reduced
wave energies in C may provide a favorable environment for eelgrass expansion through
sexual and asexual reproduction. Therefore, the land reclamation, forming an artificial
“longshore bar”, buffers seagrass beds from wave actions, providing relatively sheltered
conditions. Lewis [56] reported that longshore bars maximize the potential for seagrass
regrowth. In addition, eelgrasses, as larger species, show greater resilience to reclamation-
induced stressors than other smaller species [60]. This allowed the large increase in the
seagrass area of C to occur since 2012. During 2003–2011, the seagrass area in C remained
at a low level of 109.49 ± 64.08 ha, likely resulting from excessive sedimentation and
increased turbidity caused by reclamation.

Seagrass meadows are declining at an unprecedented rate, and there is a general lack
of environmental protection for seagrasses in China. As Australia and the USA did decades
ago [61–63], seagrass needs to be included in the Chinese conservation agenda. In recent
years, questionnaires indicate that the existing largest eelgrass beds in China are being
threatened by trawling, clam harvesting (especially clams sucking), dredging channels,
and the construction of culture ponds (Figure 12). Unfortunately, there were no seagrasses
at site C (Figure 4) in June 2020 as a result of clam sucking, which removes sediments from
a depth of >30 cm, resulting in great damage to seagrass beds. In addition, in recent years,
sand excavation for building construction in the study area has also negatively affected
seagrass habitats.

 

Figure 12. Existing seagrass beds are subjected to threats resulting from artificial factors, especially
anthropogenic causes, such as (A) boating in channels near seagrass beds, (B) construction of
artificial islands and industrial activities on the islands, (C) dredging of channels, (D) construction of
culture ponds, (E) trawling, (F) fish collection using ground cages, and (G) harvesting clams using
specific boats.

In view of the main threats to the largest eelgrass beds in China, we raise the following
suggestions for seagrass protection and management: (1) it should be forbidden to use
clam sucking boats for clam harvesting in seagrass beds; (2) it is prohibited to illegally
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fish within the banned fishing periods, but illegal fishing is especially popular in seagrass
beds; (3) it is necessary to increase the fishermen’s and policymakers’ understanding of
the ecological significances of seagrass beds; (4) environmental impact assessments of
construction projects should include the effects on seagrass; (5) seagrass reserves need to
be established to protect the largest eelgrass beds in China.

5. Conclusions

We described the long-term changes (>40 years) of a seagrass meadow using historical
satellite images. We made accuracy assessments of the satellite image classifications
using acoustic data and found that the classification accuracy, at 87.20%, was acceptable.
The spatial and temporal changes were mainly driven by sea reclamation since 2002, and the
large changes during 1992–1998 may have been affected by the storm surges induced by
typhoons. However, the existing largest eelgrass beds are being threatened by human
activities, and the negative impacts of those factors needs further investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/5/856/s1, Table S1: Remote-sensor data of eelgrass habitats in the study area.
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Abstract: In July–August 2021, intense marine heatwaves (MHWs) occurred at the sea surface over
extensive areas of the northwestern Pacific Ocean, including the entire Sea of Japan and part of the
Sea of Okhotsk. In extent and intensity, these MHWs were the largest since 1982, when satellite
measurements of global sea surface temperatures started. The MHWs in summer 2021 were observed
at the sea surface and occurred concomitantly with a stable shallow oceanic surface boundary layer.
The distribution of the MHWs was strongly related to heat fluxes at the sea surface, indicating that the
MHWs were generated mainly by atmospheric forcing. The MHWs started to develop after around
10 July, concurrent with an extreme northward shift of the atmospheric westerly jet. The MHWs
developed rapidly under an atmospheric high-pressure system near the sea surface, associated with a
northwestward expansion of the North Pacific Subtropical High. The MHWs exhibited peaks around
30 July to 1 August. Subsequently, following the southward displacement of the westerly jet, the
MHWs weakened and then shrank abruptly, synchronously with rapid deepening of the oceanic
surface boundary layer. By 18 August, the MHWs had disappeared.

Keywords: marine heatwaves; sea surface temperatures; summer 2021; northwestern Pacific Ocean;
westerly jet; North Pacific Subtropical High

1. Introduction

As generally defined, an extreme event occurs when the values of a weather or climate
variable either exceed a threshold near the upper end of an observed range, or are lower
than a threshold near the lower end [1]. Many extreme weather and climate events result
from natural climate variability, but some extreme events have occurred as a result of
anthropogenic climate change and ongoing global warming (e.g., [2–4]). Marine heatwaves
(MHWs) are an example of an extreme climate in an oceanic system [5–7]. In the last
century, from 1925 to 2016, the global average frequency and duration of MHWs increased
by 34% and 17% respectively, resulting in a 54% increase in annual marine heatwave
days [8]. According to Oliver [9], an increase in mean sea surface temperature (SST), rather
than its variability, has been the dominant driver of the increasing frequency of MHW
days over approximately two-thirds of the world’s ocean, and it has been the dominant
driver of changes in MHW intensity over approximately one-third of the ocean. Moreover,
it has been projected that these historical trends in MHW properties will continue over
the coming decades under global warming caused by anthropogenic climate change [10].
Furthermore, MHWs have devastatingly affected marine ecosystems in the past, and they
are expected to do so in the future, through abrupt changes in biological habitat, mortality,
reproduction, community structure, and so on [10–15].

Most published studies of MHWs in the North Pacific Ocean have investigated condi-
tions in northeastern waters. A MHW known as “the blob,” which occurred persistently in
2014–2016 in the northeastern Pacific, is especially famous (e.g., [16]). In contrast, a search
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for studies conducted in the northwestern Pacific, particularly east of Japan, with the key-
word “MHW,” yielded only three scientific studies [17–19]: one conducted in subtropical
waters [17] and the others in subarctic waters [18,19]. Miyama et al. [18] reported the
occurrence of MHWs in summer during 2010–2016 near Hokkaido, northern Japan, which
they attributed to warm mesoscale eddies that had become detached from the subtropical
Kuroshio Extension and had been advected into the subarctic Oyashio region every sum-
mer of that period. These MHWs, which were localized off Hokkaido, also affected the
social economy through their effects on fisheries, at least, for instance, fishing grounds of
Pacific saury shifted farther offshore [20], and the catch of yellowtail in coastal waters by
fixed fishing nets increased [18].

Extensive and intense MHWs occurred in July–August 2021 over the northwestern
Pacific, including the entire Sea of Japan and part of the Sea of Okhotsk. In extent and
intensity, these MHWs were the largest since 1982, when satellite measurements of global
sea surface temperatures (SSTs) started. As the first scientific report, this study aims to
describe features of these MHWs together with the accompanying atmospheric conditions
and to promote future studies.

2. Materials and Methods

We analyzed gridded “Merged satellite and in situ data Global Daily Sea Surface
Temperature” (MGDSST) datasets, comprising data from 1 January 1982 to 31 August 2021.
These datasets, which were compiled by the Japan Meteorological Agency, have a spatial
resolution of 0.25◦ (latitude) × 0.25◦ (longitude) and a daily temporal resolution [21].

We also used the “Roemmich-Gilson Argo Climatology,” a global monthly dataset
of seawater temperature in the subsurface created by the Scripps Institute of Oceanogra-
phy [22] with a horizontal resolution of 1◦ (latitude) × 1◦ (longitude). We included data
from January 2004 to July 2021 in our analysis.

We also used global atmospheric products at multiple vertical levels from the Japanese
55-year Reanalysis dataset (JRA-55), the second global atmospheric reanalysis project
of the Japan Meteorological Agency [23]. These data have a horizontal resolution of
1.25◦ (latitude) × 1.25◦ (longitude). In our analysis, we used 3-hourly or 6-hourly outputs
for the period from 1 January 1990 to 31 August 2021.

To infer the oceanic surface boundary layer conditions during the period of MHWs
in 2021, numerical experiments were conducted with realistic ocean circulation models
that are part of the operational ocean forecast system of the Japan Fisheries Research and
Education Agency, “FRA-ROMS” [24]. The ocean circulation models, which are based
on the Regional Ocean Modeling System (ROMS) [25–27], consist of a 1/2◦ resolution
parent model for the North Pacific and a 1/10◦ resolution child model for the northwestern
Pacific, connected by one-way nesting to simulate dominant basin-scale and mesoscale
variations around Japan [28]. Daily mean reanalysis data for 1 July 2021, assimilated by
using a three-dimensional variational scheme, were utilized for the initial conditions of
2-month hindcast and sensitivity experiments conducted without further data assimilation.
To sequentially estimate momentum and heat fluxes at the sea surface during each model
run, 31 sets of atmospheric elements near the sea surface (i.e., wind vectors at 10 m, air
temperature and specific humidity at 2 m above the sea surface, air pressure, precipitation,
and net shortwave and downward longwave radiation at the sea surface) were derived
from the 3-hourly outputs of the JRA-55 system for July–August of 1990–2019 and 2021.

Climatological daily means were estimated for each element (e.g., SST, air tem-
perature, sea level pressure), except subsurface ocean temperature, by averaging their
data for 1990–2019. This 30-year averaging period, which was selected by referring to
Hobday et al. [5], does not include the 1980s, during which a typical cold SST regime pre-
vailed around Japan. Therefore, because the climatological averaging period excluded
data from the 1980s, MHWs in recent years were less frequently detected than would have
been the case had the selected climatological period included the 1980s. Further, because
of limited data availability, climatological monthly means of the Argo-based subsurface
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ocean temperature were estimated by averaging data over just 15 years (2004–2018) instead
of 30 years. Throughout this study, an anomaly was defined as a difference from the
climatological mean.

The MHWs were detected from daily SST data and categorized according to intensity
following Hobday et al. [6]. Intensity categories were defined based on the SST difference,
Tdiff, between the 30-year climatological average (Tavg) and the 90th percentile value for
each grid point. If the SST on a given day was ≥(Tavg + N × Tdiff ) and <(Tavg + (N + 1)
× Tdiff ), it was categorized into intensity category N. In addition, the MHW index was
defined as (SST – Tavg)/Tdiff. Note that in this paper, the duration of MHWs is referred to
as their age.

3. Results

3.1. Surface Ocean Conditions
3.1.1. Sea Surface Temperatures

Figure 1a,b show intensity and age respectively, of MHWs on 30 July 2021, when
the MHWs were at their maximum strength and extent, as explained later. The MHWs
in the northwestern Pacific occurred within a zonal band, between 38◦N and 50◦N and
extending from 120◦E to 170◦W, including the marginal seas, that is, the northern part of
the Yellow Sea, the whole of the Sea of Japan, and the southern half of the Sea of Okhotsk.
The MHW intensity on 30 July was classified into categories 1–4. Some areas of the MHWs
corresponded to large SST anomalies > 6 ◦C (Figure 1d). The MHWs exhibited maximum
intensity (i.e., category 4) on 30 July in the northern part of the Sea of Japan and tended to
weaken gradually toward the east. The age of the MHWs in the northwestern Pacific on
30 July was within 1–30 days: it was longest (~30 days) in the northern part of the Sea of
Japan and tended to be shorter further east.

Figure 1. (a) Intensity and (b) age of marine heatwaves (MHWs) on 30 July 2021. In (a), the rectangle indicates the area
within 143◦E–180◦ and 40◦–50◦N, the focal area of our analysis. SST anomalies are shown on (c) 10 July, (d) 30 July,
and (e) 18 August 2021.

It is worth noting that intense MHWs appeared to start on the northwestern shelf of
the Sea of Okhotsk around 10 July 2021 and subsequently expand from there (Figure 1c,d).
However, the SST data analyzed in this study did not strictly discriminate between SSTs in
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the presence or absence of sea ice; thus, if sea ice remained on the northwestern shelf at the
beginning of summer, the estimated MHWs would include large uncertainties. Therefore,
whether the above feature is a real phenomenon is questionable.

We focused on MHWs east of Japan in the northwestern Pacific and excluded from
our analysis the Sea of Japan, where MHWs that were more intensive than those in 2021
occurred locally after 1982 (e.g., January 2020). Thus, we estimated daily time series of
SST anomalies and the MHW index averaged over the rectangular area within 143◦E–180◦
and 40◦–50◦N (Figure 2). Both time series show historical maxima in July–August 2021
(Figure 2a). The spatial mean of the daily MHW index exceeded 1.0 on a total of 207 days
during 1982–2021, and 23 of these days were in July–August 2021. The spatial mean also
exceeded 1.5 on 15 days during 1982–2021, of which 14 were in July–August 2021. These
results indicate that the MHWs in summer 2021 were the most intense and extensive in the
northwestern Pacific during the last four decades.

The transition to MHWs in summer 2021 can be interpreted as follows (Figure 2b).
The MHWs started to develop on around 10 July 2021 (Figure 1c), when the spatial mean
SST anomaly was close to zero (Figure 2b). The MHWs reached maximum intensity and
extent around 30 July to 1 August (Figure 1d), and then immediately started to weaken.
By 18 August (Figure 1e), the spatial mean SST anomaly was again near zero (Figure 2b)
and the MHWs had almost entirely disappeared.

 

Figure 2. Time series of the daily SST anomaly (blue lines, corresponding to the right blue axes) and MHW index (red lines,
corresponding to the left red axes) during (a) 1982–2021 and (b) June–August 2021. The SST anomaly and MHW index were
estimated at each grid point and then spatially averaged over 143◦E–180◦ and 40◦–50◦N (rectangle in Figure 1a). As indices
for evaluating the variability of the daily SST anomaly, the +3 standard deviation line (dashed blue line) is shown in (a),
and the daily SST anomaly normalized by the standard deviation at each grid point and spatially averaged over the focal
area (green line, corresponding to the right green axis) is shown in (b).

3.1.2. Heat Fluxes at the Sea Surface

Net heat flux anomalies at the sea surface during 10–30 July 2021 were mostly positive
within the focal area, that is, the central area of MHWs (Figure 3a); thus, the sea surface
was heated by the atmosphere, relative to the climatology. The distribution of net heat flux
anomalies (Figure 3a) also correlated with that of SST anomaly differences between 10 and
30 July (Figure 3b) (r = 0.69), suggesting that the MHWs were attributable primarily to
increased net heat fluxes at the sea surface over the northwestern Pacific.

The net heat fluxes were decomposed into four components: net shortwave radiation,
net longwave radiation, latent heat, and sensible heat (Figure 4). Within our focal area,
net shortwave radiation anomalies exhibited three positive maxima, centered around
(145◦E, 40◦N), (170◦E, 40◦N), and (160◦E, 45◦N) (Figure 4b). These three positive maxima
corresponded spatially to three negative minima of the total cloud cover and low cloud
cover anomalies (see Section 3.3.1). Further, the spatial patterns of positive and negative
net shortwave radiation anomalies in the focal area (Figure 4b) were roughly opposite to
those of the other three components (Figure 4d,f,h), indicating that negative net shortwave
radiation anomalies in the focal area were compensated by positive anomalies of the other
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three components. As a result, net heat flux anomalies at the sea surface were positive over
the area of MHWs (Figure 3a).

Figure 3. (a) Net heat flux anomalies (Qnet′) at the sea surface during 10–30 July 2021. (b) SST
anomaly differences between 10 and 30 July 2021 (ΔSST′). The pink rectangle indicates the focal area
(143◦E–180◦, 40◦–50◦N).

 

Figure 4. (a) Net shortwave radiation, (c) net longwave radiation, (e) latent heat, and (g) sensible heat flux averaged over
10–30 July 2021. Anomalies of (b) net shortwave radiation, (d) net longwave radiation, (f) latent heat, and (h) sensible heat flux.
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Note that positive anomalies of net longwave radiation and sensible heat around
the focal area (Figure 4d,h) corresponded to positive values of the respective components
(Figure 4c,g). The positive values thus indicate that the sea surface was actually heated.
Although MHWs with high SSTs were expected to cause large upward longwave radiation
(i.e., negative heat fluxes), the net longwave radiation was nevertheless positive in some
areas within the MHW area, for example, around the northwestern corner of the focal area
(Figure 4c). This result suggests that strong downward longwave radiation from clouds
exceeded the large upward longwave radiation from the sea surface. In fact, as described
in Section 3.3.1, dense clouds tended to cover areas with positive net longwave radiation
(Figure 4c). In any case, it should be emphasized that there were inter-regional differences
in the origin of positive net heat flux anomalies over the area of MHWs; that is, the SST
heating process differed inter-regionally within the area of MHWs.

3.2. Subsurface Ocean Conditions
3.2.1. Subsurface Sea Temperatures

In July 2021, temperatures in the subsurface at 20 m depth, just below the oceanic sur-
face boundary layer, exhibited positive anomalies, mostly over the whole of the focal area
(Figure 5c), although relatively large positive anomalies (>1 ◦C) were limited to its southern
half. These relatively large positive anomalies were also distributed continuously after
March 2021 (e.g., Figure 5a–c). In addition, subsurface temperatures at 20 m depth spatially
averaged over the focal area reached a local maximum not in July 2021 but in May 2021
(Figure 5d), after which they decreased slightly until July 2021. Moreover, the positive
anomalies in July 2021 were not the largest during 2004–2021. These features of the subsur-
face temperature were thus clearly different from the corresponding SST features. Hence,
the main factors controlling the positive temperature anomalies in July 2021 seemed to
differ between 20 m depth and the sea surface, and the MHWs that developed dramatically
in summer 2021 were mostly limited to the sea surface (<20 m depth). With respect to this
point, however, the positive subsurface temperature anomalies apparent after March 2021
might have contributed to the formation or maintenance of stratified conditions in the
oceanic surface boundary layer in July 2021, as described in the next section.

 

Figure 5. Monthly seawater temperature anomalies at 20 m below the sea surface in (a) May, (b) June, and (c) July 2021.
(d) Monthly time series of the temperature anomalies averaged over the focal area (143◦E–180◦, 40◦–50◦N). In (d), the scale
of the horizontal axis for the year 2021 has been enlarged. The monthly subsurface temperature anomalies in 2021 are
depicted by closed circles connected by a bold line.
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3.2.2. Oceanic Surface Boundary Layer

In this study, the depth of the oceanic surface boundary layer, defined as the shallow-
est depth where the bulk Richardson number is equal to its critical value, was derived from
model simulations instead of the more conventional mixed layer depth (i.e., the depth at
which the water density in the upper layer exceeds a threshold value, typically 0.125 kg m−3,
relative to the 10 m density), primarily because the mixed layer was very thin during sum-
mer 2021 and could not be accurately evaluated by the conventional mixed layer depth.

Hindcast and sensitivity experiments conducted with realistic ocean circulation
models revealed that thickness anomalies of the oceanic surface boundary layer during
10–30 July 2021 were mainly negative within the focal area, except for an area of posi-
tive anomalies that extended southwest–northeast, from (165◦E, 40◦N) to (180◦, 46◦N)
(Figure 6a). The thickness of the oceanic surface boundary layer remained small in the
focal area during the period from 13 July to 5 August 2016 (Figure 6b), during most of
which MHWs were rapidly developing (Figure 2b). From 7 August, however, the thickness
increased abruptly, at the same time that the MHWs were weakening rapidly (Figure 2b).
These results suggest that positive net heat fluxes (Figure 3a) and relatively weak wind
stress (as explained in Section 3.3.1) near the sea surface stably maintained strong stratifica-
tion, suppressed vertical convection, and accelerated the SST increase, that is, the rapid
development of MHWs.

 

 

Figure 6. (a) Thickness anomalies of the oceanic surface boundary layer during 10–30 July 2021,
estimated by a mixed layer model based on K-profile parameterization in the 1/10◦ ocean circulation
model. Climatological means were estimated by averaging the thickness over 30 sensitivity simu-
lations based on external forcings in 1990–2019. (b) Time series of oceanic surface boundary layer
thickness spatially averaged over the focal area (143◦E–180◦ and 40◦–50◦N; the purple rectangle in
(a)). The bold black line shows the daily time series in 2021. Open circles denote daily means of the
30 simulations. Blue shading shows the 10th to 90th percentile range. Red shading shows the range,
beyond these percentiles, between the minimum and maximum.
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3.3. Atmospheric conditions
3.3.1. Conditions Near the Sea Surface

Sea level pressure anomalies during 10–30 July 2021 were widely positive in the
northwestern Pacific, except in the northern Sea of Okhotsk and the western Bering Sea
(Figure 7b). These positive anomalies were attributable to a northwestward expansion
of the North Pacific Subtropical High (Figure 7a). The distribution of sea level pressure
anomalies was also similar to MHW distribution (Figure 1a), although the distribution of air
temperature anomalies near the sea surface (Figure 7c) more closely resembled the MHW
distribution (Figure 1a). Local maxima of the air temperature anomalies exceeded 3 ◦C.

As mentioned in Section 3.1.2, the distributions of positive and negative anomalies
of total and low cloud cover (Figure 7e,f) were almost opposite to those of positive and
negative net shortwave radiation anomalies (Figure 4b). In addition, in the focal area,
the positive anomalies of total and low cloud cover (Figure 7e,f) corresponded to both
positive values and positive anomalies of net longwave radiation (Figure 4c,d), where
strong downward longwave radiation from clouds to the sea surface exceeded the large
upward longwave radiation attributed to MHWs. Moreover, as mentioned in Section 3.2.2,
negative or small positive (<0.02 Pa) wind stress magnitude anomalies were distributed in
the western half of the focal area (Figure 7d). In contrast, in the eastern half of the focal area,
relatively large positive anomalies (0.02–0.06 Pa) were distributed in an area extending from
southwest to northeast, corresponding to the area of positive oceanic surface boundary
layer anomalies (Figure 6a).

 

Figure 7. (a) Sea level pressure during 10–30 July 2021. Anomalies during 10–30 July 2021: (b) sea level pressure,
(c) air temperature at 2 m above the sea surface, (d) magnitude of wind stress at 10 m above the sea surface, (e) total cloud
cover, and (f) low cloud cover.

286



Remote Sens. 2021, 13, 3989

3.3.2. Variation of the Westerly Jet at 200 hPa

Here, we focus on the westerly jet variation at 200 hPa as a potential driver or trigger
of the atmospheric variations and MHWs in summer 2021. Maps of eastward wind velocity
at 200 hPa averaged over 10–30 July (Figure 8a) revealed that the strong eastward wind
(>20 m s−1) associated with the westerly jet [29] migrated northward, largely to the north
of Japan, and skirted the focal area. The position of the velocity maximum reached 55◦N at
around 140◦E. The velocity maximum between 120◦E and 180◦ during 10–30 July 2021 was
clearly located north of the climatological mean position (Figure 8b).

 

Figure 8. Eastward wind velocity at 200 hPa averaged over 10–30 July (a) in 2021 and (b) 1990–2019. The purple rectangle
indicates the focal area (143◦E–180◦, 40◦–50◦N). Strong velocities of >20 m s−1 are associated with the westerly jet.

 

Figure 9. (a) Daily meridional position of the westerly jet axis during June–August 2021. The jet axis was defined as the
velocity maximum at 200 hPa between 30◦N and 60◦N. When the velocity maximum was at either 30◦N or 60◦N, the axis
position was not specified (i.e., white areas). (b) Normalized anomalies of the axis position. The daily mean axis position (Y)
was normalized by the 30-year daily mean (M) and the standard deviation (S): i.e., (Y – M)/S. The values of 50◦N in panel
(a) and 3 in panel (b) are emphasized by bold contours. The red dashed rectangle denotes the area within 143◦E–180◦.
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The northward shift of the westerly jet began suddenly at the beginning of July:
large northward shifts of the westerly jet to the north of 50◦N started at 70◦E on 5 July,
propagated eastward, and reached 120◦–140◦E around Japan on 11–15 July (Figure 9a).
After 15 July, the meridional position of the jet in 143◦E–180◦ stayed north of 50◦N until the
beginning of August, although it was intermittently disturbed (e.g., by typhoon events in
late July): 50◦N corresponded to the northern boundary of the MHWs in the northwestern
Pacific (Figure 1a). After around 1–8 August, the axial position of the jet was displaced
to the south. Simultaneously, the MHWs in the northwestern Pacific started to weaken
and shrink.

The large northward shift of the westerly jet identified in early to mid-July exceeded
the climatological mean plus 3 standard deviations (Figure 9b); therefore, it was interpreted
as a rare event. This result suggests that the abnormally large northward shift of the
westerly jet triggered warm atmospheric conditions near the sea surface and thus caused
the strongest, most extensive MHWs yet recorded over the northwestern Pacific.

4. Discussion

In this article, we reported on the most extensive and intense MHWs in the historical
record of the last 40 years, which occurred in the northwestern Pacific during July–August
2021. However, we mainly limited our explanation to certain features: SST, the oceanic
surface boundary layer, heat flux at the sea surface, and atmospheric conditions. We only
briefly mentioned the redistribution of heat from the sea surface to the ocean subsurface by
ocean advection and diffusion. In addition, although differences in SST anomalies were
positively correlated with net heat flux anomalies (r = 0.69, Figure 3), anomalies of SST and
net heat flux were not strongly correlated with each other. In considering these problems,
the uncertainties of the SST and heat flux data should first of all be meticulously validated
by comparing different datasets with each other and with in situ data (e.g., surface buoy and
vessel data). Moreover, it should be noted that the core area of the MHWs was at 43◦–46◦N
(not shown), whereas the net heat flux anomalies did not show corresponding maxima
at 43◦–46◦N. Additionally, as described in Section 3.1.2, SST heating processes differed
inter-regionally within the area of MHWs. Hence, we anticipate that a feedback process
from the ocean to the atmosphere contributed to localized enhancement of MHWs. Air–sea
processes that might be involved in the enhancement of MHWs at mid-latitudes include
SST–cloud feedback (e.g., [30–32]), surface heat flux feedback dominated by turbulent flux
(e.g., [33]), or an air–sea process related to the imbalance between incoming and outgoing
fluxes through the sea surface (e.g., [34]). A useful first step to clarify such processes would
be to conduct numerical experiments with a coupled air–sea model.

In this article, we also focused mainly on the development of MHWs in the north-
western Pacific, but the MHWs also decayed rapidly after the westerly jet was displaced
southward at the beginning of August 2021. Therefore, we provide here a brief description
of atmospheric conditions near the sea surface during 1–18 August 2021. In this period, the
North Pacific Subtropical High retreated southward, and the Okhotsk High strengthened
(Figure 10a). The sea level pressure valley between the two high-pressure systems was
located in the southeastern half of the focal area (143◦E–180◦, 40◦–50◦N) (Figure 10a,b). Air
temperature greatly decreased over the northwestern Pacific after 1 August (Figure 10c),
and the negative net heat flux anomalies at the sea surface in the focal area (Figure 10d)
contributed to sea surface cooling. Simultaneously, as shown by hindcast experiments,
the oceanic surface boundary layer deepened (Figure 6b), and this deepening implies that
entrainment of subsurface water into the surface boundary layer accelerated cooling at
the sea surface. As a consequence, the extensive and intense MHWs had disappeared by
18 August.
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Figure 10. (a) Sea level pressure during 1–18 August 2021. Anomalies during the same period: (b) sea level pressure,
(c) air temperature at 2 m above the sea surface, and (d) net heat flux at the sea surface.

5. Conclusions

In July–August 2021, the largest and most intense MHWs of the satellite era occurred at
the sea surface over extensive areas of the northwestern Pacific Ocean. These were observed
at the sea surface and were accompanied by a stable shallow oceanic surface boundary layer.
Their spatial relationship to heat fluxes at the sea surface indicates that the MHWs were
generated mainly by atmospheric forcing associated with northwestward expansion of the
North Pacific Subtropical High and northward displacement of the westerly jet. Additional
air–sea studies are needed to understand inter-regional differences in SST heating processes
within the area of MHWs.

Moreover, the MHWs in summer 2021 were limited to the vicinity of the sea sur-
face (<20 m depth), where primary production is especially high (e.g., [35–37]). In fact,
some studies have reported impacts of MHWs on lower trophic levels of marine ecosys-
tems (e.g., [38,39]). Commercially important fisheries’ resources include Japanese sardine
Sardinops melanostictus and Pacific saury Cololabis saira, which utilize the northwestern
Pacific waters around the focal area as a nursery ground in summer (e.g., [40,41]). Hence,
for sustainable management of ecosystems in the northwestern Pacific Ocean, physical and
biological studies are essential, not only to evaluate influences of the 2021 MHWs but also
to project the influences of future MHWs on marine ecosystems.
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Abstract: Thermal discharge (i.e., warm water) from nuclear power plants (NPPs) in Daya Bay, China,
was analyzed in this study. To determine temporal and spatial patterns as well as factors affecting
thermal discharge, data were acquired by the Landsat series of remote-sensing satellites for the
period 1993–2020. First, sea surface temperature (SST) data for waters off NPPs were retrieved from
Landsat imagery using a radiative transfer equation in conjunction with a split-window algorithm.
Then, retrieved SST data were used to analyze seasonal and interannual changes in areas affected by
NPP thermal discharge, as well as the effects of NPP installed capacity, tides, and wind field on the
diffusion of thermal discharge. Analysis of interannual changes revealed an increase in SST with an
increase in NPP installed capacity, with the area affected by increased drainage outlet temperature
increasing to different degrees. Sea surface temperature and NPP installed capacity were significantly
linearly related. Both flood tides (peak spring and neap) and ebb tides (peak spring and neap) affected
areas of warming zones, with ebb tides having greater effects. The total area of all warming zones in
summer was approximately twice that in spring, regardless of whether winds were favorable (i.e.,
westerly) or adverse (i.e., easterly). The effects of tides on areas of warming zones exceeded those
of winds.

Keywords: Daya Bay Nuclear Power Plants; thermal discharge; long-term changes; Landsat; radiative
transfer equation; split-window algorithm; power plant installed capacity; flood tide; ebb tide;
wind field

1. Introduction

In recent years, the increasing energy demand of coastal cities has increased both the
number and scale of coastal thermal power plants and NPPs. In NPPs, only 30% to 35%
of nuclear energy is converted to electrical energy [1], and most of the remaining energy
is discharged as thermal energy in cooling water. The discharge of warm water rapidly
increases the temperature of surrounding waters, which in turn directly or indirectly affects
the growth and reproduction of aquatic organisms [2].

To monitor thermal discharge, many studies have examined algorithms to retrieve sea
surface temperatures (SSTs) from thermal infrared remote sensing. In 1975, McMillin [3]
first introduced a split-window algorithm (SWA) based on the radiative transfer equation
(RTE), which was relatively effective at retrieving SST [4]. Liu and Zhou [5] introduced a
multichannel SWA to retrieve SST data for the Yellow and East China seas, and the retrieved
data adequately reflected SST distribution patterns. Rozenstein et al. [6] and Chen et al. [7]
revised the SWA to use data acquired by the Advanced Very-High-Resolution Radiometer
instruments onboard the United States National Oceanic and Atmospheric Administration

Remote Sens. 2022, 14, 763. https://doi.org/10.3390/rs14030763 https://www.mdpi.com/journal/remotesensing293



Remote Sens. 2022, 14, 763

(NOAA) family of satellites in order to retrieve SSTs from Landsat satellite data. Ai et al. [8]
presented a new SWA-based SST retrieval model and validated its reliability by comparing
SST data for the Bohai Sea with those extracted from a MODIS SST product.

Furthermore, clarifying the influencing factors of the warm drainage of nuclear power
plants is of great significance for predicting its changing trend and evaluating and finding
ways to speed up the hydrodynamic exchange of warm drainage to minimize its ecological
impact. The velocity and direction of tide, wind, water depth, and installed capacity are
considered to be the main factors affecting thermal discharge [9–12]. Hence, it is crucial to
investigate factors and mechanisms that influence changes in thermal discharge from NPPs.

Many studies have recently examined the effects of NPPs on Daya Bay in China. For
example, nutrients, phytoplankton, and zooplankton in Daya Bay show marked responses
to thermal discharge from NPPs [13]. However, changes in Daya Bay based on time-series
data covering more than two decades have not been investigated. High-accuracy remote-
sensing time-series data can be used to monitor the zones affected by thermal discharge, as
well as to identify patterns of change in and factors influencing thermal discharge. Hence,
in this study, data reflecting changes in thermal discharge in waters surrounding NPPs
in Daya Bay from 1993 to 2020 were retrieved from remote sensing imagery, acquired by
Landsat satellites. Those data were then used to analyze the seasonal and interannual
temporal and spatial distribution patterns of thermal discharge. In addition, the effects of
tides and the wind field on diffusion of thermal discharge were examined. The results will
provide an important reference for protection of the ecology and environments in waters
off coastal NPPs.

2. Data

2.1. Study Area

In the northern part of the South China Sea, Daya Bay (23◦31′12′′ N to 24◦50′00′′ N,
113◦29′42′′ E to 114◦49′42′′ E) encompasses ~600 km2 [14,15] and includes more than
50 islands (Figure 1). The bay is very shallow, with an average depth of 11 m and a
maximum depth of 21 m, and its waters are cold with high salinity in winter and hot with
low salinity in summer [16]. A monsoon and oceanic climate prevails, with four distinct
seasons and an annual average temperature of ~22 ◦C. Wind over Daya Bay is dominated
by northeasterlies in winter and southwesterlies in summer, with relatively high speeds
(monthly average: 5.0–5.4 m/s) in spring and early summer and relatively low speeds
(monthly average: 4.6–4.8 m/s) in the remainder of summer and winter [17]. The Daya Bay
NPP (DBNPP), with an installed capacity of 1968 MW, and the Lingao NPP (LNPP), with
an installed capacity of 4152 MW, began operating in 1994 and 2002, respectively.

2.2. Landsat Data

Landsat Level-1 imagery (spatial resolution: 30 m) was acquired for the period 1993 to
2020. Specifically, 125 good-quality Landsat-5, -7, and -8 images, each with cloud coverage
less than 20%, were downloaded from the website of the United States Geological Survey
(https://earthexplorer.usgs.gov/, accessed on 2 January 2022). Each image was acquired
at approximately 0245 Greenwich Mean Time (GMT) when the satellite flew over Daya
Bay. The temperature data contained in those images spanned almost the entire range
of temperatures over the period, from low temperatures in winter to high temperatures
in summer, and therefore were representative of seasons in the area. Figure 2 shows the
amount of Landsat images in each season.
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Figure 1. Geographic location of Daya Bay, China.

Figure 2. Amount of Landsat images of Daya Bay in spring (green), summer (red), autumn (orange),
and winter (blue) from 1993 to 2020.
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2.3. MODIS Data

MODIS is an important sensor onboard the Terra and Aqua satellites. Each day, the
Terra satellite flies over the study area at approximately 1030 and 2230 GMT, whereas
the Aqua satellite flies over at approximately 0130 and 1330 GMT. A MODIS Level-2
SST product that provides data with 1-km resolution and long-term quality control was
obtained from the official website of the United States National Aeronautics and Space
Administration (NASA, http://oceancolor.gsfc.nasa.gov/, accessed on 2 January 2022).

2.4. Tidal Data and Processing

Daily tidal level data were collected at a Daya Bay meteorological station (22◦35′ N,
114◦31′ E) from 1993 to 2020. A tide table was produced based on the tidal height at each
time point to determine the tidal state of waters when the satellites flew over the study
area. In addition, average areas of warming zones with different levels of increase in SST in
each tidal state were compared in order to analyze the effects of tides on the diffusion of
thermal discharge.

2.5. Wind Field Data and Processing

To analyze the effects of the wind field on diffusion of thermal discharge, average direc-
tion and speed data were determined for the wind field over a zone approximately 15 km
offshore (22◦45′N to 23◦12′N, 114◦36′E to 115◦00′E). Those data were extracted from a
Cross-Calibrated Multi-Platform Level-3 product (www.remss.com/measurements/ccmp,
accessed on 2 January 2022) that provided ocean surface wind data (i.e., data for wind
fields 10 m above the ocean surface) with a spatial resolution of 0.25◦ × 0.25◦. Westerlies
(including southwesterlies and northwesterlies), which promote diffusion of thermal dis-
charge, were defined as favorable winds, whereas easterlies (including northeasterlies and
southeasterlies), which limit diffusion of thermal discharge, were defined as adverse winds.

2.6. Installed Capacity Data for Nuclear Power Plants in the Study Area

Installed capacity data for the NPPs in Daya Bay (Table 1) were extracted from their in-
troductions given by the South China Nuclear and Radiation Oversight Station, Ministry of
Ecology and Environment of China (https://scro.mee.gov.cn, accessed on 2 January 2022).

Table 1. Installed capacity data for the Daya Bay (DB) and Lingao (L) nuclear power plants (NPPs) in
Daya Bay, China.

Scheme
Cooling Water Flow

Rate (m3 s−1)
Total Installed
Capacity (MW)

Installed Capacities in
Different Periods (MW)

DBNPP 319
6120

1968

LNPP 329 Phase 1: 1980
Phase 2: 2172

3. Methods

3.1. Data Preprocessing

Landsat imagery was subjected to preprocessing procedures such as radiometric cali-
bration and conversion of gray values to radiance values with a physical meaning [18], i.e.,
top-of-atmosphere radiance, L(λ), values, which are input data for temperature inversion.
L(λ) was calculated using the following equation:

L(λ) = DN × Gain + h (1)

where DN is the original value recorded by the sensor, Gain is the absolute calibration
coefficient, and h is the offset. Gain and h were obtained directly from the parameter file of
Landsat data [19].
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3.2. Sea Surface Temperature Retrieval

Sea surface temperatures were retrieved from Landsat-5 and -7 data using the RTE [20]
and from Landsat-8 data using a SWA [21,22].

Because it is difficult to obtain accurate and real-time atmospheric information, and to
avoid dependence on atmospheric parameters, a split-window algorithm has been devel-
oped based on the difference in atmospheric absorption between two adjacent channels
(center wavelengths of approximately 11 μm and 12 μm) in the atmospheric window [23].
The influence of the atmosphere is eliminated through combinations of the measured values
of the two channels. Therefore, atmospheric correction preprocessing of Landsat-8 data is
no longer necessary [24,25].

For Landsat 5/7, the RTE algorithm was used. The following equations were used:

L(λ) =
[
(ε)× B(Ts) + (1 − ε)L↓

]
τ + L↑ (2)

B(Ts) =

[
L(λ)− L↑ − τ × (1 − ε)L↓

]
τ − ε

(3)

Ts = K2/ln(K1/L(λ) + 1) (4)

where L(λ) is the radiance of the top layer of the atmosphere received by the sensor;
B(Ts) is the blackbody thermal radiance; ε is the surface emissivity (0.992); and Ts is
the sea surface temperature. L↓ and L↑ are the atmospheric downward and upward
radiation, respectively, and τ is the atmospheric transmittance. The three parameters
were obtained through the NASA official website (https://atmcorr.gsfc.nasa.gov, accessed
on 2 January 2022). Values of K1 and K2 were obtained from the header file of Landsat.
For Landsat-5, K1 = 607.76 W·m−2·sr−1·μm−1, and K2 = 1260.56 K; and for Landsat-7,
K1 = 666.09 W·m−2·sr −1·μm−1, and K2 = 1282.71 K [26,27].

3.3. Sea Surface Temperature Accuracy Evaluation

The accuracy of SST data retrieved from Landsat imagery was evaluated in a compari-
son with a MODIS Aqua Level-2 SST product (resolution: 1 km) for the period 2003 to 2020
(see Table A1 of Appendix A for matching files). Landsat and Aqua satellites fly over the
study area at approximately 0245 and 0530 GMT, respectively. According to the analysis by
Li et al. [28] of daily global SST variations, SST in the South China Sea varies by only 0.2 ◦C
to 0.4 ◦C each day. Therefore, SST in the study area was considered to be approximately
constant for three hours. The following procedure was used in matching datasets. First,
data retrieved from Landsat imagery were resampled to the same resolution as that of
MODIS images. Then, Landsat and MODIS images of the waters off the NPPs in Daya
Bay at the same latitudinal and longitudinal coordinates, as well as corresponding SSTs,
were extracted for same-point validation. The accuracy analysis was based on 51 Landsat
images and the same number of matching MODIS images (Figure 3). Data retrieved from
the Landsat images were significantly linearly related to the matching data extracted from
the MODIS SST product. The relation was described by the equation y = 1.058x − 2.269,
with a correlation coefficient (R) of 0.94. Therefore, data retrieved from multisource Landsat
imagery in this study were considered suitable to calculate increases in SSTs in waters off
the NPPs in Daya Bay over a long period.

3.4. Criterion for Determining Increases in Sea Surface Temperatures

The background temperature selected in an investigation of the thermal discharge
from an NPP must be close to the natural temperature in the area in the absence of the
NPP [29]. Because Daya Bay is semi-closed, an adjacent-zone substitution method was
adopted to determine a reference temperature, Tr. Specifically, the average temperature in
a square zone with an area of 8 km × 8 km, located approximately 10 km from the LNPP,
was selected as Tr to determine SST increases (Figure 4).
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Figure 3. Relation between Landsat sea surface temperature (SST, ◦C) and MODIS SST product. Blue
line is the regression line (y = 1.058x − 2.269); red line is the 1:1 line (y = x).

Figure 4. Reference zone for background temperature (Tr) to determine increases in sea
surface temperature.

3.5. Methods for Analyzing Sea Surface Temperature Increases

Contours of increases in SST were plotted for each season (spring: March–May; sum-
mer: June–August; fall: September–November; winter: December–February of the follow-
ing year) [30]. The average total area of all warming zones with SST increases ranging
from 2 ◦C to greater than 7 ◦C (Atotal) and average total area of warming zones with SST
increases at different levels were calculated for each season.

Similarly, annual contours of increases in SST were plotted for the period 1993 to
2020 (excluding 2012, 2013, 2014, 2015, and 2020, because data were available for only one
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season in each of those years and therefore were not representative) in order to analyze
patterns of interannual changes in thermal discharge. To examine distributions of temper-
ature increases more clearly and to facilitate subsequent analysis and research, different
temperature levels were set. Table 2 summarizes the range for each level of SST increase.
For convenience in description, average total areas of warming zones with SST increases
of 2–3 ◦C, 3–4 ◦C, 4–5 ◦C, 5–6 ◦C, 6–7 ◦C, and >7 ◦C are denoted by A+2◦C, A+3◦C, A+4◦C,
A+5◦C, A+6◦C, and A+7◦C, respectively.

Table 2. Temperature ranges (◦C) for different levels of increases in sea surface temperature (SST).

Range of SST Increases (>Tr) Level (>Tr)

<2 ◦C <2 ◦C
[+2 ◦C, +3 ◦C] +2 ◦C
[+3 ◦C, +4 ◦C] +3 ◦C
[+4 ◦C, +5 ◦C] +4 ◦C
[+5 ◦C, +6 ◦C] +5 ◦C
[+6 ◦C, +7 ◦C] +6 ◦C

>7 ◦C +7 ◦C

4. Results

4.1. Seasonal Changes in Distribution Pattern of Thermal Discharge

Figure 5 shows seasonal contours of SST increases, plotted on the basis of seasonal
averages of data retrieved from Landsat Level-1 imagery for the period 1993–2020. Table 3
shows areas of warming zones in each season. In each season, the total areas of warming
zones with low SST increases (at +2 ◦C and +3 ◦C levels) were relatively large and displayed
an outward fan-shaped diffusion pattern, whereas those with high SST increases (at +6 ◦C
and +7 ◦C levels) were relatively small and concentrated primarily near discharge outlets
of the NPPs along the shore of Daya Bay. Summer had the largest Atotal (total area with
temperature increase from 2 ◦C to 7 ◦C) at 31.58 km2, with A+2◦C accounting for the largest
proportion (49.6%; 15.67 km2). The smallest Atotal was in winter (7.89 km2). The average
total area of warming zones with SST increases at each of the +2 ◦C to +7 ◦C levels in
summer was approximately four times that in winter and approximately twice that in
spring and fall. The seasonal pattern was similar for Atotal.

Table 3. Total area (Atotal) of warming zones and areas of warming zones at different temperature
levels (A+2◦C to A+7◦C) in each season for the period 1993–2020.

Season\Area
(km2)

A+2◦C A+3◦C A+4◦C A+5◦C A+6◦C A+7◦C Atotal

Spring 8.83 3.6 1.8 1.06 0.44 0.3 16.03
Summer 15.67 9.49 3.29 1.37 0.79 1.0 31.58

Fall 9.4 3.51 1.69 0.64 0.55 0.56 16.35
Winter 4.23 1.84 0.94 0.4 0.29 0.19 7.89

4.2. Interannual Changes in Thermal Discharge

Because Landsat sensors are affected by factors such as clouds, Landsat data suitable
for retrieval of SSTs are limited. Therefore, images that contained as much data as possible
were selected to analyze interannual changes in thermal discharge. Specifically, images of
at least two seasons in each year (except 1993) were used in the analysis.
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Figure 5. Seasonal changes (spring, summer, autumn, winter) in sea surface temperature (◦C)
contours for 1the period 993–2020.

Figures 6 and 7 show the interannual contours of SST increases and the interannual
changes in areas of warming zones, respectively. In 1993, there were no thermal discharge-
affected zones. Because the No. 1 unit of the DBNPP began operation on May 6, 1994, warm
water was discharged within an extremely small zone in that year. A notable diffusion
of thermal discharge began in 2000, with SST increases occurring primarily at +2 ◦C and
+3 ◦C levels and at locations approximately 1.5 to 1.7 km east of the discharge outlet. Later,
in 2004, with intensification of operations and an increase in installed capacity (first phase
of LNPP became operational in January 2003), the zones affected by thermal discharge
expanded, with SST increases occurring primarily at +2 ◦C to +5 ◦C levels. In addition,
A+2◦C, A+3◦C, A+4◦C, A+5◦C, and Atotal in 2004 were approximately three times those in 2000.
The warming zones in 2004 were distributed 3.5 to 3.8 km east of the discharge outlets,
and SST increases at +6 ◦C and +7 ◦C levels became increasingly prominent (at locations
~0.5 km east of the discharge outlets). The second phase of LNPP was completed and began
commercial service on 15 July 2010, resulting in a notable expansion of zones affected by
thermal discharge. Increases in SST were at +2 ◦C to +4 ◦C levels in most of the nearby
waters and were at +5 ◦C to +7 ◦C levels near the discharge outlets. In 2019, the effects of
thermal discharge peaked, with Atotal also reaching its maximum (24.28 km2). Increases in
SST occurred primarily at +2 ◦C to +5 ◦C levels, but there were also notable increases in
A+6◦C and A+7◦C.
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Figure 6. Interannual changes in sea surface temperature (◦C) contours of areas of warming zones
from the period 1993 to 2019.

Figure 7. Interannual changes in areas of warming zones for the period 1993 to 2019.

301



Remote Sens. 2022, 14, 763

5. Discussion

5.1. Effects of Installed Capacity of Nuclear Power Plants on Thermal Discharge

To analyze the effects of changes in installed capacity of the NPPs on thermal discharge,
three test zones and three control zones, each with an area within 30 km2, were selected
within different distance intervals (i.e., 0–2 km, 2–5 km, and 5–10 km) from the shoreline
within the study area. The test zones were A, B, and C, respectively, and the corresponding
control zones were D, E, and F (Figure 8).

 

Figure 8. Schematic of test zones (A, B, C) and control zones (D, E, F), which are used to analyze the
effects of changes in installed capacity of the NPPs on thermal discharge.

With SSTs in test zone C and control zone F as references, interannual changes in SSTs
were calculated based on MODIS Level-2 SST data for the period 2003 to 2020. Let ΔAC
and ΔBC be the annual average SST in zone A minus that in zone C and the annual average
SST in zone B minus that in zone C, respectively, with ΔDF and ΔEF similarly defined. The
following equations define ΔAC, ΔBC, ΔDF, and ΔEF:

ΔAC = SSTA − SSTC (5)

ΔBC = SSTB − SSTC (6)

ΔDF = SSTD − SSTF (7)

ΔEF = SSTE − SSTF (8)

where SSTA, SSTB, SSTC, SSTD, SSTE, and SSTF are the annual average SSTs in zones A, B,
C, D, E, and F, respectively. Annual rates of increase in SST in zones A and B (RA and RB,
respectively) were defined as follow [31]:

RA = ΔAC − ΔDF (9)

RB = ΔBC − ΔEF (10)

Figure 9 shows the relations between the installed capacity of the NPPs and increases
in SST, determined based on changes in RA and RB.
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Figure 9. Relation between installed capacity of nuclear power plants and increase in sea surface
temperature (SST).

There was a significant linear relation between the increase in SST and the installed
capacity of NPPs in each of zones A and B, with the relation stronger in zone A than in zone
B (Figure 9). Thus, an increase in installed capacity of the NPPs led to a greater increase
in SST in zone A (i.e., within 2 km from the shoreline) than in zone B (i.e., within 2–5 km
from the shoreline). In summary, an increase in installed capacity resulted in more heat
released into the sea, which in turn resulted in a larger increase in SST over a larger area.
This conclusion is consistent with that of Lin et al. [31].

5.2. Effects of Tides on Thermal Discharge

Tides in Daya Bay are irregular and semidiurnal, with an average height of 1.01 m
and a maximum height of 2.5 m [32]. Tidal flow rate in Daya Bay decreases gradually from
the mouth to the north and is relatively low at the head. Weak tidal currents dominate
the waters of Daya Bay, except for those in the east, where there are relatively strong tidal
currents. Specifically, tidal flow rates are approximately 30 and 20 cm/s in the eastern and
western waters of Daya Bay, respectively, and range from 5 to 10 cm/s in waters near the
NPPs [16].

Figure 10 shows areas of warming zones corresponding to different tidal states (peak
spring flood tides (PSFTs), peak spring ebb tides (PSETs), peak neap flood tides (PNFTs), and
peak neap ebb tides (PNETs)) for the period 1993–2020. Total area of warming zones with
SST increases at each of the +2 ◦C to +7 ◦C levels, and Atotal was greater during ebb tides
(ETs) than during flood tides (FTs). Values of A+2◦C, A+4◦C, A+5◦C, and Atotal during PSETs
compared with those during PSFTs were approximately two times higher. Those areas
during PNETs were also greater than those during PNFTs. The largest and smallest Atotal
values (29.23 and 14.5 km2, respectively) occurred during PNETs and PSFTs, respectively,
and A+6◦C and A+7◦C during PSETs were approximately six times those during PSFTs.

Table 4 shows the variation in areas of warming zones with tidal state and season
(spring, summer, fall, and winter) for the period 1993–2020. The Atotal was greater during
peak ETs (PETs), both PSETs and PNETs, than during peak FTs (PFTs) in each season,
except in fall, when Atotal was smaller during PNETs than during PNFTs. The Atotal during
PETs was approximately 1.5 times that during PFTs in spring and summer, whereas Atotal
during PETs was approximately twice that during PFTs in winter. The largest and smallest
Atotal values (56.19 and 6.82 km2, respectively) appeared during PNETs in summer and
PNFTs in winter, respectively. In summary, the effects of ETs on areas of warming zones
exceeded those of FTs [33]. In addition, as shown in Figure 11, tides affected the direction
of thermal discharge.
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Figure 10. Total area of warming zones and areas of warming zones at different levels of sea surface
temperature increase in different tidal states.

Table 4. Total area (Atotal) of warming zones and areas of warming zones at different levels of sea
surface temperature increase (A+2◦C to A+7◦C) in different tidal states and seasons.

Season\Area
(km2)

Tidal State A+2◦C A+3◦C A+4◦C A+5◦C A+6◦C A+7◦C Atotal

Spring
STs

FTs 12.22 3.15 2.28 0.62 0.71 0.27 19.25
ETs 18.14 9.36 3.21 1.93 0.65 0.25 33.54

NTs
FTs 13.80 3.60 1.53 0.55 0.33 0.19 20.0
ETs 11.81 7.01 5.35 3.32 1.5 1.07 30.06

Summer
STs

FTs 7.81 13.01 1.29 0.60 0.26 0.10 23.07
ETs 7.88 11.36 12.97 0.51 0.42 0.17 33.31

NTs
FTs 16.74 8.95 3.63 1.02 0.46 0.29 31.09
ETs 36.0 17.85 1.91 0.57 0.45 0.26 56.19

Fall
STs

FTs 3.67 2.60 1.21 0.39 0.38 0.18 8.43
ETs 20.42 6.77 1.75 0.69 0.37 0.17 30.17

NTs
FTs 15.58 3.79 0.69 0.65 0.28 0.16 21.15
ETs 7.68 1.93 0.96 0.62 0.23 0.18 11.6

Winter
STs

FTs 6.01 1.89 1.09 0.25 0.04 0.02 9.3
ETs 13.39 1.6 1.06 0.37 0.05 0.01 16.48

NTs
FTs 2.73 2.21 0.80 0.51 0.48 0.09 6.82
ETs 7.5 2.71 1.67 0.33 0.12 0.16 12.49
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Figure 11. Areas of warming zones in different tidal states (images are for typical tidal states in
different seasons): (a) peak spring flood tides; (b) peak spring ebb tides; (c) peak neap flood tides;
(d) peak neap ebb tides.

5.3. Effects of Monsoons on Thermal Discharge

A marked monsoon climate prevails in Daya Bay. Figure 12 shows wind speeds
and directions extracted from wind field data. In winter, the only winds over Daya
Bay were easterlies (average speed: 7.7 m/s). In summer, most (approximately 60%)
winds were from the west, with an average speed of only 3.4 m/s, whereas the rest
(approximately 40%) originated from the east, with an average speed of 4.1 m/s. Figure 13
shows areas of warming zones corresponding to different wind speeds. In summer, Atotal
was approximately twice that in spring, regardless of whether winds were favorable
(westerly) or adverse (easterly). In addition, in summer, Atotal was greater with adverse
winds than with favorable winds, which might be because the effects of tides on thermal
discharge exceeded those of winds [34]. Under adverse winds, the areas of warming zones
with low SST increases (i.e., A+2◦C and A+3◦C), those of warming zones with high SST
increases (i.e., A+6◦C and A+7◦C), and Atotal in summer were approximately five times those
in winter. Several factors could explain those results. In summer, the waters of Daya Bay
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have inherently relatively higher temperatures, resulting in relatively poor conditions for
seawater exchange. Exchange between seawater within Daya Bay and open seawater occurs
primarily through the mouth of the bay. Moreover, the tidal range is small in summer, and
changes in tidal currents are controlled by tides [6]. In spring, Atotal under favorable winds
differed from that under adverse winds by 1.35 km2, and in fall, Atotal under favorable
winds was 70% greater than that under adverse winds.

Figure 12. Average wind speed (m/s) in different seasons over Daya Bay, China.

Figure 13. Areas of warming zones corresponding to different wind direction in different seasons (A,
B, C, D, E, F, and G are spring westerlies, spring easterlies, summer westerlies, summer easterlies,
autumn westerlies, autumn easterlies, and winter easterlies, respectively).
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Table 4, Figures 10 and 13 were combined to produce Table 5. In spring, total area of
warming zones with SST increases at each of the +2 ◦C to +7 ◦C levels and Atotal during PETs
(PSETs and PNETs) were twice the respective seasonal averages, whereas A+3◦C and Atotal
under favorable winds were only ~30% greater than the respective seasonal averages. In
summer, during PETs (PSETs and PNETs), A+3◦C and Atotal values were ~50% greater than
those of respective seasonal averages. However, under favorable winds in summer, A+4◦C
and A+6◦C were, to some extent, greater than the respective seasonal averages, whereas
areas at other temperatures were below respective seasonal averages. In fall, during PETs,
A+2◦C, A+3◦C, and Atotal values were approximately twice those of respective seasonal
averages. However, under favorable winds in fall, only A+2◦C was approximately twice the
seasonal average, whereas areas at other temperatures differed only slightly from respective
seasonal averages. In winter, when all winds over Daya Bay are adverse, A+2◦C and Atotal
values during ETs were approximately twice those of respective seasonal averages.

Table 5. Changes in total area (Atotal) of warming zones and areas of warming zones at different
levels of sea surface temperature increase (A+2◦C to A+7◦C) under different tide and wind conditions.

Season Conditions
A+2◦C
(km2)

A+3◦C
(km2)

A+4◦C
(km2)

A+5◦C
(km2)

A+6◦C
(km2)

A+7◦C
(km2)

Atotal

(km2)

Spring
Average 8.83 3.6 1.8 1.06 0.44 0.3 16.03

ETs 14.98 8.18 4.28 2.62 1.01 0.66 31.73
Favorable winds 9.51 4.72 2.38 1.81 1.2 0.87 20.28

Summer
Average 15.67 9.49 3.29 1.37 0.79 1.0 31.58

ETs 21.95 14.61 5.4 1.54 1.04 0.6 45.14
Favorable winds 14.74 9.31 4.81 0.57 1.58 0.86 26.49

Fall
Average 9.4 3.51 1.69 0.64 0.55 0.56 16.35

ETs 20.42 6.77 1.75 0.69 0.37 0.17 30.17
Favorable winds 18.97 3.64 1.7 0.82 0.32 0.17 23.1

Winter
Average 4.23 1.84 0.94 0.4 0.29 0.19 7.89

ETs 10.45 2.16 1.37 0.35 0.09 0.09 14.51

In summary, the effects of tides on seasonal areas of warming zones exceeded those of
favorable winds, suggesting that the effects of tides on the diffusion of thermal discharge
surpass those of winds. In addition, the shapes and distributions of warming zones
depended primarily on tides instead of winds.

6. Conclusions

Seasonal and interannual changes and the factors influencing changes in thermal
discharge from the NPPs in Daya Bay were examined for the period 1993–2020. The
conclusions are summarized below.

(1) As indicated by an R2 value of 0.89, the SST inversion algorithm of Landsat-5 and
-7 imagery could adequately retrieve temperature-increase data for Daya Bay.

(2) Temporal and spatial analyses of the retrieved time series data from the period 1993
to 2020 revealed that the range of warming zones has expanded to a certain extent. In terms
of interannual changes, SSTs increased as the installed capacity of the NPPs increased. There
was a relatively significant linear relation between SST and the installed capacity of the
NPPs. An increase in installed capacity resulted in more heat released into the sea, which
in turn resulted in a considerable increase in SST over a relatively large area. Warming
zones with SST increases at +5 ◦C to +7 ◦C levels have remained near discharge outlets of
the NPPs since 2000. In 2019, the effects of thermal discharge from the NPPs peaked, and
Atotal also reached its maximum (24.28 km2). Increases in SST occurred primarily at the
+2 ◦C to +5 ◦C levels, but there was also a notable increase in A+6◦C and A+7◦C.

(3) The effects of tides on areas of warming zones exceeded those of winds. Specifically,
both FTs (PSFTs and PNFTs) and ETs (PSETs and PNETs) affected areas of warming zones.
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The highest and lowest values of Atotal (29.23 and 14.5 km2, respectively) occurred during
PNETs and PSFTs, respectively. Atotal was greater during PETs (both PSETs and PNETs)
than during PFTs in each season, except in fall, when Atotal was smaller during PNETs than
during PNFTs. Therefore, the effects of ETs on areas of warming zones exceeded those
of FTs. Favorable winds promoted the diffusion of thermal discharge, whereas adverse
winds inhibited it and could even alter the original direction of diffusion. Under either
favorable (westerly) or adverse (easterly) winds, Atotal in summer was approximately twice
that in spring. In addition, warming zones in summer were larger under adverse winds
than under favorable winds.

Therefore, if we want to minimize the warming zone area, we must focus on the
dynamic environment first. For example, reducing land reclamation in the Daya Bay and
reducing seabed sedimentation may be more effective approaches.
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Abstract: Based on the satellite-observed sea surface temperature (SST) data, high-resolution Argo
observations and hybrid coordinate model (HYCOM) reanalysis results, this study examined the
upper ocean response to Super Typhoon Goni in 2015 in the western north Pacific and revealed the
significant diapycnal diffusivity enhancement in the upper ocean induced by Goni. Results indicate
that the maximum SST cooling caused by Goni was 7.7 ◦C, which is greater than the SST cooling
caused by most typhoons. The severe SST cooling was related to the enhancement of turbulent
mixing induced by Goni. To the right of the typhoon track, the diapycnal diffusivity enhancement
in the upper ocean caused by Goni could reach three orders of magnitude, from O (10−5 m2/s) to
O (10−2 m2/s) and could last at least 9 days after the passage of Goni. In contrast, the diapycnal
diffusivity to the left of the typhoon track did not show significant variations. The enhancement of
turbulent mixing was found to be consistent with Goni-induced near-inertial kinetic energy calculated
from the HYCOM reanalysis results, which suggests that the enhanced turbulent mixing was caused
by Goni-induced near-inertial waves.

Keywords: turbulent mixing; upper ocean response; Super Typhoon Goni; satellite observations;
sea surface temperature; HYCOM reanalysis results

1. Introduction

Tropical cyclones (TCs), commonly known as typhoons in the western Pacific, are
disastrous weather systems generated and developed in the tropical ocean. According to
the tropical cyclone classification issued by the China Meteorological Administrationtrop-
ical cyclone database (https://tcdata.typhoon.org.cn/, accessed on 20 April 2021), TCs
can be classified into different categories based on the maximum wind speed near the
center, i.e., tropical depression (10.8–17.1 m/s), tropical storm (17.2–24.4 m/s), several
tropical storm (24.5–32.6 m/s), typhoon (32.7–41.4 m/s), severe typhoon (41.5–50.9 m/s)
and super typhoon (≥51.0 m/s). In recent years, a lot of studies have focused on the
interaction between the upper ocean and TCs. When a TC passes over the ocean, the
bottom atmosphere draws energy and moisture from the warm upper ocean to maintain or
increase its intensity [1,2]. At the same time, the intense wind stress of a TC can penetrate
100–200 m depths of the upper ocean and generate strong near-inertial internal currents.
The strong near-inertial currents [O (1 m/s)] cause enhanced turbulent mixing through
shear instability, which brings the cold water below the mixed layer to the sea surface and
decreases the sea surface temperature (SST), ranging from 1 to 6 ◦C; in turn, the SST cooling
inhibits the heat exchange between the air-sea interface and hence, limits the intensity of
the development of a TC [3–14]. The oceanic response to a TC is affected by the intensity,
size and translation speed of the TC [5,15–20]. On the global scale, TCs are responsible
for 1.87 PW (11.05 W/m2) of heat transfer annually from the ocean to the atmosphere [21].
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Thus, more knowledge and a better understanding of the dynamic and thermal response of
the upper ocean to a TC is urgently required to improve TC forecasting [2,22–24].

There are three major processes that control the SST cooling, i.e., oceanic diapycnal
mixing, advection (mostly upwelling) and air-sea heat exchange [4]. It is demonstrated
that nearly 75–90% of the TC-induced SST cooling is caused by diapycnal mixing, while
the upwelling and air-sea heat exchange contribute less in the open ocean [4,8,25–27]. It is
reported that approximately 15% of the peak ocean heat transport may be associated with
the vertical mixing induced by TCs [28]. In addition, SST cooling is also associated with the
ocean background conditions [29], such as mesoscale eddies and barrier layers [30]. The
TC-induced SST cooling has significant asymmetry, which is greater to the right of the TC
track than to the left in the northern hemisphere, owing to the asymmetry of TC-induced
near-inertial currents and vertical mixing [4,31]. With the development of observation
technology and research approaches, satellite remote sensing, in situ observations and
numerical simulations have been widely used in the studies of oceanic response to TCs.
For example, Zhang et al. [14] studied the upper ocean response to typhoon Kalmaegi in
2014, based on an array of buoys and moorings and a numerical model. Guan et al. [32]
used satellite remote sensing observations to investigate SST cooling, which was induced
by four typhoons in the Yellow Sea and the Bohai Sea in 2019, and explored the possible
mechanisms. Combining the hybrid coordinate model (HYCOM) reanalysis results and
moored observations, Cao et al. [33] and Yang et al. [34] explored the dynamical response
of the upper South China Sea to Megi in 2014 and Noul in 2020, respectively.

Although the turbulent mixing is known to play a leading role in SST cooling caused
by TCs, it is difficult to quantify the diapycnal diffusivity by conventional ship-based
observations because of the extremely dangerous conditions under TCs, which limits our
understanding to some extent. Fortunately, the temperature and salinity profiles measured
by Argo floats provide us an opportunity to estimate the diapycnal diffusivity and under-
stand the turbulent mixing induced by TCs [35]. In this study, based on 42 high-resolution
temperature and salinity profiles measured by 6 Argo floats andsimultaneoussatellite-
observed SST data and HYCOM reanalysis results, we investigated the dynamical and
thermal response of the upper ocean to Super Typhoon Goni in 2015. The enhancement of
turbulent mixing induced by Goni was quantified by estimating the diapycnal diffusivity
based on the fine-scale parameterization method. The remainder of the paper is organized
as follows. The data and analysis methodology are introduced in Section 2. In Section 3, the
dynamical and thermal response of the upper ocean to Goni is shown. Finally, a discussion
and conclusions complete the paper in Sections 4 and 5, respectively.

2. Data and Methodology

2.1. Super Typhoon Goni

Goni was a super typhoon that occurred in 2015 in the western Pacific. According
to the best track data from the China Meteorological Administration tropical cyclone
database (https://tcdata.typhoon.org.cn/, accessed on 20 April 2021, [36,37]). Goni first
developed as a tropical storm east of the Mariana Islands (13◦00′ N, 148◦20′ E) at 1700 UTC
on 15 August 2015. Thereafter, it quickly intensifiedinto a super typhoon with amaximum
sustained wind speed of 52 m/s on 17 August. It weakened to a severe typhoon on
18 August but upgraded to a super typhoon on 19 August again. It soon weakened and
continuedas a severe typhoon for three days, at about 150 km east of the Luzon Strait. Then,
it moved to the northeast after 23 August through the Okinawa Trough. Figure 1 shows the
track and intensity of Goni.

314



Remote Sens. 2022, 14, 2300

Figure 1. Bathymetry (shading, unit: m) of the study area, track and intensity of Goni in August 2015
(colored lines) and positions of Argo profiles (rose triangle, A1–A6). The time at 0000 UTC from 17
to 23 August is labeled. In the legend, TY, STY and SuperTY are abbreviations fortyphoon, severe
typhoon and super typhoon, respectively.

2.2. Data

The temperature and salinity profile data observed by the Argo floats were obtained
from the China Argo Real-time Data Centre (https://www.argo.org.cn/, accessed on
24 April 2021). To explore the turbulent mixing of the upper ocean caused by Goni, we
searched Argo floats from 7 to 28 August 2015, which meet the following requirements:
(1) The Argo float had observation profiles both before and after the passage of Goni;
(2) The position of the Argo float was within 300 km from Goni’s track; (3) Temperature
and salinity profile data hada high vertical resolution (about 2 m). As shown in Figure 1,
a total of 42 profiles measured by 6 Argo floats (A1–A6) were selected. Table 1 lists the
detailed information of these Argo floats and profiles.

Table 1. Information onArgo floats and profiles.

Argo Float
WMO

Number
Number of

Profiles
Distance to Goni’s

Center (km)
Time of Typhoon
Passed (mm/dd)

Observation Time of Profiles (mm/dd)

A1 2901199 7 227–295 08/17 08/09, 08/12, 08/15, 08/18, 08/21,
08/24, 08/26

A2 2901543 6 21–27 08/17 08/09, 08/12, 08/15, 08/20, 08/23, 08/26

A3 2901579 8 4–53 08/19 08/08, 08/10, 08/14, 08/16, 08/18,
08/20, 08/25, 08/27

A4 5904317 4 18–35 08/19 08/09, 08/14, 08/19, 08/24

A5 2901494 7 42–78 08/19 08/12, 08/14, 08/17, 08/20, 08/23,
08/26, 08/29

A6 2901578 10 30–47 08/19 08/09, 08/11, 08/13, 08/15, 08/17,
08/20, 08/22, 08/24, 08/26, 08/28
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We downloaded the wind speed and direction data from the high-resolution Climate
Forecast System, version 2 (CFSv2, https://rda.ucar.edu/, accessed on 9 May 2021) from
the National Centers for Environmental Prediction (NCEP), which hasa spatial resolution
of 38 km and a temporal interval of 6 h. As shown in Figure 2a–c, A2–A6 are nearly inside
the typhoon center, but A1 is at the edge of the typhoon center. The translation speed of
Goni is shown in Figure 2d.

Figure 2. The wind speed and direction at (a) 1200 UTC on 17 August, (b) 0000 UTC on 19 August and
(c) 1500 UTC on 19 August, respectively. (d) The translation speed of Goni from 16 to 22 August.The
six Argo floats (A1–A6) are labeled.

We also used the microwave and infrared merged optimally interpolated SST data,
which are provided by the remote sensing systems (https://www.remss.com/, accessed
on 9 May 2021). The SST data have a spatial resolution of 1/4◦ and a temporal interval of
one day. Moreover, the horizontal velocities derived from the HYCOM reanalysis results
(GLBb0.08-53.X, https://www.hycom.org/, accessed on 21 May 2021) from 14 to 28 August
with a spatial resolution of 1/12.5◦ and a temporal interval of 3 h were also used in this
study. Appendix A showsthe comparison between the satellite-observed and HYCOM-
simulated SST cooling, which validates thereasonability of the HYCOM reanalysis results.

2.3. Methodology
2.3.1. Gregg–Henyey–PolzinParameterization

Based on the internal wave–wave interaction theory [38], the Gregg–Henyey–Polzin
(GHP) parameterization was used to estimate the diffusivity K:

K = K0

〈
ξ2

z
〉2

GM〈ξ2
z〉2 h2(Rω)j( f /N) (1)
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where K0 = 5 × 10−6 m2s−1, <ξz
2> and GM<ξz

2> are the strain variance derived from the
observations and the Garrett–Munk model spectrum [39], respectively, and h2(Rω) and
j(f/N) are the correction items of internal wave structure and latitude:

h2(Rω) =
1

6
√

2
Rω(Rω + 1)√

Rω − 1
(2)

j( f /N) =
f arccosh(N/ f )

f30arccosh(N0/ f30)
(3)

where Rω represents the shear/strain variance ratio, which was suggested to be a constant
of 7 in the western north Pacific [15], f and N are the Coriolis and buoyancy frequencies,
f 30 = f (30◦), and N0 = 5.2 × 10−3 rads−1.

All the temperature and salinity profiles measured by the Argo floats were broken into
300-m segments to evaluate the strain spectra and then the segment-averaged diffusivity.
According to [38,40,41], the GHP parameterization is not applicable in the upper ocean,
because the strain spectrum may be contaminated due to great depth variability in the
background stratification. Therefore, the temperature and salinity data in the upper 100 m
were not used. The strain was calculated by:

ξz =
N2 − N2

N2
(4)

where N2(z) = − g
ρ0

dσ
dz , obtained by the vertical difference of the potential density, and

σ is the potential density. N2 is the mean value of stratification squared obtained by
quadratic fitting of the potential density for each segment. Based on the multi-taper tech-
nique, Fourier transform gives the spectral representation ϕ(k) for each segment [40,42,43].
Strain variance is determined by integrating ϕ(k) from the lowest resolved wavenumber
kmin = 2π/150 rads−1 to the maximum wavenumber kmax which satisfies

〈
ξ2

z

〉
=
∫ kmax

kmin

ϕ(k)dk = 0.1 (5)

The strain corresponding to Garrett–Munk model spectrum is calculated as

GM

〈
ξz

2
〉
=

πE0bj∗
2

∫ kmax

kmin

k2

(k + k∗)2 dk (6)

where E0 = 6.3 × 10−5, b = 1300 m is the scale depth of the thermocline, j* = 3 is the reference
mode number, k∗ = (π j∗N)/(bN0) is the reference wave number [44].

2.3.2. Near-Inertial Kinetic Energy (NIKE)

In this study, the power spectral analysis was performed on the HYCOM horizontal
velocities at 19.5◦ N, 132◦ E in August 2015. Based on the result of the power spectral
analysis, the fourth-order Butterworth filter was adopted to extract the near-inertial veloci-
ties [33] with a cutoff frequency of [0.53, 0.87] cpd, corresponding to 0.80–1.30 times the
local Coriolis frequency. Thereafter, the NIKE was calculated as

NIKE =
1
2

ρ0

(
u f

2 + v f
2
)

(7)

where ρ0 = 1024 kgm−3 is the seawater density, uf and vf are the zonal and meridional
near-inertial velocities, respectively.
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3. Ocean Response to Super TyphonGoni

3.1. Satellite-Observed SST Cooling

Based on the satellite-observed data, the SST evolution during the passage of Goni
from 16 to 28 August is shown in Figure 3a–k. On 16 August, when Goni did not enter the
domain (Figure 3a), the SST was generally higher than 29 ◦C and the highest SST exceeding
31 ◦C appeared to the east of Luzon Island. On 17 August (Figure 3b), Goni entered the
Philippine Sea, and the SST to the right of the typhoon track was cooled slightly. From 18
to 21 August (Figure 3c–f), as Goni moved westward, the range of SST cooling also moved
westward and expanded. The SST cooling was enhanced on 22 and 23 August (Figure 3g,h)
when Goni was about to leave this region. The lowest SST (smaller than 25 ◦C) appeared
at 150 km east of the Luzon Strait, which was the location Goni turned northward. After
24 August when Goni left the domain, the SST was gradually heating (Figure 3i–k). On
28 August, the SST almost shared the same pattern as that of before the passage of Goni,
except for the region to the east of the Luzon Strait and Luzon Island. Figure 3l displays
the maximum SST cooling caused by Goni, which was calculated as the difference between
the minimum SST from 17 to 24 August and the SST on 16 August. As shown, Goni caused
significant SST cooling in the domain. The maximum SST cooling was 7.7 ◦C, appearing at
about 150 km east ofthe Luzon Strait.

Figure 3. (a–k) SST evolution during the passage of Goni from 16 to 28 August. The gray quivers
denote the CFSv2 winds at 0000 UTC. (l) The maximum SST cooling caused by Goni.

3.2. Goni-Induced Mixing

The diapycnal diffusivity was calculated by GHP parameterization to estimate Goni-
induced mixing. As shown in Figure 2a, at 1200 UTC on 17 August, Goni passed over Argo
floats A1 and A2. At the same time, it developed into a super typhoon with amaximum
wind speed exceeding 51 m/s. Argo float A1 was located to the left of the typhoon track,
about 200–300 km away from the typhoon center. Argo float A2 was about 20 km away
to the right of the typhoon track. Figure 4a shows the temperature profiles observed by
Argo float A1 and Figure 4b displays the corresponding diapycnal diffusivity from 100 m
to 1000 m. The values in the brackets represent the observation time relative to the time
Goni passed. Hence, negative and positive values correspond to the time before and after
the passage of Goni, respectively. As shown, the temperature was nearly unchanged at
Argo float A1 during the passage of Goni. This is consistent with SST cooling at Argo float
A1, which was very small and close to zero (Figure 3l). At the same time, the diapycnal
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diffusivity was generally on the level of 10−5 m2/s, the same order of background value of
the abyssal ocean [38,45], and did not show significant variations during the passage of
Goni (Figure 4b). All these results suggest that Goni did not enhance the turbulent mixing
at Argo float A1.

Figure 4. (a) Temperature profiles observed by Argo float A1 and (b) estimated diapycnal diffusivity
based on the GHP parameterization. In each subfigure, the values in the brackets represent the
observation time relative to the time Goni passed (unit: day).

Figure 5 displays the temperature profiles and diapycnal diffusivity at Argo float A2.
Compared with Argo float A1, we can find a slight cooling of water temperature and a
slight enhancement of diapycnal diffusivity at Argo float A2, especially in the upper 400 m.
On 12 August, about 5.6 days before the passage of Goni, the diapycnal diffusivity was O
(10−4 m2/s). It increased to O (10−3 m2/s) on 15 August and lasted to 20 August. After
23 August, the diapycnal diffusivity dropped to below 10−4 m2/s.

Figure 5. Same as Figure 4 but for Argo float A2.
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At 0000 UTC on 19 August, Goni passed over Argo float A3 when it was a severe
typhoon with the maximum wind speed exceeding 41 m/s. Argo float A3 was located
about 4–50 km away to the right of the typhoon track (Figure 2b). Figure 6a shows the
temperature profiles at Argo float A3, from which a continuous temperature cooling
lastingfor more than 8 days in the upper 600 m can be detected. The maximum temperature
cooling appeared around 150 m in depth, which exceeded 5 ◦C. Moreover, it is found that
Goni caused significantly enhanced turbulent mixing at Argo float A3 (Figure 6b). Before
the passage of Goni, the diapycnal diffusivity was generally below 10−4 m2/s. Only one
day after the passage of Goni, the diapycnal diffusivity at 100–400 m was increased to
5 × 10−4 m2/s, which was nearly amplified by one order of magnitude. With time going
on, the diapycnal diffusivity at 100–400 m was continuously increased. On 27 August,
which was about 9 days after the passage of Goni, the diapycnal diffusivity was as high as
5 × 10−2 m2/s. In contrast, the diapycnal diffusivity below a 400 m depth did not show
significant enhancement and was generally atthe levels of 10−6 and 10−5 m2/s.

Figure 6. Same as Figure 4 but for Argo float A3.

As is shown in Figure 2c, at 1500 UTC on 19 August, Goni passed over Argo floats A4,
A5 and A6 when it intensified again to a super typhoon with the maximum wind speed
exceeding 51 m/s. Argo float A4 was about 30 km away to the left of the typhoon track,
whereas Argo floats A5 and A6 were located 55 km and 35 km to the right of the typhoon
track, respectively.

Figure 7a shows the temperature profiles at Argo float A4. It is easy to find that Goni
caused temperature cooling in the upper 40 m but warming at 40–100 m five hours after its
passage. However, the turbulent mixing was not significantly enhanced at the same time
(Figure 7b). On 24 August (five days after the passage of Goni), the temperature nearly
became the same as that before the passage of Goni.
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Figure 7. Same as Figure 4 but for Argo float A4.

Figure 8 shows the temperature profiles and diapycnal diffusivity at Argo float A5.
It is clearly shown that after the passage of Goni, the temperature near the surface had a
significant cooling of approximately 5 ◦C, which is consistent with the satellite observations
shown in Figure 3l. At the same time, the turbulent mixing was remarkably enhanced:
Before the typhoon, the diapycnal diffusivity was below 10−4 m2/s; however, the diapycnal
diffusivity at 100–400 m was rapidly increased to 3.5 × 10−4 m2/s about one day after the
typhoon (20 August); with time going on, the diapycnal diffusivity was gradually increased;
about 4 days after the passage of Goni (23 August), the diapycnal diffusivity at 100–400 m
was higher than 10−2 m2/s and this phenomenon lasted to 29 August, approximately
10 days after the passage of Goni. Moreover, it is also found that the enhanced turbulent
mixing was concentrated in the upper 400 m, whereas the diapycnal diffusivity below
400 m depth did not have a significant change.

Figure 8. Same as Figure 4 but for Argo float A5.
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As for Argo float A6, the maximum temperature cooling was greater than 7 ◦C
(Figure 9a), which was even larger than the satellite-observed SST cooling (Figure 3l).
The temperature cooling in the upper 80 m almost lasted approximately 9 days after the
passage of Goni. However, the turbulent mixing at 100–400 m at Argo float A6 showed an
interesting variation (Figure 9b). Before 15 August, the diapycnal diffusivity was generally
below 10−4 m2/s. On 17 August (approximately 3 days before the passage of Goni), the
diapycnal diffusivity was slightly increased to be a little larger than 10−4 m2/s. In the
three days after the passage of Goni, the diapycnal diffusivity was rapidly increased to
1.5 × 10−2 m2/s. Then, it rapidly decreased to 10−5 m2/s on 24 August. After 26 August,
the diapycnal diffusivity was increased again. On 28 August (approximately 9 days after
the passage of Goni), the diapycnal diffusivity at 100–400 m became 10−2 m2/s.

Figure 9. Same as Figure 4 but for Argo float A6.

To further understand Goni’s influence on the turbulent mixing in the upper ocean,
Figure 10 shows the diapycnal diffusivity at 100–400 m as a function of the observation
time relative to the time when Goni passed. It is found that the diapycnal diffusivity at
Argo float A1 nearly showed no enhancement after the passage of Goni. A similar result is
found at Argo float A4, although Argo float A4 was much closer to Goni’s track than A1.
All the estimated diapycnal diffusivity at Argo floats A1 and A4 werebelow 10−4 m2/s.
We speculate that the cause is related to the locations of Argo floats A1 and A4, both of
which were to the left of the typhoon track (Figure 1). In contrast, the diapycnal diffusivity
showed enhancement in various degrees at the four Argo floats (A2, A3, A5 and A6) to the
right of the typhoon track (Figure 1). At Argo float A2, the diapycnal diffusivity caused
by Goni was increased from 10−4 m2/s to 5 × 10−3 m2/s; whereas at Argo floats A3, A5
and A6, the diapycnal diffusivity caused by Goni was enhanced by at least three orders of
magnitude, from 10−5 m2/s to more than 10−2 m2/s. Moreover, at Argo floats A3 and A5,
the diapycnal diffusivity was nearly increased continuously until approximately 9 days
after the passage of Goni; while the diapycnal diffusivity at Argo floats A2 and A6 showed
a rapid decrease 4 days after the passage of Goni. The diapycnal diffusivity at Argo float
A6 was increased again 6 days after the passage of Goni, while it almost kept invariant at
Argo float A2.
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Figure 10. Diapycnal diffusivityversus the observation time relative to the time Goni passed.

3.3. Goni-Induced NIKE

To further study Goni’s effect on the turbulent mixing in the upper ocean, Figure 11
illustrates the depth-integrated NIKE from the sea surface to the sea bottom of the HYCOM
reanalysis results at 1200 UTC from 16 to 28 August. From 16 to 17 August, before Goni
passed, the NIKE was at a low level. On 18 August when Goni’s center reached 136.1◦ E,
18.2◦ N, only slight NIKE appeared to the northeast of Goni’s center and the maximum
NIKE was approximately 33 kJ/m2. From 19 to 21 August, the NIKE was increased, and at
the same time, the range of strong NIKE was gradually expanded (strong NIKE, exceeding
30 kJ/m2, could reach about 330 km to the right of the typhoon track). On 21 August, the
NIKE reached the maximum, which was greater than 80 kJ/m2. Thereafter, both the NIKE
and the area with strong NIKE were decreased. We also note, however, that the NIKE
at 127–131◦ E and 18–22◦ N was still significant (≥30 kJ/m2) on 28 August, whereas the
NIKE outside the region was quickly damped to below 20 kJ/m2. Moreover, strong NIKE
was found to be concentrated to the right of the track typhoon. To the left of the typhoon
track, the depth-integrated NIKE was generally below 20 kJ/m2 during the passage of
Goni. Combining these results with the estimated diapycnal diffusivity at the 6 Argo floats,
we can conclude that the strong (weak) turbulent mixing at Argo floats A2, A3, A5 and A6
(A1 and A4) was related to the strong (weak) NIKE to the right (left) of the typhoon track.

Figure 11. Depth-integrated NIKE (shading, unit: kJ/m2) during the passage of Goni (a–l) from 16 to
28 August.
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Since Argo floats A3, A5 and A6 were close to the typhoon track which was nearly
along 19◦ N, Figure 12 illustrates the NIKE along 19.12◦ N from 16 to 28 August. Before
17 August, the NIKE at 0–800 m was generally below 50 J/m3. On 18 August, strong
NIKE exceeding 100 J/m3 appeared in the upper 100 m between 132◦ E and 133◦ E. As
Goni moved westward, the region with strong NIKE gradually expanded westward. From
19 to 23 August, strong NIKE exceeding 300 J/m3 was concentrated in the upper 100 m.
With the increase indepth, the NIKE decreased significantly, which is consistent with [33].
At 100–400 m depth, the NIKE was generally on the level of 50 J/m3, whereas below
400 m depth, the NIKE could be one order of magnitude smaller than that at 100–400 m
depth. This result can account for the enhanced turbulent mixing at 100–400 m and nearly
invariant diapycnal diffusivity below 400 m depth at the Argo floats (Figures 5, 6, 8 and 9).
Furthermore, although Goni had left the domain on 24 August, it can be detected from
Figure 12 that the strong NIKE at 100–400 m depth could last to 28 August, which can
account for the enhanced turbulent mixing at Argo floats A3, A5 and A6 on 27–29 August
(Figures 6 and 8–10).

Figure 12. Profiles of NIKE (shading, unit: J/m3) along 19.12◦ N (a–l) from 16 to 28 August.

4. Discussion

Satellite observations indicate that Super Typhoon Goni caused significant SST cooling
in the western Pacific, which was mainly concentrated to the right of the typhoon track.
This is consistent with the rightward biased feature of the ocean’s response to a typhoon in
the northern hemisphere [46]. The SST cooling induced by Goni could reach 660 km away
from the typhoon track and the maximum SST cooling was 7.7 ◦C, which exceeded the SST
cooling (1–6 ◦C) caused by most typhoons [4,8] and that (4.2 ◦C) caused by another Super
Typhoon, Megi, in 2010 [27]. Moreover, it is found that the maximum SST cooling generally
occurred about one day after the passage of Goni, and Goni-induced SST cooling could
last for more than one week. This result is consistent with [47] that stronger SST cooling
corresponds to a longer recovery time.

Previous studies have demonstrated that SST cooling is mainly related to the enhanced
turbulent mixing caused by the typhoon [4,8,22,25,27]. In this study, six Argo floats with
a high vertical resolution fortunately captured the temperature cooling and turbulent
mixing enhancement induced by Goni in the upper ocean. At the four Argo floats (A2,
A3, A5 and A6) to the right of the typhoon track, the temperature in the mixed layer
was cooled to different degrees, and the diapycnal diffusivity was significantly enhanced.
The consistency between the temperature cooling and diapycnal diffusivity enhancement
indicates their correlation. It is interesting to find that at Argo floats A3, A5 and A6,
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the diapycnal diffusivity enhancement could reach three orders of magnitude, from O
(10−5 m2/s) to O (10−2 m2/s), which, to the best of our knowledge, has not been reported.
This diapycnal diffusivity enhancement, caused by Goni, is much greater than that caused
by Super Typhoon Tembin in 2012 [35]. It is also found that the diapycnal diffusivity
enhancement at Argo floats A3, A5 and A6 was mainly concentrated in the upper ocean,
to be specific, at 100–400 m depth. Meanwhile, the diapycnal diffusivity below 400 m
depth was generally atthe level of 10−5 m2/s and did not exhibit significant variations
before and after the passage of Goni. Moreover, the enhanced turbulent mixing in the
upper ocean at Argo floats A3, A5 and A6 could last 9 days after the passage of Goni
(Figure 10). In contrast, at the two Argo floats (A1 and A4) to the left of the typhoon
track, either the observed temperature profiles or the estimated diapycnal diffusivity did
not show significant variations (Figures 4 and 7) during the passage of Goni. Especially,
the diapycnal diffusivity before and after the passage of Goni at Argo floats A1 and A4
was always on the level of 10−5 m2/s, the same order of background value in the abyssal
ocean [38,45].

The HYCOM reanalysis results further reveal that the enhanced turbulent mixing in
the upper ocean was related to Goni-induced NIKE. Results show that the depth-integrated
NIKE to the right of the typhoon could reach 80 kJ/m2, whereas it was very small to the
left (generally below 20 kJ/m2). This result can explain the strong turbulent mixing at Argo
floats A2, A3, A5 and A6 to the right of the typhoon track, and the weak turbulent mixing
at Argo floatsA1 and A4 to the left. Moreover, the profiles of NIKE along 19.12◦ N indicate
that the strongest NIKE exceeding 300 J/m3 was concentrated in the upper 100 m. With
the increase indepth, the NIKE was rapidly decreased: At 100–400 m depth, the NIKE was
generally atthe level of 50 J/m3, whereas below 400 m depth, the NIKE was nearly one
order of magnitude smaller than that at 100–400 m depth. This result is generally consistent
with [33] and could account for the enhanced turbulent mixing at 100–400 m and the nearly
invariant diapycnal diffusivity below 400 m depth. Moreover, strong NIKE was found to
last to 28 August, which is consistent with the duration of enhanced turbulent mixing in
the upper ocean at Argo floats A3, A5 and A6. In a word, Goni-induced near-inertial waves
caused a significant enhancement of turbulent mixing in the upper ocean, which finally led
to severe SST cooling. Because Goni-induced near-inertial waves existed for more than one
week after the passage of Goni (Figures 11 and 12), both an enhanced turbulent mixing and
SST cooling lasted for more than one week (Figures 3 and 10).

5. Conclusions

Based on the satellite remote sensing, Argo measurements and HYCOM reanalysis
results, this study investigates the oceanic dynamical and thermal response to Super
Typhoon Goni in 2015 and highlights the enhanced turbulent mixing in the upper ocean
caused by Goni. Results indicate that the super typhoon caused significant near-inertial
waves in the upper ocean, which further enhanced the turbulent mixing. To the right of
the typhoon track, the diapycnal diffusivity enhancement in the upper ocean, caused by
Goni, could reach three orders of magnitude, from O (10−5 m2/s) to O (10−2 m2/s) and
last at least 9 days after the passage of Goni. In contrast, the diapycnal diffusivity to the left
of the typhoon track did not show significant variations. As a result, the maximum SST
cooling caused by Goni was 7.7 ◦C, which is greater than the SST cooling caused by most
typhoons, and the SST cooling exhibitedan apparent rightward biased feature. Because
Goni-induced near-inertial waves existed for more than one week after the passage of Goni,
both enhanced turbulent mixing and SST cooling lasted for more than one week.

This study reveals the significant SST cooling and diapycnal diffusivity enhancement
in the upper ocean induced by Super Typhoon Goni; however, there still exists a problem
thatis not solved, i.e., what causes the rapid decrease and reinforcement of diapycnal
diffusivity at Argo float A6 from 22 to 26 August? This process is worthy to be investigated
in the future.
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Appendix A

Figure A1 shows the Goni-induced SST cooling maps from HYCOM reanalysis data
and satellite observations. On the whole, the HYCOM-simulated SST cooling is generally
consistent with that from the satellite observations: the maximum SST cooling caused by
Goniwas approximately −8 ◦C, which appeared to the right of Goni’s track. In addition,
the scatters of HYCOM-simulated and satellite-observed SST cooling are almost distributed
along the line y = x (Figure A2), which indicates the consistency between them again. The
slight difference between them may be attributed to the different temporal intervals of
HYCOM reanalysis results (3 h) and satellite observations (1 day). Based on the aforemen-
tioned results, we can conclude that the HYCOM reanalysis data reasonably and reliably
reproduces the oceanic thermal response to Super Typhoon Goni.

Figure A1. SST cooling caused by Goni corresponds to the (a) HYCOM reanalysis results and (b)
satellite observations, respectively.
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Figure A2. Comparison between the HYCOM-simulated and satellite-observed SST cooling caused
by Goni.
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Abstract: This paper describes the adaptation of the Bayesian sea ice detection algorithm for the
rotating fan-beam scatterometer CSCAT onboard the China–France Oceanography Satellite (CFOSAT).
The algorithm was originally developed and applied for fixed fan-beam and rotating pencil-beam
scatterometers. It is based on the probability of the wind and ice backscatter distances from the
measurements to their corresponding geophysical model functions (GMFs). The new rotating Ku-
band fan-beam design introduces very diverse geometry distributions across the swath, which leads
to three main adaptations of the algorithm: (1) a new probability distribution function fit for the
backscatter distances over open sea; (2) a linear ice GMF as a function of incidence angle; (3) the
separation of outer swath wind vector cells ((WVCs) number 1, 2, 41, 42) from the other WVCs to form
two sets of probability distribution function fits for these two WVC groups. The results are validated
against sea ice extents from the active microwave ASCAT and the passive microwave SSMI. The
validation shows good agreement with both instruments, despite the discrepancies with SSMI during
the melting season, and this discrepancy is caused by the lower sensitivity of the passive microwave
to detect the ice at a low concentration with a mixed water/ice state, while the scatterometer is
more tolerant regarding this situation. We observed that the sea-ice GMF regression between HH
and VV sea-ice backscatter at low and high incidence angles decorrelates at around −12 dB (28◦)
and −20 dB (50◦) and an experiment with truncated backscatter values at these incidence angles
is executed, which significantly improves the year-long average sea ice extents. In conclusion, the
adapted algorithm for CSCAT works effectively and yields consistent sea ice extents compared with
active and passive microwave instruments. As such, it can, in principle, contribute to the long-
term global scatterometer sea ice record, and as the algorithm was adapted for a rotating fan-beam
scatterometer, it also can serve as a guideline for the recently launched, dual-frequency, rotating
fan-beam scatterometer WindRAD.

Keywords: sea ice; Bayesian algorithm; CFOSAT; scatterometer

1. Introduction

Sea ice plays an important role in global climate change, and the polar regions are a
central focus of climate studies due to the significant changes that have been observed by
satellites over time [1–4]. Satellite observations have been supporting the growing interest
in polar regions in recent decades and the daily long-term historical sea ice extent records
have been assessed and mediated by passive microwave sensors [5]. Active microwave scat-
terometer methods have also been developed to map sea ice extents, etc., and proven to be
powerful [6–9]. The Bayesian sea ice detection algorithm developed for scatterometer was
first applied on C-band fixed fan-beam European Remote Sensing satellite (ERS) data [10],
then on Ku-band rotating pencil-beam Quick Scatterometer (USA QuikSCAT) data [9] and
finally on the European C-band fixed fan-beam Advanced Scatterometer (ASCAT) data [11].
An independent record of sea ice extents has been produced from intercalibrated scatterom-
eter data from 1992 to 2016 with ERS, QuikSCAT and ASCAT [12,13]. Bayesian sea ice
detection, applied using the above scatterometers, demonstrated excellent agreement with
passive microwave records during freezing seasons, and more sensitivity during melting
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seasons, as compared to passive microwave [9]. This is caused by a low concentration
and mixed water/ice conditions [14–16]. In this context, Bayesian sea ice detection for
scatterometers can serve as a nice complement to passive microwave products, especially
for mixed and saturated water/ice surface states.

In late 2018 the China-France Oceanography SATellite (CFOSAT) was launched with a
new type Ku-band scatterometer, CFOSAT Scatterometer (CSCAT), with a unique design
of a rotating fan-beam antenna [17–19]. The aim of this paper is to adapt the Bayesian
sea ice detection algorithm to the rotating fan-beam CSCAT, investigate sea ice mapping
capabilities, generate sea ice extents and validate these using both active and passive
microwave radiometers. The adapted Bayesian sea ice detection algorithm for CSCAT
provides the possibility of continuous scatterometer sea ice records and more diverse ice
backscatter information and can also serve as a guideline for another recently launched
dual-frequency rotating fan-beam Wind Radar scatterometer (WindRAD) on board FY-3E
(Feng Yun-3E) [20].

Section 2 describes the details of the Bayesian algorithm adaptation. Section 3 de-
scribes the sea ice detection results of CSCAT, including a discussion and cross-validation
of the sea ice extent and sea ice edges among CSCAT, ASCAT, and the Special Sensor
Microwave/Imager (SSMI). Conclusions are given in Section 4.

2. Algorithm Description and Adaptation

Ocean-surface wind speed and wind-direction retrieval are the prime purpose of scat-
terometers. However, they have also been used to detect and characterize sea ice [7,21]. The
sea ice detection method we propose here is an adapted version of the existing algorithm
developed for pencil-beam scatterometers such as QuikSCAT [9]. CSCAT and QuikSCAT
both have rotating beams at the Ku-band radar frequency. The differences are as follows:
CSCAT has a rotating fan-beam, emitting alternating HH/VV polarized pulses, whereas
QuikSCAT has two rotating pencil or spot beams, one with HH polarization and the other
with VV polarization. CSCAT flies in a sun-synchronous near-circular orbit at an altitude
of 519 km. It can provide global wind field coverage within 3 days. The rotating fan-beam
design results in multiple overlapping views with diverse incidence and azimuth angles
in each individual Wind Vector Cell (WVC). At the same time, this design also yields
unbalanced geometry diversity across the swath: outer-swath WVCs contain little diversity,
where only side-looking azimuth angles and high incidence angles are available; sweet-
swath WVCs contain the most diverse geometries and nadir-swath WVCs contain mainly
fore/aft-looking azimuth angles, together with a large range of incidence angles [19]. A
rotating pencil-beam scatterometer, such as QuikSCAT, on the other hand, has two fixed
incidence angles of 46◦ for the HH polarization beam and 54◦ for the VV polarization beam
and yields four views for each WVC in most parts of the swath. In the outer swath, only
VV polarization measurements are available.

Section 2.1 provides a summary of the Bayesian algorithm for the pencil-beam scat-
terometer QuikSCAT, which is followed by a description of the adaptation made for CSCAT
in Section 2.2. A detailed description of the QuikSCAT algorithm and its validation can be
found in [9].

2.1. The Bayesian Sea Ice Detection Algorithm for QuikSCAT

The distribution of the backscatter values, from open water on the one hand and
from the sea ice surface on the other hand, occupies distinct sectors in the backscatter
measurement space with fore and aft HH and VV backscatter values serving as an axis
in a 4-dimensional (4D) measurement space. The surface scattering caused by the wind
over open water shows azimuthal anisotropy and a conical surface [10] in 4D, whereas the
scattering from the sea ice slab is azimuth-invariant with stronger returns, particularly for
HH, and the ice backscatter geophysical model function (GMF) is a linear model of HH and
VV backscatter values as a function of sea ice age, thickness or roughness [9,11,12]. The
Bayesian ice probability p(ice|σ◦) algorithm combines the prior knowledge of the sea ice
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probability for a specific location, p0(ice), with the newly available satellite information,
based on conditional probabilities and modelled as a function of the distance to the ocean-
wind GMF or sea-ice GMF, respectively:

p(ice|σ◦) =
p(σ◦|ice)p0(ice)

p(σ◦|ice)p0(ice) + p(σ◦|wind)p0(wind)
(1)

where p(σ◦|wind) is the conditional probability of σ◦s given wind (in the case where we
would measure wind over open sea), i.e., following the wind σ◦ distribution around the
ocean GMF; p(σ◦|ice) is the conditional probability of σ◦ given ice (in the case where we
would measure over ice), i.e., following the typical ice σ◦ distribution around the sea-ice
GMF in measurement space. Note that p0(wind) = 1 − p0(ice). The normalized measures
of distance between the observed backscatter values and GMFs are derived by maximum
likelihood estimates (MLEs):

p(σ◦|wind) = p(MLEwind) (2)

p(σ◦|ice) = p(MLEice) (3)

p0(ice) and p0(wind) are a-priori probabilities; they are initialized as p0(ice) = 0.50
and p0(wind) = 1− p0(ice) and updated after every orbital pass with the previous posterior
p(ice|σ◦). The posterior sea ice probability is spatially smoothed once a day and p0(ice) is
relaxed for the next day’s processing a priori:

p0(ice) =
{

0.50 i f p(ice|σ◦) > 0.30
0.15 i f p(ice|σ◦) < 0.30

(4)

The relaxation setting aims to avoid saturation in the Bayesian filter. These settings
maximize the quality of the prior information regarding sea ice detection and suppress
the rain contamination effect. A sea ice coverage map is produced daily on a 12.5 km
polar stereographic grid with a 55% threshold to the posterior probability p(ice|σ◦), i.e.,
each pixel with a posterior probability above 55% is considered to be covered with ice.
The 55% threshold is chosen to have the best match with the 15% sea ice concentration
edge derived from passive microwave radiometers during the sea ice growing season. The
sea-ice backscatter normalized values are plotted in the sea ice maps, indicating the sea ice
roughness, age, or thickness.

2.2. The Adapted Bayesian Ice Detection for CSCAT

As described at the beginning of Section 2, CSCAT differs from QuikSCAT by its
rotating fan-beam. This important feature leads to the diverse geometries distributed
across the swath, and this diversity also causes the probability distribution of MLEwind
and MLEice to differ from QuikSCAT. New probability distribution fits for p(MLEwind) and
p(MLEice) are needed to derive p(σ◦|wind) (Equation (2)) and p(σ◦|ice) (Equation (3)).

Liu et al. [22] describe a sea ice detection method for CSCAT as well, but in comparison
to this work it is simplified by only using HH and VV polarized beams from two azimuth
angles and an incidence angle of 40 degrees, which is a rather direct adaptation from the
method as applied for pencil-beam scatterometers. Our implementation includes all the
measurements and classifies them into different groups to find corresponding and suitable
probability distribution functions, and it also diagnoses the incidence angle dependency
influences, which is a tailor-made version for CSCAT. Our method thereby follows earlier
implementations of the Bayesian sea ice detection method for ERS and ASCAT, which [22]
did not consider.

331



Remote Sens. 2022, 14, 3569

2.2.1. Probability Distribution of p(σ◦ |wind )

The wind inversion computes the minimum squared distances, called the maximum
likelihood estimator (MLE) [23], and this is implemented in the CFOSAT Wind Data
Processor (CWDP):

MLEwind =
N

∑
i=1

(σ◦
obs,i − σ◦

wind,i)
2

var[σ◦
wind,i]

(5)

where σ◦
obs,i is the measured σ◦, and σ◦

wind,i is computed from the Ku-band GMF for a
given wind speed, wind direction, azimuth and incidence angle, i is the view number, N
is the number of views in a WVC, and var[σ◦

wind,i] is the expected Gaussian observation
noise for view i. MLEwind is normalized with var[σ◦

wind,i] to make sure that the variance in
backscatter values around the GMF equals unity. In this way, MLEwind is expressed as a
sum of the squares of N standard normal random variables. For QuikSCAT, the number of
views is four for all the WVCs; hence, MLEwind,QuikSCAT is the squared distance of the four-
dimensional wind backscatter vector from a two-dimensional ocean GMF, varying with
wind speed and direction. Therefore, the probability of MLEwind,QuikSCAT can be expressed
as a chi-square distribution with two independent degrees of freedom [9]. However, for
CSCAT, the number of views is variable across the swath [19]. Hence, the probability
distribution of the MLEwind is multi-dimensional, with two degrees of freedom, and cannot
be simply classified into a chi-square distribution, although it can be empirically derived.
The probability of MLEwind as a function of WVC has been tested and the distribution per
WVC looks very similar, so it is not necessary to perform p(MLEwind) per WVC. Figure 1
shows the observed probability distribution of MLEwind in blue. The best analytical fit is
an inverse gamma distribution, as in Equation (6):

p(MLEwind) =
x−α−1

Γ(α)
e−

1
x

1
scale

(6)

where x = MLEwind−loc
scale , loc = −0.22, α = 0.44, scale = 4.81, Γ(α) is the gamma function.

The observed distribution of MLEwind to the ocean GMF closely agrees with this inverse
gamma distribution, as shown in Figure 1. Thus, p(σ◦|wind) can be expressed with the
function proposed in Equation (6).

Figure 1. Probability distribution of MLEwind (normalized to unit area): blue is the observed
p(MLEwind), orange is the fitted probability function derived from an inverse gamma distribution as
in Equation (6).
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2.2.2. Probability Distribution of p(σ◦ |ice )

Statistical knowledge is needed to derive the Ku-band sea-ice GMF for CSCAT as a
function of incidence angle; hence, the actual distribution of the sea-ice backscatter values
in the measurement space is derived by selecting the data located over the Arctic ice shelf
with a latitude larger than 70◦, a Sea Surface Temperature (SST, from ECMWF) lower than
−1 ◦C and ice flags from the level-1b dataset if applicable. As described in Section 2.1, the
sea-ice GMF is a linear function, which we can write as:

σ◦
VV,ice = σ◦

HH,ice × slope + o f f set (7)

The slope and offset are estimated using a 2D symmetric regression with VV against
HH. Note that this symmetric regression only provides a reasonable result when VV
and HH have similar noise characteristics, which might lead to inaccurate regression at
incidence angles with different noise characteristics (particularly at low and high incidence
angle). The σ◦s over sea ice (as described at the beginning of 2.2.2) are binned into incidence
angle bins, with a 1◦ interval for VV and HH, respectively, and then 1-degree Polyfit is
applied on the VV and HH σ◦s in the same incidence angle bin to derive the slope and
offset in Equation(7) for every incidence angle bin (this method is referred to as all_inc
from now on). Figure 2 shows the seasonal dependence of the sea-ice GMF slopes over the
year 2019 in the Arctic. There is an obvious dispersion among different incidence angles
(note that there was an instrument restart in July and a change to a redundant channel
by the end of the year). The seasonal dependence is caused by the presence of mixed
ice-water areas during the melting season in the summer, which negatively biases the
slopes for all incidence angles. The slopes generally increase with increasing incidence
angle, except around the incidence angle bin of 50◦, most probably due to the much higher
noise level in the backscatter values and the unsymmetric noise characteristics between VV
and HH at a high incidence angle, as we described earlier. The dispersion of the slopes for
different incidence angles becomes much narrower after the instrument restarted in July.
One possible reason for this is that it is the melting season, meaning that the regression
results are not the same as in the January to March period due to the water/ice mixture.
Another reason is that σ◦s, on average, started to drift after the instrument restarted. At the
beginning of November, the slope dispersion among the different incidence angles returns
and the values become generally larger than at the beginning of the year because the level
1b data processing version was updated. Fortunately, the data were stable when the sea
ice was formed and stable in the Arctic from January to March, we can use this period to
derive the sea-ice GMF.

Figure 2. Daily slopes in the linear ice model in the Arctic per incidence angle in the year 2019 (a 2◦

incidence interval is used for a clearer look).
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The mean slopes per incidence angle from the Arctic winter (from January to March)
are taken as representative of pure-ice backscatter for the sea-ice GMF (Equation (7)). The
scatter plots of the sea-ice backscatter values, together with the corresponding sea-ice GMF
per selected incidence angle, are shown in Figure 3. The distribution of the distances
between sea-ice backscatter values and the corresponding GMF is Gaussian, which is
shown per selected incidence angle in Figure 4. The standard deviations are the largest at
the lowest incidence angle of 28◦ and the highest incidence angle of 50◦, where the standard
deviation is around 2. The values at the other incidence angles are mainly between 1.0
and 1.2. This can also be observed in Figure 3: the regressions at 28◦ and 50◦ do not
follow the scatter plot’s highest density at high σ◦ values due to the decorrelation of the
VV and HH backscatter at around −12 dB (28◦ and −20 dB (50◦). These limits are most
pronounced in VV and a broader decorrelated cloud of points is visible in HH, which
suggests that the noise is more disturbing for HH. As we described earlier, the regression
might provide inaccurate results if the VV and HH beams are uncorrelated and contain
asymmetric noise characteristics, as shown here at 28◦ and 50◦. Hence, we exclude dB
values below −10 dB for 28◦ and 50◦ (referred to as truncated_inc). Figure 5 gives the
averaged slope as a function of the incidence angle for truncated_inc with an increased
slope at 28◦ (from 0.56 to 0.62) and 50◦ (from 0.71 to 0.77), and Figure 6 illustrates the sea-ice
GMF with truncated_inc as a function of incidence angle. For pencil-beam instruments
(e.g., SeaWinds), as the VV beam has a fixed incidence angle of 46◦ and the HH beam has a
fixed incidence angle of 54◦, its sea-ice GMF has a slope of around 1. The slope for CSCAT
increases with increasing incidence angle, reaches saturation at a higher incidence angle
46◦ with value 0.91, and then goes down. In comparison with SeaWinds, it seems that the
slope saturates at higher incidence angles and then tends to go downward.

Figure 3. The distribution of the sea-ice backscatter measurements and the corresponding sea-ice
GMF (red line). Selected incidence angles from low to high are shown.
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Figure 4. Gaussian distribution of the distance between sea-ice backscatter and the corresponding
sea-ice GMF per incidence angle with standard deviation (red to blue indicates incidence angle from
low, 28◦, to high, 50◦).

Figure 5. The average slopes from Jan to March in the Arctic as a function of incidence angle
(truncated_inc).
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Figure 6. Illustration of the sea-ice GMFs as a function of incidence angle (truncated_inc).

The sea-ice GMFs (slope and offset) are constructed as a function of incidence angle
(bin size is 1◦) from the HH and VV backscatter measurements over sea ice (Figure 6).
Therefore, the minimum squared distance from sea-ice backscatter to sea-ice GMF in each
WVC can be expressed as follows:

MLEice =
N

∑
i=1

(σ◦
obs,i − σ◦

ice,i)
2

var[σ◦
ice,i]

(8)

where σ◦
obs,i is the measured σ◦ HH and VV pair, i is the pair number, N is the number of

pairs in one WVC and σ◦
obs,i − σ◦

ice,i is the distance from the HH and VV pair to the sea-ice
GMF. var[σ◦

ice,i] is the squared standard deviation of the corresponding sea-ice backscatter
distances’ distribution against the sea-ice GMF, as described above.

For QuikSCAT, the probability distribution of MLEice is modelled as a chi-square
distribution with three independent degrees of freedom, since four backscatter measure-
ments are present in all WVCs and the sea-ice GMF is one-dimensional. For CSCAT, the
probability distribution of MLEice cannot be modelled in the same way due to the varying
number of views and HH/VV pairs in different WVCs across the swath. Probability dis-
tributions of MLEice in some selected WVCs are shown in Figure 7. The selected WVCs
are representative across the swath for an outer-swath WVC, a sweet-swath WVC and
a nadir-swath WVC. The distribution of MLEice in outer-swath WVCs is quite different
from the distributions in sweet and nadir WVCs; thus, the WVCs across the swath are
grouped into two: one is the ‘outer group’ of numbers 1, 2, 41 and 42; the other one is
the ‘rest group’ of numbers 3 to 40. The outer group contains only high-incidence-angle
observations (Figure 8a) due to the incidence angle distribution across the swath (Figure 8b).
The incidence angles become more mixed for WVCs closer to the sweet and nadir swath;
this causes the quite different p(MLEice) distributions in the outer group as compared to
the rest group. Thus, the p(MLEice) is empirically and separately fitted for the outer group
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and the rest group (Figure 9). The best probability distribution fit for both groups is a
chi-square distribution, but with different parameter values:

p(MLEice) =
(MLEice − loc)

k
2−1

2
k
2 Γ(k/2)

e−
MLEice−loc

2 (9)

for the outer group: k = 3.35, loc = −0.1 and for the rest group: k = 1.5, loc = −0.2.
The observed distribution of MLEice closely agrees with the chi-square distribution, as
shown in Figure 9. Thus, p(σ◦|ice) can be expressed as in Equation (9). Note: the fittings
shown here are for all_inc., while p(MLEice) for truncated_inc: outer group is equal to
Equation (9) + 0.01; while the rest group is the same setting as Equation (9).

 

Figure 7. The probability distribution of MLEice in the selected WVCs across the swath: outer WVCs
number 1 and 42; sweet WVCs number 6 and 36; nadir WVC number 21.

 
(a) (b) 

Figure 8. (a) the number of incidence angle HH/VV pairs across the swath (the number is logarithmic
to make the plot clearer); (b) the distribution of the incidence angle across the swath.
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(a) (b) 

Figure 9. Probability distribution of MLEice (normalized to unit area): blue is the observed
p(MLEice), orange is the fitted probability function derived from chi-square distribution Equation (9).
(a) p(MLEice) of outer group (WVC numbers 1, 2, 41 and 42); (b) p(MLEice) of rest group (WVC
numbers from 3 to 40).

The Bayesian sea ice detection algorithm in Equation (1) can now be solved with the
newly constructed p(σ◦|wind), p(σ◦|ice) and the prior p0(ice) and p0(wind).

3. Results and Discussion

Two data sources from the year of 2019 were applied to validate the adapted Bayesian
sea ice detection algorithm for CSCAT. One data source is the sea ice extent produced
from ASCAT with the KNMI (Royal Netherlands Meteorological Institute) Bayesian sea
ice detection algorithm [11]. The other data source is the sea ice extent derived from the
ice concentration data generated by the NASA team’s NT algorithm from the passive
microwave radiometer SSMI using a 15% isoline [24]. The all_inc method was first used for
the validation, and then the truncated_inc method was applied for comparison.

Figure 10 shows the sea ice maps filled with normalized sea-ice backscatter values,
which proxies as ice age or thickness, as well as the geographical behavior of sea ice extent
on 10 January 2019 for CSCAT, SSMI (15% concentration threshold), and ASCAT in the
Arctic (winter) and Antarctic (summer). All maps are masked with the same land and
polar gap mask. As expected, the contrast between multi-year ice (bright) and first-year ice
(dimmer) is stronger for CSCAT than ASCAT, while ASCAT gives a stronger response at
the edge of the ice area. These are caused by their different frequencies. CSCAT operates at
Ku-band, with a shorter wavelength than the ASCAT C-band. The shorter wavelength has
a lower response on the rafted sea ice on the edge and is more responsive to rough multi-
year ice. The three datasets in general agree well with each other in the Arctic (winter),
while there are more disagreements in the Antarctic (summer) between the scatterometer
instruments (CSCAT and ASCAT) on the one hand and passive microwave SSMI on the
other hand. The ice edges of the three instruments (Figure 11) clearly show the discrepancy
between active scatterometer and passive microwave in summer (Antarctic) because the sea
ice state is mixed with open water and the passive microwave instrument has difficulties
detecting this.
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(a) (b) (c) 

Figure 10. Sea ice extents in the Arctic (upper panel) and Antarctic (lower panel) on 10 January 2019
with the same land mask and polar gap mask: (a) CSCAT; (b) SSMI; (c) ASCAT; the gray scale for
(a) and (c) indicates sea ice age/brightness. The grey scale for (a) and (c) represents sea ice normalized
VV backscatter and map griding is 12.5 km.

Daily Arctic and Antarctic ice extents were produced over the year 2019 (Figure 12).
We observe a large increase in sea ice extent in the Arctic from mid-July to Aug for CSCAT
(indicated in Figure 12 with a rectangular box), which was caused by an instrument restart
in mid-July. The restart was necessary to correct a mis-registration of the time in the level0
data and a stabilization period was needed afterwards as we learned from communication
with National Satellite Ocean Application Service (NSOAS), China. This restart did not
have the same impact in the Antarctic because it was wintertime. Thus, the sea ice formed
solidly and the wind speed was much higher than in the Arctic. A lower wind speed
corresponds to lower backscatter values, which causes a noisier MLEwind, and can reduce
the ice screening skill in the Arctic summer; thus, together with the instrument restart
incident, the impact was obverse in the Arctic. Apart from this interruption, CSCAT and
ASCAT in general agree with each other well throughout the year. Both in the Arctic and
the Antarctic, the two scatterometers show better agreement in summer than in winter.
The agreement between CSCAT and ASCAT in winter (starting from spring) is less as
compared to QuikSCAT and ASCAT [11]. A possible reason for this is that CSCAT data
are much noisier than QuikSCAT due to the rotating fan-beam design and the CSCAT
asymmetric noise characteristics, not fitting the sea-ice GMF well at both low and high
incidence angles, which might lead to misdetection during the high ice extents season.
However, the average difference (excluding the instrument restart period) is relatively small,
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0.18 million km2 in the Arctic and 0.13 million km2 in the Antarctic, and the truncated_inc
method further improves the agreement between CSCAT and ASCAT (Figure 13). The
result shows the capability of the newly developed Bayesian sea ice detection algorithm for
rotating fan-beam scatterometers and the possibility of adding new, consistent data to the
existing scatterometer sea ice record. The difference between CSCAT and SSMI was smallest
during the autumn and winter months for both the Arctic and Antarctic, whereas the larger
discrepancies begin from spring’s rapid sea ice melting and summer’s rapid sea ice advance
period. This is a typical discrepancy between the active and passive radiometers, associated
with the low sensitivity of the passive microwave radiometer to melting/mixed sea ice
conditions [14]. This discrepancy also indicates that the active microwave scatterometers
are more sensitive and proficient at detecting or distinguishing the sea ice in mixed sea ice
and water states during the spring and summer seasons.

 

 

(a) (b) 

Figure 11. Ice-edge map on the 10 January 2019 for the (a) Arctic and (b) Antarctic, CSCAT black line,
SSMI blue line, ASCAT red line.

Figure 12. Daily Arctic (solid lines) and Antarctic (dashed lines) sea ice extents in 2019 from CFOSAT
(blue), ASCAT (orange), and SSMI (green); the red rectangular area marks the period when CSCAT
instrument restarted.
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Figure 13. Daily Arctic (solid lines) and Antarctic (dashed lines) sea ice extents in 2019 from CFOSAT
all_inc (black), CFOSAT truncated_inc (blue), ASCAT (orange), CSCAT instrument restart period is
excluded here.

As we describe in Section 2, the regressions at 28◦ and 50◦ do not follow the highest
density of scattered data points at high σ◦ values due to the decorrelation of the VV and
HH at around −12 dB (28◦) and −20 dB (50◦). Hence, the truncated_inc test is proposed
and applied. The sea ice extents are similar to those from the all_inc method and agree well
with ASCAT and SSMI. If we take ASCAT as a reference, the difference in the year-long
average sea ice extent (excluding the instrument restart period) between truncated_inc
and ASCAT is 0.05 million km2 in the Arctic and 0.01 million km2 in the Antarctic, which
reduces the differences by 72% and 92%, respectively, as compared to all_inc (Table 1).

Table 1. Sea ice extent year-long average difference between ASCAT and all_inc, truncated_inc and
exclude_inc, respectively, in the Arctic and Antarctic (during the sea-ice GMF construction, all_inc: all
the sea-ice backscatter values are included; truncated_inc: sea-ice backscatter values below −10 dB
are not considered at incidence 28◦ and 50◦; exclude_inc: sea-ice backscatter values at incidence 50◦

are excluded).

Average Sea Ice Extent
Difference Compared to
ASCAT Sea Ice Extent

All_Inc Truncated_Inc Exclude_Inc

Arctic (million km2) 0.18 0.05 0.13

Antarctic (million km2) 0.13 0.01 0.08

The sea ice retrieval at outer-swath WVCs is only influenced by high incidence angles
of around 50◦, and corresponds to a larger standard deviation in the backscatter values
against the linear ice model. This may cause more uncertainty in the retrieval. We simply
exclude incidence angles larger than 49◦ from the sea ice retrieval and refer to this as
exclude_inc. This leads to a narrower usable swath width by about two WVCs (i.e.,
50 km). However, the swath width is still wide enough to obtain daily coverage in the
polar regions. The sea ice extent results show that the year-long average sea ice extent
difference (excluding the instrument restart period) between exclude_inc and ASCAT is
0.13 million km2 in the Arctic and 0.08 million km2 in the Antarctic, which reduces the
differences by 28% and 38%, respectively, as compared to all_inc (Table 1).

This indicates that the sea ice algorithm skill improves when using the truncated_inc
and exclude_inc methods. The truncated_inc method shows results that are more consis-
tent with ASCAT as compared to exclude_inc, without reducing the usable swath width.
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Figure 13 shows the daily ice extents of all_inc, truncated_inc and ASCAT in 2019, exclud-
ing the instrument restart period (exclude_inc is not shown because the difference between
exclude_inc and all_inc is smaller than the difference between truncated_inc and all_inc,
which makes it difficult to see), and truncated_inc is usually closer and more consistent
to ASCAT than all_inc. Thus, we suggest applying the truncated_inc method as the final
Bayesian sea ice detection algorithm.

4. Conclusions

In this paper, the details of the Bayesian sea ice detection algorithm’s adaptation
to CSCAT onboard CFOSAT are exploited. The main adaptations include: (1) a new
fit for the probability distribution of p(σ◦|wind); (2) the introduction of an incidence
angle dependency to the linear ice model; (3) the identification of the distinct probability
distribution p(σ◦|ice) difference between the outer swath WVCs (number 1, 2, 41, 42) and
the other WVCs, and the construction of different probability fits for these two groups. The
performance of the new algorithm is validated against active (ASCAT) and passive (SSMI)
microwave data at a global and seasonal level. CSCAT provides consistent sea ice extents,
which agree well with ASCAT and SSMI, despite the instrument restart and stabilization
period after late July, 2019. There was a larger discrepancy between CSCAT and SSMI
during the sea ice’s fast advancing and retreat episodes, caused by the well-known passive
microwave issue of identifying mixed sea-ice and open-water conditions. The scatterometer
appears again more sensitive to the detection of low ice concentration and water/ice mixed
situations as compared to passive microwave instruments. We observed a larger standard
deviation in the ice backscatter compared to the linear ice model for both the lowest and
highest incidence angles. Therefore, two extra experiments were conducted: truncating
the sea-ice backscatter values below −10 dB at incidences of 28◦ and 50◦ (truncated_inc)
and excluding high-incidence angles (>49◦, exclude_inc). Both tests reduce the year-long
average difference in sea ice extents between CSCAT and ASCAT, and the truncated_inc
method shows the largest improvement, with 72% and 92% reductions in the difference
in the Arctic and the Antarctic, respectively. The truncated_inc test did not reduce the
usable swath width, whereas the exclude_inc filter reduces the usable swath width by
about 50 km. We recommend using the exclude_inc mode, as swath width is not critical
for CSCAT. Overall, the adapted Bayesian sea ice detection for the Ku-band rotating fan-
beam CSCAT instrument shows consistency with other active and passive microwave
instruments. The active instrument shows more inclusive ice detection at water/ice mixed
seasons compared to the passive microwave instruments, as expected. The Bayesian sea ice
detection algorithm has now been successfully implemented for all scatterometer types; its
performance appears consistent and of high quality. As CSCAT is the first rotating fan-beam
scatterometer in orbit, the adapted algorithm can also serve as a guideline for the recently
launched dual-frequency rotating fan-beam Wind Radar scatterometer (WindRAD). For
future elaboration, CSCAT has the potential to further identify sea ice types: first-year
ice and multi-year ice and to explore/inter-compare with the sea ice product from the
SWIM instrument, which is also onboard CFOSAT. In addition, it is possible to provide a
long-term global scatterometer sea ice record in the case of a stable CSCAT instrument.
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Abstract: Two large fish assemblages were recorded in the overwintering fishing grounds of the East
China Sea in February and March 2017. In this study, available time series of satellite-derived sea
surface temperature, wind, chlorophyll a, and reanalysis data were used to explore the relationships
between the observed large fish aggregations and environmental factors. The bottom waters of the
fishing grounds were abnormally warm in winter 2017, and then experienced significant cooling
due to the eastward movement of the Yellow Sea Cold Current, which was driven by the increased
northwesterly wind from January to mid-March 2017. Fishing areas in the affected region, including
No. 1891, which was abnormally warm, and No. 1592, which had a strong thermal front and high
chlorophyll a concentration, might have provided suitable environments for the warm-temperature
fish, resulting in the observed large fish assemblages. The abnormal temperature changes between
winter and early spring 2017 may have been associated with changes in local ocean circulation.

Keywords: fish assemblage; temperature; environmental change; Yellow Sea coastal current; East
China Sea

1. Introduction

Changes in fishery resources are not only associated with increased anthropogenic
fishing pressure, but are also closely related to fluctuations in marine environmental factors,
such as winds, sea surface temperatures (SST), and ocean currents [1–3]. Of these, tempera-
ture has the most significant effect on fish activity [4]. Changes in temperature directly or
indirectly affect fish migration behaviors, growth, and habitat distributions [5–7]. Eveson
et al. [8] demonstrated that water temperature is the environmental variable most com-
monly used to forecast tuna fishing grounds. The strong relationships between temperature
and fish abundance are well documented [9]. In addition, several studies investigated
the effects of abrupt changes in temperature on fishing grounds and fishery resources,
e.g., [4,10]. For example, some fish species shifted northward during the 2012 ocean heat
wave in the Northwest Atlantic [4], while a cold event in 2008 contributed to a massive fish
die-off near the Penghu Island, Taiwan [10].

The East China Sea (ECS) is a marginal sea in the western Pacific Ocean that has
a vast shallow continental shelf (Figure 1). The Yangtze River carries a large volume
of terrestrial material into the ECS, and the southeastern ECS is strongly affected by
the warm Kuroshio current [11,12]. The ECS circulation is influenced by the East Asian
monsoon: Northerly winds prevail in winter, while southerly winds prevail in summer [13].
The primary currents affecting the ECS include the Kuroshio, Taiwan Warm Current
(TWWC), Yellow Sea Warm Current (YSWC), Yellow Sea Coastal Current (YSCC), and
Zhe-Min Coastal Current [1,14]. Interactions among bottom topography, large freshwater
discharge, monsoon winds, and the Kuroshio intrusion led to the development of particular
circulation regimes and distinct water masses [1]. Ocean parameters, such as temperature
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and salinity, may change abruptly between water masses [15]. Fronts, which are defined
as boundaries between water masses, are generally characterized by strong mixing and
increased bioproductivity [16–18]. Thus, frontal zones often coincide with fishery grounds
in the ECS [19].

Figure 1. Map showing the study area and water circulation in winter. The two red boxes outline the
two fishing areas (Nos. 1592 and 1891). Area B, which includes Nos. 1592 and 1891, is boxed by blue
dotted lines. The light gray lines represent isobaths. The bathymetric data were obtained from the
General Bathymetric Chart of the Oceans (GEBCO_2020) grid data from the British Oceanographic
Data Centre. TWWC: Taiwan Warm Current; ZMCC: Zhe−Min Coastal Current; YSCC: Yellow Sea
Coastal Current; YSWC: Yellow Sea Warm Current; TWC: Tsushima Warm Current.

Being one of the most important fishing grounds in the west Pacific, the ECS is
biologically diverse and rich in fishery resources, with over 700 recorded species of fish,
more than 100 species of crustaceans, and 69 species of cephalopods [20–22]. All fish
species are considered inshore, offshore, or migratory [23]. Migratory species include the
small yellow croaker (Larimichthys polyactis), hairtail, red seabream, and Pacific herring [23].
These species spawn and mature in shallow nearshore waters, then migrate for food and
overwintering far offshore [23]. Previous studies show that the abundances and spatial
distributions of fishery resources in the ECS are closely related to variations in marine
environmental variables [24–26]. For example, due to the influence of various currents and
water masses, primary productivity in the ECS is high during the summer [27]. Thus, the
ECS is an important spawning and nursery ground for commercially valuable fish such as
the small yellow croaker, hairtail, pomfret, and white Chinese croaker [26].

ECS fisheries began to be heavily exploited in the 1980s [28,29], and the biodiversity
and abundance of commercial fish species decreased significantly since that time [30]. In
the 1990s, the abundance of large-sized, commercially high-value fish species, such as
hairtail, small yellow croaker, and silver pomfret, declined to less than 50% of levels in the
1980s, and low-value species began to dominate the catch [29,31]. In addition, although
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fishing power increased by a factor of 7.6 between the 1960s and the 1990s, the catch per
unit effort in the ECS declined by a factor of 3 over the same period [23,32].

In late February 2017, a large number of small yellow croaker (L. polyactis) appeared
at the surface of fishing area No. 1891 in the ECS (Figure 2a). Fishermen caught more than
9000 kg of L. polyactis in about two hours (available online: http://slide.news.sina.com.
cn/s/slide_1_2841_108157.html#p=1, accessed on 2 March 2021). Two weeks later, in mid-
March 2017, fishermen caught more than 90,000 kg of Collichthys sp. and L. polyactis near
fishing area No. 1592 in about ten days (Figure 2b) (available online: https://www.sohu.
com/a/128766304_115864, accessed on 2 March 2021). Large fish catches over short periods
such as these are very rare in the ECS, especially as fishery resources are currently reduced
due to overfishing. Although some previous studies explored long-term variations in
fishery resources and the relationship between these variations and climate change [33–36],
investigations of the environmental factors associated with the sudden appearance of
abundant fish assemblages in the ECS are limited.

Figure 2. Fishermen catching large quantities of fish in the ECS. Larimichthys polyactis caught in fishing
area No. 1891 in late-February 2017 (a, available online: http://slide.news.sina.com.cn/s/slide_1_
2841_108157.html#p=1, accessed on 2 March 2021); Collichthys sp. and L. polyactis caught in fishing
area No. 1592 in mid-March 2017 (b, available online: https://www.sohu.com/a/128766304_115864,
accessed on 2 March 2021).

Therefore, to investigate the drivers of the large fish assemblages recorded between
February and March 2017, we utilized time series data for satellite-derived sea surface
temperature (SST), wind, and Chl a concentration, and we used reanalyzed data including
data covering temperature and geostrophic currents to investigate variations in marine
environmental factors across the fishing grounds, particularly Nos. 1891 and 1592. This
study aimed to explore possible mechanisms associated with the large fish accumulations
observed in February and March 2017. Usually, large fish assemblages are rare and difficult
to predict. However, an improved understanding of the complex relationships among
environmental factors in marine ecosystems will help to clarify the responses of fishery
resources to marine environmental change, and will inform the development of fishery
policies that anticipate future changes in resource availability due to abrupt shifts in
marine conditions.
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2. Materials and Methods

2.1. Satellite Data and Processing

Daily and monthly global Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) data from 2011 to 2019 were obtained from the European Copernicus program
(http://marine.copernicus.eu, accessed on 2 March 2021), and Advanced Scatterometer
(ASCAT)-derived wind-speed and wind-direction data for the same period were obtained
from Remote Sensing Systems (http://www.remss.com, accessed on 2 March 2021). The
spatial resolution of the OSTIA global sea surface temperature (SST) data is 5 km, and that of
the ASCAT-derived wind data is 25 km. Monthly Chl a data from the Moderate Resolution
Imaging Spectroradiometer (MODIS)/Aqua were obtained from the NASA Goddard Space
Flight Center (https://oceancolor.gsfc.nasa.gov, accessed on 2 March 2021) and have a
spatial resolution of 4 km. Daily Chl a concentration data, derived from geostationary
satellite Himawari-8, were obtained from the P-Tree System (Japan Aerospace Exploration
Agency, https://www.eorc.jaxa.jp/ptree/index.html, accessed on 2 March 2021) and have
a spatial resolution of 5 km.

Temporal changes in the main marine environmental factors in fishing areas No. 1592
(125.5◦E–126.0◦E, 32◦N–32.5◦N) and No. 1891 (125.0◦E–125.5◦E, 30◦N–30.5◦N; Figure 1)
were analyzed, as the abnormal fish assemblages of 2017 were observed in these areas. We
also established a larger study site surrounding fishing areas Nos. 1592 and 1891 (area B;
125◦E–126.5◦E, 30◦N–32.5◦N) in order to investigate the main environmental parameters
of the overwintering fishing grounds.

Gradient methods are commonly used to recognize and define oceanic fronts. The
amplitude grad (i, j) of the SST gradient was computed at each grid point (i, j) in the ECS
using the central difference method of Wall et al. [37] as follows:

grad(i, j) =

√
(

SSTi+1,j − SSTi−1,j

2Δx
)

2

+ (
SSTi,j+1 − SSTi,j−1

2Δy
)

2

(1)

where Δx and Δy are the distances in kilometers between pairs of neighboring grid points
in the east-west direction and the north-south direction, respectively.

Here, we defined thermal fronts as those where the SST gradient was ≥0.025 ◦C/km.
In this way, the weak front at the southern edge of the YSCC was manifested. The frontal
intensity was then calculated as the average SST gradient of the pixels with gradients greater
than the threshold. We also calculated frontal intensity using other frontal thresholds
(e.g., gradient thresholds of ≥0.01, ≥0.015, and ≥0.02 ◦C/km) and compared our results
with those generated using a gradient threshold of ≥0.025 ◦C/km (Figure 3). We found
no significant differences among daily frontal intensities calculated based on different
thresholds for fishing areas No. 1891 and 1592 between January and May 2017 (Figure 3).
The correlation coefficient (R2) was >0.74 for fishing area No. 1891 and >0.96 for fishing
area No. 1592.

Nighttime light remote sensing data were previously shown to be an effective proxy
with which to monitor fishing activity and evaluate fishery resources [38,39]. Waluda
et al. [40] used satellite-derived nighttime lights to show that fish catch was positively
correlated with estimated fishing extent. Indeed, light intensity at night affects fish activity
levels and aggregation [41,42]. Because monthly fish catch data at the study sites are
not available, we used nighttime light intensity to approximate the temporal changes
in fishery activity levels. Higher light intensities might imply increases in fishing effort
or fish abundance. The monthly average radiance composite images derived from the
Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) for February
and March from 2013 to 2019 were obtained from the Earth Observations Group (https:
//payneinstitute.mines.edu/eog/nighttime-lights/, accessed on 2 March 2021), with a
spatial resolution of 15 arc-seconds (~500 m). DNB radiance data affected by stray light,
lightning, lunar illumination, and cloud cover are excluded from the DNB datasets before
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averaging [43]. We used the average monthly radiance data greater than zero in area B to
analyze temporal changes in nighttime light intensity.

Figure 3. Daily frontal intensities from January to May 2017 calculated using different frontal
thresholds for fishing areas No. 1891 (left panels) and No. 1592 (right panels).

2.2. Temperature and Geostrophic Currents from ARMOR3D

The Multi Observation Global Ocean ARMOR3D L4 multi-year reprocessed (REP)
weekly data from 2011 to 2019 were obtained from the E.U. Copernicus Marine Service (http:
//marine.copernicus.eu, accessed on 2 March 2021). The product used in this study was
MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012. The ARMOR3D product consists
of global 3D temperature, salinity, geopotential height, geostrophic currents, and 2D
mixed layer depth defined on a 1/4◦ regular grid, from the surface down to a depth of
5500 m [44,45]. The temperature and salinity observation-based product uses statistical
methods to combine remote sensing observations (sea level anomaly and SST) with in
situ vertical profiles of temperature and salinity (derived mainly from Argo floats but also
from other sources including Conductivity-Temperature-Depth (CTDs) and eXpandable-
Bathy-Thermograph (XBTs)) [45]. The global 3D geostrophic circulation was estimated
by merging altimetric data and a synthetic 3D thermohaline field using the thermal wind
equation with the reference level set at the surface [44].

3. Results

3.1. Temperature

The spatial distribution of average SST in the ECS from February to March clearly
showed a cold-water tongue, represented by a 12.5 ◦C isotherm, extending southeastward
from the Yellow Sea (Figure 4). Fishing areas Nos. 1891 and 1592 were located at the edge
of this cold-water tongue. Unlike the 12.5 ◦C isotherm observed each year from 2011 to
2019 (but excluding 2011 and 2017), the 12.5 ◦C isotherm of 2017 shifted northwards or
eastwards (Figure 4).
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Figure 4. The spatial distributions of average OSTIA SST in February and March in the East China
Scheme from 2011 to 2019. The overlaid solid red line represents the 12.5 ◦C isotherm based on the
average SST from February to March in 2017, while the dashed black line represents the 12.5 ◦C
isotherm based on average SST from February to March in the year indicated.

Daily variations in SST between January and April from 2011 to 2019 indicated that
relatively high SST took place early in January in both fishing areas Nos. 1891 and 1592.
Then, the SSTs decreased until mid- or late-March (Figure 5). The SST of No.1891 was
warmer in 2017 than in other years on the same days before mid-March. For No. 1592, warm
SST appeared in early January, and it was warmer than the SSTs of other years excepting
2019. After that, the SST decreased and was <12 ◦C in mid-March 2017 (Figure 5).

Figure 5. Daily SST between January and April 2011−2019 for (a) fishing area No. 1891 and (b) fishing area No. 1592. The
thickened red lines correspond to 2017.

The vertical distributions of temperature derived from ARMOR3D for area B between
2011 and 2019 are shown in Figure 6. The upper 50 m of the water column in area B was
relatively cold and vertically mixed; the bottom layer was warmer, possibly due to the
influence of the TWCC [46]. Compared with other years, the bottom layer (60–80 m) in
early January 2017 was relatively warm (>18 ◦C), warmer than any other years except
for 2016 and 2019 (Figures 6 and 7). Then, water temperature decreased, and relatively
cold water (<14 ◦C) appeared in March 2017 (Figure 6). We calculated the differences in
water temperatures between the week with the coldest average water temperature (the
11th week, March 12–18) and the week with the warmest average temperature (the 1st
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week, 1–7 January) for the upper layer (0–20 m) and the bottom layer (60–80 m) (Figure 7).
We found that the magnitude of cooling in area B from early January to mid-March 2017
was generally greater than that in any of the other nine years. This was especially dramatic
in the bottom layer, the temperature of which decreased by >4 ◦C between early January to
mid-March 2017, a greater decrease than that in any other year (Figure 7).

Figure 6. Vertical distributions of temperature between January and April 2011−2019 for area B.

Figure 7. Temperatures in the 1st week (solid lines) and 11th week (dashed lines) in the upper layer
(0−20 m) and the bottom layer (60−80 m) in area B. Both temperatures are graphed in (a); differences
between the 1st and 11th week are shown in (b). The OSITA SSTs are superimposed for comparison.
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3.2. Thermal Fronts

The spatial distribution of the SST gradient in the ECS is shown in Figure 8. A high
SST gradient was particularly noticeable at the northern edge of the cold-water tongue,
where the cold YSCC meets the warm YSWC. Fishing area No. 1592 is located inside
the northern strong thermal front, and fishing area No. 1891 is located at the edge of the
southern weak thermal front (Figure 8a). The frontal intensity in the fishing area No. 1592
was stronger than the multi-year average, while the intensity of the thermal front in most
of fishing area No. 1891 was weaker than in normal years (Figure 8b).

Figure 8. (a) The spatial distribution of the average SST gradient and (b) the gradient anomaly during
February and March 2017. The gradient anomaly was obtained by subtracting the average gradients
for February and March 2011−2019 from the gradients for February and March 2017.

Daily changes in frontal intensity between 1 January 2017 and 1 May 2017 indicate
that the frontal intensity in fishing area No. 1891 was weaker than that in fishing area
No. 1592 (Figure 9). The strongest frontal intensity in fishing area No. 1891 appeared in late
January. Frontal intensity remained relatively strong through mid-February and became
relatively weak in March. The strongest frontal intensity in fishing area No. 1592 appeared
in mid-February, about one month later than that in fishing area No. 1891. Thus, in neither
area did the appearance of the unusually large fish assemblage exactly coincide with the
peak of frontal intensity. However, the large fish assemblage did appear in fishing area
No. 1592 at a point when frontal intensity was relatively strong (Figure 9). Compared with
multi-year average, the frontal intensity in fishing area No. 1891 was weaker on most days
in February and March 2017. However, the frontal intensity in fishing area No. 1592 was
higher than average between January and mid-March 2017 (Figure 9).

Figure 9. (a) Daily fluctuations in frontal intensity for fishing area No. 1891 and (b) fishing area
No. 1592 from January to April 2017. The solid and dashed lines indicate the frontal intensity in 2017
and the average frontal intensity in 2011−2019, respectively. The bold red lines on each x-axis indicate
the time periods at which the large fish assemblages were observed in each area (as shown Figure 2).
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3.3. Chl a

Analysis of the spatial distribution of MODIS Chl a concentration in February and
March 2017 showed that nearshore Chl a was greater than offshore Chl a (Figure 10a). Chl a
concentrations were greater than 1.0 mg/m3 in both fishing areas (Nos. 1891 and 1592). In
2017, Chl a levels greater than the multi-year average mostly occurred in or near thermal
fronts (Figure 10b), and these locations also had stronger than average frontal intensities
(Figure 8b). Indeed, the Chl a concentration in fishing area No. 1592 was 0.21 mg/m3

(11.9%) higher than the multi-year average.

Figure 10. (a) The spatial distribution of average MODIS-derived Chl a concentrations and (b) Chl
a anomalies in area B, overlaid with an SST gradient of 0.025 ◦C/km in February and March 2017.
(c) Daily changes in Himawari-8-derived Chl a concentrations in area B. Chl a anomaly data were
calculated by subtracting the average Chl a concentration in February and March 2011−2019 from
the Chl a concentration in February and March 2017.

Because several datapoints in the daily Himawari-8-derived Chl a dataset for fishing
areas Nos. 1891 and 1592 are missing due to bad weather or cloud cover, we used the
daily changes in Chl a concentration in area B as a whole (including both fishing areas;
Figure 10c). Chl a concentrations were relatively high from early February to mid-March,
consistent with the appearance of relatively intense fronts (Figure 9).

3.4. Wind

Northerly winds prevailed in the ECS during February and March 2017 (Figure 11a).
The polar wind chart indicates that the wind field in 2017 was mainly northerly and
northwesterly, in contrast to the multi-year average wind field, which was dominated by
northerly and northeasterly winds (Figure 11b). The frequencies of northerly and north-
westerly winds in February and March 2017 were greater than the multi-year average,
while the frequencies of northeasterly winds were significantly lower. Furthermore, the
speeds of northerly and northwesterly winds in February and March 2017 were signifi-
cantly stronger than the multi-year average, while the northeasterly winds were weaker
(Figure 11b).
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Figure 11. (a) The spatial distribution of the average wind field in February and March 2017. The
color represents wind speed, and the black arrows indicate wind direction. (b) The polar wind chart
showing the multi-year average wind for 2011−2019 (left panel) and the average wind in February
and March 2017 (right panel).

4. Discussion

During February and March 2017, large fish assemblages were observed in fishing
areas Nos. 1891 and 1592 (Figure 2). We used monthly average nighttime light radiance data
to demonstrate that fish abundance was also high in other locations in area B (Figure 12a).
Nighttime light radiance in area B was high in 2017 and 2018 (Figure 12a). The average
radiance in February and March 2017 was 38% higher than that of 2013–2016. High
radiance levels correspond to higher light intensities, indicating that greater fishing fleets
and fish abundance were at sea [40]. Indeed, it was previously reported that many fisheries
worldwide use artificial light to attract pelagic fish and increase fish catches, e.g., [41,47].
Our results suggested that there might have been a considerable number of fishing fleets
operating near the fishing grounds of area B due to the relative abundance of fish during
February and March 2017 (Figure 12a).

354



Remote Sens. 2021, 13, 1768

Figure 12. (a) Average DNB radiance, (b) SST, (c) Chl a, and (d) frontal intensity in February and
March 2013−2019 in area B (the area outlined with a dashed blue line in Figure 1).

L. polyactis and Collichthys sp., which are economically important fishery species in
China, are warm-temperate demersal fish [48,49]. Generally, the spawning grounds of these
fish are located on the inner shelf of the ECS or its estuaries [50]. Due to the southeastward
intrusion of the cold YSCC in the winter, the nearshore environment becomes unsuitable
for the growth of these species; both species thus migrate to warm offshore areas and
overwinter at depths of 40–80 m [51–53]. Previous studies showed that the main winter
fishing grounds in the ECS are located at the southern shelf area, where the YSCC and
TWWC meet, or at the eastern slope area, where the YSCC and YSWC meet [50]. The two
fishing areas examined in this study, Nos. 1891 and 1592, are located in these mixed waters
(Figure 1). These fishing grounds are influenced by various different water masses and
consequently have strong temperature and salinity gradients [15]. These fishing grounds
also include areas with high abundances of small- and medium-sized copepods, which
provide a rich food source for L. polyactis and Collichthys sp. [54]. Therefore, L. polyactis and
Collichthys sp. tend to migrate and gather in these fishing areas for the winter.

Environmental changes strongly affect the paths, compositions, and durations of fish
migrations for feeding or overwintering [55–57]. In January 2017, the bottom water became
relatively warm (>18 ◦C). The water temperature in this layer then decreased due to the
eastward movement of the cold YSCC. The decrease in the temperature of the bottom layer
was especially dramatic in 2017 (Figure 7). Liu et al. [58] indicated that L. polyactis tolerate
a wide range of temperatures (6–26 ◦C). However, as both L. polyactis and Collichthys sp. are
warm-temperate demersal fish, they might tend to migrate to warmer water [50]. Indeed,
L. polyactis and Collichthys sp. may not have been able to the tolerate the continuous cooling
of the bottom layer in February and March 2017, and these fish may have attempted to
migrate to the surrounding warm water.

Fishing areas Nos. 1891 and 1592 are located at the edge of the cold-water tongue, and are
warmer than the surrounding water that is influenced by the YSCC (Figure 4). Fishing area
No. 1891 was warmer than average during January and March 2017 (Figure 5a), although
frontal intensity was weak, and Chl a concentrations were not high (Figures 8 and 10).
Several studies suggested that fish abundance increases with temperature, e.g., [9,59,60].
Therefore, the warmth of fishing area No. 1891 in February 2017 might have provided
favorable conditions for warm-temperature fish, causing the observed large aggregation of
fish in this fishing area (Figure 2). However, the factors leading to the large aggregation of
fish on the sea surface in fishing area No. 1891 remain unclear due to limited data. Addi-
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tional observations, combined with fish behavior analyses, are necessary to understand
better the factors that generated this aggregation at the surface.

In contrast to fishing area No. 1891, fishing area No. 1592 had stronger fronts
(Figures 8 and 9) and higher Chl a concentrations (Figure 10) in 2017 as compared to other
years. Usually, a strong front is characterized by abundant nutrients and high primary
productivity [61–64], which provides a suitable habitat for fish [48,65]. Figure 12 shows the
interannual variation in nighttime light intensity, average SST, front intensity, and Chl a
concentrations for area B over the period 2013–2019. The two years with the greater light
intensity (2017 and 2018) also seem to have high frontal intensity (Figure 12a,d). These
results further suggested that fishing grounds with high frontal intensity attracted more
fish schools. Consequently, fish abundance was high in these frontal areas, and more
fishing boats were present.

Fishery resources in the ECS have been gradually increasing as a result of recent
moratoriums on summertime fishing [49]. As fishing grounds recover, large fish assem-
blages may reappear in the ECS. It is possible that the particular environmental conditions
identified in winter and spring 2017, which provided a suitable environment for migratory
fish and which may have played an important role in the large fish aggregations of that
year, were also present in other years. These conditions included the relatively warm
temperature of the bottom layer in January (Figure 6), followed by a significant cooling
of the bottom layer between January and March (Figures 6 and 7), while the surrounding
waters remained warm; these conditions also included the observed strong frontal intensity
and high Chl a concentrations. Long-term time series of multi-disciplinary data, including
historical catch data, should be collected to investigate the complex relationships between
environmental change and variations in fishery resources further.

Numerous studies previously showed that increases in ECS temperatures are asso-
ciated with global warming [66,67], and average winter SST in the ECS has increased an
average of ~0.3 ◦C/decade, which far exceeds the globally averaged rate of ocean surface
warming [68]. Indeed, the ECS experienced record-high temperatures in the winter months
of 2017 [69], which was consistent with the high temperatures recorded in January 2017
(Figures 5 and 6).

The significant cooling from January to mid-March 2017 might be linked to the east-
ward movement of cold YSCC (Figures 4 and 13a). Circulation in the ECS and the Yellow
Sea is controlled by the East Asian monsoon [70,71]. As shown in Figure 13a, the Kuroshio,
TWC, and TWWC have greater northward velocities than other surrounding currents.
The frequent and strong northerly and westerly winds (Figure 11) in February and March
2017 enhanced the YSCC (Figure 13b), which might have driven more cold water from
the Yellow Sea into the northern ECS, causing the cold-water tongue of the YSCC to move
further eastward in February and March (Figures 4 and 13b). At the same time, the warm
TWWC in the south moved abnormally northward (Figure 13b), raising the SST of fishing
area No. 1891 above the multi-year average (Figures 4 and 5). The strengthened YSCC
reduced SSTs, increasing the temperature difference between the YSCC and the YSWC. This
increased frontal intensity between the cold and warm water masses (Figure 8) led to an
increase in Chl a concentrations (Figure 10). As demonstrated by Weisberg et al. [72], ocean
circulation unites nutrients with light, fueling primary productivity and higher trophic
level interactions. Thus, ocean currents may play an important role in the regulation of
phytoplankton growth and fishery resources.

Over recent decades, ocean temperatures increased steadily due to climate change,
and these increases strongly impacted the marine ecosystem [73–75]. The ECS was pre-
viously identified as a critical area of significant ocean warming, e.g., [76–78]. Abrupt
marine environmental changes are expected to become more common as climate change
progresses [35]. Warming trends and/or abnormal temperature changes may affect the
abundance, mortality, growth, and distribution of marine fish [33,34,79]. Here, we showed
that the large fish assemblage in the ECS winter fishing ground in February and March
2017 may have been associated with abnormal temperature changes associated with the
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eastward movement of the YSCC. This event provided a rare case study that exemplified
how complex relationships among climate-driven physical changes and biological pro-
cesses may affect fishery resources. Future fishery management programs must develop
strategies to adapt to similar environmental events that will become more frequent due to
climate change.

Figure 13. (a) The distribution of average sea surface currents (SSCs) and (b) SSC anomalies in
February and March 2017. Colors correspond to current speed, while arrows indicate current
direction. SSC anomaly data were calculated by subtracting the average SSC during February and
March 2011–2019 from the SSC in February and March 2017.

5. Conclusions

Large fish assemblages were reported in the winter fishing grounds of the ECS during
February and March 2017. The bottom waters of these fishing grounds were abnormally
warm in winter 2017. This layer then cooled substantially from January to mid-March 2017
due to the eastward movement of the YSCC associated with the increased northwesterly
winds. Warm-temperature demersal fish, such as the small yellow croaker (Larimichthys
polyactis) and Collichthys sp., might tend to migrate to fishing areas with warm temperature,
strong thermal front, and high Chl a concentrations; these conditions were found in fishing
areas Nos. 1891 and 1592 during February and March 2017. The observed abnormal
temperature changes in winter and early spring 2017 might reflect the effects of changes in
local ocean circulation.

This preliminary study proposes some possible mechanisms underlying the formation
of two large fish assemblages based on satellite remote sensing and reanalysis data. Long-
term time series data, obtained using a variety of coastal ocean observing systems [80],
in conjunction with numerical models, are required to clarify and explain these physical
mechanisms further. However, this rare case study demonstrates how fishery resources
respond to climate-driven physical and biological changes. Thus, fishery management
programs should carefully consider ecological responses to similar abnormal changes in
marine environment.
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Abstract: This study examines the characteristics, statistics, and mixing effects of internal solitary
waves (ISWs) observed in the northern Yellow Sea (YS) during the summers of 2018 and 2019. The
mooring stations are located between offshore islands with rough topographic features. Throughout
the observation period, the ISWs with vertical displacements of up to 10 m induced prevailing
high-frequency (3–10 min period) temperature variations. Synthetic aperture radar (SAR) images
showed that the observed ISWs propagate in zonal directions generated around the islands where
internal-tide-generating body force is strong. The estimated ISW propagation speed ranges from
0.16 to 0.25 m s−1, which agrees with the Korteweg-de Vries (KdV) model. The ISW intensity
exhibits a clear spring-neap cycle corresponding to the local tidal forcing. The constant occurrence of
ISWs at low tide suggests an important generation site where the ISWs are tidally generated. The
ray-tracing result indicates that this generation site appears to be located at a strait between Dahao
and Xiaohao islands. A generalized KdV model successively reproduces the propagation process
from the generation site to the mooring station. Following the passage of ISWs, microstructure
profiling observations reveal a high turbulent kinetic energy dissipation rate (10−6 W kg−1). The
prevalence of ISWs in the study area is believed to play a crucial role in regulating vertical heat and
nutrient transport, thereby modulating the biogeochemical cycle.

Keywords: SAR; internal solitary waves; turbulence; Yellow Sea

1. Introduction

Internal solitary waves (ISWs) are ubiquitous in world coastal oceans; they are long-
lived features and can travel tens/hundreds of kilometers before dissipating [1,2]. These
waves can generate strong reverse flow across the pycnocline, which induces the intense
turbulent vertical exchange of heat and nutrients, regulating the biogeochemical cycle [3–5].
Therefore, comprehending the characteristics, statistics, and mixing effects of ISWs is crucial
to understanding how marine ecosystems behave.

ISWs can be produced by a variety of mechanisms, including the lee wave mechanism [6],
a transformation of the internal tide [7,8], or resonance in the transcritical flow [9], de-
pending on the local stratification, topographic features, and tidal amplitudes. The lee
wave mechanism has traditionally been used to explain the generation of ISWs at an
underwater sill or bank [6]. The isopycnal disturbance on the topography exhibits a
large lee wave when the flow reaches a supercritical flow condition (the Froude number
Fr = U/c0 > 1, where U is the tidal current and c0 is the first-mode linear internal wave
phase speed). The lee wave moves upstream as the tidal flow slows, evolving into several
ISWs. Therefore, locally generated ISWs are often associated with tides. Kozlov et al. found
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a similar distance between adjacent ISW packages in the White Sea that matched the M2
wavelength value based on synthetic aperture radar (SAR) images [10]. According to statis-
tical findings from years of observations in the Strait of Georgia, the ISW packets tended to
appear at the specific tidal phase with similar time intervals [11], which emphasized the
importance of tidal forcing in generating ISWs in the ocean.

ISWs can cause significant vertical displacements across the pycnocline and exacerbate
turbulence [12,13]. In the investigation of Oregon’s continental shelf, Moum et al. revealed
the evolving nature of interfaces through microstructure observations. As ISWs propagate
shoreward, the interfaces may become unstable and break, creating turbulent flow [14].
Lee et al. investigated the generation and longevity of nonlinear internal waves in the north-
ern East China Sea [4], suggesting that shear instability was the generation mechanism for
the observed turbulence. The turbulent mixing can modify the transport of particulates and
nutrients, influencing the distribution and recruitment of various littoral larval species [15].
These dynamical and ecological consequences provide additional motivation to investigate
the causes of internal turbulent mixing and their effects on ecology and aquaculture.

The Yellow Sea (YS) is a temperate shelf sea in the northwest Pacific Ocean with a
mean depth of 44 m. It connects to the East China Sea in the south and the Bohai Sea
in the north. Limited observations have revealed the existence of ISWs, wind–induced
near–inertial waves, and semidiurnal internal tides there [12,16–19]. Hsu et al. examined
the distribution of ISWs in the YS based on SAR images onboard the satellites ERS-1 and
ERS-2 [16]. They found that the ISWs were widely distributed along the coast of the YS,
with the islands west of the Korea Peninsula being the local hot spots for ISWs due to their
topographic features. After their generation on the west coast of the Korean Peninsula,
ISWs propagated into the YS. Their phase speed increased nonlinearly with the water depth,
averaging a value of approximately 0.1–0.7 m/s [20]. A recent numerical study showed
that the simulated internal tides in the YS have an excellent spatial consistency with the
satellite-detected ISWs because both the internal tides and ISWs are of tidal origin [21].
Moreover, Liu et al. observed that ISWs with a vertical displacement of 4–5 m had induced
intensified turbulence in the pycnocline by creating small–scale shear instabilities based on
microstructure observations in the local shelf break of the southern YS [12].

Only limited studies have looked into the ISWs in the northern YS. Lin et al. used
numerical simulations to explore that energetic internal tides were generated near the coast
around the northern YS [22], with a maximum baroclinic energy flux of 45 W/m. Although
the baroclinic energy flux is much lower in the northern YS due to the shallow bathymetry,
there are still significant large values at the topographic changes, which indicate the local
generation of ISWs and internal tides. Alpers et al. have confirmed the presence of
ISW packets in the northern YS through satellite imagery [17]. These images show the
characteristics of ISWs in the northern YS, which appear frequently in the summer and
seldom have wavelengths longer than 1000 m due to the shallow water. However, it is still
challenging to determine the variability, property, and mixing effects of the ISWs because
satellite observations alone cannot shed light on the features of ISWs in the interior of
oceans. In situ observations are important methods to reveal the characteristics and mixing
effects of ISWs [23,24]. Although the combination of satellite observations and in situ
observations has been widely used [25,26], the characteristics of ISWs and their effects on
turbulent mixing are still unclear in the northern YS due to the lack of in situ observations.

In this study, we conducted long-term high-frequency temperature observation for two
mooring stations in the northern YS. SAR images and mooring observations were combined
to analyze the statistical characteristics of the ISWs. The effect of ISWs on turbulent mixing
was also discussed. This paper is organized as follows. Section 2 describes the observation
data and methods. In Section 3, the results of the in situ hydrographic observations
and satellite SAR investigations are presented. The correlation between ISWs and tide,
potential generation sites, and the influence of ISWs on turbulence are discussed in Section 4.
Conclusions are summarized in Section 5.
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2. Materials and Methods

2.1. Mooring Observation

The data for this study were collected at two mooring stations in the northern YS
from 29 June to 18 August 2018 and 5 June to 18 August 2019 (Figure 1b). The mooring
stations (Stns.) A4 (39.03◦N 122.98◦E) and B4 (39.04◦N 122.96◦E) are located between
two offshore islands (Zhangzi and Haiyang islands) in water with a mean depth of about
40 m. The T-chain is used to measure temperature at the mooring stations, equipped with
four temperature sensors (T, ONT18S) with a frequency of 1 Hz at Stn. A4. At Stn. B4,
the T-chain is equipped with two Conductivity-Temperature-Depth instruments (CTD,
RBR420), two Temperature-Depth sensors (TD, RBR duet), and two temperature sensors
(T, ONT18S). Temperature measurements are valid from 1.5 m to 25 m above the bottom.
Table 1 summarizes information on the corrected sensor depths and temporal resolution.
Figure 1c depicts the instrument configuration diagram.

Figure 1. (a) Bathymetry of the Yellow Sea. (b) Inset of the outlined square in (a), indicating the
location of the mooring station (red triangle). (c) Instrument configuration schematic of the T-chain at
Stns. A4 and B4.

Table 1. Stations, sensors, frequency, and sensor height of the mooring observations.

Stations Depth (m) Sensors Sampling Period (s) Sensor Height (m)

A4 39 T 1 1.5
T 1 9
T 1 17
T 1 24.5

B4 38.8 CTD 300 1.5
TD 10 8
T 10 14
T 10 18

CTD 10 21
TD 10 25

We calculated the vertical velocity (w) from vertically densely spaced temperature
sensor data after converting the series T(z, t) to isotherm displacements η(z, t) [27]. This
study selects a set of isotherms with constant mean spacing (0.5 ◦C). For each isotherm, w is
calculated by dividing the displacement of the isotherms in adjacent time by the time interval

w =
η

t
(1)
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where η is the isotherm displacements in adjacent time and t is the time interval. The
velocity of each layer is acquired by linear interpolation.

2.2. VMP Observations

We deployed the Vertical Microstructure Profiler-(VMP-) at Stn. B4 on 14–15 July 2019,
to investigate the role of ISWs in inducing turbulent mixing. The VMP was activated once
every hour for 22 h. The VMP is outfitted with two high-resolution frequency shear probes,
one high-frequency temperature probe (FP07), and one high-frequency conductivity probe
(SBE7), all with sampling rates of 512 Hz. The turbulent kinetic energy dissipation rate was
calculated using microstructure shear. Using the assumption of isotropic turbulence, the
turbulent kinetic energy dissipation rate ε was calculated as follows:

ε =
15
2

v
(

∂u
∂z

) 2
=

15
2

v
k2∫

k1

φ(k)dz (2)

where v is the kinematic molecular viscosity; (∂u/∂z)2 is the variance of the vertical shear;
ϕ(k) is the power spectrum of velocity shear; and k1 and k2 are the lower and upper limits
of the wavenumber for integration, respectively. The calculation of ε is based on the ODAS
Matlab Library Manual program by Rockland Scientific International (RSI) Inc. Previous
studies have extensively described the corresponding data processing theories and methods
(Gregg, 1999). For details of the calculation methods, please refer to Yang et al. [28] and
Xu et al. [18]. The shear spectrum is calculated over consecutive segments of 2 m with a
50% overlap. As a result, we could obtain vertical profiles of ε with a vertical resolution
of 1 m.

2.3. SAR Images

The ISW—induced currents modify sea surface roughness, which can be imaged
using satellite images via Bragg backscattering [29–31]. Synthetic aperture radar (SAR) has
long been a principal sensor in the observation of ISWs, because of its all-day, all-weather
imaging capability [32]. SAR maps the sea surface roughness through Bragg scattering
from the capillary waves and short gravity waves. The relation is

Λ =
λ

2 sin θ
(3)

where Λ and λ are the wavelength of capillary waves and radar, respectively, and θ is the
local incidence angle. In satellite SAR images, the ISWs typically appear as a pair of bright
and dark stripes, corresponding to the rougher (convergence) and smoother (divergence)
surface zones, respectively [30,32]. In this study, we used the C-band SAR of Sentinel-1
and GF-3 satellites launched by the European Space Agency on 3 April 2014 and China
Aerospace Science and Technology Corporation on 10 August 2016, respectively. Both
satellites can continuously image ISWs at 10 m resolution using HH-polarization. There
are 59 images taken in the study area during the observation periods in 2018 and 2019, 11
of which show clear signatures of ISW packets.

2.4. The KdV Equation

The evolution of ISWs is generally influenced by topography and horizontally variable
stratification [33,34]. For shallow water approximation, the KdV equation and its gener-
alizations are widely used for the investigation of the propagation and transformation of
ISWs in the shelf and coastal oceans [10,33]. To overcome the lack of direct observations of
continuous stratification in the northern YS, we used the generalized Korteweg-de Vries
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(gKdV) equation to simulate the propagation of ISWs in the varied topography [10,35]
as follows:

At + C0(x)Ax + α(x)AAx + α1(x)A2 Ax + β(x)Axxx +

(
C0(x)
2γ(x)

)
γx A − ζAxx = 0 (4)

where A(x, t) is the interface amplitude; C0(x) is the linear wave speed; and parameters
α(x), α1(x), β(x), γ(x), and ζ are the coefficients for the nonlinear, higher–order nonlinear
(cubic), dispersion, transformation, and dissipation effects, respectively.

The numerical model based on the gKdV equation was discretized by the Predictor–
Evaluation-Corrector-Evaluation (PECE) method and iterated by the implicit corrector
scheme [36], which ensures convergence and computational efficiency of the iterative
process. There is a steady summer pycnocline between the surface and intermediate water
masses along the ISW propagation trajectory at depths of 5–10 m. Segur and Hammack [37]
and Koop and Butler [38] found that the KdV model can be simplified to a two-layer model
and predicted the solitary waves with remarkable accuracy. Thus, a two-layer system of
upper quasi-homogeneous and lower layers with thicknesses h1 and h2, respectively, can
be used [10,33]:

C0 =
√

Δρgh1h2/ρ(h1 + h2) (5)

α = [3(h1 − h2)/2(h1h2)]C0 (6)

α1 =
[
−3
(

h2
1 + h2

2 + 6h1h2

)
/8(h1h2)

2
]
C0 (7)

β = (h1h2/6)C0 (8)

γ =
{

C0(0)C−1
0

[
h−1

1 (0) + h−1
2 (0)

]
/
[

h−1
1 + h−1

2

]}3
(9)

where g is the acceleration of gravity; ρ1, h1 and ρ2, h2 are the density and thickness of
upper and lower layers, respectively.

3. Results

This section is divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Temperature Variations

Figures 2 and 3 show the temperature variation observed by the T-chain at Stns. A4
and B4, respectively. These two stations shared many characteristics due to their close
distance and similar time of the year for observation. The observed temperature shows a
warming trend at both stations. The temperature measured by the lowest sensors increased
from 10 to 18 ◦C and from 8 to 20 ◦C at Stns. A4 and B4, respectively. The observed part
of the water column is usually stratified, with the largest vertical temperature difference
reaching 11.2 ◦C and 12.8 ◦C at Stns. A4 and B4, respectively. There was a significant increase
in temperature throughout the water column on 13 August at Stn. B4 (Figure 3a,b). The
bottom temperature changed from 15 to 19 ◦C, after which the temperature fluctuated and
dropped gradually. The surface elevation demonstrates that semidiurnal tides dominate at
both stations with a distinct spring–neap cycle (Figures 2a and 3a).
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Figure 2. (a) Time–depth variations of observed temperature at Stn. A4. The black curve represents
sea surface elevation. (b) Temporal variation of temperature as monitored by four temperature
sensors. (c–f) Close views of the high–frequency variation of the temperature.

Figure 3. The same as in Figure 2 but for Stn. B4.

One notable phenomenon observed at both stations is prevailing temperature spikes
that last throughout the observation period. Close-view examples of the temperature spikes
show that these spikes have frequencies ranging from 3–10 min (Figures 2c,e and 3c,e). When
the bottom layer is well–mixed, temperature spikes may appear only in the upper sensors
(Figure 2d,f). The uppermost temperature sensor increased from 14 to 23 ◦C in 100 s with
a period of 5 min (Figure 2c). Figures 2c,e and 3c,e show that these temperature spikes
are caused by the prevailing high–frequency ISWs of depression in this area. The vertical
displacement of the ISWs is about 8–10 m (Figure 2c). Additionally, the leading waves
have the largest vertical displacement of 13 m, corresponding to the highest temperature
variation of 7 ◦C, as observed in Figure 3d,f. The observed prevailing ISW packets in the
study area are surprising. This is because, although the previous SAR imagery studies have
revealed the presence of ISW packets around offshore islands in the northern YS, this region
has never been considered a hot spot for ISWs [17]. Given the prevalence of the observed
ISWs, they may have significant biogeochemical implications. Next, the properties of the
ISWs are examined.
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3.2. Spectral Estimates

The frequency spectrum of temperature is calculated to examine the energy content as
a function of frequency. The temperature in the uppermost layer is selected to calculate the
frequency spectrum. Figure 4c,d depicts the frequency spectrum calculated from mooring
temperature observations at Stns. A4 and B4, respectively. The frequency spectra are
dominated by near–inertial/diurnal (~1 cycle per day (cpd)), semidiurnal (~2 cpd), and
higher tidal harmonics at both stations. The strongest peak corresponds to the frequency of
the M2 tide. The spectra generally decrease with increasing frequency, except where there
seems to exist a spectral bump at ~144 to 480 cpd (a period of ~3 to 10 min). Figures 2 and 3
depict that the spectral bump is associated with the high–frequency temperature variations.

Figure 4. Temperature–frequency spectra of daily temperature variations at (a) Stn. A4 and (b) Stn.
B4. The frequency spectra during the two–month–long observations at (c) Stn. A4 and (d) Stn. B4.
For reference, the frequencies of the essential components are indicated by horizontal dashed lines.

The high-frequency region of the spectra was then examined to obtain a better look
at the spectral bump. In order to examine the temporal variation of the high-frequency
motions, we calculated the frequency spectrum for each day by dividing the temperature
variation into daily segments. Figure 4a,b shows that high spectral energy appears between
3 and 10 min periods, which corresponds to the spectral bump. The spectral bump almost
lasts throughout the observation period. This is consistent with the observed frequent
temperature spikes, indicating that ISWs are common in the study area.

3.3. Close View of the ISWs

The SAR images and mooring observations are combined to examine the properties of
ISWs. For example, we selected two typical SAR images (10 m resolution, HH-polarization)
with clear ISWs acquired on 11 July and 8 August 2019. The in situ mooring observations are
analyzed alongside the SAR images to provide additional information about propagation
details. Figure 5d depicts the capture of two ISW packets (ISW A and ISW B) at 3.4 and
7.9 km from Stn. B4. ISW A arrives at Stn. B4 approximately 4 h after the imaging time,
causing significant temperature variations. Within 3 min, the temperature measured by the
uppermost sensor rises from 13 to 22 ◦C. Close inspection reveals that ISW A has a vertical
displacement of 10 m and a period of about 10 min (Figure 5c). The ISW propagation speed
is estimated to be 0.25 m s−1 based on relative packet positions and arrival times. ISW B
originates on Haiyang Island and has a propagation speed of 0.16 m s−1.
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Figure 5. (a) Time–depth variations of temperature from 11 July 2019 at 7:51 to 12 July 2019 at 3:51
(UTC + 8). (b) The corresponding temporal variations of temperature. (c) Inset of the shaded area in
(a) showing the typical ISWs marked with a black line. (d) SAR image was acquired over the northern
YS on 11 July 2019 (05:51 UTC + 8). Red stars denote mooring stations. Notably, the x-axis has been
changed to hours after this SAR image time.

The other SAR image was acquired on 8 August 2019, at 17:46, capturing at least
four ISW packets (Figure 6d). Three of the four packets propagate from west to east in a
similar direction. ISW C first passes through the mooring station, causing high–frequency
temperature variations for 28 min. This ISW has an amplitude of approximately 9 m and a
period of 7 min (Figure 6c). The propagation speed of ISW C is estimated to be 0.21 m s−1. The
propagation speeds of ISWs A and B are estimated to be 0.21 and 0.17 m s−1, respectively,
based on the distance revealed by SAR images and arrival time. Wavelengths appear to
be variable during the propagation of the ISW. ISW A has the largest wavelength at about
500 m, and ISWs B and C have relatively small wavelengths of less than 200 m. In the same
ISW packet, the wavelengths of ISWs are also different. As shown in ISW B and ISW C in
Figure 6, the wavelengths are significantly larger in the southern part of the waves.

The linear phase speed at any frequency depends on the vertical density profile of the
water column, based on the KdV equation for internal waves [39]. The two-layer model,
consisting of the upper layer with thickness h1 and density ρ1, and the lower layer with
thickness h2 = H − h1 and density ρ2 > ρ1, is widely considered for the simulation of
internal waves [40,41]. In this case, assuming the ISWs are of the KdV type, the speeds of
propagation of ISWs are generally calculated from Equation (10):

c =

√
g(ρ2 − ρ1)h1h2

ρ2h1 + ρ1h2
+

αη0

3
(10)

where g is the acceleration due to gravity; η0 is the vertical displacement of ISWs; ρ1 and
ρ2 are the upper layer and lower layer density; h1 and h2 are the upper layer and lower
layer thickness, respectively. The parameter α is calculated using Equation (5). At the
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mooring station, the phase speed calculated according to Equation (10) is about 0.25 m s−1,
consistent with estimates from satellite observations.

Figure 6. Same as in Figure 5 but for another typical SAR image. The SAR image (a–d) was acquired
on 8 August 2019 (17:46 UTC + 8).

4. Discussion

4.1. Statistics of ISWs

Mooring observations indicate that ISWs are prevailing phenomena in our study area
that exist throughout the observation period in summer. We performed a statistical analysis
on the time of appearance of ISWs to the tidal phases to investigate their characteristics and
generation mechanisms. Wave packets were defined as ISWs with vertical displacements
greater than 5 m. At Stns. A4 and B4, a total of 125 and 277 ISW packets were ob-
served, respectively. The surface elevation shows a clear spring–neap cycle at both stations
(Figures 2a and 3a). The occurrence of ISWs is binned by their time relative to the nearest
maximum of the fortnightly cycle of tidal magnitudes and by their time relative to the low
tide. At Stn. A4, more ISWs seem to be observed during spring tide than during neap
tide (Figure 7c). However, ISWs do not appear more frequently at Stn. B4 during spring
tide (Figure 7f), showing no obvious correlation with tidal amplitude. The one-hour and
one-day root-mean-square (RMS) vertical velocity (σw) are then calculated (Figure 7b,e).
The (σw) shows a clear fortnightly cycle which agrees well with the variation of RMS tidal
amplitude (σH).
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Figure 7. Statistical characteristics of ISWs. (a,d) The temporal variation of surface elevation (black
line) and occurrence of ISWs (red points) relative to the time of low tide. (b,e) RMS vertical velocity
in one–hour (grey curves) and one–day intervals (black curves). The red curve represents the
1.8 × RMS variations of the sea surface. (c,f) The number of observed ISWs during a fortnightly cycle,
binned by days before/after the time of maximum tidal range.

Variations in both the occurrence frequency and intensity of the ISWs can affect the
(σw). Previous research found that the likelihood of ISW packets peaked around the
strongest tides in the spring–neap tide [11,17,42]. However, the likelihood of ISWs shows
no apparent correlation with the spring–neap tide in the present study (Figure 7c,f). Thus,
we suggest that the fortnightly variations of (σw) are responsible for modulating the ISW
intensity by the spring–neap tide.

The occurrence of the ISW packet was examined by comparing it with the flood–ebb
cycle of the local tides. At both stations, we first calculated the average value of the surface
elevation for 25 h, showing a clear dominant semidiurnal cycle (Figure 8). The occurrence
of ISWs was classified according to the local tidal phases. Figure 8 shows that most ISWs
are observed at both stations during low tides. This relationship appears to be stronger
at Stn. B4. In other regions, the occurrence of ISWs at a particular tidal phase has been
interpreted as evidence that their generation mechanisms are connected to tidal phases [11].
This strengthens the case that tides cause the observed ISWs.

Figure 9 depicts a typical example of the phase–locked ISW packets at Stn. B4. ISW
packets always occurred approximately one hour later than the previous day (marked by
red arrows). Although the ISW packets appear at irregular times of the day, they occur
at every low–tide phase. Furthermore, the intensity of ISWs occurring during spring
tides (19–22 July) tends to be greater than during neap tides (12–18 July), consistent with
the statistical results. The occurrence of ISWs at the fixed low–tide phase suggests that
tide–topography interactions generate ISWs.

4.2. Generation Sites of ISWs

Next, we investigated the generation and propagation of ISWs. Figure 10a depicts an
ISW distribution map of the northern YS based on the SAR images collected during the ob-
servation period. ISWs propagate in various directions, implying multiple generation sites.
Specifically, the observed ISWs at the mooring station are generated at the rough topography
around the island rather than being locally generated. Many ISWs propagating eastwards
seem to originate from Zhangzi Island. A small number of westward-propagating ISWs
also appear, which seem to have been generated around Haiyang Island.
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Figure 8. The occurrence of ISWs relative to the tidal phase at (a) Stn. A4 and (b) Stn. B4. Black
curves represent the time series of the tidal elevation simulated using the Ohio State University Tidal
Prediction Software (OTPS). The number of ISWs is indicated by vertical bars.

Figure 9. (a) Stack plots of the temperature at Stn. B4 from 11–22 July 2019 (UTC + 8). Red arrows
indicate the arrival times of the ISW packets, and the white line indicates the surface elevation.
(b) The corresponding time series of the barotropic tide at Stn. B4.
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Figure 10. (a) The spatial distribution of the depth-integrated internal-tide-generating body force.
The superposed curves represent the ISWs detected by SAR images during the observation periods
of 2018 and 2019. ISWs propagating eastward and westward are shown in red and black, respectively.
(b) The three-dimensional topography shows the surrounding study area. The ISW generation site,
as traced by the ray-tracing method, is represented by S1. The locations of mooring stations are
also indicated.

In order to investigate the generation sites of the ISWs, we examined the distribution
of internal-tide-generating body force in the northern YS (Figure 10). The depth-integrated
internal–tide–generating body force is calculated as follows (Baines, 1982):

F =
1
ω

1
H2

∫ 0

H
N2(z)zdz ·

√
(Qx

dH
dx

)
2
+ (Qy

dH
dy

)
2

(11)

where ω is the M2 tidal frequency; H is the water depth; N2(z) is the squared buoyancy
frequency; Qx and Qy are the zonal and meridional components of the tidal transport
calculated by (Qx, Qy) = (uH, vH); u and v are the zonal and meridional components of
the barotropic tidal current; and dH

dx and dH
dy are the zonal and meridional bottom slopes.

The bottom topography is based on the 0.25′ grid general bathymetric chart of the oceans
(GEBCO_2019) provided by the Intergovernmental Oceanographic Commission (IOC) and
the International Hydrographic Organization (IHO). The OSU Tidal Prediction Software
(OTPS) forecasts the zonal and meridional components of tidal velocity. Potential hot spots
of internal wave generation sites around the world ocean have been examined using the
spatial distribution of the F [43–45]. F > 0.25 m2 s−2 is usually regarded as the critical value
for the generation of ISWs [44,46]. Figure 10a depicts that large F tends to be located around
islands with striking topographic features.

372



Remote Sens. 2022, 14, 3660

That energetic internal tides were generated close to the offshore islands around
the northern YS is consistent with recent numerical simulations [22]. Both SAR images
and calculated F indicate that the ISWs are generated at these offshore islands and then
propagate to the mooring stations.

Statistical analysis showed that the ISWs are related to tidal phases, with most ISWs
occurring during low tide (Figures 8 and 9). As a result, even though the SAR images show
multiple ISW generation sites around the islands, there should be a major ISW generation
site with tidally-generated ISWs reaching the mooring station periodically. Figure 9 depicts
an example of ISWs fixed to local low tides, implying that they are generated tidally at a
fixed location. The data from SAR images are then combined with in situ observations and
the KdV model to provide additional insights into the generation and propagation details.

The ray-tracing method was used to find the major generation sites of ISWs in the
northern YS [47–49]. Assuming that the ISWs propagate with a circular wave crest, the
generation site of ISWs is defined as the intersection of two perpendicular lines across the
wave crest. Figure 11a depicts an ISW packet captured on 11 July 2019, corresponding to
the first ISW packet that appeared at low tide in Figure 9. The observed ISW packet from
satellite images traces the generation site S1 to the straits between Dahao and Xiaohao
islands, approximately 10.1 km from Stn. B4 (Figures 10b and 11a). The generalized KdV
model was then used to simulate the propagation of ISWs. The density is referred from the
WOA18 database, showing that the upper and lower layer densities in the study area are
approximately 1023 and 1024 kg m−3, respectively. We then simulated the propagation of
ISWs with the generalized KdV model. The real topography from GEBCO was used for
simulation. The density was referred to in the WOA18 database, showing that the upper
and lower layer densities are about 1023 and 1024 kg m−3 in the study area. The depth
of pycnocline is 5 m. After that, Equation (4) is numerically solved on a regular grid with
Δx = 10 m, Δt = 10 s, the viscosity coefficient ζ = 0.0025 m2 s−2 [10], and a total integration
time of 20 h. At x = 0 km, a train of two consecutive waves with vertical displacements of
−5 and −4 m appears.

Figure 11b shows that the ISW packet undergoes several changes as they propagate
seaward from S1. Their vertical displacements are significantly reduced, and they become
broader and flatter. The ISW packet reaches the position corresponding to the SAR image
after ~8.2 h of propagation from S1 (Figure 11a). The propagation from S1 to B4 takes about
12 h in total, with a mean propagating speed of ~0.25 m s−1, consistent with the velocity
estimated from the SAR image and mooring observations (Figure 5d). Figure 11c shows
the barotropic tide at S1 when ISWs are generated. At low tide, when the direction of tidal
velocities is toward the northeast, ISWs are generated in the straits between the islands.
Although the site between the islands was estimated to be a critical ISW generation site,
ISWs coming from different directions and at different times indicate the existence of other
source regions. Furthermore, although we have shown that the ISWs are tidally generated
at rough topography, the exact generation mechanism of the ISWs also awaits further
investigation in the future based on numerical simulations. Nevertheless, the prevalence
and properties of ISWs originating from offshore islands in the northern YS are documented
for the first time based on comprehensive in situ observations and SAR images.
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Figure 11. (a) SAR image was taken on 11 July 2019 (05:51 UTC + 8). The red circle indicates the
estimated generation site (S1) traced by the ray-tracing method. The red star denotes location of
Stn. B4. (b) The propagation process of ISWs simulated by the gKdV model. The dashed line indicates
the topography. (c) The corresponding tidal current at S1 at the moment of ISW generation. Colors
represent the surface elevation, and the arrow indicates the direction of tidal variations.

4.3. Influences of ISWs on Internal Turbulence

Turbulent mixing in shelf seas is a critical process that controls diapycnal nutrient
transport, and it plays a vital role in biological production and carbon cycles [50,51].
The one-day VMP observations enable us to investigate the impact of ISWs on internal
turbulence. Figure 12b shows the time–depth evolution of the observed ε and temperature.
Previous studies showed that the energy input, conversion, and radiation rates increase
monotonically with ε [52]. The largest ε (~10−6 W kg−1) occurred in the well–mixed bottom
boundary layer (BBL). One of the most noticeable features here is the presence of two peaks
near the pycnocline. At the 4th hour after 13:00 on 14 July 2019, the ε reached the first peak
with a maximum value of 10−7 W kg−1. About eleven hours later, the ε reached the other
peak with a larger value of 10−6 W kg−1.
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Figure 12. (a) Temporal variation of the wind speed (purple line) and buoyancy flux (green line).
(b) Time-depth variation of ε with the isotherms (solid lines) superposed. White lines represent
pycnocline boundaries. (c) The replotted ε around the pycnocline (black bars) and temperature.
(d) Temporal variation of the averaged ε within the pycnocline (green line) and 1 h RMS vertical
velocity (purple line).

It is widely believed that turbulence in the surface boundary layer (SBL) in shelf seas
can be strongly influenced by wind forcing. In order to investigate the impact of wind
on the two ε peaks, we investigated the variation of wind speed at 10 m above the sea
surface from the fifth generation European Centre for Medium-Range Weather Forecasts
(ECMWF)’s atmospheric reanalysis of the global climate (ERA5). Figure 12a presents that
the wind speed is less than 5 m s−1 during the observation period, suggesting that the
wind may not be the cause of turbulence. Surface buoyancy fluxes do not dramatically
change when ε is intensified, which shows that changes in surface buoyancy fluxes do not
cause internal turbulence. Kay and Jay found that substantial internal turbulence occurred
even during periods of weak near–bed shear [53], suggesting that internal processes must
contribute significantly to the internal turbulence. Figure 12c depicts the variations in
internal temperature and turbulence. The temperature variations show a semidiurnal
period, consistent with the M2 tide. Around four hours (17:00 14 July 2019) and thir-
teen hours (02:00 15 July 2019) after the beginning of the observations, the temperature
shows continuous high-frequency variations. Furthermore, we selected the depths of the
σθ = 22.5 and 20.9 kg m−3 isopycnals to represent the lower and upper boundaries of the
pycnocline, respectively (as shown by the white contours in Figure 12b). The two ε peaks in
the pycnocline correspond to the high-frequency temperature variations (Figure 12c). The
average ε in the pycnocline also shows a similar trend as the one-day RMS vertical velocity
(Figure 12d). The largest root-mean-square vertical velocity appears at 15 h, corresponding
to the long-lasting strong turbulence from 15 to 17 h. Although their largest peaks do
not exactly coincide with each other, we suggest that the sustaining strong turbulence is
related to the high-frequency temperature variation event which has induced a long-lasting
influence. We therefore suggest that ISWs cause the observed internal turbulence.

The present observations demonstrate that ISWs are quite prevalent in the study
area, originating at rough topographic features near the offshore island. The one-day
VMP observation shows how passing ISWs can significantly alter internal turbulence in
the northern YS. Moreover, the frequent turbulent mixing induced by ISWs can increase
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vertical nutrient supply and influence the local biogeochemical cycle [54–56]. Furthermore,
the areas around the Changshan Islands are crucial aquaculture regions in China [57,58].
The presence of ISWs, which cause increased vertical flux and high–frequency temperature
variations during warm seasons, may have significant ecological consequences that must
be investigated.

5. Conclusions

The properties, generation mechanisms, statistics, and mixing effects of ISWs are
investigated using mooring observations and SAR images from the northern YS. According
to the spectral analysis, previous ISWs induced numerous high-frequency temperature
spikes with periods ranging from 3 to 10 min. These ISWs are mainly depression type, with
vertical displacements of up to 10 m. Dramatic vertical displacements can lead to nearly
9 ◦C temperature variations within the pycnocline. We estimated the propagation velocity
of ISWs to be 0.16 to 0.25 m s−1 by combining mooring observations and SAR images,
which is consistent with the theoretical value. According to the statistical analysis, ISWs
at the mooring stations do not indicate a clear preference for spring tides, but the RMS
vertical velocity of ISWs (ISW intensity) exhibits a spring-neap tidal cycle and is linearly
proportional to the barotropic tidal height. Furthermore, while ISWs can be found at the
mooring stations at any tidal phase, they are far more prevalent during low tides.

These findings indicate that the ISWs are tidal in origin, with a major generation
site. SAR images obtained during the observation period show that most ISWs in this
region propagate in the zonal direction, which seems to originate from the Zhangzi and
Haiyang islands. This is supported by the horizontal distribution of the depth-integrated
internal-tide-generating body force, which shows consistent features of high values around
the offshore islands. The ray–tracing method was used to locate the major generation site,
which appeared to be located in the straits surrounding Zhangzi Island. The KdV model
was used to simulate the propagation of the ISWs from the generation site to the mooring
station. The ISWs take ~12 h to propagate from the generation site to the mooring station,
which coincides with the observational estimates.

The ε showed two large values (~10−6 W kg−1) when there were temperatures with
high–frequency variations caused by ISW packets. The similar variation trends between
ε and vertical velocity confirmed that ISWs cause internal turbulence. Turbulent mixing
induced by frequent ISWs can increase the vertical nutrient supply and influence the
biogeochemical cycle. Considering that the regions around these offshore islands are now
important bottom–aquaculture farms in China, the influence of the prevailing ISWs on
aquaculture remains to be examined.
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Abstract: The mode-1 semidiurnal internal tides that emanate from multiple sources in the Sulu-
Sulawesi Seas are investigated using multi-satellite altimeter data from 1993–2020. A practical
plane-wave analysis method is used to separately extract multiple coherent internal tides, with the
nontidal noise in the internal tide field further removed by a two-dimensional (2-D) spatial band-pass
filter. The complex radiation pathways and interference patterns of the internal tides are revealed,
showing a spatial contrast between the Sulu Sea and the Sulawesi Sea. The mode-1 semidiurnal
internal tides in the Sulawesi Sea are effectively generated from both the Sulu and Sangihe Island
chains, forming a spatially inhomogeneous interference pattern in the deep basin. A cylindrical
internal tidal wave pattern from the Sibutu passage is confirmed for the first time, which modulates
the interference pattern. The interference field can be reproduced by a line source model. A weak
reflected internal tidal beam off the Sulawesi slope is revealed. In contrast, the Sulu Island chain is
the sole energetic internal tide source in the Sulu Sea, thus featuring a relatively consistent wave
and energy flux field in the basin. These energetic semidiurnal internal tidal beams contribute to the
frequent occurrence of internal solitary waves (ISWs) in the study area. On the basis of the 28-year
consistent satellite measurements, the northward semidiurnal tidal energy flux from the Sulu Island
chain is 0.46 GW, about 25% of the southward energy flux. For M2, the altimetric estimated energy
fluxes from the Sulu Island chain are about 80% of those from numerical simulations. The total
semidiurnal tidal energy flux from the Sulu and Sangihe Island chains into the Sulawesi Sea is about
2.7 GW.

Keywords: semidiurnal internal tides; the Sulu-Sulawesi Seas; sea surface height; plane wave fit
method; energy flux

1. Introduction

Internal tides are widespread in the stratified ocean and act as a significant part in the
energy cascade of multiscale oceanic processes. They are generated by the flux of barotropic
tidal currents over complex bathymetries, such as the seamounts, trenches, ridges, and
continental slopes. The globally integrated barotropic into baroclinic conversion rate in
the deep ocean is estimated at ~1 TW [1]. The long-range radiation of internal tides in
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the open ocean is relevant to low modes that emanate from the generation sites [2]. The
breaking of internal tides can cause energetic tidal mixing, which is essential to drive
the large-scale meridional overturning circulation (MOC) and, subsequently, to affect the
climate variability [3].

The propagation of internal tides redistributes the baroclinic tidal energy across
the ocean basin, which is closely related to the inhomogeneous distribution of deep-sea
mixing [4]. In particular, the semidiurnal internal tides dominate the tidal energy transfer
process in the deep ocean and balance the global internal tide energy budget [5]. A correct
characterization of the propagation paths and directions of the internal tidal energy flux will
significantly contribute to parameterizing realistic diapycnal mixing in the ocean models [6].
However, the horizontal inhomogeneity in the energy flux density largely modulated by
the interference of internal tides remains unknown [7]. Both the numerical models and
satellite altimetry have revealed the widespread presence of multiwave interferences in
the open ocean [8]. Therefore, it is crucial to regionally characterize multisource internal
tides among the world ocean’s hotspots [9–12], based on a combination of simulations and
multi-platform observations.

The Indonesian Archipelago acts as the only tropical connection of the Pacific and
Indian Oceans and features the most complicated topography among the world’s regional
seas. It is identified as an energetic internal tide generation field in the global ocean based
on in situ measurements, numerical model simulations, and satellite altimeters [4,8,13]. The
internal tide source regions include the Manipa, Lifamatola, Lombok, and Ombai Straits,
and the Sulu and Sangihe Island chains et al. Previous studies showed that internal tides
in different sea areas interact with each other, and internal tide fractions of different cycles
interact nonlinearly, forming extremely complex and variable internal tide fields [14,15].
Koch-Larrouy et al. [16] showed numerically that tidal mixing has a considerable effect on
the tropical climate system. The tidal mixing influences the SST patterns in the Indonesian
Seas and changes the character of the Indonesian Throughflow (ITF) [17,18]. To date, much
work on internal tides in the Indonesian Archipelago has been made based on numerical
simulations. However, the verification of models remains limited due to insufficient
field observations.

In the last two decades, satellite altimetry has been widely used as an important
method to observe internal tides [19–21]. A recent M2 internal tide prediction model on
a global scale without blind directions was constructed using multiple satellite altimeter
measurements [22]. In addition, Zaron [21] filtered the main mesoscale noise and proposed
global internal tide fields for the diurnal constituent (O1 and K1) and the semidiurnal
constituent (M2 and S2). The radiation and propagation of internal tides have been investi-
gated in numerous marginal oceans by satellite observations [23,24]. In the regions where
in situ measurements are lacking, satellite altimeter measurements can be utilized to reveal
a broad distribution of internal tide signals. Note that most existing satellite altimeter
measurements focused on mid-latitude open seas where the M2 internal tides can usually
travel thousands of kilometers across ocean basins.

The Sulu-Sulawesi Seas are characterized as energetic generation sources of the semid-
iurnal internal tides in the semi-closed sea basin near the equator [25]. As Figure 1a shows,
the two basins are deeper than 4000 m and exhibit steep topography at the boundary, includ-
ing the Sulu and Sangihe Island chains. The topographic conditions are critical for the M2
internal tides (Figure 1b), as are the S2 internal tides. According to the TOPEX/POSEIDON
global tidal model (TPXO) [26], the semidiurnal M2 and S2 barotropic tidal currents are
energetic in the two island chains. Thus, the Sulu Island chain radiates intense internal tides
northward into the Sulu Sea and southward into the Sulawesi Sea, enabling a north-south
asymmetry pattern between the two basins. Nagai and Hibiya [27] launched numerical
experiments to estimate that the M2 barotropic energy to baroclinic energy conversion
rate in two island chains is 18.4 GW, and 50–70% of their energy is dissipated near the
generation sites. The work suggests that ocean models need to consider the energy dissipa-
tion far from the generation sources caused by internal tide propagation [27]. A coherent
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portion of the semidiurnal internal tides near two island chains is dominant, making the
altimetry measurements more reliable and suitable [28]. The semidiurnal internal tides
lose coherence in propagation due to the background flow.

Figure 1. (a) Bathymetry of the Sulu-Sulawesi Seas. (b) Slope criticality γ/c. (c = [(ω2 − f2)/(N2 − ω2)]1/2),
which indicates the internal tide propagation angle to the horizontal, and γ is the bottom gradient.)
The study region area is 0◦ to 10◦N, 118◦ to 126◦E near the equator. MS: Makassar Strait. The
Sulawesi Sea is semi-closed, connected with the Makassar Strait to the south and the Western Pacific
to the east. The Sulu Island chain forms the southern edge of the Sulu Sea and the northern edge of
the Sulawesi Sea.

In this paper, to clarify semidiurnal internal tides in the Sulu-Sulawesi Seas, we are
motivated to extract the internal tides using a practical plane-wave analysis method [22],
which resolves multiwave interference well. From a global view, satellite altimetry shows
that the Sulu Island chain radiates the transbasin coherent M2 internal tidal beams [8,29].
However, the multidirectional internal tidal beams are usually represented by the strongest
beam in the small-scale basin and become undetected. The decomposition of the multi-
directional wave fields allows the covered internal tides to be exposed. Accumulating
multiyear satellite altimeter data, multi-satellite altimetry with denser ground tracks can
resolve the internal tide with a short wavelength. In Section 2, the satellite altimeter data
and plane-wave analysis method will be described. We will propose the semidiurnal
internal tide field of the Sulu-Sulawesi Seas in Section 3, with a focus on the interference of
multisource internal tides. The interference patterns are explained by a line source model.
Section 4 discusses the reflection and energy of internal tides. Section 5 summarizes the
results and conclusions.

2. Data and Methods

2.1. Satellite Altimeter Data

In this paper, we used the sea surface height (SSH) observations combined by multiple
altimeter satellites, including TOPEX/Poseidon (TP), Jason 1, 2, and 3 (J1, J2, and J3), Geosat
Follow-On (GFO), Envisat (EN), and European Remote Sensing Satellite 1 and 2 (ERS-1 and
ERS-2). The satellites usually take over and continue the previous satellite missions. Thus,
a series of satellites have the same parameters, including the ground track and the repeated
cycle (Figure 2a). According to satellite ground tracks, the SSH data are divided into four
sets, namely TPJ (TP, J1, J2, and J3), TPT (TP tandem mission), ERS (ERS-1 and ERS-2),
and GFO (Figure 2c). Standard corrections for geophysical effects, surface wave bias, and
atmospheric effects are applied to process the SSH measurements. Global Ocean Tide 4.7
(GOT4.7) was used to correct the barotropic tide and loading tide. The noise measurement
error on the same scale in different satellites is less than the amplitude of internal tides in
our survey region. Our study area extends from 118◦E, 0◦ to 126◦E, 10◦N to contain the
Sulu-Sulawesi Seas. To avoid the issues of tide aliasing in marginal seas caused by satellite
altimetry measurements, measurements of water depths less than 400 m were eliminated.
The reference depth is determined based on the sensitivity analysis of different depths. The
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setting of a threshold is necessary because the quality of satellite altimeter data in coastal
areas is not good enough. The Copernicus Marine and Environment Monitoring Service
(CMEMS) is responsible for processing and distributing SSH measurements. The satellite
SSH products were downloaded on 16 July 2020. A global mode-1 M2 internal tide field
was constructed using a similar dataset [8].

Figure 2. Satellite altimeter data and wavelength of M2 internal tide. (a) Tracks of multiple satellites
(MultiSats). The colors correspond to the boxes in (c). (b) The wavelength of the mode-1 M2 internal
tide is calculated from annual-mean ocean stratification in the World Ocean Atlas 2018 (WOA2018).
(c) The duration of satellite altimeter observation is from 1993 to 2020.

These datasets have different temporal lengths and spatial coverage. The repeat
periods of ERS, GFO, and TPJ are 35, 17, and 10 days. Based on the Rayleigh criterion,
the M2 and S2 internal tides can be reliably separated by the long enough datasets. The
ground tracks of TPJ (TPT), GFO, and ERS are 254, 488, and 1002. The datasets’ along-
track resolution is about 6–7 km, sufficient to resolve internal tides. Noise signals and
noise-affected short wavelengths are removed from measurements in the along-track noise
filtering with a cutoff wavelength of 65 km. Figure 2b shows the theoretical wavelengths
of mode-1 M2 internal tides in the Sulu-Sulawesi Sea, which range from 75 km to 130 km.
Because of the distinct stratification caused by the background flow, the wavelengths
between the two basins are different. This cutoff wavelength is less than the theoretical
minimum wavelength of mode-1 M2 internal tides and denotes the minimum wavelength
associated with the dynamical scales to be statistically resolved by the altimetry.

2.2. Two-Dimensional Plane-Wave Fit

Internal tides were extracted by a 2-D plane-wave fit method, using satellite altime-
ter data with a large spatial coverage. Plane-wave fitting is an extension of traditional
point-wise harmonic analysis. This method was first proposed by Ray and subsequently
promoted by Zhao [30]. Through plane-wave fitting, the propagation direction and ampli-
tude of the internal tide can be determined by solving multiple stable internal tidal waves
in any direction on the plane.

η(a, φ, θ) = a cos(k0x cos θ + k0ysinθ − ω0t − φ), (1)

where k0 and ω0 are the tidal frequency and wavenumber, respectively, and x and y are
the east and north in the Cartesian coordinates. The expected output, including tidal wave
amplitude a, phase φ, and propagation direction θ, is obtained by fitting plane waves to
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satellite SSH data. The buoyancy frequency N, wavenumber k0, and phase velocity Cn are
calculated based on WOA2018 [31]. The WOA2018 is a collection of objectively analyzed
ocean water quality parameters which has been widely used in ocean models and the
corroboration of satellite data.

An example is shown in Figure 3 to illustrate the process of extracting mode-1 M2
internal tides. Internal tides are extracted using over 1 × 105 SSH data in a selected window
centered at 3.6◦N, 121.8◦E (Figure 3a). First, using the least-square fitting, the amplitude
and phase of a plane-wave are determined in each compass direction with a 1◦ angular
resolution. When we plotted the amplitudes in polar coordinates as a function of direction,
the lobes appeared and indicated the internal tidal beams. The amplitude and direction of
the first M2 internal tide are determined by the largest lobe (Figure 3d). Then, the phase
and direction corresponding to the maximum amplitude is determined. The amplitude
maximum corresponds to the residual minimum in the same direction (Figure 3g). When
the first internal tide wave is identified, its signal can be reproduced and then removed
from the original measurements. The extraction process above is repeated (Figure 3e,f).
The residual variance also varies with the direction (Figure 3g–i). The new maximum
amplitude tidal wave can then be considered as another tidal wave direction. In this study,
five internal tidal waves are extracted in a fitting window of 180 km by 180 km at each grid
point, based on a sensitivity analysis of different sizes (Figure 3b,c). The size of the window
is about one and a half wavelength of mode-1 M2 internal tides in the Sulu-Sulawesi Seas.
The last two internal tide waves are too small, so only the first three waves are presented
in Figure 3.

Figure 3. An example illustrates the plane-wave fit method. (a) A 180-km wide fitting window
and a 300-km wide fitting window are centered at 3.6◦N, 121.8◦E, displaying multi-satellite SSH
measurements in this region. (b) Three determined internal tidal waves in a fitting window of 180 km
by 180 km. (c) As in (b), but for a fitting window of 300 km by 300 km. (d) Amplitudes (mm) show
as a function of direction obtained in the plane-wave fit. The amplitude and direction of the first M2

internal tide are determined by the largest lobe. (e), (f) As in (d), but for westward and eastward
waves. After removing the first internal tidal wave from the original measurements, the second
M2 internal tidal wave is determined by repeating the procedure. (g) Residual variance (mm2) vs.
direction in the plane-wave fit. (h), (i) As in (g), but for westward and eastward waves.
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The plane-wave fit method is applied at a regular grid resolution of one-tenth degree
(0.1◦ longitude by 0.1◦ latitude) in the Sulu-Sulawesi Seas. The five extracted waves get
summed in each grid point. Besides, the internal tide solution exists in water deeper than
400 m. Figure 4a presents the map of the mode-1 M2 internal tide field. From the SSH
pattern seen in satellite altimetry, the generation sites for the internal tides appear to be
the Sulu and Sangihe Island chains, favoring a spatially inhomogeneous SSH field in the
Sulu-Sulawesi Seas. An interference pattern means that mooring measurements at different
locations vary greatly. Neighboring fitting windows are mostly overlapped, due to the large
window and small grid, producing a smooth amplitude, phase, and direction. However,
because mesoscale eddies contaminate the internal tide solution in the Sulu-Sulawesi
Seas [32,33], some SSH perturbations exist in the internal tide field. A 2-D band-pass filter
is required to clean the internal tide field.

Figure 4. Mapping the M2 internal tide from satellite altimetry. (a) The five-wave superimposed
M2 internal tide SSH field was constructed by plane-wave analysis from along-track altimeter
measurements. (b) 2-D wavenumber spectrum of (a). The theoretical wavenumber is indicated by
the dotted-line circle, and the filter’s cutoff wavenumbers are indicated by the solid-line circles. They
are [4/5 8/5] times the theoretical wavenumber. (c) The M2 internal tide SSH field, obtained from the 2-D
wavenumber band-pass filtering of (a). (d) Nontidal noise, obtained from the difference between (a,c).

2.3. Two-Dimensional Bandpass Filter

The nontidal noise in the M2 internal tide field is removed by a 2-D band-pass filter
(Figure 4). It processes the internal tide field by preserving the internal tides that meet the
theoretical wavelengths. Figure 4b shows the two-dimensional wavenumber spectrum
conducted by processing the noisy internal tide field on a regular spatial grid. It shows a
nearly circular energy pattern indicated by a dotted circle corresponding to a wavenumber
of 8 × 10−3 cpkm for the mode-1 M2 internal tide. Its reciprocal corresponds to the
theoretical wavelength (Figure 2b). Ray and Zaron [29] constructed a global map of
modal wavelengths by applying a two-dimensional wavenumber spectrum. The cutoff
wavenumbers are indicated by solid circles, which are chosen as [4/5 8/5] times the
theoretical wavenumber. Figure 4c shows 2-D band-pass filtered internal tide field with a
smooth pattern. Figure 4d gives a residual field representing the nontidal noise acquired
from the difference between Figure 4a,c. Because the wavenumber varies more dramatically
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in small basins, the wavenumber band is broader than the similar band shown by Zhao [22],
who fully demonstrated that the 2-D filter does not lead to blind directions. The results
will be discussed in Section 3.1.

2.4. Phase Speed and Energy Flux

The horizontal scale of internal tide is much larger than the mean ocean depth. The
variable separation method is widely applied to simplify with hydrostatic approxima-
tion [34]. A sum of normal vertical modes in a stratified ocean expresses internal tides.
We study the first mode of internal tides in this paper. The buoyancy frequency profile
N(z) decides the modal structure in the vertical. Φ(z) presents the vertical displacement
structure. The following eigenvalue equation determines the modal structure [35]

d2Φ(z)
dz2 +

N2(z)
c2 Φ(z) = 0, (2)

which satisfies the boundary condition Φ(−H) = Φ(0) = 0, where H is the ocean depth and
c is the eigenvalue speed. The buoyancy frequency profiles are calculated from WOA2018.

In a non-rotating fluid, the eigenvalue speed c is the phase speed. Considering the
effect of the Earth’s rotation (Ω), the dispersion relation of an internal wave is

ω2 = k2c2 + f 2, (3)

where k is the wavenumber, and the inertial frequency is expressed as f ≡ 2Ω sin(latitude).
Equation (3) suggests that the internal tide’s wavelength usually increases with latitude,
with constant depth and stratification. Before we apply the plane-wave fit method, we will
calculate the internal tide’s wavenumber as an input parameter. The phase velocity cp is
calculated from c,

cp =
ω

(ω2 − f 2)
1/2 c, (4)

where ω stands for the tidal frequencies. Equation (4) also suggests that the internal tide’s
phase speed increases with latitude, which causes the refraction of internal tide. Due to a
tidal frequency ω > f, phase velocity cp is always greater than c.

Using the vertical modal structures Φ(z), The SSH amplitude can deduce the interior
displacement of internal tides. Then, the energy flux of the mode-1 internal tide can be
vertically integrated by

F = 1
2

∫ 0
−H u(z)p(z)dz

= 1
2 a2Fn( f , ω, N, H),

(5)

where Fn(H, N, ω, f ) characterizes the depth-integrated energy flux per unit amplitude
of 1 cm at the surface. It is a function of the inertial frequency f, the tidal frequency ω,
ocean stratification N(z), and water depth H, and if Fn is determined, the energy flux will
be proportional to the amplitude squared. We refer readers to the papers [8,36], which
described the calculation procedure in detail.

3. Results

3.1. Decomposed M2 Internal Tides

This study reveals the constructed M2 internal tide field and its three decomposed com-
ponents in the Sulu-Sulawesi Seas (Figure 5). The black arrows indicate depth-integrated
fluxes, which point away from where they are generated. The M2 internal tide field can
be separated into three components by the plane-wave fit method due to their different
propagation directions (Figure 5b–d). They are southeastward (270–320◦), non-dominant
directional (−40–50◦ and 250–270◦), and the westward component (90–250◦), respectively.
We select the internal tides with the maximum amplitude in the chosen directions in each
grid point. Unlike Luzon Strait, where multidirectional internal tides propagate away
and are observed by satellite altimetry, the Sulu Island chain radiates multidirectional
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internal tides, which are represented by the biggest internal tide in the small sea basin.
Multidirectional decomposition allows the originally covered internal tides to be exposed.
The decomposed components have stable phases and wavefronts, compared to the original
M2 internal tide field. Multiple waves superpose to form an intricate interference pattern.
For example, three tidal beams are marked by green lines and dots (Figure 5a). We refer to
the M2 internal tide field simulated by two global numerical models, including GOLD [13]
and STORMTIDE [37]. Both models show the existence of the three tidal beams. We will
explain the formation of three internal tidal beams in Section 3.3.

Figure 5. The M2 internal tide field is decomposed in the Sulu-Sulawesi Seas. Black lines indicate
isobathic contours of 400 m. (a) The five-wave-summed M2 internal tide field. Three internal
tidal beams are marked by green lines and dots. The internal tide field can be divided into three
components. (b) The southeastward component (270–320◦). (c) The M2 internal tides in a non-
dominant direction consist of the eastward component (−40–50◦) and the southward component
(250–270◦). Two dash green lines indicate a 270◦ direction and a 320◦ direction. The yellow dot marks
out the Sibutu Passage. The green curves indicate ISWs. (d) The westward component (90–250◦).
The depth-integrated energy fluxes are shown as black arrows.

The internal tidal wave with the maximum amplitude is separated in the direction
(270–320◦) on every grid point. Figure 5b displays the southeastward internal tide from
the Sulu Island chain. When the internal tide propagates toward the Sulawesi Sea, its
isophase lines are almost parallel to the shoreline of the Sulu Island chain. We believe
that the feature is formed by the interference of internal tides with similar strength from
multiple point sources in the chain. The transbasin internal tide propagates across almost
the entire basin with isophase contours, arriving at the Sulawesi continental slope. The fate
of the internal tide reaching the continental slope is an open question. We will investigate
it in the discussion part.

A group of the M2 internal tides emanate from the Sulu Island chain into the Sulawesi
Sea in a non-dominant direction (Figure 5c). They consist of the eastward component
(–40–50◦) and the southward component (250–270◦). The yellow dot indicating the Sibutu
passage as a hypothetic point source radiates a cylindrical internal tidal wave with a
missing piece. The missing piece is outlined by two dash green lines. The amplitude
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of the southeastward internal tide is about 40 mm, and the amplitude of a cylindrical
internal tidal wave is about 15 mm. The eastward ISWs observed by Liu and D’Sa are
spatially coincident with the internal tidal wavefronts (Figure 5c). For the first time, the
cylindrical M2 internal tide in the Sulawesi Sea is reported. The recognition of this covered
beam benefits from the plane-wave fit method. Here we explain the missing piece of the
cylindrical internal tide. The M2 internal tides are separated from the point source and the
other source over the Sulu Island chain due to different propagating directions. In contrast,
we cannot separate them where their propagation directions become close. The missing
piece corresponds to the dominant direction shown in Figure 5b, enhancing the strength of
the southeastward internal tide. In addition, the eastward M2 internal tides start from the
continental slope in the western Sulu Sea along 119◦E ranging from 6 to 9◦N (Figure 5c).
The weak eastward internal tide propagates along the Sulu Island chain and significantly
modulates the dominant northward internal tide from the Sulu Island chain.

Figure 5d shows the westward internal tides from Sulu and Sangihe Island chains.
The northwestward internal tides emanate from the Sulu Island chain into the Sulu Sea,
propagating in almost the same direction. The internal tide causes a relatively consistent
wave and flux pattern in the basin, which agrees well with HYCOM results around the
Sulu Sea [38,39]. The Sangihe Island chain is another strong generation source that radiates
westward internal tides [40]. The northern and southern sections of the Sangihe Island
chain radiate two westward internal tidal beams into the Sulawesi Sea. Two internal tidal
beams propagate at an angle and interfere with each other.

3.2. The Dominant Tidal Beam and Internal Solitary Waves

The relation of internal tides and ISWs in the Sulu-Sulawesi Seas is explored by
investigating their spatial distribution. The internal tides evolve nonlinearly to generate
ISWs from the Sulu Island chain [41–43]. Field measurement [44] and satellite observations
have confirmed this relation [45]. Figure 6a shows the internal tides superposed with ISWs
observed by Liu and D’Sa in 2019 [45]. The relation is revealed by their spatial distribution.
The ISWs that are indicated by black curves are spatially coincident with the internal tidal
wavefronts (Figure 6a).

Figure 6. (a) M2 internal tides and ISWs in Sulu-Sulawesi Seas. Black curves indicate ISWs. The
green lines indicate the paths of two M2 beams. (b–i) The M2 internal tides propagate along a definite
direction: (b–e) in the Sulawesi Sea and (f–i) in the Sulu Sea. Internal tides phase (Figure 6b,f).
Wavelength (Figure 6c,g). Phase speed (Figure 6d,h). The theoretical and observational values are
shown as red and green curves, respectively. Submarine topography (Figure 6e,i).

Liu and D’Sa [45] reported that ISWs are observed to propagate into the Sulu Sea
and the Sulawesi Sea, showing the behavior of a spring-neap tidal cycle. The ISWs in
the Sulawesi Sea are less frequently observed compared to those in the Sulu Sea. Zhang
et al. [43] further confirmed that ISWs are mainly observed in the shallower western zones
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rather than the deeper eastern areas in the Sulu Sea. Tessler et al. [42] estimated the
observed energy of the waves, maintaining baroclinic tidal mixing rates. A large number of
ISWs accompany the internal tides, which indicates that their common generation source
is the Sulu Island chain.

The green lines suggest the propagation paths of two M2 beams in the Sulu- Sulawesi
Seas. The along-beam phase speed of M2 internal tide is examined by comparing the
theoretical and altimetric results. Many factors affect the phase speed, including the depth
and latitude. We calculated these factors along the two green lines, and the calculation
procedure is illustrated in Figure 6b–i. First, the along-beam phase usually increases
with the propagation distance in the Sulu-Sulawesi Sea, respectively (Figure 6b,f). Then,
the polynomial fitting is employed to smooth the along-beam phase. The wavelength
is calculated from the relation of phase gradient to distance (Figure 6c,g). The graphs
show that the wavelength is mainly affected by the basin’s depth rather than the Coriolis
parameter near the equator. Finally, the phase speed is deduced from the relation of
frequency and wavelength (Figure 6d,h). For comparison, light green curves indicate the
theoretical phase speeds extracted from WOA2018 [31]. Due to the rapid decrease in the
depth of submarine topography, the low values of the theoretical phase speed appear at
starting and ending points (Figure 6e,i); meanwhile, the satellite-derived phase speeds
coincide with the theoretical phase speeds.

3.3. Sulu Sea vs. Sulawesi Sea

Semidiurnal internal tides display an apparent contrast between the Sulu Sea and the
Sulawesi Sea. The Sulu Island chain radiates the semidiurnal internal tides northward into
the Sulu Sea and southward into the Sulawesi Sea. The amplitude of the northward M2
internal tide is about 20 mm, about half of the southward one. The northward internal tide
from the Sulu Island chain propagates in almost the same direction. However, multidirec-
tional internal tides from the Sulu Island chain are superposed on the westward internal
tide emanating from the Sangihe Island chain, forming a complex interference pattern in
the Sulawesi Sea. The wavelength of the internal tide in the Sulawesi Sea is longer than
that in the Sulu Sea. In summary, internal tides in the Sulu Sea and the Sulawesi Sea have
different strengths, directions, and wavelengths. The reason for this contrast is that the
number and distribution of their generation sources are distinct. Thus, the internal tides in
the Sulawesi Sea have significant spatial inhomogeneity due to multisource interference.
Next, we will further investigate the distinctions of internal tides between the two basins
in detail from their multiple generation sources and multiwave interference process.

3.3.1. Comparison of Multiple Generation Sources

The multidirectional internal tides emanate away from two island chains, suggest-
ing the presence of multiple sources in the boundaries. The phenomenon captured by
the satellite altimeter is clarified in this section. Previous studies have investigated the
barotropic tide in the Sulu-Sulawesi Seas by mooring measurements, satellite altimetry, and
numerical models [46]. The model product is generated by a TPXO developed by Egbert
and Erofeeva [26]. Figure 7a shows M2 barotropic tidal ellipses and volume transport in
the Sulu-Sulawesi Seas. The M2 tide enters the Sulawesi Sea via the Sulu Island chain
(Figure 7b). Strong tidal currents mainly occur in the eastern section of the Sibutu Passage
in the Sulu Island chain, corresponding to the hypothetic point source. Affected by the
rugged terrain, the tidal currents follow multiple directions, favoring a multidirectional
internal tide generation. In contrast, the tidal currents mainly flow across the Sangihe
Island chain (Figure 7c). The southern section of the Sangihe Island chain is the main
channel of volume transport.
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Figure 7. M2 barotropic tide from TPXO and body force. Isobathic contours of 400 m are shown
as black lines. (a) M2 barotropic tidal ellipses and volume transport. Tidal ellipses are shown in
blue. Two dotted boxes indicate two island chains. (b,c) are partial enlargements of (a). (b) Tidal
ellipses and volume transport in the Sulu Islands chain. (c) As in (b), but in the Sangihe Islands chain.
(d) Barotropic tidal body force. (e,f) are also partial enlargements of (d). (e) Barotropic tidal body
force in the Sulu Islands chain. The four red dots represent Basilan Island, Jolo Island, Tawi-tawi
Island, and Sibutu Passage. (f) As in (e), but in the Sangihe Islands chain. The dark red in the colorbar
indicates values greater than five.

The barotropic tidal body force is used to reveal generation sites. The calculation of
the barotropic tidal body force is expressed as

F =
Q∇H
ωH2

∫ 0

−H
N2zdz, (6)

where H presents the basin depth, ∇H is the bottom gradient, Q is the barotropic tidal
volume transport from TPXO, ω is the M2 tidal frequency, and N2 is the buoyancy frequency
calculated from stratification from WOA2018. Figure 7d shows the barotropic tidal body
force in the Sulu-Sulawesi Seas. In particular, Sibutu Passage, near Tawi-tawi Island, and
Jolo Island, along the Sulu Island chain, are strong sources (Figure 7e). The body force
shows that the generation sites are on the northern and southern sections of the Sangihe
Island chain (Figure 7f). It reveals that strong conversion sites are scattered around the two
island chains, which is consistent with previous work [43].

3.3.2. Comparison of Multiwave Interference Process

The decomposed internal tidal waves are revealed by the satellite altimeter observa-
tion. Their interference mechanism should be taken into account to interpret the complex
structures of the SSH pattern. To illustrate the SSH pattern observed by satellites, an
ideal line source model is employed to simulate the interference between multidirectional
internal tidal waves. The line source model was proposed by St. Laurent et al. [47] and
subsequently promoted by Rainville et al. [7]. The model uses a zero-width ridge as the
source and a sinusoidal barotropic tidal current perpendicular to the ridge. Rainville et al. [7]
noted that the simple model could describe the surface elevations caused by baroclinic tides:

ζ(t, r, θ) = ζ0
( r0

r
)βexp(ikrr − iωt + φ0)

f or |θ − θ0| < a0/2r0 ,
(7)
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where ζ0, r0, β, a0 are the wave amplitude, the source radius, the attenuation coefficient,
and the “arc length”. ω, kr, and φ0 are respectively the M2 frequency, wavenumber, and
phase. The internal tidal wave is limited to the distance within r > r0 and the direction
between θ0 ± (a0/2r0). The altimetric results determine the parameters applied in the line
source model (Table 1). The line source model clarifies the formation of interference by
characterizing the plane waves. The phase Φ0 of the internal tides is associated with the
phase of the barotropic tides at the generation sites [47]. The wavelength for mode-1 M2
internal tides is obtained by averaging the theoretical wavelength from WOA2018.

Table 1. Parameters are used to reproduce the interference in the Line Source Model.

Source 1 Elevation (mm) Radius (km): R0 Direction (◦): θ

PS 20 100 305 ± 85
LS1 30 2000 2 302 ± 8
LS2 15 150 200 ± 40
LS3 15 150 170 ± 30
LS4 20 800 112 ± 12
LS5 5 500 20 ± 20

1 PS is a point source in the Sulu Island chain. LS1 is a line source in the Sulu Island chain that radiates the
southeastward internal tide. LS2 and LS3 are line sources located at the northern and southern sections of the
Sangihe Island chain. LS4 is a line source located at the continental slope in the western Sulu Sea. LS5 is a line
source in the Sulu Island chain that radiates the southeastward internal tide. 2 A flat line source is produced by a
small angle and a large radius.

Internal tide generation sites along the two island chains are not uniform. The line
source model described a wave propagation that can have various levels of source numbers.
For example, a few sources at the major generation sites can be superposed to create a line
source, and larger amounts of sources along island chains also create a line source with
a similar spatial pattern. Here we retain only the six dominant sources in the line source
model (Figure 8). Figure 8a shows that a line source is used to characterize the smooth
internal tide. Figure 8b shows the Sibutu Passage as a point source. The superposition
of a line source and a point source presents spatial variability and three strong beams
(Figure 8c). The northern and southern sections of Sangihe Island chain as two sources
are shown in Figure 8d,e. Figure 8f shows the interference of M2 internal tides from the
two sources. The interference between M2 internal tides from the continental slope in the
eastern Sulu Sea and Sulu Island chain is not shown here. Based on the superpose principle,
due to the destructive effects of interference, the SSH becomes weak between the beams.
Internal tidal waves form nodes and antinodes not only in the SSH field but also in the
energy flux.

The interference pattern caused by several sources in the LSM explains the complex
structures of baroclinic SSH observed by satellite altimetry. Interference patterns in the
Sulu-Sulawesi Sea are present by the line source model and satellite altimetry (Figure 9).
Different from the decomposed internal tidal fields in Figure 5, the internal tides observed
in each grid point get summed in the chosen direction (Figure 9a–c). To demonstrate the
spatial pattern of the M2 internal tide field modulated by multiwave interference, the
Sulawesi Sea is divided into two fields. The first field in the western basin is predominantly
influenced by internal tides from the Sulu Island chain. The second field in the eastern
basin is influenced by internal tides from the Sangihe Island chain. Two island chains as
the boundary of the Sulawesi Sea radiate internal tides, contributing to the interference
pattern. Finally, internal tides from both island chains superposed together to construct the
spatial pattern in the Sulu-Sulawesi Sea.
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Figure 8. The line sources in the ideal line source model. (a) A line source along the Sulu Island
chain. (b) A point source is located on the Sibutu Passage. (c) Interference pattern in the Sulawesi
Sea superimposed to (a,b). The line source is located on (d) the northern section and (e) the southern
section of the Sangihe Island chain. (f) Interference pattern in the Sulawesi Sea superimposed to (d,e).
Parameters of LSM are listed in Table 1.

Figure 9. Interference patterns in the Sulawesi Sea by satellite altimetry and the line source model.
(a) Altimetric M2 internal tide from the Sulu Island chain. (b,c) as in (a), for the M2 internal tide from
the Sangihe Island chain and both island chains. (d) M2 internal tide from the Sulu Island chain in
the ideal line source model. (e,f) as in (d), for the M2 internal tide from the Sangihe Island chain and
both island chains. The red triangle represents the enhancement area. The green curves indicate
generation sources.
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In the western basin of the Sulawesi Sea, a cylindrical internal tidal wave from the
Sibutu Passage significantly modulates the dominant internal tides from the Sulu Island
chain. The interference shapes three internal tidal beams with elevated energy flux magni-
tude (Figure 9a). The three internal tidal beams with various strengths are all presented by
satellite altimetric observation and the ideal line source model (Figure 9a,d). This interfer-
ence pattern has been suggested by global satellite observations [8]. This feature is similar
to that at the Hawaiian Ridge, where internal tides interfere to form distinct beams [7].
We can conclude that the weak internal tide modulates the SSH field, contributing to the
inhomogeneous distribution of M2 internal tides. In the eastern basin of the Sulawesi Sea,
the internal tides are generated at the northern and southern sections of the Sangihe Island
chain. One can see that an enhanced central internal tidal beam is formed at the intersection
of their propagation paths (Figure 9b,e). In the whole sea basin, the complex SSH pattern
from the idea line source model is consistent with the satellite altimetric observation. The
internal tide in the Sulu Sea propagates about four wavelengths (Figure 9f), while the
internal tide in the Sulawesi Sea propagates about three wavelengths for approximate
distance. Eventually, the sources are summed to be compared to the SSH for satellite
altimetric observations (Figure 9c). A spatially inhomogeneous SSH field is shaped by
internal tides from the Sulu and Sangihe Island chains. Semidiurnal internal tides display
complex and distinct geographical variations between the Sulu and Sulawesi Seas. Many
simplifications are made in the line source model, including tidal beams perpendicular to
the source ridge, coherent and two-dimensional [47]. Furthermore, the line source model
neglects the topography-scattering effects to characterize the interference of plane waves
ideally. An ideal line source model applied in the small basin should take into account
neighboring sources and the short propagation distance.

3.4. S2 Internal Tides

The S2 internal tide field in the Sulu-Sulawesi Seas is constructed by fitting plane
waves (Figure 10a). The specific frequency and wavelength of the S2 internal tide are input
parameters in the extraction process. Like point harmonic analysis, plane-wave analysis
can extract multi-frequency internal tide signals in one step. The wavenumber band of
the 2-D band-pass filter processing the S2 internal tide field is similar to that of the M2
internal tide. Because of tidal aliasing, the S2 tidal signals could not be extracted from ERS
satellite altimeter data which are excluded in the extraction process. Although the amount
of data is reduced, the same fitting window as that of the M2 internal tide is still used after
different window size attempts to investigate the spatial propagation characteristics of the
S2 internal tide.

Figure 10. The mode-1 S2 internal tide field is decomposed. (a) The five-wave-summed S2 internal
tide field. The internal tide field can be divided into two components. (b) The southward component
(250–330◦). (c) The westward component (90–270◦). The S2 internal tidal energy fluxes are shown as
black arrows in (a–c). Isobathic contours of 400 m are indicated as black lines, respectively.

Figure 10a shows the superposition map of mode-1 S2 internal tides. Consistent with
the M2 internal tide field, the Sulu and Sangihe Island chains are also essential generation
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sources for the S2 internal tides. Several internal tidal beams are shaped by multiwave
interference. Then, we separated the southward and westward components, respectively.
Figure 10b shows the S2 internal tidal beams propagated from the Sulu Island chain into
the Sulawesi Sea. They propagate about three wavelengths and become undetected by
satellite altimeters. The western internal beam is stronger than the eastern one, which
indicates that the Sibutu Passage is also an energetic generation site. The SSH ratio of S2 to
M2 is 0.46, consistent with their ratio in the global ocean [48]. However, differently from M2
internal tides, we find the lack of a stable and continuous eastward S2 internal tide signal.
We deduce that the eastward S2 internal tide is very weak and becomes undetectable.

Westward S2 internal tides emanate from the Sulu and Sangihe Island chains (Figure 10c).
On the one hand, two internal tidal beams propagate from the Sangihe Island chain. They
interfere with each other and enhance the S2 internal tidal amplitude and energy flux. The
westward S2 beams travel a shorter distance than the M2 beams because nontidal noise
disturbs the weak S2 internal tide more easily. On the other hand, the northward internal
tidal beam emanates from the Sulu Island chain into the Sulu Sea. The internal tide passes
through the basin and reaches the other side due to the stable ocean environment.

4. Discussion

4.1. Reflection on the Sulawesi Continental Slope

In this section, we investigate the fate of the transbasin M2 internal tide in the Sulawesi
Sea (Figure 11a). Theoretically, a small fraction of the M2 internal tide is expected to reflect
into the Sulawesi sea, since the Sulawesi slope is supercritical to M2 (Figure 1b). The
incident and reflected M2 internal tides have been investigated in marginal seas by satellite
altimeters, such as the Tasman Sea [49]. The incident and reflected internal tides can be
separated according to their propagation directions. This separation is attributed to the
multiwave internal tidal field decomposed by the plane-wave fitting method (Figure 3).
Here, we choose waves in the direction of 280◦–330◦ as the incident internal tides and
0◦–70◦ as the reflected internal tides (Figure 11).

Figure 11. The M2 internal tide reflects in the Sulawesi Sea. (a) Incident part (ranging 280–330◦).
(b) Reflected part (ranging 0–70◦). The Sulawesi slope is denoted as the green line. The incident and
reflected waves are shown as two black arrows, respectively. The ratio of the incident and reflected
SSH amplitudes near the Sulawesi slope presents reflectivity. (c) M2 barotropic tide ellipse and
volume transport in the Sulawesi slope. (d) Barotropic tidal body force in the Sulawesi slope.
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Figure 11 shows that the dominant M2 internal tidal beam hits the Sulawesi slope and
reflects into the Sulawesi Sea. Snell’s law is used to examine the incident and reflected
waves. The black arrow with a 300◦ incidence angle denotes the incident internal tidal
wave. A black arrow toward 28◦ denotes the reflected wave. The green line denotes the
continental slope as the wall. Satellite altimetric observation agrees well with the law of
reflection, indicating that the northeastward tidal beam is reflected from the Sulawesi slope.
When the dominant internal tidal beam reaches the slope, the amplitude of the incident
part is about 6 mm. The amplitude of the reflected wave is about 4 mm. The energy flux
is approximately proportional to the SSH squared in Equation (5). Thus, the reflectivity
from the incident and reflected energy flux is about 45%. Our estimation may be affected
by many factors.

In addition, we need to verify that the northeastward internal tide is not locally
generated. We check the tidal ellipses, volume transport, and barotropic tidal body force on
the Sulawesi slope. The direction of the tidal current is not consistent with the propagation
direction of the reflected internal tide. Therefore, it can be concluded that the northeastward
internal tide is formed by reflection rather than local generation. A key point of this paper
is to note the existence of the reflection phenomenon but not to estimate the reflectivity
accurately. A quantitative estimation of reflectivity requires further field observations and
numerical models with a suitable method in the Sulawesi Sea [50].

4.2. Internal Tide Energetics

In this section, we estimate the semidiurnal internal tidal energy fluxes from two
island chains. The total energy fluxes are integrated along a section across the whole sea
basin parallel to the two island chains. For the southeastward M2 internal tide from the
Sulu Island chain, we acquire a total energy flux of 2.07 GW. Similarly, we estimate the
northwestward energy flux from the Sulu Island chain and westward energy flux from
the Sangihe Island chain. The total energy fluxes for the northwestward and westward
internal tides are 0.41 and 0.28 GW, respectively. Thus, the total M2 tidal energy flux from
the Sulu Island chain is 2.48 GW (Figure 12a). It is about 80% of 2.8 GW from the numerical
simulation by Nagai and Hibiya [27]. The westward internal tide is smaller than the model
result because only the energy flux in the Sulawesi Sea is considered [51]. Likewise, the
energy flux for each direction of the S2 internal tides is estimated. The energy fluxes for the
northwestward, westward, and southeastward internal tides are 0.04, 0.09, and 0.25 GW,
respectively. The total semidiurnal tidal energy fluxes from the Sulu and Sangihe Island
chains into the Sulawesi Sea are about 2.7 GW, measured by satellite altimetry.

Figure 12. The total energy fluxes and the decay rate of the southeastward internal tide. (a) The total
internal tidal energy flux from two island chains. (b) The decay of the southeastward internal tide.
(c) Internal tides energy flux after normalization. The E-folding scale of 150 km is indicated as the
dashed curve.
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Furthermore, we estimate the decay rate of the dominant internal tide (Figure 5b). We
sample the internal tide from the Sulu Island chain to the Sulawesi slope using 30 equidis-
tant sections. We integrate them along each section, which is perpendicular to the energy
fluxes. The blue line and red line in Figure 12b respectively denote the M2, and S2 energy
flux obtained using plane-wave fitting. Figure 12c indicates the M2 and S2 internal tides
energy flux after normalization. Even though their amplitudes are different, both of them
decay at close rates. The E-folding decay scale of 150 km is indicated as the dashed curve.
The short e-folding scale may be the result of either undetectable incoherent internal tides
or real dissipation.

5. Conclusions

In this paper, we apply the plane-wave analysis method to construct the regional
semidiurnal internal tidal field in the Sulu-Sulawesi Seas from multi-satellite altimeter data.
We separately decompose the internal tidal field due to different propagation directions.
The components obtained from the decomposition contribute to a better understanding of
the formation and propagation of internal tidal beams. The multidirectional internal tides
and their interference are revealed in the Sulu-Sulawesi Seas. We presented the geographic
distribution of the semidiurnal internal tidal beams from the Sulu and Sangihe Island
chains. The internal tides in the Sulawesi Sea dissipate in the semi-closed basin, causing
strong tidal mixing.

Our main scientific findings are as follows. (1) The constructed M2 internal tidal field
is decomposed into three components, which have different propagation directions. The
interference pattern is well reproduced by the line source model. (2) The Sibutu passage in
the Sulu Island chain acts as a point source that radiates a cylindrical internal tidal wave.
(3) The ISWs spatially correspond to the internal tidal wavefronts. The phase speed derived
from the satellite is in good agreement with the theoretical phase speed. The above two
results confirm that the analysis method can be applied to local small sea basins. (4) The
northward M2 tidal energy flux from the Sulu Island chain is 0.41 GW, about 20% of the
southward energy flux. The total energy fluxes from satellite altimeters are about 80% of
those from numerical simulations in the Sulu Island chain. (5) The M2 and S2 internal
tides have a similar decay rate, although the SSH ratio of S2 to M2 is 0.45. (6) The total
semidiurnal tidal energy fluxes from the Sulu and Sangihe Island chains into the Sulawesi
Sea are about 2.7 GW. It is important to note that these values are all at the lower limits
because they are multi-year coherent results. The plane-wave analysis only extracts the
temporally coherent internal tide. The internal tides become incoherent due to the variation
of the ocean environment, such as mesoscale eddies and circulation [52].

The present study focuses on the coherent internal tides over 20 years. However,
recent studies revealed that the internal tides show the spatial distribution and strong
seasonal variation in the Indonesian Archipelago and adjacent seas [53–55]. In addition,
the Sulawesi Sea is the main channel of ITF, which affects the generation and propagation
of internal tides. The propagation direction of internal tides from the Sulu Island chain is
almost perpendicular to the direction of ITF in the Sulawesi Sea. In contrast, the internal
tides propagate from the Sangihe Island chain in the same direction as the ITF, weakening
the westward internal tides observed by satellite altimetry. The Sulu-Sulawesi Seas are
also identified to be the source of the energetic generation of diurnal internal tides. The
investigation of these tides using multi-satellite altimeter is underway.
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Abstract: Breaking internal tides and induced mixing are critical to shelf dynamics, including heat and
mass exchanges. Spatiotemporal variability of internal tides and modulation factors for the southern
East China Sea shelf were examined based on a combination of a three-month mooring velocity and
satellite altimeter data. Semidiurnal and diurnal internal tides exhibited distinct temporal trends, with
the semidiurnal internal tides enhanced by an order of magnitude during the latter half of the record,
while the diurnal internal tides followed quasi spring-neap cycles with a generally stable intensity
except for two specific periods of strengthening. These internal tides probably originated remotely
over the shelf-slope area northeast of Taiwan. Time-varying stratification was the most important
factor for the internal tidal magnitude. In addition, varying background currents influenced the
diurnal critical latitude band, which explains the slightly enhanced diurnal internal tides during the
two periods. Although both semidiurnal and diurnal internal tides were mode-1 dominated, the
semidiurnal internal tides were surface intensified while the diurnal tides were bottom intensified.
The proportion of higher mode internal tides increased during robust eddy activities. Stronger
background vertical shear corresponded to high-frequency events and energy transfers from tidal
frequencies to high frequencies associated with turbulent mixing.

Keywords: internal tides; spatiotemporal variation; East China Sea; modal structure; energy cascade

1. Introduction

Internal tides are generated when barotropic tides in a stratified water column flow over
abrupt topography, such as a continental shelf edge, subsurface ridge, sill, or seamount [1].
Previous analysis indicates that open-ocean low-mode internal tides lose up to 60% of
their energy as they impinge onto the continental shelf [2]. Along the continental mar-
gins, internal tides can induce turbulent mixing, playing a pivotal role in mass and heat
transports, biological production, and possibly even shaping the continental slope [3].
Deciphering the formation, structure, and variability of internal tides at the continental
shelf is of significance in understanding the coastal regions and their energy exchange with
the open ocean.

Global maps of mode-1 internal tides have been estimated by numerical models [4,5]
and satellite observations [6–8]. Nevertheless, some pieces are still missing over the
continental shelves and in coastal regions, and the accuracy decreases near land. Accurately
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characterizing the internal tide is challenging for numerical models due to the highly
variable stratification and complex topography. Noise contamination near land prevents
internal tides from being identified in altimeter results in continental shelf areas [6,8,9]. All
of these make in situ observations indispensable to accurately characterize internal tides in
shallow coastal waters.

The East China Sea (ECS) is considered to be the second-largest M2 internal tidal
generating site among global shelf regions, owing to the strong tidal currents that are
perpendicular to the steep continental slope [1]. In the ECS, strong internal tides are
effectively generated by multiple sources, including the Ryukyu Island chain, Tokara
Straits, and the continental shelf break. Furthermore, these waves can propagate both
onshore and offshore [10]. Previous studies primarily focused on offshore propagating tidal
beams, particularly their propagation path, their complicated multiple-source interference
patterns in the deep waters of the western Pacific Ocean [10–12], and the energetics and
variability modulated by the Kuroshio at the mouth of a canyon northeast of Taiwan [13–15].
Synthetic Aperture Radar (SAR) images illuminated the manifestation of internal solitary
waves northeast of Taiwan [16–18], an indicator of shoreward internal tidal activities.
Consequently, inshore propagating internal tides from these strong sources and their
influence requires further investigation over the inner continental shelf.

Temporal variation is a common feature of internal tides, with multiple factors leading
to a range of time scales from days to several years. Time-varying stratification, both
seasonal and by the spring-neap cycle, can significantly affect the energetics and turbulent
dissipation of internal tides [19]. Seasonal variability of semidiurnal and diurnal internal
tides in the northern South China Sea (SCS) are subject to changes in the corresponding
barotropic tide in the Luzon Strait [20–22]. Over a longer interannual period, ENSO
events affect the intensity and modal structure of diurnal and semidiurnal internal tides
through stratification changes [23,24]. Background currents and eddies strongly modify the
generation, propagation, and evolution of internal tides [25,26], by regulating the energy
source [13], altering the phase speed of refraction [27,28], scattering to higher modes [29,30],
adding relative vorticity to the system [31,32], and dephasing the internal tides, so they
become nonstationary [33–35]. The ECS shelf features multi-scale subtidal frequency
processes: the monthly changing Kuroshio front [36] and its intrusion branch [37], the
seasonal varying Taiwan Warm Current [38], and vigorous eddies [39,40]. The temporal
characteristics of internal tides under these complex dynamical processes over the ECS
shelf remain unknown.

The ECS generates both semidiurnal and diurnal internal tides [10,41]. Although they
share a similar generation mechanism, they differ in frequency, wavelength, and propa-
gation directions, both horizontal and vertical. Numerical simulation results suggest that
diurnal and semidiurnal tidal beams originating from the Luzon Strait are quite different
in propagation paths and interference patterns [11,28]. The generation and propagation of
internal tides are strongly latitude dependent [42]. Internal tides tend to resonate in the
critical latitude zones and cannot freely propagate poleward of their critical latitude [31].
For diurnal internal tides, the critical latitudes for the O1 and K1 tides are 27.6◦ and 30◦,
respectively. Recently, the role of low-frequency flows has been recognized in modulating
and broadening the impact range of critical latitudes [32]. Particularly, the southern ECS
is located in the latitude range affected by the diurnal critical latitudes. Until now, there
is no literature describing the diurnal internal tides in the ECS shelf region. The ECS,
with its wide continental shelf with a steep continental shelf break and a time-varying
background current, is a complicated region for internal tidal dynamics. The behavior of
diurnal and semidiurnal tides, their different characteristics, and the exact impacts of the
critical latitudes on diurnal internal tidal variability remains unknown.

Therefore, mooring observations combined with altimeter data for the ECS shelf region
were employed to explore the vertical structure and temporal variability of internal tides.
The contributions of the relative vorticity and stratification induced by background flow in
modifying the temporal variations of semidiurnal and diurnal internal tides were assessed.
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The remainder of this paper is organized as follows: Section 2 describes the characteristics
of the in situ velocities and satellite data, the background barotropic tides, and the methods
used in this paper. Section 3 provides temporal variability of semidiurnal and diurnal
internal tides. The source region and travel times of internal tides, the roles of stratification,
and the relative vorticity associated with background conditions are discussed in Section 4.
Section 5 summarizes the results and conclusions.

2. Materials and Methods

2.1. Mooring Observations

From 29 May 2014 to 2 September 2014, a mooring was deployed on the western
ECS shelf. It was located at 26◦35′N, 121◦09′E, at a water depth of 72 m (Figure 1a).
A nearly three-month-long time series was obtained from an upward-looking 300 kHz
Acoustic Doppler Current Profiler (ADCP) mounted on the sea bottom. The vertical
sampling interval was set to 2 m, with a time interval of 30 min. To eliminate near-
surface contamination from noise reflection, the upper two layers of data were removed.
Additionally, occasional isolated spikes were eliminated and replaced through interpolation.
Thus, the depth ranges for the available current data ranged from 8 m to 68 m, with a
precision of ±0.5 cm/s. Since nearly the entire water column was sampled, the barotropic
current was defined as the depth-averaged flow. The residual baroclinic anomalies were
determined by subtracting the barotropic velocities from the total velocities. Using a
first-order Butterworth filter, these baroclinic anomalies were divided into 7-day low-pass
sections, diurnal internal tides (frequency bound: (0.9, 1.1) K1), semidiurnal internal tides
(frequency bound: (0.9, 1.1) M2). Tidal harmonic analysis was conducted on the velocity
records to obtain the phase-locked internal tides using the UTide toolbox [43]. We also
employed an empirical orthogonal function (EOF) method to characterize the detailed
modal structure of the baroclinic signals. Although this method is based on data statistics,
it can demonstrate a reasonable modal structure of baroclinic tides, and it is widely used in
internal wave analysis [44–46]. Considering the variable stratifications and currents, we
used 14-day moving overlapped EOFs to analyze the modal content.

2.2. Satellite Altimetric Data

To estimate the influence of background currents and sea level height variations on
internal tides, gridded sea level anomaly (SLA) and geostrophic velocities were obtained
from Archiving, Validation, and Interpretation of Satellite Oceanographic Data (AVISO).
The delayed-time data are all satellite mission merged, produced by Ssalto/Duacs, and
distributed by the Copernicus Marine Environment Monitoring Service (CMEMS). They
range from 119◦E to 124◦E, 24◦N to 29◦N with a 1/4◦ by 1/4◦ spatial resolution and daily
temporal resolution simultaneous with the mooring observation period.

2.3. Body Force Calculation

The generation sites of the internal tides can be further examined by calculating the
barotropic tidal force. This has been widely used in prior studies to identify possible
internal tidal generation hot spots [10,47,48]. The formula used here follows [48] according
to [1]. The depth-integrated body force F is calculated as:

F = −
→
Q∇H
ωH2

∫ 0

−H
zN2(z)dz (1)

where ω is the tidal angular frequency (rad s−1), z is the vertical coordinate (z = 0 at sea
surface, upward positive), N(z) is the local buoyancy frequency calculated by the World
Ocean Atlas (WOA18) salinity and temperature, Q is the barotropic tidal volume transport
extracted from the Oregon State University (OSU) TOPEX/Poseidon global tidal model
(TPXO 7.2) [49]. H presents the local water depth, and ∇H is the bottom slope. The
bathymetry used here is from the Smith and Sandwell database at a spatial sampling
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interval of 1 arc-minute [42]. This widely-used database is derived from satellite and ship
depth soundings [50].

Figure 1. (a) Bathymetry for the East China Sea Shelf (color), with the mooring location (red star).
The solid gray lines indicate the isobathic contours of 30, 50, 70, 100, 200, 800, and 1000 m (Smith and
Sandwell 1/60◦ by 1/60◦). (b) M2 tidal ellipse obtained from TPXO 7.2. Tidal ellipses (with major
axes scaled to unit) are shown in gray at a grid spacing of 0.3◦ by 0.3◦. The contours are the isobaths
of 30, 50, 100, 200, and 1000 m. (c) M2 cotidal chart based on TPXO 7.2. The contours indicate the
co-phase lines with interval of 10◦, except at 330◦, 0◦, and 30◦ with interval of 30◦. (d) K1 cotidal
chart based on TPXO 7.2.

2.4. Critical Latitude and Effective Latitude

According to linear wave theory, the frequency of internal tides must be between the
local Coriolis frequency and the buoyancy frequency (f ≤ ω ≤ N). The critical latitude
is generally defined as the latitude where the tidal frequency equals the local inertial
frequency. According to linear internal wave theory, internal tides are trapped and cannot
freely propagate poleward of their critical latitude. This effect occurs in polar regions for
semidiurnal internal tides (M2: 74.45◦ and S2: 85.7◦) and in temperate regions for diurnal
tides (K1: 30◦ and O1: 27.6◦) in both the northern and southern hemispheres. However, the
added relative vorticity from background currents can shift the effective region of a critical
latitude, potentially up to several degrees [32,51–53]. Consequently, it is insufficiently
rigorous to only take Coriolis frequency, f, into account. This should be the combination of
the planetary vorticity (f ) and relative vorticity (ζ= ∂u

∂y − ∂v
∂x ) induced by the background

flow. This complicates the concept dramatically. The Coriolis frequency, f, is essentially
modified as an effective Coriolis frequency (feff = f + ζ/2) when describing motions on a
reference frame rotating with the Earth [54]. Applying a traditional approximation [55],
Coriolis frequency can be defined as f = 2Ωsinθ, where Ω denotes the Earth’s angular
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velocity (7.29 × 10−5 rad s−1) and θ is latitude. Similarly, a one-to-one correspondence
between the effective Coriolis (feff) and the effective latitude becomes feff = 2Ωsinθeff, which
is defined θeff as effective latitude. We introduce effective latitude for straightforward
comparison with the K1 and O1 critical latitudes here.

2.5. Barotropic Tides

The barotropic tides in the ECS are subject to the northwestern Pacific tides. Barotropic
tides in the northwestern Pacific propagate northwestward, passing through the Ryukyu
Island chain and Okinawa Trough, and then reaching the ECS continental shelf. Affected
by the Coriolis force, topography, and the coastline, the tides bifurcate, rotate, and shape
several cyclonic amphidromic systems in the SCS and ECS. One of these amphidromic
systems occupies our survey region. Both semidiurnal and diurnal tides enter the ECS
and rotate counterclockwise around the northeast corner of Taiwan, finally entering the
Taiwan Strait (Figure 1c,d). The four major tidal constituents dominate, with two main
semidiurnal constituents M2 and S2, and two diurnal constituents O1 and K1, respectively
(Table 1). As the tides shoal and narrow over the wide ECS inner continental shelf, stronger
tidal flows and higher tidal elevations develop. The tidal ellipses show spatial variation,
with stronger tidal currents northeast of Taiwan (Figure 1b). Generally, the major axis of
M2 and K1 are aligned in the cross-isobaths direction. When the tidal flow encounters
the featured topography, such as the northern continental shelf or Mien-Hua Canyon, the
tidal ellipses alter to rectilinear. This reversing tidal flow here with the large topography
gradient in shelf-slope favors the generation of internal tides [14]. According to the cotidal
chart (Figure 1c,d), the barotropic tidal phase lines near our measurement locations are
perpendicular to the slope, indicating that the tidal phase and tidal cycles are nearly the
same between the mooring and potential generation sites. The detailed generation sites are
estimated in Section 3.3.

Table 1. Ellipse properties of the major semidiurnal and diurnal barotropic tidal constituents at the
mooring location.

Constituent Major, cm/s Minor, cm/s Inclination, Deg Phase 1, Deg

M2 55.0 18.9 176.5 336
S2 16.8 7.5 169.5 6.3
K1 5.05 2.28 170 34
O1 4.8 0.72 11 17

1 The ‘Phase’ indicated in table is Greenwich Phase.

3. Results

3.1. Spectral Characteristics and Tidal Ellipses

Power spectra were used to explore the frequency distribution of the baroclinic energy.
There were several significant peaks at tidal frequencies (K1 at 23.93 h, M2 at 12.42 h, and
S2 at 12 h), while the power density was less prominent for O1 (25.82 h) or the inertial
frequency (26.74 h). The baroclinic energy was concentrated at the semidiurnal and diurnal
tidal bands (Figure 2a), particularly the semidiurnal bands with spectral peaks nearly
five times larger than the diurnal peaks. For the semidiurnal constituents, M2 was much
larger than S2 according to the spectral peaks and internal tidal ellipses; however, they
had similar vertical structures (Figure 2b). These results were consistent with the previous
numerical simulations and altimeter estimates and underscore the dominance of M2 and
K1 internal tides in the western Pacific margin [4,8]. Consequently, we choose M2 and
K1 as the two major constituents to represent the semidiurnal and diurnal internal tidal
generation, respectively.
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Figure 2. (a) Full-depth averaged power spectra of the baroclinic zonal (red line) and meridional
(blue line) velocities during the deployment period. The vertical dashed lines indicate the local
Coriolis frequency f, four major tidal constituents (O1, K1, M2, S2), and some nonlinear couplings
(fM2, M4, M2 + S2). (b) The internal tidal current ellipses for the four major tidal constituents (M2, S2,
K1, and O1) at different depths.

The semidiurnal and diurnal internal tides had different vertical structures (Figure 2b).
To investigate the variance and amplitude of the four major internal tidal constituents,
harmonic analysis was performed on each layer’s baroclinic anomalies over the entire
period (Figure 2b). It should be noted that harmonic analysis only manifests the coherent
part (phase-locked to astronomical tide) of the internal tide. There was a remarkable
difference, as M2 intensified near the surface, whereas K1 intensified directly above the
bottom. Compared to the M2 baroclinic currents, the K1 coherent internal tide was of
comparable magnitude (approximately ± 10 cm/s) at their intensified depths. This was
quite different from the results that the observed diurnal internal tides were very weak
over the continental slope [14,56]. With increasing depth, the M2 amplitude first weakened
to a minimum, and the inclination of the ellipse oscillated nearly 180◦ out of phase near
two layers at 35 m. The enhanced K1 changed little in amplitude at the surface and mid-
water column, but was dramatically enhanced below the oscillating layer at 55 m. The
inclinations of tidal ellipses significantly changed and exhibited the clockwise rotation
common in the Northern Hemisphere [20,21]. The number of oscillating layers indicated
the modal structure of the internal tide [20,45]. The singular oscillating layer for M2, K1,
and S2 suggested the dominance of mode-1, while O1 showed multimodal structure as
indicated by several reversing layers.

3.2. Distinct Variability of Semidiurnal and Diurnal Internal Tides

The temporal variations of semidiurnal baroclinic velocities can be seen in Figure 3.
Overall, semidiurnal internal tides were quite weak before about 17 July. They appeared
near the bottom for the first 14 days and then became calm after more than one month.
The semidiurnal baroclinic velocities were dramatically enhanced to 30–40 cm/s from
17 July (Figure 3a–c). This velocity magnitude enhancement occurred throughout the
entire water column, and in both the zonal and meridional directions. This indicates a
northwest-southeast current, consistent with the major axes of the M2 and S2 tidal ellipses
(Figure 2b). The tidal ellipse characteristics at the mooring disagreed with the local tidal
ellipse (east-west direction) but agreed with the tidal ellipses on the corrugated continental
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slope and upper continental shelf (Figures 1b and 2b). During the enhancement period,
semidiurnal internal tides followed a spring-neap tide cycle, roughly phase-locked to the
local M2-S2 spring-neap cycle. Three spring peaks were observed in the record (Figure 3c).
The phase difference to the local barotropic (M2 + S2) tidal cycles was less than 2 days.
These results indicated the semidiurnal internal tides may not be locally generated near the
mooring, but possibly nearby on the shelf.

 
Figure 3. Time series of semidiurnal band baroclinic velocities (color, unit: m/s) derived from
mooring observations from 29 May 2014 to 2 September 2014: (a) zonal component, (b) meridional
component. (c) The vertically integrated current variance of baroclinic (blue) and local barotropic
(M2 + S2) (red) tides predicted by TPXO 7.2.

Unlike the dramatic change of the semidiurnal internal tides before and after 17 July,
the diurnal baroclinic velocity changed less and exhibited quasi-spring-neap cycles during
the full record (Figure 4). Both the timing and magnitude varied for each spring-neap cycle
(Figure 4c). A majority of the internal tidal peaks lagged the barotropic tide by 5–7 days
at spring tides. The timing of the second spring tide was delayed by nearly 10 days
and persisted longer than the others. Compared with the strong semidiurnal internal
tide, the diurnal tide was weaker, both in depth-integrated magnitude and maximum
baroclinic speed.

The semidiurnal current field was divided into two vertical sections: subsurface and
lower middle. A zero-crossing point fluctuated over time between 20 and 36 m (Figure 3a,b).
Near-bottom intensification featured prominently in the diurnal field, with the zero-crossing
point ranging between 52 and 60 m. In previous observational studies, the reversal depth
was usually at the thermocline, and the velocity structure was associated with time-varying
stratification [19]. As the energy source, the barotropic tides were stable during the mooring
period (Figures 3c and 4c).

Stratification is one of the key factors that influence internal tide generation and
radiation [57]. To further demonstrate the temporal and vertical internal tidal structure,
the buoyancy frequencies were calculated from monthly mean T (temperature) and S
(salinity) extracted from WOA18 data (Figure 5). In Figure 5b, the stratification in the slope
region was quite weak in June but enhanced and formed pycnocline layers at 70 m in July
and August. In contrast, the local stratification at the mooring featured different trends
(Figure 5a). At depths of 10 m and 40 m, the double N2 peaks indicated the positions of
two pycnocline layers. The 10 m and 40 m stratification weakened during the mooring
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period, while the benthic stratification increased. Different from the extremely weak abyssal
stratification in the deep ocean, the benthic stratification over the shelf was comparable to
that in the upper pycnocline. From Equation (1), the larger z near the seafloor resulted in a
larger influence of the benthic N2 in generation. This suggests the varying stratification
was potentially associated with the strength of internal tides, especially where the benthic
stratification changed in the shelf region.

 
Figure 4. Same as in Figure 3 but for the diurnal baroclinic current and K1 + O1 barotropic tides.

Figure 5. Comparison of monthly buoyancy frequency profiles from mooring (a) and slope (b).

3.3. Internal Tide Generation Sites

Potential internal tidal generation sites can be determined from the spatial pattern
of the barotropic tidal body force. All of the high body forces were distributed near the
canyon and ridges northeast of Taiwan, where the topography changes abruptly (Figure 6).
Previous studies have found that the nearby continental slope and submarine canyons
were major generation sites, and a portion of M2 internal tidal energy may spread to the
continental shelf over a distance of one or two wavelengths [10,13]. Many discrete medium
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and weak M2 internal tidal energy sources were also found in the shelf region (Figure 6a).
Other numerical results suggested the shelf as an M2 internal tidal energy source [41].
Considering body forces near the observation point are very small, they are unlikely to
generate noticeable internal tides; therefore, the internal tide at the mooring location most
likely radiated from northeast of Taiwan (Figure 6 black box). In our area of concern,
the semidiurnal tidal body force was obviously larger than that of diurnal tides, and the
integrated body force of semidiurnal tides was more than four times that of diurnal tides
(Figure 6 and Table 2). The proportion of the shelf region was around 20% of the total
for both M2 and K1 internal tides. The K1 slope generation is nearly equivalent to M2
generation over the shelf. Meanwhile, diurnal baroclinic velocity was also comparable to
its semidiurnal counterpart in terms of the order of magnitude. The association between
the shelf-slope generation and distinct internal tides features will be further explored in the
following sections.

Figure 6. Body forces for (a) semidiurnal (M2) and (b) diurnal (K1) internal tides. The black solid
lines indicate the 50, 200, and 1000 m isobaths. The red star indicates the mooring location. The red
solid line indicates the possible propagation path of a remotely generated internal tide. The black box
indicates the area of integration in Table 2. A1 (the upper box) represents the shelf generation region,
A2 (the lower box) represents the slope generation region.

Table 2. Integration of M2 and K1 body forces in the generation domain (black box shown in Figure 5)
for each month.

June July August

Value
(m2/s2)

Value
(m2/s2)

Increasing
Rate 1 (%)

Value
(m2/s2)

Increasing
Rate 2 (%)

M2 all 4462 5281 18.35 5486 22.95
M2 in A1 893 1117 25.22 1230 51.12
M2 in A2 3569 4164 16.67 4256 19.25

K1 all 1104 1297 17.50 1348 22.09
K1 in A1 213 266 24.88 293 37.56
K1 in A2 891 1031 15.71 1055 18.41

1,2 Increasing rates indicate July-on-June ratio, August-on-June ratio, respectively.

The observations indicated considerably more semidiurnal internal tide energy at the
moorings later in the record after 17 July. To investigate this change, we applied monthly
means of WOA18 stratifications to the body force calculations. Background stratification
can affect internal tidal generation, leading to temporal variability in the baroclinic tidal
energy, which will also be reflected in the body force (Table 2). Stratification both at
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the mooring (Figure 5) and over the slope northeaster of Taiwan changed significantly.
Generally, the stratification was stronger during both July and August compared to June,
so the body forces in July and August also increased, with the largest increase exceeding
20% in August. However, the changing stratification trends for the shelf and slope were
not exactly similar. We further investigated the body force in the shelf (A1 in Figure 6)
and slope regions (A2 in Figure 6). The M2 body force in A1 (shelf region) had greater
variability than that in A2 (slope region). The M2 internal tide generation in the shelf region
increased ~25% in July over June and ~51% in August over June. The increasing rates
in the slope region were all below 20%. Therefore, the varying stratification contributed
significantly to the variability of semidiurnal internal tide generation, especially the shelf
generation. The occurrence of strong semidiurnal internal tides possibly resulted from the
preferable stratification conditions for generation over the shelf region.

3.4. Modal Contribution Modulated by Background Current

Through moving overlapped EOF analysis, the depth-integrated velocity variance
for the lowest three modes of the semidiurnal and diurnal internal tides can be seen in
the stacked histograms (Figure 7e,g). Modes higher than three accounted for less than
3% energy in total out of 8 modes (not shown). Semidiurnal internal tides at the early stages
were not analyzed due to their low energies. For both the semidiurnal and diurnal internal
tides, the first mode dominated and provided over 85% of the energy most of the time.
The second and third modes made minor contributions. These results are consistent with
the former analysis of tidal current ellipses and baroclinic velocity fields. However, there
was still a strong temporal dependence in the energy proportions (Figure 7f,h). Vertical
modes of internal tides can be modified by background current shear [30]. Our results
show that low-frequency shear was not strong in the early stage, and the proportion of
first mode diurnal internal tides was relatively stable, accounting for ~90%. After 17 July,
the intensified shear was accompanied by intermittent increases of mode-2 proportions
for both semidiurnal and diurnal internal tidal constituents. Especially around 14 and
28 August, low-frequency shear was significantly enhanced in the shallow layer, and the
proportion of the mode-2 and 3 energy exceeded ~30% for semidiurnal and diurnal internal
tides. It is likely that the energy of the mode-2 and 3 internal tides was transferred through
the mode-1 internal tide because the total energy remained relatively constant and still
followed the quasi spring-neap variability. Furthermore, the high mode increase occurred
during some spring tides and during times of weaker internal tides.

Based on observations and numerical simulations, previous studies found that eddy-
wave interactions could result in energy transfers from the mode-1 internal tides to higher
modes [27,29]. Eddies frequently occur in this region according to AVISO data, so eddy-
wave interactions are possible. During the three eddy periods (Figure 7a–c), the mooring
was located on the edge of a strong lateral shear area, and the mode-2 and mode-3 propor-
tions increased.

3.5. Diurnal Tidal Critical Latitude Effect

Where and when diurnal critical latitude effects occur may shift through the addition
of positive or negative relative vorticity associated with varying circulation conditions.
Relative vorticity exists in eddies, at the edges and meanders of western boundary currents,
and in the flow along the continental slope. Observation and simulation results indicated
a shift of the diurnal critical latitude(s), potentially of up to several degrees, when it
encounters a mesoscale current [32]. Mesoscale motions are energetic enough to evoke
strong vorticity for constructing a complicated field of effective latitude (Figure 8a–c).
The Kuroshio front and its intrusion bifurcation beam, the Taiwan Warm Current (TWC),
together shifted the effective latitude in the area northeast of Taiwan Island [58]. The
circulation pattern in summer created a prominent positive shift of effective latitude.
The vorticity was sufficient to shift the effective latitude of the shelf slope area from
geographical 25◦N–26◦N to beyond 27.6◦ and even 30◦. This made an area geographically
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2–5◦ equatorward of the diurnal critical latitude, also under the influence of the diurnal
critical latitude(s). This area covered a large part of the diurnal internal tidal generation
sites (Figure 6). In this context, O1 and K1 critical latitude effects influenced the generation
and propagation of diurnal internal tides by various degrees.

Figure 7. SLA and geostrophic currents during (a–c) three eddy periods and (d) a calm time. Time
series of depth-integrated (e) semidiurnal and (g) diurnal baroclinic current variance in first three
modes (stacked colors) by 14-day moving overlapped EOFs, and their respective proportions of the
first eight EOF modes (f,h).

There was a good correspondence between the temporal variations of the diurnal
internal tides and the effective latitude near the generation sites. To further evaluate the
role of the diurnal critical latitude in modulating internal tidal propagation, the daily shifts
of the effective latitude on the propagation path (Figure 8d) were connected with the time
series of diurnal internal tides (Figure 8e). Critical latitude effects can cause remarkable
changes in the intensity of remote diurnal internal tides. When the cyclonic eddy was weak
during two specific periods (12–16 June and 21–28 August), the effective latitude deviated
less from the local latitude. Unlimited by the critical latitude restrictions, all along-slope-
generated internal tides freely propagated, resulting in a larger observed magnitude and a
wider spring-tide peak (Figure 8e).

At other times, the effective latitude value frequently exceeded 27.6◦ and 30◦ (red areas
in Figure 8d). The red areas correspond to the lower part of the red line in Figures 6 and 8a–c,
which were both major generation sites and beginning points of propagation for diurnal
internal tides. Consequently, the critical latitude effects actually work in this area during
these times. Considering that the effective area of critical latitudes and the generation sites
in the shelf-slope region heavily overlapped, it was unlikely to cover all source regions
(Figures 6 and 8). The effective area of O1 critical latitude was larger than K1 (Figure 8a–d).
Therefore, the portion of K1 generated beyond the effective area of K1 critical latitude
could freely propagate, while most of the O1 internal tides were expected to be trapped.
Observed diurnal internal tides were not so strong at that time. Spring-neap cycles were
also modified by the effects on these two tidal constituents, O1 and K1, as the superposition
of O1 and K1 dominated the spring-neap cycle.
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Figure 8. Monthly-mean effective latitude (θeff) maps for June (a), July (b), and August (c) were
calculated based on the effective Coriolis frequency (feff = f + ζ/2) and the formula (feff = 2Ωsinθeff).
(d) Hovmöller Diagrams of effective latitude along the propagation path of diurnal internal tide (red
line shown in Figures 6 and 8a–c. The contours indicate the effective latitude. X-axis represents time,
and Y-axis the geographical latitude. The red and black lines represent the critical latitudes for the
O1 (27.6◦) and K1 (30◦) internal tides, respectively. (e) The time series of diurnal internal tide. The
vertically integrated current variance of diurnal baroclinic (blue) and barotropic (K1 + O1) (red) tides
are the same as in Figure 4c. Time lag (unit: days) of each baroclinic peak to the barotropic peak are
labeled and remarked with black double arrows.

3.6. High-Frequency Internal Wave and Energy Cascades

Wavelet analysis was applied to the time series of the baroclinic velocity anomalies
at 60 m depth, and the baroclinic energy distribution in frequency and time is presented
in Figure 9a. From the magnitudes in the scalogram, baroclinic energy was concentrated
in the diurnal (1 cpd) and semidiurnal (2 cpd) bands. The wavelet results also showed
vigorous energy and variability at these tidal bands, consistent with the baroclinic velocity
record and the mode histograms. The periods of energetic semidiurnal and diurnal internal
tides revealed in Figure 9a were consistent with former results.

Apart from internal tides, intermittent high-frequency internal waves occurred and
responded significantly to the low-frequency vertical velocity shear. High-frequency inter-
nal wave (>4 cpd) pulses occurred on 10, 17, 24, and 31 July and were enhanced from 7 to
21 August (Figure 9a). The occurrences of these high-frequency signals coincided with the
strong vertical shear periods (Figure 9). These periods were observed to be deep-reaching
and could potentially catalyze nonlinear wave–wave interactions at 60 m. Moreover, when
both the semidiurnal and diurnal internal tides were energetic during these periods, the
high-frequency waves were also more powerful and continuous in the frequency domain
from 2 cpd to above 10 cpd. This indicates that when low-frequency shear flows encoun-
tered the strong internal tides, they drew internal tidal energy to cascade from low to
higher frequencies.
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Figure 9. (a) Wavelet power spectra of baroclinic zonal component during observation period at 60 m
depth. The white dashed line indicates the cone of influence. The white dashed lines and the shaded
regions below are suspect and potentially influenced by edge effects. The frequency unit is cycles per
day (cpd), and the spectrum uses L1 normalization to show a more accurate representation of the
signal. (b) The vertical profile of 7-day low-pass vertical shear variance (unit: 1/s2).

4. Discussion

Both semidiurnal and diurnal internal tides have been observed over the ECS conti-
nental shelf. Although semidiurnal internal tides dominated, the diurnal signal was also
significant, particularly in benthic layers. The phases of the diurnal baroclinic velocity
anomalies were obviously associated with the tidal cycles, apparently indicating generation
through a barotropic flow-topography interaction. The results were quite different from
previous slope observations. They suggested either the diurnal internal tides were an
order of magnitude weaker with a secondary influence [56] or associated diurnal-band
internal waves with a parametric subharmonic instability (PSI) mechanism that transferred
energy from semidiurnal internal tides to half their frequency, also diurnal band, but mainly
regarded as near-inertial wave [15].

Similar mode-1 structures of two semidiurnal internal tidal constituents, M2 and S2,
reinforced the dominance of mode-1 and the magnitude of semidiurnal internal tides.
Multimodal O1 tides were found in our results and other ECS slope studies [56]. In the SCS,
another marginal sea of the western Pacific, O1, usually exhibited a mode-1 structure [21].
Compared with SCS, O1 is closer to the local Coriolis frequency in the ECS, which is
regarded as the lower limit for the O1 internal tide. However, the background flow induced
sufficient positive relative vorticity to the Coriolis frequency (Figure 8d) for O1 to be sub-
inertial or inertial. Internal tides will not propagate freely in proximity to their critical
latitude, and their vertical wave number tends to be infinite, resulting in a multimodal O1
structure [32].

Although the generation sites were indicated by the body force distribution, specific
source regions require further investigation. It is evident that spot bands of semidiurnal
internal tide generation existed over both the shelf and slope, while the diurnal internal
tide was only generated in a narrow slope area (Figure 6). The time lags between semidi-
urnal internal tides and semidiurnal barotropic velocities (~1–2 days) were smaller than
those between the diurnal internal tides and the diurnal barotropic velocities (~3–12 days)
(Figures 3c and 8e). To estimate the energy source(s) and evaluate the propagation of
internal tides, the eigenspeed (Cn) of normal modes (n) can be determined by solving the
Taylor–Goldstein equation with zero background flow [59]:

d2Φ(z)
dz2 +

N2(z)
c2

n
= 0, (2)

where Φ(z) is the vertical displacement in baroclinic modes, which is subjected to buoyancy
frequency profile N2(z). The Eigenvalue equation can be numerically solved [60]. We
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focus on the mode-1 internal tides. Due to the Earth’s rotation, the phase speed Cp can be
calculated from eigenspeed C as follows [33]:

Cp =
ω√

ω2 − f 2
C, (3)

where ω is the tidal frequency, f is the Coriolis frequency. Equation (3) When we re-
place the f in Equation (3) with feff, we can get phase velocity with the background cur-
rents. The effect of background current was taken into consideration by modified effective
Coriolis frequency:

Cpe f f =
ω√

ω2 − f 2
e f f

C, (4)

The spring-neap cycle and energy of the semidiurnal internal tide propagate at the
group velocity [61]. The group velocity Cg and phase velocity Cp can be calculated
as follows:

Cp =
ω

k
(5)

Cg =
dω

dk
=

ω1 − ω2

k1 − k2
(6)

On the basis of the phase velocity, the wave number k of two participating tidal
constituents can be obtained. The group velocity can be calculated as the frequency and
wave number differences between the tidal constituents (M2–S2 in semidiurnal and K1–O1
in diurnal). Similarly, the effect of background current can be taken into account as:

Cpe f f =
ω

ke f f
(7)

Cge f f =
dω

dke f f
=

ω1 − ω2

ke f f 1 − ke f f 2
(8)

The internal tidal travel times are calculated by cumulating the time at group velocity
along the propagation path. Travel time for K1 + O1 from the source area is close to twice
that of M2 + S2, that is, for the same distance, it takes longer for the diurnal spring-neap
phase to travel compared to the semidiurnal spring-neap (Figure 10a). From near shelf to far
slope, the internal tides propagated faster and faster. One reason is the latitude variation. In
general, internal tides at higher latitudes propagate slower. However, such a sharp change
is not indicated in the narrow latitude range in the former study [61]. Stratification may
reinforce this change. The strongest stratification in August slows down the propagation of
internal tides.

The role of stratification and background currents in modifying the travel time is also
shown in Figure 10. Lines in different colors represented the effect of stratification for
different months. Dashed lines represent the monthly mean horizontal flow. Compared
with semidiurnal internal tides, diurnal internal tides are more susceptible to the influence
of stratification and currents. The influence of these two factors was comparable to diurnal
internal tides (~1 day). The stratification changes slightly influenced the semidiurnal travel
times (several hours). While the dashed lines nearly overlapped with the solid lines, this
indicated the relative vorticity of mean flow made a negligible change on semidiurnal
propagation. Previous study found the different Kuroshio paths in Luzon Strait could alter
the radiation pattern and magnitude of semidiurnal internal tides [62]. In present study,
background current changed not so much in these several months, and less regulated the
semidiurnal internal tides.

The travel times along the propagation path are presented in Figure 10b. The observed
time lags to barotropic tidal cycles combined with travel times indicated the internal tides’
energy source in the generation map. It can be expected that semidiurnal internal tides
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originate from the nearby inside shelf and diurnal internal tides far from the shelf-slope
and even the slope region when the critical latitude effects are weak.

 

Figure 10. (a) Cumulative travel time of diurnal (K1 + O1) internal tides and semidiurnal (M2 + S2)
internal tides along the propagation path of internal tide. The path is the same as the one shown in
(Figures 6, 8, and 10b), except ahead of the starting point to mooring location. The travel times are
estimated by group velocity of K1 + O1 and M2 + S2 waves using WOA 18 monthly-mean stratification.
The dash lines indicate the travel times considering the monthly mean background current of the
month with the same color as solid lines. The mooring location, A1 and A2 demarcation lines (same
as Figure 6) are marked for reference. (b) The schematic of the travel times along the propagation
path. Semidiurnal and diurnal internal tide travel times in August (Unit: days) are labeled in blue
and red as reference, respectively.

Moreover, semidiurnal and diurnal internal tidal wavelengths were estimated to
be 10–20 km (Figure 11) and 70–80 km (Figure 12), respectively. Bathymetry critical-
ity along the propagation path is subcritical for both M2 (Figures 11 and 13a) and K1
(Figures 12 and 13b) internal tides. The topographic slope is not a limit for M2 and K1 gen-
erated on the slope shoaling on the shelf; however, due to the large bottom friction on the
shelf, it is still highly unlikely that the semidiurnal internal tides from the slope area reach
the mooring site after ~10 bottom-surface reflections, without any signs of damping [2,63].
Therefore, the observed diurnal internal tides should be remotely generated on the slope,
while the semidiurnal internal tides were generated on the shelf near the observation site.

The background vorticity has a greater impact on the propagation speed of the K1
internal tide. The tidal frequency of the K1 tide is closer to f, and by Equation (3), the
diurnal phase velocity and group velocity are more sensitive to the change from f to feff. In
addition, the propagation directions of diurnal internal tides were more horizontal than
those of semidiurnal internal tides under the same stratification, so that diurnal internal
tides were more sensitive to the horizontal circulation. As a result, the spring tide peak was
flatter, the duration longer, and the time lags of each tidal cycle were more changed.

Internal tidal energy with respect to mode contents and frequency shift was modulated
by the background currents. The decrease of mode-1 internal tidal proportion corresponded
to the enhancement of horizontal shear associated with background circulation, indicating
the energy scattering from low modes to higher modes. The existence of background
low-frequency shear also coincided with strengthened high-frequency energy. Furthermore,
the coexistence of semidiurnal and diurnal frequencies more easily facilitated the energy
cascade to high-frequency bands (Figure 9). The occurrence of semidiurnal internal tides
increased the energy source for the energy cascade and became a jumping board for
more wave–wave nonlinear interactions in frequency space. The resultant high-mode and
high-frequency internal waves promoted the transfer of tidal energy to turbulence scales,
providing more energy for mixing.
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Figure 11. Calculation of the M2 tidal beam reflections on the continental shelf from the slope area
to mooring (white pentagram). The color indicates monthly climatology stratification derived from
the WOA18 data. The black solid lines indicate the ray tracks of tidal beams, based on the formula
(tan θ =

√
(ω2 − f 2)/(N2 − ω2)). The color dots indicate the bathymetry criticality α = ∇H

tan θ . The
ray tracks are presented in (a) June, (b) July and (c) August.

 

Figure 12. Same as in Figure 11, but for the K1 tidal beam.
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Figure 13. Bathymetry criticality (α) for (a) M2 and (b) K1 tidal constituents.

In addition, the relative vorticity of the ECS background currents was another con-
tributor to the variation of internal tides. We found the mesoscale subtidal circulation near
the critical latitude significantly regulated the diurnal internal tides. Previous research
pointed out that critical latitude effects may modify the internal wave frequency continuum
through nonlinear interactions [31,32]. The effective critical latitude described here is not
only a geographic concept, but a geodynamic factor, quantitatively expressing the influence
of background flow on shifting the effects of critical latitude. By comparing the effective
latitude with critical latitude, we could intuitively estimate critical latitude effects on the
internal tide energetics in a realistic ocean.

5. Conclusions

In this study, the temporal variations of internal tides on the ECS continental shelf and
their controlling factors were investigated based on mooring observations. We highlighted
the different temporal variability of semidiurnal internal tides and diurnal internal tides.
Semidiurnal internal tides showed significant enhancement over the last three spring-neap
cycles between early summer and late summer. The diurnal internal tidal amplitudes were
relatively stable during the mooring period. M2 and K1 internal tides were the largest
constituents, and both were mode-1dominated. The M2 internal tidal amplitude intensified
near the surface while that of K1 intensified above the bottom.

The generation sources of semidiurnal (M2) and diurnal (K1) internal tides were
revealed by distribution maps of body force. The shelf-slope region northeast of Taiwan
was the major source region, as preceding research concluded. A majority of M2 and K1
internal tides were generated over the slope. M2 internal tides were also locally generated
inside the inner ECS shelf, which has been rarely mentioned before. Nevertheless, the
local source sites are still away from the observation site. The distribution of generation
sources, coupled with the time lag between baroclinic and barotropic tides, indicated that
the observed internal tides propagated from a remote region. The stratification was stronger
in July and August than in June, so the calculated body force changed similarly. In addition,
changes in stratifications at the shelf explained a significant fraction of the variability in the
semidiurnal internal tides.

The relative vorticity associated with background currents regulated the critical lati-
tude effects by changing the size of the effective area and the time range in which they took
effect. As a result, the propagation of the related diurnal internal tides varied with time and
space. The increasing diurnal internal tidal magnitudes and the accordance of observed
time lag and theoretical travel time on the propagation path consistently confirmed the
process at the remote slope identified in observations. In addition, background currents
played a vital role in tidal energy transfer, not only between the different vertical modes,
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but also between internal tides with high-frequency internal waves. The lateral shear
resulted in high mode, and the vertical shear facilitated high-frequency internal waves and
an energy cascade.

The upcoming Surface Water Ocean Topography (SWOT) mission will measure the
sea surface with an unprecedented high spatial resolution and provide us with a wealth of
data. However, we need to combine multiple methods with the SWOT mission in order
to accurately investigate the energy cascade processes between tidal signals, mesoscale,
and sub-mesoscale variability. Therefore, more specific in situ observations and numerical
simulations are critical for further investigation.
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Abstract: The three-dimensional structure of Gulf of Mexico’s warm-core rings, detaching from the
Loop Current, is investigated using satellite altimetry and a large set of ARGO float profiles. Recon-
struction of the Loop Current rings (LCRs) vertical structure from sea surface height observations
is made possible by the use of the gravest empirical modes method (GEM). The GEMs are transfer
functions that associate a value of temperature and salinity for each variable pair {dynamic height;
pressure}, and are computed by estimating an empirical relationship between dynamic height and
the vertical thermohaline structure of the ocean. Between 1993 and 2021, 40 LCRs were detected
in the altimetry and their three-dimensional thermohaline structure was reconstructed, as well as
a number of dynamically relevant variables (geostrophic and cyclogeostrophic velocity, relative
vorticity, potential vorticity, available potential energy and kinetic energy density, etc.). The structure
of a typical LCR was computed by fitting an analytical stream function to the LCRs dynamic height
signature and reconstructing its vertical structure with the GEM. The total heat and salt contents and
energy of each LCR were computed and their cumulative effect on the Gulf of Mexico’s heat, salt
and energy balance is discussed. We show that LCRs have a dramatic impact on these balances and
estimate that residual surface heat fluxes of −13 W m−2 are necessary to compensate their heat input,
while the fresh water outflow of the Mississippi river approximately compensates for their salt excess
input. An average energy dissipation of O [10−10–10−9] W kg−1 would be necessary to balance their
energy input.

Keywords: three-dimensional eddy reconstruction; loop current rings; gulf of Mexico; gravest
empirical modes

1. Introduction

Although the circulation of the world ocean is dominated by geostrophic turbulence,
which is transient by nature, long lived coherent mesoscale eddies can be found in virtually
every oceanic basin (e.g., Agulhas rings in the South Atlantic [1,2], Gulf Stream rings in the
North Atlantic [3,4], Kuroshio rings in the North Pacific [5,6], Loop Current rings in the Gulf
of Mexico [7,8]). Because of their longevity and coherence, these eddies are able to trap and
transport tracers (heat, salt, oxygen, plankton, nutrients) far away across basins [2,9,10].
The advent of satellite altimetry in the early 1990s yielded a dramatic increase in the
knowledge and understanding of the surface properties of mesoscale eddies [11]. However,
energy and tracer transport is by essence a three-dimensional process, as momentum
and tracer distribution within mesoscale structures is clearly baroclinic. Understanding
and quantifying the role of mesoscale coherent eddies in tracer transports requires a
detailed assessment of their vertical structure. Although ship and glider surveys can offer
occasional detailed pictures of a limited number of eddies, the observations they provide
are too limited in time and space for systematic statistical analysis on a regional or global
scale. To address this setback in the availability of a solid statistical description of the
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three-dimensional properties of mesoscale eddies, a statistical method using jointly in situ
observations from ARGO profiling floats and surface observations of sea surface height
(SSH) from satellite altimetry were developed [12]. The method consists of automatically
detecting mesoscale eddies as closed sea level anomaly (SLA) contours, and searching for
ARGO profiles within, and in the vicinity of, the eddy’s boundary. The position of the
profile is then referenced to the eddy’s rotation axis and normalized by the eddy’s radius or
simply localized by its zonal and meridional distance. Given a sufficient number of profiles,
the method allows for the computation of one mean 3-dimensional profile, supposed to be
representative of a typical eddy in a given region. The method has since been extensively
used in many regions of the ocean ([13–15] in the tropical and sub-tropical Pacific, [16]) in
the South China sea, [17] in the Arabian sea, [18] in the South Atlantic, [19] in the Lofoten
basin, among many). Although the method, known as composite or co-location method,
greatly helped to quantify regional statistical properties of mesoscale eddies, they are
of limited use, because they only allow for the computation of one average eddy, and
not for the reconstruction of the vertical structure of each eddy spotted in the altimetry.
Recently, Meunier et al. [20] proposed an alternative method for the estimation of the
heat anomaly carried by Loop Current rings (LCR) in the Gulf of Mexico (GoM), based on
satellite altimetry and in situ data. Taking advantage of a convenient linear relationship
between the local heat content anomaly and SSH, they were able to estimate the total heat
content anomaly of each individual eddy. Their method was limited to vertically integrated
quantities, and did not provide a full three-dimensional picture of the eddies structure. It
could, thus, not provide any information on the energetics of LCRs.

Over two decades ago, Watts et al. [21] and Sun and Watts [22] proposed a method
to estimate the full water column’s thermohaline structure from dynamic height obser-
vations only. The procedure, known as the Gravest Empirical Modes (GEM), consists
in establishing an empirical relationship between dynamic height and temperature and
salinity, at a given pressure level, from in situ observations. In the Antarctic circumpolar
region, the GEM representation was shown to account for over 97% of the thermohaline
variance. Taking advantage of the close relationship between dynamic height and sea
surface height, Swart et al. [23] use the GEM methods to reconstruct vertical hydrographic
transects in the Antarctic Circumpolar Current from satellite altimetry. More recently,
Müller et al. [24] used the GEM method along with satellite altimetry to estimate the heat
and fresh water transport by mesoscale eddies in the subpolar north Atlantic. This method
is of particular interest because it allows the computation of the thermohaline structure of
each individual eddy.

In this study, we follow the procedure of Müller et al. [24], to infer the three-
dimensional thermohaline structure of mesoscale eddies, as well as their heat and salt
anomalies, and extend it to the computation of other relevant variables, such as geostrophic
and cyclogeostrophic velocity, relative vorticity, potential vorticity, as well as kinetic and
available potential energy density.

The data used are described in Section 2 and the methods in Section 3. Validation using
independent glider observation across an LCR is presented in Section 4. The method is then
applied to the 29 years-long AVISO altimetry record in the GoM, where we identified and
reconstructed 40 Loop Current rings. The vertical structure of a typical LCR is presented in
Section 5 and the statistical properties of LCRs characteristics, with an emphasis on their
heat, salt, and energy contents, are presented in Section 6.

2. Data

2.1. In Situ Data

In situ temperature and salinity data were obtained from 6792 ARGO profiles in the
Gulf of Mexico. The profiles locations are shown on the map of Figure 1a, showing a wide
coverage of the GoM and a homogeneous distribution of the collected data. The color
coding corresponds to the local steric height referenced to 2000 dbar computed from the
profile data. The presence of the Loop Current (LC) is evident as a tongue of high steric
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height extending northward from the Yucatan channel and bounded by the West Florida
and Louisiana shelves to the East and North, respectively. Sparse high steric height values
can also be found in the central and western basin and are the signature of detached LCRs
drifting westward. Figure 1b shows a TS diagram of all ARGO profiles. Color coding is
the same as in Figure 1a. High steric height water columns are characterized by a warm
and salty anomaly between the 1024 and 1026 kg m−3 isopycnals at intermediate depths.
This water mass corresponds to the Atlantic subtropical underwater (SUW), of Caribbean
origin, found in the LC and LCRs [7,25,26].

Figure 1. (a): Location of all available ARGO profiles in the Gulf of Mexico. The local 2000 dbar-
referenced steric height is color coded. (b): T-S diagram of all ARGO profiles. The color code is the
same as in panel (a). The black contours are isopleths of spice and potential density. (c): Distributions
(normalized PDF) of the 2000 dbar-referenced steric height computed from in situ data (blue bars)
and the gridded absolute dynamic topography (ADT) data (orange line). (d): 2000 dbar-referenced
steric height against ADT.

2.2. Altimetry Data

AVISO gridded absolute dynamic topography (ADT) is used for eddy detection, and
as a proxy for dynamic height. The gridded fields have a spatial resolution of 1/4◦ and
are available on a daily basis. In situ measured steric height and ADT distributions are
compared in Figure 1c. The principle mode of the distribution at about 30 cm corresponds
to the Gulf Common Water (GCW), while the secondary mode at about 70 cm corresponds
to the SUW. The similarity between the distributions guarantees an unbiased geographic
sampling of the ARGO profiling floats. ADT is plotted against the 2000 dbar-referenced
steric height in Figure 1d. The clear linear relationship, with a coefficient of determination
(R2) of 0.95, shows that the 2000 dbar-referenced steric height is a solid proxy for dynamic
height (i.e., the geopotential at 2000 dbar can be considered as flat).

2.3. Glider Data

For validation purposes, we used recent glider observations across an LCR. The glider
repeatedly crossed LCR Poseidon [27] through its center between August and November
2016. It was equipped with a sea bird CT-sail CTD probe, and had mean vertical and
horizontal resolution of 2 m and 2 km, respectively. More details on the glider observations
can be found in Meunier et al. [27–30].
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3. Methods

3.1. The Gravest Empirical Modes (GEM) Method

The gravest empirical mode projection (GEM) [21–24,31] consists in establishing an
empirical relationship between the vertical thermohaline structure of the ocean and the
dynamic height [21,22]. The procedure used here is straightforward and can be summarized
as follows:

• A. The steric height relative to 2000-dbar is computed for each in situ profile of
temperature and salinity;

• B. All profiles are sorted according to their steric height. The sorted ARGO temperature
and salinity profiles are shown in Figure 2, where a pattern already emerges, showing
the clear relationship between steric height, pressure, and both temperature and
salinity;

• C. A regular pressure grid is defined ((0–2000 dbar) with a vertical grid-step of 2 dbar)
and for each reference pressure value, a spline interpolant is fitted to the functions
T(η2000)|p and S(η2000)|p, where T and S are temperature and salinity, η2000 is the
2000 dbar-referenced steric height, and p is the pressure at which the variables are
evaluated;

• D. The relationship between 2000-dbar referenced steric height and dynamic height is
assessed by comparing local ADT and η2000 to ensure that the empirical relationship
obtained from in situ steric height holds when using ADT (Figure 1d).

Figure 2. Steric height-sorted raw temperature (a) and salinity (b) profiles for the whole ARGO
dataset. The x-axis represents 2000 dbar-referenced steric heigh (η2000) and the y-axis is pressure. The
2000 dbar-referenced steric height closely matches absolute dynamic topography (ADT), as shown
in Figure 1c,d.

For each couple {p, ADT}, the GEM fields provide a single value of temperature and
salinity, so that the three-dimensional structure of the ocean can be inferred from any
two-dimensional map of ADT. In that regard, the GEM can be thought of as a transfer
function [31]. Yearly averaged GEM fields are shown in Figure 3 for temperature, salinity,
and potential density (referenced to the surface). The salinity maximum between 100 and
300 dbar associated with the SUW is particularly evident in the high end of the dynamic
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height range. It is accompanied by a weakly stratified and warm temperature anomaly.
One striking feature, also evident in the sorted raw profiles sections of Figure 2, is the
smooth transition between SUW and GCW across the dynamic height range. Maps of the
root mean square (RMS) errors are also provided in Figure 3d–f. For a given variable X,

they are computed as ERMS =
√
(Xm − Xe)2, where the overbar represents the ensemble

average, Xm is the measured variable (the actual value from the ARGO profile) and Xe
is the estimated variable (the value computed using the GEM). The ensemble averages
are performed over bins of 2 cm in SSH and 2 m in pressure. Error is maximum near
the surface in low dynamic height water columns (GCW), and below and at the edges
of, the salinity maximum. This increased uncertainty at the transition between GCW
and SUW might be related to the presence of density compensated interleavings, recently
reported around LCRs [29], or could as well be the consequence of a lower number of
profiles (Figure 1c). The average RMS error is of 0.2 ◦C, 0.028 psu, and 0.035 kg m−3 for
temperature, salinity, and potential density, respectively. They are slightly larger than
the values reported by Swart et al. [23], using the same methods south of Africa (0.15 ◦C,
0.02 psu, and 0.02 kg m−3).

Figure 3. Yearly averaged gravest empirical mode (GEM) fields for temperature (a), salinity (b),
and potential density (c). The x-axis represents dynamic height, and the y-axis represents pressure.
Dynamic height was shown to be equal to the 2000 dbar-referenced steric height η2000 and absolute
dynamic topography (ADT) in Figure 1d. The root mean squared (RMS) errors are shown in panels
(d–f) for temperature, salinity, and potential density, respectively. The black dashed lines represent
the limits of the SUW potential density range (1024–1026.5 kg m−3), while the red or green dashed
lines represent the depth range of the mixed layer.

To account for the seasonality of surface conditions, which affects the accuracy of the
three-dimensional reconstruction in the top 200 dbar, the GEM fields were constructed on
a monthly basis. Figure 4 shows a Hovmuller diagram of the temperature, salinity, and
potential density GEM for a dynamic height of 80 cm. Seasonal variations of temperature,
potential density, and mixed layer depth are evident near the surface. Salinity is less
affected by the seasonal cycle. Note that the error was also computed individually for each
monthly GEM, and we found no large seasonal variation of the error (range (0.19–0.22) ◦C
for temperature and (0.017–0.019) psu for salinity).
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Figure 4. Example of seasonal variation of GEM fields for a given value of sea surface height (SSH;
0.8 m here). The x-axis is the time of year while the y axis is pressure. Temperature is shown in panel
(a), salinity in panel (b), and potential density in panel (c).

3.2. Eddy Detection and Edge Definition

The LCR detection method is based on daily ADT maps. First, the edge of the LC is
defined as the ADT contour passing through both the Yucatan Channel and the Florida
strait, along which the mean velocity is maximum. An LCR is detected when this contour
forms a closed loop. However, recently detached LCRs may reattach to the LC, and repeated
detachment-reattachment sequences are not rare [32]. Here, we only take into account LCRs
that permanently detached from the LC. After detachment, the LCRs edge is defined as the
closed ADT contour along which the mean azimuthal velocity is maximum. The maximum
velocity contour coincides with a sign-change of the Okubo–Weiss parameter [20,33], so
that our edge definition criterion ensures that only the vorticity-dominated portion of
the eddy is retained, while the strain-dominated periphery is discarded. For comparison
purposes, and because the last closed SSH contour is a commonly used definition for eddies
boundaries, the latter was also computed and briefly discussed. Between January 1993 and
January 2022, 40 LCRs were detected. A map of their edge contours is shown in Figure 5a.
The maximum ADT value at their center is color coded. The location of newly detached
LCRs exhibit a large zonal and meridional variability. The same edge contours are plotted
in an eddy-centric frame in Figure 5b, showing that LCRs have a wide range of sizes.
Figure 5a,b also show a clear tendency for smaller LCRs and for LCRs shed at the tip of
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the LC (the north-western most eddies) to have a weaker ADT signal. These tendencies
are explored further in Figure 5c,d, showing a nearly linear relationship between LCRs
maximum ADT and their radius, and between their volume anomaly (surface integral of
the ADT anomaly) and their distance from the Yucatan channel.

Figure 5. (a): Map of the edge contours of the 40 detected Loop Current rings (LCRs) one day after
detachment. The maximum absolute dynamic topography (ADT) value within each eddy is color
coded. (b): Same as (a) in an eddy-centric frame: the x and y axis are the distance (in km) from the
eddy’s rotation axis. The color code is the same as in (a). (c): Maximum ADT value (at the eddy’s
center) against eddy’s radius. (d): Volume anomaly (surface-integral of the ADT anomaly) against
distance from the Yucatan channel.

4. Validation Using Independent Observations

To validate the methods, we directly compared glider observations with GEM inferred
vertical sections of temperature, salinity, and geostrophic velocity across an LCR. The
validation procedure consists of computing a vertical profile from ADT and the GEM at each
glider’s dive location. For comparison purposes, geostrophic velocity is then computed
after applying a Gaussian low-pass filter with vertical and horizontal decorrelation radii of
15 m and 30 km, respectively, and assuming no motion at 1000 dbar [27,34]. Figure 6 shows
the two glider sections and the GEM-reconstructed sections. Note that the first section
(panels a, c, and e) was performed as the glider was navigating towards the drifting eddy,
while in the second section (panels b, d, and f), the glider and the eddy were moving in
the same direction. This results in an under (over) estimation of distances and an over
(under) estimation of velocity in the first (second) glider section. This bias was discussed in
detail by Meunier et al. [27] and a correction method was proposed by Meunier et al. [30].
However, for validation of the GEM fields, we chose to use the uncorrected glider along
track coordinates to keep the analysis as straightforward as possible. For the ease of
visualisation, the GEM sections are flipped laterally to appear as a mirror image of the
glider sections. In both sections, the LCR is obvious as a downward tilting of the isotherms,
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both in the glider observations and in the GEM-reconstructed fields. The displacement
of the isotherms in the GEM sections is in good agreement with the glider observations
up to the 25 ◦C isotherm. However, the homogeneity of temperature in the upper part
of the eddy’s core (thermostat ) is not faithfully reproduced by the GEM method, which
exhibits a slightly more stratified structure. Note that LCR Poseidon was an uncommon
LCR with an exceptionally thick thermostat [27,30], so we hypothesize that this difference
is, in part, related to the exceptional nature of Poseidon. The salinity sections, on the
other hand, are not subject to this bias, and the double core structure, consisting of a
salinity maximum between 200 and 350 m, and a homogeneous salinity minimum above,
is well reproduced by the GEM reconstruction. Note that, in both sections, the GEM-
reconstructed eddy is slightly smoother, as expected from the methods, which essentially
captures the geostrophic, or slow structure of the flow [22]. It should be pointed out that the
smoothing of thermohaline gradient has little effect on the geostrophic velocity difference
between glider and GEM-derived fields. Indeed, the low-pass filtering required to compute
geostrophic velocity from glider observation, removes high wavenumber variability and
tends to smooth out gradients, whatever the glider’s original resolution. In other words,
the small scale variability that the GEM method is unable to capture has to be removed
from the glider data anyway. The vertical sections of geostrophic velocity are shown in
panels (e) and (f). In both sections, the agreement between the GEM-reconstructed and the
glider sections is evident, both in the spatial patterns and in the magnitude of the velocity.

Figure 6. (a,b): Temperature sections across a Loop Current ring measured by the glider and
reconstructed using the GEM. in each panel, the GEM-reconstructed sections are flipped laterally in
order to appear as a mirror image of the glider section. (c,d): Same as (a,b) for salinity. (e,f): Same as
(a,b) for geostrophic velocity.

Although the detailed vertical structure of LCRs is of interest, knowledge of the
vertical structure of ocean eddies is particularly crucial for the computation of their heat
content and transport, which rely on depth-integrated temperature anomaly. Depth-
averaged temperature and salinity anomalies, as well as the depth-averaged geostrophic
velocity, are shown in Figure 7. In both cross-sections, the glider observation and the
GEM-reconstruction are in striking agreement, with a coefficient of determination (R2)
ranging between 0.91 and 0.94, meaning that the GEM method captures over 90 % of the
depth averaged velocity, temperature anomaly, and salinity anomaly variance. In particular,
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one should note that the lateral gradients of depth-averaged variables do not suffer from
the over-smoothing that was discernible in the detailed vertical sections. The GEM thus
appears to be particularly well-suited to compute integrated variables, such as heat and
salt content, or kinetic and available potential energy.

Figure 7. (a,b): Horizontalprofiles of depth-averaged temperature (red) and salinity (blue) anomalies.
The glider observations are plotted as dotted lines, while the GEM-reconstructed profile is plotted
as plain lines. The difference between the glider and GEM sections are plotted as dotted lines.
(c,d): Same as (a,b) for the geostrophic velocity.

5. The 3D Structure of an Average LCR

The 3D reconstruction method was applied to 40 LCRs that detached between 1993
and 2021. Cross-sections of salinity, temperature, and cyclogeostrophic velocity are shown
in Figure 8 for 6 selected examples. Maps of ADT 5 days after detachment along with the
virtual transect trajectories are shown in the left-hand-side panels. These examples were
chosen to represent small, average, and large LCRs in spring/summer conditions and in
fall/winter conditions. The reconstructed fields capture well the typical LCR structure,
which is characterized by a double core salinity structure, consisting of a fresh anomaly
in the top 100 to 150 m, lying over a salty anomaly between 150–200 m and 300 m. The
thick homogeneous warm anomaly is also evident between the surface and 200 m, and
the isotherms are doming downward throughout the water column. In spring/summer
conditions, a shallow thermocline lies over the main LCR structure, while in fall/winter
conditions, the mixed layer extends down to the base of the thermostat, and is deeper in
the LCR than at its periphery.
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Figure 8. Selected examples of LCRs three-dimensional structure reconstructed from altimetry and
the GEM method. (First row): maps of absolute dynamic topography (ADT). The dotted red line
represents the trajectory of the virtual vertical sections. (Second row): Vertical sections of salinity.
(Third row): Vertical sections of temperature. (Fourth row): Vertical sections of cyclogeostrophic velocity.

Geostrophic velocity was computed using the thermal wind relations, using H = 2000 dbar
as the level of no motion:

ug(x, y, z, t) =
g

ρ0 f

0∫
−H

k ×∇ρ(x, y, z, t)dz, (1)

where g is the gravity acceleration, ρ0 is a reference density, f is the Coriolis frequency,
∇ is the horizontal gradient operator, k is the vertical unit vector, and ρ is in situ density.

Note that the reference can equally be taken as the surface geostrophic velocity inferred
from satellite altimetry, yielding exactly similar results since the GEMs were computed
assuming that the geopotential is flat at 2000 dbar.

The velocity fields have maxima ranging between 0.6 and 1 m s−1 and exhibit intense
vertical shear in subsurface, with the velocity dropping by ≈70% in the top 300 m.

Although the statistical properties of LCRs presented in this work (Section 6) are
computed using individual GEM reconstructions, it is of interest to determine the average
structure of an LCR. To do so, we defined a typical surface signature of LCRs (radial ADT
profile) and then used the GEM’s transfer functions to reconstruct the vertical thermohaline
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structure. Each radial ADT profile was fitted to Zhang et al.’s [35] universal stream function,
defined as:

ψ(r) = ψ0 + ψm(1 − r̃2)e−r̃2
, (2)

r̃ =
r
L

, (3)

where ψ(r) is the surface stream function, r̃ is the non-dimensional radial coordinate and
L is the radial length scale. ψ0 is the background stream function value outside the eddy,
and ψm is the amplitude parameter which is equal to the maximum value at the centre of
the eddy. In the geostrophic framework considered here, ψ is simply proportional to ADT
(ψ = g

f ADT). For each radial profile of ADT, the parameters η0, ηm, and L are determined
using least-square fitting. Figure 9a shows the mean profiles of each of the 40 LCRs (gray
lines), along with the universal stream function computed using the average parameters
of each least-square fit (black line). Figure 9b shows the distribution of the coefficient of
determination R2 between the observed and the fitted profiles. R2 is a measure of the
variance fraction that is reproduced by the analytical stream function. The universal stream
function appears to faithfully represent LCRs surface signature, with 37 eddies out of
40 having a coefficient of determination superior to 0.95.

[a] [b]

Figure 9. (a): Radial profiles of sea surface height (SSH) for the 40 detached Loop Current rings (LCRs)
(gray lines) and mean universal SSH profile (Equation (3)) computed using the mean parameters of
the 40 least-square fits (black line). (b): Coefficient of determination (R2) of the observed SSH profiles
and the fitted universal profiles.

Figure 10 shows values of the ADT anomaly ηm against the radial length scale L. In
agreement with Figure 5c, the amplitude of the sea surface height deviation in the LCR’s
core appears to be approximately proportional to the radial length scale. The parameters
chosen for the reference ADT profile are the average of each fitted values, which naturally
fall on the linear trend line of Figure 10.

The vertical temperature and salinity fields were then built using the yearly-averaged
GEM, and are shown in Figure 11. As in the selected individual examples of Figure 8, the
downward doming of the isotherms towards the eddy’s center is evident, along with a
slight decrease in stratification in the eddy’s upper core. The salinity section exhibits the
SUW salinity maximum signature near 200 m, and fresher water above. The geostrophic
velocity vertical structure (Figure 12a) exhibits well defined velocity maxima of about
0.63 m s−1, with vertical shear reaching 1.5 × 10−3 s−1 in the top 200 m.
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Figure 10. Parameters of the least-square fit to the so-called universal stream function (Equation (3))
for each detected Loop Current ring. The x-axis is the radial length scale and the y-axis is the
maximum ADT anomaly ηm.

[a] [b]

Figure 11. Vertical profiles of temperature (a) and salinity (b) for the reconstructed average Loop
Current ring (LCR). The average LCR is computed using the universal sea surface height (SSH) profile
and the Gravest Empirical Mode (GEM) fields. The parameters used in the universal profile are the
mean from the 40 least-square fits.

Cyclogeostrophic velocity was also computed for the reference LCR, following Holton [36].
It is the solution of the gradient–wind balance and reads:

ucg(r, z) = − f r
2

±
(

f 2r2

4
+ f rug(r, z)

)
. (4)

Note that for the computation of the mean LCR’s characteristics, the Coriolis frequency is
chosen to be constant (Beta plane) and equal to its value at the average eddy-separation
latitude. The vertical section of cyclogeostrophic velocity is shown in Figure 12b. Maximum
velocity is increased with values reaching 0.76 m s−1. As expected, the impact of including
the centrifugal force in the balance has more impacts in the vicinity of the rotation axis, and
the mean velocity increase is of ≈20 % between the velocity maxima and the rotation axis.
Relative vorticity was computed both from the geostrophic and cyclogeostrophic velocities.
In cylindrical coordinates, it is defined as:

ζ(r, z) =
1
r

∂(ruφ)

∂r
, (5)

where uφ is the azimuthal velocity. The LCR’s relative vorticity signature consists in a
bowl of negative relative vorticity and is discernible down to 1000 dbar. It is enclosed
within a crown of positive relative vorticity at the eddy’s periphery, with a more modest
depth extent (≈300 m). As for the azimuthal velocity, cyclogeostrophic vorticity is more
intense than geostrophic vorticity, with maximum normalized values reaching 0.51 × f0,
and 0.35 × f0, respectively.
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[a] [b]

[d][c]

Figure 12. Same as Figure 11 for geostrophic velocity (a), cyclogeostrophic velocity (b), geostrophic
relative vorticity (c), and cyclogeostrophic relative vorticity (d). The contour interval is 0.1 m s−1.
Note that the color bars have a different range in each panel.

A section of Ertel’s potential vorticity (PV) is shown in Figure 13a. In cylindrical
coordinates, PV is defined as:

q(r, z) =
1
g
( f + ζ)N2 − ∂uφ

∂z
∂σ

∂r
, (6)

where N2 is the buoyancy frequency, defines as N2 = − g
σ

∂σ
∂z . The LCR is obvious as a bowl

of extremely low PV in the top 200 m, deflecting the pycnocline downward. Examination of
the vertical structure of the buoyancy frequency (Figure 13b) reveals very similar patterns,
suggesting that PV is mostly influenced by the LCR’s stratification.

[a] [b]

Figure 13. (a): Same as Figure 11 for potential vorticity. (b): same as (a) for the squared buoyancy
frequency.

To conclude this description of the vertical structure of an average LCR, the dis-
tribution of mechanical energy density is shown in Figure 14. Kinetic energy density
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(KED) and available potential energy density (APED) are defined following Holliday and
McIntyre [37]:

Ek(r, z) =
1
2

ρu2
φ(r, z), (7)

Ep(r, z) = −g
δ∫

0

δ̃(r, z)
dρ

dz
(z − δ̃(r, z))dδ̃, (8)

ρ(z) is the reference density profile, which is defined as the minimum potential energy pro-
file in the GoM, and obtained by adiabatically sorting all available density measurements,
and δ is the isopycnal displacement. The LCR’s vertical structure consists of a subsurface
bowl of intense APED intensified between 150 and 200 m, where isopycnal displacement
and density anomaly are maximum. There is no surface signature, while APED anomaly
is evident down to 1200 m. KED exhibits significantly smaller values than APED, and
is maximum at the periphery of the eddy, while APED is maximum in the core. When
integrated over the whole eddy’s volume, we find a ratio of KE/APE ≈ 1/3, so that energy
partition is strongly skewed.

[a] [b]

Figure 14. Same as Figure 11 for available potential energy density (a), and kinetic energy density (b).

6. Heat, Salt, and Energy Statistical Properties

One particularly important application of this three-dimensional individual eddy
reconstruction method, is to achieve a statistical representation of LCRs properties, and of
their impacts on the GoM’s heat, salt, and energy budget. The heat and salt content anoma-
lies associated with each LCR with a boundary C enclosing a surface S are defined as:

H =
∫∫
S

( 0∫
−H

ρ0CpδTdz
)

dS (9)

S =
∫∫
S

( 0∫
−H

δSdz
)

dS, (10)

where dS is a surface element, Cp is the specific heat of sea water, ρ0 is the mean density, δT
is the temperature anomaly, defined as the difference between the temperature T(x, y, z, t)
and the GoM’s mean profile T(z), and δS is salinity anomaly (in kg m−3), defined using
the same procedure as for temperature anomaly. Heat and salt contents of the 40 detected
eddies are shown on the bar plots of Figure 15a,b for two different eddy boundary criteria
(maximum velocity contour and last closed ADT contour) and are compared against each
other on Figure 15c. The average heat content of an LCR is of 0.42 and 0.46 ZJ for the
maximum velocity contour and the last closed contour boundary criteria, respectively,
while the average salt content is of 9.43 and 10.24 billion tons. Heat and salt are extremely
variable from one eddy to the other, with a range spanning nearly 2 orders of magnitude
((0.017–1.14) ZJ for heat and (0.38–25.5) billion tons for salt). There is a solid proportionality
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relationship (R2 = 0.98) between heat and salt contents (Figure 15c), in agreement with
Meunier et al. [20]. The cumulative heat and salt input into the GoM were also computed
between 1993 and 2022, and are shown as the orange lines in Figure 15a,b. Despite
the large variability of LCRs heat and salt contents, and the lack of periodicity in eddy
detachment events, the cumulative heat input grows nearly linearly with time, with a
growth rate of 0.60 ZJ per year for heat and 13.5 billion tons per year for salt (coefficient
of determination R2 = 0.99 for both heat and salt linear fits). It is also interesting to note
that the individual heat contents of LCRs do not grow linearly with their surface area, but
rather quadratically (Figure 15d), which might be attributed to the fact that larger eddies
also have larger maximum SSH anomalies, hence, not only larger areas, but also larger heat
content anomalies per unit area.

Figure 15. (a): Total heat content of each detached Loop Current ring (bar plot). The light blue bars
represent values computed using the maximum velocity contour as the LCR’s edge, while dark blue
bars were obtained using the last closed absolute dynamic topography (ADT) contour. The orange
curves, referenced on the right-hand side y-axis, represent the cumulative heat input of the LCRs
over time. The plain and dotted lines represent the maximum velocity and the last closed contour
criteria, respectively. (b): same as panel (a) for the salt input. (c): Total heat content of each detached
LCR against total salt content. (d): Total heat content of each LCR against its total area.

The kinetic and potential energy carried by the LCRs were also estimated. Kinetic and
available potential energy (Ek and Ep, respectively) are defined as the volume integral of
KED and APED (defined in Equations (7) and (8), respectively):

Ek =
∫∫
S

( 0∫
−H

Ekdz
)

dS, (11)

Ep =
∫∫
S

( 0∫
−H

Epdz
)

dS (12)

Similar to the heat and salt contents discussed above, the total energy carried by each
individual LCR is shown in the bar plot of Figure 16a. The cumulative energy is plotted
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for KE, APE, and total mechanical energy (TE = KE + APE), while the individual energy
contents (bar plot) is only shown for TE, for the sake of clarity. Total mechanical energy
has an average of 10.0 (10.9) PJ per eddy when defining the eddies boundaries as the
maximum velocity contour (last closed contour). They also exhibit a wide range of values
with nearly two orders of magnitudes between the less energetic and the more energetic
eddies ((0.15–36.6) PJ). On average, APE is 3.8 times larger than KE. This bias in the energy
partition is particularly evident in Figure 16b, which shows KE against APE for each
detected LCR. The black line represent equipartition (Burger number unity). Although APE
dominates over KE in all LCRs, the ratio between KE and APE (Burger number) decreases
as the LCRs total energy increases: large eddies have very small Burger numbers, while
smaller eddies can get closer to energy equipartition. The growth of cumulative energy is
also nearly linear, with values of 2.95 and 11.2 PJ per year for KE and APE, respectively
(R2 = 0.99 for KE and 0.97 for APE).

Figure 16. (a): Bar graph of the total mechanical energy (sum of the kinetic and available potential
energy) of each detached Loop Current rings (LCRs). The light blue bars represent values computed
using the maximum velocity contour as the LCR’s edge, while dark blue bars were obtained using
the last closed absolute dynamic topography (ADT) contour. The orange curves, referenced on the
right-hand side y-axis, represent the cumulative energy input of the LCRs over time. The plain,
dotted, and dashed lines represent total mechanical energy (TE), available potential energy (APE),
and kinetic energy (KE), respectively. (b): KE against APE for each of the 40 detached LCRs. The
black line represents equal partition of energy (Burger number equals to one).

It is of interest to put these large numbers back into the context of temperature, salinity
and energy balance in the Gulf of Mexico. Attempting a full closed budget of the GoM is
beyond the scope of this paper, but we can compute a number of meaningful quantities
that highlight the importance of LCRs in the GoM’s dynamics.

For instance, it is of interest to estimate the residual net surface heat flux that would
be necessary to balance the 0.60 ZJ per year heat input of LCRs into the GoM. Under the
assumption that the heat carried by each LCR will eventually totally mix with the GoM
water, the necessary residual heat fluxes can be simply estimated by dividing this heat
growth rate by the surface of the GoM (AGOM = 1.58 millions km2), or equivalently, since
the heat growth rate can be considered as linear, by dividing the total heat input of the
40 detected eddies by the time interval (τ = 29 years) multiplied by the surface of the
GoM [20]:

Qb =

40
∑

i=1
Hi

τAGOM
. (13)

Here, we find that a yearly net residual heat flux of −13 W m−2 is necessary to compensate
LCRs heat input into the GoM. This value is very close from that of Meunier et al. [20]
(14 W m−2), using a simple linear relationship between SSH and local heat content. Because
the literature reveals a wide range of residual net surface heat flux estimates (between
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−24 and +46 W m−2 [38–40]), knowing the value necessary to balance LCRs heat could be
helpful to calibrate heat flux products.

A similar argument can be used to estimate the necessary fresh water input in the
GoM to balance the 13.5 billion tons of salt excess per year carried by LCRs. Following
Meunier et al. [20], the necessary flux of fresh water input is:

Fb =

40
∑

i=1
Si

τSGOM
, (14)

where SGOM is the average salinity of the GoM. Here, we find that a fresh water flux of
12,000 m3 s−1 would be necessary for the GoM’s mean salinity to remain constant despite
the LCRs salt input. This value is also very close from Meunier et al.’s [20] estimate
(12,700 m3 s−1 ) using a simple linear relationship between SSH and local salt content. It
should be pointed out that these values are closely matching Morey et al.’s [41] recent
estimates of the Mississippi river outflow (13,000 m3s−1), suggesting that the opposing
effects of LCRs and the Mississippi river on the GoM’s salinity approximately cancel
each other.

We can similarly estimate the energy dissipation rate that would be necessary to
dissipate LCRs energy:

εb =

40
∑

i=1
Ei

τρ0V , (15)

where V is the volume of water in which we expect energy to be dissipated. We explore three
different hypotheses: (a) energy is homogeneously dissipated within the whole GoM’s vol-
ume; (b) energy is dissipated within the top 1000 m; and (c) energy is dissipated within the
top 500 m. The necessary dissipation rate is respectively of 1.8, 4.5, and 9.0 × 10−10 W kg−1.
These values are lower than direct microstructure measurements in the vicinity of LCRs
by Molodstov et al.’s [42] ((10−9–10−8) W kg−1), but are consistent with their GoM’s back-
ground values (10−10–10−9) W kg−1, as well as Whalen et al.’s [43] estimates between 250
and 500 m, using fine-scale strain parameterization (≈5 ×10−10 W kg−1).

To emphasize the need for the compensation of heat, salt and energy excesses input to
the GoM through LCR detachment, it is of interest to investigate what would happen in
the absence of surface heat fluxes, fresh water influx, and energy dissipation. To do so, we
computed the temperature, salinity, SSH, and energy density rise that would occur if LCRs
detachment was not balanced by any process. As for our energy dissipation estimates, we
propose three scenarios: the heat, salt, and energy excess are homogeneously redistributed
into: (a) the whole GoM volume; (b) the top 2000 m; and (c) the top 1000 m. For each
individual LCR, the mean temperature, salinity, and energy density rises read:

ΔTi =
Hi

ρ0CpV (16)

ΔSi =
Si
V (17)

ΔEi =
Ei
V (18)

where V represents weather the full water volume of the GoM, or that of the top 2000
or 1000 m. The equivalent sea level rise is computed as the difference between the steric
height associated with the mean GoM temperature and salinity (T and S), and the steric
height associated with the hypothetical increased temperature and salinity (T + ΔT and
S + ΔS). The hypothetical (unbalanced) impacts of each individual LCR, as well as their
cumulative impacts over time on temperature, salinity, SSH, and energy density are shown
in Figure 17. For the sake of clarity, only hypothesis (a) (redistribution of tracers over the
entire GoM volume) is shown in the bar graphs, while the three scenarios are plotted for
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the cumulative effects. Because of the heterogeneity of LCRs heat, salt, and energy content,
the hypothetical unbalanced response of the GoM to individual eddies is highly variable.
On average, mixing of a mean LCR into the whole GoM, the top 2000 m, or the top 1000 m
would result in a rise of 0.04, 0.06, and 0.10 ◦C of the GoM’s mean temperature, respectively
(Figure 17a). For the largest LCRs, these values reach up to 0.12, 0.16, and 0.28 ◦C. Looking
at the cumulative effects of LCRs, between 1993 and 2021, if unbalanced by surface heat
fluxes, the GoM’s mean temperature would have risen by 1.71, 2.42, and 4.23 ◦C in the
whole GoM, top 2000 m, and top 1000 m mixing scenarios, respectively.

Figure 17. Hypothetical evolution of temperature (a), salinity (b), sea surface height (c), and energy
density (d) if the heat, salt, and energy inputs of Loop Current rings into the Gulf of Mexico (GoM)
were not balanced at all. The bar plots represent the effect of individual eddies while the orange lines
represent their cumulative effects over time. The plain line represents the scenario where the excess
heat, salt and energy are mixed homogeneously within the entire GoM’s volume. The dashed and
dotted lines represent scenarios where the excess of heat, salt and energy are mixed within the top
2000 and 1000 m, respectively.

Using similar arguments, in the absence of fresh water input, the average salinity of
the GoM would rise by 0.0039 psu after mixing an average LCR within the whole GoM
volume (0.0056 and 0.010 psu if the LCRs mixes with the GoM’s top 2000 and 1000 m water
mass), while the largest individual LCRs could yield a mean salinity increase of 0.011, 0.015,
and 0.026 for in the three scenarios (Figure 17b). If unbalanced, the salt excess of LCRs
would have induced a salinity rise of 0.16, 0.22, or 0.39 psu depending on the mixing depth,
between 1993 and 2021.

Although the halosteric effect associated with the salinity increase would partially
compensate the thermosteric effects due to temperature increase, in the absence of balancing
processes, LCRs would have caused a sea level rise of 63 cm over the 29 year study
period (Figure 17c).

If energy was not dissipated, energy density in the GoM would have increased by 167,
236, or 413 J m−3, depending on the scenario. As an illustrative reference, these levels of
energy density would be equivalent to the kinetic energy density of currents of 0.57, 0.68,
and 0.89 m s−1 over the full water column, top 2000, and top 1000 m of the entire GoM.
Obviously, such temperature, salinity, SSH, and energy density increase is not observed,
and these hypothetical scenarios are presented to highlight both the crucial importance
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of LCRs in the GoM’s dynamics and budgets, as well as the evident need to accurately
measure the surface heat fluxes and fresh water inputs when modelling a semi-enclosed
basin with such important advective fluxes.

7. Conclusions

In this work, we applied the GEM method [21,22] to satellite altimetry data, similarly
to Swart et al. [23], Stendardo et al. [31], and Müller et al. [24], to reconstruct the three-
dimensional structure of individual LCRs in the GoM.

Although the joint use of the GEM and satellite altimetry to infer heat and salt contents
of mesoscale eddies was first proposed by Müller et al. [24], here, we extended the method
to the computation of the full three-dimensional velocity, vorticity and energy density
structure of mesoscale eddies.

The method was validated using independent glider observations, showing that
the GEM-reconstruction was able to represent accurately the vertical structure of tem-
perature, salinity, and geostrophic velocity of LCRs, especially when comparing depth-
integrated variables.

The application of this three-dimensional reconstruction procedure allowed the success
of two primary goals: 1. determine the typical structure of LCRs by computing their average
thermohaline and dynamical structure; 2. estimate statistical properties of LCRs heat, salt,
and energy contents, as well as their cumulative effect.

Consistent with previous ship and glider observations of individual LCRs [7,27], the
typical LCR is characterized by a warm temperature anomaly with weaker stratification,
and a double core salinity structure, with a fresher anomaly near the surface and a high
salinity anomaly between 150 and 300 m. Although typical LCRs are large eddies, we found
that the gradient–wind balanced velocity was significantly larger than the geostrophic
velocity (≈+20% between the rotation axis and the maximum velocity radius), similar
to Meunier et al.’s [30] recent observation in LCR Poseidon. This results in an increased
relative vorticity, reaching half of the Coriolis frequency, showing that average LCRs
(medium size) are significantly non-linear eddies with a Rossby radius of 0.5. The average
LCR’s PV structure consists of a bowl of low PV deflecting the main pycnocline’s high PV
strip downwards, and is mostly controlled by density stratification. It should be pointed
out that the average LCR computed here has a weaker PV anomaly, with a lesser vertical
extension, than the recent observations of Meunier et al. [30] of LCR Poseidon. We stress
this is related to the exceptionally thick thermostadt observed in Poseidon, while the work
is focused on describing an average LCR. However, the GEM-reconstructed energy density
structure of the mean LCR exhibited a similar pattern than Meunier et al.’s [30] direct
observations, with a clear dominance of APE over KE. However, it should be pointed out
that the smoothing of the thermostat by the GEM reconstruction, as compared to the glider
observations (Section 4) might slightly bias our estimates of APE and KE. For the two
available glider sections, we found that the GEM-reconstructed eddy’s APE was about
10% smaller than the glider-measured eddy. Similarly, KE was reduced by about 9% and
potential enstrophy (volume integral of the squared PV) by 12.5 and 22% depending on the
glider section.

By detecting and studying a large number of LCRs (40), we were able to assess
statistical properties of their heat, salt, and energy contents, as well as their cumulative
effects on the GoM. One particularly striking characteristic of LCRs is their heterogeneity:
the ratio of standard deviation over the mean value for LCRs heat and salt contents is of
0.76 and 0.73, respectively. They, thus, have a very variable impact on heat and salt input
into the GoM: the cumulative effect of the 20% largest eddies contribute to half of the total
heat and salt input between 1993 and 2021.

As an illustration of the importance of LCRs to the heat, salt, and energy inputs of
LCRs in the GoM, we computed the temperature, salinity, SSH, and energy density rises
that would occur in the absence of balancing processes and showed that, in the hypothesis
that LCRs would eventually mix homogeneously within the entire GoM’s volume, the mean
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temperature and salinity would have increased by nearly 2 ◦C and 0.15 psu, respectively,
between 1993 and 2021, causing a ≈60 cm sea level rise. Over the same period, the energy
density would have increased to a level equivalent to mean barotropic currents of nearly
0.6 m s−1 over the whole GoM. Another way to appreciate these numbers is to estimate the
time it would take for the GoM’s mean temperature and salinity (7.7 ◦C and 35.2 psu for
the top 2000 m for the 2010–2020 period) to reach Caribbean values (9.9 ◦C and 35.36 psu
for the same depth range and period). Here, we find that if LCRs heat and salt inputs
were not balanced, it would only take 25 years for the GoM to have pure SUW properties.
Another particularly striking result is that one single unbalanced large LCR would be able
to increase the GoM’s mean temperature by over 0.1 ◦C, yielding a sea level rise of nearly
5 cm.

Obviously, the heat, salt, and energy budgets in the Gulf of Mexico do not fall down
to an inevitable accumulation of LCRs input, and the numbers presented in the last para-
graph are only intended to emphasize the large impact of LCRs, as well as the need for
compensating processes. Because the GoM is a semi-enclosed basin, whose entrance (the
Yucatan channel) and exit (the Florida strait) are directly connected by the Loop Current, a
straightforward model for volume-integrated budgets is that the heat input of LCRs can
be balanced by an outward advective heat flux and surface heat fluxes, their salt input
by an outward advective salt flux and fresh water input, and their energy by an outward
advective energy flux, energy dissipation, and wind stress work. Because the Florida strait
is shallower than the Yucatan channel, and the warm and salty anomaly associated with the
SUW reach deeper depths than the strait’s depth [44,45], the only possible advective heat
flux to partially compensate for the LCRs input would take place in the deeper Yucatan
channel. However, Bunge et al. [46] and Candela et al. [47] showed that, despite bursts
of outflow through the deep Yucatan channel, mostly related to mass conservation as
the Loop Current grows in the GoM, the long term average deep transport is near-zero.
Rivas et al. [48] estimated that the advective heat and salt flux through the Yucatan channel
were of −30 GW and 1.1 tons per second, respectively. Here, we find that the 29 year
trends in LCR heat and salt input are of 19,100 GW and 427 tons of salt per second, so that
the advective heat and salt fluxes through the deep Yucatan channel are several orders of
magnitudes too small to balance LCRs. LCRs heat, salt, and energy thus must be entirely
compensated by surface heat fluxes, fresh water input (river outflow plus precipitation
minus evaporation), and energy dissipation. From this very simple remaining balance, we
found that net residual heat fluxes of −13 W m−2 were necessary to keep the GoM’s mean
temperature constant, in good agreement with Meunier et al.’s [20] estimate. This number
could be useful to calibrate and validate heat flux products in the GoM, as well as regional
model configurations.

We also estimated the necessary fresh water input to be of 12,000 m3 s−1: 5 % less
than Meunier et al.’s [20] estimates, and still closely matching the Mississippi river outflow.
Note that a fully closed salinity budget of the GoM should also include evaporation and
precipitation, which is expected to be a fresh water loss in the GoM, hence requiring larger
river outflows for balance to be reached. However, as mentioned above, the scope of this
paper is not to make a full budget analysis, but rather to quantify the impact of LCRs and
highlight possible balancing processes. Similarly, an attempt to close the GoM’s energy
budget is beyond the scope of this paper, and would require a careful computation of
the wind work and of the buoyancy fluxes through Ekman pumping, using the relative
wind (wind minus current velocity) [49–51]. In fact, energy loss of LCRs through relative
wind work and energy transfer from APE to KE through Ekman buoyancy fluxes are to
be expected for a mesoscale eddy subject to wind forcing [51], and are currently under
investigation. However, our simple scaling of the order of magnitude of an equivalent
energy dissipation rate ε is in good agreement with values observed in the GoM [42,43].

The results reported here highlight the possibility and the utility to reconstruct the
three-dimensional structure of individual mesoscale eddies (as opposed to the computation
of one single mean composite eddy [12]) from satellite altimetry and the GEM method.
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The application of the method used and described in the present paper to other regions of
the ocean could help to elucidate the role of coherent mesoscale eddies in basin-scale heat,
salt, and energy exchange. However, one should note that the method is not expected to
be accurate everywhere in the ocean, since more complex hydrographic conditions may
exist and make the computation of a reliable GEM field more difficult. These results also
emphasize the crucial role of LCRs in the GoM, and suggests that more research is necessary
to elucidate the processes controlling LCRs (and mesoscale coherent eddies in general)
mixing and decay processes.
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Abstract: Mesoscale eddies are ubiquitous in the world ocean and well researched both globally
and regionally, while their properties and distributions across the whole Indonesian Seas are not
yet fully understood. This study investigates for the first time the spatiotemporal variations and
generation mechanisms of mesoscale eddies across the whole Indonesian Seas. Eddies are detected
from altimetry sea level anomalies by an automatic identification algorithm. The Sulu Sea, Sulawesi
Sea, Maluku Sea and Banda Sea are the main eddy generation regions. More than 80% of eddies are
short-lived with a lifetime below 30 days. The properties of eddies exhibit high spatial inhomogeneity,
with the typical amplitudes and radiuses of 2–6 cm and 50–160 km, respectively. The most energetic
eddies are observed in the Sulawesi Sea and Seram Sea. Eddies feature different seasonal cycles
between anticyclonic and cyclonic eddies in each basin, especially given that the average latitude of
the eddy centroid has inverse seasonal variations. About 48% of eddies in the Sulawesi Sea are highly
nonlinear, which is the case for less than 30% in the Sulu Sea and Banda Sea. Instability analysis is
performed using high-resolution model outputs from Bluelink Reanalysis to assess mechanisms of
eddy generation. Barotropic instability of the mean flow dominates eddy generation in the Sulu Sea
and Sulawesi Sea, while baroclinic instability is slightly more in the Maluku Sea and Banda Sea.

Keywords: mesoscale eddies; the Indonesian Seas; sea level anomaly; nonlinearity; barotropic
instability; baroclinic instability

1. Introduction

The progress of numerical models and remote sensing techniques, especially satellite
altimeter, in the past few decades has greatly advanced our understanding of mesoscale
eddies in the ocean, which contain most of the oceanic kinematic energy [1]. Mesoscale
eddies have characteristic spatial and temporal scales ranging from tens to hundreds of
kilometers and from several days to years, respectively [2]. Both cyclonic (CE) and anticy-
clonic (AE) eddies are ubiquitous in the ocean [1], serving as a key bridge of energy cascade
between large-scale and sub-mesoscale oceanic dynamics [3–5]. Because of their nonlin-
earity, mesoscale eddies play a vital role in the transport of momentum, mass, heat and
biogeochemical properties and further impact tracer budgets and primary production [2,6].

Most existing analyses focused on several hot spots, such as strong meandering
currents, the eastern boundary upwelling system and marginal seas [7–13]. However,
eddies at low latitudes, where meridional heat transport was found to be significant, are
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not well studied [14]. To our knowledge, the sparse temporal resolution of altimeter data
over the past few decades restricted researchers to only focusing on the long-lived eddies
mainly populating middle to high latitudes [15]. In addition, numerical models may not
reproduce realistic positions and properties of eddies because of their highly variable
nature [16]. Fortunately, the daily-resolution merged sea surface height (SSH) products
have been available in recent years, which allow us to study short-lived eddies with a
lifetime of several days [15,17]. Hence, more and more investigators have been addressing
the spatiotemporal variations of eddies in low latitudes, such as the Tropical Atlantic Ocean
and Peruvian oceanic region [18,19]. Based on daily-resolution SSH products, Chen and
Han [15] find that an apparent short-lived eddy zonal belt populates the tropical ocean,
including the Indo-Pacific warm pool.

The Indonesian Seas, with numerous narrow channels connecting seas of different
sizes and depths, provide the sole tropical pathway from the Pacific to the Indian Ocean
known as the Indonesian Throughflow (ITF) [20,21]. Extensive studies based on the
moorings and numerical models revealed the upper-ocean circulation in this area as
schematically shown in Figure 1. In the west route of the ITF, the Mindanao Current (MC)
divides into three branches south of the Mindanao Island: one flows eastward into the
North Equatorial Countercurrent (NECC); another one flows southwestward firstly and
then turns back into the Pacific; and the thirds intrudes into the Sulawesi Sea [22,23]. For
the intrusion of MC, a portion turns eastward and flows back into the Pacific along the
pathway north of the Sulawesi Island; and the rest flows southward through Makassar
Strait, known as the Makassar Strait Throughflow (MST), then flows into the Flores Sea
and Banda Sea [24]. Meanwhile, the east route of the ITF is from the Maluku Sea and
Halmahera Sea to the Seram Sea then into the Banda Sea [23,25]. Additionally, small
amounts of water from the South China Sea (SCS) are carried into the Sulu Sea and Java
Sea via the Mindoro Strait and Karimata Strait (KS), respectively [26,27]. The ITF waters
eventually exit the Indonesian Seas via the narrow straits of Lesser Sunda Islands and
the Timor Passage [20,21]. As one of the significant features in the ocean circulation,
mesoscale eddies can exchange energy with background currents through eddy-mean
flow interaction [3–5]. Although we presently have a more advanced understanding
of the ITF and its intraseasonal-to-decadal variability [20,21], eddies in the Indonesian
Seas, significantly contributing to the intraseasonal variation of ITF transport, are poorly
understood [28,29].

Mesoscale eddies in the Indonesian Seas exhibit multiscale temporal variations asso-
ciated with the ITF. For the intraseasonal scale, a 50-day oscillation of horizontal velocity
was observed from moorings at the entrance of Sulawesi Sea [30]. Based on a 1.5-layer
reduced-gravity model, Qiu et al. [28] pointed out that this intense 50-day oscillation in
the Sulawesi basin is a result of baroclinic Rossby wave resonance. The 50-day oscillation
signals also exhibit intense interannual variability modulated by active eddy shedding,
and enhanced 50-day oscillation can freshen the upper-ocean water mass in the Sulawesi
Sea and Makassar Strait [31]. Through an ocean general circulation model (OGCM), three
eddies in the Flores Sea were simulated in austral summer when ITF transport is low, and
these eddies vary synchronously at an interannual scale, thus named as “Lombok Eddy
Train” [32]. In terms of the seasonal cycle, the variation of eddy kinematic energy (EKE) in
the Sulawesi Sea has different periods at different depths, and the annual and semi-annual
peaks are in the 0–100 m layer and the 100–300 m layer, respectively [33]. In the Sulu
Sea, AEs and CEs display an opposite seasonal variability, with more and larger AEs in
boreal winter and CEs in boreal summer [34]. However, a comprehensive description of
properties, seasonal variability and generation mechanism for eddies in the Indonesian
Seas is still lacking.

This study provides a comprehensive statistical description of the spatiotemporal
variability of eddies in the Indonesian Seas using long term altimeter data. The mech-
anisms of eddy generation are investigated through instability analysis based on high-
resolution model outputs. We believe that an overall presentation of mesoscale eddies in
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the Indonesian Seas will not only improve local ocean forecasts but also facilitate a better
understanding of their roles in climate and ecosystems. The remainder of this paper is
organized as follows: Section 2 describes the details of data and methods used in this study.
Section 3 provides a statistical description of eddy properties. The mechanisms of eddy
generation are discussed in Section 4. Section 5 provides a summary of the results.

Figure 1. Schematic of the upper-ocean circulation in the Indonesian Seas. Color shading is the bathymetry from ETOPO1.
The solid line is the 200 m isobath. KS, LS and OS represent the Karimata Strait, Lombok Strait and Ombai Strait, respectively.
MC and NECC represent the Mindanao Current and North Equatorial Countercurrent, respectively. Four dashed boxes are
the Sulu Box, Sulawesi Box, Maluku Box and Banda Box from north to south, respectively.

2. Materials and Methods

2.1. Altimeter Data

The delayed-time altimeter data used in this study is a Ssalto/Ducas gridded product
of SSH, sea level anomaly (SLA) and geostrophic current from January 1992 to December
2019 provided by Archiving, Validation, and Interpolation of Satellite Oceanographic
(AVISO) data and distributed by the Copernicus Marine Environment Monitoring Service
(CMEMS). This product has been widely used to detect mesoscale eddies globally [17,35]
and regionally [12,19,34,36]. The SLA product was constructed by merging multi-mission
satellites since 1992 optimally interpolated onto 0.25◦ × 0.25◦ grid with a daily resolution.
The geostrophic velocity was computed by the Lagerloef methodology [37] introducing the
β-plane approximation in the equatorial band (5◦S~5◦N), and by the 9-point stencil width
(“stencil width” means the number of grid points utilized to estimate the finite difference
approximation to the derivative on a grid) methodology outside the equatorial band [38].
Following Chelton et al. [2], the SLA fields are therefore spatially high-pass filtered with
half-power filter cutoffs of 20◦ longitude × 10◦ latitude to remove steric heating and cooling
effects, as well as other large-scale variability of SLA. The readers should be reminded
that altimeter data become less accurate over the shelf area due to some aliases from the
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tides, coastal wave signals and sea-land transition [39]. Thus, the altimeter data in areas
shallower than 200 m are masked in this study.

2.2. Bluelink ReANalysis

To study the mechanisms of eddy generation, we use the latest model outputs from
Bluelink ReANalysis (BRAN, version of 3p5) to perform an instability analysis. The
BRAN model is a multi-year integration of Ocean Forecasting Australian Model (OFAM)
assimilating observations of SLA and SST from satellite, sea level data from tide gauges
and in situ temperature and salinity profiles by using Bluelink Ocean Data Assimilation
System (BODAS) [40]. This model domain covers the Indonesian Seas and surrounding
oceans with a horizontal resolution of 0.1◦ and a vertical resolution of 10 m in the upper
300 m [40]. Compared with existing observations (e.g., moorings, drifters and fields survey)
which are not assimilated into the model, BRAN performs well in the Indonesian Seas and
surrounding ocean and can especially capture the realistic details of seasonal circulation
and its interactions with various topographic features [41–43]. The entire dataset covers
the period from January 1994 to August 2016. The daily outputs of sea level, zonal velocity,
meridional velocity, potential temperature and salinity in the upper 300 m from January
1994 to December 2015 are used for the instability analysis.

To compare the time-varying signals of SSH between BRAN and AVISO, an empirical
orthogonal function (EOF) analysis is performed to both daily BRAN and AVISO SSH
data with a daily resolution from 1994 to 2015. The first two modes of BRAN and AVISO
reveal good resemblance in both spatial patterns and principal components (PC), and their
cumulative explained variances are 64.42% and 63.89%, respectively, which can describe the
main characteristics of SSH variations in the Indonesian Seas and surrounding oceans. The
spatial patterns and PCs of EOF mode 1 from BRAN and AVISO are displayed in Figure 2.
Mode 1, respectively, explains 45.55% and 42.89% of the total variance in the BRAN and
AVISO. BRAN and AVISO share a similar spatial pattern for EOF mode 1 (Figure 2a,b). The
time series of two PCs also match favorably with a high correlation coefficient of 0.98. The
EOF mode 1 physically characterizes the large-scale variations of SSH in response to wind
forcing dominantly modulated by the El Niño-Southern Oscillation (ENSO) [31].

The spatial patterns and PCs for EOF mode 2 of SSH from BRAN and AVISO are
shown in Figure 3. BRAN captures the EOF mode 2 of observed SSH field faithfully, not
only in spatial patterns (Figure 3a,b) but also in PCs (Figure 3c). The variances explained by
the EOF mode 2 are 18.87% and 21% for BRAN and AVISO, respectively, and the correlation
coefficient between two PCs is 0.98. From the PCs (Figure 3c), it is clear that the EOF mode
2 represents the seasonal SSH variations in the Indonesian Seas and surrounding oceans.
For example, Figure 3a,b indicate the surface circulations in the Sulu Sea and southern
SCS exhibit a clear seasonal cycle, with an anticyclonic circulation during summer and a
cyclonic circulation during winter, which has been proved based on both numerical models
and observations [44,45]. The fact that BRAN simulates successfully the first two EOF
modes of observed SSH signals is important since the large-scale circulation patterns tend
to modulate mesoscale eddy activities.

2.3. Eddy Detection and Tracking Algorithm

Numerous automatic eddy detection algorithms have been developed based on the
physical or geometric criteria, and they can be divided into three categories: (1) the physical
parameter method, such as the Okubo-Weiss parameter method [46]; (2) the flow geometry
method, including the winding-angle method [18,47] and the vector geometry method [48];
(3) the SSH-based method [2,17,35]. However, not all algorithms are suitable for identifying
mesoscale eddies in the Indonesian Seas according to three reasons. Firstly, the SSH-based
method performs better than the Okubo-Weiss parameter method because of its ability to
avoid noise and excess eddy detections [2]. Secondly, the flow geometry algorithms require
higher resolution data to get an accurate flow field to identify eddies, and the existing obser-
vational data in the Indonesian Seas cannot satisfy this demand [35]. Therefore, we adopted
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the SSH-based method developed by Faghmous et al. [17] (hereafter JHF15) which has been
applied in the Kuroshio Extension Region [10], the Bay of Bengal [36] and the Southeastern
Indian Ocean [12]. JHF15 identifies an eddy as a closed SLA contour with a single extreme.
It is considered as a parameter-free method in which no empirical parameters are applied
and the identified eddies’ edges depend only on the single extreme approximation. In this
study, both altimeter data and model outputs are used for eddy detection. For each dataset,
all identified eddies larger than 9 corresponding grid cells are kept, to avoid some spuri-
ous features, and more details of JHF15 refer to Faghmous et al. [17]. The reader should
note that the results in Section 3 are only from the altimeter data, while eddy detections
from the model outputs are used to assess the capability of BRAN in terms of capturing
mesoscale eddies.

Figure 2. Spatial pattern of empirical orthogonal function mode 1 of sea surface height from (a) AVISO and (b) BRAN. (c)
Principal component of empirical orthogonal function mode 1 from AVISO (black line) and BRAN (red line). The gray
shadings in (c) represent El Niño events.
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Figure 3. Spatial pattern of empirical orthogonal function mode 2 of sea surface height from (a) AVISO and (b) BRAN. (c)
Principal component of empirical orthogonal function mode 2 from AVISO (black line) and BRAN (red line).

After eddies are detected in each daily SLA snapshot, they are tracked by an algorithm
developed by Penven et al. [49]. The nondimensional distance of an eddy pair with the
same polarity from two consecutive maps is defined as:

De1,e2 =

√(
ΔD
D0

)2
+

(
ΔA
A0

)2
+

(
Δa
a0

)2
, (1)

where ΔD, ΔA and Δa are, respectively, the differences in eddy centroid location, surface
area and amplitude between e1 and e2 in two consecutive maps; and the characteristic
length scale D0, the characteristic surface area A0, and the characteristic amplitude a0 are
25 km, π602 km2 and 2 cm, respectively. The smaller De1,e2 , the higher similarity of the
eddy pair. Due to the sampling errors and measurement noise of satellite altimeter, some
eddies may disappear at some time and reappear several time steps later. If an eddy moves
into the gap among satellites’ orbits, it will also vanish in the SLA map. To solve this
problem, we repeat this tracking algorithm for a longer time step, from 2 to 7 days, for
those unpaired eddies. We also set the maximum search distance ΔD to 150 km per week
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to avoid eddies jumping to another track. Following He et al. [34] and Zhang et al. [12],
the number of eddy tracks and the number of eddies are different. The former is counted
when an eddy track is once identified, while the latter is the total number of eddies along
the eddy tracks.

2.4. Definition of Eddy Properties

The amplitude of eddy a is defined as:

a =
∣∣∣SLAcenter −

〈
SLAedge

〉∣∣∣, (2)

where
〈

SLAedge

〉
is the mean value of SLA at the eddy edge.

The surface area of eddy A is the area delimited by the outermost contour of SLA,
the eddy edge, whereas its apparent radius R corresponds to the radius of an equivalent
circular eddy with the same area. Thus, R is calculated as:

R =
√

A/π. (3)

The mean EKE of eddy is calculated as:

EKE =

�
s

1
2

(
u′

g
2 + v′g2

)
dxdy

A
, (4)

where u′
g and v′g are the zonal and meridional components of geostrophic velocity anomaly,

respectively, calculated from SLA.
The mean vorticity of eddy is calculated as:

ξ =

�
s

1
2

(
∂v′g
∂x − ∂u′

g
∂y

)
dx dy

A
. (5)

2.5. Instability Analysis

The EKE is generally converted from mean-flow kinematic energy (MKE) through
barotropic instability and Kelvin-Helmholtz instability or from eddy potential energy (EPE)
via baroclinic instability [3–5,50]. Therefore, the energy conversion rates for the above three
instabilities are calculated as follows [3,12,50]:

Barotropic conversion rate (BTR) from MKE to EKE via barotropic instability, depend-
ing on horizontal shears of mean flow, is defined as:

BTR = −
(

u′u′ ∂u
∂x

+ u′v′ ∂v
∂x

+ u′v′ ∂u
∂y

+ v′v′ ∂v
∂y

)
. (6)

Kelvin-Helmholtz conversion rate (KHR) from MKE to EKE via Kelvin-Helmholtz
instability depending on vertical shears of mean flow and Reynolds stresses, is defined as:

KHR = −
(

u′w′ ∂u
∂z

+ v′w′ ∂v
∂z

)
. (7)

Baroclinic conversion rate (BCR) from EPE to EKE via baroclinic instability is de-
fined as:

BCR = − gρ′w′
ρ0

, (8)

where ρ0 is the background density set to 1030 kg/m3.
The overbars and primes represent time mean (1 month) and anomalies from time

mean, respectively.
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3. Results

In the Indonesian Seas, a total of 46,676 AEs (Figure 4a) and 47,004 CEs (Figure 4b) are
identified from January 1993 to December 2018. Most identified eddies are concentrated
on four larger and deeper basins (i.e., the Sulu Sea, Sulawesi Sea, Maluku Sea and Banda
Sea). Due to the shallower depth (<200 m) and smaller basin scale, fewer eddies are
detected in the rest of the Indonesian Seas. To obtain robust statistical description for eddy
properties, eddies with their amplitudes larger than 2 cm are analyzed in our study, with
the consideration that the accuracy of SLA gridded data from AVISO is about 2 cm [15,51].

Figure 4. Spatial distribution of the numbers of identified (a) anticyclonic (AE) and (b) cyclonic (CE) eddies in the Indonesian
Seas over the 1993–2018 period.

3.1. Eddy Geneis and Decay

The spatial distributions of the numbers of eddy genesis and decay events for AE
and CE are shown in Figure 5. The locations of eddy for generation and decay are the
first and the last point in each eddy track, respectively. Because the minimum resolvable
temporal scale of gridded SLA product from AVISO is about 10 days [52], we excluded
those eddies with a lifespan shorter than 10 days. Consequently, a total of 469 AE tracks
and 500 CE tracks are identified in the Indonesian Seas. AE tracks in the Sulu Sea, Sulawesi
Sea, Maluku Sea and Banda Sea, respectively, account for 15%, 53%, 7% and 25% of the
total AE tracks, while the proportion of CE tracks are 15%, 52%, 7% and 27%, respectively.
Hence, no apparent regional preference for AE and CE is found in the Indonesian Seas as
is also observed in the Tropical Atlantic Ocean [19]. Due to the removal of SLA data in
the area shallower than 200 m, the eddy generation and decay are less frequent near the
coast. It is interesting that both AE and CE preferentially generate in the areas north of
Ombai Strait (Figure 5a,b), which may result from the interactions of intense mean flow
with topographic features [53,54]. However, there are some differences of the geographical
pattern for the formation and decay between AE and CE. We find that the generation of AE
is concentrated on the southeastern portion of the Sulu Sea (Figure 5a) while CE tend to
form in northeastern portion of the Sulu Sea (Figure 5b). Additionally, the larger value of
CE formation southwest of the Mindanao Island may partially result from the interaction
between eastward currents and the coastline [53,54]. In the Sulawesi Sea, AE usually
decays in the central and western part (Figure 5c) while the death of CE concentrates on
the western and northeastern part (Figure 5d).
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Figure 5. Spatial distribution of eddy genesis and decay events over the 1993–2018 period: (a) AE genesis events, (b) CE
genesis events, (c) AE decay events and (d) CE decay events. The unit is the number of events.

3.2. Eddy Propagation

The propagation velocities are calculated by a forward difference scheme for eddy
centroid displacement every day. The velocities of each eddy track were further filtered
using a central moving average of 7 days to reduce the random noise and then averaged in
each 0.25◦ × 0.25◦ grid, following He et al. [34]. Figure 6 displays the mean propagation
velocity fields and the standard deviation (STD) of azimuth of propagation direction
relatively to the west for AE and CE. In the Sulu Sea, the AE (Figure 6a) and CE (Figure 6b)
translation speed are approximately 2.3 ± 1.0 cm/s and 0.9 ± 0.5 cm/s, respectively. AEs
move southeastward at the northeastern half basin because of the advection of mean flow
from the Mindoro Strait during boreal spring and summer when AEs are more frequent
(Figure 6a). In the Sulawesi Sea, the AE translation speed is approximately 2.5 ± 2.3 cm/s,
with a westward propagation in the central basin (Figure 6a). The CE migrations across
the entire basin are significantly affected by the intense intrusion of MC (Figure 6b), with a

451



Remote Sens. 2021, 13, 1017

speed of 6.3 ± 2.7 cm/s. In the Maluku Sea, all eddies propagate southwestward, which is
parallel to the long axis of basin, at a velocity of 1.9 ± 0.7 cm/s for AE and 1.7 ± 0.6 cm/s for
CE (Figure 6a,b). In the Banda Sea, the CEs are advected by the eastward mean flow during
austral summer with more CEs (Figure 6b). More frequent AEs move southeastward with
mean flow in the austral spring and autumn (Figure 6a). The corresponding propagation
speeds of AE and CE in the Banda Sea are 5.7 ± 2.5 cm/s and 3.9 ± 2.5 cm/s (More details
refer to Section 3.5 and Appendix A).

Figure 6. Spatial distribution of propagation velocity vectors (black arrows, unit: cm/s) for (a) AE and (b) CE over the
1993–2018 period. The color shading represents the standard deviation (STD) of propagation azimuths relative to west at
each 0.25◦ × 0.25◦ grid (units: degree).

3.3. Eddy Lifespan

In this study, the lifespan of an eddy is defined as the number of days between the
genesis and decay of the eddy. The upper-tail cumulative histograms of the eddy lifespan
for the Sulu Sea, Sulawesi Sea, Maluku Sea and Banda Sea are presented in Figure 7. The
short-lived (10~30 days, referenced in [15]) AEs (CEs) account for 73% (84%), 85% (86%),
100% (94%) and 86% (80%) in the Sulu Sea, Sulawesi Sea, Maluku Sea and Banda Sea,
respectively. This suggests that most mesoscale eddies in the Indonesian Seas are short-
lived, as also observed in the tropical oceans including the equatorial current systems and
tropical oceanic warm pools [15]. The lifespans of AE and CE have a generally similar
distribution in all these seas with a rapid decrease within 40 days and a slow decrease
beyond 40 days except for the Maluku Sea where the eddy lifespan is mostly shorter than
30 days. However, there are some differences between AE and CE in each sea. In the Sulu
Sea (Figure 7a), the portion of AE with lifespan larger than 30 days, 27%, is higher than CE
with a percentage of 16%. The distributions of lifespan for eddies are more skewed to high
values for AE than CE in the Sulawesi Sea (Figure 7b). For the relatively longevous eddies,
CEs are more abundant than AEs in the Banda Sea, with a percentage of 20% (Figure 7d).
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Figure 7. Upper-tail cumulative histograms of the eddy lifespan in the (a) Sulu Sea, (b) Sulawesi Sea, (c) Maluku Sea and (d)
Banda Sea. The red and blue lines in each panel correspond to AE and CE, respectively.

3.4. Distribution of Eddy Properties

The spatial distributions of amplitude and radius for AEs and CEs averaged in 1◦ × 1◦
grid are shown in Figure 8. Eddies have typical amplitudes of 2-6 cm and radiuses of
50–160 km in the Indonesian Seas. The patterns of amplitude (Figure 8a,b) are generally
similar to those of radius (Figure 8c,d), indicating that the amplitude is positively correlated
with the radius. Both amplitude (Figure 8a,b) and radius (Figure 8c,d) are larger in the
interior basin and smaller near the coast for the Sulu Sea, Sulawesi Sea and Banda Sea.
This may be due to the strong energy dissipation near the coast [34], and eddy growth in
the central basin resulted from the eddy interactions [55]. Meanwhile the amplitude and
radius for AE and CE in the Maluku Sea and Seram Sea are smaller due to small basin
scale, as also observed in the Red Sea by Zhan et al. [47]. The large values of eddy radius
are observed in the Banda Sea, where the maximum value of 157 km is observed in the
central basin and the majority is more than 100 km. Additionally, the amplitude and radius
of CE (Figure 8b,d) are stronger than those of AE (Figure 8a,c) in the Sulawesi Sea, where
MC intrudes into Sulawesi Sea as a cyclonic loop structure [22].
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Figure 8. Spatial distribution (color spotted) of mean eddy properties over the 1993–2018 period: (a) AE amplitude, (b) CE
amplitude, (c) AE radius and (d) CE radius. A value in each grid is averaged from eddies centered within this grid. The
units of amplitude and radius are cm and km, respectively.

Figure 9 displays the spatial distributions of mean EKE and mean relative vorticity for
AE and CE averaged in 1◦ × 1◦ grid. There is no significant difference between AE and
CE in the spatial pattern of mean EKE in the Indonesian Seas. The spatial pattern of mean
EKE is similar to that of amplitude, which indicates that the tangential speed of eddy is
largely determined by amplitude [12,34]. Both the magnitude and variation of mean EKE
in the Sulu Sea agree well with the estimate of He et al. [34]. The most energetic eddies are
observed in the Sulawesi Sea and Seram Sea with high MKE [42,56]. MKE is converted to
EKE through the barotropic pathway [3–5], which will be discussed in Section 4. Although
high eddy amplitude is also observed in the central Banda Sea (Figure 8a,b), the value of
mean EKE (Figure 9a,b) is smaller than those in the Sulawesi Sea due to larger eddy area
(Figure 8c,d). The spatial distribution of mean relative vorticity for AE and CE are generally
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similar (Figure 9c,d). Eddies with high mean relative vorticity were found in the Sulawesi
Sea and Seram Sea, which is similar to the distribution of mean EKE. However, compared
with other eddy properties, high value of mean vorticity is located near the coast instead of
in the interior basin. On the one hand, the sampling number of eddies is very small in the
coastal area. On the other hand, strong lateral friction leads to strong horizontal shear of
velocities in the coastal region [55].

Figure 9. Spatial distribution (color spotted) of mean eddy properties over the 1993–2018 period: (a) the common logarithm
of mean AE EKE, (b) the common logarithm of mean CE EKE, (c) mean AE vorticity and (d) mean CE vorticity. A
value in each grid is averaged from eddies centered within this grid. The units of EKE and vorticity are cm2/s2 and
10−6s−1, respectively.
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3.5. Seasonal Variability

The mean seasonal cycle of eddy properties in the Sulu Sea is shown in Figure 10. For
AE, the mean number (Figure 10a), amplitude (Figure 10b) and radius (Figure 10c) display
similar patterns, which are large in boreal summer and small in boreal winter, with peak
values of 0.4, 3.7 cm and 123.5 km in August, respectively. The mean number, amplitude
and radius of CE display similar patterns but in an opposite phase with AE, with large
values in boreal winter and small values in boreal summer (Figure 10a–c). The latitude of
eddy centroid presents opposite seasonal variability between AE and CE (Figure 10d). This
indicates more AEs than CEs in the northern Sulu Sea from November to February, while
more CEs populate in the southern Sulu Sea from August to October. The mean EKE of
CE have a seasonal cycle with a bimodal structure (Figure 10e), which reaches the annual
maximum of 352.5 cm2/s2 in June, and then drops rapidly to the annual minimum of
239.6 cm2/s2 in October. From then it increases dramatically to the local maximum of
317.4 cm2/s2 in December and decreases to the local minimum of 248.6 cm2/s2 in January.
While the mean EKE of AE shows a single peak in May with a value of 334.5 cm2/s2,
and a single trough with a value of 204.2 cm2/s2 in March. The mean relative vorticity
of CE (Figure 10f) also has a bimodal structure, in which two peaks exist in September
and December, with corresponding values of 5.1 × 10−6 s−1 and 4.4 × 10−6 s−1, and two
troughs appear in February and October with corresponding values of 3.5 × 10−6 s−1 and
3.8 × 10−6 s−1. No significant seasonal variation is observed for the mean relative vorticity
of AE (Figure 10f). Although the magnitudes of monthly average eddy properties are
different from He et al. [34] due to different limitations of amplitude in eddy identification
algorithms, the seasonal cycle of eddy characteristics displays almost identical tendency
not only for AE but also for CE.

Figure 11 displays the mean seasonal cycle of eddy properties in the Sulawesi Sea.
The seasonal variations of mean number (Figure 11a), amplitude (Figure 11b) and radius
(Figure 11c) of AE and CE follow the bimodal curves. For AE, the mean number, amplitude
and radius reach annual minimum in September, with corresponding values of 0.6, 3.2 cm
and 97.6 km, and then achieve annual maximum in boreal winter, with values of 1.0,
4.1 cm and 111.8 km, respectively. From then they attain local minimum in May with
corresponding values of 0.7, 3.5 cm and 99.9 km, and reach local maximum in July, with
values of 0.8, 3.6 cm and 105.2 km, respectively. While the mean number, amplitude and
radius of CE vary in an opposite phase compared with those of AE (Figure 11a–c). It is
noted that CEs have larger amplitude than AEs through the whole year in the Sulawesi Sea.
This further confirms the fact found above from the spatial perspective, the CE amplitude
is larger than AE amplitude. The latitude of eddy centroid between AE and CE presents the
opposite tendency in the Sulawesi Sea, with more AEs in the southern Sulawesi Sea from
March to September while more CEs in the northern Sulawesi Sea from October to February
(Figure 11d). Both the seasonal cycle of mean EKE and mean relative vorticity have bimodal
structure for CE (Figure 11e,f). Two peaks appear in January with values of 1816 cm2/s2

and 12.9 × 10−6 s−1 and May with values of 1688 cm2/s2 and 12.3 × 10−6 s−1, respectively,
while two troughs exist in April with values of 1480 cm2/s2 and 11.3 × 10−6 s−1 and
September with values of 1493 cm2/s2 and 11.2 × 10−6 s−1, respectively. The mean EKE
of AE have a similar pattern to that of CE, with two peaks in December and May and
two troughs in April and September (Figure 11e). No apparent seasonal variations are
observed for the mean relative vorticity of AE in the Sulawesi Sea, with a maximum value
of 13.2 × 10−6 s−1 and a minimum value of 11.5 × 10−6 s−1 (Figure 11f).
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Figure 10. Seasonal cycles of eddy properties (black bars are for CE and white bars are for AE) in the Sulu Sea: (a) number
of eddies, (b) amplitude, (c) radius, (d) central latitude, (e) mean EKE and (f) mean vorticity. The units of amplitude, radius,
mean EKE and mean vorticity correspond to cm, km, cm2/s2 and 10−6s−1.

The mean seasonal cycle of eddy properties in the Maluku Sea is shown in Figure 12.
The monthly mean number of AE and CE are less than 0.2 in the Maluku Sea (Figure 12a). The
amplitude of CE has a bimodal curve with annual maximum of 3.1 cm in February, annual
minimum of 2.6 cm in July, local maximum of 2.8 cm in October and local minimum of 2.7 cm
in December (Figure 12b). While there is no clear seasonal cycle of AE amplitude with the
maximum of 3 cm in November and the minimum of 2.7 cm in July (Figure 12b). The seasonal
variation of CE radius is similar to that of CE amplitude. Two peaks appear in March and
October, with corresponding values of 98.7 km and 103.7 km, and two troughs are in February
and May, with corresponding values of 88.51 km and 91.4 km (Figure 12c). Like AE amplitude,
the AE radius has no apparent seasonal cycle, with the maximum of 99.8 km in October and
the minimum of 87.9 km in January (Figure 12c). AEs in the Maluku Sea prefer to locate south
of the equator from July to November and appear north of equator from December to June
(Figure 12d). On the contrary, CEs in the Maluku Sea tend to populate south of the equator in
the first half of the year and north of the equator in the second half of the year (Figure 12d).
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Figure 11. Seasonal cycles of eddy properties (black bars are for CE and white bars are for AE) in the Sulawesi Sea: (a)
number of eddies, (b) amplitude, (c) radius, (d) central latitude, (e) mean EKE and (f) mean vorticity. The units of amplitude,
radius, mean EKE and mean vorticity correspond to cm, km, cm2/s2 and 10−6s−1.

Figure 13 shows the mean seasonal cycle of eddy properties in the Banda Sea. The
mean number (Figure 13a), amplitude (Figure 13b) and radius (Figure 13c) of AE in the
Banda Sea exhibit bimodal structure in seasonal variability. They reach the annual maxi-
mum in austral autumn with corresponding values of 0.6, 3.6 cm and 139.9 km, then drop
to annual minimum in austral winter with the values of 0.3, 3.0 cm and 124.6 km, respec-
tively. After achieving the minima, they increase to a local maximum with corresponding
values of 0.4, 3.2 cm and 137.2 km in austral spring and then decrease to a local minimum
with the values of 0.2, 3.1 cm and 122.1 km in austral summer, respectively. As shown
in Figure 13a,b, the mean number and amplitude of CE hit peak in austral summer with
corresponding values of 0.7 and 4.8cm. From then, they decrease gradually to the trough in
austral winter with values of 0.3 and 2.9 cm, respectively. Meanwhile, the CE radius reaches
the maximum of 143.1 km in January and the minimum of 124.0 km in March (Figure 13c).
The latitude of AE and CE shows opposite patterns in the Banda Sea (Figure 13d). AEs
tend to seat in the southern Banda Sea during austral winter and in the northern Banda Sea
during austral summer. Meanwhile, CEs prefer to populate in the southern Banda Sea for
austral summer and in the northern Banda Sea for austral winter. More energetic AEs exist
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during austral summer with a peak value of 736 cm2/s2, and the mean EKE of AE reaches
the minimum of 335.2 cm2/s2 in austral winter (Figure 13e). The seasonal cycle of mean
EKE for CE is a bimodal curve with two peaks in February and June with corresponding
values of 672.5 cm2/s2 and 585.6 cm2/s2, and two troughs in April and October with the
values of 509.2 cm2/s2 and 488.5 cm2/s2, respectively (Figure 13e). No significant seasonal
variability of mean relative vorticity for CE is observed, with the maximum of 9.5 × 10−6 s−1

in March and the minimum of 8.0 × 10−6 s−1 in October (Figure 13f). While the seasonal cycle
of mean relative vorticity for AE displays a bimodal structure in the Banda Sea: two peaks
exist in March and July with corresponding values of 9.4 × 10−6 s−1 and 7.9 × 10−6 s−1 and
two troughs appear in June and September with values of 7.1 × 10−6 s−1 and 6.9 × 10−6 s−1,
respectively (Figure 13f).

Figure 12. Seasonal cycles of eddy properties (black bars are for CE and white bars are for AE) in the Maluku Sea: (a)
number of eddies, (b) amplitude, (c) radius and (d) central latitude. The units of amplitude and radius correspond to cm
and km.

3.6. Eddy Nonlinearity

The advective nonlinearity parameter is calculated to assess the degree of eddy non-
linearity in the Indonesian Seas. The advective nonlinearity parameter is a nondimensional
ratio of U/c, where U is the maximum rotation speed and c is the propagation speed of
each eddy [2]. The definition of c is shown in Section 3.2. Figure 14 displays the upper-tail
histogram of U/c for the Sulu Sea, Sulawesi Sea and Banda Sea. Most eddies in these
three seas are nonlinear by this measure, among which U/c exceeding 1 account for 89%
(88%), 100% (100%) and 94% (96%) for AE (CE) in the Sulu Sea, Sulawesi Sea and Banda
Sea, respectively. Most highly nonlinear eddies are observed in the Sulawesi Sea, with 48%
of the U/c values exceeding 5 and 17% exceeding 10, as observed in major unstable and
meandering currents of global ocean [2]. Fewer eddies with high nonlinearity are detected
in the Sulu Sea and Banda Sea (Figure 14a,c), where the U/c values above 10 is less than
10%. The distributions of U/c for eddies are more skewed to higher values for AE than for
CE in the Sulu Sea, but the opposite is found in the Banda Sea.
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Figure 13. Seasonal cycles of eddy properties (black bars are for CE and white bars are for AE) in the Banda Sea: (a) number
of eddies, (b) amplitude, (c) radius, (d) central latitude, (e) mean EKE and (f) mean vorticity. The units of amplitude, radius,
mean EKE and mean vorticity correspond to cm, km, cm2/s2 and 10−6s−1.

Figure 14. Upper-tail cumulative histograms of U/c in the (a) Sulu Sea, (b) Sulawesi Sea and (c) Banda Sea. The red and
blue lines in each panel correspond to AE and CE, respectively. Additionally, the vertical dotted lines in each panel indicate
that the value of U/c is equal to 1.
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4. Discussion

To investigate the generation mechanism of eddies in the Indonesian Seas, we calcu-
lated the BTR, KHR and BCR, respectively, using BRAN outputs from 1994 to 2015. Due to
the complex current patterns and the different spatial distribution of eddy genesis in each
basin, we select four subregions in the Sulu Sea, Sulawesi Sea, Maluku Sea and Banda Sea
(Figure 1, dashed boxes). These four subregions are defined in the Appendix A. We also
find that BRAN can reasonably reproduce mesoscale eddies in the Indonesian Seas, and
more details of evaluation refer to Appendix B. The seasonal cycles of volume integral BTR,
KHR and BCR in each box are displayed in Figure 15. In these four regions, the volumetric
integral BCR is positive throughout the year, which means EPE converts to EKE through
baroclinic instability. Meanwhile, the volume integration of BTR for each box is positive
in most seasons, except for some seasons in the Sulu Box and Maluku Box (Figure 15a,c).
The weak negative BTR may result from inverse energy cascade from EKE to MKE [4,5],
and the detailed discussions for this beyond the scope of present paper. However, the
BTR almost dominates the energy conversion in the Sulawesi box throughout the year
(Figure 15b), as in the Gulf Stream [4] and Kuroshio [5]. This result is similar to the con-
clusions of Yang et al. [33] that the EKE is governed by barotropic instability of mean flow.
Compared with BTR and BCR, KHR are much smaller and make little net contribution
to EKE in all four boxes. Therefore, barotropic and baroclinic instability dominate eddy
generation in the Indonesian Seas. There are some seasonal variations of BTR and BCR,
likely associated with the seasonal variations if the mean flow.

Figure 15. Seasonal variation of volume integral barotropic conversion rate (BTR), baroclinic conversion rate (BCR) and
Kelvin-Helmholtz conversion rate (KHR) in the (a) Sulu Box, (b) Sulawesi Box, (c) Maluku Box and (d) Banda Box,
respectively. The unit is m5/s3.
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To further determine which instability dominates for individual eddy generation
over the 1994–2015 period, the monthly BTR and BCR integrated vertically in the upper
300 m are firstly calculated. Secondly, the corresponding values of BTR and BCR for
each eddy genesis event were extracted according to its generation position and month.
Thirdly, a comparison between BTR and BCR is performed to assess an eddy genesis
event dominated by either barotropic instability (BTR > BCR > 0) or baroclinic instability
(BCR > BTR > 0). Figure 16 presents the spatial distribution of the number of eddy genesis
events dominated by barotropic and baroclinic instability. In the Sulu Sea, eddy genesis
events dominated by barotropic instability account for 48% while those dominated by
baroclinic instability are 35% of total eddy generation. This is similar to He et al. [34], who
concluded that the instability of mean flow is one of the major eddy generation mechanisms.
Barotropic instability dominates eddy generation in the Sulawesi Sea with a percentage
of 55%, as in Yang et al [33], while the corresponding value of baroclinic dominance is
26% in the Sulawesi Sea. It is clear that barotropic instability is more frequent in the
central Sulawesi Sea where the most intrusion of MC is located (Figure 16a), and eddy
generation is dominated by baroclinic instability in the northern Sulawesi Sea (Figure 16b).
In the Maluku Sea, 47% of eddy genesis events are dominated by baroclinic instability,
while 43% are dominated by barotropic instability. Baroclinic instability in the Banda Sea
dominates by 49% of eddy generation (Figure 16b). Additionally, the percentage of eddy
generation dominated by barotropic instability is 40% in the Banda Sea (Figure 16a). For
the Indonesian Seas as a whole, barotropic instability dominates the eddy generation with
a percentage of 49%, which is higher than that dominated by baroclinic instability with a
percentage of 35%. This is similar to the previous conclusions that barotropic instability is
the dominant mechanisms in EKE generation along intense boundary currents, such as
the Gulf Stream and Kuroshio, while baroclinic instability dominates in the broader open
ocean [3–5]. A total of 16% of eddies in the Indonesian Seas are not dominated by either
barotropic or baroclinic instability, so that costal Kelvin waves and complex topography
may also affect eddy generation [57].

In our analysis, eddies with amplitude less than 2 cm are excluded according to the
fact that the accuracy of gridded SLA product provided by AVISO is about 2 cm [15,51].
Generally, the variability of eddy amplitude during its lifetime undergoes growing stage,
mature stage and decaying stage [15,19]. Inevitably, the eddy amplitudes less than 2 cm
exist in the beginning and end of eddy lifespan, which are below the resolving ability
of altimeter data [2,51]. There are two possible effects: one is underestimate of eddy
lifespan; the other is that locations of eddy generation and decay tracked by eddy tracking
algorithm may have some offset. However, our results in the Sulu Sea are similar to that of
He et al. [34], especially with same spatial and temporal variability for eddy properties.
The eddy amplitudes dramatically increase and decrease in growing stage and decaying
stage, respectively, which account for less than 20% of the eddy lifespan [15,19]. Besides,
the propagation speed of eddies in the Indonesian Seas is really small, with a mean value
below 6 cm/s and identified eddies whose lifespan are less 30 days account for more than
80%. Thus, there is likely no significant difference between the positions detected by eddy
tracking algorithm and the actual positions for eddy generation and decay in the region.

Additionally, the reader should be reminded that a free running model cannot repro-
duce real particular eddy events, while data assimilation inevitably interferes the dynamical
or energy balance [40]. The new version of BRAN have used globally balanced forcing and
low update cycle of assimilation (4 days) which improved the dynamic imbalance in the
previous version [40]. Zhang et al. [12] have proved that BRAN performs well for the insta-
bility analysis and the robustness of their conclusions is further proved by a free running
model, the eddy-resolving OGCM for the Earth Simulator (OFES). Besides, the magnitude
of BTR averaged vertically in the Sulawesi Sea using BRAN outputs in this study is equal to
the magnitude, 10−3 cm2/s3, estimated based on OFES outputs [33]. Although the detailed
assessment of the difference of EKE budget analysis between BRAN and a free running
model beyond the scope of this paper, future studies about this assessment are on the way.
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This paper reports the statistical characteristics and spatiotemporal variations for the
eddies across the whole Indonesian Seas for the first time. We believe that our results
can be used to assess the performance of numerical models in terms of reproducing
mesoscale eddies and to improve local ocean forecasts. Moreover, the significant meridional
migrations and the high nonlinearity of eddies revealed in this study indicate considerable
eddy transports of heat and salt [29,31], which will be the focus of our ongoing research.
In addition, because eddies play a key role in the circulation of semi-closed and enclosed
basins [34,47], our conclusions can also be used for the further investigations of eddy-
ITF interaction.

Figure 16. Spatial distribution of eddy genesis events dominated by (a) barotropic instability and (b) baroclinic instability.
The unit is the number of eddy genesis events.

5. Conclusions

In this study, we provided a detailed description for both spatial and temporal vari-
ability of eddies in the Indonesian Seas using altimeter data and discussed their generation
mechanisms using high-resolution model outputs. A total of 469 AE tracks and 500 CE
tracks were identified from January 1993 to December 2018. Most of eddies in the Indone-
sian Seas are short-lived (below 30 days) with a percentage of 73% (84%), 85% (86%), 100%
(94%) and 86% (80%) for AE (CE) in the Sulu Sea, Sulawesi Sea, Maluku Sea and Banda
Sea, respectively. There is no geographical preference for AE and CE in above four basins.
For the mechanisms of eddy generation, barotropic instability dominates over baroclinic
instability in the Sulu Sea and Sulawesi Sea, while baroclinic instability is slightly more
important in the Maluku Sea and Banda Sea. Most energetic eddies are observed in the
Sulawesi Sea and Seram Sea. The spatial distribution of eddy properties shows high inho-
mogeneity with typical amplitudes and radiuses of 2–6 cm and 50–160 km, respectively.
Because of the intrusion of MC in the Sulawesi Sea, CE has larger amplitude and radius
than AE. Limited by basin scale, the eddies in the Maluku Sea show smaller amplitude
and radius.

The climatological properties of eddies in the Indonesian Seas exhibit different sea-
sonal variations between AE and CE not only in each basin but also among four major
basins. In the Sulu Sea, AEs prevail with relatively large amplitude and radius in the boreal
summer, while CEs display an opposite seasonal variability. The mean number, amplitude
and radius of eddies in the Sulawesi Sea present bimodal structure in seasonal cycles, with
opposite phases between AE and CE. In the Banda Sea, the seasonal cycle of AE properties,
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including mean number, amplitude and radius, shows a bimodal structure, while CEs are
more abundant with larger amplitude during austral summer than the other three seasons.
There is no consistent tendency in the seasonal cycle of the mean number, amplitude and
radius for both AE and CE in the Maluku Sea. It is interesting that every basin in the
Indonesian Seas displays a reversal meridional distribution of eddy polarity with season.
Nevertheless, our results only focused on a comprehensive description of eddy properties
at the surface due to the limitation of altimeter data, future studies should explore the
three-dimensional structure of eddies in the Indonesian Seas and their contributions to the
ITF dynamics and thermodynamics.
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Appendix A

The seasonal cycle of mean circulation averaged above 300 m in the Indonesian Seas
simulated by BRAN is shown in Figure A1. In the Sulu Sea, a cyclonic circulation prevails
in boreal winter while an anticyclonic circulation exists in boreal summer, which resulted
from seasonal local wind forcing and outflow via the Sibutu Passage [45]. MC intrudes
in the Sulawesi Sea as a cyclonic loop structure through the whole year with a weaker
intrusion in January (Figure A1a). There is an anticyclonic sub-basin scale circulation in the
north of 4◦N in the Sulawesi Sea. The other intrusion of MC concentrates in the northern
Maluku Sea, while relatively weak northward flow exists in the central and southern
Maluku Sea. In the Banda Sea, the currents in the upper circulation flows eastward during
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the northwesterly monsoon while flowing westward with relatively weak strength during
the southeasterly monsoon, as also simulated by Zhu et al. [58].

Based on the complex upper-ocean current patterns, we selected four subregions with
more frequent eddy genesis events. The detailed range of the four rectangular subregions,
respectively, in the Sulu Sea, Sulawesi Sea, Maluku Sea and Banda Sea (Figure A1) are
as follows:

1. Sulu Box: 119◦E ∼ 123◦E, 7◦N ∼ 10◦N;
2. Sulawesi Box: 119◦E ∼ 125◦E, 2◦N ∼ 5◦N;
3. Maluku Box: 125◦E ∼ 127◦E, 2◦S ∼ 1◦N;
4. Banda Box: 122◦E ∼ 131◦E, 4◦S ∼ 7.5◦S.

Figure A1. Mean currents (blue arrows) averaged above 300 m depth in (a) January, (b) April, (c) July and (d) October
from the BRAN outputs. The solid line is the 200 m isobath. Location of the four subregions in the Sulu Sea, Sulawesi Sea,
Maluku Sea and Banda Sea. The boxes are (a) Sulu Box, (b) Banda Box, (c) Sulawesi Box and (d) Maluku Box, respectively.
For regions shallower than 300 m, the average is for the whole water column.

Appendix B

To evaluate whether BRAN reproduces realistic mesoscale eddies in the Sulu Sea,
Sulawesi Sea, Maluku Sea and Banda Sea, we also detect eddies from the daily SLA
snapshots of BRAN over the 1994–2015 period. The eddies with lifetime longer than
10 days and amplitude larger than 2 cm are considered for the analysis. The spatial
distributions of eddy genesis and decay events from AVISO and BRAN over the 1994–2015
period are show in Figure A2. A total of 843 and 649 eddy tracks are detected from AVISO
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and BRAN over this period, respectively. The proportion of eddy tracks are 14% (22%),
53% (50%), 7% (1%) and 26% (27%) in the Sulu Sea, Sulawesi Sea, Maluku Sea and Banda
Sea, respectively. The distributions of both eddy generation and eddy decay share a similar
pattern between AVISO and BRAN in the Sulu Sea, Sulawesi Sea and Banda Sea. However,
the numbers of eddy tracks in these four seas from BRAN are smaller than those from
AVISO. This may result from the difference of data resolution, as is also found in the
Subtropical Countercurrent regions from OFES outputs [59].

Figure A2. Spatial distribution of eddy genesis and decay events over the 1994–2015 period from AVISO (the first row) and
BRAN (the second row): (a) genesis number from AVISO, (b) decay number from AVISO, (c) genesis number from BRAN
and (d) decay number from BRAN. The unit is the number of events.

To further demonstrate the performance of BRAN in terms of mesoscale eddies, the
comparison for the trajectories of eddies detected from AVISO and BRAN are performed.
We find that BRAN can reproduce the realistic trajectories of mesoscale eddies in the regions
we are interested, with the similar pathways and generation locations. Some examples
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in the Sulu Sea, Sulawesi Sea and Banda Sea are shown in Figure A3. Besides, BRAN
can reasonably capture the spatial and temporal variations of eddy properties in the Sulu
Sea, Sulawesi Sea and Banda Sea (see Supplementary Materials Figures S1–S5 for more
details). Thus, we believe that BRAN is a credible reanalysis dataset to investigate the eddy
generation mechanisms.

Figure A3. Trajectories of same eddies from AVISO and BRAN in the (a) Sulu Sea, (b) Sulawesi Sea and (c) Banda Sea. The
red line represents the trajectory of an eddy observed in AVISO. The blue line represents the trajectory of the corresponding
eddy simulated by BRAN. The dots represent the initial locations of each trajectory.
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Abstract: Various ships and submerged moving objects in the ocean are key targets of numerous
remote sensors. Wake has developed into one of the key detection targets of ocean visible light
remote sensing as the visible trail information left by moving objects on the ocean surface. In the
situation of slow ship speed, deep draft, and the existence of air clouds and fog, the wake target
signal is weak, and the signal-to-noise ratio is low due to the low reflectivity of the sea surface and the
interference of the background waves on the sea surface. This paper analyzes the radiative sensitivity
of visible light imaging systems for the most crucial wake detection indicator in order to address the
aforementioned issues. The noise equivalent reflectance difference, which is widely used to describe
radiative sensitivity in engineering, is derived and numerically simulated by establishing the imaging
link model based on TDICCD. We calculated the noise equivalent reflectivity difference for eight
bands commonly used in ocean remote sensing; results show that the index is generally on the order
of 10−4, and with the increase in the central wavelength, the value of noise equivalent reflectance
difference also shows a downward trend and is stable within a certain value range. This research
provides theoretical guidance for the engineering design of a visible spectrum imaging system for
wake detection, aids in improving the imaging system’s capacity to detect weak wake signals, and
provides a basis for subsequent wake detection and enhancement processing, removal of false wakes,
and retrieval of ship information.

Keywords: wake detection; radiation sensitivity; noise equivalent reflectance difference

1. Introduction

In the context of the rapid development of remote sensing technology, along with
the urgent need for marine monitoring technology, remote sensing technology has a good
application prospect in ocean detection. When the marine dynamic target moves, different
types of wakes will be formed. Common marine wakes can be classified as three categories
based on their formation mechanisms, surface wave wake, turbulent wake, and internal
wave wake [1]. According to statistics, wake has the characteristics of wide range and long
existence time. The interaction of the ship with the sea water, as well as the rotation of
the propeller, are the main factors that influence the formation of wake. From the ship’s
bow to a distance away from the stern, a clear and identifiable trace will be formed, and
it has a strong scattering effect on electromagnetic waves. Therefore, wake detection can
be carried out by a combination of various means. Compared with the common infrared
imaging and SAR imaging methods, the image obtained by visible spectrum imaging has
the advantages of high resolution and high contrast [2]. Therefore, we can obtain the wake
information straight from the image and invert the dynamic target position information
and its motion parameters, so as to better realize the strategic goal of wide-area and precise
search on the sea surface, which has important application value.
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Wake wave height is affected by sea surface wind speed and ship parameters. Due
to the factors of sea surface background wave and low sea surface reflectivity, wake
characteristics are relatively weak, which increases the difficulty of detection. Meanwhile,
in the wake detection of visible spectrum, under the influence of environmental factors such
as atmosphere and illumination and imaging system factors such as noise, the image quality
after wake imaging will be further degraded, which is not conducive to the subsequent
processing of the wake target. Therefore, for the visible light imaging system, how to
improve imaging quality and achieve clear imaging of weak wake targets is a pressing
issue that must be solved.

Recent research on wake targets is mainly based on two aspects. On the one hand, it
is based on the characteristics of the wake, the establishment of different types of wake
models, and the simulation of wake images [3–7]. On the other hand, it mainly focuses on
image processing research on weak wake images, such as enhancing weak wakes through
denoising and enhancement methods, so as to perform wake detection and extraction to
obtain the speed, heading, and other parameters of marine moving targets [8–11]. However,
if the wake target is too weak to be detected by the imaging system, that is, the wake
information cannot be seen in the image, the subsequent image processing methods will
not work. Therefore, in-depth research into the visible spectrum imaging system is required
in order to discover the key to wake detection and ensure the existence of wake targets in
image, which is one of the crucial issues that should be addressed in engineering practice.

In the design of most imaging systems in the visible spectrum, indicators such as
spatial resolution and spectral resolution are often emphasized, but for wake detection, the
most important indicator is radiative resolution (also known as radiative sensitivity), which
refers to the minimum radiation difference that the remote sensor can distinguish when
receiving spectral radiation signals, namely for the ability to distinguish between adjacent
peaks and troughs in the wake. The smaller the indicator value, the stronger the ability of
the imaging system to distinguish weak targets, and the higher the probability of detecting
the wake target. In engineering practice, the indicator of noise equivalent reflectivity
difference is often used to evaluate the imaging system in the visible spectrum [12], but
this indicator has a wide range of applications; it is necessary to analyze its influencing
factors in combination with the imaging mechanism of the wake target and to improve
the radiative sensitivity through the parameter selection of the imaging system, so as to
improve the imaging system’s ability to clearly image weak wakes.

This paper concentrates on the issue of clear imaging of the wake in the visible
spectrum, and studies the imaging system in the visible spectrum mentioned above. Firstly,
the typical Kelvin wake wave height is simulated by the point source disturbance model
combined with the Michell thin ship theory; then, the time delay and integration charge
coupled devices’ (TDICCD) imaging system’s imaging link model is established. Based
on this, the indicator of noise equivalent reflectivity difference commonly used to describe
radiative sensitivity in engineering is deduced and numerically simulated. Finally, the
main factors affecting this indicator and the methods to improve the radiative sensitivity of
the system are discussed.

2. Models and Methods

2.1. Kelvin Wake Model

Kelvin wake is one of the most common detected wakes in visible spectrum remote
sensing applied to ocean monitoring, so this paper takes the Kelvin wake as an example
to study. In 1887, Lord Kelvin pointed out that the trace generated by the ship is a sur-
face gravity wave containing two types of wave systems, transverse wave and divergent
wave [13]. Transverse wave and divergent wave within the wake angle of about 16

◦
and

19.5
◦

interfere with each other to form Kelvin arms, which are the main features of Kelvin
wakes in optical images. Figure 1 shows the structure diagram of the ship’s Kelvin wake. It
can be seen from the figure that the transverse wave propagates in the opposite direction of

472



Remote Sens. 2022, 14, 4054

the ship’s sailing direction, while the divergent wave propagates in the vertical direction of
the ship’s sailing direction.

Figure 1. Kelvin wake diagram.

Assuming that the ship sails along the negative x-axis at velocity U, the corresponding
Kelvin wake wave height can be described as a linear superposition of many free surface
waves with different propagation directions, amplitudes, and frequencies [14].

ς(x, y) = Re
∫ π

2

− π
2

F(θ) exp[−ik0 sec2 θ(x cos θ + y sin θ)]dθ (1)

where Re is a symbol representing the real part, k0 = g/U2, g is the acceleration of gravity,
and F(θ) represents the free spectrum of the ship. The free spectrum F(θ) of a ship can
usually be described by the Michell thin ship theory [15], which holds that the intensity of
water flow generated by the ship’s transverse center point source has a certain proportional
relationship with the local slope of the hull:

F(θ) =
2k0

π
sec3 θ

� ∂y(x, z)
∂z

exp
(

k0z sec2 θ + k0x sec θ
)

dxdz (2)

where y(x, z) is the characteristic equation describing the shape of the hull, which is a
function of the offset position x and the draft z. For the convenience of calculation, the ship
is simplified as an ellipsoid.

y(x, z) =
{

b
(
1 − x2/l2) −d ≤ z ≤ 0,−l < x < l

0 z < d
(3)

where d is the draft depth, b is half the width of the ship, and l is half the length of the ship.
In fact, the front and rear parts of the ship have different effects on the water surface,

and the stern of the ship has a certain drag effect on the water surface. Therefore, in order
to be more realistic, the parameter of viscosity coefficient C is added. The integral term of
Formula (1) is divided into two parts, which represent the influence of the bow and stern
on the sea surface, respectively, and the part representing the stern is multiplied by the
viscosity coefficient C = 0.6 to obtain the Kelvin wake wave height expression.

ς(x, y) = 4b
πk0l

∫ π
2
− π

2
[1 − exp(−k0d sec θ)] sin[k0 sec2 θ(x cos θ + y sin θ)]dθ

ς(x, y) = ς(x − l, y) + Cς(x + l, y)
(4)

473



Remote Sens. 2022, 14, 4054

Factors including sea surface wind speed, ship speed, ship size, and draft depth
affect the Kelvin wake wave height. When the Kelvin wake appears on the sea surface, its
fluctuation causes the roughness of the sea surface to change, modifying the facet’s slope.
The slope of an ideal reflecting surface is the result of adding the Kelvin wake slope and
the wind wave slope, according to the paper by Liu et al. [16]. Therefore, the distribution
of sea surface reflectivity can be obtained according to the Cox–Munk model [17]:

R =
ρP
(

Sx − Skx, Sy − Sky

)
4 cos θr cos4 θn

(5)

where ρ is the Fresnel reflectivity, P
(

Sx − Skx, Sy − Sky

)
is the probability density function

of the wave slope, θr is the reflection zenith angle, and θn is the inclination angle of the facet.
The change in Kelvin wake wave height leads to similar reflectivity changes in the crest

and trough regions of the sea surface, and the changes in reflectivity at different positions
on sea surface result in changes in reflected radiation on sea surface, thus affecting the
information received by the detector. The presence or absence of reflection discrepancies
between crests and troughs determines whether or not the wake characteristics may be
seen in the designated wake imaging region. With an increase in the reflection difference
between the crest and trough, wake features become more significant. According to the
paper by Song et al. [18], in which this phenomenon was analyzed, the minimum reflectance
difference between the crests and troughs of the imaging area are defined as the reflectance
resolution Rr. In general, the reflectance resolution of wake targets is around 10−3∼10−4,
which may be lower if sea conditions are complex. Therefore, for visible imaging system,
how to detect the wake target with such weak radiation difference is a big problem.

2.2. Imaging Theoretical Modeling

In applications for airborne and spaceborne remote sensing, with the increasing
level of remote sensing information application requirements, the imaging performance
requirements of cameras are also becoming higher and higher, but the improvement of
spatial resolution or spectral resolution will always be accompanied by a decrease in
radiative resolution. In order to solve this problem, more high-resolution cameras choose
TDICCD as their detector. The sensor’s own line-by-line energy accumulation capability
can solve the issue of weak energy in a single integration, and it has obvious benefits in
an ocean’s visible spectrum remote sensing with weak incident energy. As a result, the
imaging link modeling process is mainly analyzed for TDICCD in this section, including
its imaging principle, noise model, and imaging link analysis, which provides the basis for
the derivation of the radiative sensitivity model in the next section.

2.2.1. TDICCD Imaging Principle

The full name of TDICCD is time delay and integration charge coupled devices, which
is an application form of area array CCD. The number of columns equals the number of
pixels in a row, and the number of rows is the integral grade M of the TDICCD. Its working
principle is shown in Figure 2. In the flight direction of the imaging system, each row of
CCD photosensitive pixels images the same target. By imaging the same target multiple
times at different times and accumulating charges, the photosensitive ability of the pixels
is improved, thereby improving the ability to identify and acquire the target. TDICCD
not only enhances the exposure of signals but also increases the noise. However, since
signals increase linearly, whereas noise increases nonlinearly, the SNR of the system will
also increase with the increase in integral grade, thus improving the sensitivity of the
imaging system.
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Figure 2. TDICCD imaging principle.

2.2.2. Noise Model

Noise can affect the image quality of the camera. The existence of noise will not only
cause the degradation of image quality and reduce its SNR but also affect the subsequent
image-based wake enhancement algorithm, resulting in inaccurate wake extraction and
even algorithm failure when the noise is severe. Therefore, whether to improve image
quality or to ensure the accuracy of subsequent algorithms, it is necessary to reduce or
eliminate noise as much as possible.

The noise in the TDICCD imaging process mainly includes photon shot noise, dark
current noise, readout noise, and fixed pattern noise. However, wake detection relies on the
radiation difference between the crest and trough, and since the difference between them is
very small, there may be only a few gray values reflected on the image, so the suppressed
fixed pattern noise may also affect subsequent image processing, so the fixed pattern noise
cannot be ignored in this paper.

Photon shot noise is the inherent noise of TDICCD devices and is caused by random
fluctuations in the number of photons reaching the sensor. Its expression satisfies the
discrete Poisson distribution function, and its equivalent electron is:

σshot =
√

n =
√

Nsignal (6)

where n is the average charge number and Nsignal is the signal charge number.
Dark current noise is a quantity closely related to detector temperature. When there is

no signal input, a detector with a certain temperature produces a dark current offset due to
the irregular thermal motion of electrons, forming dark current noise, and its equivalent
electron is:

σdark =
√

Ndark (7)

where Ndark is the number of electrons in the dark current.
Readout noise mainly includes reset noise and amplifier noise, and its equivalent noise

electron is:
σrms =

Nrms

Kc
(8)

where Nrms is the root mean square noise; Kc is the charge conversion scaling factor.
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The noise that the detector pixel produces with different outputs for the same input
due to the difference in the bias or response of each detector pixel is called fixed pattern
noise, also called response non-uniformity, which is defined as [19]:

U =
σR
R

(9)

where σR is the mean square error of the response rate of each pixel; R is the average
response rate of each pixel.

Non-uniformity is manifested as fixed pattern noise, and the fixed pattern noise of
each pixel is described by the number of electrons as:

σFPN = UNsignal (10)

Therefore, the total noise electrons in the system can be obtained as:

N =
√

σ2
shot + σ2

dark + σ2
rms + σ2

FPN (11)

For the imaging system using a TDICCD sensor, when the integral grade is M, the
quantity of noise electrons satisfies the following relation:

Nnoise =
√

Mσ2
shot + Mσ2

dark + Mσ2
rms + Mσ2

FPN =
√

MN (12)

2.2.3. Wake Imaging Link Model

Lighting conditions in remote sensing imaging applications can be roughly divided
into two categories. One is that the sun elevation angle is appropriate and the illumination
is relatively sufficient, and ideal imaging effects can be achieved by setting a reasonable
integral grade or integration time; another is the weak lighting condition when the sun
elevation angle is low, and some objects are drowned out by noise in the image because
the radiance is too low. In order to improve the imaging sensitivity and signal-to-noise
ratio under low-light conditions, it is necessary to start with the imaging link and further
explore high-sensitivity imaging measures.

The four main components of the sea surface radiance that the detector obtains are the
sea surface radiation itself, the scattering of background radiation to the sky by the sea, the
scattering of radiation from the sea to the sun, and the radiation of the atmospheric path
above the sea surface, as shown in Figure 3. The formula for the total energy of radiation
reaching the detector from the sea surface can be obtained:

L = τa

[
εLbb(λ; T) + ρ

(
Lsky + Lsun

)]
+ Lpath (13)

where τa is the atmospheric transmittance between the sea surface and detector; ε is the
sea surface emissivity; ρ is the sea surface reflectivity; Lbb(λ; T) is the blackbody radiant
exitance with temperature T and wavelength λ; Lsky is the sky incident irradiance on the sea
surface; Lsun is the sun incident irradiance on the sea surface; and Lpath is the atmospheric
path irradiance.

At room temperature, the radiant exitance of the blackbody in the wavelength range
of visible light is approximately zero [20]. Therefore, radiation from the sea surface itself is
ignored in the visible wavelength range. At the same time, since the magnitude of sunlight
reflection is much higher than that of sky light reflection and atmospheric path radiation
(the experimental data are shown in Figure A1 of Appendix A), we only consider the
reflection of sunlight by the sea surface. So Equation (13) can be simplified as:

L = τaρLsun (14)
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Figure 3. Ocean radiative transfer model.

When the light reaches the TDICCD sensor through the optical system, the illumination
received by its photosensitive element is:

ETDI−CCD =
πτoL
4F2 (15)

where F represents the F number of the optical system, and τo is the total transmittance of
the optical system.

For a multispectral camera, when the integral grade is M, the quantity of signal
electrons generated by a detector in a certain spectral band is:

NM =
ETDI−CCD Ad MTintλcηΔλ

πhc

= ρLsun Adτaτ0 MTintλcηΔλ

4F2hc

(16)

where Ad is the area of the TDICCD detector; Tint is the integration time; λc is the center
wavelength; η is the quantum efficiency; Δλ is the spectral band width; h is Planck’s
constant; and c is the speed of light.

According to the noise model, the noise of M times is simulated, and the quantity of
noise electrons integrated for M times is added to the quantity of electrons in the pixel
signal. The whole quantity of electrons generated is:

Ntotal = Nsignal +
M

∑
1

N (17)

The calculation formula of the digital image signal obtained by the signal charge after
correlated double sampling, preamplification, and analog-to-digital conversion circuit is:

DN =
Ntotal · 2n

Nf ullwell
(18)

where n is the quantization bits and Nf ullwell is the full well capacity of the TDICCD.
The choice of quantization bits will affect the imaging quality. High quantization

bits can reduce quantization noise and increase the grayscale range of the image, thereby
increasing the grayscale difference between the crests and troughs of the wake, which
is more conducive to distinguishing the wake target from the image. However, higher
quantization bits will greatly increase the amount of data, so we should not blindly pursue
high quantization bits. For the high reflectivity resolution required by wake detection, the
quantization bit is generally 12∼14 bit.
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The imaging model can be stated as follows in light of the analysis above:

DN = f (ρ, F, M, n) (19)

The wake imaging system’s output digital signal value DN is influenced by the F
number, quantization bits n, integral grade M, and reflectivity ρ. The imaging system must
be capable of distinguishing the radiation difference between the crest and trough in order
to produce a clear image of the wake. The imaging system’s output signal should satisfy
the following requirements when the reflectivity of the crest and trough is ρc and ρt:

ΔDN = DNc − DNt ≥ 1 (20)

where ΔDN is the output digital signal’s difference value. When ΔDN is not less than 1,
the digital response of the crest and the trough (that is, the gray value of the corresponding
image) is not exactly the same. In this instance, the wakes in the image may exhibit overall
characteristics of the peaks and troughs, and further image processing can amplify this
difference and make it easier to detect. ΔDN typically needs to be substantially higher than
1, as a big value of ΔDN in engineering applications represents a clear wake. After deter-
mining the reflectivity of the wake, the optical system’s F number, quantization number,
and integral grade can be carefully chosen to produce a clear image of the wake target.

2.3. Radiative Sensitivity Modeling

Radiometric resolution refers to the responsiveness of a remote sensor to distinguish
subtle changes in the input radiation, that is, radiometric sensitivity. In visible light, near-
infrared, and short-wave infrared bands, the noise equivalent reflectance difference NEΔρ
is usually used to represent the radiative sensitivity of the remote sensor; in medium-wave
and long-wave infrared, the noise equivalent temperature difference NEΔT is usually used
to represent the remote sensor radiative sensitivity [21]. Referring to the design of most
visible ocean remote sensors, the requirement of noise equivalent reflectance difference is
generally NEΔρ < 5 × 10−4, but this requirement is mainly for ocean water color remote
sensing, not for wake detection. Therefore, the noise equivalent reflectance difference of
our visible spectral imaging system for wake detection is analyzed.

NEΔρ is the smallest detectable change in reflectivity of a ground target and is defined
as the change in reflectivity of a ground target source required to produce a signal equivalent
to system noise. It can be expressed as:

NEΔρ =
ρ

(S/N)
(21)

where ρ is the reflectivity change required to generate signal S; S is the signal; and N is noise.
In general, the condition defined by the SNR is a target with a reflectivity ρ, which is:

SNRρ =
Nρ

Nnoise
(22)

If the signal difference between two targets with different reflectivity (that is, the crests
and troughs of the wake) is less than or equal to the noise at this time, the two targets
cannot be distinguished. Therefore, by calculating the SNR of the difference between two
target signals with different reflectivity, it can be obtained from Equation (16):

SNRΔρ = Nc−Nt
Nnoise

= Lsun Adτaτ0 MTintλcηΔλ

4F2hc (ρc − ρt)

= Lsun Adτaτ0 MTintλcηΔλ

4F2hc Δρ

(23)
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According to the above definition, we can obtain another important index, the noise
equivalent reflectivity NEΔρ. In the above equation, if SNRΔρ is as small as 1, the two
targets with different reflectivity cannot be distinguished. So when SNRΔρ equals 1, the
resulting Δρ is NEΔρ. Therefore, NEΔρ of the multispectral camera is obtained:

NEΔρM =
4F2Nnoisehc

τoτa AdLsunTintMλcηΔλ
(24)

NEΔρ is a key parameter. NEΔρ is a crucial metric to measure the capability of the
visible imaging system. When detecting the same wake target, the higher the NEΔρ (that
is, the smaller the value), the bigger the difference between the distinguishable wake crests
and troughs and the better the capacity to detect the wake.

3. Simulation

3.1. Kelvin Wake Model

The ship’s Kelvin wake is simulated using the mathematical model of the Kelvin wake
mentioned above, and the simulation results are displayed in Figure 4. In the simulation, it
is assumed that the ship moves in the negative direction of the x-axis, the size of the ship is
80 m × 20 m, the draft is 3 m, and the simulation area is 800 m × 800 m.

 

(a) (b) 

 
(c) (d) 

Figure 4. Simulation results of Kelvin wake under different conditions: (a) U = 6 m/s, viscous effects
are not considered; (b) U = 6 m/s, considering the viscous effect; (c) U = 10 m/s, viscous effects are
not considered; (d) U = 10 m/s, considering the viscous effect.
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Figure 4a,c are the Kelvin wakes without considering the influence of viscosity at ship
speeds of 6 m/s and 10 m/s. It is obvious from the simulation results that the Kelvin wake is
mainly composed of two wave systems, the transverse wave propagating in the x-direction
and diffuse wave propagating in the y-direction, and both the transverse wave and the
diffuse wave show significant periodic characteristics. Additionally, the wave height and
wavelength of the Kelvin wake increase to a certain extent with the increase in ship speed,
and the difference between the wave crest and trough becomes more obvious, which is
more conducive to the detection of the imaging system. Figure 4b,d show the Kelvin wake
of the ship considering the viscous effect at 6 m/s and 10 m/s speed, respectively. The
figure demonstrates that the Kelvin wake consists of point sources in the bow and stern,
and the superposition of the two parts of the wake will also have a certain impact on the
detection. Therefore, in order to facilitate calculation, the influence of viscosity is not taken
into account by the Kelvin wake model in the follow-up study of this paper.

Different ship size, speed, draft, and other parameters will produce different Kelvin
wakes. The most direct effect of the Kelvin wake is to adjust the roughness of the sea
surface and affect the reflectivity of the sea surface. For the detector, how to design the key
parameters to achieve clear imaging of the above Kelvin wakes is another content of this
paper. So, we derive and simulate the radiative sensitivity of the system.

3.2. Radiative Sensitivity Model

Through the analysis of the radiative sensitivity model, we obtain the expression of the
NEΔρ. Then, we roughly calculate the NEΔρ of common spectral bands in marine remote
sensing detection, which also provides a theoretical basis for the corresponding indicators
of visible light imaging systems in engineering practice. The parameters required in the
calculation process and the way to obtain it are shown in Figure 5.

Figure 5. Calculation process of noise equivalent reflectivity difference.

Firstly, set the imaging parameters that need to be determined according to the pa-
rameters of the TDICCD detector, including optical system transmittance, integration time,
detector area, and quantum efficiency. Table 1 shows the imaging simulation parameters;
the solar irradiance outside the atmosphere in the common bands of ocean remote sensing
is shown in Table 2.

MODTRAN software was used for the analysis of atmospheric transmittance. The
weather model was sunny and cloudless in the experiment. The observation location was
the South China Sea, and the aerosol model was the Navy aerosol model. At the observation
height of 5km, the atmospheric transmittance of the visible light and near-infrared bands
when the solar zenith angle is 0◦ and the detection system is vertically observed is shown
in Figure 6.
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Table 1. Fixed Simulation Parameters.

Parameters Value

Optical system total transmittance 0.7
Detector pixel size (μm ) 17.5 × 17.5

Pixel number 3072
Quantum efficiency 0.5

Integration time (ms) 4

Table 2. The solar irradiance outside the atmosphere in different bands.

Central Wavelength (nm) Irradiance
(
W · m−2 · μm−1)

412 1760
443 1877
490 1950
520 1933
565 1705
670 1456
750 1235
865 958

Figure 6. Simulation results of atmospheric transmittance.

According to the engineering practice experience, the F number of the imaging system
is selected as 3, 6, and 10, the integral grade is selected as 16, and the noise electron number
is simulated according to Equations (6)–(12). Formula (24) is used to calculate the noise
equivalent reflectivity difference, and the calculation results are shown in Figure 7.

The figure demonstrates that the calculated noise equivalent reflectivity difference
is generally in the order of 10−4, and with the increase in the central wavelength, the
value of noise equivalent reflectance difference also shows a downward trend and is stable
within a certain value range. At the same time, with the decrease in the F number of the
imaging system, the value of the noise equivalent reflectivity difference also decreases.
Therefore, in engineering practice, under the premise of balancing the processing difficulty
and cost, the F number of the imaging system should be reduced as much as possible
to improve the radiative sensitivity of the system, thereby increasing the probability of
detecting wake targets.
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Figure 7. The noise equivalent reflectivity difference in different bands.

4. Discussion

According to the above calculation process, the factors affecting the radiative sensitiv-
ity of the imaging system are mainly two aspects: the optical system and the image sensor.
The influencing parameters of the optical system include the system F number and the total
transmittance of the optical system; the influencing parameters of the image sensor include
integration time, integral grade, noise, and so on. Based on the above influencing factors,
the methods to improve the radiative sensitivity of the system are discussed.

4.1. Improve the Optical System

In the previous section, the impact of the system F number on radiative sensitivity
was analyzed. Reducing the system F number, that is, increasing the aperture of the optical
system, can improve the energy converging on the image plane, thereby improving the
radiative sensitivity of the system. However, the increase in aperture will increase the
development cost and processing difficulty of the system, so in practical application, the
system aperture is usually determined first, and the system is improved by improving
other influencing factors. The total transmittance of an optical system is typically a function
of the lens’s transmittance, the transmittance of semi-reflecting and semi-transmitting, and
the transmittance of the neutral variable filter in the center of the field of view, which can be
improved by optimizing the lens material and coating. At the same time, it is also necessary
to put forward requirements for the optical–mechanical structure design of the system to
reduce the influence of stray light in the system.

4.2. Reduce Camera Noise

According to the analysis in Section 2.2.2, the size of the noise is closely related to
the number of incident photons. Assuming that the inhomogeneity of the system is 1%,
Figure 8 shows the change in the RMS electron number of noise when incident photons
are different.

Figure 8 shows that when there are few incident photons, the system noise is mainly
determined by readout and dark current noise. They have nothing to do with the number
of incident photons and are mainly determined by the electronic parameters of the detector.
When the number of incident photons is large, the noise is mainly determined by the
photon shot noise, and other radiation sources besides target radiation should be reduced
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as far as possible. When the number of incident photons is large, the fixed graphic noise is
the main influence, and it is particularly important to reduce the pixel non-uniformity.

Figure 8. The total noise electrons in the system.

For the detection of marine targets, the overall irradiance of the sea surface is low,
so it is necessary to adjust the parameters such as the integral grade and gain to make
the irradiance obtained by the imaging system within a high range to meet the imaging
needs. Therefore, the number of incident photons in the system will be in a high range,
and the fixed pattern noise of the system cannot be ignored. It is necessary to reduce
the non-uniformity of the imaging system as much as possible through the radiometric
calibration and subsequent image processing and provide preprocessing operations for the
recognition and enhancement of wake images.

4.3. Increase the Pixel Area

The sensitivity of the camera is also proportional to the quantum efficiency of the
detector and the pixel area. The quantum efficiency is difficult to improve due to the
influence of the semiconductor material and the wavelength of the incident light. Therefore,
the pixel area can be indirectly increased by the binning method to improve the sensitivity
of the detector. A binning operation on multiple pixels increases the total number of signals
of merged pixels, which is more conducive to detecting wake targets under weak light
conditions. Meanwhile, pixel binning also improves the image SNR. The conventional
imaging mode and the 2 × 2 binning imaging mode for pixels are shown in Figure 9. When
the binning operation is used for both directions at the same time, the proportion of the
image remains unchanged, but the spatial resolution will decrease accordingly.

However, there are some limitations with pixel binning. Although pixel binning can
improve the radiative resolution under some conditions, it also decreases the signal level.
Pixel binning is used in high-resolution sensors, which can improve the radiative sensitivity
and will not have a big impact on the image quality when the signal level decreases. In the
case of moderate resolution sensors or even lower, pixel binning may have a big impact
on the image quality when the signal level decreases, and it is difficult to obtain the wake
information through subsequent image processing. Therefore, pixel binning is not suitable
for all sensors and needs to be considered comprehensively.
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Figure 9. Conventional imaging and binning imaging schematic diagram.

In the above discussion section, some methods to improve the radiation sensitivity are
proposed by analyzing the optical system and image sensor. However, the difficulty and
cost should be considered comprehensively in the design of the imaging system. Therefore,
we selected some methods in the above discussion which can be used in the imaging
system design of wake detection. First, the F number of the optical system can be increased.
Since the focal length of the system remains unchanged, increasing the F number of the
system is equivalent to increasing the aperture of the system. Then, after the CCD sensor is
selected, the non-uniformity of the imaging system can be corrected to reduce its total noise.
Finally, the binning operation can also be performed on its pixels to achieve the purpose of
improving the radiative sensitivity of the system.

In addition, there is a mutual constraint between radiative resolution and spatial
resolution. Spatial resolution is the smallest pixel that is distinguishable on the ground.
Generally speaking, when the spectral resolution remains the same, the minimum re-
solvable pixel increases with the increasing instantaneous field of view, while the spatial
resolution decreases. At the same time, the greater the instantaneous radiation energy, the
stronger the ability to detect the weak energy difference, namely, the higher the radiative
resolution. In order to improve the radiative resolution, it is necessary to sacrifice part
of the spatial resolution, so as to improve the wake detection capability of the system.
Therefore, in the research and application of remote sensing technology, it is necessary to
find a balance between high spatial resolution and high radiative resolution, in order to
achieve the desired effect.

5. Conclusions

In this paper, an analysis of the radiative sensitivity of an imaging system in the
visible spectrum is carried out. The Kelvin wake wave height is simulated by the point
source disturbance model combined with the Michell thin ship theory. The TDICCD
imaging system’s imaging link model is established. Based on this, the noise equivalent
reflectivity difference is deduced, and numerical simulation is carried out. Results show
that this indicator is generally in the order of 10−4, and with the increase in the central
wavelength, the value of the indicator shows a downward trend and is stable within a
certain value range. The main factors affecting this index and the methods to improve
the radiative sensitivity of the system are discussed, which can be used to optimize and
improve the system in the future. This research helps to improve the ability of the visible
spectrum imaging system to detect weak wake signals and paves the way for subsequent
wake detection and enhancement processing, removal of false wakes, and retrieval of ship
information. It should be noted that this paper mainly discussed and analyzed the Kelvin
wake as an example. The noise equivalent reflectance difference model is also applicable
to turbulent wake, vortex, and internal wave wake, and different types of wakes can be
calculated separately in the future.
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Abbreviations

The following abbreviations are used in this manuscript:
TDICCD Time delay and integration charge coupled devices
SNR Signal-to-noise ratio
NEΔρ The noise equivalent reflectance difference
NEΔT The noise equivalent temperature difference

Appendix A

We calculated the three kinds of radiation by MODTRAN software, and the calculation
results are as follows:

 
Figure A1. Sky and solar radiation: (a) solar irradiance; (b) the radiance of sky background radiation;
(c) the radiance of atmospheric path.
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Abstract: Coastal upwelling is important for coastal ecosystems and the blue economy because of its
large productivity and large potential for catching fish. However, coastal upwelling along the Taiwan
east coast has received little attention from the research community. This study used five-year daily
Himawari-8 geostationary satellite sea surface temperature data to map the coastal upwelling east of
Taiwan during the summer monsoon season. We applied a semi-automatic image process technique
based on the topographic position index for the quantitative upwelling mapping. The results show
clear evidence of seasonal coastal upwelling along the entire Taiwan east coast, mainly under the
influence of upwelling-favorable southwesterly/southerly winds. There are three broad upwelling
centers along the Taiwan east coast: north, central, and south. The upwelling around the northern
center has the longest upwelling season, lasting from May to September. The upwelling extents are
larger between June and August during the height of the summer monsoon.

Keywords: coastal upwelling; Himawari-8; sea surface temperature; Taiwan; topographic position
index; upwelling index; mapping

1. Introduction

Coastal upwelling is important for coastal ecosystems and the blue economy, because
of its elevated productivity and large potential for fish catch resulted from the uplifting
of nutrient-rich water towards the sea surface [1,2]. Major coastal upwelling systems are
found around the world [1–6]. There are numerous upwelling hotspots in these major
coastal upwelling systems, a number of which are known to occur in the China seas [3]. In
their comprehensive review, ref. [3] identified 12 major upwelling regions in the China seas.
Four of these upwelling regions are located in the Taiwan Strait (Southwestern Taiwan
Strait, Northwestern Taiwan Strait, Taiwan Bank, and Penghu Islands), and one is located
offshore Northeast of Taiwan.

Numerous studies have been focused on the offshore upwelling to the Northeast of
Taiwan, which is associated with a cyclonic cold dome [7–10]. Little literature, however,
has indicated the existence of coastal upwelling along the Taiwan east coast.

Taiwan Island is under the subtropical monsoon regime. Hence, the southwest-
erly/southerly (northeasterly/northerly) winds dominate in summer (winter). Although
the southwesterly/southerly summer monsoon (June–August) is usually weaker than
the northeasterly/northerly winter monsoon [11], the upwelling-favorable winds are still
expected to induce upwelling along the Taiwan east coast, according to the classical Ekman
transport theory. A similar mechanism has indeed been identified for the coastal upwelling
in the northwestern and southwestern Taiwan Strait along the Fujian coast [3,12,13]. In
addition, the Taiwan east coast is also influenced by the poleward flowing Kuroshio Cur-
rent. However, the Kuroshio Current migrates offshore in summer [9,14]; and as a result,
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its potential influence on the summer upwelling along the Taiwan east coast is unclear and
could be limited or secondary.

This study aimed to investigate the wind-driven coastal upwelling along the east
coast of Taiwan using Himawari-8 sea surface temperature (SST) data. The objectives
of this study include, (1) to identify significant upwelling-favorable wind events in the
summers of recent several years; (2) to map the extent of the coastal upwelling using
daily Himawari-8 SST data and examine its relationship with the wind events; and (3) to
quantitatively investigate the characteristics of the coastal upwelling.

Remotely sensed SST data have often been used to detect and map upwelling that
exhibits local SST anomaly on the sea surface [4,9,10,15,16]. A coastal upwelling event
often develops rapidly after a distinct onset and lasts from several days to some weeks,
depending on the local condition. The monthly-composited Moderate Resolution Imaging
Spectroradiometer (MODIS) SST data used in [4] does not have an adequate temporal
resolution to capture the development of an upwelling event. The daily MODIS and
Advanced Very High Resolution Radiometer (AVHRR) SST data used in [15,16] are also
not suitable for daily upwelling mapping because they often suffer incomplete spatial
coverage due to clouds and much lower observation frequency (e.g., twice daily). The
Himawari-8 SST data, on the other hand, offer unique advantages in the study of the daily
development of upwelling events because of its reliability and high spatial (~2 km) and
temporal resolutions (10 min) [17,18]. The merits of the Himawari-8 SST data have been
recognized in the two recent upwelling studies [9,10], which used Himawari-8 SST data to
investigate the upwelling off Northeastern Taiwan. In [9], the upwelling was only visually
examined without attempting to explicitly map the upwelling extent; while in [10], a
relatively complex gradient-based edge detection algorithm was used to map the upwelling.
In this study, however, we used a scale-independent and relatively straightforward semi-
automatic method developed and proved reliable in a recent upwelling study [4]. The
near-real-time Himawari-8 SST data and the mapping technique developed in this study
have the potential to be operationalized and thus provide a valuable monitoring tool for
coastal upwelling.

2. Data and Methods

2.1. Study Area, Study Period, and Its Climate

The climate of Taiwan Island is predominantly affected by the East Asian monsoon.
Hence, the weak southwesterly/southerly (strong northeasterly/northerly) winds usually
prevail in summer (winter) [11]. The waters surrounding Taiwan Island are influenced by
three major ocean currents [19]. Taiwan’s east coast is mainly affected by the northward-
flowing Kuroshio Current; while the Taiwan Strait is also affected by the intrusion of the
Kuroshio Current, in addition to the southward flowing China Coastal Current in winter
and the northward-flowing extension of the South China Sea Warm Current (or the Taiwan
Strait Warm Current) throughout the year. In general, the SST is lower in the Taiwan Strait
than that in the east of Taiwan, with an annual mean of >26 ◦C [20]. The salinity ranges
31–34 psu and has a relatively large spatial-temporal variability in the Taiwan Strait; while,
it remains relatively stable east of Taiwan [20].

In this study, the study area was located to the east of Taiwan, with two sub-areas:
one 20 km buffer and the other 20–70 km buffer from the east coast (Figure 1). The coastal
upwelling is defined as the upwelling area mainly within the 20 km buffer, but may extend
to the 20–70 km buffer. The study period is from May to September each year, between
2015 and 2019. Among these months, June to August is the main summer monsoon season;
while, May and September are the transition period.
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Figure 1. The study area is the coastal area of eastern Taiwan Island; the thick blue and black lines indicate the 20 km and
70 km buffers from the east coast of Taiwan; the green dots indicate the locations where the upwelling index (UI) was
calculated using the CFS wind data; the red lines indicate the 20 km buffer around the UI points; the thin blue line is the
200 m isobath representing the approximate boundary of the continental shelf. The background image is the H-8 SST image
on 19 July 2016.

2.2. Wind Data, Upwelling Index and Significant Upwelling-favorable Wind Events

We used wind data to calculate an upwelling index (UI). The Ekman-based upwelling
index has been widely used for upwelling studies [2,4–6]. The wind data were obtained
from CFSv2 (Climate Forecast System version 2) data of NCEP (National Center for Envi-
ronmental Prediction) [21]. Based on ground observation, satellite data assimilation and
reanalysis, the Climate Forecast System (CFS) is a global high-resolution coupling system
of atmospheric-sea-land. The wind data have a spatial resolution of 0.5◦ × 0.5◦ and a
temporal resolution of 6 h.

The daily composited wind data were first calculated from the 6-hourly data. The
daily UI (in m2 s−1) was then calculated using the following equations:

UI =
τ

f ρw
cos(α − β) (1)

τ = ρa Cd V2 (2)
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f = 2 ω sin(ϕ) (3)

Cd = (0.8 + 0.065 V)× 0.001 (4)

where τ is the wind stress, ρa is the air density (1.22 kg m−3), ρw is the seawater density
(1026 kg m−3), Cd is the drag coefficient calculated using the empirical equation of [22], f is
the Coriolis parameter (s−1), α is the wind direction, β is the general shoreline orientation,
ω is the rotation rate of the Earth (7.2921 × 10−5 rads−1), ϕ is the latitude, and V is the
wind speed (in m s−1).

We calculated UI at three coastal locations (Figure 1), representing the northern, central
and southern sections of the Taiwan east coast. The β values were set at 18◦, 15◦, and 20◦
from the northern aspect, for the northern, central, and southern locations, respectively.
The significant upwelling-favorable wind events from May to September each year were
then identified using the following criteria:

1. ≥5 days of positive UI, satisfying one of the following conditions:

a. ≥5 days of consecutive positive UI;
b. ≥3 days of consecutive positive UI, followed by 1 day of negative UI, then

followed by ≥2 days of consecutive positive UI;
c. ≥4 days of consecutive positive UI, followed by 2 days of negative UI, then

followed by ≥3 days of consecutive positive UI;
d. ≥5 days of consecutive positive UI, followed by 3 days of negative UI, then

followed by ≥5 days of consecutive positive UI.

2. The cumulative UI for the first five days ≥2.0 m2 s−1

These criteria consider both the duration and intensity in the definition of a significant
upwelling-favorable wind event. Note that a significant wind event is allowed to expand a
few days into April or October to maintain the integrity of the event.

2.3. Himawari-8 SST Data and Upwelling Mapping

The Himawari-8 meteorological satellite was launched by the Japan Meteorological
Agency (JMA) in October 2014 [17]. The Himawari-8 is a new generation geostationary
satellite carrying an Advanced Himawari Imager (AHI), capable of providing geophys-
ical data at a spatial resolution of ~2 km and a temporal resolution of 10-min full-disk
frequency [17]. The Himawari-8 (H-8) SST data used in this study were processed by the
Japan Aerospace Exploration Agency (JAXA) based on a quasi-physical SST algorithm
and a Bayesian cloud screen method [18]. In [18], being evaluated against the buoy data
which were measured at 20–30 cm, the ocean surface skin temperature of the H-8 SST data
have a bias of −0.16 ◦C and a Root Mean Square Difference of ~0.59 ◦C. After considering
the “cool skin effect” of the skin temperate as compared with the buoy temperature, the
accuracy of the H-8 SST data is deemed reliable.

Specifically, we used cloud-free daily H-8 SST data processed to Level 3, with the
highest quality-levels of 4 and 5, representing skin SST according to the GHRSST standard
and format. Note that in 2015 the time-series starts from 13 July when the H-8 data became
available.

Upwelling often exhibits a colder SST signature than the adjacent area [5,15,16,23–28].
This negative local SST anomaly is the foundation of mapping upwelling using SST data.
Ref. [4] demonstrated that the topographic position index (TPI) [29] was an appropriate
method to identify and map the negative local SST anomaly in the upwelling study. In
this study, a similar semi-automatic technique based on the TPI method was developed for
mapping the coastal upwelling off the Taiwan east coast from the daily H-8 SST data.

The TPI is a local-based image processing algorithm [29] that has been successfully
used to map the ocean currents [30,31] and the coastal upwelling [4]. In this study, the TPI
was calculated from the daily H-8 SST data using a nominated circular window with a
radius of 50 cells (~100 km). This window size was deemed large enough to capture the
coastal upwelling east of Taiwan.
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To map upwelling areas, firstly we selected areas of negative TPI values using a
pre-defined threshold, satisfying the following condition:

TPI ≤ −S_SD(TPI)× θ (5)

where the S_SD(TPI) is the spatial standard deviation of the TPI image; θ is a threshold
which was set at 0.75 in this study. Next, we further selected only those areas that have an
areal extent greater than 100 km2 as suitable upwelling candidates.

It was assumed that an upwelling area should have a reasonably large local SST
anomaly (SST_A). The local SST anomaly of an upwelling candidate was calculated using
the equation below:

SST_A = SSTb − SSTc (6)

where SSTc is the mean SST value of an upwelling candidate and SSTb is the mean SST
value of the 20 km buffer around (but excluding) the upwelling candidate. An upwelling
candidate was removed from the candidate set if its SST anomaly is less than a threshold,
for example:

SST_A < δ (7)

where δ was set at 0.5 ◦C in this study.
The threshold values of θ and δ were selected through a trial-and-error process and

the experience gained from a previous upwelling study [4]. In the final step, only the
upwelling candidates that are entirely or mainly within the 20 km buffer from the coast
were regarded as coastal upwelling.

To examine the relationship between the upwelling-favorable winds and the coastal
upwelling mapped from the H-8 SST data, a 20 km buffer was generated for each of the
three wind locations (Figure 1). Within the 20 km buffer, one of three upwelling status
was determined from the SST mapping results: (1) detected, when upwelling was detected
within the buffer; (2) not-detected, when non-upwelling was detected within the buffer;
(3) uncertain, when more than 50% of the buffer has no data in H-8 SST. Because the surface
upwelling signature could lag behind a favorable wind event due to the travel time taken to
uplift the deep water, the relationship was examined with three additional days extended
to the end of each significant upwelling-favorable wind event.

2.4. Analyzing Upwelling Characteristics

After mapping the coastal upwelling east of Taiwan, we were able to quantitatively
analyze several upwelling characteristics. As in [4], we calculated the area of influence
(AoI), SST anomaly (SST_A), and chlorophyll-a ratio (Chla_R) of the coastal upwelling.
These three upwelling properties represent different proxies of upwelling strength.

The AoI was calculated as the areal extent of the mapped upwelling areas. The SST_A
was calculated using Equation (6) as the difference between the mean SST value of the
upwelling areas and the mean SST value of the study area (i.e., the 70 km buffer from
the coast). Similarly, Chla_R was calculated as the ratio between the mean chlorophyll-a
concentration of the upwelling area and the mean chlorophyll-a concentration of the study
area. The data used to calculate Chla_R were the daily composites of H-8 chlorophyll-a
data processed by the JAXA to Level 3 using the algorithm developed in [32]. The spatial
resolution of the chlorophyll-a data is ~5 km. Note that these three characteristics were not
calculated for those days when upwelling could only be partially mapped due to the cloud
coverage.

3. Results

As examples, the H-8 SST image on 19 July 2016, the TPI image calculated from the SST
image, and the corresponding chlorophyll-a image are displayed in Figures 1 and 2. Two
upwelling areas were identified along the central and southern sections of the Taiwan east
coast, with lower SST values, negative TPI values, and higher chlorophyll-a concentrations
than the offshore area.
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Figure 2. (a) The H-8 SST image on 19 July 2016, (b) the TPI image calculated from (a), (c) the H-8 chlorophyll-a image on
19 July 2016. The purple polygons indicate the upwelling areas mapped.

3.1. Coastal Upwelling with Significant Upwelling-Favorable Wind Events

Each year between May and September during 2015–2019, several significant upwelling-
favorable wind events were identified with variable durations along the east coast of Taiwan
(Figures 3–5; Table 1). The wind events with the longest durations occur between June
and August, lasting for more than 40 days (Figures 3–5; Table 1). At the northern location,
the significant wind events usually start in late April and last into early October; while, at
the southern and central locations, the wind events usually start in May or June and last
only to mid-September (Figures 3–5). During the entire study period, the northern location
experienced more such events (21 events) and lasted more days (340 days) than the central
(14 events and 245 days) and southern (15 events and 265 days) locations (Table 2). On
average, the southern and northern locations were influenced by much stronger upwelling-
favorable winds than the central location, with the mean UI values of 1.37, 1.21, and
0.56 m2 s−1, respectively (Table 2).

The results show clear co-occurrence between the significant upwelling-favorable
wind events and the detection of surface upwelling signature from the H-8 SST data, with
an overall detection rate of 86.6% ± 17.1% (Figures 3–5; Table 1). Specifically, the upwelling
detection rates are 92.9% ± 9.8%, 77.0% ± 22.9%, and 86.7% ± 15.7% for the north, the cen-
tral, and the south locations, respectively (Table 1). Indeed, the surface upwelling signature
often persisted several days after the end of the wind events (Figures 3–5). Uncertainties
often occurred on the dates of strong winds (Figures 3–5), which were likely associated
with overcast or stormy weather conditions preventing the H-8 sensor from acquiring
cloud-free data.
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Figure 3. Time-series of the significant upwelling-favorable wind events at the northern location; (a) 2015, (b) 2016, (c) 2017,
(d) 2018, (e) 2019. The solid blue (red) circle indicates that the upwelling (non-upwelling) was detected at the location; while,
the un-filled circle indicates that the upwelling status was uncertain because more than 50% of the 20 km buffer has no data
in H-8 SST. The labelled value(s) are actual UI value(s) that could not be properly plotted.
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Figure 4. Time-series of the significant upwelling-favorable wind events at the central location; (a) 2015, (b) 2016, (c) 2017,
(d) 2018, (e) 2019. Symbols as Figure 3. The labelled value(s) are actual UI value(s) that could not be properly plotted.
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Figure 5. Time-series of the significant upwelling-favorable wind events at the southern location; (a) 2015, (b) 2016, (c) 2017,
(d) 2018, (e) 2019. Symbols as Figure 3. The labelled value(s) are actual UI value(s) that could not be properly plotted.

495



Remote Sens. 2021, 13, 170

Table 1. The statistics of individual significant upwelling-favorable wind events and upwelling mapped from the H-8 SST data.

Location ID Year
Number of

Wind-Event Days
Upwelling

Days
Non-Upwelling

Days
UI5 1

(m2 s−1)
Mean UI (m2 s−1)

Detection
Rate2

North

1
2015

18 16 2 18.54 1.36 88.89

2 7 8 0 14.42 2.19 100.00

3

2016

10 7 1 4.08 1.53 87.50

4 5 2 1 3.07 0.61 66.67

5 48 42 2 11.82 1.48 95.45

6 12 12 0 7.53 0.85 100.00

7 5 6 0 16.68 3.34 100.00

8

2017

7 10 0 2.52 0.51 100.00

9 6 3 0 2.71 0.47 100.00

10 8 8 0 5.80 1.06 100.00

11 41 32 3 5.12 1.58 91.43

12 16 16 0 3.06 0.85 100.00

13 7 9 0 6.68 1.08 100.00

14 14 14 1 5.62 0.86 93.33

15

2018

35 31 0 5.76 0.60 100.00

16 13 11 1 7.31 1.08 91.67

17 14 14 0 3.27 1.10 100.00

18 37 21 6 2.58 1.12 77.78

19

2019

9 7 0 4.12 1.42 100.00

20 14 11 3 5.26 1.01 78.57

21 14 11 3 17.08 1.81 78.57

Centre

1
2015

14 12 1 22.16 1.76 92.31

2 11 2 6 3.56 0.45 25.00

3
2016

6 6 1 6.55 1.28 85.71

4 48 38 1 5.35 0.09 97.44

5

2017

8 8 0 4.38 0.98 100.00

6 63 46 5 2.24 0.38 90.20

7 5 5 3 2.89 0.58 62.50

8

2018

10 5 6 2.83 0.23 45.45

9 21 19 3 2.47 0.46 86.36

10 12 9 2 9.10 1.04 81.82

11 16 9 0 2.02 1.14 100.00

12

2019

5 6 2 3.40 0.68 75.00

13 17 13 2 2.08 0.64 86.67

14 9 5 5 3.78 0.46 50.00

South

1

2015

21 14 1 10.02 1.34 93.33

2 11 7 0 27.78 3.15 100.00

3 10 5 1 5.98 1.41 83.33

4

2016

34 25 6 3.53 0.94 80.65

5 16 15 0 22.17 1.87 100.00

6 6 6 0 8.58 1.44 100.00

7
2017

27 20 2 9.26 1.30 90.91

8 19 17 0 22.61 1.84 100.00

9

2018

8 7 0 14.60 2.22 100.00

10 7 4 0 11.51 2.06 100.00

11 26 11 3 2.91 1.21 78.57

12

2019

6 4 3 2.46 0.50 57.14

13 58 42 3 4.23 0.92 93.33

14 11 4 2 14.78 2.07 66.67

15 5 4 3 2.88 0.58 57.14

Note: 1 The cumulative UI for the first five days of the upwelling event; 2 Defined as the ratio between the Upwelling-Days and the sum of
the Upwelling-Days and Non-Upwelling Days.
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Table 2. The statistics of the significant upwelling-favorable wind events and the mapping of coastal upwelling at the three
locations of east Taiwan, during the five extended summer seasons (May to September) between 2015 and 2019.

Location
Number of

Wind Events
Number of

Wind-Event Days
Mean (Median)

UI (m2 s−1)
Upwelling

Days
Non-Upwelling

Days
Uncertainty

Days

North 21 340 1.21 (0.80) 291 23 89

Central 14 245 0.56 (0.40) 183 37 67

South 15 265 1.37 (0.99) 185 24 101

3.2. Upwelling Maps

To examine the overall spatial pattern of the coastal upwelling east of Taiwan, we
generated an upwelling frequency map by combining the daily upwelling maps of those
upwelling dates that have complete H-8 SST data (n = 291) during the entire study period
(Figure 6a). The overall spatial pattern shows that during the significant wind events,
upwelling can occur along the entire east coast of Taiwan (Figure 6a). In general, further
away from the coast, less frequent coastal upwelling occurs. Although upwelling could
extend more than 20 km offshore, most of the upwelling occurs within 20 km off the coast
(Figure 6a). In particular, the northern and southernmost coastal areas experience upwelling
more often, with a frequency greater than 70% (Figure 6a). In terms of spatial extent, the
areas with high (70–90%), moderate (30–70%) and low (10–30%) upwelling frequency are
15% (~1250 km2), 44% (~3820 km2) and 41% (~3570 km2), respectively (Figure 7a).

 
Figure 6. The overall upwelling frequency map (a) vs the overall temporally-averaged SST map (b); generated by combining
the daily upwelling maps and SST maps of all upwelling dates (n = 291) together. The frequency is divided into five
categories: low, moderately low, moderately high, high, and very high.
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Figure 7. The areas of the upwelling frequency maps generated for (a) the inter-annual variation (Figure 9) and (b) the
monthly variation (Figure 8).

There are substantial intra-seasonal variations in upwelling extent (Figure 8). The
upwelling area increases substantially from May (~7648 km2) to June (~8976 km2) and July
(~9516 km2), especially at the northern section of the Taiwan east coast, then decreases
slightly in August (~9176 km2) and further reduces in September (~6968 km2). Three up-
welling centers (north, central, and south), with greater than 70% of upwelling frequency,
are clearly visible from May to July (Figure 8a–c). The central upwelling center disappears
in August; and by September, only the northern upwelling center still remains (Figure 8d,e).
In May, the coastal upwelling almost always (>90% frequency) occurs at the northern center,
as well as at a tiny area near the southern tip of the southern upwelling center (Figure 8a).
In June, the extents of the three upwelling centers expand, with an increased and a re-
duced area experiencing a very-high frequency of upwelling at the southern center and the
northern center, respectively (Figure 8b). In terms of spatial extent, the area experiencing
very-high frequency upwelling occupies ~500 km2 and ~830 km2 in May and June, respec-
tively (Figure 7b). The largest area with a high frequency of upwelling occurs in August
(~1870 km2), followed by June (~1620 km2).
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Figure 8. The monthly upwelling frequency map were generated by combining the daily upwelling maps of the corre-
sponding months; (a) May, (b) June, (c) July, (d) August, (e) September. The frequency is divided into five categories: low,
moderately low, moderately high, high, and very high.

There are also substantial interannual variations in upwelling extent (Figures 7a and 9).
The total upwelling area was the largest in 2016 (~10330 km2), followed by in 2015
(~9120 km2), and the smallest in 2019 (~7260 km2). The three upwelling centers were
clearly visible in 2016, 2017, and 2018 (Figure 9b–d). The very-high frequency of upwelling
occurred at part of the southern section in 2015 and 2016, and at part of the northern
section in 2018 (Figure 9a,b,d). Overall, the coastal upwelling occurred less frequently
in 2019 than that in other years. In total, the year 2016 had the largest upwelling area
with high and very-high upwelling frequency (~1900 km2), followed by the year 2015
(~1600 km2) (Figure 7a).
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Figure 9. The inter-annual upwelling frequency maps were generated by combining the daily upwelling maps of the
corresponding years; (a) 2015, (b) 2016, (c) 2017, (d) 2018, (e) 2019. The frequency is divided into five categories: low,
moderately low, moderately high, high, and very high.

3.3. Upwelling Characteristics

The monthly mean upwelling area is highest in June (~5200 km2) and lowest in
September (~3100 km2) (Figure 10a). Statistically, the monthly mean upwelling area is
significantly higher in June than that in September or in May; while, it is significantly higher
in July and August than that in September. The monthly mean SST anomaly between
the upwelling area and the study area (the 70 km buffer) is largest (0.99 ◦C) in May but
smallest (0.76 ◦C) in August (Figure 10b). Statistically, the monthly mean upwelling’s
SST_A is significantly higher in May and September than that in August. In terms of
chlorophyll-a ratio between the upwelling area and the study area, the monthly mean
Chla_R is the largest (3.1) in September, which is significantly higher than that (2.1–2.2) in
all other months statistically (Figure 10c).
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Figure 10. The monthly variation of upwelling’s characteristics; (a) the upwelling area, (b) the upwelling’s SST anomaly, (c)
the upwelling’s chlorophyll-a ratio. The error bars indicate 95% confidence intervals.

In terms of interannual variation, the annual mean upwelling area was highest in 2016
(~5125 km2) and continued to reduce in the following three years (Figure 11a). Statistically,
the annual mean upwelling area in 2016 was significantly higher than that in all of the
following three years; while, the annual mean upwelling area (~4270 km2) in 2017 was also
significantly higher than that (~3250 km2) in 2019. The annual mean SST anomaly was the
largest (1.0 ◦C) in 2018 and the lowest (0.81 ◦C) in 2017 (Figure 11b). Their difference was
statistically significant. The annual mean Chla_R was the highest (2.5) in 2018, and the
lowest (2.2) in 2016 (Figure 11c). However, the differences between these four years were
not statistically significant.

Figure 11. The interannual variations of the upwelling characteristics; (a) upwelling area, (b) SST anomaly, (c) Chla ratio.
The year 2015 is not included as it is an incomplete year of data. The error bars indicate 95% confidence intervals.

4. Discussion

This study shows clear evidence of seasonal coastal upwelling along the Taiwan east
coast (Figures 6a and 8). The coastal upwelling is mainly detected during the summer mon-
soon season when the southwesterly/southerly winds are upwelling-favorable (Figures 3–5).
The coastal upwelling is hence believed to be wind-driven, with a similar mechanism as the
coastal upwelling along the Fujian coast on the western side of the Taiwan Strait [3,12,13].
There are two pieces of additional evidence to support this finding. Firstly, a greater
number of days with significant upwelling-favorable winds is associated with a greater
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number of upwelling days, both at the level of individual wind events (r = 0.96; n = 50;
p < 0.001; Figure 12a) and at the level of the upwelling centers (r = 0.98; n = 3; p < 0.01;
Table 2). Secondly, a stronger wind-driven upwelling index is also associated with a higher
upwelling detection rate (r = 0.80; n = 3; p < 0.1; Table 2), although the positive correlation at
the level of individual wind events is relatively weak (r = 0.40; n = 50; p < 0.01; Figure 12b).

 
Figure 12. (a) Correlation between the number of days with upwelling-favorable winds and the number of days with
upwelling detected from the H-8 SST data (n = 50); (b) correlation between the wind-driven upwelling index and the
upwelling detection rate from the H-8 SST data. Each point represents one significant upwelling-favorable wind event
(n = 50).

Although upwelling can be detected along the entire east coast of Taiwan, it generally
occurs around three upwelling centers (Figures 6a, 8 and 9). However, there are clear
spatial and temporal variabilities among the three upwelling centers. The northern and
southern upwelling centers are persistent upwelling centers during the summer monsoon
season; while, the central upwelling center, which can be absent in some months and
years, is much weaker in intensity (Figures 8 and 9; Tables 1 and 2). Upwelling occurs
more often at the northern and southern sections of the coast, most likely due to a larger
number of days with significant upwelling-favorable winds and an overall stronger up-
welling index (Tables 1 and 2). In particular, the northern upwelling center usually has
the longest upwelling season, lasting through the entire extended summer season from
May to September (Figure 8), which is most likely because of the prolonged summer
monsoon season at this location (Figure 3). The upwelling’s spatial patterns mapped in
this study (Figures 6a, 8 and 9) generally agree with those of the temporally-averaged SST
maps (Figures 6b, 13 and 14). In particular, the three upwelling centers, which have lower
SST than the offshore area, are also clearly visible in the temporally-averaged SST maps.
This confirms the reliability of the semi-automatic upwelling mapping technique used in
this study.

The upwelling areas are larger in the main summer monsoon season between June and
August than those in the transition period of May and September (Figures 8 and 10a). This
is likely due to the higher upwelling index in these months (Figure 15). Larger upwelling
areas in June–August coincide with lower upwelling SST anomaly (Figure 10a,b). This
might be because upwelling in June–August could be sourced from relatively shallower
(and warmer) water than that in May and September, due to a stronger summer ther-
mocline barrier [33]. A much higher chlorophyll-a ratio in September than that in other
months (Figure 10c) is due to higher chlorophyll-a concentrations (up to 0.7 mg m−3) in
the upwelling areas. This could be due to, at the beginning of autumn, the strong summer
thermocline barrier becomes weaker, and surface cooling leads to deeper mixed layer
depth [33], and as a result, nutrients from deeper waters can be uplifted to the surface dur-
ing an upwelling event in early autumn. It should be noted that, however, this study could
not separate chlorophyll-a of the terrestrial source from that of the upwelling source [9].
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Figure 13. The monthly-averaged SST maps were generated by combining the daily SST maps of the corresponding months;
(a) May, (b) June, (c) July, (d) August, (e) September.

 

Figure 14. The annually-averaged SST maps were generated by combining the daily SST maps of the corresponding years;
(a) 2015, (b) 2016, (c) 2017, (d) 2018, (e) 2019.
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Figure 15. Monthly mean wind-driven upwelling index; (a) north, (b) central, (c) south. The error bars indicate 95%
confidence intervals.

The time-series of this study is not sufficient to examine the interannual variability
of the upwelling characteristics. According to the Ocean Niño Index, in the summer of
2016, the strong El Niño condition was quickly transitioned into the La Niña condition.
This might have something to do with the strongest upwelling activities detected in the
summer season of 2016 measured by the upwelling area (Figure 11a). In contrast, weak
El Niño conditions during late spring and early summer of 2019 might have contributed
to the weakest upwelling activities in the summer season of 2019 (Figure 11a). Similar
ENSO influence on the upwelling of the Taiwan Strait has been documented in previous
studies [3].

The role of the Kuroshio Current in the summer coastal upwelling east of Taiwan
remains unclear. The incursion of the Kuroshio Current to the East China Sea plays an
important role in the upwelling off Northeastern Taiwan [7–10]. A similar mechanism
could help form and enhance the northern upwelling center of east Taiwan. In addition,
the intrusion of the Kuroshio Current into the South China Sea through the Luzon Strait
may form an anticyclonic loop current off Southern Taiwan [34–37]. The influence of the
Kuroshio Current to the southern upwelling center of east Taiwan, however, is likely to be
limited because this loop current more likely occurs in winter [36].

5. Conclusions

Coastal upwelling is important for coastal ecosystems and the blue economy. This
study demonstrates the advantages of using Himawari-8 SST data to monitor the daily
development of upwelling events because of its reliability and high spatial (~2 km) and
temporal (10 min) resolutions. The semi-automatic, topographic position index based
image processing method is simple, intuitive, and scale-independent. The method is able
to map the spatial extent of the upwelling SST signature and, as a result, to quantitatively
investigate the upwelling characteristics such as the area of influence, SST anomaly, and
chlorophyll-a concentrations. Most importantly, this study offers the pioneering insight
into the summer upwelling along the entire Taiwan east coast. The coastal upwelling
east of Taiwan is believed to be driven by the southwesterly/southerly summer monsoon
winds, with a similar mechanism as the coastal upwelling along the Fujian coast on the
western side of the Taiwan Strait.

In summary, the key findings of this study are:

• Wind-driven upwelling occurs along the entire Taiwan east coast during the summer
monsoon season;

• There are three board upwelling centers along the Taiwan east coast: north, central,
and south;

504



Remote Sens. 2021, 13, 170

• The upwelling around the northern center has the longest upwelling season, lasting
from May to September;

• The upwelling extents are larger between June and August during the height of the
summer monsoon.
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Abstract: Multisource satellite remote sensing data and the World Ocean Atlas 2018 (WOA18)
temperature and salinity dataset have been used to analyze the spatial distribution, variability and
possible forcing mechanisms of the upwelling offManaung Island, Myanmar. Signals of upwelling
exist off the coasts of Manaung Island, in western Myanmar during spring. It appears in February,
reaches its peak in March and decays in May. Low-temperature (<28.3 ◦C) and high-salinity (>31.8 psu)
water at the surface of this upwelling zone is caused by the upwelling of seawater from a depth below
100 m. The impact of the upwelling on temperature is more significant in the subsurface layer than
that in the surface layer. In contrast, the impact of the upwelling on salinity in the surface layer is
more significant. Further research reveals that the remote forcing from the equator predominantly
induces the evolution of the upwelling, while the local wind forcing also contributes to strengthen
the intensity of the upwelling during spring.

Keywords: coastal waters of Myanmar; upwelling; monsoon; remote equatorial forcing

1. Introduction

Upwelling usually refers to the upward movement of water, caused by the divergence of the flow
in the surface layer of the ocean [1]. Since deeper water is usually enriched with nutrients, it tends to
increase a supply of nutrients to upper oceanic layers and forms the basis for the high productivity of
upwelling regions. Consequently, upwelling areas are among the most fertile regions of the global
ocean [2]. The production and its variability over this coastal upwelling system are a key concern
for the fishing community, since they may affect the day-to-day livelihood of the coastal population
and are important for the Indian Ocean rim countries due to their developing country status [3].
Moreover, upwelling is also an important factor modulating regional and global climate. For example,
the upwelling along the western coast of Java-Sumatra has changed sea surface temperature (SST) of the
warm pool in the eastern Indian Ocean and caused anomalous atmospheric circulation, thereby affecting
intraseasonal to decadal variabilities of the tropical climates [4–9]. Therefore, the understanding
physical processes and their variabilities in the upwelling systems is important because it gives us
crucial information regarding variability of a marine ecosystem and its regional climate [10,11].

The Bay of Bengal (BOB) is dominated by the South Asian monsoon. The southwest
monsoon prevails in summer (June–August), while the northeast monsoon prevails in winter
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(December–February), and the summer monsoon is stronger than the winter monsoon [12]. Upwelling
in the BOB mostly occurs in the southwest monsoon period, indicating that it is only a seasonal
phenomenon in the Bay [9]. Although the upwelling in the BOB or in the Arabian Sea is mainly driven
by the monsoon, the former is much weaker than the latter [13]. This may be principally caused by two
factors. Firstly, as a main forcing of the upwelling in either sea areas, the southwest monsoon is much
stronger in the Arabian Sea than that in the BOB [14]. Secondly, strong salinity stratification is formed
near the surface over the Bay due to abundant rainfall and a large amount of runoff input along its
northern coasts [15], which greatly suppresses the intensity of upwelling in the upper layer [16].

In the Indian Ocean, there are four major upwelling systems, including the western Arabian Sea
(WAS), the Java and Sumatra coasts (JC), the Seychelles-Chagos thermocline ridge (SCTR) and the
Southeastern Bay of Bengal [3]. Many previous works have been done to understand the variabilities of
upwelling in WAS, JC and SCTR with timescales ranging from intraseasonal to decadal (e.g., [9,17,18]).
In contrast, the existing studies mainly focused on the seasonal variability of the upwelling over the
Bay of Bengal due to the sparseness of observational data.

Upwelling in the BOB can be classified into two types. One is coastal upwelling, which mainly
occurs along the southern coast of Sri Lanka and the eastern coast of the Indian Peninsula, with relatively
fixed locations (Figure 1a). The other is open ocean upwelling generally associated with the activities
of cold eddies. The coastal upwelling off southern Sri Lanka occurs during the southwest monsoon,
with increased chlorophyll concentrations (>5 mg m−3), and alongshore wind stress is its main cause.
In addition, the southwest monsoon, blocked by the island of Sri Lanka, forms a strong positive wind
stress curl on the southeastern coast of the island [19]. The upward Ekman pumping induced by
the positive curl also makes an important contribution to the development of this upwelling [19–21].
The Sri Lanka cold eddy that forms east of Sri Lanka 5–10◦ N, 83–87◦ E during the southwest monsoon
is induced by the local wind stress with a positive curl [22–24].

 
Figure 1. (a) Geographical location of the Bay of Bengal, and (b) topography of the northwestern coasts
of Myanmar. The blue line in Figure 1a indicates the propagation path of the equatorial Kelvin wave
and coastal Kelvin wave. The red dots in the blue line denote the selected stations of sea level anomaly
(SLA) to track the propagation of Kevin wave along the equator and eastern boundary of the Bay.
In Figure 1a, the India coastal upwelling, Sri Lanka coastal upwelling, Sri Lanka Cold Eddy and Sri
Lanka are denoted by ICU, SLCU, SLCE and SL, respectively. In Figure 1b, the red box represents the
study region A (91.0–93.5◦ E, 18.5–19.0◦ N), and the black contours are the isobaths of 50, 200, 1500 and
2000 m.

The strong upwelling around the Madras coast was first reported in 1964 from in-situ data [25],
and the upwelled water was found to come from a 30 m layer induced by the strong winds along
the coast of Madras. Based on hydrographic data collected during the summer monsoon of 1989,
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the upwelling zone off the eastern Indian Peninsula (Figure 1a) is found to extend in coastal waters
from Madras to Visakhapatnam in summer [26,27], within a range of approximately 40 km offshore.
Alongshore winds are an important dynamic mechanism for its formation [15]. Below this upwelling
band, downwelling is often observed suggesting the presence of an undercurrent [15].

As mentioned above, previous studies mainly focused on the upwelling in the western boundary
of the Bay [19–28]. In contrast, there are very few reports on the upwelling in its eastern boundary.
Yesaki and Jantarapagdee [29] noted wind-induced upwelling over the continental shelf off the west
coast of Thailand. The observations of La Fond [30] indicated that during April–May 1963, SST in the
northeastern Bay exceeded 28 ◦C while it was relatively low (<27 ◦C) in the northern coasts offMyanmar,
reflecting the possible impact of cold water upwelling from the subsurface. Follow-up studies also
demonstrated the low-temperature zone located at the northwestern coasts of Myanmar 15–20◦ N
during the winter monsoon, which was considered a sign of upwelling [12,31]. This conclusion was
also supported by the satellite-derived Chlorophyll-a (Chl-a) data [32]. Akester [33] inferred that the
high primary productivity in the continental shelf offMyanmar 16–20◦ N was caused by the upwelling
there in April 2015, and the further evidence of upwelling, including low-temperature, high-salinity
and low-dissolved oxygen, was shown in the coastal region.

In summary, although the existing studies have discovered signs of upwelling in the northwestern
coasts of Myanmar in winter and spring, most studies were only based on scattered observations
from a single cruise. Until now, little has been known about the spatial distribution and seasonal
evolution of the upwelling, and there is a lack of research on its dynamic mechanisms. Therefore,
in this paper, satellite observations and the World Ocean Atlas 2018 (WOA18) temperature and salinity
data were used to analyze the characteristics and causes of the upwelling in the northwestern coast of
Myanmar during the winter monsoon. The remainder of this paper is organized as follows: Section 2
introduces the data and method used in this study; Section 3 analyzes the spatial distribution and
evolution process of the upwelling in the study area; Section 4 presents the dynamic mechanisms of
the upwelling; discussions and, finally, conclusions are stated in Sections 5 and 6, respectively.

2. Data and Method

2.1. Data

The World Ocean Atlas 2018 (WOA18) has been newly released by the Ocean Climate Laboratory of
the National Centers for Environmental Information (NCEI) and the National Oceanic and Atmospheric
Administration (NOAA) of the U.S. The WOA18 collected temperature and salinity samples obtained
by all ship-deployed Conductivity-Temperature-Depth (CTD) packages, profiling floats, moored and
drifting buoys, gliders and undulating oceanographic recorder profiles. Using an objective analysis
technique, the raw data are processed into gridded data with a horizontal resolution of 0.25◦ and 102
vertical levels above 5500 m (including 21 layers, at 5 m spacing, for the top 100 m). Data are presented
for climatological composite periods (annual, seasonal, monthly, seasonal and monthly difference
fields from the annual mean field, and the number of observations) at 102 standard depths. Standard
error of the mean fields is binned into several ranges depending on the depth level. In our study
region (90.5–97.5◦ E, 15.5–21.5◦ N), the error of temperature in upper 100 m layer ranges from 0.00
to 0.89 ◦C, and salinity error ranges between 0.00 and 0.33 psu [34,35]. In this study, climatological
monthly temperature and salinity were used in the analysis of the upwelling distribution.

The Moderate Resolution Imaging Spectroradiometer (MODIS) daily Chl-a data were provided by
the U.S. National Aeronautics and Space Administration (NASA). The chlorophyll concentration was
derived using the OC3 algorithm [36]. There is a root mean squared error (RMSE) of 1.228 mg m−3 for
MODIS Chl-a against in situ observations [37]. MODIS Chl-a with a horizontal resolution of 4 km [38]
spanning between 1 January 2003 and 31 March 2020, were used to study seasonal evolution of the
upwelling within the study area.
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Sea surface wind data were from the cross-calibrated multi-platform (CCMP) product provided
by the NASA’s Physical Oceanography Distributed Active Archive Center (PODAAC). CCMP is a
multisource fusion surface wind data derived from satellite observations, including measurements
of Special Sensor Microwave Imager (SSM/I), Advanced Microwave Scanning Radiometer for Earth
Observing System (AMSR-E) and Tropical Rainfall Measuring Mission Microwave Imager (TMI).
To create the CCMP winds, an enhanced variational analysis method (VAM) performs quality control
and combines all available Remote Sensing Systems (RSS) cross-calibrated wind data with available
conventional ship and buoy data and European Centre for Medium-Range Weather Forecasts (ECMWF)
analyses. Overall, the CCMP analysis has the best overall fit to the in-situ observations with an error
speed difference ranging from 1.6 m s−1 versus ships to 0.6 m s−1 versus the higher-quality TAO buoys.
This is also seen in the RMSE direction fit, which ranges from 11.5◦ to 7.0◦. This dataset has a horizontal
resolution of 0.25◦ × 0.25◦ and a temporal resolution of 6 h from the period 1993 to 2016 [39].

Daily sea level anomaly (SLA) data were provided by Copernicus Marine Environment Monitoring
Service (CMEMS), with a horizontal resolution of 0.25◦ × 0.25◦. This gridded data is derived from the
multi-satellite measurements of TOPEX/Poseidon (T/P), European Remote Sensing Satellite-1 (ERS-1)
and European Remote Sensing Satellite-2 (ERS-2). There is an error of ~0.02 m for the SLA data [40].
The SLA data we used are from between 1 January 1993 and 31 March 2020. These two data sets of
CCMP wind and CMEMS SLA were averaged to obtain weekly and monthly values and then were
used to analyze the dynamic mechanisms of the upwelling.

2.2. Method to Identify Area of the Upwelling and Its Intensity

Water that rises to the surface as a result of upwelling is characterized by low-temperature and
high-salinity. Both SST and SSS have been extensively used as an indicator of upwelling in many
previous studies (e.g., [41,42]). Correspondingly, upwelling areas were identified by a consideration of
both SST and SSS from WOA18 in our study. As we shall see below that the region around Myanmar
coasts with SST below 28.3 ◦C has a relatively high salinity. Thus, the regions around the coast of Sri
Lanka with SST less than 28.3 ◦C are used to describe the regions affected by the coastal upwelling.

In addition, the upwelled water from subsurface is typically rich in nutrients. In the upwelling
region, surface water has relatively high Chl-a concentration (e.g., [19,41]), besides its typical relatively
cold and saline nature. Thus, Chl-a concentration is used as an indicator for the intensity of upwelling
in previous works (e.g., [43]). In this study, climatological weekly Chl-a concentration averaged in the
upwelling region during January–April is constructed from the daily MODIS Chl-a data and then it is
used to explore the evolution processes of the intensity of the upwelling. A larger magnitude of Chl-a
concentration denotes a stronger upwelling.

3. Spatial-Temporal Distribution of the Coastal Upwelling offManaung Island Using
WOA18 Data

The sample amounts of temperature and salinity in the surface layer for each 1◦ × 1◦ grid during
spring (March to May) are shown in Figure 2a,b, respectively. Generally speaking, observations
of temperature and salinity have a good coverage over the study region. In the coastal areas,
the temperature and salinity samples around Manaung Island are 7–18 and 6–16, respectively, and both
temperature and salinity samples in open ocean are far larger than that in the nearshore areas. Thus,
WOA18 provides adequate data for this study to investigate the spatial structure of the upwelling in
the northwestern coasts of Myanmar.
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Figure 2. Sample amounts of surface temperature (a) and salinity (b) in spring (March-May) in a 1◦ ×
1◦ grid; (c) and (d) are climatological surface temperature (unit: ◦C) and salinity (unit: psu) in the same
period. In Figure 2c, the dotted lines indicate the locations of Section 1 (93.375◦ E, 16.875–19.125◦ N)
and Section 2 (90.125–93.375◦ E, 18.875◦ N), the red box (93.0–94.0◦ E, 18.5–19.0◦ N) represents the core
area of upwelling, and the solid line is the 28.3 ◦C isotherm. The solid line in Figure 2d is the 31.8 psu
isohaline. Temperature and salinity data are from climatological monthly data set of World Ocean Atlas
2018 (WOA18).

Distributions of surface temperature and salinity in spring are shown in Figure 2c,d, respectively.
SST in the study region is relatively high (>28 ◦C), owing to strong shortwave radiation during
spring [44]. The highest SST (29.5 ◦C) appears in the coastal areas around the estuary of the Irrawaddy
River. A low-temperature zone is found distributed along the northwestern coasts of Myanmar, with a
cold center located off the coast of Manaung Island. Taken the 28.3 ◦C isotherm as the boundary of the
upwelling, the upwelling zone appears as “tongue-shaped”, extending across 17.7–19.3◦ N offshore of
the Manaung Island, to the east of 92.3◦ E. Affected by a large amount of runoff and precipitation in the
northern Bay, salinity of the study area is relatively low (<33.0 psu). The lowest salinity (~30 psu) occurs
offshore of the northwestern Myanmar (Figure 2d). Similar to the low-temperature zone, a high-salinity
zone is also formed in the waters around the Manaung Island, with salinity exceeding 31.8 psu,
and the high-salinity center is located in the northwestern coast of Manaung Island. The high-salinity
(>31.8 psu) and low-temperature (<28.3 ◦C) zones do not completely overlap, with the high-salinity
zone occurring slightly to the north of the low-temperature zone. This low-temperature (<28.3 ◦C)
and high-salinity (>31.8 psu) water at the surface may reflect the occurrence of upwelling near the
Manaung Island in spring. This is broadly consistent with the location of upwelling signals revealed
by Akester [33] using in-situ data obtained in April 2015.

Figure 3 shows the climatologically sectional distributions of temperature and salinity in Section 1
(along 93.375◦ N) and Section 2 (along 18.875◦ E) in spring (the locations of the two sections are shown
in Figure 2c), illustrating the vertical structure of the upwelling. Both the isotherms and isohalines in
the two sections have a trend of rising upwards in the coastal areas of the Manaung Island from about
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the 100 m layer of the open ocean, indicative of upwelling in the nearshore regions. The remarkable
rise of cold subsurface water mainly occurs in coastal waters east of 92◦ E and north of 17.5◦ N.
The amplitude of the isotherm uplift is significantly smaller in the near-surface layer (above 30 m layer)
than that in the subsurface layer (30–70 m). This means that the impact of upwelling on temperature
is more pronounced in the subsurface than that in the surface layer. This may be caused by two
factors. Firstly, the subsurface layer lies within the seasonal thermocline and the vertical temperature
gradient there is larger than that in the near-surface layer, and thus the impact of upwelling on
temperature is more significant in the subsurface layer. Secondly, the intensity of upwelling may
be partially suppressed by strong salinity stratification in the near-surface layer [16], which further
weakens upwelling near the surface and thus results in weaker uplift of isotherm there. The sectional
distribution of salinity also reveals upwelling of high-salinity water in the subsurface layer off the coast
of Manaung Island (Figure 3b). However, in contrast to temperature, the upwelling of high-salinity
water is more significant in the upper layer above 30 m than that in the subsurface layer. This is mainly
because both the freshwater input from river discharge and the precipitation into the surface make the
vertical salinity gradient larger in the upper layer than that in the subsurface layer [45]. Therefore,
even under the condition of a weaker uplift of isotherms in the near-surface layer (Figure 3a), the uplift
of isohalines is much more significant in the upper layer.

 

Figure 3. The climatologically sectional distributions of (a) temperature (unit: ◦C) and (b) salinity
(unit: psu) of two sections in spring. The locations of the two sections are shown in Figure 2c.

Seasonal evolution for the coastal upwelling offManaung Island is further explored using WOA18
climatologically monthly temperature and salinity data (Figure 4). In February, a high-salinity zone
starts to form in the surface off the coasts of Manaung Island, while the low-temperature signal
is not significant. This is mainly because the southward flowing low-temperature water from the
northern Bay along the coasts during that period [46] covers the upwelled cold water from subsurface.
In fact, both the low-temperature and high-salinity signals of the upwelling are clearly presented in
the subsurface layers between 40 and 80 m around the coastal areas of Manaung Island in February
(Figure 5). In March, the extent of low-temperature and high-salinity water is the largest, indicating
that the coastal upwelling reaches its peak in this month. Subsequently, the extent of low-temperature
and high-salinity water significantly shrinks in April and disappears in May. Thus, April and May are
periods for the decay and dissipation of the coastal upwelling of Manaung Island.
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Figure 4. The climatological distributions of surface temperature (upper panels, unit: ◦C) and salinity
(lower panels, unit: psu) in the waters of Myanmar from February to May. Temperature and salinity
are from climatological monthly data of WOA18.

 

Figure 5. The climatological distributions of temperature (upper panels, unit: ◦C) and salinity
(lower panels, unit: psu) in the 40, 60 and 80 m layers in the waters of Myanmar in February.
Temperature and salinity are from climatological monthly data of WOA18.

4. Dynamic Mechanisms for Seasonal Evolution of the Coastal Upwelling of Manaung Island
Using Satellite Measurements

As is well known, local surface wind is an important factor influencing the generation and
evolution of coastal upwelling [28,47]. Therefore, the role of local wind on the formation and evolution
of the coastal upwelling of Manaung Island is explored here.

Affected by the South Asian monsoon, the predominant wind in the northern Bay is
northwesterly/northerly during winter and spring [12]. The direction of wind stress is roughly
parallel to the NW-SE orientation of the coastline of northwestern Myanmar (Figure not shown).
According to the classic Ekman transport theory, i.e., in the Northern Hemisphere, the wind blows in a
direction parallel to the coast (on the left side of the wind direction), and it causes net movement of

513



Remote Sens. 2020, 12, 3777

surface water at about 90 degrees to the right of the wind direction. Because the surface water flows
away from the coast, the water is replaced with water from below [48]. Thus, the northwesterly wind
stress will cause an offshore Ekman transport there, thereby triggering the upwelled subsurface water
to the surface layer as a compensatory for the offshore transport, which induces the formation of coastal
upwelling. To facilitate further analysis, the coordinate axes are rotated clockwise by 45◦, and the wind
stress is decomposed into directions parallel to and perpendicular to the coasts, with the southeast
direction along the coastline being positive (as shown in Figure 1b). During the northeast monsoon
(December to April of the following year), the coast of Manaung Island experiences the northwesterly
wind, favorable to the formation of upwelling. The wind stress is generally weak (0.01–0.02 N m−2) and
reaches its maximum (approximately 0.02 N m−2) in January (Figure 6a). At the same time, the wind
stress curl reaches the maximum (approximately 2 × 10−7 N m−3) (Figure 6b). Then, the wind direction
reverses to a southeasterly one during the monsoon transition period in May, which is not favorable to
the formation of upwelling. Thus, local wind stress may contribute to the formation of the upwelling
in spring, although its intensity is relatively weak, and the timing of its maximum is two months out
of phase with the peak of upwelling (in March). That is to say that although the local wind stress
contributes to the development of upwelling, there may be other factors (i.e., remote forcing from the
equator) that have important contributions to the development of the coastal upwelling of Manaung
Island, as we shall see below.

 

Figure 6. (a) Time series of climatological monthly alongshore wind stress of Manaung Island
(the southeast direction along the coastline is positive, unit: N m−2); (b) Time–Longitude diagram of
climatological monthly wind stress curl averaged over area A (unit: 10−7 N m−3); (c) Time–station
diagram of climatological monthly SLA (unit: m). The stations and the range of area A are shown in
Figure 1a,b, respectively. All climatological monthly mean data is averaged from the daily/6 h data for
the period 1993 to 2016.

Besides local wind, remote forcing from the equator is also the main forcing that induces seasonal
variabilities of the BOB. In particular, it plays a dominant role at the eastern and northern boundary of
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the Bay [49–51]. It affects the interior Bay via the planetary waves (including coastal Kelvin waves
and the westward propagating Rossby waves triggered by the equatorial processes) [52]. Referring to
Cheng et al. [51], the propagation path of the planetary waves from the equator to the interior Bay
along the 200 m isobath (the blue line in Figure 1a) is selected, and the SLA evolutions at each station
of December and May of the following year are illustrated (Figure 6c). The upwelling Kelvin wave
originates from the equator, propagates into the eastern boundary of the BOB in early February and
reaches the coastal region of Manaung Island in early March, resulting in a remarkable decrease in SLA
there (Figure 6c). This further amplifies the upwelling induced by the local wind stress (Figure 6a,b),
so that the upwelling peaks in March. Subsequently, the downwelling Kelvin wave, triggered by
equatorial westerlies in early April, reaches the Manaung Island in early May, thereby making an
important contribution to the decay of the upwelling.

Rao et al. [53] demonstrated that the aforementioned equatorial upwelling (downwelling) Kelvin
wave is driven by equatorial easterlies (westerlies) wind. The lead-lag correlation analysis between
SLA off the Manaung Island (Station 26 shown in Figure 1a) and that at the central equator (Station 1
shown in Figure 1a) shows that the correlation coefficient is positive and reaches maximum of 0.64
(significant at 99% confidence level) when variation of SLA at Manaung Island (SLA_n) lags behind
SLA in the central equator (SLA_s) by 32 days (Figure 7). This means that it takes about 32 d for the
signal of SLA variations propagating from the central equator to the Manaung Island. The mean
propagation speed of the equatorial Kelvin wave or the coastal Kelvin wave is approximately 1.69 m
s−1, close to the typical speed of the second baroclinic mode (1.79 m s−1) [50,54].

Figure 7. Lead/lag correlation between SLA at Station 26 (SLA_n) and that at Station 1 (SLA_s) using
data from January 2003 to December 2016. The x-coordinate represents the number of days, a positive
value of which indicates a leading SLA_s, and the y-coordinate represents the correlation coefficient.

The above analysis has demonstrated that both local wind and equatorial forcing have important
impacts on the formation and evolution of the coastal upwelling of Manaung Island. The concentration
of Chl-a is another important indicator of the upwelling intensity [43]. The MODIS images of Chl-a for
the upwelling period between February and March in 2020 (Figure 8) demonstrate that the short-term
evolution of Chl-a distribution in the upwelling zone offManaung Island is consistent with that of
SLA. This consistency underpins that both Chl-a and SLA can well characterize in the intensity of the
coastal upwelling of Manaung Island.
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Figure 8. Logarithm (Log10) of Chl-a concentrations (shaded, unit: mg m−3) and SLA (contours, unit:
m) in the waters of Manaung Island for (a) 16 February, (b) 1 March, and (c) 17 March in 2020. Blank
areas indicate missing data.

The daily MODIS Chl-a data in the core area of upwelling (the red box in Figure 2c), from January
to April, between 2003 and 2020, were composited and then bin-averaged to obtain the climatologically
weekly averaged Chl-a time series from January to April. The SLA_n, SLA_s, alongshore wind stress,
and wind stress curl were also analyzed using the same method. Then, all these time series were
normalized by 1 standard deviation of each (Figure 9). The concentration of Chl-a in the upwelling
zone (blue line) continues to increase from January, reaching its peak in early March, and then it
decreases during late March and throughout April (Figure 9). This evolution pattern is consistent with
variations in the upwelling intensity revealed by the WOA18 temperature and salinity data. As there
is a significant correlation between Chl-a concentration and SLA_n with a correlation coefficient of
−0.76, SLA_n serves as a good indicator for the intensity of the upwelling at Manaung Island. Thus,
the relative contribution of each influencing factor to variations in the upwelling was evaluated
by calculating its correlation with SLA_n. The results of correlation analysis (Table 1) demonstrate
that there is a high positive correlation between weekly SLA_n and the weekly SLA_s with SLA_s
leading SLA_n by 35 days, and their correlation coefficient is 0.60, significant at 95% confidence
level. In contrast, SLA_n is negatively correlated with alongshore wind stress and local wind stress
curl, with correlation coefficients of −0.35 and −0.33, respectively. These two correlations are not
statistically significant (p > 0.05), which indicates that the local wind stress in the upwelling region of
Manaung Island has a relatively small impact on the variation in SLA_n. Therefore, the correlation
between SLA_n and the equatorial forcing is much stronger than the local wind (0.60 vs. −0.35/−0.33),
underpinning that although both local wind and equatorial forcing have impacts on evolution of the
upwelling at Manaung Island, the remote forcing from the equator plays a more important role than
the local wind does.
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Figure 9. Time series of climatologically weekly Chl-a concentrations, wind stress curl, alongshore
wind stress, SLA_n and SLA_s ahead of SLA_n by 35 d from January to April (all data are averaged
during 2003–2016 and normalized by one standard deviation).

Table 1. The correlation coefficients between indicator of the upwelling (SLA_n and Chl-a) and
forcing factors.

Indicator of the Upwelling Indicator of the Upwelling/Forcing Factor Correlation Coefficient

SLA_n Chl-a −0.76
SLA_n Wind stress curl −0.35

SLA_n SLA_s ahead of SLA_n
by 35 days 0.60

SLA_n Alongshore wind stress −0.33

5. Discussions

In the upwelling region, upwelled supplies of nitrate and the tremendous blooms of phytoplankton
they support, render these regimes the “marine ranchings” [55]. This phytoplankton biomass then
feeds into productive food chains which support a significant share of the biological resources that
humans harvest from the ocean, and indeed, attract commercial fishers and fisheries [56]. Therefore,
the coastal upwelling has a profound impact on coastal populations, and it is particularly important
for developing countries (e.g., Myanmar). Despite of the importance of the upwelling, until now,
little has been known about the coastal upwelling offMyanmar. This is mainly due to the sparseness
of observational data and to the multi-scale aspects of upwelling that are difficult to measure and
simulate in climate/ocean models.

Our analysis demonstrates that the center of the upwelling is located at the coastal region off
Manaung Island during spring. This is generally consistent with the location of the upwelling reported
in the previous studies [30,32,33]. However, seasonal evolution characteristics were not discussed
in these previous works due to the scatted measurements from a single cruise used in these studies.
In contrast, our study indicates that the upwelling generates in February, then peaks in March and
finally decays in May. Based on the satellite observations, the influence of local winds and remote
equatorial forcing on the evolution of the upwelling is further discussed by the correlation analysis for
the first time. Nevertheless, the physical mechanisms of the upwelling are preliminary. Models will be
helpful to isolate the dynamics and assess the relative contribution of various processes in the future
study. Our results would contribute to the understanding of coastal processes (including the coastal
upwelling) offMyanmar and regional climate variability and their prediction.

Note that the Indian Ocean Dipole (IOD) and El Niño and Southern Oscillation (ENSO) are major
climate modes that affect the interannual variability in the northern Indian Ocean [57–59]. They can
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cause interannual variabilities in the regional upwelling in the Indian Ocean by inducing variations in
the sea surface wind field [59,60]. For example, significantly interannual variability of the Java–Sumatra
upwelling is primarily driven by local winds and remote equatorial Indian Ocean winds associated
with IOD/ENSO events [9,18,61]. As our analysis has shown, the coastal upwelling offMyanmar is
mainly caused by the remote equatorial forcing and to a lesser degree by the local winds. Both these two
forcing indicate significant interannual variabilities caused by IOD and ENSO events [58]. However,
how and to what extent the IOD and ENSO events affect the interannual variabilities of the upwelling
offMyanmar are still unknown and await further study. A series of cruises are suggested to be carried
out in the upwelling region offMyanmar coasts during normal years and IOD/ENSO years to address
these important scientific issues.

6. Conclusions

In this paper, WOA18 temperature and salinity datasets, combined with the MODIS Chl-a data,
SLA and the CCMP wind data, were used to analyze the spatial structure and seasonal evolution of the
coastal upwelling around the Manaung Island. Possible dynamic mechanisms leading to the evolution
process of the upwelling were also explored for the first time. The upwelling near the Manaung
Island has been identified, which begins in February, reaches its peak in March and disappears in
May. Low-temperature (<28.3 ◦C) and high-salinity (>31.8 psu) water at the surface of this upwelling
zone mainly upwells from a depth of 100 m. The impact of upwelling on temperature is found to
be more significant in the subsurface layer than that in the surface layer. In contrast, the impact of
upwelling on salinity in the surface layer is more significant. This different effect of the upwelling on
the temperature and salinity in upper layer is possibly caused by the strong salinity stratification there.

During winter and spring, the local wind near the Manaung Island is dominated by
northwesterly/northerly wind. It tends to induce offshore transport in the upper water volume,
and consequently is favorable to the formation of coastal upwelling. In addition, the upwelling Kelvin
wave, driven by the equatorial easterly wind stress during January-March, propagates along the eastern
boundary of the Bay of Bengal, which promotes uplifting of the thermocline and halocline in the coastal
regions around the Manaung Island, further enhancing the upwelling. In April, the downwelling Kelvin
wave, propagating into the eastern boundary of the Bay from the equator, deepens the thermocline in
the waters around the Manaung Island, and simultaneously the local wind is weakening. Both these
factors may play an important role in the dissipation of upwelling in this area. Correlation analysis
further demonstrates that the remote equatorial forcing exerts a more significant effect on the upwelling
variability than the local wind does. Although our study is qualitative, the physical processes are
robust features of this region and their quantification will be a major challenge for future observational
as well as modeling studies.

Despite the joint effects of remote equatorial forcing and local wind can well explain the generation
and evolution of the coastal upwelling around the Manaung Island, we note that the center of the
upwelling is located at the Manaung Island where the offshore bottom topography near the Manaung
Island has the largest gradient towards the coast. This sharp change in topography may have a
significant impact on the distribution of the upwelling center [62], which awaits further analysis in
the future.
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Abstract: For decades, the presence of a seasonal intrusion of the East Australian Current (EAC)
has been disputed. In this study, with a Topographic Position Index (TPI)-based image processing
technique, we use a 26-year satellite Sea Surface Temperature (SST) dataset to quantitatively map the
EAC off northern New South Wales (NSW, Australia, 28–32◦S and ~154◦E). Our mapping products
have enabled direct measurement (“distance” and “area”) of the EAC’s shoreward intrusion, and the
results show that the EAC intrusion exhibits seasonal cycles, moving closer to the coast in austral
summer than in winter. The maximum EAC-to-coast distance usually occurs during winter, ranging
from 30 to 40 km. In contrast, the minimum distance usually occurs during summer, ranging from
15 to 25 km. Further spatial analyses indicate that the EAC undergoes a seasonal shift upstream of
29◦40′S and seasonal widening downstream. This is the first time that the seasonality of the EAC
intrusion has been confirmed by long-term remote-sensing observation. The findings provide new
insights into seasonal upwelling and shelf circulation previously observed off the NSW coast.

Keywords: satellite remote sensing; quantitative mapping; spatial analysis; the East Australian
Current; New South Wales; coastal upwelling; shelf circulation

1. Introduction

Originating from the equator, the East Australian Current (EAC) is a highly dynamic
western boundary layer of the South Pacific Gyre, and it is characterized by warmer Sea
Surface Temperature (SST) off the eastern coast of Australia [1]. Among Western Boundary
Currents (WBCs), the EAC is unique, featuring very high spatiotemporal variability [1–6].
Along its main path off the south-east margin of Australia, the EAC frequently encroaches
onto the continental shelf [1]. Such shoreward intrusion significantly changes continental
shelf-slope biophysical dynamics in the region [7–10]. Usually, the EAC intrusion drives
coastal bottom layer uplift or upwelling through Ekman pumping, which in turn changes
the shelf-slope temperature and nutrient dynamics [7,8,11,12]. Additionally, the EAC
intrusion intensifies surface alongshore flow, generates vertical (surface-bottom) current
sheer and eventually induces circulations on the adjacent continental shelf [4]. The eco-
logical ramifications of the EAC’s shoreward intrusion are thus wide ranging and far
reaching [10,13–17].

The EAC is a dynamic eddy-current system that features periodic intrinsic mean-
der (every 20–45 days) and larger-amplitude fluctuation (every 60–100 days), which is
associated with the EAC’s eddy shedding [4,5,12,18–24]. Recently, submesoscale frontal
eddies were observed being generated every ~7 days on the inshore edge of the EAC,
which add additional complexity to this dynamic system [25,26]. A more recent study also
demonstrated that the EAC is an eddy-dominant system with very high variability [6]. The
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latest quantitative mapping study by Xie et al. [1] confirmed the dynamic nature of the
EAC system.

The EAC is such an energetic oceanographic feature that its low-frequency (e.g.,
seasonal) variability is usually overshadowed and hence rarely detected [1,4,18]. For
example, Schaeffer et al. [27] inferred from mooring array current data that the EAC’s
shoreward intrusion occurs all year round without any clear seasonal cycles. Further,
Schaeffer et al. [12] suggested that the EAC intrusion features a high-frequency cycle (every
90–100 days), as is inferred from current-driven bottom layer transport. However, both
current velocity and bottom layer transport are indeed not a precise representation of
the EAC’s shoreward intrusion. In a new mapping study, Xie et al. [1] quantified the
EAC’s shoreward intrusion (“area” and “distance”) using Himawari-8 SST data of high
temporal resolution. Using the quantitative mapping results, their study confirmed the
high-frequency EAC intrusion, as suggested by Schaeffer et al. [12,27]. Their study also
indicated the seasonality of the EAC intrusion based on the two seasonal cycles between
2015 and 2017. In addition, indirect evidence such as the seasonality of coastal upwelling
and shelf circulation off northern New South Wales (NSW) has hinted at the EAC’s seasonal
shoreward intrusion, as the regional wind patterns are unlikely the driver [8,28–31].

To date, no long-term and direct observation of the EAC’s seasonal shoreward intru-
sion has been provided. The two-year dataset provided by Xie et al. is rather limited and
lacks robustness and statistical power for the investigation of seasonal-scale variability [1].
This limits our ability to fully understand the EAC and the adjacent shelf-slope hydrody-
namics. This study attempts to fill the research gap by conducting quantitative mapping
of the EAC using a 26-year Advanced Very-High-Resolution Radiometer (AVHRR) SST
dataset spanning between 1992 and 2018 (Section 2).

Remotely sensed SST images have enabled the quantitative and semiautomatic map-
ping of ocean currents such as the Leeuwin Current [32] and the EAC [1] as they have
warmer SST signatures [33,34], which can be distinguished from background ocean using a
TPI technique [35]. By analyzing the spatiotemporal patterns of the EAC mapping results
from the long-term SST dataset, we aim to provide direct evidence and the underlying
mechanism of the EAC’s seasonal shoreward intrusion (Sections 3 and 4) and demonstrate
its impacts on coastal ocean dynamics (Section 4).

2. Materials and Methods

Our study area covers the coastal ocean off northern NSW between 28 and 32.5◦S,
upstream of the typical EAC separation point at 32–33◦S [36,37] (Figure 1a). In this area,
the EAC is most significant and continuous [6,36], and its SST signature is therefore most
recognizable [1] (Figure 1a). Along the south-east Australian margin, the continental shelf
is narrow (20–50 km), and the slope is very steep, with water depth increases dramatically
from ~200 m (at the shelf-break) to 2000–4000 m (Figure 1a).

We used monthly Advanced Very-High-Resolution Radiometer (AVHRR) SST images
for the period between April 1992 and March 2018 to map the EAC. Available from the
Integrated Marine Observing System (IMOS, Australia), this dataset contains Level 3 foun-
dation SST (SSTfnd) products derived from AVHRR observations on all available National
Oceanic and Atmospheric Administration (NOAA, USA) polar-orbiting satellites [38]. The
SSTfnd is obtained by adding a constant 0.17 ◦C to the SSTskin measurements following
the removal of measurements with low surface wind speeds (<6m/s by day and <2m/s at
night). Validation against buoy SSTfnd observations for the central date indicate typical
2014 biases of <0.03 ◦C and standard deviations of 0.6 ◦C. The spatial resolution is 2 km, and
each grid represents the monthly average of all the highest-quality SST observations [39,40].
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Figure 1. Study area and East Australian Current (EAC) mapping. (a) A monthly Advanced Very-High-Resolution
Radiometer (AVHRR) Sea Surface Temperature (SST) image of September 2009. (b) Topographic Position Index (TPI)
calculation of the SST image shown in (a). The arrow (in purple) indicates the boundary between the EAC and shelf waters
at 29◦30′S. (c) SST profile (red curve) and corresponding TPI value (green curve) along the cross-EAC section (green line)
depicted in (a,b). The dashed line represents the TPI threshold (0.17). (d) Vectorization of the mapped EAC’s SST signature
(red polygon) and calculation of the “area” and “distance” of the on-shelf EAC waters. The current field for September 2009
is shown in the background (Integrated Marine Observing System (IMOS) Ocean Current data, with a spatial resolution of
~10 km). In (a,c), significantly lower water temperature (in green) in the coastal area indicates an upwelling event.

The Topographic Position Index (TPI) [35] is a local-based image processing algo-
rithm that has been successfully applied to map large-scale ocean currents [1,32] and other
oceanographic features such as coastal upwelling [28,41]. In this study, as in [1], we calcu-
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lated the TPI (Equations (1)–(3)) of each SST image to capture the strong zonal temperature
gradient between the EAC and its surrounding waters (Figure 1b,c). Then, a TPI threshold
(mean + 0.5 std) was applied to extract the EAC from the background ocean (Figure 1c,d).
The derived EAC was then vectorized for subsequent spatial analysis (Figure 1d). For
detailed TPI calculation and mapping procedures for the EAC, one can refer to [1].

TPI(x, y) = SST(x, y)− M(x, y) (1)

M(x, y) =
∑n

j=−n ∑n
i=−n SST(x − i, y − j)

N2 (2)

n =
N − 1

2
(3)

where (x, y) is the position of an image pixel, M is the average SST of a neighborhood
centered at (x, y) and N is the pixel number of the neighborhood. We used a square window
of 75 × 75 pixels to calculate TPI (N = 75), which is slightly larger than the typical width of
the EAC’s core flow.

Two indices, area and distance, were utilized to quantify the EAC’s shoreward intru-
sion [1] (Figure 1d). First, the spatial extent of EAC components between the coastline and
the shelf-break line was defined as the “area” index (hereafter referred to as “area”). Second,
to measure the EAC’s proximity to the coast, we drew meridional sections at 1/6 degree
intervals. The lengths of the section components between the coastline and the inshore edge
of the on-shelf EAC waters (green lines in Figure 1d) were then averaged to obtain the EAC’s
“distance” index (hereafter referred to as “distance”). After that, we conducted wavelet
analyses [42,43] to decompose the time series of these two indices into time-frequency space
so that we can determine the dominant frequencies in the time-series signal.

Further, we investigated the possible mechanisms associated with the EAC’s shore-
ward intrusion (i.e., variability of the EAC’s width and path). Firstly, as in [1], the EAC’s
width was calculated by averaging all the lengths of meridional sections bounded by the
inner and outer boundaries of the EAC (Figure 1d). Secondly, we produced quantitative
maps of the EAC by combining all the monthly EAC maps from 1992 to 2018, statistically
showing the EAC’s location, frequency, main path and centerline.

3. Results

3.1. The EAC’s Shoreward Intrusion: Time Series, Wavelet Analysis and Statistics

Time series (1992–2018) of the “area” and “distance” of the EAC’s shoreward intru-
sion are shown in Figure 2(a1,b1). In general, high-frequency fluctuations were observed
throughout the “area” and “distance” time series, indicating that the EAC intrusion can oc-
cur all year round. On average, the area index is 3169 ± 1772 km2, occupying 17.98±10.05%
of the continental shelf (Figure 1a). In extreme EAC intrusion events, the EAC was ob-
served occupying more than 40% of the shelf (e.g., 41.46% in January 1997, 43.55% in April
2005 and 46.55% in February 2016, as highlighted (red dots) in Figure 2(a1)). Overall, the
distance index is 26.87 ± 4.29 km. During extreme events, the distance is typically reduced
to less than 20 km. For example, in the above-mentioned extreme cases, the distances were
18.02, 17.48 and 18.80 km, respectively (Figure 2(b1)).
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Figure 2. (a1) Time series of the EAC’s intrusion area (left Y-axis) and the corresponding area percentage of the continental
shelf (right Y-axis). Red dots represent three extreme EAC intrusion events mentioned in the text. (a2) Local wavelet power
spectrum and (a3) global wavelet power spectrum (red line). In (a2), the color bar indicates wavelet power levels; the bold
black curve indicates the “cone of influence” below which edge effects become important. The black contours in (a2) and
the dashed black line in (a3) denote the 95% confidence level using a chi-square (χ2) test. (b1–b3) Corresponding plots for
the “distance” index. (c) Monthly average of the distance (red) and area (percentage) (blue) of on-shelf EAC waters. The
error bars indicate 95% Confidence Intervals (CIs) (n = 26).

The results of the wavelet analyses are shown in Figure 2(a2,a3,b2,b3). Generally,
high-frequency variability at the period of around 0.25 years (i.e., ~90 days) was observed
throughout the entire time series of both “area” and “distance,” as shown by the black
contours in the local power spectra (Figure 2(a2,b2)) and the small peaks in the global
power spectra (Figure 2(a3,b3)). This is not surprising because the EAC encroachment
has been associated with its high-frequency intrinsic oscillation and eddy shedding in a
mapping study using six-day composited Himawari-8 SST images [1]. However, in our
study, the power of the high-frequency signal is considerably weaker, which is most likely
due to the use of the monthly averaging SST data.

This study focuses on the lower-frequency variability of the EAC’s shoreward intru-
sion. Significantly, a clear annual signal was detected from the wavelet spectra (Figure 2b,c).
The local spectra (Figure 2(a2,b2)) identify a consistent higher-power band with a period
of one year throughout the time series. This one-year periodicity is also clearly identified
as the highest peak in the global power spectra (Figure 2(a3,b3)). From 1992 to 2018, this
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annual signal is continuous and statistically significant (based on chi-square test) except
for just some short periods (e.g., 2000–2002 and 2012–2013; Figure 2(a2,b2)). This indeed
demonstrates that, while the EAC intrudes shoreward at higher-frequencies (e.g., every
60–100 days) all year round (Figure 2) [1,4,12], the intrusion also exhibits seasonal cycles
(detailed below).

The monthly variability of the EAC’s shoreward intrusion is shown in Figure 2c.
Generally, both “area” and “distance” of the EAC intrusion undergo a clear seasonal cycle,
confirming that the EAC is closer to the coast in austral summer than in winter. Specifically,
the area (percentage) reaches its maximum during January (3955 ± 692 km2; 22.44 ± 3.93%),
February (4186 ± 688 km2; 23.75 ± 3.91%), and March (4224 ± 750 km2; 23.96 ± 4.26%).
Correspondingly, this is a period when the distance drops to its minimum, being 24.63 ±
1.85 km, 24.35 ± 1.28 km and 23.69 ± 1.15 km, respectively. In contrast, the area (percentage)
is lowest in June (2149 ± 586 km2; 12.19 ± 3.32%) and July (2161 ± 556 km2; 12.26 ± 3.16%)
when the maximum distance was observed (29.38 ± 1.65 km in July). The overall (26 years)
monthly mean indicates that the EAC waters could be ~10 km closer to the coast in summer
than in winter.

In Figure 3, we compare the maximum and minimum EAC-to-coast distances in
winter and summer, respectively, from 1992 to 2017. In general, the maximum EAC-to-
coast distance occurs during winter (blue line), ranging from 30 to 40 km. In contrast (red
line), the minimum distance usually occurs during summer, ranging from 15 to 25 km. The
difference (black line) between the maximum distance in winter and the minimum distance
in summer is 10.86 km (mean), with a standard deviation of 3.41 km. As the continental
shelf off southeast Australia is narrow (~25 km) [44], such seasonal intrusion of the EAC
could exert significant influence on coastal hydrodynamics in this region (discussions in
Sections 4.2 and 4.3).

 

Figure 3. Comparisons of the maximum and minimum EAC-to-coast distances in winter and summer, respectively, from
1992 to 2017. The maximum (minimum) distance in winter (summer) was obtained from the monthly data (Figure 2(b1)) of
June, July and August (December, January and February) in each year.

3.2. Quantitative Maps of the EAC: Location, Frequency, Main Path and Centerline

Spatially, the EAC’s shoreward intrusion is directly associated with changes in the
EAC’s path and/or width. This is demonstrated in the long-term composite maps of the
EAC (Figure 4). Along the north NSW coast (28–32◦S) and onshore of the shelf-break,
both areal extent and frequency of EAC intrusion are considerably larger in summer than
in winter (Figure 4b,c). This coincides with the seasonal shift of the EAC’s main path,
represented by an area with an EAC frequency > 50%, and its centerline, with the seasonal
widening of the EAC (Figure 4d).
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Figure 4. Quantitative maps of the EAC: location, frequency, main path and centerline. (a) Location and corresponding
frequency of the EAC generated by combining all the monthly maps of EAC from 1992 to 2018. The dual black lines
delineate the main path of the EAC with a frequency > 50%. The bold black line is a centerline of the EAC’s main path.
(b) The EAC’s main path generated by combining all the monthly EAC maps in summers and (c) in winters from 1992 to
2018. (d) The centerlines of (a) (26 years), (b) (summer) and (c) (winter). The bottom right panel provides the intra-annual
variation of the EAC’s width downstream of 29◦40′S (mean width (bold pink line) ± standard deviation (dotted pink line)),
x-labels “J” to “D” represent January to December. (e) Meridional displacement (km) of the centerline from 28◦20′S to 32◦S
(comparison between summer and winter, with the positive value denoting the centerline (summer) being closer to the
coast and negative value further offshore). The vertical dotted line denotes zero displacement. The horizontal dotted gray
line denotes the latitude of 29◦40′S upstream of which the centerline exhibits notable seasonal shifts.

Specifically, downstream of 29◦40′S, the three centerlines (summer, winter and 26-year)
generally overlap, with insignificant meridional (cross-shelf) displacement of 2.03 ± 0.98 km
between summer and winter (Figure 4d,e). However, in this area, the EAC’s width exhibits
significant seasonality, being broadest (52.85 ± 13.44 km) in December (austral summer) and
narrowest (42.44 ± 11.50 km) in July (austral winter) (Figure 4d). This seasonal broadening
of the EAC is also clearly shown in Figure 4b,c, where the EAC’s main path, downstream of
29◦40′S, is notably narrower (~10 km) in winter than in summer.

In contrast, upstream of 29◦40′S, the EAC’s path (centerline) undergoes considerable
seasonal shift (Figure 4d,e). The centerline is centered at ~154◦0′E and is on average ~8 km
closer to the coast in summer than in winter. At 28◦30′S, we observed the maximum
shoreward displacement of 11.67 km (Figure 4e). In terms of the EAC’s width, we noted
that it is similar in summer (44.87 ± 12.80 km) and winter (46.05 ± 12.41 km) in this area.

4. Discussion

4.1. On the Mechanism of EAC’s Seasonal Intrusion: Shift or Widening?

For decades, it has been disputed as to whether the EAC exhibits a seasonal shoreward
intrusion. Although it is challenging to detect the low-frequency variability of this dynamic
eddy-current system, previous research does provide some useful insights. For instance,
from a broader synoptic structure of the EAC based on steric height data, Ridgway and
Godfrey [3] hinted at the seasonal shift of the EAC’s axis (being closer to the coast in sum-
mer). However, in a recent study using four years’ HF radar observation, Archer et al. [4]
demonstrated that the EAC axis does not exhibit any significant seasonal displacement.
Instead, Archer et al. [4] suggested that the EAC’s seasonal shoreward movement is due to
the EAC’s widening (5–15 km) during summer. Nevertheless, the finding only reflects the
EAC component within a rather limited area between 30 and 31◦S. In a recent mapping
study, Xie et al. [1] also identified seasonality in the EAC’s shoreward intrusion, which
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coincides with the EAC’s seasonal broadening (10–15 km). However, their study period
(2015–2017) is too short to statistically demonstrate the EAC’s seasonality.

In this study, in the area downstream of ~29◦40′S (Figure 4d,e), our results agree
with Archer et al. [4], showing that seasonal shift of the EAC’s path is insignificant with
mean displacement between seasons of ~2 km. In addition, our results indicated that, in
summer, the EAC exhibits a considerable widening of ~10 km (Figure 4b–d), a magnitude
that is consistent with the above recent studies [1,4]. As our results were derived from
the quantitative mapping using a 26-year-long dataset with a large spatial coverage, we
are confident that, downstream of ~29◦40′S, the seasonal shoreward intrusion of the EAC
is due to its seasonal widening. Theoretically, the width of the western boundary layer
will increase if the lateral viscosity increases [45]. This could occur as a consequence of an
increase in eddy activity in a WBC system [46]. Downstream, the seasonal widening of
the EAC is likely due to such seasonal eddy activity, in light of the mounting evidence of
increased eddy kinetic energy in this area during summer [4,6,47–49].

Upstream of ~29◦40′S (Figure 4d,e), however, our results reveal a different mecha-
nism, indicating that seasonal shift of the EAC’s path is the main driver of the EAC’s
seasonal shoreward intrusion, as previously alluded by Ridgway and Godfrey [3]. We
observed an insignificant difference (~l km) of the EAC width between summer and
winter (Section 4.2). In contrast, we observed a considerable shift of the EAC’s path (cen-
terline) which is on average ~8 km closer to the coast in summer than in winter (~154◦0′E,
Figure 4d,e). These results demonstrated that, upstream of ~29◦40′S, the EAC’s seasonal
shoreward intrusion is mainly due to the seasonal shift of the EAC’s path. Such seasonal
shift (i.e., onshore/offshore current transport across the f/H contours in summer/winter)
reflects the seasonal advection of potential vorticity (APV [50]) near the continental shelf at
~154◦0′E as demonstrated by Bhatt [51] using BRAN2.1 reanalysis data [52,53]. According
to Bhatt [51], the Joint Effect of Baroclinity and Relief (JEBAR [54,55]) contributes signif-
icantly to the seasonal APV in this area (~154◦0′E), where the role of wind stress curl is
significantly weaker.

4.2. Implications for Coastal Upwelling

The EAC is a major driving force of coastal upwelling along the eastern margin of
Australia, with the intensity of upwelling being proportional to the EAC’s proximity and
strength [11,12,29]. Figure 1a–c indicates an upwelling event occurred in the coastal area
where both water temperature (color scale: green; 19–20 ◦C) and TPI value (color scale:
green; negative) were significantly lower than that of the sea water further offshore. The
EAC can be significantly accelerated (enhanced southward advection) through either cross-
shelf encroachment into shallow waters or topographic acceleration where the flow path
narrows. This in turn causes an increase in bottom stress and an extension of the bottom
boundary layer (BBL) shut-down time. As a result, the prolonged Ekman pumping via the
BBL forms coastal upwelling [8,11,29,56]. This mechanism of current-driven upwelling
has been confirmed by recent observations from mooring arrays, ocean gliders and HF
radars [12,27,55,57].

Due to the EAC’s high-frequency shoreward intrusion [1,4,12], the EAC-driven coastal
water uplift actually occurs all year round off south-east Australia [12,14,27,28,30]. How-
ever, this “all-year-round” upwelling could also exhibit a seasonal cycle, as hinted by
previous studies (e.g., [28–30]). For example, Oke and Middleton found a greater occur-
rence of thermal fronts off the north NSW coast during spring and summer periods [29].
Rossi et al. also found that, between 25 and 32◦S, current-driven upwelling typically maxi-
mizes in summer or spring [30]. However, they attributed such seasonal upwelling simply
to the seasonal cycle of the EAC’s southward transport, which is strongest in summer and
weakest in winter [3]. More recently, Huang and Wang observed a similar seasonal pattern
of upwelling along the north coast of NSW using 14 years of MODIS SST data [28]. They
suggest that such seasonality is more likely current-forced than wind forced because of
the lack of strong and persistent northerly winds. In fact, the above findings have hinted
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at the role of the EAC in the seasonal coastal upwelling. In this study, through direct
measurement, we were able to provide robust evidence of the EAC’s seasonal intrusion
into the coastal water. Accordingly, we are confident to suggest that the intensified coastal
upwelling during summer is mainly due to the combined influence of increased shoreward
proximity and southward transport of the EAC.

4.3. Implications for Shelf Circulation

The EAC’s shoreward intrusion also drives circulations on the continental shelf [4,8,27].
On the shelf, the surface current varies linearly with the EAC’s shoreward proximity [4].
As there is mounting evidence showing that the EAC’s shoreward intrusion features high
frequency and a large amplitude [1,12], it is not surprising that the flow pattern on the shelf
exhibits very high variability [4].

However, the seasonal shoreward intrusion of the EAC, as identified in this study,
could also considerably change the shelf dynamics off northern NSW. In fact, Wood et al.
observed significant seasonality in the vertical shear of alongshore flow velocity, with large
vertical current shear occurring in summer but very small current sheer in winter [31]. They
attributed such seasonal current sheer simply to seasonal changes in temperature gradient
across the shelf (i.e., the thermal wind effect). They also excluded the role of winds as the
local wind pattern indeed prevents the formation of a steady seasonal shelf circulation.
Although the thermal wind theory has provided a convincing argument for the relatively
weak current shear in winter, the strong current sheer in summer was only partially
explained by the theory [31]. The EAC’s seasonal shoreward intrusion, as demonstrated
in our study, therefore provides a deeper understanding of the seasonal current sheer on
the shelf. In summer, as the EAC moves further shoreward, surface along-stream flow
is significantly intensified through the EAC’s downstream advection [4]. The enhanced
surface flow in turn contributes to a stronger vertical current sheer (circulation) on the
shelf. Accordingly, we suggest the seasonal shelf circulation indeed reflects a joint effect
of increased EAC shoreward intrusion and increased cross-shelf temperature gradient
(thermal wind effect) in summer [31].

4.4. Impacts of Climate Processes on the EAC Encroachment?

Climate processes such as El Niño/Southern Oscillation (ENSO) could play a role in
the interannual to decadal variability of the EAC’s current transport and east coast sea
level [58]. However, whether climate processes have an impact on the EAC’s spatiotem-
poral variability and the extent of the impact remains unresolved. From the time-series
EAC encroachment between 1992 and 2018 (Figure 2), we noted that the EAC’s shoreward
intrusion exhibits some interannual variability. However, we are not able to relate the
variability to external climate signals such as El Niño and La Niña. In fact, the main path-
way of the ENSO’s influence occurs through the Indonesian seas and around a waveguide
around the western and southern margins of Australia [59]. As such, a previous study
has shown that the EAC transport undergoes variations on interannual timescales, but the
ENSO’s signal is very weak in the observations [33]. However, excluding the influences of
the climate on the EAC intrusion requires more careful examinations. Indeed, detecting
climate signals from the EAC’s spatial variations is challenging, because the climate signals
could be overshadowed by the EAC’s high-frequency intrinsic fluctuations [1,4,18]. We
propose that long-term, sustained and systematic in situ and remotely sensed observations
with a high temporal resolution are crucial for future investigations over the influence of
climate processes on the dynamics and spatiotemporal variability of the EAC system.

5. Conclusions

For decades, identifying the low-frequency variability of the EAC was hindered by its
high-frequency intrinsic fluctuations. This study provides direct measurement (“area” and
“distance”) of the EAC’s shoreward intrusion using EAC maps generated from monthly
AVHRR SST images and with a robust TPI-based mapping technique. Subsequent spatial
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and temporal analyses on 26 years of intrusion measurements and EAC maps show that the
EAC’s shoreward intrusion undergoes a consistent and significant seasonal cycle, which is
associated with the EAC’s seasonal shift upstream and seasonal widening downstream. To
our knowledge, this is the first time that the seasonality of the EAC’s shoreward intrusion
has been quantified and analyzed. Importantly, our results have provided new insights
into the seasonal upwelling and shelf circulation previously observed in the study area. We
suggest that the EAC is the main driver of the seasonal ocean dynamics off northern NSW.

In summary, the key findings of this study are as follows:

• The EAC undertakes a seasonal shoreward intrusion of ~8 km upstream of 29◦40′S’;
• The EAC undertakes a seasonal widening of ~10 km downstream of 29◦40′S;
• The minimum EAC-to-coast distance usually occurs during summer, ranging from 15

to 25 km; and
• The maximum EAC-to-coast distance occurs during winter, ranging from 30 to 40 km.
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Abstract: An unusual eastward flow was observed branching out from the Kuroshio Current near the
island of Taiwan in the western North Pacific in during the period June–July 2010. The branch meandered
eastward approximately 21◦N, carrying high chlorophyll-a (Chla) waters for over
1000 km from 125◦E into the nutrient-poor North Pacific subtropical gyre (NPSG). The branch was
warmer and fresher than the surrounding waters, with temperature–salinity properties resembling those
of Kuroshio Current. Thus, we called it the eastward cross-shore Kuroshio branch (ECKB). Injecting
fresher waters far into the central NPSG, the ECKB flowed at a mean surface speed of 0.5 m per second,
as shown in satellite altimeters, a Lagrangian drifter, and the Japan-Meteorological-Agency (JMA)
137◦E-meridian cruise transect. The mechanism of the ECKB was linked to a surface cyclonic wind
anomaly to the north at approximately 22–24◦N. The cyclonic wind anomaly cooled the ocean surface
beneath it via Ekman suction and then enhanced the subtropical front to its south at approximately
21◦N near the Kuroshio Current. The strengthened subtropical front subsequently induced an
eastward flow that bifurcated from the main stream of the northward-flowing Kuroshio Current.

Keywords: Kuroshio branch; salinity; chlorophyll-a; North Pacific subtropical gyre; satellite observa-
tion; in situ observation

1. Introduction

In the subtropical North Pacific, surface ocean circulation is dominated by a wind-
driven, clockwise-circulating North Pacific Subtropical Gyre (NPSG). At the western bound-
ary of the NPSG, a fast-flowing western boundary current called the Kuroshio Current
(KC) [1] connects the North Pacific Current in the north and the North Equatorial Current
(NEC) in the south near the equator (Figure 1a). The KC, meaning “black stream” in
Japanese, obtained its name due to the black color or precisely the deep blue color of its
waters. The deep blue color of the KC is mostly due to a lack of phytoplankton as a result
of nutrient depletion especially in waters off the east of Taiwan [2].

Against the westward-flowing NEC, a slow surface countercurrent flows eastward
at speeds of approximately 2–10 cm s−1 [3–5]. This slow current is the North Pacific
Subtropical Countercurrent (STCC) (Figure 1a), which was first reported by Uda and
Hasunuma [6] from in situ observations. The STCC is strong in late winter to spring
(March–June) with a peak in June, however, it is weak in fall [7]. The STCC is much slower
than the KC, and its footprint cannot be clearly observed in the climatology geostrophic
flow in July (Figure 1b). Between the main stream of the northward-flowing KC and the
eastward-flowing STCC, the Kuroshio recirculation (KR; Figure 1a) generally occurs east of
the Taiwan Island during the interaction between the KC and the mesoscale eddies that
propagate from the east [4,8–12]. Based on computer simulations, Chu et al. [4] concluded
that the STCC originates from the east of the Luzon Strait at approximately 122.5◦E on the
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23.5-sigma isopycnal surface. The STCC generally emerges from the southeastward turning
of the KR, which centers at approximately 124◦E and 24◦N [4].

The mechanism for the changes of the STCC has been linked to changes in the sur-
face [5,13] and subsurface (below the mixed layer) [7] subtropical fronts. Over long-term
time scales (mean state and a decadal time scale from 1965 to 2008), the STCC was an-
chored and maintained by the subtropical mode water (STMW) [14–17], whereas for shorter
timescales (seasonal and interannual), the STCC strength was suggested to be determined
by the subtropical fronts, which were influenced by surface wind forcing rather than the
surface thermal condition [5,7,18]. In addition, a recent study by Zhang and Xue [19]
indicated that the width of the Luzon Strait might also play a key role in the formation of
the STCC.

Figure 1. (a) Schematic of the Kuroshio Current (KC) circulation system [1,8,20] superimposed on the
climatology 1/24◦-gridded chlorophyll-a (Chl-a; color shaded) in July from 1998 to 2020. The black
bold solid line with arrows shows the flow of the KC and its connection with the North Equatorial
Current (NEC). The white circles show the clockwise Kuroshio recirculation (KR) near Japan [1] and
Taiwan [8]. The white wave-pattern curve near 22◦N indicates the eastward-flowing Subtropical
Countercurrent (STCC) [6]. The black dashed curves show the large meandering (LM) of KC south of
Japan [1] and the loop of Kuroshio intrusion (KI) via the Luzon Strait (LS) into the South China Sea
(SCS) [21]. The meridional red bold line denotes the 137◦E transect. The red dots show the locations
of the Argo profiles used in this study. Black and magenta stars show the locations of background
water masses near the KC and the STCC, respectively; (b) climatology of 1/4◦-gridded geostrophic
flow in July from 1998 to 2020 with red arrows indicating positive zonal velocities and black arrows
indicating negative zonal velocities; (c) Aqua-MODIS Level 2 Chl-a image at 1 km spatial resolution
taken on 4 July 2010.

Near the Luzon Strait, the KC typically bifurcates with one branch to the west
(Figure 1a), intruding into the South China Sea (SCS) [21] during persistent northeasterlies
in boreal winter. With the KC intruding into the SCS, the KR can be induced east of the Lu-
zon Strait (Figure 1a) centering at approximately 123◦E−124◦E and 21◦N−22◦N [7], which
is a region with many active anticyclonic eddies [22]. In contrast, without the Kuroshio
intrusion (KI) in summer, the KR can be caused by the impinging of an anticyclonic eddy
with the KC eastern flank [8].

In this study, we reported a filament of high chlorophyll-a (Chl-a) (>0.07 mg m−3)
which occurred in the active area of KR [8] and anticyclonic eddies [22] in July 2010, which
can be observed via the Level 2 satellite image taken from the Moderate Resolution Imaging
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Spectroradiometer (MODIS) sensor onboard the Aqua satellite (Figure 1b) and in daily
images of the merged satellite ocean color product (Figure 2). Based on a suite of satellite
and in situ observations, we found that the high Chl-a filament delineated the footprint of
an unusual eastward flow (compared to the July climatology field in Figure 1b) branching
out from the KC. This study designated the unusual eastward flow as the eastward cross-
shore Kuroshio branch (ECKB) which could be observed in other years. In this study, we
solely focused on the potential mechanisms that contribute to the 2010 ECKB and its impact
on the oligotrophic NPSG.

Figure 2. The filament evolution shown as daily 1/24◦-gridded chlorophyll-a (Chl-a) anomalies
(color shaded) for the selected days (a) 29 May, (b) 7 June, (c) 24 June, (d) 4 July, (e) 11 July and
(f) 23 July 2010, in references to the 23 years (1998–2020) daily Chl-a climatological mean. The
arrows show the geostrophic velocity anomalies (black for positive zonal velocities and gray for
negative zonal velocities) based on the altimetry 1/4◦-gridded product. The high Chl-a anomalies
located along 21◦N within 125◦E and 135◦E show the footprint of the eastward cross-shore Kuroshio
branch (ECKB).

2. Data and Methods

As cloud-cover is a major issue in the study region, especially in summer (June and
July), we used the daily Level 4 or “cloud-free” (interpolated) Copernicus-GlobColour Chl-a
data, available since 1997, at 1/24◦ spatial resolution (https://doi.org/10.48670/moi-00100,
accessed on 12 August 2020). The Chl-a data were produced by merging Chl-a from
multiple ocean color sensors namely the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS),
MODIS, Medium Resolution Imaging Spectrometer (MERIS), Visible Infrared Imaging
Radiometer Suite (VIIRS), and Ocean and Land Colour Instrument (OLCI). The “cloud-free”
Chl-a data were calculated based on a combination of algorithms for different water types
(oligotrophic, Chl-a dominated, and coastal turbid) and an optimal interpolation using the
kriging method with regional anisotropic covariance models [23]. To ensure that the Level
4 Copernicus-GlobColour Chl-a was capturing real ocean color signals and not artifacts
from interpolation, we cross-checked the Level 4 data with Level 2 Chl-a data (as shown
in Figure 1c) obtained from NASA’s Oceancolor Web (https://doi.org/10.5067/AQUA/
MODIS/L2/OC/2018, accessed on 3 February 2022).

We used the altimeter ADT data at 1/4◦ spatial resolution from the Global Ocean
Gridded Level 4 Sea Surface Heights and Derived Variables Reprocessed product (https:
//doi.org/10.48670/moi-00148, accessed on 9 July 2019), which provides the absolute
geostrophic velocities and geostrophic velocity anomalies. The SST data were obtained
from the OSTIA [24] global SST reprocessed product (https://doi.org/10.48670/moi-00168,
accessed on 18 December 2021) that provides gap-free maps of foundation SST and ice
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concentration at 0.05◦ spatial resolution, based on satellite and in situ data. For winds, we
used the monthly Cross-Calibrated Multi-Platform (CCMP) gridded 10 m winds available
from July 1987 to April 2019, based on satellite, moored buoy, and model data, made
available at 1/4◦ spatial resolution by the Remote Sensing Systems (RSS) at www.remss.com
(accessed on 1 October 2020).

For in situ observations, we used data obtained from a Lagrangian surface drifter,
Argo floats, and scientific cruises. These in situ observations were selected based on their
locations that were along/near to the Chl-a filament from May to July 2010. The Argo
ocean vertical profiles and the drifter-trajectory data were collected and made available by
the Coriolis project and programs that contribute to the French operational oceanography
program for in situ observations (http://www.coriolis.eu.org, accessed on 21 May 2020).
Drifter and Argo floats were identified with their World Meteorological Organisation
(WMO) numbers. The particular drifter and Argo floats were called with their WMO
number hereafter. We only used those data of temperature and salinity with good-flagged
quality from 361 Argo profiles (their locations are shown in Figure 1a). The surface current
data of the drifter were used from May to June 2010 (only available until 24 June 2010), to
compare with the satellite observations.

Additional in situ temperature and salinity profiles were obtained from the CTD
casts measured by the Japan Meteorological Agency (JMA) along the 137◦E meridional
cruise transect (hereafter referred to as the 137◦E transect), which was across the Chl-a
filament during the period 14–16 July 2010. The JMA repeatedly carried out oceano-
graphic and marine meteorological observations through research vessels in the west-
ern North Pacific. The data can be obtained from the web pages at https://www.data.
jma.go.jp/gmd/kaiyou/db/vessel_obs/data-report/html/index_e.html (accessed on 25
November 2016) [25].

We used historical ocean profiles along and around the ECKB, obtained via Argo floats
and the 137◦E transect (Figure 1a), to observe the relative changes in water-mass properties.
The observed ocean profiles were compared to the climatological field in the region of KC
and NPSG (black and purple stars, respectively, in Figure 1a). In addition, observations
from three Argo floats along the high Chl-a filament were used to detect fresher waters
transported by the ECKB. From west to east along the ECKB, the WMO numbers of these
three Argo floats were WMO 5901521, 5901512, and 2901588. The drifter WMO 22527 was
carried along the ECKB from May to June 2010.

To study the wind forcing that drives the ECKB, we estimated the surface wind stress
(τx, τy) using:

τx = ρa × Cd × spdw × uw (1)

τy = ρa × Cd × spdw × vw (2)

103Cd =
2.7

spdw
+ 0.142 + 0.0764 × spdw (3)

where the air density ρa = 1.2 kg m−3, spdw is the wind speed, uw is the zonal wind veloc-
ity, vw is the meridional wind velocity, and Cd is the drag coefficient that was computed
by following Large and Pond [26]. Then, we followed the work by Qiu and Chen [5]
to calculate the meridional Ekman velocity (vEk) averaged in the surface layer using
vEk = −τx/(ρ0 f H0) where ρ0 is the reference density, f is the Coriolis parameter, and
H0 (=150 m, by following [5]) is the thickness of the surface STCC layer, where the changes
of STCC flow are largely confined [5]. Furthermore, we studied the ocean profiles obtained
from the CTD casts by calculating the potential vorticity (PV) by ignoring the relative
vorticity using:

PV =
f

ρ0

∂ρ

∂z
(4)

where ρ is the ocean potential density, z is the depth (positive downward), ρ0 is the mean
ocean potential density between each depth, and f is the Coriolis parameter.
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3. Results

3.1. Advection of Chl-a by Ocean Flow along 21◦N

Figure 2 shows the selected daily anomalies of Chl-a referring to the daily climatology
from 1998 to 2020. The Chl-a filament meandered at approximately 21◦N and extended
zonally by approximately 1100 km within 125◦E and 135◦E from 29 May to 23 July 2010. The
daily anomalies of Chl-a concentrations are two times higher than the daily climatological
mean along the Chl-a filament, displaying how large the anomalies of Chl-a concentration
along the filament. To show Chl-a advection by ocean currents, Figure 2 also shows
the geostrophic velocity anomalies during the same periods. The altimetry-obtained
geostrophic flow matched with the high Chl-a filament, suggesting the Chl-a advection by
the eastward-flowing ECKB, which can be seen along 21◦N from every daily map shown
in Figure 2.

On a monthly timescale, Figure 3 shows the monthly pattern of the Chl-a filament in
June and July 2010. The meandering elongation of the Chl-a filament can still be clearly
observed in the monthly averaged Chl-a distribution. In Figure 3a, the Chl-a filament
starts from an anticyclonic eddy with a high Chl-a around the eddy edge [9] east of the
Luzon Strait, matching the surface geostrophic flow obtained from the satellite and drifter
observations in June. In Figure 3b, high Chl-a can be observed within the eastward-flowing
ECKB, approximately within 125◦E and 135◦E in July. Note that these monthly patterns of
high Chl-a filament and geostrophic flow are rarely observed east of the Luzon Strait in the
July climatological field (Figure 1a,b).

Figure 3. The monthly maps of 1/24◦-gridded chlorophyll-a (Chl-a) concentrations (color shaded)
and 1/4◦-gridded absolute geostrophic velocities (arrows) in (a) June and (b) July 2010. The square
symbols in blue, red, and black show the locations of Argo 5901521, 5901512, and 2901588, respectively,
from west to east roughly along the high Chl-a filament. The gray curve in (a) shows the trajectory of
drifter 22527 in May and June. The high Chl-a filament located along 21◦N within 125◦E and 135◦E
shows the footprint of the eastward cross-shore Kuroshio branch (ECKB). The dates (month/days)
given in same colors point to the corresponding locations of the drifter and Argo floats.

In Figure 4, the eastward-flowing ECKB is represented by the trajectory of the drifter.
The near-surface drifter flowed along the west–east band with large meridional gradients of
ADT (Figure 4), where the eastward geostrophic flow was strong (Figure 3) at approximately
21◦N. The consistency of altimetry and drifter observations show that the ocean currents
along the high Chl-a filament were mainly determined by the geostrophic flow. The drifter
moved northward between the KC and an anticyclonic eddy or KR in the east at the
beginning of May (Figure 4a). Then, it turned southeastward when approaching 22◦N,
circling an anticyclonic eddy that was centered at approximately 123.4◦E and 20.4◦N until
the end of May (Figure 4a). In June, the drifter moved further eastward, flowing along the
curvature pattern of ADT contours (Figure 4b). Based on the drifter trajectory from May to
June, the drifter was carried by the ECKB, which was the Kuroshio bifurcation to the east
at approximately 22◦N (Figure 4c).
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Figure 4. Spatial distribution of satellite-obtained absolute dynamic topography (ADT) averaged in
(a) May, (b) June, and (c) from May to June (contours, units in m), in 2010, based on the altimetry
1/4◦-gridded product. The black curve in (a,b) shows the trajectory of drifter 22527 in the relative
month. The colored curve in (c) shows the drifter-measured current speed along the trajectory.
(d) Hovmöller diagram of zonal geostrophic-current velocity averaged within 125◦ and 135◦E, with
the zero values of zonal geostrophic velocity shown by the thin contours.

The drifter speed can exceed 1 m s−1 along the ECKB (Figure 4c). Averaged within
125◦ and 135◦E based on the satellite observation, the ECKB has a zonal speed reaching
0.5 m s−1, which was close to the drifter speed at approximately 0.6 m s−1 averaged
in the same region. According to the Hovmöller diagram of zonal geostrophic-current
velocity shown in Figure 4d, the ECKB began in April, peaked in June and became weaker
at the end of July, within 20◦N and 22◦N. Such a strong eastward flow can transport
waters from the western boundary into the high-salinity NPSG where ocean currents are
generally weak [27]. Moreover, the seasonal variability of the ECKB in 2010 was found to be
similar to that of STCC, which is strong from late winter to spring (March–June), and weak
in fall [7].

3.2. Injection of Fresher Waters by Ocean Flow along 21◦N into the High-Salinity NPSG

A recent study by Yan et al. [28] showed that waters were getting fresher near the
Luzon Strait in the NPSG. The horizontal advection of low-salinity anomalies associated
with the KC system was found to be the main mechanism of the observed freshening.

From the time series of salinity and temperature profiles obtained from the three Argo
floats along the ECKB from May to July (Figure 5a–c), fresher waters with low salinity
below 34.6 ppt can be found above the mixed-layer depth (MLD) at approximately 50 m.
Figure 5a–c show the minimum salinity near the surface detected in June and July via the
Argo floats, implying fresher waters being transported further to the east of 130◦E into the
high-salinity region of NPSG, by the ECKB. Moreover, Figure 5a–c show that the MLDs
were shallower than 50 m (reaching 25 m) and no MLD deepening could be found via
the Argo floats along the Chl-a filament. Thus, this MLD analysis suggests that the Chl-a
filament was mainly the result of advection by the ECKB, instead of local upwelling.
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Figure 5. (a–c) Time series of salinity (color shaded) and temperature (contours) profiles correspond-
ing to three selected Argo floats with the WMO numbers of 5901521, 5901512, and 2901588, from
May to July 2010. The locations of these three Argo floats are marked in Figure 3. (d–f) Temperature–
salinity (TS) diagrams corresponding to the profiles of three selected Argo floats shown in (a–c),
respectively. Colors show the time in the calendar month. The magenta triangles in (f) show the TS
properties obtained from the CTD casts near 137◦E and 23◦N in July 2010. Black and gray curves
with circles show the background TS properties averaged in June and July, located at the black and
magenta star, respectively, shown in Figure 1a. Note: Not all data points are shown in the figures for
better clarity, but the scientific results are not affected by the unshown data points.

According to the temperature–salinity (TS) diagrams shown in Figure 5d–f, the
Kuroshio water masses, which are fresher than those in the NPSG, can be detected along
the ECKB. In Figure 5d, waters with salinity lower than 34.5 ppt could be found via the
profiles of Argo 5901251 near 126◦E (Figure 3a) during mid-June. In Figure 5e, low salin-
ity waters could also be found to the east via the profiles of Argo 5901512 near 130◦E
(Figure 3b) during mid-July. The TS diagrams with lower salinity were similar to that of the
KC background (see the black star in Figure 1a for the location) displayed by the black cir-
cled curves within 20–30 ◦C in Figure 5e,f, observed by Argo 5901512 and Argo 2901588 in
July and June, respectively. Moreover, the fresher Kuroshio waters could be detected further
to the east at 137◦E (Figure 5f), as observed from the CTD measurements near 23◦N along
the 137◦E transect. These TS properties show that the fresher Kuroshio waters were detected
along the Chl-a filament, suggesting the injection of fresh and high-Chl-a-concentration
waters by the ECKB into the high-salinity and nutrient-poor NPSG.

In Figure 6a,b, the ECKB was warmer and fresher above 50 m near 23◦N than its
surroundings, based on the CTD profiles along the 137◦E transect. The temperature vertical
structures concaved downward at the main axis of the ECKB, separating colder, denser
waters north of 26◦N and warmer, lighter waters south of 20◦N (Figure 6a,c) above 200 m.
In Figure 6c, the ECKB can be seen above the southern boundary of low PV waters, which
might be the STMW [4] where its boundary is defined by the PV value at 2.5 × 10−10 s−2 [29].
The zonal geostrophic speed of the ECKB reached 0.5 m s−1 at the surface (Figure 6d), by
assuming zero velocity at 1000 m. This zonal geostrophic speed estimated from the CTD
casts was consistent with that obtained from the drifter and satellite observations west
of 135◦E.
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Figure 6. Profiles of (a) temperature, (b) salinity, (c) potential density, and (d) zonal geostrophic
velocity, measured along the 137◦E transect in July 2010. In (a–c), bold gray contours show the contour
of temperature and salinity at 26 ◦C, 34.6 ppt, and 25 kg m−3, respectively. Black thin contours show
the July climatological field in (a,b), low potential vorticity at 1.5 × 10−10 s−2 and 2.5 × 10−10 s−2

in (c), and zonal geostrophic velocity at 0.2 m s−1 in (d). The purple triangles near the surface at
approximately 23◦N in all figures indicate the location of the CTD station, which corresponds to the
purple triangles in the temperature-salinity diagram shown in Figure 5f. Gray dots in (a–c) show the
location of CTD stations and depth resolution.

Warmer temperature (Figure 6a) and zonal geostrophic velocities (Figure 6d) near 23◦N
show the ECKB depth approaching 200 m. The main axis of the ECKB was approximately
located at 23◦N with a meridional width of approximately 50 km. The ECKB axis observed
via the CTD measurements (Figure 6) matched the location of the high Chl-a filament and
fast eastward geostrophic flow (Figures 2 and 3). The consistency of the ECKB information
from different observations shows the existence of ECKB, which has not been previously
reported. Figure 7 further shows the surface warming around the region of the high Chl-a
filament in July 2010 (compared to the July climatology field from 1998 to 2020), and the
daily coincidence of surface warming (>30 ◦C) with the high Chl-a filament on 12 July
2010. No signature of colder water upwelled from below could be observed in the upper
mixed layer down to ~50 m (Figure 5a–c), suggesting that local upwelling in the ocean-front
region is not the main mechanism causing the high Chl-a filament.
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Figure 7. Spatial distribution of (a) monthly SST anomalies in July 2010 referring to the month
climatology from 1998 to 2020, and (b) daily SST on 12 July 2010, based on the OISST product gridded
at 0.05◦. Thin curve in (a) show the zero contour of SST anomalies. Bold curve in (b) shows the Chl-a
contour at 0.07 mg m−3, representing the high Chl-a filament.

3.3. Mechanisms Driving the ECKB

In Figure 6a, the tilting of background isotherms can be observed at the subsur-
face below 50 m along the 137◦E transect. The eastward flow would be induced un-
der such conditions with isotherm tilting upward to the north, according to the thermal
wind balance:

f
∂Ug

∂z
= −αg

∂T
∂y

(5)

where T is the ocean temperature, g is the gravity, and α is the thermal expansion coefficient.
A negative value of ∂T/∂y indicates an enhanced isotherm tilting. Thus, the stronger the
subtropical front (larger

∣∣∣ ∂T
∂y

∣∣∣), the faster the eastward flow near the surface is. The isotherm
tilting is related to the subtropical front that was accompanied by colder waters in the north
and warmer waters in the south.

Figure 8 shows the TS properties of different water masses separated by the subtropical
front as observed via all available good-quality Argo floats in the research area from May
to July 2010. Waters north of the front were fresher (Figure 8) than those in the south in
May and June 2010. This comparison shows that the subtropical front was formed between
two different water masses, which might be converged by the Ekman transport from the
north and the south.

Figure 8. Temperature–salinity (TS) diagrams in (a) May, (b) June, and (c) July, obtained from the
Argo floats with their locations shown in Figure 1b. Blue and red dots show the TS properties
corresponding to the absolute dynamic topography (ADT) smaller and larger than 1.45 m (north and
south of subtropical front), respectively. Black contours show the potential density.

Based on the satellite observations, the subtropical front variation could be observed
in the spatial distribution of SST and meridional SST gradients (Figure 9) from May to July
2010. Figure 9a,b show large meridional SST gradients (negative signs) along the ECKB
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within 125◦E and 135◦E from May to June, representing the subtropical front. However,
meridional SST gradients became smaller, and the SST distribution was more homoge-
neous in July than in the previous months (Figure 9c), showing the weakening of the
subtropical front.

Figure 9. Spatial distribution of meridional SST gradient (color shaded) and SST (contours, units in
◦C) during (a) May, (b) June, and (c) July 2010, based on the OISST product gridded at 0.05◦.

Overall, the subtropical front was represented by large meridional SST gradients that
tilt slightly at a southwest–northeast orientation within 20◦N and 25◦N, consistent with
the northernmost subtropical front reported by Kobashi et al. [15], who focused on the
long-term mean of three subtropical fronts in the NPSG. Large meridional SST gradients
could also be observed near the KC east of the Luzon Strait in May and June (Figure 9a,b),
which have rarely been reported in previous studies. This implies that the elongation of
the subtropical front can reach the western boundary in the North Pacific on time scales
shorter than a season.

Qiu and Chen [5] found that meridional Ekman convergence (∂vEk/∂y < 0) mainly
contributed to the strengthening of the subtropical front that enhanced the eastward-
flowing STCC to produce more eddies via baroclinic instability on interannual time scales,
according to the Ekman convergence, forcing:

∂G
∂t

≈ − ∂

∂y
(vEkG) (6)

where G is defined as meridional SST gradients (−∂T/∂y) and vEk is the meridional Ekman
velocity. However, Kobashi and Xie [7] found that the Ekman suction enhanced by the
strong cyclonic wind anomaly elevates the thermocline, decreases SST, and then induces
the SST front, accelerating the STCC from late winter to spring (March–June) on interannual
time scales.

To confirm the mechanisms enhancing the subtropical front near the KC, we estimated
the −∂(vEkG)/∂y term [5] and wind stress curl anomaly [7], averaged within 125–135◦E
and 20–23◦N, from May to July 2010. Figure 10 shows the latitude–time changes of the
relative forcing on the subtropical front. Positive wind stress curl and positive wind–stress–
curl anomalies were formed north of 21◦N from April to June 2010 (Figure 10a,b). The
Ekman suction and divergence (∂vEk/∂y > 0) would occur beneath the cyclonic wind
stress within 21–24◦N according to the Ekman theory. Then, SST decreased and the SST
anomalies reached −1 ◦C (Figure 10d) below the cyclonic wind stress anomaly, enhancing
the subtropical front (Figure 10c) in the south and thus accelerating the ECKB via thermal
wind balance [7]. On the other hand, the −∂(vEkG)/∂y term has negative values ranging
from −0.2 × 10−14 to −2 × 10−14 ◦C m−1 s−1 from May to June 2010, averaged within
125–135◦E and 20–24◦N (the area with negative meridional SST gradients, i.e., strong SST
front). The negative −∂(vEkG)/∂y term shows that the enhancing of the subtropical front
was not attributed to the Ekman convergence forcing during the occurrence of the ECKB.
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Figure 10. Hovmöller diagram of (a) surface wind stress curl, (b) surface wind stress curl anomalies,
(c) meridional gradient of SST, and (d) SST anomalies, calculated from the monthly meridional
profiles zonally averaged within 125◦ and 135◦E, based on the CCMP wind and OISST data gridded
at 1/4◦ and 0.05◦ resolution, respectively. Thin solid curves show zero contours. Dashed curves show
the contour of zonal geostrophic-current velocity at 0.2 m s−1. The monthly anomalies are herein
referred to the monthly climatological fields from 1998 to 2018 due to the available CCMP wind data.

4. Discussion and Summary

This study reports an unusual eastward flow that injected fresher and high-Chl-a-
concentration waters into the high-salinity, nutrient-poor NPSG during June and July 2010.
The eastward flow was inferred to be the eastward cross-shore Kuroshio branch (ECKB)
that sequentially (1) circled an anticyclonic eddy accompanied by high-Chl-a concentrations
around the eddy edge; (2) meanderingly flowed eastward with a high Chl-a by following
the thermal wind relation; and (3) injected the high-salinity NPSG with fresh waters in
which TS properties were similar to those from the KC.

Observed via the satellite ocean-color images, the ECKB appeared as a filament of
high-Chl-a concentrations, which were significantly higher than the climatological mean.
A drifter trajectory showed that the KC bifurcated near 22◦N to the east in May, and
flowed eastward with a meandering pattern that matched with the spatial distribution
of geostrophic flow and high-Chl-a concentrations in June and July 2010. Our analysis
showed that the eastward flow transported the waters with the TS properties similar to
those of the KC; thus, we called it the ECKB.

The ECKB carried warmer and fresher waters eastward into the NPSG. The mean
geostrophic/Lagrangian speed of the ECKB was approximately 0.5 m s−1, estimated via
satellite altimeters, a drifter, and the JMA’s 137◦E transect. Based on the geostrophic speed
at 0.2 m s−1, the ECKB depth approached 200 m, just above the southern boundary of
low PV waters (probably the low-PV STMW). The ECKB mechanism was found to be
the same as that of the STCC, attributing to a cyclonic wind anomaly to the north at
approximately 22–24◦N. The cyclonic wind anomaly decreased SST beneath it via Ekman
suction and then enhanced the SST front to its south at approximately 21◦N. The enhanced
SST front subsequently induced the ECKB that was bifurcated from the main stream of the
northward-flowing KC.

The injection of warm, fresh, and high-Chl-a-concentration waters into oligotrophic
gyres by the ECKB is important to the NPSG ecosystem but it is a largely unexplored issue.
Thus, the findings from this study show that the nutrient-poor NPSG can benefit from the
KC bifurcation in terms of injection of high-Chl-a-concentration waters, which could poten-
tially influence the marine food webs in the NPSG. However, more in situ observations, are
needed, especially on biogeochemical variables, if we are to better understand the impacts
of high-Chl-a-concentration waters on higher trophic levels in the nutrient-poor NPSG.
Additionally, this study tried to raise the attention of the oceanographic community that the
ECKB could be found in other years, and that studying the ECKB interannual variability is
important to further understand the connection between the northward-flowing KC and
the eastward-flowing STCC.
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Abstract: Multiple remote sensing datasets, combined with in-situ drifter observations, were used
to analyze the Kuroshio intrusion through the Luzon Strait (LS). The results showed that a strong
Kuroshio Current Loop (KCL) and accompanying anticyclonic eddy (ACE) existed in winter 2020–
2021. As quantitatively demonstrated by the Double Index (DI), the Kuroshio Warm Eddy Index
(KWI) had low values during a long sustained period compared to those in all other years in the
available historical records. Remarkable kinematic properties (i.e., amplitude, diameter, propagated
distance, lifespan and propagating speed) of the accompanying ACE were extracted by automatic
eddy detection algorithms, showing that the ACE had a maximum diameter of 381 km and a peak
amplitude of 50 cm, which significantly exceeded the previous statistics in winter. The orographic
negative wind stress curl southwest of Taiwan Island and the westward Ekman transport through
the LS during the winter half year of 2020–2021 both had large values beyond their historical maxima.
Hence wind forcing is regarded as the primary forcing mechanism during this event. Alternating
cyclonic eddies (CEs) and ACEs approaching on the east of the LS were identified, indicating that the
interaction between the Kuroshio and the impinging CEs at proper locations made extra contributions
to enhancing the KCL. The accompanying ACE had a distinctive feature of a cold-core structure at the
surface layer, so as to be categorized as a cold core ACE (CC-ACE), and the temperature difference
between the cold core and outer warm ring was maintained for three months. The generation and
long duration of the CC-ACE may be due to the sustaining entrainment supported by the warm
water from Kuroshio intrusion and the Northwest Luzon Coastal Current (NWLCC) successively.

Keywords: Kuroshio intrusion; Kuroshio Current Loop; cold-core anticyclonic eddy

1. Introduction

The Luzon Strait (LS; Figure 1) is a primary channel for the mass and energy exchange
between the Western Pacific (WP) and the South China Sea (SCS). The Kuroshio intrusion
from the WP, with warm and high-salinity water, has a significant influence on the circula-
tion and stratification of the SCS [1,2]. The seasonal variability shows a stronger intrusion
in winter than in summer [3], and the surface water can reach the interior SCS especially in
winter [4].
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Figure 1. Topography (filled contours) in the LS and its surrounding area. The rectangle of BOX1 is the integral areas for the
DI. Colored lines are the trajectories of the eight drifters deployed in December 2020. The SCSBK, KCL and NWLCC are
denoted as black solid arrow, dashed arrow and dotted arrow, respectively.

The Kuroshio intrusion is reported to have different spatial patterns. Qiu et al. [5]
illustrated the SCS Branch of Kuroshio (SCSBK) as a west-flowing current with relatively
high speed and steady direction on the continental slope in the northern SCS. Li and Wu [6]
suggested that the Kuroshio often intrudes into the SCS by forming an anticyclonic loop
and raised the concept of the Kuroshio Current Loop (KCL). Caruso et al. [7] depicted five
different types of Kuroshio intrusion paths into the SCS, including a small anticyclonic
bend, the SCSBK, the KCL, a detached anticyclonic eddy (ACE), and a cyclonic loop.

To quantitatively identify different paths of the Kuroshio intrusion, the Kuroshio
SCS Index (KSI) was developed by Nan et al. [8]. Their results showed that the Kuroshio
bending and the net inflow through the LS decrease from the looping path to the leaking
path, and then to the leaping path. More recently, the Double Index (DI), which consists
of the Kuroshio Warm Eddy Index (KWI) and the Kuroshio Cold Eddy Index (KCI), was
proposed by Huang et al. [9], to identify the spatial patterns of the Kuroshio Warm Eddy
Path (KWEP) and the Kuroshio Cold Eddy Path (KCEP), respectively. This DI can overcome
the cancelling problem between the positive and negative geostrophic vorticities, so as to
reduce the missing and misjudged Kuroshio path events.

The ACE accompanied by or shed from the KCL has also been extensively studied.
The eddy kinetic energy (EKE) by satellite altimeter indicated that the region southwest
of Taiwan Island has a high probability of eddy occurrences [10,11]. In-situ hydrographic
observations have revealed that the ACE could be originated from the Kuroshio [12,13].
Systematic censuses on the ACE [11,14–17] have been made by means of automatic eddy
detection algorithms, to extract the ACE’s features including location, diameter, amplitude,
lifespan, propagation speed and distance. The statistics showed that more ACE shedding
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occurs in winter than in other seasons, and most of the shed ACEs propagate to the west
with speeds similar to the first-mode baroclinic Rossby wave.

Mechanisms for the occurrence of the KCL and ACE and their properties (location,
amplitude, sustaining period, etc.) still remain debatable. Metzger and Hurlburt [18]
showed the nondeterministic nature of eddy shedding from the KCL, and no significant
correlation could be found between the yearly Kuroshio intrusion and the oceanic and
atmospheric environments. Yuan et al. [19] suggested that the anticyclonic intrusion of
the Kuroshio is a transient phenomenon rather than a persistent circulation pattern. As
a western boundary current flowing by the gap of the LS, multiple steady states of the
Kuroshio and nonlinear hysteresis of the intrusion have also been demonstrated [20,21].

Wind stress (WS) and wind stress curl (WSC) are regarded as important mechanisms
to generate meso-scale eddies in the SCS [22,23]. Wang et al. [24] suggested that the
orographic wind jets during the wintertime monsoon and the gaps in the mountainous
island chain along the eastern boundary of the SCS can spin up cyclonic eddies (CEs) and
ACEs, and the region southwest of Taiwan is one of the regions with the coexistence of
negative WSC and ACE occurrences. Jia et al. [15] demonstrated the linkage between ACE
shedding and the wintertime monsoon, indicating the ACE shedding occurs within one
month after the integrated Ekman transport through the LS exceeds the volume roughly
corresponding to a mesoscale eddy. Wu et al. [25] concluded that the northwestward
Ekman drift, due to northeasterly wind in winter, intensifies the Kuroshio intrusion into the
SCS, and the WSC off southwest Taiwan is chiefly responsible for the Kuroshio intrusion.

Satellite observations have shown the abundance of generally westward-propagating
eddies in the subtropical regions in the WP, and their effects on the Kuroshio and the
SCS have received substantial attention [26–28]. Nonlinear Rossby eddies have been
evidenced to penetrate through the LS into the SCS by cruise observation [29] and altimeter
data [30], but the penetration has to take the form of coupling with the Kuroshio, instead
of freely westward propagation. The approaching CEs and ACEs may reduce or enhance
the Kuroshio transport [26,27], or lead to convergence and divergence upstream and
downstream [31]. These effects further change the Kuroshio intrusion pathway in the LS.
However, the correlation between the Kuroshio intrusion path and eddy activities in the
WP is not statistically significant [32], and strong impinging eddies do not always have
strong effects on the Kuroshio looping path [33].

ACE (CE) is usually associated with a warm (cold) core caused by eddy-induced
convergence (divergence) motion. However, there are also some abnormal ACEs (CEs)
with surface cold (warm) cores in the global ocean, hereby named cold-core ACEs (warm-
core CEs). The surface cold (warm) core does not change the dynamic nature of the
anticyclonic (cyclonic) spinning of the ACE (CE), because the spinning is mostly supported
by the stratification at the subsurface layer. Such abnormal eddies are observed in different
regions in the Pacific, and the Kuroshio Extension region is the most active area for cold-core
ACEs (CC-ACEs) and warm-core CEs (WC-CEs) [34–36]. However, the ACEs shed from
the KCL have rarely been reported to have a cold-core structure in previous studies. As
summarized by Sun et al. [36], two possible mechanisms for generating the abnormal eddies
are: (1) instability during the decay stage and (2) eddy-eddy interaction and horizontal
entrainment. An alternative mechanism is the local generation by eddy–wind interaction
as demonstrated by McGillicuddy [37].

The present paper provides a case study on a strong Kuroshio intrusion and its
accompanying CC-ACE in winter 2020–2021. By a batch of surface drifters deployed
in the LS, we captured notable surface intrusion of Kuroshio into the SCS, as well as a
cold-core structure of the accompanying ACE. We used multiple remote sensing data to
analyze the strong amplitude and other distinctive features of this event. The occurrence
of strong KCL and ACE in winter 2020–2021 further demonstrated the energetic inter-
annual variability of the Kuroshio intrusion, and we took this opportunity to verify the
mechanisms responsible for these events, including the wind forcing and mesoscale eddy
activities mentioned above.
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2. Materials and Methods

Multiple remote sensing datasets were used in the present study, including sea surface
height (SSH), sea surface temperature (SST) and sea surface wind (SSW), with the available
time span from 1993 to 2021. Reprocessed datasets were preferably selected for better
quality, while near real-time ones were used as alternative for the most recent months.

The level-4 product of daily global gridded SSH is processed by the DUACS multi-
mission altimeter data processing system, incorporating data sources from all altimeter
missions: Jason-3, Sentinel-3A, HY-2A, Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, T/P,
ENVISAT, GFO and ERS1/2. The SSH maps are presented in the forms of both sea level
anomaly (SLA) and absolute dynamic topography (ADT), with a spatial resolution of
0.25◦ × 0.25◦. The geostrophic currents derived from ADT are also provided.

The SST data used here were the Foundation SST by the Operational Sea Surface
Temperature and Ice Analysis (OSTIA) system [38]. In-situ and satellite observations from
both infrared and microwave radiometers were combined to produce the daily maps of the
SST for the global ocean, with a high resolution of 0.05◦ (approximately 6 km).

For SSW data, the IFREMER CERSAT Global Blended Mean Wind Fields include wind
components (meridional and zonal), wind module, WS, and WSC. The wind fields are
six-hourly with a 0.25◦ × 0.25◦ spatial resolution over global oceans.

During a cruise expedition through the LS en-route to the WP in December 2020, we
deployed a batch of self-developed satellite-tracked surface drifters, named Surface Current
Experiment (SUCE) drifters. These drifters were of identical design and configuration as
the standard Global Drifter Program (GDP) drifters [39], with a surface floating sphere
and a holey-sock drogue. Horizontal surface current velocities were derived based on the
drifter trajectories, and SST samplings were acquired based on the integrated temperature
sensor. In this study, we used observation data of eight drifters (Table 1) in the LS and
surrounding area. The data records were reprocessed to a sampling interval of 1 h, in
accordance with the data quality control procedures of GDP [40].

Table 1. SUCE drifters deployed in the LS in December 2020.

Drifter No. Deployment Date Deployment Longitude Deployment Latitude End Date 1

1485503 24 December 2020 120.0◦E 21.8◦N 30 January 2021
1485504 24 December 2020 120.5◦E 21.3◦N 31 March 2021
1485505 26 December 2020 121.0◦E 21.3◦N 15 February 2021
1485506 26 December 2020 121.5◦E 21.3◦N 30 January 2021
1485508 26 December 2020 122.0◦E 21.3◦N 30 January 2021
1485513 26 December 2020 122.5◦E 21.3◦N 31 March 2021
1485518 26 December 2020 123.0◦E 21.3◦N 30 January 2021
1485593 26 December 2020 123.5◦E 21.3◦N 8 January 2021

1 End date of data used in Figure 1.

3. Results

3.1. DI Performance

According to Huang et al. [9], the DI is calculated by Equations (1) and (2), as the
integral of positive part and negative part of the surface geostrophic vorticity in the area of
119◦E–121◦E and 20◦N–22◦N (BOX1 in Figure 1), respectively:
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where u and v are the zonal and meridional components of the geostrophic currents derived
from ADT, A is the integral area, and sign(x) is the sign function defined as follows:

sign(x) =
{

1, x ≥ 0
0, x < 0

(3)

The time-series of the daily KCI and KWI from 1993 to 2021 are shown in Figure 2.
The winter 2020–2021 had a very strong KWEP event (KWI going lower than its standard
deviation from its mean). During a typical KWEP, the main Kuroshio enters the SCS in the
middle part and outflows in the northern part of the LS in an anticyclonic pattern with a
warm eddy southwest of Taiwan Island [9]. From the whole 28-year time series, we choose
nine strong KWEP events which met the criterion of having sustained periods longer
than 40 consecutive days, and listed in Table 2 are their main features including sustained
period, minimum KWI value and integral KWI value. Although the 2020–2021 event had
a minimum KWI value of −4.38 × 105 m2/s, slightly weaker than that of the 1996–1997
event, the sustained period (as long as 90 days) and integral value (–316.0 × 105 m2/s· day)
both significantly exceeded all other events. Such KWI performance indicated a remarkable
KCL in the LS, as well as a prolonged ACE southwest of Taiwan Island. The detailed
evolution of the DI in winter 2020–2021 will be discussed in the following sections.

Figure 2. Time series of daily KCI and KWI from 1993 to 2021. The ticks on the time axis stand for the beginning of the year
denoted by corresponding labels. Horizontal dash lines stand for the mean value (μ) and standard deviation span (μ± σ )
of the two indices. KCI values larger than μ+ σ are shaded in blue, and KWI values less than μ− σ are shaded in red. Nine
strong KWEP events are numbered from 1 to 9, and their time spans are shaded in green.

Table 2. Strong KWEP events from 1993 to 2021 and their characteristics.

Event No. Start Date End Date Period (day) Minimum KWI 1 Integral KWI 2

1 2 November 1994 10 January 1995 69 −3.82 −212.6
2 22 February 1996 4 May 1996 72 −4.43 −230.8
3 30 October 1996 8 January 1997 70 −4.96 −269.2
4 18 January 1999 12 March 1999 53 −3.49 −164.3
5 20 December 1999 14 February 2000 56 −3.55 −165.1
6 27 November 2011 24 January 2012 58 −4.89 −217.8
7 24 November 2016 10 February 2017 78 −4.35 −274.5
8 8 November 2019 5 January 2020 58 −4.76 −190.7
9 4 December 2020 4 March 2021 90 −4.38 −316.0

1 minimum KWI in 105 m2/s, 2 Integral of KWI during the event in 105 m2/s ·day.
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3.2. Detailed Evolution

To further investigate the evolution of the KCL and its accompanying ACE, we present
the time series of monthly averaged ADT and the derivative surface geostrophic current
from October 2020 to March 2021 in Figure 3. In October 2020, the Kuroshio had strong
currents with a speed up to 1.0 m/s across the LS and along the east coast of Taiwan
Island. The main axis of the current slightly bent towards the west in the northern LS, and
a current loop pattern (i.e., KCL) started to form. From November 2020 to January 2021,
the KCL was fully established. The intrusion current in the middle of the LS gradually
turned from northwestward to westward, and reached a maximum speed of 1.0 m/s in
December, making a strong inflow jet toward the SCS. Closed ADT contours were gradually
developed to make an ACE (denoted as A1 in Figure 3) accompanying the KCL, and it kept
intensifying with rising ADT at the eddy core.

Figure 3. Time series of monthly averaged ADT (filled contours) and the derivative surface geostrophic current (black
vectors) in the LS and the surrounding area. The panels of (a–f) are sequentially for the months from October 2020 to March
2021. A1~A3 are three ACEs, and C4 is a CE.
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In February 2021, the ACE reached its peak state, with a maximum ADT of 150 cm at
the center, and a maximum current speed of 1.2 m/s at the edge. As slowly propagating to
the southwest, the eddy started to detach from the KCL, and the Kuroshio current became
significantly weaker in the LS area. In March 2021, the ACE was completely detached from
the KCL, and continued to propagate southwestward, maintaining its high ADT amplitude
and current speed. A CE (C4 in Figure 3f) formed immediately on the east, which was once
the original position of the ACE. The Kuroshio path finished converting from the KWEP to
the KCEP, with a minimal bending of its main axis in the middle of the LS, which can also
be verified by the detailed evolution of the KWI and KCI from February to March 2021 in
Figure 4b.

Figure 4. Time series of daily the KCI and KWI (a) and properties of the ACE (b) from December 2020 to May 2021. The
ticks on the time axis stand for the beginning of the month denoted by corresponding labels. Horizontal solid lines in panel
(a) stand for the mean value (μ), and horizontal dash lines stand for standard deviation span (μ± σ ) of the two indices. KCI
values larger than μ+ σ are shaded in blue, and KWI values less than μ− σ are shaded in red. In panel (b), ADT difference
(delta ADT) between the eddy center and edge, diameter of the eddy and distance propagated from the start position are
denoted as blue line, red line and magenta line, respectively.

Accordingly, the detailed evolution of DI is shown in Figure 4a. As indicated by
the KWI and KCI, the Kuroshio maintained the KWEP for the whole three months from
December 2020 to February 2021, and immediately converted to a KCEP in March 2021.

The automatic eddy detection algorithm by geometric criterion [41,42] was adopted
to extract the ACE and its kinematic properties. The eddy identification process was
performed in each daily ADT map, through two stages: (1) The identification of the local
ADT maximum corresponding to the eddy center and (2) the selection of closed ADT
contours associated with each eddy. The outermost contour embedding only one eddy
center was considered as the eddy edge. The eddy amplitude is defined as the difference
between the ADT at the center and that along the edge, while the eddy diameter D is
defined as the diameter of a circle with the same area as the eddy area (AE) enclosed by the
eddy edge:

D =
√

4AE/π, (4)
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The evolution of the above kinematic properties (i.e., amplitude, diameter and prop-
agated distance from the starting position) of the ACE is shown in Figure 4b. We also
summarized the statistics of the eddy properties (i.e., amplitude, diameter, propagated
distance, lifespan and propagating speed) provided by five previous studies [11,14–17]
about the wintertime ACE shed from the KCL in Table 3, together with the estimates in the
present study to make a comparison in the following paragraphs.

Table 3. Kinematic properties of the ACEs shed from the KCL in winter, estimated by previous and the present studies.

Wang et al. [11] Guo et al. [14] Jia et al. [15] Nan et al. [16] Wang et al. [17] Present Study

Diameter 1 A: 244 A: 225 A: 160 A: 128 A: 166
381- M: 300 M: 200 M: 162 M: 320

Amplitude 2 A: 12 - - A: 12 A: 11
50M: 32 - - M: 20 M: 47

Distance 3 A: 195 - - A: 433 A: 218
>820- - - M: 1879 M: 1020

Lifespan 4 A: 108 - - A: 75 A: 29
>182- M: 57 - M: 273 M: 135

Speed 5 A: 2.1 A: 4.5 A: 10.0 A: 6.4 A: 8.3
5.2- M: 9.0 M: 16.0 M: 11.0 M: 35.0

1 maximum diameter in km; 2 maximum amplitude in cm; 3 maximum distance propagated in km; 4 lifespan in day; 5 average propagating
speed in cm/s; A stands for average value, and M stands for maximum value.

The amplitude of the ACE in winter 2020–2021 exhibited a sustained but undulating
increase, from as low as 5 cm at the beginning of December, all the way to the peak stage
of 50 cm at the end of February, and started to decrease in March. Meanwhile, the eddy
diameter had a similar increasing trend matched with the growth of amplitude, reaching a
maximum value of 381 km in the peak stage, and basically maintained this scale afterwards.
The peak amplitude and diameter in the present study are remarkably higher and larger
than the average amplitudes ranging from 11 to 12 cm and the average diameters from
128 to 244 km by all listed previous studies. More importantly, they also exceeded the
maximum amplitude of 47 cm and the maximum diameter of 320 km based on the most
recent statistics by Wang et al. [17], becoming the strongest ACE shed from the KCL in
winter in the available historical records.

By the end of May 2021, this ACE had propagated 820 km from its original position
southwestward during a time span of 182 days, hence the average propagating speed being
5.2 cm/s, which is a moderate speed among the average speeds in the listed statistics.
The current lifespan and propagated distance had already exceeded the average lifespan
from 29 to 108 days and the average distance from 195 to 433 km in Table 3, but remained
less than the maximum lifespan of 273 days and the maximum distance of 1879 km by
Nan et al. [16]. The time series in the present study stops here, but with the remaining scale
and amplitude, a considerable long lifespan and propagating distance in the future months
can be expected.

3.3. Surface Cold-Core Structure

Another distinctive feature of the ACE in winter 2020–2021 is the cold-core structure
at the surface layer, as revealed by the time series of monthly averaged SST shown in
Figure 5. Hence, this eddy can be categorized as a CC-ACE, which is uncommon since it is
apparently against the convergence and downwelling nature of ACEs.

In December 2020, the overall SST gradient from north to south in the study area had
already been established, so the Kuroshio water and the SCS water at the same latitude
could be directly distinguished by the SST distribution. The warm tongue injected by the
Kuroshio current into the SCS had an SST higher than 26.0 ◦C and bent to the right on the
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southwest of Taiwan corresponding to the current loop pattern (i.e., KCL). However, the
SST contours were not closed at the eddy center.

Figure 5. Time series of monthly averaged geostrophic current (vectors) superimposed on monthly averaged SST (filled
contours) in the LS and the surrounding area. The panels of (a–d) are sequentially for the months from December 2020 to
March 2021. The locations of ACE A1 and CE C4 are denoted. The KCL and NWLCC are marked as thick white arrows in (b,c).

In January 2021, the structure of a cold core enclosed by a warm ring was clearly
formed. The cold core had an SST of 24.7 ◦C, significantly lower than that along the outer
ring of approximately 25.5 ◦C. The warm water was mainly supplied by the westward
jet of the Kuroshio (i.e., KCL) through the LS between 20◦N and 21◦N. The cold-core
structure was maintained until February, with a center SST of 24.2 ◦C. However, the outer
ring of warm water expanded to a larger scale. The Northwest Luzon Coastal Current
(NWLCC) [43] had also joined with the Kuroshio intrusion to supply warm water.

In March 2021, the warm ring pattern started to collapse, leaving a faint cold core at
the eddy center. Moreover, another core with an even lower SST induced by the CE C4 on
the east emerged.

3.4. Verification by Drifters

We used the in-situ SST and surface current by drifter observations to verify the
features of the Kuroshio path and the accompanying ACE. Figure 1 shows the overall tra-
jectories of the eight drifters deployed in December 2020. Among them, seven drifters were
entrained by the strong westward intrusion jet between 20◦N and 21◦N through the LS into
the SCS, and only one drifter stayed in the WP. In particular, Drifter 1485504 (orange line in
Figure 1) was tightly trapped by the ACE, and stayed at the eddy core with anticyclonic
spinning for the rest of the eddy lifespan, indicating a strong surface convergence.

557



Remote Sens. 2021, 13, 2645

The drifter observation during the beginning days from 24 December 2020 to 7 January
2021 is shown in Figure 6. Strong westward currents along the trajectories were observed
in the middle of the LS between 20◦N and 21◦N, with a maximum current speed of 1.6 m/s.
The geostrophic current by ADT at the corresponding period showed the same pattern of
intrusion flow in the LS, but the maximum speed was only 0.7 m/s. Note that the current
observation by drifters is the total surface current, including the components of geostrophic
current, Ekman current, tidal current, etc. Given that the tidal current in the middle of the
LS is not strong (less than 0.2 m/s; e.g., [44]), the Ekman component in the strong intrusion
took an important part.

 
Figure 6. (a,c,e) Floating speed along the drifter trajectories from 24 December 2020 to 7 January 2021, being divided into
three 5-day segments and superimposed on the corresponding 5-day averaged geostrophic current speed (colored shading)
and geostrophic current vector derived from ADT; (b,d,f) In-situ SST by drifters along the trajectories during the same
segments, superimposed on the corresponding 5-day averaged SST (colored shading) by remote sensing. Black circles are
the starting points of drifters at each segment, and the last two digits of the drifter number (i.e., 04 is for Drifter 1485504) are
used to label drifters at each segment.
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The high SST of the intruding warm tongue and the outer warm ring of the ACE
were also observed by drifters. The maximum in-situ SST in the middle of the LS was
27.4 ◦C, even higher than the counterpart by remote sensing, which is probably due to the
smoothing effect in the gridded SST product.

Similar to the eddy center indicated by ADT, the daily position of the cold core was
also identified at the point with minimum SST around the eddy area. The migration of
the eddy center and the cold core center from December 2020 to March 2021 are compared
in Figure 7a, together with the floating position of Drifter 1485504 trapped in the ACE.
Along with the southwestward propagation of the ACE, the cold core center kept following
the eddy center for the entire time span, within a maximum deviation of approximately
50 km. Around 20 days after the deployment of Drifter 1485504, it was tightly trapped
around the eddy center and the cold core center, with a spinning radius of approximately
50 km. The floating trajectory was closer to the cold core center than to the ADT center.
Due to the relatively coarse resolution of the ADT product and the wide interval between
satellite tracks, the cold core by remote-sensing SST provided a better way for tracing the
ACE’s migration.

Figure 7. (a) Time series of the eddy center position indicated by ADT (blue and red lines), and cold
core center by remote-sensing SST (dark blue and dark red lines), and the floating position of Drifter
1485504 (light blue and light red lines); (b) Time series of SST at the cold core center (blue line) and
outer ring (black line) by remote sensing, and the in-situ SST by Drifter 1485504 (light blue line). The
ticks on the time axis stand for the beginning of the month denoted by corresponding labels.

The SST at the cold core center and along the outer warm ring are compared in
Figure 7b, together with the in-situ SST by Drifter 1485504. The temperature difference
between the cold core and the outer warm ring was established and maintained since late
December 2020, and reached a maximum value of 1.7 ◦C in late January 2021. The drifter
SST closely followed that at the core center since mid-January 2021, as a result of the tight
trapping by the ACE.

4. Discussion

The above results demonstrated the strong KCL intrusion and accompanying ACE in
winter 2020–2021. We analyze the contributing factors for this event, in the aspects of local
wind forcing and approaching eddies from the WP.
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4.1. Wind Forcing

Figure 8 shows the monthly averaged SSW and WSC from September 2020 to February
2021. Under the control of the wintertime northeast monsoon, the WSC around the
LS exhibited a strong dipole on the southwest of Taiwan Island, due to the orographic
effect [24]. Intensive positive and negative WSCs were established and maintained from
September 2020 to January 2021, and started to decrease in February 2021. The pattern and
location of the dipole were basically the same as the monthly climatology, but the negative
WSC reached a minimum value of −6 × 10−7 N/m3 in December 2020, largely exceeding
the climatology minimum value of −2 × 10−7 N/m3. The location of the negative WSC
basically covered the BOX1 area in Figure 1, and was also consistent with the locations of
the KCL and ACE in the generation and rising phases. The spin-up effect by the negative
WSC was in favor of the negative surface current vorticity in this region.

Figure 8. Time series of monthly averaged SSW (black vectors, m/s) and WSC (filled contours, 10−7 N/m3) in the LS and
surrounding area. The panels of (a–f) are sequentially for the months from September 2020 to February 2021. The black
rectangle is the same as BOX1 in Figure 1.
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In analogy to the KCI and KWI based on geostrophic current, we can also define the
KCIWS and KWIWS as the integral of the positive and negative parts of WSC in the same
area of 119◦E–121◦E and 20◦N–22◦N (BOX1 in Figures 1 and 8):

KCIWS =
�

sign(C) C dA (5)

KWIWS =
�

sign(−C) C dA (6)

where C is the sea surface WSC. The time-series of the daily KCIWS and KWIWS from 1993
to 2021 is shown in Figure 9a. Low KWIWS values beyond the standard deviation only
occurred in the winter half of the year from October to March in most of the years. Although
winter 2020–2021 did not have the lowest daily KWIWS value across the whole time series,
its averaged value over the winter half of the year reached as low as −1.2 × 104 N/m,
significantly exceeding those of all other years. Since wind forcing could be an important
generation mechanism for the eddy activity in the SCS [22–24], it is evident that the strong
and sustaining negative WSC southwest of Taiwan made unusual contributions to the
generation and maintenance of the KCL and ACE in winter 2020–2021.

Figure 9. (a) Time series of daily KCIWS and KWIWS (black lines) from 1993 to 2021. Horizontal dash lines stand for the
mean value (μ) and standard deviation span (μ± σ ) of the two indices. KCIWS larger than μ+ σ are shaded in blue, and
KWIWS lower than μ− σ are shaded in red. The green dot line is the averaged KWIWS in the winter half of the year over
October to March; (b) Time-series of daily Ekman transport (black line) through the LS from 1993 to 2021. Negative value
means westward transport into the SCS. The red dot line is the averaged Ekman transport in the winter half of the year over
October to March. The ticks on the time axis stand for the beginning of the year denoted by corresponding labels.

It has been suggested by Farris and Wimbush [45] that local winds have a direct effect
on the Kuroshio intrusion, and the expansion of the KCL is largely determined by the time-
integrated WS in the LS. Jia et al. [15] further demonstrated that the ACE shedding from the
KCL occurs within one month after the integrated Ekman transport through the LS exceeds

561



Remote Sens. 2021, 13, 2645

a volume of approximately 2 × 1012 m3. The Ekman transport through the LS (across
the meridional section at 121◦E) was calculated based on the WS data and is presented
in Figure 9b. Similar to the orographic WSC, the Ekman transport in 2020–2021 also had
strong and sustaining inflow in the winter half of the year. The averaged Ekman transport
over the winter half of the year reached –1.0 × 106 m3/s, rated as the strongest Ekman
transport inter-annually based on the available WS observation. Such strong transport will
easily accumulate the volume beyond 2 × 1012 m3 in less than one month, so as to expand
the KCL and induce the ACE shedding in winter 2020–2021.

4.2. Impinging Mesoscale Eddies

Eddy activities in the WP east of the LS during autumn and winter 2020 were examined
to discern their influence on the Kuroshio. In general, CEs may reduce the Kuroshio
transport by affecting the zonal gradient of the SSH [26,27] or by the resulting upstream
convergence and downstream divergence [31]. The reduced Kuroshio transport further
provides a favorable condition for its intrusion into the SCS according to the nonlinear
hysteresis theory [20,21], and thus induces a westward extension of the Kuroshio pathway
into the SCS to form the KCL. Meanwhile, ACEs have the opposite effect, decreasing the
looping path.

Since the KCL and ACE event in this study was sustained for approximately four
months from November 2020 to February 2021, there were quite a few CEs and ACEs
impinging into the Kuroshio at the segment across the LS. As shown in Figure 10, three
CEs (C1~C3) and one ACE (A3) propagated westward and finally approached on the east
of the LS in different months. Hence, C1~C3 tended to enhance the KCL at their respective
time, while A3 tended to decrease the KCL. According to composite analysis by previous
studies [33,46], a typical strong KCL corresponds to an impinging CE at a key interaction
region around 20◦N and 123◦E, and the KCL reaches its maximum when the CE arrives
at the interaction region after westward propagation. The C3 in February 2021 in our
study was apparently such a case, and the looping path accompanied by ACE A1 at the
corresponding time was also approximately at the maximum state, which agrees well with
the composite pattern. However, C1 and C2 were not so typical, given their location and
relatively small scale.

The alternating CEs and ACEs in this region had evolution periods of approximately
one month, and the enhancing/decreasing effects of the eddies also faded away within one
month according to the composite analysis. While the KCL event in our study exhibited
a stable evolution and a rather long period of approximately four months. Thus, the
contribution by the eddy activities should not be regarded as the dominant factor for the
KCL and ACE event in winter 2020–2021.

Besides the mechanisms discussed above, there are some other factors influencing
the performance of the KCL and ACE, such as the intensity of the upstream Kuroshio
east of Luzon Island and the North Equatorial Current bifurcation latitude. However, no
significant correlation could be found between the inter-annual Kuroshio intrusion and
these oceanic and atmospheric environments [18]. It is also beyond this study’s scope
to provide a clear relationship to link the KCL and ACE events in the 28-year historical
records with the aforementioned influencing factors.

As for the case in winter 2020–2021, because the forcing indicators (KWIWS and Ekman
transport) and the resultant index performance (integral KWI and sustained period) had
values lower than their respective historical extremes in the same year, we suggest that
the overwhelming wind forcing was the primary mechanism during this event, with or
without the contribution of other factors. A similar case can be found for the KWEP event
in winter 2019–2020 (Event 8 in Table 2), when the average KWIWS was −0.92 × 104 N/m,
and the Ekman transport was −0.76 × 106 m3/s, both were the second lowest values in
the available records. However, when wind forcing was not overwhelming enough in
other years, such as the case in winter 2007–2008, there may have been no KCL and ACE
occurrences due to the balancing between favorable and unfavorable mechanisms.
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Figure 10. SLA distribution and eddy activities during winter 2020–2021. (a–d) are sequentially for 15 October, 17 November,
15 December 2020 and 10 February 2021. A1~A3 are ACEs, and C1~C3 are CEs.

4.3. Mechanism for the Surface Cold-Core Structure

The cold-core structure of the ACE shed from the KCL in this study was not common
in previous events. As demonstrated by McGillicuddy [37], such a cold-core structure
at the surface layer can be generated by local cyclonic wind forcing upon ACEs. Since
the CC-ACE in winter 2020–2021 was mainly covered by the negative orographic WSC
southeast of Taiwan, it was not a case of such eddy–wind interaction formation mechanism.
Given the strong surface flow by drifter observation and Ekman transport in the LS, this
CC-ACE event was attributed to the horizontal entrainment [36] of local cold water by the
warm KCL water.

In general, most abnormal eddies (CC-ACEs and WC-CEs) cannot survive longer than
two weeks [35]. Although it was under the unfavorable condition of strong anticyclonic
wind forcing, the CC-ACE in winter 2020–2021 lasted for as long as three months. The
long duration of entrainment was stably supported by the warm water from the Kuroshio
intrusion and the NWLCC successively, making it a rare case. The continuous surface
warm water supply demonstrated the intensity and stability of the Kuroshio intrusion from
another aspect.

5. Conclusions

Multiple remote sensing datasets including SSH, SST and SSW, combined with in-situ
drifter observations, were used to analyze the Kuroshio intrusion through the LS. The
results showed a strong KCL and accompanying ACE in winter 2020–2021.

As quantitatively demonstrated by the DI, the KWI had an integral value of
−316.0 × 105 m2/s·day during the sustained period as long as 90 days, depressed lower
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than the values in all other years, making it the strongest and longest KCL event in the
available historical records.

The KCL started to form in October 2020, and was fully established and maintained
from November 2020 to January 2021, and finally converted to a KCEP from February to
March 2021 along with the accompanying ACE’s detachment.

Remarkable kinematic properties (i.e., amplitude, diameter, propagated distance,
lifespan and propagating speed) of the shed ACE were extracted by the automatic eddy
detection algorithm. It had a maximum diameter of 381 km and a peak amplitude of
50 cm, which significantly exceeded the maximum values of 320 km and 47 cm by previous
statistics, rated as the strongest ACE shed from the KCL in winter.

The contributing mechanisms for the KCL and ACE event were analyzed. The oro-
graphic negative WSC southwest of Taiwan and the westward Ekman transport through
the LS during the winter half of the year of 2020–2021 both had large values beyond their
historical maxima. Hence wind forcing is regarded as the primary mechanism during this
event. Alternating CEs and ACEs approaching on the east of the LS were identified, so
the interaction between the Kuroshio and the impinging CEs at the proper locations made
additional contributions to the enhancement of the KCL.

The accompanying ACE had a distinctive feature of a cold-core structure at the surface
layer, so as to be categorized as a CC-ACE, which has rarely been reported in relation to the
KCL previously. The temperature difference between the cold core and outer warm ring was
maintained for three months and reached a maximum value of 1.7 ◦C in late January 2021.
Given the unfavorable condition of strong anticyclonic wind forcing, the generation and
long duration of the CC-ACE was due to the sustained horizontal entrainment supported
by the warm water from both the Kuroshio intrusion and the NWLCC successively.
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Abstract: This study investigates the variations in flow patterns in the northern Taiwan Strait in
summer using high-frequency (HF) radar measurements, satellite-tracked drifter trajectories and
numerical models. There is an obvious interaction between intra-diurnal tides and ocean currents in
northwestern Taiwan. When the tide changes between high tide and low tide, the change in direction
of the nearshore flow occurs before the change in the offshore flow. Drifter trajectories show that
there are three different drifting paths in the Taiwan Strait in summer. One path is along the west
coast of Taiwan from the southwest coast to the northeast coast. Another path is the same as the first
one but leads northward to the East China Sea instead of eastward to the northeast coast of Taiwan.
The other path exists along the west coast of Taiwan, some distance out, after being deflected by
the bottom ridge. The regional ocean modeling system model was used in this study to clarify the
influencing factors that lead to these three paths. The results of multiple simulations and HF radar
data indicate that the bifurcation of the first two drift paths in northwestern Taiwan is caused by
ebb and flood tide transitions. The different routes of the latter two paths are due to the significant
speed difference between the nearshore current and the offshore current approximately 45 km from
the coast.

Keywords: Taiwan Strait; flow pattern; high-frequency radar; drifter; tide

1. Introduction

The Taiwan Strait (TS), located between China and Taiwan, is a narrow passage that
connects to the South China Sea (SCS) in the south and the East China Sea (ECS) in the
north. It has been an important waterway since ancient times. As shown in Figure 1, TS
is a shallow strait about 60 m in depth on average. There is a deeper water channel in
the TS, named Penghu Channel, located along the southwest coast of Taiwan; the bottom
ridge of Changyun Rise (CYR) is north of it. The currents in the TS may be influenced by
monsoon and long-term winds. Wind fields in the TS are dominated by the East Asian
monsoon, which is southwesterly from May to August and northeasterly from September
to April [1]. Previous studies mentioned that seasonal variations in volume transport in
the TS are related to the reversal of the monsoon [2] and wind stress along the TS [3].
Additionally, the TS is strongly affected by other ocean currents from southern water [4].
These ocean currents include the remnants of the SCS warm current from the SCS and a
branch of Kuroshio from the Luzon Strait [5,6]. Tidal currents also contribute to the flow
in the Taiwan Strait [7]. In short, the currents in the TS are influenced by the complex
topography, the monsoon wind, tides, and ocean currents from south of the TS.
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Figure 1. Topography around the TS.

Penghu Channel, which is the deepest passage in the TS, causes most of the water
to converge and flow northward. Previous observations from shipboard ACDP show
that the Penghu Channel is the major pathway for northward current in the TS, and the
velocity is about 1 m/s after removing the tidal effect in the upper 50 m during summer [8].
Therefore, the Penghu Channel is an important entrance to the TS. In addition, the effect of
the semidiurnal tide is quite significant in the TS. In the flood tide period, the water enters
through the south and north entrances of the TS, and it leaves in the ebb tide period. The
tidal range in the northern TS is larger than that in the southern TS [9]. Additionally, the
tidal current is larger on the Taiwanese coast than on the mainland coast. The maximum
amplitude is 0.80 m/s at the two entrances, and the minimum amplitude is 0.20 m/s in the
middle of the TS [10]. Due to the strong tidal effect, the currents at the two entrances of
the TS must be affected by the tidal currents. The sea surface temperature and chlorophyll
could be moved westward and turned eastward with tidal current according to satellite
images [11]. It is well known that the main current flows northward in the TS during
summer. However, this phenomenon is based on long-term observations. The above results
indicate that the tide, which changes between flood and ebb tides twice a day, might cause
significant intra-diurnal variability in the flow pattern, especially at the north end of the TS.

Most previous studies observed flow patterns based on Eulerian descriptions. How-
ever, it is hard to depict the path of flow over time. On the contrary, satellite-tracked drifters
can provide direct evidence to present the flow pattern in Lagrangian descriptions. A
previous study divided the near-surface circulation into four kinds of patterns in winter
based on the trajectories of drifters collected before 2007 [12]. In summer, most drifters
travel northward through the TS to the ECS. It seems that the flow pattern in the TS was
a steady northward flow [12]. However, after passing through the Penghu Channel at
a high speed, the seawater immediately encounters the shallow area of CYR. With the
influence of complex topography and the strong tidal effect, they may cause complicated
changes in local flow fields. Therefore, if the variations in flow patterns in the northern
TS can be clarified, it can assist in navigation safety, rescue, or tracking of marine debris.
To understand the detailed effects of monsoon, tide, and current interactions, we used
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satellite-tracked drifters and HF radar to analyze variations in flow patterns and numerical
models to find the causes of different current paths in the TS.

The remainder of this paper is organized as follows. Section 2 describes the data and
methods. Section 3 presents the characteristics of surface currents with HF radar data and
drifters. Section 4 presents the simulations of the nearshore current during summer under
several conditions. Section 5 discusses the factors that cause the different current paths.
Finally, Section 6 summarizes the main results.

2. Data and Methodology

2.1. High-Frequency Radar Data

The ocean surface current data used in this study are one-hour temporal resolution
and 10 km spatial resolution data provided by the Taiwan Ocean Radar Observing System
(TOROS) using the Coastal Ocean Dynamics Application Radar (CODAR) developed by the
Taiwan Ocean Research Institute (TORI). There are 19 CODAR stations, including 13 sets of
long-range 5 MHz systems and six sets of 13/24 MHz systems along the coast of Taiwan
Island with the date period from January 2013 to December 2020. Unfortunately, some of the
CODAR stations stopped supplying data after December 2020 because of the problems with
devices and the lack of components. These high-frequency radars work on the principle
of radio wave backscatter and Bragg scattering by analyzing the Doppler frequency shift
from the first-order Doppler peak of the sea-echo reflected from the ocean surface. The
Doppler frequency shift is due to the ocean current and gravity wave velocities [13]. The
phase speed of the gravity wave in deep water is

√
(gλ/2π), where g is the gravitational

acceleration, and λ is the wavelength of gravity waves. Due to the Bragg scattering, the
wavelength of the gravity wave measured by the CODAR is half the radar wavelength.
The ocean velocity in the radial direction is calculated based on the difference between the
measured velocities of radar and gravity waves. A single radar can only measure the radial
velocity; the current vectors need to be determined by multiple CODAR sites.

2.2. Satellite-Tracked Drifter Trajectories

Satellite-tracked drifter trajectory data were downloaded from the National Oceanic
and Atmospheric Administration (NOAA) Global Drifter Program database (GDP
database) [14]. After the quality control and optimal interpolation procedures by the
Drifter Data Assembly Center at Atlantic Oceanographic and Meteorological Laboratory
(AOML), the data were interpolated for 6-h intervals. This dataset includes position (longi-
tude, latitude, and time), sea surface temperature, and velocity. The drifter drogue is 15-m
long and the bottom of the drogue is about 20-m deep [15]. A total of 30 trajectories were
collected from March 1989 to December 2020. These started at the SCS, passed through the
Penghu Channel, and entered the ECS north of Taiwan.

2.3. Numerical Model

This study employed the Regional Ocean Modeling System (ROMS) model to better
understand the dynamic process and physical mechanism of the coastal flow field in the TS.
ROMS is a three-dimensional, realistic bathymetry and free-surface ocean model used to
simulate mesoscale and small-scale ocean phenomena around Taiwan [16,17]. The model
domain was 118–124◦E and 20–26.5◦N, using a horizontal resolution of 0.05◦. Vertically,
there are ten sigma coordinate levels. The bathymetry of the model was extracted from
the ETOPO1 database. The initial conditions of the model were set to zero and forced
by climatological data from the Comprehensive Ocean-Atmosphere Data Set with open
boundaries. The amplitudes and phases of the tidal constituents were derived from Oregon
State University global models of ocean tides, TPXO7 [18], along with ten parameters (M2,
S2, N2, K2, K1, O1, P1, Q1, Mf, and Mm). The model period was 30 days. The temporal
resolution of the model output was one hour. The area in the Kuroshio region east of
Taiwan that is in deeper water was not discussed in this study because the simulation
focused on the continental shelf in shallow water.
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3. Characteristics of Surface Currents in the North Side of TS

3.1. Tide-Current Interaction Observed by HF Radar Data

It is worth noting that the flow direction of the ebb tidal current at the north end of
the TS was the same as the background current in summer, but the flood tidal current
faced the opposite direction (see Figure 1). Therefore, there was complicated intra-diurnal
variability in currents at the north end of the TS during the tidal period. The intra-diurnal
variability in surface currents was hard to measure continuously by either satellite altimetry
or ship-based sensors. However, coastal HF radar stations could provide high temporal
and spatial resolution ocean surface current data around Taiwan. It is possible to observe
the variations in nearshore current with the tidal effect; even the tide-current interaction in
the TS. Figure 2 shows the average flow fields of the CODAR data in the summer (June to
August) of 2017. Due to the southwest monsoon winds and narrow terrain, the background
flow field of the TS was dominated by the northeastward current. After passing through
the Penghu Channel, the ocean current was deflected by the bottom ridge of CYR and then
continued to flow northward in the middle of the TS and entered the ECS. Interestingly,
there was a current branch before the TS current entered the ECS. One of the tributaries
flowed to the south of the ECS, while the other deflected eastward at a slower speed.

Figure 2. The average flow field in the summer of 2017 obtained from HF radar data. The red squares
are the positions of CODAR stations around Taiwan.

In this study, we calculated six-hour average flow fields during different tidal periods
based on the Linshanbi tidal station (green square in Figures 3 and 4), which was established
by the Central Weather Bureau of Taiwan. Figure 3a shows the average flow field of the
six-hour period after high tide in the summer of 2017. Figure 3b shows the average flow
field for the six-hour period from one hour after high tide. Figure 3f shows the average
current of the six-hour period starting from five hours after high tide in the summer of 2017.
As in Figures 3 and 4 show the average flow fields of the six-hour period after low tide
in the summer of 2017. According to short-time average flow fields during different tidal
periods, there was complicated intra-diurnal variability. In particular, when the period
of average current spanned low tide, there was obvious tide–current interaction during
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the flood tide, which flowed in the opposite direction to the average flow fields in the TS
during summer (Figures 3e,f and 4a–d). We also divided the ocean above northern Taiwan
into two areas to explore the changes in flow directions nearshore and offshore.

Figure 3. Average flow fields of six-hour periods (a) after high tide, (b) from one hour after high
tide, (c) from two hours after high tide, (d) from three hours after high tide, (e) from four hours after
high tide, and (f) from five hours after high tide in the summer of 2017. The green square is the tidal
station (Linshanbi, located at 25.2839◦N, 121.5103◦E). The blue arrows represent the averages of flow
directions north of Taiwan.

The flow speeds nearshore and offshore during the ebb period could reach 0.52 and
0.41 m/s, respectively (Figure 3b), and the flow directions were almost the same. On the
other hand, because the direction of flow in the TS in summer was opposite to that of
the flood current, the flow speeds nearshore and offshore were only 0.26 and 0.23 m/s,
respectively (Figure 4b), and flowed in different directions. Furthermore, the average
flow field began to change in the six-hour periods starting from four hours after high
tide (Figure 3e) and three hours after low tide (Figure 4d). As shown in Figure 3e, the
offshore current began to turn northward, while the nearshore current still flowed eastward.
The flow speeds nearshore and offshore were only 0.24 and 0.20 m/s, respectively. In
Figure 4d, the background flow in summer gradually dominated the flow field when the
flood current weakened. At this time, the flow speeds nearshore and offshore were only
0.08 and 0.11 m/s, respectively. Table 1 shows the details of flow speeds north of Taiwan
displayed in Figures 3 and 4.
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Figure 4. Average flow fields of six-hour periods (a) after low tide, (b) from one hour after low tide,
(c) from two hours after low tide, (d) from three hours after low tide, (e) from four hours after low
tide, and (f) from five hours after low tide in the summer of 2017. The green square is the tidal
station (Linshanbi, located at 25.2839◦N, 121.5103◦E). The blue arrows represent the averages of flow
directions north of Taiwan.

Table 1. The average speed of surface current within the red frame of Figures 3 and 4.

Average Velocity of Red Frames in Figures 3 and 4 (m/s)

(a) (b) (c) (d) (e) (f)

Figure 3
offshore 0.37 0.42 0.38 0.29 0.20 0.18

nearshore 0.44 0.52 0.51 0.41 0.24 0.08

Figure 4
offshore 0.25 0.23 0.16 0.11 0.20 0.32

nearshore 0.22 0.26 0.20 0.08 0.15 0.33

To sum up, in summer, the velocity of the nearshore current was faster than that of the
offshore current during the flood tide period in northern Taiwan, but there was no obvious
difference during the ebb tide period. Additionally, the flow speed during the ebb period
was about twice as fast as during the flood period. In addition, the flow direction started to
change when the tidal period crossed high tides or low tides. At the same time, the flow
speed decreased significantly.
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3.2. Flow Paths Observed by Drifter Trajectories

This study monitored 30 drifters that drifted northward through the Penghu Channel
in the whole GDP database as of December 2020, and most of them drifted through the TS
between May and August. There were 24 drifters whose drifting paths could be classified
into three types (Figure 5) based on the trajectories; except for six drifters with strange
drifting paths that were hard to classify, the classification conditions were as follows:

Path 1: (1) The drifters passed through the Penghu Channel and across the bottom
ridge. (2) Then, they drifted close to the west coast of Taiwan. (3) Additionally, they drifted
eastward to the northeast coast of Taiwan.

Path 2: (1) The drifters passed through the Penghu Channel and across the bottom
ridge. (2) Then, they drifted close to the west coast of Taiwan. (3) They drifted to the south
ECS instead of eastward to the northeast coast of Taiwan.

Path 3: (1) The drifters passed through the Penghu Channel and bypassed the bottom
ridge. (2) They drifted along the west coast of Taiwan at a distance from the coast. (3) They
drifted to the south ECS instead of eastward to the northeast coast of Taiwan.

 
Figure 5. Trajectories of several satellite-tracked drifters that drifted clockwise around Taiwan. The
black and gray circles represent the drifter destinations. The colored patches represent the average
speeds of the drifting paths.

There were three different flow patterns driving drifters in the TS during summer.
Path 1 shows these drifters drifted through the Penghu Channel with an average speed of
0.41 m/s. Then they drifted across the sea surface of the bottom ridge of CYR at 0.32 m/s
and drifted northward along the western coast of Taiwan at 0.54–0.65 m/s. When these
drifters arrived at the northwestern Taiwanese coast, they slowed down and deflected
eastward to the northeast end of Taiwan at 0.20–0.22 m/s. Path 2 was similar to path 1.
These drifters also drifted through the Penghu Channel and across the sea surface of the
bottom ridge at 0.53 m/s and 0.57–0.68 m/s, respectively. However, they continued to
drift northward to the ECS at 0.35 m/s instead of deflecting northward to the northeast of
Taiwan. Path 3 was quite different from paths 1 and 2. These drifters drifted through the
Penghu Channel with an average speed of 0.63 m/s. Notice that these trajectories were
farther away from the west coast of Taiwan than paths 1 and 2. They did not cross the
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bottom ridge but bypassed it to the middle of the TS at 0.35–0.40 m/s. These drifters drifted
to the ECS at 0.33–0.60 m/s through the middle of the TS, far from the coast of Taiwan.

In summary, we found that there were ten, eight, and six drifter trajectories that
drifted along paths 1, 2, and 3, respectively, though a total of 30 drifters passed through the
Penghu Channel in this study. This means that the probabilities of drifters using the three
drifting paths were 33.3%, 26.7%, and 20.0%, respectively. The drifters that flowed along
path 1 drifted along the coast of Taiwan until they arrived at the northeast end of Taiwan.
Path 2 was similar to path 1 but extended to the ECS instead of deflecting eastward. The
destination of path 3 was the same as that of path 2, but path 3 was farther from the coast
than that of path 2.

4. Simulations of Nearshore Current in the TS during Summer

In the previous section, we found that there were three types of different flow patterns
observed by drifters in the TS. The difference in destination between path 1 and path 2 may
be caused by the tide–current interaction. As shown in Figure 3a–d, the flow direction of
the ebb tidal current is the same as that of the background current in the northern TS, and
this flow direction is similar to the direction of path 1. However, the flow direction of the
offshore current started to flow northeastward during the next six-hour period (Figure 3e).
In this period, the nearshore current was similar in direction to path 1 but the offshore
current was more like path 2. These results show that the transition of ebb and flood tides
could cause a different current path in the northern TS. Most of the drifters were drifting
through the TS between May and August (summer) (Figure 5). To further explore the
influences of tides on ocean surface currents in the TS, the ROMS ocean model was used to
simulate the flow field in summer in the TS.

This study used the summer climatological wind to drive the ocean current with
open boundaries in the model (Figure 6). Figure 7 presents the average surface flow fields
of the ROMS simulation, and Figure 8 shows comparisons of flow speed and direction
between ROMS outputs and CODAR observations from 23.5◦N–26◦N and 119.5◦E–122◦E.
The average surface flow field was divided into five latitude bands at every 0.5◦ of latitude.
The results show that the flow fields of ROMS were close to the average flow fields of
CODAR in most latitude bands. To intuitively present the modeled flow fields, we used the
particle tracking function in ROMS to simulate drifter trajectories. Two points in the Penghu
Channel, the nearshore point (23.60◦N, 120.05◦E) and the offshore point (23.60◦N, 119.85◦E),
were selected to release the floats (Figure 6). When the model was stable (after 72 h), the
simulated floats were continuously released every hour for 360 h. Therefore, 360 simulated
floats were released at each point. The depth of release for the simulated floats was 10 m
because there was a 15-m-long drogue under the satellite-tracked drifters. Figure 9 shows
the probability density distribution of the simulated floating trajectories released from the
Penghu Channel. We found that the trajectories of the floats were affected by the distance
from the starting position to the shore. The simulated floats that were released from the
nearshore position (point N in Figure 6) could drift northward along the west coast of
Taiwan. More than 40% of the floats drifted eastward to the north of Taiwan, and about 35%
of the floats drifted northward to the ECS. The remaining floats were stopped by the coast.
However, the simulated floats released from the offshore position (point O in Figure 6) kept
their distance from the coast of Taiwan and drifted northward until arriving in the ECS.
More than 50% of the floats drifted northward to the ECS, whereas less than 5% drifted to
the north of Taiwan. The remaining floats were stopped by the coast.
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Figure 6. Wind field and seabed terrain set in ROMS model. The red points represent the starting
points of the simulated floats. Point N means nearshore and point O means offshore. The green
points represent the transects of the vertical profile of ocean flow.

Figure 7. Average surface flow fields of the ROMS simulation in summer.
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Figure 8. Comparisons of average flow fields between ROMS and CODAR data. The dots represent
the mean and the bars represent the standard deviation of each latitude band.

Figure 9. Probability density distribution of simulated floating trajectories released from (a) nearshore
and (b) offshore points in the ROMS simulation with tidal forcing turned on.
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To confirm the influence of tides on the ocean current in the TS, we performed another
simulation with the same model settings as above but without the tidal forcing. The
simulated floats were also deployed at nearshore and offshore points in the Penghu Channel,
and the probability density distributions are shown in Figure 10. The results show that
the trajectories of simulated floats were similar regardless of whether the tidal forcing was
turned on or off before the floats flowed into the ECS. However, there was a significant
difference after the floats passed through the TS. More than 30% of the floats released from
the nearshore drifted eastward to the north end of Taiwan, but there were a few cases of
floats drifting northward to the ECS. The simulated floats released from offshore drifted
northeastward after passing northwestern Taiwan.

 

Figure 10. Probability density distributions of simulated trajectories of floats deployed from
(a) nearshore and (b) offshore points without tidal forcing.

Furthermore, there were three transects designed to present the vertical profile of the
model current (Figure 6), and the results are shown in Figure 11. The vertical stratification
profile of the ocean current along with transect A indicates that the speeds of the nearshore
currents were higher than those of the offshore currents, regardless of whether the tidal
forcing was turned on or off (Figure 11a,d). The nearshore currents were more concentrated
and closer to the coast with the depth until the water depth reached about 30 m. On the
other hand, the flow profiles with tidal forcing were more dispersed than those without
tidal forcing, whether in transect A or B. The flow profiles along transect C were generated
with two high-velocity peaks when the tidal forcing was turned on in the model (Figure 11c).
The locations of the two high-velocity peaks are the same as the branching sites of the
probability density distribution in northwestern Taiwan (Figure 9a). Thus, it is possible
to infer that these ocean flow branches are caused by the transition between ebb and
flood tides.
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Figure 11. Vertical stratification profile of ocean current along transect A (a,d), along transect B (b,e),
and along transect C (c,f) simulated using the ROMS model with (a–c) or without (d–f) tidal forcing.
The solid blue line represents the surface speed of each vertical profile. Red (Blue) shading represents
the direction toward the inside (outside) the plane of the paper (or screen).

5. Discussion

In summer, the main ocean current in the TS is a northward flow consisting of the
SCS warm current and the Kuroshio branch current [5,6]. These currents flow northward
to the southern ECS after passing by northwestern Taiwan. However, there are obvious
transitions of ebb and flood tides from the northern TS to the north end of Taiwan twice
a day. The flow direction of the ebb current in northern TS is the same as that of the
main current in summer, but the flow direction of the flood current is completely opposite.
Therefore, there is complicated intra-diurnal variability in currents in northwestern Taiwan.
The variability is hard to observe from the long-term average flow field data. However, the
average ocean surface current in a six-hour period from CODAR data suggested that there
is diurnal tide–current interaction in the northern TS during summer (Figures 3 and 4). We
found that the flow direction started to change when the tidal period crossed high and low
tides. The flow direction of the nearshore current would change before the offshore current.
Moreover, the speed of the nearshore current is higher than that of the offshore current
during the flood tide in northern Taiwan, but there was no obvious difference during the
ebb period.

In this study, we classified three different flow patterns according to the drifter trajec-
tories that drifted northward through the Penghu Channel. Drifting path 1 is similar to
path 2, as both of them are driven northward by the nearshore current, but they separate in
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northwestern Taiwan (Figure 5). There is an intra-diurnal tide–current interaction caused
by the transitions of ebb and flood tides. Therefore, we infer that the difference between
these two drifting paths was caused by a tidal effect. To confirm the influence of the tide,
we simulated numerous float trajectories in ocean models. The probability density distribu-
tions show that drifting paths 1 and 2 occur with tidal forcing (Figure 9a). The distribution
of simulated floats that drifted northward is almost the same as that of those that drifted
eastward. However, the probability density distribution only shows drifting path 1 in
the absence of tidal forcing (Figure 10a). Few floats could drift northward to the ECS
when released at the nearshore position. Drifting path 1 appeared when there was no tidal
influence in northwestern Taiwan. However, the ocean current flow eastward in northern
Taiwan will be hindered by the flood current, forcing the ocean current to flow northward
to the ECS (path 2). After the flood period, the ocean current can flow unhindered to
northern Taiwan during the ebb period, as the trajectory of path 1. Thus, path 1 and path 2
will alternately appear in the northern TS as the ebb and flood tides’ transition.

The drifting path 1 and path 2 can flow unimpeded by the bottom ridge of CYR after
passing through the Penghu Channel, but path 3 is different from them. A previous study
simulated the northward near-surface current (at 15 m) in the Penghu Channel in summer,
and this current is relatively unimpeded by CYR; only the near-bottom current is deflected
anti-cyclonically [19]. In another study, the results of a numerical model showed that the
northward current appears to be relatively unimpeded by CYR and bifurcates slightly near
the surface (at 20 m) [20]. The results of drifters and simulated floats in this study showed
that whether the currents can be deflected by CYR is mainly affected by the distance from
the shore. The drifters and floats that pass through the Penghu Channel near the shore will
cross over the CYR, whereas those far from the shore are deflected by it. The discrepancy
between our results and those of the previous study [19] was caused by the different speeds
of the surface current. The surface current speed of that study was up to 1.5 m/s over CYR,
so the surface current can be relatively unimpeded by the CYR [19]. However, the flow
speeds of simulations in this study were 0.25–0.50 m/s, the same as that of the previous
study [20]. Moreover, the drifting speeds of drifters were 0.32–0.68 m/s over CYR (Figure 5),
which is also close to our simulation results.

The trajectory of path 3 north of CYR (at 24.5–25◦N) is also different from the tra-
jectories of the other two paths. It seems that there are two different current paths. One
flows northward along the shore, and the other flows northward at a distance from the
shore. Figure 12 shows the average speeds of the cross-shore distribution by the west coast
of Taiwan from three datasets, including CODAR, ROMS, and drifters during summer.
It should be noted that the average speeds of drifters in Figure 12 were calculated from
all drifters passing through the TS in the summer. According to the average velocity of
the cross-shore distribution, we found that all three datasets present a rapid alongshore
current (Figure 12). It is worth noting that the speed magnitudes of CODAR and ROMS
at about 45 km from the coast were reduced to half of those along the coast. Additionally,
the velocity magnitude of drifters was even less than 0.10 m/s at a distance of more than
50 km. The results show that there is a significant difference in speed between nearshore
and offshore currents. The drifters drifting along path 3 cannot easily blend with those
drifting along path 1 and path 2. To sum up, after passing through the Penghu Channel,
path 3 is deflected by CYR and flows northward at a distance from the west coast of Taiwan.
This geographical factor makes path 3 different from the first two drifting paths, so it flows
northward in the middle of the TS to the south of the ECS.

On the other hand, the trajectories of path 2 and path 3 drift northward to the south
ECS after passing through the TS. They appear to exhibit a near-inertial oscillation in
northeastern Taiwan (Figure 5). According to the inertial oscillation period Tf = π/Ω sin θ,
where Ω is the Earth’s rotation rate and θ is latitude, the period is 27.3 h at 26◦N. Figure 13
shows the rotary power spectrum of HF radar flow fields in northeastern Taiwan (26◦N,
122◦E), none of which are close to the inertial oscillation but show a strong semidiurnal
tidal period. A previous study also observed that drifter trajectories in the south ECS were
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oscillated and trapped by strong tidal currents [21]. Therefore, it is speculated that these
oscillations were caused by the semidiurnal tide.

Figure 12. Average alongshore speeds of the cross-shore distributions from three datasets during
summer. The red dotted line represents the transect for the cross-shore distribution.

Figure 13. Rotary power spectrum of HF radar in northern Taiwan (26◦N, 122◦E).

6. Conclusions

In this study, we used the HF radar data to find the intra-diurnal tide-current interac-
tion in the north entrance of the TS from average ocean surface currents of six-hour periods
in summer. We found that the flow direction of the nearshore current changes before that
of the offshore current after high tide and low tide. Moreover, the speed of the nearshore
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current is faster than that of the offshore current during the flood tide at the north end of
Taiwan, but there is no obvious difference during the ebb period.

Due to the tidal effect and complex topography, there are several flow patterns in the
TS. To clarify the variations in flow patterns in the TS, we collected 30 satellite tracking
drifters that drifted northward through the Penghu Channel. There were 24 drifters among
them that could be classified as having one of three types of drifting paths based on
their trajectories. Path 1 presents a flow pattern along the west coast of Taiwan from the
southwest coast to the northeast coast. Path 2 is the same as path 1 but flows northward to
the ECS instead of eastward to the northeast coast of Taiwan. Path 3 presents a flow pattern
that moves along the west coast of Taiwan at a distance from the coast after being deflected
by the CYR. Each of the drifting paths has a unique trajectory and different drifting speeds.

The difference between paths 1 and 2 is the bifurcation by northwestern Taiwan, where
there is a strong tidal effect. From the results of HF radar and several simulations, we
confirmed that the factor that causes the difference is the transition between ebb and flood
tides. The current flow eastward in northern Taiwan is hindered by flood currents, thereby
forcing the current to flow northward to the ECS. The current can flow unhindered to the
north side of Taiwan during the ebb tide period. On the other hand, paths 2 and 3 have the
same destination with different trajectories in the TS. To find out the reason, we investigated
the alongshore velocities of cross-shore distributions from three datasets, including HF
radar, satellite drifter, and ocean model datasets. The results of the alongshore velocity
show there is a clear difference in speed between nearshore and offshore currents at about
45 km distance from the coast—the speed is reduced to half of that along the coast. This
geographical factor makes path 3 different from the first two: it flows northward from the
middle side of the TS to the southern part of the ECS after being deflected by CYR.

In conclusion, there are intra-diurnal tide–current interactions in the north entrance of
the TS, as observed by HF radar data. Additionally, there are three different flow patterns
in the northern TS in summer. This study clarified the causes of these three flow patterns
with HF radar data and ocean simulations. The findings will aid in the safety of ship
navigation, search and rescue, and tracking of marine debris. However, we do not know
the characteristics of the water masses in different currents or even the flow patterns in
other seasons. There are still many deficiencies in this study, and more research is needed.
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Abstract: Oil spill detection and mapping (OSPM) is an extremely relevant issue from a scientific
point of view due to the environmental impact on coastal and marine ecosystems. In this study,
we present a new approach to assess scientific literature for the past 50 years. In this sense, our study
aims to perform a bibliometric and network analysis using a literature review on the application of
OSPM to assess researchers and trends in this field of science. In methodological terms we used
the Scopus base to search for articles in the literature, then we used bibliometric tools to access
information and reveal quantifying patterns in this field of literature. Our results suggest that the
detection of oil in the sea has undergone a great evolution in the last decades and there is a strong
relationship between the technological evolution aimed at detection with the improvement of remote
sensing data acquisition methods. The most relevant contributions in this field of science involved
countries such as China, the United States, and Canada. We revealed aspects of great importance and
interest in OSPM literature using a bibliometric and network approach to give a clear overview of
this field’s research trends.

Keywords: bibliometric analysis; remote sensing; oil slicks; oil detection

1. Introduction

Nowadays ocean oil spill is among the most significant environmental impacts [1], bringing damage
to ecosystems and biodiversity while causing loss of the ecosystem process [2–4]. In addition to
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the adverse impacts on the environment, other sectors of society, such as the economy and public
health, are documented in the literature [5–8], a fact that reinforces its importance especially lately,
where several environmental disasters with oil spills have been observed [3,4].

Since the beginning of the popularization of remote sensing as a science, an increasing number
of studies with oil spill detection and mapping (OSPM) have been using remotely detected data for
monitoring, surveillance, or risk assessment and management [9–19]. Albeit there are well-formed
theoretical and conceptual frameworks according to the remote sensing literature dealing with the
detection of oil spills and mapping from in situ observations [20–28], there is still a lack in the scientific
community showing the trending techniques and algorithms that systematically summarize this kind
of information. OSPM is not a new field of research, indeed although it has been carried out since
the 1970s [1,2], it is crucial to conduct a comprehensive overview to investigate and understand the
underlying developing patterns in this field of research [3,4]. Subsequently, scientists have used
bibliometrics based on mathematical and statistical tools to analyze publications, citations, journals in
many disciplines and fields of study [29–32].

Bibliometrics can be commonly defined as a qualitative and quantitative analysis of research that
is often used to assess the impact of an individual researcher, research groups, institutions, countries,
or journals [33,34]. Its method can analyze several publications to efficiently find influential researchers,
authors, journals, organizations, and countries [33,34].

In fact, it can also analyze information intuitively by mapping networks, such as co-word,
co-authorship, and co-citation networks [29–31]. Co-word is the co-occurrence of terms extracted
from either the title or abstract fields of a dataset to find a specific research topic [30,31].
Co-authorship describes intellectual collaboration in scientific research [31]. Co-citation is defined as
two or more publications that are cited by the same manuscript [31].

In recent years, bibliometric network visualization has been used to evaluate the research trends
of remote sensing data and its applications in different scientific fields [35,36]. Several studies show
that published literature analysis could provide critical information about the research production and
scientific quality. Moreover, we believe that describing trends and characteristics of the articles for
a specific scientific field can trigger authors’ and institutions’ collaborations. The same can be done
to OSPM studies, which increased significantly in the past few years due to the Deepwater Horizon
disaster [3].

A few questions may arise based on our dataset and methods related to oil spill detection and
mapping. For instance, which countries have mostly contributed to OSPM research? Is there any
trend in OSPM-related publications over the decades? If so, since when? Who are the top researchers
and institutions that have focused their work on OSPM? What are the most influential journals in
the OSPM field? What are the main differences in terms of the semantic network topology more
evident over decades? Therefore, this paper aims to perform bibliometric and network analysis using a
literature review regarding the application of OSPM to appraise the research, trends, and characteristics.
Additionally, we report the amount of oil spill, the number of accidents, and the main tanker spills in
the last 50 years. To the best of our knowledge, no study has specifically investigated OSPM using
this conceptual framework. The manuscript is outlined as follows. Section 2 describes the Material
and Methods, such as the search strategies and validation, as well as the semantic network analysis.
Section 3 shows the publishing trend results of OSPM, co-occurrence, co-authoring, and top-cited
authors and journals per decades, followed by Discussion (Section 4) and Concluding Remarks.

2. Materials and Methods

To answer the questions proposed in our study, we built a unified methodological approach that
is able to unite classical bibliometric analysis using qualitative descriptors. Moreover, we added the
calculation of metrics of the topological structure of the networks. This approach has the advantage of
including in the universe of analysis associated with bibliometrics the quantification of topological
patterns using quantitative descriptors with proper indexes. That is, the approach used here involves
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the use of qualitative and quantitative descriptors giving greater robustness to answer our work
questions described above. Our approach and steps can be seen in Figure 1. In terms of methodological
approach our study is divided into two main stages: Phase 1 and Phase 2. The first phase includes
choosing the search database, identifying relevant terms to the subject, and including filters in the
search engine. Afterwards, we performed a manual screening reading all the titles and abstracts
of the articles returned in the search, identifying and excluding possible articles that did not fit our
objective (Phase 1). After these two steps, we performed all analyses (Phase 2) for two data sets: for all
articles and for the 25 most cited ones (Table 1). Table 1 describes the relationship between the working
questions and the analysis proposed in our methodological approach and source data to make it.
In order to make it clear, Table 1 contains three main fields: the questions of interest, the analysis used
to answer it, and what kind of data is used.

Figure 1. Logical scheme, methodological approach and data analysis for Phases 1 (blue color) and 2
(yellow color).

Table 1. Description of the relationship between working questions, analyses and data sources.

Questions Analysis Source Data

What is the publishing trends of OSPM? General statistics/Word Co-ocurrence
network/Co-author spatial network All papers

Which countries have contributed to
OSPM research? General statistics/Co-author spatial network All papers

What are the influential publications in the
OSPM field?

General charactheristics and citation
tables/Co-ocurrence network 25s Most cited

What are the influential journals in the
OSPM field?

General statistics/General charactheristics and
citation tables All papers/25s Most cited

Who has contributed to OSPM research? General statistics/General charactheristics and
citation tables/Co-author spatial network All papers/25s Most cited

What is the research focus in different periods? Word Co-ocurrence network All papers

What are the main differences in terms of the
semantic network topology more evident

over decades?
Topology metrics All papers

What is the amount and the number of tanker
spill in the last 50 years? Plots of amount and number of tanker spill Roser (2019)

What is the 20’s main tanker spill in the last 50 years? Table of 20s main tanker spill Roser (2019)
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2.1. Bibliographic Base

In this study, we choose the Scopus database. Scopus is the multidisciplinary largest database
of abstracts and references in the literature, accounting for more than 24,000 peer-reviewed journals
and 5000 international publishers and citations [37]. It has efficient analysis tools for retrieving and
aggregating information and data exportation in multiple formats, which offers a comprehensive
overview of the total volume of the world’s research products in the areas of science, technology,
medicine, social sciences, arts, and humanities. For these reasons, we employed Scopus as the database
literature for this research.

This study limited our analysis to journal publications only, reducing bias caused by duplicate
publications, minimizing false-positive results. Reviews, conference proceedings, book chapters,
and books were not considered because they include works that might have been published more than
once in different media sources (Figure 1).

2.2. Search Strategy and Screening Records

We considered documents with a year of publication between 1970 and 2019 (a 50-year study)
and studies regarding the application of oil spill detection and mapping only. The search was
implemented as follows: only article retrievals containing the words “Oil Spill detection” OR “Oil Spill
mapping” in the title, abstract, or keywords were selected. Previous tests were performed with different
words, terms and synonyms until we reached the used set of words and terms, which proved to be
relevant to the scope of our study.

A pool of selected papers was followed by a manual screening of all retrieved documents to avoid
word ambiguity. After that, a systematic review was performed in ten percent of the most cited articles.
Within these articles, specific information was extracted, such as: sensor used, spatial and temporal
resolutions, bands or feature space evaluated, number of analyzed images, country and region of
interest, classification algorithms, mapped classes, or targets. Additionally to report the amount of oil
spill, the number of accidents in the last 50 years in the world we use ITOPF data report [38] and the
Max Roser data base [39].

2.3. Semantic and General Network Analysis

In this paper, the minimum number of occurrences of a keyword is once for titles, abstracts,
and Keywords for all publications to build up a network. The network visualization was carried
out using VOSviewer program [30–32,40]. This tool, specifically designed for bibliometric analysis,
was employed to visualize the retrieved data of a specific search. VOSviewer can be used to construct
networks of scientific publications, scientific journals, researchers, research organizations, countries,
and keywords, for example. Items in these networks can be connected by co-authorship, co-occurrence,
citation, bibliographic coupling, or co-citation links [31,32].

From a network point-of-view, items are represented by nodes and edges. In this study, nodes are
objects as such word co-occurrence and countries. Between any pair of nodes there can be an edge.
An edge is a connection or a relation between two nodes. The distance between two nodes in the
visualization approximately indicates the relatedness of searching terms in terms of co-occurrence.
The size of a label into a node is determined by the weight of an item in a network [31,32].

All articles from our search were analyzed according to their authorship, country, data sources,
affiliation, and citations. Individual terms and words in titles, abstracts, and keywords were assessed
by their frequency, and a ranking of publication sources by relevance was constructed. Authors’ and
countries’ rankings were also related to productivity analyses. The total and the average number of
citations were analyzed by country. Authorship analysis was carried out by computing the number of
single-authored articles and multi-authored publications. We also calculated the number of articles
per author.
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In order to analyze word co-occurrence, all the following settings have the same weight and were
flagged as one: number of keywords’ occurrence, words and countries’ co-authorship. For adequacy,
a thesaurus file was built to avoid redundant terms. This text file is used to perform data cleaning
when creating a map based on bibliographic data or text data. For more details, the reader should
address [29] and [31,32] references.

To calculate all metrics related to semantic networks, we employed Gephi software [41,42].
It is an open-source platform for viewing and manipulating dynamic graphs and hierarchical trees,
including all types of networks and complex systems. The user has the autonomy to modify the
graphical outputs, as well as to interact with the structure of its network. Moreover, it is possible to add
filters highlighting desired aspects and export the final results to SVG, PNG or PDF formats. Its principal
function is to serve as a tool for data method analysis, building hypotheses, discovering of social and
behavioral patterns, and isolation of essential structures within the hierarchical networks [41,42].

Graph theory uses mathematical structures that model relationships between objects of a specific
group [43]. Graphs are defined as a set of vertices and edges [43]. In other nomenclatures, they can
be addressed as networks, where the vertices are connected by the edges, determining a relationship
of some kind between them, whether directed or undirected. A graph is represented by G = (V, E),
where V is a set of vertices and E is a set of edges [43]. Different indexes of the networks’ structures
were also used to reveal the topological changes in semantic networks over the decades. A description
of each index used can be seen in Table 2.

Table 2. Computed topological index and its description and characteristic.

Metrics Description
Topological Network Metrics

Characteristics

Edges Number
Act as the connections that link them to one
another a series of connections (edges).

Nodes Number
Refers to the amount of information present in
the network.

Average Clustering
Coefficient

Measure the level at which the nodes are grouped
together, as opposed to being equally or randomly
connected across the network. Scores on this
measure will have an inverse correlation with other
statistics, including several of the centrality
calculations, particularly when we are speaking at
the global level (the entire graph).

Average degree

Assess importance through the number of direct
connections (degrees) one node has to other nodes.
The assumption with degree centrality is that the
number of connections is a key measure of
importance or influence within the network. In an
undirected network we do not have the luxury of
determining whether one node exerts more or less
influence in a relationship; we merely see that they
are in fact connected and as such are weighted equally.
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Table 2. Cont.

Average Path Length

The clustering coefficient for the word
co-occurrence network refers to the probability or
level at which the words are grouped together.
Indicates how each word is connected to its
neighborhood. Average clustering coefficient is the
average value of the individual or local coefficients.

Connected
Components

Number of distinct components within the network.
When our network is fully connected, a value of 1
will be returned, so there is little need for this
calculation. However, in very large networks it
might be difficult to visually determine whether
the network is fully connected, so we can use this
function to ascertain the number of components.

Graph Density

Measure of the level of connected edges within a
network relative to the total possible value and is
returned as a decimal value between zero and one.
Graphs with values closer to one are typically
considered to be dense graphs, while those closer
to zero are termed as sparse graphs.

Network Diameter

Refers to the maximum number of connections
required to traverse the graph. Another way to
look at it is knowing how many steps it takes for
the two most distant nodes in the network to reach
one another

All plot charts were made on R version 3.6.2 [44], using IDE Rstudio, version 1.2.5033 [45], and the
ggplot2 package, version 3.2.1 [46].

3. Results

3.1. Publishing Trend of OSPM

The total number of 235 documents was published between 1970–2019 (see Supplementary
Materials Table S1 for details) with a mean and standard deviation of 4.7± 7.2 papers/year (Figure 2A,B).
The number of cumulative publications in the later years increased significantly, being more than
twenty-five by the year 2019 (Figure 2A). The first peak of productivity was evident from the mid-1990s,
with a peak in 1996 with seven articles, which comprised 3% of the total productivity in the studied
period. The highest peak of productivity was observed in 2016 and 2018. Both years accounted for
27 articles, which corresponds to 23% of the total productivity in that decade. This decadal period
has the highest number of publications with 168, which corresponds to 71.5% of the total number
of published documents in this 50-year time frame with a mean value of 16.8 ± 7.6 publications.
This is followed by the 2000s with 17% (mean 4 ± 1.8 SD), 1990s, 8.1% (mean 1.9 ± 2.1 SD), 1980s,
2.1% (mean 0.5 ± 0.7 SD) and 1970s, 1.3% (mean 0.3 ± 0.5 SD). The majority of the retrieved documents
were published in English (e.g., 93.2% = 231 manuscripts), followed by 15 documents in Chinese
(~6.0%) and one document in Croatian (0.4%).

Figure 3 shows the top 10 manuscripts in terms of their distribution by subject area were Earth
and Planetary Sciences (68 papers ~29.1%) Engineering (50 papers ~21.4%), Environmental Science
(24 papers ~10%), Physics and Astronomy (22 papers ~9.3%), Computer Science (18 papers ~7.7%),
Agricultural and Biological Sciences (13 papers ~5.6%), Chemistry (9 papers ~3.7%), Social Sciences
(7 papers ~2.8%), Materials Science (5 papers ~2.3%), and Mathematics (5 papers ~2.1%) (Table S2
for details).
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Figure 2. (A) Annual growth rate of OSPM publications (black curve, left y-axis) compared to the
cumulative annual growth (red curve, right y-axis) rate of all the manuscripts indexed in the Scopus
database per year (1970–2019). (B) Boxplot by decades. Red diamonds inside the polygons represent
the mean.

3.2. Countries Contributed to OSPM Research

We constructed a bibliometric network to visualize collaboration nets and the distribution of
publications across the world regarding the application of OSPM (Figure 4). Results show a total
of forty-five researchers (45) from different countries with at least one connection with each other.
China ranked first, with a total of 61 (i.e., 26% of the total) documents, followed by Italy (30 docs
~12.8% of the total), United States (26 docs ~11.1% of the total), India (16 docs ~6.8% of the total),
Spain (14 docs ~6% of the total), Canada (13 docs ~5.5% of the total), Norway (12 docs ~5.1% of the
total), Germany (10 docs ~4.3% of the total), Greece (9 docs ~3.8% of the total), United Kingdom (8 docs
~3.4% of the total), (Figures 3 and 4, Table S2).

Regarding the number of citations by countries, the United States ranked first, with a total of 1155
(27% of the total) documents, followed by Canada, Italy, Norway, China, Greece, Spain, United Kingdom,
Germany and India, with 1030 (24% of the total), 976 (22,8% of the total), 519 (12.1% of the total),
436 (10.2% of the total), 269 (6.3% of the total), 161 (3.8% of the total), 119 (2.8% of the total) 105 (2.5% of the
total) and 41 (1% of the total), respectively.

When only the number of total link strength is considered, described by the weight edges,
the United States ranked first with a total of 18, followed by Italy, Canada, India, Greece, Germany,
China, United Kingdom, Spain, Norway, with 14, 13, 10, 8, 6, 5, 5,2, 1 respectively. When we observe
the relationship of scientific cooperation via publication between countries, the intensity of the links
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between the United States and China, the United States and Canada, Canada and China, Greece and
Italy, the United Kingdom and Portugal, the United Kingdom and Italy is noteworthy (Figure 4).
These connections are more evident between countries, indicating strong scientific cooperation on
the subject.

Figure 3. Word co-occurrence network built for the top 25 papers using words presented in
titles, abstracts, keywords, and general feature information of the 50 years of documents published
between 1970–2019.
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Figure 4. Total of publications on OSPM and co-authoring collaboration network by countries from
documents published between 1970–2019.

3.3. Most Influential Publication Features in the OSPM Field

We evaluated the 25 most cited articles for the 50-year span, which accounted for ~10% of the
total published papers between 1970–2019. The highest cited published papers can be seen in Tables
S2 and S3. This subset represented 61.7% with 2.642 citations out of an overall total of 4.283 in the
OSPM field (Tables S3 and S4). The top 10 most cited papers represented 45.1%, which corresponded
to 1.923 citations (Table S4). The most cited article in the field of OSPM was from 1998 and had
760 quotations and represented 17.74% of all mentions. The decade that produced manuscripts with
the highest number of citations was 1990 with 948 quotes (22.1%), followed by the 2000s and 2010s,
with 919 and 18.1 775, respectively (Table S4).

The main terms and words most frequent in this top 25 subset were “spill detection”(24 occurrences),
“SAR image” (21), “image analysis” (13), “remote sensing” (12), “detection method” (9),
“radar imaging” (9), “satellite imagery” (9), “image classification” (8), “marine pollution” (8),
and “algorithm” (6), respectively (Figure 3). The co-occurrence word networks presented 12 clusters
totalizing 322 words. The largest cluster contained 40 words and in terms of conceptual approach it dealt
with forecasting, pollution and prediction (Figure 3). Methodological approaches, evaluated targets,
and sensor systems used in each of the top 25 articles can be seen in Table S3. Overall, all papers
had the central objective of generating information regarding the detection of oil spills with different
methodological approaches (Table S3). In all articles, oil spills were the main target to be identified,
although in some studies other targets have been identified, for example, boats and soil contamination
or even levels of pollution severity (Table S3). Except for one article, all the others used radar images
to identify oil spills (Table S3). Only one of the manuscripts could be classified as an approach using
hyperspectral images (Table S3). Moreover, in only three studies, it was possible to identify the use of a
hybrid approach with the use of radar images and optical sensors to spot oil spills (Table S3). Only in
one article we identified which sensor system was used (Table S2). In 12 studies, we observed the use
of more than one type of radar image for oil spill detection. Of the total of sensor systems listed in the
top 25 papers, the following stand out in many uses ranking ENVISAT ASAR with nine articles (17.3%),
RADARSAT-1 with eight (15.4%), RADARSAT-2 seven (13.5%), ERS-2 SAR six (11.5), ERS-1 SAR five
(9.6%), MODIS four (7.7%), MERIS three (5.8%), TerraSAR-X and UAVSAR with two, and 3.8% for each
and Hyperspectral AISA, Landsat 7, Landsat 8, COSMO-SkyMed, ScanSAR, ALOS PALSAR with one
paper (~2.0% for each one). The main methodological approaches used to detect oil spills are listed
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in Table S3. The methodological approaches that were most used were Artificial Neural Networks,
Segmentation, Supervised Classification using different algorithms as such Support Vector Machine,
Supervised Maximum Likelihood, Generalized Additive Model (Table S3).

There is a positive association of evolution and quality in detecting oil spills and the development
and maturation of remote sensing as a science over the 25 most cited articles.

Through 50 years of peer-reviewed published material analyzed on this work using most
cited 25 articles, we noticed a remarkable evolution in the digital processing image techniques,
classification methods, and extracting relevant features useful to oil spill detection.

There was an association of evolution and quality improvement in detecting oil spills and the
development and maturation of remote sensing as a science. Over the decades, the increasing number
of published material was a clear sign of the gradual expansion in sensor systems’ availability and the
increment in the images’ spatial and temporal resolution.

Another key point that prompted the search for refinement of oil spill detection methods was the
occurrence of disasters. The search for more sophisticated techniques to determine the magnitude of the
effects of these disasters served as a significant catalyst for improving detection methods. Besides that,
it is important to remark that a few years ago satellite images could be costly but nowadays there are a
great number of free images to download.

Over these 25 articles there was a consensus that SAR images provide a fundamental way
for monitoring coastal and ocean waters, minimizing its potential adverse effects with a relatively
extensive spatial coverage, short repeatability, day and night time, and in almost any climate condition.
However, similar dark spots can arise from a range of unrelated meteorological (e.g., rain cells)
and oceanographic phenomena (e.g., algae bloom), resulting in incorrect identification, known as
look-alikes. Although there are limitations in the usage of optical images due to cloud cover, the auxiliary
use of optical satellite images, such as multispectral and hyperspectral sensors, were pointed out as
a plausible and suitable alternative in assisting SAR images in detecting oil spills from look-alike
surface targets. Therefore, it is clear that there are still challenges associated with detecting oil
spills with SAR-derived images in adverse weather conditions such as low wind and heavy rain,
and biogenic films.

In specific situations, interpreter supervision was used as an alternative when SAR images were
obtained in unfavorable conditions and in the absence of auxiliary data from optical sensor systems.

In the case of developing an automatic system for detecting oil spills, one should be cautious.
Classifier balancing and training were the most common ones. Issues such as the low frequency of oil
spills compared to the satellite-derived data remains a problem, even with the advance and abundance
in the number of sensor systems and images available over the globe.

Machine learning and deep learning are the fundamental methods used over these 25 articles to
identify real oil spills from the so-called look-alikes. On the other hand, processing in cloud computing
environments was not evidenced over the 25 most cited articles, although it is a topic of great relevance.

According to the most influential publication features found in the neural network-related papers,
the most used features in the top 25 articles are: area, perimeter, complexity, spreading, object standard
deviation, background standard deviation, max contrast, difference, mean contrast, max gradient,
mean gradient, gradient standard deviation, form factor, perimeter to area ratio, ratio between intensity
and its standard deviation inside the dark area, granularity, shape, fractal dimension. They are widely
used to classify a target as a real oil spill or just a look-alike.

3.4. Influential Journals in the OSPM Field

The highest number of published papers by journals can be seen in Figure 3. A total of 127 different
journals, with an average of 2.54 publications per year. The top 10 journals in the context of OSPM are
“IEEE Transactions on Geoscience and Remote Sensing” and “International Journal of Remote Sensing”,
with a total of 12 articles which corresponds to 5.1% of the total documents for each one, followed by
“IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing” (10 papers and
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4.3% out of the total), “Remote Sensing” (8 papers and 3.4% out of the total), “Sensors Switzerland”
(7 papers and 3% out of the total), “Marine Pollution Bulletin” (6 papers and 2.6% out of the total),
both “Acta Oceanologica Sinica”, “Journal of The Indian Society of Remote Sensing”, and “Spill Science
and Technology Bulletin” (5 papers and 3.0% out of the total for each one), and finally “Applied Optics”
with four articles corresponding to 1.7% of the total (Figure 3, Table S2).

3.5. Authors Contributing to OSPM Research

Taking into account the number of publications by authors, we found 159 different authors with
an average of 1.25 authors per paper. The top 10 articles per author in the context of OSPM can be seen
in Figure 3. Li, Y., and Marghany, M., ranked first, with a total of 9 and 3.8% of the total documents for
each, followed by Zhang, Y., with 8 (3.4% of the total), Li, Yy., Liu, B., and Xu, J., with a total of 6 and
2.6% of the total documents for each, Jagdish, M., Jerritta, S., Karathanassi, V., Lacava, T., with a total
of 5 and 2.1% of the total documents for each, respectively (Figure 3, Table S2).

Considering the author’s affiliation, 159 different institutions or organizations published at least
one manuscript in the context of OSPM out of that 235 documents, with an average of 1.47 institutions
or organizations per document. The top 10 affiliation institutions can be seen in Figure 3. It is possible
to show that among this top 10 institutions, 50% are Chinese, 40% European, and 10% from Canada
(Figure 3, Table S2). The Chinese Academy of Sciences ranked first, with a total of 15 documents
(6.4% of the total), followed by Dalian Maritime University, Consiglio Nazionale delle Ricerche,
European Commission Joint Research Centre, Ocean University of China, Deutsches Zentrum fur Luft-
Und Raumfahrt, Chinese University of Hong Kong, Beihang University, National Technical University
of Athens, University of Waterloo, with 11 (4.7% of the total), 10 (4.3% of the total), 10 (4.3% of the
total), 8 (3.4% of the total), 7 (3.0% of the total), 6 (2.6% of the total), 6 (2.6% of the total), 5 (2.1% of the
total) and 5 (2.1% of the total) documents, respectively (Figure 3, Table S2).

Similar to what was previously described, if one considered the number of institutions that
funded scientific research related to OSPM, 59 names showed up, with an average of 4% institutions
or organizations per publication. It is possible to show that among this top 10, 50% are Chinese,
20% European, 30% from the United States, and 10% each for Italy and Norway (Figure 3, Table S2).
The National Natural Science Foundation of China ranked first, with a total of 24 documents (10.2% of
the total), followed by Fundamental Research Funds for the Central Universities, Chinese Academy
of Sciences, European Commission, European Space Agency, National Basic Research Program of
China, National Aeronautics and Space Administration, Norges forskningsråd, Agenzia Spaziale
Italiana, Doctoral Start-up Foundation of Liaoning Province, Ministero dell ‘Istruzione Ministero dell’
Università e della Ricerca, with 8 (3.4% of the total), 4 (1.7% of the total), 4 (1.7% of the total),4 (1.7% of
the total),4 (1.7% of the total), 3 (1.3% of the total), 3 (1.3% of the total), 2 (0.9% of the total), 2 (0.9% of
the total) and 1 (0.4% of the total) documents, respectively (Figure 3, Table S2).

3.6. Decadal Topology of Research Focus and Semantic Networks

Figure 5 shows a co-word occurrence network analysis of the keywords, which can be used
to identify the state-of-the-art. The OSPM research topic has been categorized into five colored
clusters, following composition over time: 1970s (4 clusters), 1980s (4 clusters), 1990s (10 clusters),
2000s (17 clusters), 2010s (50 clusters), and a comprehensive network for the 50 years with
58 groups (Figure 6).

The ten words with the highest number of co-occurrences between decadal networks and the
worldwide network, in general, were spill detection SAR image, marine pollution, remote sensing,
image analysis, detection method, satellite imagery, algorithm, neural network, feature selection.
These words are a strong indication that they represent important conceptual and methodological
constructs associated with OSPM research literature. The largest cluster of each of the co-word networks
and the broad network, including all five decades, was associated with the methods used to detect and
monitor oil spots, classification algorithms, types of images, and investigated targets (Figure 5).
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Figure 5. Word co-occurrence network presented in titles, abstracts and keywords for each decade
(1970s, 1980s, 1990s, 2000s, and 2010s), as well as for all the scientific articles published in the 50-year time
frame (1970–2019).

Figure 6. Similar to Figure 4, except for the topology metrics. Letters (A–H) indicate a topological
metric described in Table 2.
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In terms of topological structure, the co-word networks presented a gradual increase in the number
of words and their links over the decades. However, there is a decrease in the network density and just
a small change in the average clustering coefficient (i.e., ~0.07), especially in the last three decades.
This topological behavior indicates that when a set of new terms is added to the field, they are more
likely to be linked to the old terms than to each other. This suggests that the evolution of the concepts,
method and techniques in the area is not abrupt; instead, they show a gradual increase. This behavior
reveals an increase in the area’s complexity, resulting in new approaches, themes, and interactions
(Figures 5 and 6).

Two components divided the 1970s network. The larger one consists of 26 vertices (Figure 5),
representing almost 95% of the network vertices, while the other one has just one vertex (~5%). However,
the 1980s and 1990s have only one component, with 46 and 689 vertices (Figure 5). Regarding the
2000s and 2010s, and the overall network for all years, both decades presented two components,
with the largest part comprising 46 and 689 vertices (Figure 6). However, these last two decades
and the worldwide network of all years, show the largest components consisting of 3126, 26329,
and 30529 vertices (Figure 6), representing approximately 98.9%, 99.7% and 99.7% of the network
vertices respectively. The second-largest component of the co-word network for the 1970s, the 2000s,
the 2010s and the global network was 0, 3, 4, and 4 vertices, representing approximately 0%, 0.10%,
and 0.02% and 0.02% of the network vertices, respectively. To avoid confusion or a misleading result,
one should keep in mind that the zero value means that the 1970s network has either only one node
or no connection at all to another word. However, this same network gives an average centrality
degree of 4.33 and a density equal to 0.4; that is, only 4% of the network’s possible connections occur.
Regarding the last four decades and the overall network, an average centrality degree of 6.57, 14.51,
22.19, 34.56, and 33.70 is observed, followed by a density value equal to 0.235, 0.154, 0.079, 0.023,
and 0.019. These numbers correspond to 23.5, 15.4, 0.79, 0.23 and 0.19% of the possible connections in
the network occur, respectively.

The 1970s network gives an average clustering coefficient of 0.8. The following four decades and
the global network provide a coefficient of 0.85, 0.9, 0.9, 0.9, and 0.9, respectively.

The network diameter for the 1970s and the 1980s is the same and equals two, while the 1990s
and the 2000s is a little higher (i.e., 3), and 2010s, as well as the worldwide network, amounts to four.
The average path distance length between a pair of vertices for all the five decades increased over time:
1.3 in the (1970s), 1.5 (1980s), 1.9 (1990s), 1.95 (2000s), and 2.20 (2010s).

The most significant change in the network’s topology occurred between the 1980s and 1990s,
increasing the clustering coefficient and the network’s average minimum path (Figure 6). This change
occurred due to the inclusion of new techniques such as image analysis, perturbation techniques,
and laser applications, mostly due to a new oceanographic approach shown in the dark blue module
in the 1990s network.

3.7. Amount and the Number of Oil Spill in the Last 50 Years

This result is based on the ITOPF data report [38] and the Max Roser database [39]. A general
negative trend in the number of oil spills from tankers indicates a marked decrease of accidents with
time (Figure 7A). A similar trend can be also seen in the amount of oil spills with time (Figure 7B)
until 2010, when the Deepwater Horizon resulted in the worst oil disaster in oil drilling history,
and then in 2018 off the Shanghai coastline, China, when the oil tanker named SANCHI spilled over
113,000 tonnes of oil (Table 3).

According to Table 3, almost all the recorded oil spill incidents took place before the year 2000,
except for the oil tanker named SANCHI (9th ranking position), which occurred in 2018 off the Shanghai
coastline, China, and the Deepwater Horizon oil drilling platform (1st ranking position) in 2010 (Gulf of
Mexico). Although the PRESTIGE (2002, off Galician waters—Spain) and the EXXON VALDEZ (1989,
off Alaskan waters—USA) are some of the most worldwide well-known disasters, the total amount of
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oil spilled was less than the KATINA P oil tanker (Table 3). These two vessels were responsible for oil
spill sizes of 63,000 and 37,000 tons, respectively.

Figure 7. Number of spill events (A) and amount of oil spill (B, in thousand tonnes) over last 50 years
(i.e., 1970–2019 record) based on ITOPF data report and the Max Roser database. Red line indicates the
mean of each decade, respectively.

Table 3. Top 20 oil spill disasters around the world based on the amount of spill size for the 1970–2019
record based on the public media.

Shipname/Platform Year Location Spill Size (Tonnes)

DEEPWATER HORIZON 2010 Macondo Prospect, Central Gulf of Mexico 780,000
ATLANTIC EMPRESS 1979 Off Tobago, West Indies 287,000

ABT SUMMER 1991 700 nautical miles off Angola 260,000
CASTILLO DE BELLVER 1983 Off SaIdanha Bay, South Africa 252,000

AMOCO CADIZ 1978 Off Brittany, France 223,000
HAVEN 1991 Genoa, Italy 144,000

ODYSSEY 1988 700 nautical miles off Nova Scotia, Canada 132,000
SEA STAR 1972 Gulf of Oman 115,000
SANCHI* 2018 Off Shanghai, China 113,000

IRENES SERENADE 1980 Navarino Bay, Greece 100,000
URQUIOLA 1976 La Coruna, Spain 100,000

HAWAIIAN PATRIOT 1977 300 nautical miles off Honolulu 95,000
INDEPENDENTA 1979 Bosphorus, Turkey 95,000
JAKOB MAERSK 1975 Oporto, Portugal 88,000

BRAER 1993 Shetland Islands, UK 85,000
AEGEAN SEA 1992 La Coruna, Spain 74,000
SEA EMPRESS 1996 Milford Haven, UK 72,000

KHARK 5 1989 120 nautical miles off Atlantic coast of Morocco 70,000
NOVA 1985 Off Kharg Island, Gulf of Iran 70,000

KATINA P 1992 OffMaputo, Mozambique 67,000

4. Discussion

An increasing trend in the number of publications was observed over the years. However,
this increase was more evident in the mid-1990s, with a peak in 1996, following an increasing trend
until the current decade. Moreover, part of the previous years’ production was higher than the
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general average of all years in some cases. This pattern can be explained by the increased frequency
of the number of oil spills in the seas in the last decades [3,4], which has aroused the interest of
scientists to create and improve new tools and useful technologies in the detection of oil spills in the
seas. Another important point that influenced this increase can be seen by the rise in the number of
sensor systems and the consequent increase in the availability of images to be used in the detection of
spills [20–28].

From the perspective of subject categories of knowledge, the areas of Earth and Planetary Sciences,
Engineering and Environmental Science were identified as the most influential in terms of the number
of publications. This can be detected by the number of articles in each area and indicates that the field
of OSPM is probably relevant in terms of the themes addressed by the frequency of publications [2–4].

The top four journals are all well-known journals in the field of remote sensing, IEEE Transactions
on Geoscience and Remote Sensing, International Journal of Remote Sensing, IEEE Journal of Selected
Topics in Applied Earth Observations, and Remote Sensing, all occupy a leading position concerning
the number of articles published.

When considering the top four countries that stand out in terms of the number of publications,
research support, and the number of authors, we found China, the United States, Canada, and Italy.
This pattern can be evidenced in the co-authorship analysis of countries that determined that China,
the United States, Canada, and Italy were at the center of international cooperation. Based on changing
patterns and similarities in the presence of words and terms in the co-word networks over the decades,
the general network of all years and the top 25 networks in terms of citations, it can be seen that oil
spill detection, oil spill monitoring and remote sensing were the main foci in OSPM research over time.

An important observation regarding the use of sensor systems is that, in general, regardless of
the decade or even in the case of the top 25 of the most cited articles, only one study did not use
radar images to identify oil spills. Several other works corroborated this pattern and somehow drove
the research in this field [2–4]. Another area that notoriously deserves more in-depth investigation
is the use of hyperspectral images in the detection and monitoring of oil spills, although it has
appeared in co-word networks in more recent decades. Optical sensor systems were less frequent;
however, they were used and found in the word networks associated with the use of radar images,
which determines the potential use of these images in conjunction with other sensor systems. In this
sense, Modis and Landsat were the most frequent. When we consider classification methods and
algorithms, undoubtedly, machine learning is the most frequently used technique. Algorithms such
as artificial neural networks, Support Vector Machine, and Maximum Likelihood are the ones that
stand out with higher frequency, regardless of the evaluated decade. It is clear that the OSPM field’s
evolution reflects the dynamics associated with the topology of all the networks due to the increase
in the number of words, terms, and their interplay. In fact, it refers to the tendency of the increasing
complexity of research in terms of objectives, the volume of published data, and interactions between
countries. These topology changes indicate that the developed approaches are gradual without the
appearance of new disruptive concepts with the previous themes, having their biggest change in
the 1990s with the emergence of new techniques. All calculated indices indicate that this field of
investigation is expanding rapidly and remains active over time.

5. Conclusions

In this article, we revisit the relevant literature on oil spill detection and mapping from the last
fifty years (1970–2019). We revealed aspects of great importance and interest in this field of knowledge,
using the qualitative and quantitative word association network approach to give a clear overview of
this field’s research trends for the past 50 years. We performed a bibliometric analysis with a systematic
review. We found as an overall result that the main trends observed in this field of science, at this
moment, are in frank expansion in terms of its conceptual, theoretical, and methodological approaches.
The gradual increase in the number of new terms and words presented in the networks, as well as the
intricate structure over the decades and their interactions, are also noticed.
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Our results point to strong evidence that oil detection at sea has shown significant evolution in
recent decades. This evolution is explained by the fact that there is a strong relationship between the
technological evolution of detection and remote sensing data acquisition methods.

Among the countries that contributed most to this field of science, China, the United States and
Canada stood out as the largest producers and disseminators of information in this research field.

Our study’s approach, which involves bibliometric techniques and tools, and the use of metrics
that describe the structure of the networks, depicted meaningful advances related to better highlighting
the general and specific research trends in this field of science.
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s1, Table S1—The table containing the results of the search was carried out on the Scopus base between
the years 1970–2019 without carrying out the screening. The table is structured with the following fields:
Citation information (Author (s), Author (s) ID, Document title, Year, EID, Source title, volume, issue, pages,
Citation count, Source and document type, Publication Stage, DOI, Access Type), Bibliographical information
(Affiliations, Serial identifiers (e.g., ISSN), PubMed ID, Publisher, Editor (s), Language of original document,
Correspondence address, Abbreviated source title), Abstract & keywords (Abstract, keywords, Index keywords),
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