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Preface to ”Wild Halophytes: Tools for
Understanding Salt Tolerance Mechanisms of Plants
and for Adapting Agriculture to Climate Change”

This reprint deals with an amazing group of plants, the halophytes or halophilic plants; the

etymological meaning of the name is ’salt-loving plants’, in biological contrast to conventional

crops, which are glycophytes, glycophilic plants, or ’sweet-loving plants’. This distinction suggests

that the former require salt in their lives, whereas the glycophytes should avoid salt and seek

fresh water and non-saline environments. The halophytes are, therefore, the subject of this book,

considered from different points of view: ecological, physiological, and biochemical. The proposed

scope of the reprint covers different research possibilities and uses of halophytes. First, obviously,

halophytes are ideal experimental systems for basic studies of salt tolerance mechanisms in plants

at the morphological, anatomical, physiological, biochemical, and molecular levels. Apart from

being a source of knowledge, halophytes can also provide biotechnological tools—salt-tolerance

genes and salt-induced promoters—for the genetic improvement of salt tolerance of conventional

crops. Furthermore, some halophytes could represent the basis of sustainable ‘saline agriculture’,

being commercially grown in salinised land and irrigated with brackish water or even seawater, and,

therefore, not competing with our conventional crops for these limited resources, fertile land, and

good-quality irrigation water.

There are several reasons and motivations for writing and editing this reprint, especially in

the current climate change—or rather ‘climate emergency’—scenario. Climate change represents

the most critical challenge for agricultural production and food security in the foreseeable future.

Together with drought, soil salinity causes the most considerable reduction of crop yields worldwide,

and climate change contributes to the accelerated loss of irrigated cropland in arid and semiarid

regions due to secondary soil salinisation. The most sensible strategy to address this problem should

be based on the genetic improvement of crop salt tolerance, which, in turn, requires elucidating the

physiological and molecular mechanisms of salt tolerance. As mentioned above, halophytes are the

most suitable experimental systems to undertake these studies. In addition, even though all plants

use the same set of general, conserved responses to high salinity—such as the control of ion transport,

osmolyte biosynthesis or activation of antioxidant systems—the efficiency and relative contribution

of those responses to the mechanisms of tolerance vary widely in different species. Therefore, there

is no ‘single model’for salt tolerance research, as none will provide enough information.

Second, there is a purely scientific interest in halophytes. Halophytes were first scientifically

drawn to attention by Goethe (ca. 1790). Still, mentions of this intriguing ecological group of plants

date back much earlier, to the era of Theophrastus (ca. 371–ca. 287 BC). It should be expected that this

long history has led to a deep and complete knowledge of salt tolerance in halophytes; however, as of

today, this is not true. Moreover, despite the accumulated data on halophytes, many aspects remain

obscure. Indeed, literature dealing exclusively with halophytes is scarce; a large part of the work on

the plant–salinity relationship focuses on salt stress applied to glycophytes rather than halophytes.

Indeed, scientists have used almost exclusively cultivated plants (apart from the Arabidopsis thaliana

model) for these studies. It is clear that the economic importance of crops, as our primary source of

food and feed and suppliers of many other goods, has overwhelmingly surpassed the curiosity of a

few botanists. However, interest in halophytes has substantially increased in the past decade, perhaps

because many researchers realised that the (primary) mechanisms of salt tolerance must be found in

ix



halophytes.

We would expect this reprint to be of interest to all scientists working on different aspects

of halophytes’research: ecology and botany; elucidation of abiotic stress tolerance mechanisms

biotechnological applications (e.g., in phytoremediation, as a source of metabolites of medical or

industrial interest); or their domestication and breeding for saline agriculture. However, the reprint

should be attractive also to those interested, more generally, in research on plant abiotic stress

tolerance. People involved in environmental and conservation policies; agronomists and plant

breeders worried about the adverse effects of climate change on crop yields; or postgraduate students

seeking a specific research direction in the field of plant biology, could also gain useful information

from this reprint.

Finally, we would like to thank all authors of the articles included in the Special Issue, and the

reviewers who helped improve the quality of the accepted papers. With their invaluable contribution,

we hope this reprint will open new perspectives in halophytes’research, highlighting new challenges

to be addressed in the future.

Oscar Vicente and Marius-Nicusor Grigore

Editors
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Wild Halophytes: Tools for Understanding Salt Tolerance
Mechanisms of Plants and for Adapting Agriculture to
Climate Change
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* Correspondence: marius.grigore@usm.ro

Abstract: Halophytes, wild plants adapted to highly saline natural environments, represent extremely
useful—and, at present, underutilised—experimental systems with which to investigate the mecha-
nisms of salt tolerance in plants at the anatomical, physiological, biochemical and molecular levels.
They can also provide biotechnological tools for the genetic improvement of salt tolerance in our
conventional crops, such as salt tolerance genes or salt-induced promoters. Furthermore, halophytes
may constitute the basis of sustainable ‘saline agriculture’ through commercial cultivation after
some breeding to improve agronomic traits. All these issues are relevant in the present context of
climate emergency, as soil salinity is—together with drought—the most critical environmental factor
in reducing crop yield worldwide. In fact, climate change represents the most serious challenge
for agricultural production and food security in the near future. Several of the topics mentioned
above—mainly referring to basic studies on salt tolerance mechanisms—are addressed in the articles
published within this Special Issue.

Keywords: climate emergency; crops’ wild relatives; glycophytes; halophytes; phytoremediation;
salt stress; salt tolerance mechanisms

1. Introduction

The increase in crop yields necessary to feed a growing world population, expected to
reach 10 × 109 people by 2050, is seriously hampered in the present global warming scenario.
Indeed, climate change constitutes the most critical challenge for agricultural production
and food security in the next few decades [1–3]. Amongst the multiple environmental stress
conditions negatively affecting plant growth and productivity, drought and soil salinity are
the major causes of the reduction in crop yields worldwide [4]. Climate change contributes
to the increasing loss of cropland because of longer, more frequent and severe drought
periods, as well as secondary salinisation, especially in areas cultivated under irrigation
schemes in arid and semiarid regions. Some estimations indicate that more than 20% of
irrigated farmland is already seriously affected by salinisation, and this figure is expected
to increase in the coming years [5,6].

The genetic improvement of crop salt tolerance—by classical breeding or using trans-
genic or genome editing approaches—appears to be the most sensible strategy with which
to address the problem of reduction in yields due to land salinisation (see, for exam-
ple, [7–9]). This approach, in turn, requires elucidating the physiological, biochemical,
and molecular mechanisms underlying salt tolerance. Mostly model species, such as
Arabidopsis thaliana and a few crops, have been used to investigate these mechanisms, even
though these species are rather sensitive to salt stress [10]. It is true that salt tolerance
depends on basic, conserved responses to salinity—including the control of ion transport
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and ion homeostasis, osmolyte biosynthesis for osmotic adjustment, and activation of
antioxidant systems—which are triggered in all salt-affected plants, tolerant or not [11–13].
However, the relative efficiency of these responses and the specific mechanisms of tolerance
used vary widely in different species. Therefore, it seems evident that salt-tolerant plants are
more appropriate for use as experimental systems for dissecting salt tolerance mechanisms,
and that there is no single ‘model’ species that will provide enough information.

In the frame of this Special Issue’s topic, it is important to differentiate between a
‘glycophyte’ and a ‘halophyte’. Most plants, including all major crops, are glycophytes,
meaning that they are sensitive to relatively low levels of salt in the soil. Halophytes, on
the other hand, are wild plants adapted to saline environments that are able to survive and
complete their life cycle in habitats with a soil salinity equivalent to at least 200 mM NaCl,
although some can withstand salinities even higher than that of seawater [14,15]. Obviously,
this is an ‘operational’ (and useful) definition, but, in fact, plant species show a continuous
range of salt tolerance—or sensitivity. Thus, many glycophytes may have different degrees
of salt tolerance, whereas there are salt-tolerant plants defined as ‘obligatory’ or ‘facultative’
halophytes. In addition, although salt tolerance depends mainly on the genotype, it is
affected by many other factors, such as the plant developmental stage or the simultaneous
presence of other stressful conditions. Therefore, the distinction between glycophytes and
halophytes is not so clear-cut (see [16] for an extended discussion of these issues).

In any case, halophytes are ideal experimental material for fundamental studies of
salt tolerance mechanisms in plants at the physiological, biochemical, and molecular levels.
They can also provide biotechnological tools for improving the salt tolerance of conventional
crops—for example, salt tolerance genes that could enhance this trait when expressed in
transgenic plants, or salt-induced promoters used for the expression of those genes. In
addition, some wild halophytes could be commercially cultivated, representing the basis
of a sustainable ‘saline agriculture’. This would require previous domestication and some
breeding to improve agronomic characteristics, but the point to be highlighted is that
they already possess salt tolerance, the most difficult trait to incorporate via conventional
breeding. These ‘new’ crops could be grown in salinised land and irrigated with brackish
or even seawater, not competing with our conventional crops for limited resources: fertile
land and good-quality irrigation water. This Special Issue attempts to cover all the aspects
mentioned above regarding halophyte basic research and its applications.

2. Special Issue Contents

A suitable strategy by which to elucidate salt tolerance mechanisms is performing
comparative analyses of the physiological and biochemical responses to salt stress of ge-
netically related taxa with different degrees of tolerance. The selected genotypes may
include glycophytic and halophytic species of the same genus or related genera, or different
cultivars, varieties, or accessions of the same species (e.g., [17–19]). This approach is used
in several papers included in this Special Issue. Thus, Ghanem et al. [20] analysed the
responses to increasing salinity of three obligate halophytes, Arthrocnemum macrostachyum,
Sarcocornia fruticosa, and Salicornia europaea (Amaranthaceae), collected from the same
natural habitat, at the vegetative phase of development, measuring biomass and several
biochemical stress markers—ion, chlorophylls, proline and antioxidant compounds con-
tents, and some antioxidant enzyme activities. Based on the obtained data, the authors
suggested that the investigated species adopt two differential strategies: salt tolerance in
S. europaea appears to be primarily due to the activation of antioxidant enzymes and the
biosynthesis of proline, whereas in A. macrostachyum and S. fruticosa, it is based on the
rearrangement of the chlorophylls ratio and the biosynthesis of antioxidant compounds
(carotenoids, phenolics, and flavonoids).

Calone et al. [21] subjected plants of the perennial species Sarcocornia fruticosa and the
annual Salicornia europaea and Salicornia veneta to 30 days of intense salt stress
(700 mM NaCl) and water deficit (complete withholding of irrigation), followed by
15 days of recovery (irrigation with non-saline water). Growth parameters and biochemical
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stress markers were determined after the stress and recovery treatments. The three species
showed high tolerance to salt stress, based on the accumulation of ions (Na+, Cl−, Ca2+)
in the shoots and the synthesis of organic osmolytes. Interestingly, active ion transport to
the shoots and high levels of glycine betaine were also observed in non-stressed control
plants and after the recovery period, suggesting the presence of constitutive stress defence
mechanisms. The three halophytes were found to be sensitive to water stress, although
S. fruticosa to a lesser extent than the two annual species; this could be due to adaptation
to a drier habitat than that of the Salicornia species, but a more gradual stress-induced
senescence in perennials may also contribute to the greater drought tolerance of S. fruticosa.

The article by Ibraheem et al. [22] refers to another genus of the Amaranthaceae
family. The authors compared the physiological and metabolic stress responses of three
Suaeda species (S. monoica, S. vermiculata, and S. schimperi) in their natural saline
environments—contrary to the other papers in this Special Issue, which report studies un-
der controlled greenhouse conditions. Therefore, this work required extensive soil analyses
to determine not only the salinity level but also other stress factors affecting the plants in the
field, such as deficiency in essential nutrients and the presence of toxic heavy metals. Soil
characteristics were then correlated with metabolic parameters in the plants—organic and
inorganic nutrients, photosynthetic pigments, amino acid profiles, oxidative stress markers,
and antioxidant metabolites, amongst others. The results demonstrated common tolerance
mechanisms, such as the use of Na+ and other inorganic elements as cheap osmotica, as
well as species-specific stress responses. In particular, the three Suaeda species are promising
halophytes for the phytoremediation of heavy metal-contaminated soils, showing some
specificity in their capacity to accumulate different heavy metals.

The genus Plantago (Plantaginaceae) includes halophytes and glycophytes, as well
as drought-tolerant species, and is particularly well suited for investigating plant stress
tolerance mechanisms. Ltaeif et al. [23] compared the salt stress responses of two halo-
phytes of the genus, P. crassifolia and P. coronopus, and two glycophytes, P. ovata and
P. afra. As expected, the biochemical responses were different in the two groups of plants;
the halophytes accumulated higher leaf Na+ and proline contents and showed a lower level
of oxidative stress. It was confirmed that P. coronopus and P. crassifolia are the most tolerant
to salt stress, while P. afra is the most sensitive of the four species. Plantago ovata could not
withstand the strongest salt stress treatment (one month in the presence of 800 mM NaCl);
nevertheless, it was shown to also be quite resistant to salt stress, apparently through
specific responses that differed from those of the halophytes; they include a weaker salt-
induced inhibition of photosynthesis, the accumulation of Cl− to higher concentrations in
the leaves, and the activation of K+ uptake and transport to the leaves under conditions of
high external salinity.

Crop wild relatives, generally more resistant to abiotic stress than their cultivated
counterparts, constitute an excellent resource for developing new cultivars with enhanced
tolerance [24]. Therefore, it is interesting to determine the tolerance mechanisms of wild
species of interest. Jekabsone et al. [25] studied the responses of several wild accessions
of Trifolium fragiferum (Fabaceae) from natural habitats with different salinity levels to
controlled salt treatments compared with a commercial cultivar. The authors reported
a decrease in plant biomass and changes in partitioning between different organs with
increasing salinity, responses that were genotype-specific. In addition, Na+ and Cl− accu-
mulation were organ-specific, whereas responses related to mineral nutrition were both
genotype- and organ-specific. In several accessions, salinity stimulated reproductive de-
velopment. The experiments revealed high intraspecies morphological and physiological
variability in the responses of the analysed T. fragiferum accessions to salinity, meaning that
they can be defined as ‘ecotypes’.

Ishikawa et al. [26], on the other hand, compared cultivated rice (Oryza sativa, salt-
sensitive) with a wild relative (Oryza coarctata, salt-tolerant) (Poaceae), demonstrating
that the two species use different strategies to control Na+ uptake. At the early stage
of the salt stress treatment, wild rice increased its xylem Na+ loading for a quick and
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efficient osmotic adjustment but then maintained shoot Na+ contents at non-toxic levels by
activating the high-affinity K+ transporter HKT1;5 (responsible for xylem Na+ unloading)
and the tonoplast Na+/H+ antiporter NHX (for sequestering Na+ and K+ into root vacuoles).
On the contrary, O. sativa initially limited Na+ uptake and transport to the shoot through
the activation of SOS1, the plasma membrane Na+/H+ antiporter, in the roots. However,
cultivated rice failed to maintain this response in the long term because SOS1-mediated
Na+ exclusion is highly energy-demanding. Therefore, the higher salt tolerance of wild rice
seems to rely on efficient Na+ sequestration in root vacuoles as opposed to Na+ exclusion.

Similarly, Bigot et al. [27] also compared the salt resistance of a crop, tomato
(Solanum lycopersicum), and a wild relative, S. chilense (Solanaceae), focusing on the re-
productive phase, particularly Na localisation in floral organs. Salinity was found to affect
reproductive development in the two species, but in different ways. For example, salt
stress induced a decrease in the number of inflorescences in both species, but the number
of flowers per inflorescence or sepal length was only found to be reduced in cultivated
tomatoes. Additionally, the fruit set was not affected by salinity, but fruit size and weight
were reduced in S. lycopersicum. Growth in the presence of salt decreased the stamen length
in S. chilense, which was accompanied by a reduction in pollen production and an increase
in pollen viability. The work included an extensive analysis of the concentrations and
localisation of different ions (Na+, K+, Mg2+, and Ca2+) in reproductive structures, which
differed in the two studied species. For example, Na+ was found to be predominantly
located in non-reproductive floral organs in S. lycopersicum and in the male floral organs
of S. chilense. The expression of different genes involved in ion transport, analysed by
qRT-PCR, also differed in flowers of both species. This study concludes that S. chilense was
more tolerant to salinity than S. lycopersicum during the reproductive phase, which could
be associated, at least in part, with the different distribution and transport of ions in their
flower organs.

The article by Cárdenas-Pérez et al. [28] also addresses basic salt tolerance mechanisms,
although without involving comparative studies of different species but instead a single
one, Salicornia europaea (Amaranthaceae). Combining morphological, anatomical, and
biochemical analyses and advanced statistical methods, this study found that S. europaea
grows optimally between 200 and 400 mM NaCl and that growth is limited at 0, 800, and
1000 mM NaCl. Almost all analysed traits were found to be dependent on the salinity level
but differently affected. The most affected traits included photosynthetic pigments and
protein content, plant surface area, peroxidase activity, and anatomical traits related to
cell shape. Although this species has been extensively studied, these results significantly
expand the present knowledge on the changes in S. europaea functional traits in response to
salt stress.

Mir et al. [29] investigated the mechanisms of environmental stress tolerance in the
threatened halophyte Limonium angustebracteatum (Plumbaginaceae), an endemic species
of the east and southeast of the Iberian Peninsula of high conservation interest. The
study provides new and interesting data on the ultrastructure of salt glands, typical for
halophytic members of the family. In addition, several anatomical, physiological, and
biochemical responses were assessed in plants subjected to one month of water deficit
(complete lack of irrigation) and salt stress (watering with increasing NaCl concentrations,
up to 800 mM). The species is highly tolerant to salt stress, but plant growth was found
to be significantly inhibited by severe water stress. Apart from salt secretion through salt
glands, its salt tolerance is based on the efficient osmotic adjustment by the accumulation of
high concentrations of ions (Na+ and Cl− as well as K+ and Ca2+) and the osmolytes proline
(Pro) and glycine betaine (GB) in the leaves. The relatively high leaf concentrations of the
four ions and GB (but not Pro) in control plants pointed to the presence of constitutive
mechanisms of stress tolerance. A large increase in root K+ concentrations; the active
transport of Na+, Cl−, and Ca2+ to the leaves; and an increase in leaf GB contents were
observed in water-stressed plants. Although the responses to water and salt stress differed,
K+ homeostasis was shown to be essential for tolerance to both stress treatments.
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Bueno and Cordovilla [30] studied the possible effect of different plant growth
regulators—phytohormones such as salicylic acid, gibberellins, cytokinins, and auxins,
and the polyamine spermidine—added to a hydroponic culture on plants of the halophyte
Plantago coronopus subsequently subjected to a salt stress treatment (200 mM NaCl), with a
focus on the use of this species in saline agriculture. All these plant regulators improved
plant growth in the absence of salt, whereas in salt-treated plants, spermidine application
was the most effective pre-treatment, inducing the strongest growth stimulation, osmolyte
(sorbitol) accumulation, and an increase in antioxidant metabolites (phenolic compounds
and flavonoids). The authors conclude that this treatment, activating defence mechanisms
against stress, could contribute to improving salt tolerance in P. coronopus.

The paper by Sánchez-Gavilán et al. [31] describes the phytochemical analysis of sev-
eral Amaranthaceae species of the genera Sarcocornia (S. alpini, S. pruinosa, and
S. perennis) and Arthronemum (A. macrostachyum) from different coastal and inland salt
marshes of the Iberian Peninsula. Separation by gas chromatography or HPLC, cou-
pled with mass spectrometry, was used to identify bioactive compounds (phenolic acids,
flavonoids, lipids) in the plant material. Trans-cinnamic, salicylic, veratric, coumaric, and
caffeic acids were present in all analysed species, whereas ferulic acid was only detected
in A. macrostachyum. The identified flavonoids were cyanidin-3-O-arabinoside, luteolin-7-
glucoside, dihydroquercetin, and p-coumaroyl-glucoside. Regarding fatty acids, palmitic,
linoleic, and oleic acids were detected in Sarcocornia as the most abundant, whereas palmitic,
linolenic, and stearic acids were the main fatty acids present in A. macrostachyum. Apart
from the biological function of these secondary metabolites in the mechanisms of stress
tolerance, their properties (e.g., as antioxidants) increase the interest in the use of these
species for commercial cultivation in the frame of sustainable saline agriculture because of
their high nutritional value.

Finally, the article by Carreiras et al. [32] addressed the question of whether heavy
metal preconditioning could influence the salinity tolerance of Spartina patens (Poaceae), an
invasive halophytic grass that represents a severe problem for the biodiversity of Mediter-
ranean salt marshes. The authors compared the responses of plants from two salt marshes
of the Tagus estuary (Portugal), one pristine and the other contaminated by heavy metals,
to increasing salinity. The analysis of photochemical processes, photosynthetic pigments
profiles, antioxidant enzyme activities, and lipid composition in plants of the two popu-
lations revealed intraspecific physiological differences, resulting in the better adaptation
and tolerance to salt stress of S. patents from the contaminated marsh, especially at high
salt concentrations. Those differences include, for example, salt-induced increases in the
chlorophyll a/b ratio and oleic acid content in plants from the heavy-metal-contaminated
area or the stronger generation of ROS, and therefore more intense plant damage, in the
population from the pristine marsh. The article also discusses the implications of this
variability at the population level for the frequency and distribution of the species in salt
marshes in the face of climate change.

3. Conclusions

This Special Issue, covering several topics included in its proposed scope and a wide
range of halophytes, comprises 12 published articles. In five of them, the investigated
species belong to the Amaranthaceae family—which includes some of the most salt-tolerant
taxa known—of the Arthrocnemum, Sarcocornia, Salicornia, and Suaeda genera; however,
members of the Plantaginaceae, Fabaceae, Poaceae, Solanaceae, and Plumbaginaceae fami-
lies are also studied in other papers. The selected halophytes include some that have been
extensively studied before, such as Salicornia europaea or Plantago coronopus, as well as a nar-
row endemic species of high conservation interest (Limonium angustebracteatum), or Spartina
patens, an invasive species that represents a serious risk to the biodiversity of Mediterranean
salt marshes. Most of the accepted articles deal with elucidating the mechanisms of salt
tolerance, in several cases based on comparative studies of the salt stress responses of
related taxa with different degrees of tolerance. Other papers include more applied aspects,
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such as phytochemical analyses that support the commercial cultivation of some halophytes
because of their high contents of healthy antioxidant metabolites or the possibility of using
others species in the phytoremediation of heavy metals-contaminated soils. Anatomical,
physiological, and biochemical analyses are the most common experimental approaches
used in these studies. Altogether, this Special Issue provides a comprehensive and updated
overview of the biology of halophytes, contributing to expanding our knowledge of this
amazing group of salt-tolerant plants. Other aspects initially included in the scope of the
Special Issue, such as studies conducted using molecular biology or ‘omics’ approaches or
the generation of biotechnological tools for the breeding of salt tolerance in conventional
crops, have not been directly addressed here, but could be included in a possible ‘second
edition’ of the Special Issue.
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angustebracteatum Erben (Plumbaginaceae)
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Abstract: Limonium angustebracteatum is a halophyte endemic to the E and SE Iberian Peninsula with
interest in conservation. Salt glands represent an important adaptive trait in recretohalophytes like
this and other Limonium species, as they allow the excretion of excess salts, reducing the concentration
of toxic ions in foliar tissues. This study included the analysis of the salt gland structure, composed
of 12 cells, 4 secretory and 8 accessory. Several anatomical, physiological and biochemical responses
to stress were also analysed in adult plants subjected to one month of water stress, complete lack of
irrigation, and salt stress, by watering with aqueous solutions of 200, 400, 600 and 800 mM NaCl. Plant
growth was inhibited by the severe water deficit and, to a lesser extent, by high NaCl concentrations.
A variation in the anatomical structure of the leaves was detected under conditions of salt and
water stress; plants from the salt stress treatment showed salt glands sunken between epidermal
cells, bordered by very large epidermal cells, whereas in those from the water stress treatment, the
epidermal cells were heterogeneous in shape and size. In both, the palisade structure of the leaves
was altered. Salt excretion is usually accompanied by the accumulation of salts in the foliar tissue.
This was also found in L. angustebracteatum, in which the concentration of all ions analysed was
higher in the leaves than in the roots. The increase of K+ in the roots of plants subjected to water
stress was also remarkable. The multivariate analysis indicated differences in water and salt stress
responses, such as the accumulation of Na and Cl, or proline, but K+ homeostasis played a relevant
role in the mechanism of tolerance to both stressful conditions.

Keywords: salt glands; recretohalophytes; endemism; water deficit; salt stress; ion transport; osmolytes
accumulation; salt tolerance; drought tolerance; conservation programmes

1. Introduction

The genus Limonium Miller (Plumbaginaceae) represents a fascinating halophytic
model for understanding the functioning of coastal ecosystems. This genus is one of the
most complex taxonomic groups in the Mediterranean flora [1]. Taxonomic research in
the Iberian Peninsula revealed the existence of many endemics with narrow distribution
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ranges [1,2], including recently described new species from southeastern Spain (see, e.g., in
the Valencian Community [3–5]).

The Valencian Community is one of the richest European territories in species of the
Limonium genus [6]. Limonium angustebracteatum Erben is a species of sea lavender endemic
to E and SE Spain (Alicante, Almeria, Castellón, Murcia and Valencia provinces) growing
on argillaceous-sandy soils in littoral salt marsh halophytic communities. This species was
described by Erben [7] from material collected in Sagunto, on “Playa del Puig”, a locality
near Valencia City (Valencia province, Spain).

Limonium angustebracteatum, like other species of this genus, combines morpho-anatomical,
biochemical and physiological traits that enable its growth in saline environments. Limo-
nium species are known as recretohalophytes, as they have salt glands concentrated mainly
in their leaves. This adaptation to saline environments occurs only in a few species of
different families, including Plumbaginaceae [8]. Salt glands allow the removal of excess
salts and play an essential role in regulating the internal ionic composition of leaves and
ensuring osmotic balance, which, together with efficient osmotic adjustments, help prevent
the dehydration of leaf cells [9]. Salt glands are reported in 87 species of Limonium [10], and
they play an essential role in salt tolerance in this genus [11,12]. In addition to eliminating
salts through glands, Limonium species accumulate toxic ions in their vacuoles, ensuring
low-cost osmotic adjustment and avoiding ion toxicity, a common mechanism in dicotyle-
donous halophytes [13–16]. Under stress conditions, osmotic balance is also ensured by the
synthesis and accumulation of osmolytes, or compatible solutes, in the cytoplasm. These
are chemically diverse, the most common being proline and other amino acid derivatives,
glycine betaine and other quaternary ammonium compounds, soluble sugars and polyols
or sugar alcohols [17,18]. In addition to their primary function in osmotic adjustment [19],
osmolytes also play many other roles, such as chemical chaperones, signalling molecules,
modulators of gene expression or scavengers of “reactive oxygen species” (ROS) [17–20].
Quantifying the levels of ions and osmolytes in plants subjected to increased salt concentra-
tions under controlled greenhouse conditions is of great relevance for understanding salt
tolerance mechanisms in halophytes.

It is necessary to distinguish between constitutive stress tolerance mechanisms, present
even in the absence of stress, and induced mechanisms, activated in response to stress. Con-
stitutive mechanisms have a genetic basis and are species-specific; they include, for example,
succulence or salt glands in some extremophiles [17] and other anatomical characteristics,
such as those related to the reduction of water loss under high salinity conditions [21],
or root structure [22]. However, halophytes, especially extremophiles, also possess other
built-in mechanisms and are metabolically pre-adapted to salinity [23,24]. Studies on the
halophyte Eutrema salsugineum revealed a phenotypic and metabolic adaptive plasticity not
found in the related species Arabidopsis thaliana [25]. Many genes induced by salt stress in
glycophytes are constitutively expressed at high levels in E. salsugineum [26]. The additional
activation of induced stress responses at the transcriptional level occurs only at higher
salinities, as reported in E. salsugineum compared to Arabidopsis, in agreement with the
big difference in salt tolerance observed between these two species [27]. Metabolic pre-
adaptation implies that extremophile species can show, even in the absence of salt, elevated
levels of metabolites that are usually salt-induced; in addition, they can also respond to
increased levels of salt stress by accumulating additional osmolytes not synthesised at
lower salinities, as reported in different taxa, including Limonium species [28,29].

The aim of this study was two-fold. Firstly, we undertook a detailed study of the (yet
unknown) morphology of the salt glands of Limonium angustebracteatum by Cryo-Field
Emission Scanning Electron Microscopy (Cryo-FESEM) and toluidine blue-stained leaf
sections. Secondly, we aimed to test the species’ tolerance to abiotic stress and elucidate
its main tolerance mechanisms by analysing the effects of salinity and severe water stress
under controlled experimental conditions on the plants’ anatomical structures, growth
and biochemical parameters. These analyses included the determination of photosynthetic
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pigments, ions (Na+, Cl−, K+ and Ca2+) and osmolytes (proline, glycine betaine and total
soluble sugars) contents and their changes in response to the applied stress treatments.

2. Results
2.1. Effects of Stress Treatments on Plant Growth

One-year-old Limonium plants were subjected to different salt and water stress treat-
ments as described in the Material and methods section. After four weeks of treatment, the
effects of stress were visually observed in the overall growth of the plants. The strongest
growth inhibition was registered in plants subjected to water stress, whereas those from
the salt treatments did not show large variations with respect to the control non-stressed
plants (Figure 1).
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Figure 1. Effect of four weeks of salt treatments with the indicated NaCl concentrations, or water
stress (WS), on Limonium angustebracteatum plants. The scale bar represents 3 cm.

The number of leaves at the end of the treatments was compared to that at the be-
ginning of the experiments. Except for the control plants, irrigated with non-saline water,
where some new leaves were produced (1.8 per plant, on average), the number of leaves
decreased in all other treatments, especially in the presence of 800 mM NaCl and under
water stress conditions (Figure 2a). The mean leaf area also decreased compared to the
control, significantly in plants of the 600 and 800 NaCl and the water stress treatments
(Figure 2b). Root fresh weight decreased in all cases with respect to the control, notably
in water-stressed plants, where an eight-fold reduction was recorded (4.34 vs. 37.87 g);
although significant, the salt-induced reduction in root fresh weight was much less pro-
nounced, down to about 50% of the control, without significant differences between the
salt treatments (Figure 2c). Average values of leaf fresh weight were also lower in the
stressed plants than in the non-stressed control, but the differences were significant only
in the presence of 400 mM NaCl or after the water stress treatment (Figure 2d); in any
case, this reduction (30−40% of the control) was not as substantial as for the root fresh
weight. Another relevant parameter is the water content of the plants, calculated by the
ratio between fresh and dry weight. As expected, water content decreased significantly
in the water-stressed plants, especially in the roots (17.1% compared to 75.0% in control
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plants, Figure 2e) and to a much lower extent in the leaves (64.7% vs. 68.0%, Figure 2f). A
significant but lesser reduction was also recorded in the roots of the 400 mM NaCl-treated
plants (69.1%, Figure 2e) and in the leaves of the plants subjected to 600 mM NaCl (65.8%,
Figure 2f).

Plants 2022, 11, x FOR PEER REVIEW 4 of 21 
 

 

ratio between fresh and dry weight. As expected, water content decreased significantly in 

the water-stressed plants, especially in the roots (17.1% compared to 75.0% in control 

plants, Figure 2e) and to a much lower extent in the leaves (64.7% vs. 68.0%, Figure 2f). A 

significant but lesser reduction was also recorded in the roots of the 400 mM NaCl-treated 

plants (69.1%, Figure 2e) and in the leaves of the plants subjected to 600 mM NaCl (65.8%, 

Figure 2f). 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 2. Growth parameters after four weeks of salt treatments with the indicated NaCl concentra-

tions (X-axis), or one month of water stress (WS), of Limonium angustebracteatum plants. (a) Number 

of leaves, Lno, (b) leaf area, LA, (c), root fresh weight, RFW, (d), leaf fresh weight, LFW, (e) root 

water content, RWC, and (f) leaf water content, LWC. Means ± SE, n = 6. Different lowercase letters 

above the bars indicate significant differences between treatments, according to Tukey’s test (α = 

0.05). 

  

a da
cda

bc

a

bc

a

ab

a

a

0

5

10

15

20

25

Initial Final

LN
o

Control 200 mM 400 mM 600 mM 800 mM WS
c bc abc

ab a ab

0

10

20

30

40

50

60

70

Control 200 mM 400 mM 600 mM 800 mM WS

LA
 (

m
m

2
)

c

bc

ab

bc bc

a

0

1

2

3

4

5

6

Control 200 mM 400 mM 600 mM 800 mM WS

LF
W

 (
g)

c

b
b

b
b

a

0

5

10

15

20

25

30

35

40

45

50

Control 200 mM 400 mM 600 mM 800 mM WS

R
FW

 (
g)

c bc
b bc bc

a

0

10

20

30

40

50

60

70

80

Control 200 mM 400 mM 600 mM 800 mM WS

R
W

C
 (

%
)

bc c c
ab abc a

0

10

20

30

40

50

60

70

80

Control 200 mM 400 mM 600 mM 800 mM WS

LW
C

 (
%

)

Figure 2. Growth parameters after four weeks of salt treatments with the indicated NaCl concentra-
tions (X-axis), or one month of water stress (WS), of Limonium angustebracteatum plants. (a) Number
of leaves, Lno, (b) leaf area, LA, (c), root fresh weight, RFW, (d), leaf fresh weight, LFW, (e) root water
content, RWC, and (f) leaf water content, LWC. Means ± SE, n = 6. Different lowercase letters above
the bars indicate significant differences between treatments, according to Tukey’s test (α = 0.05).

2.2. Ultrastructure of Salt Glands

Secretory salt glands are described in several genera belonging to the Plumbaginaceae
family, including Limonium [19]. To better characterise these structures in Limonium an-
gustebracteatum, we observed their anatomy using Cryo-FESEM microscopy. Salt glands

12
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were located at the epidermis level of leaves, and secreted salt was deposited on the leaf
surface (Figure 3a,b). Based on our observations, we suggest that L. angustebracteatum salt
glands are organised structures formed by 12 specialised cells (Figure 3c,d): four secretory
cells containing a secretory pore that form an inner quadrant, an external ring of four
evident accessory cells, and likely, just beneath, another quadrant of four accessory cells
(Figure 3c,d).
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Figure 3. Cryo-FESEM images of salt glands of Limonium angustebracteaum grown under control
conditions. (a) Salt glands (indicated by black arrowheads) located on the leaf epidermis. (b) Close
look up of a salt gland on the leaf epidermis. Notice salt crystals’ excretion. (c) Transversal section of
a salt gland located on leaf epidermis pits. (d) Detailed image of the salt gland core. Only two rings
of salt gland cells are easily noticeable on this SEM image: 4 secretory cells in the centre, each of them
with a secreting pore; 4 accessory cells surrounding the inner ring of secretory cells; just beneath it, a
border of another accessory cell (bottom left) can be observed. Scale bar: 100 µm (a), or 10 µm (b–d).

2.3. Effects of Stress Treatments on Anatomical Structures

Toluidine blue-stained leaf sections excised from plants subjected to salt and drought
treatments were compared to those of control plants. This experiment allowed us to analyse
the overall leaf anatomy, as well as the leaf cell size and morphology. In the control plants,
leaf cross-sections were generally thicker than those of salt-treated and drought-stressed
plants. Moreover, they were more compact and had a higher degree of tissue organisation
(Figure 4a,c,e). The leaf structure of the plants grown under control conditions was bifacial
dorsiventral, with palisade tissue towards the upper epidermis and spongy tissue beneath
the lower epidermis. In these leaves, palisade tissue consisted of 1–3 layers of long cells,
with regular disposition, without air spaces between them, being consequently more
compact (Figure 4a). On the contrary, a typical palisade tissue was hardly noticeable in
the plants subjected to salt stress, probably due to the lax leaf structure, and, although
they presented 1–2 layers of palisade cells, they were short, with a slightly disorganised
disposition, and presented air spaces between them (Figure 4c). In plants subjected to
the drought treatment, as compared to the control plants, their epidermal leaf cells were
heterogeneous in shape and size and ranged from very large and aculeiform-like shaped

13
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cells to large cells with no regular shape (Figure 4e). As in the case of the 600 mM NaCl salt
treatment, at the analysed cross-section level, the leaf lost its bifacial structure so that the
palisade tissue was no longer noticeable; instead, large irregularly shaped cells, with air
spaces between them, occupied its position (Figure 4e).
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Figure 4. Toluidine blue staining of 8 mm leaf cross-sections of Limonium angustebracteaum plants
under (a,b) control conditions, (c,d) after one-month 600 mM NaCl treatment and (e,f) after one-
month water deficit treatment. Scale bar (a,c,e) 500 µm, and (b,d,f) 50 µm (n = 3).

Epidermal cells were generally homogeneous and mostly presented a thin and flat-
tened morphology in plants grown under control conditions (Figure 4a). However, epi-
dermal cells belonging to leaves from stressed plants presented heterogeneous shapes
(Figure 4c,d), especially those that border salt glands, which were very large, and some
showed an aculeiform appearance (Figure 4b,d,f). In all cases, stomata were noticeable
on both the upper side and the underside of leaves; thus, the lamina was amphistomatic.
Stomata appeared to be generally located at the level of epidermal cells and showed a
very large substomatic chamber (Figure 4a,c,e). Salt glands were located in the upper
epidermis in plants growing under all tested conditions and were sunken in the epidermis
(Figure 4b,d,f). This was especially evident for salt-watered plants (Figure 4d). Generally,
the epidermal cells surrounding the salt glands were larger in stressed plants than in plants
watered with the control solution (Figure 4b,d,f).
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2.4. Photosynthetic Pigments

The concentrations of chlorophyll a (Chl a), chlorophyll b (Chl b) and total carotenoids
(Car) were measured at the end of the treatments in fresh leaf material (Figure 5). Concen-
trations of Chl a did not vary significantly in plants from different treatments, but Chl b
decreased significantly, down to about 35% of the control in the presence of 400 mM NaCl
(0.49 vs. 1.39 mg g−1 DW) and to ca. 44% for the water stress treatments (0.61 mg g−1 DW).
An opposite variation pattern was observed for carotenoids, which showed significantly
higher values in the presence of 400 mM NaCl and upon the water stress treatment than in
the control.
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Figure 5. Variation of photosynthetic pigments contents in Limonium angustebracteatum leaves after
one month of treatment with the indicated NaCl concentrations or one month of water stress (WS).
Means ± SE, n = 6. For each pigment, different lowercase letters above the bars indicate significant
differences between treatments, according to Tukey’s test (α = 0.05). Abbreviations: Chla, chlorophyll
a; Chlb, chlorophyll b; Car, carotenoids.

2.5. Effects of Stress Treatments on Ion Contents

Monovalent ions (Na+, K+ and Cl−) and Ca2+ concentrations were measured at the
end of the treatments in dry root and leaf material. As expected, both Na+ (Figure 6a) and
Cl− (Figure 6b) increased significantly under salt stress but not in water-stressed plants.
A maximum Na+ concentration was found in the presence of 800 mM NaCl, reaching
7.5-fold higher values than in the non-stressed control in the roots (725 µmol g−1 DW,
compared to 96 µmol g−1 DW) and a 2.5-fold increase (642 vs. 254 µmol g−1 DW) in the
leaves (Figure 6a). A similar pattern of variation was established for Cl− (Figure 6b), with
maximum measured concentrations of 1408 µmol g−1 DW in the roots and 1606 µmol g−1

DW in leaves of the 800 mM NaCl-treated plants; these values represent relative increases
over the corresponding controls of, approximately, 7-fold and 4.4-fold in roots and leaves,
respectively. In general, the Na+ and Cl− concentrations in the salt-treated plants were
the same in roots and leaves at all external salinities tested. However, interestingly, in
non-stressed controls and plants subjected to water stress, the contents of both ions were
significantly higher in the leaves than in the roots (Figure 6a,b).
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Figure 6. Ion contents in roots and leaves of Limonium angustebracteatum plants after one month of
treatment with the indicated NaCl concentrations or one month of water stress (WS). (a) Na+, (b) Cl−,
(c) K+, (d) Ca2+. Means ± SE, n = 6. For each organ, different lowercase letters above the bars indicate
significant differences between treatments, according to Tukey’s test (α = 0.05). Asterisks indicate
significant differences between ion concentration values in roots and leaves for the same treatment.

An unusual pattern of variation was found for K+ in roots (Figure 6c). Average
contents of this cation increased in roots in response to salt stress, up to three-fold higher
than in the control in the presence of 800 mM NaCl (ca. 27 vs. 9 µmol g−1 DW), but
these differences were not statistically significant. However, water deficit stress caused
a considerable increase in K+ concentration to more than 380 µmol g−1 DW, or 42-fold
over the control values. In the leaves (Figure 6c), a modest (ca. 1.5-fold) but significant
increase in K+ was detected in response to the highest salt concentration tested (800 mM
NaCl) and to water stress. Leaf K+ levels were significantly higher than those in the roots,
in control plants and at all NaCl concentrations; only in water-stressed plants, the opposite
correlation was observed, with K+ contents substantially higher in the roots than in the
leaves (Figure 6c).

Finally, Ca2+ concentrations showed patterns of variation roughly similar, qualitatively,
to those of Na+ and Cl−, with significant increases over control values, in roots and leaves,
in the presence of 400 mM NaCl and higher salt concentrations (Figure 6e). Leaf Ca2+

contents did not vary significantly in response to water deficit but decreased sharply,
about 10-fold, in the roots of water-stressed plants (Figure 6e). Ca2+ concentrations were
significantly higher in the leaves than in the roots in the controls, in all salt treatments and,
especially, in the water-stressed plants (Figure 6e).

2.6. Effects of Stress Treatments on Osmolyte Accumulation

Proline (Pro), glycine betaine (GB) and total soluble sugars (TSS) represent the most
common plant osmolytes, which are synthesised and accumulate in the cells contributing
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to osmotic adjustment under abiotic stress conditions causing cell dehydration. All three
were analysed in fresh leaf material from plants sampled at the end of the experiment after
one month of exposure to stress.

Pro contents increased significantly in response to salt stress, at 400 mM and higher
NaCl concentrations, from 15.7 to 756.6 µmol g−1 DW, in the control and 800 mM NaCl-
treated plants, respectively, representing a 48-fold increase. Conversely, leaf Pro contents
in plants subjected to the water deficit treatment did not differ significantly from those
measured in control plants or at moderate (200 mM NaCl) salinity (Figure 7a).
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Figure 7. Osmolyte contents in leaves of Limonium angustebracteatum plants after one month of
treatment with the indicated NaCl concentrations or one month of water stress (WS). (a) proline
(Pro), (b) glycine betaine (GB), (c) total soluble sugars (TSS). Means ± SE, n = 6. Different lowercase
letters above the bars indicate significant differences between treatments, according to Tukey’s test
(α = 0.05).

GB contents showed a significant increase in response to water deficit and all salt stress
treatments with respect to the control. However, the variation was not as marked as that
of Pro, reaching no more than twice the control value (Figure 7b). It should be mentioned
that this relatively small stress-induced increment in GB levels was primarily due to the
presence of the osmolyte at high concentrations in non-stressed plants, ca. 123 µmol g−1

DW; that is, almost 10-fold higher than Pro background contents (Figure 7b).
The mean TSS leaf concentrations also increased in the stressed plants relative to

the control, but this variation was only significant in the plants subjected to water stress,
reaching almost twice the values measured in the control plants (117.7 vs. 61.6 mg eq.
gluc g−1 DW) (Figure 7c).

2.7. Multivariate Analysis

A principal component analysis (PCA) was performed on all quantitative traits anal-
ysed. Four components were detected with eigenvalues greater than one, covering 98.04%
of the total variability of the data (Table 1, Figure 8). The first component explained
43.10% of the total variation and correlated (values greater than 0.25, shown in bold font in
Table 1) positively with the concentration of the osmolytes glycine betaine (GB) and proline
(Pro) and with leaf concentrations of Na+, K+, Cl− and Ca2+, and negatively with the leaf
area (LA), leaf number (L No) and chlorophyll b (Chl b). The second component, which
explained an additional 36.2% of the variation, was positively correlated (values above
0.25) with growth parameters (leaf and root fresh weight and root water content) and with
root Na+, Cl− and Ca2+ concentrations, and negatively with root K+ and carotenoids (Caro)
levels. The first component separated the scores of control and salt-stressed plants, except
for those of the 800 mM NaCl treatment, which were separated at one end of the second
component, while those of water stress at the other end of the same axis (Figure 8). Thus,
the most separated treatments on the two axes of the biplot were the control, water stress
and 800 mM NaCl.
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Table 1. Component weights in the PCA performed on Limonium angustebracteatum plants subjected
to one month of stress treatments. Stronger correlations are shown in bold font. Abbreviations:
LNo, number of leaves; LA, leaf area; RFW, root fresh weight; LFW, leaf fresh weight; RWC, root
water content; LWC, leaf water content; Chl a, chlorophyll a; Chl b, chlorophyll b; Caro, carotenoids;
Na+

r, sodium in roots; Na+
l sodium in leaves; Cl−r, chlorine in roots; Cl−l, chlorine in leaves; K+

r,
potassium in roots; K+

l, potassium in leaves; Ca2+
r, calcium in roots; Ca2+

l, calcium in leaves; Pro,
proline; GB, glycine betaine; TSS, total soluble sugars.

Trait Component 1 Component 2 Component 3 Component 4

L No −0.285 0.170 0.178 −0.059
LA −0.308 0.006 0.267 −0.034

RFW −0.212 0.276 −0.058 0.116
LFW −0.156 0.302 −0.206 0.124
RWC −0.090 0.341 0.184 0.033
LWC −0.138 0.147 0.532 0.154
Chl a 0.001 0.053 −0.115 0.789
Chl b −0.262 0.155 −0.304 0.104
Caro 0.017 −0.268 0.4445 0.133
Na+

r 0.222 0.267 −0.019 −0.127
Na+

l 0.265 0.194 −0.112 −0.205
Cl−r 0.224 0.259 0.121 −0.059
Cl−l 0.304 0.150 0.023 0.151
K+

r 0.074 −0.343 −0.207 0.002
K+

l 0.271 −0.162 −0.088 0.314
Ca2+

r 0.139 0.328 0.103 −0.114
Ca2+

l 0.263 0.123 0.221 0.281
Pro 0.279 0.199 −0.083 0.037
GB 0.328 0.062 0.079 −0.104
TSS 0.198 −0.234 0.277 −0.019
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The hierarchical cluster analysis (HCA) performed together with the heatmap
(Figure 9) with traits measured in all plants confirmed the PCA results and revealed
a clear separation of the drought-stressed plants in one cluster. In addition, the cluster
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topology allowed the separation of two other groups, one including plants from the control
and the 200 mM NaCl treatments and the other from the 600 and 800 mM NaCl treatments.
Plants treated with the intermediate salt concentration (400 mM NaCl) showed a heteroge-
neous pattern, with individuals falling into different clusters. Plants from the water stress
treatment showed high positive correlations with root K+ contents and negative with root
fresh weight, water content and Ca2+ concentration. The cluster of plants from the high salt
treatments (600 and 800 mM NaCl) had positive correlations with root Na+ and Cl− and
negative with leaf area, leaf water content and carotenoid levels. Finally, plants from the
control and the lowest salt concentration (200 mM NaCl) were positively correlated with
growth parameters and negatively with ions and osmolytes contents (Figure 9).
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3. Discussion

Limonium angustebracteatum is an endemic species of the Iberian Peninsula with a
high conservation interest. Although it is still largely distributed in E and SE Spain, some
populations declined significantly during recent decades. In the Valencian region, it is
quoted as NT (Near threatened) [30] for the IUCN Red List Categories [31]. In addition, it
is a key species for some protected habitats in this region, such as Limonietalia salt steppes,
becoming particularly dominant in the rare plant association Artemisio gallicae-Limonietum
angustebracteati Costa and Boira 1981 (see [32,33]).

Like other species of this genus, L. angustebracteatum is a recretohalophyte with salt
excretion capacity through salt glands located in the aerial parts of the plants, which provide
a relevant constitutive mechanism contributing to salt tolerance in these species. Salt
glands are epidermal structures specialised in the storage and exclusion of salts present in
halophytes of different families; they function by regulating the ionic balance and ensuring a
stable osmotic pressure [26,34,35]. The great phylogenetic diversity of recretohalophytes, and
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their structural differences, suggest that this trait originated independently multiple times
during plant evolution [36] and represents a clear example of convergent adaptation [37].
Salt glands were already described in classical plant anatomy studies [38], but recent research
sheds light on their evolutionary origin and the physiological, biochemical and molecular
mechanisms of salt secretion through salt glands [19,20,34,36,39]. There are many reports on
the structure and function of salt glands in the genus Limonium [34,40–44] due to its large
number of species, many of them endemics, adapted to saline or dry environments.

The ultrastructure of salt glands in Plumbaginaceae is problematic because of the large
diversity of structural architectures reported for different genera and species and also the
lack of a consistent and standardised language to define different types of component salt
gland cells [19,38]. Furthermore, there are technical difficulties in handling anatomical
cross-sections and electron microscopy images, which, in fact, can never reveal the entire
structure and topography of different types of cells and their connections within a salt
gland. For this reason, salt glands structures based on 12, 16 or 20 cells have been proposed,
with different relative positions with respect to the epidermis level (summarised in [19]).
Based on our analysis of L. angustebracteatum, we suggest a salt gland structure composed
of 12 cells, 4 secretory cells forming an inner quadrant, an external ring of 4 completely
visible accessory cells and just beneath it, another quadrant of 4 accessory cells. A similar
12-cells-based salt gland structure was also reported for other Limonium species: L. aureum
(L.) Hill [45], L. bellidifolium (Gouan) Dumort. [46], L. bocconei (Lojac.) Litard., L. pignanttii
Brullo and Di Martino or L. lojaconoi Brullo [47].

The number of salt glands is shown to increase with various treatments, such as
Ca2+ [48], exogenous nitric oxide [49] or melatonin [41]; however, NaCl appears to be the
main trigger for salt gland development [34,40,44]. Salt gland density is also correlated with
the plants’ natural environment; for example, Limonium species growing under high salinity
conditions have a higher density of glands than those present in less saline habitats [43].

The available data on the anatomical modifications of halophytes under salt and water
stress are surprisingly scarce compared to glycophytes. In L. angustebracteatum, the large
epidermal cells of salt and drought-exposed plants can be regarded in terms of increasing
the thickness of, especially, the upper epidermal layer, as it is also reported for plants of the
halophyte Salvadora persica subjected to high salinity levels [50]. In this species, leaf palisade
tissue disappeared in the presence of 750 mM NaCl [50]; the same effect was observed
in our experiments with L. angustebracteatum in salt-treated plants and, particularly, in
plants exposed to drought. This disorganisation of typical palisade tissue might be an
adaptation to minimise the photosynthetic energy utilisation under intense stress and could
be correlated with the reduction of photosynthetic pigment levels in stressed plants. A
palisade tissue with shorter cells was also reported in the halophyte Juncus acutus L., in the
presence of 400 mM NaCl [51].

Regarding the physiological responses of L. angustebracteatum, high salt concentrations
and water stress affected plant growth. All plants, including halophytes, respond to severe
stress, reducing or even completely stopping their growth, as metabolic precursors and
energy resources are used under such conditions to activate defence mechanisms rather
than for biomass accumulation [52]. All glycophytes and most halophytes show optimum
growth in the absence of salt. Only some extremophiles grow better in the presence of low
or moderate salinity; even in these plants, high salt concentrations have inhibitory effects
on growth [53]. The growth of halophytes of the genus Limonium is generally unaffected by
low NaCl concentrations [54] or is, sometimes, even stimulated [55–58]. However, growth
inhibition is observed at high salinities, 300 or 400 mM NaCl, even in the most salt-tolerant
species [59,60]. Nevertheless, there are also Limonium species that are not halophytes but
rather susceptible to even low concentrations of NaCl, such as L. perezii (Stapf) F.T. Hubb.
and L. sinuatum (L.) Mill. [61] or L. dufourii [62,63]. Limonium angustebracteatum had optimal
growth in the absence of salt, but no significant inhibition was observed in the presence of
200 M NaCl. The same response was found in other Limonium endemics of this geographic
area [64,65]. This behaviour enables the species to grow in saline depressions but also in
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dunes and other elevated, permeable substrates, where soil salinity may be lower due to
the leaching of ions.

Of all the tested treatments, the most significant growth inhibition was recorded in
the plants subjected to water deficit by complete withholding of irrigation for one month;
the effect of water stress was most notably reflected in a drastic reduction in root fresh
weight and water content. This response, reported even for Limonium species growing in
markedly dry areas [66], is explained by the severity of water stress in potted plants, where
roots cannot extend in search of more profound and wetter soil layers as they do in their
natural habitats [65]. Leaf senescence was accentuated by stress, as revealed by the loss of
more than five leaves, on average, in the presence of 800 mM NaCl and the water deficit
treatment. The remaining leaves had a smaller surface area, but photosynthetic pigment
contents did not decrease substantially; only Chl b showed a significant, although slight,
reduction under stress and carotenoid levels even increased, again slightly but significantly,
in response to some stress treatments. These results indicate that L. angustebracteatum
behaves as a typical perennial halophyte, tolerating high salt concentrations far beyond
those found in the soil in its natural habitat [63]. Moreover, under controlled greenhouse
conditions, it is more susceptible to severe water stress than moderate salinity, even though
the plants survived the strong water deficit conditions applied. In their natural habitat,
plants of this perennial species also survive the intense summer drought characteristic of
the Mediterranean region, where periods of one to more than two months of absolute lack
of precipitations are not uncommon.

Like all recretohalophytes, Limonium species secrete ions, especially Na+ and Cl−,
through their glands [39,55,67]. However, these plants also can accumulate these ions in the
cells, sequestering them in the vacuoles to avoid their toxic effects in the cytosol; inorganic
ions represent a ‘cheap’ osmoticum used by many halophilic dicots for osmotic adjustment
under stress [22,68]. Similar patterns of a concentration-dependent increase of Na+ and
Cl− in response to the NaCl treatments were found for the two monovalent ions and the
two organs, roots and leaves. Interestingly, in non-stressed plants and under water deficit
conditions, the concentrations of both ions were significantly higher in the leaves than in
the roots; this difference was much more pronounced in the case of water-stressed plants.
These data indicate that, even at low external salinity, these ions are actively transported
from roots to leaves, where they are used for osmotic balance, as reported in other Limonium
species [62,64,69,70].

An increase in Na+ is usually accompanied by a decrease in K+, as both cations com-
pete for the same binding sites. Moreover, it is well known that excess Na+ causes the
depolarisation of the plasma membrane, inducing the activation of outward rectifier K+

channels and thus the loss of cellular K+ [71,72]. K+ is an essential nutrient for plants,
involved in many cellular and metabolic processes, such as cell elongation, stability of
membrane integrity, enzyme activation, protein synthesis, photosynthesis, stomatal move-
ment or phloem transport [73]. In stress resistance, the role of K+ is related to osmotic
adjustment [74]. In Limonium, the activation of K+ transport from the roots to the above-
ground organs was reported [62], which ensures that its leaf concentration is maintained
or decreases only slightly with increasing salinity, thus counteracting, at least partly, Na+

deleterious effects. The same mechanism was described in other halophytes, such as
Plantago crassifolia [60] or Inula crithmoides [75]. Contrary to the general behaviour, even
salt-induced increases of K+ contents, relative to the control, were reported, for example, in
the roots of several Mediterranean Limonium species [64] or the leaves of L. stocksii under
low salinity [70]. Similar responses were observed in L. angustebracteatum plants subjected
to salt treatments, where leaf K+ levels increased slightly with increasing salinity and were
significantly higher than in roots at each NaCl concentration tested, including the non-
stressed controls. This indicates that K+ uptake and transport to the leaves is an essential
mechanism of salt tolerance in this species, contributing to osmotic balance, also in the
absence of salt. Indeed, in situ subcellular localisation studies revealed that K+ accumulated
in both the cytoplasm and the nucleus of salt gland cells under saline conditions, which
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may play an important role in salt secretion [76]. Leaf K+ contents under water deficit
conditions were similar to those measured at the highest salinity, 800 mM NaCl, suggesting
the participation of this cation in the responses of the plants to drought. However, an
unusual pattern was found for the K+ concentration in the roots of L. angustebracteatum
water-stressed plants, which increased more than 40-fold over the control values. The
plants seem to use K+ uptake as a defence mechanism against drought, which strongly
affects the root system. K+ increases in roots (although not so pronounced) and leaves were
also reported in other congeners such as L. girardianum and L. narbonense [66]. Higher K+

content in leaves than in roots was also reported in plants of this genus sampled in natural
environments [65].

Calcium is another essential cation involved in membrane and cell wall stabilisation,
the regulation of ion transport and selectivity and enzymatic activities [77]. Under salt
stress conditions, the external application of Ca2+ reduces the toxic effects of NaCl, presum-
ably by facilitating increased K+/Na+ selectivity [77]. Ca2+ plays an essential role in stress
signalling; cytosolic calcium activates the calcium sensor protein SOS3, which triggers a
signalling cascade activating the plasma membrane Na+/H+ antiporter, SOS1, leading to
Na+ efflux out of the cytosol to the apoplast and also contributing to Na+ compartmen-
talisation in the vacuole through the equivalent tonoplast antiporter, NHX1 [78,79]. Ca2+

levels increased in both roots and leaves in several species of this genus [64,70]; in other
species, on the contrary, this cation was found to decrease with salinity [64,80]. The strong
reduction of Ca2+ in the roots of water-stressed plants could be related to the high input of
K+ ions, as the presence of other cations is known to profoundly influence Ca2+ uptake,
with high levels of K+ and Mg2+ reducing Ca2+ uptake [81].

A fundamental mechanism to ensure osmotic balance and compensate for the accumu-
lation of toxic ions in the vacuoles, mostly in dicotyledonous halophytes, is the synthesis
of osmolytes [23]. The genus Limonium is notable for the variety of compatible solutes
used concomitantly, even in the same species [54]. Proline, one of the most common plant
osmolytes, is found in all Limonium species and can be considered a functionally relevant
osmolyte in this genus [54]. Many reports in Limonium species indicate an increase in
Pro contents under stress, and often higher Pro levels are correlated with higher stress
tolerance [63]. However, this cannot be generalised to all Limonium taxa since, for example,
in L. latifolium, the variation in Pro concentrations was considered to be related to damage
and successive repair in the mitochondrial step of proline oxidation [82] rather than to
its salt tolerance. In L. angustebracteatum, a linear increase of Pro contents in parallel to
increasing salinity was observed, reaching over 750 µmol g−1 DW in the presence of 800
mM NaCl, but not in response to water stress, suggesting that this osmolyte plays a relevant
role in the plant adaptation to salinity, but not so much to drought.

Glycine betaine is another common osmolyte in plants, present at high concentrations
in the salt-tolerant Amaranthaceae and Poaceae [83] and acting as an osmoregulator under
abiotic stress conditions [84]. GB is synthesised primarily from choline, and GB accumula-
tors have particular adaptations in the biogenesis of choline and the methyl group that are
not present in other plants [85], allowing accumulations of 4–40 µmol g−1 FW in spinach
and sugar beet [84], or up to 900 µmol g−1 DW in the halophyte Suaeda fruticosa [86]. The
values recorded in L. angustebracteatum (even in control plants) are above those previously
reported in Limonium species sampled in natural environments [65,87,88]. Since GB con-
centrations increased significantly under both types of stress, we can conclude that this
compatible solute plays a relevant role in the osmotic adjustment of L. angustebracteatum.

On the other hand, soluble sugars do not seem to participate in the salt or drought
tolerance mechanisms in L. angustebracteatum. TSS levels did not vary significantly in plants
subjected to the salt treatments, and the increase observed in response to water deficit
was too small to have any relevant osmotic effect. Nevertheless, it is always difficult to
assess the possible role in stress tolerance mechanisms of changes in sugar concentrations
because of their multiple biological functions not directly related to stress responses, as
direct products of photosynthesis, metabolic precursors or energy sources [89].
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These results suggest that Limonium angustebracteatum can behave as a eurioic species,
particularly regarding the soil salt concentration. This would imply that the species can
easily adapt to environmental changes, even though it has little resistance to prolonged
periods of flooding, according to our observations in the field (EL and PFG, pers. obs.). In
this respect, L. angustebracteatum shows a behaviour similar to that of L. dufourii [63] and far
from that shown by more water-resistant species such as L. albuferae P.P. Ferrer et al. [63].
Furthermore, unlike most Limonium species sharing its habitat in the Valencian Community
(L. dufourii, L. girardianum (Guss.) Kuntze, L. virgatum (Willd.) Fourr., L. angustebracteatum
is a much more robust plant, bearing bigger and deeper root systems [11,28], which allows
it to colonise dunes or other habitats unable for those species. These physiological and
morphological features can explain that L. angustebracteatum was more abundant and
less threatened than L. dufourii, listed as CR (Critically Endangered) under the IUCN
classification (see [28,90]). However, even possessing this greater colonising capacity, L.
angustebracteatum has vanished in some areas where it was abundant in the past, such as
the Devesa de l’Albufera in Valencia (EL and PFG, pers. obs.), after abrupt alterations of the
local ecosystem due to human activity (see [8,9]). Despite this local population decline, the
results presented here allow us to propose L. angustebracteatum as a suitable species to be
included in future ecological restoration projects because of its higher resilience compared
to more delicate, endangered cohabitant taxa (i.e., L. dufourii).

4. Materials and Methods
4.1. Plant Material and Stress Treatments

One-year-old L. angustebracteatum plants, obtained from the germination of seeds,
were used for this study. The plants were grown in a greenhouse with natural illumination,
relative humidity of 65% and a 23–30 ◦C temperature range. Plants were individually
placed in 12 cm diameter pots filled with a mixture of commercial peat and vermiculite
(3:1) and watered regularly with tap water. Treatments were performed on 36 plants of
uniform size, with six replicates per treatment. The following treatments were applied:
control (irrigation with tap water, twice per week), water stress (complete withholding of
irrigation) and salt stress (irrigation, twice per week, with aqueous solutions of 200, 400,
600 and 800 mM NaCl). After four weeks of treatment, the plants were cut and weighed,
and their leaves were scanned to measure the leaf area. Part of the fresh material was frozen
and partly dried in an oven at 65 ◦C for three days until a constant weight was recorded.
The water content of the roots and leaves was measured according to the formula:

WC (%) = [(FW − DW)/FW] × 100 (1)

4.2. Cryo-FESEM Preparations

Cryo-Field Emission Scanning Electron Microscopy (Cryo-FESEM) was performed at
the Electronic Microscopy Service of the Polytechnic University of Valencia (QUORUM
TECHNOLOGIES, Model PP3010T, Laughton, UK). Leaf samples were excised from adult
plants grown under control conditions and physically fixed at ultra-low temperatures
with slush nitrogen at −210 ◦C (cryogenisation); samples were maintained under low
temperatures throughout the whole process in a preparation camera. Some samples were
cracked with an inner stick to image transversal sections, and then a sublimation step
(−90 ◦C for 10 min) was performed to eliminate residual liquid water. Finally, the samples
were sputtered with platinum particles before imaging.

4.3. Light Microscopy

Sample preparation was carried out at the Microscopy Service of the Institute of
Plant Molecular and Cell biology (IBMCP, Polytechnic University of Valencia). First, small
sections of the leaves (4 mm2 approximately) were excised from plants grown under control,
salt and drought conditions, collected on FAE (50% ethanol, 3.7% formaldehyde and 5%
acetic acid) and subjected to vacuum for 15 min or until the samples were sunk. Then, the
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FAE solution was refreshed, and the samples were maintained at 4 ◦C. Next, the samples
were dehydrated and included on paraffin with an automatic tissue processor (TP 1020,
Leica, Germany). Briefly, the samples were incubated for 1 h with four increasing ethanol
solutions (70, 90, 95, and 100%) and three commercial histoclear solutions. Then, inclusion
was performed during two sequential incubations under a vacuum of 1 and 3 h with
melted paraffin. Afterwards, samples were individually mounted in paraffin blocks and
left to solidify at room temperature. Finally, the included samples were sliced (8 µm)
with an RM2025 microtome (Leica Biosystems, Nussloch, Germany) and mounted on
polysine-enriched slides.

For toluidine blue (TB) staining, sections on the slides were deparaffinised and rehy-
drated with sequential 10 min incubations with histoclear, ethanol 100%, 90% and 70%,
and finally, with distilled water. Next, sections on the slides were incubated for 2 min with
a 0.02% TB solution, rinsed with distillate water and dried. Finally, samples on the slides
were mounted with distilled water and images were taken with a microscope Eclipse E1000
(Nikon, Tokyo, Japan).

4.4. Photosynthetic Pigments

Fresh leaves (50 mg) were used for the quantification of chlorophyll a (Chl a), chloro-
phyll b (Chl b) and carotenoids (Car) by the spectrophotometric method described by
Lichtenthaler and Welburn [91]. Extraction was performed with one mL of ice-cold 80%
acetone followed by overnight shaking at room temperature under dark conditions. Next, a
centrifugation step was performed (13,300× g, 10 min at 4 ◦C). Finally, the absorbance of the
supernatants (measured at 470, 646 and 663 nm) was used to estimate the concentrations of
the pigments according to the equations previously described [91].

4.5. Quantification of Ions

Sodium (Na+), potassium (K+), chloride (Cl−) and calcium (Ca2+) levels in the roots
and leaves were estimated according to Weimberg [92]. Samples (50 mg) of ground dry
plant material were suspended in 15 mL of deionised water, heated at 95 ◦C in a water bath
for one hour, followed by cooling on ice and filtration through a 0.45 µm nylon filter. The
cations were quantified with a PFP7 flame photometer (Jenway Inc., Burlington, VT, USA)
and the anion using a chlorimeter (Sherwood, model 926, Cambridge, UK).

4.6. Quantification of Osmolytes

Proline (Pro) was quantified according to the classical protocol by Bates et al. [93],
with some modifications [94]. Pro was extracted from 50 mg of fresh leaves in 3% aqueous
sulphosalicylic acid mixed with acid ninhydrin solution and incubated for one h at 95 ◦C.
Next, the mixture was cooled on ice, and then two volumes of toluene were added. The
absorbance of the supernatant was read at 520 nm, using toluene as a blank. Samples
containing known Pro concentrations were assayed in parallel to obtain a standard curve.
Pro concentration was expressed as µmol g−1 DW.

Glycine betaine (GB) was determined in 1-mL aqueous extracts prepared from 50 mg
dry leaf material, according to published procedures [95,96]. The extract was supplemented
with potassium iodide, kept on ice for 90 min and then extracted with 1,2-dichloroethane
(pre-cooled at −20 ◦C). Finally, the absorbance of the sample was measured at 365 nm. GB
content was expressed as µmol g−1 DW.

Total soluble sugars (TSS) were measured according to the method described by
Dubois et al. [97] with some modifications [94]. First, fresh leaf material was ground in
liquid N2 and extracted with 80% (v/v) methanol and mixed in a rocker shaker for 24 h.
Next, samples were centrifuged at 13,300× g for 10 min, and supernatants were collected,
diluted with water, and supplemented with concentrated sulphuric acid and 5% phenol.
After 20 min incubation at room temperature, the absorbance was measured at 490 nm.
TSS concentrations were expressed as equivalents of glucose, used as the standard (mg eq.
glucose g−1 DW).
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4.7. Statistical Analysis

Data were analysed using the program SPSS for Windows (SPSS Inc., Chicago, IL,
USA). Before the analysis of variance, the Shapiro–Wilk test was used to check for the
validity of the normality assumption and Levene’s test for the homogeneity of variance.
If ANOVA requirements were accomplished, the significance of the differences between
treatments was tested with a one-way ANOVA, followed by post hoc comparisons using
Tukey’s HSD test at a significance level of p = 0.05. The mean values of all parameters
measured in the plants were used for a principal component analysis (PCA). Hierarchical
cluster analysis (HCA) and the corresponding heatmap were performed using the ClustVis
2.0 tool [98]. Rows were centred, and unit variance scaling was applied to rows. Both rows
and columns were clustered using correlation distance and average linkage.

5. Conclusions

The results obtained revealed that L. angustebracteatum is a recretohalophyte highly
resistant to salt stress. In addition to salt secretion through salt glands, its salt tolerance
seems to depend on efficient osmotic adjustment by the foliar accumulation of high con-
centrations of ions (Na+ and Cl−, but also K+ and Ca2+) and the osmolytes proline and
glycine betaine. The increase of K+ contents with increasing salinity also represents an
especially remarkable tolerance mechanism as it can partially counteract the Na+ toxic
effects. The contents of all four ions were significantly higher in the leaves than in the
roots in non-stressed plants, indicating the presence of constitutive defence mechanisms
based on active ion transport to the leaves, even at low external salinity. This constitutive
response also included GB (but not Pro) accumulation since high absolute concentrations
of the osmolyte were also measured in the leaves of the control plants.

On the contrary, the species is more susceptible to water deficit, but an active transport
to the leaves of Na+, Cl− and Ca2+ and a slight but significant increase in GB (but not Pro)
contents were observed in water-stressed plants. These inorganic ions and the organic
osmolyte contribute to osmotic balance under water stress conditions.

The large increase (over 40-fold) in K+ levels in roots of water-stressed plants supports
the notion that K+ homeostasis plays a relevant role in the mechanisms of tolerance to both
stressful conditions. Furthermore, Ca2+ can also be involved in salt and drought stress
responses as an essential signalling molecule besides its osmotic effects.
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Abstract: Current agricultural problems, such as the decline of freshwater and fertile land, foster
saline agriculture development. Salicornia and Sarcocornia species, with a long history of human
consumption, are ideal models for developing halophyte crops. A greenhouse experiment was set up
to compare the response of the perennial Sarcocornia fruticosa and the two annual Salicornia europaea
and S. veneta to 30 days of salt stress (watering with 700 mM NaCl) and water deficit (complete
withholding of irrigation) separate treatments, followed by 15 days of recovery. The three species
showed high tolerance to salt stress, based on the accumulation of ions (Na+, Cl−, Ca2+) in the shoots
and the synthesis of organic osmolytes. These defence mechanisms were partly constitutive, as active
ion transport to the shoots and high levels of glycine betaine were also observed in non-stressed
plants. The three halophytes were sensitive to water stress, albeit S. fruticosa to a lesser extent. In
fact, S. fruticosa showed a lower reduction in shoot fresh weight than S. europaea or S. veneta, no
degradation of photosynthetic pigments, a significant increase in glycine betaine contents, and full
recovery after the water stress treatment. The observed differences could be due to a better adaptation
of S. fruticosa to a drier natural habitat, as compared to the two Salicornia species. However, a more
gradual stress-induced senescence in the perennial S. fruticosa may contribute to greater drought
tolerance in this species.
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1. Introduction

In response to the current increase in world population, agriculture is called to address
two major but opposite needs: increasing food production while decreasing its negative
environmental impacts. Boosting food security through sustainable agricultural practices
represents a priority objective for the 2030 Agenda for Sustainable Development [1], a goal
that, to date, is even more urgent, considering that, in 2020, the number of undernourished
people worldwide has increased by 83–132 million due to the COVID-19 pandemic [2].
However, the growing competition for land and water caused by the dramatic expansion of
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cities [3], in conjunction with the increasingly recurrent phenomena of soil erosion, water
scarcity, and loss of agrobiodiversity, are posing serious obstacles to achieving this objective.

The Mediterranean basin is amongst the areas most threatened by salinisation in the
world due to climate change [4]. According to the Intergovernmental Panel on Climate
Change, in the Mediterranean region, temperatures will rise by 2–4 ◦C, and rainfall will
decrease between 4% and 30% by 2050 [5], whereas sea level is expected to increase by
approximately 35 cm by 2100 [6]. The projected climate changes will also exacerbate the
salt accumulation processes driven by seawater intrusion in the coastal shallow aquifers,
which in turn will constrain soil fertility and crop productivity.

In 2009, the World Bank introduced the concept of climate-smart agriculture (CSA),
referring to an integrated approach to address the complex nexus of climate change, food
security, and sustainable development [7]. Today, the FAO Strategic Framework 2022–
2031 considers the transition to CSA imperative to improve agricultural resilience and pro-
ductivity and lower its climate footprint and costs [8]. The CSA approach is implemented
through three priority lines of action: firstly, boosting sustainable agricultural production
to support increased incomes and food security; secondly, increasing agroecosystems’
adaptive capacity; and thirdly, reducing greenhouse gas emissions while increasing carbon
sequestration [9].

The CSA applications are context-specific, depending on the local socio-political,
financial, and environmental context, and encourage the integration of new technologies
and practices such as precision farming tools, decision support systems for land and
water management, conservative and organic crop practices, integrated pest and disease
management, and the introduction of drought-, salt-, and flood-tolerant crops [10]. In this
last regard, the Mediterranean region represents a precious hotspot of biodiversity, with
a remarkable richness in cultivated and native wild plants that have adapted to various
unfavourable conditions such as prolonged drought, salinity, and flooding.

Halophytes are extremophile plants that can tolerate harsh conditions and salinity
levels toxic to most plants. Within the CSA framework, the study of halophytes’ stress
tolerance mechanisms is an outlooking strategy for improving crop resilience to environ-
mental stress. Besides providing valuable scientific models, these plants can be cultivated
for the direct production of food, fodder, biomass and medicinal compounds, as well as
for soil phytoremediation, carbon sequestration, and landscaping purposes, including the
recovery of marginal saline soils and water [11,12]. About 1100 halophyte species occur in
the Mediterranean Basin, when considered in its broadest meaning, i.e., from the Aral Sea
to the Atlantic Ocean [13]. Taxonomical, biological, and ecological diversity is high here,
and there are traditional and new potential uses of these plants.

The subfamily Salicornioideae includes around 100 species of succulent halophytes,
the Sarcocornia/Salicornia lineage being one of the most important in terms of species
diversity [14]. This lineage consists of hygro-halophytes diversified during the Middle
Miocene [15] and was confirmed by transcribed spacer (ITS) and atpB–rbcL spacer se-
quences as monophyletic, being clearly separated from other taxa [15]. Molecular phy-
logenetic studies based on external transcribed spacer (ETS) sequence revealed that this
lineage comprises three primary clades: Salicornia, American-Eurasian Sarcocornia, and
South African-Australian Sarcocornia [16]. The genus Sarcocornia A.J. Scott was separated
from Salicornia L. and Arthrocnemum Moq. on the basis of morphological characters [17].
The Salicornia and Sarcocornia genera are morphologically similar and can be distinguished
only by inflorescence characters and their life form, the former including only annuals and
the latter only perennials. Salicornia is clearly a monophyletic genus, as revealed by ETS
sequence data [16], whereas Sarcocornia remains unresolved as possibly paraphyletic [14].
Annual Salicornia species evolved from the perennial Sarcocornia during Miocene, and
their high self-fertility allowed their rapid expansion, colonising coastal and inland remote
habitats [14,16].

Three species of the Sarcocornia/Salicornia lineage were selected for this study. Salicor-
nia europaea L. belongs to a diploid clade including genotypes that show a wide geographical
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distribution. S. veneta Pign. et Lausi is a member of the well-supported monophyletic group
of Salicornia dolichostachya Moss with very little genetic variation among its taxa [16,18]. The
species is endemic to NE Italy in the area of the Lagoon of Venice and West Slovenia and is
classified as vulnerable according to the UICN criteria [19]. The third species under study,
Sarcocornia fruticosa (L.) A.J. Scott with Mediterranean distribution, belongs to the Eurasian
clade of Sarcocornia [14]. The three species are morphologically similar, with succulent
and articulate stems, reduced leaves, and inflorescences of minute reduced flowers. Their
young, fleshy tips are edible and commercialised with the name of “samphire”, “sea aspara-
gus”, “pickleweed”, or “poor man’s asparagus” [20]. Thanks to the crunchy texture and
salty taste, their succulent shoots are highly appreciated in gourmet cuisine [21–23]. More-
over, they are a good source of fibre, antioxidants, and anti-inflammatory metabolites, such
as vitamin C and polyphenolic compounds, making them an ideal nutraceutical supple-
ment [23,24]. These species are also appreciated as oil-seed crops. Indeed, oil extracted from
their seeds is rich in polyunsaturated fatty acids, particularly oleic and linoleic acid, having
valuable health properties [25]. Furthermore, these species can produce high amounts of
biomass rich in lignocellulosic materials suitable for bioethanol production [26]. The high
biomass production, combined with the high phytoextraction capacity, also makes these
species very attractive for the phytoremediation of saline and heavy metal-contaminated
soils [27]. Finally, several studies have demonstrated their suitability for the regreening of
marginal areas to increase carbon sequestration and relieve soil erosion [28,29].

Without salt glands or salt bladders, the strategy of glassworts to tolerate the ionic
and osmotic components of salt stress relies largely on the massive accumulation and
vacuolar compartmentalisation of Na+ and Cl− [30–33], which allow them to maintain
the osmotic potential necessary to drive water uptake into cells while preventing ion-
related cytotoxic effects. Moreover, they have evolved the ability to increase succulence
in shoots diluting the accumulated ions [34], synthesise compatible solutes for osmotic
adjustment, especially glycine betaine [34–37], produce ROS-scavenging enzymes and
compounds [38,39], maintain high K-Na selectivity [33], and effectively regulate ammonium
detoxification processes under stress conditions [40]. Furthermore, glassworts have the
ability to transit from green to reddish colouration through the accumulation of red-violet
pigments and betacyanins, which allow them to cope with excessive light energy in the
photosystems when the plants experience osmotic stress and photosynthesis declines by
dissipating excess excitation energy into heat [41].

In their natural habitats, halophytes are subjected to wide seasonal oscillations in
precipitations and temperature, and therefore in soil moisture and salinity, which result in
periods of high and low stress intensity that alternate during the year [42]. Significantly
stressful conditions at the field level, however, are often only transient and rarely cause
plant death as more favourable conditions usually return, although they often result in
reduced crop yield [43]. However, basic studies on stress tolerance in halophytes have
generally focused on their responses to different applied stress treatments, and very little
is known on the equally important mechanisms of stress recovery, which are essential for
ensuring sustainable crop production under intermittent stress events.

The focus of the present study was to analyse differences between the three aforemen-
tioned Salicornioideae species in their responses to stress and stress recovery treatments,
which could be due to differences in the plants’ life cycle or native environments. For
this, we determined growth parameters in plants of the investigated species after apply-
ing controlled salt and water deficit treatments in a greenhouse, followed by irrigation
with non-saline water. To obtain insights into their stress tolerance mechanisms, growth
responses were correlated with changes in the levels of specific biochemical stress markers,
such as photosynthetic pigments, different mono and divalent ions and organic osmolytes,
oxidative stress markers, and antioxidant compounds.
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2. Results
2.1. Substrate Electric Conductivity and Moisture

During the stress period, the substrate electric conductivity (EC) increased significantly
in the pots subjected to salt stress, reaching over 15 dS m−1 for all three halophytes, with a
maximum of 21 dS m−1 in S. fruticosa, whereas the water stress treatment did not cause
any change in the control EC values (Figure 1A). After 15 days of watering the pots with
non-saline water (‘recovery’ treatment), the substrate EC in salt-treated pots decreased to
control values (for S. europaea and S. veneta) or even slightly (but significantly) below the
control for S. fruticosa. However, substrate salinity in the pots previously subjected to the
withholding of irrigation remained similar to the controls after recovery (Figure 1A).
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Figure 1. Effect of 30 days of stress treatments (Stress), followed by watering with non-saline water
for 15 days (Recovery) on (A) Substrate electrical conductivity (soil EC) and (B) water content
(soil WC). Ctrl, control; SS, salt stress (watering with 700 mM NaCl); WS, water stress (complete
withholding of irrigation). For each species and sampling (Stress or Recovery), different lowercase
letters over the bars indicate significant differences between treatments (Ctrl, SS, and WS) at p ≤ 0.05.
Different uppercase letters indicate significant differences between the two sampling times (Stress
and Recovery) for each species and treatment, at p ≤ 0.05. Vertical bars indicate standard error (n = 4).
ns: non-significant.

Contrary to the EC data, the substrate water content, with control values of about
65% for all three halophytes, was not affected by the salt treatment; however, soil moisture
decreased significantly under water deficit conditions, down to between 25 and 30%, de-
pending on the species (Figure 1B). After recovery from water stress, substrate moisture
increased to reach values equal or even higher (in S. veneta) than the controls, whereas recov-
ery from salt stress did not alter the soil water content when compared to the corresponding
controls (Figure 1B).

2.2. Plant Growth

Plant height and the number of branches were measured in all plants at the beginning
(T0) and every 15 days during the experiments; that is, after 15 and 30 days of water or
salt stress and at the end of the ‘recovery’ treatment (Table 1). Both parameters increased
significantly during the stress treatments in control and stressed plants. The salt treat-
ment did not cause significant growth inhibition in any of the three species. In contrast,
compared to the control, water deficit induced a significant plant height reduction in the
two Salicornia species and also a reduction (down to 57% of the control) in the number of
branches in S. europaea. However, this inhibitory effect was only observed after 30 days of
withholding irrigation, not at day 15 of the treatment (Table 1). These data indicate a strong
tolerance of the three species to salinity, even at very high salt concentrations (700 mM
NaCl), and a slightly higher drought sensitivity of the two Salicornia species compared to
Sarcocornia fruticosa.

After 15 days of recovery, the plant height and the number of branches of S. europaea
and S. veneta plants were statistically homogeneous in all treatments (control and water
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and salt stress); the same result was observed for plant height in S. fruticosa. The number
of branches increased during recovery in the latter species but to a lesser extent in the
previously stressed plants, which did not reach the control values (Table 1).

Table 1. Plant height (cm) and number of branches in the three halophytes (SE, S. europaea; SV, S.
veneta; SF, S. fruticosa) measured at the beginning (T0) and after 15 (T15), 30 (T30), or 45 (T45) days of
starting the stress treatments. Ctrl, control; SS, salt stress (watering with 700 mM NaCl); WS, water
stress (complete withholding of irrigation). The values shown are means ± SE (n = 4). For each
species, different lowercase letters in a column indicate significant differences between the three
treatments within the same sampling time, whereas different uppercase letters in each row indicate
significant differences between sampling times for the same treatment, at p ≤ 0.05.

Plant Height (PH) (cm) Number of Branches (No. B)

T0 Stress
(T15)

Stress
(T30)

Recovery
(T45) T0 Stress

(T15)
Stress
(T30)

Recovery
(T45)

SE
Ctrl 5.8 ± 0.3 aC 8.7 ± 0.5 aB 12.9 ± 1.0 aA 12.3 ± 1.0 aA 5.7 ± 0.5 aC 10.2 ± 0.7 aB 18.1 ± 1.8 aA 23.8 ± 3.3 aA
SS 5.7 ± 0.3 aC 8.5 ± 0.4 aB 11.4 ± 0.5 aA 10.5 ± 0.6 aA 6.3 ± 0.5 aC 11.0 ± 0.7 aB 18.2 ± 1.2 aA 20.8 ± 1.5 aA
WS 5.3 ± 0.3 aC 7.6 ± 0.4 aB 7.0 ± 0.6 bA 10.4 ± 0.9 aA 6.0 ± 0.5 aB 12.0 ± 2.1 aAB 10.3 ± 1.5 bA 16.9 ± 2.4 aA

SV
Ctrl 9.8 ± 0.4 aC 14.7 ± 0.7 aB 21.6 ± 2.0 aA 22.6 ± 1.8 aA 2.1 ± 0.3 aC 6.9 ± 0.6 aB 11.8 ± 1.6 aA 13.0 ± 1.7 aA
SS 10.2 ± 0.4 aC 15.8 ± 0.5 aB 20.6 ± 0.8 abA 19.9 ± 1.5 aA 1.5 ± 0.3 aC 8.0 ± 0.6 aB 10.1 ± 0.9 aA 15.0 ± 3.4 aA
WS 9.6 ± 0.5 aC 15.1 ± 0.5 aB 16.1 ± 0.6 bA 19.6 ± 1.5 aA 1.5 ± 0.3 aC 7.3 ± 0.5 aB 9.5 ± 0.8 aB 9.3 ± 2.4 aA

SF
Ctrl 5.6 ± 0.3 aC 8.9 ± 0.5 aB 13.1 ± 1.3 aA 14.6 ± 1.3 aA 0.4 ± 0.2 aD 8.1 ± 1.0 aC 18.9 ± 3.0 aB 28.5 ± 1.5 aA
SS 5.1 ± 0.4 aC 9.2 ± 0.4 aB 11.6 ± 0.7 aA 13.1 ± 0.6 aA 0.4 ± 0.2 aC 8.8 ± 1.0 aB 18.4 ± 2.3 aA 21.7 ± 1.7 bA
WS 5.0 ± 0.3 aC 8.3 ± 0.5 aB 10.0 ± 0.9 aA 12.6 ± 0.7 aA 0.5 ± 0.2 aD 8.7 ± 1.0 aC 14.0 ± 2.4 aB 20.8 ± 2.5 bA

After the stress and recovery periods, plants were harvested to determine shoot fresh
weight (FW) and water content percentage (WC) as the most reliable parameters to assess
the treatment effects on plant growth. Salt stress did not affect the shoot FW or WC of the
Salicornia species significantly, whereas S. fruticosa plants appeared to be slightly more affected,
with a more accentuated (but still non-significant) reduction in the mean FW and a slight (but
significant) reduction in WC (Figure 2A,B). On the other hand, water stress strongly reduced
shoot FW in the three species (Figure 2A), partly due to plant dehydration, as it was accompanied
by a small but significant WC decrease compared to the control plants (Figure 2B).
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Figure 2. Effect of 30 days of stress treatments (Stress), followed by watering with non-saline water
for 15 days (Recovery) on (A) shoot fresh weight (FW) and (B) shoot water content (SWC) in the three
halophytes. Ctrl, control; SS, salt stress (watering with 700 mM NaCl); WS, water stress (complete
withholding of irrigation). For each species and sampling (Stress or Recovery), different lowercase
letters over the bars indicate significant differences between treatments (Ctrl, SS, and WS), whereas
different uppercase letters indicate significant differences between the two samplings (Stress and
Recovery) for each species and treatment, at p ≤ 0.05. Vertical bars indicate standard error (n = 4).
Values in (A) are shown as percentages of shoot FW of control plants (Ctrl, Stress), taken as 100%;
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5.6 g plant−1, respectively. ns: non-significant.
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After recovery, the salt-stressed plants of the three halophytes maintained a shoot
FW and WC similar to their corresponding controls. However, watering with non-saline
water had distinct effects on plants previously subjected to water deficit, depending on the
species. Thus, S. europaea plants showed a significant increase in FW upon recovery, but
with values still well below those of the control plants and the complete rehydration of the
shoots; in contrast, no significant effects were observed in S. veneta. Only in S. fruticosa did
shoot FW not show any statistically significant differences from the control after recovery,
although the mean value was lower (Figure 2). Therefore, confirming the measurements
of other growth parameters, S. fruticosa appears to be more tolerant to drought than the
Salicornia species and also shows better recovery from the water deficit treatment.

2.3. Photosynthetic Pigments

Mean values of photosynthetic pigment contents showed a decreasing trend in re-
sponse to the salt treatment in plants of the two annual Salicornia species (Figure 3); however,
the differences with the non-stressed plants were only significant for chlorophyll a (Chl. a)
in S. europaea (Figure 3A) and carotenoids (Caro) in S. veneta (Figure 3C), whereas no
variations in chlorophyll b (Chl. b), the second most abundant chlorophyll in oxygenic
photosynthetic organisms, were recorded. After irrigation with non-saline water, no signifi-
cant differences with the controls were found for any pigment. In contrast, water deficit
caused a significant reduction in the levels of the three pigments in both annual species; in
all cases, mean pigment contents increased after the recovery treatment, reaching values
not significantly different from the controls. On the other hand, in the perennial S. fruticosa,
neither salt nor water stress induced any significant variation in pigment concentrations,
and the recovery treatment had no effect, except for a slight yet significant increase in Caro
levels in salt-treated plants. However, it should be mentioned that the pigment levels in
the S. fruticosa control plants were lower than those determined in S. europaea and S. veneta
(Figure 3). These responses agree with the observed stress-induced changes in growth
parameters, confirming the high salt tolerance of the three species, the relatively higher
drought tolerance of S. fruticosa compared to the annual species, and the effectiveness of
the recovery treatment.

2.4. Ion Accumulation

Root and shoot Na+ and Cl− concentrations increased significantly in response to the
salt stress treatment in the three halophytes, as expected, whereas water deficit did not
have any effect on the ions levels. The recovery treatment reduced the contents of both ions
in roots of salt-stressed plants down to control levels, except for Na+ in S. veneta, which
showed a still significant but less accentuated decrease. In contrast, no differences were
observed in shoot Na+ or Cl− contents before and after recovery, except for S. europaea,
in which Cl− content increased slightly but significantly in the control. Under all tested
conditions, the concentrations of both ions were substantially higher in shoots than in roots
(Figure 4A,B).

Variations of K+ concentrations showed different patterns, depending on the species
and the treatments (Figure 4C). First, control levels in the roots of non-stressed plants
differed substantially between species, being the highest in S. veneta—about 1.7-fold higher
than in S. europaea and three-fold higher than in S. fruticosa, approximately. Shoot K+

contents were similar to those in roots in S. europaea, whereas they were higher in shoots
than in roots in S. veneta and S. fruticosa. The stress treatments did not cause changes in the
root K+ concentration, except for the significant decrease observed in salt-stressed S. veneta
plants. At the shoot level, mean K+ concentrations decreased upon salt treatment, although
the difference with the control was non-significant in S. europaea. Under water stress, K+

contents increased, decreased, and remained the same as in the controls in S. europaea, S.
veneta, and S. fruticosa, respectively. After recovery, K+ concentrations were generally lower
than control values in the roots and shoots of salt-stressed plants and not significantly
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different from the controls in plants previously subjected to water stress, although some
exceptions to this general behaviour were observed in S. europaea (Figure 4C).
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Figure 3. Effect of 30 days of stress treatments (Stress), followed by watering with non-saline water
for 15 days (Recovery) on (A) chlorophyll a (Chl. a), (B) chlorophyll b (Chl. b), and (C) carotenoids
(Caro) in the three halophytes. Ctrl, control; SS, salt stress (watering with 700 mM NaCl); WS, water
stress (complete withholding of irrigation). For each species and sampling (Stress or Recovery),
different lowercase letters over the bars indicate significant differences between treatments (Ctrl, SS,
and WS), at p ≤ 0.05; ns: non-significant. Different uppercase letters indicate significant differences
between the two samplings (Stress and Recovery) for each species and treatment, at p ≤ 0.05; NS:
non-significant. Vertical bars indicate standard error (n = 4).

The patterns of Ca2+ variation in the roots of the three species were similar to those
observed for Na+ and Cl−, that is, a significant increase in response to salt stress and
no effect of water stress except for an increase in S. europaea (Figure 4D). Shoot Ca2+

concentration significantly increased in the salt-treated plants of S. veneta and S. fruticosa,
but not of S. europaea, with no effect of water stress. After the recovery period, root Ca2+

concentration in the salt-stressed plants decreased but remained significanlty higher than
in control plants, and was statistically comparable with the water-stressed plants. In shoots,
the Ca2+ concentration did not vary after recovery, except for an increase in the salt-treated
plants of S. veneta (Figure 4D).

2.5. Osmolytes, Oxidative Stress Markers and Antioxidants

Common osmolytes, glycine betaine (GB), proline (PRO), and total soluble sugars
(TSS) were determined and showed distinct accumulation patterns in the shoots of the
selected species (Figure 5). Neither salt stress nor water deficit caused any significant
change in GB contents in S. europaea; they augmented three-fold over control values in
salt-stressed S. veneta and about 2.5-fold in S. fruticosa plants subjected to water stress.
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After the recovery period, the GB level increased significantly in non-stressed S. europaea
and S. veneta plants and decreased in those of S. fruticosa that underwent the water deficit
treatment. Nevertheless, no significant differences between treatments were found in the
shoot GB contents of any of the three halophytes after recovery (Figure 5A).
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Figure 4. Effect of 30 days of stress treatments (Stress) followed by watering with non-saline water for
15 days (Recovery) on the root and shoot concentration (in µmol g−1 DW) of ions: (A) sodium (Na+),
(B) chloride (Cl−), (C) potassium (K+), and (D) calcium (Ca2+) in the three halophytes. Ctrl, control;
SS, salt stress (watering with 700 mM NaCl); WS, water stress (complete withholding of irrigation).
For each species and sampling (Stress or Recovery), different lowercase letters over the bars indicate
significant differences between treatments (Ctrl, SS, and WS), at p ≤ 0.05; ns: non-significant. Different
uppercase letters indicate significant differences between the two samplings (Stress and Recovery)
for each species and treatment, at p ≤ 0.05; NS: non-significant. Vertical bars indicate standard error
(n = 4).
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PRO contents did not vary in any species in response to salt stress but increased in the
water-stressed plants of S. europaea (about five-fold over the control) and, to a lesser extent,
S.veneta (ca. four-fold). In these two Salicornia species, PRO levels decreased to control
values after the recovery period, so that, in all cases, the differences between treatments
became non-significant. In S. fruticose, no variation in PRO contents was observed, for
any of the samples, after the stress treatments and after recovery (Figure 5B). Under all
experimental conditions, PRO concentrations in molar terms were much lower than those
of GB in the three species. GB contents ranged between 100 and more than 500 µmol g−1

DW, whereas the maximum measured PRO level (in water-stressed S. europaea plants) was
only ca. 10 µmol g−1 DW (Figure 5A,B).

Only the water-stressed S. europaea plants showed a significant increase in shoot TSS
levels; all other differences between control and stressed plants in the stress and recovery
treatments, or between the two samplings, were non-significant (Figure 5C).

To assess the possible generation of secondary oxidative stress in the plants subjected
to salt or water stress treatments, the contents of two reliable biochemical markers, mal-
ondialdehyde (MDA) and hydrogen peroxide (H2O2), were determined in the shoots of
all plants (Figure 6). No increase in MDA or H2O2 levels was detected in any of the
samples from the stressed plants in relation to the non-stressed controls. MDA contents
even decreased in some cases, namely under salt stress in S. europaea and under water
stress in S. veneta. In contrast, no differences in H2O2 content between stressed and control
plants were detected in the three species. A significant increase in MDA concentration was
observed after the recovery period in the salt-stressed plants of S. europaea and S. fruticosa

39



Plants 2022, 11, 1058

and in the water-stressed plants of S. europaea and S. veneta. On the other hand, H2O2 levels
increased after recovery in the salt-treated plants of S. veneta and S. fruticosa (Figure 6).
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for 15 days (Recovery) on shoot concentration of (A) Malondialdehyde (MDA) and (B) hydrogen
peroxide (H2O2) in the three halophytes. Ctrl, control; SS, salt stress (watering with 700 mM NaCl);
WS, water stress (complete withholding of irrigation). For each species and sampling (Stress or
Recovery), different lowercase letters over the bars indicate significant differences between treatments
(Ctrl, SS, and WS), at p ≤ 0.05; ns: non-significant. Different uppercase letters indicate significant
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In agreement with the lack of a detectable generation of oxidative stress under high
salinity and water deficit conditions, the activation of the synthesis of common antiox-
idant compounds, such as phenolic compounds (TPC) and, particularly, the subgroup
of flavonoids (TF), was also not observed. Indeed, differences in TPC and TF contents
between treatments during the stress and recovery periods were generally non-significant,
except for the TF reduction in response to salt in S. fruticosa. Moreover, no differences were
detected between samplings for each treatment (Figure 7).
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not generate a substantial degree of oxidative stress in the plants. 

Figure 7. Effect of 30 days of stress treatments (Stress) followed by watering with non-saline water
for 15 days (Recovery) on shoot concentration of (A) total phenolic compounds (TPC) and (B) total
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and WS), at p ≤ 0.05; ns: non-significant. Different uppercase letters indicate significant differences
between the two samplings (Stress and Recovery) for each species and treatment, at p ≤ 0.05. NS:
non-significant. Vertical bars indicate standard error (n = 4).
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2.6. Physiological Traits Relationships and Results of the Multivariate Analysis

In the three surveyed species, some common trait patterns could be observed (Figure 8).
The pigments, namely Chl. a, Chl. B, and Caro, were positively correlated with each other
in all three species, indicating their covariation. The potassium shoot concentration, K(s),
instead, always resulted in being negatively correlated with Na(r), Na(s), and Cl(s). Plant
FW was consistently positively correlated with the shoot water content (SWC), which was
positively associated with Chl. a and Caro contents in the two annual plants. Furthermore,
SWC in the two Salicornia species was negatively correlated with PRO, as the content of
this osmolyte mostly increased under water stress, when the plant SWC was the lowest.

The near absence of significant correlations between TPC and other growth-related
traits confirmed that salinity and water deficit, under our experimental conditions, did not
generate a substantial degree of oxidative stress in the plants.

Two principal component analyses (PCAs) were performed to further evaluate the
relationships among traits after the stress (PCAstress) and recovery (PCArecovery) treat-
ments and to quantify the strength and direction of correlations between the original traits
and the extrapolated principal components (PCs). The first three PCs (eigenvalues are
reported in Table S1 of the Supplementary Materials) explained 62% and 53% of the total
variance in PCAstress and PCArecovery, respectively, and were used for PCA interpretation.
The correlation circles and the biplots of the first two components, PC1 and PC2, and the
variables measured after the 30 days of stress (PCAstress) and the 15 days of recovery
(PCArecovery) are reported in Figure 9.

In PCAstress, PC1 accounted for the differences between the salt stress treatment,
whose barycentre was located on the positive side of PC1, and the water stress treatment,
whose barycentre was located on the negative side of PC1 (Figure 9B). PC1 was positively
correlated with Na(r) (0.87), Na(s) (0.85), Cl(s) (0.82), Cl(r) (0.79), Ca(r) (0.75), and FW (0.62),
and negatively correlated with K(s) (−0.63) and PRO (−0.56) (Figure 9A), meaning that
the accumulation of Na, Cl, and Ca is the primary mechanism helping to sustain plant
growth under salt stress, whereas PRO production and K(s) accumulation are the main
mechanisms adopted under water stress.

PC2 showed the relationship between Na+ and Cl− accumulation, pigment production,
and oxidative stress. PC2, indeed, presented the strongest positive correlations with Caro
(0.84), Chl. a (0.83), Chl. b (0.75), and the highest negative correlations with Na(s) (−0.39)
and Cl(s) (−0.39) (Figure 9A), meaning that the accumulation of these ions interfered
with the production of pigments. Interestingly, the barycentres of the two annual species
were located on the positive side of the PC2 axes, whereas the barycentre of S. fruticosa
was located on the negative side (Figure 9B), indicating that pigment production was less
affected by ion accumulation in this latter species.

PC3, finally, summarised the relationship between the plant species and the osmolytes.
This third component was positively correlated with TSS (0.78), PRO (0.54), and TPC
(0.42), and negatively correlated with GB (−0.51) (Table S2 of Supplementary Materials).
S. europaea and S. veneta barycentres were placed on the positive side of the PC3 axis,
whereas S. fruticosa was in the negative one (Table S3 of Supplementary Materials). This
may suggest that the annual species rely on the production of sugars, proline, and phenolic
compounds for osmotic adjustment under stress conditions, whereas the perennial species
depends more on glycine betaine accumulation for its stress tolerance.

The PCArecovery outlined some evident changes: as in the PCAstress, the PC1 ac-
counted for the different effects of the stress treatments, with the salt stress barycentre
placed on the positive side of the PC1 axis and the water stress and control barycentres clus-
tered on the negative side (Figure 9D), suggesting that, after recovery, water-stressed plants
behaved similarly to control plants. PC1 was correlated positively with Na(r) (0.81), whose
concentration decreased after recovery, especially in salt-treated plants, and negatively
with K(r) (−0.55) (Figure 9C), whose concentration decreased after recovery, especially in
the annual water-stressed plants.
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Figure 8. Correlation network diagram showing significant correlations (p < 0.05) between the
22 measured traits within each halophyte species, based on the calculation of the Pearson correlation
coefficients. Each measured trait represents a node, and highly correlated traits are clustered together.
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correlation and a red path represents a negative correlation. Only significant correlations are rep-
resented. The width and transparency of the line represent the strength of the correlation (wider
and less transparent = stronger correlation). Abbreviations: fresh weight (FW), shoot water content
(SWC), plant height (PH), number of branches (No.B), chlorophyll a (Chl. a), chlorophyll b (Chl. b),
carotenoids (Caro), root sodium concentration (Na(r)), shoot sodium concentration (Na(s)), root chlo-
ride concentration (Cl(r)), shoot chloride concentration (Cl(s)), root potassium concentration (K(r)),
shoot potassium concentration (K(s)), root calcium concentration (Ca(r)), shoot calcium concentration
(Ca(s)), glycine betaine (GB), proline (PRO), total soluble sugars (TSS), malondialdehyde (MDA),
hydrogen peroxide (H2O2), total phenolic compounds (TPC), total flavonoids (TF).
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Figure 9. PCA correlation circles of the 22 measured parameters: (A) after 30 days of stress treatments
(PCAstress) and (C) after 15 days of watering with non-saline water (PCArecovery). The increasing ar-
row lengths and shades of colour from light blue to red indicate the increasing contribution of variables
to the definition of the first two principal components. PCA biplot of variables (B) after 30 days of stress
treatments (Stress) and (D) after 15 days of watering with non-saline water (Recovery). Yellow circles
show the barycentres of the three halophyte species (S. europaea, S. veneta, S. fruticosa), orange triangles
show the barycentres of the three experimental treatments (Ctrl, control; SS, salt stress (watering with
700 mM NaCl water solution); WS, water stress (complete withholding of irrigation)), and the light blue
squares show the quantitative variables, i.e., the measured traits (fresh weight (FW), shoot water content
(SWC), plant height (PH), number of branches (No.B), chlorophyll a (Chl. a), chlorophyll b (Chl. b),
carotenoids (Caro), root sodium concentration (Na(r)), shoot sodium concentration (Na(s)), root chloride
concentration (Cl(r)), shoot chloride concentration (Cl(s)), root potassium concentration (K(r)), shoot
potassium concentration (K(s)), root calcium concentration (Ca(r)), shoot calcium concentration (Ca(s)),
glycine betaine (GB), proline (PRO), total soluble sugars (TSS), malondialdehyde (MDA), hydrogen
peroxide (H2O2), total phenolic compounds (TPC), total flavonoids (TF).
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The PC2 highlighted the differences between the annual S. europaea and the perennial
S: fruticosa, with S. veneta showing an intermediate behaviour between the two other species.
The barycentre of S. europaea was placed on the positive side of the PC2 axis (Figure 9D),
which was positively correlated with PH (0.85), Caro (0.78), Chl. a (0.63), and Chl. b (0.44)
(Figure 9C), whereas the barycentre of S. fruticosa was on the negative side. This placement
reflects the fact that the recovery of these traits was more pronounced in S. europaea than in
S. fruticosa, since these traits were compromised more seriously in the annual than in the
perennial species under water stress.

Finally, the third component differentiated the control treatment, standing on the
positive PC3 side (Table S3 of Supplementary Materials), from the water stress treatment,
standing on the negative PC3 side. PC3 was positively correlated with Chl. a (0.64)
and Chl. b (0.57), as control plants showed the highest pigment content even at the
recovery stage and was negatively correlated to K(s) (−0.35) (Table S2 of Supplementary
Materials), which increased in water-stressed plants after the recovery, especially in the
two annual halophytes.

3. Discussion

Cultivating drought- and salt-tolerant crops can build resilience to climate change and
enhance farm productivity and livelihoods in drought- and salt-prone areas. Generally,
salinity and drought regimes are not stable but fluctuate seasonally and geographically,
depending on the climate and hydrological conditions of each specific environment. Thus,
the extent to which a species can cope with these fluctuations is an important trait that can
be selected for saline agriculture.

Salicornia europaea, S. veneta, and Sarcocornia fruticosa are three halophytic species
already traded in the market as leafy vegetables and oil-seed crops, thanks to their high
content of nutritional compounds with valuable health-related properties. The natural
saline habitats of these species are especially sensitive to climate change effects, which will
include more frequent, more intense, and longer drought periods and higher soil salinity
levels, albeit with wide seasonal variations [44].

From a general overview of our results, all three species were shown to be remarkably
tolerant to salinity but sensitive to water deficit, albeit to a lesser extent in S. fruticosa,
which showed higher resistance to dehydration and greater ability to recover after drought
exposition. Our findings are supported by the ecology and the evolutionary trends within
this lineage of species. In the Mediterranean, the two genera grow in close sympatry but
are separated ecologically [16]. Salicornia dominates inland or coastal lagoons which may
remain flooded for longer periods after winter rains. By acquiring an annual life cycle,
Salicornia species were able to adapt to more unstable habitats and to expand to colder
northern areas [16]. European Sarcorcornia are frost sensitive and grow only in winter-mild
Atlantic coasts or drier Mediterranean areas [14].

The surveyed S. fruticosa seeds were collected from a semiarid zone (La Albufera
Natural Park, Valencia, Spain), with a mean annual temperature, precipitation, and evap-
otranspiration of 17.5 ◦C, 488 mm, and 1199 mm, respectively. On the other hand, the
S. europaea and S. veneta seeds were sampled from a more humid area (Piallassa della Baiona,
Ravenna, Italy), having mean annual temperature, precipitation, and evapotranspiration of
14.6 ◦C, 576 mm, and 828 mm, respectively. This difference in environmental conditions
may be the primary reason for developing a more robust drought tolerance in S. fruticosa.
However, the slower metabolism of perennial plants could represent an advantageous
adaptive strategy for survival under stress conditions since it allows for the saving of water
and resource consumption while enhancing the synthesis of protective compounds [45].
This may have contributed to the better performance of the perennial S. fruticosa under
water stress with respect to the annual S. europaea and S. veneta.

Photosynthetic pigment contents in S. fruticosa were not affected by salinity or drought
stress, whereas a reduction in pigment contents was recorded in S. europaea and S. veneta,
being generally modest under salt stress but severe in response to water deficit. Here again,

44



Plants 2022, 11, 1058

these differences could be a consequence of the better adaptation of S. fruticosa to semiarid
conditions or dependent on its life cycle type. When exposed to stress, annual plants
hasten the transition from the vegetative to the reproductive stage, activating a process
of stress-induced senescence that shifts nutrient allocation to developing seeds [46,47].
The stress-induced senescence is regulated differently and occurs more gradually in the
perennial plants, since they can also propagate vegetatively. When they experience stress,
perennial plants prioritise biomass accumulation in roots, whose contribution to stress
avoidance is fundamental, protect photosynthetic tissues to sustain C assimilation and
boost the source strength, and enhance the conservation of meristematic tissues, which
are essential for recovering after the stress period [48,49]. This basic distinction may also
explain the different variations in pigment contents under stressful conditions between
the perennial S. fruticosa and the two annual S. europaea and S. veneta. In any case, the two
annual species were able to restore their pigment pools during the recovery phase.

Similar ion accumulation patterns were observed in all three species, with a consistent
increase in Na+ and Cl− concentrations at the root and shoot level in response to high
salinity. This response is in line with the finding that halophytes can take up and efficiently
compartmentalise the ions naturally present in the growth media to conserve the water
potential gradient and maintain water uptake [50]. The salt-treated plants retained their
high content of Na+ and Cl− in the shoots notwithstanding the recovery treatment, since
the transport of these ions, to be used as inorganic osmolytes, is energetically cheaper than
the de novo synthesis of organic osmolytes [51]. It should also be pointed out that Na+ and
Cl− content in shoots were very high, and much higher than in roots, in the absence of salt;
that is, in the control and water stress treatments. This result indicates the active transport
of these ions to the aboveground organs, even at low external salinity, so that Na+ and Cl−

can contribute to cellular osmotic balance also in non-stressed and water-stressed plants.
Salinity, however, caused a decrease in K+ translocation to the shoots, likely related to

the antagonism between K+ and Na+ ions, which are physicochemically similar [52]. This is
evident in the PCAstress correlation circle, where the Na and Cl arrows are opposite to the
K(s) arrow, implying that an increase in the former ions caused a decrease in the latter ion.
The significant increase in K+ shoot allocation under water stress suggested that this ion
is a key osmoticum used to maintain water status in Salicornia and Sarcocornia spp. under
water stress conditions. Indeed, water-stressed plants held a high K+ shoot content even
after recovery.

The significant increase in Ca2+ concentration under high salinity conditions in both
below- and aboveground organs supports the notion that Ca, being involved in a diverse
array of sensor proteins, plays a central role in orchestrating the whole-plant response to salt
stress [53,54]. Indeed, Ca2+ content was positively correlated with Na+ and Cl− contents
in the PCAstress correlation circle. The ability to preserve Ca uptake and retention under
salinity seems to be a common feature of halophytes, since it was also reported in other
salt-tolerant species such as Sarcobatus vermiculatus, Climacoptera turcomanica, Salicornia
persica, Halimocnemis pilifera, Petrosimonia glauca, and Atriplex verrucifera [55].

To sum up, the effects of recovery on ion contents were relevant on roots, which are the
organs more directly and dynamically in contact with the external environment, whereas
ion remobilisation within shoots was not substantially affected by the recovery treatment.

Besides accumulating inorganic ions, glassworts species synthesise several organic
osmolytes under osmotic stress, which contribute to cellular osmotic adjustment, free
radical scavenging, and the activation of specific signalling pathways.

In both the stressed and non-stressed plants of the two genera, Salicornia and Sarcocor-
nia, relatively high absolute values of GB were quantified, suggesting that GB accumulation
is a constitutive defence mechanism against osmotic stress. Responses of these plants to
abiotic stress probably rely more on changes in GB subcellular compartmentalisation, i.e.,
GB redistribution from the vacuole to the cytoplasm, rather than its de novo synthesis.
There is indeed evidence for stress-induced changes in the intracellular localisation of
compatible solutes in halophytes, for example, in Limonium latifolium [56]; however, data on
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these putative mechanisms are still scarce. Still, GB concentration can increase in response
to stress, as observed under salinity in S. veneta and, mostly, in water-stressed S. fruticosa
plants, suggesting that the higher drought tolerance of this latter species is partly due to a
relatively higher GB accumulation.

Proline (PRO) is probably the most common compatible solute in plant species [57].
Nevertheless, no significant change in PRO concentration was detected in our experiments,
except for the increase under water stress in S. europaea and S. veneta. However, the
measured absolute PRO concentrations were too low to have any relevant osmotic effect
when compared to GB or ion contents in the shoots. Still, PRO could have contributed to
enhanced stress tolerance through its additional ability to scavenge ROS, directly stabilise
proteins and other cellular structures, and provide cellular redox potential [58].

Comparing these outcomes, it appears that GB is the major organic osmolyte con-
tributing to drought tolerance in S. fruticosa, whereas PRO plays a relatively more relevant
role in S. europaea and S. veneta. Indeed, after recovery from water stress, a drop in GB
concentration was observed in S. fruticosa, and PRO levels decreased significantly in S.
europaea and S. veneta. These results are in agreement with the findings reported by Gil
et al. [41], who measured high (>400 µmol g−1 DW) GB and very low (1–2 µmol g−1 DW)
PRO concentrations in S. fruticosa under field conditions in the aforementioned semiarid La
Albufera Natural Park, and with the results of Parida and Jha [59], who found PRO to be
the main organic osmolyte accumulated in response to drought stress in Salicornia brachiata.

This supports the assumption that typical GB-accumulating species generally contain
low PRO levels and vice versa [60], as already observed in many species, including both
halophytes and glycophytes. For example, in the halophyte Spartina alternifolia, in the
presence of 600 mM NaCl, GB contents were 10-fold higher than those of PRO (ca. 150 vs.
15 µmol g−1 FW, respectively) [61]. The differences were much more pronounced in another
halophyte, Halocnemum strobilaceum, showing GB values > 200-fold greater than those of
PRO (700 vs. 3 µmol g−1 DW) under 690 mM NaCl [62]. A similar pattern, although
with much lower absolute values, was found in the glycophyte Spinacia oleracea in the
presence of 170 mM NaCl, showing GB concentrations (3.25 µmol g−1 FW) about four-fold
higher than those of PRO (0.78 µmol g−1 FW) [63]. Conversely, PRO appears to contribute
relatively more to osmotic balance under drought conditions (200–400 µmol g−1 DW) than
GB (40–60 µmol g−1 DW) in the genus Capsicum [64]. The halophyte Juncus maritimus also
accumulated PRO rather than GB in response to salt stress (400 mM NaCl): ca. 130 vs.
25 µmol g−1 DW, respectively [65]. Similarly, a preferential accumulation of PRO over GB
was observed in the halophyte Limonium santapolense under drought stress (ca. 120 vs.
23 µmol g−1 DW, respectively) [66].

The accumulation of the total soluble sugars (TSS) may enhance drought tolerance in
S. europaea, since TSS levels increased in response to the water stress treatment; however,
their contribution to S. veneta and S. fruticosa stress resistance was negligible. This result
is in contrast to previous studies that have reported TSS accumulation as the primary
mechanism for osmotic adjustment in S. fruticosa [20] and Salicornia persica [67]. However,
as discussed by Gil et al. [68], sugar accumulation should be interpreted with caution. In fact,
unlike other osmolytes occurring in plants at very low levels, unless stressful conditions
stimulate their biosynthesis, soluble sugars are components of primary metabolism that
play different functional roles unrelated to stress responses. This may be the reason why no
significant changes in TSS contents were observed after stress recovery in any of the three
studied species.

The fact that the stress treatments did not increase the levels of oxidative stress markers,
i.e., MDA and H2O2, revealed that no oxidative stress was generated by salt or water stress
in any of the three species. In some cases—salt stress in S. europaea and water stress in
S. veneta—the contents of the oxidative stress markers, i.e., MDA and H2O2, even decreased
with respect to the non-stressed controls. This response may be due to the increased activity
of peroxidase, which is generally stored in the peroxisome and vacuoles, and plays an
active role in reducing oxidative stress decreasing lipid peroxidation [69].
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Consequently, we did not detect a significant accumulation of non-enzymatic, antioxi-
dant compounds, i.e., total phenolic (TPC) or flavonoid (TF) compounds. This is reflected
in the PCAstress correlation circle, in which the short and faded MDA, H2O2, TPC, and TF
arrows denote a weak contribution of these traits to the variability of the whole dataset.

Taken together, these results suggest that the stress responses based on ion transport
control and osmolyte accumulation were efficient enough to avoid or even reduce oxidative
stress under our experimental conditions. However, we must note that the absence of
oxidative stress may also result, at least in part, from efficient enzymatic ROS-detoxifying
machinery, based on the activity of antioxidant enzymes such as superoxide dismutase,
catalase, ascorbate peroxidase, glutathione peroxidase, and peroxiredoxin [70], among
others, which were not specifically addressed in this study.

4. Materials and Methods
4.1. Plant Material

Seeds of Salicornia europaea and Salicornia veneta were collected from Pialassa della
Baiona, a coastal lagoon located within the Po Delta Regional Park in Italy. Seeds of
Sarcocornia fruticosa were collected from ‘La Albufera’ Natural Park, located near the city of
Valencia, Eastern Spain. Mean annual values of climatic parameters from 2006 to 2021 in
the two sampling areas are reported in Table 2. The experiments were carried out in the
laboratories and greenhouses of the Institute for the Conservation and Improvement of
Valencian Agrodiversity (COMAV), Polytechnic University of Valencia, Spain.

Table 2. Historical weather data (from 2006 to 2021) of the areas of ‘La Albufera’ Natural Park (Spain)
and Piallassa della Baiona (Italy), provided, respectively, by the Spanish Agroclimatic Information
System for Irrigation (SIAR) and the Italian Arpae-Simc meteorological network [71,72]. T: tem-
perature; RH: relative humidity; Eto: evapotranspiration. Eto data of Piallassa della Baiona were
calculated applying the Thornthwaite method [73].

‘La Albufera’ Natural Park Piallassa Della Baiona

Year
Mean T Mean RH Rainfall ET0 Mean T Mean RH Rainfall ET0

(◦C) (%) (mm) (mm) (◦C) (%) (mm) (mm)

2006 17.53 69.13 464.40 1189.38 14.40 77.64 337.65 814.71
2007 16.81 68.13 894.40 1164.50 14.20 73.18 490.00 809.25
2008 16.88 68.35 674.40 1194.10 14.20 73.63 491.13 804.14
2009 17.34 68.60 446.20 1215.26 14.19 72.79 555.86 816.07
2010 16.78 68.31 565.00 1206.22 13.23 74.09 450.00 776.35
2011 17.57 70.32 472.00 1166.73 14.76 71.36 346.60 846.35
2012 17.31 67.58 503.61 1208.25 14.71 69.98 563.60 864.97
2013 17.55 63.26 263.80 1245.42 14.49 72.86 870.20 822.93
2014 18.32 65.32 224.40 1278.22 15.60 73.91 740.00 833.27
2015 17.76 70.02 401.26 1169.08 15.20 77.18 616.80 860.61
2016 17.85 68.66 259.57 1218.41 14.71 80.86 829.40 825.33
2017 17.59 68.51 307.26 1238.82 14.84 76.69 641.80 851.52
2018 17.60 68.06 684.02 1225.71 15.32 78.53 613.60 870.93
2019 17.79 66.59 427.00 1243.83 15.03 81.94 780.80 839.65
2020 18.09 72.95 731.94 1186.44 14.70 76.76 556.40 808.83
2021 17.50 75.40 494.72 1039.10 14.45 75.75 335.00 809.89
Mean 17.52 68.70 488.37 1199.34 14.63 75.45 576.18 828.42

Seeds were sown manually in plastic trays filled with commercial peat, placed into
a growth chamber with a 16/8-h light/dark cycle, day/night temperatures of 25/22 ◦C,
and 70–80% relative humidity and watered thrice per week with tap water. Forty days
after sowing, seedlings of each species of uniform size and shape were transplanted into
plastic pots (12 cm diameter) filled with 500 g of a mix of commercial peat (26% organic
carbon, pHH2 O = 7.0, and EC = 0.6 dS m−1) and perlite (80:20 v/v). Three seedlings were
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transplanted to each pot. The pots were transferred into the controlled environment of a
greenhouse, placed over benches, and irrigated manually with tap water thrice per week.
During the experimental period in the greenhouse, temperatures ranged between 21.3 ± 1.6
and 28.6 ± 1.8 ◦C and RH between 67.5 ± 9.9 and 92.6 ± 2.9%.

4.2. Experimental Design and Stress Treatments

Four weeks after transplanting, when the plantlets were fully established, the pots
with individuals of each species were randomly divided into three groups and subjected to
the following treatments: control (Ctrl, irrigation with tap water thrice per week), salt stress
(SS, irrigation with a 700 mM NaCl aqueous solution, thrice per week), and water stress
(WS, complete withholding of irrigation). Pots were placed in trays and were watered from
the bottom, i.e., filling the trays, considering a volume of 0.13 L pot−1. After one month of
treatment, the stressed plants were allowed to recover during the following fifteen days
through intensive pot washings with tap water in the salt stress treatment and through the
restoring of the soil moisture level up to 80% in the drought-stress treatment. In this phase,
pots were watered from the top (0.13 L pot−1 for Ctrl and 0.50 L pot−1 for SS and WS) and,
only in the SS treatments, the drainage water was always discarded to remove the leached
salt. The amount of water (L pot−1) distributed per each treatment during the Stress and
Recovery phases are shown in Table 3.

Table 3. Amount of water distributed per pot during the stress period (Stress) and the recovery period
(Recovery) in the three treatments (Ctrl, control; SS, irrigation with 700 mM NaCl; WS, complete
withholding of irrigation).

Stress
(L pot−1)

Recovery
(L pot−1)

Total
(L pot−1)

Ctrl 1.75 1 2.75
SS 1.75 4 5.75
WS 0 2 2

The three factors, plant species (PS, 3 levels), stress treatments (ST, 3 levels), and
harvesting time (HT, 2 levels), were cross-combined, resulting in 18 treatments. Four
completely randomised replicates were set up, totalling 72 pots. This number of replicates
is quite commonly adopted in pot experiments on this topic [29,74–76].

The plants were harvested twice, the first half after the thirty days of stress treatments
(T30) and the second half after the fifteen days of recovery (T45). Morphological parameters
were determined on all individual plants (n = 12 per species and treatment). Samples of the
aboveground biomass, i.e., of the leafless succulent green stems, were used for biochemical
analysis; in this case, the shoots of the three plants grown in each pot were pooled (n = 4 per
species and treatment, but each sample was a pool of three independent plants).

4.3. Plant Growth

The three surveyed species are characterised by strongly reduced leaves, which are
embedded to form articulated, photosynthetically active succulent stems appearing to be
composed of jointed segments (Figure 10). The number of branches (excluding the main
branch) and plant height were determined at the beginning of the treatments (T0), after
fifteen (T15) or thirty (T30) days of the stress treatments and after 15 days of recovery;
that is, 45 days from the beginning of the experiment (T45). At both harvests, ‘Stress’
and ‘Recovery’, the aboveground biomass of each plant was separated from the root and
weighed (fresh weight, FW). Roots were cleaned with a brush and weighed. Portions of the
shoots and the root material were oven-dried at 65 ◦C until a constant weight was reached

48



Plants 2022, 11, 1058

(ca. 72 h) and were then weighed again (dry weight, DW) to determine the water content
percentage according to the following formula:

WC (%) =
FW − DW

FW
× 100 (1)
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Figure 10. Picture of the three halophytes species after thirty days of stress treatments: control; water
stress (complete withholding of irrigation); salt stress (watering with 700 mM NaCl).

Fresh shoot material was flash-frozen in liquid N2 and stored at −75 ◦C, and dry
material was stored at room temperature in tightly closed paper envelopes. Pot substrate
was collected at each harvest time to determine moisture and electrical conductivity (EC)
in the laboratory. Substrate moisture was calculated gravimetrically, as described above
for the plant samples (Equation (1)). For EC measurements, a 1:5 suspension of the dry
substrate and deionised water was prepared and mixed for one hour at 600 rpm and 21 ◦C
before being filtered. The EC was measured with a Crison 522 conductivity meter and
expressed in dS m−1.
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4.4. Photosynthetic Pigments

The concentrations (mg g−1 DW) of chlorophyll a (Chl. a), chlorophyll b (Chl. b), and
carotenoids (Caro) in the plant tissues were measured spectrophotometrically, according to
a previously described method [77]. Fresh ground shoot material (ca. 0.05 g) was extracted
with 1 mL of ice-cold 80% acetone. The samples were mixed during 12 h in a shaker in the
dark and then centrifuged at 13,300× g for 10 min at 4 ◦C. The supernatant absorbance
was measured at 470, 646, and 663 nm, and the pigment concentrations were calculated,
applying the equations described by Lichtenthaler and Wellburn [77].

4.5. Ion Quantification

The concentrations of Na+, Cl−, K+, and Ca2+ were calculated separately for roots and
shoots following the procedure described by Weimberg [78]. Two mL of Milli-Q water were
added to ca 0.1 g of dry plant material, vortexed, and then mixed for 24 h in a shaker. The
samples were then incubated in a water bath for 30 min at 95 ◦C, cooled on ice, and filtered
through a 0.45 µm nylon filter. The cations were quantified with a PFP7 flame photometer
(Jenway Inc., Burlington, VT, USA), whereas the anions were measured using a chlorimeter
(Sherwood, model 926, Cambridge, UK).

4.6. Quantification of Osmolytes

The concentration of glycine betaine (GB) was determined as described by Grieve and
Grattan [79], with some modifications [80]. Fresh shoot material (0.15 g) was shaken for
24 h at 4 ◦C with 1.5 mL Mili Q water and then centrifuged at 13,300× g for 10 min. The
supernatant was mixed (1:1) with a 2N H2SO4 solution and stored in ice for 1 h. Then,
125 µL of the sample were supplemented with 50 µL of ice-cold KI-I2 solution, which
induces glycine betaine precipitation in the form of golden crystals. All the following
steps were completed in the dark. The samples were maintained at 4 ◦C for 16 h and then
centrifuged at 13,300× g for 45 min at 0 ◦C. The supernatant was carefully removed, and
the glycine betaine crystals were dissolved into 1.4 mL of cold 1,2-dichloroethane; the tubes
were kept for 2.5 h under dark and cold conditions, and, finally, their absorbance was
recorded at 365 nm. Glycine betaine concentration was calculated against a GB standard
calibration curve and expressed as µmol g−1 DW.

Proline (PRO) was quantified following the protocol of Bates et al. [81]. Fresh above-
ground material (ca. 0.05 g) was extracted in 3% (w/v) aqueous sulpho-salicylic acid and
subsequently supplemented with acid ninhydrin, incubated in a water bath for 1 h at 95 ◦C,
cooled on ice, and then extracted with two volumes of toluene. The absorbance of the
organic phase was read with a spectrophotometer at 520 nm, using toluene as a blank. A
standard curve was obtained by running parallel assays with known PRO amounts. PRO
concentration was expressed as µmol g−1 DW.

Total soluble sugars (TSS) were measured from ca. 0.05 g of ground fresh material
extracted with 2 mL 80% (v/v) methanol, according to the method described by Dubois
et al. [82]. After mixing in a shaker for 24 h, the samples were centrifuged at 13,300× g for
10 min; the supernatants, appropriately diluted with water, were mixed with 95% sulphuric
acid and 5% phenol. After 20 min incubation at room temperature, the absorbance was
measured at 490 nm. TSS concentration was expressed as equivalents of glucose, used as
the standard (mg eq. glucose g−1 DW).

4.7. Determination of Oxidative Stress Markers and Antioxidant Compounds

Malondialdehyde (MDA), total phenolic compounds (TPC), and total flavonoids (TF)
were quantified in the same methanol extracts prepared for TSS measurements.

The method defined by Hodges et al. [83] was used for MDA quantification, with
some modifications [84]. Extracts were mixed with 0.5% thiobarbituric acid (TBA) prepared
in 20% trichloroacetic acid (TCA)—or with 20% TCA without TBA for the controls—and
then incubated at 95 ◦C for 20 min, cooled on ice, and centrifuged at 13,300× g for 10 min
at 4 ◦C. The supernatant absorbance was measured at 532 nm. The non-specific absorbance

50



Plants 2022, 11, 1058

at 600 and 440 nm was subtracted, and the MDA concentration was computed, apply-
ing the equations proposed by Taulavuori et al. [84]. MDA contents were expressed as
nmol g−1 DW.

Hydrogen peroxide content in plants was quantified as previously described [85].
Fresh plant material (0.05 g) was extracted with a 0.1% (w/v) trichloroacetic acid (TCA)
solution. After centrifugation, the supernatant was mixed with one volume of 10 mM
potassium phosphate buffer (pH 7.0) and two volumes of 1 M potassium iodide. The
absorbance of the samples was determined at 390 nm. Reaction mixtures containing known
concentrations of H2O2 were assayed in parallel to obtain a standard curve, and H2O2
concentrations were expressed as µmol g−1 DW.

TPC were measured by reaction with the Folin–Ciocalteu reagent, following the
method previously [86]. The methanol extracts were mixed with Na2CO3, incubated at
room temperature in the dark for 90 min, and the absorbance was read at 765 nm. Gallic
acid (GA) was used as standard, and the measured TPC concentrations were expressed as
GA equivalents (mg eq. GA g−1 DW).

TF were quantified by a previously described protocol [87], namely by sample incu-
bation with NaNO2, followed by a reaction with AlCl3. After the reaction, the sample
absorbance was determined at 510 nm, and TF contents were expressed as equivalents of
the catechin standard (mg eq. C g−1 DW).

4.8. Statistical Analysis

The data of the measured traits within each plant species (PS) were subjected to
two separated one-way ANOVAs for the respective stress treatments (ST) and harvesting
times (HT). The Tukey’s honestly significant difference (HSD) post hoc test at p < 0.05 was
applied to indicate significant differences among levels in significant ANOVA sources. A
two-way ANOVA was then performed to assess the interaction between stress treatment
(ST) and harvesting time (HT). The two-way ANOVA results are reported in Table S4 of
Supplementary Materials.

We investigated the relationships between the 22 traits measured within each halo-
phyte species by computing the Pearson correlation coefficients (r) and then testing their
significance with α = 0.05. For each species, the correlation matrix is shown as a network
diagram where each entity of the dataset represents a node, and highly correlated variables
are clustered together. Each path represents a correlation between the two variables it
joins. A blue path represents a positive correlation, and a red path represents a negative
correlation. Only significant correlations (p < 0.05) are represented. The width and trans-
parency of the line represent the strength of the correlation (wider and less transparent =
stronger correlation).

Two principal component analyses were carried out on the data collected at the
first (PCAstress) and second harvest time (PCArecovery) to summarise the performances
outlined by the three genotypes under the Stress and Recovery periods with a multivari-
ate approach.

The principal components (PCs) were obtained from centred and scaled quantitative
variables through the diagonalisation of the correlation matrix and extraction of the associ-
ated eigenvectors and eigenvalues. All 22 measured traits were set as active quantitative
variables, whereas the three halophyte species (S. europaea, S. veneta, and S. fruticosa) and
the three treatments (Ctrl, SS, WS) were used as supplementary categorical variables, i.e.,
variables that were not used in the computation of PCs. The Pearson correlation coefficients
were determined between the PCs and each quantitative variable (the 22 measured traits).
The associated p-values were calculated to classify the variables according to their relevance
(Table S2 of Supplementary Materials).

All the statistical analyses were performed with the R 6.3.6 statistical software, using
Car [88] and Emmeans [89] packages for the analysis of variance and post hoc test, and the
FactoMineR package for principal component analysis [90]. Charts were created with the
ggplot2 [91] and corrr [92] R packages.
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5. Conclusions

The three investigated halophytes, the annual S. europaea and S. veneta and the peren-
nial S. fruticosa, are highly tolerant to salinity but sensitive to water stress, although the
latter species to a lesser extent. Salt tolerance seems to depend mainly on the salt-induced
accumulation of ions (Na+, Cl− and Ca2+) and the shoot biosynthesis of organic osmolytes,
both contributing to osmotic adjustment under stress. Active transport of these ions to the
aerial part of the plants and high concentrations of glycine betaine have also been detected
in the control, non-stressed plants, indicating that these defence mechanisms against stress
are at least partially constitutive.

The higher drought tolerance of S. fruticosa, compared to its annual counterparts, was
reflected in a relatively lower reduction in shoot fresh weight and the absence of a decrease
in photosynthetic pigment content under water deficit conditions and was attributed to
the relatively higher accumulation of glycine betaine. Sarcocornia fruticosa also showed
total recovery capacity after the water stress treatment, whereas the fresh weight of the
water-stressed plants of S. europaea and S. veneta remained at values significantly lower
than the controls after the recovery period.

Neither salinity nor drought stress generated oxidative stress. Consequently, the
presence of stress response mechanisms based on the activation of antioxidant systems was
not expected; indeed, no significant increase in the levels of antioxidant compounds was
detected in any of the three halophytes. However, further studies should be carried out to
assess the possible contribution of enzymatic antioxidant activities to the whole antioxidant
network of these species.

The higher drought tolerance observed in S. fruticosa with respect to the two Salicornia
species could be based on differences in the environmental conditions of the plants’ natural
habitats, as it is drier for S. fruticosa. However, a more gradual process of stress-induced
senescence in the perennial S. fruticosa compared to the annual S. europaea and S. veneta,
might have allowed water-stressed plants to preserve their pool of photosynthetic pigments
and recover to control fresh weight after rewatering. Further studies will be required to
confirm this hypothesis, including, for instance, the assessment of the responses to water
deficit of annual and perennial plants growing in the same natural habitat.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants11081058/s1. Table S1. Eigen analysis of PCAstress and PCArecovery correlation
matrix; Table S2. Correlation coefficients between the first three PCs (PC1, PC2, PC3) and the
quantitative variables traits (fresh weight (FW), shoot water content (SWC), plant height (PH),
number of branches (No.B), chlorophyll a (Chl. a), chlorophyll b (Chl. b), carotenoids (Caro),
root sodium concentration (Na(r)), shoot sodium concentration (Na(s)), root chloride concentration
(Cl(r)), shoot chloride concentration (Cl(s)), root potassium concentration (K(r)), shoot potassium
concentration (K(s)), root calcium concentration (Ca(r)), shoot calcium concentration (Ca(s)), glycine
betaine (GB), proline (PRO), total soluble sugars (TSS), malondialdehyde (MDA), hydrogen peroxide
(H2O2), total phenolic compounds (TPC), total flavonoids (TF). The PCs were computed using
22 input data. Significance codes: ns, (+), *, **, and *** mean, respectively, not significant and
significant at p ≤ 0.1, p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001; Table S3. Coordinates of the barycentres
of the supplementary categorical variables in PCAstress and PCArecovery biplots, respectively;
Table S4. Two-way analysis of variance (ANOVA) of stress treatments (ST), harvesting time (HT),
and their interactions (STxHT) for the three halophyte species, for the 22 measured traits (fresh
weight (FW), shoot water content (SWC), plant height (PH), number of branches (No.B), chlorophyll
a (Chl. a), chlorophyll b (Chl. b), carotenoids (Caro), root sodium concentration (Na(r)), shoot sodium
concentration (Na(s)), root chloride concentration (Cl(r)), shoot chloride concentration (Cl(s)), root
potassium concentration (K(r)), shoot potassium concentration (K(s)), root calcium concentration
(Ca(r)), shoot calcium concentration (Ca(s)), glycine betaine (GB), proline (PRO), total soluble sugars
(TSS), malondialdehyde (MDA), hydrogen peroxide (H2O2), total phenolic compounds (TPC), total
flavonoids (TF). Significance codes: ns, (+), *, **, and *** mean, respectively, not significant and
significant at p ≤ 0.1, p ≤0.05, p ≤ 0.01, and p ≤ 0.001.
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Abstract: Salicornia europaea L. grows in areas periodically flooded by salty or brackish water. It has
potential economic value, because it can be used as food, forage, or biofuel, and has potential in
pharmaceuticals and cosmetics. Increasing interest in S. europaea is due to its extreme salt tolerance
and well growth in marginal saline soils. However, the variation in its functional traits in response
to environmental conditions is still poorly studied. There are still questions regarding the optimal
level of salinity for different traits. Therefore, we worked to address the question if S. europaea
traits from different scales are controlled by salinity level. Based on performed pot experiment, we
found that almost all traits are salinity dependent but affected in different ways. We demonstrated
that morphological, biomass, and anatomical properties indicate optimum growth between 200
and 400 mM NaCl and growth limitations at 0, 800, and 1000 mM NaCl. Moreover, we found the
most affected traits which include photosynthetic pigments and protein content, plant surface area,
peroxidase activity, and anatomic traits related to cell shape. Our results significantly expanded the
knowledge about S. europaea functional traits variation in response to salinity, which can be important
for discovering regulating processes and for possible future agricultural applications.

Keywords: halophytes; salinity; morphology; anatomy; catalase; peroxidase; hydrogen peroxide;
chlorophyll content

1. Introduction

Salicornia europaea L. belongs to the Amaranthaceae family (formerly Chenopodiaceae),
subfam. Salicornioideae. The genus Salicornia is widespread in temperate and subtropi-
cal regions of the Northern Hemisphere but absent in South America and Australia [1].
Presence in habitats with changing seasonal and even daily dynamics has led to high phys-
iological plasticity in plants [2]. This results in phenotypic variability and problems with
establishing acceptable systematics [3]. Despite the high phenotypic variability, several
common features can be distinguished [4,5]. S. europaea has an erect, highly branched stem.
Secondary shoots are formed on the primary cylindrical shoots. The plant has strongly
reduced leaves, and the assimilation area is located in the shoots. It is green most of its life,
but at the end of life cycle, the stems turn red due to chlorophyll destruction which reduces
photosynthesis and finally affects nutrient loss, biomass, and hydric balance [6]. Branches
have spikes consisting of three flowers, one main and two laterals. Seeds are small, dark,
ellipsoidal, and characterized by heteromorphism, i.e., color, shape, and size variability [7].

S. europaea grows in areas periodically flooded by salty or brackish water [8]. In Central
Europe this species has been recognized as Salicornia ramosissima J. Woods (=S. herbacea L.) [9].
It has potential economic value because it is edible, either raw or cooked [10]. In addition,
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it can be used as a forage for animals or a biofuel and has potential in pharmaceuticals
and cosmetics [11,12]. It also has a high fatty acid content in its seeds, which increases
its nutritional value [13]. Moreover, S. europaea ash can be used to produce glass and
soap [14]. The healing properties should also be mentioned because S. europaea is rich in
tungsten acids, quercetin, and isorhamnetin, which have anti-inflammatory and antioxidant
properties. It also contains polysaccharides that play a role in the treatment of constipation,
obesity, diabetes, and cancer [14,15].

This species belongs to extreme halophytes [16], which is a group of species strongly
adapted to saline environments. They evolved some specific mechanisms to cope with
saline environment like reduction of the Na+ levels, compartmentalization, and excretion
of sodium ions [17,18]. The first S. europaea mechanism to overcome high Na+ concentra-
tions is the water storage in the parenchyma, which dilutes the accumulated salts and
contributes to maintaining cellular turgor. This allows the plant to cope efficiently with
high salinity [16]. However, reduction of growth of this species have been reported at
high salinities [19,20]. The adaptation to different levels of salinity can affect water storage
intensity and therefore some anatomical properties, e.g., the size and shape of stem-cortex
cells [21]. Moreover, in the salinity gradient plants induce some physiological responses
related to osmotic adjustment as proline accumulation, and increasing antioxidant enzyme
activities, e.g., catalase (CAT) and peroxidase (POD) [19,22]. Salinity can also affect photo-
synthetic activity by changes in chlorophyll and carotenoids content [23,24] and different
proteins content, playing important roles for plant salt tolerance ability [25].

Increasing interest in S. europaea is due to its extreme salt tolerance over 1000 mM
NaCl [8]. Results of recent studies at the International Center for Biosaline Agriculture
(ICBA) in the United Arab Emirates (UAE) show that some varieties of S. europaea cultivated
with good agronomic practices grow well in marginal soils and can be economically
viable [8]. As an obligatory halophyte, it is believed by definition to be able to complete
its life cycle in a salt concentration of around 200 mM NaCl (ca. 20 dSm−1) or more under
conditions like those that might be encountered in the natural environment [17]. Although,
halophytes are species that can live and reproduce successfully under salt stress; it is still
not so clear if they need salt for development. Regarding S. europaea, Snow and Vince [26]
reported better growth of this species outside their home zone in salt marsh habitats and
its presence at high salinity because of low competitive ability with other species. It was
partly confirmed by Piernik [27] who found, under field conditions, the good growth of
this species at lower salinity than in its home vegetation zone. Mucolo et al. [2] found that
the very high final germination in distilled water (control) suggests that these taxa do not
necessarily have a physiological requirement for salt to germinate.

There are also still few studies reporting or focusing on S. europaea’s optimum growth
assessment. Lv et al. [28] reported S. europaea optimal growth and photosynthetic rates
at 200–400 mM NaCl. Araus et al. [8] reported that the best irrigation regime in terms of
biomass and seed yield involved brackish water of 25 dSm−1. Similar results were obtained
by Singh et al. [29], i.e., a notable amount of biomass for S. ramosissima using artificial
seawater containing 257 mM NaCl. Except for biomass and seeds yield, there is still a lack
of knowledge of S. europaea’s morphological and anatomical trait adaptations to different
salinity levels and their optimum growth [4,5,16,21,30].

Plant functional traits are defined as any morphological, anatomical, physiological,
and phenological plant characteristics affecting overall plant fitness through their influence
on survival, growth, and reproduction [31]. They determine how primary producers
respond, among others, to environmental factors, affect trophic levels, influence ecosystem
processes and services, and provide a link from species richness to ecosystem functional
diversity [32]. Plant functional trait data, in the form of species-level trait measurements, are
increasingly accessible from large databases [33,34]. However, the variation in functional
traits in response to environmental conditions is still poorly understood [35,36]. Variability
of functional traits is important because it can play a role in adaptive and non-adaptive
processes under changing environments [37–39]. In case of S. europaea, few studies report
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physiological traits responses [19,20,22,40]. The biochemical parameters, although useful,
are black boxes in terms of anatomical and structural changes, which are not directly
visualized. This is currently a gap in the literature for this species. To our knowledge,
there are no comprehensive studies considering traits in the context of the adaptation and
optimum growth of S. europaea in the salinity gradient. The level of salinity is still under
question, which can be considered as optimal for S. europaea trait development. Moreover,
it is still unknown which S. europaea functional traits are the most affected by salinity.

Therefore, to fill this gap in the knowledge the overarching question, we worked to
address whether S. europaea traits are from different scales controlled by salinity level. To
answer this question, we performed complex research on the morphological, anatomical,
and physiological traits at different salinity levels. For morphological and anatomical
assessments, we applied a novel image analysis method [5]. To present a complex example
of the plant trait functional linkage, we applied similarity analysis between different salt
treatments [41]. We also selected the most affected by salinity functional traits by the means
of discriminant analysis [42]. We hypothesized that: (a) salinity affects plant morphological,
anatomical, and physiological responses in different ways, and (b) plant trait responses can
indicate optimum growth in the salinity gradient. Understanding complex mechanisms of
salt stress adaptation of S. europaea, an extreme halophyte species, is possible only based on
traits from different functional levels. The determination of key functional traits in salinity
adaptations and S. europaea optimum growth is also important because of the possible
future agricultural application perspectives.

2. Results
2.1. Growth Responses to Different Salinity Levels

To investigate the morphological trait responses to salt stress, we measured plant
height, number of branches, plant surface area, and shoot diameter. We found differences
in the morphological features dependent on the salt concentrations (Figures 1 and 2). Plants
which grew under extreme salinity (1000 mM NaCl) were smaller than those grown in
other salt treatments. They had the smallest plant surface area (ca. 105 cm2) and were
significantly shorter (ca. 4.6 cm) and thinner (diameter ca. 0.248 cm) than the others
(Figure 2). Moreover, they had the lowest number of branches (ca. 9). There were not
significant differences in plant height and shoot diameter between 0, 200, 400, and 800 mM
NaCl treatments (Figure 2a,d). The plant surface area was higher in 400 (283 cm2) and
800 mM NaCl (ca. 289 cm2) (Figure 2c). The highest number of branches (ca. 26) was
noted at 800 mM, but there were no significant differences between 800, 400, and 200 mM
treatments (Figure 2b). Therefore, the relationship between this trait and salinity is not
so clear.

For the effect of salinity on biomass accumulation, we measured shoot, root, and total
fresh and dry weight. The highest values for fresh and dry weight (SFW 38.5 g, RFW
12.1 g, TFW 50.6 g, SDW 5.4 g, RDW 4.1 g, and TDW 9.5 g) were obtained in 400 mM
NaCl, although for all these traits there were no statistically significant differences between
400 and 200 mM NaCl (Figure 3). The lowest values for fresh and dry weights (SFW 2.03 g,
RFW 0.44 g, TFW 2.47 g, SDW 0.26 g, RDW 0.08 g, and TDW 0.34 g) were obtained in
1000 mM NaCl. In general, for measurements of fresh and dry weights, there were not
significant differences between 0, 800, and 1000 mM NaCl (Figure 3). These results confirm
morphological traits assessments, i.e., under 1000 mM NaCl, S. europaea cannot grow well.
Moreover, growth limitations were detected at 0 and 800 mM NaCl.
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Figure 1. Images of Salicornia europaea L. grown in different NaCl concentrations: (a) 0 mM;
(b) 400 mM; (c) 800 mM; (d) 1000 mM.

Figure 2. The average parameters of: (a) height; (b) number of branches; (c); surface area; (d) shoot
diameter of the analyzed plants; ±SD (standard deviation) in the tested samples. ANOVA p < 0.001,
significant differences based on post hoc Tukey’s test are marked with different letters.
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Figure 3. The average parameters of: (a) shoot fresh weight; (b) shoot dry weight; (c) root fresh
weight; (d) root dry weight; (e) total fresh weight; and (f) total dry weight in the tested plants; ±SD
in the tested samples. ANOVA p < 0.001, significant differences based on post hoc Tukey’s test are
marked with different letters.
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2.2. Anatomical Responses to Different Salinity Levels

We based the effect of salinity on anatomical traits on measurements of area, perimeter,
diameter, roundness, and aspect ratio of stem-cortex cells (Figure 4). Our results showed
that in the control and extremely saline condition (0 and 1000 mM NaCl), the plant cells area,
cell perimeter, and cell diameter were lower than in moderate and high saline treatments
(200, 400, and 800 mM NaCl) (Figure 5a–c). The plant cells area in the non-saline condition
and 1000 mM NaCl was ca. 8394 and 9027 µm2 respectively, the plant cell perimeter was ca.
345 and 346 µm, and the cell diameter was ca. 130 and 126 µm. There were not statistically
significant differences between 200–800 mM NaCl treatments and cells area ranged between
13.360 and 15.967 µm2, cell perimeter between 431 and 479 µm, and cell diameter between
157 and 177 µm (Figure 5a–c). Moreover, we observed that cells of plants grown under
non-saline conditions were significantly less spherical (cell roundness of ca. 0.70), and
according to the high aspect ratio (1.53) the most elongated (Figure 5d,e).

Figure 4. Stem cross-section of Salicornia europaea L. from plants treated with 0 and 1000 mM NaCl
solutions. At the right side, example cortex cells for measurements by ImageJ software are marked
as empty.

These results suggested that under non-saline and extreme saline conditions, stem-
cortex cells are smaller probably because of growth stress. We did not find statistically
significant differences in anatomical traits between plants grown in 200–800 mM NaCl.
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Figure 5. The average parameters of: (a) area; (b) perimeter; (c) diameter; (d) roundness; (e) aspect
ratio of the Salicornia europaea L. cells; ±SD in the tested samples. ANOVA p < 0.001, significant
differences based on post hoc Tukey’s test are marked with different letters.
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2.3. Biochemical Response to Different Salinity Levels
2.3.1. Photosynthetic Pigments and Soluble Protein Content

Photosynthetic pigments are traits that can affect photosynthetic performance, plant
growth, and development. We measured concentrations of chlorophyll a and b and
carotenoids. Results demonstrated decreasing photosynthetic pigments content with increas-
ing NaCl concentrations (Figure 6a–c). The highest content was found in control condition
(chlorophyll a: 0.715 mg/g FW; chlorophyll b: 0.427 mg/g FW and carotenoids 0.254 mg/g
FW). The lowest content was found in 1000 mM NaCl (chlorophyll a: 0.241 mg/g FW;
chlorophyll b: 0.151 mg/g FW and carotenoids 0.092 mg/g FW).

Figure 6. The average concentration of: (a) chlorophyll a; (b) chlorophyll b; (c) carotenoid; and
(d) soluble protein in the tested plants; ±SD in the tested samples. ANOVA p < 0.001, significant
differences based on post hoc Tukey’s test are marked with different letters.

Soluble protein content was more stable than pigments because, up to 400 mM NaCl,
there were not significant changes in their content (ca. 6.0 mg/g FW) (Figure 6d). However,
a significant decrease was observed in 800 (ca. 2.39 mg/g FW) and 1000 mM NaCl (ca.
2.35 mg/g FW) (Figure 6d).

2.3.2. Hydrogen Peroxide (H2O2) Content

Hydrogen peroxide is a strong ROS (reactive oxygen species) which is overproduced in
plant cells under stressful conditions. To investigate how different salinity levels can affect
ROS production we measured H2O2 content. We observed that under 0 (ca. 4.4 nmol/g
FW) to 800 mM NaCl (ca. 14.2 nmol/g FW) the level of H2O2 did not differ significantly
(Figure 7a). However, we observed a statistically significant increase of the H2O2 content
in extreme salinity—1000 mM NaCl (ca. 26.2 nmol/g FW). It seems that S. europaea has a
high tolerance to increasing salinity levels and can prevent H2O2 overproduction.
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Figure 7. The average parameters of: (a) H2O2 content; (b) catalase activity; (c) peroxidase activity;
and (d) proline content in the tested plants; ±SD in the tested samples. ANOVA p < 0.001, significant
differences based on post hoc Tukey’s test are marked with different letters.

2.3.3. Antioxidant Enzymes Activities and Proline Content

Antioxidant enzymes activities and osmolyte accumulation are two of the most impor-
tant defense mechanisms against salinity. Therefore, the evaluation of these traits can help
in a better understanding of S. europaea adaptive response. Thus, we measured activities of
two antioxidant enzymes (CAT and POD) and the concentration of proline as an osmolyte
accumulation marker. We found that with increasing NaCl concentration, CAT activity
decreases. The highest activity of catalase was recorded in plants growing without salinity
(36.7 µM min−1 mg−1 protein), and the lowest in 1000 mM NaCl (5.7 µM min−1 mg−1

protein) (Figure 7b). These results suggested that catalase in S. europaea is sensitive to salt
concentration and in low salinity has high activity and efficiency. In contrast, POD activity
(Figure 7c) increased with increasing salinity. The lowest POD activity was in plants treated
with 0 mM NaCl (3.7 µM min−1 mg−1 protein), and the highest activity in 1000 mM NaCl
(39.2 µM min−1 mg−1 protein). In the case of proline, we found any statistically significant
differences among all salinity levels (Figure 7d). The proline content in plant tissues ranged
from ca. 0.4 µmol/g FW in non-saline conditions to 0.7 µmol/g FW in 1000 mM NaCl.
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The results suggested that S. europaea without NaCl in the medium had a stable proline
concentration in tissue which helped it to cope with osmotic stress induced by soil salinity.

3. Discussion

Halophytes are plants that have evolved to survive under high salinity conditions,
and many of them are thought to require salt exposure for better growth [43]. These plants
can regulate their energy metabolism under saline conditions [43,44]. Thus, a better under-
standing of halophyte functional traits adaptations is important not only for understanding
the natural salt marsh ecosystem function [45,46], but also for reconsidering salt tolerance
in glycophyte plants to better manage salinity problems in the future agriculture [47]. As it
was already mentioned, up to our knowledge, there is a lack of research involving salt stress
responses of complex traits from different functioning levels. Addressing our research to
answer the question if S. europaea traits from different scales are controlled by salinity level,
we found that almost all of them were salinity dependent. However, we confirmed our first
assumption, i.e., that traits are affected in different ways.

Analysis of growth responses expressed by morphological properties and biomass ac-
cumulation demonstrated that the extreme saline condition of 1000 mM negatively affected
these traits. Moreover, biomass accumulation was also reduced at 0 and 800 mM compared
with 200 and 400 mM NaCl. This is in line with research that already reported stimulation
of S. europaea and other halophytes biomass accumulation at moderate salinity [48,49].
Research by Lv et al. [28] demonstrated limitation of plant height, stem diameter, and plant
biomass in lower salinity than recorded by us, i.e., of ca. 700 mM NaCl. On the other
hand, in line with our findings, they also proved S. europaea growth traits limitations in
the substrate without salinity. Similar results were obtained by Piernik [27], who reported
lower S. europaea height and biomass at a very low salinity of ca. 2 dSm−1 (ca. 20 mM NaCl)
in field experiment. However, in this treatment, opposite to our findings, higher number of
branches were noted. Additionally, the results of field research by Silva et al. [50] demon-
strated a higher number of S. europaea branches at low salinity. It is worth emphasizing
that morphological parameters under field conditions can be affected not only by salinity
but also by plant density and competition between individuals [51]. Obtained results may
suggest that plant biomass is more directly salt stress-dependent than morphological traits.

In the present study, an analysis of the anatomical traits demonstrated that the
S. europaea stem-cortex cells under non-saline conditions and in 1000 mM NaCl were sig-
nificantly smaller than in other salt treatments. However, we observed that under control
conditions, plant cells were more elongated, while in higher salinities, they were rounder.
We did not find statistically significant differences in most anatomical traits between plants
grown in 200–800 mM NaCl. Our results are in line with other studies on halophytes
that show the increasing cells size in water-absorbing tissues under moderately saline
conditions [16]. The water storage in the parenchyma is the first S. europaea mechanism to
overcome high Na+ concentrations. This dilutes the accumulated salts and contributes to
maintaining cellular turgor, allowing the plant to cope efficiently with high salinity [12,16].
In addition, it was reported that salinity induces vacuolization in many halophytes and
may be responsible for the plant adaptation to salt stress [52]. For example, Akcin et al. [52]
found that under stressful conditions the juice of halophytes increases. This response is
associated with an increase in cell volume due to extra water being stored in the vacuoles
for the plant to survive. Moreover, it was reported that S. europaea cells can remain turgid
and continue proper cell function by ion compartmentalization in cell vacuoles. In this
sense, the cytoplasm and organelles of the cell are protected from salt [12]. That is why
our results also proved that S. europaea, by enlarging its cells under moderately saline
conditions, can adapt to high salt stress. On the other hand, the reduction of cell size at
extreme salinities can be explained by reduced ability to osmoregulate because of saturation
of the system with Na+ and Cl− or deficiency of Ca2+ and K+, which are involved in almost
all reactions related to plant development [2].
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Our results showed that salinity also affects biochemical traits of S. europaea. First
of all it negatively affects photosynthetic pigments. We observed that the highest con-
centration of photosynthetic pigments was under non-saline conditions, and the lowest
under the highest salinity level (1000 mM NaCl). These results suggested that salinity
significantly affects traits which are responsible for photosynthesis performance in plants.
Reduction in photosynthetic pigments due to salt stress has been well documented in
numerous papers [5,53,54]. This happens by the inactivation of enzymes involved in the
synthesis of photosynthetic pigments [55,56]. Furthermore, this reduction can be due to
ROS generation and increasing of chlorophyllase enzyme activity [56,57]. However, we
found that photosynthetic pigment concentrations were relatively stable at levels above
400 mM NaCl, indicating that the plant can protect, to a certain extent, these traits under
extreme saline conditions. High content of photosynthetic pigments in treatments without
salinity was not related to high biomass accumulation, which suggests mechanisms of
growth limitations other than those directly related to photosynthetic ability. We also
calculated Chlorophyll a/b ratio to test if the rearrangement of chlorophyll contents can
explain observed by the pattern in S. europaea growth performance, as it was reported, for
example, in Arthrocnemum macrostachyum and Sarcocornia fruticosa by Ghanem et al. [58]
(Supplementary Figure S1). Based on the obtained results, we can conclude that such a
rearrangement was not a strategy of the investigated species.

We also observed that salinity negatively affects soluble protein content of S. europaea.
This response may be due to the toxic effect of NaCl on protein synthesis, or the proteolysis
of proteins caused by proteases induced by salt stress [59]. It is well documented that high
concentrations of NaCl destroy the hydration layer of protein, causing its aggregation and
denaturation [60]. However, soluble protein compounds were more stable than pigments
and maintained a similar level up to 400 mM NaCl.

Hydrogen peroxide, as already stated, is one of the reactive oxygen species responsible
for oxidative stress. On the other hand, H2O2 is widely generated in many biological
systems and mediates various physiological and biochemical processes in plants [61]. Our
results showed that the H2O2 content was the lowest in the control condition, and by
increasing salt levels up to 800 mM NaCl, no significant increase was observed. Only at
1000 mM NaCl was its level significantly higher. The opposite pattern, i.e., increasing level
of H2O2 in plant tissues together with increasing salinity, has been observed for glycophytic
species [54,62,63]. It seems that halophytic S. europaea can prevent H2O2 overproduction.
Nevertheless, in extreme saline conditions, impairment of H2O2 production and scavenging
can affect membrane structural integrity and peroxidation of lipids and limits plants growth
and development [19].

In present study, we also monitored traits related to antioxidant enzymes activities and
proline content changes. We found that the highest activity of catalase was under non-saline
conditions and decreased together with increasing salt levels. Lower activity of CAT in
high salt concentrations indicated CAT as a less effective scavenger of H2O2. Furthermore,
the CAT has a poor affinity for H2O2 and exhibits photo-inactivation and subsequent
degradation [64,65]. A completely opposite activity had POD with the lowest values at
0 mM, and the highest at 1000 mM NaCl. In addition, up to 400 mM NaCl POD activity
was relatively stable. Increase of the activity of POD at higher salinity levels indicated
that this enzyme plays a key role in defense mechanisms of S. europaea by scavenging ROS
from cells.

Although it is reported that accumulation of proline in S. europaea cells is an important
adaptive response to salinity [18,43,66], in this study we did not prove a statistically
significant increase in proline content by increasing salt levels. Some halophytes produce
proline analogues, e.g., glycine betaine under salt stress to survive due to their ability
to protect the protein turnover machinery, stabilize proteins, and prevent enzymes from
denaturation [66,67]. It seems that S. europaea normally has stable proline levels in tissues,
which helps it to cope with osmotic stress. However, as proved by Pellegrini et al. [68],
proline could be involved in stress tolerance in the Salicornia genus regardless of the
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intensity and duration of the stress. For glycophytic species, a frequently increasing level
of proline is observed together with increasing salinity [22,54].

We also referred biochemical traits to dry weight instead of fresh weight to test if
differences observed between samples in terms of FW could be partly due to differential
loss of water under stress (Supplementary Figures S1 and S2). The tendency in response to
salinity level was maintained, and therefore we can conclude that the differences between
samples are due to the different levels of stress to which they were subjected.

To conclude on salinity impact, based on all investigated traits and to test our second
assumption about indication of plant optimum growth, we performed non-metric multi-
dimensional scaling (NMDS) with Bray-Curtis dissimilarity measure between treatments.
Within the analysis we asked for original variables related to the resulting NMDS space
as supplementary ones to make the interpretation of the results more clear (Figure 8).
Supplementary response variables do not affect the definition of the ordination NMDS
axes determined by similarity between samples and can be added to an existing ordina-
tion by projection, i.e., by regressing its data on the existing ordination axes [69]. NMDS
results demonstrated that some traits can indicate the best S. europaea growth expressed
by morphological, biomass, and anatomical properties between 200 and 400 mM NaCl
(Figure 8). The role of morphological traits adaptations were not stressed up to now. Plants
grown in 200 and 400 mM NaCl were the most similar to each other. The first ordination
axis explained 98% of the variability between these treatments located at the left side of
the diagram and 0 and 1000 mM NaCl located at the right side (Figure 8). The second
ordination axis related to the differences between plant traits in 0 and 1000 mM NaCl
explained only 1.7% of traits variability, related mostly to oxidative stress. This findings
demonstrated by morphological and biomass traits are in line with the field studies of
Piernik [27] and the laboratory observations of Lv et al. [28], Cárdenas-Pérez et al. [5],
Muscolo et al. [2], and Rozema and Schatb [70] who reported S. europaea’s optimum growth
at moderate salinity and growth limitation under non-saline conditions. Based on field
research and soil sampling on inland salt marshes in Central Europe, Piernik [71] reported
the optimum growth of S. europaea at 38.1 dSm−1, which corresponds to ca. 380 mM NaCl
and is in the range of our findings. The growth stimulation at low and moderate salinity
in halophytes such as S. europaea may be attributed to the improvement in shoot osmotic
status because of increased ion uptake [72]. However, the very high salinity imposed a
reduction of the growth, which is probably associated with the reduced turgor and the high
energy cost of massive salt secretion and osmoregulation [20,48,73].

Based on discriminant analysis with a forward selection procedure and Monte Carlo
permutation test, we selected the most affected traits by salinity. There were chlorophyll
a, carotenoids, and protein content explaining ca. 23–25% of the variability between all
treatments (Table 1), with the highest values related to low saline conditions. A similar
amount of variability, i.e., ca. 25% was explained by plant surface area related to higher
salinities. Photosynthetic area, represented in S. europaea by plant surface area, determines
light interception and is an important parameter in determining plant productivity [74].
Of lower importance but statistically significant in the separation between treatments
were POD activity related to the highest salinities, explaining ca. 0.8% of variability, and
aspect ratio related to non-saline treatment, explaining 0.7%, and the number of branches
and cell perimeter related to the moderate salinities, explaining respectively 0.6% and
0.2% of variability between treatments (Table 1). However, as was already mentioned
and discussed, the number of branches can be strongly modified under field conditions
not only by salinity but also by competition between individuals for resources [51]. We
focused here on conditional effects, which exclude the effect of the most correlated traits.
Conditional effects summarize the partial effect of each predictor, representing the variation
(and its significance) explained by a predictor after accounting for the effect of predictors
already selected [69]. The predictors were chosen in the order of their decreasing explained
variation. We skipped simple effects, which summarize the independent effects of all
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explanatory variables, because they reflected significance assessed by already presented
ANOVA.

Figure 8. Non-metric multidimentional scaling (NMDS) results—comparison between treatments
based on Bray-Curtis dissimilarity measure. Plant functional traits projected as supplementary.
Functional traits: Chl a—chlorophyll a, Carot—carotenoids, Psurf—plant surface area, Protein—
soluble protein content, POD—peroxidase activity, Nbran—number of branches, AR—aspect ratio,
Cperim—cell perimeter, Proline—proline conten, CAT—catalase activity, H2O2—hydrogen peroxide,
Cdiam—cell diameter, Sdiam—shoot diameter, Carea—cell area, SFW—shoot fresh weight, TDW—
total dry weight, Pheight—plant height, Chl b—chlorophyll b, RFW—root fresh weight, SDW—shoot
dry weight, Cround—cell roundness. Treatments are marked by dots: 0–1000 mM NaCl. Stress = 0.

Our results demonstrated that though photosynthetic traits are the most affected by
salinity, it does not guarantee high productivity of S. europaea in non-saline environments
and does not affect productivity to the certain salinity level. This can explain why many
halophytes are known as light-required species [75]—because they cope with reduced pho-
tosynthetic pigments under saline condition. Fortunately, a relatively higher S. europaea area
under moderate salinity is advantageous for increasing photosynthetic capacity through
capturing light at the expense of increased construction costs and produces large boundary
layers responsible for reducing transpiration rates and thus heat exchange and carbon
dioxide diffusion to the surrounding air [76]. Important findings in our research are also
addressed to the anatomic traits most affected by salinity and related to cell shape. As
proved by aspect ratio with increasing salinity, cells become rounder, optimizing their
surface area and, as was evidenced by cell perimeter, they become enlarged. However, all
regulatory mechanisms behind cell adaptations are still not recognized [21]. Our findings
can be the key starting points for their future identification.
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Table 1. Results of discriminant analysis (CVA) with forward selection and Monte Carlo permu-
tation test demonstrating relative importance and statistical significance of plant traits in the sep-
aration of salt treatments 0, 200, 400, 800, and 1000 mM NaCl. Multi-correlated traits have been
automatically excluded.

Conditional Effects

Variable V
% Pseudo-F p

Chl a 24.8 7.2 0.002
Carot 24.7 10.3 0.002
Psurf 24.5 18.8 0.002

Protein 23.1 147 0.002
POD 0.8 6.5 0.014

Nbran 0.6 6.4 0.012
AR 0.7 11.3 0.004

Cperim 0.2 3.9 0.03
Proline <0.1 1 0.372

CAT <0.1 1.4 0.286
H2O2 <0.1 0.8 0.516
Cdiam <0.1 1.3 0.304
Sdiam <0.1 0.6 0.598
Carea <0.1 1 0.396
SFW <0.1 0.9 0.452
TDW <0.1 1.2 0.334

Pheight <0.1 0.6 0.624
Chl b <0.1 2.2 0.144
RFW <0.1 0.7 0.5
SDW <0.1 0.8 0.466

Cround <0.1 0.2 0.852
Functional traits: Chl a—chlorophyll a, Carot—carotenoids, Psurf—plant surface area, Protein—soluble protein
content, POD—peroxidase activity, Nbran—number of branches, AR—aspect ratio, Cperim—cell perimeter,
Proline—proline conten, CAT—catalase activity, H2O2—hydrogen peroxide, Cdiam—cell diameter, Sdiam—
shoot diameter, Carea—cell area, SFW—shoot fresh weight, TDW—total dry weight, Pheight—plant height, Chl
b—chlorophyll b, RFW—root fresh weight, SDW—shoot dry weight, Cround—cell roundness. V—variability.

Finally, we would like to highlight that S. europaea is a species covering different
ecotypes/subspecies, which can be specifically adapted to the local environments [5,12,21].
That is why we reported, in the introduction, Salicornia ramosissima J. Woods (= S. herbacea L.)
from Central Europe [9] as a synonym/reference for the S. europaea population investigated
by us.

4. Materials and Methods
4.1. Laboratory Plant Material and Plantlets Preparation

S. europaea seeds were collected from the nature reserve of halophytes “Ciechocinek”
located in north-central Poland (52◦53′ N, 18◦47′ E; Central Europe) under permission
WOP.6400.12.2020.JC. Matured plants spikes were harvested at the beginning of November,
and the seeds were shaken from the spikes. After threshing, 250 seeds that were healthy
and uniform in appearance were selected and planted in Petri dishes with Whatman no. 2
filter paper. The Petri dishes were watered with 5 mL distilled water and were placed in a
growth chamber with 22 ◦C and 16 h light period for 9 days. After full germination, uniform
plantlets were selected and planted into the pots that contained a mixture of vermiculite and
sand (1:1). In total, 60 pots were prepared and divided into five groups (12 pots per each
salt concentrations: 0 mM—distilled water, 200 mM, 400 mM, 800 mM, and 1000 mM NaCl).
Before planting, each group of 12 pots was located on individual tray lacking drainage and
were saturated to their full capacity with relevant NaCl solution (ca. 0.5 L per treatment,
pot size: height 5.3 cm, diameter 5.5 cm). All pots were placed in a growth chamber with
22 ◦C and a 16 h light period and each group was irrigated through pouring distillate water
once per week. To prevent nutrient deficiencies, plants were watered with Hoagland’s
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solution once per two weeks [77]. In our previous research we focused on germination and
early growth assessments of S. europaea [2]. Therefore, this time we focused on plantlets,
which were grown for 60 days to the end of the experiment period.

4.2. Growth Analysis

Growth analysis covered morphological and biomass assessments. Two months after
starting salt treatments, the plants were subjected to morphological analysis. For this
purpose, plant images were taken by a Canon camera with resolution of 5 to 25 MP for
morphological analysis. Images were taken from four sides of each sample (see Figure 1)
in four replications. We used ImageJ version 1.47 program (National Institutes of Health,
Bethesda, MD, USA) for image analysis to measure plant morphological parameters: height,
number of branches, surface area, and shoot diameter. The results were calculated according
to the number of pixels covering the plant converted to the appropriate metric units.

At the end of the experiment, shoot fresh weight (SFW), root fresh weight (RFW),
and total fresh weight (TFW) were measured. After the samples were oven dried for 72 h
at 72 ◦C, shoot dry weight (SDW), root dry weight (RDW), and total dry weight (TDW)
were determined.

4.3. Anatomical Analysis

The anatomical analysis was performed based on the cross-sections of plant shoots
(middle primary branch—fleshy segment shoot) taken from plants growing in five NaCl
concentrations. Slices of fresh tissue were obtained by cutting them with a sharp bi-shave
blade and slices of approximately 0.5 mm were used for analysis. The samples were stained
with alkaline fuchsin and malachite green for microscopic observations. S. europaea cross-
sections photos for each NaCl concentration were taken using light microscopy. Photos
were used to observe the cortex parenchyma cells, because water storage in the parenchyma
is the first S. europaea mechanism to overcome high Na+ concentrations [28]. We used ImageJ
version 1.47 (National Institutes of Health, Bethesda, MD, USA) for image analysis. For
each sample, more than 200 cells were analyzed to determine the following parameters:
(1) cell area (A), which was calculated through the number of pixels inside the borderline;
(2) cell perimeter, which was calculated due to the prescribed limits; (3) cell diameter, which
was defined by the distance between two points; (4) aspect ratio (AR), which was defined
as the quotient between the minimum and maximum diameter, determining the uniformity
of the cell; and (5) cell roundness (R), which determines the circularness of a cell using
Equation (1). In this equation, for perfectly round cells R = 1 [78].

R = (4A)/(π(MD)2), (1)

where: A is cell area; MD is cell diameter.

4.4. Biochemical Analyzes

To evaluate the effect of different salinity levels on the biochemical traits of S. europaea
plants, we measured traits related to photosynthetic activity, osmotic adjustment, oxidative
stress, and enzymatic activities.

4.4.1. Photosynthetic Pigments Content

Chlorophylls (Ch a and Ch b) and carotenoids were extracted from fresh plant stems
(100 mg) using 80% acetone for 6 h in darkness, and then centrifuged at 10,000 rpm, 10 min.
Supernatants were quantified spectrophotometrically. The absorbances at 646, 663, and
470 nm wavelength were measured. The total content of chlorophyll a and b [79] and
carotenoids [80], when 80% of acetone was used as dissolvent, were calculated according
to Equations (2)–(4) and reported as mg-per-gram fresh weight.

Chlorophyll (a) = [(12.21 × Abs663) − (2.81 × Abs646) ×mLAcetone]/mgSteam (2)
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Chlorophyll (b) = [(20.13 × Abs646) − (2.81 × Abs663) ×mLAcetone]/mgSteam (3)

Carotenoids = (([(1000 × Abs470 − 3.27(Chla) − 104(Chlb))/227] ×mLAcetone))/mgSteam (4)

4.4.2. Soluble Protein Content

Plant material (0.5 g) was placed in a mortar chilled with liquid nitrogen, then 7 mL of
50 mM phosphate buffer was added and homogenized. After fine grinding, the sample was
centrifuged at 20,000× g for 25 min at 4 ◦C. The supernatant was collected for determination
of protein content at 595 nm using the Bradford method [81]. The amount of protein was
determined using a bovine serum albumin as a standard.

4.4.3. Hydrogen Peroxide (H2O2) Content

Hydrogen peroxide was measured according to the methods described by Velikova
et al. [82]. Three samples were prepared for each NaCl concentration. Stem tissues (0.5 g)
were homogenized in an ice bath with 5 mL of 0.1% TCA (trichloroacetic acid). Then, the
homogenate was centrifuged at 12,000× g for 15 min at 4 ◦C. The supernatant (0.5 mL) was
transferred to a new tube and 0.5 mL of 10 mM potassium phosphate (pH 7) and 2 mL
of 1 M KI were added. The solution was incubated in the dark for one hour and then
the absorbance was read at 390 nm wavelength and the hydrogen peroxide concentration
was given based on the standard curve from 0 to 40 nM and equation y = 0.0188x + 0.046,
R2 = 0.987 in nM-per-gram fresh weight.

4.4.4. Peroxidase (POD) Activity

The peroxidase activity was measured according to the method of Chance and Maehly [83].
For the measurement, a 3-mL reaction mixture was prepared with the following compo-
sition: 50 mM potassium phosphate buffer (pH 7), 20 mM guaiacol, 40 mM H2O2, and
0.1 mL of enzyme extract obtained from plant stems. The reaction was initiated by adding
the enzyme extract. The increase in absorbance of the reaction solution was measured at
470 nm wavelength. The reading was recorded every 20 s. One unit of peroxidase activity
was defined as an absorbance change of 0.01 units per minute. The enzyme activity was
expressed on a protein basis [84].

4.4.5. Catalase (CAT) Activity

Catalase was determined by measuring residual H2O2 with a titanium reagent [85].
The reaction mixture was 3 mL in total and consisted of: 1 mL of 6 mM H2O2 and 1.9 mL of
0.1 M phosphate buffer (pH 7). To start the reaction, 0.1 mL of diluted enzyme extract was
added to the test tube. The reaction was stopped after 5 min by adding 4 mL of titanium
reagent, which formed a colored complex with residual H2O2. Mixtures without enzyme
were used as control. The colored complex was centrifuged at 10,000× g for 10 min. The
absorbance was measured at 415 nm. The residual H2O2 content was calculated from the
standard curve [86].

4.4.6. Proline Content

The proline content of the leaves was determined according to the method of Bates
et al. [87]. Three samples were prepared for each NaCl concentration; 0.5 g of each sample
were pulverized on ice and homogenized in a mortar with 5 mL of 3% aqueous sulfosalicylic
acid. The homogenate was centrifuged at 18,000× g, 10 min at 4 ◦C, and the supernatant
was collected. About 1 mL of the supernatant was added into a test tube and 2 mL of glacial
acetic acid, 2 mL of ninhydrin reagent, and 1 mL of sulfosalicylic acid 3% were added to
the tube. The reaction mixture was boiled in a 100 ◦C water bath for one hour. Then, the
test tubes were put on ice and 4 mL of toluene were added to them. The samples were
transferred to a separating funnel and after thorough mixing, the toluene containing the
chromophore was separated. The absorbances were measured at 520 nm wavelength. The
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amount of proline was determined using the standard curve in the concentration range of
0 to 40 µg mL−1 and equation y = 0.0467x − 0.0734, R2 = 0.963.

4.5. Statistical Analyzes

To compare all treatments, one-way analysis of variance (ANOVA) was performed
followed by post hoc analysis using Tukey’s test. The PAST 4.0 program [88] was used
for statistical analyses. To discuss S. europaea’s optimum growth based on the whole set
of the traits, we applied non-metric multidimensional scaling (NMDS) with Bray-Curtis
dissimilarity measure to demonstrate similarities between plants coming from different
salinity treatments. To select the most affected traits by salinity treatments, we applied
discriminant analysis with a forward-selection procedure and Monte Carlo permutation
test. Only conditional effects were taken into account to exclude the effect of the most
correlated traits [42]. For these analyses, the Canoco 5.0 program was applied [69].

5. Conclusions

Addressing our research to answer the question if S. europaea traits from different
scales are controlled by salinity level, we found that almost all of them were salinity depen-
dent. However, we proved that functional traits were affected by salinity in the different
ways and demonstrated significant differences at different salinity levels. Moreover, we
did not find a statistically significant relationship between proline levels and increasing
salinity, which was not expected based on reported findings regarding glycophyte species.
Based on analysis of all investigated traits, we demonstrated that morphological, biomass,
and anatomical properties indicated optimum growth between 200 and 400 mM NaCl
and growth limitations at 0, 800, 1000 mM NaCl. Moreover, we can conclude that the
most affected traits by salinity include photosynthetic pigments, protein content, plant
surface area, peroxidase activity, and anatomic traits related to cell shape. Our results
significantly expand the knowledge about S. europaea functional traits variation in response
to salinity, which can be important for discovering regulating processes and for possible
future agricultural applications.
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Abstract: Crop wild relatives represent a valuable resource for the breeding of new crop varieties
suitable for sustainable productivity in conditions of climate change. The aim of the present study
was to assess salt tolerance of several wild accessions of T. fragiferum from habitats with different
salinity levels in controlled conditions. Decrease of plant biomass and changes in partitioning
between different organs was a characteristic response of plants with increasing substrate salinity,
but these responses were genotype-specific. In several accessions, salinity stimulated reproductive
development. The major differences in salinity responses between various T. fragiferum genotypes
were at the level of dry biomass accumulation as well as water accumulation in plant tissues, resulting
in relatively more similar effect on fresh mass. Na+ and Cl− accumulation capacity were organ-
specific, with leaf petioles accumulating more, followed by leaf blades and stolons. Responses of
mineral nutrition clearly were both genotype- and organ-specific, but several elements showed a
relatively general pattern, such as increase in Zn concentration in all plant parts, and decrease in Ca
and Mg concentration. Alterations in mineralome possibly reflect a reprogramming of the metabolism
to adapt to changes in growth, morphology and ion accumulation resulting from effect of NaCl. High
intraspecies morphological and physiological variability in responses of T. fragiferum accessions to
salinity allow to describe them as ecotypes.

Keywords: forage legumes; growth; ions; mineral nutrition; salinity tolerance; strawberry clover

1. Introduction

Only relatively recently a concept of crop wild relative (CWR) plant species has
been established [1,2] and it has been verified that CWRs represent extremely valuable
potential resource for breeding new crop varieties [3]. In a light of global climate changes,
with predicted increase in severity of deviations in environmental constraints, cultivated
plants need to possess higher adaptive plasticity towards a range of suboptimal abiotic
factors, allowing them to maintain productivity in highly heterogeneous conditions [4]. In
this respect, CWRs can be used as a source of resilience-associated characteristics due to
generally higher abiotic stress tolerance [3,5].

Soil salinization represents one of the most urgent problems in agriculture [6], and
its negative effects on crop productivity are anticipated to become more severe on a back-
ground of global climate changes [7]. Because of their symbiosis with nitrogen-fixing rhi-
zobacteria, salt-tolerant forage legume species are especially important for saline marginal
lands with characteristically low response to nitrogen fertilizers [8]. Several species from
genus Trifolium are commonly used in permanent temperate grasslands, and Trifolium
pratensis and Trifolium repens are considered as especially important CWRs in Europe [9].
Trifolium fragiferum is a perennial stoloniferous clover species native to Europe, Mediter-
ranean region, Middle East and West Asia [10]. Due to the relative rarity of T. fragiferum in
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Northern Europe, T. fragiferum is legally protected in several countries, including Latvia [11].
While not used commercially in Europe, T. fragiferum has been cultivated as forage legume
crop in temperate grasslands of Australia and USA [12,13]. The first successful cultivar of
T. fragiferum, ‘Palestine’, had been developed in Australia from a material collected near the
Dead Sea and used commercially since 1938 [13].

Resilience of T. fragiferum has been associated both with clonal type of growth as well
as high abiotic stress tolerance of the species. Monopodially branching creeping shoots
(stolons) have an ability to fom roots at the nodes [14]. Together with moderate tolerance
to soil salinity and alkalinity, T. fragiferum also has good flooding tolerance [15], an ability
to withstand continuous grazing [16] and repeated trampling [17]. Potential suitability of
different wild accessions of T. fragiferum to saline conditions is of special interest, as it was
established that a wide genetic diversity exists within a species in respect to degree of salt
tolerance [18]. As in the Northern Europe T. fragiferum is exclusively associated with an
endangered habitat ‘Baltic coastal meadow’ [19], experimental assessment of populations
around the Baltic Sea seems to be extremely promising in order to find highly salt-tolerant
physiological types of the species useful for further breeding purposes.

Aspects of plant mineral nutrition have been often related with their salinity toler-
ance, as mineral imbalance resulting due to salinity treatment can be considered as one
of indications of general metabolic disorder [20]. More specifically, Na+ accumulation in
plant tissues due to increased substrate NaCl can affect their K+ status, and consequently,
result in disruption of cellular functions. The strategy of active salt exclusion from pho-
tosynthetic tissues is a possible adaptive mechanism for salt-tolerant glycophytes and
monocotyledonous halophytes [21]. For other halophytes, vacuolar sequestration of Na+

and Cl− and maintenance of stable cytosolic K+, as an avoidance mechanism, together with
accumulation of nonionic osmolytes, leads to stabilization of osmotic homeostasis [22,23],
concomitantly with readjusting of cellular mineral balance according to the needs of salinity-
altered metabolism [24]. Therefore, assessment of salt-induced changes in mineral element
concentration in plant tissues can provide information on adaptive cellular responses
possibly related to differences in the degree of salinity tolerance.

Evaluation of local diversity of CWRs is an important constituent in a system of
sustainable use of biological resources [25]. A number of geographically-isolated microp-
opulations of T. fragiferum associated with natural water reservoirs have been identified
in Latvia recently [26]. Tolerance of several of these accessions of T. fragiferum against soil
waterlogging and flooding, trampling as well as cutting have been evaluated [17]. All
accessions appeared to be relatively tolerant to these factors, but accession-specific differ-
ences found suggested existence of different physiological types. The aim of the present
study was to assess the salinity tolerance of several wild Latvian accessions of T. fragiferum
from habitats with different salinity levels in comparison to commercial cultivar ‘Palestine’
as well as T. fragiferum accession from a relatively highly saline meadow in Bornholm,
Denmark. It was hypothesized that the accessions from habitats with higher soil salinity
would be more salinity tolerant in controlled conditions.

2. Results

Morphological differences were observed between control plants of different T. fag-
iferum accessions during cultivation and at the end of the experiment. Thus, plants of
accession TF9 had the lowest shoot biomass (Figure 1) but the highest number of stolons
and leaves (Table 1). Plants of TF8 (cv. ‘Palestine’) had the highest shoot biomass in control
conditions (Figure 1) and the lowest number of stolons (Table 1). In addition, the longest
total length of stolons was evident for plants of accession TF7, but the shortest was seen for
accession TF4 (Table 1). Biomass of roots for control plants showed less variance between
different accessions, significantly lower values of fresh and dry mass was evident only for
TF7 (Figure 2).
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Figure 1. Effect of increasing substrate salinity on shoot fresh mass (A) and shoot dry mass (B) of
Trifolium fragiferum plants of different accessions. Asterisks of respective color indicate statistically
significant differences from control (p < 0.05).

Table 1. Effect of increasing substrate salinity on morphological parameters of Trifolium fragiferum
plants of different accessions.

Treatment TF1 TF2 TF4 TF7 TF8 TF9

Number of stolons (n)

0 19.8 ± 3.0 a 25.0 ± 2.7 a 18.8 ± 2.1 a 26.8 ± 3.6 a 18.0 ± 2.4 a 30.8 ± 5.8 a
0.5 20.9 ± 4.3 a 21.8 ± 3.3 a 17.6 ± 2.6 a 22.6 ± 4.2 a 16.8 ± 1.0 a 28.6 ± 3.1 a
1 18.8 ± 3.7 a 25.8 ± 3.0 a 18.2 ± 1.9 a 37.6 ± 8.0 a 16.8 ± 1.9 a 24.2 ± 2.3 a
2 12.7 ± 5.5 a 16.2 ± 2.0 b 16.2 ± 1.9 a 18.0 ± 2.6 b 18.2 ± 3.0 a 18.4 ± 6.0 b
5 12.1 ± 1.4 b 14.8 ± 3.6 b 10.2 ± 1.3 b 14.0 ± 2.0 b 13.2 ± 1.3 b 14.2 ± 3.8 b

Total stolon length (m)

0 7.38 ± 0.91 a 7.43 ± 1.00 a 3.92 ± 0.70 a 10.28 ± 1.03 a 5.18 ± 1.16 a 6.35 ± 1.27 a
0.5 6.67 ± 0.81 a 7.10 ± 1.10 a 4.05 ± 0.57 a 8.23 ± 2.14 a 4.74 ± 0.36 a 4.97 ± 0.68 a
1 4.56 ± 0.67 b 6.29 ± 0.83 a 2.87 ± 0.41 a 10.54 ± 2.04 a 3.72 ± 0.64 ab 4.11 ± 0.32 ab
2 3.63 ± 0.93 bc 3.94 ± 0.32 b 1.88 ± 0.30 b 4.88 ± 0.59 b 2.65 ± 0.49 b 2.70 ± 0.99 bc
5 2.12 ± 0.20 c 2.21 ± 0.41 c 0.82 ± 0.09 c 2.43 ± 0.34 c 1.35 ± 0.27 c 1.54 ± 0.35 c

Number of leaves (n)

0 272 ± 33 a 321 ± 24 a 175 ± 21 a 348 ± 47 a 274 ± 45 a 397 ± 92 a
0.5 366 ± 43 a 346 ± 49 a 204 ± 33 a 314 ± 40 a 241 ± 27 a 464 ± 48 a
1 229 ± 46 a 338 ± 33 a 175 ± 19 a 443 ± 58 a 247 ± 33 a 374 ± 44 a
2 289 ± 78 a 247 ± 16 b 151 ± 14 a 294 ± 25 a 291 ± 40 a 322 ± 61 a
5 168 ± 23 b 206 ± 34 b 82 ± 10 b 153 ± 20 b 133 ± 16 b 214 ± 52 b

Different letters for each parameter within a column indicate statistically significant differences (p < 0.05) between
treatments for the respective accession.

When treated with low level of NaCl, several accessions showed a tendency for
increased mass of shoots (Figure 1), but only for TF1 dry mass of shoots significantly
increased at 0.5 and 1 g L−1 (Figure 1B). Plants of accessions TF1 and TF8 exhibited
significant decrease of shoot fresh mass already at 1 g L−1 Na, but all accessions except TF9
had significant decrease of shoot fresh mass at 2 g L−1 Na (Figure 1A). In respect to shoot
dry mass, significant decrease for TF2, TF4 and TF8 was evident already at 2 g L−1 Na+,
but all accessions except TF1 exhibited significant biomass reduction at 5 g L−1 (Figure 1B).
Both fresh and dry mass of roots was significantly stimulated at low Na+ concentration only
for TF1 (Figure 2). While fresh mass of roots significantly decreased for all accessions at
5 g L−1 Na (Figure 2A), root dry mass of TF1 and TF7 did not decrease at this concentration
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of Na+ (Figure 2B). There was no stimulative effect of low Na+ on number of stolons, total
length of stolons, and number of leaves for any of accessions of T. fragiferum (Table 1). These
parameters were significantly reduced by 5 g L−1 Na+ treatment for all accessions, or even
at lower concentrations for several accessions.
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Figure 2. Effect of increasing substrate salinity on root fresh mass (A) and root dry mass (B) of
Trifolium fragiferum plants of different accessions. Asterisks of respective color indicate statistically
significant differences from control (p < 0.05).

It appeared that increasing NaCl concentration in substrate reduced initial differences
in fresh and dry mass of shoots and roots between accessions, and this phenomenon was
clearly evident by the results of multivariate analysis (Figure 3A). The largest differences
between the genotypes in respect to biomass accumulation in roots and shoots were between
TF7 and TF9 (Figure 3B), but the largest similarity between TF2 and TF7, and TF1 and TF9
(Figure 4). Analysis of changes in biomass partition also confirmed genotype specificity of
salinity effects (Figure 5). Thus, increasing salinity stimulated generative reproduction, and
this effect increased in an order TF1 < TF8 < TF2 < TF7 < TF9 < TF4, but partition to roots
was enhanced in TF7 and TF8.

Analysis of summed relative effect of salinity revealed that the major differences in
salinity responses between various T. fragiferum genotypes were at the level of dry biomass
accumulation (Figure 6C) as well as water accumulation in plant tissues (Figure 6D),
resulting in relatively more similar effect on fresh mass (Figure 6A). Moreover, effect on
morphological indices (number of stolons and leaves, as well as stolon length) was rather
consistent between different genotypes (Figure 6B).
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Figure 3. Principal component analysis on effect of increasing substrate salinity on shoot and root
fresh mass and dry mass of Trifolium fragiferum plants of different accessions. (A), grouping according
salinity levels; (B), grouping according accessions. Prediction ellipses are such that with probability
0.95, a new observation from the same group will fall inside the ellipse. Unit variance scaling was
applied to rows; singular value decomposition with imputation was used to calculate principal
components. X and Y axes show principal component one and principal component two that explain
66.5% and 28.9% of the total variance, respectively.
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Figure 4. Generated heat map and cluster analysis on effect of increasing substrate salinity on shoot
and root fresh mass and dry mass of Trifolium fragiferum plants of different accessions. Hierarchical
clusters were generated by average linkage method with correlation distance. Color scale shows
relative intensity of normalized parameter values. FM, fresh mass; DM, dry mass.
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Figure 5. Changes in biomass partitioning in Trifolium fragiferum plants of different accessions due to
increasing substrate salinity. (A), accession TF1; (B), accession TF2; (C), accession TF4; (D), accession
TF7; (E), accession TF8; (F), accession TF9.
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Figure 6. Summed relative effect of increasing substrate salinity on morphology (A), fresh mass of
plant parts (B), dry mass of plant parts (C) and water content in plant parts (D) of Trifolium fragiferum
plants of different accessions. Only statistically significant effects are taken into account.

In general, Na+ accumulation capacity was organ-specific, with leaf petioles accu-
mulating more Na+, followed by leaf blades (Figure 7). At low salinity, there were no
significant differences in accumulation of Na+ in leaf blades (Figure 7A), leaf petioles
(Figure 7B) and stolons (Figure 7C), only at the highest salinity (5 g Na+ L−1) plants from
most saline habitats (TF1 and TF9) tended to accumulate more Na+ in leaves. In contrast,
differences in trend of Na+ accumulation in dependence on increasing salinity were evident
in plant roots (Figure 7). Accumulation capacity for Cl− was also highest in leaf petioles,
followed by stolons and leaf blades (Figure 8). Response of Cl− accumulation was saturable
at low substrate NaCl concentration, especially, for stolons and roots. Multivariate analysis
of ion accumulation characteristics in plant parts revealed that salinity effects were rather
genotype-specific, with closer similarity between TF2 and TF4, as well as TF1 and TF9
(Figure 9).
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Figure 7. Effect of increasing substrate salinity on Na+ accumulation in leaf blades (A), leaf petioles
(B), stolons (C) and roots (D) of Trifolium fragiferum plants of different accessions.
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Figure 8. Effect of increasing substrate salinity on Cl− accumulation in leaf blades (A), leaf petioles
(B), stolons (C) and roots (D) of Trifolium fragiferum plants of different accessions.
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Figure 9. Generated heat map and cluster analysis on effect of increasing substrate salinity on Na+

and Cl− accumulation and K:Na ratio in different parts of Trifolium fragiferum plants of different
accessions. Hierarchical clusters were generated by average linkage method with correlation distance.
Color scale shows relative intensity of normalized parameter values. LB, leaf blades; LP, leaf petioles;
ST, stolons; R, roots.

Effect of salinity on mineral nutrition was evaluated by comparison of relative effect of
increasing substrate salinity in various plant parts for different accessions (Figure 10). The
responses clearly were both genotype- and organ-specific, but some general trends were
evident. Thus, Zn concentration mostly increased in all plant parts for all genotypes except
TF2 and TF7, but Ca and Mg concentration decreased, except TF9. Effects on macronutrient
P and K, as well as micronutrient Fe, Cu and Mn concentration were rather controversial.
According to principal component analysis, diversity in mineral nutrient concentration
increased with increasing salinity (Figure 11), and each genotype had rather unique mineral
element response trend in different plant parts caused by salinity gradient (data not shown).
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Figure 10. Relative effect of increasing substrate salinity on mineral element concentrations in leaf
blades (LB), leaf petioles (LP), stolons (ST) and roots (R) of Trifolium fragiferum plants of different
accessions. Numbers on the left side indicate added Na+ concentration (g L−1). Only statistically
significant effects are taken into account.
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Figure 11. Principal component analysis on effect of increasing substrate salinity on mineral nutrient
concentration in different parts of Trifolium fragiferum plants of different accessions. (A), grouping
according salinity levels; (B), grouping according accessions. Prediction ellipses are such that with
probability 0.95, a new observation from the same group will fall inside the ellipse. Unit variance
scaling was applied to rows; singular value decomposition with imputation was used to calculate
principal components. X and Y axes show principal component one and principal component two
that explain 27.9% and 15.6% of the total variance, respectively.

3. Discussion
3.1. Comparison of Salinity Tolerance

T. fragiferum as a halophytic species has been included in the eHALOPH database
(https://www.sussex.ac.uk/affiliates/halophytes/index.php, accessed on 2 February 2022)
as based on the main criterion, tolerance to substrate EC at least 7.8 dS m−1 (equivalent
to 7.8 mS cm−1). This assumption was confirmed also by the results of the present study,
with all accessions being able to grow and reproduce at 5 g Na L−1 with substrate EC1:5
reaching 9.77 mS cm−1 (3602 mS m−1 by a sensor measurement). Similar salinity level was
recorded also in a natural habitat of TF9 on the island of Bornholm (2749 mS m−1). The
species even has been defined as obligatory mesohydrohalophile, as based on its presence
in salt marsh vegetation in Romania [27], but within the northern part of the distribution
range it seems to be specifically associated with habitats near different water reservoirs but
not with increased soil salinity [26].

Accessions of T. fragiferum compared in the present study were growing on soils with
different salinity level (Table 2). It seems to be logical to expect that the accessions from
more saline habitats (as TF1 and TF9) would show higher salinity tolerance in identical
conditions of the controlled experiment in comparison to the accessions from habitats with
low salinity (as TF2, TF4, TF7). However, in order to approve or reject this hypothesis, it
should be understood that the degree of tolerance to changes in a particular environmental
factors can be compared differently. Plants from different taxonomic groups are usually
compared in a relative way, comparing percent changes of certain growth-related indices
relative to control plants, in order to eliminate genotype-associated differences between the
control plants. According to this approach, T. fragiferum plants of accession TF9 were the
most tolerant to 2 g L−1 Na+ treatment, but TF1 plants were the most tolerant to 5 g L−1

Na+ (Figure 6C). However, in absolute terms, when looking for the accession producing the
highest biomass at high salinity, T. fragiferum accessions TF1, TF2, TF7 and TF8 produced
identically high amount of biomass at 5 g L−1 Na+, with values for TF4 and TF9 being
significantly lower (Figure 1B). Consequently, from a practical point of forage production,
relatively sensitive cv. ‘Palestine’ (TF8) still would have higher yield when cultivated in
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saline soil because of extremely pronounced biomass production ability of control plants,
when compared to relatively most tolerant accession TF9 from saline coastal habitat in
Bornholm. In this respect, the most promising Latvian accession of T. fragiferum was TF1
from a saline wet shore meadow of Lake Liepājas: the accession showed the highest relative
tolerance to 5 g L−1 Na+ and also were among the accessions with the highest absolute
biomass production capacity at this salinity level. Accession TF1 was also the only one
used in the present study showing significant growth stimulation of both shoots and roots
at 0.5 and 1 g L−1 Na+. Besides, TF1 was also the accession most stable to action of several
abiotic factors, with very high tolerance to soil waterlogging and repeated cutting, and
high tolerance against trampling [17].

Table 2. Characterization, geographical location of accessions of Trifolium fragiferum used in the
present study and soil electrical conductivity (EC) at the sites.

Code Associated Water
Reservoir Habitat Location Coordinates Soil EC (mS m−1)

TF1 Lake Liepājas Salt-affected wet
shore meadow City of Liepāja, Latvia 56◦29′29′′ N,

21◦1′38′′ E 380 ± 124

TF2 River Lielupe Salt-affected shore
meadow

City of Jūrmala,
Lielupe, River Lielupe

Estuary, Latvia

57◦0′11′′ N,
23◦55′56′′ E 85 ± 5

TF4 – Degraded urban
land

City of Rı̄ga, Vidzeme
Suburb, Latvia

56◦57′46′′ N,
24◦7′2′′ E 69 ± 6

TF7 The Gulf of Riga of
the Baltic Sea

Dry coastal
meadow Town of Ainaži, Latvia 57◦52′8′′ N,

24◦21′10′′ E 65 ± 4

TF8 cv. ‘Palestine’ na na na na na

TF9 The Baltic Sea Salt-affected wet
coastal meadow

Hammeren, Bornholm,
Denmark

55◦17′54′′ N
14◦46′17′′ E 2749 ± 209

While several studies previously have accessed salinity tolerance of T. fragiferum [28,29],
direct comparison of the results obtained is rather difficult. The main reason is a lack of
information on the precise amount of applied salts during treatments, and/or on final
salinity level in substrate, measured either as substrate electrical conductivity or concen-
tration of Na+. When decrease in biomass accumulation is viewed as a main indication of
a plant’s sensitivity to salinity, a possibility that growth inhibition represents a regulated
adaptive response to increased salt concentration is usually forgotten. However, changes in
biomass partition within a plant with increase in substrate salinity clearly indicate that this
assumption could be correct, as showed also in the present study (Figure 5).

Salinity tolerance under different flooding regimes of T. fragiferum cv. ‘Palestine’ has
been compared with that of other Trifolium species and it was shown that the species is more
sensitive to salinity than to flooding [28]. During the study with 95 T. fragiferum accessions
and five cultivars it was concluded that within the species a wide genetic diversity exists
in respect to salinity tolerance [18]. Several accessions, when grown at low salinity, even
showed significant growth stimulation of their shoots. In hydroponics, dry biomass of
cv. ‘Palestine’ decreased to 43–54% at 160 mM NaCl relative to control, but mixed plant
sample from five pooled wild accessions of T. fragiferum had relatively better tolerance,
with biomass decreasing only to 73% at the same salinity [30]. These results are similar
to the ones obtained in the present study. Most importantly, it is evident that intraspecies
physiological diversity of salinity responses for T. fragiferum exist, even from a relatively
restricted territory as in the case of Latvia.

No detailed physiological mechanisms of salinity tolerance/sensitivity have been
investigated for any of Trifolium species so far. However, some insights were made for
moderately salt tolerant species Trifolium alexandrinum, showing that excessive accumu-
lation of Na+ in leaves together with inability for sequestration in vacuoles have led to
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inhibition of photosynthesis followed by growth inhibition [31]. Similarly, T. repens plants
from a population accumulating lower amount of Na+ and Cl− in shoots, had higher
shoot dry mass and lower dieback rate in saline conditions in comparison to plants from a
higher-accumulating population [32]. Consequently, a relationship between Na+ and Cl−

accumulation in plant shoot tissues and their salinity tolerance can be proposed.

3.2. Comparison of Ion Accumulation

T. fragiferum has been characterized as a species excluding Na+ from shoots based
simply on the fact that other species of the genus accumulated more Na+ [30]. Exclusion
of Na+ and Cl− from shoot tissues is considered as a characteristic important for salinity
tolerance, but it seems to be relevant only for glycophytes [33]. In contrast, halophytic
plants are able to use Na+ for osmotic adjustment, at least, in vacuoles [34].

In the present study, both T. fagiferum accessions from habitats with the highest salinity
(TF1 and TF9) had the highest Na+ accumulation potential in leaf blades and petioles
(Figure 7A,B). In leaf petioles of both accessions, Na+ concentration reached >50 g kg−1.
Interestingly, in natural conditions, TF1 plants were not among the accessions showing
highest levels of Na+ accumulation, with Na+ concentration in petioles reaching only
14 g kg−1, while that in TF2 was 21 g kg−1 [26]. However, it is important that at low
to moderate salinity there were no differences in Na+ accumulation potential in leaves
between different accessions in the present study in controlled conditions, but these were
pronounced in stolons and, especially, in roots. Accumulation potential for the two ions in
stolons and roots was less, especially, at high salinity. In comparison, Na+ accumulation
potential in shoots of T. repens was up to 38 g kg−1 Na+ and 85 g kg−1 Cl−, while in roots
it was only 5 g kg−1 Na+ and 8 g kg−1 Cl− [35]. Consequently, relatively better salinity
tolerance of T. fragiferum is not associated with differences in accumulation of Na+ and
Cl−. This was also not the case when tolerance of individual T. fragiferum accessions were
considered: the two relatively most tolerant accessions, TF1 and TF9, accumulated higher
Na+ concentration only at 5 g L−1 Na in leaf petioles, but no such relationship was evident
in stolons and roots, or for Cl− accumulation in all plant parts.

Plants of cv. ‘Palestine’ accumulated 1.63–1.86 mmol Na+ and 1.56–1.60 mmol Cl−

per g DM in shoots (equivalent to 37.5–42.8 g kg−1 Na+ and 55.4–56.8 g kg−1 Cl−), but
concentrations for wild accessions of T. fragiferum were 1.12 mmol Na+ and 1.32 mmol Cl−

per g DM (equivalent to 25.8 g kg−1 Na+ and 46.9 g kg−1 Cl−) [30]. Thus, accumulation
range of Na+ and Cl− at relatively high substrate salinity for different T. fragiferum geno-
types is relatively similar, but significant differences in the accumulation potential between
different plant parts need to be taken into account (Figures 7 and 8).

Increased water accumulation in plant tissues in response to increasing salinity can be
viewed as means for dilution of soluble ions concomitantly with stimulation of vacuolar
development [36]. It seems that several accessions of T. fragiferum employed this mechanism,
especially, at low to moderate salinity (Figure 6). The relationship between salinity tolerance
and salinity-induced tissue succulence has been shown for a number of species [37–40].
However, no such relationship was evident for T. fragiferum, as relatively salt tolerant
accession TF1 showed only relatively little increase of tissue water content in comparison
to that in other accessions (Figure 6).

3.3. Mineral Nutrition

Disbalance of mineral nutrition has been suggested as one of the deleterious phys-
iological effects in plants due to high salinity [20]. However, generalization of results
from mineral nutrition studies of plants under salinity seems to be rather rare in scientific
literature. It has been concluded that the main nutrient-related problem during salinity
could be related to mineral imbalance as a result of competition of Na+ and Cl− with K+,
Ca2+, and NO3

−, but micronutrient concentrations are relatively less affected [20,24,41]. It
was concluded that besides rather pronounced effects on K+ uptake and distribution, more
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supported is the idea of negative effect of salinity on Ca2+ uptake, pointing to important
role of Ca2+ in maintenance of mineral homeostasis in saline conditions.

Increase in shoot K concentration is a commonly described tolerance-associated
response of glycophytic species to salinity [33], while osmotic functions of K+ can be
taken over by Na+ in halophytic species [42]. Shoot K+ concentration decreased from
1.54 mmol g−1 DM in control plants of cv. ‘Palestine’ to 1.03 mmol g−1 DM in plants
cultivated at 160 mM NaCl (equivalent to 60.1 and 40.2 g kg−1), and from 1.76 mmol per
g in control plants of wild accessions to 1.24 mmol per g at 160 mM NaCl (equivalent
to 69.6 and 48.4 g kg−1) [31]. However, no organ-specific effects on K+ accumulation
were considered so far. In the present study K+ concentration in leaf blades significantly
increased in all accessions except cv. ‘Palestine’ at least at the highest Na+ concentration,
but decrease in other parts was evident for several accessions (Figure 10). Interestingly, the
most pronounced decrease in tissue K+ in leaf petioles, stolons and roots was seen with
increasing salinity in presumably most salinity-tolerant accession TF9, as well as for TF1 in
stolons. This clearly points to ion accumulation features similar to these of halophytes.

In some species K+:Na+ ratio has been shown as a reliable indicator of salinity tol-
erance [43]. This has not been the case for Trifolium species, as more salinity-tolerant T.
fragiferum had lower K+:Na+ ratio as less salinity-tolerant T. repens [44]. Also, in the present
study, no relationship was found between K+:Na+ ratio in different organs of T. fragiferum
plants from various accessions and their salinity tolerance.

In taxonomically and morphologically related species, T. repens, increasing salinity
intensity induced a concomitant increase in concentration of several micronutrients in
plant roots, including Fe, Mn, and Zn [35]. Proportional increase of Mn concentration with
salinity has been described in another legume species, Melilotus segetalis [45]. Increase in
concentration of Zn as a result of salinity was very noticeable, but with certain genotype-
specific differences. This clearly suggests involvement in adaptations to salinity, and usually
increased Zn concentration has been associated with its involvement as a component in
defense-related proteins, as zinc finger proteins or antioxidative enzyme CuZn-superoxide
dismutase [46,47]. It is confirmed that enhanced activity of enzymatic antioxidative system
is a prerequisite for salinity tolerance [48].

As based on both literature analysis as well as the results of the present study, it
seems that particular salinity-induced changes in the concentration of individual mineral
elements are extremely variable even between taxonomically related species and within
the species. Thus, for two closely related species, Limonium perezii and Limonium sinuatum,
shoot Mg concentration either increased or decreased, respectively, as a result of increasing
salinity [49]. This means that interpretation of results from mineral nutrition studies
searching for general salinity effects using single species or only a few different species
should be done with caution.

In the present study with T. fragiferum, the observed salinity-dependent changes in
mineral nutrients were both genotype- and plant part-specific, with no clearly evident
relationship with relative salinity tolerance of the genotype (Figure 9). An interesting
general characteristic response of mineral nutrition was an increase in the diversity of
distribution of concentrations of mineral nutrients at high salinity (Figure 11). Due to
relatively high tolerance of all tested accessions to salinity, it seems that the recorded
characteristic and genotype-specific changes in concentration of mineral nutrients in plant
tissues reflect adaptive responses related to maintenance of metabolic homeostasis in plants
growing in saline soil. Similarly, reallocation of mineral nutrients in all plant organs is
thought to represent a whole-plant adaptive response [45]. Genotype-specific response
of mineral nutrition to increased salinity has been noted also for various salt-adapted
halophyte species [50].

3.4. Limitations and Benefits of the Experimental System and Future Perspectives

A study similar to this has been performed with another legume species, Medicago
ciliaris, using seed material from seven spontaneous local populations in Tunisia, and it
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was concluded that this type of studies represent an efficient approach to find salt response-
related genetic variation [51]. However, the problem of data interpretation in studies with
legume model species is related to their symbiotic relationship with N2-fixing bacteria. It
has been shown that rhizobial symbiosis not only provides additional nitrogen substances
for plant’s needs but also affects tolerance to unfavorable environmental conditions, pos-
sibly through upregulation of defense-associated genes [52,53]. Consequently, different
plant responses can be obtained in experiments using asymbiotic plants vs spontaneous
establishment of rhizobial symbiosis vs. plants inoculated with efficient symbionts. Thus,
active rhizobial symbiosis improved salinity tolerance of Medicago sativa plants through
increased osmotic adjustment and enzymatic antioxidative capacity [54]. Similar findings
have been described also for Medicago truncatula [55]. It has been also established that
presence of rhizobial symbiosis modulates interaction between T. fragiferum and T. repens on
the background of increased substrate salinity [44]. In the present study, to avoid possible
problems with inadequate or/and inefficient rhizobial symbiosis when comparing plant
accessions from various sites, T. fragiferum plants were cultivated asymbiotically. Our fur-
ther studies have shown that different T. fragiferum accessions have highly variable degree
of growth-dependence on presence of their native rhizobia (Jēkabsone et al. unpublished
results), therefore, it is intended to perform future experiments on salinity responses in
different genotypes of T. fragiferum, using their native symbiotic bacterial strains.

The novel aspects revealed by the present study concern genotype-specific effects of
increased substrate salinity on biomass partitioning as well as Na+ and Cl− accumulation
capacity between different organs of T. fragiferum plants from various accessions. However,
salinity tolerance in plants is clearly multigenic in nature [56]. Thus, ability for sustaining
ion homeostasis (including ion compartmentation), osmotic protection and antioxidative
defense are listed among the most important groups of mechanisms in plant salinity
tolerance [57]. In respect to osmotic adjustment under salinity, in the present study, an
emphasis was put on inorganic constituents, Na+ and K+. However, nonionic osmotically
active substances are well known for their role in maintenance of osmotic balance in plants
under saline conditions, and corresponding scientific evidence has been provided from
studies both in natural and controlled conditions [58–60]. Therefore, it can be proposed
that accumulation of compatible osmolytes is an important constituent of salinity responses
also in T. fragiferum plants.

At mild or moderate salinity, induction of antioxidative enzymes is an important aspect
of salinity tolerance, as shown for Beta vulgaris spp. vulgaris [61]. Also, higher capacity of
enzymatic antioxidative system in salt-tolerant rice landraces has been shown [43]. Our
previous results have indicated that decrease of peroxidase activity in leaves of T. fragiferum
at increased substrate salinity is a good indicator of relative salinity tolerance, but this
effect seemed to be associated with salinity-induced increase in tissue water content [44].
Future studies aimed at dissecting molecular mechanisms of salinity tolerance in different
T. fragiferum accessions clearly need to focus on enzymatic antioxidative defense system
and physiological indicators of tissue integrity.

4. Materials and Methods
4.1. Plant Material

Seeds of Trifolium fragiferum from four accessions in Latvia (TF1, TF2, TF4, and TF7) as
well as one accession from the island of Bornholm (TF9), from habitats with different salinity
levels, were used in the present study (Table 2, Figure 12). T. fragiferum cv. ‘Palestine’ (TF8),
obtained from Sheffield’s Seeds Company (Locke, NY, USA) was used for comparison.
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Figure 12. Map of the southern and central Baltic Sea region with Trifolium fragiferum accessions used
in the present study.

4.2. Cultivation Conditions and Treatments

Plants were cultivated in asymbiotic conditions of soil culture in an automated green-
house. All details of plant establishment and cultivation were as described previously [17].
Fully acclimatized four week-old plants were randomly divided into five treatments, five
plants per treatment as biological replicates. Respective plants were treated with NaCl
once a week, adding 1.27 or 2.54 g NaCl dissolved in 200 mL deionized water per container
with 1 L of soil substrate until final concentration was reached within five weeks (Table 3).
After achieving full treatment, soil electrical conductivity (EC) was measured in containers
with HH2 meter equipped with WET-2 sensor (Delta-T Devices, Burwell, UK), and in 1:5
(v/v) soil suspension in deionized water following 15 min incubation with LAQUAtwin
conductivity meter B-771 (Horiba Scientific, Kyoto, Japan). Plants were cultivated for
additional three weeks then the experiment was terminated.

Table 3. Experimental treatments used in the present study. Soil EC (measured in containers with
a sensor) and soil suspension EC were analyzed after reaching final treatment concentrations. EC,
electrical conductivity.

Treatment Added Salinity
(mM)

Amount of Added
NaCl (g)

Concentration of
Added Na (g L−1) Soil EC (mS m−1)

Soil Suspension
(1:5) EC (mS

cm−1)

Control 0 0 0 71.7 ± 7.3 0.27 ± 0.05
0.5 22 1.27 0.5 210.4 ± 10.0 0.50 ± 0.02
1 44 2.54 1.0 353.8 ± 31.0 1.96 ± 0.17
2 87 5.08 2.0 514.5 ± 36.9 3.04 ± 0.72
5 217 12.70 5.0 3602.2 ± 327.5 9.77 ± 1.18

4.3. Measurements

Plants were individually separated in different parts (roots, stolons, leaf petioles, leaf
blades, flower stalks, inflorescences). Stolons, leaves and inflorescences were counted, and
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the length of individual stolons was measured. Plant material was weighed separately
before and after drying in an oven at 60 ◦C for 72 h. Water content was calculated as g H2O
per g dry mass.

Mineral element analysis in dry-ashed plant material was performed as described
previously [26]. After mineralization of the plant samples and dissolving the mineral
fraction in either 3% HCl (P, K, Ca, Mg, Fe, Mn, Zn, Cu, Na) or deionized water (Cl),
chemical analyses were done using the following methods: the levels of K, Ca, Mg, Fe, Cu,
Zn and Mn were estimated by microwave plasma atomic emission spectrometer (MP-AES)
Agilent 4200, these of P were analyzed by the colorimetry with ammonium molybdate in
an acid-reduced medium using a spectrophotometer Jenway 6300, but values of Cl were
obtained by AgNO3 titration using distilled water extraction of plant ash. All analyses
were performed in triplicate, using representative tissue samples from individual biological
replicates.

4.4. Data Analysis

As flower-related characteristics were rather variable between individual plants, they
were used only for calculation of total shoot biomass as well as for establishment of biomass
partitioning [17]. The relative effect of salinity was expressed as percent changes of the
parameter in comparison to the respective control plants. Comparison of the relative effect
of treatments between different accessions was performed by means of summed percent
changes, separately for morphological parameters (number of leaves and stolons, average
and total length of stolons), fresh mass of separate plant parts, and dry mass of separate
plant parts, as well as water content in plant parts. The total summed effect was calculated
by combining percent effect on morphological parameters, fresh mass and dry mass. Only
changes significantly statistically different from control values were taken into account
for the calculation of summed effects. Effect of salinity on mineral nutrient concentration
was estimated as percent increase of the respective concentration in comparison to control
plants, taking into account only statistically significant changes.

Results were analyzed by KaleidaGraph (v. 5.0, Synergy Software, Reading, PA, USA).
Statistical significance of differences was evaluated by one-way ANOVA using post-hoc
analysis with minimum significant difference. Principal component analysis, heat map
generation and cluster analysis were performed by a freely available web program ClustVis
(http://biit.cs.ut.ee/clustvis/, accessed on 13 March 2022) [62]. For principal component
analysis, prediction ellipses were such that with probability 0.95, a new observation from
the same group will fall inside the ellipse. Unit variance scaling was applied to rows;
singular value decomposition with imputation was used to calculate principal components.
Hierarchical clusters were generated by average linkage method with correlation distance.

5. Conclusions

High intraspecies morphological and physiological variability is characteristic for
responses of T. fragiferum accessions to salinity, allowing them to be described as ecotypes.
While increasing salinity results in a decrease in the initial biomass differences between
accessions, an expansion of morphological variability and diversity of mineral nutrient
concentrations among plant parts in saline conditions is strongly pronounced. Changes
in mineralome possibly reflect a reprogramming of the metabolism to adapt accordingly
to changes in growth, morphology, and ion accumulation resulting from the direct effect
of NaCl.
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44. Dūmin, š, K.; Andersone-Ozola, U.; Samsone, I.; Elferts, D.; Ievinsh, G. Growth and physiological performance of a coastal species
Trifolium fragiferum as asffected by a coexistence with Trifolium repens, NaCl treatment and inoculation with rhizobia. Plants 2021,
10, 2196. [CrossRef]

45. Romero, J.M.; Marañón, T. Allocation of biomass and mineral elements in Melilotus segetalis (annual sweetclover): Effects of NaCl
salinity and plant age. New Phytol. 1996, 132, 565–573. [CrossRef]

46. Han, G.; Liu, C.; Guo, J.; Qiao, Z.; Sui, N.; Qiu, N.; Wang, B. C2H2 zinc finger proteins: Master regulators of abiotic stress responses
in plants. Front. Plant Sci. 2020, 11, 115. [CrossRef]

47. Sofy, M.R.; Elhindi, K.M.; Farouk, S.; Alotaibi, M.A. Zinc and Paclobutrazol Mediated Regulation of Growth, Upregulating
Antioxidant Aptitude and Plant Productivity of Pea Plants under Salinity. Plants 2020, 9, 1197. [CrossRef] [PubMed]

48. Canalejo, A.; Martínez-Domínguez, D.; Córdoba, F.; Torronteras, R. Salt tolerance is related to a specific antioxidant response in
the halophyte cordgrass, Spartina densiflora. Estuar. Coast. Shelf Sci. 2014, 146, 68–75. [CrossRef]

49. Grieve, C.M.; Poss, J.; Grattan, S.; Shouse, P.; Lieth, J.; Zeng, L. Productivity and Mineral Nutrition of Limonium Species Irrigated
with Saline Wastewaters. HortScience 2005, 40, 654–658. [CrossRef]

50. Yepes, L.; Chelbi, N.; Vivo, J.-M.; Franco, M.; Agudelo, A.; Carvajal, M.; Martínez-Ballesta, M.D.C. Analysis of physiological traits
in the response of Chenopodiaceae, Amaranthaceae, and Brassicaceae plants to salinity stress. Plant Physiol. Biochem. 2018, 132,
145–155. [CrossRef]

97



Plants 2022, 11, 797

51. Mbarki, S.; Skalicky, M.; Vachova, P.; Hajihashemi, S.; Jouini, L.; Zivcak, M.; Tlustos, P.; Brestic, M.; Hejnak, V.; Khelil, A.Z.
Comparing Salt Tolerance at Seedling and Germination Stages in Local Populations of Medicago ciliaris L. to Medicago intertexta L.
and Medicago scutellata L. Plants 2020, 9, 526. [CrossRef] [PubMed]

52. Deakin, W.J.; Broughton, W.J. Symbiotic use of pathogenic strategies: Rhizobial protein secretion systems. Nat. Rev. Genet. 2009, 7,
312–320. [CrossRef]

53. Sharma, M.P.; Grover, M.; Chourasiya, D.; Bharti, A.; Agnihotri, R.; Maheshwari, H.S.; Pareek, A.; Buyer, J.S.; Sharma, S.K.; Schütz,
L.; et al. Deciphering the Role of Trehalose in Tripartite Symbiosis Among Rhizobia, Arbuscular Mycorrhizal Fungi, and Legumes
for Enhancing Abiotic Stress Tolerance in Crop Plants. Front. Microbiol. 2020, 11, 509919. [CrossRef]

54. Wang, Y.; Zhang, Z.; Zhang, P.; Cao, Y.; Hu, T.; Yang, P. Rhizobium symbiosis contribution to short-term salt stress tolerance in
alfalfa (Medicago sativa L.). Plant Soil 2016, 402, 247–261. [CrossRef]

55. Irshad, A.; Rehman, R.N.U.; Abrar, M.; Saeed, Q.; Sharif, R.; Hu, T. Contribution of rhizobium-legume symbiosis in salt stress
tolerance in Medicago truncatula evaluated through photosynthesis, antioxidant enzymes, and compatible solutes accumulation.
Sustainability 2021, 13, 3369. [CrossRef]

56. Agarwal, P.K.; Shukla, P.S.; Gupta, K.; Jha, B. Bioengineering for Salinity Tolerance in Plants: State of the Art. Mol. Biotechnol.
2013, 54, 102–123. [CrossRef]

57. Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic
approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [CrossRef] [PubMed]

58. Tipirdamaz, R.; Gagneul, D.; Duhazé, C.; Aïnouche, A.; Monnier, C.; Özkum, D.; Larher, F. Clustering of halophytes from an
inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ. Exp. Bot. 2006,
57, 139–153. [CrossRef]

59. Grigore, M.N.; Boscaiu, M.; Vicente, O. Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes
under natural conditions. Eur. J. Plant Sci. Biotechnol. 2011, 5, 12–19.

60. Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savouré, A. Diversity, distribution and roles of osmoprotective compounds
accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [CrossRef] [PubMed]

61. Tahjib-Ul-Arif, M.; Sohag, A.A.M.; Afrin, S.; Bashar, K.K.; Afrin, T.; Mahamud, A.G.M.S.U.; Polash, M.A.S.; Hossain, M.T.; Sohel,
M.A.T.; Brestic, M.; et al. Differential response of sugar beet to long-term mild to severe salinity in a soil–pot culture. Agriculture
2019, 9, 223. [CrossRef]

62. Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and
heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [CrossRef] [PubMed]

98



Citation: Bigot, S.; Pongrac, P.; Šala,

M.; van Elteren, J.T.; Martínez, J.-P.;

Lutts, S.; Quinet, M. The Halophyte

Species Solanum chilense Dun.

Maintains Its Reproduction despite

Sodium Accumulation in Its Floral

Organs. Plants 2022, 11, 672. https://

doi.org/10.3390/plants11050672

Academic Editors: Oscar Vicente and

Marius-Nicusor Grigore

Received: 7 February 2022

Accepted: 25 February 2022

Published: 28 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

The Halophyte Species Solanum chilense Dun. Maintains Its
Reproduction despite Sodium Accumulation in Its Floral Organs
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Abstract: Salinity is a growing global concern that affects the yield of crop species, including tomato
(Solanum lycopersicum). Its wild relative Solanum chilense was reported to have halophyte properties.
We compared salt resistance of both species during the reproductive phase, with a special focus on
sodium localization in the flowers. Plants were exposed to NaCl from the seedling stage. Salinity
decreased the number of inflorescences in both species but the number of flowers per inflorescence and
sepal length only in S. lycopersicum. External salt supply decreased the stamen length in S. chilense, and it
was associated with a decrease in pollen production and an increase in pollen viability. Although the
fruit set was not affected by salinity, fruit weight and size decreased in S. lycopersicum. Concentrations
and localization of Na, K, Mg, and Ca differed in reproductive structures of both species. Inflorescences
and fruits of S. chilense accumulated more Na than S. lycopersicum. Sodium was mainly located in male
floral organs of S. chilense but in non-reproductive floral organs in S. lycopersicum. The expression of Na
transporter genes differed in flowers of both species. Overall, our results indicated that S. chilense
was more salt-resistant than S. lycopersicum during the reproductive phase and that differences could
be partly related to dissimilarities in element distribution and transport in flowers.

Keywords: salinity; inflorescences; ion localization

1. Introduction

Tomato (Solanum lycopersicum) is cultivated worldwide and is of great economic
importance. In 2020, more than 6 Mha of tomato plants was cultivated and 252 Mt of
fruits was harvested [1]. Plant breeding increased tomato yields, and the world average
yield in 2020 was 598 t ha−1 with values ranging from 14 t to 5 kt ha−1, depending on the
region and the cultural mode [1]. However, tomato is sensitive to abiotic stresses, including
salinity, because of its glycophytic nature [2]. Salinity is a growing global concern, and it is
estimated that salinity is present in 900 million ha of soils worldwide [3]. Sodium chloride
(NaCl) is the most common of salts and represents more than 90% of salt in the world [4].
Tomato is cultivated in many countries affected by salinity (e.g., East Asia, the Middle East,
and North Africa), and salinity decreases tomato yield by on average 50% for an electrical
conductivity of 5 dS m−1 [5].

Despite decades of tomato breeding programs, resistance to abiotic stress has been
neglected [6]. Indeed, since the 1960s, tomato improvement has mainly focused on
fruit yield, shelf-life, and taste [7,8]. Because of the self-pollination of cultivated tomato
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and varietal selection, genetic diversity has been considerably lost in this species [9].
Miller and Tanksley [10] estimated that the S. lycopersicum genome contained less than 5%
of the genetic variation of its wild relatives and, according to Bretó et al. [11], this species is
considered to have the lowest genetic diversity in the tomato clade (Clade II of Solanum,
consisting of S. lycopersicum, S. tuberosum, and S. muricatum, [12]). Solanum lycopersicum has
many wild relatives including a few originating from harsh environments [13]. The use
of resistant wild relatives in breeding is a common practice to improve the resistance of
crop species to abiotic stresses [14]. Solanum chilense is a wild tomato relative native from
the Atacama desert, one of the most salty and arid areas in the world [15,16]. Due to its
high level of genetic variability, S. chilense is considered one of the most promising sources
of genes for selection of tomato genotypes resistant to abiotic and biotic stress [11,17,18].
Like some tomato relatives, S. chilense is self-incompatible and requires cross-pollination,
while S. lycopersicum is self-compatible and self-pollinates [16]. The resistance of S. chilense
to biotic stress has been largely investigated, and this species has been used in breeding
programs for resistance to viruses such as the tomato yellow leaf curl virus [19] or the
cucumber mosaic virus [20]. However, despite a great interest in improving the abiotic
stress resistance of tomato, investigation into the resistance of S. chilense to abiotic stress
such as salinity is rarely studied [2,21].

The effects of NaCl stress on S. lycopersicum culture have been explored for a long
time, and studies have mainly focused on vegetative growth or yield parameters [8,21–23].
Even if fruit formation is a direct function of reproduction efficiency, the flowering stage is
a necessary process before fructification and is consequently impacted by salinity stress
before fruit formation. However, the effect of salt on reproductive structures has been little
explored in tomato, although abiotic stresses and more specifically salinity may have an
impact on the flowering stage. The reproductive phase is indeed considered one of the
most sensitive plant developmental stages toward salinity [24]. Ultimately, salinity leads
to a decrease in fruit yield and fruit weight and modification of sugar concentration and
antioxidant compounds [25,26]. However, earlier in the reproductive development, it can
lead to decrease of flower production or decrease of pollen germination and pollen tube
growth and even modifications of flower morphology [24,27,28]. In tomato, salinity was
shown to induce inflorescence failure and fertility decrease [29,30]. Nevertheless, how
salinity affects the flowering and reproductive stage of the halophyte S. chilense remains
largely unknown.

Solanum chilense has been shown to accumulate more Na in the vegetative aerial parts
than S. lycopersicum in response to salt [2] but Na accumulation in the reproductive parts
has not been investigated as yet. Sodium transport and storage play key roles in the plant
response to salinity [31]. Transporters of mineral elements involved in salinity resistance
have been widely studied in several plant species, including tomato [32,33]. Several families
of transporters are indeed involved in salinity resistance at different stages, especially to
maintain Na and potassium (K) homeostasis [34,35]. Briefly, sodium can enter the cell
via class I-HKT (High Affinity K+) transporters and non-selective cation channels. Other
transporters, such as the SOS (salt overly sensitive) pathway genes are involved in Na
exclusion [34–36]. NHX (vacuolar Na+/H+ antiporters) transporters are believed to be
Na+/H+ exchangers implied in vacuolar Na+ sequestration [37,38]. Other transporters
may play a role in salinity resistance in other ways. HAK (High Affinity K+) transporters
are involved in potassium nutrition and so could help against salt stress [39]. AKT2/3
(inward-rectifying K+ channel) is a potassium transporter involved in sucrose import in the
phloem, which is also activated in response to salt stress [40,41]. In inflorescences of tomato,
silencing of HKT1;2 was shown to increase the Na+/K+ ratio [25]. However, involvement
of transporters activity in salinity resistance in the reproductive structures remains largely
unknown in tomato.

In this paper, we compared the Na and K concentrations and localization in the
reproductive structures of the halophyte S. chilense and the glycophyte S. lycopersicum as
affected by salt stress and investigated responses of the reproduction of S. chilense to salt
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stress. We aimed to answer the following questions: (1) How does salinity affect flowering,
flower development and fertility, and fruit production in these species? (2) Does salinity
affect Na and mineral accumulation and partitioning in the reproductive structures of the
two species? (3) Does a different Na partitioning in flowers affect flower fertility? (4) What
are the responses of putative Na transporters and their contribution to Na accumulation
and partitioning in the reproductive structures?

2. Results
2.1. Impact of Salinity on Reproductive Growth

Salt stress was applied before floral transition up to fruit maturation. Throughout
the experiment, S. lycopersicum produced more leaves on the main stem than S. chilense,
even under salt stress conditions (Figure 1a,b, Table S2). At 113 days after stress imposition
(DASt), the average number of leaves on the main stem was 34.06 ± 5.72 in S. lycopersicum
and 29.47 ± 4.77 in S. chilense (Figure 1a,b). Salt decreased the leaf production in both species
(Figure 1a,b): leaf production decreased gradually with stress intensity in S. lycopersicum
while it was similar in plants treated with 60 and 120 mM NaCl in S. chilense. As S. chilense
had a bushier appearance than S. lycopersicum, the total number of leaves produced at
85 DASt was higher in S. chilense (80.22 ± 46.63) than in S. lycopersicum (47.67 ± 29.97) but
it also decreased by 71% and 65% with salt stress, respectively.
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Figure 1. Number of leaves (a,b) and of inflorescences (c,d) on the main stem of Solanum lycopersicum
(a,c) and Solanum chilense (b,d) grown in perlite:vermiculite mixture supplied with 0, 60, and 120 mM
NaCl from 0 to 113 days after stress imposition. Data are means ± SD, treatments followed by different
letters are significantly different (lowercase, S. lycopersicum, uppercase, S. chilense) at p < 0.05 for a same
species at 113 DASt.

Regarding reproductive growth, flowering times of the initial and sympodial seg-
ments were similar between species and salt treatments (Tables 1 and S2). However, as
observed for leaf production, S. lycopersicum produced more inflorescences on the main
stem than S. chilense (Figure 1c,d): at 113 DASt, 7.39 ± 1.97 and 4.12 ± 1.05 inflorescences
were observed on the main stem of S. lycopersicum and S. chilense, respectively. Taking
into account the ramifications, the total number of inflorescences per plant was similar in
both species (Tables 1 and S2). NaCl decreased the number of inflorescences on the main
stem and the total number of inflorescences per plant in both species (Tables 1 and S2);
the effect was dose-dependent in S. lycopersicum but not in S. chilense (Figure 1c,d, Table 1).
The number of floral buds per inflorescence was always higher in S. chilense than in
S. lycopersicum (Tables 1 and S2). This number decreased with salt stress in S. lycopersicum but
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not in S. chilense. In the same way, salinity decreased the percentage of flower buds reaching
anthesis only in the cultivated tomato (Tables 1 and S2).

Table 1. Effects of salt stress on flowering parameters of Solanum lycopersicum and Solanum chilense
grown at 0, 60, and 120 mM NaCl.

Flowering Parameters
S. lycopersicum S. chilense

0 mM NaCl 60 mM NaCl 120 mM NaCl 0 mM NaCl 60 mM NaCl 120 mM NaCl

FT initial segment 1 11.2 ± 1.3 a 10.8 ± 1.2 a 11.0 ± 0.9 a 12 ± 1.1 A 10.0 ± 1.5 A 11.8 ± 1.7 A

FT sympodial segment 1 2.7 ± 0.3 a 3.0 ± 0.3 a 3.0 ± 0.4 a 3.8 ± 1.2 A 3.1 ± 0.5 A 4.2 ± 2.4 A

inflorescences per plant 96.0 ± 61.9 a 28.8 ± 5.3 a 10.0 ± 1.4 b 160.3 ± 58.9
A 53.5 ± 17.9 A 7.8 ± 4.9 B

floral buds per
inflorescence 8.32 ± 2.29 a 6.56 ± 1.19 b 6.14 ± 1.39 b 12.5 ± 7.18

A 11.38 ± 9.40 A 10.40 ± 5.58 A

open flowers per
inflorescence (%) 74.6 ± 19.4 a 55.6 ± 25.5 b 50.7 ± 27.1 b 71.3 ± 29.6

A 54.5 ± 34.0 A 47.5 ± 30.8 A

1 FT: flowering time; expressed in number of leaves; data are means ± standard deviation, different letters indicate
significant difference for each species (lowercase, S. lycopersicum, uppercase, S. chilense) at p < 0.05.

2.2. Impact of Salinity on Flower Morphology and Fertility

Flower morphology differed among tomato species (Tables 2 and S2): sepals, petals, and
stamens were always longer in S. lycopersicum than in S. chilense, while pistils were longer in
S. chilense than in S. lycopersicum and style exertion was only observed in S. chilense. Salt
affected flower morphology by decreasing the length of sepals in S. lycopersicum and modifying
the length of stamens in S. chilense.

Table 2. Effects of salt stress on flowering morphology and fertility of Solanum lycopersicum and
Solanum chilense grown at 0, 60, and 120 mM NaCl.

Flower Parameters
S. lycopersicum S. chilense

0 mM NaCl 60 mM NaCl 120 mM NaCl 0 mM NaCl 60 mM NaCl 120 mM NaCl

Sepal length (cm) 1.18 ± 0.23 a 0.89 ± 0.16 b 0.91 ± 0.15 b 0.62 ± 0.1 A 0.61 ± 0.08 A 0.63 ± 0.15 A

Petal length (cm) 1.36 ± 0.18 a 1.24 ± 0.23 a 1.34 ± 0.17 a 1.12 ± 0.2 A 1.25 ± 0.22 A 1.18 ± 0.17 A

Stamen length (cm) 0.84 ± 0.09 a 0.8 ± 0.08 a 0.85 ± 0.07 a 0.80 ± 0.05 AB 0.82 ± 0.08 A 0.74 ± 0.06 B

Style + ovary length (cm) 0.94 ± 0.07 a 0.86 ± 0.1 a 0.94 ± 0.09 a 1.18 ± 0.11 A 1.11 ± 0.12 A 1.08 ± 0.09 A

Style exsertion (cm) ND ND ND 0.38 ± 0.12 A 0.29 ± 0.15 A 0.33 ± 0.09 A

Stigma receptivity (%) 88.6 ± 26.4 a 81 ± 29.5 a 84.4 ± 30.1 a 96.4 ± 13.4 A 100 ± 0 A 100 ± 0 A

Pollen viability (%) 84.7 ± 13.5 a 82.5 ± 21.2 a 81.6 ± 14.2 a 58.3 ± 26.1 B 68.9 ± 25 A 63 ± 14.3 AB

Pollen grains per anther
(×1000) 19.2 ± 14.2 a 13.9 ± 15.2 a 16.3 ± 10.2 a 68.0 ± 35.1 A 48.5 ± 23.8 AB 37.4 ± 19.3 B

ND, no style exsertion. Data are means ± standard deviation, different letters indicate significant difference for
each species (lowercase, S. lycopersicum, uppercase, S. chilense) at p < 0.05.

Flower fertility was assessed by stigma receptivity, pollen production, and viability
(Tables 2 and S2). Overall, stigma receptivity was slightly lower in S. lycopersicum than in
S. chilense. S. lycopersicum also produced fewer pollen grains per anther than S. chilense.
However, pollen viability was 23% higher in S. lycopersicum than in S. chilense. Salt did
not affect stigma receptivity, pollen viability, or the number of pollen grains per anther in
S. lycopersicum. However, in S. chilense, the number of pollen grains per anther decreased
with salt while pollen viability increased gradually with salt concentration.
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2.3. Impact of Salinity on Fruit Production and Quality

Fruit set was higher in S. chilense than in S. lycopersicum and was not affected by salt
stress whatever the species (Tables 3 and S2).

Table 3. Effects of salt stress on fructification parameters of Solanum lycopersicum and Solanum chilense
grown at 0, 60, and 120 mM NaCl.

Fruit Parameters
S. lycopersicum S. chilense

0 mM NaCl 60 mM NaCl 120 mM NaCl 0 mM NaCl 60 mM NaCl 120 mM NaCl

Fruit set (%) 47.9 ± 15.1 a 43.5 ± 22.5 a 38.9 ± 21.1 a 51.7 ± 40.6 A 60 ± 37.7 A 44.3 ± 33.2 A

FW (g) 47.7 ± 10.3 a 22.5 ± 6 b 14.5 ± 5.3 c 0.65 ± 0.2 A 0.79 ± 0.26 A 0.84 ± 0.21 A

DW (g) 3.42 ± 1.98 a 2.01 ± 0.56 b 1.44 ± 0.62 b 0.12 ± 0.03 A 0.10 ± 0.02 A 0.10 ± 0.01 A

WC (%) 91.91 ± 3.77 a 89.67 ± 0.42 b 88.19 ± 0.9 c 80.72 ± 2.87 C 82.49 ± 7.17 B 87.49 ± 1.6 A

Circumference (cm) 14.4 ± 0.92 a 11.62 ± 0.74 b 10.1 ± 1.13 c 3.15 ± 0.24 A 3.48 ± 0.73 A 3.57 ± 0.62 A

Number of seeds/fruit 91.17 ± 46.02 a 72.77 ± 33.19 ab 50.08 ± 16.04 b 21.22 ± 4.47 A 22.00 ± 5.28 A 24.88 ± 10.21 A

Number of seeds/fruit FW (g) 2.11 ± 0.73 b 3.31 ± 0.91 a 3.76 ± 2.1 a 34.37 ± 13.44 A 30.72 ± 11.83 A 25.93 ± 7.18 A

Sugar concentration (◦Brix) 5.54 ± 0.52 c 7.95 ± 0.44 b 9.2 ± 0.95 a 18.4 ± 3.2 A 11.95 ± 4.12 B 10.15 ± 2.35 B

pH 4.52 ± 0.09 a 4.4 ± 0.11 b 4.31 ± 0.11 b 4.67 ± 0.26 A 4.07 ± 0.49 B 3.8 ± 0.26 B

Data are means ± standard deviation; different letters indicate significant difference for each species (lowercase,
S. lycopersicum, uppercase, S. chilense) at p < 0.05. DW, FW, dry and fresh weights; WC, water content.

S. lycopersicum produced bigger fruits than S. chilense. Indeed, fruit FW, DW, WC, and size
were higher in S. lycopersicum than in S. chilense (Table 3). Following the fruit size, the number
of seeds per fruit was 69% higher in S. lycopersicum than in S. chilense (Table 3), although, when
expressed per gram of fruit FW, the number of seeds was 90% higher in S. chilense than in
S. lycopersicum. Salinity mainly affected fruit growth in S. lycopersicum as fruit DW, FW, WC,
and size decreased with a higher salt concentration in S. lycopersicum while salinity modified
only fruit WC in S. chilense, which increased with salt concentration (Table 3). However, the
number of seeds per fruit or per gram of fruit FW were not affected by salinity whatever the
species (Table 3).

Concerning fruit quality, fruits of S. lycopersicum were less sweet and less acidic than
those of S. chilense (Table 3): sugar content and pH were, respectively, 3.3 and 1.1 times lower
in fruits of S. lycopersicum than in the ones of S. chilense under control conditions. Salinity
affected fruit quality in both species (Table S2). The fruit sugar content was modified in
different ways according to the species: sugar concentration increased in S. lycopersicum
but decreased in S. chilense with salt concentration (Table 3). However, fruit pH decreased
with salinity in both species (Table 3).

2.4. Impact of Salinity on Mineral Concentration and Distribution in Reproductive Organs
2.4.1. Inflorescences and Flowers

Inflorescences of S. chilense accumulated more Na than the ones of S. lycopersicum
(Figure 2a), even under control conditions. Salinity induced a significant increase in Na
concentration in the inflorescences of both species (Figure 2a, Table S2), although it was
larger in S. chilense than in S. lycopersicum. Indeed, Na concentration increased by 223% and
465%, given as the percentual difference between control and 120 mM NaCl treated plants
in S. lycopersicum and S. chilense, respectively. Moreover, Na distribution mapping showed
that, in addition to the Na concentration, there was a difference in Na location inside the
flowers in the two species (Figures 3 and S1). In S. chilense, Na mainly accumulated in
the male organs (Figure 3), whereas in S. lycopersicum, most of the Na was located in the
receptacle and pedicel (Figure 3). Moreover, the ratio between the number of counts of
Na in the floral receptacle and reproductive (stamens + pistil) floral whorls was higher in
S. lycopersicum than in S. chilense and increased with salt stress, mainly in S. lycopersicum
(Table 4). The ovary had the lowest Na signal compared to the rest of the flower in both
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species (Figure 3). As a result, the ratio between the Na signal in the stamens and the pistil
was higher in S. chilense than in S. lycopersicum (Table 4). This ratio decreased with salt
stress in both species.
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Figure 2. Sodium (Na) concentration in inflorescences (a), pericarp of fruits (b), and seeds (c) of
Solanum lycopersicum and Solanum chilense grown in perlite:vermiculite mixture supplied with 0, 60,
and 120 mM NaCl. Data are means ± SD; treatments followed by different letters are significantly
different (lowercase, S. lycopersicum, uppercase, S. chilense) at p < 0.05 for a same species.

As for Na, inflorescences of S. chilense accumulated more K than those of S. lycopersicum
(Tables 5 and S2). Salinity did not affect the K concentration in the inflorescences whatever
the species (Tables 5 and S2). The K/Na ratio was, however, higher in the inflorescences
of S. lycopersicum than in those of S. chilense and decreased with salt stress in both species
(Tables 5 and S2). In flowers of S. chilense, K mainly accumulated in male organs with no
accumulation in female organs (Figures 4 and S2). In contrast, K accumulated mainly in
female organs in S. lycopersicum (Figures 4 and S2). As a result, the ratio of the number of
counts of K in stamens and pistil was higher in S. chilense than in S. lycopersicum (Table 4).
However, the ratio between the K signals in floral receptacle and reproductive floral organs
was similar in both species under control conditions but decreased with salt in S. chilense
and not in S. lycopersicum (Table 4).
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Figure 3. Sodium (Na) distribution in flowers of Solanum lycopersicum (top row) and Solanum chilense
(bottom row) grown in perlite:vermiculite mixture supplied with 0, 60, and 100 mM NaCl as revealed by
LA-ICP-MS (laser ablation inductively coupled plasma mass spectroscopy) and visualized using ImageJ
(version 1.53a). Color legends represent the number of counts per pixel (20 × 20 µm2) of each analysis.

Inflorescences of S. lycopersicum accumulated about 10 times more Ca than those of
S. chilense, and their Ca concentrations were not affected by salinity (Tables 5 and S2).
Ca mainly accumulated in floral receptacle of S. lycopersicum and mainly in reproductive
floral organs of S. chilense (Figures 4 and S3). Indeed, the ratio between the Ca signals
in floral receptacle and reproductive floral organs was higher in S. lycopersicum than in
S. chilense (Table 4). Ca was particularly visible in the ovary of salt-treated S. lycopersicum
flowers (Figures 4 and S3), explaining the lower ratio of Ca signal between stamens and
pistil in salt-treated flowers (Table 4).
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The concentration of Mg in inflorescences of S. lycopersicum was more important
than in those of S. chilense (Tables 5 and S2). However, only the former was affected
by salinity (Tables 5 and S2). Mg mainly accumulated in the stamens and ovary of
S. chilense and in the ovary of S. lycopersicum (Figures 4 and S4). The ratio of Mg sig-
nals between floral receptacle and reproductive floral organs and between stamens and
pistil decreased with salt stress in S. chilense and S. lycopersicum, respectively (Table 4).

Table 4. Effects of salt stress on ratio (vegetative/reproductive organs and male/female organs) of
mineral elements signals in flowers of Solanum lycopersicum and Solanum chilense grown at 0, 60, and
100 mM NaCl.

Mineral
S. lycopersicum S. chilense

0 mM NaCl 60 mM NaCl 100 mM NaCl 0 mM NaCl 60 mM NaCl 100 mM NaCl

vegetative/reproductive floral organs

Na 0.36 ± 0.12 0.65 ± 0.11 1 ± 0.26 0.18 ± 0.07 0.43 ± 0.04 0.31 ± 0.02
K 0.45 ± 0.1 0.43 ± 0.05 0.5 ± 0.03 0.43 ± 0.19 0.22 ± 0.09 0.14 ± 0.02
Ca 0.54 ± 0.07 0.42 ± 0.05 0.69 ± 0.24 0.34 ± 0.29 0.29 ± 0.12 0.26 ± 0.08
Mg 0.86 ± 0.16 0.34 ± 0.1 0.77 ± 0.19 0.67 ± 0.46 0.23 ± 0.02 0.3 ± 0.08

male/female floral organs

Na 0.82 ± 0.05 0.55 ± 0.16 0.5 ± 0.07 1.24 ± 0.68 0.59 ± 0.27 0.7 ± 0.49
K 0.63 ± 0.03 0.41 ± 0 0.34 ± 0.2 0.83 ± 0.06 0.6 ± 0.16 0.68 ± 0.54
Ca 0.64 ± 0.24 0.26 ± 0.02 0.3 ± 0.14 1.32 ± 0.07 0.35 ± 0.11 0.68 ± 0.29
Mg 0.49 ± 0.05 0.35 ± 0.12 0.3 ± 0.09 0.62 ± 0.2 0.38 ± 0.04 0.52 ± 0.37

Relative signal intensities obtained by LA-ICP-MS (laser ablation inductively coupled plasma mass spectroscopy)
are expressed in counts. Signal intensities are correlated with the concentrations of a particular element (compar-
isons could be performed per element but not between elements).

Table 5. Effects of salt stress K, Ca, and Mg concentrations of different organs of Solanum lycopersicum
and Solanum chilense grown at 0, 60, and 120 mM NaCl.

Mineral
S. lycopersicum S. chilense

0 mM NaCl 60 mM NaCl 120 mM NaCl 0 mM NaCl 60 mM NaCl 120 mM NaCl

Inflorescences

K (mg g−1 DW) 27.63 ± 2.62 a 26.09 ± 6 a 23.97 ± 4.36 a 30.76 ± 5.06 A 31.97 ± 4.81 A 26.47 ± 5.21 A

K/Na 43.01 ± 23.32 a 10.34 ± 2.87 b 10.15 ± 5.7 b 10.66 ± 17.26
A 4.74 ± 4.43 B 1.26 ± 1.14 B

Ca (mg g−1 DW) 1.03 ± 0.87 a 1.22 ± 0.82 a 1.09 ± 1.02 a 0.18 ± 0.14 A 0.08 ± 0.08 A 0.29 ± 0.01 A

Mg (mg g−1 DW) 4.92 ± 1.22 a 5.62 ± 1.96 a 3.64 ± 0.62 b 3.45 ± 1.04 A 2.94 ± 0.42 A 3.04 ± 0.94 A

Pericarp

K (mg g−1 DW) 38.98 ± 6.36 a 32.14 ± 9.24 b 26.20 ± 5.88 b 39.22 ± 4.66 A 27.75 ± 4.47 B 27.99 ± 6.74 B

Ca (mg g−1 DW) 0.73 ± 0.23 a 0.49 ± 0.23 b 0.64 ± 0.24 ab 1.49 ± 0.56 A 1.27 ± 0.23 A 1.54 ± 0.56 A

Mg (mg g−1 DW) 1.36 ± 0.26 a 1.09 ± 0.43 b 1.08 ± 0.12 b 2.10 ± 0.33 A 2.14 ± 0.58 A 2.46 ± 0.40 A

seeds

K (mg g−1 DW) 8.09 ± 5.09 a 9.79 ± 7.28 a 14.42 ± 9.2 a 20.43 ± 7.6 A 9.85 ± 5.68 B 8.71 ± 7.21 B

Ca (mg g−1 DW) 0.77 ± 0.53 a 0.71 ± 0.54 a 0.52 ± 0.13 a 0.89 ± 0.23 A 0.85 ± 0.24 A 0.85 ± 0.39 A

Mg (mg g−1 DW) 3.60 ± 0.93 a 3.57 ± 0.92 a 2.40 ± 0.75 a 2.74 ± 0.27 A 2.38 ± 0.26 B 2.69 ± 0.37 AB

Concentrations (mg g−1 DW) are measured by AAS (atomic absorption spectrometry). Data are means ± standard
deviation, different letters indicate significant difference for each species (lowercase, S. lycopersicum, uppercase,
S. chilense) at p < 0.05. DW, dry weight.
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Figure 4. Distribution of sodium (Na) shown in red and potassium (K), calcium (Ca) and magnesium 
(Mg) shown in green and their co-localization (yellow) in flowers of Solanum lycopersicum and 
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Distribution of individual element was determined using LA-ICP-MS (laser ablation inductively 
coupled plasma mass spectroscopy) and visualized using ImageJ (version 1.53a). Color legends 
represent the number of counts per pixel (20 × 20 µm²) for each analysis and each element. Signal 
intensities are correlated with the concentrations of a particular element. Scale bar = 1000 µm. 

Inflorescences of S. lycopersicum accumulated about 10 times more Ca than those of 
S. chilense, and their Ca concentrations were not affected by salinity (Tables 5 and S2). Ca 
mainly accumulated in floral receptacle of S. lycopersicum and mainly in reproductive 
floral organs of S. chilense (Figures 4 and S3). Indeed, the ratio between the Ca signals in 
floral receptacle and reproductive floral organs was higher in S. lycopersicum than in S. 

Figure 4. Distribution of sodium (Na) shown in red and potassium (K), calcium (Ca) and magne-
sium (Mg) shown in green and their co-localization (yellow) in flowers of Solanum lycopersicum and
Solanum chilense grown in perlite:vermiculite mixture supplied with 0, 60, and 100 mM NaCl. Distri-
bution of individual element was determined using LA-ICP-MS (laser ablation inductively coupled
plasma mass spectroscopy) and visualized using ImageJ (version 1.53a). Color legends represent the
number of counts per pixel (20 × 20 µm2) for each analysis and each element. Signal intensities are
correlated with the concentrations of a particular element. Scale bar = 1000 µm.

2.4.2. Fruits and Seeds

The Na concentration in fruit pericarp was similar to in the inflorescences for the same
species (S. lycopersicum, t101 = −0.161, p = 0.872, S. chilense, t49 = −0.818, p = 0.417, Figure 2a,b).
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Nevertheless, as observed in the inflorescences, the pericarp of S. lycopersicum fruits were less
concentrated in Na than the pericarp of S. chilense fruits (Figure 2b, Table S2): the difference
was about 2.4 times that of control plants, 2.6 times that of 60 mM NaCl treated plants, and
3.4 times that of 120 mM NaCl treated plants. Salinity indeed increased the Na concentration
in the pericarp of both species but to a higher extent in S. chilense. For both species, the Na
concentration was 0.6 and 0.4 times lower in seeds than in pericarp for S. lycopersicum and
S. chilense, respectively, but again, seeds of S. chilense contained more Na that the ones of
S. lycopersicum (Figure 2c, Table S2). However, the Na concentration increased with salt stress
in the seeds of S. lycopersicum, but only slightly in those of S. chilense (Figure 2b,c).

The concentrateion of K in the pericarp was similar in both species and decreased
significantly with salt stress in both species (Tables 5 and S2). However, the K concentration
in the seeds was higher under control conditions in S. chilense than in S. lycopersicum, and it
decreased with salinity only in the former so that the K concentration was similar in the
seeds of stressed plants of both species (Tables 5 and S2).

The concentration of Ca was higher in the pericarp of S. chilense than in the one of
S. lycopersicum, but there was no clear difference under salinity (Tables 5 and S2). However, the
Ca concentration in seeds did not differ between species (Tables 5 and S2). The concentration
of Mg was higher in the pericarp of S. chilense than in the one of S. lycopersicum, but it was
higher in the seeds of S. lycopersicum than in the ones of S. chilense (Tables 5 and S2).

2.5. Impact of Salinity on the Expression of Mineral Transporters in Flowers

To improve our understanding of Na accumulation and its distribution in flowers, we
investigated the expression of genes coding for transporters involved in Na transport in
flowers at anthesis. We particularly focused on the SOS pathway, and the NHX, HKT and
HAK transporters.

Concerning the SOS pathway, SOS1 expression was higher in S. lycopersicum than in
S. chilense, while the opposite trend was observed for SOS3 expression (Figure 5a,c, Table S2).
However, there was no difference of expression for SOS2 between species (Figure 5b, Table S2).
Salt stress increased SOS1 expression in both species but more significantly and at a lower salt
concentration in S. lycopersicum than in S. chilense (Figure 5a). Expression of SOS2 and SOS3,
respectively, increased and decreased with salt in S. lycopersicum only; nevertheless, a decrease
of SOS3 expression was observed in S. chilense at 60 mM NaCl (Figure 5b,c).

The gene NHX3, which encodes a tonoplast transporter, had similar expression levels
in both species regardless of treatment (Figure 5d, Table S2), contrary to NHX4, which was
more expressed in S. lycopersicum than in S. chilense at least in salt-treated flowers (Figure 5e,
Table S2). Salt stress decreased the expression of NHX3 and increased the expression of
NHX4 in S. lycopersicum but did not affect their expression in S. chilense (Figure 5d,e).

The expression of HKT1;2 was slightly higher in S. lycopersicum than in S. chilense and
decreased with salt treatment in both species from 60 mM NaCl (Figure 5f, Table S2).

The expression of SlHAK14 and SlHAK3 was higher in S. chilense than in S. lycopersicum,
while the expression of SlAKT2/3 and CNGC10 was similar in both species (Figure 5g–j,
Table S2). Salinity affected these genes differently, depending on the species. The expression
of SlHAK14 gradually increased with salt in S. lycopersicum but decreased in S. chilense at
60 mM NaCl only (Figure 5g). The expression of SlAKT2/3 increased in S. lycopersicum
from 60 mM NaCl but was unchanged in S. chilense (Figure 5h). The expression of SlHAK3
was stable in S. lycopersicum but decreased at 60 mM NaCl in S. chilense (Figure 5i). The
expression of CNGC10 was stable in S. lycopersicum but increased at 120 mM NaCl in
S. chilense (Figure 5j).
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transporter 2, Solyc07g014680); (g) SlHAK14 (High Affinity K+ transporter 14, Solyc09g074820); (h) 
SlAKT2/3 (inward-rectifying K+ channel, Solyc10g024360); (i) SlHAK3 (High Affinity K+ transporter 
3, Solyc12g096580); (j) CNGC10 (Cyclic Nucleotide Gated Channel 10, Solyc05g050350). The tomato 
elongation factor gene (LeEF-1α, Solyc06g005060) and TIP41-like protein (TIP41, Solyc10g04985) 
were used as the reference genes. Expressions are given based on S. lycopersicum grown at 0 mM 
NaCl, to which a value of 1 was assigned. Data are means ± SD, treatments followed by different 
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Figure 5. Expression of 10 genes involved in minerals transport analyzed by qRT-PCR on flowers
of Solanum lycopersicum and Solanum chilense growing at 0, 60, and 120 mM NaCl. (a) SOS1 (Salt
Overly Sensitive 1, Solyc01g005020); (b) SOS2 (Salt Overly Sensitive 2, Solyc12g009570); (c) SOS3
(Salt Overly Sensitive 3, Solyc06g051970); (d) NHX3 (vacuolar Na+/H+ antiporter 3, Solyc01g067710);
(e) NHX4 (vacuolar Na+/H+ antiporter 4, Solyc01g098190); (f) HKT1;2 (class I—High affinity K+

transporter 2, Solyc07g014680); (g) SlHAK14 (High Affinity K+ transporter 14, Solyc09g074820);
(h) SlAKT2/3 (inward-rectifying K+ channel, Solyc10g024360); (i) SlHAK3 (High Affinity K+ trans-
porter 3, Solyc12g096580); (j) CNGC10 (Cyclic Nucleotide Gated Channel 10, Solyc05g050350).
The tomato elongation factor gene (LeEF-1α, Solyc06g005060) and TIP41-like protein (TIP41,
Solyc10g04985) were used as the reference genes. Expressions are given based on S. lycopersicum
grown at 0 mM NaCl, to which a value of 1 was assigned. Data are means ± SD, treatments followed
by different letters are significantly different at p < 0.05 for the same species (lowercase, S. lycopersicum,
uppercase, S. chilense).
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2.6. Correlations among Flower Morphology, Mineral Concentrations, and Gene Expression

Analysis of correlations among flower fertility parameters, concentrations of elements
in inflorescences and flowers, and expression of mineral transporters in flowers showed a
different behavior between both species (Figure 6). Overall, few correlations were observed
between flower fertility parameters and mineral concentrations in the flowers, mainly
in S. lycopersicum (Figure 6a,b). In S. chilense, the number of pollen grains per stamen
was negatively correlated with the concentration of Na in inflorescences, although this
correlation was not observed in S. lycopersicum. Some correlations were observed be-
tween floral organ size and elements signals in the reproductive structures in both species
(Figure 6a,b). In S. lycopersicum, sepal length was negatively correlated with the ratio of Na
signal between vegetative and reproductive floral organs and positively correlated with
the ratio of elements signals between male and female reproductive organs and with the
K/Na ratio in the inflorescences (Figure 6a). Moreover, in S. chilense, the pistil length and
the style exertion were negatively correlated with, respectively, the Na concentration in
the inflorescence and the ratio of Na signal between vegetative and reproductive organs
(Figure 6b). Stamen and pistil lengths were also negatively correlated with, respectively, the
Ca and Mg concentrations in inflorescences and positively correlated with the ratio of Mg
signals between vegetative and reproductive floral organs in S. lycopersicum. Correlations
between Na signals in reproductive structures and Na transporter gene expression also
differed among species (Figure 6c,d). The Na concentration in inflorescences was negatively
correlated with the expression of SOS3 and positively correlated with the expression of
SOS2 and SlHAK14 in S. lycopersicum while it was negatively correlated with the expression
of HKT1;2 in S. chilense (Figure 6c,d). The ratio of Na concentrations in male and female
floral organs was negatively correlated with the expression of SOS1, SOS2, and SlAKT2/3
and positively correlated with the expression of NHX3 and HKT1;2 in S. lycopersicum while
it was positively correlated with the expression of SOS3 and HKT1;2 in S. chilense. The ratio
between Na signals in vegetative and reproductive floral organs was negatively correlated
with the expression of NHX3 and HKT1;2 in both species; it was also negatively correlated
with the expression of SlHAK3 and SOS3 in S. chilense and positively correlated with the
expression of SOS1, SOS2, SlHAK14, and SlAKT2/3 in S. lycopersicum (Figure 6c,d).
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signals in the vegetative/reproductive organs and male/female organs on flowers and fertility
parameters of flowers of Solanum lycopersicum (a) and Solanum chilense (b). (c,d) Correlation graphs of
concentrations of elements in inflorescences, ratios of element signals in the vegetative/reproductive
organs and male/female organs on flowers and expression of mineral transporters in flowers of
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Affinity K+ transporter 3,14; SOS1, 2, 3, Salt Overly Sensitive 1, 2, 3.

3. Discussion
3.1. Salinity Affects Reproductive Structures in Both Species

Flowering and reproduction differed between S. lycopersicum and S. chilense. The
former is considered as an autonomous flowering plant [42] while the latter is a short-
day plant [16,43]. Moreover, S. lycopersicum is self-compatible and self-pollinates while
S. chilense is self-incompatible and requires insect pollination [13]. We observed that salinity
affected the reproductive phase in both species but in different ways. Salt stress decreased
the number of inflorescences in both species but the number of floral buds and opened
flowers per inflorescence was only reduced in S. lycopersicum. Solanum chilense produced
more flowers per inflorescence than S. lycopersicum like most wild tomato relatives, which
could be an advantage for breeding [44], but this parameter was not affected by salt stress
in S. chilense. Inflorescence and flower production seemed thus more affected by salinity in
S. lycopersicum than in S. chilense, and the effect was more dose-dependent in the former than
in the latter. Flower abortion was previously observed under salt conditions in cultivated
tomato [29]. A decrease in inflorescence and flower production and an increase in flower
abortion are common phenomena observed in response to stress; abortion of spikelets was,
for instance, observed in rice under salinity treatments [45].

Salinity also affected flower morphology and fertility. Flower morphology differed
between species: the ratio between corolla and calyx area was higher in S. chilense than
in S. lycopersicum, and style exertion was observed only in the former. These differences
could be related to the self-incompatibility of S. chilense [16] that needs to attract pol-
linators for cross-pollination. Concerning floral organs, salt decreased sepal length in
S. lycopersicum and decreased stamen length in S. chilense. Modification of flower morphol-
ogy due to salinity was reported in Spergularia maritima (petal size increased in salinity
treatments) [27]. In tomato, other environmental constraints such as temperature also affect
flower morphology [46,47]. Those modifications could have an impact on flower attractivity
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for pollinators, as it has been shown in Raphanus sativus [48] or Borago officinalis [49,50].
Flower and petal size are indeed important floral signals for pollinators [49]. The decrease
of stamen length observed in salt-treated S. chilense was associated with a decrease in the
number of pollen grain per anther and an increase in pollen viability. However, in our
study, pollen production and viability were not affected by salinity in S. lycopersicum, and
stigma receptivity was not affected by salt stress whatever the species. Anther development
and microsporogenesis are generally considered the most sensitive reproductive stages to
abiotic stresses, which could explain the more important effect on male organs than on
female organs [51]. Gynoecium fertility is not often affected by abiotic stress in tomato or is
affected as a consequence of male development failure [52,53].

In accordance with the low impact of salinity on flower fertility, fruit set was not
affected by salt treatment in our study whatever the species. However, fruit weight, size,
and water content decreased with salinity in S. lycopersicum while these parameters were not
affected or even increased (for WC) under salt treatment in S. chilense. Moreover, the seed set
decreased with salinity in S. lycopersicum but not in S. chilense. The effect of salinity on flower
fertility is thus not sufficient to explain the salt-induced modifications of fruit parameters
despite the positive correlation between pollen per anther and seeds per fruit. Pollen
tube growth, fertilization, and seed development may be affected by abiotic stress such as
salinity [54]. Moreover, the decrease of sepal length observed in salt-treated S. lycopersicum
may limit sepal photosynthesis and reduce the supply of carbohydrates for fruit and seed
growth as observed in hellebore [55]. It was indeed reported that photosynthesis of green
reproductive organs contribute in a significant way to fruit growth [56,57]. A decrease
of yield in S. lycopersicum subjected to salinity has frequently been described and was
explained by a decrease in fruit size rather than by a decrease in fruit number [21,58], which
corroborates our observations. Martínez et al. [21] compared fruit yield in S. lycopersicum
and S. chilense in response to NaCl (0–80 mM) and observed that, although salt decreased
fruit production and fruit weight in S. lycopersicum, it did not affect these parameters in
S. chilense. Solanum chilense seems thus able to maintain its fruit production in salt conditions.
Maintenance of fruit size and seed set under salt stress could be of great interest for tomato
improvement. However, salinity affected fruit quality in both species. We observed that
salinity increased fruit sugar concentrations in S. lycopersicum but decreased it in S. chilense;
salt also decreased fruit pH in both species. Martínez et al. [21,26] also observed a change
in fruit quality in both species as a response to salt. For example, they observed that both
species differed regarding their main antioxidant compounds and that salinity increased
the antioxidant capacity in S. chilense while it decreased it in S. lycopersicum [26].

3.2. Salinity Affects Mineral Accumulation and Distribution Which May Affect Fertility

The decrease of inflorescence and flower production and of flower fertility as well as
the increase of flower abortion in response to abiotic stress is often explained in terms of
competition for assimilates or alteration of carbohydrates metabolism [29,30,59]. However, in
response to salinity, we may not exclude that the negative impact on flower production and
fertility could be due to an accumulation of toxic ions in the reproductive structures [60,61].

The sodium concentration increased in the inflorescences and the fruits of salt treated
plants of both species as soon as they were exposed to 60 mM NaCl, but final concentrations
in S. chilense were higher than in S. lycopersicum. However, Na concentrations were lower
in the seeds than in the pericarp, suggesting that the plant protect the next generation.
A limitation of toxic ions in the seeds has indeed been reported in other plant species
such as rice [62] and Kosteletzkya pentacarpos [63]. It was previously shown that S. chilense
accumulated more Na in the vegetative aerial parts than S. lycopersicum during vegetative
growth [64]. Our results showed that a similar situation occurred in the reproductive organs.
The higher salinity resistance of S. chilense compared to S. lycopersicum regarding flower and
fruit production can therefore not be explained by Na exclusion in the reproductive parts.

However, the Na distribution in the flowers differed in the species. In S. lycopersicum,
Na was mostly accumulated in the non-reproductive parts of the flowers and especially
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in the pedicel and receptacle. This suggests that S. lycopersicum protects the reproductive
organs by limiting Na accumulation in this sensitive tissue. Ghanem et al. [29] previously
reported that S. lycopersicum limited Na accumulation in the reproductive organs and par-
ticularly in pollen grains. However, we may not exclude that the higher Na accumulation
in the non-reproductive floral organs contributed to the decrease of sepal length. The sepal
length was indeed negatively correlated with the Na signal ratio between floral receptacle
and reproductive floral organs in S. lycopersicum. It is known that Na accumulation reduced
vegetative growth in S. lycopersicum [64,65]. In S. chilense, Na accumulated more in repro-
ductive floral organs and mainly in stamens. This could explain the decrease of stamen
length and pollen production observed in salt-treated S. chilense. The number of pollen
grains per stamen was indeed negatively correlated with the concentration of Na in the
inflorescences in this species. In S. lycopersicum, the exclusion of Na in the male floral organs
probably led to the protection of pollen because neither pollen viability nor the number of
pollen grains per stamen were affected by salt stress in our study. It is often reported that
male reproductive floral organs are more affected by abiotic stress than female floral organs
in tomato [29,66], suggesting that the latter is more protected than the former. However, we
observed that the ratio of the Na signals between male and female floral organs decreased
with salt in both species. Regarding female floral organs, Na accumulated in the external
tissues over the ovary but not in the ovules in S. chilense, whereas in S. lycopersicum, Na
signal was low in female organs but was distributed in the whole ovary. Such differences
in Na localization between species may explain the effects of salinity on fruit development
in both species. Fruit and seed development were indeed more affected in S. lycopersicum
than in S. chilense.

In addition to the accumulation of Na, modification of the concentration or localization
of other key minerals may also affect flower development and fertility. Indeed, K is
an essential macronutrient in flower development, particularly for stamen and pollen
grains [67]. We observed that the concentrations of K and Na in inflorescences were
negatively correlated and that the K/Na ratio decreased with salt stress in both species
although K concentrations in inflorescences were not affected by salinity. In vegetative
organs, a decrease of K is often observed in response to NaCl [2,29,64,68], which negatively
affects C/N nutrition and the activity of several enzymes [69,70]. The maintenance of
sufficient K concentration in inflorescences despite salt stress can be explained by the
importance of this element for reproductive development and especially for elongation
of filaments and release of pollen [67]. For example, K contributed to anther dehiscence
and pollen imbibition in rice [71,72]. Decrease of the K/Na ratio is commonly reported
as symptomatic of salinity stress [73]. Surprisingly, we observed that the K/Na ratio is
more important in the inflorescences of S. lycopersicum than in those of S. chilense, even at
high NaCl concentration. Albaladejo et al. [74] observed also a more significant decrease
in K concentration with salinity in the halophyte S. pennellii than in S. lycopersicum. They
hypothesized that this wild tomato species is able to withstand K deficiency by using Na
in osmoregulation: K may indeed be replaced by Na in non-specific activities in a few
species [69], notably in enzyme activities [75]. This could be a resistance strategy also shared
by S. chilense to withstand the Na accumulation. Magnesium is also required for pollen
development since mutants in the Mg transporter family genes, AtMGT, showed pollen-
abortive phenotypes [76]. We observed that Mg accumulated in the stamens and the ovary
of S. chilense and in the ovary of S. lycopersicum, suggesting also a potential role for ovary
and fruit development. Because of its fundamental role in phloem export of carbohydrates,
Mg is of critical importance during the reproductive growth stage of plants to maintain
and maximize carbohydrates transport to sink organs [77]. Calcium is known to play a key
role in pollination and pollen tube growth [78] as well as in fruit development [79]. We
observed that Ca concentration and localization also differed between both species and Ca
accumulated in ovaries in response to salt. Concentrations of Mg and Ca were higher in
the inflorescences of S. lycopersicum than in the ones of S. chilense. However, more research
is required to understand their role in flower and fruit development.
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3.3. Mineral Transporters Are Involved in Na Accumulation and Partitioning in the
Reproductive Structures

To better understand the localization of Na in tomato reproductive structures, we in-
vestigated the expression of genes coding for Na transporters. SOS1 is a Na+/H+ exchanger
activated by the complex formed by SOS2 and SOS3 [80–82]. The SOS pathway is involved in
Na exclusion out of the cell [83–85]. We observed that expression of SOS1 and SOS2 increased
with salt stress in flowers of S. lycopersicum and to a lesser extent in the ones of S. chilense.
Moreover, their expression was positively correlated with the Na concentration ratio between
non-reproductive and reproductive floral organs in S. lycopersicum. Surprisingly, we found
a decrease of SOS3 expression with salt in S. lycopersicum, despite its role in activation
of SOS1 [83]. However, pathways other than the SOS2–SOS3 complex are involved in Na+

activation of SOS1 [83]. Induction of the expression of SOS1 and SOS2 is commonly reported
in response to salt stress in vegetative parts, and their overexpression induces a better salt
resistance [81,86,87]. By contrast, knock-out mutants of these genes lead to a decrease in salt
resistance [88,89]. Our results suggested that the SOS pathway is also activated in reproductive
organs in response to salt stress. In contrast to our results, Romero-Aranda et al. [25] did not
observe any induction of SOS1 in inflorescences of tomato near-isogenic lines homozygous for
S. cheesmaniae SOS1 allele under salinity conditions. The involvement of SOS1 in inflorescences
thus seems species-dependent in the tomato clade and may differ among halophyte and glyco-
phyte species. Based on those results, SOS1 expression is induced in salt response in a higher
extent in the glycophyte S. lycopersicum than in the halophytes S. cheesmaniae and S. chilense at
the reproductive level. We indeed observed that the expression of SOS genes was correlated
with Na concentrations in the inflorescences of S. lycopersicum but not of S. chilense.

Other genes involved in the Na transport at the cell level are NHX3 and NHX4, which
encode tonoplast transporters involved in the import of Na to the vacuole [90–92]. In
our study, NHX3 expression decreased and NHX4 expression increased with salt stress
in S. lycopersicum flowers while their expression was not affected by salinity in S. chilense
flowers. This differs with the results of Gálvez et al. [91], who compared the response of
S. lycopersicum and S. pimpinellifolium to salinity. They indeed observed that NHX3 and
NHX4 were upregulated by salinity, especially in the wild halophyte S. pimpinellifolium [91].
However, they analyzed plants at the vegetative stage and did not investigate expression in
the reproductive organs. We may thus not exclude that the involvement of NHX genes differ
in vegetative and reproductive organs in tomato species subjected to salinity. Nevertheless,
Bassil et al. [67] have shown that, in Arabidopsis, AtNHX1 and AtNHX2 are involved in
flower development by regulating vacuolar pH and K+ homeostasis and that Na+ could
partially substitute K+ in presence of salt. AtNHX1 and AtNHX2 are the closest AtNHX
homologs of SlNHX4 [91]. We could hypothesize that, in S. lycopersicum, under salt stress
conditions, the increase of NHX4 expression would be related to an attempt to increase the
K concentration in the anthers, whereas the fact that S. chilense could use Na instead of K
for flower development and therefore would not require high NHX4 expression remains an
open question.

Other transporters are involved in Na and K transport. HKT1;2 belongs to HKT1-like
transporters whose role is to remove Na from the xylem in the roots [93]. However, it has
been shown that this gene family is important in salinity resistance during the reproductive
stage [25,94]. In our study, HKT1;2 expression decreased with salinity in both species,
possibly explaining the accumulation of Na in the inflorescences. This gene seems to be
involved in the partitioning of Na in the flowers as its expression was positively correlated
with the Na ratio between male and female floral organs and negatively correlated with
the Na ratio between vegetative and reproductive floral organs in both species. SlAKT2/3 is
a phloem K transporter involved in long-distance transport of sucrose [40]. This gene is
expressed in tomato flowers and especially sepals [95,96]. We observed that the expression
of SlAKT2/3 increased with NaCl in S. lycopersicum but not in S. chilense. In the same way,
the expression of SlHAK14 increased with salt stress in S. lycopersicum only. SlHAK14 and
SlHAK3 are K transporters belonging to the KT/KUP/HAK family [97], and they are both
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very highly expressed in pollen [96]. In S. chilense, the expression of both SlHAK14 and
SlHAK3 decreased at a concentration of 60 mM NaCl compared to the other treatments. The
expression of SlHAK14 negatively correlated with the K concentration in inflorescences in
S. lycopersicum only, suggesting a different role in element regulation in S. lycopersicum and
in S. chilense. The expression of CNGC10 also differed among tomato species. It increased
with salinity in S. chilense but not in S. lycopersicum. This gene is linked to the import of Na
and K in flowers, and its expression is inhibited by salinity in Arabidopsis [98]. Its higher
expression in S. chilense could partly explain the higher Na concentration in inflorescences
and flowers of S. chilense compared to S. lycopersicum. Our results suggest that Na and
K transport could be differently regulated in flowers of S. lycopersicum and S. chilense.
Moreover, correlations between transporters expression and mineral concentrations in
flowers differed in both species, mainly for the SOS pathway. Further studies are required
to decipher the role of transporters in Na and K localization in flowers of both species.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Seeds of Solanum lycopersicum L. cv Ailsa Craig (accession LA2838A) and of Solanum chilense
Dunal (accession LA4107) were obtained from the Tomato Genetics Resource Center (TGRC,
University of California, Davis, CA, USA) and INIA-La Cruz (La Cruz, Chile), respectively.
S. chilense was subjected to 6 days pre-germination in Petri dishes on humid filter paper at 25 ◦C
and 12 h photoperiod before sowing in peat compost (DCM, Amsterdam, The Netherlands)
and transferred to a temperate greenhouse. Sowing of S. lycopersicum was performed in
the same peat compost and in the same greenhouse 13 days after the sowing of S. chilense
so they would be of the same developmental stage at the start of stress application. When
the two-leaf stage was reached, the plants were individually transplanted in pots (2.5 L)
on perlite/vermiculite (50% v/v) and were grown under the same temperate greenhouse
conditions (24 ± 1.5 ◦C, 63 ± 8% RH day, 21 ± 0.8 ◦C, 67 ± 5% RH night, 16 h-photoperiod).
In addition to natural light, supplementary lighting was provided by LED LumiGrow
lights (650 W, red-blue) to maintain a minimum light intensity (mean light in the middle
of a cloudy day 181.33 ± 63.42 µmol m−2 s−1). Plants were watered three times a week
with modified Hoagland solution (5 mM KNO3, 5.5 mM Ca(NO3)2, 1 mM NH4H2PO4,
0.5 mM MgSO4, 25 µM KCl, 10 µM H3BO4, 1 µM MnSO4, 0.25 µM CuSO4, 1 µM ZnSO4,
10 µM (NH4)6Mo7O and 1.87 g L−1 Fe-EDTA, and pH 5.5–6). After four days of acclimation,
plants were randomly divided into four groups (25 plants per group) receiving 0, 60, 100,
or 120 mM NaCl (respectively, 0.86, 7.07, 10.82, and 12.72 mS cm−1). Salt solutions were
applied three times a week at the same time that the Hoagland solution, with volumes
depending on the physiological stage of the plant.

4.2. Growth

Vegetative growth was assessed by counting the number of leaves on the main stem
on 10 plants per condition and species, once a week. Reproductive growth was also
assessed on the same 10 plants per condition and species. Flowering time of the initial
and the sympodial segments were assessed by counting the number of leaves below the
first inflorescence and between inflorescences, respectively. The number of inflorescences
on the main stem was counted once a week from 20 days after stress imposition (DASt).
The number of flower buds and flowers at anthesis per inflorescence was followed on the
second and third inflorescences.

Per condition and species, 11 to 20 flowers at anthesis from the second inflorescence
of the main stem were harvested to evaluate the length of sepals, petals, stamens, pistil,
and ovary. The style exertion was also assessed for S. chilense by measuring the length of
the pistil outside the stamen cone. Organs were dissected, flattened, and measured using
ImageJ (version 1.53a).
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4.3. Flower Fertility

To detect stigma receptivity, peroxidase activity was tested at the stigma’s surface
according to Dafni and Maués [99]. At anthesis, 14 to 22 flowers per condition were
harvested. Stigmas were dissected and immersed for 5 min in acetate buffer with 112.2 mM
CaCl2·2H2O, 2.3 mM 3-amino-9-ethylcarbazole diluted in N-N-dimethylformamide, and
0.014% H2O2 (v/v). The reddish-brown color developed on the surface was scored by 0
(no receptive stigma) or 1 (receptive stigma). Pollen viability was assessed on two stamens
of the same flowers using Alexander dye [100]. Pollen was considered viable when a red
coloration appeared, whereas it was considered non-viable when its coloration was green.
A minimum of 100 pollen grains was counted by anther. The number of pollen grains per
anther was determined by crushing an anther in 40 µL of Alexander’s dye and counting
using ImageJ as described by Ayenan et al. [101], showing a pollen size of 5–800 pixel2 and
a circularity of 0.3–1.0. Six pictures were taken by anther, and two anthers per flower and
10 flowers per condition and species were analyzed.

4.4. Fruit Parameters

For fruit production, flowers of S. lycopersicum were self-pollinated, and flowers of the
self-incompatible S. chilense were hand pollinated with pollen from the same condition. The
fruit set was assessed by the ratio between the number of obtained fruits and the number
of pollinated flowers. Fruits were collected at the maturity stage. The number of seeds per
fruit, circumference, and fresh weight (FW) were measured for 10 to 15 fruits per condition
and species. For the same fruits, sugar concentration was estimated in degrees Brix by
refractometry (Eclipse, Bellingham + Stanley, Tunbridge Wells, UK), and the pH of the juice
was evaluated by pH paper (Dosatest pH test strips pH 3.6–6.1, VWR).

4.5. Mineral Elements Concentrations and Element Distribution

Sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg) were quantified in
inflorescences, pericarp, and seeds of fruits. Material was oven-dried at 70 ◦C for 72 h, and
50 to 100 mg dry weight (DW) was weighted and digested in 4 mL of warm 68% (v/v) HNO3.
After complete dissolution, minerals were dissolved in aqua regia (HCl 37%:HNO3 68% 3:1),
filtered (Whatman, 11 µm), and quantified by flame atomic absorption spectrophotometry
(ICE 3300, Thermo Scientific, Waltham, MA, USA) using suitable standards (Spectracer-
CPACHEM; accredited through ISO/IEC17025). Quantification was performed on at least
nine samples per condition and species.

Flowers of both species growing at 0, 60, and 100 mM were longitudinally cut using
a platinum coated razor blade and sandwiched between two aluminum foils, flattened,
frozen in liquid nitrogen, and freeze-dried (−30 ◦C, 0.210 mbar, Alpha 2–4, Christ, Osterode
am Harz, Germany) for 72 h. Two flowers per condition and species were placed on double
sided Scotch® tape on glass slides, and the distribution of Na, Mg, K, and Ca was evaluated
by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS, Agilent
7900×, Agilent Technologies, Palo Alto, CA and Analyte G2, Teledyne Photon Machines
Inc., Bozeman, MT, USA). The laser ablation system contains a HelEx II 2-volume ablation
cell with integrated Aerosol Rapid Introduction System [102]. The imaging parameters for
best image quality were set according to van Elteren et al. [103] (LA settings: square 20 µm
beam size, 275 Hz, dosage 11, 1 J/cm2; ICP-MS: acquisition time 40 ms, dwell times Mg,
Na, K, 7 ms and Ca 12 ms). Distribution of elements was visualized using ImageJ [104] by
adjusting contrasts and using Look Up Table (LUT) menu. Colocalisation maps (Na with K,
Mg, or Ca) were generated by merging channels in ImageJ. Number of counts in specific
organs was estimated in two flowers per condition and per species using ROI (Regio Of
Interest) manager by selecting an ovary, a style, one stamen, and a floral receptacle. The
ratio between the number of counts of each element in the male part (one stamen) and
female parts (ovary and style) and the ratio between vegetative (floral receptacle) and
reproductive (stamen, ovary, and style) parts were determined.
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4.6. Transporters Expression Analysis by qRT-PCR

The expression of 10 genes coding for mineral transporters was analyzed. Genes were
selected according to the literature [25,37,40,98,105–107] and on transcriptome profiling of
inflorescences of tomato during salt stress imposition [96]. When the sequences were not
described in tomato, sequences of tomato homologs were identified using nucleotide BLAST
again National Center for Biotechnology Information (NCBI) and Sol Genomics Network
(SGN) databases and alignment with BioEdit. A first bioinformatics study of the expression
of these genes was analyzed via available databases (TomExpress, SGN, [96]). The obtained
full-length tomato sequences were used for primer design using Primer3Plus [108]. The
analyzed genes and primer sequences are described in Table S1.

Flowers at anthesis were collected at 35 DASt and stored in liquid nitrogen. RNA
extraction was performed on three samples of 100 mg of flowers per condition and species
using TRI Reagent Solution (Ambion, Austin, TX, USA) with DNase treatment (RQ1 DNase
1 U/µg Promega, Leiden, The Netherlands) according to the manufacturer’s instructions.
First-strand cDNA was synthesized from 1 µg RNA using the Revertaid H Minus First
Strand cDNA Synthesis Kit (ThermoFisher, Waltham, MA, USA). The concentration and
purity of the RNA were measured using a NanoDrop ND-1000 spectrophotometer (Thermo
Scientific, Villebon-sur-Yvette, France). Transcript levels were quantified in two indepen-
dent qPCR (in triplicates for each of the three biological replicates) using the GoTaq qPCR
Master Mix (Promega) in StepOnePlus Real-Time PCR systems (Applied Biosystems, Foster
City, CA, USA). Cycling conditions were initial denaturation 10 min at 95 ◦C, then 40 cycles
of 15 s at 95 ◦C, and 1 s at 60 ◦C. The tomato housekeeping genes LeEF1-α (Elongation
factor 1-alpha, Solyc06g005060) and TIP41 (TIP41-like protein, Solyc10g049850) were used
as reference genes [109]. Results were expressed using the ∆∆Ct calculation method in
arbitrary units by comparison to the expression of S. lycopersicum under control conditions,
and normalization was carried out with LeEF1-α and TIP41. A melt-curve analysis was
performed to check the specific amplifications.

4.7. Statistical Analysis

All statistical analyses were performed in RStudio (R Development Core Team, 2017).
Normality distribution and homoscedasticity were verified using the Shapiro–Wilk and
Levene’s tests, respectively, and data were transformed when required. When possible,
two-way analysis of variance (ANOVA II) was used to compare species, salinity, and their
interactions. Comparisons between the two species were analyzed using the Student’s
test, the permutation Student’s t-test (if normality was not met), or the Wilcoxon test
(if homoscedasticity was not met). For a single species, comparisons between NaCl treat-
ments were made using one-way analysis of variance (ANOVA I), ANOVA I using the
permutation test (if normality was not met), or the Kruskal–Wallis test (if homoscedasticity
was not met), followed by appropriate post-hoc tests. Data are shown as means ± standard
deviation. For results obtained by LA-ICP-MS, no statistical treatment was applied because
of the lack of repetitions (two repetitions per condition and species). Statistical results are
presented in Table S2.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11050672/s1, Figure S1: Distribution of sodium (Na) in
flowers of Solanum lycopersicum (top row) and Solanum chilense (bottom row) grown in per-
lite:vermiculite mixture supplied with 0, 60 and 100 mM NaCl as revealed by LA-ICP-MS (Laser
ablation inductively coupled plasma mass spectroscopy) and visualized using ImageJ (version 1.53a)
by using the same scale for all treatments. Colour legend represents the number of counts per pixel
(20 × 20 µm2), the number of counts is linearly proportional to the Na concentration. Flowers are the
same than in Figure 3, Figure S2: Distribution of potassium (K) in flowers of Solanum lycopersicum
(top row) and Solanum chilense (bottom row). For details, see the legend of Figure S1, Figure S3:
Distribution of calcium (Ca) in flowers of Solanum lycopersicum (top row) and Solanum chilense
(bottom row). For details, see the legend of Figure S1, Figure S4: Distribution of magnesium (Mg) in
flowers of Solanum lycopersicum (top row) and Solanum chilense (bottom row). For details, see the
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legend of Figure S1, Table S1: List of genes and their primers used for qRT-PCR and their efficiency,
Table S2: Statistical results for the analyzed parameters.
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Abstract: Na+ toxicity is one of the major physiological constraints imposed by salinity on plant
performance. At the same time, Na+ uptake may be beneficial under some circumstances as an easily
accessible inorganic ion that can be used for increasing solute concentrations and maintaining cell
turgor. Two rice species, Oryza sativa (cultivated rice, salt-sensitive) and Oryza coarctata (wild rice,
salt-tolerant), demonstrated different strategies in controlling Na+ uptake. Glasshouse experiments
and gene expression analysis suggested that salt-treated wild rice quickly increased xylem Na+

loading for osmotic adjustment but maintained a non-toxic level of stable shoot Na+ concentration by
increased activity of a high affinity K+ transporter HKT1;5 (essential for xylem Na+ unloading) and a
Na+/H+ exchanger NHX (for sequestering Na+ and K+ into root vacuoles). Cultivated rice prevented
Na+ uptake and transport to the shoot at the beginning of salt treatment but failed to maintain it in the
long term. While electrophysiological assays revealed greater net Na+ uptake upon salt application
in cultivated rice, O. sativa plants showed much stronger activation of the root plasma membrane
Na+/H+ Salt Overly Sensitive 1 (SOS1) exchanger. Thus, it appears that wild rice limits passive Na+

entry into root cells while cultivated rice relies heavily on SOS1-mediating Na+ exclusion, with major
penalties imposed by the existence of the “futile cycle” at the plasma membrane.

Keywords: rice; salinity; halophyte; root; microelectrode ion flux; MIFE; transporters

1. Introduction

Sodium toxicity is considered to be a major constraint affecting plant performance
caused by salt stress in the long term. As a result of selective breeding, salinity-tolerant
rice cultivars accumulate less Na+ in the shoot compared with sensitive cultivars [1–5]. A
number of previous studies focused on the mechanism of Na+ retrieval back from xylem
operated by a high-affinity K+ transporter OsHKT1;5 that reduces shoot Na+ accumulation
in rice [5–9]. Once unloaded from the xylem, Na+ needs to be extruded into external
medium. Root Na+ exclusion is known to be operated by a Na+/H+ exchanger Salt Overly
Sensitive 1 (SOS1) at the root epidermis [10,11], and beneficial effects of enhancement of
SOS1 operation fuelled by H+-ATPase on salt tolerance in rice was demonstrated [12,13].
In addition to Na+ exclusion, increasing biosynthesis of organic osmolytes has been also
targeted to improve salinity-induced osmotic stress tolerance in rice [14–16]. However,
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despite numerous attempts, achievements in breeding salinity-tolerant rice are still quite
modest [17,18].

If one enhances Na+ exclusion by SOS1, then plants need to rely on de novo synthesis
of organic osmolytes (compatible solutes) for osmotic adjustment, which comes with a
considerable energy cost, leading a depletion of the ATP pool [19,20]. Therefore, SOS1-
mediated root Na+ exclusion activity did not correlate with overall salinity tolerance in
barley [21] and rice varieties [22] when assessed by direct Na+ flux measurements using
electrophysiological techniques. The efficacy of Na+ exclusion strategy mediated by SOS1
in rice is further complicated by the presence of the apoplastic pathway of Na+ entry, named
as bypass flow. Despite anatomical barriers, bypass flow causes a significant amount of
passive Na+ entry from sites of lateral root emergence, areas of weak Casparian strip barrier
formation, and cell walls near the root apices that has long been considered as a major
component of high salt sensitivity in rice [7,23–26]. Due to this passive Na+ entry pathway,
SOS1 transporters in rice may operate in a “futile cycle”, depleting energy but not achieving
a significant reduction in Na+ content. Thus, selection of inappropriate traits (i.e., Na+

exclusion and de novo synthesis of compatible solutes) can be the reason of the failure to
produce salinity tolerant rice over the past decades.

Instead of excluding Na+ and synthesising organic osmolytes, the ability of utilising
Na+ can be considered to be a more effective trait in conferring salinity tolerance. Although
accumulating excessive amount of Na+ can become toxic for plants, Na+ uptake is desirable
because this element is highly soluble and easily available (especially under salinity) for
plants to increase osmotic pressure, absorb water, and sustain turgor [27,28]. A sharp
increase of xylem Na+ loading and shoot Na+ accumulation can be an efficient means of
osmotic adjustment, and this Na+ utilisation mechanism has been reported from halophytes
and salinity-tolerant barley genotypes [29–32]. Excessive Na+ elevation in the cytosol
causes toxicity; therefore, effective Na+ sequestration into vacuoles mediated by tonoplast
Na+(K+)/H+ exchanger (NHX) has to be accompanied with the above mechanisms of Na+

utilisation. Recently, a need for a shift from crop breeding for Na+ exclusion towards
conferring superior traits benefitting from Na+ called “halophytism” was suggested [33].

The only halophytic relative of wild rice species, O. coarctata, is known to grow
under high level of salinity (20–40 ds m−1) that is lethal for cultivated rice (O. sativa)
species [34–36]. O. coarctata has long been known to maintain low leaf Na+/K+ ratio [37],
showing greater Na+ accumulation in the root rather than the shoot under salinity [38].
Secretion of Na+ via external microhairs [39], efficient performance of NHX [40], and a high
transport capacity of HKT1;5 [41] are considered to contribute to superior ionic homeostasis
under salinity in this species. Due to high salinity tolerance within the genus of Oryza,
O. coarctata has been considered as an important resource of gene pools to improve salinity
tolerance in rice cultivars [35,41]. However, detailed mechanisms of maintaining Na+

homeostasis in this species have been less understood due to the limited number of studies
at the cellular level.

We hypothesise that O. coarctata possesses mechanisms, wherein Na+ is utilised rather
than excluded, for adapting to a saline environment. To test this hypothesis, we compared
a range of physiological variables (e.g., biomass change, relative water content, chlorophyll
content, and stomatal conductance) between salt-grown cultivated (O. sativa) and wild
(O. coarctata) rice species and linked them with kinetics of Na+ transport in plant roots;
Na+ concentrations in root, leaf, and xylem sap; and expression of SOS1, NHX, and HKT1
transporter genes. The overall research aim was to explore the mechanisms of Na+ uptake,
exclusion, and translocation differentiating Na+ homeostasis between these two rice species.

2. Results
2.1. Biomass Change, Relative Water Content, and Physiological Responses

After four weeks of salinity treatment, prominent differences were observed in plant
biomass (FW) and relative water content (RWC) between cultivated and wild rice species
(Figure 1). Cultivated rice significantly (p < 0.05) declined in biomass and RWC in response
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to the increase of salinity levels (Figure 1A,C). Notably, cultivated rice treated with 100 mM
NaCl showed an eightfold decline in biomass compared with its controls (Figure 1C). In
contrast, both 50 and 100 mM NaCl treatments did not significantly decrease both biomass
and RWC compared with the control in wild rice (Figure 1B,D).
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Physiological characteristics were also affected only in cultivated rice in response to
salinity (Figure 2). Two weeks of 100 mM NaCl treatment significantly (p < 0.001) reduced
chlorophyll content (Figure 2A) and stomatal conductance (Figure 2B) in cultivated rice,
while wild rice showed almost the same values between control and salt-treated plants
(Figure 2A,B). The above observations suggest that wild rice is considerably more salinity-
tolerant at the whole-plant level compared with cultivated rice.
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Figure 2. Physiological responses to two weeks of salinity (100 mM NaCl) treatment in cultivated
and wild rice species. (A) SPAD value (chlorophyll content); (B) Gs (stomatal conductance). Asterisks
indicate significant differences within the plant species (*** significant at p < 0.001, Student’s t-tests).
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2.2. Root, Leaf, and Xylem Sap Na+ Concentrations

Under non-saline conditions, wild rice showed about two- and fourfold higher
Na+ concentrations in root and leaf sap, respectively, compared with cultivated rice
(Figure 3A,B).
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Figure 3. Na+ concentrations in root (A), leaf (B), and xylem sap (C) in cultivated and wild rice species
under 100 mM NaCl treatments at different time points after the commencement of salinity. Open
symbols describe Na+ concentrations before salinity onset. Asterisks indicate significant differences
between plant species within the same harvest day. (** p < 0.01; *** p < 0.001, Student’s t-tests).
Mean ± SE (n = 3–6).

One day after the commencement of salinity treatment (day 1), cultivated rice showed
significantly (p < 0.001) smaller Na+ concentrations in root and leaf sap than those in wild
rice (Figure 3A,B). At the same time (day 1), Na+ concentration in xylem sap in cultivated
rice showed only a very marginal increase (not significant at p < 0.05), while in wild rice,
this increase was substantial (threefold; from 2.55± 0.49 in control plant to 7.28 ± 1.19 mM
in salt-treated plant; significant at p < 0.05). Thus, at the beginning of a salinity event,
cultivated rice may have mechanisms operative to prevent root Na+ uptake and xylem Na+

loading. In contrast, wild rice showed increased xylem Na+ loading and Na+ transport to
the shoot.

When salinity stress was prolonged, cultivated rice Na+ concentration in the root sap
increased until day 7, but dropped sharply at day 14 to become significantly (p < 0.001)
lower than that seen in wild rice (Figure 3A). This sharp drop of root sap Na+ in cultivated
rice can be accounted for by increased Na+ transport to the shoot. Leaf sap Na+ concentra-
tion in cultivated rice progressively increased over the period of salinity treatment, with
a sharp increase after day 7 (Figure 3B). Xylem sap Na+ concentration in cultivated rice
was not significantly different compared with wild rice until day 3. However, a sharp and
substantial increase in the xylem sap Na+ concentration in cultivated rice was observed
at day 7, with values being significantly (fourfold, p < 0.01) higher than for wild rice
(Figure 3C). The increase in xylem sap Na+ concentration in cultivated rice was observed
until day 14 (Figure 3C). In contrast, although salt-treated wild rice showed approximately
twofold higher root sap Na+ concentrations over the period of salinity treatment compared
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with control, the variation in root sap Na+ concentrations were not as large (Figure 3A).
Therefore, wild rice may possess superior ability to retain Na+ in the root under prolonged
salinity compared with cultivated rice. Further, wild rice also maintained rather stable Na+

concentrations in leaf and xylem sap over the period of salinity treatment (Figure 3B,C).

2.3. Transcriptional Analysis of Genes Related to Na+ Transport

HKT1;4 and HKT1;5 are known to mediate retrieval back of Na+ from the xylem that
contribute to reduce shoot Na+ accumulation in rice [6,42]. Salinity treatment did not
significantly (p < 0.05) change expression of HKT1;4 in the elongation root zone (EZ), but
significantly downregulated it in the mature zone (MZ) in both species (Figure 4A,B). It
is reported that HKT1;4 mediates Na+ unloading in a range of conditions (submillimolar
Na+ to high salinity) in cultivated rice [42]. Further, OsHKT1;4 has been suggested to have
a more prominent role in mediating Na+ unloading in the leaf sheath at the reproductive
stage, preventing over-accumulation of Na+ in the leaf blade under salinity [43]. Therefore,
it may be considered that HKT1;4 has a very minor or no role in Na+ transport into
xylem parenchyma cells under saline conditions tested here. HKT1;5 expression was
downregulated in cultivated rice but upregulated in wild rice by salinity (Figure 4C,D). In
MZ, cultivated rice showed 59.2% decrease in HKT1;5 expression in response to salinity
(significant at p < 0.05), in contrast to wild rice that showed an 85.6% increase in HKT1;5
expression (significant at p < 0.05, Figure 4C,D). Tonoplast Na+/H+ antiporter (NHX1)
mediates Na+ sequestration into vacuoles to reduce excessive increase of cytosolic Na+

concentration [44]. Having a dual affinity for both Na+ and K+ NHX1 also catalyses K+/H+

exchange at the tonoplast membrane [45]. NHX1 expression was significantly increased in
both root zones of wild rice (sevenfold and twofold in EZ and MZ, respectively; Figure 4F).
In contrast, cultivated rice showed downregulated NHX1 expression in response to salinity
(Figure 4E)—for example, there was a threefold reduction in NHX1 expression (significant
at p < 0.05) in EZ under salinity in the cultivated rice. Thus, wild rice showed greater
expressions of HKT1;5 and NHX under salinity compared with cultivated rice.
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2.4. Ion Flux Measurements on the Root Epidermis in Response to NaCl
2.4.1. NaCl-Induced Na+ Influx

Na+ influx into elongation (EZ) and mature root zones (MZ) of both two rice species
were induced by salt (100 mM NaCl) application. However, cultivated rice showed higher
influx than wild rice (Figure 5A,B). The peak value of net Na+ flux in MZ in the cultivated
rice was much higher (about twofold, significant at p < 0.05) than that in wild rice (marked
as “no inhibitor” in Figure 6G).
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2.4.2. SOS1 Operations in Reducing Net Na+ Influx

Cellular Na+ exclusion in plants is mediated by Na+/H+ exchanger (SOS1) fuelled
by H+-ATPase activity at the root plasma membrane [12,22]. Thus, net Na+ influx into
the root can be explained by the difference between unidirectional Na+ entry into the
root and SOS1-mediated Na+ efflux from the root. Pharmacological experiments revealed
that net Na+ efflux was decreased by both amiloride (an inhibitor of Na+/H+ exchanger:
SOS1) and sodium orthovanadate (vanadate: H+-ATPase blocker) pre-treatments in both
species (Figure 6A–D). The peak Na+ flux values were significantly (p < 0.05) increased
by amiloride and vanadate pre-treatments compared with no-inhibitor within the same
species, except vanadate pre-treatment in wild rice (Figure 6G). This suggests activity of
SOS1 fuelled by H+-ATPase at the root plasma membrane in both species. Compared with
wild rice, cultivated rice showed a greater shift towards net Na+ influx caused by SOS1
inhibition. The increases in peak Na+ flux caused by amiloride pre-treatment (relative to
no-inhibitor) were 15,346 and 6685 nmol m−2 s−1 in cultivated and wild rice, respectively
(Figure 6G). Likewise, cultivated rice also showed greater increase of peak Na+ influx
by vanadate pre-treatment than wild rice (7414 vs. 4636 nmol m−2 s−1, Figure 6G). This
suggests that cultivated rice relies more on SOS1 activity for cellular Na+ extrusion at the
root epidermis under salinity than wild rice.

2.4.3. Na+ Influx through NSCC

Non-selective cation channels (NSCC) have been known as a major pathway of Na+

entry into the root [46]. Although GdCl3 (Gd3+; NSCC blocker) pre-treatment did not
significantly change peak Na+ influx values in two species, it reduced the peak of Na+ influx
in cultivated rice by 24.6%, while in wild rice, this reduction was only 10.3% (Figure 6G).
Moreover, kinetics of net Na+ influx was always smaller in the root treated with Gd3+

relative to “no-inhibitor” control in cultivated rice after salt application (Figure 6E), while
Gd3+-induced difference in net Na+ flux in wild rice was less obvious (Figure 6F). These
observations suggest that NSCCs may play a smaller role in Na+ uptake in wild rice
compared with cultivated rice.
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Figure 6. Pharmacological analysis of transient net Na+ flux measured from mature root zones of
cultivated and wild rice species in response to 100 mM NaCl application. Roots were pre-treated for
1 h with one of the following known inhibitors: 0.1 mM amiloride, an inhibitor of Na+/H+ exchanger
(A,B); 1 mM sodium orthovanadate (vanadate), H+-ATPase blocker (C,D); 0.1 mM GdCl3 (Gd3+),
non-selective cation channel NSCC blocker (E,F). Peak Na+ flux identified as maximum flux value
during measurements (G). Different letters indicate significant differences (p < 0.05, one-way ANOVA
followed by LSD tests). Mean ± SE (n = 6–8).

2.4.4. H+ Flux in SOS1 Operations

Vanadate pre-treatment induced only slight reductions in net H+ efflux in both species
(Figure 7A). However, amiloride pre-treatment induced a much more prominent increase
in net H+ efflux (reduction in the amount of H+ exchanged by Na+ in SOS1 operations) in
cultivated rice compared with wild rice (Figure 7B). These data can be taken as evidence
for higher SOS1 activity in cultivated rice to reduce Na+ uptake compared with wild rice.
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2.5. Analysis of SOS1 Functional Activity

To assess functional activity of SOS1 in the root plasma membrane, we used the so-
called “recovery protocol” [47]. The idea behind it is that the root is exposed to salinity and
allowed to accumulate Na+ for some time and induce expression of SOS1 genes required
for its extrusion. The roots are then transferred to Na+-free media and, after transient
processes in the apoplast (Donnan system) are over, the magnitude of net Na+ efflux reflects
the functional activity of SOS1-like exchanger.

Consistent with reported expression of SOS1 genes, both rice species showed dra-
matically higher net Na+ efflux in the root elongation zone (EZ) than mature zone (MZ)
(Figure 8A). In EZ, about 80% greater net Na+ efflux was observed from cultivated rice
root without inhibitor than those in wild rice (cultivated rice: −651 ± 48 vs. wild rice:
−359 ± 53 nmol m−2 s−1, Figure 8A). Amiloride (SOS1 inhibitor) pre-treatment signif-
icantly (p < 0.05) reduced net Na+ efflux in cultivated rice in both root zones, while
amiloride-induced decrease of Na+ efflux in wild rice was not significant in both root
zones (Figure 8A,B). Wild rice showed a significant decrease in net Na+ efflux by Gd3+

(NSCC blocker) pre-treatment in both root zones, while cultivated rice showed Gd3+-
induced decrease of Na+ efflux (with significance, p < 0.05) in only EZ (Figure 8A,B). The
above observations suggest that cultivated rice mediates greater Na+ efflux than wild rice,
and therefore cultivated more relies on SOS1 activity for Na+ exclusion compared with
wild rice. On the other hand, passive Na+ leakage through NSCC (rather than active Na+

exclusion by SOS1) largely contributed to Na+ efflux from the root of wild rice.
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Figure 8. Na+ efflux from elongation and mature root zones (A) and only mature root zone (B) of
cultivated and wild rice after the removal of 100 mM NaCl (48 h treatment) with known inhibitors:
0.1 mM amiloride, an inhibitor of Na+/H+ exchanger; 0.1 mM GdCl3 (Gd3+), NSCC blocker. Steady-
state net Na+ flux was measured 20 min after NaCl removal. Different letters indicate significant
differences within the same root zone in the same species (p < 0.05, one-way ANOVA followed by
LSD tests). Mean ± SE (n = 5–6).
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Transcriptional analysis showed that SOS1 expressions were significantly higher in
wild rice than cultivated rice under both control and salinity (100 mM NaCl for 48 h) condi-
tions (Figure 9A,B). Salinity-induced changes in SOS1 expressions were not significant in
both root zones of cultivated rice, while those in wild rice were significant downregulation
and upregulation in EZ and MZ, respectively (Figure 9A,B). As the above differences in
SOS1 transcriptions can hardly explain actual SOS1 operations observed from Na+ flux
measurements, it appears that SOS1 activities might be regulated at the post-translational
rather than transcriptional level.
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Figure 9. RT-qPCR analysis of the gene expressions of SOS1 in mature (A) and elongation (B) root
zones of cultivated and wild rice species under control and salinity (100 mM NaCl, 48 h) conditions.
Different letters indicate significant differences (p < 0.05, one-way ANOVA followed by LSD tests).
Mean ± SE (n = 3).

3. Discussion
3.1. Leaf Tissue Na+ Tolerance Observed in Wild Rice Is Highly Important for the Overall Salinity
Tolerance in this Species

Wild rice possesses fourfold higher leaf sap Na+ concentration than cultivated rice
under un-salinised (0 mM NaCl) conditions (Figure 3B). Halophytes typically possess
a greater amount of Na+ in their leaf tissues compared with glycophytes [29], and this
phenomenon is attributed to a likely role of Na+ in maintenance of cell turgor [28]. Two
weeks of salinity (100 mM NaCl) treatment increased leaf sap Na+ concentration in both
rice species, with no significant difference between them (Figure 3B). However, a significant
reduction in chlorophyll content was observed in cultivated rice (Figure 2A) that is a typical
symptom of Na+ toxicity [48]. This was not observed in wild rice (Figure 2B), indicating
its higher tissue tolerance to Na+ [49] that may be conferred by a superior sequestration
of Na+ into vacuoles [40,50]. Superior tissue tolerance has been shown to confer salinity
tolerance in the wild rice species O. rufipogon [50], and this trait has been suggested to be
targeted for rice breeding instead of Na+ exclusion [49,50]. Here, leaf tissue Na+ tolerance
was reported as being a hallmark for one of the most salt tolerant rice species, O. coarctata,
validating the above conclusion.

3.2. Different Means of Osmotic Adjustment Differentiated Stress Tolerance between Two Species

Onset of salinity treatment also triggers osmotic stress, causing plant dehydration.
Plants increase osmotic pressure in the cells and regain turgor in response to osmotic stress
in a process called osmotic adjustment. There are two means of osmotic adjustment, namely,
synthesis of organic osmolytes (compatible solutes) and accumulation of inorganic ions
within cells [30,51]. At the early stage of salinity (one day after the stress onset), a significant
(p < 0.05) increase in xylem sap Na+ concentration was observed in wild rice, but not in
cultivated rice. Thus, it is reasonable to suggest that wild rice relies on Na+ transfer to the
shoot for osmotic adjustment, while cultivated rice heavily relies on de novo synthesis of
organic osmolytes and tries to minimise xylem Na+ loading.

As biosynthesis of organic osmolytes is a highly energy-consuming process, it leads
to growth penalties under prolonged salinity [20,52]. In addition to osmotic adjustment,
stomatal operation is also a critical factor under osmotic stress conditions. In response to
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drought or salinity stress, stomatal closure is induced by ABA accumulation to conserve
water in plants [53], and only cultivated rice significantly (p < 0.001) reduced stomatal
conductance under salinity (Figure 2B). Reduced stomatal conductance results in a de-
crease of the ability of a plant to assimilate CO2, thus limiting photosynthesis and plant
growth [50,54,55]. Despite energy cost by de novo synthesis of organic osmolytes and
reduced CO2 assimilation due to stomatal closure, cultivated rice showed symptoms of
dehydration (significant decrease of RWC at p < 0.05, Figure 1C). Osmotic adjustment by
means of Na+ accumulation is quick, energy-saving, and more efficient compared with de
novo synthesis of organic osmolytes [20,30,56] and may be the reason that wild rice did
not show a significant dehydration (Figure 1D) and stomatal closure (Figure 2B). Thus,
utilisation of Na+ for osmotic adjustment is a significant trait differentiating tolerance to
salinity induced osmotic stress between rice species.

3.3. Maintenance of Na+ Homeostasis under Long-Term Salinity Is the Key Determinant of Overall
Salinity Tolerance in Wild Rice

Na+ toxicity is considered as a main constraint imposed by the long-term salinity
stress [57]. In addition to the response to salinity induced osmotic stress (explained in
the above section), the two rice species differently controlled Na+ uptake and transport to
avoid Na+ toxicity.

Cultivated rice showed significantly (p < 0.001) lower Na+ concentrations in the root
sap than wild rice at the beginning (day 1) of the salinity treatment (Figure 3A) that
may be explained by greater activities of Na+/H+ exchanger (SOS1) located at the root
plasma membrane for mediating Na+ exclusion in this species (Figures 6 and 8; see also
the next section for more discussion). Cellular Na+ exclusion mediated by SOS1 activity
fuelled by H+-ATPase is an energy-consuming process as well as de novo synthesis of
organic osmolytes for osmotic adjustment [19]. This suggests that cultivated rice expends a
substantial amount of energy, leading to depletion of ATP pool when salt stress is prolonged.
At a later stage of salinity imposition, cultivated rice may be low on available energy and
therefore unable to control significant Na+ entry into the root and thus Na+ transport
to the shoot, resulting in severe Na+ toxicity leading to significant biomass reductions
(Figure 1A). The above pattern of Na+ transport under salinity observed in cultivated rice
is also typically observed in salinity sensitive glycophytic species [29,30].

Compared with cultivated rice, wild rice has more efficiently control over Na+ trans-
port during the imposition of salinity. Once osmotic adjustment by means of Na+ accumu-
lation is achieved, wild rice maintains rather stable leaf and xylem sap Na+ concentrations
(from day 3; Figure 3B,C), and this is coupled with root Na+ accumulation that is signifi-
cantly greater than in cultivated rice, two weeks after the onset of salinity stress (Figure 3A).
This pattern of Na+ transport is effective to avoid shoot Na+ toxicity. Although a functional
role of OsHKT1;5 is still questioned due to direct measurements of Na+ flux from root
stele [58], OsHKT1;5 within the SKC1 locus is suggested to mediate xylem Na+ unloading
that reduces shoot Na+ accumulation under salinity [59]. In addition, effective Na+ se-
questration into root vacuoles through NHX was found to be a key determinant of salinity
tolerance in barley and wheat [21,60]. As only wild rice shows significantly upregulated
HKT1;5 and NHX1 expressions in the root in response to salinity (Figure 4C–F), it is plausi-
ble to suggest that this species may transfer an excessive amount of Na+ from the xylem to
root vacuoles. For Na+ in root vacuoles to be retained for avoiding Na+ toxicity, effective
control of Na+ back-leak into cytosol [61] is required and is suggested to operate in wild
rice. The above mechanisms of root Na+ sequestration rather than exclusion observed
in wild rice may be a critical determinant of salinity tolerance, allowing this species to
maintain normal metabolism and plant growth under long-term salinity (Figure 1B).

3.4. Smaller Net Na+ Entry in Wild Rice Root Is Not Attributable to SOS1 Activity

In response to salt (100 mM NaCl) application, net Na+ influx into the roots of both
rice species was observed in electrophysiological experiments (Figure 5). Na+ enters
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into the root through major two pathways, namely, NSCC and HKT [46]. Sensing Na+

entry results in the elevation of cytosolic Ca2+, cGMP, and H2O2 production [62,63] that
activates H+-ATPase-mediating H+ efflux fuelling SOS1 activity to exclude Na+ from the
cytosol [64,65]. Due to the above Na+ efflux system, the difference between Na+ entry and
Na+ exclusion can explain the observed net Na+ influx into the roots of both rice species.
In response to transient application of salt stress, wild rice showed much lesser net Na+

influx compared with cultivated rice (Figure 5A,B). However, this smaller net Na+ influx
was not due to greater activity of SOS1-mediated Na+ extrusion. Both amiloride (a blocker
of SOS1 exchanger) and vanadate (H+-ATPase inhibitor) pre-treatments suggested greater
involvement of SOS1 activity in cultivated rice than in wild rice (Figures 6A–D,G and 7A,B).
Na+ influx into root cells under salinity is a passive process [20], as both low cytosolic
Na+ concentrations and the negative electrical difference at the plasma membrane readily
mediate Na+ movement into cells [66]. Under non-saline conditions, wild rice possesses
much greater root sap Na+ concentration (Figure 3A) and less negative membrane potential
(data are not shown) compared with cultivated rice. Therefore, wild rice may be able to
allow smaller degree of salinity-induced Na+ gradient moving into the plasma membrane
of root cells than cultivated rice (Figure 6E,F), thus showing smaller net Na+ influx in
response to a sudden increase of external salt concentration.

3.5. Limiting Na+ Exclusion by SOS1 Activity under Long-Term Salinity Is Crucial to Improve
Salinity Tolerance in Rice Species

Na+ efflux measurements in Na+-free solution after the removal of salt (the so called
“recovery protocol”; [22,47] revealed the difference of root Na+ efflux mechanisms under
long-term salinity (100 mM NaCl for 48 h) between cultivated and wild rice. A considerable
degree of Na+ efflux from cultivated rice root was mediated by amiloride-sensitive SOS1
activity, while measured Na+ efflux from wild rice root was mostly due to passive Na+

movement through Gd3+-sensitive NSCC (Figure 8A,B). Moreover, in the root elongation
zone (where SOS1 is predominantly located; [60,67], significantly larger Na+ efflux was
observed from cultivated rice than wild rice. Therefore, greater activity of SOS1 for Na+

extrusion in cultivated rice under salinity was clearly observed from electrophysiological
experiments. However, transcriptional changes in SOS1 did not correlate with the observa-
tions at a functional level (Figure 9A,B). This is consistent with previous observations that
the actual operation of SOS1 protein activity at a functional level does not always correlate
with changes in transcript levels [22]. Further posttranslational mechanisms have been
shown to be a major control point determining SOS1 activity in plants [68].

As mentioned in the previous sections, the issue with cellular Na+ exclusion mediated
by SOS1 activity fuelled by sharp H+ gradient comes with a high energy cost. For this
transporter to operate efficiently, for each Na+ ion expelled across the plasma membrane,
one H+ ion needs to be extruded via H+-ATPase (every H+ extrusion hydrolyses one
ATP; [19,20]). Therefore, a considerable energy penalty is imposed on cultivated rice due to
the existence of the above-mentioned “futile cycle” at the root plasma membrane. Moreover,
a passive apoplastic pathway of Na+ entry into the root named bypass flow in O. sativa
species [7,23–26] may impose further detrimental effects, due to a futile cycle. It is therefore
plausible to suggest that wild rice may possesses a superior ability to sequester Na+ into
root vacuoles and limit passive Na+ entry through Na+-permeable channels/transporters
under salinity, thus making SOS1-mediated Na+ extrusion playing only a small role in its
overall salinity stress tolerance.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Seeds of cultivated rice (O. sativa cv. Koshihikari) were obtained from Western Sydney
University and then multiplied using glasshouse facilities at Tasmanian Institute of Agricul-
ture, University of Tasmania, Hobart, Australia. Seeds were pre-germinated in an incubator
(30 ◦C for three days) and sown into plastic cell trays filled with the standard potting mix
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containing 70% perlite and 30% sand using half strength Hoagland solution (see [69] for
details). Two weeks after the sowing of pre-germinated seeds, young seedlings (three to
four leaves stage) of cultivated rice were transplanted into the pots with the mixture of soil
collected from University Farm, University of Tasmania, Cambridge, Tasmania, Australia
(Chromosol, see [70] for details) and potting mix (65/35% w/w). The pot volume was 1.5 L,
and each pot contained one plant. Wild rice (O. coarctata) seedlings were obtained from the
Swaminathan Research Foundation (Chennai, India) and were propagated vegetatively.
For vegetative propagation, O. coarctata seedlings were grown in 15 L plastic tubs with the
mixture of soil and potting mix (see details above), which were filled with tap water up to
the soil surface. Newly developed three to four leaf stages of wild rice seedlings (about one
month after the emergence of the new plantlets) were carefully separated and transplanted
to the pots under the same condition as for cultivated rice. Pots with transplanted culti-
vated or wild rice seedlings were placed in a 15 L plastic tub filled with tap water up to the
soil surface (4× pots per tub). One week after transplanting, salinity stress was imposed
for four weeks (0, 50, or 100 mM NaCl) by the replacement of tap water in the tubs by
appropriate NaCl solutions. Plants were grown in the greenhouse (temperature: 25 ± 2 ◦C;
12 h light/12 h dark photoperiod).

4.2. Biomass Measurement and Relative Water Content

Whole-plant biomass (fresh weight: FW) was measured before transplanting to the
pots, and all transplanted seedlings were labelled to be identified. After four weeks of
salinity treatments (when specific effects of Na+ toxicity dominate), whole-plant FW was
measured from labelled seedlings again, and the changes of FW (a biomass gain or loss)
over the exposure to salinity were calculated. For measuring FW, seedlings were carefully
removed from the growing medium, and their roots were then gently washed with a tap
water to remove soil and quickly blotted. Roots and shoots were separated and weighted.
Plant tissues were oven-dried, and shoot relative water content (RWC) was calculated.

4.3. Physiological Responses (Chlorophyll Content and Stomatal Conductance)

Chlorophyll content and stomatal conductance were measured from the second
youngest fully expanded leaves two weeks after the commencement of salinity using
SPAD-502 m (Konica Minolta, Osaka, Japan) and Decagon Leaf Porometer (Decagon De-
vices Inc., Pullman, WA, USA), respectively, as described in [71].

4.4. Root, Shoot, and Xylem Sap Na+ Analysis

Root, leaf, and xylem saps were collected at different time points (1, 3, 7, and 14 days)
after the commencement of salinity. Leaf sap was taken from the second youngest fully
expanded leaves. Harvested roots were washed with 10 mM CaCl2 to remove apoplastic
Na+ and quickly blotted. Harvested leaf and root samples were put into Eppendorf tubes
and stored in the −20 ◦C freezer. Frozen samples were then thawed under the room
temperature, and sap was obtained by hand-squeezing, as described in [71]. Xylem sap was
collected using Scholander pressure chamber (Plant Moisture Systems, Santa Barbara, CA,
USA). Each sample of xylem sap was collected from one to three plants per pot. Collected
samples were weighed with 0.1 mg accuracy, then diluted and kept in the fridge. The
content of Na+ and K+ in all sap samples was then measured using a flame photometry
(model: PFP7, Jenway, Felsted, Dunmow, Essex, United Kingdom).

4.5. RNA Isolation and Real-Time Quantitative PCR Analysis

Excised root segments (3–5 cm long) were taken from the seedlings one month after
transplanting of young seedlings into the pots (see the details of growing condition in
Section 4.1). Seedlings were treated with 100 mM NaCl for 48 h before root harvest. Root
segments were gently washed and blotted, and then cut into elongation and mature zone
segments (1.0–2.0 and 12–15 mm from the root tip, respectively). Total RNA was isolated
using RNAiso Plus (Takara, Shiga, Japan) as per the manufacturer’s protocol. First-strand
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cDNA synthesis was performed in a 20 µL reaction volume with 1 µg of total RNA and
Superscript III (Invitrogen, Carlsbad CA, USA) at 42 ◦C for 60 min, followed by heat
inactivation at 70 ◦C for 10 min. Real-time PCR (Quant Studio 6; Thermo Fisher, Waltham,
MA, USA) was carried out in a reaction volume of 10 µL (1 µL of cDNA, 5 µL of Takara TB
GreenTM Primix Ex TaqTM II (2×), 0.5 µL each of a given primer pair (final concentration of
250 nM each)) under the following cycling conditions: 95 ◦C (30 s), 40 cycles of denaturation
at 95 ◦C (5 s), annealing and extension at 60 ◦C (30 s) in a 96-well optical reaction plate
(Thermo Fisher, Waltham, MA, USA). The primer pairs listed in Appendix A were used to
amplify fragments of indicated sizes for each target gene. Each real-time PCR reaction was
performed in triplicate. Amplicon specificity was verified by melt curve analysis (60–95 ◦C
at 40 cycles) and subsequent agarose gel electrophoresis. Gene expression was quantified
using the comparative CT (2−∆∆CT) quantitation method. Three biological replicates were
used in all cases.

4.6. Ion Flux Measurements

For electrophysiological experiments, newly developed underground adventitious
roots from rhizomes of wild rice or crown of cultivated rice (crown root) were cut and taken
one month after transplanting of young seedlings (three to four leaves stage) to the pots (see
the details of growing condition in Section 4.1). Seedlings were grown in tap water until root
harvest. Net ion fluxes were measured by using non-invasive ion-selective microelectrode
(MIFE) technique (University of Tasmania, Hobart, Australia). Complete description of the
theory of MIFE measurements, fabrication of ion-selective microelectrodes, and calibration
processes have been previously explained in our past studies [72,73]. For preparation of
H+-selective microelectrodes, commercially available ionophore cocktail (Merck, Germany;
catalogue number 95291) was front-filled on the tips of electrodes. For Na+ measurement,
an improved calixarene-based Na+ ionophore cocktail [74,75] was used.

Excised root segments (3–5 cm long) were carefully washed in a basic salt medium
(BSM; 0.5 mM KCl, 0.1 mM CaCl2; pH 5.7, unbuffered) solution and then immobilised
in the measuring chamber containing BSM. Fluxes of Na+ and H+ were measured from
epidermal cells of elongation and mature root zones (1.0–2.0 and 12–15 mm from the root
tip, respectively). Steady net ion fluxes were measured for five minutes in BSM solution,
then salt treatment was applied to bring the final NaCl concentration (100 mM NaCl) in
the measuring chamber. The resulting transient ion flux was recorded for up to 25 min.
For the pharmacological experiment, excised root segments were pre-treated with known
inhibitors (Appendix B) for one hour before ion flux measurement. Measurements were
conducted from at least five individual plants

4.7. Measuring Na+/H+ Exchanger Activity

To quantify activity of the plasma membrane Na+/H+ exchangers mediating Na+

extrusion from plant roots, we used a so called “recovery protocol” as described in the
previous study [47]. Root segments (3–5 cm long) were cut and taken from the seedlings
(see the details of growing condition and root harvest in Sections 4.1 and 4.6) treated with 0
or 100 mM NaCl for 48 h before root harvest. Excised root segments were thoroughly and
quickly washed with 10 mM CaCl2 to remove apoplastic NaCl and rinsed with double-
distilled water. The roots were then transferred into Na+-free BSM solution and kept for
20 min, and net Na+ flux was measured for 3–5 min.
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Appendix A. List of Primers for RT-qPCR Analysis

Oligos Name Oligos (5′ → 3′)

OsHKT1; 4
GACAGATCAATCCAGACCATCTC

AGCCTcCCAAAGAACATCAc

OcNHX1
GAGAGGAGCTGTGTCGATTGc

GGTAGCAGCAGCCTGATCAATG

OcHKT1; 5
ATTCTGGcTCCAACTGCTGIACT

GTGAAGATCAGGTCCAAGTCCAT

OcSOS1
AGAAGTTCAAGAGGAATCCACCAT

GGATCGTGCcATGTCCTTT

Appendix B. List of Inhibitors for Pharmacological Experiments

Name Mode of Action Concentration

Amiloride Na+/H+ exchanger inhibitor 0.l mM
Sodium orthovanadate

(vanadate)
H+ - A1Pase blocker l mM

GdC13 (Gd3+) NSCC blocker 0.1 mM
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Abstract: Understanding salt tolerance mechanisms in halophytes is critical for improving the world’s
agriculture under climate change scenarios. Herein, the physiological and metabolic responses of
Suaeda monoica, Suaeda vermiculata, and Suaeda schimperi against abiotic stress in their natural saline
environment on the east coast of the Red Sea were investigated. The tested species are exposed to
different levels of salinity along with elemental disorders, including deficiency in essential nutrients
(N&P in particular) and/or elevated levels of potentially toxic elements. The tested species employed
common and species-specific tolerance mechanisms that are driven by the level of salinity and the
genetic constitution of Suaeda species. These mechanisms include: (i) utilization of inorganic elements
as cheap osmotica (Na+ in particular), (ii) lowering C/N ratio (S. monoica and S. schimperi) that benefits
growth priority, (iii) efficient utilization of low soil N (S. vermiculata) that ensures survival priority,
(v) biosynthesis of betacyanin (S. schimperi and S. vermiculata) and (vi) downregulation of overall
metabolism (S. vermiculata) to avoid oxidative stress. Based on their cellular metal accumulation,
S. monoica is an efficient phytoextractor of Cr, Co, Cu, Ni, and Zn, whereas S. vermiculata is a hyper-
accumulator of Hg and Pb. S. schimperi is an effective phytoextractor of Fe, Hg, and Cr. These results
highlight the significance of Suaeda species as a promising model halophyte and as phytoremediators
of their hostile environments.

Keywords: Suaeda; salinity; physiology; oxidative stress; potential toxic elements; betacyanin; carbon;
nitrogen; phytoremediation

1. Introduction

Coastal salt marshes are transition zones between land and sea and act as natural
buffers against deteriorative impacts of saltwater intrusion, coastal erosion, and contami-
nants release [1]. These regions usually contain large levels of salinity along with substantial
amounts of potentially toxic elements (PTEs) as a result of various anthropogenic activities
(e.g., rapid urbanization, marine construction, oil spilling, domestic waste dumping, land-
filling due to the advancement of a seaside framework, brine discharge from desalination
plants and agricultural practices [2]. Climate change is expected to increase temperature
and evapotranspiration and thus can aggravate salinity and PTE-induced stress, particu-
larly in arid and semi-arid regions [3]. Such harsh conditions of salinity and PTEs in arid
salt marshes restrict plant vegetation to halophytic plants, which evolved exceptional ability
to grow and reproduce in a highly saline environment [1,4]. Interestingly, the ongoing
increase in atmospheric CO2 can improve the salinity tolerance of C3 and C4 halophytes [5].
Therefore, these unique plants can contribute significantly to carbon sequestration and
thus can reduce the impact of global climate change [1]. Halophytes can further be used as
intercropping and rotating species to improve crops’ productivity, given their high potential
to desalinize the high salt accumulations [6]. These features highlight the potentiality of
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halophytes as promising biological resources for improving the world’s agriculture in the
climate change scenario via genetic and biotechnological approaches. Intensive research has
been undertaken for a better understanding of the salt tolerance mechanisms in glycophytes
and halophytes. However, the full picture, particularly in halophytes, is far from clear.

To cope with salinity-induced challenges, halophytes employ common as well as
species-specific mechanisms to minimize their detrimental effects. Common salt tolerance
mechanisms include (i) regulation/compartmentalization of ions (Na+ and Cl−) uptake
and localization in vacuoles [7], (ii) accumulation of organic osmolytes in the cytoplasm to
balance the osmotic effects in vacuoles [8,9], and (iii) maintaining a balance between the
production of reactive oxygen species (ROS) and the total quenching activity of antioxida-
tive system [10]. Species-specific mechanisms may include succulence, extrusion of toxic
ions, special anatomical structures (hairs, salt glands), redistribution of excessive ions to
senescent leaves [11,12], and synthesis of stress-related pigments with specific physiological
functions such as betacyanin [13]. Activation of the above tolerance mechanisms involves
the diversion of a significant portion of essential plant metabolites such as carbohydrates
and nitrogenous compounds away from biomass production [14]. Such metabolic shunting
drives a trade-off between halophyte growth and survival: responses that differ among
taxa and are not fully understood [15]. Along with their excess salt ions, halophytic habitats
are enriched with PTEs. To cope with the adverse effects of such PTEs, halophytes employ
various mechanisms, including metals stabilization in the root zone, complexation with
root exudates, changing the metal ions, precipitation as insoluble deposits inside vacuoles,
and establishing a partnership with heavy metal tolerant soil microorganisms [16,17].

Halophytes belong to different angiosperms plant families, suggesting a polyphyletic
origin of salt tolerance [18]. Among these families, Amaranthaceae (previously known
as Chenopodiaceae) is an interesting example as it contains the largest number of known
halophytes with high capabilities of salt tolerance [18]. Suaeda is one of the extreme obligate
halophytic chenopods and has been proposed as a model system for the dissection of
salt tolerance in halophytes [18]. Suaeda species are generally perennials chamaephyte
(dwarf-shrub) with succulent leaves. They are distributed in various saline habitats with
different salinity levels and exhibit differential capabilities of withstanding high salinity
levels ranging from 200 mM to 400 mM or even more [19]. Along with their significance
as model plants for dissection of salt tolerance, they have been suggested as promising
biological tools for desalinization of hypersaline lands because of their high capacity of
salt uptake and accumulation [20]. In fact, some Suaeda species can remove more than
two tons of salt/hectare in a single harvest [21,22]. In addition, Suaeda species have been
acknowledged for their high efficiency as phytoremediators with the ability to uptake
substantial amounts of PTEs [23]. These halophytic species are adapted to overcome
PTEs accumulation similar to glycophytes [24]. The salt stress tolerance mechanisms of
Suaeda species, similar to most other dicotyledonous halophytes, mainly depend on the
accumulation of Na+ and Cl− in leaves [25,26], where their succulence enables the dilution
of ions concentration and thus alleviate ions toxicity [27]. Furthermore, osmolytes such as
glycine betaine, proline, and sugars play key roles in osmotic adjustment in some Suaeda
species [28,29]. Further, non-enzymatic antioxidants such as flavonoids and phenolics,
along with antioxidant enzymes, contribute to their adaptation against salinity-induced
oxidative stress [10,30].

The east coast of the Red Sea is a typical hyper-arid saline region with high tempera-
ture, limited precipitation, high salinity, and vulnerability to contamination derived from
oil trading and other anthropogenic activities developing along the Red Sea coast. It is
particularly rich in Suaeda species. Examples include S. egyptiaca, S. fruticosa, S. monoica,
S. vermiculata, S. pruinosa, and S. schimperi [31]. The current harsh climatic conditions
in the region, as well as the predicted climate change-induced increase in temperature
and evapotranspiration, are expected to exacerbate salinity-induced deleterious effects
on Suaeda growth and physiology in the region [1,32]. Up to our knowledge, the differ-
ences in the activity and the relative contribution of the above individual mechanisms
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to salt tolerance in Suaeda species in the area have not been reported. In addition, the
species/habitat variations in Suaeda species seem to depend on differential efficiency of
salt tolerance mechanisms among these species, which may be associated with different
adaptive physiological and molecular mechanisms in response to different levels of soil
salinity [33].

In the current study, three species of the genus Suaeda including Suaeda monoica Forssk.
ex J.F.Gmel., Suaeda vermiculata Forssk. ex J.F.Gmel., and Suaeda schimperi Moq. that
dominate three separate salt marshes at different vicinity to the east coast of the Red
Sea were selected. These species are genetically related but differ in their leaf reddening
phenotype, which has been reported as an adaptive strategy for salt tolerance [34]. The aim
of the current study was to assess the impact of the interaction between different levels of
soil salinity and the differential physiological responses of the selected Suaeda species, if
any, on their successful adaptation in particular salt marshes. Herein, the hypothesis is that
the successful adaptation of different Suaeda species in the selected salt marshes is shaped
by the interplay between the magnitude of salinity in their rhizospheric soil and their
relative salt tolerance evolutionary strategies. In addition, common and species-specific
physiological responses may operate among species. Therefore, performing a comparative
analysis of the physiological responses of these genetically related species against the
physicochemical properties of their rhizospheric soil would be a useful approach to gain
insights on possible common and species-specific tolerance mechanisms in these species.

The specific objectives of this study are to (i) monitor the levels of soil salinity, nutri-
ents status, and PTEs concentration in the rhizospheric soil of the tested Suaeda species,
(ii) determine water and nutrient status of Suaeda species as affected by physicochemical
properties of soil, (iii) explore critical biochemical indicators of Suaeda species relevant to
their physiological adaptation, and (v) evaluate the bioaccumulation capacity of PTEs by
Sauuda species for the future phytoremediation planning.

2. Results
2.1. Soil Physicochemical Properties

Sand was the dominant component among soil fractions with a higher silt and clay
content in soil supporting S. vermiculata (Table 1). The texture was sandy in soils support-
ing S. monoica and S. schimperi; however, it was sandy clay loam in the soil supporting
S. vermiculata. The soil supporting S. vermiculata had higher porosity (49.93%) than both
S. monoica (39.98%) and S. schimperi (43.89%). Water holding capacity in all soils was gener-
ally low (31.98–38.15%), with a relative superiority of soil supporting S. vermiculata (Table 1).

Table 1. Physicochemical analyses of the investigated soils. Shown are the means of three biological
replicates ± standard deviation.

Physicochemical Parameters S. monoica S. vermiculata S. schimperi

Soil physical properties

Particle size distribution
(%)

Sand 92.6 76.0 95.8
Silt and clay 6.9 23.3 3.7

Texture Sandy Sandy clay
loam Sandy

Water holding capacity (%) 31.98 ± 3.05 38.15 ± 3.52 35.02 ± 3.21
Porosity (%) 39.98 ± 3.53 49.93 ± 4.57 43.89 ± 3.93

Soil chemical properties

EC (dS m−1) 5.04 ± 0.55 18.37 ± 1.91 16.25 ± 1.04
pH 8.10 ± 0.44 8.65 ± 0.38 7.78 ± 0.24

CaCO3 (%) 0.55 ± 060 0.79 ± 0.66 0.79 ± 0.30
Water soluble anions

(Cmol/100 g)
HCO3

− 5.57 ± 0.60 6.35 ± 0.66 5.33 ± 0.30
Cl− 6.46 ± 0.67 13.76 ± 3.28 14.29 ± 2.29

Water soluble cations
(Cmol/100 g)

Na+ 2.51 ± 0.15 5.49 ± 0.23 4.89 ± 0.30
K+ 0.46 ± 0.09 1.10 ± 0.12 0.98 ± 0.10

Ca2+ 7.20 ± 0.39 6.15 ± 0.41 7.60 ± 0.44
Mg2+ 1.79 ± 0.08 5.66 ± 0.69 10.42 ± 0.89

143



Plants 2022, 11, 537

The tested soils were all alkaline, with pH values between 7.78 and 8.65 (Table 1). The
EC values in soils supporting S. vermiculata (18.37 dSm−1) and S. schimperi (16.25 dSm−1)
were significantly higher than soil supporting S. monoica (5.04 dSm−1) (Table 1). Further-
more, soil supporting S. vermiculata and S. schimperi had comparable levels of calcium
carbonate (0.79%), which were higher than soil supporting S. monoica (0.55%). The signifi-
cantly high EC values of soils supporting S. vermiculata and S. schimperi were associated
with higher water-soluble Cl−, Na+, and K+ ions. In addition, the high pH value of
soil supporting S. vermiculata was correlated with high soluble HCO3

− concentration
(6.35 Cmol/100 g). The soil supporting S. schimperi had about two- and six-fold greater
Mg2+ concentration (10.42 Cmol/100 g) than soils supporting S. vermiculata and S. monoica,
respectively (Table 1).

Regarding the nutrient status of the tested soils, available phosphorus in soil supporting
S. vermiculata (9.40 mg kg−1) was higher than those supporting S. schimperi (6.53 mg kg−1)
and S. monoica (8.17 mg kg−1) (Table 2). The average concentrations of K+ in rhizospheric
soils of S. schimperi, S. vermiculata, and S. monoica were 383.8, 427.8, 178.8 mg kg−1; whereas
the corresponding values were 1519.1, 1229.9 and 1441.0 mg kg−1 for Ca2+ and 1250.2, 679.4,
and 215.3 mg kg−1 for Mg2+. Soil organic elements were generally low. Carbon was not
detected in soil supporting S. monoica, recorded low value in soil supporting S. vermiculata
(0.23%), and was relatively high in soil supporting S. schimperi (1.95%). Nitrogen and sulfur
were not detected in soils supporting S. vermiculata and S. monoica and showed low values
in soil supporting S. schimperi (0.18 and 0.47%, respectively).

Table 2. Total organic elements, available inorganic nutrients, and available sodium in the soil surface
layer of the studied locations. Shown are the means of three biological replicates± standard deviation.
ND indicates that the element was under its detection limit.

Elemental Concentrations S. monoica S. vermiculata S. schimperi

Available nutrients
(mg kg−1)

P 8.17 a ± 0.38 9.40 a ± 0.44 6.53 b ± 31
K 178.8 b ± 6.2 427.8 a ± 15.4 383.8 a ± 19.0
Ca 1441.0 a ± 127.0 1229.9 b ± 114.9 1519.1 a ± 145.9
Mg 215.3 c ± 6.3 679.4 b ± 3.7 1250.2 a ± 13.3

Available Na+ (mg kg−1) 578.3 c ± 45 1262.1 a ± 124.3 1103.5 b ± 108.2

Total organic elements
(%)

C N.D. 0.23 b ± 0.07 1.95 a ± 0.19
N N.D. N.D. 0.18 ± 0.13
H 0.23 b ± 0.03 0.51 a ± 0.04 0.593 a ± 0.04
S N.D. N.D. 0.47 ± 0.03

Means followed by the same letter are not significantly different at the probability level of 5% according to LSD.

2.2. PTEs Concentration in the Tested Soils and Their Ecological Risk Assessment

Soil available contents of PTEs varied among locations and were ranked based on
their average values (mg kg−1) as Mn (18.21), Fe (7.94), Pb (4.71), Zn (3.62), Cu (2.26), Hg
(1.55), Ni (0.71), Cr (0.333), Co (0.326), and Cd (0.07) (Table 3). Soil supporting S. schimperi
had the highest levels of Cd, Co, Cu, Fe, and Mn. Meanwhile, the highest values of Cr,
Hg, and Ni were recorded in soil supporting S. monoica. The soil supporting S. vermiculata,
however, exhibited the highest Pb and Zn values. These results were greatly higher than
other reported values in Typic Torripsamment such as [35] (Cd, Cu, Fe, Mn, Ni, Pb, and
Zn), [36] (Cd, Cr, Co, Mn, and Ni), and [37] (Cd, Cu, Fe, Mn, Ni, Pb, and Zn) (Table 3).

Ecological risk assessments of PTEs in different locations are shown in Figure 1 and
are categorized into six classes to interpret the obtained contamination levels of PTEs
(Table S1, Supplementary Data). Geo-accumulation index indicated an uncontaminated
effect of Cd, Cu, Fe, Pb, and Zn in all locations (0 < Igeo < 1). Other toxic elements (Cr,
Hg, Mn, and Ni) showed slight contamination (1 < Igeo < 2). Meanwhile, Co exhibited
moderate-to-high contamination (3 < Igeo < 4) effect in the studied locations with a higher
risk in soil supporting S. schimperi.

144



Plants 2022, 11, 537

Table 3. PTEs concentration in the soil surface layer of the studied locations and in leaves of the
tested Suaeda species. Shown are the means of three biological replicates ± standard deviation. ND
indicates that the element was under its detection limit.

Toxic
Elements

S. monoica S. vermiculata S. schimperi

Concentration (mg kg−1)

Soil Plant Soil Plant Soil Plant

Cd ND ND 0.024 b ± 0.002 0.496 a ± 0.055 0.112 a ± 0.011 0.499 a ± 0.058
Cr 0.380 a ± 0.038 177.108 a ± 15.591 0.286 b ± 0.029 18.668 c ± 2.272 ND 50.166 b ± 5.262
Co 0.279 b ± 0.028 6.734 a ± 0.662 0.121 c ± 0.012 5.032 b ± 0.526 0.577 a ± 0.057 3.516 c ± 0.377
Cu 2.070 b ± 0.391 75.125 a ± 7.873 2.160 b ± 0.743 17.040 b ± 1.635 2.566 a ± 0.056 19.488 b ± 2.002
Fe 5.019 c ± 0.441 902.942 c ± 85.291 8.147 b ± 0.762 1286.0 b ± 113.4 10.643 a ± 1.082 2038.4 a ± 188.6
Hg 1.813 a ± 0.155 ND 1.367 b ± 0.123 29.229 a ± 2.545 1.456 b ± 0.147 16.871 b ± 1.132
Mn 11.884 b ± 0.295 146.304 b ± 15.319 13.511 b ± 0.576 102.29 c ± 11.52 29.237 a ± 1.2211 166.053 a ± 14.973
Ni 1.623 a ± 0.056 16.852 a ± 1.981 0.441 b ± 0.020 4.518 b ± 0.503 0.066 c ± 0.013 5.964 b ± 0.654
Pb 3.812 b ± 0.147 ND 5.617 a ± 0.216 18.651 a ± 2.342 ND 9.918 b ± 1.119
Zn 1.992 c ± 0.069 113.735 a ± 11.109 5.633 a ± 0.071 74.080 c ± 8.148 3.233 b ± 0.063 93.904 b ± 10.077

Means followed by the same letter are not significantly different at the probability level of 5% according to LSD.

According to enrichment factor (Ef), some PTEs (Cd, Cu, Fe, Pb, and Zn) exhibited
no enrichment in all locations (0 < Ef < 1). Other elements (Cr and Mn) recorded minor
enrichment (1 < Ef < 3). Mercury (Hg) and Ni showed a moderate enrichment (3 < Ef < 5)
in soil supporting S. monoica. However, cobalt showed moderate to severe enrichment
(5 < Ef < 10) in S. monoica and S. schimperi supporting soils.

The contamination factor (Cf) index showed minor contamination (Cf < 2) of Cd, Cu,
Fe, Pb, and Zn. Moderate contamination (2 ≤ CF < 5) was observed with Cr (S. monoica
and S. vermiculata supporting soils), Co (S. vermiculata supporting soil), Hg (S. vermiculata
and S. schimperi supporting soils), and Mn (S. monoica and S. vermiculata supporting soils).
Some PTEs reached significant contamination (5 ≤ CF < 20) including Co (S. monoica and
S. schimperi supporting soils), Hg (S. monoica supporting soil), Mn (S. schimperi supporting
soil), and Ni (S. monoica supporting soil).

Ecological risk index (E
i
r

) pointed to a low risk of most PTEs (Cr, Cu, Fe, Mn, Ni, Pb,

and Zn) in all locations (E
i
r

< 40). In contrast, Hg showed a high risk (160≤ E
i
r

< 320) in all

locations given its high toxicity coefficient (40). Meanwhile, Cd and Co exhibited moderate
to considerable risk with higher values in S. schimperi supporting soils. The combined effect
of PTEs hazard was explored using a modified degree of contamination and pollution load
index. The modified degree of contamination showed low contamination (1.5 ≤mCD < 2.2)
with S. vermiculata supporting soil. However, S. monoica and S. schimperi supporting soils
recorded moderate contamination (2.2 ≤ mCD < 4.4). Conversely, the pollution load index
revealed an unpolluted effect (0 < PLI ≤ 1) of soils in the studied locations (Figure 1).

2.3. PTEs Concentration in the Tested Suaeda Species

To gain insights into the PTEs transport to the aerial parts of Suaeda plants, the cellular
concentrations of PTEs in leaves of the tested Suaeda species were analyzed and compared
(Table 3). Values of PTEs (mg kg−1) averaged as: Cd (0.50), Cr (81.98), Co (5.09), Cu (37.22),
Fe (1409.15), Hg (23.05), Mn (138.22), Ni (9.11), Pb (14.28), and Zn (93.91). Suaeda. monoica
showed the highest concentrations of Cr, Co, Cu, Ni, and Zn. Suaeda schimperi; however,
had the highest values of Cd, Fe, and Mn. Meanwhile, S. vermiculata exhibited the highest
values of Hg and Pb.
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Figure 1. Ecological risk assessment indices of TEs in different soils supporting the tested Suaeda
species: (a) geo-accumulation index; (b) enrichment factor; (c) contamination factor; (d) potential
ecological risk index; (e) modified degree of contamination; and (f) pollution Load Index. SM:
S. monoica, SV: S. vermiculata, and SS: S. schimperi.

Our calculations of the bioaccumulation factors (BCR) of PTEs of the tested Suaeda
species revealed high BCR values that ranged between 3.3 and 466.1 (Figure 2). These
findings illustrated the potential utilization of these plants as phytoextractors since values
greater than 1.0 pointed to hyperaccumulating plants; however, values below 1.0 are
indicative of excluder plants. Chromium (Cr) showed the highest bioaccumulation among
PTEs, but Pb showed the lowest value.
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Figure 2. Bioaccumulation index of the tested Suaeda species. Values were calculated by dividing the
metal concentration in Suaeda species by its corresponding concentration in rhizospheric soil. Plants
with values higher than 1.0 are considered phytoextractors.

2.4. Levels of Inorganic and Organic Nutrients in Leaves of the Investigated Suaeda Species

Leaves of the tested Suaeda species varied significantly in their content of inorganic
minerals (Table 4). Both S. monoica (1.485 mg g−1) and S. schimperi (1.275 mg g−1) contained
significantly higher P than S. vermiculata (0.452 mg g−1). Meanwhile, Ca2+ concentrations
in Suaeda species were comparable (10.38–12.63 mg g−1). Likewise, Mg2+ concentrations
were relatively similar in S. schimperi and S. vermiculata (6.63 mg g−1), and both were
significantly higher than S. monoica (4.99 mg g−1). The concentrations of K+ were 10.04,
12.69, 10.55 mg g−1 DWT in leaves of S. monoica, S. vermiculata, and S. schimperi, respectively,
whereas their corresponding concentrations of Na+ were 11.01, 17.84, and 16.19 mg g−1

DWT. Given the accumulation patterns of both Na+ and K+ in the tested species, S. schimperi
had the highest Na+/K+ ratio (1.536), whereas S. monoica had the lowest ratio (1.097).
S. vermiculata had intermediate Na+/K+ ratio (1.407). Suaeda monoica had greater leaf C
content (332.6 mg g−1) than S. schimperi (265.16 mg g−1) and S. vermiculata (245.76 mg g−1).
Similarly, S. monoica and S. schimperi had total leaf N of 32.04 mg g−1 and 29.79 mg g−1,
respectively, and both were significantly higher than S. vermiculata (11.96 mg g−1) (Table 4).
Given the observed differences in their total leaf C and N, the tested Suaeda species differed
significantly in their C/N ratio. Suaeda vermiculata had the highest C/N ratio (20.99),
whereas both S. monoica and S. schimperi had C/N values of 10.24 and 9.09, respectively.
Leaves of S. monoica and S. vermiculata had relatively similar levels of Sulfur (S), whereas
its level in S. schimperi was below the detection limit.

Table 4. Elemental concentration in leaves of the tested Suaeda species (mg g−1 DWT). Shown are the
mean values of three biological replicates. ND indicates that the element was under its detection limit.

Elements Concentration
(mg g−1 DWT) S. monoica S. vermiculata S. schimperi

P 1.485 a ± 0.156 0.452 c ± 0.126 1.275 b ± 0.130
Ca 10.38 b ± 1.15 10.82 ab ± 1.22 12.63 a ± 1.27
Mg 4.99 b ± 0.51 6.51 a ± 0.71 6.74 a ± 0.63
K 10.04 b ± 0.87 12.69 a ± 1.33 10.55 b ± 1.19

Na 11.01 b ± 1.15 17.84 a ± 1.85 16.19 a ± 1.75
Na/K ratio 1.097 ± 0.045 1.407 ± 0.002 1.536 ± 0.009

C 322.56 a ± 33.22 245.76 b ± 24.58 265.16 b ± 24.25
N 32.04 a ± 3.65 11.96 c ± 1.60 29.79 b ± 4.03
S 0.377 a ± 0.031 0.357 a ± 0.025 N.D.

C/N ratio 10.07 20.55 9.09
Means followed by the same letter are not significantly different at the probability level of 5% according to LSD.

147



Plants 2022, 11, 537

2.5. Variation in Photosynthetic Pigments and Carbohydrate Synthesis

Because of their importance as functional and responsive traits to salinity conditions,
photosynthetic pigments were measured and compared among species (Figure 3). Suaeda
schimperi leaves contained the highest concentration of Chl a (0.84 mg g−1 FWT), whereas
S. vermiculata had the lowest (0.30 mg g−1 FWT) among species. Suaeda monoica had
intermediate Chl a concentration (0.54 mg g−1 FWT). Relatively comparable statistical
relations were obtained for Chl b and total Chl (Figure 3A). Our analysis of carbohydrate
residues revealed consistently higher mean values of total soluble sugars (TSS), sucrose,
starch, and total carbohydrates in S. monoica than the other two species. Suaeda schimperi
maintained the lowest mean values of carbohydrate residues among species (Figure 3B).
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Figure 3. Leaf photosynthetic pigments and C assimilation: (A) Photosynthetic pigments: Chlorophyll
a (Chl a), Chlorophyll b (Chl b), Total Chlorophyll (Tot. Chl); (B) Carbohydrates: Total soluble sugars
(TSS), sucrose, starch, total carbohydrates. Shown are the mean values of three biological replicates.
Means with the same letter are not significantly different at the probability level of 5% according to
LSD. SM: S. monoica, SV: S. vermiculata, and SS: S. schimperi.

2.6. Changes in Total Soluble Proteins and Amino Acid Profiles

The tested species varied significantly in their soluble proteins and amino acids content.
Suaeda monoica had greater leaf soluble protein (12.61 mg g−1 DWT) than S. schimperi
(8.30 mg g−1 DWT) and S. vermiculata (6.65 mg g−1 DWT) (Figure 4A). Clear differences in
leaf total amino acids were noted among species. Suaeda monoica (83.10 mg g−1 DWT) and
S. schimperi (73.32 mg g−1 DWT) had more than two-fold greater total amino acids than
S. vermiculata (30.29 mg g−1 DWT) (Figure 4A). No qualitative differences were observed in
amino acid profiles among species, yet significant differences in the relative contribution
of each amino acid to the amino acids pool of the tested species were noted (Figure 4B).
Suaeda vermiculata consistently had the lowest concentrations of individual amino acids
among species. Compared to its individual amino acid concentrations, the fold change
of the corresponding amino acids ranged from 2.2 to 6.0 in S. monoica and from 2.05 to
4.0 in S. schimperi. Glutamic and aspartic acids dominated the amino acid pool across
species. Suaeda monoica and S. schimperi had a relatively similar ranking pattern of amino
acids within the pool; however, such a pattern was significantly disturbed in S. vermiculata.
Interestingly, S monoica accumulated significantly higher proline (4.71 mg g−1 DWT) than
S. schimperi (4.15 mg g−1 DWT) and S. vermiculata (1.68 mg g−1 DWT). These findings
were coordinated with similar results of phenylalanine in S. monoica (4.62 mg g−1 DWT),
S. schimperi (3.95 mg g−1 DWT), and S. vermiculata (1.49 mg g−1 DWT) (Figure 4B).
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2.7. Alterations in Oxidative Stress and Antioxidants Secondary Metabolites

Lipid peroxidation (Malondialdehyde, MDA) and H2O2 were monitored to test
salinity- and PTEs-induced oxidative stress in Suaeda species (Figure 5). Measurements
of leaf MDA revealed unexpectedly greater MDA concentration (15.55 nmol g−1 FWT) in
S. schimperi than S. monoica (4.20 nmol g−1 FWT) and S. vermiculata (2.42 nmol g−1 FWT)
(Figure 5A). Such responses were associated with significantly higher H2O2 values in
S. schimperi (1.16 µmol g−1 FWT) than S. monoica (0.23 µmol g−1 FWT) and S. vermiculata
(0.12 µmol g−1 FWT) (Figure 5A). The corresponding differences in the cellular levels
of antioxidants such as total phenolics, flavonoids, carotenes, betacyanin, and reduced
glutathione, were also measured and compared. Our analysis revealed great differences
among Suaeda species, with S. vermiculata being the lowest in flavonoids and phenolic
levels (Figure 5B). Compared to S. vermiculata, S. monoica and S. schimperi had about 2.69-
and 7.25-fold higher flavonoids and 3.0- and 8.3 -fold higher phenolics, respectively. Simi-
larly, S. vermiculata had significantly lower carotenoids (0.09 mg g−1 FWT) than S. monoica
(0.14 mg g−1 FWT) and S. schimperi (0.25 mg g−1 FWT) (Figure 5C). It also had significantly
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lower reduced glutathione (0.67 mmol g−1 FWT) than S. schimperi (0.98 mmol g−1 FWT)
and S. monoica (1.28 mmol g−1 FWT). On the other hand, S. monoica had significantly lower
betacyanin (0.69 mg g−1 FWT) than both S. vermiculata (4.42 mg g−1 FWT) and S. schimperi
(17.40 mg g−1 FWT) (Figure 5C).
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(C) antioxidant pigments (carotenoids and betacyanin). Shown are the mean values of three biological
replicates. Means with the same letter are not significantly different at the probability level of 5%
according to LSD. SM: S. monoica, SV: S. vermiculata, and SS: S. schimperi.

2.8. Correlation among the Tested Physiological Responses

In order to assess the correlation among the various physiological attributes with the
studied Suaeda species, we subjected a matrix of the determined parameters to principal
component analysis (PCA). Suaeda schimperi was segregated in the upper right side of the
PCA plot, where it showed a correlation to H2O2, MDA, total flavonoids, total phenolics,
and total chlorophyll. However, S. monoica was separated on the lower right side and
revealed a close correlation to sucrose, starch, TSS, leaf C, and total soluble proteins. On
the other hand, S. vermiculata was segregated in the lower left side of the PCA plot and
showed a close correlation to leaf K and leaf C/N ratio (Figure 6).
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Figure 6. Biplot of principal component analysis of the monitored physiological attributes in the
tested Suaeda species. SM: S. monoica, SV: S. vermiculata, and SS: S. schimperi. Abbreviated parameters
are TSS: total soluble sugars, T. chl: total chlorophyll, T.AA: total amino acids, MDA: Malonaldehyde,
TF: total flavonoids, Tph: total phenolics, and TSP: total soluble protein.

3. Discussion

The hyper-arid climate of the eastern coast of the Red Sea aggravates the high salinity-
and PTE-induced deteriorative effects on the physiology of halophytes in the region, in-
cluding Suaeda species. Such harmful effects are predicted to be more intense under climate
change scenarios. The successful adaptation of Suaeda plants in such harsh environments
reflects unique physiological, biochemical, and cellular adjustments that enable them
to overcome salinity-induced constraints such as severe ionic, osmotic, and oxidative
stresses [38]. Therefore, targeting these plants in their saline natural habitats is critical for
a better understanding of their tolerance against salt stress. Herein, three Suaeda species
that are genetically related but naturally distributed in different salt marshes in the region
were selected to investigate their possible distinctive physiological adaptation against
physicochemical properties of the rhizospheric soil in their natural habitats.

3.1. Soil Physicochemical Properties and the Relative Magnitudes of Salt Stress Imposed on the
Investigated Suaeda Species

Soils supporting the investigated Suaeda species had relatively similar physical features
(Table 1), which may not impose significant restrictions on their root growth. The tested
soils also had low WHC values, which were correlated with high sand content that usually
exhibits small cohesion forces to hold water molecules against gravity [39]. The relatively
high WHC in soils supporting S. vermiculata and S. schimperi is attributed mainly to their
high silt and clay and organic matter content, respectively (Table 1).

The rhizospheric soils of S. vermiculata and S. schimperi had significantly higher EC
than that of S. monoica (Table 1). The high EC values in the tested arid saline habitats are
attributed mainly to the synergistic interplay among the harsh metrological data in the
region (high temperature, low rainfall, and increased evapotranspiration). The increased
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rate of evapotranspiration enhances the upward movement of water and its dissolved
salts, which accumulate in the soil surface layers leading to hypersaline conditions and the
observed white crust during summer [40]. The higher alkaline value of soil supporting
S. vermiculata (8.65) is mainly correlated with the relatively higher silt and clay content of
the soil, which encourages binding of metal ions (Na+ in particular) with a high potential of
NaH2CO3. Signs of that are the higher water-soluble Na+ and HCO3

− concentrations in soil
supporting S. vermiculata. The obtained EC values of the rhizospheric soil are equivalent
to NaCl concentrations that are beyond the stimulatory concentrations of most Suaeda
species [41]. This higher EC value of soil supporting S. vermiculata is also attributed to its
higher silt and clay content, which retains higher amounts of salts onto the soil matrix. The
strong variations in EC, Na+, and Cl− among the tested rhizospheric soils indicate that
the tested species experience different magnitudes of salt stress. The high soluble Mg2+

concentration in soil supporting S. schimperi is mainly due to its closeness to the Red Sea
coast. The high colloidal content of soil supporting S. vermiculata maintained its sorption
capacity of soluble ions (HCO3

−, Na+ and K+).
Most soils under the tested Suaeda species are deficient in C, (<5%) N (<280 kg ha−1),

and S (<10 mg kg−1) [42] (Table 2). Alike, phosphorus concentration showed low values
according to soil fertility standards. Such soil nutrient deficiency could reduce leaf nutrient
contents and thus may exacerbate the deleterious physiological effects of salinity. Along
with the above differences in soil salinity, the rhizospheric soils exhibited qualitative and
quantitative differences in the composition of the PTEs pool (Table 3). The soil supporting
S. schimperi had the highest Co values, whereas soil supporting S. monoica showed the
highest Hg content. The high levels of these elements might be derived from various
anthropogenic activities developed along the east coast of the Red Sea.

The complex interplay between these PTEs and salinity interferes with the uptake and
transport of essential elements (nutrients) and/or PTEs [38,43,44] and thus affects their
cellular levels in the tested species (Table 3). Values of most PTEs showed higher levels
(mg kg−1) than those justified by standard regulatory bodies (WHO, FAO, and EPA): Cd
(0.01), Cr (1.3), Cu (10), Fe (425), Ni (10), Pb (2), and Zn (100) [37]. Such high values of PTEs
suggest a potential use of these plants for phytoremediation purposes rather than their
utilization in human/animal nutrition [24,38]. Signs of that are the high bioaccumulation
indices of PTEs since the studied halophytes exhibited outstanding hyperaccumulating
potentials with BCR values ranging between 3.3 and 466.1 (Figure 2). These results suggest
that the investigated Suaeda species can be used as efficient biological tools for PTEs
phytoremediation in contaminated soils. The higher bioaccumulation factor of Cr could be
due to the negative charge of chromate ions, which are weakly bound onto soil colloids
and are easily taken up by plants.

3.2. Utilization of Inorganic Ions as “Cheap” Osmotoica in the Tested Suaeda Species

Accumulation of inorganic salts as energy cost-effective osmotica is a relevant strategy
of salt tolerance in many halophytes [45,46]. In the current study, the tested species accu-
mulated high levels of cations, particularly Na+ and K+ (Table 4). The active transport of
such high levels of inorganic salts to leaves of the tested species may indicate a constitutive
mechanism for osmotic adjustment [46]. Consistent with that, a significant contribution of
the transported ions in the aerial parts to salt tolerance in S. fruticosa has been reported [47].
Although dicots are known for their active transport of Na+ to their aerial shoot, main-
taining a balanced Na+/K+ ratio in the cytoplasm is an important mechanism for salt
tolerance because of the interference of Na with K uptake/accumulation and its disruptive
effects on protein synthesis and activities of several cytoplasmic proteins [45,48]. In the
current study, S. monoica had the lowest Na+/K+ ratio among species (Table 4), suggesting
a pronounced role of such a low Na/K ratio in salt tolerance in this species similar to other
halophytes such as Limoium species [46]. Suaeda schimperi and S. vermiculata accumulated
higher Mg concentration than S. monoica suggesting a role of Mg in salt tolerance in these
two species, possibly via interference with mRNA translation and consequently protein
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synthesis. Similar findings have been reported in other halophytes such as Atriplex isatidea
and Inula crithmoides [49]. Interestingly, leaves of S. schimperi and S. monoica had signif-
icantly higher phosphorus than S. vermiculata. Along with being a major component of
many primary and secondary cellular molecules [46], P has been implicated in improving
salt tolerance via improving physiological mechanisms that promoted the full recovery of
stressed plants [50]. It is worth mentioning that the tested species maintained relatively
similar levels of Ca2+, which is known for its role in maintaining Na+ and K+ homeostasis
via the Salt Overly Sensitive pathway [51].

The observed variation in elemental concentration in leaves of the tested species was
associated with their known succulence, particularly in S. vermiculata, which had more
succulent leaves than the other two species (Figure S1). The succulence phenotype in
S. vermiculata was associated with its higher foliar Na+ level. These results are consistent
with those of [52], who indicated that Na+ contributes significantly to succulence phenotype.
In addition, its higher foliar ionic content can contribute to building up a gradient in the
osmotic potential, which allows S. vermiculata to take up more water to secure efficient
osmotic adjustment to overcome the low external water potential. The differences in leaf
succulence among the tested species may reflect comparable differences in cell size at the
tissue level as well as leaf anatomy [52]. Many succulents are described as salt accumulators
and are considered the most salt-tolerant because of their succulence, which enables them
to have higher vacuolar concentrations of Na+ and Cl− than external concentrations and
to avoid desiccation in dry soil [53]. Succulent species with high leaf C may improve the
energy returns from carbon investment for cellular components favoring salt tolerance.

3.3. Relative Physiological Responses of the Tested Suaeda Species in Response to Their
Soil Microenvironment

The variation in soil salinity and PTEs in the current study area are expected to
negatively impact most aspects of plant growth and physiology. The tested species dif-
fered significantly in their C assimilation and its related physiological traits. Despite
the superiority of S. schimperi in photosynthetic pigments (Chl a, Chl, b, and total Chl.;
Figure 3A), S. monoica tended to have consistently higher averages TSS, sucrose, starch,
total carbohydrates, and total leaf C than the other two species (Figure 3B, Table 4). The
higher carbohydrates and C accumulation in S. monoica may reflect its higher efficiency
in C assimilation/sequestration and can be attributed to several reasons: its higher leaf
N and leaf P (Table 4), which are critical nutrients for gas exchange and C assimilation
as well as other cellular fundamental activities [53]. A positive correlation between the
foliar leaf N and/or P and photosynthetic efficiency as well as the greater stochiometric
homeostasis of leaf N in N-deficient soils have been reported [53,54]. According to the PCA
and correlation analyses, a significant positive correlation (r ≈ 0.99) was recoded between
leaf N with leaf P and total amino acids (Table S3, Supplementary Data). Likewise, leaf
C/N exhibited a significant positive correlation with leaf P and total amino acids (0.96
and 0.90, respectively). Furthermore, the inappreciable levels of Cd, Hg, and Pb in leaves
of S. monoica (Table 3) can have a positive cumulative effect on the efficiency of carbohy-
drates accumulation. In contrast, the high Cd and Hg in S. vermiculata and S. schimperi
can significantly reduce their photosynthetic activity. For example, Cd forms mercaptide
with the thiol group of RUBISCO protein and thus hinders its activity and consequently
suppresses their photosynthetic efficiency, which explains their reduced carbohydrates
accumulation [55]. It is worth mentioning that S. monoica had high levels of other PTEs such
as Cr, Cu, and Ni; however, its higher carbohydrate content may suggest that the toxicity
of these minerals was tolerated internally in S. monoica either by compartmentalization or
binding these PTEs in less toxic forms [56,57]. The relatively low carbohydrate values in
S. vermiculata and S. schimperi can be also attributed to the high salinity of their rhizospheric
soil (Table 1) as well as their relatively higher leaf Na+ (Table 4), which seems to be beyond
their optimum salt range and their ability of compartmentalization into vacuoles [29] and
thus accumulates in the cytoplasm and exerts its inhibitory biological effects [58–60]. Other
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possible reasons for the reduced carbohydrates in S. vermiculata are the reduced content
of photosynthetic pigments (Figure 3A), low leaf-N (Table 4), reduced carbon reductive
tissue area, and high foliar ABA content [61]. In fact, down regulation of carbohydrates
and other biochemical and physiological processes may be a strategy that S. vemiculata
employs to avoid the oxidative stress it encounters in its natural habitat. It is worth men-
tioning that, compared to both S. monoica and S. schimperi, S. vermmiculata had significantly
higher foliar C/N ratio (Table 4), which is an indicator on improved nitrogen use efficiency
(NUE) in N-deficient soil [62]. These results fit nicely with the adaptive growth hypothesis,
which suggests that “plants with higher C/N ratio promote NUE under strong N-limited
conditions to ensure survival priority, whereas plants with a lower C/N ratio under less
N-limited environments benefit growth priority” [15]. On the other hand, the extensive
consumption of carbohydrates for building up carbon skeletons of amino acids in S schim-
peri (Figure 4) and the severe oxidative stress (Figure 5A) it encounters partially explain its
reduced levels of carbohydrate.

The tested species exhibited significant variation in amino acid biosynthesis, which
showed a significant positive correlation with leaf P (r = 0.97) (Table S2, Supplementary
Data). Suaeda monoica and S. schimperi were more efficient in amino acids biosynthesis than
S. vermiculata (Figure 4). Suaeda monoica and S. schimperi had a relatively similar ranking of
amino acids within the pool; however, such ranking was significantly disturbed in S. vermic-
ulata (Figure 4B). Glutamic and aspartic acids dominated the amino acid pool across species,
reflecting their “housekeeping” functions in the three species. Interestingly, S monoica and
S. schimperi accumulated significantly higher foliar proline and phenylalanine contents than
S. vermiculata suggesting a potential role of proline as an important compatible osmolyte in
both S. monoica and S. schimperi but not in S. vermiculata. This is consistent with the recently
reported low proline level in shoots of S. vermiculata [28]. Proline and phenylalanine are
two critical amino acids under stress. The former is an important osmolyte in many halo-
phytes, whereas the latter is the main entry point to the phenylpropanoid pathway through
which flavonoid and phenolic compounds are synthesized [63]. Consistent with that, our
measurements of these secondary metabolites revealed significantly higher flavonoids and
phenolic in S. schimperi and S. monoica than S. vermiculata (Figure 5B). In addition, our
analysis suggests a significant positive correlation between flavonoids and total phenolics
(r = 0.97) and betacyanin (r = 0.89) (Table S3, Supplementary Data).

3.4. Relative Oxidative Stress and Antioxidants Synthesis in the Tested Suaeda Species

The tested species are exposed to oxidative stress of different severity. Suaeda schimperi
suffers the highest stress as indicated by its highest levels of MDA (Figure 5A). Such re-
sponses revealed an imbalance between the production of ROS and radical quenchers in
S. schimperi at the cellular level [64]. Such high MDA level in S. schimperi is attributed to the
high salinity of its rhizospheric soils (Table 1), its higher foliar level of H2O2 (Figure 5A),
and the simultaneous toxicity of PTEs in their leaves, particularly Hg, Cr, and Fe (Table 3).
High salinity induces ROS generation via disruption of electron transport in chloroplasts
and mitochondria and thus induces lipid peroxidation [65,66]. A higher level of H2O2
can directly induce oxidative stress because of its oxidation potential or indirectly via the
generation of highly reactive hydroxyl radicals via Fenton’s reaction in the presence of in-
creased levels of transient PTEs [67]. Unfortunately, cells do not have an enzymatic system
to detoxify such hydroxyl radicals [67]. Generation of leaf H2O2 correlates positively with
leaf contents of total flavonoids and total phenolics (r = 0.97). Further, the level of Hg in
S. schimperi leaves exceeded the toxic threshold of Hg in plants [68], thereby interfering
with mitochondrial activity and triggering ROS generation and MDA accumulation [17,38].
Mercury (Hg) can also hinder water flow in S. schimperi via binding to water channel
proteins and induction of stomatal closure [69]. Such a high level of MDA was reflected
in its relatively low TSS, sucrose, starch, and total carbohydrates but not in the level of
photosynthetic pigments suggesting that the salinity-induced oxidative stress affects photo-
synthetic activity rather than chlorophyll synthesis in S. schimperi. A positive significant
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correlation was recorded between total chlorophyll with H2O2 (r = 0.92), total flavonoids
(r = 0.97), and total phenolics (r = 0.96) (Table S3, Supplementary Data). Unlike S. schimperi,
the relatively low levels of MDA in leaves of S. vermiculata and S. monoica are attributed,
in part, to their low levels of H2O2 (Figure 5A) and to their relatively high Zn and Pb
(Table 3), which might induce antioxidant enzymes (CAT, SOD GPX) [70]. In addition, the
high succulence in these two species (Figure S1) may also minimize the detrimental effects
of salinity and PTEs and thus reduce their-induced oxidative stress. Further, the reduced
oxidative stress in S. vermiculata leaves may also be attributed to salinity-induced guaia-
col peroxidase activity and to its overall downregulated biochemical and physiological
processes (Figures 3 and 4) [28].

Suaeda vermiculata and S. schimperi accumulated 6- and 25- fold higher betacyanin
than S. monoica, respectively (Figure 5C), suggesting a possible role of this stress-related
pigment in salt tolerance in these two species. This hypothesis is supported by the reported
positive correlation between Suaeda leaf betacyanin content and both soil salinity and leaf
H2O2 [71,72]. Our results are thus consistent with the physiological roles of betacyanin
in the prevention of salt toxicity [72], acting as an osmotic pigment, antioxidant, and
protecting halophytes against the H2O2-induced protein oxidation [72]. In fact, a trade-off
between leaf chlorophyll and betacyanin for maintaining growth and survival in saline
environments has been reported in S. salsa (Li et al., 2018; Wang et al., 2007) and S. japonica
(Hayakawa and Agarie, 2010). In the current study, the high level of betacyanin (Figure 5C)
and the reduced level of all chlorophyll fractions (Figure 3A) in S. vermiculata suggest
that the betacyanin/chlorophyll trade-off scenario operates in this species to minimize
the salinity-induced ROS (Figure 5A). The obtained results also pointed to a significant
negative correlation between leaf Na+ and glutathione (r =−0.93) (Table S3, Supplementary
Data). In S. schimperi, despite its high levels of betacyanin and other measured antioxidants
(carotenoids, phenolics, flavonoids, and reduced glutathione) (Figure 5B,C), it suffered
from the highest magnitude of oxidative stress (Figure 5A). These results do not necessarily
minimize the biological significance of these compounds in salt tolerance in S. schimperi
but may rather indicate that the levels of these compounds are not sufficient to completely
neutralize the severe salinity- and PTEs-induced ROS production in S. schimperi because
of its very high saline rhizospheric soil (Table 1). In addition, these compounds may also
be involved in other salt tolerance mechanisms such as the protection of photosynthetic
pigments against degradation by salt stress in this species [73], which partially explains the
high photosynthetic pigments in S. schimperi in the current study (Figure 3A). Therefore,
S. vermiculata and S. schimperi seem to invest in betacyanin synthesis as an adaptive strategy
against the severe salinity stress they encounter in their harsh environment. In fact, the leaf
reddening phenotypes because of betacyanin accumulation can be easily recognized in these
two species. In addition, the reduced oxidative stress in S. vermiculata, regardless of the
high EC values and PTEs content in its rhizospheric soil, suggests that this halophyte may
have optimized its growth, biochemical processes, and antioxidant defense to minimize the
oxidative damage it encounters in its natural environment. This hypothesis is consistent
with a recent study, which indicated that S. vermiculata might downregulate its biochemical
and physiological processes to avoid oxidative stress [28].

4. Materials and Methods
4.1. Study Site and the Selected Suaeda Species

The current study was carried out on three Suaeda species (Suaeda monoica Forssk. ex
J.F.Gmel., Suaeda vermiculata Forssk. ex J.F.Gmel., and Suaeda schimperi Moq) that naturally
grow in salt marsh habitat on the eastern coast of the Red Sea at Al-Qunfudah Governorate
(19◦7′35.1′′ N, 41◦4′43.9′′ E), southwest of Saudi Arabia. The habitat has typical characteris-
tics of not flooded salt marshes. The region has a typical arid dry climate with a maximum
temperature of 42.6 ◦C and a minimum temperature of 21 ◦C. In addition, the tested salt
marshes receive erratic and irregular precipitation in time and quantity. Some metrological
data in the study area are illustrated in Table S2 (Supplementary Data). Suaeda monoica is
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a leaf succulent 1 m height bushy shrub, whereas both S. vermiculata and S. schimperi are
woody shrubs with tiny oval and cylindrical succulent leaves, respectively [53]. The Suaeda
species were identified according to [31].

4.2. Plants and Soil Sampling

Six homogenous medium size representative plants from each of the dominant Suaeda
species at the flowering stage in each of the selected salt marshes were marked, guarded,
and used for collection of plant material for downstream analysis. From each individual
plant, three batches of leaves (100 each) were collected, washed thoroughly with deionized
water, blotted dry, and divided into two groups. The first group was frozen immediately
in liquid N and transferred to −80 ◦C. The second group was collected in plastic bags
and brought on ice to the laboratory, where their fresh weight was recorded and then
dried in an electric oven at 70 ◦C until reaching constant dry weights. The dried leaves
were then ground into homogeneous powder using a stainless-steel grinder and used for
elemental analyses.

Soil samples were simultaneously collected with plant materials as described by [38].
The selected plants were uprooted; their roots were separated, put into sterile plastic bags,
and brought to the laboratory. Roots were gently shaken to remove loosely attaching soil
particles. Firmly root-adhering soil particles (rhizospheric soil) were air-dried at room
temperature, passed through 2 mm sieve, and stored in sterile polyethylene bags for soil
physicochemical analyses.

4.3. Soil Physicochemical and Plant Elemental Analyses
4.3.1. Soil PHYSICOCHEMICAL ANALYSES

Particle size distribution of soil was determined using sieve methods according to [74].
Water holding capacity of soil was determined using the gravimetric method, hydraulic
conductivity by Darcy’s law, and the soil porosity from the measured values of soil particle
and bulk densities calculations [75]. Soil electrical conductivity (EC) was measured using
HANNA (HI9835) EC meter in 1:2.5 soil/water extract, soil pH (1:2.5 DI water suspension)
by Jenway 3505 pH/mV/Temperature Meter and the total carbonate content (expressed
as CaCO3) using the gasometric determination following 6.0 M HCl application [76].
Water-soluble cations and anions (1:2.5 DI water extract) were determined using standard
methods [76]: Na+ using a Sherwood, flame photometer (MODEL 360), Ca2+, Mg2+, and K+

using ICP-OES Thermo Scientific™ iCAP™ 7000 Plus Series, CO3
2− and HCO3

− by titration
with a standardized H2SO4 solution and Cl− by AgNO3 titration. Total organic elements
concentration in soil (C, N, H, and S) was determined using dry combustion method by a
Thermo Scientific Flash 2000 analyzer. Available concentrations of PTEs were determined
using ICP-OES after extraction by diethylene tri-amine Penta acetic acid (DTPA).

4.3.2. Plant Analyses

Plant Elemental Analysis: Fine powdered dried leaves were used for determination
of elements such as C, N, H, and S using CHNS analyzer (Thermo Scientific Flash 2000)
following dry combustion technique. Other inorganic elements were determined using
ICP-OES in the acid-digested leaf samples. Plant samples were digested using HCl/HNO3
mixture (3:1 v/v) in a microwave digester (Milestone MLS 1200 Mega).

Leaf Water Content and Succulence: Leaf water content (LWC), relative to fresh
weight, was calculated using the equation: LWC = [100 × (leaves fresh weight-leaves dry
weight)/(leaves fresh weight)] [77]. Leaf succulence was calculated using the equation
[succulence = (leaves fresh weight − leaves dry weight)/leaves dry weight] as described
previously [78].

Chlorophyll Pigments: Photosynthetic pigments including chlorophyll a (Chl a),
chlorophyll b (Chl b), and carotenoids in 50 mg frozen leaves were extracted in 10 mL cold
aqueous acetone (80%) and their concentrations were measured spectrophotometrically at
663.2, 646.8, and 470.0 nm according to [79] and were expressed as mg g−1 FWT.
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Determination of Betacyanin: Quantities of 500 mg powdered, frozen leaves were
extracted by grinding in 20 mL cold methanol at 4 ◦C for 30 min. The homogenates were
centrifuged at 4 ◦C at 10,000 rpm for 10 min. The supernatants were discarded, and the
pellets were re-extracted in distilled water at 4 ◦C. The concentrations of betacyanin were
then measured spectrophotometrically at 538 nm and calculated using the molar extraction
coefficient of betacyanin of 5.66 × 104 [80].

Determination of Carbohydrate Fractions: Carbohydrate residues in 100 mg powdered
dry leaves were extracted in aqueous ethanol (80%). The ethanolic extracts were collected
and completed to specific volumes and used for spectrophotometric determination of total
soluble sugars (TSS) and sucrose using anthrone reagent at 620 nm [81]. Starch in sugar-
free plant residue was extracted in perchloric acid: water (6.5:1), and the liberated sugars
were then estimated using anthrone method as described previously [82]. Carbohydrate
fractions were calculated using standard curves of pure glucose and sucrose and expressed
as mg g−1 DWT.

Determination of Total Soluble Proteins and Amino Acids: Total soluble proteins
(TSP) were extracted by grinding 500 mg of frozen leaves in chilled acetone to remove
pigments [83]. TSP in dry precipitates was then extracted in Tris-HCl buffer (0.05 mM,
pH 9.0) and then determined using coomassie brilliant blue G 250 spectrophotometrically
at 595 nm [84]. TSP concentrations were calculated using bovine serum albumin standard
curve and expressed as mg g−1 DWT. Amino acid analysis was carried out using amino
acid analyzer (Biochrom 30; Biochrom Ltd., Cambridge Science Park, Cambridge, England)
as described by AOAC (2012).

Assessment of Oxidative Stress in Leaves: Lipid peroxidation and hydrogen peroxide
(H2O2) were monitored as key indicators of oxidative damage in leaves. Lipid peroxidation
was monitored as the level of malondialdehyde (MDA) using 2-thiobarbituric acid method
spectrophotometrically as described previously [85] with minor modification. Frozen leaf
tissues (500 mg) were extracted in 5 mL 10% trichloroacetic acid (w/v), and the homogenates
were centrifuged at 4 ◦C for 10 min at 4000 rpm. A total of 0.5 mL of the supernatants were
mixed with 0.5 mL of thiobarbituric acid (0.6%; w/v), and the mixtures were incubated
at 95 ◦C for 15 min, cooled on ice, and centrifuged at 4 ◦C for 10 min at 4000 rpm. The
absorbance of the pink color was measured at 450, 532, and 600 nm. The MDA concentration
was calculated using the extinction coefficient of 155 and expressed as nmol g−1 FWT. For
H2O2, 500 mg of powdered, frozen leaf tissues were homogenized in 5 mL cold phosphate
buffer (50 mM potassium phosphate, 1 mM EDTA, pH 7.5) and centrifuged at 4 ◦C for
15 min at 4000 rpm. The supernatants were then collected and used for the measurement of
H2O2 spectrophotometrically using a hydrogen peroxide assay kit (Biodiagonistic, HP 25,
Giza, Egypt) according to the manufacturer’s instructions.

Estimation of Antioxidant Substances: Powdered dry leaves (100 mg) were extracted in
acetone to remove chlorophyll, dried, and resuspended in distilled water. Total flavonoids
were measured spectrophotometrically using AlCl3 reagent and quercetin as a standard at
410 nm [86]. Total phenolics in the same aqueous extracts were determined spectrophoto-
metrically using the Folin–Ciocalteu method and gallic acid as a standard at 760 nm [87].
The concentrations of both total flavonoids and phenolics were expressed as mg g−1 DWT.
Reduced glutathione was extracted by homogenizing 500 mg of frozen leaf tissues in 5 mL
cold potassium phosphate buffer (50 mM potassium phosphate, pH 7.5, 1 mM EDTA). The
homogenates were centrifuged for 15 min at 4000 rpm and 4 ◦C. Supernatants were then
collected and used for spectrophotometric determination of reduced glutathione using
Biodiagonistic kit (GR 2511) following the manufacturer’s instructions.

4.4. Quality Control

Plant and soil measurements were carried out by an ISO/IEC 17025 accredited labora-
tory to ensure data accuracy and verification. Analytical measurements were conducted
under constant temperature (25 ± 0.5 ◦C) with standardized protocols of replication con-
trols and blanks. Deionized water (18.2 MΩ) (Nanopure water, Barnstead) was used
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for chemical solutions preparation, and all analytical grade chemical reagents (Merck-
Darmstadt, Germany) were used without further purification procedures. A certified soil
reference material (BIPEA, France) was used for optimization of soil analysis accuracy and
verification. In addition, the accuracy of inorganic element determination was verified us-
ing Thermo Fisher Scientific standard solutions (R2 ≥ 0.99). Organic elements measurement
was optimized by a BBOT standard (C26 H26 N2 SO2): carbon (72.52%), hydrogen (6.09%),
nitrogen (6.51%), and sulfur (7.44%). The recovery values of organic and inorganic elements
oscillated in the range 93.6–103.4, and the data precision was justified at maximum relative
standard deviation (RSD) value ≤ 5%. Values of limit of detection (LOD) for inorganic
elements (µg L−1) were Al (52.6), Cd (53.4), Cr (31.8), Co (37.2), Cu (20.8), Fe (46.8), Hg
(23.5), Mn (29.7), Ni (40.2), Pb (54.9) and Zn (40.9).

4.5. Statistical Analysis

ANOVA analysis for the studied parameters was performed using COHORT/COSTAT
software (798 Lighthouse Ave. PMB 329, Monterey, CA, USA) using the least significant
difference test (LSD) at the significance level of 95%. In addition, data (Figure 2) were also
presented in box and whisker plots using OriginPro 9.1: mean (dot), median (center line),
lower quartile (lower border of the box), and upper quartile (upper border of the box).
Pearson’s correlations coefficients were applied to study the relationships among different
physiological responses. Principal component analysis (PCA) was carried out using XLSTAT
statistical computer software package, version 14 (Addinsoft, New York, NY, USA).

5. Conclusions

The unique genetic and physiological characteristics of halophytes support their high
potential utilization as promising biological resources for improving the world’s agriculture
under climate change scenarios. This investigation deliberates on the premise that studying
biochemical and physiological features of Suaeda species in their natural environments will
support our planning for the future management of agricultural practices, especially in arid
climate conditions. The key findings of the current investigation can be summarized as:

- Suaeda species are exposed to varying levels of salinity stress along with nutrient stress
either as deficiency of essential nutrients such as N, K, P, or as elevated levels of PTEs.

- Suaeda species employ different and efficient adaptive strategies to maintain cellular
homeostasis against increased levels of salinity in their rhizospheric soils.

- The high accumulation potential of PTEs, based on the bioaccumulation index of
the tested Suaeda species, highlights their potentiality as efficient phytoextractors of
soil pollutants.

- The obtained differences among the tested Suaeda species in the current study are
driven mainly by species-specific tolerance strategies, and such specificity is shaped
by the level of salinity and the genetic constitution of halophytic species.

- In essence, the obtained results of this investigation fulfill the proposed specific
objectives and support the set hypotheses of the current study.
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Abstract: (1) Background: this study describes bioactive compounds in the following halophytes:
Sarcocornia (S. alpini, S. pruinosa, and S. perennis) and Arthrocnemum (A. macrostachyum). The material
comes from: coastal marshes in Tinto River, Guadiana River, and some interior provinces from the
Iberian Peninsula. (2) Methods: the techniques used were Folin–Ciocalteu, GC-MS, and ESI-MS/MS.
(3) Results: Five phenolic acids were found in Sarcocornia: trans-cinnamic, salicylic, veratric, coumaric,
and caffeic acids. In addition, in Arthronemum, ferulic acid was also detected. The obtained flavonoids
were cyanidin-3-O-arabinoside, luteolin-7-glucoside, dihydroquercetin, and p-coumaroyl-glucoside.
They also presented fatty acids, such as palmitic, linoleic, and oleic acids in Sarcocornia, while palmitic,
linolenic, and stearic acids were the main fatty acids in A. macrostachyum. (4) Conclusions: the high
diversity of the compounds identified confirms the relation between nutritional interest and salt
tolerance in halophytes.

Keywords: halophytes; salt tolerance; bioactive compounds; flavonoids; fatty acids

1. Introduction

The genera Arthrocnemum Moq. and Sarcocornia A.J. Scott (Chenopodiaceae/Amaranthaceae)
include succulent chamaephytes that are specialized in the colonization of saline habi-
tats. In European and North African Mediterranean territories, the following taxa occur:
Arthrocnemum macrostachyum (Moric.) K. Koch; A. meridionale Ramírez, Rufo, Sánchez-Mata,
and Fuente; Sarcocornia hispanica Fuente, Rufo, and Sánchez-Mata; and S. alpini (Lag.)
Rivas-Martínez, S. carinata Fuente, Rufo, Sánchez-Mata, and S. fruticosa (L.) A.J. Scott. In
contrast, S. perennis (Mill) A.J. Scott, S. pruinosa Fuente, Rufo, and Sánchez-Mata are limited
to the European Atlantic coasts [1–6].

The Chenopodiaceae species are generally characterized by a high content of minerals,
polyphenols, and fatty acids, among other compounds of interest. The abundance of
inorganic elements (Na+, K+, Mg2+, and Ca2+, among others) in the tissues of these plants,
together with the wide diversity of bioactive compounds, have been related to their capacity
to survive and grow in extreme environments with high salinity and long periods of intense
drought [7–10].

Arthrocnemum macrostachyum has recently been used in soil desalination programs [11]
due to its capacity to accumulate high concentrations of sodium chloride in its tissues and
hence to reduce it in the cultivation medium. El-Naker et al. [12] recorded the presence
of a wide range of phytochemical compounds in this genus and identified sixteen that
were potentially bioactive, some of which have antioxidant (quercetin, 4-hydroxybenzoic,
and caffeic acids), antiviral, antibacterial, and/or anti-tumoral properties (hesperidin,
salicylic, chlorogenic, and coumaric acids), including compounds for the treatment of
diabetes (rhamnetin).

Several species of Sarcocornia have been evaluated as edible plants due to their dif-
ferent nutritional properties, particularly including their antioxidant capacity and lipid
composition. Riquelme et al. [13] characterized different phenolic compounds in Sarcocornia
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neei (Lag.) M.A. Alonso and M.B. Crespo, such as kaempferol and quercetin, as well as
gallic, ferulic, and coumaric acids, among others. Barreira et al. [8] analyzed the fatty acid
profile of Sarcocornia spp. collected in the Algarve (Portugal) and reported a predominance
of palmitic, linolenic, and linoleic acids. These same authors also detected and quantified
greater quantities of these fatty acids in Arthrocnemum macrostachyum from the marshes of
Praia de Faro in the south of the country. The sustained implementation of the potential
of both genera as emerging quality crops began in the 1990s and has continued to the
present [14–19].

Our selection of the genera Sarcocornia and Arthrocnemum was guided by the impor-
tance and interest of halophytes in today’s agriculture. There are two factors that make
halophytes of special interest to be considered: First, their economic potential, considering
their productivity in high-salinity and low-water intake environments, and second, their
nutritional value in terms of protein, phenolic, and lipid contents, and the great quantity
of minerals such as iron, potassium, calcium, and magnesium, as well as other bioactive
compounds [8,10]. Samples of the species S. alpini, S. pruinosa, and S. perennis of the genus
Sarcocornia, which were all from the southwestern Iberian Peninsula (Spain and Portugal),
were analyzed. Within the province of Huelva (Spain), the largest number of samples
studied originated from a special area of the marshland influenced by the Tinto River. This
territory has an abundance of natural heavy metals (especially Cu, Zn, Cr, and Fe) and a
slightly acidic pH (6.27–6.35), specifically in the estuarine area that runs from San Juan del
Puerto to the river’s mouth, together with the Odiel river in the Atlantic Ocean [20,21].
Additionally, in this area, the three species of the genus Sarcocornia occupy and dominate a
large part of the vegetation of the marshes in an ecological gradient strongly marked by
the greater or lesser proximity to the sea, as well as by the dryness of the soil: S. perennis
occurs in the first vegetation band, almost constantly submerged by the tides; S. pruinosa
appears in an upper band, occasionally influenced by the tides; and, finally, S. alpini domi-
nates in soils that are further away from the tidal influence and are drier [4]. In turn, A.
macrostachyum also dominates in the southwestern Iberian region, in the driest salt marshes
with the highest saline concentration and in an ecological zone farther from the sea [22].
Additionally, samples of A. macrostachyum from the interior of the Iberian Peninsula have
also been analyzed; these substrates undergo strong summer desiccation with the outcrop
of saline efflorescence, in addition to increasing their Ca cation content [23]. It has been
proven that the greater or lesser exposure to saline conditions of halophytes in their natural
environment has an influence on the content of the bioactive phytochemicals present in
them, especially as a protection mechanism against the oxidizing agents produced in these
extreme environmental conditions [24]. There is great interest in studying the role that
compounds play in the adaptation of halophytes to these environments. Thus, the main
objective of this work was to determine the bioactive compounds (phenolic compounds
and fatty acids) in various species of Sarcocornia (S. alpini, S. pruinosa, and S. perennis) and
Arthrocnemum (A. macrostachyum) in coastal and inland saltmarshes of the Iberian Peninsula.

2. Results
2.1. Total Phenolic Compounds (TPC) and Phenolic Acids

Our values for the total phenolic compounds in the genus Sarcocornia expressed as
gallic acid equivalent (G.A.E.) were between 3.892 mg G.A.E./g plant dw (dry weight) and
3.231 mg G.A.E./g plant dw (Table 1). The phenolic acids found in the species of Sarcocornia
and Arthrocnemum were benzoic acids (salicylic and veratric) and hydroxycinnamic acids
(trans-cinnamic, caffeic, coumaric, and ferulic). All the material from the genus Sarcocor-
nia presented trans-cinnamic acid, which is the most frequent and abundant compound
(Table S1, Figures 1–3).
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Table 1. Data on the sample weight and total phenolic compounds (TPC ± SD (mg G.A.E./g plant
dw)) for dry material and humidity. Note: gallic acid equivalent (G.A.E.) and standard deviation
(SD). n = 3.

ID Sample TPC ± SD Humidity

1 S. alpini 3.611 ± 0.107 10.23%

2 S. alpini 3.569 ± 0.233 10.59%

3 S. alpini 3.778 ± 0.231 11.80%

4 S. alpini 3.480 ± 0.164 10.40%

5 S. alpini 3.430 ± 0.093 11.30%

6 S. pruinosa 3.892 ± 0.203 10.18%

7 S. pruinosa 3.879 ± 0.207 10.53%

8 S. pruinosa 3.404 ± 0.198 14.78%

9 S. pruinosa 3.453 ± 0.064 14.44%

10 S. pruinosa 3.299 ± 0.156 13.17%

11 S. pruinosa 3.231 ± 0.089 13.65%

12 S. perennis 3.407 ± 0.004 10.29%

13 S. perennis 3.420 ± 0.139 13.16%

14 S. perennis 3.460 ± 0.014 12.35%

15 A. macrostachyum 4.680 ± 0.036 10.35%

16 A. macrostachyum 4.891 ± 0.060 11.80%

17 A. macrostachyum 4.803 ± 0.096 11.36%

18 A. macrostachyum 4.220 ± 0.014 10.55%

19 A. macrostachyum 4.850 ± 0.012 13.71%

20 A. macrostachyum 4.770 ± 0.005 13.64%
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Figure 3. Chromatograms of the samples studied: phenolic acids and fatty acids in S. perennis and
A. macrostachyum (A) S. perennis sample 12. (B) S. perennis samples 13 and 14. (C) A. macrostachyum
samples 15 and 17. (D) A. macrostachyum samples 16 and 18–20.

Sample 1 of S. alpini presented veratric acid and trans-cinnamic acid with 39% of
relative content, while coumaric and caffeic acid accounted for around 10%. For S. alpini
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material corresponding to samples 2, 3, and 4, only trans-cinnamic acid was detected
between 96% and 98%.

In S. pruinosa, sample 6 had a content of 60% of trans-cinnamic acid and 39% of
veratric acid. Sample 7 contained 60% salicylic acid, 32% trans-cinnamic acid, and a
minority of coumaric acid with 4%. Samples 9 and 10 had salicylic acid between 56% and
58%, trans-cinnamic acid with 30%, and, finally, 4% coumaric acid. Sample 11 presented
62% trans-cinnamic acid and 30% veratric acid.

All the material of S. perennis presented trans-cinnamic acid between 64% and 67%,
and salicylic acid between 30% and 32%.

The total phenolic compounds in A. macrostachyum were between 4.891 mg G.A.E./g
plant dw and 4.220 mg G.A.E./g plant dw.

Sample 15 contained 59% ferulic acid, which was notable, 20% coumaric acid, 13%
veratric acid, and 5% caffeic acid. Sample 17 had a content of 56% ferulic acid, 19% coumaric
acid, 15% veratric acid, and 6% caffeic acid.

Samples 16, 18, 19, and 20 had salicylic acid and veratric acid at 30%, in addition
to caffeic acid and trans-cinnamic acid, both at 10%. These samples did not contain
ferulic acid.

2.2. Flavonoids and Hydroxycinnamic Acids

All the samples of Sarcocornia and Arthrocnemum studied contained luteolin and this
was the only flavonoid present in S. perennis. Cyanidin-3-O-arabinoside and luteolin-
7-glucoside (Table 2 and Table S3) were found in S. alpini, while S. pruinosa contained
dihydroquercetin and p-Coumaroyl tyrosine. A. macrostachyum contained dihydroquercetin
and p-Coumaroyl-glucoside. The chemical structures of these compounds are shown in
Figure S1.

Table 2. Tentative identification of flavonoids in Sarcocornia and Arthrocnemum.

Species Flavonoid Compound Experimental Mass M-H m/z MS/MS (m/z)

S. alpini, S. pruinosa, S. perennis,
A. macrostachyum Luteolin 287 285/290

S. alpini
Cyanidin-3-O-arabinoside 419 415/422

Luteolin-7-glucoside 448 446/450

S. pruinosa and A. macrostachyum Dihydroquercetin 304 303/310

S. pruinosa p-Coumaroyl tyrosine 327 322/330

A. macrostachyum p-Coumaroyl-glucoside 326 322/330

2.3. Fatty Acids

Our results show that the total proportion of saturated fatty acids in the genus Sarco-
cornia represented a mean of 61.5% relative percentage, with lower proportions of monoun-
saturated fatty acids at 2.7% (Table S2, Figures 2–4). Polyunsaturated fatty acids were at
19.20% relative percentage.

In the genus Arthrocnemum, saturated fatty acids represented a mean of 65.2% relative
percentage, monounsaturated fatty acids accounted for 7.8% relative percentage, and
polyunsaturated fatty acids were 24.1% relative percentage.

Among the saturated fatty acids, the palmitic acid was notable, which was present
between 30% and 20% relative percentage in all samples of both Sarcocornia and Arthrocne-
mum; this was also the case for stearic acid but with lower percentages between 20% and
10% relative percentage.

Lauric and myristic acids were found only in material from the genus Sarcocornia.
Lauric acid was notable in S. pruinosa, S. alpini, and S. perennis, with a relative content
of between 15% and 8% relative percentage. Myristic acid was detected in S. alpini and
S. perennis with a content of over 10% relative percentage.
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Among monounsaturated fatty acids, the study material presented oleic acid with
values between 20% and 10%, particularly in S. alpini and S. perennis.

Linoleic acid was the predominant polyunsaturated fatty acid in the genus Sarcocornia,
with values between 24% and 18% in S. alpini, 17% in S. pruinosa, and between 21% and
17% in S. perennis. This acid decreased to a relative content of 10% in A. macrostachyum.

Finally, linolenic acid was present only in S. perennis between 22% and 17%, and in A.
macrostachyum with a relative content of between 16% and 10%.

Arachidonic and behenic acids were found in all the samples of A. macrostachyum and
S. alpini, with values ranging from 15% to 5%, whereas in S. pruinosa and S. perennis, the
content varied between the different samples.

Lignoceric acid was identified in the samples of S. pruinosa and S. perennis from the
estuary of the Tinto River (samples 6, 8, 11, 13, and 14), but was absent in S. alpini. This
fatty acid was found in all the material of A. macrostachyum in proportions of between 11%
and 9% relative percentage.

3. Discussion
3.1. Total Phenolic Compounds (TPC)

Our data were within a range of 3.231 to 4.803 mg G.A.E./g plant dw in 20 samples
from different populations of Sarcocornia and Arthrocnemum in the southwest and interior
region of the Iberian Peninsula.

Other authors in localities in Portugal have reported values of 20 mg G.A.E./g plant
dw for S. alpini, of S. perennis in populations in Castro Marim, and of 49 mg G.A.E./g plant
dw for A. macrostachyum collected in Faro, notably both localities in Portugal [8].

This difference can be due to several factors related to the culture conditions of the
fresh plant, including the salt stress conditions and environmental changes. Halophytes
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live in extremely harsh environments with high salinities and UV radiation, and these
stressful conditions lead to the production of secondary metabolites such as the phenolic
compounds in different concentrations [25]. The mere fact of detecting these total phenolic
compounds emphasizes the antioxidant capacity of the halophytes in the study [26–28]
and demonstrates that Sarcocornia and Arthrocnemum have a potential food use.

3.2. Phenolic Acids

Trans-cinnamic acid was significant in the species of the genus Sarcocornia, analyzed
particularly in S. alpini and S. perennis, which were collected in the estuary of the Tinto
River and in the mouth of the Guadiana River.

Trans-cinnamic acid was very scarce in Arthrocnemum macrostachyum, with a propor-
tion of a little over 10%; the abundance of this acid differs between these genera.

Trans-cinnamic acid reduces adipogenesis and lipogenesis, emphasizing its potential
for treating obesity [29].

Salicylic acid was the predominant phenolic acid in S. pruinosa with over 55%; however,
its content ranged between 30% and 25% in S. perennis. Salicylic acid accounted for over
60% of the relative content in the material of A. macrostachyum from the Tinto River. This
acid is involved in regulating plants’ response to drought through the genetic expression
of the genes PR1 and PR2. The induction of these genes increases the accumulation of
salicylic acid as a protection mechanism at times of water stress [30].

Veratric acid was significant in the samples that were not affected by the influence
of the tides and occupied drier environments in the salt marshes. This was the case of
the populations of S. alpini and S. pruinosa in the southwest of the Iberian Peninsula,
and the populations of A. macrostachyum in the interior and southwest. Veratric acid has
antibacterial, anti-inflammatory, and anti-hypertensive activities [31].

A slightly greater diversity of phenolic acids has been shown more in A. macrostachyum
than in species of the genus Sarcocornia. There is a clear difference in the content of coumaric
acid in these genera within the Iberian Peninsula. Five out of fifteen samples of the genus
Sarcocornia (samples 1, 5, 7, 9, and 10) were identified as having a relative content between
10% and 4%, while this acid was detected in the six samples analyzed of Arthrocnemum,
with content ranging between 20% and 10%. This acid has been described in Salicornia
patula Duval–Jouve on the Iberian Peninsula, where it was determined to be infrequent, as
it was found in only two samples of the thirteen evaluated [10].

Caffeic acid is the lowest phenolic acid in the Sarcocornia material, as indicated by
other authors such as Bertin et al. [32] and Costa et al. [33], with data of 0.402 mg/g in
S. ambigua from Brazil. This acid thickens the plant cell walls and increases resistance to
the ionic toxicity of sodium and heavy metal stress [34], suggesting that the presence of
caffeic acid in these halophytes may allow them to adapt to highly saline environments.

Ferulic acid was only identified in A. macrostachyum collected in the localities of La
Rábida and Belchite, with contents of between 59% and 56%. This phenolic acid has been
described in S. ambigua [33] and Salicornia europaea L. [35]. Deng et al. (2015) observed
a positive correlation between the ferulic acid content in the cuticle of Limonium bicolor
(Bunge) Kuntze and the speed of sodium secretion, suggesting that ferulic acid is directly
involved in the secretion of salt through saline glands [36]. These glands have not been
described in species of Arthrocnemum and Sarcocornia [3,37]; however, the detection of
ferulic acid in two of our populations of Arthrocnemum may point to its implication in
certain mechanisms of tolerance to salinity.

Additionally, it has been proven that plants exposed to environments with heavy
metals produce a high diversity of secondary metabolites, such as phenolic acids [38]. In
our study, the diversity of phenolic acids found seems to correspond more closely with the
plant species used (S. alpini, S. pruinosa, S. perennis, and A. macrostachyum) rather than with
the influence of a medium with a high content of heavy metals, such as the Tinto River.
However, the subject really deserves a detailed study in this regard, especially concerning
wild plants that grow under the influence of the Tinto River in the province of Huelva.
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3.3. Flavonoids and Hydroxycinnamic Acids

All the samples of Sarcocornia presented luteolin, which was previously identified in
other Salicornioideae such as S. europaea [39].

Most flavonoids are present in plants in the form of esters, glucosides, and polymers.
The chemical structure of these flavonoids determines their range of intestinal absorption
and confers their beneficial uses for halophytes as edible plants. Glycosylation guaran-
tees selective absorption and endows these compounds with prebiotic actions [40]. The
species of Sarcocornia studied, namely S. pruinosa and S. alpini, also contained a glycosylated
flavonoid with greater molecular weight (cyanidin-3-O-arabinoside, luteolin-7-glucoside,
and dihydroquercetin). p-Coumaroyl glucose was found in Arthrocnemum. The presence
of these compounds could be explained by the fact that halophytes increase their antioxi-
dant requirements as a defense against extreme environments, forming macromolecular
antioxidants [41]. The detection of these compounds also highlights the value of their use
as edible plants.

In addition, apigenin-7-glucoside or rutin were identified in the 20 samples of the
analyzed genera Sarcocornia and Arthrocnemum from material from the Iberian salt marshes;
these two antioxidant compounds were identified in the genus Salicornia and, in the case of
rutin, are associated to its tolerance of salinity [10].

3.4. Fatty Acids

Fatty acid composition affects the ability to tolerate salt stress [42,43]. Ten different
fatty acids were found in the samples from the genus Sarcocornia and eight in Arthrocnemum.
These included saturated, monounsaturated, and polyunsaturated fatty acids that provide
halophytes an adaptive advantage, as they prevent the oxidative damage caused by the
saline stress that is habitual in these environments [24].

Our results show that the saturated fatty acid present in the highest proportion in
all species of Sarcocornia and A. macrostachyum was palmitic acid, which may account for
over 90%. Values of 20% were found in other species of Sarcocornia, such as S. ambigua [44]
and in Arthrocnemum from Tunisia, with a content of between 19% and 11% [45]. Stearic
acid was another important acid that was present in all the halophyte samples studied,
with values ranging from 19% to 5%. Other authors have reported similar results between
18% and 12% in Sarcocornia from Alcochete in Portugal [46]. Custodio et al. [47] identified
6% stearic acid in A. macrostachyum, which was also collected in Faro, Portugal. These
bioactive compounds prevent the development of cardiovascular disorders, reduce insulin
resistance, and strengthen the immune system [48].

No palmitoleic acid was found in the material from Sarcocornia and Arthrocnemum
in our study. This monounsaturated fatty acid has been identified by other authors in S.
perennis and S. alpini from Portugal, with values of between 21% and 17% [8]. These authors
describe a content of between 6% and 4%, while Custodio et al. [47] reported values of
between 11% and 4% in A. macrostachyum from Portugal.

There was a notable content of polyunsaturated fatty acids, specifically linoleic and
linolenic acid. in S. perennis and A. macrostachyum, with a content of between 22% and 7%,
which was much higher than the value described by Barreira et al. [8] in S. perennis, namely
between 2% and 0.81%. This group of fatty acids have been considered the most important
compounds against saline stress and their action has been proposed as an antioxidant [49].
Polyunsaturated fatty acids are bioactive compounds with antifungal activity, in addition
to inhibiting carcinogenesis and the progression of atherosclerosis [50].

Long-chain fatty acids, such as arachidonic, behenic, and lignoceric acid, have content
values of 17% in the species studied from the genus Sarcocornia; these values are higher
than those published by Barreira et al. [8], who reported data between 11% and 4% for S.
perennis and S. alpini, for populations from Portugal.

In A. macrostachyum, long-chain fatty acids had a relative content of over 15%, notably
higher than the values published by Barreira et al. [8] and Custodio et al. [47] for the same
species in Portugal.
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3.5. Nutritional Importance and Future Implications

Halophytic plants of the Salicornioideae subfamily are known as “sea asparagus”,
“glasswort”, “samphire”, and “pickleweed” [51,52]. The plants most consumed as gourmet
foods are those annual species of the genus Salicornia, especially those named under S.
europaea, which may include other species given the taxonomic complexity of this group [53].
In fact, the difficulty of distinguishing between these types of plants has led many European
markets and restaurants to use these halophytes as a mixture of several species, both annual
and perennial [18,51].

Perennial halophytes, such as some species of the genera Sarcocornia and Arthrocnemum
(evolutionarily close to Salicornia), have also shown to possess interesting nutritional
properties for consumption [8,14,19]. Sarcocornia and Arthrocnemum produce succulent
shoots which can be used for food as green leafy vegetables, as fresh ingredients for salads,
and for spicing or substituting salt considering their great sodium amounts [48].

In our study, we analyzed the phenolic compounds and fatty acids of perennial
plants of the genera Sarcocornia (S. alpini, S. perennis and S. pruinosa) and Arthrocnemum
(A. macrostachyum), reaffirming that they are halophytes that also present properties with
authentic nutritional potential for its consumption (potential foods with antioxidant proper-
ties, contribution of essential fatty acids for the human diet, etc.). The selective introduction
of these underused species in markets and in traditional and healthy cuisine represents a
future challenge to be implemented.

4. Materials and Methods
4.1. Materials

The material was collected in the southwest of the Iberian Peninsula in several locali-
ties in the Tinto River basin, such as La Rábida, San Juan del Puerto, and the river estuary.
Samples were also collected in localities in the mouth of the Guadiana River (Ayamonte
and Castro Marim) and in other points of southeast Portugal (Tavira and Santa Luzia). Salt
marshes in Madrid and Zaragoza were selected from the interior of the Iberian Peninsula.

Table 3 shows the data for each of the species studied and fresh plants were collected
as follows: Upon reception, a portion of fresh plants was stored in airtight plastic bags
(anaerogen TM 3.5 L, Thermo Scientific, Waltham, MA, USA) for one day until its analyses
were performed. Then all material were dehydrated in a recirculated air stove (MEMMERT)
to 100 ◦C for six hours for the subsequent analysis of the bioactive compounds: Sarcocornia
alpini (1–5), Sarcocornia pruinosa (6–11), Sarcocornia perennis (12–14), and Arthrocnemum
macrostachyum (15–20).

4.2. Methods
4.2.1. Determination of Humidity

Humidity was determined by drying in an oven (984.25-AOAC, 2005): 5 g of dried
samples were weighed in previously dried and tared capsules, and it was placed in a dryer.
The samples were placed in a recirculated air stove (MEMMERT) to 100 ◦C for six hours
until the elimination of the water present in the sample (constant weighing).

4.2.2. Preparation of Methanol Extract

Five hundred milligrams of dried plant sample were extracted with a solution of
40 mL of methanol at 25 ◦C. It was kept in magnetic stirring for 60 min. The extracts were
filtered using a Whatman No. 4 filter. The solid residue was recovered and extracted with
40 mlf of methanol. The extracts were filtered again, combined, and evaporated (35 ◦C
under vacuum of the methanolic extracts). Redissolve with methanol to obtain a 30 mg/mL
of extract solution, from which different dilutions were made (from 0.03125 mg/mL to
16 mg/mL), was conducted. The extractions were performed in triplicates and were stored
at 4 ◦C until the execution of the analyses.

171



Plants 2021, 10, 2218

Table 3. Data on the material: geographic locations, collection date, and MGRS (Military Grid Reference System) of the S.
alpini, S. pruinosa, S. perennis, and A. macrostachyum samples from the Iberian Peninsula (Spain and Portugal).

ID Sample Geographic Location Collection Date MGRS
Coordinates

1 S. alpini Spain, Huelva, and San Juan del Puerto 15 December 2017 29SPB9230

2 S. alpini Spain, Huelva, and La Rábida 17 July 2018 29SPB8320

3 S. alpini Spain, Huelva, and Ayamonte 18 July 2018 29SPB4122

4 S. alpini Portugal and Esteiro de Carrasqueira 18 July 2018 29SPB3918

5 S. alpini Spain, Huelva, San Juan del Puerto, and
saltmarshes of the “Embarcadero de Buitrón” 7 August 2019 29SPB9031

6 S. pruinosa Spain, Huelva, and Tinto river estuary 14 December 2017 29SPB8220

7 S. pruinosa Portugal, Tavira saltmarshes, and Santa Luzia 18 July 2018 29SPB1906

8 S. pruinosa Spain, Huelva, and Punta del Moral 18 July 2018 29SPB4717

9 S. pruinosa Spain, Huelva, and Odiel saltmarshes 7 August 2019 29SPB7926

10 S. pruinosa Spain, Huelva, and La Rábida 17 July 2018 29SPB8320

11 S. pruinosa Spain, Huelva, Odiel River, and “Cabeza Alta” 14 December 2017 29SPB8024

12 S. perennis Portugal, Tavira saltmarshes, and Santa Luzia 18 July 2018 29SPB1806

13 S. perennis Spain, Huelva and Tinto river estuary 14 December 2017 29SPB8220

14 S. perennis Spain, Huelva and Punta del Moral, 18 July 2018 29SPB4717

15 A. macrostachyum Spain, Zaragoza, and Belchite 19 January 2017 30TXL8875

16 A. macrostachyum Spain, Madrid, and Colmenar de Oreja 11 July 2018 31TVK5143

17 A. macrostachyum Spain, Huelva, and La Rábida 15 December 2017 29SPB8320

18 A. macrostachyum Portugal, Marismas de Tavira, and Santa Luzia 18 July 2018 29SPB1906

19 A. macrostachyum Spain, Huelva, San Juan del Puerto, and
saltmarshes of the “Embarcadero de Buitrón” 7 August 2019 29SPB9131

20 A. macrostachyum Spain, Huelva, and Ayamonte 18 July 2018 29SPB4218

4.2.3. Total Phenolic Compounds (TPC)

The total phenolic content was determined by the Folin–Ciocalteu method [54] using
gallic acid as the recommended standard [55]. An 0.5 mL of aliquot of methanolic extract
was taken from the extracts obtained previously and 2.5 mL of the Folin–Ciocalteu reagent
was added and left to react for 3 min. Then, 2 mL of Na2CO3 solution was added and mixed
in a Heidolph shaker (Berlin, Germany). The solution was incubated at a temperature
of 40 ◦C and stored in the dark for 1 h. The absorbance was measured at 765 nm with a
spectrophotometer and the results were expressed as gallic acid equivalents (G.A.E.).

4.2.4. Gas Chromatography Coupled with Mass Spectrometry (GC-MS) for Phenolic and
Fatty Acid Analysis

Chromatographic separation was performed as follows: Methanol extracts were
brought to dryness in a Rotavapor Fischer rotary evaporator (USA) and later in the Telstar
lyophilizer (Barcelona, Spain). The amount of the total sample obtained was weighed.
The samples were then subjected to derivatization with a 0.2 N methanolic solution of
m-trifluoromethylphenyl trimethylammonium hydroxide Meth Prep II (Fisher, Loughbor-
ough, UK). This one-step reagent simplifies the transesterification of triglycerides to methyl
esters. In total, 5 µL was injected into GC/MS Agilent 6120 (Santa Clara, CA, USA). All
standards were from Sigma Aldrich (Sant Louis, MI, USA) at ≥95.0% (HPLC).

The chromatography-mass spectrometry was carried out with the Interdepartmental
Research Service at the Universidad Autónoma de Madrid (UAM).
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4.2.5. High-Performance Liquid Chromatography-Electrospray Ionization Mass
Spectrometry (HPLC-MS/ESI) for Flavonoid and Hydroxycinnamic Acid Analysis

Flavonoids were determined using a HPLC-MS/ESI Agilent 1100 (Santa Clara, CA,
USA) in a C20 column ACE 3 C18 PFP, 150 mm × 4.6 mm, which was maintained at 35 ◦C.
The solvent system used was a gradient of water (solvent A) and formic acid 0.1% (solvent
A), and the acetonitrile and formic acid 0.1% (solvent B) as follows. For solvent A: 0 min,
96% of solvent A; 10 min, 90% of solvent A; 20 min, 80% of solvent A; 35 min, 60% of
solvent A; 40 min, 40% of solvent A; 45 min, 40% of solvent A; 55 min, 96% of solvent A;
and 60 min, 96% of solvent A. For solvent B: 0 min, 4% of solvent B; 10 min, 10% of solvent
B; 20 min, 20% of solvent B; 35 min, 40% of solvent B; 40 min, 60% of solvent B; 45 min,
60% of solvent B; 55 min, 4% of solvent B; and 60 min, 4% of solvent B. The flow rate was
0.5 mL/min and runs were monitored with an ESI detector set at 280 nm (phenolic acids)
and 360 nm (flavonols) for a total chromatogram time of 50 min. The fragmenter worked
with 100 V. The drying gas flow was 10 L/min. The nebulizer pressure was 40 psig. The
drying gas temperature was 350 ◦C. The vaporizer temperature was 250 ◦C. The capillary
voltage was 4000 V. The charging voltage was 2000 V. An injection volume of 10 µL was
taken from 1.2 mg/2 mL. This technique was used to identity the flavonoids in the extract
according to their protonation [M+H] and to calculate the relative retention time of each
peak in the chromatograms obtained by HPLC, with a mass range from 700 to 600 umas.

5. Conclusions

The bioactive compounds (phenolic compounds and fatty acids) present in S. alpini, S.
pruinosa, S. perennis, and A. macrostachyum from different territories of Spain and Portugal
were described. Samples of the genus Sarcocornia highlighted the presence of veratric acid
material from dryer environments. A slightly greater diversity of phenolic acids was shown
in A. macrostachyum than in species of the genus Sarcocornia. Ferulic acid was also detected
in two of the samples from this genus but was not present in the genus Sarcocornia. The
composition of the flavonoids detected in these species showed glycosylated structures
that conferred prebiotic properties of these halophytes. The material from S. alpini, S.
pruinosa, and A. macrostachyum contained macromolecular antioxidants, namely cyanidin-
3-O-arabinoside, luteolin-7-glucoside, dihydroquercetin, and p-Coumaroyl glucoside, thus
increasing their antioxidant requirements as a defense against extreme environments. The
lipid profile revealed palmitic, linoleic, and oleic acids as the main fatty acids in the genus
Sarcocornia, while the palmitic, linolenic, and stearic acid content was particularly notable
in the genus Arthrocnemum. The presence of these compounds in different halophytes
confirms their value for survival in conditions of extreme salinity and drought, and also
adds to their value for consumption.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10102218/s1, Figure S1: Tentative flavonoid compounds identified in Sarcocornia and
Arthrocnemum extracts. All structures are based on Phenol Explorer; Table S1: Relative content of
the phenolic compounds (%) in Sarcocornia and Arthrocnemum samples by GC-MS. Legend: nd: not
detected. Numbers 1–20 refer to the materials shown in Table 3; and Table S2: Relative content of the
fatty acids (%) in Sarcocornia and Arthrocnemum by GC-MS. Legend: lauric acid (C12:0); myristic acid
(C14:0); palmitic acid (C16:0); stearic acid (C18:0); oleic acid (C18:1); linoleic acid (C18:2); linolenic
acid (C18:3); arachidonic acid (C20:0); behenic acid (C22:0); lignoceric acid (C24:0); SFAs (saturated
fatty acids); MUFAs (monounsaturated fatty acids); and PUFAs (polyunsaturated fatty acids). nd:
not detected. Numbers 1–20 refer to the materials shown in Table 3.
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Abstract: Land salinization, resulting from the ongoing climate change phenomena, is having an
increasing impact on coastal ecosystems like salt marshes. Although halophyte species can live
and thrive in high salinities, they experience differences in their salt tolerance range, being this
a determining factor in the plant distribution and frequency throughout marshes. Furthermore,
intraspecific variation to NaCl response is observed in high-ranging halophyte species at a population
level. The present study aims to determine if the environmental history, namely heavy metal pre-
conditioning, can have a meaningful influence on salinity tolerance mechanisms of Spartina patens,
a highly disperse grass invader in the Mediterranean marshes. For this purpose, individuals from
pristine and heavy metal contaminated marsh populations were exposed to a high-ranging salinity
gradient, and their intraspecific biophysical and biochemical feedbacks were analyzed. When
comparing the tolerance mechanisms of both populations, S. patens from the contaminated marsh
appeared to be more resilient and tolerant to salt stress, this was particularly present at the high
salinities. Consequently, as the salinity increases in the environment, the heavy metal contaminated
marsh may experience a more resilient and better adapted S. patens community. Therefore, the
heavy metal pre-conditioning of salt mash populations appears to be able to create intraspecific
physiological variations at the population level that can have a great influence on marsh plant
distribution outcome.

Keywords: halophytes; osmotic stress; pre-conditioning; intraspecific variability

1. Introduction

According to the analysis of the data gathered, through this and the last century, the
Intergovernmental Panel on Climate Change (IPCC) report shows a worldwide intensifica-
tion of abiotic stresses with alarming environmental and economic implications, notably
the increase and intensity of extreme climate events, droughts, floods, sea-level rise, water,
and land salinity variations and others [1]. Earth can be considered a salt planet since
approximately, 97.5% of all planet’s water content is saltwater, occupying roughly 70% of
the surface encompassed in oceans, lakes, and groundwater [2], furthermore, it has been
estimated that high soil salinity is affecting 20% of total Earth’s land surface and 33% of
agricultural irrigated lands [3,4].

In coastal regions, especially in the high populated low-elevation coastal lands and
estuaries, climate change will likely increase, at an elevated rate, the soil, and water salinity,
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mostly due to predicted storm surges, tidal surges, and sea-level rise causing an onward
saltwater land inundation. Therefore, it can be presumed that soil and water salinity-
induced stress is and will be one of the major plant abiotic stresses. Usually, salt stress
in plants is a powerful limiting production factor, upsetting every major crop develop-
ment and productivity [5]. Most of the crop plants when exposed to NaCl concentrations
from 40 mM to 200 mM become severely damage or die, plants exposed to elevated salt
concentrations result in several complex biochemical, physiological, and morphological
damages, such as nutrient uptake and assimilation [6–8]. On the other hand, and contrary
to 99% of all the plant species, halophytic vegetation species can not only survive but be
highly productive in saline environments. Halophytes are, by definition, plants that can
live normally and complete their life cycle under a salt concentration of at least 200 mM,
with most plants exhibiting tolerance to a remarkable amplitude of NaCl concentration [9].
However, it is known that different halophytes species have unlike responses to the same
salinity, ranging from species having optimal performance in salt-free environments to
high NaCl concentrations such as 400 mM [9,10]. Species salinity tolerance responses
variations are relevant when taking into consideration the latent alterations to salinity
in the environment, which will most likely change salt-tolerant plant habitat availability
and distribution, within an ecosystem. This is evident in most halophytes inhabiting
salt marshes, where species distribution is organized across salinity gradients and micro-
habitats salinity variations associated with marsh topography and morphology, where
plants are arranged according to their salinity tolerance [11,12]. Nonetheless, intraspecies
phenological and physiological variation phenomenon can occur to a greater degree in
highly tolerant species that are capable to adapt to environments that largely differ in their
abiotic conditions [13–15]. When intraspecific NaCl response is taken into consideration it
may show a different response to the same NaCl concentration, therefore it is important to
understand coastal ecosystem modification and evolution once exposed to salinity changes.

Tagus estuary wetland is considered one of the more important in Europe and en-
compasses the most extensive and continuous salt marsh area in Portugal, presenting a
great concentration of organic matter and biological productivity [12]. Salt marshes located
within this estuary share most of the colonized halophyte species, such as the halophyte
Spartina patens (Aiton) Muhl, a highly tolerant, invasive salt-excreting grass that is now
spreading across Mediterranean marshes [16]. Moreover, neighboring marshes within the
Tagus estuary, although being under mostly similar abiotic conditions, like salinity and
temperature, can, due to anthropogenic actions, display a significant difference in their
soil chemistry, when comparing marshes located within natural reserves to industrially
contaminated marshes, notably caused heavy metals pollution [17]. These aspects make
this species a suitable model to understand the effects of metal pollution pre-conditioning
on tolerance range to salinity variations and ascertain to what extent different populations
could otherwise respond to future changes in soil and water salinity. Additionally, several
studies have suggested that intraspecific salt tolerance variations can occur in different S.
patens populations [18,19], as well as heavy metal pre-conditioning can have a significant
impact on this plant abiotic tolerance mechanisms [20].

The present work intends to determine heavy metal cross-tolerance thru pre-conditioning
to salinity stresses in S. patens. Employing imposing salinity treatments on two populations,
one from a heavy metal contaminated marsh and the other from a pristine one, it was
possible to evaluate significant intraspecific variability in the physiological salt tolerance
mechanisms. Given the ongoing climate change, it is relevant knowledge of the differently
salt marshes species potential to adapt and respond, as well as the perception of a more
complex reaction directly related to future salt-induced habitat modifications, concerning
plant distribution and frequency.
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2. Results
2.1. Photochemical Processes

When exposed to a salinity gradient, S. patens showed substantial variances in terms
of their photochemical responses at a population level. The relative electron transport rates
(rETR; Figure 1a) variation was shown to be significantly different, between populations, at
800 mM NaCl, higher values in the pristine marsh population. The photosynthetic efficiency
(α; Figure 1b), measured within populations, displayed stability along the applied salinity
gradient, with only individuals from the heavy metal contaminated marsh showing a
significant difference at 400 mM NaCl. Nevertheless, significant differences were found
between populations, contaminated marsh individuals displayed higher photosynthetic
efficiency at 400 mM NaCl however at 800 mM NaCl the opposite was found. Maximum
electron transport rates (ETRmax; Figure 1c) measurements showed a significant variation
in 800 mM NaCl conditions between the populations, lower in the contaminated site
individuals.

Figure 1. (a) Relative electron transport rates (rETR), (b) photosynthetic efficiency (α), and (c)
maximum electron transport rate (ETRmax) in S. patens dark-adapted leaves from pristine and heavy
metal contaminated sites (average± standard error, N = 5), along with the tested NaCl concentrations.
Letters indicate significant differences between treatments at p < 0.05; asterisks mark significant
differences between populations at p < 0.05.

Energetic fluxes per leaf cross-section of the salt-treated chloroplasts showed a de-
crease in both populations under saline conditions in absorbed energy flux along a salinity
gradient (ABS/CS; Figure 2a), significant in the 400 mM NaCl treated samples from the
contaminated marsh. In trapped energy flux (TR/CS; Figure 2b) a similar significant
reduction was observed in both populations although this decrease was not significant
in the population from the heavy metal contaminated location at 800 mM NaCl, possibly
due to the comparatively lower values exhibited in the 0 mM NaCl exposed individuals.
Electron transport energy flux (ET/CS; Figure 2c) displayed a significant reduction at
400 and 800 mM NaCl, being this reduction more acute in S. patens from the pristine site.
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Dissipation energy flux (DI/CS; Figure 2d) showed unlike and significant responses to
salinity stress between salt marsh populations. Plants from the pristine site when exposed
to 400 mM NaCl showed increase energy dissipation whilst the contaminated site individu-
als exposed exhibited a reduction in dissipation. Finally, oxidized reaction centers (RC/CS;
Figure 2e) significantly decreased with salinity concentration to a similar degree in both
sampling populations.

Figure 2. Phenomenological energetic parameters, (a) absorbed energy flux (ABS/CS), (b) trapped
energy flux (TR/CS), (c) electron transport energy flux (ET/CS), (d) dissipation energy flux (DI/CS),
and (e) oxidized reaction centers (RC/CS) on a cross-section basis, in S. patens dark-adapted leaves
from pristine and heavy metal contaminated sites (average ± standard error, N = 5), along with the
tested NaCl concentrations. Letters indicate significant differences between treatments at p < 0.05;
asterisks mark significant differences between populations at p < 0.05.

Considering the total number of electrons transferred into the electron transport chain
(N; Figure 3a), contaminated marsh individuals, when salt exposed, exhibited no significant
changes while pristine site plants showed an increasing trend, displaying a significant
increase at 400 mM NaCl and a highly significant increase at 800 mM NaCl, in relation
to the contaminated site population as well at both salinities. Regarding the net rate of
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PS II reaction centers closure (M0; Figure 3b), a significantly higher value was evident in
the 400 mM salt treatments of both populations, nonetheless contaminated site samples
showed significantly lower M0 at 0 and 400 mM NaCl. Electron movement efficiency
from the reduced intersystem electron acceptors to the PS I end electron movement (δR0;
Figure 3c) showed an increase through salinity treatments in S. patens from the pristine
mash, significant at 400 mM NaCl. The oxidized quinone pool size (Figure 3d) showed a
similar pattern when comparing populations, the only difference was exhibited at 800 mM
NaCl, a significantly lower size in the contaminated marsh population. Considering the
grouping probability (PG; Figure 3e), a significantly higher PS II antennae connectivity was
exhibited at 800 mM NaCl in both site samples, while at 400 mM NaCl S. patens from the
contaminated marsh, showed a significantly higher value within and between populations.

Figure 3. OJIP derived parameters, (a) the total number of electrons transferred into the electron
transport chain (N), (b) the net rate of PS II reaction centers closure (M0), (c) PS I efficiency in reducing
its electron acceptors (δR0), (d) size of the oxidized quinone pool, and (e) grouping probability (PG) in
S. patens dark-adapted leaves from pristine and heavy metal contaminated sites (average ± standard
error, N = 5), along with the tested NaCl concentrations. Letters indicate significant differences
between treatments at p < 0.05; asterisks mark significant differences between populations at p < 0.05.
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2.2. Photosynthetic Pigments Profile

Regarding leaf pigments concentration, we found significant differences between
salinity treatments and populations (Figure 4). Thus, total chlorophyll concentration (chl a
and chl b) was significantly higher in the salt-treated pristine marsh individuals compared
with their contaminated marsh counterparts (Figure 4a). In addition, in the pristine marsh
S. patens, higher pigment concentrations were also found, with significance, in auroxanthin
in all treatments, in lutein, neoxanthin, and violaxanthin at 800 mM NaCl and β-carotene
and zeaxanthin when exposed to 400 and 800 mM NaCl concentrations (Figure 4b). The
total carotenoid to total chlorophyll ratio (Figure 5b) displayed a similar pattern, with
no significant differences, between populations. Contaminated site samples exhibited a
significantly higher Chlorophyll a/b ratio than the pristine marsh population at 800 mM
NaCl (Figure 5a). Furthermore, at 800 mM NaCl, the contaminated marsh S. patens showed
a significantly lower chlorophyll degradation index (CDI, Figure 5c) and de-epoxidation
state (DES, Figure 5d).

Figure 4. Pigment relative concentration. (a) Leaf chlorophyll a (Chl a), chlorophyll b (Chl b), total
chlorophyll (Total Chl), (b) auroxanthin, antheraxanthin, β-carotene, lutein, neoxanthin, violaxanthin
and zeaxanthin concentration (µg g−1 FW) in S. patens individuals from pristine and heavy metal
contaminated sites (average ± standard error, N = 5), along with the tested NaCl concentrations.
Letters indicate significant differences between treatments at p < 0.05; asterisks mark significant
differences between populations at p < 0.05.
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Figure 5. Leaves pigment ratios, (a) chlorophyll a/b ratio (Chl a/b ratio), (b) total carotenoid to total
chlorophyll ratio, (c) chlorophyll degradation index (CDI), and (d) de-epoxidation state (DES) in
S. patens individuals from pristine and heavy metal contaminated sites (average ± standard error,
N = 5), along with the tested NaCl concentrations. Letters indicate significant differences between
treatments at p < 0.05; asterisks mark significant differences between populations at p < 0.05.

2.3. Antioxidant Enzymatic Activities

Catalase activity presented a highly significant increase in salt treatments, being these
values considerably higher in plants from the pristine marsh (Figure 6a). Contrarily ascor-
bate peroxidase activity and superoxide dismutase activity did not show any significant
variations between both tested populations and salinity concentrations (Figure 6b,d). Gua-
iacol peroxidase activity showed a significant activity decrease through NaCl concentration
gradient in individuals from the contaminated marsh, while its values did not vary with
salinity concentration in those collected in the pristine site (Figure 6c). Finally, regarding the
total protein content of the leaves, a decreasing tendency was observed in the pristine site
samples, significant at 800 mM NaCl within and between population groups (Figure 6e).
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Figure 6. (a) Catalase, (b) ascorbate peroxidase, (c) guaiacol peroxidase, and (d) superoxide dismutase
activities (U mg−1 protein) and (e) total protein content (µg Protein g−1 FW) in the leaves of S. patens
from pristine and heavy metal contaminated sites (average ± standard error, N = 5), along with the
tested NaCl concentrations. Letters indicate significant differences between treatments at p < 0.05;
asterisks mark significant differences between populations at p < 0.05.

2.4. Fatty Acid Composition

Regarding fatty acid leaf content under salinity exposure (Table 1), the most abundant
fatty acids found in the tested groups were palmitic acid (C16:0), linoleic acid (C18:2), and
linolenic acid (C18:3). Spartina patens individuals from the pristine marsh when exposed to
salinity showed an increase in palmitic acid, while the individuals from the contaminated
site showed a decrease, displaying a significantly different trend between populations. An
opposite trend, between the S. patens populations, was also found in the stearic acid (C18:0)
concentration, increasing and decreasing through salinity treatments in the individuals
from the contaminated and pristine marsh respectively. Trans-delta 3-hexadecenoic acid

184



Plants 2021, 10, 2072

(C16:1t) displayed a significantly higher percentage in the pristine marsh group in 0 mM
and 800 mM NaCl. Both populations displayed a decrease in linolenic acid content as
a result of NaCl treatments. Considering the fatty acid saturation classes in salt-treated
leaves, both marsh populations displayed similar trends. However, saturated fatty acid
(SFA) at 800 mM NaCl was found to be significantly higher in the contaminated site samples
(Figure 7). The total fatty acid content of S. patens presents highly significant increases in
both population treatments (Figure 8a). Contaminated site individuals, when exposed to
increasing salinities, displayed an increasing trend in the C18:2/C18:3 ratio (Figure 8b), as
well as an inverse trend in the double bond index (DBI; Figure 8c). In contrast, in NaCl
treated plants from the pristine site no significant changes were observed.

Figure 7. Saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty
acid (PUFA) relative concentration (%, average ± standard error, N = 5) in S. patens leaves from
pristine and heavy metal contaminated sites, along with the tested NaCl concentrations. Letters
indicate significant differences between treatments at p < 0.05; asterisks mark significant differences
between populations at p < 0.05.

Figure 8. (a) Total fatty acid content (µg.g−1 FW), (b) linoleic acid to linolenic acid ratio (C18:2/C18:3
ratio), and (c) double-bound index (DBI) in S. patens leaves from pristine and heavy metal contam-
inated sites (average ± standard error, N = 5), along with the tested NaCl concentrations. Letters
indicate significant differences between treatments at p < 0.05; asterisks mark significant differences
between populations at p < 0.05.
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2.5. Multivariate Classification

Gathering all the photochemical data (full Kautsky induction curve dataset) into a
unifying canonical analysis of principal coordinates (CAP) the abovementioned differences
and traits are highlighted in an integrative form. Moreover, the cross-validation step
of this canonical analysis presented a highly elevated classification efficiency of more
than 95% for allocation within groups, reinforcing the statical differences observed at
the individual level of each of the photochemical traits as efficient descriptors of the
populations’ behavior along the tested salinity gradient (Figure 9a). The pristine marsh
individuals were grouped and identified, sharing similar photochemical traits, while the
individuals from the contaminated site evidence a clear separation under the exposure
to different salinity values. A similar approach was performed regarding the leaf fatty
acid profile, with the CAP projection based on these traits producing a different grouping
profile. Intermediate salinity exposed samples from both populations shoed similar fatty
acid profiles being grouped in the center of the projection alongside the samples from
individuals collected at the contaminated site exposed to 0 mM NaCl (Figure 9b). Samples
from the pristine site exposed to the lowest and highest salinity treatment tested were
grouped differentially from the remaining samples. Worth noticing that the CAP analysis
based on the fatty acid analysis showed a lower classification efficiency (approximately
70%). Both these CAP analyses show to highlight the different impacts of the tested salinity
treatments in the photochemical and fatty acid metabolism, and the different feedbacks
from each of the S. patens populations.

Figure 9. Canonical analysis of principal coordinates (CAP) based on (a) photochemical traits and (b) based on the fatty
acid profiles, pentadecanoic acid (C15:0), palmitic acid (C16:0), trans-delta 3-hexadecenoic acid (C16:1t), hexadecatrienoic
acid (C16:3), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) and linolenic acid (C18:3)) from S. patens collected in
pristine and heavy metal contaminated salt marshes exposed to the tested NaCl concentrations.

3. Discussion

Effects of environmental change on coastal regions include the progressive land im-
mersion from ocean level rise, heightened storm damage, expanding drought seasons, and
temperature increase [21]. These abiotic alterations reveal to have significant implications
on the environmental salinity gradient, with recent studies forecasting disturbing impacts
in salinity concerning waterfront areas [22–24]. Therefore, salt marshes ecosystems will
be largely affected, especially when considering the salinity concentration to be one of the
major constraints of species frequency, distribution, and zonation along with the marsh
profile [25,26]. However, complex and significant interspecific variations in the salinity
responses of halophytes due to pre-conditioned histories can be a factor in the adaptation
of neighboring marsh populations [20].

Photochemical analysis of S. patens, when exposed to salt treatments, confirmed that
this species has a high degree of tolerance to salinity even at high NaCl concentrations
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as shown in previous studies [27,28]. Nevertheless, noticeable differences were shown
between NaCl treatments as well as between pristine and contaminated marsh populations.
Considering the electron transport chain and related parameters in salt-treated S. patens,
it was observed a significant intraspecific difference at 400 and 800 mM NaCl. The indi-
viduals from the contaminated marsh, at 400 mM NaCl, displayed a significantly higher
photosynthetic light efficiency, coupled with relatively low dissipation energy (DI/CS),
which suggests a high electronic transport chain efficiency [20]. On the other hand, at
800 mM NaCl, contaminated marsh samples show a significantly lower maximum ETR
and photosynthetic efficiency suggesting an inferior electron transport chain proficiency at
higher salinity concentration when compared to the heavy metal contaminated individuals.
According to the data acquired, in the salt exposed groups, there is a linear relationship
between the variation found in the oxidized quinone pool size and the electron transport
energy flux (ET/CS), the absorbed energy flux (ABS/CS), the trapped energy flux (TR/CS),
as well as the available reaction centers (RC/CS), nonetheless, the populations showed
significant differences among these parameters. Even though the contaminated site S.
patens, at 400 and 800 mM NaCl, when compared to the pristine site samples, showed
a more significant decrease in quinone pool size, the reduction in the electron transport
energy flux was less significant, this can be explained by a better PS II efficiency associated
with the lower dissipation energy flux found in the individuals from the contaminated
marsh, especially at 400 mM NaCl was the intraspecific differences were found to be more
significant [29]. Although the size of the oxidized quinone pool, in the individuals from the
pristine location, displayed no significant changes when subjected to salinity, the number
of quinone turnovers increased, showing lower quinone pool reduction rates [30]. In
contrast, the individuals from the contaminated marsh exhibited a significant reduction of
the quinone pool size and no significant changes in its turnover time, indicating tolerance
mechanisms that allowed the maintenance of electronic flow rate from the reduced quinone
pool to the electron transport chain [10].

The Xanthophyll cycle is a well-described mechanism of energy dissipation, commonly
observed in halophytic plants [10,30,31]. To reduce energy overload within light-harvesting
complexes (LHCs), the de-epoxidation of the violaxanthin pool towards the zeaxanthin
is normally activated [32]. Spartina patens when exposed to salinity, only in 800 mM
NaCl treatments in both population samples, showed a highly significant increase in de-
epoxidation, reflection of a higher activity of the xanthophyll cycle attempting to scatter the
excessive redox potential amassed inside the stroma. The activity shift to photoprotection
in the higher salinities was also clear due to the significant rise of the total carotenoid to
total chlorophyll ratio. As a possible countermeasure against reactive oxygen species [31]
significant increases were observed in β-carotene and lutein, antioxidant acting, pigment
concentrations in the salt exposed populations, in particular, this phenomenon was found
with more significance at the higher salt concentration in the individuals from the pristine
marsh. A highly significant increase in β-carotene was present in the contaminated site
samples at 800 mM NaCl and both salinity treatment in the plants from the pristine location,
as well as a highly significant increase in lutein at 800 mM NaCl. This may indicate a better
ROS savaging capability by S. patens from the contaminated marsh.

The interaction of high NaCl concentrations with the cell organelles leads to increased
production of ROS resulting in potentially harmful physiological reactions within the plant
cells, affecting among others, proteins production and metabolism [33,34]. Halophytes
built up a highly proficient system of enzymatic rapid responses toward salinity changes,
immediately activated when the environmental conditions shift aside from the saline com-
fort zone [35]. When assessing the oxidative stress biomarkers in S. patens, discrepancies
in the responses to the salinity stress between populations are clear. Contrary to what
was found in the contaminated marsh plants, the pristine site individuals displayed an
increase of antioxidant enzyme activities, revealed by the increase of superoxide dismutase
and catalase activity when salt treated, significant at 800 mM NaCl [36]. This, coupled
with a decrease in total protein content found in this same group, suggests that, when
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exposed to 800 mM NaCl, S. patens from the pristine marsh, when comparing to the con-
taminated marsh population, as a higher ROS production, as well as comparatively inferior
scavenging mechanism of the ROS species [37,38].

The fatty acid profiles of the salt exposed halophytes presented similar responses
amongst populations, but some differences are noteworthy. The linoleic (C18:2) and
linolenic (C18:3) ratios, considered a salt stress indication, when under stress conditions
the ratio shifts towards linolenic, since it is a membrane restructuring with lower amounts
of polyunsaturated acids, thus inferior C18:3 concentration in the leaf is considered an
adaptation to salt exposure [39]. The C18:2/ C18:3 ratio increased exclusively in the salin-
ity treated S. patens from the contaminated site, therefore it can be suggested that these
individuals are less stressed than those from the pristine location. Furthermore, C18:3 can
also act as a direct non-enzymatic reactive oxygen species scavenger [40], which complies
with, comparatively, lower ROS consequences found previously in the S. patens from the
contaminated marsh. Furthermore, the population from the contaminated marsh displayed
a highly significant rise in oleic acid (C18:1), known for improving the stabilization of
light-harvesting complexes [41], seen by the positive significant correlation between LHC
stress indicator chl a/ chl b ration and the C18:1 fatty acid significant correlation (r2 = 0.921;
p < 0.05). On the other hand, in the individuals from the pristine site, the correlation be-
tween these two variables is quite low (r2 = 0.161; p < 0.05), indicating that this mechanism
only occurs in the plants from the contaminated marsh. Tras-delta-3 hexadecenoic acid
(C16:1t), exclusive to plastids [42] and the only strictly light-dependent fatty acid, enables
the correct organization of light-harvesting antennae complexes [30,43–45]. When compar-
ing the individuals subjected to 0 mM NaCl from both populations, a significant increasing
trend was found in the C16:1t concentration of the individuals from the contaminated
marsh, concomitant with the, previously determined, lower energy dissipation and reduced
reaction centers turnover and closure rates found in the plants from the contaminated
marsh, comparatively to those found in the individuals from the pristine marsh, proposing
a better LHC organization and heath in the heavy metal affected S. patens when exposed to
salt stress.

The overall physiological shift was observed in the CAP analysis where it was com-
pared the physiological and photochemical variations of the individuals under the different
NaCl treatments. The cross-validation provided an efficient approach to classify and assess
the changes and effects in both populations [46]. When observing the multivariate analysis,
NaCl treated S. patens from the pristine marsh showed a clear grouping at the photo-
chemical changes, however, when using the fatty acids profile as the basis the grouping
was seen in the contaminated marsh populations. This distinct classification efficiently
displays S. patens intraspecific variation. The higher degree of efficiency in the classification
of the samples observed in the photochemical traits-based CAP analysis indicates that
not only this metabolism is more affected (thus producing more pronounced differences
between sample groups) but also that has a higher ability to be used as biomarkers in simi-
lar studies comparing not only salinity treatments but also plant populations. Although
fatty acid profiles are known to be sensitive to osmotic stress in this particular species
as well as in other halophyte species when comparing the same species along a salinity
gradient [28,47,48], this canonical approach loses sensitivity when comparing populations
of the same species exposed to the same salinity treatments, pointing out to a prevalent
role of the salinity treatment over the population origin, in this case, thus leading to less
efficient fatty acid-based canonical analysis.

4. Material and Methods
4.1. Sampling Sites and Plant Material Collection

Sampling was carried out on the Tagus estuary, located in the western coast of Portugal,
one of the larger estuaries in occidental Europe with an area of approximately 320 km2

(38◦44′ N, 9◦03′ W; Figure 10). The estuary involves a watershed superior to 80,000 km2 in
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Spain and Portugal territories, being the second most significant hydrological basin in the
whole Iberian Peninsula.

Spartina patens sampling was done during low tide in the southern part of the Tagus
estuary in September 2017, on the same day and tidal period at two sampling sites: Alco-
chete salt marsh (38◦45′ N, 8◦56′ W) situated within the Tagus Estuary Natural Reserve and
Rosário salt marsh (38◦40′ N, 9◦01′ W) in the vicinity of a former industrial area (Figure 10).
Whole plants were excavated from the sediment and intact individuals were transported
individually to the laboratory (in refrigerated bags and quickly transported (less than an
hour) to the laboratory. Due to the high proximity between both sampling sites, the plant
phenological cycle is not different, with very similar plants in terms of morphology and
biomass between both sites (data not shown). The geographical location of both marshes
prompts a differential metal contamination exposure from anthropogenic origins [28,31].
This is reflected in the bioavailable metal concentrations found in both marshes, with
Alcochete sediments showing non-detectable bioavailable Cd concentrations, 0.023 ppm of
Cu, 0.001 ppm of Ni, 0.022 ppm of Pb, and 0.052 ppm of Zn on average [31]. On the other
hand, Rosário salt marsh sediments exhibited much higher bioavailable metals average
concentration values, presenting 0.001 ppm of Cd, 0.034 ppm of Cu, 0.003 ppm of Ni,
0.116 ppm of Pb, and 0.233 ppm of Zn [20,33]. Considering these values, Alcochete marsh
was classified as pristine and Rosário marsh as heavy metal contaminated.

At the laboratory, plant samples were gently washed to remove dust and sediments.
Spartina patens intact tussocks were set in pots (N = 5) filled with perlite and irrigated with
1/4 Hoagland nutrient solution [49]. For experimental proposes, individuals were chosen
to have all experimental units with individuals presenting similar height and apparent
biomass (data not shown). Plants were placed in a phytoclimatic chamber programmed to
simulate a natural light environment using a sinusoidal function (maximum PAR 300 µmol
photons m2 s−1, 16/8 h day/night rhythm, 20/18 ◦C day/night temperature amplitude,
relative humidity, 50 ± 2%), and kept under these conditions for 2 months to acclimate to
the new growth conditions.

Figure 10. Tagus Estuary map with Alcochete (pristine) and Rosário (heavy metal contaminated) salt
marshes sampling stations marked [50].

4.2. Experimental Setup

After the abovementioned adaptation period, S. patens individuals from both sites
(pristine and contaminated) were separated into 3 groups with 5 replicate individuals (pots).

190



Plants 2021, 10, 2072

The sample groups were placed in a phytoclimatic chamber programmed to simulate a
natural light environment using a sin function (maximum PAR 300 µmol photons m2 s−1,
16/8 h day/night rhythm, 20/18 ◦C day/night temperature amplitude, relative humidity,
50± 2%) and the Hoagland nutrient replaced, in two sample groups, with salinity treatment
solution of 1/4 Hoagland solution supplemented with NaCl to attain the desired target
salinities (400 and 800 mM). Exposure trials lasted for 7 days after which chlorophyll
fluorescence measurements were made and consecutively, plants were harvested. Leaf
samples for biochemical measurements were immediately flash-frozen in liquid-N2 and
stored at −80 ◦C until analysis.

4.3. Pulse Amplitude Modulated (PAM) Fluorometry

Modulated chlorophyll fluorescence measurements were made in attached leaves
with a FluoroPen FP100 PAM (Photo System Instruments, Czech Republic). All the mea-
surements in the dark-adapted state were made after the darkening of the leaves for at least
30 min. Rapid light curves (RLC) measurements, in dark-adapted leaves, were attained
using the preprogrammed LC1 protocol of the FluorPen, consisting of a sequence of pulses
from 0 to 500 µmol m−2 s−1. Each ΦPS II measurement was used to calculate the electron
transport rate (ETR) through photosystem II using the following equation: ETR = ΦPS II ×
PAR × 0.5, where PAR is the actinic photosynthetically active radiation generated by the
FluoroPen and 0.5 assumes that the photons absorbed are equally partitioned between PS II
and PSI [51]. Without knowledge of the actual amount of light being absorbed, fluorescence
measurements can only be used as an approximation for electron transport [52–54]. Rapid
light curves (RLC) were generated from the calculated ETRs versus irradiance applied plot
and fitted to a double exponential decay function to quantify the characteristic parameters,
alpha and ETRmax [55,56]. The OJIP transient (or Kautsky curves) depicts the rate of reduc-
tion kinetics of various components of PS II. This is obtained when a dark-adapted leaf
is illuminated with the saturating light intensity of 3500 µmol m−2 s−1 then it exhibits a
polyphasic rise in fluorescence (OJIP): level O represents all the open reaction centers at the
onset of illumination with no reduction of QA (fluorescence intensity lasts for 10 ms); O to
J transient indicates the net photochemical reduction of QA (the stable primary electron
acceptor of PS II) to QA

− (lasts for 2 ms); the J to I transition is due to all reduced states
of closed RCs such as QA

− QB
−, QA QB

2− and QA
− QB H2 (lasts for 2–30 ms); P-step

coincides with a maximum concentration of QA
− QB

2 with plastoquinol pool maximally
reduced and also reflects a balance between the light incident at the PS II side and the rate
of utilization of the chemical (potential) energy and the rate of heat dissipation [57]. Table 2
summarizes all the parameters that could be calculated from the fluorometric analysis.

Table 2. Summary of fluorometric analysis parameters and their description.

JIP-Test

Rapid Light Curves (RLCs)
rETR Relative electron transport rate at each light intensity (rETR = QY × PAR × 0.5).

ETRmax Maximum ETR after which photo-inhibition can be observed.
α Photosynthetic efficiency, obtained from the initial slope of the RLC.

Area Corresponds to the oxidized quinone pool size available for reduction and is a function of the area above the
Kautsky plot.

N Reaction center turnover rate.
SM Corresponds to the energy needed to close all reaction centers.
M0 The net rate of PS II RC closure.
δR0 PS I efficiency in reducing its electron acceptors.
PG Grouping probability, directly related to PS II antennae connectivity.

ABS/CS Absorbed energy flux per cross-section.
TR/CS Trapped energy flux per cross-section
ET/CS Electron transport energy flux per cross-section.
DI/CS Dissipated energy flux per cross-section.
RC/CS The number of available reaction centers per cross-section.
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4.4. Pigment Profiling

Ground freeze-dried leaf samples were extracted with 100% acetone added and sub-
jected to an ultra-sound bath for 1 min to ensure complete disaggregation of the leaf
material. Extraction occurred in the dark for 24 h at −20 ◦C, after which the samples were
centrifuged at 4000× g at 4 ◦C for 15 min. Supernatants were scanned from 350 nm to
750 nm in 1 nm steps, using a dual-beam spectrophotometer (Shimadzu UV/VIS UV1601
Spectrophotometer). Finally, the detected pigment sample absorption spectra were an-
alyzed and quantified employing Gauss-Peak Spectra (GPS) method [58]. The sample
spectrum was analyzed, through the GPS fitting library, using SigmaPlot Software. This
method is based on the sample spectrum fitting, by a linear combination, to the Gauss-peak
spectra, that describes each pigment in the detected spectrum, identifying the samples
pigment profile, chlorophyll a, chlorophyll b, auroxanthin, antheraxanthin, β-carotene,
lutein, violaxanthin, and zeaxanthin.

For a better evaluation of the light-harvesting and photoprotection mechanisms, the
De-Epoxidation State (DES) was calculated as:

DES =
([Antheraxanthin] + [Zeaxanthin])

([Violaxanthin] + [Antheraxanthin] + [Zeaxanthin])
(1)

4.5. Leaf Fatty Acid Composition

Leaf fatty acid analyses were performed by direct trans-esterification of leaf samples
as previously described [20,59,60]. Fatty acid methyl esters (FAME) were prepared in glass
tubes containing the internal standard heptadecanoate (C17:0), methanol, and sulphuric
acid, at 70 ◦C for one hour. After cooling down the FAME were extracted by adding
petroleum and water, vortexed, centrifuged at 4000× g for 5 min. The upper layer was dried
under a nitrogen stream in a water bath set to 37 ◦C. After evaporation, 50 µL of hexane
was added to the residue and one µL of the solution separated in a gas chromatograph
(Varian 3900, Palo Alto, CA, USA) equipped with a hydrogen flame-ionization detector
using a fused silica 0.25 mm i.d. × 50 m capillary column (WCOT Fused Silica, CP-Sil 88
for FAME; Varian). The double-bound index (DBI) was calculated using the equation:

DBI =
2× ((16 : 1t + 18 : 1) + 2× 18 : 2 + 3× (18 : 3 + 16 : 3))

100
(2)

4.6. Oxidative Stress Biomarkers

For enzyme extractions of S. patens leaf samples were retrieved from −80◦C storage
and extractions were performed according to Tiryakioglu et al. [61], at 4◦C. Frozen leaves
were homogenized in 50 mM sodium phosphate buffer (pH 7.6) supplemented with 0.1 mM
Na-EDTA in a ceramic mortar with a proportion of 500 mg (FW) to 8 mL respectively. The
homogenate was centrifuged at 8890× g for 20 minutes at 4 ◦C, and the supernatant was
transferred to a test tube and used for the antioxidant enzyme analyses.

The enzyme activity measurements of catalase (CAT, EC.1.11.1.6.), Ascorbate per-
oxidase (APx, E.C. 1.11.1.11), Guaiacol peroxidase (GPX, E.C. 1.11.1.7), and Superoxide
dismutase (SOD, E.C. 1.15.1.1) were performed in a dual-beam spectrophotometer (Shi-
madzu UV/VIS UV1601 Spectrophotometer) using quartz cuvettes. Catalase activity
assays were performed according to the method of Teranishi et al. [62], by monitoring
the H2O2 consumption and consequent decrease in absorbance at 240 nm (molar extinc-
tion coefficient of 39.4 mM−1 cm−1). Ascorbate peroxidase was measured according to
Tiryakioglu et al. [61], by observing the ascorbate oxidation and consequent absorbance
reduction at 290 nm (molar extinction coefficient of 2.8 mM−1 cm−1). Guaiacol peroxidase
measurement was performed according to Bergmeyer et al. [63], by monitoring guaiacol
oxidation products formation and its increase in absorbance during 60 seconds at 470 nm
(molar extinction coefficient of 26.6 mM−1 cm−1). Superoxide dismutase total activity
was assayed according to the method of Marklund and Marklund [64], by measuring the
oxidation rate of pyrogallol monitored at 325 nm. The autoxidation of pyrogallol was
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read without enzymatic extract during the same period and time interval for comparison
enabling. Protein quantification was determined using the Bradford method [65].

Membrane lipid peroxidation quantification was performed in S. patens leaf samples
according to Heath & Packer [66]. First, leaf samples were homogenized in a freshly
prepared Thiobarbituric acid (TBA) solution (0.5% (w/v) TBA in 20% (w/v) Trichloroacetic
acid), in a proportion of 100 mg FW to 2 mL of solution. The homogenate was incubated
for 30 min at 95 ◦C, cooled on ice to stop the reaction, and centrifuged at 4000× g for
5 min at 4 ◦C. The absorbance was read at 532 nm and 600 nm in a Shimadzu UV-1601
spectrophotometer. Malondialdehyde (MDA) concentration was calculated using the molar
extinction coefficient, 155 mM−1 cm−1 when applying the following equation:

A532 nm − A600nm = [MDA]mM× εMDA (3)

4.7. Statistical Analysis

Statistical analysis of the data derived from the previous analysis was made based on
non-parametric tests, due to a lack of normality and homogeneity. The resultant effects of
warming treatments in the different populations and salinity treatments were compared
by performing Kruskal–Wallis test using Statistica Software (Statasoft, Tulsa, OK, USA).
Significant and highly significant values were assumed when the probability value (p-value)
was smaller than 0.05 and 0.01 respectively. Multivariate analysis was also conducted using
Primer 6 software [67]. A Canonical Analysis of Principal Components (CAP) was also
performed using the physiological traits as inputs, to test the efficiency of the variables
in describing the populations’ behavior under altered thermal environments, but also
to analyze this behavior, producing a statistically tested canonical plot. To evaluate the
changes in photochemical and fatty acid metabolism as a whole, a multivariate approach
was applied [46]. Canonical analysis of principle (CAP) coordinates, using Euclidean
distances, were used to visualize differences in multivariate space regarding studied
photochemical variables and fatty acid relative composition, as well as to determine the
allocation efficiency to different treatment groups. This multivariate approach is insensitive
to heterogeneous data and frequently used to compare different sample groups using the
intrinsic characteristics of each group (metabolic characteristics) [30,46,68]. Multivariate
statistical analyses were conducted using Primer 6 software [67].

5. Conclusions

This study provides new insights on the relationship between environmental history
and tolerance variation of Spartina patens to salinity. Biophysical and biochemical intraspe-
cific data variation suggests that heavy metal pre-conditioning has a considerable and
significant influence on the salinity tolerance mechanisms and salinity resistance of these
plants. When comparing marshes, individuals from the pristine site appear to withstand
the harshest photochemical consequences as seen by the decrease of the chlorophyll a/b
ratio, through salt concentrations, opposite to the increasing tendency found in the pre-
conditioned S. patens. These responses were correlated with the highly significant increase
in oleic acid found only in S. patens from the contaminated marsh, indicating that these
plants have an effective light-harvesting complexes stabilization mechanism. Moreover, in-
dividual from the pristine marsh exhibited impairments in the LHC mechanisms, coupled
with the comparatively deficient energy dissipation mechanisms at high salinities, seems
to lead to higher ROS generation and as a consequence of higher plant damage degree.
Therefore, it could be concluded that, as salinity increases, the heavy metal contaminated
marsh (i.e., Rosario) may generate a more aggressive S. patens invasion and spreading,
and consequently a more negative ecological effect in the marsh biodiversity especially at
high salinities (800 mM NaCl) where the fitness variation between populations is more
significant. Therefore, pre-conditioning history seems to potentially be a key factor in the
understanding of intraspecies response to future constraints and, subsequently, essential
when considering ecological evolution to climate change realities.
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Abstract: Climate change, soil salinisation and desertification, intensive agriculture and the poor
quality of irrigation water all create serious problems for the agriculture that supplies the world with
food. Halophyte cultivation could constitute an alternative to glycophytic cultures and help resolve
these issues. Plantago coronopus can be used in biosaline agriculture as it tolerates salt concentrations of
100 mM NaCl. To increase the salt tolerance of this plant, plant growth regulators such as polyamine
spermidine, salicylic acid, gibberellins, cytokinins, and auxins were added in a hydroponic culture
before the irrigation of NaCl (200 mM). In 45-day-old plants, dry weight, water content, osmolyte
(sorbitol), antioxidants (phenols, flavonoids), polyamines (putrescine, spermidine, spermine (free,
bound, and conjugated forms)) and ethylene were determined. In non-saline conditions, all plant
regulators improved growth while in plants treated with salt, spermidine application was the most
effective in improving growth, osmolyte accumulation (43%) and an increase of antioxidants (24%)
in P. coronopus. The pretreatments that increase the sorbitol content, endogenous amines (bound
spermine fraction), phenols and flavonoids may be the most effective in protecting to P. coronopus
against stress and, therefore, could contribute to improving the tolerance to salinity and increase
nutritional quality of P. coronopus.

Keywords: antioxidants; climate change; growth; osmolyte accumulation; phytohormones; polyamines;
salicylic acid; biosaline agriculture; salt tolerance

1. Introduction

The increase in the world’s population, intensive agriculture, poor quality irrigation
water, the decrease in the amount of arable land, desertification, soil salinization, and
climate change are all factors that have provoked a decrease in crop quality and yields;
therefore, application of innovative techniques could improve crop performance [1–3]. Gly-
cophytes are normally used in agriculture, but in a saline environment, they are subjected
to osmotic stress and ionic toxicity, factors that negatively affect germination, growth, and
crop yield; thus, identifying alternative salt-tolerant crops that can facilitate ecological
rehabilitation and restoration and biosaline agriculture should be a priority research area in
current agriculture (http://www.sussex.ac.uk/affiliates/halophytes, accessed on 14 June
2021) [4]. Plants halophytes thrive in saline habitats, and can survive in extreme conditions
(arid inlands, subtropical habitats, and temperate zones) [5,6]; in addition, these plants
possess a series of strategies at anatomical, morphological, physiological, biochemical, and
genetic level that allow them to survive to different habitats [7,8]. These strategies are wide-
ranging and include phenotypic plasticity, dilution or salt excretion (succulence, salt glands,
bladder hairs), decreased transpiration, stomatic and CO2 resistance control, water-use
efficiency, C3-C4-CAM pathway, high K+/Na+ compartmentalization (through the Na+/H+
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antiporter of tonoplast and plasma membrane), osmolyte accumulation (polysaccharides,
amino acids, polyols), antioxidant systems activation (for protection of photosynthetic
apparatus, biomembranes and nucleic acids), the modulation of plant growth regulators,
and the expression of certain gene (up-regulating osmolytes and antioxidants) that allows
them to survive in a wide variety of environmental conditions [7–11]. On the other hand,
halophytes can be used directly as a possible alternative to glycophytes, biofuel-producing
crops, fodder and animal feeds, oilseeds and proteins crops, medicinal plants, and in
phytoremediation [12–19]. Biosaline agriculture has three main advantages: the recovery
of saline and degraded soils, its ability to use wastewater from agriculture, and the increase
in the production of metabolites with better nutritional quality [12–14,16–20].

In general, plant growth regulators (PGRs) are used to improve crop production and
increase to abiotic stress tolerance in glycophytes [21,22]. In saline conditions, PGRs could
improve halophytes tolerance for a better crop production. Nevertheless, little is known
about PGRs in halophytes and their responses to abiotic stress [23]. These compounds mod-
ulate different stages from seed germination to fruit development, ripening and senescence.
They also are related to abiotic stress tolerance, and regulate the root: shoot ratio, control
stomatal resistance, regulate antioxidant enzymes, delay leaf senescence and act as signal
molecules [21]. Auxins regulate cell elongation, vascular tissue development and apical
dominance [24]. Cytokinins control cell division, chloroplast biogenesis, leaf senescence,
shoot differentiation, anthocyanin production and photomorphogenic development [25].
Gibberellic acid induces seed germination, leaf and stem elongation, favours flowering and
fruit development [26,27]. Polyamine application [putrescine (Put), spermidine (Spd), and
spermine (Spm)] in agricultural crops serve to protect plants against stress, modulating
the homeostasis of reactive oxygen species (ROS), regulating antioxidant systems, cation
transport across plant membrane, osmoregulation, and directly or indirectly regulate gene
expression [28,29]. Finally, salicylic acid treatment favours the accumulation of osmolytes,
alleviates photosynthesis and enhance the upregulation of antioxidant systems in some
species [30,31]. We focused our study of PGRs irrigation on the cultivation of Plantago
coronopus, a halophyte native to the Mediterranean region (South Spain) [32].

Plantago coronopus L. (Family Plantaginaceae) inhabits marine cliffs, marshes, and
endorheic basins at altitudes up to 800 m (a.s.l.). This halophyte is annual or biennial, with
leaves with central veins arranged in basal rosettes measuring 2–20 cm length. Its flowers
are produced in spikes and appear in April–October; its seeds are small and brown. It is
typically found in saltmarshes in SE Spain [33]. This plant has photosynthesis pathway C3,
osmolytes (sorbitol and proline) [34], and antioxidants (phenols and polyamines) [32]. Its
mechanisms of tolerance to salinity have been investigated by several authors [32,34–36].
Transport of toxic ions (Na+ and Cl−) to aerial part, and their accumulation in vacuole, in
addition to osmotic adjustment in its cytoplasm due to high concentrations of osmolytes
allow develop succulence and therefore tolerate a certain degree of salinity [34]. On
the other hand, this halophyte is used in biosaline agriculture as its edible leaves are
greatly appreciated in salads due to their mild salty taste, crunchy texture, and excellent
nutritional value [high content of phenols, amino acids (phenylalanine, tyrosine) and
minerals (potassium, calcium, magnesium, sodium, etc.). Plantago coronopus showed a
higher chlorophyll and flavonoids contents when it was grown in a Se enriched medium.
These microgreens showed better nutraceutical value. On the other hand, these herbs
grown in the open air presented a better development that in greenhouses, demonstrating
the potential of this halophyte in saline agriculture [20,35,37–41].

The following PGRs were added to a hydroponic culture of P. coronopus: auxins
(indole-acetic acid), cytokinins (Kinetin), gibberellic acid (GA3), polyamine (spermidine)
and salicylic acid before NaCl (200 mM) application. After 21 days of growth in the absence
or presence of salt, dry weight, water content, sorbitol, phenols, flavonoids, endogenous
polyamines [putrescine, spermidine, spermine (free, conjugated and bound)], and ethylene
were determined. We wanted to identify which PGRs produced the best results to inves-
tigate: (1) ways to improve its tolerance to salinity, (2) boost its growth, and (3) increase
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the nutritional quality of this species. The results could provide technical guidance for
increasing the cultivation of this halophyte and the benefits that it provides.

2. Results
2.1. Effect of Plant Growth Regulators (PGRs) Application on Growth of P. coronopus

Previous works by our research group showed that P. coronopus seeds collected from
Brujuelo saltmarsh in Jaén (Spain) and cultivated hydroponically showed similar dry
weight at 0 and 100 mM NaCl and a decrease at 200 mM NaCl (whole plant) [32]. We
decided to choose 0 mM and 200 mM NaCl for the cultivation of this halophyte. Growth
parameters such as dry weight and water content, at 45 days old, are shown in Table 1. In
non-saline conditions, a positive effect on stem + leaves dry weight (SLDW) and root dry
weight (RDW) was observed; being pretreatments Spd and SA (p ≤ 0.05) whose having the
highest values, above all in RDW (A in Table 1). In the case of Spd, the increases in SLDW
and RDW were 47% and 86%, respectively. In water content Spd and SA also had the
highest values of all studied pretreatments, especially in roots (increase of 9% compared
to control). In saline pretreatments (B in Table 1), Kinetin + salt and Spd + salt obtained
the best results for SLDW, while IAA + salt and Spd + salt had the best values for RDW.
In the pretreatment Spd + salt the increases were 174% and 197% for SLDW and RDW,
respectively, compared to the controls (salt). Growth with the treatments Kinetin + salt and
Spd + salt are shown in Figure 1.

Table 1. (A) Effect of PGRs (plant growth regulators) application in salt-free pretreatment, (B) effect of PGRs application
under saline conditions (200 mM NaCl) in Plantago coronopus, at 45 days of culture on SLDW (stem + leaves dry weight),
RDW (root dry weight), SLWC (stem + leaves water content), and roots water content (RWC). Means ± SE (n = 16). Different
letters within the same row represent significant differences between treatments, according to Tukey’s test (p ≤ 0.05).

A. PGRs Application without Salt SLDW
(g/plant)

RDW
(g/plant) SLWC (%) RWC (%)

Control (no PGR) 0.134 ± 0.0038 c 0.0198 ± 0.0014 b 94.16 ± 0.47 a 85.07 ± 0.24 c

IAA 0.171 ± 0.0056 ab 0.0321 ± 0.0037 a 95.45 ± 0.52 a 92.05 ± 0.28 ab

Kinetin 0.179 ± 0.0062 a 0.0214 ± 0.0016 b 95.67 ± 0.55 a 90.63 ± 0.63 ab

GA3 0.147 ± 0.0052 bc 0.0199 ± 0.0018 b 95.51 ± 0.46 a 89.80 ± 0.47 b

Spd 0.197 ± 0.0089 a 0.0369 ± 0.0021 a 95.91 ± 0.56 a 92.88 ± 0.66 a

SA 0.186 ± 0.0063 a 0.0341 ± 0.0012 a 95.74 ± 0.39 a 92.53 ± 0.45 a

B. PGRs Application with Salt SLDW
(g/plant)

RDW
(g/plant) SLWC (%) RWC (%)

Control (salt) 0.080 ± 0.0110 d 0.0101 ± 0.0005 d 91.54 ± 0.35 b 82.63 ± 0.33 c

IAA + salt 0.132 ± 0.0078 bc 0.0167 ± 0.0005 b 92.50 ± 0.38 b 85.54 ± 0.38 ab

Kinetin + salt 0.161 ± 0.0064 b 0.0128 ± 0.0004 c 93.18 ± 0.42 b 83.55 ± 0.90 bc

GA3 + salt 0.085 ± 0.0063 d 0.0117 ± 0.0006 cd 92.11 ± 0.52 b 83.09 ± 0.56 bc

Spd + salt 0.219 ± 0.0100 a 0.0300 ± 0.0058 a 95.72 ± 0.45 a 87.55 ± 0.40 a

SA + salt 0.092 ± 0.0090 cd 0.0094 ± 0.0008 d 92.50 ± 0.44 b 82.43 ± 0.70 c

2.2. Effect of PGRs Application on Sorbitol Content

It is well known that soluble carbohydrates (sorbitol) are plentiful in the family
Plantaginaceae. For this reason, in the leaves of P. coronopus this osmolyte was analyzed at
45 days of culture. In pretreatments without salt (Figure 2A) no significant differences were
found between PGR pretreatments compared to the control (without PGRs). However, in
saline conditions the Spd + salt and Kinetin + salt had higher values (p ≤ 0.05) of osmolyte
accumulation (Figure 2B), (increase 0.43-fold and 0.33-fold) respectively, compared to
untreated plants (without PGRs + salt). It should also be noted that in all pretreatments
under both saline and non-saline conditions, sorbitol concentrations were high even in the
control treatments (no PGRs) and (salt).
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2.3. Effect of PGRs Application on the Total Amount of Phenols and Flavonoids in
Saline Conditions

We studied the effect of PGRs application with salt on the antioxidant content (mea-
sured as total phenols and flavonoids) in the leaves of P. coronopus at 45 days of culture
to observe whether any pretreatment PGRs increased phenols and flavonoids content.
The results shown in Table 2 indicate that treatments with Kinetin + salt and Spd + salt
significantly (p ≤ 0.01) increased the content of phenols and flavonoids by 24% compared
to untreated plants (only salt). The values of phenols and flavonoids under non-saline
conditions did not have relevant results or show any significant differences between pre-
treatments (data not shown).

Table 2. Effect of PGRs application with salt (200 mM NaCl) in P. coronopus leaves, at 45 days old,
on total phenols and flavonoids. The values represent means ± SE (n = 3). The total phenols was
expressed in mg gallic acid (GAE) per gr dry weight, and total flavonoids was expressed in mg of
catechin (CE) per gr dry weight. Different letters within the same row represent significant difference
among treatments, according to Tukey’s test (p ≤ 0.01).

PGRs Application with Salt Total Phenols
(mg GAE g−1 DW)

Total Flavonoids
(mg CE g−1 DW)

Control (Salt) 4.5 ± 0.11 c 3.1 ± 0.11 b

IAA + salt 4.9 ± 0.12 bc 3.5 ± 0.12 ab

Kinetin + salt 5.3 ± 0.10 ab 3.7 ± 0.23 ab

GA3 + salt 4.6 ± 0.17 bc 2.9 ± 0.23 b

Spd + salt 5.9 ± 0.21 a 4.0 ± 0.14 a

SA + salt 5.0 ± 0.20 bc 3.2 ± 0.20 b

2.4. Effect of PGRs Application on Endogenous Free, Bound and Conjugated Polyamines
and Ethylene

In general, the pretreatments Spd without salt, and Spd with salt gave the greatest
growth results in P. coronopus. Therefore, we considered it necessary to analyze PGRs
application on the endogenous PA content (free, bound and conjugated) in the absence
or presence of salt. The data are shown in Figures 3–5. In salt-free PGRs pretreatment,
endogenous Put, Spd, and Spm (free, bound, and conjugated forms) increased compared to
the control (-PGRs); the pretreatments with Kinetin, Spd, and SA had the highest values for
endogenous Put (Figure 3a), endogenous Spd (Figure 4a) and endogenous Spm (Figure 5a),
which corresponded to a greater increase in DW and WC for P. coronopus. This increase
mainly occurs in bound and free PA fractions. However, under saline conditions, PA
levels are modulated by salt. We detected a decreased of endogenous Put (free, bound
and conjugated) in pretreatments Kinetin + salt and Spd + salt (Figure 3b) compared to
values in Figure 3a; nevertheless, no significant difference was observed in pretreatments
with salt due to the low amount of Put detected. However, endogenous Spm did increase
in free and, above all, bound forms (Figure 5b), and these values being always higher
than observed in saline-free pretreatments. The most significant increase was observed
for pretreatment Spd with salt: where endogenous Spm increased two-fold (free form),
2.7-fold (bound form) and 2-fold (conjugated form) compared to the control salt (Figure 5b).
Therefore, pretreatments Spd + salt and Kinetin + salt decreased endogenous Put (free,
bound and conjugated) and increased endogenous Spm content (above all endogenous
Spm bound). In pretreatment Spd + salt the increase of endogenous Spm (bound fraction)
(Figure 5b) was higher by 5.3-fold than endogenous Spm (bound fraction) in pretreatment
Spd (Figure 5a).
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treatments with salt due to the low amount of Put detected. However, endogenous Spm 
did increase in free and, above all, bound forms (Figure 5b), and these values being al-
ways higher than observed in saline-free pretreatments. The most significant increase 
was observed for pretreatment Spd with salt: where endogenous Spm increased two-fold 
(free form), 2.7-fold (bound form) and 2-fold (conjugated form) compared to the control 
salt (Figure 5b). Therefore, pretreatments Spd + salt and Kinetin + salt decreased endog-
enous Put (free, bound and conjugated) and increased endogenous Spm content (above 
all endogenous Spm bound). In pretreatment Spd + salt the increase of endogenous Spm 
(bound fraction) (Figure 5b) was higher by 5.3-fold than endogenous Spm (bound frac-
tion) in pretreatment Spd (Figure 5a). 
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Figure 5. (A) Effect of PGRs application without salt, and (B) PGRs with salt (200 mM NaCl), in Plantago coronopus leaves
at 45-day-old, on Spermine (Free, Bound and Conjugated) content. Means ± SE (n = 3). The asterisk above the column
represents significant difference between treatments of free Spm, significant difference between treatments of bound Spm
and significant difference between treatments of conjugated Spm, according to Tukey’s test (p ≤ 0.01).

Table 3 shows total PAs (Put (free, conjugated and bound forms) + Spd (free, con-
jugated and bound forms) + Spm (free, conjugated and bound forms)) under saline and
non-saline conditions. All pretreatments increased PA content, especially under saline
conditions, the highest values being Spd − salt and Spd + salt. Ethylene production in the
leaves of this halophyte were compared to the total PAs. The results indicated a decrease in
ethylene production that may contribute to increase PA content due to sharing a common
synthesis pathway that we explain in discussion.

204



Plants 2021, 10, 1872

Table 3. (A) Effect of PGRs application without salt, and (B) PGRs with salt (200 mM NaCl) in
P. coronopus leaves on total PAs [Put (Free, Bound and Conjugated) + Spd (Free, Bound and Conju-
gated) + Spm (Free, Bound and Conjugated)] and ethylene. Means ± SE (n = 3). Different letters
within the same row represent significant differences among treatments, according to Tukey’s test
(p ≤ 0.01).

A. PGRs Application without Salt Total PAs
(nmol g−1 DW)

Ethylene
(nL g−1 FW h−1)

Control (no PGRs) 21.87 ± 0.68 d 10.30 ± 0.64 a

IAA 24.54 ± 0.75 d 8.35 ± 0.61 ab

Kinetin 46.00 ± 1.81 b 5.62 ± 0.71 b

GA3 25.01 ± 0.88 d 7.68 ± 0.67 ab

Spd 61.29 ± 1.45 a 6.35 ± 0.53 b

SA 36.50 ± 0.69 c 5.81 ± 0.65 b

B. PGRs Application with Salt Total PAs
(nmol g−1 DW)

Ethylene
(nL g−1 FW h−1)

Control (salt) 32.11 ± 0.58 c 7.61 ± 0.52 a

IAA + salt 49.94 ± 0.42 b 3.30 ± 0.68 b

Kinetin + salt 54.70 ± 2.42 b 3.77 ± 0.47 b

GA3 + salt 36.76 ± 1.16 c 5.23 ± 0.59 ab

Spd + salt 67.79 ± 2.54 a 3.74 ± 0.64 b

SA + salt 37.50 ± 1.94 c 5.76 ± 0.53 ab

The correlation between Spm and sorbitol (r = 0.8465; p ≤ 0.01), the total PAs and Spd
(r = 0.9193; p ≤ 0.01), the total PAs and Spm (r = 0.7184; p ≤ 0.01) were always positive.
However, the negative correlation between ethylene (C2H2) and Spm (r = −0.732; p ≤ 0.01)
and ethylene and total PAs (r = −0.723; p ≤ 0.01) indicated that these metabolites (sorbitol.
Spd and Spm) are necessary, especially under saline conditions, for enhancing salt tolerance
and mitigating the adverse effect of stress (Table 4).

Table 4. Simple correlation coefficient (Pearson method) among all parameters studied in saline and non-saline conditions
in P. coronopus (p ≤ 0.05 *; p ≤ 0.01 **).

SLDW RDW SLWC RWC SOR PUT SPD SPM Total PAs C2H2

SLDW 1
RDW 0.7522 ** 1
SLWC 0.7629 ** 0.7559 ** 1
RWC 0.7049 ** 0.8769 ** 0.7941 ** 1
SOR 0.0723 −0.2711 −0.2874 −0.440 ** 1
PUT 0.4624 ** 0.4943 ** 0.3212 0.4720 ** −0.0267 1
SPD 0.6824 ** 0.4669 ** 0.3550 * 0.3892 * 0.3662 * 0.7729 ** 1
SPM 0.1200 * −0.3134 −0.3501 * −0.470 ** 0.8465 ** −0.0308 0.4360 ** 1

Total PAs 0.5148 ** 0.2064 0.0816 * 0.0840 0.5897 ** 0.6838 ** 0.9193 ** 0.7184 ** 1
C2H2 −0.2150 0.1044 0.2573 0.1496 −0.659 ** -0.2616 −0.588 ** −0.732 ** −0.723 ** 1

Parameters studied: SLDW (stem + leaf dry weight); RDW (root dry weight); SLWC
(stem + leaf water content); RWC (root water content); SOR (sorbitol); PUT (Free + Bound +
Conjugated); SPD (Free + Bound + Conjugated); SPM (Free + Bound + Conjugated); Total
PAs (Total PUT + Total SPD + Total SPM); C2H2 (ethylene production).

3. Discussion

The benefits that PGRs application have on growth and abiotic stress are well
known [42–44]. Under saline conditions, PGRs alleviate the adverse effects of salt on
morphological, physiological, biochemical characteristics, and on crop yields and qual-
ity [10,29,45].

Previous studies showed a fall in dry weight at 200 mM NaCl in P. coronopus [32]. This
species is in fact less salt-tolerant that other halophytes such as Frankenia pulverulenta and
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Atriplex prostrata that also grow in the Brujuelo saltmarsh (Jaén, Spain) [32]. In salt-free
pretreatment PGR, the dry weight and water content were increased in P. coronopus, es-
pecially under pretreatments Spd, SA, and Kinetin in aerial parts and Spd, SA, and IAA
in roots (A in Table 1). More specifically, PAs such as Spd are aliphatic biogenic amines.
These amines serve as an N reserve for the plant, N:C ratio regulate, favour synthesis
of pigments photosynthetic, acid nucleic and proteins. Spermidine applications elevate
levels of endogenous PA, but the enzymes involved in its biosynthesis can be increased
without altering PA degrading enzymes, such as occurs in zoysia grass subjected to saline
stress [46], and therefore these triamine could improve photosynthetic activity and pro-
tein synthesis favouring the growth of P. coronopus [28,47,48]. On the other hand, SA is
a phenolic secondary metabolite, although is more related to abiotic stress tolerance and
defensive responses against pathogens, application SA can have beneficious effect on cell
and vegetative growth, photosynthesis, and flowering in this halophyte [49]. Regarding
auxins and CKs stimulating elongation, cell division, formation of roots, leaves elonga-
tion, chloroplast differentiation and photosynthesis, however, a partial effect on growth
(IAA stimulated roots and Kinetin stimulated the aerial part) was observed in P. coronopus.
Crosstalk interaction with other phytohormones, as well as signaling network are very
complex. On the other hand, CKs and auxins can have antagonistic effect at low to medium
concentration, and only at higher concentration they have adjunctive effect [24,50]. With
respect to gibberellins, little effect has in this halophyte, so the effect of each treatment may
be genotype-dependent [48]. In saline conditions, the pretreatment Spd with salt was the
most effective both in terms of dry weight and water content (B in Table 1). At cellular
level, PAs can act as a compatible solute, as scavengers of free radicals, regulate plant
membrane transport and act as a signal molecule during stress response [28,51–53]. In
plant growth, PAs can offer specific protection to the photosynthetic apparatus (structural
organization and functional activity of thylakoids), stabilization of biomembranes, and
homeostasis redox [54]. A positive effect on photosynthetic activity and uptake of water
seems to occur in P. coronopus when Spd was applied (Figure 1). Few studies have ever
examined PAs in other halophytes. In crops with high nutritional values such as quinoa
(Chenopodium quinoa), PAs (especially, an increase in Spd and Spm under saline conditions)
may be useful markers of salt-tolerant genotypes [55,56] and may exert a protective ef-
fect improving growth on Cymodocea nodosa [57] and Solanum chilense [58]. Specifically,
exogenous application of Spd in C. nodosa improving chlorophyll fluorescence levels under
different saline treatments, maintaining the photosynthetic apparatus functional, under
long-term hypo-osmotic stress [57]. Nevertheless, the positive effect of PAs may vary
depending on the type of biotic and abiotic stress, plant species, time of exposure and
physiological status of the tissues/organs [59,60], and therefore the effect of pretreatments
must be studied in each halophyte.

Halophytes (dicotyledonous) accumulate inorganic ions (mainly Na+, Cl−) in their
aerial parts and excrete excess salt through saline glands, bladder hairs or by developing
succulence in their leaves [61]. For this reason, we focused our studies on P. coronopus
leaves. In previous studies, we detected a high concentration of ions (Na+, Cl−) related to a
certain degree of succulence [32]. Al-Hassan et al. [34] concluded that family Plantaginaceae
have a “constitutive mechanism” of tolerance in which the transport of Na+ and Cl− ions
(inorganic osmolytes) to the leaves and compartmentalization in the vacuole, contribute to
cellular osmotic balance, and increase antioxidant metabolism under saline stress [34,36].
Polyamines are related to ionic transport through at membrane thylakoid, tonoplast, and
plasma membranes [52,62,63]. Pottosin and Shabala showed that exogenous PAs applica-
tion (0.1–1 mM) activated Ca2+ efflux, net H+ fluxes, and activated H+-ATPase pump under
stress, but all these experiments were realized in the roots of glycophyte seedlings [52,62,63].
There are no studies on the application of PAs in halophytes on membrane ion channels.
Nevertheless, irrigation for 10 days with PGRs (in saline and non-saline conditions) did
not modify significantly ionic content and the “pre-adaptation” to stress proposed by
Al-Hassan et al. [34] in P. coronopus (therefore ion data were not included). On the other
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hand, the osmoprotective compounds (proline, glycine-betaine, sugar, and polyols) favor
water uptake, act as chaperons to molecular stabilized proteins and membranes, scavenge
ROS, and/or protect antioxidant enzymes [64,65]. The family Plantaginaceae preferably
accumulates sugars and polyols, sorbitol being the most abundant soluble carbohydrate in
all Plantago species [66]. Sorbitol accumulation and synthesis is carried out above all under
anaerobic conditions such as those present in saltmarshes, with confers on the competitive
advantages in the environments in which this halophyte normally grows (e.g., saltmarshes
in Jaén, Spain) [32,34]. In P. coronopus, sorbitol was found in high concentrations in both
saline and non-saline PGR pretreatments (Figure 2), although in pretreatments with salt,
the Spd had higher values according to higher increase in dry mass and water content.
The osmolyte content is probably modulated by PGRs in saline conditions. Pretreatment
PGRs stimulate growth probably because they increase photosynthetic activity (above all
pretreated with Kinetin and Spd) and increase the sugar content; of these sugars sorbitol
plays the role of osmolyte in Plantago species growing in adverse environmental conditions.
Sorbitol acts to maintain osmotic homeostasis, scavenging ROS, can regulate the osmotic
balance, and sequester Na+ in the vacuole or apoplast alleviating the toxic effect of saline
stress on P. coronopus [34]. On the other hand, CKs and PAs mutually regulate different
physiological and biochemical processes with strong correlations between CK and PA
levels, and act as inter- and intracellular messengers regulating abiotic stress [67].

The selection of productive, fast-growing halophytes with high saline tolerance that
give high yields is of vital importance if agriculture is to be successful. Plantago coronopus
is a source of valuable secondary metabolites of great economic value [37]. Antioxidants
such as phenols and flavonoids are an essential part of the human diet and so we used
different PGR pretreatments to analyze these two metabolites under saline conditions
(Table 2). Previous studies have demonstrated an increase in total phenols as NaCl ap-
plication increases [32]. These bioactive molecules eliminate large amounts of ROS and
protect the cell against oxidative stress on its lipids, proteins, and DNA, in addition act
as hydrogen donors, single oxygen quenchers and reducing agents [32,65,68]. The exper-
iments by Boestfleisch et al. [20] have shown that it is possible to manipulate a plant’s
antioxidant capacity by modifying the saline growth environment, and the development
stage. Our results indicate that mixing Spd with salt significantly improved the content
of phenol and flavonoids when compared to untreated plants (only salt). Wild edible
plants tend to have higher micronutrient contents and secondary metabolites than those of
domestication varieties, therefore P. coronopus cultivation irrigated with Spd with salt can
increase metabolite contents and constitute a good a source of sugar, minerals, vitamins,
and antioxidants, might provide health benefits, and could be used as a new gastronomic
food [69–71].

The best treatment under both non-saline and saline conditions was the PA Sper-
midine. Thus, we decided to analyze the endogenous PA content in this halophyte. In
the biosynthetic pathway precursors of diamine Put are ornithine and arginine, while
the triamine Spd and tetramine Spm are produced by addition of aminopropyl groups
from S-adenosyl methionine (SAM) that are sequentially incorporated to Put and Spd
by enzymatic reactions catalyzed, respectively, by Spd synthase and Spm synthase. The
SAM is decarboxylated by SAMDC (S-adenosyl-methionine decarboxylase) [28,47,53]. Cur-
rently, little is known about the endogenous content of PAs in halophytes. Only thirteen
halophytes have been studied and PAs have been associated with saline excretion, ionic
balance, osmoregulation, protective role on photosynthetic apparatus and biomembranes,
high photochemical efficiency in photosystem II, and an increased antioxidant defence sys-
tem [32,72]. The low levels of free PAs (Put, Spd and Spm) detected under saline conditions
in P. coronopus [32] made it interesting to study the interconversion between different PA
forms under treatment with PGRs. Polyamines can exist in free soluble forms, conjugated
to hydroxycinnamic acids (small molecules), or bound to macromolecules such as DNA,
lipids, and proteins [51]. In the vegetative stage, salt modulated PA levels, decreased Put
content, and increased free and bound forms of Spd and Spm, with values that were always
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higher than under non-saline conditions. It is interesting underline the drastic increase in
bound > free > conjugated Spm forms compared to endogenous Spm (free, bound, and
conjugated) in non-saline conditions in pretreatment Spd + salt and pretreatment Spd
(Figure 5A,B). We hypothesize that bound forms (above all in Spd pretreatments) can be
related to the protection of endogenous cellular structures (mainly biomembranes and
photosynthetic apparatus), such as occur in the halophyte Inula crithmoides [54]. In addition,
Spd treatment increases it endogenous content and enhance also endogenous Spm. More
specifically, bound Spd and Spm forms were detected in PSII and LHCII (light-harvesting
antenna complex) [73,74]. There are no studies on halophytes, but the exogenous Spd
application in some glycophytes showed stabilization of PSII, improving photosynthetic
performance and the antioxidant system in chloroplasts under saline conditions [74–76].
We consider that similar effects can occur in P. coronopus when Spd is applied. At the
level of transgenic plants, the Spd synthase gene (EsSPDS1) (an enzyme that synthesizes
Spd and increase the content of endogenous Spd and Spm) was cloned and characterized
in the obligate halophyte Eutrema salsugineum and inserted into transgenic tobacco plant
subjected to water and salinity stress. The results showed lower malondialdehyde (MDA,
oxidative stress indicator) levels, less ion leakage and ROS levels, which indicates better
protection in biomembranes, higher water content and more antioxidant enzymes than in
non-transformed plants [77]. Clearly, Spd application improves stress tolerance, probably
by protecting membranes and photosynthetic apparatus, and decreasing ROS, which could
explain our results regarding the enhanced salinity tolerance in P. coronopus.

Ethylene and PAs have a common precursor, SAM. The increase of total PAs was
accompanied by a decrease in ethylene production under different PGR treatments, which
could contribute to PA accumulation (Table 3), thereby indicating a certain competition
between PAs and ethylene for SAM, the common precursor. Therefore, SAM can be
derivative to the formation of PAs, above all, during salt stress [78,79]. The correlation
coefficient between studied parameters (Table 4) confirms our results. Finally, studies in
transgenic Arabidopsis plants (with overexpression of SAMDC and, therefore, with high
levels of Spd and Spm) under abiotic stress revealed better growth, maintaining higher
photosynthetic activity, higher Fv/Fm and an increase in the PI

ABS (Performance Index
Based on Absorption). The enhancement in PI

ABS caused a higher efficiency of quantum
yield and specific energy fluxes of PSII, and also higher activities of antioxidant enzymes
were found in the transformed plant [80].

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Seeds of P. coronopus were randomly collected in September 2016 from Brujuelo
saltmarsh (GPS location: 37◦52′46” N, 3◦40′11” W) (province of Jaén, Spain). Seeds were
kept dry at 4 ◦C before being washed with sterile distilled water and sown in Petri dishes
at 25± 1 ◦C and a photoperiod of 16 h [32]. After 10 days, the most uniform seedlings were
transferred to 1.5 L pots with vermiculite as a substrate. Four seedlings per pot were sown
and hydroponically cultivated using Hoagland nutrient solution 50% pH 6.5 ± 0.1 [81].
Plants were watered every two days with Hoagland nutrient solution. The environmental
conditions in the growth chamber were the followings: photosynthetic photon flux density
(PPFD) 500 µmol photon m−2 s−1, 400–700 nm, provided by Sylvania Inc., Danvers, MA,
USA, lamps, photoperiod 16h/8h in a day/night cycle, temperature (day) 25 ◦C ± 1 ◦C
and (night) 16 ◦C ± 1 ◦C, and relative humidity of 55–75%.

4.2. Experimental Design and Treatments with PGRs and NaCl

In a growth chamber, plants were acclimated (in hydroponic conditions) for two
weeks. Subsequently, these plants were treated for 10 days with different growth regulators
applied to the nutrient solution when watered. The growth regulators used were the
following: auxin: IAA; cytokinin: kinetin; gibberellins: GA3; polyamine: Spd; and salicylic
acid: SA.

208



Plants 2021, 10, 1872

Six treatments were established with six pots for each treatment PGRs

1. No PGRs
2. IAA (1 µM)
3. Kinetin (1 µM)
4. GA3 (1 µM)
5. Spd (0.5 mM)
6. SA (0.5 mM)

Six treatments were established with six pots for each treatment PGRs + salt

7. NaCl (200 mM)
8. IAA (1 µM) + NaCl (200 mM)
9. Kinetin (1 µM) + NaCl (200 mM)
10. GA3 (1 µM) + NaCl (200 mM)
11. Spd (0.5 mM) + NaCl (200 mM)
12. SA (0.5 mM) + NaCl (200 mM)

Subsequently, these pots were irrigated with two concentrations of NaCl: 0 mM
(treatment 1–6) and 200 mM (treatment 7–12). NaCl levels were selected according to
previous experiments realized by us [32]. To avoid osmotic shock, NaCl were increased
progressively until the final required concentration was reached [32]; After 21 days in saline
or non-saline conditions, plants were harvested for further analysis. Plants were 45 days
old when harvested (14 days acclimation in pots, then 10 days of pretreatment with PGRs,
and finally 21 days under saline or non-saline conditions). Flowering in this halophyte
began approximately at 40–45 days old.

4.3. Growth Parameters

The following parameters were determined: fresh weight (FW) (roots, stems, and
leaves), dry weight (DW) (leaves + stems and roots), and water content (WC) (leaves + stems
and roots). To obtain DW, plants were placed in a forced-air oven at 70v ◦C for 72–96 h
until a constant weight was obtained. This material was used to determine sorbitol,
phenols, flavonoids, and endogenous PAs (free, conjugated and bound). Water content
was calculated following the formula: WC (%) = (FW − DW/FW) × 100, where SL = stem
and leaves, and R = Roots [82]. In fresh material (leaves), the ethylene production was
determined.

4.4. Sorbitol Quantification

Sorbitol (Sor) was analyzed following Hassan et al. [34] for P. coronopus leaves (mature
plants). For 10 min, dry leaves (45-day-old) were boiled in milliQ water and subsequently
filtered with filters (0.22 µm). Afterwards, all samples (grown in absence and presence of
salt) were injecting (20 µL) in a Waters 717 autosampler into a Prontosil 120-3-amino column
(4.6 × 125 mm; 3 µm particle size). The conditions of isocratic flux were: (1 mL/min)
of 85% acetonitrile for 25 min in each run. Sor integration peaks were obtained in the
Waters Empower software and the quantification was realized compared with the standard
calibration curve. A Waters 1525 HPLC (high-performance liquid chromatography) coupled
with a 2424 evaporative light scattering (ELS) detector (Markham, ON, Canada) were used
to determinate Sor content. The source parameters of ELSD were gain 75, data rate 1 point
per second, nebulizer heating 60%, drift tube 50 ◦C, and gas pressure 2.8 Kg/cm2. All
experiments were conducted at room temperature.

4.5. Determination of Total Phenols and Flavonoids

The method of Boestfleisch et al. [20] was followed. Leaves dry were incubated (10 min)
in methanol (80%) with continuous shaking. Subsequently, samples obtained in saline
conditions were centrifugation for 5 min at 15,000× g and the supernatant was collected.

The quantification of total phenols was performed following the protocols by
Dudonné et al. [83]. One hundred µL of water was pipetted into small tubes. Then
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were added: blank (80% methanol), or gallic acid standard (5–250 µg mL−1) or 10 µL
of methanolic extract. The reaction is completed with Folin–Ciocalteu reagent (10 µL).
After waiting 8 min sodium carbonate (7%) (100 µL) was added. In the dark and room
temperature, tubes were incubated for approximately 90–100 min. Total phenols were
calculated using a standard curve. The samples at wavelength of 765 nm were measured in
a spectrophotometer VARIAN Cary 4000 UV-VIS (Santa Clara, CA, USA).

The quantification of the total flavonoids was performed following Dewanto et al. [84].
In this case, in each tube was added 150 µL of water. Then we added blank (80% methanol),
or catechin hydrate standard (0–400 µg mL−1), or 25 µL of methanolic extract, and NaNO3
(3.75%) (10 µL). After waiting 6 min, the reaction was completed with AlCl3 (10%) (15 µL).
After 5 min of incubation, NaOH (1 M) (50 µL) was added. Total flavonoids were calculated
from a standard curve. The samples and the curve standard at wavelength 510 nm. were
measured in a spectrophotometer VARIAN Cary 4000 UVA-VIS (Santa Clara, CA, USA).

4.6. Analysis of Free, Bound and Conjugated Polyamines

For PAs extraction the method followed by Ghabriche et al. [54] was used with minor
modifications. Dry leaf samples (in saline and non-saline conditions) were ground in a
mortar and homogenized with HCl (1 M) (v/v), then centrifuged at 23,000× g at 4 ◦C
for 20 min. The supernatant was used to determine free polyamines by dansylation
method [85]. The samples were resuspended in methanol (1 mL) and then centrifuged
at 13,000× g for 15 min. Later, these samples needed to be filtered using microfilters
(Chromafil PES-45/15, 0.45 µm; Macherey-Nagel). Twenty µL were injected into a Bio-Rad
HPLC system (Hercules, CA, USA) equipped with a Nucleosil 100-5 C18MN 250/04 column
(particle size: 5 µm, 4.6 × 250 mm2). The conditions of HPLC to quantify the integration
peaks were the following: a methanol/water stepped gradient program changing from
60% to 100% methanol over 25 min, flow rate 1 mL min−1, and temperature of 35 ◦C. A
Shimadzu RF-10Axl fluorimeter detector (excitation wavelength 320 nm and emission
wavelength 510 nm) was used to determine dansylated free polyamines.

Bound forms (covalently bound to macromolecules such as proteins) and conjugated
forms (covalently bound with small molecules such as hydroxycinnamic acids) were also
analyzed. We added 200 µL of HCL (12 N) to the same amount of supernatant (200 µL)
and transferred to dark tightly capped glass tubes. These tubes were placed in a heater
and heated at 110 ◦C for 24 h to realize sample hydrolysis. After HCl was evaporated,
the residue was resuspended in 200 µL of perchloric acid (10%) and used for dansylation.
The pellet was used to extract bound PAs. This was dissolved in 5 mL of NaOH (1N).
The mixture was centrifuged at 23,000× g at 4 ◦C for 20 min., and the supernatant was
hydrolysed and dansylated under the same conditions described above. Dansylated free
PAs (supernatant), dansylated conjugated PAs (supernatant hydrolysed) and dansylated
bound PAs (pellet hydrolysed) were injected (20 µL) in the HPLC, in addition to PA
standards (Put, Spd, Spm from Sigma, San Francisco, CA, USA), for quantification.

4.7. Ethylene Production

The method of Bueno et al. [86] was followed: fresh leaves collected of P. coronopus
(45-day-old) were immediately transferred into a 5 mL flask (containing at the bottom filter
paper and 50 µL of distilled water). All flasks were sealed with a silicone-rubber stopper (to
prevent gas leakage). Flasks were incubated on a stove for 1 h incubation period, at 30 ◦C
in darkness. Later, a 1 mL gas sample was injected into a HP 5890 series II, Hewlett Packard
(Palo Alto, CA, USA) gas chromatograph fitted with a flame ionization detector and a
2 m × 4 mm stainless-steel column packed with 50–80 mesh Poropack-R. The conditions
of chromatograph were: N2, H2 and synthetic air flow rates 50, 86, and 400 mL min−1,
respectively. To analyze and quantify ethylene production, peaks integration was compared
with the retention time of ethylene (C2H4) standard, (purity 99.9%).
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4.8. Data Analysis

A randomized block design was used in our experiments. Data are presented as
mean ± standard error (SE). A Statgraphics Centurion v. 17 (University of Jaén) was used
to perform analyses of variance (ANOVA). Significant differences between means were
determined using Tukey’s multiple range test (p ≤ 0.05 and p ≤ 0.01). All parameters in
the absence or presence of salt were compared using Pearson’s correlation coefficients.

5. Conclusions

Halophyte cultivation as a part of biosaline agriculture could help improve produc-
tivity and crop quality and be used to restore saline and degraded land. In P. coronopus
cultivation, exogenous Spd application (0.5 mM) to the nutritive solution can improve
growth and increase salt-stress tolerance, as well as increasing the osmolyte (sorbitol) and
antioxidant compounds (phenols and flavonoids) under saline conditions. The increase in
the endogenous PA pool, especially Spd and Spm (bound forms), is probably related to the
protection of subcellular structures, the maintenance of photosynthetic activity, osmotic
adjustment, ionic homeostasis and the improvement of antioxidant activity. In addition,
the increase in Spd levels showed a negative correlation with ethylene, indicating than the
decrease in ethylene also can contribute to PA accumulation. Auxins, CKs, GAs and SA
pretreatments stimulated growth under non-saline conditions, but these PGRs were unable
to mitigate the adverse effects of stress. Therefore, Spd application is the best pretreatment
for P. coronopus cultivation and can contribute to improving the tolerance to salinity and
nutritional quality of this halophyte, although it will be necessary to research in each
halophyte which is the better treatment to apply.

Author Contributions: Conceptualization, M.d.P.C. and M.B.; methodology, M.d.P.C. and M.B.;
software, M.d.P.C. and M.B.; validation, M.d.P.C. and M.B.; formal analysis, M.d.P.C. and M.B.; inves-
tigation, M.d.P.C. and M.B.; resources, M.B.; data curation, M.d.P.C. and M.B.; writing—original draft
preparation, M.B.; writing—review and editing, M.B.; visualization, M.d.P.C. and M.B.; supervision,
M.d.P.C. and M.B.; project administration, M.d.P.C.; funding acquisition, M.d.P.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Spanish Ministry of Science and Innovation, grant number
CGL2006-08830, The involvement of growth regulators in plant response to salinity.

Acknowledgments: We want to thank the Technical Research Services of the University of Jaén for
their invaluable help in the quantification of metabolites (sorbitol, polyamines, and ethylene). Our
thanks to the designer Sonia Reyes for her valuable help in preparing high-quality tables, graphics,
and photographs.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob.

Chang. Biol. 2014, 20, 3313–3328. [CrossRef]
2. Leisner, C.P. Review: Climate change impacts on food security-focus on perennial cropping systems and nutritional value. Plant

Sci. 2020, 293, 110412. [CrossRef]
3. Shahzad, A.; Ullah, S.; Dar, A.A.; Sardar, M.F.; Mehmood, T.; Tufail, M.A.; Shakoor, A.; Haris, M. Nexus on climate change:

Agriculture and possible solution to cope future climate change stress. Environ. Sci. Pollut. Res. Int. 2021, 28, 14211–14232.
[CrossRef]

4. Santos, J.; Al-Azzawi, M.; Aronson, J.; Flowers, T.J. eHALOP a database of salt-tolerant plants: Helping put halophytes to work.
Plant Cell Physiol. 2016, 57, e10. [CrossRef]

5. Grigore, M.N. Definition and classification of halophytes as an ecological group of plants. In Handbook of Halophytes: From
Molecules to Ecosystems towards Biosaline Agriculture, 1st ed.; Grigore, M.N., Ed.; Springer: Cham, Switzerland, 2021; pp. 1–48.
[CrossRef]

6. Gul, B.; Ansari, R.; Flowers, T.J.; Khan, M.A. Germination strategies of halophyte seeds under salinity. Environ. Exp. Bot. 2013, 92,
4–18. [CrossRef]

7. Kumari, A.; Das, P.; Parida, A.K.; Agarwal, P.K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in
halophytes. Front. Plant Sci. 2015, 6, 537. [CrossRef]

211



Plants 2021, 10, 1872

8. Bueno, M.; Cordovilla, M.P. Ecophysiology and uses of halophytes in diverse habitats. In Handbook of Halophytes: From Molecules
to Ecosystems towards Biosaline Agriculture, 1st ed.; Grigore, M.N., Ed.; Springer: Cham, Switzerland, 2021; pp. 1–25. [CrossRef]

9. Grigore, M.N.; Toma, C. Integrative anatomy of halophytes from Mediterranean climate. In Handbook of Halophytes: From Molecules
to Ecosystems towards Biosaline Agriculture, 1st ed.; Grigore, M.N., Ed.; Springer: Cham, Switzerland, 2021; pp. 1–35. [CrossRef]

10. Shaid, M.A.; Sarkhosh, A.; Khan, N.; Balal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; García-Sánchez, F. Insights
into physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 2020, 10, 938. [CrossRef]

11. Borsai, O.; Al Hassan, M.; Negrusier, C.; Raigón, M.D.; Boscaiu, M.; Sestraş, R.E.; Vicente, O. Responses to salt stress in Portulaca:
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Abstract: The genus Plantago is particularly interesting for studying the mechanisms of salt tolerance
in plants, as it includes both halophytes and glycophytes, as well as species adapted to xeric environ-
ments. In this study, the salt stress responses of two halophytes, P. crassifolia and P. coronopus, were
compared with those of two glycophytes, P. ovata and P. afra. Plants obtained by seed germination of
the four species, collected in different regions of Tunisia, were subjected to increasing salinity treat-
ments for one month under greenhouse conditions. Morphological traits and biochemical parameters,
such as ion accumulation and the leaf contents of photosynthetic pigments, osmolytes, oxidative
stress markers and antioxidant metabolites, were measured after the treatments. Salt-induced growth
inhibition was more pronounced in P. afra, and only plants subjected to the lowest applied NaCl
concentration (200 mM) survived until the end of the treatments. The biochemical responses were
different in the two groups of plants; the halophytes accumulated higher Na+ and proline concen-
trations, whereas MDA levels in their leaves decreased, indicating a lower level of oxidative stress.
Overall, the results showed that P. coronopus and P. crassifolia are the most tolerant to salt stress, and
P. afra is the most susceptible of the four species. Plantago ovata is also quite resistant, apparently by
using specific mechanisms of tolerance that are more efficient than in the halophytes, such as a less
pronounced inhibition of photosynthesis, the accumulation of higher levels of Cl− ions in the leaves,
or the activation of K+ uptake and transport to the aerial part under high salinity conditions.

Keywords: salt stress; halophytes; growth responses; ion accumulation; osmolytes; oxidative stress
biomarkers; antioxidants

1. Introduction

Global agricultural yields and food production are negatively affected by different
environmental stress factors, especially drought and salinity [1,2]. These stressors inhibit
plant growth and reproductive development, causing significant reductions in crop pro-
ductivity and may even compromise yield entirely. Salinity is already affecting 25–30%
of total cultivated land and 33% of irrigated land [3], although some estimates increase
this percentage to more than 50% [4]. This situation is predicted to worsen shortly due to
the consequences of climate change [5], as more cultivated areas will depend on irrigation
and lower-quality water will be used, triggering an increase in the rate of secondary soil

215



Plants 2021, 10, 1392

salinisation [6]. Salinity impairs plant growth and development due to its two compo-
nents, osmotic stress and ion toxicity, inhibiting plant growth and cellular functions and,
eventually, causing plant death [7–10]. Plants exposed to salt stress show morphological,
physiological, metabolic, and molecular changes reflected, for example, in a delayed or
completely inhibited seed germination, high seedling mortality [11] or a general inhibition
of photosynthesis and growth [2,8,12]. Although most plants are glycophytes, susceptible
to salinity, there is a small group of ca. 1500 species from different genera and families that
are halophytes, which can survive and complete their life cycle on saline soils [13].

The genus Plantago L. (Plantaginaceae family) includes more than 250 annual and
perennial herbs and subshrubs, distributed worldwide, except for tropical rainforest and the
Antarctic. Some Plantago species are cosmopolitan, others have more limited geographical
ranges, but the genus also includes local endemics [14,15]. There are many interesting
aspects related to the taxonomy and evolutionary trends of this genus [16,17], but also
concerning salt stress physiology and biochemistry, given that it includes several well-
known halophytes [18–21].

Plantago coronopus L. is an annual or biennial species that ranges from North Africa and
the Iberian Peninsula to SE Asia, reaching northern Europe through a narrow strip along
the Atlantic coast [22,23]. It grows in different types of littoral and inland habitats, such as
sand dunes, saline grasslands, salt marshes, scrublands, or human-disturbed areas [23],
tolerating saline soils [24]. It is considered as a potential cash crop [24], an edible plant
with nutraceutical [25] and antioxidant properties [26].

Plantago crassifolia Forsk. is a perennial species present only in the Mediterranean
region. South African populations, previously ascribed to this species, are now considered
as P. carnosa Lam, based on the analysis of the internal transcribed spacer (ITS) region of
rRNA genes [27]. Plantago crassifolia is a typical halophyte, growing exclusively in saline
habitats with moderate soil salinity and occupying interdune depressions and salt marsh
edges [21,28]. It is reported as palatable fodder [29]. The two species, P. coronopus and P.
crassifolia, are taxonomically related, belonging to the subgenus Coronopus (Lam. and DC.)
Rahn, section Coronopus Lam [30].

Plantago ovata Forssk. is an annual or short-lived perennial species, ranging from
the Canary Islands and SE Iberian Peninsula, across northern Africa, to India [31]. It was
considered introduced in North America in the 18th century, but a molecular clock based
on ITS and chloroplast DNA analysis dates a much earlier, non-anthropogenic introduction
from the Old World, 200,000–650,000 years ago [32]. The species grows in dry areas on
wasteland, annual pastures, almost always on somewhat nitrified soils, indifferent to soil
pH, but has also been found, occasionally, in moderately saline soils [31]; in North America,
it is present only in desert and Mediterranean habitats [33]. Due to the laxative properties
of the seed mucilage, P. ovata is a well-known medicinal plant cultivated in many countries,
with India as the leading producer [34].

Plantago afra L. (syn. P. psyllium L.) is an annual species with a wide geographic
distribution, from the Canary Islands and the Iberian Peninsula, along the Mediterranean
region, to Pakistan. It grows in annual grasslands, roadsides, and crop fields in semi-arid
and arid areas [31]. Like P. ovata, it has medicinal applications and is cultivated in India,
Pakistan, and Iran. The seed husks of P. ovata and P. afra are known by the name ’psyllium‘
and are a popular mild laxative used to relieve chronic constipation, bowel cancer and
gastrointestinal irritation. Psyllium is also used as a dietary source of fibre to treat obesity
and cholesterol reduction or as an antitussive and anti-inflammatory [35]. The two species
belong to the subgenus Psyllium (Juss.) Harms and Reich; P. ovata is classified in the section
Albicans Barnéoud, and P. afra in the section Psyllium (Juss.) Lam and DC [30].

This work aimed to compare the responses to salt stress in two typical halophytes of
the genus Plantago, P. crassifolia and P. coronopus, and two other congeneric species, P. ovata
and P. afra, more adapted to xeric environments. Although the resistance to salinity has
been evaluated in many plants, comparative analyses in genetically related species adapted
to different natural habitats are not so commonly performed and can provide insights
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into the most relevant mechanisms of salt tolerance in a particular genus. To address
this question, inhibition of growth in the presence of increasing salt concentrations, up to
800 mM NaCl, was evaluated in plants of the four species as the most reliable parameter to
establish their relative degree of tolerance. Then, these growth responses were correlated
with the salt-induced changes in the levels of biochemical markers associated with specific
stress response pathways, namely, monovalent ions (Na+, Cl−, K+), specific osmolytes
(proline and total soluble sugars), oxidative stress biomarkers (malondialdehyde, H2O2)
and antioxidant compounds (phenolics and flavonoids).

2. Results

In this study, morphological, physiological, and biochemical traits were measured
to analyse the impact of salinity stress treatments on four Plantago species (P. coronopus,
P. crassifolia, P. ovata and P. afra).

A two-way ANOVA was performed to assess the effects of the factors ‘species’, ‘treat-
ment’, and their interactions, on all measured parameters (Table 1). The 21 traits analysed
displayed significant differences for the ‘species’ effect. Differences between treatments
were also significant for all measured parameters, except K+ levels in leaves, whereas leaf
fresh weight was the only non-significant trait regarding the interaction of species and
treatments.

Table 1. Results of two-way ANOVA (F ratios) for the independent factors ‘Species’ (S), ‘Treatment’
(T) and the interaction ‘Species × Treatment’ (S × T). Abbr.: ECs: electrical conductivity of the
substrate; RL: root length; SL: shoot length; FW(%): leaf fresh weight (as a percentage of the control);
RWC: root water content; LWC: leaf water content; Chl a: Chlorophyll a; Chl b: Chlorophyll b;
Caro: carotenoids; Na+ R: sodium in roots; Na+ L: sodium in leaves; Cl− R: chloride in roots; Cl−

L: chloride in leaves; K+ R: potassium in roots; K+ L: potassium in leaves; MDA: malondialdehyde;
H2O2: hydrogen peroxide; TSS: total soluble sugars; Pro: proline; TPC: total phenolic compounds;
TF: total flavonoids.

Variables S T S × T

ECs 297.04 * 129.78 * 62.07 *
RL 205.23 * 34.43 * 70.59 *
SL 35.99 * 53.34 * 8.65 *

FW (%) 10.29 * 66.62 * 1.56
RWC 91.76 * 49.30 * 17.78 *
LWC 142.33 * 87.91 * 16.21 *
Chl a 17.68 * 45.54 * 8.04 *
Chl b 11.69 * 29.51 * 2.68 *
Caro 12.59 * 48.68 * 3.30 *

Na+ R 239.91 * 26.67 * 22.49 *
Na+ L 235.82 * 62.31 * 49.70 *
Cl− R 23.76 * 10.69 * 7.04 *
Cl− L 77.36 * 23.50 * 29.56 *
K+ R 40.97 * 21.01 * 3.45 *
K+ L 63.60 * 0.90 9.12 *
MDA 55.67 * 102.62 * 29.84 *
H2O2 102.17 * 11.32 * 22.67 *
TSS 7.75 * 58.23 * 20.62 *
Pro 192.94 * 63.45 * 33.07 *
TPC 40.68 * 10.35 * 24.94 *
TF 93.51 * 18.10 * 51.53 *

* Significant at the 95% confidence level.

2.1. Substrate Analysis

The electrical conductivity of the substrate in the pots (EC1:5) at the end of the salt
treatments increased in parallel with the NaCl concentration in the irrigation water, with
significant differences between treatments (Table 2). EC reached the highest values in the
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pots watered with 800 mM NaCl, 9.57 dS m−1 for pots with P. coronopus and 9.45 dS m−1

for P. crassifolia. No significant differences were observed between different species for
each salt concentration tested. EC was not determined (n.d.) for those treatments that
resulted in the death of the plants, 800 mM NaCl for P. ovata or 400 mM and higher salt
concentrations in the case of P. afra (Table 2).

Table 2. Electrical conductivity of the substrate in 1:5 soil:water suspensions (EC1:5, dS m−1), in pots
watered for four weeks with the indicated NaCl concentrations. The values shown are means ± SE
(n = 5). In each row, different letters indicate significant differences between treatments, according to
the Tukey test (p < 0.5). n.d.: not determined.

Control 200 mM 400 mM 600 mM 800 mM NaCl

P. crassifolia 0.48 ± 0.02 a 3.56 ± 0.18 b 5.46 ± 0.22 c 7.94 ± 0.50 d 9.45 ± 0.30 e

P. coronopus 0.45 ± 0.02 a 1.20 ± 0.09 b 5.66 ± 0.50 c 7.60 ± 0.10 d 9.57 ± 0.20 e

P. ovata 0.45 ± 0.02 a 1.51 ± 0.05 b 5.63 ± 0.14 c 8.51 ± 0.40 d n.d.
P. afra 0.49 ± 0.05 a 2.15 ± 0.15 b n.d. n.d. n.d.

2.2. Effects of Salt Stress on Plant Growth

Plantago ovata plants did not survive the four-week treatment with the highest salt
concentration applied, 800 mM NaCl; therefore, samples from this treatment were not
collected. In the case of the more salt-sensitive P. afra, only data from the control and the
200 mM NaCl treatments were obtained since the plants could not withstand 400 mM NaCl
or higher salinities and died within the first two or three weeks of treatment. Although
the halophytes, P. crassifolia and P. coronopus, survived all treatments without showing any
apparent wilting symptoms, even in the presence of 800 mM NaCl, salt stress affected
growth in all four species (Figure 1). For example, in all cases, root length increased
in parallel with increasing external salinity (Figure 1a). Stimulation of root growth in
response to salt stress seems to mimic the behaviour of the plants in nature, where high
salt concentrations may induce roots to grow, searching for soil layers with lower salinity.
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Figure 1. Root length (a) and shoot length (b) of the four selected Plantago species after four weeks of treatment with the
indicated NaCl concentrations. The values shown are means ± SE (n = 5). For each species, different letters over the bars
indicate significant differences between treatments, according to the Tukey test (p < 0.5).

All other measured parameters showed growth inhibition in response to the salt
treatments in the four Plantago species. The experimental data also revealed that P. ovata is
relatively resistant to salinity, even though it is not considered a typical halophytic species
since it is not present in highly saline natural habitats.
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Measurements of shoot length in plants treated with different salt concentrations
allowed estimating the relative salt tolerance of the investigated species. According to
this criterion, P. coronopus appears to be the most tolerant, with a statistically significant
reduction of shoot length, compared to the non-stressed control, observed only in the
presence of 800 mM NaCl. In P. ovata, no reduction was detected in plants subjected to
the 200 and 400 mM NaCl treatments, whereas a significant decrease in shoot length was
observed in P. crassifolia plants treated with 400 and higher NaCl concentrations. The most
salt-sensitive species, P. afra, already showed inhibition of shoot growth at 200 mM NaCl,
the only salt concentration that allowed survival of the plants under the conditions used in
the experiments (Figure 1b).

Determination of the fresh weight of the aerial part of the plants confirmed the highest
salt sensitivity of P. afra, for which a FW decrease of about 60% of the control was calculated
in the presence of 200 mM NaCl. Growth inhibition between 200 and 600 mM NaCl
followed a similar pattern for P. coronopus and P. ovata. The relative FW reduction at high
salinities was comparatively lower in P. crassifolia, probably due to less water loss, given
the succulent leaves of this species (Figure 2). Values in Figure 2 are shown as percentages
of the corresponding non-stressed controls to better compare the four species, which have
slightly different sizes.
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Figure 2. Fresh weight (FW) reduction of the aerial part of the plants in the four selected Plantago
species after four weeks of treatment with the indicated NaCl concentrations. For each species,
different letters over the bars indicate significant differences between treatments, according to the
Tukey test (p < 0.5). Values are shown as percentages of the FW of the corresponding controls, taken
as 100%.

The relative salt tolerance of the four Plantago species correlated with their resistance
to salt-induced dehydration in roots and leaves (Figure 3). In roots, non-significant or
slight reductions in water contents were observed for P. crassifolia and P. coronopus, which
kept high, and similar, values even in the presence of 800 mM NaCl; root dehydration
was relatively higher in P. ovata and, especially, in the least tolerant P. afra (Figure 3a).
Salt-induced dehydration was more pronounced in the leaves than in the roots, although
maintaining the same general pattern. Leaf water loss was slightly lower in the succulent
P. crassifolia than in P. coronopus but substantially lower in the two halophytes than in the
other two species (Figure 3b).

2.3. Effects of Salt Stress on Photosynthetic Pigment Levels

Inhibition of photosynthesis, partly due to degradation of photosynthetic pigments, is
a general response of plants to abiotic stress. In the present study, a significant, concentration-
dependent decrease in chlorophylls a and b and carotenoid contents, with respect to the
non-stressed controls, has been observed in plants of the four selected Plantago species
subjected to increasing salt treatments (Figure 4). In the presence of 200 mM NaCl, the
lowest values of the three pigments were measured in P. afra, the most salt-sensitive species,
whereas no significant reduction was observed in P. ovata or, for Chl b and carotenoids, in
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P. coronopus. At higher salinities, P. ovata and the two halophytes showed similar qualitative
patterns of variation, with the most substantial reduction in pigment contents generally
detected in P. crassifolia and the least pronounced in P. ovata (Figure 4).
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Figure 3. Water content percentage in roots (a) and leaves (b) in the four selected Plantago species, after four weeks of
treatment with the indicated NaCl concentrations. The values shown are means ± SE (n = 5). For each species, different
letters over the bars indicate significant differences between treatments, according to the Tukey test (p < 0.5).
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Figure 4. Chlorophyll a (Chl a) (a), chlorophyll b (Chl b) (b) and carotenoids (Caro) (c) contents in leaves of the four selected
Plantago species, after four weeks of treatment with the indicated NaCl concentrations. The values shown are means ± SE
(n = 5). For each species, different letters over the bars indicate significant differences between treatments, according to the
Tukey test (p < 0.5).
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2.4. Ion Accumulation

In the four investigated Plantago species, Na+ and Cl− concentrations increased in
the roots and leaves of the plants, roughly in parallel with the increasing NaCl concen-
tration in the irrigation water (Figure 5). For each species and specific salt treatment,
the concentrations of Cl- were consistently higher than those of Na+ in both organs, and
those of both ions were higher in the leaves than in the roots (Figure 5a–d), indicating the
existence of mechanisms for their active transport to the aboveground organs. There were,
however, differences in the accumulation patterns of the two ions. In roots, Na+ contents
were highest at all tested salinities (including the non-stressed controls), in P. crassifolia,
and lowest in P. afra, whereas P. coronopus and P. ovata showed intermediate and similar
values (Figure 5a). The same pattern of Na+ accumulation was observed in the leaves,
except that the absolute concentrations reached, at the same external salinity, were higher
in P. coronopus than in P. ovata. Note that a 10-fold increase in Na+ content was observed in
the leaves of non-stressed P. afra plants with respect to the values measured in control roots
(Figure 5b).
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Figure 5. Root (a,c,e) and leaf (b,d,f) contents of sodium (Na+), (a,b), chloride (Cl−) (c,d) and potassium (K+) (e,f) in plants
of the four selected Plantago species, after four weeks of treatment with the indicated NaCl concentrations. The values
shown are means ± SE (n = 5). For each species, different letters over the bars indicate significant differences between
treatments, according to the Tukey test (p < 0.5).
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Regarding Cl− in roots, apart from the lowest levels found in P. afra, its accumulation
patterns were somewhat different from those of Na+, with P. ovata showing higher concen-
trations than P. crassifolia and P. coronopus, at the same salinity level (Figure 5c). Similar
behaviour was observed in the leaves for the latter three species, whereas, contrary to roots,
P. afra accumulated Cl− to the same or even higher levels than the other species (Figure 5d).
Nevertheless, the most striking feature was the huge Cl− concentration determined in the
leaves of control plants, especially in P. crassifolia and P. afra, not only in relation to the
root contents (about eight-fold higher), but also in absolute terms (over 5 mmol g−1 DW)
(Figure 5d).

Despite quantitative differences, Na+ and Cl− concentrations varied in the same
way, qualitatively, in the four Plantago species in response to the salt treatments, always
increasing with increasing salinity. However, the salt-induced changes in K+ contents
differed in the different taxa (Figure 5e, f). In P. crassifolia, K+ levels decreased progressively,
in roots and leaves, roughly in parallel with the increase of NaCl concentration in the
irrigation water, whereas no significant variation was observed, in general, in P. coronopus,
except for a significant reduction in roots in the presence of 800 mM NaCl. On the contrary,
in P. ovata and P. afra, K+ contents increased in response to the salt stress treatments. It
should also be mentioned that, as for the other ions, K+ levels were higher (five to ten-fold)
in leaves than in roots in all four species (Figure 5e,f).

2.5. Salt Stress Effect on Osmolyte Contents

Proline (Pro), one of the most common plant osmolytes, accumulated in response
to the salt treatments in the leaves of the two halophytes, P. crassifolia and P. coronopus.
Pro reached maximum levels of about 50 µmol g−1 DW in the presence of 800 mM NaCl,
representing an increase of five to six-fold over control values. Leaf Pro concentrations
also increased in P. ovata, but only up to ~30 µmol g−1 DW at the highest concentration
tested, 600 mM NaCl. In the most salt-sensitive species, P. afra, Pro remained extremely
low, below one µmol g−1 DW (Figure 6a). However, total soluble sugars (TSS) contents
showed different patterns of variation, increasing with increasing external salinity only in
P. ovata and P. afra but decreasing in the halophytes (Figure 6b).
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Figure 6. Leaf contents of proline (Pro) (a) and total soluble sugars (TSS) (b) in the four selected Plantago species, after
four weeks of treatment with the indicated NaCl concentrations. The values shown are means ± SE (n = 5). For each
species, different letters over the bars indicate significant differences between treatments, according to the Tukey test
(p < 0.5). gluc: glucose.

2.6. Oxidative Stress Biochemical Markers

Salt-induced changes in the leaf levels of malondialdehyde (MDA) followed a similar
pattern to those of TSS, increasing in parallel to the NaCl concentrations in the irrigation
water in P. ovata and P. afra and progressively decreasing in P. crassifolia and P. coronopus
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(Figure 7a). On the other hand, hydrogen peroxide leaf contents did not vary significantly in
P. afra treated with 200 mM NaCl and increased significantly, in a concentration-dependent
manner, in salt-treated plants of the other three species (Figure 7b).
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Figure 7. Leaf contents of malondialdehyde (MDA) (a) and hydrogen peroxide (H2O2) (b) in the four selected Plantago
species, after four weeks of treatment with the indicated NaCl concentrations. The values shown are means ± SE (n = 5).
For each species, different letters over the bars indicate significant differences between treatments, according to the Tukey
test (p < 0.5).

2.7. Antioxidant Compounds

The leaf contents of total phenolic compounds (TPC) and total flavonoids (TF), as
representative examples of non-enzymatic antioxidants, were measured in plants of the
four investigated Plantago species (Figure 8). TPC levels increased in the four taxa in
response to rising salinity, reaching the highest values in P. coronopus (9 mg equivalent of
gallic acid per gram DW) and P. crassifolia (about 6.6 mg eq. GA g−1 DW), in the presence
of 800 mM NaCl, which represent relative increases over the control, non-stressed plants of
2.7 and 2.4-fold, respectively. In P. ovata and P. afra, control TPC concentrations were lower
than in their halophytic counterparts and, therefore, these species showed larger relative
increases in response to salt stress (Figure 8a). TF contents also increased significantly with
rising salinity, except for P. afra. For each NaCl concentration, both absolute TF levels and
relative increases over control values were highest for P. ovata and lowest in P. crassifolia
(Figure 8b).
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2.8. Principal Component Analysis

A Principal Component Analysis (PCA) was performed, including all variables measured
in the four Plantago species, both growth parameters and the biochemical stress markers
(Figure 9). Five components with an eigenvalue higher than one were detected. The first
component (X-axis), explaining 60.6% of the total variance, was positively correlated with the
electrical conductivity (EC) of the substrate; that is, with soil salinity (Figure 9a). Consequently,
all variables that increased with increasing salinity, root length, Na+ and Cl− contents in roots
and leaves, Pro, H2O2 and antioxidant compounds, were also positively correlated with the
first component. On the other hand, a negative correlation was found with the rest of the
growth parameters (in agreement with the observed salt-induced inhibition of growth) and
with photosynthetic pigments, MDA and TSS, which generally decreased in response to the
salt treatments. The second component, explaining an additional 12.9% of the total variability,
was mostly correlated, negatively, with K+ levels in roots and leaves (Figure 9a).
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The scatterplot of the projected variables (Figure 9b) allowed a good separation of
the salt treatments along the X-axis, from the non-stressed plants to those subjected to
the highest salinity levels. A clear separation was also observed under control conditions
between P. crassifolia and P. coronopus on the one side and P. ovata and P. afra on the other.
Moreover, the response of P. afra to salt stress at 200 mM NaCl, the only treatment allowing
survival of the plants of this less tolerant species, clearly differed from that of the other
three taxa, in agreement with the relatively high salt tolerance of P. ovata, similar to that of
the halophytes (Figure 9b).

3. Discussion

The four Plantago species analysed in the present work can be separated into two
taxonomic groups; P. crassifolia and P. coronopus belong to the subgenus Coronopus, and P.
ovata and P. afra are included in the subgenus Psyllium. Moreover, the first two species
are defined as halophytes, whereas the other two are considered glycophytes. These
differences are reflected in the positions of the four species in the scatterplot of the PCA
score. Nevertheless, the present work results indicated that, although P. afra is indeed
sensitive to salinity, P. ovata is quite salt-tolerant, apparently because it can use some specific
tolerance mechanisms more efficiently than the halophytes.

As established for many different plant species, salt stress induces changes in root
system morphology, growth rate and reproductive traits in Plantago [21,36,37]. How-
ever, the relative survival thresholds and the quantitative assessment of stress-induced
growth inhibition are probably the most objective criteria to rank taxonomically related
species according to their tolerance to different environmental stressors such as salinity or
drought [21,38–40]. Of the four analysed Plantago species, P. afra was the most susceptible to
salt stress as the plants survived the one-month treatment only in the presence of 200 mM
NaCl, the lowest salt concentration tested. A previous study also reported that growth of P.
afra was significantly inhibited at salinities higher than 100 mM NaCl and the plants did
not survive the concentration of 300 mM [35]. Of the remaining species, P. crassifolia and
P. coronopus were the most stress-tolerant, as reported in previous studies [21,24], which
agrees with their ecology. Plants of P. ovata were relatively more affected by salinity than the
two halophytes; still, under our experimental conditions, they survived all salt treatments
except that at very high salinity, 800 mM NaCl. Indeed, this species has been considered
moderately salt-tolerant [41], although marked differences between genotypes have been
reported in the responses to salinity [42,43].

Reduced plant growth is one of the first and most general responses to stress. Accord-
ingly, a general effect of growth inhibition in the presence of salt has been observed in all
four Plantago species. However, the plant roots significantly increased in length in parallel
to increasing salinity. According to Neumann [44], a rapid root elongation may occur in
salt-stressed plants due to the massive production of young cells by stimulation of root
meristem divisions. A more extensive root system penetrates deeper soil layers to obtain
water and nutrients; this implies a higher water uptake capacity in tolerant plants, allowing
ion dilution to help avoid reaching toxic levels in the cytosol [45]. Similar results have been
reported, for example, in salt-stressed P. major plants, where primary roots were longer at
all salinity levels compared to control plants [18,36]. The reduction in growth parameters
of the plants’ aerial parts, shoot length and fresh weight, and the level of leaf dehydration
allowed us to establish the relative salt tolerance of the four species, as indicated above:
P. crassifoilia ∼= P. coronopus > P. ovata >> P. afra.

Chlorophyll is a useful biochemical salt stress marker in plants, as high NaCl con-
centrations induce chlorophyll loss and necrosis of the leaves in many species [46,47].
Chlorophyll contents generally decrease in the presence of salt, often proportionally to
the salt sensitivity of the plants, so that highly salt-tolerant halophytes may not show
a reduction in chlorophyll levels under salinity conditions [12,48,49]. The decrease of
photosynthetic pigments results from the inhibition of enzymes involved in chlorophyll
biosynthesis and the fast breakdown of the pigments due to activation of chlorophyllase,
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responsible for chlorophyll degradation [50–52]. The selected Plantago species also showed
this general pattern, a salt-induced, concentration-dependent decrease in photosynthetic
pigment contents in response to the salt treatments. The reduction in the pigments’ con-
centrations roughly corresponded to the relative salt tolerance of the plants, except that
P. ovata appeared to be less affected than the halophytes, with chlorophylls a and b, and
carotenoid contents significantly lower than control values only observed at high salinities.

One of the most significant differences in the mechanisms of salt stress response
between glycophytes and halophytes regards managing the toxic ions present on saline
soils. Glycophtes and monocotyledonous halophytes generally rely on reducing ion up-
take through their roots or blocking their transport to the leaves. On the other hand,
dicotyledonous halophytes activate the transport of toxic ions to the aboveground plant
organs to be used for osmotic adjustment, but sequester them in the vacuoles to avoid their
deleterious effects in the cytosol [7,53]. Ion compartmentalisation in the vacuoles is an
extremely efficient mechanism, cheaper in energy consumption terms than the synthesis of
organic osmolytes for ensuring an increased osmotic potential [54]. In the present work,
we show that ion concentrations were consistently higher in leaves than in roots, at each
salt concentration tested and in the four Plantago species, supporting the existence of these
mechanisms of active ion transport to the leaves. Nevertheless, the patterns of accumu-
lation of Na+ and Cl− differed quantitatively. Under salt stress, the glycophytes showed
lower Na+ content in roots and leaves than the halophytes, with the highest absolute
values measured in P. crassifolia leaves. These findings indicate that Na+ accumulation
plays an essential role in the osmotic adjustment of halophytes of this genus subjected to
high salinity conditions, as previously reported for these two species [21,24] and also for
P. maritima [20,55–57].

Regarding Cl− concentrations, the differences between species were not so pro-
nounced as those of Na+, neither in roots nor in leaves; the most relevant difference
was that, under the same salinity conditions, the glycophyte P. ovata accumulated Cl− to
higher concentrations than the halophytes P. crassifolia and P. coronopus. The extremely high
Cl− concentration measured in leaves of the control, non-stressed plants is also remarkable.
These data point to a constitutive defence mechanism against salt stress based on the
accumulation of high leaf concentrations of this anion, even under low salinity conditions.

Concerning K+, it is known that this ‘physiological cation’ plays an important role in
plant growth and development, as well as in the maintenance of osmotic adjustment and
cell turgor under stress [58]. A reduction of K+ contents is generally observed under salt
stress conditions, resulting from competition between Na+ and K+ for the same binding
sites in proteins, including ion transporters [59]. Therefore, maintenance, or even increases
in leaf K+ levels in the presence of high Na+ concentrations may contribute significantly
to salt tolerance mechanisms. Indeed, activation of K+ transport from roots to leaves at
high salinities has been reported in some species, including glycophytes [60–62], and it
is considered that salinity may enhance K+ transport through the vascular bundles [9,63].
The analysed Plantago species differed in the patterns of K+ transport and accumulation.
The leaf K+ contents did not vary with increasing salinity in P. coronopus, whereas they
increased significantly in salt-treated P. ovata plants, probably contributing to the tolerance
of this species.

Plants accumulate compatible solutes such as proline (Pro) and soluble sugars (TSS)
to contribute to osmotic adjustment, and as osmoprotectants, under different stress con-
ditions [53]. The accumulation of these metabolites is one of the best-known responses
of plants to changes in the external osmotic potential [7,64]. Many reports showed that
sorbitol is the primary physiological osmolyte in species of the genus Plantago, both salt-
tolerant [24,55,65] and salt susceptible [56]. However, the differences in absolute sorbitol
levels accumulated in response to salt treatments do not explain the different salt tolerance
of the investigated species. In several halophytes of this genus, activation of Pro biosyn-
thesis has been observed at high external salinity [21,28,57,66,67]. Pro can be considered,
therefore, as a secondary functional osmolyte in salt-tolerant Plantago species. Pro is one of
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the most common compatible solutes involved in stress tolerance mechanisms in plants,
accumulated in large quantities under high salinity stress (and other stressful conditions) in
many plant species [68–70]. Apart from playing a major role in osmotic adjustment, Pro can
act as an enzyme protectant, free radical scavenger, cytosolic pH stabiliser for subcellular
structures and cell redox balancer [71]. In the present study, the NaCl treatments induced
a significant, concentration-dependent increase in the leaf Pro contents, especially in the
halophytes, P. crassifolia and P. coronopus, at the highest concentrations tested, 600–800 mM
NaCl, but also, to a lesser extent, in P. ovata, in agreement with previous reports [72]. On the
other hand, extremely low Pro concentrations were measured in the salt-sensitive P. afra.

Soluble sugars have also been shown to accumulate in plants in response to abi-
otic stresses, contributing to osmotic adjustment and playing additional regulatory func-
tions [73,74]. However, TSS do not seem to have any relevant role in salt tolerance mecha-
nisms in the investigated Plantago species, although they showed different accumulation
patterns in the halophytes and the glycophytes. Thus, TSS increased significantly in P.
ovata, but only at the highest salt concentration tested, 600 mM NaCl, and in P. afra in the
presence of 200 mM NaCl; however, the differences with respect to the corresponding
controls are too small to have any important osmotic effect. Soluble sugar contents, on the
contrary, decreased with increasing salinity in P. crassifolia and P. coronopus. These differ-
ences are probably due to a more pronounced salt-induced inhibition of photosynthesis in
the halophytes, as revealed by the stronger reduction in pigment levels as compared with
P. ovata.

Salt stress increases the production of reactive oxygen species (ROS), which, when in
excess, have deleterious effects by oxidation of nucleic acids, lipids, and proteins, inducing
severe dysfunctions and even cell death [75]. Malondialdehyde (MDA) is a product of
membrane lipid peroxidation widely used as a biomarker of oxidative stress [76]. Leaf MDA
contents decreased with increasing salinity in P. crassifolia and P. coronopus; on the contrary,
they increased slightly in P. ovata and P. afra, with statistically significant differences with the
corresponding control in the presence of 600 and 200 mM NaCl, respectively. This finding
indicates that the halophytes are better protected from salt-induced oxidative damage of
cell membranes, probably because of more efficient defence mechanisms based on toxic
ion compartmentalisation and osmolyte (Pro) accumulation, as discussed above. Similar
results were reported from a comparative study between the salt-tolerant P. maritima and
the glycophyte P. media, with a decrease of MDA in the former and a significant increase in
the latter species [77].

H2O2 is a ubiquitous, moderately reactive ROS with an essential role as a signalling
molecule in stress defence and adaptive responses [78]. Its variation patterns were strikingly
similar in the salt-tolerant Plantago taxa, both the halophytes P. crassifolia and P. coronopus
and P. ovata, increasing in parallel to the applied NaCl concentration. These data support
the notion that H2O2 is indeed involved in the antioxidant mechanisms of tolerance in
salt-tolerant Plantago species. On the contrary, in the salt-sensitive P. afra, no significant
changes in H2O2 concentrations were detected in salt-treated plants with respect to the
non-stressed controls.

Secondary metabolites with antioxidant properties play an important role in the
tolerance of plants to salt stress [17]. Among these compounds, particular attention has
been given to phenolic compounds and, especially, to the subgroup of flavonoids, because
of their strong antioxidant activity [75,79]. It is known that salt stress triggers increased
concentrations of phenolic compounds and flavonoids in Plantago [43,80] and that the level
of antioxidant activity may be related to the degree of salt tolerance, being higher, for
example, in the halophyte P. maritima in comparison to the salt-sensitive P. media, under
waterlogging and salinity stresses. Moreover, differences between different species in their
phenolic and flavonoid profiles have been proposed as chemotaxonomic markers in this
genus [81]. In our experiments, total phenolic compounds and total flavonoids increased in
response to the NaCl treatments, in a concentration-dependent manner, in all four Plantago
species (except for flavonoids in P. afra); it is interesting to note that flavonoid levels were
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higher in P. ovata than in the halophytes at all salt concentrations tested in the former
species. All these data agree with previous reports that propose Plantago species as a source
of bioactive molecules, particularly useful for the prevention of oxidative stress-related
diseases, or as functional foods [82,83].

4. Material and Methods
4.1. Plant Material

This study was conducted on four Plantago species, namely P. coronopus, P. crassifolia,
P. ovata and P. afra. The seeds were collected from their natural habitats in grasslands and
salt marshes from different contrasted geographical regions in Tunisia.

The corresponding collection sites are listed in Table 3. The geographic locations were
recorded by a GPS Model Garmin 72. Seeds were collected, cleaned, dried and stored at
4 ◦C.

Table 3. Origin and bioclimatic zones of the studied Plantago species.

Species Subgenus Location Latitude Longitude Bioclimatic Zones

P. coronopus L. Coronopus Hergla/Sousse 35◦58′52.07′′ 10◦31′38.14′′ Semi-arid inferior
P. crassifolia Forsk. Coronopus Djerba/Mednine 33◦49′52.96′′ 11◦2′17.67′′ Arid inferior

P. ovata Forsk. Psyllium Tataouine 32◦55′8.63′′ 10◦24′59.45′′ Saharian superior
P. afra L. Psyllium Bouargoub 36◦28′34.84′′ 10◦36′46.35′′ Semi-arid superior

After sterilisation with commercial bleach and several washes with distilled water,
the seeds were sown on peat in 1 L pots placed in plastic trays (12 pots per tray). The trays
were maintained in a germination chamber under long-day photoperiod (16 h of light), at
23 ◦C during the day and 17 ◦C at night, and 50–80% relative humidity. The pots were
watered twice per week with deionised water.

4.2. Plant Growth, Salt Treatments and Plant Sampling

Salt treatments were started four weeks after sowing. Plants were watered twice
a week with solutions of 0 (control), 200, 400, 600 or 800 mM NaCl in deionised water.
Each treatment included five individual plants of each species as biological replicas. Plant
material (the root and the aerial part of each plant) was harvested after four weeks, and
several growth parameters were determined: root length (RL), stem length (SL), and fresh
weight of roots (RFW) and leaves (LFW). Part of the fresh root and leaf material was
weighed (FW), dried in an oven at 65 ◦C for ca. 72 h (until constant weight), and weighed
again (dry weight, DW) to calculate the water content percentage of roots and leaves, as
WC% = [(FW−DW) / FW] × 100.

4.3. Electrical Conductivity of the Substrate

The electrical conductivity of the substrate (EC1:5) was measured at the end of the
treatments. The samples were collected from five pots per species and treatment, and
air-dried. Then, a substrate: deionised water (1:5) mix was prepared by stirring at 600 rpm
at room temperature. The suspension was filtered through filter paper, and the EC was
measured with a Crison 522 conductivity-meter (Crison Instruments, Barcelona, Spain)
and expressed in dS m−1.

4.4. Photosynthetic Pigments Determination

Chlorophyll a (Chl a), chlorophyll b (Chl b) and total carotenoid (Caro) contents were
determined as previously described [84]. Fresh leaf material (0.1 g) was ground with liquid
nitrogen, one ml of ice-cold 80% acetone was added, and the sample was shaken overnight
at 4 ◦C in the dark. The extract was centrifuged at 13,300× g, at 4 ◦C, the supernatant
was collected, and the absorbance was measured at 470, 645 and 663 nm. The following

228



Plants 2021, 10, 1392

equations were used for the calculation of pigment concentrations, which were finally
expressed in mg g−1 DW:

Chl a (µg/mL) = 12.21 × (A663) − 2.81 × (A646)

Chl b (µg/mL) = 20.13 × (A646) − 5.03 × (A663)

Caro (µg/mL) = (1000 × A470 − 3.27 × [Chl a] − 104 × [Chl b])/227

These and all other UV/visible spectrophotometric assays described below were carried
out using a UV-1600PC spectrophotometer (VWR, Llinars del Vallès, Barcelona, Spain).

4.5. Ion Content Measurements

Concentrations of sodium (Na+), potassium (K+), and chloride (Cl−) were measured
in the roots and leaves of plants sampled after the salt treatments, and in the corresponding
non-stressed controls, according to Weimberg [85]. Dried material (ca. 0.1 g) was ground to
a fine powder and extracted in 15 mL of MilliQ water, incubating the samples for one hour
in a water bath, at 95 ◦C, followed by cooling to room temperature and filtration through a
0.45 µm Gelman nylon filter (Pall Corporation, Port Washington, NY, USA). The cations
Na+ and K+ were quantified with a PFP7 flame photometer (Jenway Inc., Burlington, VT,
USA) and the anion using a chlorimeter (Sherwood, model 926, Cambridge, UK).

4.6. Proline and Total Soluble Sugars Quantification

Proline (Pro) content was determined in fresh tissue by the ninhydrin-acetic acid
method [86]. Free Pro was extracted in 3% aqueous sulphosalicylic acid, and the extract
was mixed with acid ninhydrin solution, incubated at 95 ◦C for 1 h, cooled on ice and
then extracted with two volumes of toluene. The absorbance of the organic phase was
determined at 520 nm using toluene as a blank. Samples containing known amounts of Pro
were assayed in parallel to obtain a standard curve. Pro concentration was expressed as
µmol g−1 DW.

Total soluble sugars (TSS) were quantified according to Dubois et al. [87]. Fresh leaf
material (ca. 0.1 g) was extracted in 3 mL of 80% (v/v) methanol on a rocker shaker for 24 h.
The samples were vortexed and centrifuged at 13,300× g for 10 min, and the supernatants
were collected and diluted 10-fold with water. The diluted samples were supplemented
with concentrated sulphuric acid and 5% phenol, and the absorbance was measured at
490 nm. TSS contents were expressed as ‘mg equivalent of glucose’, used as the standard
(mg eq. gluc g−1 DW).

4.7. Oxidative Stress Markers

Malondialdehyde (MDA) contents were determined following a previously reported
procedure [88] with some modifications [89], using the same 80% methanol extracts pre-
pared for TSS quantification. The samples were mixed with 0.5% thiobarbituric acid (TBA)
dissolved in 20% trichloroacetic acid (TCA) (or with 20% TCA without TBA for the controls)
and then incubated at 95 ◦C for 20 min. The reactions were stopped on ice, and the samples
were centrifuged at 13,300× g for 10 min at 4 ◦C. Finally, the absorbance of the supernatants
was determined at 440, 532 and 600 nm. MDA concentration was calculated using the
equations previously described [89], based on the molar extinction coefficient at 532 nm of
the MDA-TBA adduct (ε532 = 155 mM−1 cm−1).

Measurement of the hydrogen peroxide (H2O2) content was carried out according to
a previously published method [90]. H2O2 was extracted in a 0.1% (w/v) TCA solution
from 0.1 g fresh leaf material. The extract was centrifuged at 13,300× g for 15 min, and the
supernatant was collected and mixed with one volume of 10 mM potassium phosphate
buffer (pH 7) and two volumes of 1 M KI. Finally, the absorbance of the sample was
measured at 390 nm. H2O2 contents were expressed as µmol g−1 DW.
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4.8. Non-Enzymatic Antioxidants

Total phenolic compounds (TPC) and total flavonoid (TF) contents were measured
in the same 80% methanol extracts used for TSS and MDA quantification. TPC were
determined as previously described [91] by reaction of the extracts with NaHCO3 and the
Folin-Ciocalteu reagent. The reaction mixtures were kept in the dark, at room temperature,
for 90 min, and the absorbance was then measured at 765 nm. TPC concentration was
expressed as equivalents of the gallic acid standard (mg eq. GA g−1 DW).

TF were determined by reaction with AlCl3 under alkaline conditions after nitration
of catechol groups with NaNO2 [92]. The absorbance of the samples was read at 510 nm.
Catechin was used as a standard to plot a calibration curve, and the results were expressed
as catechin equivalents (mg eq. C g−1 DW).

4.9. Statistical Analysis

Each assay was conducted in a completely randomised design (CRD) with four geno-
types and two treatments. Variance analysis was performed to determine the interaction
between the different applied treatments and the different species. The measured param-
eters were subjected to a two-way analysis of variance (ANOVA test). The confidence
interval was calculated at the threshold of 95% with mean comparison according to the
Tukey test using ‘PLAnt Breeding STATistical software’ (PLABSTAT) [93], version 3A of
2011-06-14. Throughout the text, all values shown are means of five biological replicas (five
individual plants) ± standard error (SE).

A Principal Components Analysis (PCA) was carried out on the correlation matrix
using PAST software, version 4.03 [94]. The PCA was applied to the data matrix (21 mor-
phological, physiological and biochemical traits × 4 Plantago species). The input data
contained the mean values of all parameters measured under the different salt stress condi-
tions. The cumulative variability of each parameter was calculated, as well as eigenvalues
and principal component scores.

5. Conclusions

The four Plantago species analysed here can be clearly divided, by several criteria, into
two groups: the halophytes P. crassifolia and P. coronopus and the glycophytes P. ovata and
P. afra. The halophytes, as expected, are highly salt-tolerant, surviving one-month treatment
at salinities as high as 800 mM NaCl. Despite not being considered a typical halophyte,
P. ovata plants are nonetheless relatively resistant to salt, withstanding one month in the
presence of 600 mM NaCl. Plantago afra, on the other hand, is the most salt-sensitive of the
four species, surviving only the 200 mM NaCl treatment.

The most relevant tolerance mechanisms of P. crassifolia and P. coronopus are based
on: (i) the active transport of Na+ and Cl− ions to the leaves, where they contribute to
cellular osmotic balance under high salinity conditions, as ‘inorganic osmolytes’; (ii) the
accumulation of high leaf levels of the organic osmolyte proline; (iii) their relative resistance
to the generation of oxidative stress causing membrane lipid peroxidation; and (iv) the salt-
induced increase of the levels of antioxidant metabolites, such as phenolic compounds and
flavonoids. In P. ovata, the efficiency of the above mechanisms is generally lower than in the
halophytes, but this limitation is partly compensated by: (i) a more efficient transport to the
aerial part and accumulation in the leaves of Cl− ions; (ii) the activation of K+ uptake and
transport to the leaves under high salinity conditions; (iii) a less pronounced inhibition of
photosynthesis, as indicated by the smaller reduction of photosynthetic pigments contents;
and (iv) the accumulation of flavonoids in the leaves to relatively higher concentrations
than in the halophytes, at salt concentrations of 200 to 600 mM NaCl. Apart from these
induced mechanisms, constitutive responses contribute to salt tolerance in the three species,
namely the accumulation in leaves of inorganic ions at high concentrations in control, non-
stressed plants. Summarising, P. ovata, not considered a halophytic species, is nevertheless
quite resistant to salt stress but using tolerance mechanisms somewhat different from those
of the typical congeneric halophytes, P. crassifolia and P. coronopus.
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This work confirms the usefulness of performing comparative studies on the responses
to stress of taxonomically related species with different degrees of resistance to the particu-
lar stressful condition, to identify the most relevant tolerance mechanisms.
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Abstract: Understanding the salt tolerance mechanism in obligate halophytes provides valuable
information for conservation and re-habitation of saline areas. Here, we investigated the responses of
three obligate halophytes namely Arthrocnemum macrostachyum, Sarcocornia fruticosa and Salicornia
europaea to salt stress (0, 100, 200, 400 and 600 mM NaCl) during their vegetative growth with regard
to biomass, ions contents (Na+, K+ and Ca2+), chlorophyll contents, carotenoids, phenolic compounds,
flavonoids, and superoxide dismutase, peroxidase and esterase activities. S. europaea showed the
lowest biomass, root K+ content, Chl a/b ratio, and carotenoids under salinity. This reduction of
biomass is concomitant with the increase in proline contents and peroxidase activity. On the other
hand, the promotion of growth under low salinity and maintenance under high salinity (200 and
400 Mm NaCl) in A. Macrostachyum and S. fruticosa are accompanied by an increase in Chl a/b ratio,
carotenoids, phenolics contents, and esterase activity. Proline content was decreased under high
salinity (400 and 600 mM NaCl) in both species compared to S. europaea, while peroxidase showed
the lowest activity in both plants under all salt levels except under 600 mM NaCl in Arthrocnemum
macrostachyum compared to S. europaea. These results suggest two differential strategies; (1) the salt
tolerance is due to activation of antioxidant enzymes and biosynthesis of proline in S. europaea, (2) the
salt tolerance in A. macrostachyum, S. fruticosa are due to rearrangement of chlorophyll ratio and
biosynthesis of antioxidant compounds (carotenoids, phenolics and flavonoids) which their cost seem
to need less energy than activation of antioxidant enzymes. The differential behavior in halophytes
of the same habitat confirms that the tolerance mechanism in halophytes is species-specific which
provides new insight about the restoration strategy of saline areas.

Keywords: halophytes; Amaranthaceae; salinity; antioxidant enzymes; phenolic compounds

1. Introduction

Soil salinization is a critical problem which influences agricultural activities and
inhibits crop productivity. The food and agriculture organization (FAO) [1] reported
approximately 831 million hectares (6% of total world land) were affected by salinity. Also,
A high percentage of cultivated land around the world (more than 20%) is affected by
salinity, and this percentage is daily increasing [2,3]. On the same side, population density,
unfavorable environmental conditions and climate changes lead to reduce in cultivated
lands [4]. Crop production decreasing with increasing population density could lead to
famine around the world. Molecular biology and genetic engineering are powerful tools in
the breeding of salt-tolerant crops. However, both approaches are slow, costly and they
sometime fail to achieve the goal. Therefore, the cultivation of natural salt-tolerant plants
as saline crops represents an easy and cheap solution for salt-affected areas [5,6].
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Halophytes are plants that can maintain their biological activities and grow in salinity-
affected soils [7]. One of the most popular effects of salinity is oxidative damage through
the over generation of reactive oxygen species such as hydroxyl, superoxide and hy-
drogen peroxide [8]. Several morphological, physiological, biochemical and molecular
changes have been observed to help halophytic plants to adapt to salinity [9–12]. These
strategies depend on; maintaining the photosynthetic system through chlorophyll synthe-
sis [13–15]; carotenoids enhancement or inhibition [16,17]; reactive oxygen species (ROS)
production [8,18–21]; enzymatic antioxidant activation, such as superoxide dismutase
(SOD) [20,22–24]; peroxidase [25] and Catalases [26,27]; non-enzymatic antioxidant syn-
thesis, such as phenolic compound [28–32] and Flavonoids and [33]; osmoregulatory and
compatible solutes synthesis [34], such as proline [35].

Amaranthaceae is a family of angiosperms which comprises about 165 genera and
2040 species [36] with a high number of xerohalophytes and halophytes around the
world [37–39], 34 halophytic taxa are belonging to the family Chenopodiaceae/Amaranthaceae
with a percentage of 22.08% of all halophytic angiosperms [40]. Among these taxa, Arthroc-
nemum macrostachyum, Sarcocornia fruticosa and Salicornia europaea are three halophytic
plants distribute in the Mediterranean region [41]. Arthrocnemum macrostachyum is a peren-
nial small shrub, erect to ascending stem, woody old stem and fleshy young stem, 30–40 cm
in tall, like spike inflorescence, and papillose seeds. Sarcocornia fruticosa is a perennial
sub shrub, erect to ascending stem, 20–80 cm in tall, and grey seeds covered with conical
protuberances. Salicornia europaea is an erect annual herb with a cup-shaped branched stem,
seed with conical protuberances [42]. These plants are considered cash crops due to their
nutritional value and ecological importance in the phytoremediation of metals [43–45].

Fully understanding of salt tolerance mechanisms represents principle means in the
management of the saline area and breeding of salt-tolerant cash crops [46,47]. Salt toler-
ance level is species-specific and the plant habitat contributes to the degree of salt tolerance
and strategy among populations of the same species [24,48]. Mohamed et al. [22,23] re-
ported that the Egyptian population of Suaeda maritima (Chenopodiaceae) has more salt
tolerance than the Japanese population. Therefore, Egyptian Chenopodiaceae represents
a unique genetic resource for saline agriculture application. To obtain more in-depth
knowledge about the salt tolerance strategies of Chenopodiaceae, we hypothesized that
Egyptian populations have unique salt tolerance levels and habitat of Mediterranean Sea
influences on salt tolerance strategies of different species in this family. Our work aims
to explore the salt tolerance strategies of three Egyptian Chenopods (Currently belong to
Amaranthaceae) namely: Arthrocnemum macrostachyum, Sarcocornia fruticosa and Salicornia
europaea from Damietta coast, through studying the effect of salt stress (0–600 Mm NaCl)
on the growth parameters, chlorophyll contents, phenolic compounds, flavonoids, pro-
line, malondialdehyde (MDA), esterase and antioxidant enzymes (superoxide dismutase,
catalase and peroxidase activities).

2. Results

2.1. Effect of Salinity on Na+, K+ and Ca2+ Contents

While, K+ content in the shoot system was slightly decreased at all saline concen-
trations except at 100 mM NaCl and the root system K+ content was increased at all salt
concentrations. The Na+ and Ca2+ shoot and root contents were gradually increased by
increasing salt concentrations in A. macrostachyum. In the case of S. europaea; shoot Na+ and
Ca2+ were increased at all concentrations, while K+ content increased at 100 and 200 mM
NaCl only. In the root system, Na+ content increased in all concentrations, Ca2+ increased
at 600 mM NaCl, but K+ decreased at all concentrations. In S. fruticosa Na+, Ca2+ and K+

content decreased at all concentrations in the shoot system except at 600 mM NaCl, both
Na+ and Ca2+ were increased with respect to control. On the other hand, root Na+ and Ca2+

contents increased with salinity and K+ increased only at 200 and 400 mM NaCl (Table 1).
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Table 1. Analysis of Na+, K+ and Ca2+ content (µmol/g DW) in root and shoot of namely Salicornia europaea, Sarcocornia fru-
ticosa and Arthrocnemum macrostachyum under different salt concentrations. Different letters indicate significant differences.

Species NaCl (mM)
Shoot Root

Na+

(µmol g−1 DW)
K+

(µmol g−1 DW)
Ca2+

(µmol g−1 DW)
Na+

(µmol g−1 DW)
K+

(µmol g−1 DW)
Ca2+

(µmol g−1 DW)

S. europaea

0 2217 ± 5 m 387 ± 4 ef 293 ± 8 j 406 ± 19 k 493 ± 10 c 58.75 ± 6 bc
100 8239 ± 12 cd 607 ± 11 a 2166 ± 22 b 985± 9 h 301 ± 13 g 39 ± 3 ef
200 8637 ± 10 c 543 ± 11 b 2300± 14 a 1239 ± 12 g 338 ± 11 f 51.5 ± 4 cd
400 8680 ± 8 c 362± 12 fg 2150 ± 16 b 1474 ± 25 f 370 ± 7 e 58 ± 5 bc
600 7969 ± 10 d 372 ± 8 f 1925± 28 d 1670± 20 d 375 ± 8 e 66.5 ± 4 b

S. fruticosa

0 6420 ± 10 f 438± 11 d 1578 ± 4 e 330± 16 l 337 ± 11 f 13.5 ± 0.75 i
100 5760 ± 11 g 428± 11 d 1291 ± 35 f 811 ± 38 i 294 ± 11 g 31 ± 3 fg
200 5028 ± 15 j 264 ± 9 h 1127 ± 28 h 1006 ± 19 h 468 ± 9 cd 40 ± 5 ef
400 4217 ± 15 k 211 ± 8 i 866± 35 i 1560 ± 22 e 397 ± 7 e 55 ± 3 bcd
600 8913 ± 12 b 262 ± 9 h 2075 ± 28 c 1782 ± 22 c 296 ± 8 g 90 ± 2.5 a

A. macrostachyum

0 3130 ±22 l 414 ± 13 de 85 ± 7 k 537± 22 j 454 ± 11 d 16.5 ± 1 hi
100 5057 ± 8 i 494 ± 9 c 1162 ± 7 g 1202 ± 15 g 671 ± 11 a 25.75 ± 0.75 gh
200 5736 ± 17 h 336 ± 8 g 1239 ± 7 g 1570± 7 e 496 ± 7 c 46.5 ± 2.75 de
400 7760 ± 12 de 367 ± 8 f 1664± 10 d 2338 ± 17 b 607 ± 11 b 56 ± 1.25 bcd
600 10652 ± 25 a 276 ± 11 h 2187 ± 7 b 2693 ± 13 a 620 ± 9 b 64 ± 3 b

2.2. Effect of Salinity on Growth Parameters
2.2.1. Effect of Salinity on Biomass Production

Two-way ANOVA analysis for studied plants showed significant effects for the plant
and species, and their interactions (p < 0.001) for all parameters (Table 2). These interactions
support the different responses of the species to salinity.

Table 2. Two-way ANOVA of salinity, species, and their interaction on all tested parameters.

Parameters Species Species × Salinity Salinity

shoot Fresh weight *** *** ***
shoot dry weight *** *** ***
Root fresh weight *** *** ***
Root Dry weight *** *** ***

Chl a *** *** ***
Chl b *** *** ***

Carotenoids *** *** ***
Chl a/b *** *** **
MDA *** *** ***

Proline *** *** ***
phenol *** *** ***

Flavonoids *** *** ***

**: p < 0.01 and ***: p < 0.001.

One-way ANOVA showed that each species has its response for different parameters
at applied saline concentrations. A. macrostachyum and S. fruticosa showed highest shoot
and root fresh and dry weights with significant increasing at 100 mM NaCl and slightly
increasing at 200 and 400 mM NaCl. At 600 mM NaCl, both species showed significant
decreases in these parameters. In contrast, S. europaea showed non-significant difference in
shoot fresh and dry weights and root dry weight at low and moderate salt treatments, but
root fresh weight showed a significant decrease at all treatments, and all parameters were
highly decreased at 600 mM NaCl (Figures 1–4).
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Figure 1. Shoot fresh weights of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations.
Mean ± SE of three replicates. Different letters indicate significant differences (p < 0.05).

Figure 2. Root fresh weights of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations. Mean ± SE
of three replicates. Different letters indicate significant differences (p < 0.05).
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Figure 3. Shoot dry weights of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations. Mean ± SE
of three replicates. Different letters indicate significant differences (p < 0.05).

Figure 4. Root dry weights of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations. Mean ± SE
of three replicates. Different letters indicate significant differences (p < 0.05).

2.2.2. Effect of Salinity on Chlorophyll Contents

Chlorophyll contents showed different responses to salt treatments in all studied
species (Figures 5 and 6). Chlorophyll a contents showed non-significant differences in A.
macrostachyum and S. fruticosa with slightly increasing at 200 mM NaCl in A. macrostachyum
and at 100 mM in S. fruticosa, and it was significantly decreased at 600 mM NaCl in both
species. In contrast, S. europaea showed slightly non-significant decreases at low and
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moderate treatments and significantly decreasing at higher concentrations. For chlorophyll
b, while A. macrostachyum showed non-significant differences at low and moderate NaCl
concentrations and significant decreases at 400 and 600 mM NaCl, S. fruticosa showed
significant decreases at all salt treatments. In the case of S. europaea, chlorophyll b contents
were significantly increased at low and moderate concentrations NaCl and significantly
decreased at high NaCl concentrations. For chlorophyll a/b ratio, it was significantly
increased at high salt concentrations in A. macrostachyum; and at all salt levels in S. fruticosa,
and significantly decreased at all salt concentrations in S. europaea (Figure 7).

Figure 5. Chlorophyll a contents of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations.
Mean ± SE of three replicates. Different letters indicate significant differences (p < 0.05).

Figure 6. Chlorophyll b contents of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations.
Mean ± SE of three replicates. Different letters indicate significant differences (p < 0.05).
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Figure 7. Chlorophyll a/b ratios of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations.
Mean ± SE of three replicates. Different letters indicate significant differences (p < 0.05).

2.2.3. Effect of Salinity on Carotenoids

Carotenoids concentration showed significant increases with saline concentrations
except at 100 and 600 mM NaCl which show non-significant differences in respect to control
in A. macrostachyum while S. fruticosa showed non-significant increases under low and
moderate salt concentrations, and a significant increase under high salt level. In contrast, S.
europaea, showed significant decreases with increasing NaCl concentration (Figure 8).

Figure 8. Carotenoids contents of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations.
Mean ± SE of three replicates. Different letters indicate significant differences (p < 0.05).
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2.2.4. Effect of Salinity on Total Phenolic Contents

Phenolic compound contents in A. macrostachyum significantly increased at moderate
and high salinity levels (200 and 400 mM NaCl) with a slightly non-significant difference at
100 mM NaCl. In S. fruticosa and S. europaea slightly non-significant increases in phenolic
contents were recorded at all saline concentrations. Interestingly, the three species showed
significant decreases at 600 mM NaCl (Figure 9).

Figure 9. Total phenol contents of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations.
Mean ± SE of three replicates. Different letters indicate significant differences (p < 0.05).

2.2.5. Effect of Salinity on Flavonoid Contents

A. macrostachyum showed significant increases in flavonoid contents at all treatments
but significantly decreased at 100 and 600 mM NaCl. In contrast, S. fruticosa and S. europaea
showed significant decreases in flavonoid contents with a slightly non-significant difference
at 600 mM NaCl in S. fruticosa (Figure 10).

Figure 10. Total flavonoids contents of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations.
Mean ± SE of three replicates. Different letters indicate significant differences (p < 0.05).
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2.2.6. Effect of Salinity on Total Malondialdehyde (MDA) Content

A. macrostachyum and S. fruticosa showed significant increases in MDA concentrations
in all treatments except at 600 mM NaCl, which observed a non-significant difference
compared to control. S. europaea showed significant decreases at all salt concentrations
except at 100 mM NaCl, which showed a non-significant difference in respect to control
(Figure 11).

Figure 11. Malondialdehyde contents of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations.
Mean ± SE of three replicates. Different letters indicate significant differences (p < 0.05).

2.2.7. Effect of Salinity on Proline Content

While S. fruticosa showed significant increases in proline content with increasing
salt concentrations, Proline content in A. macrostachyum and S. europaea were significantly
increased at 200, 400 and 600 mM NaCl only, and higher values of proline in S. europaea
were recorded at 600 mM NaCl in respect to the other two species (Figure 12).

Figure 12. Proline contents of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations. Mean ± SE
of three replicates. Different letters indicate significant differences (p < 0.05).
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2.3. Isozymes Analysis
2.3.1. Esterases

The electrophoretic analysis using native PAGE showed two esterase loci in all studied
species and under all treatments with different amounts and intensities. The highest
intensities were observed in A. macrostachyum and S. fruticosa at 200 and 400 mM NaCl and
100 and 200 mM NaCl in S. europaea (Figure 13).

Figure 13. Esterase isozymes of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations.

2.3.2. SOD Isozymes

SOD activity was increased at high salt levels in A. macrostachyum and S. europaea, and
under low and moderate salinity in S. fruticosa (Supplementary S1).

2.3.3. POD Isozymes

POD enzyme showed a unique locus in all studied plants and at all treatments. The
highest intensities were recorded at 100 and 600 mM NaCl in A. macrostachyum, and at
200 mM NaCl in S. europaea which showed the highest POD activity in respect to the other
two species. On the other hand, weak activity was observed at all treatments in S. fruticosa
(Figure 14).

Figure 14. Peroxidase isozymes of S. europaea, S. fruticosa and A. macrostachyum under different NaCl concentrations.

Pearson correlation and principal component analysis.
For Salicornia europaea, growth parameters have positive correlations under salinity

with Chl a, Chl b, and carotenoids, and negatively correlated with proline content (Table S1).
In the same context, under 100 mM saline treatment, principal component analysis showed
PC1 and PC2 described 50.9%, and 25.9% of the variance, respectively (Figure 15). Three
groups were observed from this analysis; Growth parameters (shoot fresh weight, shoot dry
weight. root fresh weight and root dry weight), Chl a, Chl b and carotenoids constructed
the first group, Flavonoids, Chl a/b, MDA formed the second group, and both proline and
phenolic compound represented the third group. For Sarcocornia fruticosa, growth parame-
ters were positively correlated with Chl a, Chl b and Chl a/b but negatively correlated with
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carotenoids, MDA, phenolic compounds and flavonoids (Table S1). In contrast, PC1 and
PC2 explained 64%, and 17.5% of the variance, respectively. Three groups were also visual-
ized from this analysis; Growth parameters, Chl a, Chl a/b, MDA and proline formed the
first group, Chl b and flavonoids represented the second group, and phenolics represented
the third group. For Arthrocnemum macrostachyum, Our results showed significant negative
correlations between most growth parameters with carotenoids, proline, flavonoids and
phenolic compounds, Chl a/b and MDA, but positively correlated with Chl b (Table S1).
On the other hand, Principal component analysis showed PC1 and PC2 described 58%,
and 19.1% of the variance, respectively. Three groups were also noticed from PCA analysis;
Growth parameters, carotenoids, phenolic compounds, Chl a/b and MDA formed the first
group, Chl a, Chl b and flavonoids constructed the second group, and proline formed the
third group.

Figure 15. Principal components analysis bi-plot. Values of the studied parameters were analyzed under salinity (100
mM NaCl) with respect to control. Growth parameters (shoot fresh weight: SFW, root fresh weight: RFW, shoot dry
weight: SDW, root dry weight: RDW), chlorophyll a: Chl a, chlorophyll b: Chl b, Chl a/b, carotenoids: Car, Proline: pro,
malondialdehyde: MDA, phenolics: Phe, Flavonoids: Flav. In (A) Salicornia europaea, (B) Sarcocornia fruticosa, and (C)
Arthrocnemum macrostachyum.

3. Discussion

Exploration of salt tolerance mechanisms of many halophytes species is of consid-
erable value for the selection of suitable crops for saline agriculture. In this study, three
halophytic species Arthrocnemum macrostachyum, Sarcocornia fruticosa and Salicornia europaea
(Amaranthaceae/Chenopodiaceae) were collected from the same saline habitat and tested
for their tolerances to salinity.

245



Plants 2021, 10, 1100

For growth criteria, A. macrostachyum and S. fruticosa improved their fresh and dry
weight when grown under low and moderate salt concentrations, but their fresh weights
were reduced at high salinity. A. macrostachyum had the optimum growth at 400 mM NaCl
and its growth decreased at 600–1000 mM NaCl [49]. The same induction trend of growth
under moderate salinity (170–510 mM NaCl) was observed in A. macrostachyum and S.
fruticosa from Spain, with a decline trend under high salt conditions [14,50]. Also, García-
Caparrós et al. [51] reported that total dry weight and relative growth rate of S. fruticosa
decreased significantly under low and moderate salinity (100 and 200 mM NaCl) for 60
days. Therefore, our results suggest that Egyptian A. Macrostachyum and S. fruticosa need
low salt levels for optimal growth, and they could maintain their growth under moderate
and high salinity (200 and 400 Mm NaCl). The variation in salt tolerances of both plants
in the previous studies might be because of the maternal habitats of these populations.
Mohamed et al. [24] reported that maternal salinity plays important role in salt tolerance
during the growth of Zygophyllum ccocenium.

On the other hand, S. europaea showed significant decreases in shoot fresh and dry
weights at high salinity levels but slightly non-significant variation under moderate salinity.
Ungar et al. [52] reported that S. europaea growth was increased under moderate salinity
(170–510 mM NaCl). In contrast, S. rubra had the optimal growth in the absence of salt to
200 mM NaCl while its growth was inhibited with further increase of salt level. The decline
of root biomass under moderate salinity suggests the severe effect of salinity on the root
system than shoot and the adaptive strategy to avoid more uptakes of toxic ions [53].

Inorganic ions play role in maintain osmotic and turgor pressure in halophytes more
than glycophytes, which predominantly depend on the increased synthesis of de novo
compatible solutes [54]. Flowers et al. [55] reported that the Na+ is one of the most
important ions which play important role in adjusting cellular osmotic potential. Our
results showed that A. macrostachyum and S. europaea Na+ contents increased with increasing
external NaCl concentrations while Na+ content in S. fruticosa was only increased under
high salinity. This increase in Na+ has a role in maintain shoot osmotic and turgor. Redondo-
Gomez et al. [14] and Khan et al. [56] reported increasing Na+ content with increasing
external NaCl concentrations in A. macrostachyum because halophytes have a unique ability
for osmotic adjustment due to accumulation of Na+ in vacuoles, and K+ and organic solutes
in the cytosol [57,58]. The stimulation of K+ in halophytes root under saline conditions
is well documented in many plants, such as Suaeda monoica and Triglochin maritima [59].
In the present study, while K+ ions in roots were increased with increasing salinity in A.
macrostachyum and S. fruticosa and declined in S. europaea, Shoot K+ ions increased at low
concentration and decreased at high and moderate concentrations. These results suggest
that K+ content can be used as a marker for discrimination between salt tolerance strategies
in halophytes [58]. In the same context, Ca2+ increased with salinity, This increase is due
to its vital role in salt adaptation through binding of Ca2+ with SOS3 and subsequently
activate SOS2, this complex stimulates Na+/ H+ antiporter which plays a crucial role in the
regulation of Na+ ions in the cytosol [60].

In saline habits, soil salinity and arid climate greatly affect the synthesis of pigments in
plants [61] and salinity reduces the net photosynthetic rate [62]. Redondo-Gómez et al. [14]
reported that A. macrostachyum can improve or adjust the rate of photosynthesis under
saline conditions. Aghaleh et al. [17] and Akcin and Yalcin [63] reported that photosynthetic
pigments of S. europaea from Iran and Turkey were affected by increasing soil salinity. Our
data showed non-significant variations in chl a under all salinity levels except in S. europaea
under very high salinity (600 Mm NaCl), and significant decreases of chl b were only
observed in S. fruticosa under all saline concentration and in A. macrostachyum and S.
europaea under high saline concentration (600 Mm NaCl). This result suggests that S.
fruticosa has a differential response to salt stress compared to A. macrostachyum and S.
europaea. The increase in Chl a/b ratio in A. macrostachyum and S. fruticosa suggests that
both species had more adaptation to saline conditions than S. europaea [24,64].
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Carotenoids play a vital role as non-enzymatic antioxidants in protecting photosyn-
thetic system. Our results showed significant increases in carotenoids with the elevation
of NaCl concentration in A. macrostachyum and S. fruticosa, except at low salinity level for
both species and under 600 in A. macrostachyum. This increase in carotenoid concentration
may be one strategy to maintain chlorophyll amount and not decreasing it with different
salinity concentrations. A similar study confirmed the increase in carotenoids in Nitraria
retusa was associated with increasing salt tolerance [65]. In contrast, Carotenoids in S.
europaea decreased significantly at all treatments. Such decreases in carotenoid contents
under salinity stress were reported in different plant species [17,61,63,66]. These results
suggest that carotenoids play an important role in the salt tolerance of A. macrostachyum
and S. fruticosa than in S. europaea.

Phenolic compounds are secondary metabolites that play an important role in pro-
tecting plants against oxidative stress [67]. Increasing phenolic compounds synthesis is
considered one of the most important methods in water deficiency resistance [68]. The syn-
chronous significant increase of phenolic compounds and flavonoids in A. macrostachyum at
moderate and high salinity levels indicates the importance of these compounds in stress tol-
erance in a synergistic relationship with carotenoids that also showed significant increases
with salinity. Król et al. [69] and Caliskan et al. [70] reported that the metabolism of phenyl-
propanoid and phenolic compounds accumulation were enhanced in different plant species
in response to different environmental stress conditions. Along the same line, the non-
significant decrease in chlorophyll content in A. macrostachyum at high salinity level is due
to increase in phenolic compounds contents at the same salinity level. This was supported
by the finding of Bhattacharya et al. [71] who reported that phenolic compounds play a
vital role in the biosynthesis of lignin and pigments in plants. Also, S. fruticosa showed a
slight increase in phenolic contents at moderate NaCl concentrations and non-significant
differences at other concentrations. This indicates that moderate salinity stimulates the
production of phenolic compounds in S. fruticosa. On other hand, a constant or slight
increase in total phenolic contents in S. europaea at different salinity levels was associated
with the decrease in carotenoids. These results may indicate the importance of phenolic
compounds in the alleviation of deleterious effects of salt stress in A. macrostachyum and S.
fruticosa [72–75].

A. macrostachyum showed significant increases in flavonoid contents at all treatments
except at low salinity which had a significant decrease. In contrast, S. fruticosa and S.
europaea showed significant decreases in flavonoid contents but not at high salinity level in
S. fruticosa which showed a slightly non-significant decrease. Brown et al. [76] reported
that flavonoids act as auxin transport inhibitors, therefore, high promotion of shoot growth
under low salinity (100 Mm NaCl) in A. macrostachyum and S. fruticosa may be due to low
flavonoids content. The positive performance of shoot growth, despite its low root biomass,
may be due to the same previous reason.

Malondialdehyde (MDA) concentration expresses the extent of destruction in the mem-
brane because it acts as a common end product of lipid peroxidation [19]. Jithesh et al. [77]
and Mohamed et al. [23] reported the presence of a positive correlation between salinity
stress and MDA content in halophytic plants. A. macrostachyum and S. fruticosa showed
significant increases in MDA concentration in all treatments except at 600 mM NaCl in
A. macrostachyum. This result is in agreement with Abd El-Maboud [75] who reported
increasing in MDA concentration in A. macrostachyum in the summer season. On other
hand, S. europaea showed a significant decrease in MDA content with no effect at low
salinity concentrations. This result contradicts the reported increase in MDA in S. europaea
collected from Iran with the increase in salinity level [17]. This decrease in MDA concen-
tration in S. europaea may be due to an increase in peroxidase activity, which was often
stored at the cytosol, peroxisome and vacuole [78,79]. The increasing of peroxidase activity
plays an active role in free radical oxidative stress inhibition, which leads to protect the
membrane and decrease lipid peroxidation. Also, decreasing MDA may be due to the
increasing accumulation of proline content in S. europaea than the other two species, which
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act as non-enzymatic antioxidant enzymes and this suggestion is in agreement with proline
having a role in ROS scavenger [80].

Proline accumulates in the cell as an osmoregulatory solution which plays an im-
portant role in the adaptation of halophytes to high salinity levels [81]. Increasing in the
accumulation of proline in response to salinity stress was reported in different plant species
by different researchers [82,83]. Increasing proline synthesis helps in decreasing water loss
and ions’ toxicity [84]. Our results showed a significant increase in proline contents at a
high salinity level in all studied species. This increase may indicate upregulation of proline
synthesis [85]. Increasing proline content in S. europaea at high salinity than the other two
species may be important to compensate for the decrease in the carotenoids and flavonoids
contents and to help as free radical scavengers.

Pectin is one of the basic components of a plant cell wall. It can be both methyl-
esterified and acetyl-esterified. De-esterification occurs by specific esterases [86]. Esterase
plays a vital role in avoiding the salt-induced imbalance in cell wall formation. Our results
showed two esterase loci in all studied species and under all treatments with the higher
intensities in A. macrostachyum and S. fruticosa at moderate salinity level, and at low and
moderate salinity levels in S. europaea. These results are in agreement with Dasgupta
et al. [87] who reported that esterase isoforms intensities were increased with elevating
salt concentration. Mohamed et al. [25] found esterase has two isoforms in Pancratium
maritimum and their intensities were increased under moderate saline concentration.

For S. europaea under salt stress (100 mM NaCl), Principal component analysis ob-
served the arrangement of growth parameters, chlorophyll parameters, MDA and flavonoids
on the positive X-axis, while proline and phenolic compounds grouped on the negative
X-axis. This result suggests the salt tolerance of this species due to the accumulation of
proline and phenolic compounds. In contrast, all parameters grouped on the positive
X-axis, except Chl b and flavonoids were observed on the negative X-axis for S. fruticosa,
and Ch b, flavonoids, Chl a and proline grouped on the negative axis for A. macrostachyum.
These results confirm the growth promotion of both species due to increasing of Chl a/b
ratio and the decline of flavonoids contents.

The promotion of growth parameters in S. europaea under 600 Mm NaCl compared
to A. macrostachyum and S. fruticosa may be due to the decline of flavonoids accumulation
in Salicornia under this salt level compared to the other two species. The decline in most
parameters under 600 mM NaCl in A. macrostachyum suggests the deleterious effects of this
concentration on this species.

Superoxide dismutase is considered the most important enzyme during the growth of
plants under biotic and abiotic stress through catalyzing the dismutation of superoxide
radicals into H2O and Oxygen [88–90]. Nisar et al. [91] reported constitutive and decline of
SOD activity in germinating black and brown A. macrostachyum seeds respectively under
salinity. On the other hand, salinity induced promotion in SOD activity in S. europaea
seedlings [92]. The induction of SOD under salinity was a prominent feature in halophytes
such as Suaeda maritima, Pancratium maritimum and Zygophyllum coccenium [22–25]. In this
study, SOD activity increased under high salinity in A. macrostachyum and S. europaea, and
under moderate salinity in S. fruticosa. These results suggest a differential mechanism for
SOD under salinity in these species.

POD enzyme has a major protective role for the cell against hydrogen peroxide which
is produced under stress conditions [93,94]. Our study showed that POX enzyme has a
stable faint locus at all salinity levels in S. fruticosa, and at high and moderate salinity in
A. macrostachyum and S. europaea. The highest POD activity was recorded in S. europaea
in respect to other species. This increase in both peroxidase and SOD activities under
higher salinity may decrease free radical concentrations and protects membranes from
lipid peroxidation, and hence the low MDA concentration in S. europaea than the other
two species. Also, this indicates that POD is one of the most important strategies in salt
tolerance in S. europaea more than the other two species.
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From the foregoing discussion, the three halophytic species that are belonging to the
same family and collected from the same saline ecological habitat showed differential
mechanism to salt tolerance. The salt tolerance of S. europaea is derived from the promotion
of proline level and peroxidase activity. The stable shoot and decline in root biomass
suggest investment of energy in the promotion of antioxidant enzymes and compounds
than use it in the growth process. This was supported statistically by the presence of a sig-
nificant negative correlation between growth parameters and proline contents. In contrast,
salt tolerance of A. macrostachyum and S. fruticosa is concomitant with rearrangement of
chlorophyll contents, high level of carotenoids and phenolic compounds, and activation
of esterase enzyme. This conclusion seems to be confirmed by the negative correlation
between most of these compounds and the growth parameters of both species. The positive
performance of both species’ biomass, compared to S. europaea, suggests little energy was
used in the salt tolerance mechanism in these plants. Also, a trade-off strategy between the
growth process and defense system was noticed in the case of S. europaea. These results
confirm differential salt tolerance strategies of different halophytes in the same habitat
which provide valuable information in the selection of the best strategy in re-habitation of
saline coastal areas.

4. Materials and Methods
4.1. Plant Seeds Collection

Inflorescences containing mature dry seeds of three species belong to Amaranthaceae
family were collected from a halophytic region Damietta–Alexandria road during June 2018
and transported to the laboratory. Seeds were manually separated from the inflorescence
and stored in paper bags until use. Studied species soil analysis was conducted according to
Jackson [95]. The soil electrical conductivity was 15.325 ds/m and pH values were 9.36, Ca,
Mg, Cl and HCO3 concentrations were 0.035%, 0.01%, 0.4686% and 0.03355% respectively.

4.2. Growth Conditions

Seeds of studied plant species were surfaced sterilized using 70% ethyl alcohol for
30 s followed by 3.5% (v/v) Sodium hypochlorite for 5 min, then washed thoroughly with
distilled water [22]. Sterilized seeds of each species were sown in 25 replicates plastic pots
with 20 cm height and 10 cm in diameter containing sandy soil and irrigated with 150 mL
of 20% MS medium. The germination was carried out under natural greenhouse conditions
(temperature range 14–28 ◦C, humidity about 40%, and photoperiod 14: 10 light: dark) for
30 days. After this period, 15 plastic pots of each species with uniform seedlings size were
chosen and divided to five groups; each group contains three replicates, and each replicate
containing five plants. Five treatments were used in this experiment (0, 100, 200, 400, and
600 mM NaCl) and plants were irrigated with 1 L of 20% MS medium prepared in distilled
water, 100, 200, 400 and 600 mM NaCl (150 mL weekly) for two months.

4.3. Determination of Na+, K+ and Ca2+

Air-dried shoot and root were grounded to fine powders and 0.2 g of each sample were
treated with 7:3 sulfuric: perchloric acid mixture. Cations’ concentrations were determined
according to Jackson [95].

4.4. Growth Parameters
4.4.1. Shoot and Root Fresh and Dry Weight Determination

For each treatment, five plants were used for the shoot and root fresh and dry weights
determination. Plants were removed from the pots and washed under tap water to remove
any dust then plants were dried using paper tissues. Aerial parts and root system were
separated and weighed using sensitive balance, after that plants were dried using a hot
air oven at 70 ◦C for 72 h until the weights become constant and reweighed to record
dry weight.
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4.4.2. Determination of Photosynthetic Pigments

For the determination of chlorophyll a, b and carotenoids, 0.1 g of plant tissue was
homogenized in 10 mL of 80% acetone then centrifuged at 5000 rpm for 10 min. Supernatant
absorbance was read at 663, 645, and 470 nm and photosynthetic pigment contents were
calculated from the equations as described by Lichtenthaler and Wellburn [96].

4.4.3. Determination of Malondialdehyde (MDA) Content

Malondialdehyde (MDA) was determined according to Carmak and Horst [97] meth-
ods, 0.2 g of fresh plant aerial system were homogenized in 2 mL of 0.1% (w/v) trichloroacetic
acid (TCA) at 4 ◦C. The homogenate was centrifuged for 10 min at 1000 rpm and to 0.5 mL
of the supernatant, 3 mL of 0.5% (v/v) Thiobarbaturic acid (prepared in 20% TCA) was
added. The mixture was incubated in 95 ◦C water bath with continuous shaking for 50 min,
and then samples were placed in an ice bath until the temperature decreased to 25◦C. The
samples were re-centrifuged for 10 min at 10,000 rpm and the absorbance of the mixture
was read at 532 nm. The non-specific absorption read at 600 nm was subtracted from all the
readings and the MDA contents were calculated using the absorption coefficient as follows:

MDA level (nmol) = ∆ (A 532 nm−A 600 nm)/1.56 × 105 (1)

4.4.4. Determination of Proline Content

Proline was determined using Bates et al. [98] method as follows; 0.5 g of fresh plant
shoot were homogenized in 4 mL of 3.0% Sulphosalicylic acid. Then the homogenate was
centrifuged for 10 min at 1000 rpm. To 1 mL of the supernatant 2 mL of acid Ninhydrin
reagent and 2.0 mL of glacial acetic acid were added in a test tube, Then the mixture was
incubated in a water bath at 100 ◦C for 60 min. then the mixture was cooled suddenly in an
ice bath. After cooling, 4 mL of toluene were added to the solution mixture and vortex. The
chromophore containing toluene (upper layer) was transferred to a new test tube. Finally,
the absorbance was read at 520 nm using a spectrophotometer and Toluene as a blank.
The concentration of proline was determined using the standard curve and expressed as
mg g−1.

4.4.5. Determination of Total Phenolic Compounds and Flavonoids

For the determination of phenolic compounds, 0.1 g of the shoot was homogenized
in 10 mL of 70% acetone, then centrifuge at 5000 rpm for 10 min. To 1 mL of supernatant,
2 mL of sodium carbonate (15%) and 1 mL Folin–Ciocâlteu reagent (FCR) was added
and the absorbance was recorded at 650 nm. Gallic acid was used as a standard for the
determination of phenolic contents [99]. For total flavonoid, the aluminum trichloride
method was used, to 1 mL of extract 2.5 mL of AlCl3 reagent in ethanol 90% (20.0 mg/mL),
then incubated at room temperature for 40 min. and the absorbance was recorded at 415 nm.
Quercetine was used as a standard for flavonoids determination [100]. All absorbances
were determined using Jenway 7315 spectrophotometer, Jenway Scientific Instrumental
Company, UK.

4.5. Isozymes Analysis
4.5.1. Enzymes Extraction and Detection

For protein extraction; 0.2 g of plant aerial part tissue were macerated in 1 mL of
50 mM Tris HCl buffer (pH 6.8) containing 1 mM EDTA, 1 mM DDT, and 20 mg polyvinyl
polypyrrolidone (PVPP) using chilled ceramic mortar and pestles. The homogenate was
centrifuged at 10,000 rpm for 10 min at 4 ◦C. The supernatant was stored in 4 ◦C until used.
The protein concentration was determined by spectrophotometry according to Lowry’s
method [101] using bovine serum albumin as a standard.

Native discontinuous system was prepared according to Laemmli [102] without
adding Sodium dodecyl sulfate (SDS) and 50 µg from each sample were loaded directly
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without denaturation. The running voltage was started at 80 V for 30 min then increased to
120 V until the loading dye migration reached the bottom of the resolving gel.

For visualization of esterases, the gel was incubated in 100 mL of 100 mM Sodium
phosphate buffer (pH 7) containing 40 mg α-Naphthyl acetate and 0.2 g fast blue RR for
30 min. in dark at 37 ◦C, and then the gel was fixed in 7% acetic acid solution [103].

For visualization Peroxidase activity, Seevers et al. [104] method was used, after elec-
trophoresis gel was incubating for 30 min at 25 ◦C in 200 mM Sodium acetate buffer (pH 5)
containing 3% H2O2 and 1.3 mM Benzidine, and the gel was fixed in 30% fixing solution.

For visualization Superoxide Dismutase (SOD), the gel was incubated in 200 mM K-
phosphate buffer (pH 7.8) containing 0.1 mM riboflavin and 0.24 mM Nitroblue tetrazolium
for 30 min, and then the gel was stained by exposure to fluorescence light.

All gels were photographed using Cannon kiss4 digital camera then transferred to a
computer and converted into density profile using Image J program [105].

4.5.2. Statistical Analysis

All data were expressed as means with standard error, and Levene’s test was used
to investigate the homogeneity of variances of all data, then the data were subjected to
one-way ANOVA and Tukey test. Two-way ANOVA was applied to determine the effect
of salinity, species, and their interaction with all parameters. Principal component analysis
was used to explore the correlation between growth parameters and studied organic com-
pounds under salinity (100 mM NaCl). Also, Pearson’s correlation coefficient was applied
to investigate the correlation between all studied parameters under salinity treatments. All
statistical analyses were carried out using SPSS 16.0 software. The means comparison was
set at p < 0.05 and values denoted by the same letter are not significantly different.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10061100/s1, Figure S1: Superoxide dismutase isozymes of S. europaea, S. fruticosa
and A. macrostachyum under different NaCl concentrations, Table S1: The correlation coefficient of
growth parameters (shoot fresh weight: SFW, root fresh weight: RFW, shoot dry weight: SDW, root
dry weight: RDW), Chl a, Chl b, Chl a/b, carotenoids: Car, Proline: pro, malondialdehyde: MDA,
phenolics: Phe, Flavonoids: Flav. in Arthrocnemum macrostachyum, Sarcocornia fruticosa and Salicornia
europaea under salinity treatments.
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