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Editorial

Guest Editorial: Special Issue “Axisymmetry in Mechanical
Engineering”

Emanuel Willert

Institute of Applied Mechanics, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
e.willert@tu-berlin.de; Tel.: +49-30-314-21494

Axisymmetric (or almost axisymmetric) systems are ever-present in mechanical en-
gineering. Axial symmetry enables free rotation, rolling and avoids field singularities at
sharp corners. Spheres minimize the ratio of surface area to volume. Rotational symmetry
(inherent to the system or enforced externally by the modelling) significantly simplifies the
exact or numerical analysis of a model or, in some cases, only allows it in the first place.
This list could go on; in fact, registering all the properties and applications of axisymmetry
in technical or biotechnological systems would be quite an overwhelming task.

The topic of this Special Issue is thus very broad and, at the same time, very specific.
Broad, because axisymmetry is ubiquitous in mechanical engineering, and specific, because
it is a very particular mathematical and/or physical concept. This apparent disparity of
thematic broadness and narrowness adds a special charm to the Special Issue, as the readers
might discover similar specific methods and techniques in very different contexts, and
apply them to yet again very different classes of problems—which has always been one of
the main propellers of scientific discovery.

This Special Issue consists of five original research articles and one correction.
It opens with the original research paper “A Simple Semi-Analytic Contact Mechanical

Model for Tangential and Torsional Fretting Wear of Axisymmetric Contacts” [1]. In this
paper, the rotational symmetry of the problem allows for an asymptotic closed-form solution
of the contact problem in each fretting oscillating cycle if the wear process is slow compared
to the oscillation. In the case of wear laws, which explicitly relate the local wear intensities to
contact stresses and relative surface displacements, this leads to a simple integro-differential
equation for the wear contact problem. The model can be extended to incorporate the analysis
of subsurface stress fields and associated initiation of fatigue cracks.

In the paper “Coaxiality Optimization Analysis of Plastic Injection Molded Barrel of
Bilateral Telecentric Lens” [2] the authors study the optimization of process parameters
for the injection moulding of cylindrical plastic lens barrels for bilateral telecentric lenses,
based on the Taguchi method.

The original research article “An Approximate Solution for the Contact Problem of
Profiles Slightly Deviating from Axial Symmetry” [3] provides an asymptotic closed-form
solution for the normal contact problem of convex profiles that are almost axisymmetric.
Thereby, the term “almost axisymmetric” also applies to profiles which one would not
immediately associate with rotational symmetry, e.g., a pyramid with a square base. In
this sense, the presented solution can be understood as a general (asymptotic) solution for
arbitrary convex contact profiles.

Another important contact mechanical problem is studied in the research paper
“A Comparison of General Solutions to the Non-Axisymmetric Frictionless Contact Prob-
lem with a Circular Area of Contact: When the Symmetry Does Not Matter” [4]. In the
paper, the contact area is assumed to be fixed and circular, e.g., by using a cylindrical rigid
punch for the indentation procedure, but the profile of the punch is arbitrary. Thus, one
might say, that the contact problem for arbitrary convex profiles is “tackled from another
side” through the lens of axial symmetry. The paper presents a deep comparative review
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of known closed-form and series solutions for the described contact problem and gives
novel results for the pressure in the contact centre, as well as for the stress intensity factor
at the contact boundary, which, among others, is important for the corresponding adhesive
problem.

This Special Issue closes with the original research article “Using Cylindrical and
Spherical Symmetries in Numerical Simulations of Quasi-Infinite Mechanical Systems” [5].
In this article, rotational symmetry is used as a tool to effectively remove simulation space
boundaries—and, therefore, the corresponding artificial boundary effects—for the efficient
numerical simulation of long-range interactions in general discrete periodic systems. Specif-
ically, the mantle of a cylinder has no boundaries in the circumferential direction, while the
surface of a sphere is boundary-free in all angular directions. As a very interesting example,
the authors consider the tectonic dynamics of the earth’s continents.

Finally, the correction [6] remediates misprints in the aforementioned original publica-
tion [3].

The authors who contributed to the Special Issue and the Guest Editor are hopeful
that the published research here will facilitate a better understanding of the challenges and
opportunities connected to axial (or other classes of) symmetry in different theoretical or
applied branches of mechanical engineering.

Funding: This research was funded by the German Research Foundation under the project number
PO 810/66-1.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Fretting wear of axisymmetric contacts is considered within the framework of the Hertz–
Mindlin approximation and the Archard law for the linear wear. If the characteristic time scale for the
wear is much larger than the duration of a single fretting oscillation, the profile change due to wear
during one fretting cycle can be neglected for the contact problem as a zero-order approximation. This
allows to give an exact contact solution during each fretting cycle, depending on the current worn
profile, and thus for the explicit statement of an ordinary integro-differential equation system for the
time-evolution of the fretting profile, which can be easily solved numerically. The proposed method
gives the same results as a known, contact mechanically more rigorous simulation procedure that also
operates within the framework of the Hertz–Mindlin approximation, but works significantly faster
than the latter one. Tangential and torsional fretting wear are considered in detail. A comparison of
the numerical prediction for the evolution of the worn profile in partial slip torsional fretting of a
rubber ball on abrasive paper shows good agreement with experimental results from the literature.

Keywords: fretting wear; axis-symmetry; tangential contact; torsional contact; Abel transform

1. Introduction

Many tribological contacts in technical or biological systems are subject to oscillations
because they are part of a periodically operating machine or a periodically changing en-
vironment. The displacement amplitudes are often too small to cause global sliding, i.e.,
the contacts consist of changing areas of local sticking and slipping/sliding. This phe-
nomenon, called “fretting”, causes wear as well as fatigue and, although highly localized,
is of enormous importance for the service life of various tribological systems, e.g., electrical
conductors [1], turbine blades [2], or artificial joints [3].

Depending on the maximum extent of the slip area during the fretting oscillation,
often different fretting regimes are distinguished [4], namely, the partial slip regime (for
small slip areas), the gross sliding regime, and a mixed regime in between. While in
different regimes, either wear or fatigue may be the dominating damage mechanism,
both always are interacting or even competing phenomena [5]. Therefore, the theoretical
solution procedure for a given fretting problem should consist of at least three components:
a contact mechanical solution (depending on the material model, the frictional regime, and
so on) as the basis for the determination of local stresses and displacements [6,7], a wear
routine [8–10], as well as a crack initiation and propagation routine [11–13]. Doing this in a
coupled and rigorous way (e.g., based on FE simulations [14]) is often very costly from a
computational perspective. Here, semi-analytic (contact mechanical) approaches—which
already have various applications in tribology [15]—can be a good “trade-off” between
effort and prediction quality [16].

Therefore, in the present manuscript, a simple and efficient semi-analytic contact
mechanical procedure for the fast simulation of fretting wear is proposed and discussed,
which could also be extended for the analysis of fretting fatigue. The model operates within

Symmetry 2021, 13, 1582. https://doi.org/10.3390/sym13091582 https://www.mdpi.com/journal/symmetry3
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the framework of the Hertz–Mindlin approximation to general axisymmetric tangential
contact problems, which will be stated in the manuscript, and which allows for an exact
solution, if the contact problem only slowly changes with time.

The manuscript is organized as follows. In Section 2, first, the physical assumptions of
the model are stated and the necessary classic solutions of axisymmetric contact mechanics
are re-iterated. These solutions are formulated in terms of Abel-type integral transforms,
the efficient numerical implementation of which is also briefly summarized. In Section 3,
the semi-analytical procedure for the fast simulation of tangential and torsional fretting
wear is presented and its predictions are compared to a contact mechanically more rigorous
model and to experimental results from the literature. A discussion and conclusive remarks
finish the manuscript.

2. Materials and Methods

2.1. Fundamental Assumptions

Firstly, we assume that all deformations are elastic. It follows from the fundamental
solution by Boussinesq [17] and Cerruti [18] (see, e.g., the book of Johnson [19]) for the
static relative surface displacements between two elastic half-spaces with the shear moduli
G1 and G2 and the Poisson ratios ν1 and ν2, which act on each other with a point force at
the origin of a common cartesian coordinate system {x,y,z}—z being the direction of the
common normal of the half-spaces—that the normal and tangential contact problems are
elastically decoupled, if the half-spaces are elastically similar, i.e., if

1 − 2ν1

G1
=

1 − 2ν2

G2
. (1)

For half-space contact mechanics to be valid, the contacting bodies must obey the
restrictions of the half-space approximation, i.e., their macroscopic dimensions have to be
much bigger than the largest characteristic contact size, and the surface gradients in the
vicinity of the contact must be small. Moreover, surface roughness is neglected, and all time-
dependent processes are analyzed in the quasi-static limit, i.e., elastic wave propagation is
not considered. Moreover, friction in the contact shall obey a local Amontons–Coulomb
law with a constant coefficient of friction μ, and for the uniaxial tangential contact problem
with friction, the lateral displacements uy resulting from a surface shear stress τxz are
neglected. The entirety of the latter assumptions is what we will refer to as Hertz–Mindlin
approximation [20,21] to the axisymmetric tangential contact problem with friction.

For the determination of the wear dynamics, a local Archard [22] wear law is used.
Note that the Archard law, in connection with the friction law assumed by the contact
mechanical component of the model, is equivalent to an energy-based wear model, which
is commonly used in the literature on fretting wear [23]. However, from the point of view
of the semi-analytical contact model given in Section 3, any local wear law according to
which the profile change is an explicit function of the local contact pressure and the local
slip displacement (or other known quantities) could be applied.

The severity of all these assumptions will be discussed later in the manuscript.

2.2. Elementary Axisymmetric Contact Solutions

Let the gap between the contacting bodies at first contact be an axisymmetric,
monotonous, continuous function f (r), with r being the polar radius in the contact plane.
Then, the normal contact solution (with prescribed contact radius a) for the indentation
depth d, normal force F, contact pressure distribution p(r), and relative displacements uz(r)
outside the contact area, first found by Schubert [24] and Galin [25], is given by [26]

d = g(a), g(x) = d
dx

[
x∫

0

r f (r)√
x2−r2 dr

]
, F(a) = 2E∗

[
g(a)a −

a∫
0

g(x)dx

]
,

p(r; a) = E∗
π

a∫
r

g′(x)√
x2−r2 dx, r ≤ a, uz(r; a) = 2

π

a∫
0

g(a)−g(x)√
r2−x2 dx, r > a,

(2)

4
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with the effective Young’s modulus

E∗ : =
(

1 − ν1

2G1
+

1 − ν2

2G2

)−1
. (3)

Usually, the prescribed quantities for the contact problem will rather be either the inden-
tation depth (for displacement-controlled systems) or the normal force (for force-controlled
systems), instead of the contact radius; however, the latter can easily be retained from the
respective prescribed quantity by inverting the relevant equation in the above solution.

Now, consider the simple Cattaneo–Mindlin [21,27] loading history for the contacting
bodies: they are first pressed against each other by a normal force F and subsequently
loaded in the tangential direction by an increasing force Fx. As the tangential load increases,
local slip propagates from the contact edge into the contact area. The radius of the remaining
inner stick area at the end of the loading procedure shall be c. Ciavarella [28] and Jäger [29]
were the first to recognize that the general axisymmetric Cattaneo–Mindlin problem (within
the simplifications detailed in the previous subsection) is solved by a basis (indicated by
the index “B”) tangential stress distribution

|τB(r; a, c)| = μ

{
p(r; a)− p(r; c), r ≤ c,
p(r; a), c < r ≤ a,

(4)

i.e., the problem can be reduced to the frictionless normal contact problem. The slip
displacement distribution in the slip area after the complete loading process is given by [26]

|Δux,B(r)| = μ
E∗

G∗ [ f (r) + uz(r; c)− g(c)], c < r ≤ a, (5)

with the effective shear modulus

G∗ : =
(

2 − ν1

4G1
+

2 − ν2

4G2

)−1
, (6)

and the same notations as in Equation (2). The argument c in Equations (4) and (5) refers to
the normal contact solution if the contact radius were c. The basis relations between c; the
macroscopic relative tangential displacement, ux0; and the tangential force, Fx, are [26]

ux0,B(a, c) = μ
E∗

G∗ [g(a)− g(c)], Fx,B(a, c) = μ[F(a)− F(c)]. (7)

The solution to the torsional contact problem is a little more elaborate numerically,
because there is no equivalent to the Ciavarella–Jäger principle for tangential contact, i.e.,
the torsional contact problem with friction cannot be reduced to the frictionless normal
contact. Nevertheless, conceptionally, the solution to the general axisymmetric torsional
contact problem with friction poses no difficulties and has been found by Jäger [30]. The
assumptions for that solution are comparable to the Hertz–Mindlin approximation, namely,
the contact partners are assumed to be elastically similar, and the frictional interaction shall
obey a local Amontons–Coulomb law.

For the elementary loading history (constant normal force, subsequently applied
increasing torque; sometimes referred to as the “Lubkin [31] problem”), the solution goes
as follows [32]: first, a function φ must be determined according to

φ(a, x) =
μ

2G

a∫
x

p(r; a)√
r2 − x2

dr, x ≤ a, G : =
(

1
G1

+
1

G2

)−1
, (8)

which gives the relation between the amplitude of the torsional oscillation, ϕA, and the
stick radius:

ϕA = φ(a, c). (9)

5
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After that, the slip displacement distribution in the slip area is given by

Δu(r; a, c) =
4

πr

r∫
c

x2[ϕA − φ(a, x)]√
r2 − x2

dx, c < r ≤ a. (10)

The torque as a function of the stick radius can be calculated easily, but will not be
needed in later stages of the present manuscript.

2.3. Numerical Implementation of the Abel-Like Integral Transforms

The efficient numerical implementation of the integral transforms appearing in the
previous subsection is straight forward, but shall be described briefly in the following.

Let us start with the determination of the equivalent profile g(x) from the axisymmetric
profile f (r):

g(x) =
dh
dx

, h(x) =

x∫
0

r f (r)√
x2 − r2

dr. (11)

Following an idea by Benad [33], we integrate by parts to get rid of the singularity in
the integrand:

h(x) =

x∫
0

r f (r)√
x2 − r2

dr =

x∫
0

f ′(r)
√

x2 − r2 dr, (12)

where the prime denotes the first derivative with respect to the given function argument.
The last integral is evaluated on equidistant arrays for the spatial coordinates. Applying
the trapezoidal rule, the integral is reduced to a simple matrix-vector multiplication. All
derivatives are calculated by second-order finite differences.

Integration by parts for the pressure distribution p(r) results in

p(r) =
1
π

a∫
r

g′(x)√
x2 − r2

dx =
1
π

⎡⎣cosh−1
( a

r

)
g′(a)−

a∫
r

cosh−1
( x

r

)
g′′ (x) dx

⎤⎦, (13)

where cosh−1 denotes the inverse hyperbolic cosine. For the additional transformations in
the torsional case, integration by parts gives

φ(x) = − μ

2G

a∫
x

cosh−1
( r

x

) d
dr

[p(r; a)] dr (14)

and

Δu(r) = − 2
π

r∫
c

[
x

√
1 − x2

r2 + r cosh−1
( x

r

)] d
dx

[φ(a, x)]dx, c < r ≤ a. (15)

For brevity, the discretization procedure is omitted, as it works completely similar to
as in the first case.

3. Results

In this section, the proposed semi-analytical procedure for the simulation of fretting
wear is shown. First, the model for tangential fretting wear is detailed and its predictions are
compared to a contact mechanically more rigorous numerical model in Sections 3.1 and 3.2.
In Section 3.3., the main idea of the model is applied to a different fretting mode, torsional
fretting, and the results of a numerical simulation for the evolution of the worn profile in a
partial slip torsional fretting contact of a rubber ball on abrasive paper are compared to
experiments from the literature in Section 3.4.

6
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3.1. Model for Tangential Fretting Wear

The Cattaneo–Mindlin loading only corresponds to the first loading of the fretting
contact. As is known, the solution to the tangential contact problem depends on the loading
history. So, how will the contact solution look like during the fretting cycles? When the
direction of the tangential motion is reversed, there is a moment of complete stick, because,
according to the local Amontons law, the whole slip area is at the boundary state |τ| = μp.
Moreover, wear happens very slowly, i.e., on a much larger time scale than the fretting
cycle duration. If there were no wear at all during two cycles, after reversing motion, a
basis stress distribution can be linearly superposed [34]:

τ(r) = τB(r; a, c)− 2τB(r; a, c∗), (16)

to obtain the stress distribution with the current stick radius c*. At the end of the half-cycle,
the stress distribution is the same as at its beginning, with the sign reversed. Therefore, on
the one hand, the relations between the amplitudes of the tangential force or displacement
oscillation, FA and uA, and the minimum stick radius c of the fretting cycle are also given
by Equation (7). On the other hand, the slip displacement during the half-cycle is

Δux(r) = 2Δux,B(r; a, c), c < r ≤ a. (17)

During the second half-cycle, the same happens again. Hence, assuming a local
Archard wear law, a zero-order approximation for the profile change during one cycle is
given by

Δ f (r, t) =
4μE∗

G∗
kwear

σ0
p(r, t; a(t))[ f (r, t) + uz(r; c)− g(c)], (18)

where the time t is measured in cycle durations, kwear is the dimensionless wear coefficient
in the Archard law and σ0 is the hardness of the worn material. “Zero-order approximation”
in this context refers to the fact that the influence of the change of profile due to the wear
in one cycle on the contact problem and the resulting change in the slip displacement
is neglected.

Equations (17) and (18) are based on the supposition that there is a remaining stick
area when reversing the tangential motion. At the gross slip transition, one obtains

Δux = 4μ
E∗

G∗ f (r), r ≤ a, if uA = μ
E∗

G∗ d : = ux,c. (19)

If the sliding distances remain small compared with the contact radius (so that the
system retains its approximate axial symmetry), the model can also be used in the gross
slip regime. In the first fretting half-cycle, gross slip will start at a macroscopic relative
tangential displacement

ux0 = uA − 2ux,c, if uA > ux,c. (20)

Hence, the local slip displacement distribution in the contact area after a full cycle is
given by

Δux = 4
[

uA − ux,c + μ
E∗

G∗ f (r)
]

, r ≤ a, if uA > ux,c. (21)

Moreover, it is apparent from Equation (7) that, for both fully displacement-controlled
(i.e., with a fixed indentation depth and amplitude of the tangential displacement oscil-
lation) and fully force-controlled (i.e., with a fixed normal force and amplitude of the
tangential force oscillation) tangential fretting, the minimum stick radius during one
fretting cycle is constant over time, if there are no profile changes for r < c. That is self-
consistent within the basic assumptions of the model (no wear without relative motion
between contacting surface points), and c thus has the meaning of a permanent stick radius.

7
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Hence, the proposed semi-analytical model works as follows: in every fretting cycle,
the slip displacement distribution depending on the current profile and the current pressure
distribution is calculated; based on the Archard law, the profile is updated and the new
pressure distribution is calculated based on the normal contact solution. Finally, it should
be noted that the second and third term in the slip displacement formula in Equation (5)
only depend on the function g within the permanent stick area, which does not change
over time.

Very common characteristics of fretting contacts are “fretting loops”, i.e., hysteresis
loops between the macroscopic relative tangential displacement and tangential force during
the fretting process. The shape of the fretting loop and its time evolution are often used to
characterize the fretting regime [35,36], because it is a simple and effective way to visualize
the frictional energy dissipation in the slip area of the contact. The fretting loops can be
calculated very easily in the model described above. From the basic contact solution in
Equation (7) and the superposition in Equation (16), it is clear that the relative tangential
displacement and the tangential force during a specific fretting cycle (without gross slip)
with the current equivalent profile g(x,t) are given by

Fx = ±Fx,B(a, c)∓ 2Fx,B(a, c∗) = ±μ[2F(c∗)− F(a)− F(c)], c ≤ c∗ ≤ a,
ux0 = ±ux0,B(a, c)∓ 2ux0,B(a, c∗) = ±μ E∗

G∗ [2g(c∗)− g(a)− g(c)], c ≤ c∗ ≤ a,
(22)

where the different signs correspond to the first and second fretting half-cycles. For brevity,
the time argument was omitted. In the gross slip regime, c equals zero and the tangential
displacement during the partial slip stage of the oscillation must be modified according to

ux0 = ±μ
E∗

G∗ [2g(c∗)− g(a)]± uA ∓ ux,c, 0 ≤ c∗ ≤ a. (23)

The force relation can be taken from Equation (22) and the relations in the sliding
stage are trivial. Note that, because of the Ciavarella–Jäger principle, the fretting loop can
be determined simply based on the normal contact solution for the current fretting cycle
and the amplitude of the tangential oscillation.

3.2. Comparison with a Contact Mechanically More Rigorous Model

Dimaki et al. [37] proposed a fast numerical algorithm for fretting wear of axisymmet-
ric contacts, where the slip displacement during one fretting cycle is calculated based on
a separate (in the sense that it is almost independent of the wear simulation) numerical
model within the framework of the method of dimensionality reduction (MDR) [38]; the
fretting profile in their algorithm is also updated only once at the beginning of each fretting
cycle and the MDR solution to the tangential contact problem operates within the Hertz–
Mindlin approximation. Therefore, as the main (and practically only) difference between
this numerical model and the semi-analytical approach proposed in the present manuscript
is the calculation of the slip displacement, it makes sense to compare the predictions of both
models regarding the time-evolution of the worn profile. In Figure 1, the results of both
algorithms for the worn profiles are shown for an initially parabolic profile f (r) = r2/(2R),
with some radius of curvature R, in normalized variables (note that, in normalized vari-
ables, the results only depend on the parameters given in the figure). Both algorithms
were implemented in MATLAB® R2021a. The radial coordinate is normalized to the initial
contact radius, a0 = (dR)1/2, and the worn profile for the fixed indentation depth d. The
radius of the permanent stick area was set to c = 0.5a0. The characteristic number of fretting
cycles for the wear problem, N0, results from the wear law [37]:

N0 =
πa2

0dσ0

kwearF0uA
, (24)

with the initial normal force F0 at the beginning of the fretting, and the tangential displace-
ment oscillation amplitude uA.
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Figure 1. Time-evolution of the worn profile f, normalized for the fixed indentation depth d, as a function of the radial
coordinate r, normalized for the initial contact radius a0, for tangential fretting wear of an initially parabolic indenter and
different numbers of normalized cycles, N/N0. The dashed black line denotes the limiting no-wear profile [39]. The radius
of the permanent stick area was set to c = 0.5a0. (a) Results for the semi-analytic method proposed in the present manuscript;
(b) results for the contact-mechanically more rigorous algorithm proposed by Dimaki et al. [37].

There are no visible differences between the prediction of the semi-analytical approach
and the contact mechanically more rigorous model. Hence, it can be concluded that the
zero-order approximation in Equation (18) gives a very good result (within the Hertz–
Mindlin framework, of course) if the profiles are worn slowly compared with the fretting
cycle duration. Nevertheless, if the implementation of the Abel-like transforms is done the
same way, the semi-analytical model works faster by a factor of the order of one, because
the number of numerical operations for one fretting cycle is significantly reduced.

3.3. Model for Torsional Fretting Wear

The main idea of the semi-analytical approach described in Section 3.1—that the
slip displacement during one fretting cycle can be calculated analytically as a zero-order
approximation—is also applicable to other fretting modes, for example, torsional fretting.

If, once again, we neglect the profile change on the time scale of a single fretting cycle,
the torsional stress distribution between two reversal points of the fretting oscillation can
be obtained by linearly superposing a stress distribution for the elementary loading in
a similar way as in Equation (16) [40]. During one fretting cycle, this happens twice, so
the total slip displacement during one fretting cycle is four times the expression given in
Equation (10). The slip displacement once again determines the profile change according
to the linear Archard wear law. Note that, for the torsional problem, c = 0 only exists as a
limit, as the center point of the contact always remains sticking.

Hence, the semi-analytical algorithm for torsional fretting wear works the same as in
the case of tangential fretting, except that now, four Abel-like transforms must be performed
in every cycle. Interestingly, as the torsional contact problem cannot be reduced to the
normal one, the minimal stick radius during one cycle is not constant while the profile is
worn, but rather slightly increases. Nevertheless, the notation c shall still refer to the radius
of the permanent stick region, i.e., the minimal stick radius during the first fretting cycle.
The characteristic number of fretting cycles is given by

N0 =
πa0dσ0

kwearF0 ϕA
, (25)

with the amplitude of the torsional angular oscillation, ϕA.
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3.4. Comparison with Experimental Results

In their analysis of the limiting no-wear profile for multi-mode fretting, Dmitriev
et al. [41] conducted experiments on torsional fretting of a rubber half-sphere on a flat
covered by abrasive paper. The radius of the sphere is (approximately) 19 mm (the paper
wrongly says 14.5 mm, but from the respective figure, the correct value can be estimated),
the indentation depth is 2 mm, and the radius of the permanent stick area is 3.25 mm [41].
The theoretical prediction will only depend on the number of normalized fretting cycles,
N/N0. In the experiments, the profiles were measured in consecutive steps of 2.160 cycles
each. Based on the experiments, the value of N0 was estimated as 14.400, which corresponds
to a dimensional wear rate of approximately 7.5 mm3/m (which is quite high). In Figure 2,
the experimental results and the theoretical prediction are shown. They agree well with
each other; in the experiments, the wear seems to be slower than predicted in the beginning
(which makes sense, as the wear rate in the simulation is high); later, the wear rate in the
experiments seems to increase and the convergence to the limiting profile is even faster
than in the numerical calculation. Moreover, for the elastic ball in the experiment, there is
a visible displacement of the lower point of the wearing area (corresponding to the edge
of the permanent stick zone), while the position of the upper point (corresponding to the
edge of the initial contact area) is virtually unchanged. On the other hand, the inverse
relationship is observed in the calculation by the semi-analytical model.

Figure 2. Time evolution of the worn profile of an initially spherical rubber indenter in torsional fretting on abrasive paper.
(a) Experimental results by Dmitriev et al. [41] (figure by the authors of [41]); (b) theoretical prediction for consecutive
numbers of normalized fretting cycles. The dashed line on the left and the thin solid line on the right correspond to the
theoretical limiting no-wear profile [39].

4. Discussion

As stressed, the presented semi-analytical model of fretting wear is based on several
simplifying assumptions that restrict its scope of applicability, at least in a quantitative
sense. The most severe simplification is probably the local application of the linear Archard
wear law. Moreover, neglecting surface roughness and non-elastic deformations can be
unjustified simplifications in several circumstances.

Fouvry et al. [23] have pointed out that an elementary global-local, e.g., energy-based,
description of the fretting wear process is applicable if the tribo-couple is dominated by
non-adhesive wear mechanisms. This is confirmed by the above comparison of the present
model proposal with the experimental results on torsional fretting wear of rubber on
abrasive paper and in line with the findings of Varenberg et al. [42] that the role of oxide
wear debris depends on the dominant fretting wear mechanism. However, in general,
and especially in systems dominated by adhesive wear, an appropriate description of the
third body in contact (i.e., the debris behavior) is vital for a comprehensive understand-
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ing of fretting wear. A deep overview on predictive wear models was given by Meng
and Ludema [43]. For an up-to-date review on recent advances in the understanding of
wear mechanisms and modelling, the reader is referred to the extensive work of Meng
et al. [44]. However, quantitatively predictive wear equations are still extremely scarce and
usually the main bottleneck for the predictive power of (even very elaborate) fretting wear
simulations—which are often also based on a simple Archard- or energy-based wear law,
despite their highly sophisticated material and contact models.

Another problematic characteristic of the model is that the macro-slip slope of the
fretting hysteresis loop is zero, because it strictly is a Coulomb-based model, i.e., the
friction coefficient is assumed to be constant (at least over one fretting cycle); however, in
experimental fretting loops, the macro-slip slope is usually slightly positive (see, e.g., [45]).

Hu et al. [46] analyzed the effect of plastic deformations (due to the forming stress
singularity at the boundary of the stick zone) on the fretting behavior and found that the
main effect of plasticity is to allow the wear to penetrate the permanent stick region, and
thus to never cease.

Moreover, the other assumptions of what in the present manuscript is referred to as
the Hertz–Mindlin approximation can be a source of quantitative error. Generally, the
tangential contact problem is not axisymmetric, and neither is, for example, the shape of the
stick area. However, the error of the approximation is relatively small (at least compared
with the uncertainty in the prediction of wear coefficients), as demonstrated by Munisamy
et al. [47] by a self-consistent numerical solution of the Cattaneo–Mindlin problem. A deep
and general analysis of tangential contact problems with elastic coupling can be found in
the book of Barber [48].

On the other hand, several extensions of the proposed method are possible and
planned for future work. Firstly, the Abel-like transforms can be written as explicit convolu-
tions and, therefore, accelerated by the fast Fourier transform (FFT) [49]. Moreover, once the
normal and tangential contact problems in the Hertz–Mindlin approximation are solved,
the complete stress state inside the materials can be obtained via simple 1D-integrals [50],
which allows for the fatigue analysis. Hence, the suggested semi-analytical model can be
a part of a more global model of fretting in axisymmetric contacts. Finally, based on the
tangential contact solution for power-law graded elastic materials by Heß and Popov [51],
the proposed semi-analytical procedure can be generalized for power-law graded materials.
This might be of high practical relevance, as this material class possibly offers a solution to
the wear-fatigue dilemma in fretting [52].

5. Conclusions

A semi-analytic contact mechanical model for the fast simulation of fretting wear of
axisymmetric contacts has been proposed. The main idea of the model is to neglect the
change of the indenter profile during one cycle of the fretting oscillation, which—within the
Hertz–Mindlin approximation—allows to analytically calculate the slip-length during one
cycle in closed form, and hence gives a zero-order approximation for the time-evolution of
the worn profile. This procedure gives the same results as contact mechanically rigorous
simulations based on the Hertz–Mindlin approximation, but works significantly faster than
those. A comparison of the numerical prediction for the evolution of the worn profile in
partial slip torsional fretting of a rubber ball on abrasive paper shows good agreement with
the experimental results from the literature.
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Abstract: Plastic optical components are light in weight, easy to manufacture, and amenable to mass
production. However, plastic injection molded parts are liable to shrinkage and warpage as a result
of the pressure and temperature variations induced during the molding process. Consequently,
controlling the process parameters in such a way as to minimize the geometric deformation of the
molded part and improve the performance of the optical component as a result remains an important
concern. The present study considered the problem of optimizing the injection molding parameters
for the plastic lens barrel of a bilateral telecentric lens (BTL) containing four lens assemblies. The
study commenced by using CODE V optical software to design the lens assemblies and determine
their optimal positions within the barrel. Taguchi experiments based on Moldex3D simulations
were then performed to determine the processing conditions (i.e., maximum injection pressure,
maximum packing pressure, melt temperature, mold temperature, and cooling time) which minimize
the coaxiality of the plastic barrel. Finally, CODE V and grayscale analyses were performed to confirm
the optical performance of the optimized BTL. The Taguchi results show that the coaxiality of the
plastic lens barrel is determined mainly by the maximum packing pressure and melt temperature. In
addition, the CODE V and grayscale analysis results confirm that the optimized BTL yields a better
modulus transfer function, spot diagram performance, and image quality than a BTL produced using
the general injection molding parameters.

Keywords: injection molding; concentricity; coaxiality; optical barrel; bilateral telecentric lens;
optimization

1. Introduction

Plastic provides an ideal material for the fabrication of optoelectronic product acces-
sories and supports due to its light weight, low cost, high mechanical strength, ease of
processing, and good potential for mass production. However, the successful realization of
plastic optical components involves many challenges, including optical design, integrated
mechanism design, process parameter design, and product inspection and analysis. Plastic
optical products are commonly fabricated using injection molding. However, while injec-
tion molding has significant advantages in terms of a high throughput, a low unit cost,
and good repeatability, the quality of the molded components is extremely sensitive to
the processing conditions, e.g., the injection pressure, packing pressure, melt temperature,
mold temperature, packing time, and cooling time. Moreover, the processing parameters
have both individual and interactive effects on the molding outcome. Consequently, deter-
mining the processing conditions which optimize the quality of the molded products (the
dimensional tolerance, surface finish, mechanical strength, etc.) is extremely complex.

Optical components are subject to extremely tight manufacturing tolerances in order
to achieve the necessary imaging quality. However, achieving these tolerances for plastic
components realized through injection molding is extremely challenging, particularly in the
case of geometric assemblies with high aspect ratios, or non-symmetrical geometries [1–4].
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In many lens-based devices, the lens assemblies are housed within plastic bodies, and hence
the problem of ensuring the imaging quality of the device involves not only guaranteeing
the optical quality of the individual lenses, but also controlling the geometrical precision
and form of the housing. For example, for bilateral telecentric lenses (BTLs), which are
designed to provide a constant field of view (FOV) at all distances from the lens, roundness
or concentricity errors of the lens barrel result in misalignments of the lens assemblies,
which then seriously degrade the performance of the device. As a result, it is essential that
the molding parameters are correctly controlled in such a way as to minimize the shrinkage,
warpage, and residual stress of the barrel during the manufacturing process [5–7].

Many studies have demonstrated the feasibility of combining the Taguchi experimental
method with mold flow simulations to determine the optimal injection molding processing
parameters through a minimum number of experiential trials [8–11]. Furthermore, many
software systems and algorithms have been applied to evaluate existing optical designs,
optimize the performance of new imaging solutions, reduce manufacturing costs through
process improvements, etc. [12–17]. Among the many optical design software packages
currently available, CODE V (Synopsys, Inc., Mountain View, California, USA) is one of
the most commonly used for the design, tolerancing, and performance evaluation of new
optical configurations.

In the present study, a hybrid Taguchi/Moldex3D simulation approach was employed
to optimize the injection molding processing parameters for the plastic lens barrel of the
BTL device shown in Figure 1 consisting of four lenses and a protruding handle. Optimal
analysis of plastic injection molding was based on the authors’ previous research on the
roundness and concentricity of the BTL [18]. The authors performed further optical analysis
on the concentricity results to confirm the optimized results. CODE V optical software
was first used to design the four lenses and to determine their optimal positions within
the barrel. Taguchi/Moldex3D simulations were then performed to establish the injection
molding conditions which minimize the coaxiality error of the lens barrel (i.e., the overall
concentricity error of the four lenses) following the molding process. Finally, CODE V and
grayscale analyses were performed to investigate the modulus transfer function (MTF),
spot diagram characteristics, and imaging performance of the optimized BTL barrel.

Figure 1. Geometry and optical design of the BTL (unit: mm).
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2. Method and Procedures

Figure 2 presents a flow chart showing the main steps in the design, optimization, and
analysis procedure performed in the present study. Having defined the optical components
within the BTL (i.e., the four lenses), CODE V optical software was employed to establish the
specification, location, and material of each lens and to determine the required geometrical
dimensions of the optical tube. A model of the plastic optical tube was constructed using
Rhinoceros software, and Moldex3D simulations were then performed in conjunction
with the Taguchi experimental design method to determine the optimal injection molding
conditions which minimize the average concentricity error of the optical tube at the planes
corresponding to the ideal locations of the four lenses. Finally, the MTF and spot diagram
of the BTL were investigated for three different light fields (FI, FII, and FIII) entering the
objective lens at different distances from the optical axis (see Figure 1). The validity of
the optimized design was confirmed by comparing the CODE V results for the modulus
transfer function (MTF), spot diagram (SD), and 2D imaging simulation (IMS) of the
proposed optical device with those of an ideal BTL device with no coaxiality or concentricity
errors and a BLT device molded using the default processing conditions for the selected
polymer material.

 

Coaxiality Optimized, OK?  

CODE V Optical Design: 
Lens Barrel Assemblies 

Rhinoceros: 
Plastic Lenses Barrel Design 

Moldex3D Simulation: 
General Processing Conditions Design 

 Optimization Results: Concentricity and 
Coaxiality with processing parameters 

MTF, SD and IMS 
Qualities Check, OK? 

 Functional Requirements: 
Define Optical Components 

 Taguchi Method Optimization: 
OA, S/N, Factors & Level Responses 

Optic Design and Barrel Manufacturing 
Completed 

No 

No 

Yes 

Yes 

Change Geometry 

Change Conditions 

Change DOE 

Change Geometry 

Change Conditions 

Change Optics 

Figure 2. Flow chart showing the main steps in the optical design and injection molding optimization
procedure for the BTL.
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2.1. Materials and Geometry Model

In performing the analysis, it was assumed that the plastic barrel of the BTL was fabri-
cated of PA66 (Polyamide 66 or Nylon 66) polymer (TECHNYL A 216, Solvay Engineering
Plastics), with the material properties and recommended injection molding parameters
shown in Table 1. Figure 3a shows the relationship between the viscosity of PA66 and
the shear rate at different temperatures. Figure 3b shows the P-v-T (pressure/specific
volume/temperature) properties of the PA66 material as a function of the shear rate and
temperature, and this characteristic was used to calculate the degree of compression of the
PA66 material in the packing stage. Table 2 shows the material, geometry dimensions, and
optical properties of the four lenses within the BTL.

Table 1. Material properties and recommended processing conditions for PA66 (TECHNYL A 216,
Solvay Engineering Plastics).

Material Properties Values Unit

Density 1140 Kg/m3

Specific heat 2 × 10−11 J/Kg. ◦C
Heat conduction coefficient 0.25 J/s.m. ◦C
Mold shrinkage 1.90 %
Tensile modulus 3000 MPa
Melt temperature 263 ◦C
Coefficient of linear thermal expansion (23–85 ◦C) 7 × 10−5 ◦C
Viscosity vs. shear rate under different temperatures shown in Figure 3a
P-v-T shown in Figure 3b

Processing Conditions in Injection Molding (Recommended) Values Unit

Maximum injection pressure 180–240 MPa
Maximum packaging pressure 180–240 MPa
Melt temperature 270–290 ◦C
Mold temperature 60–100 ◦C
Cooling time 11–17 s
Ejection temperature 190 ◦C
Curing temperature 210 ◦C

Table 2. Optical properties and geometrical dimensions of lenses in the BTL.

Lens No. Glass/SCHOTT
Curvature

Radius
(mm)

Thickness
(mm)

Refractive
Index

(-)

Abbe Value
(-)

Partial
Dispersion

(-)

Dispersion
(NL-N1)

(-)

Len 1 NLAK33A
109.2083

5.0065 1.75393 52.271 0.30323 0.01442
−786.0770

Len 2 NLAK33B
38.8283

5.0044 1.75500 52.300 0.30321 0.01444
137.9732

Len 3 FK5HTI
−67.9914

18.1944 1.48748 70.470 0.30977 0.00692
15.3674

Len 4 LAFN7
427.9534

17.2165 1.74950 34.951 0.29414 0.02144
−33.0637
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Figure 3. (a) Viscosity and (b) P-v-T properties of PA66 material (source: Moldex3D material library).
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2.2. Mold Flow Analysis and Taguchi Experimental Method

A geometric model of the BTL barrel was constructed in Rhinoceros and exported
to Moldex3D-Mesh to define the corresponding molding system (see Figure 4) with the
runner system (see Figure 4a) and cooling system (see Figure 4b). Figure 4a shows that the
PA66 melt was injected into the mold cavity with four gates through the runner system,
and the size of the runners including the diameter and length is shown in the description.
The coolant used in the entire injection molding system was water, and the water entered
the cooling runner at a temperature of 25 ◦C to cool the mold (see Figure 4b). The injection
molding process was then simulated using Moldex3D. The simulations considered five
molding parameters, namely, the maximum injection pressure, the maximum packing
pressure, the melt temperature, the mold temperature, and the cooling time. Each molding
parameter (control factor) was assigned four different level settings. Hence, the Taguchi
experiments were configured in an L16(54) orthogonal array (OA), as shown in Table 3 (gray
region). The aim of the Taguchi experiments (i.e., Moldex3D simulations) was to determine
the combination of control factor level settings which minimized the concentricity error of
the BTL barrel at the position of each lens and hence optimized the coaxiality of the tube.
Hence, for each run of the OA, the quality of the simulation outcome was evaluated using
the following smaller-the-better S/N (signal-to-noise) ratio:

S/N = −10 log

(
1
n

n

∑
i=1

yi
2

)
, (1)

where yi is the concentricity of the barrel at the measurement plane i (i = 1~4), and n is the
number of measured points in the trial.

 

Figure 4. Cont.
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Figure 4. (a) Injection molding system and (b) cooling system of the BTL (D: diameter; L: length;
unit: mm).

Table 3. Taguchi L16(54) orthogonal array for coaxiality optimization of the BTL.

Trials

Processing Factors

A
Maximum
Injection
Pressure

(MPa)

B
Maximum

Packing
Pressure

(MPa)

C
Melt

Temperature (◦C)

D
Mold

Temperature
(◦C)

E
Cooling

Time
(s)

General Parameters 200 200 280 80 13

1 180 180 275 70 11
2 180 200 280 80 13
3 180 220 285 90 15
4 180 240 290 100 17
5 200 180 280 90 17
6 200 200 275 100 15
7 200 220 290 70 13
8 200 240 285 80 11
9 220 180 285 100 13
10 220 200 290 90 11
11 220 220 275 80 17
12 220 240 280 70 15
13 240 180 290 80 15
14 240 200 285 70 17
15 240 220 280 100 11
16 240 240 275 90 13

Optimal Parameters 220 240 275 90 17
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2.3. Roundness, Concentricity, and Coaxiality Measures

For cylindrical objects such as the BTL barrel considered in the present study, the
manufacturing quality can be evaluated by three different metrics: the roundness, the
concentricity, and the coaxiality. Traditional methods for evaluating the roundness of
manufactured parts include the least squares circle (LSC) method, the minimum zone
tolerance circle (MZC) method, the maximum inscribed circle (MIC) method, and the
minimum circumscribed circle (MCC) method [19]. In the present study, the roundness of
the BTL barrels produced using the different processing conditions specified in the Taguchi
OA was evaluated using the LSC method [20]. In particular, a fitting process was applied
to determine the circle which produced the minimum sum of the square error F(x, y) with
the actual circular profile of the tube, i.e.,

F(x, y) =
n

∑
i=1

[
r(x, y)2 − Rc

2
]2
=

n

∑
i=1

[
(x − xc)

2 + (y − yc)
2 − Rc

2
]2

(2)

where r(x, y) is the distance between the measured point (x, y) and the unknown center
(xc, yc) of the circle, n is the number of measured points, and Rc is the radius of the least
squares circle. Taking the center (xc, yc) of the least squares error (LSE) circle as the center
of the circle after processing deformation, the LSE circle center was calculated at each of
the four reference planes (i.e., lens positions) in the BTL barrel. The concentricity, d, of
the barrel at each plane was then computed as the offset of the LSE circle center from the
designed datum value (xo, yo) = (0, 0). Finally, the concentricity values obtained at the
four reference planes were averaged to evaluate the coaxiality of the tube [21–23]. For
convenience, the corresponding mathematical derivations are given in the following.

The concentricity of the BTL at plane i was evaluated as

di =

√
(xc − xo)

2 + (yc − yo)
2 (3)

The coaxiality (overall concentricity) of the BTL was computed as

Coaxiality =
n

∑
i=1

[di]
2/n (4)

2.4. CODE V Optical Evaluation Using Eccentric Coordinates (xc, yc, zc)

Following the Taguchi/Moldex3D simulations, the concentricity coordinates (xc, yc)
and axial displacements (zc) of each lens in the barrel were input to CODE V software in
order to evaluate the optical performance of the device. The performance was evaluated in
terms of three metrics, namely, the MTF, the spot diagram, and the 2D imaging simulation.
In general, the MTF indicates how a lens reproduces contrast over a broad range of spatial
frequencies, while the spot diagram computes the focused image size and provides a quick
and qualitative assessment of the overall quality of the lens assembly. Finally, the 2D
imaging simulation (resolution results with grayscale analysis) provides a further simple
visualization of the optical system performance [24].

3. Results and Discussion

3.1. Taguchi Optimization Results

The general (or standard for specific machines) processing parameters for the consid-
ered PA66 polymer material were taken from the manufacturer’s specification as follows:
maximum injection pressure 200 MPa, maximum packing pressure 200 MPa, melt tempera-
ture 280 ◦C, mold temperature 80 ◦C, and cooling time 13 s (see the upper row in Table 3).
However, the Taguchi analysis results indicated that the optimal parameter settings (i.e.,
the parameter settings which minimized the coaxiality error of the BTL tube) were a max-
imum injection pressure of 220 MPa, a maximum packing pressure of 240 MPa, a melt
temperature of 275 ◦C, a mold temperature of 90 ◦C, and a cooling time of 17 s (see the
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lower row in Table 3). Table 4 shows the Taguchi S/N response data for the five control
factors and their level settings. As shown, the control factors can be ranked in terms of
a diminishing effect on the coaxiality of the tube as follows: maximum packing pressure
> melt temperature > cooling time > maximum injection pressure > mold temperature.
In other words, the coaxiality of the molded tube is dominated by the packing pressure
and melt temperature, while the cooling time, injection pressure, and mold temperature
all have more minor effects. Table 4 shows that the S/N ranges of factor A (maximum
injection pressure) and factor D (molding temperature) are much smaller than those of
factor B (maximum packing pressure), factor C (melt temperature), and factor E (cooling
time). It is worth noting that under the condition of coaxial optimization of control factors
A and D, their individual influence is significantly smaller than that of other factors (B, C,
and E). However, factor A and factor D are different in the S/N range (but their values
are very close). Therefore, their impact evaluation should be discussed in consideration of
other different processing conditions.

Table 4. Signal-to-noise (S/N) response of control factors and level settings.

Level/
Range/Rank

Factor Control Factors

A B C D E

Level 1 (dB) 18.42426 17.93074 18.64934 18.4332 18.38978
Level 2 (dB) 18.44004 18.29598 18.51562 18.45852 18.36406
Level 3 (dB) 18.4714 18.63066 18.3822 18.45247 18.44444
Level 4 (dB) 18.4491 18.92741 18.23765 18.44061 18.58652

S/N Range (dB) 0.047142 0.996663 0.41169 0.025322 0.22246
Influence Rank 4 1 2 5 3

In general, the results show that a larger maximum packing pressure, a lower melt
temperature, and a longer cooling time are beneficial in reducing the concentricity error (in
each plane) of the tube and improving the coaxiality as a result. Table 5 shows the injection
molding simulation parameters for the general design and the optimal design to verify the
results of the Taguchi method.

Figure 5 shows the real sprue pressure changes and real flow rate changes in the filling
stage and the packing stage after the injection molding simulation. It can be seen that
increasing the maximum packing pressure and the maximum injection pressure helps to
maintain the stability of the flow rate (about 31.97 cm3/s) and is very close to the expected
constant flow rate (34.05 cm3/s). For the V/P (velocity-to-pressure) transition point, the
general design and optimal design have values of 2.098 s and 2.097 s, respectively. The
setting of the maximum injection pressure helps to keep the flow rate at a certain level
during the filling stage and limits the injection pressure during the filling stage to prevent
mold or machine failure. In fact, the real injection pressure also changes at the set desired
flow rate, and the real injection pressure is always less than the maximum injection pressure
during the filling stage. On the other hand, an injection molding machine with such a
high maximum packing pressure setting (200 MPa) is an extreme upper limit and is not
widely used throughout the process. Because this paper is a numerical simulation analysis,
the setting of the packing pressure does not fully consider the actual situation. Generally
speaking, when the packing pressure is too high, the pressure in the mold will be too
large. Such a processing procedure can cause stress concentration and residual stress,
which can lead to difficulty in ejection and even cracking. For the peak flow rate shown in
Figure 5, this is not a typical velocity profile for injection molding. The possible reason is
that the numerical simulation in this study adopted a one-stage flow rate setting. Under
the influence of all the complex processing factors, the cavity space that is not fully filled
must be filled before the expected end of time. Therefore, there is a tendency for the flow
rate to suddenly increase before entering the packing stage. Of course, this situation still
needs further confirmation and discussion.
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Table 5. Injection molding process parameters for general design and optimal design.

General Design Optimal Design

Filling

Filling time (s) 2.13 2.13
Melt temperature (◦C) 280 275
Mold temperature (◦C) 80 90
Maximum injection pressure (MPa) 200 220
Injection volume (cm3) 68.1 68.1

Packing

Packing time (s) 7 7
Maximum packing pressure (MPa) 200 240

Cooling

Cooling time (s) 13 17
Mold-open time (s) 5 5
Eject temperature (◦C) 190 190
Air temperature (◦C) 25 25

Miscellaneous

Cycle time (s) 27.13 27.13

 

Figure 5. Considering the processing factors (maximum injection pressure and maximum packing
pressure), the real sprue pressure change and flow rate change presented by the general design and
the optimal design during the filling stage and the packing stage are shown.
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Figure 6 plots the coaxiality error and S/N values for each of the 16 runs in the L16(54)
OA, together with those for the general (i.e., recommended) processing parameters and
optimal processing parameters. As shown, the tube produced using the optimal molding
parameters has the maximum S/N value of 19.33078 dB and the minimum coaxiality error
of 0.011666 mm2. The S/N value and coaxiality error of the optimal tube are 5.76% higher
and 21.5% lower, respectively, than those of the tube produced using the recommended
processing parameters. In other words, the effectiveness of the optimized parameter
settings in improving the coaxiality of the BTL tube is confirmed.

Figure 6. Coaxiality and S/N values for different control factor level settings in Moldex3D simulations.
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3.2. Geometry Analysis

Table 6 and Figure 7 show the center coordinate positions and concentricity values
at the four reference planes (Z1~Z4) of the ideal BTL design (with zero concentricity and
coaxiality errors), and the BTL tubes produced using the general and optimal processing
conditions. The results indicate that the geometric distortion produced by the manufactur-
ing process is far less than that produced by the asymmetric design of the barrel itself (i.e.,
the protruding handle structure (see Figure 1)). In addition, the optimal process parameters
have a greater effect in reducing the concentricity error at measurement planes Z1 and Z4
(at the two ends of the BTL barrel) than at planes Z2 and Z3 (in the central region of the
barrel). Notably, however, the results presented in Figure 7 show that even though the
concentricity values at the four planes are not markedly improved in the optimal design,
the overall coaxiality of the tube is significantly improved compared to that of the tube
produced using the general parameters (i.e., from 0.014866 to 0.011666 mm, as shown in
Table 6). It should be noted that the runner design and cooling system in this study are
based on virtual simulation. If the injection molding process is to be carried out realistically,
the interference problem caused by the mold assembly must be considered.

Figure 7. Center distribution and concentricity values in the design, general, and optimal BTL models.
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Table 6. Center coordinates/concentricity values of four reference planes and coaxiality of the optical
tube in the design, general, and optimal BTL models.

Unit: mm Design General Optimal

Planes Center Coordinate Bias : Zi(ΔXc, ΔYc, ΔZc);
Concentricity = di (i = 1–4)(mm); Coaxiality = ∑4

i=1 (di)
2/4(mm2)

Z1 = 0 (0, 0, 0)
0

Z1(0.173964, −0.000240496, 0.937954)
d1 = 0.173964166

Z1(0.152848, −0.000185194, 0.728356)
d1 = 0.152848112

Z2 = 57.75 (0, 0, 0)
0

Z2(−0.00609915, −0.000210664, 0.162)
d2 = 0.006102787

Z2(−0.0169768, −0.000159105, 0.1405)
d2 = 0.016977546

Z3 = 82.3 (0, 0, 0)
0

Z3(−0.0546394, −0.00013, −0.1749)
d3 = 0.0546394

Z3(−0.0581023, −0.0000981, −0.127)
d3 = 0.058102383

Z4 = 117.7 (0, 0, 0)
0

Z4(0.161799, −0.000609249, −0.662)
d4 = 0.1618

Z4(0.140132, −0.000555817, −0.52)
d4 = 0.140133102

Coaxiality 0 0.014866 0.011666

3.3. Optical Performance

As described in Section 2.4, the optical performance of the BTL barrel produced using
the optimal processing conditions was evaluated by means of MTF plots, spot diagrams,
and 2D imaging simulations. For comparison purposes, CODE V simulations were also
performed for the ideal design barrel and for the BTL barrel produced using the general
processing conditions. Note that the center coordinates and concentricity values of the four
lenses in each barrel were assigned the values shown in Table 6.

Figure 8 shows the sagittal and tangential MTF curves of the three BTL tubes (des-
ignated as design, general, and optimal) for light fields FI, FII, and FIII (see Figure 1). In
general, an MTF curve closer to the diffraction limit curve indicates a better imaging perfor-
mance. Consequently, all six MTF curves for the ideal BTL design (with zero concentricity
errors) are virtually superimposed on the diffraction limit curve. Moreover, the MTF curves
for the optimal tube are closer to the diffraction limit curve than those of the general tube.
In other words, the optimized parameters yield a significant improvement in the optical
performance of the BTL tube compared to that of the tube produced using the general pro-
cessing parameters. Figures 9–11 provide a detailed analysis of the imaging performance of
the three tubes for light fields I, II, and III. In general, the results confirm that, for all three
light fields, the imaging performance of the optimal tube is closer to the ideal performance
than that of the general tube. Furthermore, comparing the three figures, it is seen that the
imaging performance of the general tube and optimal tube is close to that of the ideal tube
for light rays close to the optical axis of the BTL (i.e., FIII) but gradually degrades with an
increasing distance from the axis (i.e., FII and FI).
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Figure 8. Modulation vs. spatial frequency response for different light fields in the design, general,
and optimal BTL models.
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Figure 9. MTF for light field I in the design, general, and optimal BTL models.
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Figure 10. MTF for light field II in the design, general, and optimal BTL models.
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Figure 11. MTF for light field III in the design, general, and optimal BTL models.

Figure 12 shows the spot diagrams of the three light fields on the image plane of the
design, general, and optimal BTL tubes. Note that for each spot, the RMS (root mean square)
value indicates the root mean square values of all the light spot distribution coordinates,
while the 100% value indicates the smallest circle diameter (in mm) sufficient to encompass
all of the individual light spots within the light field. Observing the three sets of light spots
for each tube, it is clear that the optimal tube results in a sharper imaging performance than
the general tube. Furthermore, examining the spot diagrams for light field FIII (closest to
the optical axis), the minimum circumscribed circle diameters of the design, general, and
optimal tubes are found to be 0.002281 mm, 0.047270 mm, and 0.040569 mm, respectively.
In other words, the optimal tube reduces the focused spot size by 14.2% compared to that
of the general tube. The corresponding improvement values for the FII and FIII fields are
12.8% and 10.5%, respectively. Similarly, the optimal tube improves the RMS value of the
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focus spot size by 15.4% compared to that of the general tube for light field FIII, and 13.7%
and 11.1%, respectively, for light fields FII and FI. In other words, the spot diagram results
confirm that the optimal tube, with an improved coaxiality, produces a better overall optical
quality than the general tube.

 

Figure 12. Spot diagrams of three light fields in the design, general, and optimal BTL models.

3.4. D Imaging Simulation: Grayscale Analysis of Imaging Quality

The imaging quality of the optimal BTL device was further evaluated by means of
grayscale analyses. Figure 13 shows the 1951 USAF resolution test chart commonly used
to evaluate the optical imaging quality of lens combinations [25]. Note that the dotted
circles correspond to different fields of view (FOVs) with a gradually increasing scale from
0 (blue circle) to 1 (black circle). Figure 14 presents a qualitative comparison of the imaging
performance of the ideal (design), general, and optimal BTL designs for the right-hand
region of the resolution test chart and numeral “2” in the top-left corner of the chart.
Although a slight improvement in the imaging quality is observed for the optimal design, it
is unconvincing. Accordingly, quantitative grayscale analysis simulations were conducted
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along the yellow reference line indicated in the four images in Figure 14 and shown on the
right-hand side of Figure 13. As shown in Figure 15a, the analysis was conducted over a
distance of 340 pixels, extending from pixel 140 (prior to the first block of three vertical lines
in the resolution test chart) to pixel 480 (after the final block of three vertical lines in the test
chart). Figure 15b shows the variation in the grayscale intensity along the considered line
as observed through the ideal BTL, general BTL, and optimal BTL. In Figure 15b, there are
18 peak groups corresponding to the black and white contrast area of the 18 areas crossed
by the yellow line in Figure 15a. The black and white interface is grayscaled due to optical
errors and imaging characteristics. These differences can be used to explain the pros and
cons of imaging. To better evaluate and compare the imaging qualities of the three BTL
designs, the grayscale profiles shown in Figure 15 were partitioned into three sub-profiles
corresponding to the 1st peak group, 8th peak group, and 18th peak group in Figure 15.
The corresponding results are presented in Figure 16a–c, respectively, where a grayscale
curve closer to the objective curve indicates an improved imaging quality (i.e., a lower
imaging distortion).

 

Figure 13. 1951 USAF resolution test chart with graduated FOV. Black circle: FOV = 1; red circle: FOV
= 0.6; green circle: FOV = 0.55; blue circle: FOV = 0. Yellow line shows reference line used to examine
image distortion and sharpness of different BTL designs by grayscale analysis.
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Figure 14. Two-dimensional image simulation results for the design, general, and optimal BTL models.
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(a) 

(b) 

Figure 15. Quantitative image distortion and sharpness evaluation of objective, design, general, and
optimal BTL models. (a) Analysis region in the USAF resolution test chart (refer to Figure 12, rotate
90 degrees counterclockwise). (b) Variation in grayscale intensity with pixel distance along yellow
reference line.
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(a) 

Figure 16. Cont.
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(b) 

Figure 16. Cont.
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(c) 

Figure 16. (a) Variation in grayscale intensity over pixel range of 143–161 (peak group 1 in Figure 15b).
(b) Variation in grayscale intensity over pixel range of 297–313 (peak group 8 in Figure 15b). (c) Varia-
tion in grayscale intensity over pixel range of 460–472 (peak group 18 in Figure 15b).

Figure 16 shows that the 1st peak group is the imaging section roughly between pixel
distances 143 and 161, the 8th peak group is the imaging section roughly between pixel
distances 297 and 313, and the 18th peak group is the imaging section roughly between
pixel distances 460 and 472. Observing the three figures, it is clear that the design curve
(i.e., the ideal BTL curve) lies closest to the objective curve in all three cases. Moreover,
the optimal curve lies closer to the objective curve than the general curve in every case. In
other words, the superior imaging quality of the optimized BTL design compared to the
general BTL design is confirmed. For the grayscale curves shown in Figure 16a–c, a steeper
gradient in the interface regions between the black and white features in the resolution test
image implies a greater imaging sharpness. Thus, a detailed inspection of the grayscale
analysis results for the optimal and general BTL designs confirms that the optimal design
yields a better image sharpness.

The grayscale curves shown in Figure 16a–c correspond to the upper-right, central-
right, and lower-right regions of the objective image, respectively (see Figure 13). Com-
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paring the grayscale curves in the three figures, it is seen that the image distortions of the
three BTL designs in Figure 16a,c are relatively large and are located to the upper right and
lower right of the objective image (see Figure 13), respectively. This result is reasonable
since the FOVs are quite large in both cases (i.e., ~0.6 and 0.55, respectively) and the target
geometry is not perpendicular to the direction of the FOV, resulting in a larger distortion
and asymmetry, respectively. However, the grayscale curves in Figure 16b show both a
smaller distortion and a greater symmetry since the FOV is smaller (i.e., 0.45 to 0.5) and the
target geometry is perpendicular to the direction of the FOV.

4. Conclusions

This study combined CODE V optical analysis software, the Taguchi experimental
design method, and Moldex3D flow analysis simulations to optimize the injection molding
processing parameters for a bilateral telecentric lens (BTL) barrel in such a way as to
maximize the coaxiality of the tube and improve the imaging performance as a result.
The Taguchi analysis results show that a larger maximum packing pressure, a lower melt
temperature, and a longer cooling time are all beneficial in improving the coaxiality of
the BTL barrel. Moreover, the CODE V and grayscale analysis results show that the BTL
barrel molded using the optimal processing conditions yields a better MTF response and
focusing performance than a BTL tube molded using the general processing parameters for
the chosen polymer material (PA66).
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Abstract: An approximate solution for a contact problem of profiles which are not axially symmetrical
but deviate only slightly from the axial symmetry is found in a closed explicit analytical form. The
solution is based on Betti’s reciprocity theorem, first applied to contact problems by R.T. Shield in
1967, in connection with the extremal principle for the contact force found by J.R. Barber in 1974
and Fabrikant’s approximation (1986) for the pressure distribution under a flat punch with arbitrary
cross-section. The general solution is validated by comparison with the Hertzian solution for the
contact of ellipsoids with small eccentricity and with numerical solutions for conical shapes with
polygonal cross-sections. The solution provides the dependencies of the force on the indentation, the
size and the shape of the contact area as well as the pressure distribution in the contact area. The
approach is illustrated by linear (conical) and quadratic profiles with arbitrary cross-sections as well
as for “separable” shapes, which can be represented as a product of a power-law function of the
radius with an arbitrary exponent and an arbitrary function of the polar angle. A generalization of
the Method of Dimensionality Reduction to non-axisymmetric profiles is formulated.

Keywords: contact problem; non-axisymmetric indenter; extremal principle; generalized MDR

1. Introduction

In 1882, Heinrich Hertz solved the problem of elastic contact of parabolic bodies [1].
A solution for the contact of an arbitrary body of revolution with a compact contact area
was found much later, in 1941–1942 by Föppl and Schubert [2–4]. An attempt to overcome
the restriction of axial symmetry was undertaken in 1990 by Barber and Billings [5]. Their
approach is based on using Betti’s reciprocity theorem as suggested by Shield in 1967 [6]
and the extremal principle found by Barber [7]. However, in [5] Barber and Billings merely
illustrated their method on examples of contacts with “linear profiles” (pyramids with
polygonal cross-sections) since an analytical solution is possible only for this case. In the
present paper, we apply the extremal principle of Barber to another case where a largely
analytical treatment is possible: To contacts of profiles that are not axially symmetrical but
deviate only slightly from the axial symmetry.

2. Barber’s Extremal Principle

In [6], Shield used Betti’s reciprocity theorem to show that the normal force FN(A)
appearing due to indentation of the profile f (x, y) to a depth d (while A is the contact area
in this state) is given by the equation

FN(A) =
1
d∗

�
A

p∗(x, y)(d − f (x, y))dxdy (1)

where in the pressure distribution, p∗(x, y) is that under a flat punch with the cross-
sectional shape A which is indented by d∗. Note that the indentation d∗ is an auxiliary
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parameter used solely for determining the pressure p∗(x, y); it has nothing to do with the
true indentation depth d. Of course, the integral (1) does not depend on d∗ as pressure
p∗(x, y) under an arbitrary flat punch is proportional to d∗. In [7], Barber has shown that
the area A fulfilling the usual contact conditions (the pressure inside the contact area is
positive and there is no interpenetration, outside the contact, the pressure is zero and
the distance between surfaces is positive), corresponds to the maximum force at a given
indentation depth. (For axisymmetric profiles, this extremal principle has already been
used by Shield [6]).

To be able to look constructively for a solution, Barber and Billings propose to use
Fabrikant’s approximation [8] for the pressure distribution under a flat-ended punch.
Fabrikant’s hypothesis is that the stress distribution is given in a good approximation by
the equation

p =
2E∗d

L
a(ϕ)√

a(ϕ)2 − r2
(2)

where a(ϕ) is the equation for the contact boundary in polar coordinates and

L =

2π∫
0

a(ϕ)dϕ (3)

The motivation for the ansatz (2) is straightforward. It is known to be exact for elliptical
punches with arbitrary eccentricity, and it provides the correct kind of asymptotic behavior
in the vicinity of the boundary, which must be fulfilled for a flat-ended punch of arbitrary
shape [9].

The origin for the polar coordinate system has to be taken as the centroid of the area
A provided there are no tilting moments around the origin (which we will assume in
this paper).

With Fabrikant’s pressure (2), Equation (1) becomes

FN(A) =
2E∗

L

2π∫
0

a(ϕ)∫
0

a(ϕ)(d − f (r, ϕ))rdrdϕ√
a(ϕ)2 − r2

(4)

Introducing definitions

gϕ(a) = a
a∫

0

f ′(r, ϕ)√
a2 − r2

dr,
dGϕ(a)

da
= gϕ(a), (5)

the force (4) can be rewritten as

FN(A) =
2E∗

L

2π∫
0

(
d · a(ϕ)2 − a(ϕ)Gϕ(a(ϕ))

)
dϕ (6)

3. Finding the Force Maximum

3.1. Axially Symmetric Profiles

In the case of an axially symmetric profile, a(ϕ) = a0, L = 2πa0, the force equation
simplifies to

FN(a0) = 2E∗(d · a0 − G(a0)) (7)

The condition for its maximum reads dFN(a0)/da0 = 2E∗(d − g(a0)) = 0 or

d = g(a0) (8)
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and the normal force is equal to

FN(a0) = E∗
a0∫

−a0

(d0 − g(a))da (9)

The pressure distribution can be calculated by integrating contributions (2) during indenta-
tion from the first touch up to the given indentation depth, as described in detail in [10]
(Appendix B),

p(r) =
E∗

π

a∫
r

1√
ã2 − r2

dg(ã)
dã

dã (10)

Equations (8)–(10) are the well-known equations of the Method of Dimensionality Reduc-
tion (MDR) [11].

3.2. General Profiles

In the general case of non-axisymmetric profiles, let us first search for the maximum
of functional (6) at a constant value of L. This can be done, according to Lagrange, by
searching for an unconditional extremum of the functional

2E∗

L

2π∫
0

(
d · a(ϕ)2 − a(ϕ)Gϕ(a(ϕ))

)
dϕ − D

⎛⎝ 2π∫
0

a(ϕ)dϕ − L

⎞⎠ (11)

where D is a Lagrange multiplier. At the maximum of this functional, the first variation
must vanish identically

2E∗

L
(
2d · a(ϕ)− Gϕ(a(ϕ))− a(ϕ)gϕ(a(ϕ))

)
= D (12)

This equation determines implicitly the contact boundary a(ϕ), while D is connected with L
through the condition (3). After substitution of a(ϕ) into (6), the force will remain a function
of the still undefined L, which should finally be found as a value giving the maximum to
the force. All stated operations, beginning with the solution of Equation (12) with respect to
a(ϕ), can be carried out analytically without approximations only in two cases: Either the
above case of axisymmetric profiles (leading to the MDR) or in the case of linear (conical)
profiles. The latter has already been done in the paper [5] for polygonal cross-sections. To
be able to constructively realize the above program for more general shapes, let us consider
profiles that only slightly deviate from axisymmetric ones. We will show below that this is
the third case where a largely analytical treatment is possible.

3.3. Profiles Slightly Deviating from Axisymmetric Ones

Let us consider a profile that is not axially symmetrical but deviates only slightly from
axial symmetry:

f (r, ϕ) = f0(r) + δ f (r, ϕ) (13)

where δ f (r, ϕ) is a small deviation. We define the position of the origin of coordinates in
such a way that

f (0, ϕ) = f0(0) = δ f (0, ϕ) = 0 (14)

The functions gϕ(a) and Gϕ(a) will correspondingly consist of two parts

Gϕ(a) = G0(a) + δGϕ(a), gϕ(a) = g0(a) + δgϕ(a), gϕ
′(a) = g0

′(a) + δgϕ
′(a) (15)

with

g0(a) = a
a∫

0

f0
′(r)√

a2 − r2
dr, δgϕ(a) = a

a∫
0

δ f0
′(r, ϕ)√

a2 − r2
dr (16)
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and correspondingly
G0

′(a) = g0(a), δG′
ϕ(a) = δgϕ(a) (17)

The contact boundary will also be almost a circle with a small perturbation

a(ϕ) = a0 + δa(ϕ) (18)

Substituting (18) into (12), expanding all functions with respect to small deviation δa(ϕ)
and neglecting all terms of the second or higher orders, we get for the deviation of the
contact contour from a circle in the first approximation

δa(ϕ) =
Dπa0

E∗ − 2da0 + Gϕ(a0) + a0gϕ(a0)

2d − 2gϕ(a0)− a0gϕ
′(a0)

(19)

With (15), we obtain

δa(ϕ)[2d − 2g0(a0)− a0g0
′(a0)]

2

=
[

Dπa0
E∗ − 2da0 + G0(a0) + a0g0(a0)

]
[2d − 2g0(a0)− a0g0

′(a0)]

+[2d − 2g0(a0)− a0g0
′(a0)]

[
δGϕ(a0) + a0δgϕ(a0)

]
+

[
Dπa0

E∗ − 2da0 + G0(a0) + a0g0(a0)
][

2δgϕ(a0)− a0δgϕ
′(a0)

]
(20)

To determine the Lagrange multiplier D we require

2π∫
0

δa(ϕ)dϕ = 0 (21)

Note that the separation (13) into an axisymmetric part and perturbation is not unique.
We can use this freedom to essentially simplify the following relations. Let us define the
deviation in such a way that

2π∫
0

δgϕ(a0)dϕ = 0 (22)

for all a0. This will automatically mean that

2π∫
0

δGϕ(a0)dϕ = 0 and
2π∫
0

δgϕ
′(a0)dϕ = 0 (23)

and also guarantee that
2π∫
0

[
δGϕ(a0) + a0δgϕ(a0)

]
dϕ = 0 (24)

and thus, that integral over ϕ of the term in the third line in (20) vanishes. If we now chose
the constant D such that

[
Dπa0

E∗ − 2da0 + G0(a0) + a0g0(a0)
]
= 0, then the integrals over ϕ

of the terms in the second and fourth lines of (20) vanish identically and the condition (21)
is fulfilled. We then obtain from (20)

δa(ϕ) =

[
δGϕ(a0) + a0δgϕ(a0)

]
[2d − 2g0(a0)− a0g0′(a0)]

(25)

The force (6) can now be written as
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FN(A) = E∗
πa0

2π∫
0

(
d · a(ϕ)2 − a(ϕ)Gϕ(a(ϕ))

)
dϕ

= E∗
πa0

2π∫
0

(
d · a0

2 − a0G0(a0)
)
dϕ + E∗

πa0

2π∫
0
[2d · a0 − G0(a0)− a0g0(a0)]δa(ϕ)dϕ − E∗

π

2π∫
0

δGϕ(a0)dϕ

(26)

The second and the third term are equal to zero due to relations (22) and (23) so that only
the first term remains. Its maximization leads to the usual MDR result [11]

d = g0(a0) (27)

This means that Equation (25) can finally be rewritten as follows:

δa(ϕ) = − δGϕ(a0) + a0δgϕ(a0)

a0g0′(a0)
(28)

This equation provides the explicit solution for the deviation of the contact boundary from
the circle with radius a0. The normal force is given by the Equation (9)

FN(a0) = 2E∗
a0∫

0

(d − g0(a))da (29)

3.4. Pressure Distribution for Profiles Slightly Deviating from Axisymmetric Ones

Let us take a close look at the process of indentation from the first touch to the final
indentation depth d and denote the current values of the force, the indentation depth and
the effective contact radius respectively by F̃N , d̃ and ã0. The entire process consists of
changing the indentation depth from d̃ = 0 to d̃ = d, whereby the contact radius changes
from ã = 0 to ã0 = a0 and the contact force from F̃N = 0 to F̃N = FN . An infinitesimal
indentation by dd̃ of the area, which is given by the contour equation r = a(ϕ), produces
the following contribution to the pressure distribution

dp =
E∗

πa0

a(ϕ)√
a(ϕ)2 − r2

dd̃ for r < a(ϕ) (30)

The pressure distribution at the end of the indentation process is equal to the sum of the
incremental pressure distributions:

p(r, ϕ) =
E∗

π

d∫
d(r)

1
ã0

ã(ϕ)√
ã(ϕ)2 − r2

dd̃ =
E∗

π

a(ϕ)∫
r

1√
ã(ϕ)2 − r2

ã(ϕ)

ã0

dg0(ã0)

dã(ϕ)
dã(ϕ) (31)

where ã0 must be considered here as a function of ã(ϕ).

4. Examples

4.1. Contact with Parabolic Profiles with Arbitrary Cross-Section

Consider a profile
z = f (r, ϕ) = r2ψ(ϕ) (32)

Thus
f0(r) = r2ψ and δ f (r, ϕ) = r2(ψ(ϕ)− ψ

)
(33)

where ψ is the averaged value of ψ(ϕ) over all angles:

ψ =
1

2π

2π∫
0

ψ(ϕ)dϕ (34)
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The corresponding angle-dependent “MDR profile” is

gϕ(a) = 2a2ψ(ϕ) (35)

For all necessary auxiliary functions, we get

g0(a) = 2ψa2, δgϕ(a) = 2a2(ψ(ϕ)− ψ
)
, g0

′(a) = 4ψa, (36)

G0(a) =
2ψa3

3
, δGϕ(a) =

2a3

3
(
ψ(ϕ)− ψ

)
. (37)

The effective contact radius is given by Equation (27):

a0 =

√
d

2ψ
(38)

and the contact area is given by the relation (18)

a(ϕ) = a0

(
5
3
− 2

3
ψ(ϕ)

ψ

)
(39)

To find the pressure distribution, we use Equation (31)

p(r, ϕ) =
E∗

π

a(ϕ)∫
r

ã(ϕ)√
ã(ϕ)2 − r2

1
ã0

dg0(ã0)

dã(ϕ)
dã(ϕ) =

2
π

E∗(2d · ψ
)1/2

√
1 −

(
r

a(ϕ)

)2
(40)

4.2. Contact with a Paraboloid

As a special case of a general parabolic profile, let us consider a paraboloid

z = f (x, y) =
x2

2R1
+

y2

2R2
=

r2

2

(
cos2 ϕ

R1
+

sin2 ϕ

R2

)
(41)

In this case,

ψ(ϕ) =
1
2

(
cos2 ϕ

R1
+

sin2 ϕ

R2

)
=

1
4

(
1

R1
+

1
R2

)
+

1
4

(
1

R1
− 1

R2

)
cos 2ϕ (42)

and

ψ =
1
4

(
1

R1
+

1
R2

)
(43)

Equations (38)–(40) take the form

a0 =

√
2d · R1R2

R1 + R2
(44)

a(r, ϕ) = a0

[
1 − 2

3
R2 − R1

R1 + R2
cos 2ϕ

]
(45)

and

p(r, ϕ) =
2
π

E∗
(

d · (R1 + R2)

2R1R2

)1/2
√

1 −
(

r
a(ϕ)

)2
(46)

The total normal force is equal to

FN =
4
3

E∗
(

2R1R2

R1 + R2

)1/2
d3/2

(
1 −

(
2
3

R2 − R1

R1 + R2

)2
)

(47)
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Equation (45) describes in the approximation of small eccentricities an ellipse with half-axes

a = a0

[
1 +

2
3

R2 − R1

R1 + R2

]
, and b = a0

[
1 − 2

3
R2 − R1

R1 + R2

]
(48)

For the eccentricity of the contact area, we get

e =

√
1 − b2

a2 =
2√
3

eg

√
1 − e2

g/2

1 − e2
g/6

(49)

where

eg =

√
1 − R1

R2
(50)

is the eccentricity of cross-sections of the indenter. For small eccentricities, the ratio of
eccentricities of contact area and cross-sections of the ellipsoid is constant and equal to
2/

√
3, which is the exact asymptotic value according to the Hertzian solution [9] (p. 35).

Equation (49) provides a very good approximation for the exact solution for eccentricities
up to 0.7 (see Figure 1).

Figure 1. Eccentricity e of the contact area as a function of eg according to Equation (49) (dashed line)
and comparison with the value according to the Hertzian solution [9] (solid line).

4.3. Contact of a Conical Indenter with an Arbitrary Cross-Section

Consider a general conical profile with an “almost axisymmetric” shape

f (r, ϕ) = r · ψ(ϕ) = f0(r) + δ f (r, ϕ) (51)

Thus
f0(r) = rψ and δ f (r, ϕ) = r

(
ψ(ϕ)− ψ

)
(52)

where ψ is the averaged value of ψ(ϕ) over all angles according to (34). For all necessary
auxiliary functions, we get

g0(a) =
π

2
aψ, δgϕ(a) =

π

2
a
(
ψ(ϕ)− ψ

)
, g0

′(a) =
π

2
ψ (53)

G0(a) =
π

4
a2ψ, δGϕ(a) =

π

4
a2(ψ(ϕ)− c) (54)

The contact area is given by the relation (18)

a(ϕ) =
2
π

d
ψ

(
5
2
− 3

2
ψ(ϕ)

ψ

)
(55)

47



Symmetry 2022, 14, 390

To find the pressure distribution, we use Equation (31)

p(r, ϕ) =
E∗

π

a(ϕ)∫
r

1√
ã(ϕ)2 − r2

ã(ϕ)

ã0

dg0(ã0)

dã(ϕ)
dã(ϕ) =

E∗

2
ψ · ln

⎛⎝ a(ϕ)

r
+

√(
a(ϕ)

r

)2

− 1

⎞⎠ (56)

4.4. Contact of a Pyramid with Square Cross-Section

Let’s consider a linear profile

f (r, ϕ) = r tan α cos ϕ,−π

4
< ϕ <

π

4
(57)

and similar equations for the angles π/4 < ϕ < 3π/4, 3π/4 < ϕ < 5π/4 and −3π/4 <
ϕ < −π/4, which describes a pyramid with square cross-sections and the angle α between
the inclined planes of the pyramid and the horizon. In this case,

ψ(ϕ) = tan α cos ϕ, ψ =
2
√

2
π

tan α (58)

The boundary of the contact area is given by the relation (55) (see Figure 2)

a(ϕ) =
d

tan α

(
5

2
√

2
− 3π

8
cos ϕ

)
for − π

4
< ϕ <

π

4
usw. (59)

Figure 2. The normalized contact boundary line (a(ϕ) tan α/d) according to Equation (59) (blue line)
and the result of numerical simulation with Boundary Element Method (gray figure). Numerical data
have been obtained by Qiang Li [12] with the method described in [13].

For the normal force, we get

FN =
2
π

E∗ d2

ψ
=

E∗d2
√

2 tan α
(60)

Numerical simulation gives the solution FN = 0.7395E∗d2/ tan α which is 4.6% larger than
the above analytical result.

For the pressure distribution in the contact area, we obtain, according to (56),

p(r, ϕ) =
E∗

2
ψ · ln

⎛⎝ a(ϕ)

r
+

√(
a(ϕ)

r

)2

− 1

⎞⎠ (61)
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4.5. Contact of Power-Law Shapes

Consider a profile having the form

f (r, ϕ) = rn · ψ(ϕ) (62)

which means that all vertical cross-sections are self similar differing only by the scaling fac-
tor ψ(ϕ). The decomposition into a rotationally symmetric part and deviation is as follows

f0(r) = rn · ψ, δ f (r, ϕ) = rn · (ψ(ϕ)− ψ
)

(63)

where ψ is the average value of ψ(ϕ), Equation (34).
For all necessary auxiliary functions, we get

gϕ(a) = ψ(ϕ) · γ(a), Gϕ(a) = ψ(ϕ) · (a), ′(a) = γ(a), g0(a) = ψ · γ(a) (64)

with

γ(a) = a
a∫

0

nrn−1
√

a2 − r2
dr = κnan, κn =

1∫
0

ξn−1dξ√
1 − ξ2

=

√
π

2
nΓ

( n
2
)

Γ
(

n
2 + 1

2

) (65)

while Γ(. . .) is the gamma function.
For the deviations, we have

δgϕ(a) = κnan(ψ(ϕ)− ψ
)
, δGϕ(a) = κn

an+1

n + 1
(
ψ(ϕ)− ψ

)
(66)

The boundary of the contact area is given by the relation (28)

a(ϕ) = a0

(
1 +

n + 2
n(n + 1)

(
1 − ψ(ϕ)

ψ

))
(67)

where a0 is determined by the condition ψκna0
n = d:

a0 =

(
d

κnψ

)1/n
(68)

The normal force is equal to

FN(a0) = 2E∗
a0∫

0

(
d − ψκnan)da = 2E∗da0

n
n + 1

=
2n

n + 1
E∗d

n+1
n

(
κnψ

)−1/n (69)

The average pressure is equal to

p =
FN(a0)

πa2
0

=
2n

n + 1
E∗d

n−1
n

(
κnψ

)1/n

π
(70)

For the pressure distribution in the contact area, normalized by the average pressure, we
obtain, according to (31),

p(r, ϕ) =
(n + 1)

2

1∫
r

ξn−1√
ξ2 − r2

dξ (71)

with r = r/a(ϕ). It is again the same result as that for an axisymmetric contact ([10], p. 78)
with the substitution r/a0 → r/a(ϕ) .
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5. Extended Method of Dimensionality Reduction (MDR) for Slightly
Non-Axisymmetric Contacts

The above-sketched solution procedure can be considered as an extension of the
Method of Dimensionality Reduction [11] to non-axisymmetric profiles. Let us summarize
the above findings in the form of procedure that has to be applied for the solution of
such problems.

We consider an “arbitrary” profile z = f (r, ϕ) underlying the following restrictions:

(1) the profile deviates only weakly from an axisymmetric one;
(2) during the normal indentation, only the normal contact force appears (no tilting forces

or moments).

Under these conditions, the following procedure can be applied.

I. In the first step, an “equivalent axisymmetric profile” is determined. In the first-order
approximation, it was shown to be just the profile averaged over the angles:

f0(r) =
1

2π

2π∫
0

f (r, ϕ)dϕ (72)

II. The profile can now be decomposed into an axisymmetric part and the small deviation

f (r, ϕ) = f0(r) + δ f (r, ϕ) (73)

with
δ f (r, ϕ) = f (r, ϕ)− f0(r) (74)

by definition.

III. With the equivalent axisymmetric profile (72), the usual MDR solution procedure is
applied. In particular, the MDR-transformed profile is determined as

g0(a) = a
a∫

0

f0
′(r)√

a2 − r2
dr (75)

IV. The effective radius a0 is determined by the condition

d = g0(a0) (76)

V. The normal force is given by the equation

FN = 2E∗
a0∫

0

(d − g0(x))dx (77)

VI. The effective pressure distribution in the contact area is given by the usual MDR
equation [14] (p. 9)

p0(r/a0) = − 1
π

∞∫
r

q′(x)√
x2 − r2

dx (78)

with

q(x) = E∗
{

d − g(x), |x| < a0
0, |x| > a0

(79)

VII. The true non-axisymmetric contact area is given by the equation

a(ϕ) = a0 + δa(ϕ) (80)
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where δa(ϕ) is determined by (28).

VIII. Finally, the true pressure distribution is given by

p(r, ϕ) = p0(r/a(ϕ)) (81)

The last equation can be considered as a generalization of Fabrikant’s ansatz for flat-
ended punches. Fabrikant states that the pressure distribution under a non-axisymmetric
punch is equal to that under an axisymmetric punch but “rescaled” to the true shape of
the contact area. Similarly, Equation (81) states that the contact pressure is equal to that
under an “equivalent axisymmetric indenter” but rescaled to the true contact area. In the
present paper, we have shown that Equation (81) is the exact first-order approximation for
the power-law profiles (with arbitrary cross-section)—independently of the exponent of
the power law. Even while it was not proven in a general case, the independence of the
exponent gives hope that it could be a good approximation for arbitrarily shaped profiles.
Testing of this hypothesis (e.g., through comparison with a numerical solution with BEM)
is an important task of further studies.

6. Discussion

Using the Barber’s extremal principle, we derived explicit analytical relations for all
essential contact properties of an indenter of “arbitrary” shape (under restriction that it
should be close to an axisymmetric one). The solution provides the dependency of the
normal force on the indentation depth, the size and the shape of the contact area, and the
pressure distribution in the contact area. The derivation has been carried out under two
assumptions (which are the main sources of deviation from the exact solution): (1) Fab-
rikant’s approximation for the stress of a flat-ended punch with arbitrary cross-section and
(2) assumption of a small deviation of the indenter shape from an axial one. However, an
acceptable accuracy is obtained even with relatively large deviations from axial symme-
try, e.g., the eccentricity of the contact area for a paraboloid is given accurately up to an
eccentricity of approximately 0.7. The deviation of normal force in a contact of a pyramid
indenter with square cross-section is of about 4.6%. The whole calculation resembles the
Method of Dimensionality Reduction very much and can be considered as its generaliza-
tion for non-axially symmetric contacts. A central approximation used in this paper is
Fabrikant’s approximation for the pressure under a flat punch. This approximation could be
further improved by using higher-order corrections obtained by Golikova and Mossakovskii for
the pressure distribution under plane stamps of nearly circular cross-section [15].
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A Comparison of General Solutions to the Non-Axisymmetric
Frictionless Contact Problem with a Circular Area of Contact:
When the Symmetry Does Not Matter

Ivan Argatov

Institut für Mechanik, Technische Universität Berlin, 10623 Berlin, Germany; ivan.argatov@campus.tu-berlin.de

Abstract: The non-axisymmetric problem of frictionless contact between an isotropic elastic half-
space and a cylindrical punch with an arbitrarily shaped base is considered. The contact problem
is formulated as a two-dimensional Fredholm integral equation of the first type in a fixed circular
domain with the right-hand side being representable in the form of a Fourier series. A number of
general solutions of the contact problem, which were published in the literature, are discussed. Based
on the Galin–Mossakovskii general solution, new formulas are derived for the particular value of
the contact pressure at the contact center and the contact stress-intensity factor at the contour of the
contact area. Since the named general solution does not employ the operation of differentiation of a
double integral with respect to the coordinates that enter it as parameters, the form of the general
solution derived by Mossakovskii as a generalization of Galin’s solution for the special case, when
the contact pressure beneath the indenter is bounded, is recommended for use as the most simple
closed-form general solution of the non-axisymmetric Boussinesq contact problem.

Keywords: contact problem; non-axisymmetric; circular contact; frictionless contact; general solution;
closed-form solution; series solution; cylindrical punch; contact stress-intensity factor

1. Introduction

The contact mechanics dates back to Hertz (1882), who developed the theory of
unilateral frictionless local contact for two elastic bodies, which in the unloaded state are
shaped as elliptic paraboloids in the vicinity of the point of initial contact, and Boussinesq
(1885), who solved the problem of contact between an elastic half-space and a frictionless
flat-ended cylindrical punch. Since then, particular progress has been made with regard to
solving the axisymmetric frictionless problems with a circular area of contact.

While in the literature, the general solution of the axisymmetric problem is usually
associated with Sneddon’s paper [1] of 1965, different authors give the priority to other
studies. In particular, in his comprehensive review, Borodich [2] highlighted the contribu-
tion made by Galin (1946); Barber [3] in his book referred to the general solution as the
Green and Collins solution; in their historical note [4] (see also [5]), Popova and Popov,
acknowledging the contributions made by Galin and Sneddon, put under a spotlight
the original paper [6] written in German by Schubert in 1942. However, for the sake of
historical truth, it should be underlined that (to the best of the author’s knowledge) the
priority of solving the axisymmetric frictionless contact problem with a circular contact
area belongs to Leonov’s paper [7] published in Russian in 1939. As it was shown by
Argatov and Dmitriev [8], other forms of the general solution follow from Leonov’s results
by the simple change of integration variables. As a compromise, Argatov and Mishuris [9]
suggested to call the general solution of the axisymmetric frictionless contact problem the
Galin–Sneddon solution.

The general solution of the non-axisymmetric contact problem for a cylindrical in-
denter is of great importance in developing the contact stiffness indentation tomography
technique [10,11]. Another example of the application of the general solution is given by
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the problem of adhesive contact under non-symmetric perturbation of the contact geome-
try [12]. Generally speaking, the general solutions collected below will be useful in solving
the frictionless contact problems with a circular area of contact (e.g., with applications in
geotechnics [13,14]), when the symmetry of the contact geometry does not matter.

Whereas axisymmetric contact problems are considered in many publications, includ-
ing textbooks [3,8] and handbook [15], the situation with the non-axisymmetric contact
problem with a circular area of contact is not so equivocal, even in spite of the fact that this
problem is a direct generalization of the Boussinesq problem for a cylindrical punch with a
non-flat base. This paper aims to bridge this gap by comparing different general solutions
published in the literature.

The main motivation for writing this reviewer paper was to identify in a sense the
simplest closed form of the general solution. Another quite utilitarian motivation was to
collect in one compendium the practically useful results, some of which are not readily
accessible. Herein, we compare only the solutions collected from the literature, and the
discussion of the methods of their derivations falls outside the scope of the present study.
The recent paper [16] on solving Keer’s indentation problem for a cylindrical indenter with
the face in a wedge form can be regarded as a case study for the use of the general solutions.

2. General Solutions of the Frictionless Non-Axisymmetric Contact Problem

2.1. The Boussinesq Contact Problem Formulation

We consider the so-called Boussinesq contact problem for an isotropic elastic half-
space (see Figure 1), which is indented by a frictionless cylindrical punch of radius a with a
non-flat base described by a continuous shape function, Φ(r, ϕ). For the sake of simplicity
we assume that the center of cylindrical coordinates (r, ϕ, z) is taken at the center of the
circular area of contact, and the elastic semi-infinite body occupies the half-space z ≥ 0.

u (r, )z

r

F

a
(r, )z

z
3
+

Figure 1. A schematic of the non-axisymmetric Boussinesq contact problem with a circular area
of contact.

Let us assume that the shape function Φ(r, ϕ) admits the Fourier series representation

Φ(r, ϕ) = Φ0(r) +
∞

∑
n=1

Φs
n(r) sin nϕ + Φc

n(r) cos nϕ, (1)

where

Φ0(r) =
1

2π

2π∫
0

Φ(r, ϕ)dϕ,
{

Φs
n(r)

Φc
n(r)

}
=

1
π

2π∫
0

Φ(r, ϕ)

{
sin nϕ

cos nϕ

}
dϕ. (2)

Since the function Φ(r, ϕ) is assumed to be continuous, it can be shown that Φs
n(0) =

Φc
n(0) = 0. In addition, we put

Φ0(0) = 0. (3)
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Further, let p(r, ϕ) denote the contact pressure exerted by the punch under the action
of an external load, F. Then, the condition of static equilibrium implies that

F =

2π∫
0

a∫
0

p(r, ϕ)r drdϕ. (4)

According to the Boussinesq solution of the problem of normal loading of an elastic
half-space, the contact pressure p(r, ϕ) produces the following normal surface displace-
ment field:

uz(r, ϕ) =
1

πE∗

2π∫
0

a∫
0

p(ρ, ϕ)ρ dρdψ√
r2 + ρ2 − 2rρ cos(ϕ − ψ)

. (5)

Here, E∗ = E/(1 − ν2) is the reduced elastic modulus, E and ν are Young’s modulus
and Poisson’s ratio of the elastic semi-infinite body, (r, ϕ) are coordinates of the point of
observation, and (ρ, ϕ) are coordinates of the point of integration.

Inside the contact area, the normal surface displacements are determined by the shape
of the punch, which under the applied load receives some vertical (normal) displacement,
δ0, such that

uz(r, ϕ) = δ0 − Φ(r, ϕ), r ∈ [0, a], ϕ ∈ [0, 2π). (6)

Thus, from (5) and (6), it follows that

1
πE∗

2π∫
0

a∫
0

p(ρ, ϕ)ρ dρdψ√
r2 + ρ2 − 2rρ cos(ϕ − ψ)

= δ0 − Φ(r, ϕ), (7)

where r ∈ [0, a] and ϕ ∈ [0, 2π).
The integral Equation (7) is called the governing integral equation of the Boussinesq

contact problem with the circular contact area of radius a. It is to emphasize that in contrast
to the Hertz contact problem, where the contact area is determined from the condition of
vanishing of the contact pressure on the contour of the contact area, in the Boussinesq con-
tact problem, the contact area is assumed to be a priori fixed. Correspondingly, the contact
pressure density p(r, ϕ), which solves Equation (7), may possess a singularity at the contact
contour, as the point of observation (r, ϕ) approaches the contact contour, when r → a.

To simplify formulas, we introduce the auxiliary notation

f (r, ϕ) = δ0 − Φ(r, ϕ) (8)

= f0(r) +
∞

∑
n=1

f s
n(r) sin nϕ + f c

n(r) cos nϕ, (9)

where, in view of (1), we have

f0(r) = δ0 − Φ0(r), f s
n(r) = −Φs

n(r), f c
n(r) = −Φc

n(r). (10)

We note that a rigid body, by means of which external loads are transferred to the
surface of an elastic body, is usually called an indenter. Here we prefer the term ‘punch’,
as the term ‘indenter’ (in many cases) assumes unilateral contact, when only positive
contact pressures are allowed inside the contact area.

Finally, we note that, in view of (3), the parameter δ0 has the exact meaning of the
normal surface displacement at the center of the contact area. If Φ(r, ϕ) ≥ 0 for any
r ∈ [0, a] and ϕ ∈ [0, 2π), then in the unloaded state, the punch touches the surface of the
elastic half-space at the center of the coordinates, and therefore, the parameter δ0 can be
interpreted as the displacement of the punch under the applied load F. Provided that the
punch shape function Φ(r, ϕ) is known, the equilibrium Equation (4) establishes a relation
between the contact force F and the punch displacement δ0.
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Remark 1. It is pertinent to note here that to have an axisymmetric displacement in the Boussinesq
problem, the indenter shape should be axisymmetric. However, an axisymmetric shape of the indenter
in unilateral contact does not necessarily imply that the established axisymmetric contact region
is circular (see, for example, [17,18]), where indenters of toroidal-type shapes produce an annular
contact region, or [19], where the contact region under a non-convex parametric–homogeneous
punch is composed from a central circular part and a number of concentric annular regions). On the
other hand, the Boussinesq contact problem with a circular area of contact will be non-axisymmetric
if the indenter shape function Φ(r, ϕ) essentially depends on the angular coordinate ϕ, that is, if the
Fourier series (9) contains at least one nontrivial term starting from n = 1.

2.2. Copson’s Series Solution

In view of (1), the general solution of Equation (7) can be represented in the form

p(r, ϕ) = p0(r) +
∞

∑
n=1

ps
n(r) sin nϕ + pc

n(r) cos nϕ. (11)

According to Copson (1947), the coefficients of the Fourier series (11) are determined
by the following formulas [20]:

pn(r) = −E∗

π
rn−1 d

dr

a∫
r

gn(ρ)ρ dρ√
ρ2 − r2

, (12)

where

gn(ρ) =
1

ρ2n
d

dρ

ρ∫
0

rn+1 fn(r)√
ρ2 − r2

dr. (13)

To be more precise, the coefficients ps
n(r) and pc

n(r) are given by Formulas (12) and (13)
upon replacing fn(r) with f s

n(r) and f c
n(r), respectively.

We note that in the case n = 0, Formulas (12) and (13) represent the Galin–Sneddon so-
lution of the axisymmetric contact problem. The general solution of the non-axisymmetric
contact problem in the series from (12) and (13) was also independently derived by
Mossakovskii [21].

2.3. Mossakovskii’s Series Solution

Under the assumption that the functions f0(r), f s
n(r), and f c

n(r) are continuously
differentiable in the interval (0, a), Mossakovskii (1953) simplified Formulas (12) and (13)
as follows [21]:

pn(r) =
E∗

2

{
Cnrn

√
a2 − r2

− 2rn

π

a∫
r

x−2n dx√
x2 − r2

x∫
0

f ′′n (ρ)ρ
n+1 + f ′n(ρ)ρn − n2 fn(ρ)ρn−1√

x2 − ρ2
dρ

}
. (14)

Here, the constant Cn is given by the formulas

C0 =
2
π

(
f0(0) + a

a∫
0

f ′0(ρ)dρ√
a2 − ρ2

)
, (15)

Cn =
2
π

a1−2n
a∫

0

f ′n(ρ)ρn + n fn(ρ)ρn−1√
a2 − ρ2

dρ, n = 1, 2, . . . (16)

We note that, in light of (3) and (8)–(10), we have f0(0) = δ0.
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2.4. Leonov’s Closed-Form Solution

Let Δ denote the two-dimensional Laplace differential operator, that is

Δu(r, ϕ) =
∂2u
∂r2 +

1
r

∂u
∂r

+
1
r2

∂2u
∂ϕ2 . (17)

The general solution to the governing integral Equation (7) in a closed form was
first obtained by Leonov (1955). To simplify the writing of his formula, we introduce
the notation

R =
√

r2 + ρ2 − 2rρ cos(ϕ − ψ). (18)

By the definition, R equals the distance between the point of observation (r, ϕ) and
the point of integration (ρ, ψ).

So, according to Leonov, the general solution is given by the following formula [22]:

p(r, ϕ) = − E∗

2π2

⎧⎨⎩π

2
Δ

2π∫
0

a∫
0

f (ρ, ψ)

R
ρ dρdψ

+

2π∫
0

a∫
0

f (ρ, ψ)

[
1

R3

(
arctan

√
a2 − r2

√
a2 − ρ2

aR
− π

2

)

+
a

R2
√

a2 − ρ2
√

a2 − r2

]
ρ dρdψ

⎫⎬⎭. (19)

We note that arctan(x)− π/2 = − arctan(1/x).

2.5. Mossakovskii’s Form of the General Solution

Starting from the series solution (11)–(13), Mossakovskii (1953) derived the following
general solution in the following form [23]:

p(r, ϕ) = − E∗

2π2

⎧⎨⎩Δ
2π∫
0

a∫
0

f (ρ, ψ) arctan
(√

a2 − r2
√

a2 − ρ2

aR

)
ρ dρdψ

R

+

2π∫
0

a∫
0

a f (ρ, ψ)√
(a2 − r2)3(a2 − ρ2)

(a4 − ρ2r2)ρ dρdψ[
a4 − 2a2rρ cos(ϕ − ψ) + r2ρ2

]
⎫⎬⎭. (20)

Here the same notation is used as introduced by Formulas (17) and (18).
We note that arctan(x)− π/2 = − arctan(1/x).

2.6. The Galin–Mossakovskii General Solution

We recall that the zeroth term of the Fourier series (9) is defined by the formula

f0(r) =
1

2π

2π∫
0

f (r, ψ)dψ. (21)

As a generalization of the general solution obtained by Galin [24], for the special case,
when the contact pressure beneath the indenter is bounded, Mossakovskii (1953) derived
the following formula [23]:
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p(r, ϕ) =
E∗
π

f0(0)√
a2 − r2

+
E∗

2π2
a√

a2 − r2

2π∫
0

a∫
0

(a4 − ρ2r2)
∂ f
∂ρ

(ρ, ψ) + 2a2r sin(ϕ − ψ)
∂ f
∂ψ

(ρ, ψ)√
a2 − ρ2

[
a4 − 2a2rρ cos(ϕ − ψ) + r2ρ2

] dρdψ

− E∗
2π2

2π∫
0

a∫
0

Δ f (ρ, ψ) arctan
(√

a2 − r2
√

a2 − ρ2

aR

)
ρ dρdψ

R
. (22)

We note that, in view of (21), f0(r) gives the average value of the function f (r, ϕ) on
a circumference of radius r. That is why, if f (r, ϕ) is a continuous function, then f0(0)
coincides with the limit of f (r, ϕ) as r → 0.

2.7. Fabrikant’s General Solutions

Let us introduce the notation

L (k)g(ϕ) =
1

2π

2π∫
0

λ(k, ϕ − τ)g(τ)dτ, (23)

where

λ(k, τ) =
1 − k2

1 + k2 − 2k cos τ
. (24)

We note that Formula (23) defines the L -operator [25] that acts on the function g(ϕ),
defined on a unit circle.

Moreover, we put

η =
1
a
(a2 − r2)1/2(a2 − ρ2)1/2. (25)

According to Fabrikant (1986), the general solution to the governing integral equa-
tion of the contact problem under consideration (7), in view of the notation (8), can be
represented in the following closed form [25]:

p(r, ϕ) = −E∗

π

1
r
L (r)

d
dr

a∫
r

x dx
(x2 − r2)1/2 L

( 1
x2

) d
dx

x∫
0

ρ dρ

(x2 − ρ2)1/2 L (ρ) f (ρ, ϕ). (26)

Another form of the Fabrikant solution is given by the following formula:

p(r, ϕ) =
E∗

π

1
(a2 − r2)1/2

∂

∂a

a∫
0

ρ dρ

(a2 − ρ2)1/2 L
( rρ

a2

)
f (ρ, ϕ)

− E∗

2π2

2π∫
0

a∫
0

1
R

arctan
( η

R

)
Δ f (ρ, ψ)ρ dρdψ. (27)

Yet, another form of the Fabrikant solution is given

p(r, ϕ) =
E∗

πa
1√

a2 − r2

a∫
0

ρ dρ√
a2 − ρ2

d
dρ

[
ρL

( rρ

a2

)
f (ρ, ϕ)

]

− E∗

2π2

2π∫
0

dψ

a∫
0

1
R

arctan
(√

a2 − r2
√

a2 − ρ2

aR

)
Δ f (ρ, ψ)ρ dρ. (28)
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It is pertinent to note here that in terms of the L operator, the Mossakovskii solu-
tion (20) can be represented as follows [26]:

p(r, ϕ) = −E∗

π

⎧⎨⎩−Δ
a∫

r

dx
(x2 − r2)1/2

x∫
0

ρ dρ

(x2 − ρ2)1/2 L
( rρ

x2

)
f (ρ, ϕ)

+
a

(a2 − r2)3/2

a∫
0

ρ dρ

(a2 − ρ2)1/2 L
( rρ

a2

)
f (ρ, ψ)

⎫⎬⎭. (29)

We also note that, in view of (25), the last terms on the right-hand sides of Formulas (22)
and (27) coincide.

3. Contact Pressure at the Center of Circular Contact

For the Fourier series representation (21), it follows that

lim
r→0

p(r, ϕ) = p0(0). (30)

When comparing the series solutions due to Copson (12), (13) and Mossakovskii (14), (15),
it is readily seen that only the Mossakovskii series solution allows to evaluate directly the
right-hand side of Equation (30).

From Equation (14), it follows that

p0(r) =
E∗

2

{
C0√

a2 − r2
− 2

π

a∫
r

dx√
x2 − r2

x∫
0

f ′′0 (ρ)ρ + f ′0(ρ)√
x2 − ρ2

dρ

}
,

so that

p0(0) =
E∗C0

2a
− E∗

π

a∫
0

dx
x

x∫
0

f ′′0 (ρ)ρ + f ′0(ρ)√
x2 − ρ2

dρ

}
. (31)

By changing the order of integration, we easily transform Formula (31) as follows:

p0(0) =
E∗C0

2a
− E∗

π

a∫
0

(
π

2
− arcsin

ρ

a

)
Δ f0(ρ)dρ. (32)

Here, Δ f0(ρ) = f ′′0 (ρ) + (1/ρ) f ′0(ρ), and C0 is given by (15). We also note that the
integrand in (32) can be further transformed, using the trigonometric formulas

π/2 − arcsin x = arccos x = arctan(
√

1 − x2/x).

Finally, we recall that the function f0(r) is defined by Formula (21).
Now, when comparing the closed-form solutions due to Leonov (19), Mossakovskii (20),

and Fabrikant (26) with the Galin–Mossakovskii solution (22) and the Fabrikant solu-
tions (27) and (28), we conclude that only the latter three formulas allow to evaluate directly
the contact pressure at the contact center.

By setting r = 0 in the Galin–Mossakovskii formula (22), we readily obtain

p
∣∣
r=0 =

E∗ f0(0)
πa

+
E∗

2π2

2π∫
0

a∫
0

∂ f
∂ρ

(ρ, ψ)
dρdψ√
a2 − ρ2

− E∗

2π2

2π∫
0

a∫
0

Δ f (ρ, ψ) arctan
(√

a2 − ρ2

ρ

)
dρdψ. (33)
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By taking into account (15) and (21), it can be easily verified that Formulas (32) and (33)
are in complete agreement, and they can be rewritten as

p
∣∣
r=0 =

E∗

π

⎧⎨⎩ f0(0)
a

+

a∫
0

f ′0(ρ)dρ√
a2 − ρ2

−
a∫

0

arccos
(ρ

a

)
Δ f0(ρ)dρ

⎫⎬⎭, (34)

where f0(r) is defined by Formula (21).
Now, by setting r = 0 in the Fabrikant solution (27), we obtain

p
∣∣
r=0 =

E∗

2π2
1
a

∂

∂a

a∫
0

ρ dρ√
a2 − ρ2

2π∫
0

f (ρ, ψ)dψ

− E∗

2π2

2π∫
0

a∫
0

arctan
(√

a2 − ρ2

ρ

)
Δ f (ρ, ψ)dρdψ. (35)

Here the following formula is used (see Equations (23) and (24)):

L (0) f (ρ, ϕ) =
1

2π

2π∫
0

f (ρ, τ)dτ. (36)

The first term on the right-hand side of Equation (35) can be simplified as follows:

1
2π

∂

∂a

2π∫
0

a∫
0

f (ρ, ψ)ρ dρdψ√
a2 − ρ2

=
∂

∂a

a∫
0

f0(ρ) ρ dρ√
a2 − ρ2

=
∂

∂a

⎛⎝a f0(0) +
a∫

0

f ′0(ρ)
√

a2 − ρ2 dρ

⎞⎠ (37)

= f0(0) + a
a∫

0

f ′0(ρ)dρ√
a2 − ρ2

.

Thus, in view of (21) and (38), Formula (35) also completely agrees with Formula (34).
Further, from the Fabrikant solution (28), in view of (21) and (36), it follows that

p
∣∣
r=0 =

E∗

πa2

a∫
0

ρ√
a2 − ρ2

(
d

dρ

[
ρ f0(ρ)

])
dρ

− E∗

π

a∫
0

arctan
(√

a2 − ρ2

ρ

)
Δ f0(ρ)dρ, (38)

and, taking into account the identity

a∫
0

ρ√
a2 − ρ2

(
d

dρ

[
ρ f0(ρ)

])
dρ = a f0(0) + a2

a∫
0

f ′0(ρ)dρ√
a2 − ρ2

,

it is readily seen that Formula (38) is equivalent to Formula (34).

4. Contact Stress Intensity Factor

We define the stress-intensity factor (SIF) of the contact stresses as follows:

KI(ϕ) = − lim
r→a

√
2π(a − r)p(r, ϕ). (39)
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It is to note that the normal stress produced by the punch on the surface points inside
the contact area is equal to −p(r, ϕ). It also is worth noting that the contact SIF analysis
under a circular punch was considered recently in [16].

4.1. Borodachev’s Formula for the Contact SIF

By using the Fabrikant solution (28), Borodachev (1991) derived the following closed-
form result [27]:

KI(ϕ) =
E∗a1/2

2π3/2

2π∫
0

dψ

a∫
0

[
ρ f (ρ, ψ)− a f (a, ϕ)

]
dρ√

a2 − ρ2
[
a2 − 2aρ cos(ϕ − ψ) + ρ2

] . (40)

It is warned that different normalizations can be used in the definition of the SIF.

4.2. Fabrikant’s Formula for the Contact SIF

By utilizing his general solution (26) and the general property

lim
r→a

(√
a − r

d
dr

a∫
r

g(x)dx√
x2 − r2

)
= − g(a)√

2a
,

Fabrikant (1998) derived the following formula [28]:

KI(ϕ) =
E∗
√

πa
L

(1
a

) ∂

∂a

a∫
0

ρ dρ√
a2 − ρ2

L (ρ) f (ρ, ϕ), (41)

where the L -operator is defined by (23).

4.3. A New Formula for the Contact SIF

Observe that the general solutions (19) and (20) given by Leonov and Mossakovskii
contain the application of the Laplace differential operator Δ to the double integral,
and therefore, the direct usage of Formula (39) for evaluating the contact SIF is impossi-
ble. On the other hand, the Galin–Mossakovskii solution (22) employs the operation of
differentiation only under the integral sign.

Let us assume that the function f (r, ϕ) is twice continuously differentiable over the
closed circle 0 ≤ r ≤ a, 0 ≤ ϕ < 2π. Then, it can be shown (see Appendix A) that the third
term on the right-hand side of Equation (22) is not singular at the contact contour. Hence,
from Equations (22) and (39), it follows that

KI(ϕ) = −E∗ f0(0)√
πa

− E∗√a
2π3/2

2π∫
0

a∫
0

(a2 − ρ2)
∂ f
∂ρ

(ρ, ψ) + 2a sin(ϕ − ψ)
∂ f
∂ψ

(ρ, ψ)√
a2 − ρ2

[
a2 − 2aρ cos(ϕ − ψ) + ρ2

] dρdψ. (42)

Using integration by parts, it can be shown that Formula (40) follows from (42), that
is—in other words—Formulas (40) and (42) are equivalent.

5. Discussion

First, we observe that all general solutions considered above make use of both the
operations of integration and differentiation. From the computational point of view, it
is preferable to avoid differentiating integrals with respect to parameters. That is why,
Mossakovskii’s series solution (14)–(16) is, in this sense, better than Copson’s series solu-
tion (12) and (13).

Among the closed-form general solutions, a special interest represents the Galin–
Mossakovskii solution (22), since all differentiations are performed under the integral
sign. Moreover, in Formula (22), all operations of differentiation are applied directly to
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the function f (r, ϕ), and thus, are equivalent to differentiating the shape function of the
punch Φ(r, ϕ).

Of note, Fabrikant’s solutions (26), (27) and (28) are given by in terms of the L -
operator, and their effective application requires the knowledge of its properties (for
instance, L (k1)L (k2) = L (k1k2)).

Another important point to note is the apparent singularity of the Leonov and
Mossakovskii general solutions, as each of the terms on the right-hand sides of Equations (19)
and (20), generally speaking, has a singularity of the order (a − r)−3/2 as r → a. At the
same time, the sought-for solution of Equation (7), generally speaking, should possess the
square root singularity, that is, the singularity of the order (a − r)−1/2 as r → a. This means
that the higher-order singularity terms should cancel each other.

It is necessary to note here that the general solutions outlined above hold true in a
more general case of a transversely isotropic elastic half-space, provided that the plane of
isotropy is parallel to the half-space surface (see, for example, [9]). The potential for further
generalization and development of the general solutions presented above relies on the fact
that the problem of elastic contact is a core issue in similar contact problems with a circular
contact region for functionally graded [29,30], viscoelastic [31,32], thermoelastic [33,34],
poroelastic [35,36], magneto-electro-elastic [37,38], multiferroic [39,40] semi-infinite media
as well for elastic semi-infinite media with surface effects [41,42].

The main results of the present paper are given by Formulas (34) and (42), which in
view of (8), can be rewritten as follows:

p
∣∣
r=0 =

E∗

π

⎧⎨⎩ δ0

a
−

a∫
0

Φ′
0(ρ)dρ√
a2 − ρ2

+

a∫
0

arccos
(ρ

a

)
ΔΦ0(ρ)dρ

⎫⎬⎭, (43)

KI(ϕ) = − E∗δ0√
πa

+
E∗√a
2π3/2

2π∫
0

a∫
0

{√
a2 − ρ2 ∂Φ

∂ρ
(ρ, ψ)

+
2a sin(ϕ − ψ)√

a2 − ρ2

∂Φ
∂ψ

(ρ, ψ)

}
dρdψ[

a2 − 2aρ cos(ϕ − ψ) + ρ2
] . (44)

Here, Φ′
0(r) is the angle-averaged shape function, i.e.,

Φ0(r) =
1

2π

2π∫
0

Φ(r, ψ)dψ.

It is of interest to note that, in contrast to formulas due to Borodachev (40) and
Fabrikant (41), Formula (44) separates the contributions to the contact SIF from the punch
displacement δ0 and the punch shape function Φ(r, ϕ).

To the best of the author’s knowledge, Formulas (43) and (44) have been reported in
the literature for the first time.

The Galin–Mossakovskii general solution is recommended for use as the most simple
closed-form general solution of the non-axisymmetric Boussinesq contact problem.
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Appendix A. Derivation of the Contact SIF from the Galin–Mossakovskii

General Solution

By setting r = a(1 − ε) in Equation (22), we can rewrite

p
(
a(1 − ε), ϕ

)
=

E∗

πa
f0(0)√
ε(2 − ε)

+
E∗

2π2
1√

ε(2 − ε)

2π∫
0

a∫
0

(
a2 − ρ2(1 − ε)2)∂ f

∂ρ
(ρ, ψ) + 2a(1 − ε) sin(ϕ − ψ)

∂ f
∂ψ

(ρ, ψ)√
a2 − ρ2

[
a2 − 2a(1 − ε)ρ cos(ϕ − ψ) + (1 − ε)2ρ2

] dρdψ

− E∗

2π2

2π∫
0

a∫
0

Δ f (ρ, ψ) arctan
(√

ε(2 − ε)
√

a2 − ρ2

Rε

)
ρ dρdψ

Rε
,

(A1)

where Rε =
√

a2(1 − ε)2 + ρ2 − 2a(1 − ε)ρ cos(ϕ − ψ).
Further, by the definition (39), we have

KI(ϕ) = − lim
ε→0+

√
2πaεp

(
a(1 − ε), ϕ

)
. (A2)

Hence, by substituting (A1) into Formula (A2) and letting ε tend to zero, we immedi-
ately arrive at Formula (42), since the third term on the right-hand side of Equation (A1) is
not singular as ε → 0.
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Abstract: The application of cylindrical and spherical symmetries for numerical studies of many-body
problems is presented. It is shown that periodic boundary conditions corresponding to formally
cylindrical symmetry allow for reducing the problem of a huge number of interacting particles,
minimizing the effect of boundary conditions, and obtaining reasonably correct results from a practical
point of view. A physically realizable cylindrical configuration is also studied. The advantages and
disadvantages of symmetric realizations are discussed. Finally, spherical symmetry, which naturally
realizes a three-dimensional system without boundaries on its two-dimensional surface, is studied.
As an example, tectonic dynamics are considered, and interesting patterns resembling real ones
are found. It is stressed that perturbations of the axis of planet rotation may be responsible for the
formation of such patterns.

Keywords: cylindrical symmetry; spherical symmetry; periodic boundary conditions

1. Introduction

Numerical models are often used for solving complex problems in many fields [1–5].
They allow researchers to observe complex systems in artificially created scenarios. This
makes it possible to identify the major governing parameters and study the underlying
physics. Using these observations, one can later develop sophisticated quantitative models.
To be efficient, a heuristic model must account for important features of the phenomenon
and its main governing factors.

We often consider it useful to construct mechanical systems from some interacting
blocks (or ‘particles’). The interactions between them must fulfill certain generic properties,
e.g., for solids they should enable the system to sustain its shape, and this should be
implemented in the model. The atomic lattice of crystalline solids is responsible for the
long-range order in a solid. Its existence is owing to the physics of interatomic interactions.
Such a description has general validity and also applies to amorphous solids and even
fluids. It also applies to fracture processes, which occur via the subdivision of a solid into
fragments before separation. The analogous approach can be applied to describe various
phenomena and systems, such as pattern formation in nature, the mixing of powders, and
the behavior of dynamic systems (see, for example [6,7]).

At present, it is still not possible to advance to satisfactory length and time scales by
using classical molecular dynamics that operate with atoms or molecules. That is why
representative objects are often used as particles, whose motion, in its entirety, reflects
the pertinent aspects of the behavior of the system. For example, the moveable cellular
automata [1], smooth particle hydrodynamics [2], and discrete automata methods [3,6,7] can
be mentioned. Note that visualization and processing of the results of the computations are
very involved [7]. In this context, the reduction in computation costs is essentially important
if one needs a relatively long-term simulation to obtain physically interesting results.
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Below we will present one of them, which applies (virtually or naturally) cylindrical
and spherical symmetries to reduce the calculation time and memory consumption. Our
concern in the present work is primarily the extraction of qualitative information from
numerical simulations, with convenient access to direct visualization for various scenarios
and over long durations. To do this, we used the isotropic ‘moveable automata’ technique
(cf., e.g., [3,7]), which involves a weak, long-range interaction between particles in addition
to a short-range repulsive one.

The form of the interparticle interactions used ensures the existence of a minimum
overall potential and the attendant equilibrium state. Such a system does not require ‘walls’
created by the boundary conditions to form compact fragments of a crystalline lattice.
Even in the case when the average density of the material is lower than that required
for contiguous space-filling, the particles show a tendency to aggregate [7,8]. With these
considerations in mind, we use a model whose details are given below. In solving the
equations of motion, we confined ourselves to problems where the thermal energy kBT,
where T is the absolute temperature and kB is the Boltzmann constant, is negligibly small
compared to other energy terms involved. However, as is usual in dynamics, mutual
transformations between potential and kinetic energy still exist. It can be proven [9] that in
the limit of high kinetic energy density, Ekin >> Cij, where Cij is a stiffness parameter, the
system behaves similar to a gas of nearly free-flying particles. In the opposite limit case,
Ekin << Cij, a crystal lattice is formed spontaneously.

The nodes of the lattice oscillate around the bottoms of the potential valleys formed
by the neighboring particles. It can be described in terms of a harmonic Hamiltonian,
slightly perturbed by non-linear terms. In this sense, the system deforms elastically. While
in the gaseous state, the system is isotropic on average, and in the solid state, its lattice
has a hexagonal symmetry if the interaction potential between the particles is isotropic.
In both limited cases, the system exhibits regular dynamic behavior. However, due to a
difference in symmetry, there is a transition between the two states via a mixed disordered
state, which, in the presence of dissipation, represents a viscous fluid. Thus, the minimalist
model considered accounts for the occurrence of all three aggregate states of the system.

2. Numerical Model

The model describes a system of N particles represented by the vector radius ri, the
momentum pi, and the interaction potential U(

∣∣ri − rj
∣∣) corresponding to the follow-

ing Hamiltonian:

H(ri, pi) =
N

∑
i=1

p2
i /2mi +

N

∑
i,j=1

U(|ri− rj|)/2. (1)

It is opportune to represent the interaction potential by a pair of Gauss potentials:

U(
∣∣∣ri − rj

∣∣∣) = Cij exp
{
−[(ri − rj)/cij]

2
}
− Dij exp

{
−[(ri − rj)/dij]

2
}

, (2)

where Cij and Dij define the magnitude, while cij and dij are the radii of attraction and
repulsion, respectively. The minimization condition corresponding to an equilibrium reads
as follows: Cij >> Dij, cij < dij. Since the parameters Cij, Dij, cij, and dij form arrays
covering all possible combinations, it can be said, without loss of generality, that the
equations of motion

mi∂vi/∂t = −∂H(xi, pi)/∂pi = fi, (3)

describe systems with any number of components, including one- and two-component
systems, which are of interest in this paper. There is a requirement to specify the parameters
C11, C22, C12 = C21, etc.

In standard numerical experiments, the particles are initially placed at random on a
rectangle with the side lengths of [0, Lx] and [0, Ly]. In addition, in the case of contact with
a thermal bath, the boundary conditions need to be accompanied by additional ones. If the
temperature T of the thermal bath at a given boundary (or within the system) is non-zero,
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an array of random δ-correlated Langevin forces need to be included. These are to satisfy
the fluctuation-dissipation theorem in the form of〈

ξ(t, xi, yi)ξ(t′, xj, yj)
〉
= Dδ(t − t′)δi j〈ξ(t, xi, yi)〉 = 0, (4)

where D = 2γkBTm/dt, kB is the Boltzmann constant, γ is a dissipation constant, and dt is
the discrete time step.

Independently of the thermal source, the interaction between the particles produces
kinetic energy and causes effective thermalization of the system. So, one has to introduce a
dissipation channel acting to equilibrate the relative velocities of particles that happen to
be within the distance cv close to the equilibrium. This can be performed by additive force

f v
i ∼

N

∑
j=1

(vi − vj) exp
[
−[(ri − rj)/cv]

2
]

(5)

acting on the i-th particle, with yet another dissipation constant η. As a result, the equations
of motion assume the following form:

mi
∂vi
∂t

= f r
i − η f v

i − γvi + ξ(t, ri) (6)

These equations can be integrated using Verlet’s method, which conserves the en-
ergy of the system at each time step, provided no energy is supplied externally through
mechanical work or temperature variation.

3. Artificial Cylindrical Symmetry

The simplicity of the equations of motion is deceptive. Summation occurs at every
time step over all possible neighbors, including very distant ones. At the same time, to
obtain a more or less realistic model of the system and exclude the effect of boundary
conditions that are too close, one normally needs a sufficiently large number of “particles”.
It becomes especially important when a long-duration run of the numerical simulation
(which often reflects the long duration of the real physical experiment) is needed.

For example, this problem appears when one models a process of strong shear defor-
mation, which causes plastic transformations of the material, which results in so-called
soli-state turbulence [9]. If the numerically generated system is too short, movable au-
tomata quickly reach a boundary of the specimen in a direction of shear deformation
and repulse from it back to the internal regions of the system. It completely modifies the
numerically obtained results, which strongly deviate from the picture of the real process.
To avoid such an artifact, one has to apply as remote a boundary in the direction of shear
as possible. To conserve a reasonably limited number of the automata in the numerical
procedure, one has to reduce the width of the system in the orthogonal direction. A sys-
tem that is too narrow with close boundaries in the orthogonal direction also gives some
uncontrollable corrections.

In such a case, it is convenient to employ periodic boundary conditions on the hor-
izontal axis. Accordingly, a particle leaving the interval [0, Lx] is returned to it at the
opposite end, and the vectors ri − rj connect particles located within the interval [0, Lx]
or the images of escaped particles at the opposite side of the system. On the vertical
axis, the system is limited by plates at y = 0 and y = Ly with reflecting boundary condi-
tions: Uup = C exp[(y − Ly)/c] and Udown = C exp[−y/c]. The stronger the inequalities
C >> Cij and c << cij, the more rigid and sharp the walls are in relation to other forces
and lengths relevant to the system.

The conceptual picture of such a system is shown in Figure 1. It is seen directly that
two ends of the stripe in the horizontal directions are glued without a break. The particles
mostly smoothly pass any (imaginary) gap between two ends of the stripe and continue
their motion along a cylindrical surface. In the formal numerical model, the most important
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thing is that the particles from one side of the stripe interact with the “images” of the
particles from another one. However, such a trick is not needed if the particles are placed
on the surface of a real cylinder in 3D space.

Figure 1. Conceptual picture of a system with periodic boundary conditions in one-dimensional and
repulsing boundaries in the orthogonal one. The origin of the particular system and meaning of the
colors in different subplots are described in the main text.

In any case, such effective “infiniteness” of the system provides an advantage (some-
times huge) in computer time consumption, because one does not need an extremely long
system to minimize the effect of the boundaries, whereas the number of operations grows
and squares N2 of the number of particles N.

Development of the instant structure presented in Figure 1 with the duration is repro-
duced in the Movie_01.avi [10]. It is seen directly how the particles continue their motion
“infinitely” along the cylindrical surface without any disturbance passing any vertical line
in subplot (c), including formally connected left and right boundaries of the planar pictures
in subplots (a) and (b).

This advantage of the “infiniteness” becomes extremely important when in the ex-
tremely long-duration run, one needs to obtain the formation of a nontrivial self-organized
system. In particular, mutual collisions of the ordered domains accompanied by their
consolidation during the shear of a mixture of two compounds between the plates moving
in opposite directions is used in Figure 1 and the corresponding Movie 1.avi [10] as a repre-
sentative example. This is interesting as a particular realization of solid-state turbulence is
discussed in recent publications (see [9] and references therein).

Besides the mathematically formal procedure convenient for the numerical simulations,
the described model can correspond to the physically realizable cylindrical system, which
potentially gives figurative feedback to the natural experiment, which can reproduce the
quasi-infinite run under limited conditions of the laboratory or in some real systems. We
will discuss such possibilities below.

4. Practical Example with Stick-Slip Behavior of a System under Shear

For practical needs and a further description, it is useful to calculate a measurable
quantity: The external force acting on the system. First, we calculate the work produced
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by the forces acting on each particle of the system or the corresponding power pi = fivi.
Summation over all particles yields the total power

2VFext(t) = P(t) =
N

∑
i=1

fivi (7)

expended by a pair of external forces to maintain the motion of the boundary plates with
a constant velocity, V = const. This yields the total force, Fext(t). Calculating spatially
distributed power pi = fivi enables one to observe localization of excitations and hence the
fragments of the lattice practically move as a whole.

Namely, these colorized spots are clearly seen in some places in Figure 1. They
definitely appear in different places and time moments and travel as energy waves along
the system following the “events” corresponding to strong changes of the lattice due to
mutual collisions of the ordered domains, and so on. It certainly causes avalanches of the
energy consumption after stick-slip behavior of the total system under external shear.

Watching the Movie_01.avi, one can observe how (initially randomly placed) relatively
small islands of the rigid component collide with one another and form larger ordered
“domains”, moving and even rotating as a whole. However, they also can split into smaller
ones again. The long-duration run allows us to accumulate statistics and observe that the
distribution of the domain sizes becomes stationary. Another opposite process is normally
organized in the experimental studies [9], where originally, a stripe of the hard material is
placed between two soft ones. In this case, it deforms (elastically and plastically) and then
splits into a set of islands moving and rotating as a whole. Their distribution tends to be the
same equilibrium (stationary, but not static) as the opposite limit. The early infant stage of
this process is illustrated in Figure 2, accompanied by the Movie_02.avi [11], reproducing
the initial stage of the process in dynamics. One can see the plastic deformation (and
destruction into the separate parts later on) of the rigid layer was definitely accompanied
by local excitations and even avalanches of them.

Figure 2. Localized excitation moving along rigid stripe inserted between two soft layers. It is seen
directly that velocity of the rigid stripe inserted between two soft ones (green color) is almost constant
and much smaller than velocities of the outer layers moving in opposite directions (blue and red
colors, respectively).
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From academic and practical points of view, it is interesting to learn how this process
of a solitary rigid plate (without soft outer ones) behaves itself under shear. This behavior
is reproduced in the Movie_3.avi [12].

All the mentioned processes are clearly seen in dynamics in the sequence of the
movies Movie_03.avi, Movie_04.avi, and Movie_05.avi [12–14] where direct observation is
accompanied by the curves giving quantitative information during the long (potentially
infinite) run. In particular, one can see how the time–space map of the horizontal velocity of
a selected vertical cross-section recording is static. It records information about the history
of the events (wave propagation and their avalanches) in the system. For a two-component
system, one can numerically analyze images from every frame of the movie and calculate
the time depending on the number of domains in the rigid phase, the histogram of the area
occupied by the domains of a given size, as well as the size of the maximal and averaged
domain shown to accumulate during the long-duration run. Everything is reproduced
directly in the movies. Analogous information can be accumulated in the static form and
reproduced, as the examples in Figures 3–5 show below.

Figure 3. Square root h (|pi|) 1/2 of the histogram h(|pi|) (a) and the time dependence of the fraction
of the points for which the inequality |pi|> p∗ holds (b). Note the bursts in the magnitude of this
fraction corresponding to the peaks in the time dependence of the total force Fext(t) = P(t)/V, which
is presented in (c).

Let us specifically mention once more that sliding and jumping over a number of
contacting “lattice planes”, which have different orientations, results in a phenomenon that
can be treated as a kind of “stick-slip” behavior in the system under consideration.

Besides direct visualization, it is useful to characterize the excited sites by the absolute
value of the power, |pi|=|fivi|. For that, we plot a histogram h(|pi|) for the probability of
finding a given value of |pi|. As expected, the function h(|pi|) has a pronounced maximum
at low values of |pi| associated with small perturbations of the system almost everywhere
within the ordered domains. The regions of large strain contribute to the total power

2VFext(t) = P(t) =
N
∑

i=1
fivi most significantly, but the partial contribution of an individual

region is not very significant. As a result, the distribution h(|pi|) has an extended ‘tail’ at
large |pi|.
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Figure 4. Time–space map of the horizontal velocity of selected vertical cross-section vx(t, y) recording
static information about history of the events (wave propagation) in the system.

Figure 5. Time-dependent number of rigid phase domains, histogram of area occupied by the
domains of the given size, shown accumulated during long-duration run, as well size of the maximal
and averaged domain.

For both the locations of the maxima and the asymptotes to be well-resolved at the
same time, a nonlinear function h (|pi|) 1/2 is plotted in Figure 3. It can be roughly divided
into two regions—left and right of a vertical dashed line that marks a certain characteristic
value p∗. The fraction of points where |pi|> p∗ holds, i.e., those points where intensive
processes occur, evolves with time. The results of this procedure for a particular realization
of the deformation process are shown in Figure 3b. One can recognize pronounced bursts of
activity, which can be associated with the periods of emergence and development of rebuilt
structures localized at the edges of domains (microscopic analogues of the earthquakes)
seen in Movie_3.avi [12]. The same periods can also be identified in the time dependence
of the total picture presented in Figure 3c. To facilitate the comparison, some of the bursts
are marked with dash-dotted lines.

The function Fext(t) represents the time dependence of the force required to slide a
solid on a surface. From this dependence, the yield force, or yield stress, can be identified.
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In our computer experiments, this dependence resembled that of the resistance force for
sliding a solid on a surface with random roughness in the stick-slip regime.

5. Realistic Quasi-Infinite Objects

Now let us discuss some physical objects with cylindrical and spherical symmetries,
which can serve as examples of effectively infinite systems. First of all, quite often, long-
run shear-force deformations are organized by means of rotating cylindrical systems. The
typical configuration of such a system is illustrated in Figure 6 below. Here, an experimental
material is placed between two cylindrical boundaries. The central one is motionless and
the external one is rotating. It causes a configuration where different layers of the material
inside tend to rotate with the velocity, which gradually increases from V(Rmin) � 0
to V(Rmax) � Vext. If both radii are large enough (and in following the system of the
coordinates), it is mechanically equivalent to the motion between two plates moving with
the velocities Vmax = −Vext/2 and Vmax = Vext/2. Another interesting example of a
naturally cylindrical system can also be seen in biology [9].

Figure 6. Instant configuration of the cylindrical quasi-infinite system presented in the
Movie_6.avi [15].

This fact is clearly seen in the left subplot of Figure 6 where the particles are col-
ored depending on their velocity (from maximum red to minimum blue, respectively).
Movie_06.avi [15] reproduces the process of formation and growth of the rigid domains
inside the two-component mixture and the tendency towards the dynamic equilibrium
distribution of their sizes. The process strongly resembles the same process in the abstract
cylindrical system studied above. It also can be continued, as far as necessary.

The only (but very important) difference that such a system can show exists in reality.
It even has its own advantage that the numerical procedure in such a configuration does not
need fictional images. So, it is potentially expected to require less computer memory and be
less time-consuming. However, it still has the disadvantage that due to the geometry, the
inner and outer layers of the system are not exactly equivalent. To obtain better equivalence,
one has to use both relatively large external and internal radiuses. It actually demands a
relatively large number of mutually interacting particles (movable automata).

Spikes of the interaction forces in the places where the domains collide or strongly
deform are seen directly in the middle subplot of Figure 6. There is one more interesting
characteristic of the system that has to be elucidated. The system definitely rotates as
a whole. At the same time, different regions mutually interact and can rotate quasi-
independently. This effect is practically the same as that which can be observed in the
abstract quasi-infinite system above.

To separate integral and differential rotations, it is convenient to directly calculate the
local circulation (below, for briefness, we call it ‘rotor’ and denote it as rotj) of the particles
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in the proximity of every particle of the system and colorize them accordingly. According
to this local circulation, the particle in position rj is given by the following equation:

rotj =
Nproxy

∑
k

[(vk − vj)× (rk − rj)]/(|rk − rj|). (8)

Differential rotation is visualized in the right subplot of Figure 6, and is especially
clearly seen in the dynamics of the corresponding Movie_06 [15]. One can distinguish
plenty of places where the particles surrounding a given particle instantly rotate in the
direction opposite to the rotation of the complete system. This effect corresponds to the
“solid-state turbulence”, which was already observed in a system confined between two
planar plates moving in alternative directions.

The mentioned rotation is even more pronounced if the space between the internal and
external cylinders is not so densely filled by the soft component. In this case, the “rocks”
formed by the hard component aggregate faster and have more empty space to rotate as a
whole. An example of such a system is reproduced in Movie_07.avi [16]. Here, one can
clearly observe the rotation of the solid “rocks” accompanied by the motion of their sides
colored by blue in the left subplot, which marks the particles playing a role in the instant
centers around which their neighbors locally rotate in the opposite direction. Besides, the
collisions between the rocks are clearly marked by the flashes of force colors shown in the
central subplot.

Let us note in advance that the visualization by means of the colorized rotor is also
very useful for the study of rotating systems with spherical symmetry. In the context of
the present paper, such symmetry is another realization of a quasi-infinite system existing
in nature.

It appears when a spherical belt near the surface of the sphere can rotate more or less
independently of the rotation of the whole object, for example, when it is an atmosphere or
lithosphere of a planet. In both cases, the belts on the surface are partially involved in the
rotation either by an effect (in some senses, just physical friction) on the solid surface of the
planet or by the continental flotation on magma.

It is important to mention that it causes practically the same configuration of the
velocities, which was studied above for the shear-induced turbulence. In reality, the
velocity of the spherical belt monotonously depends on the latitude. It is maximal near the
equator of the planet and has to decrease down to zero near the poles. In fact, one has a
doubled picture of the shear-induced motion with two stripes mirroring one another.

Despite the complication related to the principally 3D configuration, it paradoxically
gives an advantage from the computing point of view. It does not need phantom images of
the particles, because the boundary does not exist at all. Certainly, it allows the simulation
to run infinitely without any limitation from the boundary conditions. So, one can obtain
rather realistic results using a relatively small number of movable automata.

The only thing one needs is to add an attraction (gravitation in fact) of the particles
to the solid spherical surface. In principle, this force is a combination of the Newto-
nian gravitation potential Uattract ∼ 1/

∣∣rj − R
∣∣ and exponential repulsion form the surface

Urepuls ∼ exp[(rj − R)/c]. However, in the particular model, one needs only to “glue” the
particles to the surface, so the cheapest way is to apply sufficiently strong confinement with
the potential Ucon f ∼ (rj − R)2.

Generally speaking, in the case of a spherical surface, the definition rotj =
Nproxy

∑
k

[(vk − vj)× (rk − rj)]/(|rk − rj|) produces a vector in 3D space. To associate it with

the vortices and anti-vortices in the spherical belt (of atmo- or lithosphere) we visualize
its projection perpendicular to the surface with the coordinate rj and colorize it using the
standard MatLab map. It is expected that, due to the general rotation of the ‘planet’, in
the case of ideal laminar flow, the picture will have generally blue and red belts of color
on the southern and northern hemispheres and a yellow–green stripe around the equator.
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However, if the vortices do exist, they will appear as spots of alternative colors (red in
southern and blue in northern hemispheres, respectively).

For a trial, we start from the surface randomly covered by the relatively soft material
(viscous “atmosphere”) and allow it to self-organize due to the rotation. As expected, we
obtain something similar to layered rotation with some vortices appearing between the
layers. This picture reminds us of a Jupiter-like structure. Figure 7 reproduces a sequence
of early configurations of the self-organization in a spherical quasi-infinite system. The
first reproduces the very beginning of the process, starting from the randomly distributed
particles on the sphere (a), followed by two intermediate ones (b)–(c), and the last subplot
(d) reproduces a picture close to the stationary moving configuration. In this stage, the
parallel belts of the vortices and anti-vortices in the “equatorial” region (shown by red and
blue colors, respectively) are already seen.

Figure 7. Sequence of the instant configurations of self-organized spherical quasi-infinite system.
Early (starting from the randomly distributed particles on the sphere), two intermediate, and close
to the stationary moving configurations are shown in the consequent subplots (a–d), respectively.
Parallel belts of the vortices and anti-vortices in the “equatorial” region corresponding to the positive
and negative rotor projection perpendicular to the spherical surface (shown by red and blue colors,
respectively) are seen directly.

Depending on the relations between the interaction and damping coefficients, as well
as the speed of the rotation, one can obtain a different stationary picture. The vantage
of the model is that, in principle, one can run it for as long as necessary to obtain rich
stationary behavior. We performed a number of such experiments and obtained sometimes
very realistic patterns, which closely resembled recently observed images of planetary
atmospheres. See, for example, Movie_08.avi [17].

It is important to note that (as it already was observed in the 2D case), depending on
the values of interaction amplitudes Cij, Dij and distances cij, dij the equations of motion
can describe either soft (liquid) materials, solid ones, or even a mixture of solid and liquid
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ones. In the context of a spherical system, it provides an intriguing opportunity to model a
flotation of the “continental plates” involved in the motion of a rotating liquid “magma”.

Certainly, we understand that the model cannot cover all the aspects of the extremely
long and multifactorial planetary formation and tectonics. However, in the context of
the present conceptual work, one can claim that the model has its own advantages. It is
simple, very efficient, and allows for studying a large number of the “theoretical toys”
with different relations between all the constants, randomly chosen initial conditions, and
scenarios, including very exotic ones. Despite the wide variety of these scenarios, we
already observed more or less typical invariants.

One of the typical intermediate stages created by the process reproduced in
Movie_09.avi [18] is shown in Figure 8, where the spatial distribution of the rigid and
soft (brown and blue, respectively) components is reproduced in subplot (a). Correspond-
ing to the present configuration, distributions of the local velocities and forces are shown in
subplots (b) and (c), respectively. In particular, deep red spots of the local forces demon-
strate some kind of “earthquakes”, which normally appear when the “continents” either
collide one with another or the “continents” are torn apart.

Figure 8. Typical intermediate configuration of the two-component spherical system reproduced
in Movie_09. Spatial distribution of the rigid and soft (brown and blue, respectively) components
is reproduced in subplot (a). Corresponding to the present configuration, distributions of the local
velocities and forces are shown in subplots (b,c), respectively. A tendency of the concentration of the
“continents” to “equator” at fixed axis of the rotation is seen directly.

Our observations of the different scenarios testify to the general tendency of the
concentration of the “continents” to the “equator” at a fixed axis of rotation. As a rule,
after the long run, they finish in either a kind of “Pangea”, or perhaps in two to three
“continents” of very different sizes. It partially resembles the real geological history of the
Earth, but partially differs from it, because it is known that “Pangea”, over time, broke into
several smaller parts, which drifted from the equatorial region.

One of the possible reasons for such catastrophes can be provoked by a periodic
change in the direction of rotation of the planet. It can be caused by several celestial reasons,
due to interplanetary perturbations or even dramatic collisions between planets. One can
mention as an example Uranium, which, in contrast to the majority of planets, currently
rotates around an axis lying almost in the plane of ecliptics.

We simulated such dramatic scenarios using periodic changes in the direction of the
rotational axis. One of them is reproduced in Movie_10.avi [19]. It shows a sequence of
“geological” catastrophes, which are accompanied by huge surges of “geological activity”.
These catastrophes are separated by relatively long calm periods, during which the system
normally relaxes to a small number of “continents”, which form sometimes extremely
realistic global patterns. Some of them strongly resemble the current pattern of our planet
Earth, while others reproduce the pictures known from recorded geological history.
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6. Conclusions

We presented conceptual models illustrating how cylindrical and spherical symmetries
can be applied to reduce the time consumption of numerical simulations in the many-body
problem. Often, to obtain practically and theoretically interesting results regarding many-
body systems, one needs an extremely long run of corresponding numerical procedures.
However, in a normal case, sufficient space for such a run supposes a rather extended
system with plenty of interacting particles. It is shown in the present study that periodic
boundary conditions corresponding to formal cylindrical symmetry allow for avoiding
the problem of a huge number of interacting particles. This trick minimizes the effect of
limited boundary conditions and still allows one to obtain reasonably correct results that
are interesting from a scientific point of view.

In the second part of the paper, we presented a physically realizable cylindrical
configuration and analyzed its advantages and disadvantages for both numerical and
physical aspects. Furthermore, the spherical symmetry was studied. In particular, it is
stressed that the 2D surface (belt) of the 3D spherical body is a unique natural example of a
system, without boundaries at all.

Finally, we present some interesting patterns, which resemble those known from the
tectonic history of our planet. It is shown that very realistic continental patterns can be
obtained under supposition about perturbations of the planet rotation due to external
interplanetary interactions or other extraterrestrial reasons.
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Correction

Correction: Popov, V.L. An Approximate Solution for the
Contact Problem of Profiles Slightly Deviating from Axial
Symmetry. Symmetry 2022, 14, 390

Valentin L. Popov 1,2

1 Department of System Dynamics and Friction Physics, Technische Universität Berlin, 10623 Berlin, Germany;
v.popov@tu-berlin.de

2 National Research Tomsk State University, 634050 Tomsk, Russia

Text Correction

There were misprints in Equations (40), (65), (66), and (67) in the original publication [1].
The correct Equation (40) of the original publication is:

p(r, ϕ) =
E∗

π

a(ϕ)∫
r

ã(ϕ)√
ã(ϕ)2 − r2

1
ã0

dg0(ã0)

dã(ϕ)
dã(ϕ) =

2
π

E∗(2d · ψ
)1/2

√
1 −

(
r

a(ϕ)

)2
(40)

The correct form of Equations (65) of the original publication is:

γ(a) = a
a∫

0

nrn−1
√

a2 − r2
dr = κnan, κn =

1∫
0

ξn−1dξ√
1 − ξ2

=

√
π

2
nΓ

( n
2
)

Γ
(

n
2 + 1

2

) (65)

The correct form of Equations (66) of the original publication is:

δgϕ(a) = κnan(ψ(ϕ)− ψ
)
, δGϕ(a) = κn

an+1

n + 1
(
ψ(ϕ)− ψ

)
(66)

The correct form of Equation (67) of the original publication is:

a(ϕ) = a0

(
1 +

n + 2
n(n + 1)

(
1 − ψ(ϕ)

ψ

))
(67)

The author apologizes for any inconvenience caused and state that the scientific
conclusions are unaffected. This correction was approved by the Academic Editor. The
original publication has also been updated.
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