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Editorial

Editorial on Special Issue “Artificial Intelligence in
Image-Based Screening, Diagnostics, and Clinical Care of
Cardiopulmonary Diseases”

Sivaramakrishnan Rajaraman and Sameer Antani *

Computational Health Research Branch, National Library of Medicine, 8600 Rockville Pike,
Bethesda, MD 20894, USA
* Correspondence: sameer.antani@nih.gov

Cardiopulmonary diseases are a significant cause of mortality and morbidity world-
wide. The COVID-19 pandemic placed significant demands on clinicians and care providers,
particularly in low-resource or high-burden regions. Simultaneously, advances in artificial
intelligence (AI), machine learning (ML), and the increased availability of relevant images
enhanced the focus on cardiopulmonary diseases. According to the recent American Lung
Association report, more than 228,000 people will be diagnosed with lung cancer in the
United States alone this year, with the rate of new cases varying by state [1]. Further, heart
disease is indiscriminate in ethnic and racial origin, causing mortality. Additionally, infec-
tious diseases, such as tuberculosis (TB) often coupled with the human immunodeficiency
virus (HIV) comorbidity, are found with drug-resistant strains that greatly impact treatment
pathways and survival rates [2]. The screening, diagnosis, and management of such car-
diopulmonary diseases have become difficult owing to the limited availability of diagnostic
tools and experts, particularly in low and middle-income regions. Early screening and
the accurate diagnosis and staging of cardiopulmonary diseases could play a crucial role
in treatment and care and potentially aid in reducing mortality. Radiographic imaging
methods such as computed tomography (CT), chest-X-rays (CXRs), and echo-ultrasound
are widely used in screening and diagnosis [3–6]. Research on using image-based AI, ML,
particularly convolutional neural network (CNN)-based deep learning (DL) methods, can
help increase access to care, reduce variability in human performance, and improve care
efficiency while serving as surrogates for expert assessment [7]. We find that significant
progress has been made [5,8–10] in DL-based medical image modality classification, seg-
mentation, detection, and retrieval techniques which have resulted in a positive impact
on clinical and biomedical research. We wanted to capture a snapshot of these advances
through a Special Issue collection of peer-reviewed high-quality primary research studies
and literature reviews focusing on novel AI/ML/DL methods and their application in
image-based screening, diagnosis, and clinical management of cardiopulmonary diseases.
These published studies present state-of-the-art AI in cardiopulmonary medicine with an
aim toward addressing this global health challenge.

Studying the articles in this collection, the reader will observe that the choice of the
DL model depends largely on the characteristics of the data under study [11]. A study of
the literature reveals that no individual DL model is optimal for a wide range of medical
imaging modalities [12]. Despite delivering superior performance, the performance of DL
models is shown to improve with the availability of meaningful data and computational
resources [13]. The quality of medical images and their annotations also plays an important
role in the success of DL models. The visual characteristics of medical images, viz., shape,
size, color, texture, and orientation are unique compared to the natural stock photographic
images [14]. The regions of interest (ROIs) concerning the disease manifestations or the
organs in medical images are relatively small compared to natural images. Hence, it is
crucial to select the optimal DL model for the medical image modality and problem under
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study. Unlike natural images, medical images and their associated labels are often scarcely
available. Strategies including transfer learning [13,15] and multicenter collaboration [11]
have been proposed to handle data scarcity issues. The transfer learning-based approaches
are prominently used as they leverage the knowledge learned from a large collection of stock
photographic images such as ImageNet [16] to improve performance and generalization in
medical visual recognition tasks with a sparse collection of medical data and their associated
labels. In this regard, Gozzi et al. [17] proposed the identification of the optimal transfer
learning strategy for a CXR classification task. They followed a systematic procedure which
is as follows: (i) Several ImageNet-pretrained CNN models were retrained on the publicly
available CheXpert [18] CXR dataset. This approach facilitated learning CXR modality-
specific feature representations. A study of the literature [19–21] reveals that the medical
image modality-specific retraining of ImageNet-pretrained models demonstrates significant
gains in related classification, segmentation, and detection tasks. The authors evaluated the
classification performance achieved through multiple transfer learning methods such as
image feature (embedding) extraction, fine-tuning, stacking, and tree-based classification
using a private CXR dataset. They qualitatively evaluated performance using gradient-
weighted class activation maps (Grad-CAM) [22]. In this regard, the authors demonstrated
superior performance with a 0.856 area under the curve (AUC) using the image embeddings
extracted from the penultimate layer of the CNN models and an averaging ensemble of the
RF predictions, showcasing it as the optimal transfer learning strategy for the task under
study. The Grad-CAM maps showed that the CNN models learned task-specific features to
improve prediction performance.

In another study, Huang et al. [23] evaluated the gains achieved through transfer
learning in a multi-label CXR classification task. They used a private CXR collection
containing multiple abnormalities including aortic sclerosis/calcification, arterial curvature,
consolidations, pulmonary fibrosis, enlarged hilar shadows, scoliosis, cardiomegaly, and
intercostal pleural thickening, etc. The ImageNet-pretrained CNN models were retrained on
the CheXpert and NIH CXR-14 [24] datasets to learn CXR modality-specific representations.
The learned knowledge was transferred and finetuned for a related CXR classification task.
They further evaluated the gains achieved through multiple transfer learning strategies
such as the reuse of pretrained weights, layer transfer where some of the model weight
layers were frozen, and model retraining, using the models trained on differently sized
CheXpert and NIH CXR-14 datasets. It was observed that CXR modality-specific finetuning
of the ImageNet-pretrained models, using the NIH CXR-14 dataset, demonstrated superior
prediction performance with an accuracy of 0.935, compared to other models/methods.
The authors recommend retraining the CNN models using multiple cross-institutional
datasets for promising performance and generalization under conditions of sparse medical
data and label availability.

DL models have demonstrated poor performance and generalization in cases where
the distribution of the data used to train the models (source distribution) is different
compared to the unseen real-world data (target distribution). This lack of generalization
could be attributed to several factors including changes in image acquisition protocols, data
formatting and labeling, patient heterogeneity based on age, gender, race, and ethnicity, and
varying characteristics of the underlying disease manifestations, etc., between the source
and target distribution [25]. The discrepancy in the characteristics of the source and target
data may eventually lead to domain shift issues resulting in performance degradation
and sub-optimal generalization. Under these circumstances, training and evaluating the
models using the source data may not accurately reflect real-world settings. Karki et al. [26]
discussed the generalization issues with the DL models that were trained to classify Drug-
Resistant TB (DR-TB) manifestations from drug-sensitive TB (DS-TB) using CXRs. They
observed sub-optimal classification performance with an AUC = 0.65 using an unseen
test set in a CNN model that was trained on internal data. The authors observed poor
localization using Grad-CAM activation maps as compared to the radiologist-annotated
ROIs. Training a multi-task attention model using lesion location information from prior
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TB infection helped to improve classification performance (AUC = 0.68) on the blinded
test set. The authors highlight differences in acquisition protocols and the variation in
non-pathological and non-anatomical image attributes across the datasets that contributed
to sub-optimal performance and generalization.

Mueller et al. [27] assessed the diagnostic performance of dual-energy subtraction
radiography (DE) [28] in detecting pulmonary emphysema and compared it to the perfor-
mance achieved using conventional radiography (CR). Pulmonary emphysema, a chronic
obstructive pulmonary disease (COPD), blocks airflow in the lungs and causes breathing
disorders. CT imaging is reported to be the most sensitive radiological imaging method
for detecting and quantifying pulmonary emphysema [29]. The authors used the pos-
teroanterior and lateral radiographic projections acquired from patients using CR, DE, and
CT radiography imaging. Expert radiologists were involved in identifying the presence
and degree of manifestations consistent with pulmonary emphysema in the DR and CR
images while keeping CT as the reference standard. The specificity and recall in detecting
and localizing the disease and the inter-reader consensus were measured. The authors
observed a high consensus between the readers in identifying pulmonary emphysema
manifestations using CR images (Kappa = 0.611) and a moderate consensus (Kappa = 0.433)
using the DR images. The authors conclude that the diagnostic performance in terms of
detecting, quantifying, and localizing pulmonary emphysema manifestations using CR
and DE imaging was comparable.

Li et al. [30] performed a systematic review of the literature to analyze the additional
effect of AI-based methods on the performance of physicians to detect cardiopulmonary
pathologies using CXR and CT images. They followed the Place of Relevant Intermediary
Approach (PRIMA) [31] to record different stages during their literature review process. The
authors retrieved relevant literature on AI-based cardiopulmonary screening/diagnosis,
published in the last 20 years, using Web of Science, SCOPUS, PubMed, and other literature
archives. The authors analyzed human performance in terms of evaluation time, recall,
specificity, accuracy, and AUC, in the presence or absence of AI-based assistive tools. It
was observed that the average recall increased from 67.8% to 74.6% when human decisions
were supplemented by AI assistive tools. A similar improvement was observed in terms of
specificity (82.2% to 85.4%), accuracy (75.4% to 81.7%), and AUC (0.75 to 0.80). A significant
reduction in the evaluation time was also observed with AI assistance.

In our work [32], we evaluated the gains achieved using modality-specific CNN back-
bones in a RetinaNet model toward detecting pneumonia-consistent manifestations with
CXRs. We retrained ImageNet-pretrained DL models, viz., VGG-16, VGG-19, DenseNet-121,
ResNet-50, EfficientNet-B0, and MobileNet on CheXpert and TBX11K datasets to learn CXR
modality-specific features. The best-performing model architectures, viz., VGG-16 and
ResNet-50, were used as the modality-specific classifier backbones in a RetinaNet-based
object detection model. We used focal loss and focal Tversky loss functions to train the
classifier backbones. The RetinaNet model was finetuned on the RSNA CXR [33] collection
to detect pneumonia-consistent manifestations. We compared detection performance us-
ing various weight-initialization methods, viz., random, ImageNet-pretrained, and CXR
modality-specific weights, for the classifier backbones. We observed that the VGG-16
and ResNet-50 classifier backbones, initialized with the CXR modality-specific weights,
delivered superior performance compared to random and ImageNet-pretrained weight
initializations. We further constructed a weighted averaging ensemble of the predictions
of the top three performing models, viz., ResNet-50 with CXR image modality-specific
weights trained with focal loss, ResNet-50 with CXR image modality-specific weights
trained with focal Tversky loss, and ResNet-50 with random weights trained with focal
loss, to arrive at the final predictions. We observed that weighted averaging delivered
superior values for the mean average precision (mAP) metric (mAP: 0.3272), which was
observed to be markedly superior to the state-of-the-art (mAP: 0.2547). We attribute this
performance improvement to the key modifications in terms of CXR modality-specific
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weight initializations and ensemble learning that reduced prediction variance compared to
the constituent models.

A study of the literature reveals that COVID-19 viral infection could cause acute
respiratory distress syndrome and may lead to rapidly progressive and lethal pneumonia
in infected patients [34]. The laboratory-based real-time reverse transcription polymerase
chain reaction (rRT-PCR) test has been reported to be the most sensitive test for identifying
COVID-19 infection [35]. However, there are several challenges reported in performing
this test, some of which include high false negative rates, delayed processing, variability in
test protocols, and reduced recall, among others. CT imaging has been reported to be an
effective alternative in identifying COVID-19 disease-consistent evolution, manifestation,
and progression [36]. AI-based methods applied to CT imaging could supplement clinical
decision-making in identifying COVID-19, particularly in resource-constrained settings
to facilitate swift referrals and improve patient care. Suri et al. [37] performed an inter-
variability analysis by segmenting the lungs for assessing COVID-19 severity using CT
images. The authors used two ground-truth (GT) annotations from different experts and
trained U-Net [38] models to segment the lung regions of interest. The authors hypothesized
that an AI model could be considered unbiased if the test performance reported with the
models when trained on two different GT annotations lay within the 5% range. They
further validated their hypothesis through empirical observations. It was observed that
the difference in the correlation coefficient obtained using the models trained on two
different GT annotations was below the 5% range, thereby showcasing a robust lung
segmentation performance.

In another study, Wang et al. [39] measured the three-dimensional (3D) vascular
diameter of the aorta and the pulmonary artery in Non-Contrast-Enhanced Chest CT
Images to detect pulmonary hypertension. The authors proposed a novel two-stage, 3D-
CNN segmentation pipeline to segment the aorta and pulmonary artery and measure the
diameter in the 3D space. The authors reported superior segmentation performance in
terms of the Dice similarity coefficient (DSC) metric in this segmentation task (0.97 DSC
for the aorta and 0.93 DSC for the pulmonary artery). The authors discussed the benefits
of such a segmentation approach in terms of providing a non-invasive, pre-operative
evaluation of pulmonary hypertension for the optimal planning of surgery and reducing
surgical risks.

Khan et al. [40] proposed a joint segmentation and classification network to detect
pulmonary lung nodules in publicly available lung CT datasets. Performing unified
segmentation and classification would not only help to learn and delineate the semantic
regions of interest but also classify them into their respective categories. The authors used
the VGG-SegNet [41] for nodule segmentation. The classification model was constructed
by appending the classification layers to the VGG-SegNet encoder backbone. The extracted
features from the penultimate layer of the trained model were concatenated with hand-
crafted features extracted using a gray-level cooccurrence matrix (GLCM), local binary
patterns (LBP), and pyramidal histogram of gradient (PHOG) algorithms. A radial basis
function kernel-initialized support vector machine (RBF-SVM) classifier learned these
concatenated features to improve classification performance with a 97.83% accuracy.

AlOthman et al. [42] proposed a novel feature extraction technique with minimal
computational overload to detect and assess the severity of coronary artery disease (CAD)
using CT images. The authors used the enhanced features from the accelerated segment
test (FAST) to reduce the dimensions of the features extracted from a CNN model. The au-
thors observed improved performance with this feature extraction method, demonstrating
accuracies of 99.2% and 98.73% with two benchmark datasets. These findings highlighted
the importance of optimal feature selection methods to improve model performance.

Germain et al. [43] analyzed whether CNN models could supersede the performance of
experienced clinicians in diagnosing Cardiac Amyloidosis (CA) using Cine-Cardiovascular
cine magnetic resonance (Cine-CMR) images. This disease results in the accumulation
of amyloid fibrils in cardiac tissues that might lead to progressive cardiomyopathy. Cine
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imaging is a type of magnetic resonance imaging (MRI) sequence that captures motion.
Cine-CMR is a sensitive diagnostic modality that is used to assess cardiac tissue char-
acterizations and dysfunctions such as CA [44]. The preprocessed systolic and diastolic
cine-CMR images were used to train a VGG-based CNN model to classify them as mani-
festing CA or left ventricular hypertrophy (LVH). The model performance was compared
to the outputs of three experienced radiologists. The VGG-based CNN model significantly
superseded (p < 0.05) human performance on frame-based evaluations, demonstrating
an accuracy of 0.746 and AUC of 0.824 as compared to human experts (accuracy = 0.605
and AUC = 0.630). A similar performance improvement was observed in patient-based
evaluations. The authors concluded that CNN models have a unique capability to identify
CA manifestations in Cine-CMR images compared to trained human experts.

The electrical conductivity is observed to vary considerably among the biological
tissues and the movement of gases and fluids within these tissues. Electrical impedance
tomography (EIT) is a non-invasive medical imaging modality that uses surface electrodes
to measure the electrical permittivity, impedance, and conductivity of biological tissues.
However, there exists an inverse problem in EIT imaging in which the non-linear and
noisy nature of the EIT imaging acquisition results in sub-optimal reconstruction. Recently,
artificial neural networks (ANN) have gained prominence in tackling the inverse problem
in EIT imaging. Rixen et al. [45] proposed an ANN model to resolve the EIT inverse
problem. The authors reused the dense layers in the ANN model multiple times while
considering the rotational symmetries exhibited by the EIT in the circular domain. The
authors used an α-blending method to generate synthetic data and augment the training
samples. Superior reconstruction performance and robustness to noise were reported with
augmented training in which the ANN model demonstrated high values for the amplitude
response (AR: 0.14) and low values for the position error (PE: 7.1) compared to conventional
methods (AR: 0.1 and PE: 11.0).

In conclusion, the manuscripts published in this Special Issue discuss the novel, state-
of-the-art methods for binary, multiclass, and multi-label classification, 2D and 3D image
segmentation, object detection and localization, image reconstruction, generalization, rec-
ommendation, and inter-reader consensus analysis for identifying, segmenting, classifying,
quantifying, reconstructing, and interpreting cardiopulmonary diseases using several med-
ical imaging modalities including CT, MRI, CXRs, and EIT, among others. Nevertheless,
deploying these proposed approaches in real-time settings remains an open avenue for
research. We would like to express our sincere thanks to the authors for their significant
contributions. We hope readers benefit from these research findings, and that the work in-
cluded in this Special Issue inspires novel methods for diagnosis, treatment, and processes
that could eventually promote healthcare.
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Abstract: To identify the best transfer learning approach for the identification of the most frequent
abnormalities on chest radiographs (CXRs), we used embeddings extracted from pretrained convolu-
tional neural networks (CNNs). An explainable AI (XAI) model was applied to interpret black-box
model predictions and assess its performance. Seven CNNs were trained on CheXpert. Three transfer
learning approaches were thereafter applied to a local dataset. The classification results were en-
sembled using simple and entropy-weighted averaging. We applied Grad-CAM (an XAI model) to
produce a saliency map. Grad-CAM maps were compared to manually extracted regions of interest,
and the training time was recorded. The best transfer learning model was that which used image
embeddings and random forest with simple averaging, with an average AUC of 0.856. Grad-CAM
maps showed that the models focused on specific features of each CXR. CNNs pretrained on a large
public dataset of medical images can be exploited as feature extractors for tasks of interest. The
extracted image embeddings contain relevant information that can be used to train an additional
classifier with satisfactory performance on an independent dataset, demonstrating it to be the optimal
transfer learning strategy and overcoming the need for large private datasets, extensive computational
resources, and long training times.

Keywords: medical imaging; X-rays; artificial intelligence; transfer learning; explainability

1. Introduction

The world’s population increased by about threefold between 1950 and 2015 (from 2.5
to 7.3 billion), and this trend is projected to continue in the coming decades (a population
of 19.3 billion people is expected in 2100), with a growing share of the aging population
(≥65 years) (https://www.eea.europa.eu/data-and-maps/indicators/total-population-
outlook-from-unstat-3/assessment-1 (accessed on 30 April 2021)). This projected trend
is strongly linked to the increasing demand for medical doctors, including imagers. The
medical community has offered some warnings about the urgent need to act (https://www.
rcr.ac.uk/press-and-policy/policy-priorities/workforce/radiology-workforce-census (ac-
cessed on 30 April 2021)), suggesting that artificial intelligence (AI) might partially fill this
gap [1]. The joint venture between AI and diagnostic imaging relies on the advantages
offered by machine learning approaches to the medical field, which include the automation
of repetitive tasks, the prioritization of unhealthy cases requiring urgent referral, and the
development of computer-aided systems for lesion detection and diagnosis [2]. Nonethe-
less, the majority of such AI-based methods are still research prototypes, and only a few
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have been introduced in clinical practice [3], despite increasing evidence the superior
performance of AI relative to that of doctors [4,5]. A number of reasons may be called upon
to explain this fact [6–8]. A successful AI-based tool relies on three main ingredients: an
effective algorithm, high computational power, and a reliable dataset. Whereas the first
two ingredients are generally available and can leverage several applications in different
domains, the latter is perhaps the most critical in medical imaging. An adequate quality
and amount of data necessary for machine learning approaches are still challenging or
unfeasible in most clinical trials [6]. Accordingly, some strategies can be used to cross the
hurdle of datasets in the medical imaging field. These comprise virtual clinical trials [9,10],
privacy-preserving multicenter collaboration [11], and transfer learning approaches [12]. In
particular, transfer learning, i.e., leveraging patterns learned on a large dataset to improve
generalization for another task, is an effective approach for computer vision tasks on small
datasets. Besides enabling training with a smaller amount of data, avoiding overfitting,
transfer learning has shown remarkable performance in generalizing from one task and/or
domain to another [13]. However, the optimal transfer learning strategy has not yet been
defined due to the lack of dedicated comparative studies. In this work, we propose:

1. Identification of the best transfer learning approach for medical imaging classification,
encompassing three steps: (1) pretraining of CNN models on a large publicly available
dataset, (2) development of multiple transfer learning methods, and (3) performance
evaluation and comparison;

2. Interpretation of CNN black-box predictions using explainable AI (XAI) on a popula-
tion level and randomly selected set of examples.

We tested this proof-of-concept approach on chest radiographs (CXRs). CXR is the
most frequently performed radiological examination. Thus, the semiautomatic interpreta-
tion of CXRs could significantly impact medical practice by potentially offering a solution
to the shortage of radiologists.

2. Materials and Methods

2.1. Datasets

The experimental analysis discussed in this paper involved two datasets: (i) CheXpert,
a large public dataset, which was used to pretrain several classification models; and
(ii) HUM-CXR, a smaller local dataset, which was used to evaluate the investigated transfer
learning approaches.

CheXpert. This dataset comprises 224316 CXRs of 65,240 patients collected from the
Stanford Hospital from October 2002 to July 2017 [14]. For this study, 191027 CXRs from
the original dataset that presented a full reported diagnosis were selected. Each image was
annotated with a vector of 14 labels corresponding to major findings in a CXR. Mentions of
diseases were extracted from radiology reports with an automatic rule-based system and
mapped—for each disease—with positive, negative, and uncertain labels according to their
level of confidence. Table 1 shows the data distribution among the 14 labels included in
the dataset.

HUM-CXR. We retrospectively collected all chest X-rays performed between 1 May 2019
and 20 June 2019 from the IRCCS Humanitas Research Hospital institutional database. We
excluded records (1) not focused on the chest, (2) without images stored in the Institutional
PACS, (3) without an available medical report, and (4) without an anteroposterior view.
HUM-CXR is composed of 1002 CXRs, including anteroposterior, lateral, and portable
(i.e., in bed) CXRs. Labels were manually extracted from medical reports (CJ). Uncertain
cases were reassessed by two independent reviewers (M.S. and M.K.), and discordant
findings were solved by consensus. Each image was annotated as normal or abnormal;
abnormalities were further specified as mediastinum, pleura, diaphragm, device, other,
gastrointestinal (GI), pneumothorax (PNX), cardiac, lung, bone, or vascular, resulting in a
vector of 12 labels. It was not possible to use available automatic labelers [14] because they
are designed for English-language use, whereas our radiological reports were written in
Italian. Mediastinum, diaphragm, other, GI, and vascular labels were not included in this
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work due to a limited number of available X-rays (<30) and significant inconsistencies with
CheXpert labels. Ultimately, 941 CXRs were included in the analysis. Table 2 shows the
data distribution of the labels selected for this study.

Table 1. Absolute frequencies of positive, uncertain, and negative samples for each finding (relative
frequencies are reported in parentheses) in the CheXpert dataset (n = 191,027).

Label Positive (%) Uncertain (%) Negative (%)

No Finding 16,974 (8.89) 0 (0.0) 174,053 (91.11)
Enlarged card. 30,990 (16.22) 10,017 (5.24) 150,020 (78.53)
Cardiomegaly 23,385 (12.24) 549 (0.29) 167,093 (87.47)
Lung opacity 137,558 (72.01) 2522 (1.32) 50,947 (26.67)
Lung lesion 7040 (3.69) 841 (0.44) 183,146 (95.87)

Edema 49,675 (26.0) 9450 (4.95) 131,902 (69.05)
Consolidation 16,870 (8.83) 19,584 (10.25) 154,573 (80.92)

Pneumonia 4675 (2.45) 2984 (1.56) 183,368 (95.99)
Atelectasis 29,720 (15.56) 25,967 (13.59) 135,340 (70.85)

Pneumothorax 17,693 (9.26) 2708 (1.42) 170,626 (89.32)
Pleural effusion 76,899 (40.26) 9578 (5.01) 104,550 (54.73)

Pleural other 2505 (1.31) 1812 (0.95) 186,710 (97.74)
Fracture 7436 (3.89) 499 (0.26) 183,092 (95.85)

Support devices 107,170 (56.1) 915 (0.48) 82,942 (43.42)

Table 2. Absolute frequencies of positive, uncertain, and negative samples for each finding (relative
frequencies are reported in parentheses) in the HUM-CXR dataset (n = 941).

Label Positive (%) Negative (%)

Normal 273 (29.01) 668 (70.99)
Cardiac 93 (9.88) 848 (90.12)

Lung 427 (45.38) 514 (54.62)
Pneumothorax 38 (4.04) 903 (95.96)

Pleura 135 (14.35) 806 (85.65)
Bone 137 (14.6) 804 (85.4)

Device 147 (15.56) 794 (84.44)

This study was approved by the Ethical Committee of IRCCS Humanitas Research
Hospital (approval number 3/18, amendment 37/19); due to the retrospective design,
specific informed consent was waived.

Preprocessing. For both datasets, we selected only anteroposterior images. Concerning
CheXpert, following the approach described in [15], we resized the images to 256 × 256, and
a chest region of 224 × 224 was extracted using a template-matching algorithm. We then
normalized the images by scaling their values in the range [0, 1]; because the original models
were pretrained on ImageNet, we further standardized them with respect to ImageNet
mean and standard deviation. Concerning HUM-CXR, we selected X-rays acquired with an
anteroposterior view, screening the images according to the series description in DICOM
format, which had to be anteroposterior, posteroanterior, or portable; the final sample
comprised 941 image of 746 patients. First, we clipped pixel values with a maximum
threshold of 0.9995 quantile to minimize the noise due to the landmark (see Figure 1).
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Figure 1. Preprocessing by clipping values larger than the 0.9995 quantile. The presence of a
landmark, significantly whiter than the other pixels, created significant noise after normalization (a);
original image (b); clipped image (c); normalized original image (d). To match the input dimension
of the models, we resized the images to 224 × 224 and encoded them as RGB images by repeating
the images for three channels. This was a necessary step in order to use the state-of-the-art image
classification networks already pretrained on the ImageNet dataset. Then, we normalized each image
by scaling the values in the range.

2.2. Pretraining on CheXpert

In this work, we trained several classifiers on the CheXpert dataset to predict CXR
findings. Following the protocol described in [15], we considered seven convolutional neu-
ral networks (CNNs) with different topologies and numbers of parameters: DenseNet121
(7M parameters), DenseNet169 (12,5M parameters), DenseNet201 (18M parameters) [16],
InceptionResNetV2 (54M parameters) [17], Xception (21M parameters) [18], VGG16 (15M
parameters) [19], and VGG19 (20M parameters) [19]. We selected these seven network archi-
tectures because (i) they are the most common architectures used to perform classification,
and (ii) the performance of each architecture differed depending on the labels. With no pre-
dominant architectures, aggregating multiple models can improve the final performances.
To use these networks as classifiers, we removed the original dense layer and replaced it
with a global average pooling (GAP) [20] layer, followed by a fully-connected layer with
a number of outputs that matched the number of labels. These seven networks were not
trained from scratch; instead, following a common practice in CNN training, we performed
a first transfer learning step by initializing the convolutional layers of the networks with
weights of pretrained models on the ImageNet dataset [21]. Then, we trained all the weights
(both convolutional and classification layers) on the CheXpert dataset, using 90% of the
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sample for training and 10% for validation (further details on the training process can be
found in our previous work [15]).

Once trained to classify images, the convolutional blocks of CNN models can be
employed as a mean to extract a vector of features from images, usually called image
embedding. CNNs learn to classify images by learning an effective input representation
directly from raw data; the sequence of convolutional layers progressively reduces the size
of the input and extracts features from images from low-level features (e.g., edges, pixel
intensities, etc.) in early convolutional layers to high-level semantic features in the latest
convolutional layers. Accordingly, the last convolutional block, resulting from the training
process, is designed to output a vector with the relevant features.

2.3. Transfer Learning

In this paper, we propose three transfer learning approaches, as depicted in Figure 2.
As a reference standard, we mapped the CheXpert labels to the HUM-CXR labels and

using the pretrained CNNs. The first transfer learning approach consisted of combining
the outputs of pretrained CNNs using stacking [22]. The second approach exploited the
pretrained CNNs to compute the image embeddings from HUM-CXR data and used them
to train tree-based classifiers. The last approach consisted of tuning the CNNs pretrained
on CheXpert on HUM-CXR data. In the remainder of this section, we describe these four
approaches in detail.

Pretrained CNNs. This was the most straightforward of the investigated approaches
and was used mainly as a baseline. It consisted of providing the HUM-CXR images as input
to the CNNs trained on CheXpert and using the output of the networks to classify them
based on a mapping between the labels of the two datasets. Table 3 shows the mapping
designed as a result of an analysis of the images and labels in the two datasets.

Table 3. Correspondence between CheXpert and HUM-CXR labels.

CheXpert HUM-CXR

Pleural effusion, pleural other Pleura

Support devices Device

Pneumothorax PNX

Enlarged cardiomediastinum, cardiomegaly Cardiac

Lung opacity, lung lesion, consolidation, pneumonia, atelectasis, edema Lung

Fracture Bone

No findings Normal

For multiple labels, we selected the maximum output probability of the network
for CheXpert labels as the predicted value for the respective HUM-CXR outcome. As
reported in previous works [15,23], none of the trained CNNs outperformed any of the other
networks on the label problem. Thus, to improve the overall classification performances,
we combined the outputs of the trained CNSs through two ensemble methods: simple
average and entropy-weighted average. In the case of simple average, the predictions of
the classifiers were combined as:

ỹi =
1
N

N

∑
k=1

pk,i (1)

where pk,i is the prediction of classifier k for label i, N is the number of classifiers, and yei is
the resulting prediction of the ensemble for label i.

When using entropy-weighted average, the predictions were combined as:

ỹi =
N

∑
k=1

(1 − H(pk,i))pk,i (2)
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where pk,i is the prediction of classifier k for label i, N is the number of classifiers,
H(p) = −plog2(p) − (1 − p)log2(1 − p) is the binary entropy function, and ỹi is the re-
sulting prediction of the ensemble for label i.

Figure 2. An overview of our experimental design. In the first phase, state-of-the-art image classifica-
tion networks were tuned on a large public dataset of X-rays (CheXpert [14]). Then, we performed
four different steps on the HUM-CXR dataset: (1) we tested the originally trained networks on
the X-rays of the new dataset, mapping the HUM_CXR labels to CheXpert labels; (2) we used the
originally pretrained networks with a metaclassifier to combine the predictions of each network
on the new dataset; (3) we fine-tuned the networks by removing the fully connected classification
layer from the seven CNNs trained on CheXpert and replacing it with a seven-output layer that
matched HUM-CXR labels; and (4) we extracted the image embeddings from each network and
trained tree-based classifiers to predict the HUM-CXR labels starting from the extracted embeddings.
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Stacking. This approach extends the previous approach by using a method called
stacked generalization or stacking [22]. Instead of combining the outputs of the CNNs with
a simple or an entropy-weighted average as described above, we combined them using a
metaclassifier trained for this purpose. Thus, we trained a random forest (RF) to predict
the label for HUM-CXR samples based on the predictions of the seven CNNs trained on
CheXpert and mapped to labels of HUM-CXR, as shown in Table 3. The data were divided
into a training set (70%) and a test set (30%).

Tree-based classifiers. This approach exploits the CNNs trained on CheXpert to
compute the image embeddings of CXRs included in the HUM-CXR dataset. Image
embeddings can be used to predict the label of the corresponding images using much
simpler models than CNNs, such as tree-based models. The benefit of using tree-based
models with respect to CNNs is that they do not require either high computational resources
or extremely large datasets for training, making them suitable for smaller single-institution
datasets. In this work, we focused on three kinds of tree-based methods: decision tree
(DT), random forest (RF), and extremely randomized trees (XRT). For each method, we
trained seven classifiers using the seven CNNs pretrained on CheXpert to compute the
image embeddings from the HUM-CXR dataset, with 70% of the samples used for training
and 30% for testing. As previously mentioned, for the pretrained CNNs, we applied
ensemble methods, i.e., the simple average and the entropy-weighted average, to combine
these seven classifiers. We tuned the training hyperparameters of the tree-based classifiers
with a grid-search optimization using stratified K-fold cross validation (Table 4 shows
the parameters).

Table 4. Embedding model hyperparameters.

Model Hyperparameters

DT

Max depth = [1, 2, 3, 4, 5, 10, 20], min samples leaf = [1, 2, 4], min samples split =
[2, 5, 10], criterion = [gini, entropy]
Final values:
Max depth = 10, min samples leaf = 1, min samples split = 2, criterion = gini

RF

Max depth = [1, 2, 3, 4, 5, 10, 20], min samples leaf = [1, 2, 4], min samples split = [2,
5, 10], criterion = [gini, entropy], number estimators = [10, 20, 30, 50, 100, 200, 300]
Final values:
Max depth = 10, min samples leaf = 4, min samples split = 10, criterion = gini,
number of estimators = 100

XRT

Max depth = [1, 2, 3, 4, 5, 10, 20], min samples leaf = [1, 2, 4], min samples split = [2,
5, 10], criterion = [gini, entropy], number estimators = [10,20,30, 50, 100, 200, 300]
Final values:
Max depth = 10, min samples leaf = 2, min samples split = 2, criterion = entropy,
number of estimators = 200

The results were combined with simple average and entropy-weighted average.
Fine-tuning. This is a common transfer learning approach in deep learning that consists

of adapting and retraining the last layers of a pretrained neural network on different data
or tasks [13]. Therefore, we removed the fully connected classification layer from the seven
CNNs trained on CheXpert and replaced it with a seven-output layer that matched the
HUM-CXR labels. Then, the HUM-CXR (70% training, 10% validation) dataset was used
to finetune the original networks. The models were fine-tuned for five epochs with early
stopping on the validation AUC set to three epochs. Binary cross entropy was used as loss
function, and the learning rate was initially set to 1 × 10−4, to be reduced by a factor of
10 after each epoch. For each CNN, the best-performing model upon validation was tested
on the remaining 20% of the HUM-CXR dataset. The performances were evaluated with
simple average, entropy-weighted average, and stacking.
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2.4. Performance Assessment

To assess the performances of our classifiers, we computed the area under the receiving
operating characteristic (ROC) curve. The ROC curve was obtained by plotting the true
positive rate (TPR) (or sensitivity) versus the false positive rate (FPR) (or 1-specificity).
Values higher than 0.8 were considered excellent [24], and the training time was recorded.

2.5. Explainability

Despite having proven successful predictive performance, CNNs are recognized as
black-box models, i.e., the reasoning behind the algorithm is unknown or known but not
interpretable by humans. In order to build trust in AI systems, it is necessary to provide the
user with details and reasons to make their functioning clear or easy to understand [25]. We
applied gradient-weighted class activation map (Grad-CAM) [26], a state-of-the-art class-
discriminative localization technique for CNN interpretation that outputs a visualization
of the regions of the input (heat map) that are relevant for a specific prediction. Grad-CAM
uses the gradient of an output class in the final convolutional layer to produce a saliency
map that highlights areas of the image relevant to detection of the output class. Then, the
map is upsampled to the dimensions of the original image, and the mask is superimposed
on the CXR. Grad-CAM is considered an outcome explanation method, providing a local
explanation for each instance. Therefore, we applied Grad-CAM to randomly selected
HUM-CXR data. Grad-CAM heat maps were computed for each CNN model and averaged.
In addition to superimposing them on the original image, we used Grad-CAM heat maps to
automatically generate a bounding box surrounding the area associated with the outcome.
We created a mask with the salient part of the heat map (pixel importance larger than the
0.8 quantile) and used its contours to draw a bounding box highlighting the region of the
input that contributed most to the prediction. Grad-CAM saliency maps were compared to
saliency masks manually extracted by a radiologist (A.A.). The agreement was evaluated as
intersection area over the total area identified by the imager. DeGrave et al. [27] suggested
that single local explanations are not enough to validate the correctness of a model against
shortcuts and spurious correlations. Therefore, we propose a population-level explanation
averaging the saliency maps of 200 randomly sampled images, with the prediction with
the highest probability selected.

3. Results

In this section, we first introduce the baseline results (of the networks originally trained
on CheXpert) and the performance of the networks following stacking, embedding, and fine
tuning. Then, we present an in-depth analysis of the classification by applying Grad-CAM
and comparing the extracted saliency maps with those generated by radiologists.

3.1. Baseline with Pretrained CNN

Table 5 shows the performance on the test set achieved by transfer learning without
retraining in terms of AUC for each HUM-CXR class and on average.

The results are shown for each CNN, ensembling with averaging, and weighted
entropy averaging. Generally, the networks pretrained on CheXpert showed promising per-
formance on the new dataset (HUM-CXR). Failures occurred mainly for bone. Ensembling
generally achieved better average results compared to single-model performance.
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Table 5. CNN results with pretrained networks without retraining in terms of AUC. Each column
represents an HUM-CXR label. We report the results for each network and for the two ensembling
strategies. The best results for each class and average are highlighted in bold.

Model Normal Cardiac Lung PNX Pleura Bone Device Mean

DenseNet121 0.81 0.84 0.70 0.89 0.87 0.39 0.87 0.766
DenseNet169 0.80 0.79 0.69 0.90 0.87 0.36 0.88 0.755
DenseNet201 0.81 0.78 0.70 0.90 0.87 0.35 0.86 0.754

InceptionResNetV2 0.81 0.83 0.69 0.89 0.87 0.39 0.86 0.762
Xception 0.80 0.77 0.69 0.91 0.87 0.44 0.86 0.764
VGG16 0.82 0.85 0.70 0.89 0.89 0.41 0.86 0.775
VGG19 0.81 0.83 0.71 0.88 0.89 0.42 0.85 0.772

Averaging 0.82 0.84 0.71 0.91 0.89 0.38 0.89 0.777
Entropy 0.82 0.83 0.71 0.91 0.89 0.37 0.89 0.772

3.2. Stacking and Embeddings

Combining the predictions with a metaclassifier (stacking) significantly improved
bone classification and the mean classification AUC compared to the baseline. Furthermore,
the embeddings extracted from pretrained CNNs were used to train tree-based classifiers.
Table 6 shows the performance achieved by stacking and embeddings with DT, RF, and
XRT ensembled with simple average and entropy-weighted average.

Table 6. Results of stacking and tree-based models trained on embeddings extracted from pretrained
CNNs in terms of AUC. Each column represents an HUM-CXR finding. We report the results for each
tree model and for both ensembling strategies. Best results for each class and average are highlighted
in bold.

Model Normal Cardiac Lung PNX Pleura Bone Device Mean

Stacking 0.85 0.81 0.74 0.88 0.94 0.85 0.84 0.843
DT + averaging 0.81 0.69 0.68 0.75 0.88 0.68 0.78 0.734
RF + averaging 0.86 0.85 0.72 0.92 0.94 0.85 0.86 0.856

XRT + averaging 0.85 0.84 0.73 0.92 0.94 0.85 0.85 0.853
DT + entropy 0.81 0.69 0.68 0.75 0.88 0.69 0.78 0.753
RF + entropy 0.85 0.85 0.72 0.92 0.94 0.85 0.85 0.853

XRT + entropy 0.85 0.84 0.73 0.92 0.94 0.85 0.84 0.852

The best model (RF + simple averaging) achieved a mean AUC of 0.856 with a max-
imum of 0.94 for pleura. The results show that stacking and embedding achieved better
classification performance compared to the baseline. Complex machine learning models
(XRT and RF) achieved better performance than simple decision tree classifiers.

3.3. Fine Tuning

The last set of experiments consisted of fine tuning the classification layers of the
pretrained CNNs (Table 7). Single-model performance improved with respect to transfer
learning without retraining, except for VGG16 and VGG19. Ensemble AUC increased for
all strategies. Fine tuning combined with stacking achieved the best AUC for PNX (0.97),
whereas on average, it was performant than the best embedding model. However, these
results show that fine tuning alone is not enough to achieve competitive performance, and
an additional metaclassifier is required to combine the results. All the described models
are available at https://github.com/DanieleLoiacono/CXR-Embeddings.
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Table 7. CNN results with fine tuning of the classification layer of pretrained networks in terms of
AUC. Each column represents an HUM-CXR finding. We report the results for each single network,
for the two ensembling strategies, and for stacking. The best results for each class and average are
highlighted in bold.

Model Normal Cardiac Lung PNX Pleura Bone Device Mean

DenseNet121 0.81 0.73 0.76 0.94 0.90 0.73 0.78 0.807
DenseNet169 0.73 0.88 0.77 0.95 0.94 0.72 0.72 0.814
DenseNet201 0.83 0.81 0.71 0.94 0.94 0.74 0.82 0.828

InceptionResNetV2 0.81 0.86 0.79 0.90 0.93 0.69 0.76 0.818
Xception 0.81 0.82 0.73 0.94 0.95 0.68 0.80 0.819
VGG16 0.67 0.81 0.72 0.33 0.95 0.62 0.82 0.704
VGG19 0.64 0.79 0.44 0.83 0.93 0.52 0.87 0.717

Averaging 0.83 0.86 0.78 0.96 0.96 0.71 0.81 0.842
Entropy 0.81 0.86 0.78 0.95 0.96 0.73 0.83 0.845
Stacking 0.80 0.85 0.74 0.93 0.97 0.83 0.86 0.853

3.4. Grad-CAM

We averaged the saliency maps of two batches of 200 randomly sampled images
computed with Grad-CAM. The Grad-CAM heat map emphasizes the salient area within
the image in shades of red and yellow, whereas the rest of the image is colored in blues and
greens. Figure 3 shows that at a population level, the model was generally focused on the
lung field and did not take into account shortcuts or spurious correlations that could be
present in the borders.

 

Figure 3. Average of Grad-CAM saliency maps for two batches (panels a,b) of 200 randomly sampled
images. Images confirm that the model focuses on the lung field (image in shades of red and yellow)
and does not take into account shortcuts or spurious correlations that could be present in the borders.

We visualized the areas of the CXRs that the model predicted to be most indicative
of each prediction using gradient-weighted class activation mappings (GradCAMs) [26]
and by creating a bounding box surrounding it. Randomly selected examples are shown in
Figures 4–7.
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Figure 4. Visualization of pleura prediction maps for two selected CXRs. The panels represent the
saliency mask obtained with Grad-CAM (panels a,d), the relevant area (mask values higher than the
0.8 quantile (panels b,e)), and the respective bounding box (panels c,f). The saliency mask focuses on
plaura abnormalities, as shown by the heat map (panel a,d).

 

Figure 5. Visualization of device prediction maps for two selected CXRs. The panels represent the
saliency mask obtained with Grad-CAM (panels a,d), the relevant area (mask values higher than the
0.8 quantile) (panels b,e), and the respective bounding box (panels c,f). The saliency mask focuses on
device (hardware and/or leads), as shown by the heat map (panel a,d).
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Figure 6. Visualization of pneumothorax prediction maps for a selected CXR. The panels represent
the saliency mask obtained with Grad-CAM (panel a), the relevant area (mask values higher than the
0.8 quantile) (panel b), and the respective bounding box (panel c). The saliency mask, as emphasized
by the heat map (panel a), focuses on the right lung field, which shows the pneumothorax.

 

Figure 7. Visualization of lung prediction maps for a selected CXR. The panels represent the saliency
mask obtained with Grad-CAM (panel a), the relevant area (mask values higher than the 0.8 quantile)
(panel b), and the respective bounding box (panel c). The saliency mask, as emphasized by the heat
map (panel a), focuses on the left lung, which shows lung abnormality.

In Figure 8, we superimposed the bounding boxes for two classes to show how the
model looks at different input areas depending on the specific class.

 

Figure 8. Superimposition of bounding boxes for cardiac (panel a, cardiac in blue and device in red)
and device (panel b, device in blue and cardiac in red) outcomes for two examples.

Furthermore, we compared Grad-CAM maps with saliency masks extracted by a
radiologist in terms of common area over the full area identified by the expert. Our
models achieved an overall average agreement of 75% (80% lung, 65% pleura, 84% cardiac,
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75% PNX, and 67% device), showing how the models automatically learned meaningful
features from the images similarly to an expert radiologist. Explainable AI (XAI) algorithms
for visualization are successful approaches to identify potential spurious shortcuts that
the network may have learned. Overall, our CNNs focused on meaningful areas of the
image for the respective prediction. We found some inconsistencies in some examples of
device predictions, especially with pacemakers. Figure 9 shows an example of a correct
classification but based on an area that does not match well the hardware of the CIED.

 

Figure 9. Shortcut for the identification of a pacemaker focusing on the leads: the saliency mask
obtained with Grad-CAM (panel a), the relevant area (mask values higher than the 0.8 quantile)
(panel b), and the respective bounding box (panel c).

The saliency map highlights the intracardiac leads as the region responsible for device
prediction.

4. Discussion

In this work, we first developed and trained CNN models to extract features; thereafter,
we proposed the application of different transfer learning approaches to the feature extractor
stage of pretrained CNNs to a test dataset, proving the efficiency of transfer learning for
domain and task adaptation in medical imaging. Finally, we used Grad-CAM saliency
maps to interpret, understand, and explain CNNs and to investigate the presence of
potential Clever Hans effects, spurious shortcuts, and dataset biases. Our results support
the use of transfer learning to overcome the need for large datasets toward promising AI-
powered medical imaging to assist imagers in automating repetitive tasks and prioritizing
unhealthy cases. CNNs were first introduced in handwritten zip code recognition in [28],
dramatically increasing the performance of deep learning models, especially with N-
dimensional matrix input (e.g., three channels images). Since then, CNNs have proven
successful capabilities for image analysis, understanding, and classification. Convolutional
layers are used in sequence to progressively reduce the input size and simultaneously
perform feature extraction, starting from simple patterns in early convolutional layers
(edges, curves, etc.) to semantically strong high-level features in deeper layers. The feature
maps, i.e., the output at each convolutional step, can be represented as a continuous vector
that contains a low-dimensional representation of the image, namely the image embedding.
Image embeddings meaningfully represent the original input in a transformed space,
reducing the dimensionality. Image embeddings can be used as input to train classifiers
based on trees, kernels, Bayesian statistics, etc. Thereby, the advantage of using embeddings
lies in benefiting the feature extraction capabilities of CNNs trained on a large dataset of
images while designing a specific classifier for new data and, eventually, for a slightly
different task. We trained our CNNs with a large publicly available dataset [14] to create an
efficient feature extractor that could learn from a large corpus of images. Next, we proposed
three transfer learning approaches to apply the feature extractor stage of pretrained CNNs
to a new local, independent dataset—HUM-CXRs. Transfer learning has shown remarkable
capabilities in computer vision, boosting performance for applications with small datasets.
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Transfer learning avoids overfitting, in addition to enabling generalization from one task to
another [13], although the generalization capabilities decrease according to the dissimilarity
between the base task and target task. Transfer learning has been successful in several
fields, including image classification [21,29,30], natural language processing [31–34], cancer
subtype discovery [35], and gaming [36]. We applied transfer learning to medical imaging
understanding and classification, envisioning the possibility of developing a library of
pretrained models for different medical imaging modalities and tasks. Our first TL approach
consisted of stacking the predictions of the pretrained CNNs and training an additional
metaclassifier to learn the correspondence between them and the HUM-CXR outcomes. The
second approach involved two steps: first, the image embeddings of the last convolutional
layer were extracted, and additional tree-based classifiers were trained to classify them
into the output vector. Finally, we applied a more conventional fine tuning of the last
classification layer of each CNN. In this way, the classification layer was customized
to the label vector of the new dataset, and the final weights were updated to learn the
correspondence between the features extracted by the CNN and the output. In addition to
achieving a best classification performance of 0.856 average AUROC, transfer learning with
image embeddings has the advantage of minimizing the computational power, dataset
dimensions, and time required to adapt the pretrained models to a new dataset and
task. The time required to train our tree-based model was in the order of a few minutes,
overcoming the need for considerable computational resources, long training times, and
GPU availability.

As a proof of concept, we applied this framework to CXRs. CXRs are commonly
used for diagnosis, screening, and prognosis; thus, large labeled datasets are already avail-
able, such as CheXpert [14], MIMIC-CXR [37], and ChestX-ray [38]. Several previous
studies were focused on CXR diagnosis with deep learning, along with these publicly
available datasets. CheXNet [39] achieved state-of-the-art performance on fourteen disease
classification tasks with ChestXray data [38], and the modified version CheXNeXt [40]
achieved radiologist-like performance on ten diseases. On the same dataset, Ye et al. [41]
proposed localization of thoracic diseases, in addition to CXR classification. Along with
the publication of the dataset, Irvin et al. [37] proposed a solution to achieve performance
comparable to that of expert radiologists for the classification of five thoracic diseases.
Recently, Pham et al. [23] improved state-of-the-art results on CheXpert, proposing an
ensemble of CNN architectures. We used the same dataset as Irvin et al. [37], Pham
et al. [23], and Giacomello et al. [15] for pretraining; however, whereas they focused on
only five representative findings, we enlarged the classification to seven classes. We can
compare the performance of cardiomegaly and pleural effusion, the two findings that are
most similar between HUM-CXRs and CheXpert. With respect to cardiomegaly [14,15,23],
achieved a best AUROC of 0.828, 0.854, and 0.910, respectively. With respect to pleural
effusion, [14,15,23] achieved a best AUROC of 0.940, 0.964, and, 0.936, respectively. Our
models obtained by transferring the knowledge acquired on CheXPert to an independent
local dataset achieved a best AUROC of 0.88 and 0.97 for cardiac and pleura, respectively.
However, [14,15,23] trained and tested on data from the same dataset, i.e., the same dis-
tribution, demographic and geographic characteristics (USA residents, Stanford Hospital)
and—potential—bias in the data. Hence, these models are potentially prone to the ”Clever
Hans” effect [42], which limits their actual transition to clinical application. Weber et al. [43]
discussed the importance of evaluating the performance of a DL model for applications
for which it was not explicitly trained to characterize its generalization capabilities and
avoid the Clever Hans effect. Similarly, in a recent analysis of COVID-19 machine learning
predictors, Roberts et al. [44] claimed that none of the works under review was reliable
enough for the transition from scientific research to clinical routine due to dataset biases,
insufficient model evaluation, limited generalizability, and lack of reproducibility, among
other reasons. Furthermore, they argued that the scientific community is focusing too much
on outperforming benchmarks on public datasets. Using only public datasets without
generalizing to new data can lead to overfitting, strongly hindering clinical translation. For
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these reasons, in this work, we did not focus on outperforming the state of the art in CXR
classification, instead proposing a reproducible framework to overcome some of the main
limitations of DL in medical imaging toward a more robust AI-powered clinical routine. In
particular, we achieved the following insights. The original models performed poorly on
the baseline task (best average AUROC: 0.777), i.e., using the CNNs directly in inference on
the new external independent dataset; therefore, even if they were trained on an extremely
large dataset, the CNNs were not able to generalize to a new domain and additional data.
On the other hand, using transfer learning, in particular with image embeddings, it is
possible to adapt the original models to a new domain, i.e., a new hospital, geographic and
demographic characteristics, and new tasks, i.e., different labels, with minimum effort and
competitive performance (best average AUROC: 0.856). Our approach is not limited to
our dataset and the highlighted application; it could be adopted and successfully applied
by any other research group or hospital that might need to classify medical images but
does not have either a sufficient volume of data or the computational resources to train
the model. Following this framework, the resulting models will have excellent feature
extraction capability learned from large public datasets, but they will be validated, tailored,
and improved with respect to the specific application to achieve optimal results.

Although adherence to the FAIR principles [45] is recommended for scientific data
management, a recent systematic review proved the scarce reproducibility of deep learning
research. The majority of published deep learning studies focused on medical imaging were
non-randomized retrospective trials (only 7% of prospective were tested in a real-world
clinical setting) affected by a high risk of bias (72%), with a low adherence to existing
reporting standards and without access to data and code (available in 5% and 7% of
cases, respectively). Furthermore, deep learning studies typically scantly and elusively
describe the used methods, affecting external validity and implementation in clinical
settings [7]. To comply with the FAIR principles, respect legal requirements, and preserve
the institutional policy, we exhaustively described our methods, providing details for
each step, from image analysis to model building, and we made our models available
(https://github.com/DanieleLoiacono/CXR-Embeddings) Regardless of the singular value
of AUC for each class and the direct comparison between HUM-CXRs and CheXpert among
labels, we demonstrated the efficiency of the proposed method. We believe that by making
the data available, we guarantee the reproducibility of the proposed methodology, strongly
encouraging other groups to repeat our approach with CXRs and/or other images (e.g.,
computed tomography (CT)).

Finally, CNNs are black-box models that are difficult to interpret, significantly hinder-
ing their acceptance in critical fields, such as medicine. Degrave et al. [27] demonstrated
that DL models for COVID-19 detection relied on spurious shortcuts, such as lateral mark-
ers, image annotations, and borders, to distinguish between positive and negative patients
instead of identifying real markers of COVID-19 in the lung field. They suggested that
explainable AI (XAI) models should be applied to every AI application in medicine and
should be a prerequisite for clinical translation to routine practice. The trustworthiness of
AI models for clinical diagnosis and prognosis has to be accurately assessed before they
can be applied in a real setting. Several algorithms have been proposed to overcome the
intrinsic black-box nature of CNNs. DeepLIFT [46] and SHAP GradientExplainer [47] are
based on feature importance, with the aim of measuring the relevance and importance
of each input feature in the final predicted output, usually using the coefficients of linear
models as interpretability models. Another proposed approach is the use of DGN-AM [48],
which evaluates which neurons are maximally activated with respect to a particular input
observation, with the aim of identifying input patterns that maximize the output activation.
CAM [49], Grad-CAM [26], and LRP [50] create coarse localization maps of the important
regions of the input defining the discriminative regions for a specific prediction.

For these reasons, we applied Grad-CAM [26] to our problem, with the aim of (1) inter-
preting, understanding, and explaining CNN black-box behavior through comprehensible
explanations to increase the trust and acceptance in AI for medical imaging for transla-

23



Diagnostics 2022, 12, 2084

tion to clinical routine; and (2) investigating the presence of potential Clever Hans effects,
spurious shortcuts, and dataset biases. Overall, the explanations provided by Grad-CAM
showed a satisfactory ability of the model to identify specific markers and features with
respect to the identified class. Grad-CAM saliency maps were found inside the lung field,
with particular attention to the correct side of the chest. Double-class images correctly
showed the differences between chest findings. However, De Grave et al. [27] were skep-
tical about presenting only a few examples of explanations, as they may not truthfully
represent the real behavior of the model. They discussed the need for a population-level
explanation to demonstrate the correctness and reasoning of the entire model, in addition
to selecting single examples. In this work, we presented randomly selected examples and
population-level explanations averaging two batches of 200 CXRs. The averaged saliency
maps presented in Figure 3 demonstrate a high level of attention in the center of the image,
whereas the borders are almost useless. Our findings demonstrate that the models were
generally focused on the lung field without deploying shortcuts and spurious correlations
that may be present outside the lung field, such as annotations, different border dimensions,
and lateral markers. Overall, examples of local explanations did not indicate the use of
shortcuts as the general model. The only exception we identified concerns the device class,
particularly when detecting a CIED. Whereas the model generally correctly focused on the
hardware components, in some examples (Figure 9), it correctly classified “device” but
exploited the intracardiac leads. This finding is not incorrect, but we would expect the
model to focus more on the hardware, i.e., the main box. We believe this might be caused by
the original dataset on which the models were pretrained. The device class is extensive and
includes lines, tubes, valves, catheters, CIEDs, hardware, coils, etc. However, the percent-
age proportion of each subclass is not publicly available, so it is possible that “some objects”,
such as tubes, leads, electrodes, and catheters, are more present than CIEDs, inducing the
model to focus on them. Furthermore, we investigated false-positive predictions with
respect to the device class. In most cases, we assert that the model was correctly classified
devices, although the ground truth was incorrect. The main reason for such false positives
is that our labels were extracted from unstructured medical reports. Whereas diseases are
clearly written and discussed in the report, cardiac devices, electrodes, prosthesis, and
other “objects” may be omitted in the report because are not considered “abnormal” as
medical pathologies or clinically relevant. We reasonably believe that with further effort in
the definition of the ground truth, the performance of “normal” and “device” labels can
be improved.

In contrast to reports by Saporta et al. [51] and Arun et al. [52], who recently demon-
strated the unreliability of current saliency methods to explain deep learning algorithms in
chest X-ray interpretation, we proved a satisfactory match between Grad-CAM saliency
maps and a human benchmark (overall average agreement of 75%), although our data
confirmed the same issues (a larger gap between Grad-CAM and radiologist saliency
maps in cases of diseases characterized by multiple instances, complex shapes, and small
size [51]). We found more variability in some classes, such as pleura and device (65% and
67%, respectively), whereas lung, cardiac, and PNX exhibited greater confidence (80%, 84%,
and 75%, respectively).

Results of our study may be of value for both the medical and the scientific communi-
ties, as well as for the general population. Overall, our results may impact AI applicability
in the medical field, speeding up the grounding system of machine and deep learning
algorithms toward clinical application, partially overcoming the problem of the increasing
demand for medical doctors. In this work, we analyzed the adaptability and applicability
of state-of-the-art imaging classification techniques to a new dataset of images collected in a
different country with different scanners. Our models achieved competitive performances
(AUC > 85%), correctly identifying and labeling seven classes from X-ray images. We also
showed that our model correctly interpreted X-rays similarly to expert radiologists. We
proved the feasibility of our approach to train large models and apply them in different
countries and hospitals. Next steps of this work will include the investigation of more
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recent CNN models [53–55] and the validation of this proof of concept on other datasets, as
well as on different kinds of images (e.g., computed tomography). Finally, we have to ac-
knowledge some limitations in our study. First, our results are limited by the retrospective
design of our study. Secondly, we did not evaluate the optimal transfer learning approach
when we trained the seven CNNs on the CheXpert dataset; however, this was outside of
the scope of the present work. Thirdly, different and more recent CNN models should also
be used in future research.

5. Conclusions

In this work, we proposed three transfer learning approaches for medical imaging
classification. We demonstrated that CNNs pretrained on a large public dataset of medical
images can be exploited as feature extractors for a different task (i.e., different classes) and
domain (different country, scanner, and hospital) than the original one. In particular, the
extracted image embeddings contain relevant information to train an additional classifier
with satisfactory performance on an independent local dataset. This overcomes the need for
large private datasets, considerable computational resources, and long training times, which
are major limitations for the successful applications of AI in clinical practice. Finally, we
proved that we can rely on saliency map for deep learning explainability in medical imaging,
showing that the models automatically learned how to interpret X-rays in agreement with
expert radiologists.
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Abstract: In recent times, coronary artery disease (CAD) has become one of the leading causes
of morbidity and mortality across the globe. Diagnosing the presence and severity of CAD in
individuals is essential for choosing the best course of treatment. Presently, computed tomography
(CT) provides high spatial resolution images of the heart and coronary arteries in a short period. On
the other hand, there are many challenges in analyzing cardiac CT scans for signs of CAD. Research
studies apply machine learning (ML) for high accuracy and consistent performance to overcome
the limitations. It allows excellent visualization of the coronary arteries with high spatial resolution.
Convolutional neural networks (CNN) are widely applied in medical image processing to identify
diseases. However, there is a demand for efficient feature extraction to enhance the performance
of ML techniques. The feature extraction process is one of the factors in improving ML techniques’
efficiency. Thus, the study intends to develop a method to detect CAD from CT angiography images.
It proposes a feature extraction method and a CNN model for detecting the CAD in minimum time
with optimal accuracy. Two datasets are utilized to evaluate the performance of the proposed model.
The present work is unique in applying a feature extraction model with CNN for CAD detection.
The experimental analysis shows that the proposed method achieves 99.2% and 98.73% prediction
accuracy, with F1 scores of 98.95 and 98.82 for benchmark datasets. In addition, the outcome suggests
that the proposed CNN model achieves the area under the receiver operating characteristic and
precision-recall curve of 0.92 and 0.96, 0.91 and 0.90 for datasets 1 and 2, respectively. The findings
highlight that the performance of the proposed feature extraction and CNN model is superior to the
existing models.

Keywords: coronary artery disease; deep learning; machine learning; cardiopulmonary disease;
faster CNN

1. Introduction

Coronary artery disease (CAD) has recently become regarded as one of the most dan-
gerous and life-threatening chronic diseases [1]. Blockage and narrowing of the coronary
arteries is the primary cause of heart failure. The coronary arteries must be open to provide
the heart with adequate blood [2–4]. According to a recent survey, the United States has
the highest heart disease prevalence and the highest ratio of heart disease patients [5].
Shortness of breath, swelling feet, fatigue, and other symptoms of heart disease are among
the most frequent. CAD is the most common type of heart disease, which can cause chest
discomfort, stroke, and heart attack. Besides heart disease, there are heart rhythm issues,
congestive heart failure, congenital heart disease, and cardiovascular disease [6].

Traditional methods of investigating cardiac disease are complex [7–10]. The lack of
medical diagnostic instruments and automated systems makes pulmonary heart disease
detection and treatment challenging in developing nations. However, to reduce the impact
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of CAD, an accurate and appropriate diagnosis of cardiac disease is necessary. Devel-
oping countries experience an alarming rise in the number of people dying from heart
disease [11–16]. According to WHO, CAD is the most frequent type of heart disease, claim-
ing the lives of 360,900 individuals globally in 2019 [17]. The sum accounts for nearly
30% of all deaths worldwide. The number of persons who are victimized is increasing
exponentially. Multiple risk factors are involved in the CAD prediction. Thus, health-
care centers require a tool to detect CAD at earlier stages. The recent developments in
CNN models enable researchers to develop a prediction model for CAD. However, CNN’s
structure is complex and needs an excellent graphical processing unit (GPU) to process
complex images.

Among conventional approaches, analytical angiography is considered one of the most
accurate procedures for detecting heart abnormalities. The disadvantages of angiography
include the expensive cost, various side effects, and the need for a high level of technolog-
ical competence [18]. Due to human error, conventional methods often yield inaccurate
diagnoses and take longer to complete. In addition, it is a costly and time-consuming
method for diagnosing disease and requires considerable processing.

Artificial intelligence (AI) applications have been increasingly included in clinical
diagnostic systems during the last three decades to improve their accuracy. Data-driven
decision-making using AI algorithms has been increasingly common in the CAD field in re-
cent years [19]. The diagnostic accuracy can be improved by automating and standardizing
the interpretation and inference processes. AI-based systems can help speed up decision-
making. Healthcare centers can obtain, evaluate, and interpret data from these emerging
technologies and facilitate better patient service [20]. The raw data can significantly affect
the quality and performance of AI approaches. As a result, extensive collaboration between
AI engineers and clinical professionals is required to improve the quality of diagnosis [21].
The recent CAD detection technique is based on images. Faster predictions can be made
for clinicians and computer scientists by deleting irrelevant features. The key features
representing the crucial part of CAD decide the performance of the AI techniques [22].
Many studies use deep learning (DL) to determine the existence of CAD.

Convolutional neural networks (CNN) are becoming increasingly popular in medical
image processing. CNN was initially demonstrated in medical image analysis in the work
of [23] for lung nodule diagnosis. Numerous medical imaging techniques are based on
this concept [24–27]. Using a pre-trained network as a feature generator and fine-tuning
a pre-trained network to categorize medical pictures are two strategies to transmit the
information stored in the pre-trained CNNs. Standard networks can be divided into
multiple classes as pre-trained medical image analysis models. Kernels with large receptive
fields are used in the higher layers near the input, while smaller kernels are used in the
deeper levels. Among the networks in this group, AlexNet is the most widely used and has
many applications in medical image processing [28–31].

Deep learning networks are advanced AI techniques and have gained popularity in
the medical field. The first network in this category was GoogleNet [32–36]. However, there
is a shortcoming in the existing methods, such as more computation time and high-end
systems. In addition, the performance of the current CNN architectures is limited in terms
of accuracy and F-Measure. In addition, literature is scarce related to integrating feature
minimization and CAD techniques. Therefore, this study intends to develop a CNN-based
classifier to predict CAD with high accuracy. The objective of the study is as follows:

• To build a CNN model to predict CAD from CT images.
• To improve the performance of CNN by reducing the number of features.

The research questions of the proposed study are:
Research Question-1 (RQ1): How to improve the performance of a CAD detection technique?
Research Question-2 (RQ2): How to evaluate the performance of a CAD detection technique?
The structure of the study is organized as follows: Section 2 presents the recent

literature related to CNN and CAD. Section 3 outlines the methodology of the proposed
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research. Results and discussion are highlighted in Section 4. Finally, Section 5 concludes
the study with its future improvement.

2. Literature Review

High-accuracy data-mining techniques can identify risk factors for heart disease.
Studies on the diagnosis of CAD can be found in existing studies [1–5]. Artificial immune
recognition system (AIRS), K nearest neighbor (KNN), and clinical data were used to
develop a system for diagnosing CAD and achieved an accuracy rate of 87%.

The authors [1] developed and evaluated a deep-learning algorithm for diagnosing
CAD based on facial photographs. Patients who underwent coronary angiography or CT
angiography at nine Chinese locations participated in a multicenter cross-sectional study
to train and evaluate a deep CNN to detect CAD using patient facial images. More than
5796 patients were included in the study and were randomly assigned to training and
validation groups for algorithm development. According to the findings, a deep-learning
algorithm based on facial photographs can help predict CAD.

According to a study [2], the combination of semi-upright and supine stress myocardial
perfusion imaging with deep learning can be used to predict the presence of obstructive
disease. The total perfusion deficit was calculated using standard gender and camera
type limits. A study [3] employed interferometric OCT in cardiology to describe coronary
artery tissues, yielding a resolution of between 10 and 20 μm. Using OCT, the authors [3]
investigated the various deep learning models for robust tissue characterization to learn
the various intracoronary pathological formations induced by Kawasaki disease. A total of
33 historical cases of intracoronary cross-sectional pictures from different pediatric patients
with KD are used in the experimentation. The authors analyzed in-depth features generated
from three pre-trained convolutional networks, which were then compared. Moreover,
voting was conducted to determine the final classification.

The authors [6] used deep-learning analysis of the myocardium of the left ventricle
to identify individuals with functionally significant coronary stenosis in rest coronary CT
angiography (CCTA). There were 166 participants in the study who had invasive FFR tests
and CCTA scans taken sequentially throughout time. Analyses were carried out in stages
to identify patients with functionally significant stenosis of the coronary arteries.

Using deep learning, the researchers [7] investigated the accuracy of the automatic
prediction of obstructive disease from myocardial perfusion imaging compared to the
overall perfusion deficit. Single-photon emission computed tomography may be used to
build deep convolutional neural networks that can better predict coronary artery disease in
individual patients and individual vessels. Obstructive disease was found in 1018 patients
(62%) and 1797 of 4914 (37%) arteries in this study. A larger area under the receiver-
operating characteristic curve for illness prediction using deep learning than for total
perfusion deficits. Myocardial perfusion imaging can be improved using deep learning
compared to existing clinical techniques.

In the study [8], several deep-learning algorithms were used to classify electrocardio-
gram (ECG) data into CAD, myocardial infarction, and congestive heart failure. In terms
of classification, CNNs and LSTMs tend to be the most effective architectures to use. This
study built and verified a 16-layer LSTM model using a 10-fold cross-validation procedure.
The accuracy of the classification was 98.5%. They claimed their algorithm might be used
in hospitals to identify and classify aberrant ECG patterns.

Author [9] proposed an enhanced DenseNet algorithm based on transfer learning
techniques for fundus medical imaging. Medical imaging data from the fundus has been
the subject of two separate experiments. A DenseNet model can be trained from scratch
or fine-tuned using transfer learning. Pre-trained models from a realistic image dataset to
fundus medical images are used to improve the model’s performance. Fundus medical
image categorization accuracy can be improved with this method, which is critical for
determining a patient’s medical condition.
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The study [10] developed and implemented a heterogeneous low-light image-enhancing
approach based on DenseNet generative adversarial network. Initially, a generative adver-
sarial network is implemented using the DenseNet framework. The generative adversarial
network is employed to learn the feature map from low-light to normal-light images.

To overcome the gradient vanishing problem in deep networks, the DenseNet con-
volutional neural network with dense connections combines ResNet and Highway’s
strengths [11,12]. As a result, all network layers can be directly connected through the
DenseNet. Each layer of the network is directly related to the next layer. It is important to
remember that each subsequent layer’s input is derived from the output of all preceding
layers. The weak information transmitted in the deep network is the primary cause of
the loss of gradients [13]. A more efficient way to reduce gradient disappearance and
improve network convergence is to use the dense block design, in which each layer is
directly coupled to input and loss [14].

The authors [15] employed a bright-pass filter and logarithmic transformation to
improve the quality of an image. Simultaneous reflectance and illumination estimation
(SRIE) was given a weighted variational model by the authors [16] to deal with the issue
of overly enhanced dark areas. Authors [17] developed low light image enhancement by
illumination map estimation (LIME), which simply estimates the illumination component.
The reflection component of the image was calculated using local consistency and structural
perception restrictions, and the output result was based on this calculation.

The study [18] used the Doppler signal and a neural network to gain the best possible
CAD diagnosis. By combining the exercise test data with a support vector machine (SVM),
the authors [19] achieved an accuracy of 81.46% in the diagnosis of coronary artery disease
(CAD). By employing multiple neural networks, authors [20] achieved an accuracy of
89.01% for CAD diagnosis using the Cleveland dataset [21]. It is possible to forecast artery
stenosis disease using various feature selection approaches, including CBA, filter, genetic
algorithm, wrapper, and numerical and nominal attribute selection. Also, Ref. [22] uses a
new feature creation method to diagnose CAD.

Inception-v3 [24] is an enhanced version of GoogleNet and is applied in medical
image analysis. It categorizes knee images by training support vector machines using deep
feature extraction from CaffeNets. Adults’ retinal fundus pictures were analyzed using a
fine-tuned network to detect diabetic retinopathy [24]. Classification results utilizing fine-
tuned networks compete with human expert performance [25]. Recent research has focused
on applying deep learning techniques to segment retinal optical coherence tomography
(OCT) images [26–28]. Combining CNN and graph search methods, OCT retinal images are
segmented. Layer border classification probabilities are used in the Cifar-CNN architecture
to partition the graph search layer [29,30].

Authors [31] proposed a deep learning technique to quantify and segment intrare-
gional cystoid fluid using fuzzy CNN. Geographic atrophy (GA) segmentation using a
deep network is the subject of another study [33]. An automated CAD detector was devel-
oped using a CNN with encoder–decoder architecture [34]. In another study, researchers
employed GoogleNet to identify retinal diseases in OCT pictures [35].

Several grayscale features collected from echocardiogram pictures of regular and CAD
participants were proposed in [36] as a computer-aided diagnosis approach. In [24], ECG
data from routine and CAD participants was evaluated for HR signals. Various methods
were used to examine the heart rate data, including non-linear analysis, frequency, and
time-domain. They found that CAD participants’ heart rate signals were less erratic than
normal subjects. The recent CNN models are widely applied in CAD diagnostics [36].
In [37], the authors proposed a model for identifying cardiovascular diseases and obtained
a prediction accuracy of 96.75%. Ali Md Mamun et al. [38] argued that a simple supervised
ML algorithm can predict heart disease with high accuracy. The authors [39] developed a
biomedical electrocardiogram (ECG)-based ML technique for detecting heart disease. Jiely
Yan et al. [40], proposed a model to predict ion channel peptide from the images. Table 1
outlines the features and limitations of the existing CNN models.
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Table 1. Features of the existing literature.

Authors Methodology Features Limitations

Lin. S et al. [1]
Conducted a cross-sectional
study of CAD patients for

validating CNN-based CAD.

The findings showed that the
deep learning algorithm could
support physicians in detecting

cardiovascular diseases.

The findings are based on the
specific location and lack of a

benchmark dataset for
evaluating the CNN model.

Jingsi Z et al. [10] Proposed a low-light image
enhancement method.

The DenseNet framework has
reduced the noise in the images.

Lack of discussion of the
application of bright images.

Abdar M et al. [13]
Integrated genetic algorithm
and support vector machine

for feature extraction.

The outcome showed that
N2Genetic-nuSVM showed a

better accuracy.

Lack of comparison with the
recent techniques.

Wolterink J.M. et al. [20]

A 3D-dilated CNN is
developed to predict the
radius of an artery from

CCTA images.

Results show that the method
extracted 92% of clinically

relevant coronary
artery segments.

Trained with a small dataset.
The outcome may be with the

size of the dataset.

Papandrianos N. and
Papageorgiou E. [21]

Applied CNN model for CAD
detection from images.

The method can differentiate the
infarction from healthy patients.

The classification accuracy is
better. However, there is a

lack of benchmark
evaluation techniques.

Nishi et al. [27]
Developed an image

segmentation technique for
predicting CAD.

The outcome highlighted that
the method could produce

effective results.

The performance is based on a
single dataset.

Cho et al. [30]

Proposed an intravascular
ultrasound-based algorithm

for classifying attenuation and
calcified plaques.

The results outlined that the
model achieved 98% accuracy.

The model performance is
based on the dataset of

598 patients.

Morris S.A. and
Lopez K.N. [31]

Developed a detection model
for congenital heart disease in

the fetus.

The outcome showed that the
model’s performance is better

than the recent models.

The authors evaluated the
model using 1326 fetal

echocardiograms.

Cheung et al. [36]
Proposed an image

segmentation approach using
Unet model.

The model achieved 91,320% of
dice similarity coefficient.

The lack of discussion of the
image quality used in

the study.

Bhanu Prakash Doppala
et al. [37]

Developed an ensemble
model for cardiovascular

disease detection.

The model achieves an accuracy
of 96.75%.

The model is based on the
voting mechanisms, which

may lead to a larger
computation time.

Ali Md Mamun et al. [38] Proposed an ML algorithm for
heart disease detection.

The outcome shows that the
model has achieved a 100% of

accuracy with the
Kaggle dataset.

There is a lack of
experimentation with the

model with different datasets.

Khanna, Ashish et al. [39]
Developed an ML technique
for heart disease detection

from ECG.

Employed regression model to
predict heart disease from ECG.

Limited discussion on the
model uncertainty.

Yan, Jielu et al. [40] Proposed an ML technique for
predicting ion channel peptides.

The outcome shows that the
model achieves high

accurate results.
The dataset is relatively small.

3. Research Methodology

According to the research questions, the researchers developed a CNN architecture
to predict positive CAD patients from CT images. Figure 1 presents the proposed archi-
tecture. Initially, the images are processed to extract the features. The CNN model treats
the extracted features, generating output through an activation function. The following
part of this section provides the information related to datasets, feature extraction, CNN
construction, and evaluation metrics.
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Figure 1. Proposed CNN network for CAD.

In this study, researchers employed two datasets of CT angiography images. The
details of the datasets are as follows:

Dataset 1 [4] contains coronary artery image sets of 500 patients. A number of 18 views
of the same straightened coronary artery are shown in each mosaic projection view (MPV).
The Training–Validation–Test picture sets have a 3/1/1 ratio (300/100/100) with 50%
normal and 50% sick cases for each patient in the subset. To improve modeling and dataset
balance, 2364 (i.e., 394 × 6) artery pictures were obtained from the 300 training instances.
Only 2304 images of the training dataset were augmented: 1. the standard component;
2. all the validation images; and 3. all the testing images. The balance was maintained
in the validation dataset by randomly selecting one artery per normal case (50 images)
and sick patient (50 images). Figure 2a,b outlines the CT images of positive and negative
CAD patients.

 
(a) (b) 

Figure 2. (a): Positive individual, (b): negative individual.

Dataset 2 [5] consists of CT angiography images of 200 patients. This dataset used
images from a multicenter registry of patients who had undergone clinically indicated coro-
nary computed tomography angiography (CCTA). The annotated ground truth included
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the ascending and descending aortas (PAA, DA), superior and inferior vena cavae (SVC,
IVC), pulmonary artery (PA), coronary sinus (CS), right ventricular wall (RVW), and left
atrial wall (LAW). Figure 3 shows the CT images of dataset_2. Table 2 outlines the de-
scription of the datasets. Both datasets contain CT images of CAD and Non-CAD patients.

 

Figure 3. Superior vena cava images of individuals.

Table 2. Description of datasets.

Dataset Number of Patients Number of Images Classification

1 500 2637 2

2 200 716 2

The study applies the following steps for identifying CAD using CNN architecture
from datasets:

Step 1: Preprocess images
The CCTA images are processed to fit the feature extraction phase. All images are

converted into 600 × 600 pixels. The image size suits the feature extraction process to
generate a reduced set of features without losing any valuable data.

Step 2: Feature extraction
The proposed study applies an enhanced features from accelerated segment test

(FAST) [6] algorithm for extracting features to support the pooling layer of CNN to produce
effective feature maps to answer RQ1. To reduce the processing time of the FAST algorithm,
researchers employed the enhanced FAST [5]. Figure 4 showcases the feature extracted
from a 4 × 4 image into a 2 × 2 image. In addition, it highlights that the actual image can
be reconstructed from a 2 × 2 image to a 4 × 4 image.

Figure 4. Process of feature extraction.

The extraction process is described as follows:
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Let image I of M1 × M2 pixels be divided into segments S1 × Sn. The number of
segments is N1 × N2, where N1 = M1/S1 and N2 = M2/Sn. The segments are represented
in Equation (1).

I =

⎡⎢⎣ Sd1,1 Sd1,2 . . . Sd1,Nn
...

...
...

SdN1,1 SdN1,2 . . . SdN1,Nn

⎤⎥⎦ (1)

where Sdx,y referred to the image segment in the x and y direction and is described in
Equation (2).

Sdx,y = I(i,j) (2)

where i and j represent the size of the image segment, Sdx,y.
Both Equations (3) and (4) describe the pixel values of image segments.

i = (y − 1)M2, (y − 1)M2 − 1, . . . , yM2 − 1 (3)

j = (x − 1)M1, (x − 1)M1 − 1, . . . , yM1 − 1 (4)

The transformation function ensures that the image or segment can be reconstructed
to its original form. It supports the proposed method to backtrack the CNN network to
fine-tune its performance. The transformation function for each segment is mentioned in
Equation (5) as follows:

ϕMdx,y = ZS1 Mdx,yZT
M2

(5)

where ϕMdx,y represents a part of an extracted feature from the image segment,
x = 1, . . . . . . , N1, y = 1, . . . . . . , Nn and T represents the transform matrix, ZM1 ∈ ZO

M1
,

O represents the order of the transformation. The segment can be reconstructed as in
Equation (6).

Sdx,y = ZT
S1

ϕSdx,yZSn (6)

Sequentially, the process must be repeated N1 × Nn times to extract a set of features
from the image. Thus, the transform co-efficient of all image segments can be integrated
using Equations (7)–(11).

ϕ =

⎡⎢⎣ ZS1 Sd1,1ZT
Sn

. . . ZS1 Sd1,Nn ZT
S2

... . . .
...

ZS1 SdN1,1ZT
Sn

. . . ZS1 SdN1,Nn ZT
S2

⎤⎥⎦ (7)

Equations (8) and (9) denote the features FS1 and FSn , which represent the features that
can be constructed using Zs1 & Zsn, as follows:

FS1 =

⎡⎢⎢⎢⎢⎣
ZS1 O . . . O

O ZS1 . . .
...

. . .
...

... O
O . . . O ZS1

⎤⎥⎥⎥⎥⎦ order of N1 (8)

FSn =

⎡⎢⎢⎢⎢⎣
ZSn O . . . O

O ZSn . . .
...

. . .
... ZSn O

O . . . O ZSn

⎤⎥⎥⎥⎥⎦ order of Nn (9)

Equation (10) shows a sample set of features, ∂nm.

∑
x∈X

(
FS(n,x) ∗ FS(m,x)

)
= ∂nm (10)
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Equation (11) defines the reconstruction of the image using the extracted features.

I = FT
S1

ϕ FSn (11)

Step 3: Processing features
The extracted features FS1 . . . . . . FSn are treated as an input for the proposed CNN.

DenseNet ensures the transmission of information between the layers. One of the features
of the DenseNet is the direct link between each layer. Thus, a back propagation method can
be implemented in DenseNet. The feature extraction process reduces the number of blocks
in DenseNet and improves its performance. Therefore, the modified DenseNet contains
a smaller number of blocks and parameters. Research studies highlight that the complex
network requires a greater number of samples. This study applies DenseNet-161 (K = 48),
which includes three block modules. Figure 5 illustrates the proposed DenseNet model.
Most CNN models depend on the features to make a decision. Thus, the feature extraction
process is crucial in disease detection techniques. The minimal set of features reduces the
training time of the CNN model. In addition, the features should support CNN to generate
effective results. Researchers applied an edge-detection technique.

 

Figure 5. Fine-tuned DenseNet Architecture.

Step 3.1: Pooling layer
Two-dimensional filters are used to integrate the features in the area covered by the

two-dimensional filter as it slides over each feature map channel. The dimension of the
pooling layer output is in Equation (12):

(Ih − f + 1)/l ∗ (Iw − f + 1)/s ∗ Ic (12)

where Ih—the height of the feature map, Iw—width of the feature map, Ic—number of
channels in the map, f —filter size, l—stride length

Step 3.2: Generating output
Transfer learning is adopted to alter the architecture of DenseNet. Leaky ReLu is

used as the activation function. The existing CNN includes are employed. GITHUB
portal (https://github.com/titu1994/DenseNet accessed on 7 December 2021) is utilized to
implement the existing CNN architecture. The studies [10,18,21] are employed to evaluate
the performance of the proposed CNN (PCNN) model. In addition, CNN models, including
GoogleNet and Inception V3, are used for performance evaluation. The following form
of the sigmoid function is applied for implementing the modified DenseNet. Figure 6
represents the proposed feature extraction for pre-processing the CT images and extracting
the valuable features. Furthermore, Figure 7 highlights the proposed CNN technique for
predicting CAD from the CT images.
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Figure 6. Proposed feature extraction algorithm.

Figure 7. Proposed CNN model.

The study constructs a feed-forward back propagation network. Thus, Leaky ReLu is
employed in the study as an activation function in Equation (13) to produce an outcome.

f (x) = max(0, x) (13)

Leaky ReLu considers negative value as a minimal linear component of X. The defini-
tion of Leaky ReLu is defined as:

Def Leaky_function(I)
If feature(I) < 0:

return 0.01 * f(I)
Else:

return f(I)
Step 4: Evaluation metrics
The study applies the benchmark evaluation metrics, including accuracy, recall, preci-

sion, and F-measure, to provide a solution for RQ2. The metrics are computed as shown in
Equations (14)–(18):

True positive (TPCI) = predicting a valid positive CAD patient from CT images (CI).
True negative (TNCI) = predicting a valid negative CAD patient from CI.
False positive (FPCI) = predicting a negative CAD patient as positive from CI.
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False negative (FNCI) = predicting a positive CAD patient as negative from CI.

Recall=
TPCI

TPCI + FNCI
(14)

Precision =
TPCI

TPCI + FPCI
(15)

F − measure =
2∗Recall ∗ Precision
Recall + Precision

(16)

Accuracy =
TPCI + TNCI

TPCI + TNCI + FPCI + FNCI
(17)

Specificity =
TNCI

TNCI + FPCI
(18)

In addition, Matthews correlation coefficient (MCC) (Equation (19)) and Cohen’s
Kappa (K) (Equation (20)) are employed to ensure the performance of the proposed method.

MCC =
(TPCI∗TNCI)− (FPCI∗FNCI)√

(TPCI + FPCI) ∗ (TPCI + FNCI) ∗ (TNCI + FPCI) ∗ (TNCI + FNCI)
(19)

The minimum MCC is −1, which indicates a wrong prediction, whereas the maximum
MCC is +1, which denotes a perfect prediction.

K =
2 ∗ ((TPCI∗TNCI)− (FPCI∗FNCI))

(TPCI + FPCI) ∗ (FPCI + TNCI) ∗ (TPCI + FNCI) ∗ (FNCI + TNCI)
(20)

MCC and K are class symmetric, reflecting the ML technologies’ classification accu-
racy. Finally, CNN technique computational complexity is presented to find the time and
space complexities.

In order to ensure the predictive uncertainty of the proposed CNN (PCNN), the
researchers applied standard deviation (SD) and entropy (E). The mathematical expression
of the confidence interval (CI) is defined in Equation (21).

CI = a ± z
σ√
N

(21)

where a represents the mean of the predictive distribution of an image a(i), N is the total
number of predictions, and z is the critical value of the distribution. The researchers
computed CI at 95% confidence. Thus, the value of Z is 1.96.

Finally, the researchers followed E of the prediction to evaluate the uncertainty of the
proposed model. It is calculated over the mean predictive distribution. The mathematical
expression of E is defined in Equation (22).

E(P(y∗|a∗)= −
C

∑
i=1

P(y∗|a∗) log(P(y∗|a∗) (22)

4. Experiment and Results

The PCNN is implemented in Python with Windows 10 Professional platform. The
existing algorithms are developed using the GITHUB portal. Both datasets are divided into
training and testing sets. Accordingly, the CNN architectures are trained with a relevant
training set of dataset_1 and dataset_2.

To evaluate the performance of PCNN, the dataset is utilized using 5-fold cross-
validation. Statistical tests, including SD, CI using binary class classification, and E are
applied accordingly on the dataset_1 and dataset_2. Table 3 presents the implementation
of PCNN during the cross-validation using daaset_1. It highlights that PCNN achieves
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more than 98% accuracy, precision, recall, F-measure, and specificity, respectively. Likewise,
Table 4 denotes the cross-validation outcome for dataset_2.

Table 3. Performance analysis of PCNN model for dataset_1.

Fold(s) Accuracy Precision Recall F-Measure Specificity

1 98.6 97.4 98.4 97.9 98.5
2 98.2 98.2 97.9 98.05 97.8
3 99.1 97.7 98.3 98 98.8
4 99.3 98.6 98.7 98.65 98.8
5 99.6 99.1 99.3 99.2 99.6

Average 98.96 98.2 98.52 98.36 98.7

Table 4. Performance analysis of PCNN model for dataset_2.

Fold(s) Accuracy Precision Recall F-Measure Specificity

1 98.4 97.8 98.2 98 98.1
2 97.8 99.3 99.1 99.2 99.3
3 99.1 98.7 98.7 98.7 98.6
4 98.9 98.2 98.6 98.4 98.2
5 99.1 99.3 98.7 99 98.9

Average 98.66 98.66 98.66 98.66 98.62

4.1. Uncertainty Estimation

In this study, the researchers apply Monte Carlo dropout (MC dropout) to compute the
model uncertainty. The dropout value ensures that the predictive distribution is not diverse,
and CI is insignificant. The researchers experimentally found that the MC dropout value
of 0.379 is optimal for this model. The predictive distribution is obtained by evaluating
PCNN 200 times for each image. Furthermore, model uncertainty is computed using CI,
SD, and E.

Tables 5 and 6 highlight the model uncertainty for dataset_1 and dataset_2, respectively.
The proposed model achieved a low entropy and SD for both datasets. It can be observed
in Tables 5 and 6 that the average CI of [98.55–98.61] and [98.45–98.51] for dataset_1 and
dataset_2 indicate the proposed model has high confidence and minimum variance in
its outcome.

Table 5. Model uncertainty analysis outcome for dataset_1.

Fold(s) CI (%) @95% SD Entropy

1 [97.92–97.99] 0.0012 0.0049
2 [98.12–98.19] 0.0019 0.0329
3 [98.79–98.87] 0.0021 0.0319
4 [98.84–98.91] 0.0020 0.0281
5 [99.08–99.11] 0.0017 0.0091

Average [98.55–98.61] 0.0017 0.0213

Table 6. Model uncertainty analysis outcome for dataset_1.

Fold(s) CI (%) @95% SD Entropy

1 [98.11–98.18] 0.0021 0.0041
2 [97.41–97.49] 0.0018 0.0312
3 [98.42–98.46] 0.0014 0.0187
4 [99.12–99.17] 0.0011 0.0093
5 [99.21–99.26] 0.0009 0.0089

Average [98.45–98.51] 0.0014 0.0144
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Table 7 highlights the performance measures of dataset_1. Among the CNN architec-
tures, PCNN scored a superior accuracy, precision, recall, and specificity of 98.96, 98.2, 98.52,
98.36, and 98.7, respectively. The performance of the Banerjee model [18] is lower than the
other CNN architectures. PCNN performs better than the existing CNN models for CAD
prediction. Dataset_1 contains a greater number of images. The mapping of features made
the CNN architectures generate more features. However, the feature extraction process of
the proposed method enabled PCNN to produce a smaller number of features and maintain
a better performance than the existing architectures. Figure 8 represents the comparative
analysis outcome of CNN. It is evident from Figure 8 that the performance of PCNN is
higher than the current architectures.

Table 7. Comparative analysis outcome of CNN model for dataset_1.

Methods/
Measures

Accuracy Precision Recall F-Measure Specificity

Jingsi model [10] 96.7 96.2 96.7 96.45 97.65
GoogleNet 96.9 97.1 97.4 97.25 96.5

Inception V3 97.8 96.7 96.1 96.4 96.2
Banerjee model [18] 98.1 97.3 97.5 97.4 97.57

Papandrianos model [21] 98.3 97.6 97.1 97.35 97.69
PCNN 98.96 98.2 98.52 98.36 98.7

Figure 8. Comparative analysis outcome: Dataset_1.

Likewise, Table 8 outlines the performance of CNN architectures with Dataset_2. The
value of accuracy, precision, recall, F-measure, and specificity is 98.96, 98.2, 98.52, 98.36,
and 98.7, accordingly. However, GoogleNet has scored low accuracy, precision, recall,
F-measure, and specificity of 97.1, 96.7, 97.1, 96.9, and 96.4, respectively. The absence of
temporary memory is one of the limitations of the Banerjee model that reduces its predicting
performance. In addition, the outcome of Tables 5 and 6 suggest that the performance of
PCNN is higher than the existing CNN architectures. Figure 9 shows the relevant graph
of Table 6.
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Table 8. Comparative analysis outcome of CNN model for dataset_2.

Methods/
Measures

Accuracy Precision Recall F-Measure Specificity

Jingsi model 96.3 95.8 96.7 96.25 97.2
GoogleNet 97.1 96.7 97.1 96.9 96.4

Inception V3 97.6 97.2 96.8 97 97.3
Banerjee model 98.1 97.6 97.5 97.55 97.1

Papandrianos model 98.3 98.2 97.9 98.05 97.8
PCNN 98.96 98.2 98.52 98.36 98.7

Figure 9. Comparative analysis outcome: Dataset_1.

In addition to the initial comparative analysis, the researcher applied MCC and Kappa
to evaluate the performance of PCNN. Figures 10 and 11 reveal that PCNN achieved a
superior MCC and K score compared to the existing models.

Figure 10. MCC and Kappa: Dataset_1.

42



Diagnostics 2022, 12, 2073

Figure 11. MCC and Kappa: Dataset_2.

Table 9 outlines the memory size and computing time during the training phase.
PCNN consumes 121.45 MB and 118.45 MB for Dataset_1 and Dataset_2, accordingly. The
computing time of PCNN is 99.32 min and 99.21 min, respectively. The computing time
of PCNN is superior to the existing CNN with less memory. Figure 12 highlights CNN’s
space and computation time for both Dataset_1 and Dataset_2.

Table 9. Memory sizes of CNN for Dataset_1 and Dataset_2.

Methods/Datasets Dataset_1 (MB)
Dataset_2

(MB)
Dataset_1

Time (Minutes)
Dataset_2

Time (Minutes)

Jingsi model 279.21 189.32 105.26 101.25
GoogleNet 175.69 159.27 102.26 101.36

Inception V3 138.14 142.58 134.56 129.71
Banerjee model 128.54 143.96 116.32 107.25

Papandrianos model 129.65 137.89 101.45 103.59
PCNN 119.25 124.26 100.56 98.89

Figure 12. Computation time of CNN models.

Table 10 outlines the error rate of the CNN architectures during the testing phase. The
error rate of PCNN is 15.1 and 13.9 for Dataset_1 and Dataset_2, respectively. Nevertheless,
Jingsi model scores 20.5 and 19.6, which is higher than other CNN models. The outcome
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emphasizes the efficiency of the feature extraction process of PCNN. Figure 13 illustrates
the error rate of CNN models.

Table 10. Error rates of CNN for Dataset_1 and Dataset_2.

Methods/Measures
Dataset_1

(%)
Dataset_2

(%)

Jingsi model 20.5 19.6
GoogleNet 19.4 17.3

Inception V3 18.94 17.1
Banerjee model 17.3 16.4

Papandrianos model 16.9 15.7
PCNN 15.1 13.9

Figure 13. Error rates of CNN models.

Figure 14 represents the receiver operating characteristic (ROC) and precision–recall
(PR) curve for dataset_1 during the testing phase. It shows that PCNN achieves a better
Area under the ROC curve (AUC) for CAD and No CAD classification, respectively.

Figure 14. Receiver operating characteristic (ROC) and precision–recall curve: dataset_1.

Similarly, Figure 15 reflects the ROC and PR curve for dataset_2. It outlines that PCNN
achieves a better ROC AUC score of 0.93. Furthermore, the AUC score of the PR curve
(0.91) indicates that PCNN predicts CAD better than the existing models.
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Figure 15. Receiver operating characteristic (ROC) and precision–recall curve: dataset_2.

Table 11 highlights the computational complexities of CNN models for Dataset_1. It
is evident from the outcome that PCNN requires a smaller number of parameters (4.3 M),
learning rate (1 × 10−4), number of flops (563 M), and computation time (1.92 s).

Table 11. Computational complexities of CNN for Dataset_1.

Methods/Measures
Number of
Parameters

Learning
Rate

Number of
Flops

Testing Time
(s)

Jingsi model 5.1 M 1 × 10−3 565 M 2.5
GoogleNet 6.7 M 1 × 10−3 624 M 2.36

Inception V3 7.4 M 1 × 10−4 594 M 2.7
Banerjee model 14.6 M 1 × 10−3 1421 M 2.3

Papandrianos model 11.2 M 1 × 10−2 1530 M 2.1
PCNN 4.3 M 1 × 10−4 563 M 1.92

Likewise, Table 12 reflects the outcome for Dataset_2. It shows that PCNN generates
an output with fewer parameters, flops, and learning rates than the existing CNN models.

Table 12. Computational complexities of CNN for Dataset_2.

Methods/Measures
Number of
Parameters

Learning
Rate

Number of
Flops

Computation Time
(s)

Jingsi model 4.3 M 1 × 10−3 436 M 1.91
GoogleNet 5.6 M 1 × 10−3 512 M 1.72

Inception V3 6.3 M 1 × 10−5 402 M 1.86
Banerjee model 9.4 M 1 × 10−4 921 M 1.98

Papandrianos model 10.3 M 1 × 10−3 430 M 1.36
PCNN 3.7 M 1 × 10−5 403 M 1.15

4.2. Clinical Insights and Limitations

PCNN generates outcomes that are superior to the existing CNN models. It can be
employed in real-time applications to support physicians in diagnosing CAD. In addition,
it can be integrated with Internet of Things devices to support healthcare centers in identi-
fying CAD at an earlier stage. The feature extraction and the pooling layer of PCNN can
detect CAD from complex CT images. The dropout layer reduces the neurons to avoid
limitations such as overfitting and underfitting. PCNN applies loss function to compute
the kernels and weights of the model. It optimizes the model’s performance and generates
a meaningful outcome.

PCNN produces an effective result and supports CAD diagnosing process. However,
a few limitations need to be addressed in future studies. The multiple layers of CNN
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increase the training time and require a better graphical processing unit. The imbalanced
dataset may reduce the performance of the proposed method. The researcher introduced
the concept of temporary storage to hold the intermediate results.

Nonetheless, there is a possibility of losing information due to multiple features. The
lack of co-ordinate frames may lead to the adversarial visualization of images. The feature
selection process can improve the images’ internal representation. Finally, the structure of
PCNN requires a considerable amount of data to produce an exciting result. To maintain
the better performance, data pre-processing is necessary to handle image rotation and
scaling tasks.

5. Conclusions

This study developed a CNN model for predicting CAD from CT images. The existing
CNN architectures require a high-end hardware configuration for processing complex
images. A feature extraction technique is employed to support the proposed CNN model.
The proposed method modifies the existing DenseNet architecture in order to implement
a feed-forward back-propagation network. Two benchmark datasets are used for the
performance evaluation. The experiment analysis’s outcome highlights the superior per-
formance of the proposed CNN model in terms of accuracy, precision, recall, F-measure,
and specificity. Moreover, the proposed CNN’s memory consumption and computation
time during the training phase are lower than the existing CNNs. In addition, ROC and
PR curve analysis suggest that the proposed method can predict CAD with a lower false
positive rate with higher prediction accuracy. Thus, the proposed method can support the
physician in detecting and preventing CAD patients. In the future, the proposed model can
be implemented to predict CAD from electronic health records.
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Abstract: Chest X-ray (CXR) is widely used to diagnose conditions affecting the chest, its contents,
and its nearby structures. In this study, we used a private data set containing 1630 CXR images
with disease labels; most of the images were disease-free, but the others contained multiple sites of
abnormalities. Here, we used deep convolutional neural network (CNN) models to extract feature
representations and to identify possible diseases in these images. We also used transfer learning
combined with large open-source image data sets to resolve the problems of insufficient training
data and optimize the classification model. The effects of different approaches of reusing pretrained
weights (model finetuning and layer transfer), source data sets of different sizes and similarity levels
to the target data (ImageNet, ChestX-ray, and CheXpert), methods integrating source data sets into
transfer learning (initiating, concatenating, and co-training), and backbone CNN models (ResNet50
and DenseNet121) on transfer learning were also assessed. The results demonstrated that transfer
learning applied with the model finetuning approach typically afforded better prediction models.
When only one source data set was adopted, ChestX-ray performed better than CheXpert; however,
after ImageNet initials were attached, CheXpert performed better. ResNet50 performed better in
initiating transfer learning, whereas DenseNet121 performed better in concatenating and co-training
transfer learning. Transfer learning with multiple source data sets was preferable to that with a source
data set. Overall, transfer learning can further enhance prediction capabilities and reduce computing
costs for CXR images.

Keywords: convolutional neural network; deep learning; source data set; supervised classification

1. Introduction

A chest X-ray (CXR), which is generated by exposing the chest to a small dose of
ionizing radiation, is a projection radiograph of the chest used for imaging subtle lesions
and the density of human tissues. It is commonly used for visualizing the condition of the
thoracic cage, chest cavity, lung tissue, mediastinum, and heart. It can thus facilitate the
diagnosis of common thorax diseases, including aortic sclerosis or calcification, arterial
curvature, abnormal lung fields, anomalous lung patterns, spinal lesions, intercostal pleural
thickening, and cardiac hypertrophy.

Computer vision technology and hardware computing capabilities have progressed
considerably. Considering the overload of medical resources and the high demand for
medical image analysis, the development of computer-aided diagnosis systems with a high
diagnostic efficiency and accuracy is warranted. CXR images containing large amounts
of physiological data can aid data-hungry deep learning paradigms in the construction
of valuable intelligent auxiliary systems. Deep learning is a branch of machine learning;
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through linear or non-linear transform from multiple layers, deep learning can automati-
cally extract sufficient and representative features from a data set. In traditional machine
learning, features are usually extracted using handcrafted rules, which are created by
relevant domain experts. After the data characteristics are understood, useful and effective
features can be produced. However, the ability to automatically extract features from deep
learning can reduce the time spent by experts in feature engineering. Therefore, deep
learning may afford an excellent performance in applications where machines may have
failed in the past.

Several studies have used deep learning for CXR analysis, particularly for image clas-
sification. Most of these studies have trained deep learning models by using well-designed
convolutional neural network (CNN) architectures such as VGG [1], GoogleNet [2], ResNet [3],
and DenseNet [4]. CNN architecture depth, data augmentation, input preprocessing meth-
ods, image size, and pretraining schemes can affect the performance of a deep learning
model [5]. No standardized design methodology for improving deep learning model perfor-
mance has been reported thus far. Most of the relevant studies have focused on comparing
the performance of multiple design methodologies for a specific task, rather than reporting
novel methodologies [6–8]. Some studies have achieved methodological novelty by utiliz-
ing methods that can aid in improving model performance. For example, Hu et al. [9] and
Wu et al. [10] used an extreme learning machine (ELM) to replace the conventional fully
connected layer in a deep CNN for real-time analysis and applied a Chimp optimization
algorithm or sine-cosine algorithm to ameliorate the ELM’s ill-conditioning and nonop-
timal problems. Wang et al. [11] trained CNN models by using the whale optimization
algorithm, which can resolve difficulties related to requiring a considerable amount of
manual parameter tuning and parallelizing the training process of traditional gradient
descent-based approaches. Khishe et al. [12] proposed an efficient biogeography-based
optimization approach for automatically finetuning model hyperparameters (e.g., number
of output channels, convolution kernel size, layer type, training algorithm’s learning rate,
epoch, and batch size), which are typically selected manually. CXR images are commonly
classified as normal or abnormal in the literature [7]. Although CXR can be used to detect
multiple diseases of the thorax, few methods have been proposed for classifying multiple
disease labels [13].

Applying deep learning methods to CXR image analysis may have promising appli-
cations. However, the advancement of automatic image analysis in hindered by several
underlying limitations. The main limitation is the lack of large-scale CXR datasets. Al-
though the number of parameters required for deep learning models is considerably large,
CXR image training data are limited; this can cause model overfitting. Compared with
ordinary images, collecting and labeling CXR images can be difficult and cost intensive.
CXR images generated using various instruments with different settings and in different
environments cannot be naively analyzed together because this can lead to various errors.
Transfer learning [14], which uses the knowledge learned from one task as a starting point
for related tasks, can aid in making the best use of different CXR databases. Transfer
learning mainly involves using a large amount of open-source data to make up for target
data shortages so as to achieve improved performance in model fitting.

In this study, we used one private target data set—1630 chest radiographs provided
by the E-Da Hospital, I-Shou University, Taiwan—and three open-source datasets—the
ImageNet dataset [15], ChestX-ray dataset [16,17] (with >100,000 chest radiograph images
provided by the National Institutes of Health (NIH)), and CheXpert dataset [18] (collected
by the Stanford ML Group, comprising nearly 220,000 chest radiographs). The images
from the private target data set were labeled by radiology specialists as either being
disease-free or containing multiple sites of abnormalities—representing a typical multilabel
classification problem. Although ImageNet is sufficiently large for deep learning, most of
its 14 million images were dissimilar to those in our private data set; therefore, this data set
may not have been able to provide accurate feature representations to classify images in our

50



Diagnostics 2022, 12, 1457

private data set. ChestX-ray and CheXpert, although modest in size, are more similar to our
private data set, and thus, they may be able to support target data training more efficiently.

Transfer learning has been widely applied in CXR deep learning analysis. Most
studies have first trained deep CNN models on the large ImageNet dataset for natural
image classification, followed by the use of trained weights for initialization to retrain all
layers or only retrain the final (fully connected) layer for target CXR image classification [8].
The performance of transfer learning might be affected by several factors such as the sizes
of the source and target data set, similarity between these data sets, retraining of all or
partial layers in the target task, and CNN architecture [19]. For natural image classification,
Azizpour et al. [19] and Cui et al. [20] have reported best practices on how these factors
should be set in generic and domain-specific tasks, respectively. However, only a few
studies have focused on the factors that affect the transferability of medical image analysis
approaches. Tajbakhsh et al. [21] considered four different medical imaging applications
and demonstrated that CNNs pretrained on ImageNet performed better and were more
robust to the size of the target training data than the CNNs trained from scratch. Gozes and
Greenspan [22] pretrained their model on the ChestX-ray data set and demonstrated that
the pretrained weights enabled the model to exhibit improved predictions on small-scale
CXR data sets compared with the performance of a model pretrained on ImageNet.

To maximize the performance of transfer learning for CXR image classification, the
effects of different transfer learning characteristics in medical image analysis must be
systematically investigated. Because of the substantial differences between natural and
medical images, we could not apply the knowledge learned for natural images in previ-
ous studies [19,20] to our current CXR analysis. Accordingly, our study focused on the
multilabel classification of CXR images, which is a crucial topic that warrants research.
We thoroughly investigated the aforementioned transferability factors and included the
ImageNet, ChestX-ray, and CheXpert data sets as the source data. Previous studies have
typically used one type of source data at a time for transfer learning. In this study, we de-
veloped new approaches for integrating different source data sets practically to eventually
obtain novel powerful source data sets. Our results may aid in devising best practices for
the efficient use of different types of data sets to alleviate the insufficiency of training data
and enhance the performance of deep learning models in the medical field.

2. Materials

The target data set analyzed in this study contained the CXR images from the E-Da
Hospital, I-Shou University, Taiwan. A deep learning model was trained to classify these
images as being disease-free or containing multiple sites of abnormalities. We selected three
source datasets with different sizes to pretrain our deep learning model and to improve
its performance for the target data. Of all our source data sets included here, ImageNet
contains the largest amount of data, followed by CheXpert and then ChestX-ray. Although
ImageNet is the largest in size, its data had less similarity to the target data than the other
two data sets had. Table 1 lists the basic characteristics of the data sets used.

Table 1. Characteristics of the included data sets.

Category Name Label Category Size Feature

Source data ImageNet 20,000 + 14 million + Large and diverse
Source data CheXpert 14 1 224,316 Similar to the target data
Source data ChestX-ray 14 2 112,010 4 Similar to the target data
Target data E-Da chest X-ray 8 3 1630 Small but important

1 Thirteen common thoracic disease labels and a “no finding” label (indicating the absence of any disease).
2 Thirteen disease labels and a normal label. 3 Seven disease labels and a normal label. 4 One hundred and ten
images labeled as “hernia” in the original dataset were discarded in this analysis due to the small sample size.
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2.1. Target Data Set

The target data set contained CXR images that were collected from patients who
received a CXR between January 2008 and December 2018; the images were stored in the
DICOM (Digital Imaging and Communications in Medicine) format. These images were
retrospectively extracted from the archiving and communication system (PACS) of E-Da
Hospital. Patients’ gender, age, and diagnostic reports from radiology specialists were also
provided. Images were excluded if their quality and the corresponding interpretation of
diagnostic reports were unclear. Images of minors (aged < 18 years) were also excluded
from this study. This clinical study was approved by the Institutional Review Board of
E-Da Hospital. All patients signed written informed consent before participating.

The image size ranged between 1824 and 2688 pixels in length and 1536 and 2680 pixels
in width. The image resolution was 0.16 mm per pixel. When we experimentally analyzed
images resized at 1024 × 1024, the results were nonsignificant, and the process was cost
intensive. Therefore, we resized all images to 512 × 512 pixels for analysis.

We first removed duplicate and outlier images. We also discarded five images uniquely
labeled as “heart pacemaker placement” due to their inconsistent disease property. The
analyzed data set comprised 1630 images with 1 normal label and 17 diseases labels, which
had been integrated into 8 categories (including normal) with guidance from physicians. Of
these images, 1485 had a single label and 145 had multiple labels. Table 2 lists the numbers
of images that contained certain labels in the data set.

Table 2. Numbers and labels of images in the target data set.

Category Sample Size Subcategory Sample Size

normal 1212 normal 1212

aortic sclerosis/calcification 90 aortic arch atherosclerotic plaque 90

arterial curvature 93 tortuous aorta/thoracic aortic ectasia 93

abnormal lung fields 33

shadows of pulmonary nodules 13

consolidations or lung cavities in the upper lobes 5

pulmonary fibrosis 15

increased lung patterns 153
atelectasis/focal consolidation 109

enlarged hilar shadow 44

spinal lesions 148
degenerative joint disease of the thoracic spine 75

scoliosis 73

cardiomegaly 41 cardiomegaly 41

intercostal pleural thickening 36 intercostal pleural thickening 36

2.2. Source Data Sets
2.2.1. ImageNet

ImageNet is a large visual database designed for visual object recognition. It contains
more than 14 million images that have been hand-labeled to indicate their object category, of
which there are >20,000. The data set size is approximately 1 TB. The Python package Keras
provides the pretrained weights for various networks, which eliminates the requirement to
training them from scratch.

2.2.2. CheXpert

CheXpert is a large CXR image data set collected by the Stanford ML Group; it
comprises 224,316 chest radiographs labeled to indicate the presence of 13 common thoracic
diseases or labeled “no finding” to indicate the absence of all diseases [18]. Natural
language processing (NLP) is used to extract observations from radiology reports, and
this extracted information serves as the basis of labeling. The training labels in the data
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set for each category are 0 (negative), 1 (positive), or u (uncertain). Different approaches
for using uncertainty labels during model training may lead to differences in network
performance. In this study, we followed the results from the original paper for dealing
with the uncertainty label in relation to five diseases: atelectasis, edema, pleural effusion,
cardiomegaly, and consolidation. In other words, we reconstructed a five-dimensional label
vector for the five aforementioned diseases—where u was replaced with 1 for the first three
diseases and with 0 for the final two—and then we applied it as the label for five-class
multilabel classification. In other words, we transformed the pretraining task into a task for
classifying whether the images had these five diseases.

In this study, we resized the images to 512 × 512 pixels to save memory. Moreover,
some of the images from the data set were gray-scale images (where they only had one
channel), whereas the other images had four channels. To feed them into the available
pretrained models through a three-channel input, we replicated the one-channel images
three times but removed the fourth channel of the four-channel images.

2.2.3. ChestX-ray

ChestX-ray is an open-source data set compiled by the National Institutes of Health;
it comprises 112,120 chest radiographs with 1 normal label and 14 disease labels [16,17].
Similar to CheXpert, ChestX-ray uses NLP for labeling, but it does not have an uncertainty
label. We stacked and removed the channels of the images to fit them into the available
pretrained networks as we did for CheXpert. We also resized the original images to
512 × 512 pixels for fast processing and excluded the disease label “hernia” (and thus
deleted 110 images) from the analysis because its sample size was relatively small.

3. Methods

This analysis aimed to predict common thorax diseases in patients through their
CXR images. The images were labeled as being disease-free or containing multiple
sites of abnormalities, representing a typical multilabel classification problem. Deep
learning architectures were used to automatically extract features and build a classifier,
and transfer learning was conducted to combine information from different datasets to
improve model performance. We trained deep learning models using the well-designed
convolutional neural network (CNN) architectures ResNet50 [3] and DenseNet121 [4].
Implementing transfer learning in the CNN involved reusing the first several layers of
the network for classifying images in the open-source data sets ImageNet, CheXpert,
and ChestX-ray (the source task). Pretrained weights from these layers served as the
starting points for classifying the CXR images from E-Da Hospital (the target task). By
combining three source data sets in various manners, we obtained several different sets
of pretrained weights. To transfer the pretrained weights to the target task, we either
used the pretrained weights as the initial values and retrained the model from the scratch
or fixed the weights of some early layers at the corresponding pretrained weights and
reconstructed the others.

Image augmentation techniques were applied to artificially create variations in the
existing images; this expanded the training data set to represent a comprehensive set of
possible images. Our target dataset was imbalanced: the number of images containing each
disease label was unequal. Deep learning algorithms can be biased toward the majority
labels and fail to detect the minority labels. To prevent imbalanced data, sample weighting
in the loss function was used. Model performance was evaluated using various metrics
and stratified five-fold cross-validation. Our analytic approach is illustrated in Figure 1.
The programming language Python [23] was used to implement these methods.
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Figure 1. Flow chart of our deep transfer learning approach for the multilabel classification of the
chest X-ray images.

3.1. Multilabel Classification

Image classification aims at building a model that maps the input of the ith image xi
to a label vector yi = (yi1, · · · , yiK), where yik = 0 or 1, k = 1, · · · , K is the indicator for the
kth disease class. Multiclass classification involves classifying an image into one of multiple
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classes; in other words, the label vector of multiclass classification has only a single element
equal to 1. However, in multilabel classification, more than one class may be assigned to
the image, with the label vector possibly having 0 or 1 in each element.

CXR images in our target data set were labeled for seven diseases, and multiple dis-
eases were often identified in one image. The target task was multilabel classification and
defined a seven-dimensional label vector with an all-zero vector (0, 0, 0, 0, 0, 0, 0) represent-
ing a normal status (where none of the seven diseases was detected). We treated multilabel
classification as a multiple binary classification problem; thus, the loss function was the
sum of multiple binary cross-entropies. However, our data were seriously imbalanced: the
elements of the label vectors were almost equal to 0. The number of 0 s was much larger
than that of 1 s; this could have misled our model toward predicting 0 s if the usual loss
function was used. Therefore, we adjusted the common binary cross-entropy with weights
that considered the proportions of 0 s and 1 s in the same sampling batch.

Suppose that the entire training set is divided into J batches, with each batch size being
M. Let xjm be the input for the mth image in the jth batch and yjm =

(
yjm1, · · · , yjmK

)
be its

label vector. Then, the proposed weighted binary cross-entropy (WBCE) loss is defined as:

LWBCE =
J

∑
j=1

⎛⎝ M

∑
m=1

⎧⎨⎩βPj ∑
k: yjmk=1

[− ln
(
σ
(

fk
(
xjm
)))]

+ βNj ∑
k: yjmk=0

[− ln
(
1 − σ

(
fk
(
xjm
)))]⎫⎬⎭

⎞⎠, (1)

where fk
(
xjm
)

is xjm’s kth input for the final fully-connected layer, σ(z) = ez/(1 + ez) is the

sigmoid function, and βPj is set to |Pj |+|Nj|
|Pj| , whereas βNj is set to |Pj |+|Nj|

|Nj| , with
∣∣Pj
∣∣ and∣∣Nj

∣∣ being the number of 1 s and 0 s in the label vectors of the jth batch, respectively.

3.2. Image Augmentation

Training deep CNNs requires a considerable amount of data, but the sample size
of medical images is typically not sufficiently large. Image augmentation is a powerful
technique for generating images using a combination of affine transformations—such as
shift, zoom in-zoom out, rotate, flip, distort, and shade with a hue—which can feed more
images into the neural networks and exploit information in the original data more fully.
We augmented our training images by using the ImageDataGenerator function in the
Keras Python library. “Online” augmentation was applied; here, we applied the image
augmentation techniques in mini-batches and then fed them to the model. The model with
online augmentation was presented with different images at each epoch; this aided the
model in generalizing, and the model did not need to save the augmented images on the
disk, which reduced the computing burden.

3.3. Deep CNNs

Image classification using deep CNNs has an outstanding performance compared
with traditional machine learning approaches. CNN is a deep learning method in which a
series of layers is constructed to progressively extract higher-level features from the raw
input. In a CNN, the typical layers comprise the input layer (which imports image data for
model training), the convolution layer (which uses various filters to automatically learn
representation of features at different levels), the pooling layer (which selects the most
prominent features to reduce the dimension of subsequent layers), and the fully connected
layer (which flattens the matrix feature maps into a single vector for label prediction).

The CNN architecture refers to the overall structure of the network: the types of
layers it should have, the number of units each layer type should contain, and the man-
ner in which these units should be connected to each other. CNN architectures such as
VGG [1], GoogleNet [2], ResNet [3], and DenseNet [4] have been widely used. We included
two high-performing CNN models: 50-layer ResNet (ResNet50) and 121-layer DenseNet
(DenseNet121). ResNet50 has fewer filters and a lower complexity than VGG nets, and
DenseNet121 requires fewer parameters than ResNet50 does.
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3.3.1. ResNet

In theory, the deeper the network model, the better its results. Nevertheless, the
degradation problem may arise: as the network becomes deeper, the model’s accuracy may
become saturated or even decrease. This problem is different from overfitting because of
increased training errors. ResNet made a historical breakthrough in deep neural networks
by solving the degradation problem through residual learning.

In this study, we established a deeper model by stacking new layers on a shallower
architecture. Let x denote the output of the shallow part of the model and H(x) denote
the output of the deeper model. No higher training error should be obtained if the added
layers are for identity mapping. Rather than expecting the stack of layers to learn identity
mapping, ResNet argues that it is easier to let these layers fit a residual mapping of
F(x) = H(x)− x to zero and recast the output of the deeper model as F̂(x) + x, where F̂(x)
is the fitted residual. Generally, F̂(x) will not be zero; therefore, the stacking layers can still
learn new features and demonstrate an improved performance.

The formulation of F̂(x) + x can be realized using feedforward neural networks with
a shortcut connection, which skips some of the layers in the neural network and feeds
the output of one layer as the input to the next layers. A series of shortcut connections
(residual blocks) forms ResNet. This study applied the deeper ResNet50 that contained
50 layers and used a stack of three layers with 1 × 1, 3 × 3, and 1 × 1 convolutions as the
building residual block. This three-layer residual block adopted a bottleneck design to
improve computational efficiency, where the 1 × 1 layers were responsible for reducing
and then increasing (restoring) the dimensions, leaving the 3 × 3 layer as a bottleneck
with smaller input and output dimensions [3]. In ResNet50, batch normalization (BN) [24]
is adopted immediately after each convolution and before ReLU activation, and global
average pooling (GAP) [25] is performed to form the final fully connected layer.

3.3.2. DenseNet

As CNNs become increasingly deep, information about the input passes through many
layers and can vanish by the time it reaches the end of the network. Different approaches,
which vary in network topology and training procedure, create short paths from early
layers to later layers to address this problem. DenseNet proposes an architecture that
distills this insight into a simple connectivity pattern of dense blocks and transition layers.
A dense block is a module containing many layers connected densely with feature maps
of the same size. In a dense block, each layer obtains additional inputs from all preceding
layers, and it passes on its own feature maps to all the subsequent layers. The transition
layer connects two adjacent dense blocks, and it reduces the size of the feature map through
pooling. Compared with ResNet that connects layers through element-level addition, layers
in DenseNet are connected by concatenating them at the channel level.

In a dense block, the convolution for each layer produces k feature maps, which denote
k channels in the output. k is a hyperparameter known as the growth rate of DenseNet,
which is usually set to be small. Under the assumption that the initial number of channels is
k0, the number of input channels in the �th layer is k0 + k(� − 1). As the number of layers �
increases, the input can be extremely large even if k is small. Because the input of the latter
layer grows quickly, the bottleneck design is introduced into the dense block to reduce the
burden of calculation, where a 1 × 1 convolution and then a 3 × 3 convolution are applied
to each layer to generate the output. Similar to ResNet, DenseNet uses a composite of three
consecutive operations for each convolution: BN + ReLU + convolution.

3.3.3. Implementation

We used the Python package Keras to implement ResNet50 and DenseNet121. Opti-
mizer Adam [26] with a mini-batch size of 16 and an epoch number of 30 was used. The
learning rate started from 0.0001 and was divided by 10 when the validation loss did not
decrease in 10 epochs. DenseNet121 set the growth rate to k = 12.
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3.4. Transfer Learning

In practice, we usually do not have sufficient data to train a deep and complex network
such as ResNet or DenseNet. Techniques such as image argumentation are insufficient
for resolving this problem. The lack of data can cause overfitting, which can make our
trained model overly rely on a particular data set and then fail to fit to additional data.
This problem can be resolved using transfer learning [14]. The main concepts of transfer
learning are to first train the network with sufficiently large source data and then transfer
the structure and weights from this trained network to predict the target data.

In the current study, we used the data from the ImageNet [15], ChestX-ray [16,17], and
CheXpert [18] data sets as the source data and the CXR images from the E-Da Hospital
as the target data. ImageNet contains more than 14 million natural images and thus is
sufficiently large for a deep learning application; however, it does not contain images
with similarity to medical images, and therefore, it may fail to provide useful feature
representations to classify our target data. ChestX-ray and CheXpert—consisting of about
100,000 and 220,000 CXR images, respectively—are modest in size but are more similar to
our target data set.

Implementing transfer learning in the CNN involves reusing the parameter estimators
pretrained on the source data when fitting the target data. Model finetuning is a method in
which these pretrained parameter estimators are used as the initial values and finetuned
to fit the target data. In the layer transfer approach, target data fitting preserves some of
the layers from a pretrained model and reconstructs the others. We thus adopted model
finetuning or layer transfer to reuse the parameter estimators pretrained on the source data
(from ImageNet, ChestX-ray, or CheXpert).

We next tried to combine these source data sets to obtain new powerful source data
sets for transfer learning.

3.4.1. Initiating Transfer Learning

In Keras, we can implement transfer learning with initial weights selected randomly
or from ImageNet pretraining. ImageNet pretraining may result in robust parameter
estimation due to the diversity and richness of the data set, and the pretraining of the
similar data sets ChestX-ray and CheXpert may accelerate the convergence of the model.
Therefore, we adopted five different pretrained weights in modeling our target data:
ImageNet pretraining with randomly selected initials, ChestX-ray pretraining with random
or ImageNet pretraining initials, and CheXpert pretraining with random or ImageNet
pretraining initials.

3.4.2. Concatenating Transfer Learning

In this approach, we first constructed two ResNet backbone models by using different
pretrained weights: one from ImageNet pretraining with random initials (IR) and the
other from ChestX-ray pretraining with random initials (CR). Thereafter, we concatenated
the outputs of the final convolution layer from two models and then used the GAP to
reduce the dimension, and finally applied the fully connected layer to generate the final
prediction (Figure 2). The ResNet model concatenating IR and CheXpert pretraining with
random initials (XR) was obtained in a similar manner. The DenseNet backbone models
concatenating IR and CR and concatenating IR and XR could also be obtained. Models
using different pretrained weights may extract different features. In contrast to the first
approach aimed at extracting features from a single domain, this approach could expand
features from two different domains. However, compared with the first approach, this
approach used twice the memory and time to store and upgrade parameters.

3.4.3. Co-Training Transfer Learning

In this approach, we aimed to combine two source data sets, namely ChestX-ray and
CheXpert, to a larger CXR data set to serve as source data for medical image classification
tasks. ChestX-ray and CheXpert cannot be combined directly: although both the data
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sets contain only CXR images, they use different class definitions. To resolve this issue,
we applied a co-training approach. First, we fed images from two source data sets to
jointly train convolutional layers but to also connect to different fully connected layers to
predict their corresponding classes. In other words, they shared the parameters from the
convolution layers but not those after the convolution layers. Finally, we reserved these
shared convolutional weights as the pretrained weights in target data model fitting. The
reason that we did not cotrain ImageNet with ChestX-ray (or CheXpert) was that merging
different domain data may mislead the model and reduce its efficiency. The co-training
approach is illustrated in Figure 3.

 

Figure 2. Flow chart of concatenating transfer learning.

3.5. Evaluation
3.5.1. Stratified K-Fold Cross-Validation

In K-fold cross-validation, first, the data are shuffled to ensure the randomness when
the data are split. Second, whole data are split into K groups, where K is usually set to be
5 or 10 based on the sample size. Third, one of groups is considered “test data,” and the
others are considered “training data” with a total of K different test-training combinations
(K cross-validation rounds). Finally, the “training data” are further divided into “training”
and “validation” sets, which are used to train the model parameters and to instantly
evaluate the performance of various hyper-parameters, respectively.

In stratified K-fold cross-validation, every group must have the same class distribution.
This method has great applicability for multiclass classification, where each sample belongs
to only one class. In a multilabel task, every sample may have multiple class categories. To
appropriately perform stratified K-fold cross-validation for a multilabel classification task,
performing iterative stratification is essential [27]; it can be implemented using Python’s
scikit-learn-compatible package MultilabelStratifiedKFold.
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Figure 3. Flow chart of co-training transfer learning.

3.5.2. Metrics

For an imbalanced data set, good accuracy does not indicate that a classifier is reliable.
A receiver operating characteristic (ROC) curve is a graphical plot that illustrates the
performance of a binary classifier (with vs. without the label) at different thresholds, where
the x-axis represents the false positive rate, and the y-axis represents the true positive rate.
The area under the ROC curve (AUC) is used to summarize the ROC curve. A precision
(PR) curve is another type of plot that evaluates the performance of a model, with the x-axis
being the recall and the y-axis being the precision. The area under the PR curve is the
average precision (AP). Moreover, training accuracy represents the average accuracy of the
training sets during the five cross-validation rounds. Test accuracy, AUC, and AP refer to
the accuracy, AUC, and AP of the five test groups, respectively. In multilabel classification,
we can treat the problem as a combination of multiple binary classifications; thus, we
can evaluate every label individually with binary metrics and obtain the average of these
binary metrics (i.e., the mean metric). In this study, we calculated the training accuracy, test
accuracy, test AUC, and test AP for each individual label and the mean training accuracy,
test accuracy, test AUC, and test AP for all labels.

4. Results

This section presents the results of all the experiments performed in the current study.
Table 3 presents a summary of our experimental configurations and parameter settings.

4.1. Layer Transfer versus Model Finetuning

To using the layer transfer approach, we fixed some lower layers in the network at
weights from the source data and retrained the remaining layers on the target data. We
first froze 10, 22, 40, and 49 layers in ResNet50, which corresponded to the end of the
first, second, third, and fourth residual blocks. We used weights pretrained on ImageNet
with random initials, ChestX-ray with random initials, and ChestX-ray with ImageNet
pretraining initials.

The mean test accuracies and AUCs from the layer transfer or model finetuning
on different pretrained weights are listed in Table 4. When adopting the layer transfer
approach, it is not recommanded to modify only the final layer, which is equivalent to
freezing the first 49 layers in ResNet50. Here, for pretrained weights from ChestX-ray with
random or ImageNet pretraining initials, freezing more layers typically led to a significantly
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higher accuracy but a somewhat worse AUC. For the ImageNet pretrained weight, freezing
more layers resulted in a lower accuracy and AUC, although the difference was negligible.
These results indicated that the ideal number of frozen layers depends on the similarity
between the source and target data. When the target data are distinct from the source data,
more layers may need to be unfrozen.

Table 3. Summary of experimental configurations and parameter settings.

Configuration Setting

Target data set CXR images from the E-Da Hospital, Taiwan
Target task Multilabel classification of CXR images

Loss function Weighted binary cross entropy
Image augmentation The ImageDataGenerator function in the Keras Python library for online augmentation
Deep CNN modeling
Backbone architecture The Python package Keras to implement 50-layer ResNet and 121-layer DenseNet

Optimizer Adam
Mini-batch size 16
Epoch number 30
Learning rate Start from 0.0001 and is divided by 10 when the validation loss does not decrease in 10 epochs

Growth rate in DenseNet 12
Transfer learning
Source data set ImageNet, ChestX-ray, and CheXpert

Reuse pretrained weights Model finetuning and layer transfer
Combine source data sets Initiating, concatenating, and co-training

Evaluation
Data splitting The Python package MultilabelStratifiedKFold for stratified K-fold cross-validation

Metrics Accuracy, AUC, and AP

Table 4. Mean test accuracies and AUCs of different approaches of reusing pretrained weights in
ResNet50 1.

Pretrained Weight

ImageNet with Random
Initials

ChestX-ray with Random
Initials

ChestX-ray with
ImageNet Initials

Random Initials 2

Method AC 4 AUC AC AUC AC AUC AC AUC

Layer transfer 3 0.775 0.765
RB_1 0.841 0.487 0.557 0.519 0.461 0.512
RB_2 0.828 0.488 0.748 0.514 0.749 0.511
RB_3 0.814 0.469 0.871 0.496 0.851 0.505
RB_4 0.771 0.520 0.512 0.498 0.646 0.499

Model finetuning 0.873 0.796 0.811 0.831 0.789 0.827

1 Bold numbers indicate the top two approaches in each metric. 2 The model without transfer learning. 3 RB_1 =
Pretrained weights on the first 10 layers, which correspond to the end of the first residual block; RB_2 = Pretrained
weights on the first 22 layers, which correspond to the end of the second residual block; RB_3 = Pretrained weights
on the first 40 layers, which correspond to the end of the third residual block; RB_4 = Pretrained weights on the
first 49 layers, which correspond to the end of the fourth residual block. 4 AC = Accuracy.

Compared with the layer transfer approach, model finetuning afforded a higher
accuracy when the ImageNet pretrained weight was set directly and provided considerably
larger AUCs for all types of pretrained weights. The model finetuning approach appeared
to an attractive option for focusing on prediction accuracy related to every disease label
without to sacrificing the minority label.

4.2. Effects of Transfer Learning

After transfer learning was applied with model finetuning and pretrained weights
from ImageNet, ResNet50′s mean test accuracy increased by 11% and the mean test AUC
increased by 4% compared with when transfer learning was not applied (Table 4). After
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this transfer learning approach was used to train DenseNet121, the mean test accuracy
and mean test AUC were 0.799 and 0.803, respectively. However they decreased to 0.657
and 0.736, respectively, after DenseNet121 was trained without transfer learning. With
transfer learning, DensNet121’s accuracy increased by 18% and the AUC increased by 8%.
Model finetuning-based transfer learning could improve the model fit and appeared to
have a greater influence on models with a more complex structure (i.e., those with a greater
network depth). These performance improvements remained when model finetuning
with pretrained weights from ChestX-ray (with random or ImageNet pretraining initials)
was applied.

The layer transfer approach did not always improve model performance (Table 4).
Even with the best selected number of frozen layers, models with transfer learning had
worse AUCs than those without transfer learning.

4.3. Comparison of Various Transfer Learning Approaches

The results from Sections 4.1 and 4.2 demonstrated that compared with layer trans-
fer, model finetuning—re-training the whole model with pretrained weights as initial
values—provided a better prediction model. We thus adopted model finetuning for subse-
quent analyses.

This section presents the results from initiating, concatenating, and co-training transfer
learning methods, which use different approaches to combine several source data sets
to provide an improved model performance. This performance, evaluated using mean
accuracy, AUC, and AP on training and test data, is presented in Table 5. In the subsequent
subsections, we compare this performance from the perspective of backbone models, source
data sets, and combined methods.

Table 5. Training and test performance of various transfer learning approaches 1.

Backbone
Model

Transfer Learning
Approach 2

Mean Training
Accuracy

Mean Test
AUC

Mean Test
AP

Initiating transfer learning
ResNet50 IR 0.935 0.796 0.214
ResNet50 CR 0.879 0.831 0.209
ResNet50 CI 0.868 0.827 0.206
ResNet50 XR 0.819 0.806 0.191
ResNet50 XI 0.852 0.831 0.213

DenseNet121 IR 0.916 0.803 0.204
DenseNet121 CR 0.807 0.800 0.171
DenseNet121 CI 0.784 0.779 0.179
DenseNet121 XR 0.799 0.781 0.169
DenseNet121 XI 0.864 0.826 0.221

Concatenating transfer learning
ResNet50 I + C 0.935 0.780 0.207
ResNet50 I + X 0.930 0.776 0.190

DenseNet121 I + C 0.935 0.802 0.210
DenseNet121 I + X 0.914 0.813 0.210

Co-training transfer learning
ResNet50 C ∪ X 0.855 0.790 0.191

DenseNet121 C ∪ X 0.775 0.826 0.210
1 Bold numbers indicate the top three approaches in each metric. 2 IR = ImageNet pretraining with random initials,
CR = ChestX-ray pretraining with random initials, CI = ChestX-ray pretraining with ImageNet pretraining initials,
XR = CheXpert pretraining with random initials, XI = CheXpert pretraining with ImageNet pretraining initials,
I + C = Concatenating ImageNet + ChestX-ray, I + X = Concatenating ImageNet + CheXpert, C ∪ X = Co-training
ChestX-ray + CheXpert.

4.3.1. Backbone Model Comparison

In this study, we used ResNet50 and DenseNet121 as the backbone model for transfer
learning. Compared with DenseNet121, ResNet50 required less time to train a model, but it
had more parameters to save. To summarize the two backbone models’ performance levels,
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the radar plots for mean test AUCs and APs from various transfer learning approaches
were created (Figures S1 and S2). In initiating transfer learning, ResNet50 outperformed
DenseNet121. By contrast, DenseNet121 performed better in concatenating and co-training
transfer learning. Therefore, a model with a relatively complex structure may provide more
accurate results if a larger, more diverse source data set created by combining different data
sets is applied.

4.3.2. Source Data Comparison

In this study, we used data from three sources—ImageNet, ChestX-ray, and CheXpert—
to perform transfer learning. Each has its own strengths and limitations. Although it
is nearly 100 times the size of other two data sets, ImageNet’s data had the weakest
association with our target data. Although CheXpert is twice the size of ChestX-ray, it
contains uncertainty labels, which might increase the difficulty of the training process.
ChestX-ray is the smallest data set among those included in this study; nevertheless, it
demonstrated the stronger connection to our target data and the most precise labeling.
To compare the performance of the different source data, we collected the results from
ResNet50 with initial weights from IR, CR, and XR. Their PR and ROC curves for each
disease label on test data are presented in Figures S3–S5. DenseNet121’s corresponding PR
and ROC curves are presented in Figures S6–S8.

For both the backbone models, the use of ChestX-ray as source data led to a better
performance than using CheXpert (Table 5). Even though ChestX-ray is only half the size
of CheXpert, its accurate labeling made up for the lack of data. Although ImageNet had
the best performance in the training process, its performance in the test process was worse
than that of ChestX-ray when it was fit in the ResNet50 model (Table 5). Therefore, the
use of ImageNet as the source data possibly led to overfitting. In general, the ChestX-ray
data had the best performance when only one single-source data set was adopted as in
previous studies.

4.3.3. Comparison of Combined Methods

We used three methods to combine source data sets. The initiating transfer learning
approach adopted ImageNet initials when training pretrained weights from ChestX-ray
or CheXpert data to ensure a robust estimation of these pretrained weights. Concate-
nating transfer learning aimed at collecting the features obtained using distinct source
data sets (e.g., ImageNet and ChestX-ray) to expand the features’ coverage. Finally, co-
training transfer learning combined two similar source data sets (e.g., ChestX-ray and
CheXpert) to train pretrained weights, with the assumption that a large data size can
improve model performance.

The combining methods’ PR and ROC curves for an individual disease label on test
data are shown in Figures S9–S18. In summary, first, for both backbone models, using
ChestX-ray with random initials as the source data led to a better performance than using
ChestX-ray with ImageNet initials, and using CheXpert with ImageNet initials as source
data led to a better performance than using CheXpert with random initials. ImageNet
initials ensured a robust estimation of pretrained weights in CheXpert but not in ChestX-ray.
Second, concatenating transfer learning provided the highest training accuracy, but it did
not achieve the best performance in the test process, possibly because of the overloading of
the model with too many parameters (i.e., with twice the number of parameters), causing
overfitting. Third, initiating transfer learning was the most suitable for ResNet50, whereas
concatenating and co-training transfer learning were the most suitable for DenseNet121.
Notably, under-fitting may have arisen for co-training transfer learning in DenseNet121:
more epochs in training can overcome this issue. Fourth, DenseNet121 that involved
transfer learning with various source data sets performed better than that with a single-
source data set. ResNet50 provided similar results; however, the effect was not as significant
as that in DenseNet121.
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5. Discussion

When reusing pretrained weights in transfer learning, the approach that re-trains
the whole model with pretrained weights as initial values (i.e., the model finetuning
approach) typically afforded excellent results but required many more computational
resources compared with the other approaches. The layer transfer approach, which freezes
some layers on pretrained weights, demonstrated advantages over the model finetuning
approach by allowing larger batch sizes and requiring a shorter run time and less GPU/CPU
memory. For building the most cost-effective model by using the layer transfer approach,
the number of frozen layers should be determined accurately. Our results demonstrated that
the higher the similarity between the source and target data, the larger the allowed number
of frozen layers should be. However, none of the included approaches were universally
applicable; selecting the most appropriate approach would require the assessment of its
benefits and costs on the basis of specific goals and available resources.

When adopting only one single-source dataset, ChestX-ray demonstrated a better
performance than CheXpert. ChestX-ray is only half the size of CheXpert; nonetheless,
its accurate labeling was found to make up for its smaller size. However, after ImageNet
initials were attached, CheXpert outperformed ChestX-ray. As such, ImageNet appeared to
enhance the data volume and variety of these data sets.

ResNet50 was suitable for initiating transfer learning, whereas DenseNet121 per-
formed better in concatenating and co-training transfer learning. Transfer learning com-
bined with various source data sets was also preferable with the use of a single-source
data set; however, DenseNet121 led to greater benefits than ResNet50 did. Compound
weights from several source data sets may be superior to single weights because they
contain additional information offered by another data set. Nevertheless, a more complex
transfer process may produce more noise. Compared with ResNet50, DenseNet121 was
more complex, and its dense block mechanism could process more data and absorb more
information; consequently, DenseNet121 is more suitable than BesNet50 for integrating
source data sets.

Few studies have focused on the factors that affect the performance of transfer learning
in medical image analysis. The strength of the present study lies in its systematic approach
to investigating the transferability of CXR image analytic approaches. Nevertheless, this
study had several limitations that should be resolved in future studies. First, our experi-
ments were based on the 50-layer ResNet and 121-layer DenseNet architectures, and the
derived weights were estimated using the gradient descent-based optimizer Adam [26] un-
der the consideration of manually selected hyperparameter values. ResNet and DenseNet
are both widely used for conducting deep learning analyses on CXR images; nevertheless,
they differ in several aspects, and such differences can be leveraged to investigate the
impact of the CNN architecture on transfer learning. Alternatively, new architectures—
such as EfficientNet [28] and CoAtNet [29], which have shown a high performance in
challenging computer vision tasks—could be used for analysis. Moreover, to enhance the
efficiency of model parameter estimation, Adam may be replaced with recent optimizers
such as Chimp [9] and Whale [11], and biogeography-based optimization can be applied
to automatically finetune model hyperparameters [12]. Second, CXR images can be taken
in posteroanterior, anteroposterior, and lateral views. In this study, we included only
one target data set in which all CXR images were in the posteroanterior view; this may
have limited the real-world applicability of our findings. Moreover, we included only
image classification as the target task. However, CXR images can be used for several other
types of deep learning tasks such as segmentation, localization, and image generation [5].
Accordingly, future studies could use CXR images taken in different positions and could
consider a wide range of deep learning tasks.

6. Conclusions

In this study, we conducted a thorough investigation of the effects of various transfer
learning approaches on deep CNN models for the multilabel classification of CXR images.
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Our target data set, collected through general clinical pipelines, contained 1630 chest
radiographs with 17 clinically common disease labels. Transfer learning methods that
reused pretrained weights through model finetuning and layer transfer were examined.
We considered three source data sets with different sizes and different levels of similarity
to our target data and assessed their effect on transfer learning effectiveness. These source
data sets could be incorporated into transfer learning individually or in combination. We
also proposed initiating, concatenating, or co-training different source data sets for joint
transfer learning and used two backbone CNN models with different network architectures
to adopt the aforementioned transfer learning approaches.

Several substantial findings were obtained. The results demonstrated that transfer
learning could improve the model fit. Compared with the layer transfer approach, the
model finetuning approach typically afforded better prediction models. When only one
single-source data set was adopted as in previous studies, ChestX-ray outperformed Ima-
geNet and CheXpert. However, CheXpert with ImageNet initials attached performed better
than ChestX-ray with ImageNet initials attached. ResNet50 performed better in initiating
transfer learning, whereas DenseNet121 performed better in concatenating and co-training
transfer learning. Transfer learning with multiple source data sets was preferable to that
with a single-source data set.
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//www.mdpi.com/article/10.3390/diagnostics12061457/s1, Figure S1: Radar plots for mean test
AUCs from various transfer learning approaches; Figure S2: Radar plots for mean test APs from
various transfer learning approaches; Figure S3: PR and ROC curves for each disease label in test
data with initial weights from ImageNet pretraining with random initials in ResNet50; Figure S4: PR
and ROC curves for each disease label in test data with initial weights from ChestX-ray pretraining
with random initials in ResNet50; Figure S5: PR and ROC curves for each disease label in test data
with initial weights from CheXpert pretraining with random initials in ResNet50; Figure S6: PR and
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initials in ResNet50; Figure S10: PR and ROC curves for each disease label in test data for initiating
transfer learning with pretrained weights from CheXpert adopting ImageNet initials in ResNet50;
Figure S11: PR and ROC curves for each disease label in test data for initiating transfer learning
with pretrained weights from ChestX-ray adopting ImageNet initials in DenseNet121; Figure S12:
PR and ROC curves for each disease label in test data for initiating transfer learning with pretrained
weights from CheXpert adopting ImageNet initials in DenseNet121; Figure S13: PR and ROC curves
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of ImageNet + CheXpert in DenseNet121; Figure S17: PR and ROC curves for each disease label in
test data for co-training transfer learning of ChestX-ray + CheXpert in ResNet50; Figure S18: PR
and ROC curves for each disease label in test data for co-training transfer learning of ChestX-ray +
CheXpert in DenseNet121.
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Abstract: Pneumonia is an acute respiratory infectious disease caused by bacteria, fungi, or viruses.
Fluid-filled lungs due to the disease result in painful breathing difficulties and reduced oxygen intake.
Effective diagnosis is critical for appropriate and timely treatment and improving survival. Chest
X-rays (CXRs) are routinely used to screen for the infection. Computer-aided detection methods
using conventional deep learning (DL) models for identifying pneumonia-consistent manifestations
in CXRs have demonstrated superiority over traditional machine learning approaches. However,
their performance is still inadequate to aid in clinical decision-making. This study improves upon the
state of the art as follows. Specifically, we train a DL classifier on large collections of CXR images
to develop a CXR modality-specific model. Next, we use this model as the classifier backbone in
the RetinaNet object detection network. We also initialize this backbone using random weights and
ImageNet-pretrained weights. Finally, we construct an ensemble of the best-performing models
resulting in improved detection of pneumonia-consistent findings. Experimental results demonstrate
that an ensemble of the top-3 performing RetinaNet models outperformed individual models in
terms of the mean average precision (mAP) metric (0.3272, 95% CI: (0.3006,0.3538)) toward this task,
which is markedly higher than the state of the art (mAP: 0.2547). This performance improvement is
attributed to the key modifications in initializing the weights of classifier backbones and constructing
model ensembles to reduce prediction variance compared to individual constituent models.

Keywords: chest X-ray; deep learning; modality-specific knowledge; object detection; RetinaNet;
ensemble learning; pneumonia; mean average precision

1. Introduction

Pneumonia is an acute respiratory infectious disease that can be caused by various
pathogens such as bacteria, fungi, or viruses [1]. The infection affects the alveoli in the
lungs by filling them up with fluid or pus, thereby resulting in reduced intake of oxygen
and causing difficulties in breathing. The potency of the disease depends on several factors
including age, health, and the source of infection. According to the World Health Organi-
zation (WHO) report (https://www.who.int/news-room/fact-sheets/detail/pneumonia,
accessed on 11 December 2021), pneumonia is reported to be an infectious disease that
results in a higher mortality rate, particularly in children. About 22% of all deaths in
pediatrics from 1 to 5 years of age are reported to result from this infection. Effective
diagnosis and treatment of pneumonia are therefore critical to improving patient care and
survival rate.

Chest X-rays (CXRs) are commonly used to screen for pneumonia infection [2,3]. Anal-
ysis of CXR images can be particularly challenging in low and middle-income countries
due to a lack of expert resources, socio-economic factors, etc. [4]. Computer-aided detection
systems using conventional deep learning (DL) methods, a sub-class of machine learning
(ML) algorithms can alleviate this burden and have demonstrated superiority over tradi-
tional machine learning methods in detecting disease regions of interest (ROIs) [5,6]. Such
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algorithms (i) automatically detect pneumonia-consistent manifestations on CXRs; and
(ii) can support clinical-decision making by facilitating swift referrals for critical cases to
improve patient care.

1.1. Related Works

A study of the literature reveals several studies that propose automated methods
using DL models for detecting pneumonia-consistent manifestations on CXRs. How-
ever, DL models vary in their architecture and learn discriminative features from dif-
ferent regions in the feature space. They are observed to be highly sensitive to data
fluctuations resulting in poor generalizability due to varying degrees of biases and vari-
ances. An approach to achieving a low bias and variance and ensuring reliable out-
comes is using ensemble learning which is an established ML paradigm that combines
predictions from multiple diverse DL models and improves performance compared to
individual constituent models [7]. The authors of [8] proposed an ensemble of Faster-
RCNN [9], Yolov5 [8], and EfficientDet [8] models to localize and predict bounding
boxes containing pneumonia-consistent findings in the publicly available VinDr-CXR [8]
dataset and reported a mean Average Precision (mAP) of 0.292. The following meth-
ods used ensembled object detection models to detect pneumonia-consistent findings
using the CXR collection hosted for the RSNA Kaggle pneumonia detection challenge
(https://www.kaggle.com/c/rsna-pneumonia-detection-challenge accessed on 3 March
2022). The current state-of-the-art method according to the challenge leaderboard (https:
//www.kaggle.com/competitions/rsna-pneumonia-detection-challenge/leaderboard ac-
cessed on 3 March 2022) has a mAP of 0.2547. In [10], an ensemble of RetinaNet [11]
and Mask RCNN models with ResNet-50 and ResNet-101 classifier backbones delivered a
performance with a mAP of 0.2283 using the RSNA Kaggle pneumonia detection challenge
CXR dataset. Another study [12] proposed a weighted-voting ensemble of the predic-
tions from Mask R-CNN and RetinaNet models to achieve an mAP of 0.2174 in detecting
pneumonia-consistent manifestations. These studies used the randomized test set split
from the challenge-provided training data. This is a serious concern since the organizers
have not made the blinded test set used during the challenge available for further use. This
cripples follow-on research, such as ours, from making fair comparisons.

1.2. Rationale for the Study

All above studies used off-the-shelf DL object detection models with ImageNet [13]
pretrained classifier backbones. However, ImageNet is a collection of stock photographic
images whose visual characteristics, including shape and texture among others, are distinct
from CXRs. As well, the disease-specific ROIs in CXRs are relatively small and many go
unnoticed which may result in suboptimal predictions [14]. Our prior works and other
literature have demonstrated that the knowledge transferred from DL models that are
retrained on a large collection of CXR images is shown to improve performance on relevant
target medical visual recognition tasks [15–17]. To the best of our knowledge, we observed
that no literature discussed the use of CXR modality-specific backbones in object detection
models, particularly applied to detecting pneumonia-consistent findings in CXRs.

1.3. Contributions of the Study

Our study improves upon the state-of-the-art as follows:

(i). To the best of our knowledge, this is the first study that studies the impact of using
CXR modality-specific classifier backbones in a RetinaNet-based object detection
model, particularly applied to detecting pneumonia-consistent findings in CXRs.

(ii). We train state-of-the-art DL classifiers on large collections of CXR images to develop
CXR modality-specific models. Next, we use these models as the classifier backbone
in the RetinaNet object detection network. We also initialize this backbone using
random weights and ImageNet-pretrained weights to compare detection performance.
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Finally, we construct an ensemble of the aforementioned models resulting in improved
detection of pneumonia-consistent findings.

(iii). Through this approach, we aim to study the combined benefits of various weight ini-
tializations for classifier backbones and construct an ensemble of the best-performing
models to improve detection performance. The models’ performance is evaluated in
terms of mAP and statistical significance is reported in terms of confidence intervals
(CIs) and p-values.

Section 2 discusses the datasets, model architecture, training strategies, loss functions,
evaluation metrics, statistical methods, and computational resources, Section 3 elaborates
on the results and Section 4 concludes this study.

2. Materials and Methods

2.1. Data Collection and Preprocessing

The following data collections are used for this study:

(i). CheXpert CXR [18]: The dataset includes 223,648 frontal and lateral CXR images that
are collected from 65,240 patients at Stanford Hospital, California, USA. The CXRs are
labeled for 14 cardiopulmonary disease manifestations, the details are extracted from
the associated radiology reports using an automated labeling algorithm.

(ii). TBX11K CXR [19]: This collection includes 11,200 CXRs collected from normal pa-
tients and those with other cardiopulmonary abnormalities. The abnormal CXRs
are collected from patients tested with the microbiological gold standard. There
are 5000 CXRs showing no abnormalities and 6200 CXRs showing other abnormal
findings including those collected from sick patients (n = 5000), active Tuberculosis
(TB) (n = 924), latent Tuberculosis (n = 212), active and latent TB (n = 54), and other
uncertain (n = 10) cases. The regions showing TB-consistent manifestations are labeled
for the abnormal regions using coarse rectangular bounding boxes.

(iii). RSNA CXR [20]: This CXR collection is released by RSNA for the RSNA Kaggle
Pneumonia detection challenge. The collection consists of 26,684 CXRs that include
6012 CXR images showing pneumonia-consistent manifestations, 8851 CXRs showing
no abnormal findings, and 11,821 CXRs showing other cardiopulmonary abnormal-
ities. The CXRs showing pneumonia-consistent findings are labeled for abnormal
regions using rectangular bounding boxes and are made available for the detec-
tion challenge.

We used the frontal CXRs from the CheXpert and TBX11K data collection during
CXR image modality-specific retraining and those from the RSNA CXR collection to train
the RetinaNet-based object detection models. All images are resized to 512 × 512 spatial
dimensions to reduce computation complexity. The contrast of the CXRs is further increased
by saturating the top 1% and bottom 1% of all the image pixel values. For CXR modality-
specific retraining, the frontal CXR projections from the CheXpert and TBX11K datasets are
divided at the patient level into 70% for training, 10% for validation, and 20% for testing.
This patient-level split prevents the leakage of data and subsequent bias during model
training. For object detection, the frontal CXRs from the RSNA CXR dataset that shows
pneumonia-consistent manifestations are divided at the patient level into 70% for training,
10% for validation, and 20% for testing. Table 1 shows the number of CXR images across
the training, validation, and test sets used for CXR modality-specific retraining and object
detection, respectively.
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Table 1. Patient-level dataset splits show the number of images for CXR modality-specific retraining
and object detection. Note: TBX11K and RSNA datasets have one image per patient.

Dataset
Train Validation Test

Abnormal Normal Abnormal Normal Abnormal Normal

CXR Modality-specific retraining

CheXpert 13,600 13,600 1700 1700 1700 1700

TBX11k 3040 3040 380 380 380 380

RetinaNet-based object detection

Dataset Train Validation Test

RSNA 4212 600 1200

2.2. Model Architecture
2.2.1. CXR Modality-Specific Retraining

The ImageNet-pretrained DL models, viz., VGG-16, VGG-19, DenseNet-121, ResNet-50,
EfficientNet-B0, and MobileNet have demonstrated promising performance in several medical
visual recognition tasks [14,19,21–23]. These models are further retrained on a large collection
of CXR images to classify them as showing cardiopulmonary abnormal manifestations or no
abnormalities. Such retraining helps the models to learn CXR image modality-specific features
that can be transferred and fine-tuned to improve performance in a relevant task using CXR
images. The best-performing model with the learned CXR image modality-specific weights is
used as the classifier backbone to train the RetinaNet-based object detection model toward
detecting pneumonia-consistent manifestations. Figure 1 shows the block diagram illustrating
the steps involved in CXR image modality-specific retraining.

 

Figure 1. Steps illustrating CXR image modality-specific retraining of the ImageNet-pretrained models.

2.2.2. RetinaNet Architecture

We used RetinaNet as the base object detection architecture in our experiments. The
architecture of the RetinaNet model is shown in Figure 2. As a single-stage object de-
tection structure, RetinaNet shares a similar concept of “anchor proposal” with [24]. It
used a feature pyramid network (FPN) [25] where features on each of the image scales are
computed separately in the lateral connections and then summed up through convolu-
tional operations via the top-down pathways. The FPN network combines low-resolution
features with strong semantic information, and high-resolution features with weak seman-
tics through top-down paths and horizontal connections. Thus, feature maps with rich
semantic information are obtained that would prove beneficial for detecting relatively
smaller ROIs consistent with pneumonia compared to the other parts of the CXR image.
Furthermore, when trained to minimize the focal loss [5], the RetinaNet was reported to
deliver significant performance focusing on hard, misclassified examples.
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Figure 2. Method flowchart for the RetinaNet network.

2.2.3. Ensemble of RetinaNet Models with Various Backbones

We initialized the weights of the VGG-16 and ResNet-50 classifier backbones used in
the RetinaNet model using three strategies: (i) Random weights; (ii) ImageNet-pretrained
weights, and (iii) CXR image modality-specific retrained weights as discussed in Sec-
tion 2.2.1. Each model is trained for 80 epochs and the model weights (snapshots) are
stored at the end of each epoch. Varying modifications of the RetinaNet model classifier
backbones and loss functions are mentioned in Table 2.

Table 2. RetinaNet model classifier backbones with varying weight initializations and loss functions.
The loss functions mentioned are used for classification. For bounding box regression, only the
smooth-L1 loss function [26] is used in all cases.

ResNet-50 Backbone and Classification
Loss Functions

VGG-16 Backbone and Classification
Loss Functions

ResNet-50 with random weights + focal loss VGG-16 with random weights + focal loss

ResNet-50 with random weights + focal
Tversky loss

VGG-16 with random weights + focal
Tversky loss

ResNet-50 with ImageNet pretrained
weights + focal loss

VGG-16 with ImageNet pretrained
weights + focal loss

ResNet-50 with ImageNet pretrained
weights + focal Tversky loss

VGG-16 with ImageNet pretrained
weights + focal Tversky loss

ResNet-50 with CXR image modality-specific
weights + focal loss

VGG-16 with CXR image modality-specific
weights + focal loss

ResNet-50 with CXR image modality-specific
weights + focal Tversky loss

VGG-16 with CXR image modality-specific
weights + focal Tversky loss

We adopted the non-maximum suppression (NMS) in the RetinaNet training with an
IoU threshold of 0.5 and evaluated the models using all the predictions with a confidence
score over 0.9. A weighted averaging ensemble is constructed using (i) the top-3 performing
models from the 12 RetinaNet models mentioned in Table 2, and (ii) the top-3 performing
snapshots (model weights) using each classifier backbone. We empirically assigned the
weights as 1, 0.9, and 0.8 for the predictions of the 1st, 2nd, and 3rd best performing models.
A schematic of the ensemble procedure is shown in Figure 3. An ensembled bounding box
is generated if the IOU of the weighted average of the predicted bounding boxes and the
ground truth (GT) boxes is greater than 0.5. The ensembled model is evaluated based on
the mean average precision (mAP) metric.
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Figure 3. Method Schematic of the ensemble approach.

2.2.4. Loss Functions and Evaluation Metrics
CXR Image Modality-Specific Retraining

During CXR image modality-specific retraining, the DL models are retrained on a
combined selection of the frontal CXR projections from the CheXpert and TBX11K datasets
(details in Table 1). The training is performed for 128 epochs to minimize the categorical
cross-entropy (CCE) loss. The CCE loss is the most commonly used loss function in
classification tasks, and it helps to measure the distinguishability between two discrete
probability distributions. It is expressed as shown in Equation (1).

CCEloss = −
output size

∑
k=1

yklogy ˆ
k (1)

Here, y ˆ
k denotes the kth scalar value in the model output, yk denotes the corresponding

target, and the output size denotes the number of scalar values in the model output. The
term yk denotes the probability that event k occurs and the sum of all yk = 1. The minus sign
in the CCE loss equation ensures the loss is minimized when the distributions become less
distinguishable. We used a stochastic gradient descent optimizer with an initial learning
rate of 1 × 10−4 and momentum of 0.9 to reduce the CCE loss and improve performance.
Callbacks are used to store the model checkpoints and the learning rate is reduced after
a patience parameter of 10 epochs when the validation performance ceased to improve.
The weights of the model that delivered a superior performance with the validation set are
used to predict the test set. The models are evaluated in terms of accuracy, the area under
the receiver-operating characteristic curve (AUROC), the area under the precision-recall
(PR) curve (AUPRC), sensitivity, precision, F-score, Matthews correlation coefficient (MCC),
and Kappa statistic.

RetinaNet-Based Detection of Pneumonia-Consistent Findings

Considering medical images, the disease ROIs span a relatively smaller portion of the
whole image. This results in a considerably high degree of imbalance in the foreground ROI
and the background pixels. These issues are particularly prominent in applications such
as detecting cardiopulmonary manifestations like pneumonia where the number of pixels
showing pneumonia-consistent manifestations is markedly lower compared to the total
number of image pixels. Generalized loss functions such as balanced cross-entropy loss do
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not take this data imbalance into account. This may lead to a learning bias and subsequent
adversity in learning the minority ROI pixels. Appropriate selection of the loss function is
therefore critical for improving detection performance. In this regard, the authors of [11]
proposed the focal loss for object detection, an extension of the cross-entropy loss, which
alleviates this learning bias by giving importance to the minority ROI pixels while down-
weighting the majority background pixels. Minimizing the focal loss thereby reduces the
loss contribution from majority background examples and increases the importance of
correctly detecting the minority disease-positive ROI pixels. The focal loss is expressed as
shown in Equation (2).

Focal loss(pt) = −αt(1 − pt)
γ log(pt) (2)

Here, pt denotes the probability the object detection model predicts for the GT. The pa-
rameter γ decides the rate of down-weighting the majority (background non-ROI) samples.
The equation converges to the conventional cross-entropy loss when γ = 0. We empirically
selected the value of γ = 2 which delivered superior detection performance.

Another loss function called the Focal Tversky loss function [27], a generalization
of the focal loss function, is proposed to tackle the data imbalance problem and is given
in Equation (3). The Focal Tversky loss function generalizes the Tversky loss which is
based on the Tversky index that helps achieve a superior tradeoff between recall and
precision when trained on class-imbalanced datasets. The Focal Tversky loss function uses
a smoothing parameter γ that controls the non-linearity of the loss at different values of the
Tversky index to balance between the minority pneumonia-consistent ROI and majority
background classes. In Equation (3), TI denotes the Tversky index, expressed as shown in
Equation (4).

FTlossc = ∑
c

1 − TIγ
c (3)

TIc =
∑M

i=1 ticgic+ ∈
∑M

i=1 ticgic + α ∑M
i=1 tiĉ gic + β ∑M

i=1 ticgiĉ+ ∈ (4)

Here, gic and tic denote the ground truth and predicted labels for the pneumonia
class c, where gic and tic ∈ {0,1}. That is, tic denotes the probability that the pixel i belongs
to the pneumonia class c and tiĉ denotes the probability that the pixel i belongs to the
background class ĉ. The same holds for gic and giĉ . The term M denotes the total number of
image pixels. The term ∈ provides numerical stability to avoid divide-by-zero errors. The
hyperparameters α and β are tuned to emphasize recall under class-imbalanced training
conditions. The Tversky index is adapted to a loss function by minimizing ∑c 1− TIc. After
empirical evaluations, we fixed the value of γ = 4/3, α = 0.7 and β = 0.75.

As is known, the loss function within RetinaNet is a summation of a couple of loss
functions, one for classification and the other for bounding box regression. We left the
Smooth-L1 loss that is used for bounding box regression unchanged. For classification, we
explored the performance with focal loss and focal Tversky loss functions individually for
training the RetinaNet models with varying weight initializations. We used the bounding
box annotations [20] associated with the RSNA CXRs showing pneumonia-consistent
manifestations as the GT bounding boxes and measured its agreement with that generated
by the models initialized with random weights, ImageNet-pretrained, and CXR image
modality-specific retrained classifier backbones. Let TP, FP, and FN denote the true positives,
false positives, and false negatives, respectively. Given a pre-defined IOU threshold, a
predicted bounding box is considered to be TP if it overlaps with the GT bounding box by
a value equal to or exceeding this threshold. FP denotes that the predicted bounding box
has no associated GT bounding box. FN denotes the GT bounding box has no associated
predicted bounding box. The mAP is measured as the area under the precision-recall curve
(AUPRC) as shown in Equation (5). Here, P denotes precision which measures the accuracy
of predictions, and R denotes recall which measures how well the model identifies all the
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TPs. They are computed as shown in Equations (6) and (7). The value of mAP lies in the
range [0, 1].

mean average precision (mAP) =
∫ 1

0
P(R)dR (5)

Precision (P) =
TP

TP + FP
(6)

Recall =
TP

(TP + FN)
(7)

We used a Linux system with 1080Ti GPU, the Tensorflow backend (v. 2.6.2) with
Keras, and CUDA/CUDNN libraries for accelerating the graphical processing unit (GPU)
toward training the object detection models that are configured in the Python environment.

2.3. Statistical Analysis

We evaluated statistical significance using the mAP metric achieved by the models
trained with various weight initializations and loss functions. The 95% confidence intervals
(CIs) are measured as the binomial interval using the Clopper-Pearson method.

3. Results and Discussion

We organized the results from our experiments into the following sections: Evaluating
the performance of (i) CXR image modality-specific retrained models and (ii) RetinaNet
object detection models using classifier backbones with varying weight initializations and
loss functions.

3.1. Classification Performance during CXR Image Modality-Specific Retraining

Recall that the ImageNet-pretrained DL models are retrained on the combined selec-
tion of CXRs from the CheXpert and TBX11K collection. Such retraining is performed to
convert the weight layers specific to the CXR image modality and let the models learn CXR
modality-specific features to improve performance when the learned knowledge is trans-
ferred and fine-tuned for a related medical image visual recognition task. The performance
achieved by the CXR image modality-specific retrained models using the hold-out test set
is listed in Table 3 and the performance curves are shown in Figure 4. The no-skill line in
Figure 4 denotes the performance when a classifier would fail to discriminate between the
normal and abnormal CXRs and therefore would predict a random outcome or a specific
category under all circumstances.

  

Figure 4. The collection of performance curves for the CXR image modality-specific retrained models.
The performance is recorded at the optimal classification threshold measured with the validation
data. (a) ROC and (b) PR curves.
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Table 3. Performance of the CXR image modality-specific retrained models with the hold-out test set.
Bold numerical values denote superior performance. The values in parenthesis denote the 95% CI for
the MCC metric.

Models Accuracy AUROC AUPRC Sensitivity Precision F-Score MCC Kappa

VGG-16 0.7834 0.8701 0.8777 0.8303 0.7591 0.7931
0.5693

(0.5542, 0.5844)
0.5668

VGG-19 0.7743 0.8660 0.8727 0.8389 0.7429 0.7880 0.5532
(0.5380, 0.5684) 0.5486

DenseNet-121 0.7738 0.8582 0.8618 0.8264 0.7477 0.7851 0.5507
(0.5355, 0.5659) 0.5476

ResNet-50 0.7685 0.8586 0.8646 0.8207 0.7431 0.7800 0.5400
(0.5248, 0.5552) 0.5370

EfficientNet-B0 0.7553 0.8568 0.8612 0.8678 0.7084 0.7800 0.5240
(0.5088, 0.5392) 0.5106

MobileNet 0.7584 0.8609 0.8655 0.8726 0.7104 0.7832 0.5309
(0.5157, 0.5461) 0.5168

We could observe from Table 3 that the CXR image modality-specific retrained VGG-
16 model demonstrates the best performance compared to other models in terms of all
metrics except sensitivity. Of these, the MCC metric is a good measure to use because
unlike F-score because it considers a balanced ratio of TPs TNs, FPs, and FNs. We noticed
that the differences in the MCC values achieved by the various CXR image modality-
specific retrained models are not significantly different (p > 0.05). Based on its performance,
we used VGG-16 as the backbone for the RetinaNet detector. However, to enable fair
comparison with other conventional RetinaNet-based results, we included the ResNet-50
backbone for detecting pneumonia-consistent manifestations. The VGG-16 and ResNet-50
classifier backbones are also initialized with random and ImageNet-pretrained weights for
further comparison.

3.2. Detection Performance Using RetinaNet Models and Their Ensembles

Recall that the RetinaNet models are trained with different initializations of the clas-
sifier backbones. The performance achieved by these models using the hold-out test set
is listed in Table 4. Figure 5 shows the PR curves obtained with the RetinaNet model
using varying weight initializations for the selected classifier backbones. These curves
show the precision and recall value of the model’s bounding box predictions on every
sample in the test set. We observe from Table 4 that the RetinaNet model with the CXR
image modality-specific retrained ResNet-50 classifier backbone and trained using the focal
loss function demonstrates superior performance in terms of mAP. Figure 6 shows the
bounding box predictions of the top-3 performing RetinaNet models for a sample CXR
from the hold-out test set.

We used two approaches to combine the bounding box predictions. They are (i) using
the bounding box predictions from the top-3 performing RetinaNet models, viz., ResNet-
50 with CXR image modality-specific weights + focal loss, ResNet-50 with CXR image
modality-specific weights + focal Tversky loss, and ResNet-50 with random weights + focal
loss; and, (ii) using the bounding box predictions from the top-3 performing snapshots
(weights) within each model. The results are presented in Table 5 and Figure 7. A weighted
averaging ensemble of the bounding boxes is generated when the IoU of the predicted
bounding boxes is greater than the threshold value which is set at 0.5. Recall that the
models are trained for 80 epochs and a snapshot (i.e., the model weights) is stored at the
end of each epoch. We observed that the ensemble of the top-3 performing RetinaNet
models delivered superior performance in terms of mAP metric compared to other models
and ensembles. Figure 8 shows a sample CXR image with GT and predicted bounding
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boxes using the weighted averaging ensemble of the top-3 individual models and the top-3
snapshots of the best-performing model.

Table 4. Performance of RetinaNet with the varying weight initializations for the classifier backbones
and training losses. The values in parenthesis denote the 95% CI for the mAP metric. Bold numerical
values denote superior performance.

Models AUPRC (mAP)

ResNet-50 with random weights + focal loss 0.2763 (0.2509, 0.3017)

ResNet-50 with random weights + focal Tversky loss 0.2627 (0.2377, 0.2877)

ResNet-50 with ImageNet pretrained
weights + focal loss 0.2719 (0.2467, 0.2971)

ResNet-50 with ImageNet pretrained weights + focal Tversky loss 0.2737 (0.2484, 0.2990)

ResNet-50 with CXR image modality-specific
weights + focal loss 0.2865 (0.2609, 0.3121)

ResNet-50 with CXR image modality-specific
weights + focal Tversky loss 0.2859 (0.2603, 0.3115)

VGG-16 with random weights + focal loss 0.2549 (0.2302, 0.2796)

VGG-16 with random weights + focal Tversky loss 0.2496 (0.2251, 0.2741)

VGG-16 with ImageNet pretrained weights + focal loss 0.2734 (0.2481, 0.2987)

VGG-16 with ImageNet pretrained weights + focal Tversky loss 0.2666 (0.2415, 0.2917)

VGG-16 with CXR image modality-specific
weights + focal loss 0.2686 (0.2435, 0.2937)

VGG-16 with CXR image modality-specific
weights + focal Tversky loss 0.2648 (0.2398, 0.2898)

 

Figure 5. PR curves of the RetinaNet models initialized with varying weights for the classifier
backbones. (a) ResNet-50 with CXR image modality-specific weights + focal Tversky loss; (b) ResNet-
50 with CXR image modality-specific weights + focal loss, and (c) ResNet-50 with random weights +
focal loss.
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Figure 6. Bounding box predictions of the RetinaNet models initialized with varying weights for the
classifier backbones. Green boxes denote the model predictions and red boxes denote the ground
truth. (a) A sample CXR with ground truth bounding boxes. (b) ResNet-50 with CXR image modality-
specific weights + focal Tversky loss; (c) ResNet-50 with CXR image modality-specific weights + focal
loss, and (d) ResNet-50 with random weights + focal loss.

Table 5. Ensemble performance with the top-3 performing models (from Table 4) and the top-3
snapshots for each of the models trained with various classifier backbones and weight initializa-
tions. Values in parenthesis denote the 95% CI for the mAP metric. Bold numerical values denote
superior performance.

Ensemble Method mAP

Top-3 model ensemble (ResNet-50 with CXR image
modality-specific weights + focal loss,
ResNet-50 with CXR image modality-specific weights + focal
Tversky loss, and ResNet-50 with random weights + focal loss

0.3272 (0.3006, 0.3538)

Ensemble of the top-3 snapshots for each model

ResNet-50 with random weights + focal loss 0.2777 (0.2523, 0.3031)

ResNet-50 with random weights + focal Tversky loss 0.2630 (0.2380, 0.2880)

ResNet-50 with ImageNet pretrained weights + focal loss 0.2788 (0.2534, 0.3042)

ResNet-50 with ImageNet pretrained weights + focal Tversky loss 0.2812 (0.2557, 0.3067)

ResNet-50 with CXR image modality-specific weights + focal loss 0.2973 (0.2714, 0.3232)

ResNet-50 with CXR image modality-specific weights + focal
Tversky loss 0.2901 (0.2644, 0.3158)

VGG-16 with random weights + focal loss 0.2633 (0.2383, 0.2883)

VGG-16 with random weights + focal Tversky loss 0.2556 (0.2309, 0.2803)

VGG-16 with ImageNet pretrained weights + focal loss 0.2823 (0.2568, 0.3078)

VGG-16 with ImageNet pretrained weights + focal Tversky loss 0.2715 (0.2463, 0.2967)

VGG-16 with CXR image modality-specific weights + focal loss 0.2813 (0.2558, 0.3068)

VGG-16 with CXR image modality-specific weights + focal
Tversky loss 0.2698 (0.2446, 0.2950)
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Figure 7. PR curves of the model ensembles. (a) PR curve obtained with the weighted-averaging
ensemble of top-3 performing models (ResNet-50 with CXR modality-specific weights + focal loss,
ResNet-50 with CXR modality-specific weights + focal Tversky loss, and ResNet-50 with random
weights + focal loss and (b) PR curve obtained with the ensemble of top-3 performing snapshots
while training the ResNet-50 with CXR modality-specific weights + focal loss model.

 
Figure 8. Bounding box predictions using the ensemble of RetinaNet models initialized with varying
weights for the classifier backbones. Green boxes denote the individual model predictions, blue
boxes denote the ensemble predictions and red boxes denote the ground truth. (a) ResNet-50 with
CXR image modality-specific weights + focal Tversky loss; (b) ResNet-50 with CXR image modality-
specific weights + focal loss; (c) ResNet-50 with random weights + focal loss, and (d) the ensembled
bounding box prediction.
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4. Conclusions and Future Work

In this study, we demonstrated the combined benefits of training CXR image modality-
specific models, using them as backbones in an object detection model, evaluating them
in different loss settings, and constructing ensembles of the best-performing models to
improve performance in a pneumonia detection task. We observed that both CXR image
modality-specific classifier backbones and ensemble learning improved detection perfor-
mance compared to the individual constituent models. This study, however, suffers from the
limitation that we have only investigated the effect of using CXR modality-specific classifier
backbones in a RetinaNet-based object detection model to improve detecting pneumonia-
consistent findings. The efficacy of this approach in detecting other cardiopulmonary
disease manifestations is a potential avenue for future research. Additional diversity in
the training process could be introduced by using CXR images and their disease-specific
annotations collected from multiple institutions. With the advent of high-performance
computing and current advancements in DL-based object detection, future studies could
explore the use of mask x-RCNN, transformer-based models, and other advanced detection
methods [28–31] and their ensembles in improving detection performance. Novel model
optimization methods and loss functions can be proposed to further improve detection
performance. However, the objective of this study is not to propose a new objection detec-
tion model but to validate the use of CXR modality-specific classifier backbones in existing
models to improve performance. As the organizers of the RSNA Kaggle pneumonia detec-
tion challenge have not made the blinded GT annotations of the test set publicly available,
we are unable to compare our results with the challenge leaderboard. However, the perfor-
mance of our method on a random split from the challenge-provided training set, where
we sequester 10% of the images for testing, using 70% for training and 20% for validation,
respectively, is markedly superior to the best performing method on the leaderboard.
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Abstract: Pulmonary hypertension should be preoperatively evaluated for optimal surgical planning
to reduce surgical risk in lung cancer patients. Preoperative measurement of vascular diameter in
computed tomography (CT) images is a noninvasive prediction method for pulmonary hypertension.
However, the current estimation method, 2D manual arterial diameter measurement, may yield
inaccurate results owing to low tissue contrast in non-contrast-enhanced CT (NECT). Furthermore, it
provides an incomplete evaluation by measuring only the diameter of the arteries rather than the
volume. To provide a more complete and accurate estimation, this study proposed a novel two-stage
deep learning (DL) model for 3D aortic and pulmonary artery segmentation in NECT. In the first stage,
a DL model was constructed to enhance the contrast of NECT; in the second stage, two DL models
then applied the enhanced images for aorta and pulmonary artery segmentation. Overall, 179 patients
were divided into contrast enhancement model (n = 59), segmentation model (n = 120), and testing
(n = 20) groups. The performance of the proposed model was evaluated using Dice similarity
coefficient (DSC). The proposed model could achieve 0.97 ± 0.007 and 0.93 ± 0.002 DSC for aortic
and pulmonary artery segmentation, respectively. The proposed model may provide 3D diameter
information of the arteries before surgery, facilitating the estimation of pulmonary hypertension and
supporting preoperative surgical method selection based on the predicted surgical risks.

Keywords: aorta; computed tomography; deep learning; lung cancer; pulmonary artery; pulmonary
hypertension

1. Introduction

Low-dose computed tomography (CT) screening has recently increased the detection
rate of early-stage lung cancer [1–3]. Thoracic surgical resection is the major treatment
approach for patients with early-stage lung cancer [4–7]. Surgical planning may vary from
patient to patient owing to different surgical risks across patients. Extensive resection
(lobectomy) is the treatment of choice for patients with a low surgical risk and high tumor
invasiveness. However, limited resection (wedge resection or segmentectomy) is indicated
for patients with high surgical risks and low tumor invasiveness [8–11]. Preoperative
pulmonary hypertension associated with postoperative heart failure has been indicated to
be exacerbated by surgery, leading to an increase in mortality risk (four to five times higher
than that in patients without pulmonary hypertension) [12,13]. Furthermore, Wei et al.
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showed that the failure rate of the right ventricle was significantly higher in patients
with pulmonary hypertension before surgery (10.5%) than in patients without pulmonary
hypertension (2.2%) [14]. Therefore, pulmonary hypertension is a surgical risk factor
that may result in malignant behaviors; thus, it is important to preoperatively evaluate
the presence of pulmonary hypertension, supporting surgical management. The gold
standard approach for the diagnosis of pulmonary hypertension is the direct measurement
of pulmonary artery pressure by cardiac catheterization [12,14]. However, this invasive
measurement method may not be commonly used for the preoperative evaluation of
patients with lung cancer. Cardiac ultrasound examination before lung cancer surgery
would be an alternative approach to confirm the presence of pulmonary hypertension
before surgery [12,14]. However, these results are unreliable and lack accuracy.

Several previous studies have indicated that the diameter of the pulmonary artery, or
the ratio of the pulmonary artery to the aorta, is an effective tool for assessing pulmonary
hypertension [4]. Chung et al. published imaging studies that measured these two pa-
rameters found that the diameter of the pulmonary artery increased significantly after
lobectomy (23.9–25.6 mm, p < 0.0001) [15]. However, the method used in that study was a
2D measurement of contrast-enhanced chest CT images. As the majority of patients with
lung cancer are diagnosed during low-dose CT (LDCT) screening, these patients may not
have undergone contrast-enhanced CT before surgery. In addition, post-surgery tracking is
usually by non-contrast-enhanced CT, and the technology of image measurement based on
non-contrast-enhanced CT still needs to be developed.

The present study aimed to develop an automatic 3D segmentation method for the
aorta and pulmonary artery on non-contrast-enhanced CT images to accurately calculate
the 3D diameter information of the two arteries before surgery, facilitate the estimation of
pulmonary hypertension, and support preoperative surgical management.

2. Materials and Methods

2.1. Data Information

Preoperative chest CT images of 179 patients with lung cancer were collected from the
National Taiwan University Hospital between January 2011 and December 2019, and all
patients had a set of CT images without a contrast agent and with a contrast agent. The
inclusion criteria of the study were as follows: (1) pathologically confirmed lung cancer, and
(2) available thin-cut chest CT image data. The Research Ethics Committee of the National
Taiwan University Hospital approved this study (project approval number 201712087RIND)
and waived the need for informed consent because of the retrospective study design.

The overall flowchart of the pulmonary hypertension assessment method is shown
in Figure 1. In this study, two types of models, namely, the contrast-enhanced and seg-
mentation models, were developed to achieve segmentation of the aorta and pulmonary
artery in two stages. CT images obtained with a contrast agent and without a contrast agent
were used in the contrast-enhanced model. The training data were allocated to 49 patients,
and the validation data were allocated to 10 patients, with a total of 59 patients. On the
contrary, because the clinical application of this model presupposes that patients are not
evaluated with a contrast agent, the data used for the segmentation model were taken
from non-contrast-enhanced CT images. In the segmentation model, 120 non-contrast-
enhanced CT images from the dataset were used, divided into 80 patients (training data),
20 patients (validation data), and 20 patients (testing data), and this configuration was used
for segmentation model training.
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Figure 1. Flowchart of the pulmonary hypertension assessment method.

2.2. CT Image Acquisition

Chest CT scans used in this study were acquired from the following manufacturers
using a multidetector (16-, 32-, or 64-detector row) CT scanner: GE (LightSpeed VCT,
LightSpeed 16, and HiSpeed CT/I, Chicago, IL, USA), Siemens (Definition AS+, Emotion 16,
and Sensation 64, Erlangen, Germany), and Philips (iCT 256 and Ingenuity CT, Amsterdam,
Netherlands) Healthcare systems. The CT image parameters were as follows: detector
collimation, 0.6–1.25 mm; field of view, 20–38 cm; beam pitch, 0.800–1.396; beam width,
10–40 mm; gantry speed, 0.5 or 0.8 s per rotation; 100–130 kVp; 47–351 mA; reconstruction
interval, 0.39–6 mm; matrix, 512 × 512 mm2.

2.3. Pre-Processing of CT Images

The original image was a set of chest CT Dicom images, and each data were resampled
to 0.1 mm in data preprocessing, and the value was between −160 and 240 HU. To ensure
that the deep learning (DL) model learns the location of blood vessels accurately, the aorta
and pulmonary artery are considered as the center to cut out two sizes of volume of interest
(VOI) (96 × 96 × 32 and 128 × 128 × 64). The aorta requires a larger VOI because of its
anatomical shape that covers more slices. As there is currently no commercial software that
can accurately annotate the aorta and pulmonary artery for CT images without contrast
agents, this study invited two professional thoracologists to assist in the annotation of the
ground truth (GT) of the two targets in this study. The preprocessing flow of the data is
shown in Figure 2.

Figure 2. Preprocessing flow of data. VOI, volume of interest; GT, ground truth.
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2.4. Architecture

To evaluate the complications, measurements of the diameter of the aorta and pul-
monary artery and calculation of the ratio are required. This study proposes a two-stage
DL architecture for the 3D segmentation of blood vessels. Because this study used non-
contrast-enhanced CT images, a contrast enhancement model was used in the first stage
to enhance the non-contrast images of the aorta and pulmonary artery; thus, the contrast
between the blood vessels and the surrounding tissues in the non-contrast-enhanced CT
images was improved. This model increases the sharpness of the blood vessel edge to
facilitate the effective learning of the backward segmentation model. In the second stage,
two 3D vessel segmentation models were developed for the aorta and pulmonary artery,
as shown in the flowchart (Figure 3). After successfully segmenting the two vessels, the
vessel sections were extracted to obtain the average diameter of the 3D vessel. The overall
architecture is shown in Figure 3.

Figure 3. A two-stage deep learning architecture for 3D segmentation. NECT, non-contrast-enhanced
Chest CT.

2.5. 3D U-Net

The contrast enhancement model and segmentation model proposed in this study are
improved models based on U-Net [16,17]. U-Net is a convolution-based model that can
be modeled by point-by-point convolution and superimposed on each convolution layer.
It is a type of fully convolutional network (FCN) model [18] and is composed of a down-
sampling (contraction) path to aggregate high-level information using context modules
and an upsampling (expansion) pathway to combine feature and spatial information for
localization. In the downsampling path, each layer consists of two 3 × 3 convolutional
layers, and then downsampling with a stride of 2 is used to extract information and capture
the contour features of the input image with missing spatial information. This gradually
restores the image size through upsampling with a step size of 2, extracting information
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on important features from the original image information and integrating contextual
information. Therefore, this model can perform feature extraction and multi-information
transmission through two paths to achieve semantic segmentation. The network used in
this study, called 3D U-Net, was changed from its original 2D architecture to a 3D architec-
ture by using 3D volumes as input and processing them with corresponding 3D operations,
such as 3D convolutions and 3D max pooling, as shown in Figure 4 [19].

Figure 4. Structure of 3D U-Net.

2.6. Contrast Enhancement Model

In non-contrast-enhanced images, because the image contrast is not significant and
the blood vessel boundaries are relatively blurred, it is not easy to segment the blood
vessels directly. Therefore, this study proposes a contrast-enhancement model that uses
the corresponding non-contrast- and contrast-enhanced images as the input and GT of the
model, respectively, as shown in Figure 5. This model learns how to generate contrast-
enhanced images from non-contrast-enhanced images so that the second-stage model in
the architecture can more easily achieve segmentation. In this model, a combination of
mean absolute error (MAE) and structural dissimilarity (DSSIM) loss functions is used
as the loss function [20,21]. The MAE is the sum of the absolute values of the difference
between the target value and the predicted value. It measures only the average error of the
predicted value, regardless of the direction, and ranges from 0 to positive infinity; therefore,
it can be used to judge the overall contrast enhancement performance of this model. DSSIM
was derived from a formula based on the structural similarity index (SSIM) [21,22]. SSIM
combines luminance, contrast, and structure to reflect the structural information heavily
relied on by anthropology. In the chest CT images used in this study, there is a strong
correlation between adjacent pixels in the same anatomical structure; therefore, it is suitable
for use as the loss function of this model [22]. Therefore, this study adopts the advantages
of the two loss functions and sets the trade-off parameter α to the optimal value of 0.7
after many experiments in this study, as shown in Formula (1), where I_gt and I_op are
the GT and model output, respectively. In this study, this loss function is used in a U-
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Net model with the ability to integrate contextual information for contrast enhancement
model training.

Loss(I_op, I_gt) = αMAE(I_op, I_gt) + (1 − α)DSSIM(I_op, I_gt) (1)

Figure 5. Contrast enhancement model.

2.7. Segmentation Model

In the second stage of the architecture, this study developed relative 3D vessel seg-
mentation models for two vessels, namely the aorta and pulmonary artery. The ratio of
the diameter of the aorta to that of the pulmonary artery is an important indicator of the
presence or absence of pulmonary hypertension. To obtain the diameters of the two blood
vessels, this study developed a 3D segmentation model to overcome the disadvantage
of non-contrast-enhanced CT images to segment the anatomical structures of the two
blood vessels and then extract the blood vessel sections to calculate the average blood
vessel diameter.

2.7.1. Aorta Segmentation Model

The training process of the contrast enhancement model also learns the difference
between the voxels of the blood vessels and those of other thoracic anatomical structures,
which is similar to the purpose of finding the position of the blood vessel boundary in
the segmentation model. Therefore, the training weights obtained in the first stage of
the architecture are suitable for transfer learning to improve the learning efficiency of the
segmentation model [23]. The location and method of the weights used in the transfer
learning are shown in Figure 6. The aorta is relatively simple in the thoracic structure;
therefore, this study directly uses unenhanced CT images for training and combines the
loss function of the Dice loss function commonly used in segmentation models to achieve
the training and development of the aorta segmentation model, in which both Pi and Gi are
a single voxel of GT and model output, respectively, and N is the total number of voxels of
the data, as shown in Formula (2).

DSC =
2 ∑N

i Pigi

∑N
i p2

i + ∑N
i g2

i
(2)
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Figure 6. Aorta segmentation model.

2.7.2. Pulmonary Artery Segmentation Model

The pathological structure of the pulmonary artery is relatively variable in the direction
and shape of the blood vessels. From the cross-section of the CT image, it can be observed
that the shape of each slice is very different (Figure 7). To enable the model to learn the target
more accurately, this study designed this model as a two-channel model. In addition to the
original non-contrast-enhanced CT image as the input, the contrast-enhanced image learned
by the contrast enhancement model is used as the second channel to input the pulmonary
artery segmentation model. In addition, consistent with the aorta segmentation model,
this model also uses transfer learning for the augmentation training of the model. The
difference is that for the model to learn more accurate pulmonary artery voxel information,
the model will pre-train the segmentation model and then concatenate the weights obtained
in this pre-training with the training weights in the contrast enhancement model. Based
on this, transfer learning was performed on the pulmonary artery segmentation model, as
shown in Figure 8, to achieve a more complete pulmonary artery segmentation result.

Figure 7. Pathological shape images of pulmonary aorta in different slice of the computed tomogra-
phy images.

In this segmentation model, the combination of the weights obtained by segmentation
pre-training and the training weights in the contrast enhancement model is shown in
Figure 8. In this study, each layer of downsampling was combined individually to ensure
that, during the feature extraction stage, both channels maintained the training impact. The
model hyperparameters used in this study are presented in Table 1.
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Figure 8. Pulmonary artery segmentation model.

Table 1. Hyperparameters of the two types of models used in the proposed architecture.

AA and PA
Learning

Rate
Decay Epochs

Loss
Function

Spatial
Dropout

3D

Convolution
Kernel Size

Activation
Function

Output
Layer

Activation
Function

Contrast
enhancement

model 10−2 10−6 500

Combination
of MAE and

DSSIM 0.25 3 × 3 × 3 ReLU Sigmoid

Segmentation
model

Dice loss
function

2.8. Vessel Diameter Measurement

After obtaining the aorta and pulmonary artery from the two-stage segmentation
architecture, this study developed a mean diameter measurement method for both vessels
for the vessel diameter measurement segment required for assessing pulmonary hyper-
tension. To measure the vessel diameter, this study determined the centerline from the
segmented 3D vessel images. Find the corresponding blood vessel section by the point
on the centerline and calculate its diameter. After summation and averaging, the average
diameters of the two blood vessels were obtained. However, the vascular shape of the
pulmonary artery is more tortuous than that of the aorta; therefore, two different methods
were used in the anterior segment of the measurement process (Figure 9).

According to the characteristics of the aorta blood vessel itself, the blood vessel
was measured from 0.5 cm after exiting the heart to the position of 2.5 cm, as the range
for calculating the average diameter of the entire aorta. The blood vessel diameter was
measured (Figure 10). The original three-dimensional blood vessel is eroded to obtain a
region as a limiting range to find the center line; second, the direction vector between points
and the blood vessel surface are used. The normal vector is used as the inner product, and
the minimum inner product value between each candidate point is compared to select the
next point and so on until the entire blood vessel is searched; finally, the diameter of the
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blood vessel section perpendicular to the centerline of each segment is used to calculate the
average diameter.

Figure 9. Flowchart of diameter measurement.

Figure 10. Aorta diameter measurement method.

To obtain the average diameter of the pulmonary artery, this study first used skele-
tonization [24] to determine the rough centerline (Figure 11) and started to measure along
the main vessel of the pulmonary artery 0.5–1.5 cm from the position of the branch points.
Furthermore, the points on the centerline were discretized by interpolation. This step
smoothens the centerline. Finally, the diameter of the blood vessel section perpendicular
to each segment of the centerline was calculated at every 0.04-cm interval to obtain the
average diameter of the pulmonary artery.

Figure 11. Pulmonary artery diameter measurement method.

3. Results

3.1. Patient Clinicopathological Features and Perioperative Results

This study cohort comprised 179 patients diagnosed with lung cancer who under-
went lobectomies between 2011 and 2019. The mean age of all the 258 patients was
78.6 ± 3.3 years (range: 75−90). The majority of patients were females (64.2%) and non-
smokers (78.8%). The mean postoperative intensive care unit stay and hospital stay were
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0.3 and 5.3 days, respectively. There was no 30-day mortality in the study cohort. Patient
clinicopathological features and perioperative results are presented in Supplementary
Table S1.

3.2. Contrast Enhancement Model

In the first stage of the architecture, there was only a slight difference between the
contrast enhancement generated by the non-contrast agent CT image and the real contrast
agent CT image. The method developed in this study can significantly enhance the vascular
contrast of the non-contrast agent CT image, as shown in Figure 12.

Figure 12. (a) Non-contrast-enhanced chest CT, (b) enhanced image, and (c) contrast CT image.

3.3. Segmentation Model

The training curves of the segmentation model of the aorta and pulmonary artery in
this study are shown in Figures 13 and 14. It can be seen that regardless of whether it is the
segmentation of the aorta or the segmentation model of the dual-channel pulmonary artery,
in the later stage of model training, reliable and stable results can be achieved for both the
training dataset and the validation dataset.

Figure 13. Aorta segmentation model training curve: Loss, Dice curve.
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Figure 14. Pulmonary artery segmentation model training curve: Loss, Dice curve.

In the second stage of the architecture, the weights of the first stage are utilized by
transfer learning, which can improve the learning performance of the model. Therefore,
the segmentation results of the aorta and pulmonary artery by the method proposed in
this study can achieve Dice coefficients of 0.97 ± 0.007 and 0.93 ± 0.002, respectively, after
fivefold cross-validation.

In addition, this study compared the results of the proposed model with the unim-
proved 3D U-Net mentioned in Section 2.5, as shown in Table 2.

Table 2. Segmentation performance of the two-stage segmentation architecture.

Aorta Pulmonary Artery
Model DSC Model DSC

1-AA 0.97 ± 0.007 1-PA 0.91 ± 0.002
2-PA 0.93 ± 0.002

3D U-Net 0.87 ± 0.025 3D U-Net 0.87 ± 0.0004
1-AA, aorta segmentation model; 1-PA, one-channel pulmonary artery segmentation model by inputting non-
contrast-enhanced image; 2-PA, two-channel model by inputting non-contrast-enhanced image and enhanced
image; DSC, Dice similarity coefficient stage.

From the results, the two-stage DL segmentation model proposed in this study can
efficiently complete the three-dimensional segmentation of the two major blood vessels, and
for the difficult pulmonary artery, additional input imaging enhanced images can effectively
improve segmentation performance. Among them, the pulmonary artery segmentation
model adds contrast-enhanced images as the second channel, and it can be seen from the
segmentation results that its performance is better than that of the single-channel input
of only non-contrast-enhanced CT images. As shown in Table 2, the method proposed
in this study is far superior to the 3D U-Net in either aortic segmentation or pulmonary
artery segmentation.

4. Discussion

This study used fivefold cross-validation and DSC as the evaluation metrics, and the
results are shown in Table 2. For aorta segmentation, the performance of this segmentation
model was 0.97 ± 0.007, and it was only required to input non-contrast-enhanced CT
images, which was in line with clinical use. Pulmonary artery segmentation is more
difficult than aorta segmentation because of its complex vessel orientation. As shown in
Table 2, the result of this model is 0.91 ± 0.002 when inputting only non-contrast-enhanced
CT images, which is relatively poor. Therefore, this study adds the contrast-enhanced
images obtained in the first stage of the architecture to improve segmentation performance.
The result of this two-channel pulmonary artery segmentation model is 0.93 ± 0.002, which
is approximately 0.02 higher than the input of only non-contrast-enhanced CT images.
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To verify the effectiveness of the two-stage method in this study, we compared the
segmentation performance of several previous studies, as shown in Table 3 [25–39]. In
terms of aorta segmentation, the method proposed in this study achieved the highest
segmentation performance, whereas in terms of pulmonary artery segmentation, it was
only slightly inferior to the method developed by Gamechi et al. The method used in this
study still has a high-precision segmentation performance.

Table 3. Comparison of segmentation performance between the method in this research method and
those in previous research.

Method DSC

Aorta 2016 Jang et al. [25] 0.95 ± 0.02
2009 Išgum et al. [26] 0.87 ± 0.03

2012 Kurugol et al. [27] 0.93 ± 0.01
2013 Avila-Montes et al. [28] 0.88 ± 0.05

2017 Dasgupta et al. [29] 0.88 ± 0.06
2014 Xie et al. [30] 0.93 ± 0.01

2015 Kurugol et al. [31]. 0.92 ± 0.01
2019 Gamechi et al. [32] 0.95 ± 0.01
2018 Noothout et al. [33] 0.91 ± 0.04
2021 Lartaud et al. [34] 0.92 ± 0.02

2020 Haq et al. [35] 0.75 ≤ DSC ≤ 0.94
2020 Morris et al. [36] 0.85 ± 0.03

2021 Sedghi Gamechi et al. [37] 0.96 ± 0.01
Proposed method 0.97 ± 0.007

Pulmonary artery 2015 Xie et al. [38] 0.88
2018 López-Linares et al. [39] 0.89 ± 0.07

2020 Haq et al. [35] 0.80 ≤ DSC ≤ 0.91
2020 Morris et al. [36] 0.85 ± 0.03

2021 Sedghi Gamechi et al. [37] 0.94 ± 0.02
Proposed method 0.93 ± 0.002

In the past, research on segmentation of the aorta and pulmonary artery on CT images
has been conducted for many years. Therefore, this study also compared the performance
of a previous study with that of the method used in this study. Previous studies on aorta
segmentation mostly used images taken with a contrast agent for algorithm development.
Compared with images taken with a non-contrast agent, those taken with a contrast agent
has better vascular contrast and the vascular lumen presents a more obvious grayscale
contrast with the surrounding tissue. Therefore, blood vessel segmentation is easier to
perform. Jang et al. used CT images of contrast agents and proposed a method of automatic
segmentation of the ascending aorta using geodesic distance transformation combined
with Hough circles, which was applied to the diagnosis of cardiovascular diseases [25]. The
proposed method outperforms this method in terms of segmentation performance based
on non-contrast images; therefore, it is more competitive.

CT screening for early detection of thoracic cavity disease was performed without
contrast agents. In addition, contrast injections should not be used in patients with allergy
to these contrast media. Therefore, in recent years, most studies have been conducted on CT
images without the use of contrast agents. In studies on aorta segmentation on non-contrast
images, the following methods have been proposed based on prior knowledge of the vessel
shape [26,28–30,32]. Isgum et al. proposed a multiple atlas-based segmentation method
that registers multiple manually segmented atlas to the target image and uses decision
fusion to obtain segmentation results [26]. Avila-Montes et al. proposed the extraction of
the aorta centerline by Hough transform and dynamic programming and used the entropy-
based cost function for boundary detection [28]. Dasgupta et al. used the circular Hough
transform method to locate the vessel region to obtain aorta segmentation results [29].
Xie et al. proposed an algorithm that uses anatomy label maps and cylinder tracking to
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segment the aorta [30]. Gamechi et al. combined multi-atlas registration to obtain seed
points, aorta centerline extraction, and optimal surface segmentation to extract the aorta in
non-contrast-enhanced CT images [32]. However, the extraction of the aorta centerline or
boundary based on such shape priors is prone to errors in the locations where some vessels
are narrowed, dilated, or where plaques appear.

In a study based on the active contour [40] method to segment the aorta, Kurugol
et al. used the Frenet framework and 3D level set method to develop a fully automated
and unsupervised segmentation of the aorta. The Dice coefficient was 0.93 ± 0.01. The
aorta segmentation results can be used to quantify the degree of aorta calcification [27].
Kurugol et al. exploited the cross-sectional circularity of the aorta in axial slices and the
aortic arch in reformatted oblique slices to detect initial aorta boundaries and used the
3D level-set method to modify the final results. The efficacy yields a Dice coefficient of
0.92 ± 0.01 [31]. Shown in Table 3, such active contour-based methods have a slightly
higher average performance than those of studies that rely on shape priors.

In a study applying DL to aorta segmentation, Noothout et al. used a dilated convo-
lutional neural network for segmentation. To obtain the final segmentation results, the
probabilities obtained from the three planes were averaged per class. The Dice coefficients
were 0.83 ± 0.07, 0.86 ± 0.06, and 0.88 ± 0.05 for the aorta arch and descending aorta,
respectively, and 0.91 ± 0.04 for the aorta [33]. Lartaud et al. segmented multiple cardiac
anatomical structures on spectral dual-energy CT images by using a multi-label U-Net,
where a Dice coefficient of 0.92 ± 0.02 was obtained for the aorta [34]. However, the DL
method relies on effective feature learning of the model or huge training data. Therefore,
the aforementioned method has no obvious advantage over the traditional algorithm in
terms of performance results. Based on a DL network, this research uses transfer learning
through the first stage of the architecture. Thus, the effective learning of the model can be
enhanced, and better segmentation performance can be obtained.

Related studies on pulmonary artery segmentation include the following: Moses et al.
obtained a high correlation with the manually determined parameters for both mid-cross-
sectional area (R = 0.96) and length (R = 0.93) [41]. Xie et al. used the shape before using
the cylindrical registration method to segment the pulmonary artery and obtained the
mean diameter according to the triangular mesh model and the anatomy label map [38].
Román et al. proposed a 3D convolutional neural network architecture, using realistic
deformations to augment data, and obtained a Dice coefficient performance of 0.89 ± 0.07
for pulmonary artery segmentation in CT angiography images [39]. This shows that
segmentation of the pulmonary artery remains a challenge even with contrast imaging.

In the aforementioned studies, only one of the segmentation targets required in this
study was discussed, which could not meet the needs of this study to be applied to the study
of pulmonary hypertension. The following studies have discussed the segmentation of both
the aorta and pulmonary artery. Haq et al. established and validated a multi-label DL seg-
mentation model for 2D segmentation for automatic segmentation of 12 cardiopulmonary
substructures, including the aorta and pulmonary artery, with segmentation efficiencies
of 0.80 ≤ DSC ≤ 0.91 and 0.75, respectively, 0.75 ≤ DSC ≤ 0.94 [35]. Morris et al. used
a 3D U-Net to segment multiple structures of the heart and post-processed them using
3D-CRF. The result of the segmentation Dice coefficient of the aorta and pulmonary aorta,
collectively called Great Vessels was 0.85 ± 0.03. However, this study requires simultaneous
input of CT and magnetic resonance imaging images, which are difficult to obtain simulta-
neously under normal conditions [36]. Sedghi Gamechi et al. proposed to cut the centerline
based on the optimal surface map, and the Dice coefficient of the segmentation result can
be obtained as 0.94 ± 0.02 for the pulmonary artery and 0.96 ± 0.01 for the aorta [37].
However, this study is still based on shape priors; therefore, it is easy to encounter the
aforementioned problems.

In Table 3, the performance comparison results also show that the segmentation
models proposed in this study are superior to other methods in aortic segmentation and
only slightly inferior to those of the segmentation algorithms developed based on traditional
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methods in pulmonary artery segmentation. The method proposed in this study is a DL
model; therefore, it is more generalized and robust than traditional methods with good
architectural design and training. In the comparison of previous related studies that also
used DL models, it can also be seen from Table 3 that the method proposed in this study
achieved the best segmentation performance of the aorta and pulmonary artery among the
related DL methods.

Several studies have shown a correlation between preoperative pulmonary hyperten-
sion and postoperative complications [12,14]. The gold standard approach for the diagnosis
of pulmonary hypertension is the direct measurement of pulmonary artery pressure by
cardiac catheterization [12,14]. However, this invasive measurement method may not be
commonly used for preoperative evaluation of patients with lung cancer. Consequently,
owing to the relationship between elevated pulmonary artery pressure and vessel diameter,
recent studies have shown the correlation of enlarged pulmonary artery to postoperative
complications [42]. However, the method used in the previous studies was 2D measurement
of single-cut axial view contrast-enhanced computed tomography image. Automatic 3D
segmentation method for both the aorta and pulmonary artery on CT images to accurately
calculate the mean 3D diameter has not been reported before. Our proposed model may
automatically provide 3D diameter information of the aorta and pulmonary artery before
surgery, facilitating the estimation of pulmonary hypertension and supporting preoperative
surgical method selection based on the predicted surgical risks.

This study has the following limitations. In the pulmonary artery segmentation
model, the contrast enhancement model developed in the first stage of this architecture still
needs to be used to provide contrast-enhanced images as inputs for clinical applications.
Therefore, this model is more time-consuming and energy consuming than the aorta
segmentation model, and the input and model construction methods of this model can
be further improved in the future. Second, the types and quantities of data used in this
study need to be expanded and increased so that the model in this study can achieve more
effective generalization capabilities and improve the applicability of this study model on
various non-contrast-enhanced CT images, such as low-dose CT. Third, there are still many
artificial parameter settings in the calculation of the diameters of the two blood vessels,
which can be further improved into a more automated extraction method.

5. Conclusions

To overcome the difficulty of segmenting non-imaging CT images of the aorta and
pulmonary artery, this study proposes a two-stage DL segmentation architecture consisting
of a contrast enhancement model and segmentation model. This method uses transfer
learning to enhance the performance of the segmentation model. The DL method proposed
in this study can efficiently complete the segmentation of the aorta and pulmonary artery.
Compared with previous research methods for aorta and pulmonary artery segmentation,
this study can achieve a high level of segmentation performance. In conclusion, the
proposed model may provide the 3D diameter information of two arteries before surgery,
facilitating the estimation of pulmonary hypertension and supporting the preoperative
surgical method selection based on the predicted surgical risks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12040967/s1, Table S1: Patient clinic pathological
features and preoperative results.
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Abstract: Background: Electrical Impedance Tomography (EIT) is a radiation-free technique for image
reconstruction. However, as the inverse problem of EIT is non-linear and ill-posed, the reconstruction
of sharp conductivity images poses a major problem. With the emergence of artificial neural networks
(ANN), their application in EIT has recently gained interest. Methodology: We propose an ANN that
can solve the inverse problem without the presence of a reference voltage. At the end of the ANN,
we reused the dense layers multiple times, considering that the EIT exhibits rotational symmetries
in a circular domain. To avoid bias in training data, the conductivity range used in the simulations
was greater than expected in measurements. We also propose a new method that creates new
data samples from existing training data. Results: We show that our ANN is more robust with
respect to noise compared with the analytical Gauss–Newton approach. The reconstruction results
for EIT phantom tank measurements are also clearer, as ringing artefacts are less pronounced. To
evaluate the performance of the ANN under real-world conditions, we perform reconstructions on
an experimental pig study with computed tomography for comparison. Conclusions: Our proposed
ANN can reconstruct EIT images without the need of a reference voltage.

Keywords: artificial intelligence; deep learning; Electrical Impedance Tomography; lung imaging;
cardiopulmonary monitoring

1. Introduction

Electrical Impedance Tomography (EIT) enables the non-invasive visualization of the
dielectric properties of a medium of interest. EIT has a wide range of applications, including
the status monitoring of concrete [1], the monitoring of semiconductor manufacturing [2],
and observing cell cultures [3]. In the medical domain, the applications are broader, and
include the monitoring of lung recruitment and collapse [4], lung ventilation [5] and perfu-
sion, the monitoring of 3D brain activity [6], size and volume estimation of the bladder [7],
breast cancer imaging [8], and cardiopulmonary monitoring [9]. Here, EIT can be used
to assess metrics such as regional ventilation, end-expiratory lung volume, compliance,
regional respiratory system compliance, and regional pressure–volume curves [9].

The versatility of EIT stems from the fact that the measurements can be made non-
invasively and inexpensively. For an image to be reconstructed, electrodes need to be
placed around the domain. Small, low-frequency currents in the range of 100 kHz are fed
through these electrodes. Then, the voltage across the electrodes is measured, and an image
is reconstructed. Despite the advantages of EIT, it has one major drawback: it suffers from
a relatively low spatial resolution.
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This issue is due to the fact that EIT image reconstruction belongs to the class of inverse
problems [10]. Large changes in the conductivity of the medium may lead to only small
changes in the voltage measurements. To still be able to solve the problem, different types
of algorithms have been proposed in the literature. From a mathematical perspective, three
different types of algorithms can be distinguished.

The first set of algorithms is variational regularization methods. Their goal is to
minimize a cost function that contains two parts. First, the physical behavior of the
medium of interest is modeled. Given a set of voltage measurements, the algorithm helps
to find the best fit for the conductivities that could produce these voltages. Second, the
regularization strategy is applied, which plays a crucial role in finding a valid solution. Two
common examples of regularization strategies are total variation [11] and the Tikhonov
regularization [12].

The second type of algorithms is statistical inversion methods. Here, image reconstruc-
tion is modeled as a problem of statistical inference. The measurements and conductivities
are modeled as random variables from which an a posteriori distribution can be estimated,
through, e.g., Markov Chain Monte Carlo iterations. From this, the conductivity can be
derived [13]. This can be accomplished, by, for example, first obtaining a starting distribu-
tion through the one-step Gauss–Newton method. Thereafter, Markov Chain Monte Carlo
methods can be used to refine the starting distribution [14].

The final type is direct inversion algorithms. In these methods, the problem is an-
alyzed through the partial differential equations governing the system behavior. From
this, a solution strategy is developed. An example of these kinds of methods is the D-Bar
algorithm [15].

Artificial neural networks belong to the variational regularization methods, as they
solve the optimization problem once during training and then act like a complex look-up
table. The regularization performed by artificial neural networks is not straightforward:
first, the neural network architecture provides a part of the regularization. A very deep
architecture may provide sophisticated results for the training data set, but may lead to
profound over fitting, such that the results for slightly different data bring far worse results.
The second part of the regularization comes from the training data. There is no reference
technique to capture the conductivity distribution of body tissue. Thus, in EIT the training
data are simulated with the help of, for example, finite element method (FEM) software such
as EIDORS [16]. However, for simulations a multitude of assumptions have to be made:
What does the model shape look like? What are the electrode positions? Do they change?
What shape do the conductivity enclosures have? What is the range of conductivity? All of
these assumptions act as some kind of regularization.

Artificial neural networks are beginning to gain more relevance in the field of EIT.
In 2017, Kłosowski and Rymarczyk [17] presented an ANN with fully connected layers
and convolutional layers. However, the proposed ANN can only reconstruct single targets.
Their outputs are the coordinates and the radius of the conductivity enclosure. Other ap-
proaches used ANNs to enhance the reconstructions of traditional EIT reconstructions [18].
In 2019, Hu et al. [19] used the spatial invariant properties of the EIT to improve upon
these results. However, to aid in the reconstruction, their approach is based on calibration.
Thus, their artificial neural network is not usable when the background data are missing.
By contrast, Chan et al. [20] proposed a network which does not need this preprocessing.
However, the structure of the artificial neural network does not account for the symmetry
of EIT measurements. We settled for artificial neural networks, as they have been used in
the past within the domain of EIT and show the greatest potential due to their ability to
recreate non-linear functions.

In the following, we propose an artificial neural network structure which can recon-
struct images without dependence on a reference voltage, while still using the rotational
symmetry of EIT adjacent measurements in adjacent drive. We call this structure the
Reference Free Rotational Electrical Impedance Map Network (RF-REIM-NET).
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The novelties of this research are:

1. We use real-world animal trial data with CT references to confirm that RF-REIM-NET
gives meaningful results in such a setting.

2. Our training data are unbiased, as we used a conductivity range bigger than what is
expected in the thorax region and did not try to model the conductivity distributions
typically encountered in the thorax region.

3. We present a method for time-effective data augmentation using the existing training data.
4. Even though RF-REIM-NET uses fully connected layers, it still preserves the rotational

invariance of adjacent measurements.

2. Materials and Methods

2.1. Fundamentals

In EIT, the goal is to find an optimal conductivity distribution given a set of voltage
measurements. When using variational reconstruction methods, this is expressed as

σrec = arg min
1
2
‖F(σ)− Vmeas‖2 + λ‖Lσ‖2, (1)

where σ is the conductivity, F(σ) is the forward model, Vmeas is the measured voltage, λ is
the weighting of the regularization term and L is the regularization matrix. When using
artificial neural networks (ANNs), the general scheme of this minimization is still true;
however, it is achieved differently. While variational reconstruction methods minimize
each measurement according to Equation (1), ANNs will perform the minimization on a
given dataset. This can be formulated as

arg min
1
2

∥∥Y ′(Vmeas)− Y
∥∥2, (2)

where Y denotes the ground truth value and Y ′(Vmeas) denotes the ANNs output depending
on the input of the network. During runtime, the ANN behaves deterministically like a
look-up table. When assuming that the dataset represents real measurements, the ANN
still minimizes the actual measurements.

2.2. Electrical Impedance Maps

Hu et al., pointed out the advantages of packing EIT measurements into the electrical
impedance map (EIM). EIMs can be used to represent EIT data in adjacent–adjacent mea-
surement mode. For 16 electrodes, the data are represented in a 16× 16 matrix; see Figure 1.
Along the matrix column are the measurement electrodes, while the excitation electrodes
are arranged along the rows. EIM[j, k] contains the measurement of the jth electrode pair,
while the kth electrode pair drives the current. Since four probe measurements are used,
voltages from injecting electrodes cannot be used. On those spots, the EIM matrix is filled
with zeros, causing the superdiagonal, diagonal and subdiagonal elements to become 0.

When a conductivity distribution is rotated by an angle of 2πk
16 , where k is an integer

number, the features of the EIM map do not change. The features are moved diago-
nally across the image. Thus, a convolutional ANN can extract features from the EIM
independent of rotation.
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Figure 1. A 16 × 16 electrical impedance map (EIM) arrangement from an adjacent injection pattern.
The zeros represent values which are not gathered from adjacent–adjacent measurement mode, as at
least one electrode is used for current injection.

2.3. Training Data Set

In machine learning, the data set used for training is an important part of the algo-
rithm’s performance [21]. For EIT, there is no general high-resolution ground truth dataset.
Instead, the data have to be carefully designed. It is easy and tempting to craft a data set
that gives meaningful results on the available test data. If there is a relatively narrow band
of possible conductivities in the test data, using this conductivity band in the simulated
training data would bring a bias to the network—it might look better than it actually is.

To avoid this fallacy, we designed our data with as few assumptions as possible. We
used FEM simulations to create the training data. These simulations were executed using
EIDORS [16]. The first practical constraint faced was simulation time, and in general,
higher mesh density is better for the quality of the simulations. However, the time taken
for meshing and actual computation increases non-linearly. Thus, we used a mesh density
of 0.075, while the model radius was chosen to be 28, as this is a feasible trade-off between
simulation quality and computation time. Our domain shape was cylindrical. We used
16 electrodes, each with a height of 40 mm and a width of 20 mm. The electrodes were
placed equidistantly around the domain. This setup was chosen as it imitates the typical
measurement configuration of the clinically available device for thoracic images from
Draeger (Draeger Pulmo Vista 500, Draeger Medical GmbH, Lübeck, Germany).

2.3.1. Basic Object Shapes

To create conductivity enclosures, we used three different basic shapes: an ellipsoid,
a cube and an octahedron. The basic size of these objects is 1 in all directions, and their
center of gravity is in the origin of the coordinate system. To save computation time, we
did not re-mesh each impedance enclosure from scratch. Instead, we created a mask for
each conductivity enclosure and then changed the conductivities of mesh elements inside
the mask m. The formulas for the three basic shapes are given as:

masksphere = (x2 + y2 + z2) ≤ 1 (3)

maskcube = max(|x|, |y|, |z|) ≤ 1 (4)

maskoctahedron = |x|+ |y|+ |z| ≤ 1 (5)
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2.3.2. Transformation of the Basic Objects

Only inserting the same shape at the same place in the FEM model would be of no
use for real-world reconstructions. Thus, the basic shapes have to be transformed. Our
transformation involves the translation, rotation and scaling of the enclosures. This can be
mathematically described as:

v′ = (R(v − t))� s, (6)

where v = {x, y, z} is the coordinate vector, v′ is the transformed coordinate vector, t ∈ R
3

is the translation vector, R ∈ R
3×3 is the rotation matrix, s ∈ R

3 is the scaling vector and �
denotes the element-wise division.

The positioning of the enclosures is important. As the ANN should be able to detect
any conductivity enclosures in the domain with the same quality, the distribution of the
object’s center of gravity should be uniform across the domain. Thus, we sampled the
values of t from a uniform distribution, such that every component of t = {x, y, z} is well
inside the domain boundaries. Figure 2 gives a visual example of the transformations
applied to the data.

Each entry of the scaling vector s is uniformly sampled between 10% and 80% of the
model radius.

The angle of the rotation matrix R is uniformly sampled from [0, 2π), and thus the
basic shape can be rotated in any direction. This enables the ANN to learn features that are
valid for a variety of positions, as only the position of the feature changes. In Figure 2, the
transformation is visualized.

(a) (b) (c)

Figure 2. An example of the random transformation used in dataset generation, applied to a circular
shape. (a) Circle with offset. (b) Circle with offset and scaling. (c) Circle with offset, scaling
and rotation.

2.3.3. Conductivity Range

Another important degree of freedom is the conductivity range used. When using
EIT tanks for testing, the conductivity range of the test data is typically known. Thus, it
would be very tempting to just use this conductivity range for the training of the ANN.
However, in practice, the conductivity is typically not known to this level of detail. Through
a slice of the chest, conductivity values can range from 3.5 × 10−3 S/m (cortical bone) up
to 4.64 × 10−1 S/m (deflated lung) [22]. We used a range of 1 × 10−5 S/m to 1 S/m for the
background conductivity, as this covers the conductivity values typically encountered in
chest measurements, while at the same time providing a margin well outside to improve
generalization. The values were sampled uniformly from a logarithmic arrangement of
the mentioned conductivity range. This is also known as a reciprocal or log-uniform
distribution. This was chosen because the ANN should be able to differentiate objects
that are one order of magnitude bigger than the background, regardless of the actual
background conductivity.

The next step is an appropriate choice of the conductivity enclosures. As mentioned,
it is important that the ANN is able to distinguish conductivity contrasts. At the same
time, the ANN shall also be able to distinguish those contrasts symmetrically in the lower
and upper bound of the conductivity range. To achieve this, the enclosure’s conductivity
is chosen with respect to the background conductivity. This ensures that the ANN has
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no bias towards a conductivity contrast higher or lower than the background. Thus, the
enclosure conductivity is chosen by multiplying the background conductivity with values
from a range of 1 × 10−2 to 1 × 102. Again, this is sampled uniformly from the logarithmic
arrangement of those values.

In a real-world setting, conductivities are rarely perfectly homogeneous across a tissue
type. Because of this, the enclosures, as well as the background, are perturbed. We again
scale each node of the FEM model by different values. This is achieved by using a Gaussian
distribution with a mean value of 1. For each training sample and chosen conductivity
value, a different standard deviation (std) from 1 × 10−8 to 1 × 10−2 was chosen. When
the std is chosen, the values of one conductivity are perturbed by multiplication with the
sampled values.

2.3.4. Electrode Contact Impedance

Another effect to consider is the electrode contact impedance. Although the adjacent
drive pattern used here relies solely on four probe measurements and, thus, will reduce
the effect of electrode contact impedance, we included the effect into our training data.
We multiplied EIDORS default contact impedance by a value randomly sampled from a
Gaussian distribution with a mean value of 1. To simulate high and low differences, we
sampled the values from three different distributions with an std of 1 × 10−5, 1 × 10−3 and
1 × 10−1.

2.3.5. Measurement Noise

ANNs typically struggle with generalizing learned samples to cases that the ANN has
not yet seen [23]. To tackle this problem, further data augmentation strategies need to be
used. While the previously mentioned steps required new simulations for each training
sample, the following steps rely on already simulated data. This saves computation time.

EIT measurements can be affected by several sources of noise. Paired with the ill-
conditioned nature of the EIT problem, this can cause artifacts in the reconstruction. Often,
reconstruction algorithms have a hyperparameter, which in essence balances the robustness
to noise and the quality of the reconstruction. As for ANNs, the sensitivity to noise can be
adjusted through the noise in the training data.

A major component in EIT systems is the analog digital converter; the noise consists
primarily of thermal, jitter, and quantization noise [24]. The first two depend on the
magnitude of the signals. The greater the signal, the bigger the noise. We can model this by
multiplying the noise-free signal with a constant drawn from Gaussian noise:

Ui,j
ther,jit = Ui,j · nmult, nmult ∼ N (1, σ2), ∀i, j ∈ {1, . . . , 16} (7)

where Ui,j
ther,jit is the thermal noise-affected measurement, Ui,j is the noise-free measure-

ment and nmult is the noise sampled from a normal distribution. The quantization noise
does not depend on the signal level, and can be modeled by adding a noise term to the
voltage signals:

Ui,j
quant = Ui,j + nadd, nadd ∼ N (0, σ2), ∀i, j ∈ {1, . . . , 16} (8)

where Ui,j
quant is the quantization noise-affected measurement and nadd is the noise sampled

from a normal distribution. However, there is still another source of noise. Different
measurement channels of a given EIT system can have different gains. This is due to
different gains in the multiplexers [25]. The noise can be described through

Ui,j
gain = Ui,j · nmult, nmult ∼ N (0, σ2), ∀j ∈ {1, . . . , 16} (9)
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Note that this noise only affects one row of the EIM, compared with Equation (7), where
every entry is affected individually. For the additive noise, nadd a std of 1 × 10−8 was
chosen. For the multiplicative noise, nmult, an std of 1 × 10−6 was chosen.

2.3.6. Rotation of the Data

To specifically incorporate the rotational invariance into the ANN, the voltage data
were prepared with minimal computational costs, as follows. A shift of n columns along
the EIM results in a rotation of the reconstructed image by 2πn

16 . Thus, the target image
must be shifted according to that angle. To get rid of the rotational variance, we produced
15 additional shifted voltages for each training sample, described previously.

2.3.7. Alpha-Blending

With the given data set, there is still potential for obtaining entirely new training samples.
In the field of image classification, there is a technique called α-blending [26–28]. It produces
a new image from a linear combination of two other images, and an α ∈ [0, 1] factor weights
these images. An α of 0.3 would mean that the resulting image is a combination of 30% of the
first image and 70% of the second image. For EIT images, we can describe the technique as

σcomb = ασ1 + (1 − α)σ2 (10)

From Ohm’s law with conductivities and the constant injection current follows the
procedure to combine the voltages accordingly

Ycomb = αY1 + (1 − α)Y2 (11)

⇔ I
Ucomb

= α
I

U1
+ (1 − α)

I
U2

(12)

⇔ 1
Ucomb

= α
1

U1
+ (1 − α)

1
U2

(13)

⇔ Ucomb = (
α

U1
+

1 − α

U2
)−1 (14)

where Y denotes the admittance between the voltage measurement electrodes.

2.3.8. Conclusion on Trainign Dataset

All in all, the choice of the simulated training data was made such that it was as
realistic as possible, but at the same time no major assumptions were made on the structure
and content of the simulated data nor on the bias in the dataset (e.g., restricting conductivity
values to the range expected in the testing data). Furthermore, the described augmentation
techniques impose no bias on the simulated data.

2.4. On the ANN Structure

In the domain of classification, ANNs can often be separated into two parts. The first
part, consisting of convolutional layers, is used for the extraction of features, while the
second part is used for processing these features into educated guesses about the class label.
Two very famous examples are AlexNet and VGG19 [29,30]. The second part is realized
through fully connected layers. In this work, we modified this basic approach and tailored
it specifically for use in EIT. The structure can be seen in Figure 3. When calculating the
receptive field of the convolutional layers, it can be seen that the receptive field is of the
shape 21 × 21, although the EIM only has a shape of 16 × 16. However, Luo et al. showed
that the receptive field exhibits a Gaussian distribution [31], which means that features
in the center are strongly recognized by the network, while closer to the boundary the
features are less recognized. To dampen this problem, we increased the receptive field of
RF-REIM-NET.

From Figure 3, it can also be seen that the shape of the input after the convolutions
does not change. To achieve this, we used circular padding rather than the standard zero
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padding. This choice can be understood by the nature of adjacent–adjacent measurements.
On the boundaries of the EIM, values from the other side are inserted, as the neighbor of
the 16th electrode pair would also be the 1st electrode pair.

16×13 16×16 16×16×32 16×16×64 16×16×128 16×16×256

16×2048

16×4096
16×64×64 64×64

Input EIM Convolutional layers FC layers Sum Output

conv
3×3

conv
5×5

conv
7×7

conv
9×9

Figure 3. Illustration of the RF-REIM-NET structure. At the beginning, the 16 × 13 = 208 voltages
are transformed into an EIM. From these, features are extracted with the help of convolutional layers.
At the end, these features are processed by fully connected layers, which reconstruct the image for
each injection electrode.

Our proposed RF-REIM-NET structure also comes without any form of pooling layers.
In general, pooling layers tend to increase the efficiency of ANNs; however, this comes at
the cost of broken location invariant properties of the convolutional layers [32]. Another
problem is that down sampling, when carried out by pooling, causes aliasing [33]. Thus,
we did not use pooling and increased the receptive field of the RF-REIM-NET.

Instead of batch normalization, we used layer normalization. Instead of normalization
along the batch, layer normalization computes the normalization along the features of the
layer’s output. We found that this works best for training.

The second part of RF-REIM-NET consists of a fully connected layer, adapted such
that the rotational invariance is considered. The input to the first fully connected layer
has the shape 16 × 2048. This was purposeful, as the 16 represents the 16 different current
injection pairs. Thus, instead of passing a vector of 16 × 2048 = 32,768, 16 passes of a
2048 vector are used. This saves time during training and considerably decreases the size
of the RF-REIM-NET. The second fully connected layer works the same way, but at the
same time the output will be doubled to obtain a 64 × 64 reconstruction image.

2.5. Training of the Neural Network

Our training procedure was as follows. α-blending was used during training, and two
batches were randomly combined as described in the methods section. As a regularization
strategy, L2 weight regularization, dropout with a dropout rate of 0.1 and total variation
(TV) regularization were used. L2 weight regularization was added, scaled to the loss of
RF-REIM-NET, and can be described as

Lw2 =
N

∑
i=1

wi, (15)

where N is the total number of weights and wi is the ith weight. For details about dropout,
see [34]. TV regularization is commonly used for image de-noising and de-blurring [35].
The TV regularization loss is computed with

LTV = ∑
i,j
|Y ′

i+1,j − Y ′
i,j|+ |Y ′

i,j+1 − Y ′
i,j|, (16)

where Y ′ is the output of RF-REIM-NET.
For the loss function we used the mean squared logarithmic error (MSLE). This error

was chosen as our training data vary in orders of magnitude, and RF-REIM-NET should be
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able to predict the conductivities in the same way across the whole range. MSLE can be
described as

LMSLE =
1
N ∑(log(Y + 1)− log(Y ′ + 1))2, (17)

Y is the ground truth conductivity distribution.
The total loss of RF-REIM-NET is described by

Ltotal = Lw2 + λ1 · LTV + λ2 · LMSLE (18)

with λ1 = 0.1 and λ2 = 1 × 10−6.
RF-REIM-NET was then trained with the help of the TensorFlow [36] and the Adam

optimizer [37]. Additionally, we used a learning rate decay: whenever the loss reached a
plateau, the learning rate was reduced by 70%.

2.6. Evaluating RF-REIM-NET

We compared RF-REIM-NET to the standard Gauss–Newton (GN) reconstruction for
absolute EIT. To compare the two algorithms quantitatively, we used a modified version of
the GREIT figures of merit [38]. Some modifications were necessary, as the original GREIT
figures of merit only allow the evaluation of difference images.

First, the calculation of the evaluation mask needs to be modified. The median value
of the reconstructed image is subtracted from the original image,

σeval = σ − σ̃, (19)

where σ̃ denotes the median value of σ. The median was chosen, as it is more robust to
outliers in the data. When inserting only one target for evaluation, an ideal reconstruction
would have just two values, the background and the target. If we then subtracted the
mean, the background would be slightly negative. This is prevented with the help of the
subtraction of the median. The mask is then composed of all values, which are 50% less or
more than the minimum/maximum value. The choice is dependent on the value of the
target with respect to the background. In our evaluation case, the target is less conductive
than the background. Thus, our mask is defined as

m =

{
1 i f σeval <

1
2 · min(σeval)

0 else
, (20)

where m is the evaluation mask. We denote all pixels inside the mask as σ̂eval , while all
pixels outside the mask are denoted as ∼σ̂eval .

2.6.1. Amplitude Response (AR)

The AR is now defined as

AR = ∑ σ̂eval . (21)

The std of the AR should be low.

2.6.2. Position Error (PE)

The PE is defined as

PE =
√
( x(σ̂eval)− tx)2 + ( y(σ̂eval)− ty)2, (22)

where x denotes the x-component of the center of gravity, y denotes the y-component
accordingly, tx is the ground truth x-position and ty the ground truth y-position. The mean
and the std of the PE should be low.
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2.6.3. Ringing (RNG)

The RNG was defined as the std of all pixels outside the mask m. Formally, this is
written as

RNG = std(∼σ̂eval). (23)

The mean and standard RNG deviation should be low.

2.7. Evaluation Data

To validate our RF-REIM-NET, we used three different types of input and analyzed
the output according to the three introduced figures of merit (AR, PE and RNG).

2.7.1. FEM Data

First, we used FEM data that the network had not yet seen. Multiple enclosures were
simulated, and the enclosure was positioned such that it move from the domain center to
the outside. RF-REIM-NET is compared with GN. For the hyperparameter selection of GN,
we at first used the L-curve criterion, but did not find usable results. We are convinced
that this is due to the reference-free reconstruction, which destabilizes the EIT problem
compared with differential EIT. Thus, we made multiple sweeps of the hyperparameter to
narrow down the optimal hyperparameter iteratively.

2.7.2. Noise Performance on FEM Data

Second, we compared the noise performance on a FEM data sample. For that, an
enclosure near the boundary was simulated and the noise level was increased from 200 to
5 db. For evaluation, GN reconstructions are given.

2.7.3. Tank Data

Third, we used data from a circular EIT tank. The tank had a diameter of 28 cm and
had 16 electrodes attached equidistantly around the surface. The tank was filled with
0.9% saline solution and the target was a pickle with a circumference of 4.5 cm. The pickle
was moved from the center in the direction of one electrode in nine steps, where the last
position was 9 cm in front of an electrode. The measurements were performed with the EIT
evaluation kit 2 (Draeger EEK2, Draeger Medical GmbH).

2.7.4. Experimental Data

Finally, we give an impression of the performance of RF-REIM-NET on real-world
data. The data were taken from an experimental pig trial using a clinical EIT device (Draeger
Pulmo Vista 500, Draeger Medical GmbH). For the trial, eight pigs were anesthetized and
tracheotomized in supine position [39]. During the trial, CT measurements from the pigs
were taken. In our data sample, we used two measurement points from a single pig, which
was healthy in the time span we chose. The length of the data sample was around 30 s.

As there is no ground truth regarding the conductivity, we show two pictures. The
first picture shows the mean conductivity over an entire breathing cycle, while the second
shows the std over an entire breathing cycle. As the background, a CT image is given, as it
will give a sense of quality. This is given for transparency, as tank data have more ideal
conditions, which are closer to the training data. The absolute Gauss–Newton algorithm
did not yield any meaningful results after a thorough hyperparameter sweep and was thus
not given as a reference.

3. Results

At first, we give the results of simulated FEM data, outside the distribution of the
training data used to train RF-REIM-NET. The results for the figures of merit are given in
Table 1. The std of the AR is bigger for the GN algorithm; however, the std is one order of
magnitude lower compared with the mean. Visually, this is confirmed by the reconstructions
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in Figure 4. The AR for both reconstructions stays roughly the same. For the PE, GN has
a lower mean and std. The PE mean is half that of the RF-REIM-NET, while the std is a
quarter. The RNG for the GN is also lower compared with RF-REIM-NET. This, again, can
be seen in the images. The RNG for RF-REIM-NET is larger, due to the higher differences
in magnitude outside the mask m.
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Figure 4. Illustration of RF-REIM-NET (middle) and GN (bottom) reconstructions of FEM that mimic
the position of the tank pickle data. The ground truth target positions are given at the (top).

Table 1. Figures of merit for the simulated FEM data. Given is the mean ± std.

Algorithm/Metric AR PE RNG

GN 0.069 ± 0.0069 2.7 ± 1.1 0.11 ± 0.0094

RF-REIM-NET 0.066 ± 0.0046 5.6 ± 4.0 0.14 ± 0.019

To better see the difference between the original ground truth image and the recon-
struction, we present in Figure 5 the ground truth, the reconstruction of RF-REIM-NET
and the MSLE error. It can be seen that the error is for the most part on the edges of the
enclosures. In the second column, we can see that the middle target is barely visible in the
reconstruction.
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Figure 5. Illustration of RF-REIM-NET reconstructions on the validation dataset. At the top, the
original targets are given. In the middle, the reconstructions of RF-REIM-NET are presented. At the
bottom, the MSLE error between the original image and the reconstruction are presented.
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3.1. Noise Comparison on Simulated Data

Here, we compare the noise performance of the RF-REIM-NET compared with GN.
We positioned a target near the boundary of the FEM domain and simulated the voltages.
In Figure 6, the results can be seen. The reconstructions of RF-REIM-NET are more robust
to noise, compared with GN. At 100 db the reconstruction of GN is barely visible, while
RF-REIM-NET is still clearly visible. At 15 db the reconstruction of RF-REIM-NET begins
to degrade and also becomes less visible.
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Figure 6. Evaluation of the noise performance of RF-REIM-NET (top) compared with GN (bottom).
The columns represent different noise levels added with the EIDORS function add_noise. The target
position is equal to T6 in Figure 4.

3.2. Tank Results

Next, we provide the results from the tank measurement. As shown in Figure 7, the
pickle was moved from the center to an electrode. The reconstruction from the Gauss–
Newton algorithm shows a more diffuse boundary, while RF-REIM-NET has a more clear
boundary. The background from the Gauss–Newton algorithm shows many, but small
background disturbances, while the background of RF-REIM-NET has fewer disturbances,
where one is at the top and the other surrounds the conductivity enclosure.
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Figure 7. Illustration of RF-REIM-NET and GN reconstructions on the pickle measurements of the
tank dataset. The empty measurement was not used in both reconstructions, and is given only
for a better view of the reconstruction artifacts. Pickle 1 is the center pickle, while Pickle 7 is the
outer pickle.

These observations are also reflected in the figures of merit given in Table 2. The
mean and std of the AR from RF-REIM-NET are bigger than the ones of Gauss–Newton.
This can also be visually confirmed in Figure 7. The PE and its std, however, are lower
in RF-REIM-NET. The mean of the PE from RF-REIM-NET is ∼35% lower than that of
Gauss–Newton, while its std of the PE is ∼50% lower. The mean RNG of RF-REIM-NET
is 20% lower compared with Gauss–Newton. However, the inverse is true for the std: the
RNG std is 20% higher compared with Gauss–Newton. However, the std is 1

14 th of the mean.
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Table 2. Figures of merit for the tank experiment. The left number in each cell is the mean of the
metric, while the right number is its std.

Algorithm/Metric AR PE RNG

GN 0.1 ± 0.0056 11 ± 5.7 0.1 ± 0.0045

RF-REIM-NET 0.14 ± 0.0086 7.1 ± 2.9 0.08 ± 0.0054

3.3. Experimental Data

For the experimental data, only qualitative analysis is given. The results are shown in
Figure 8. On the left, a CT measurement is given to better judge the results. In the middle,
the mean reconstruction over 20 s of mechanical ventilation is given. At the top, there is an
artifact in the reconstruction. The two lungs are visible, but they are smaller compared with
the original size. The heart on the other hand, between the lungs and the artifact, matches
the position given in the CT image. The standard deviation picture on the right confirms
the findings. The artifact stays in the position, as the standard deviation is near zero at this
position. At the position of the heart a high standard deviation is visible, and the same
holds true for the lungs. The shape of the standard deviation picture for the lungs better
resembles the general shape of the lung.

CT image Reconstruction Mean

10−5 10−4 10−3

Reconstruction Std. Dev.

10−7 10−6 10−5

Figure 8. Comparison of the RF-REIM-NET reconstruction with CT scans. On the very left, the CT
scan of the pig thorax is given. In the middle, the mean over 20 s of mechanical ventilation is given.
On the very right the std is given.

3.4. Discussion

In the FEM setting, GN outperformed RF-REIM-NET in the metrics of PE and RNG,
both with the mean and the std. The mean and std of the AR are a little higher using GN.
However, the values only differ slightly. Thus, we would argue that GN outperformed
RF-REIM-NET in the FEM setting. This is probably due to the fact that the setting has not
much disturbance by factors such as hardware or the imperfect conductivity of the target.

In a tank setting, RF-REIM-NET has a lower mean PE and mean RNG. The PE also has
a std that is roughly half that of the GN PE std. This can be visually observed in Figure 7.
However, at the same time, the mean AR and its std is higher. This, again, can be seen
in Figure 7. In the samples “pickle 2”, “pickle 3” and “pickle 4”, the reconstruction is
clearly larger than in the other samples. In contrast, GN has a less clear object boundary.
Thus, we argue that on the tank dataset, RF-REIM-NET has a better performance. We
showed that RF-REIM-NET is able to give reconstructions from experimental data, even
though the ANN does not need any reference voltage, as can be seen in Figure 8. To
the best of our knowledge, this is the first work to evaluate the performance of ANNs
for EIT reconstructions on real-world experimental data from an ANN solely trained on
simulated data.

While the heart was reconstructed accurately, the lungs were too small, which is at
that point not fully useful for clinical diagnostics. Another shortcoming is the artifact at the
top, which constantly stays in that position. We assume that the artifact is due to electrode
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position errors. At the top of the picture, the EIT belt is closed. Thus, the electrodes have a
larger distance from each other at that place.

4. Conclusions and Outlook

We present an ANN (RF-REIM-NET) that is able to reconstruct conductivity enclosures
without using a reference voltage. RF-REIM-NET is inspired by ANNs that are commonly
used for classification: the first part of these ANNs extracts features, while the second part
is responsible for the evaluation. Compared with GN on FEM and tank data, our approach
tends to give clearer reconstructions. However, the images tend to be a little bigger than
in real life. We also showed the performance on real-world subject data. Compared with
GN, which did not obtain any meaningful reconstructions from the experimental data
set, RF-REIM-NET was able to give reconstructions. For future work, the network needs
to be made more robust against electrode position errors and domain shape influences,
which may be the biggest impact factors on the experimental data performance. Thus, in
the future, altering the electrode positions in the training data might improve the overall
reconstructions. Second, the boundary shape has to be altered more drastically, as this
might further increase the performance of RF-REIM-NET.
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Abstract: Classification of drug-resistant tuberculosis (DR-TB) and drug-sensitive tuberculosis (DS-
TB) from chest radiographs remains an open problem. Our previous cross validation performance
on publicly available chest X-ray (CXR) data combined with image augmentation, the addition of
synthetically generated and publicly available images achieved a performance of 85% AUC with a
deep convolutional neural network (CNN). However, when we evaluated the CNN model trained to
classify DR-TB and DS-TB on unseen data, significant performance degradation was observed (65%
AUC). Hence, in this paper, we investigate the generalizability of our models on images from a held
out country’s dataset. We explore the extent of the problem and the possible reasons behind the lack
of good generalization. A comparison of radiologist-annotated lesion locations in the lung and the
trained model’s localization of areas of interest, using GradCAM, did not show much overlap. Using
the same network architecture, a multi-country classifier was able to identify the country of origin of
the X-ray with high accuracy (86%), suggesting that image acquisition differences and the distribution
of non-pathological and non-anatomical aspects of the images are affecting the generalization and
localization of the drug resistance classification model as well. When CXR images were severely
corrupted, the performance on the validation set was still better than 60% AUC. The model overfitted
to the data from countries in the cross validation set but did not generalize to the held out country.
Finally, we applied a multi-task based approach that uses prior TB lesions location information to
guide the classifier network to focus its attention on improving the generalization performance on
the held out set from another country to 68% AUC.

Keywords: Tuberculosis (TB); drug resistance; deep learning; chest X-rays; generalization; localization

1. Introduction

According to the 2020 World Health Organization (WHO) report [1], it is estimated
that in 2019 about 10 million people fell ill with Tuberculosis (TB) and about 1.4 million died
from the disease. Based on the same report, it is estimated that in 2019 about 0.5 million
individuals were infected with rifampicin-resistant TB out of which about 400,000 were
multidrug-resistant.

Drug-resistant TB (DR-TB) is a growing public health concern requiring longer and
more complex treatment than drug-sensitive TB (DS-TB), in addition to incurring higher
financial costs. Treatment for DR-TB requires a course of second-line drugs for at least
9 months and up to 20 months, supported by counselling and monitoring for adverse
events. In comparison, treatment of DS-TB only lasts between 6–9 months. Early diagnosis
of DR-TB is crucial for selecting appropriate, patient-specific, treatment regimens. Thus,
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improving early decision making has the potential to increase favorable patient outcomes,
combat the spread of infection and reduce the overall financial costs associated with
the disease.

Currently, the diagnostic methods for identifying DR-TB infections require culture
and drug susceptibility testing. These procedures are not feasible globally, especially for
countries unable to scale up their testing capacities. An automated, low cost, computational
approach that utilizes readily available resources such as medical images and other clinical
information is thus desirable.

In the context of TB diagnosis, automated deep learning based systems which only
utilize Chest X-rays (CXRs) have seen significant success, with multiple commercial offer-
ings available [2,3]. In one evaluation study, these systems classified CXRs as TB/not-TB
with an Area Under the Curve (AUC) of above 0.9 [2]. In another study, they outperformed
radiologists, with two of the systems meeting the WHO’s target product profile for triage
tests [3].

Currently, discrimination between DR-TB and DS-TB using readily available clinical
images and possibly additional clinical side information is still an open problem. In this
work, we used both deep and classical machine learning algorithms to classify drug-
resistant (DR) and drug-sensitive (DS) tuberculosis in chest X-ray images, radiological
features, and clinical patient information. Specifically, we have:

• analyzed a state-of-the-art classifier in terms of its capability to generalize on unseen
data from another country. This has been an issue largely neglected by the research
community in the past. However, we show that a high classification performance is not
sufficient for practical usefulness. The capability to provide consistent performance
across different datasets, hospitals, and countries, is essential;

• investigated the problem of poor generalization to unseen data by comparing the
performance of the deep learning based classifier with other classifiers trained on
texture features extracted from X-ray images. We also explore if these generalization
problems exist in other clinical data, and if non-disease related attributes such as the
origin of chest X-rays can influence the drug resistance detection performance;

• studied explicit and implicit ways to steer the attention of the classifier. We use seg-
mented lungs as a means to guide the network to learn explicitly from the lungs. We
also propose a novel multi-task approach that uses prior information (TB lesions’ loca-
tions) to implicitly focus on the important regions and improve DR/DS classification
performance.

2. Previous Work

Attempts to utilize images and clinical data to distinguish between DR-TB and DS-TB
have been previously described in multiple publications. These works are either based
on the utilization of radiological findings identified in the image by a clinician or via
fully automated methods which receive as input the image and potentially other available
clinical data and output the likelihood for each of the two classes.

Several studies have shown that radiological findings based on a radiologist reading
of a CT or CXR have the potential to differentiate between the two classes. A literature
review from 2018 [4] concluded that the presence of thick-walled multiple cavities in the
images is a useful predictor for DR-TB, with good specificity but low sensitivity. Another
study [5] compared 183 DR-TB cases and 183 DS-TB cases from a single hospital. This study
concluded that there were substantial differences in findings between the two classes in
terms of lesion size and morphology. A slightly larger study [6], which compared 468 DR-
TB cases and 223 DS-TB cases concluded that a combination of the number and size of
consolidated nodules is a good predictor for DR-TB. Another, small study [7], utilized data
from 144 patients and found that the presence of multiple cavities is a good predictor for
DR-TB. A much larger study [8], compared 516 DR-TB and 1030 DS-TB cases, obtaining
an AUC of 0.83 using a regression model. This study observed that the co-existence of
multiple findings (multiple cavities, thick-walled cavities, disseminated lesions along the
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bronchi, whole-lung involvement) was indicative of DR-TB. Finally, more recent work [9]
compared 1455 DR-TB and 782 DS-TB cases, using two clinical features and 23 types of
radiological findings. A support vector machine was used to distinguish between DR-TB
and DS-TB with an AUC of 0.78. It should be noted that reliance on a radiologist reading is
a significant limitation. The lack of consensus on radiological findings for drug resistance
further hinders the clinical usefulness of these approaches. Because of these reasons, fully
automated solutions, described next, are more desirable.

Several fully automated solutions were presented as part of the ImageCLEF 2017 and
2018 evaluation challenge forums [10]. These challenges included a subtask, differentiating
between DR-TB and DS-TB using thoracic Computed Tomography (CT) images. This
classification task included 259 training images and 236 test images with about half of the
cases DR-TB and half DS-TB. Proposed solutions included Gentili et al. [11] who reformatted
the CT images to the coronal plane and used a pre-trained ResNet50 Convolutional Neural
Network (CNN). For the same challenge, Ishay et al. [12] used an ensemble of 3D CNNs
and Cid et al. [13] used a 3D texture-based graph model and support vector machines
(SVM). Allaouzi et al. [14] replaced the softmax function of a 3D CNN architecture with an
SVM to tackle this classification task. All entries had limited success, resulting in AUCs of
about 0.6. After two editions, the organizers removed the subtask from the competition
with the conclusion that “the MDR subtask was not possible to solve based only on the
image”. While these challenges did not yield the desired results, the results obtained using
radiologist readings are more favorable, suggesting that the sub-optimal performance
may be due to the small number of images available for training. It should be noted that
increasing the number of CTs for this task is not trivial as the use of CT imaging in DS-TB
cases is uncommon, with the standard imaging modality being CXR. The rare use of CT
imaging in standard practice, and the consequential lack of data to analyze, limits the usage
of CT images to train a model to distinguish between DR and DS-TB.

On CXR images, [15] utilized a customized CNN architecture to classify DR-TB and
DS-TB from 2973 images from the TB portals dataset. They achieved a classification per-
formance of 66%, which improved to 67% when follow up images were also included.
Our group has previously proposed fully automated methods utilizing CXRs as described
in [16,17]. In [16], we utilized 135 CXRs from a single source. Using a shallow neural net-
work we obtained an AUC of 0.66. In [17], we utilized a much larger dataset, 3642 images
from multiple sources. Using a deep neural network, InceptionV3 pre-trained on Ima-
geNet, we obtained an AUC of 0.85. This result is the current state-of-the-art performance
achieved on the TB portals data. This is a significant improvement of results from other
approaches. However, even though a 10-fold cross validation was performed, the capability
of the trained network to classify chest X-rays from unseen domains was not evaluated. In
fact, the common weakness of all of these automated methods is that they have not been
evaluated for generalization by separating the source of the data. As different medical
imaging technologies and devices produce different standards and quality of images, it is
important for our models to be robust to these changes.

An underlying assumption of most machine learning algorithms is that the population,
test, and training data are independent and identically distributed. If the two distributions
are different, then the learned parameters will not yield a good performance. That is,
the model will not generalize well to unseen data. While CXR imaging is a low cost
modality that is in widespread use, the variations in the standards of the acquired images is
significant [18,19], bringing into question the utility of any proposed method which is not
evaluated on its generalization capability. More specifically, Harris et al. [20] found that 80%
of published works on using CXR for TB diagnosis either used the same databases to train
and test their software, or did not comment on databases they used for testing their models.
Sathitratanacheewin et al. [21] also observed that a model for CXR-based TB diagnosis
performed well with 0.85 AUC when tested on images within their intramural dataset with
significant performance deterioration when tested on extramural images, yielding an AUC
of 0.7. For domain shift, when the change in image distribution between the training and
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testing sets is inevitable, it has been shown that these effects can be ameliorated if training
is formulated using a multi-task approach [22].

In addition to the generalization issues due to domain shift, the generalization of
deep learning algorithms can also deteriorate if they learn irrelevant features. This is a
specific shortcoming of deep learning algorithms as they do not preclude the algorithm
from learning features present in the training set that are arbitrarily correlated with the
disease, yet are completely irrelevant. These can stem from characteristics of the imaging
devices or clinical practices such as patient positioning [23–25] used at the specific locations.
If a model implicitly learns such features it will not generalize well when presented with
data obtained on different imaging devices or using different clinical workflows, both of
which are irrelevant to disease diagnosis.

In this work, we explore various strategies to improve the generalization of models
for classification of CXRs as DR-TB or DS-TB using various normalization and attention
mechanisms, both explicit (segmentation based) and implicit (multi-task based).

3. Data

3.1. TB Portals Data

The primary data source used in this work is from the NIAID TB Portals program
(https://tbportals.niaid.nih.gov (accessed on 10 January 2022)), with a public data re-
lease date of October 2020. The dataset contains clinical data and CXR images that are
anonymized and made available for public use [26]. Each patient record is manually an-
notated with clinical information and radiological findings based on the associated CXR
image. For this work, data from 1756 patients from ten countries were used. Table 1 shows
the data distribution based on country of origin and gender. It should be noted that the
TB portals data were collected with a primary focus on acquisition of drug-resistant cases
and cases that reflect the specific research interest at the country of origin. As a result, the
data are imbalanced in terms of the ratio between drug-resistant and drug-sensitive cases,
which does not necessarily reflect the prevalence of TB from either class in the contributing
country. Interestingly, we also see that the data are not balanced in terms of gender with
about double the number of males to females. This does reflect known differences in TB
prevalence in females versus males and has been linked to both societal and biological
differences between the sexes [27–29].

Table 1. Patient distribution from different countries and genders for the chest X-ray data used in
this work.

Country
Number of Patients

Drug-Sensitive Drug-Resistant Male Female

Belarus 118 344 294 168
Georgia 399 236 472 163
Romania 15 114 91 38

Azerbaijan 0 32 24 8
India 197 21 165 53

Moldova 12 32 37 7
Kyrgyzstan 0 18 11 7

Ukraine 8 25 25 8
Kazakhstan 15 53 36 32
South Africa 114 3 72 45

Total 878 878 1227 529

3.2. Clinical Data

The clinical data contain an extensive set of features associated with each patient.
This includes demographic data, radiologists’ findings for each CXR, different diagnostic
tests and treatment information. Additionally, it includes demographic features such as
age of onset, gender, patient type (New, Relapse or Failure), body mass index, country of
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origin, education, employment, number of daily contacts, number of children, prescription
drug usage, laboratory tests, treatment period, treatment status and outcome. The radi-
ologists’ findings include chest radiography patterns such as nodules, cavities, collapses
and infiltrates and their location in the lungs. Due to financial constraints and the size of
the TB portals CXR dataset, radiological findings are obtained using a single experienced
radiologist-reading per image. The whole dataset was annotated by multiple radiologists
from the countries contributing data to the program. Consequentially, the radiological
findings are not biased towards a single radiologist. Table 2 lists all finding types used by
the radiologists to annotate the images. These are abnormalities commonly associated with
TB. In addition to the type of abnormality, the findings are further differentiated based on
their size (small, medium, large) and number of occurrences (single, multiple).

Table 2. Twenty features derived from the presence of abnormalities that are localized to different sextants.

Types of Abnormalities

collapse small nodules
small cavities medium nodules
medium cavities large nodules
large cavities huge nodules
large cavity belonging to multiple sextants non-calcified nodule
multiple cavities clustered nodules
low ground glass density, active fresh nodules multiple nodules
medium density stabilized fibrotic nodules infiltrate: low ground glass density
high density calcification, typically sequella infiltrate: medium density
calcified or partially calcified nodule infiltrate: high density

3.3. Chest X-ray Images

All TB Portals CXRs used in this work are from a frontal, AP or PA, view and have
varied resolutions (206 × 115 to 4453 × 3719). The intensity range found in the images
also varies, with 1177 images having a low dynamic, intensities in the 0–255 range, and
579 images having a high dynamic, intensities in the 0–65,536 range.

It should be noted that the drug susceptibility label associated with each image is
obtained via drug susceptibility testing and is not derived from the image. Additionally,
the usage of radiological findings for predicting drug susceptibility has shown moderate
success. Thus, the question of whether good performance for predicting drug susceptibility
from CXRs from unseen sources is possible remains open.

In addition to the CXRs from the TB Portals program, we use a publicly available TB
CXR dataset collected from a hospital in China [30] (Download from http://openi.nlm.nih.
gov/imgs/collections/ChinaSet_AllFiles.zip (accessed on 10 January 2022)). This dataset
contains 662 frontal chest X-rays, of which 326 are labeled as non-TB cases and 336 are
labeled as TB. There are two sets of annotations where each abnormal TB image has been
manually annotated by two radiologists. Figure 1 shows one such segmentation.

Sextant Division

To further differentiate between radiological findings, we associate them with their
spatial location in the lungs. To do so, we define lung sextants by dividing each lung into
three equal sections from apex to base, as shown in Figure 2. The division of the sextants
can be subjective for findings close to sextant borders, when the division boundaries may
not be strictly adhered to by the annotating radiologist. In this work, we say a sextant is
affected by TB if at least one of the abnormalities listed in Table 2 is present in the sextant.
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Figure 1. Example of a lung segmentation for a nodule and a cavity.

Figure 2. Definition of six lung sextants. Abnormal annotations are assigned to one or more of these
sextant divisions.

3.4. Dataset Definitions

For our experiments, we only select the first image taken in the clinical process for a
patient; hence, the number of images is equal to the number of patients. All of our drug
resistance classification experiments feature an equal number of DR and DS patients in the
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training set. For data balancing, we use a conservative approach, excluding images from
the majority class. The subsets used for training and evaluation are listed below:

• Generalization Dataset (Gen. Dataset): A total of 1520 samples are selected for this
set, 760 samples for each class. All samples originating from the country Belarus
are excluded.

• Dataset with sextant annotations (Sext. Dataset): This set contains a total of 1118 samples,
559 samples for each class. This set also does not include any data from Belarus.

• Validation Set: This is a cross validation set, which varies for each fold. It contains
a randomly selected set containing 20% of the dataset (5-fold CV) for each cross
validation training. The numbers reported for the validation set are the average
performance values of all cross validation folds. Because, this would be a subset of the
above two datasets, no samples from Belarus will be present in this set either.

• Belarus Dataset: This dataset contains a maximum of 118 samples from each class with
236 samples in total. The Belarus dataset is used as the test set for most experiments.
When sextant-based data should be required, five samples from each class are removed
as they do not contain sextant information.

3.5. Data Standardization

Lung segmentation is used to explicitly address the challenges associated with gen-
eralization due to domain shift and the possible existence of confounding factors due to
class-correlated yet irrelevant features. Segmentation enables us to limit the input images
for the binary DR/DS classifier so that they only contain regions relevant for classification
of pulmonary tuberculosis, meaning the lungs. Additionally, the lungs are scaled to a
uniform size and position within the image, removing potential confounding factors such
as lung size and patient placement that are often correlated with the clinical sites and thus
with the local prevalence of TB types. Once the lung regions are segmented, the image
is cropped to the lung bounding box, Figure 3c, and all information outside the lung is
removed, Figure 3d.

For lung segmentation we initially utilized a publicly available U-Net model which
was trained on two datasets with a total of 385 images and corresponding manual lung
segmentations [30,31] (https://github.com/imlab-uiip/lung-segmentation-2d (accessed
on 10 January 2022)). Unfortunately, this model failed frequently when applied to the TB
portals images. Often, one or both sides of the lung were not segmented.

Furthermore, segmentation using this model failed on pathological lung regions in a
significant number of images, which is detrimental for disease analysis.

To address these performance limitations a U-Net based [32] segmentation model
with a ResNet50 backbone [33] was trained using the publicly available v7 COVID-19
X-ray dataset, which contains 6500 images and corresponding manual lung segmentations
(https://github.com/v7labs/covid-19-xray-dataset (accessed on 10 January 2022)).

As the TB portals dataset does not provide ground truth lung segmentations, results
were visually evaluated as either failure or success. The segmentation failure rates of this
model and the previous model were 0.06% and 3% respectively. Aside from that, the old
model segmented one of the lungs with less than 10% of the corresponding ground truth
pixels in 0.8% of the cases. No such cases were observed in the new model. Figure 4
illustrates the difference between the two models applied to the same set of 72 images.
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(a) Input CXR image (b) Binary Lung Mask

(c) Cropped Image (d) Lung Segmented

Figure 3. Original CXR (a) is fed to the U-Net, which outputs a binary lung mask (b) with which the
original CXR is cropped(c) and the lungs are segmented (d) in the cropped bounding box.

(a) (b)

Figure 4. Cropped images based on the lung segmentation results obtained using a publicly available
UNet model trained on the combined JSRT and Montgomery datasets (a), and using a customized
UNet model trained on the v7 COVID-19 X-ray dataset (b). The performance of the customized
model is clearly better. Note that if the segmentation fails, the entire image is used.
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4. Drug Resistance Classification

For classifying between drug-resistant and drug-sensitive TB, we primarily use the
chest X-rays but also utilize text data to assist with the classification and to compare
the performance when using just the images. Classic machine learning algorithms and
CNNs with pretrained weights were used on the clinical text data and chest X-ray images
respectively. Figure 5 shows the setup of our classification network where the preprocessed
chest X-ray image is the input and the prediction is either drug-resistant (DR) or drug-
sensitive (DS).

As the focus of this work is to evaluate, understand and propose solutions to the issue
of generalization to unseen data, we describe in the following subsections: (a) the need
of domain adaptation for a network to generalize to unseen data, (b) the use of radiomics
features derived from chest X-rays, (c) multi-task learning as a means to provide implicit
attention to the main task of DR/DS classification, (d) classifying per-sextant abnormality,
and (e) segmenting abnormal regions.

Figure 5. Standard CNN architecture for drug resistance classification. The Input (X) is a preprocessed
X-ray image with segmented lungs. The Output (Y) is one of two classes, DR-TB or DS-TB. For this
work, we use the ResNet18 [33] architecture as the backbone for all of our experiments.

4.1. Domain Adaptation

The distribution for which a trained model is tested can often be significantly different
from the distribution that it was trained on. There is no guarantee that a trained model will
be robust to data it has not seen before. Different acquisition standards [34], equipment, and
even personnel can create vastly different looking images for medical images. Even after
acquisition, other processing and storage differences can create differences in the images.
For a human, these variations may be easier to overcome but a machine learning model
needs to be trained to understand the differences. Either smart features and algorithms
need to be employed or a large and diverse set of data is required to train such a model.

Evaluation of models on unseen data from different domains is the logical way to
evaluate such models. Besides that, interpreting the model’s decision can also be valuable
to understand a prediction. For drug resistance TB classification, localizing the prediction
decisions is worthwhile, as tuberculosis itself is frequently observed in certain regions of
the lung.
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Furthermore, it is worth exploring how easily images from different domains can be
discriminated. Easily distinguishable domains in the input coupled with an imbalanced
dataset can readily result in failure to generalize.

The usage of transfer learning enables a model to adapt to the new domain, but is
less desirable when compared to a fixed model which does not require additional training
per domain. Starting from pretrained weights allows for the high-level features to be
consistent and not overly dependent on the domain of the training images. This explains
why networks initialized with pretrained weights consistently outperformed networks
randomly initialized [17].

4.2. Radiomics Features

Usage of explicit, engineered features can be used as a counter measure to prevent
a network from learning correlated, yet irrelevant, features within a dataset. Radiomic
features have been used to extract patterns that may have been missed by radiologists to
identify abnormalities present in medical images [35].

The features used in the paper include 2D-shape based features (e.g. axis lengths), first
order statistics (e.g. skewness), gray-level co-occurence matrix features (GLCM), gray-level
dependence matrix (GLDM), gray-level run length matrix (GLRLM), gray-level size zone
matrix (GLSZM) and neighbouring gray-tone difference matrix (NGTDM) features.

4.3. Multi-Task Learning

To encourage a network to focus on desirable localities, such that the network is
generalizing based on the actual abnormalities within the provided anatomical regions,
adding a secondary task sharing some of the features is a promising approach. When
networks have been trained to predict different but related tasks in tandem, performance
on each of the tasks have benefited [36]. The auxiliary information from a secondary task
can be beneficial to the main task and is useful to regularize the network as well.

A big motivation behind using multi-task learning for this work is the availability of
the radiologists’ annotations for different abnormalities in the lung, localized to the six
divisions (sextants) of the lungs. While this information will not be available during testing,
it can be utilized to regularize the main model and to focus the attention of the network to
supposedly relevant areas of the image. For our drug resistance classification, the network
consists of a pretrained CNN network that is trained with binary cross entropy loss. For
multi-tasked networks, the combined loss [37] for the two tasks is as follows:

L =
1
σ2

1
×L1(W) +

1
σ2

2
×L2(W) + log σ1 + log σ2, (1)

where W represents the weights of the network, and σ1 and σ2 are the noise parameters
for the respective tasks, which are used to determine the relative weights given to each of
the losses.

4.4. Abnormal Sextant Classification

The abnormal sextant information provides the locations of TB-related abnormalities
to the network. These are expert-annotated features that provide additional context and
information during DR/DS classification. Figure 6 shows the architecture for this type
of multi-task learning. The classification model is modified such that the output of the
last convolution layer is diverged into two stacks of fully-connected layers. The first
path is the same as the normal architecture where the network decides if the X-ray image
shows manifestations of drug resistance or drug sensitivity. The second path outputs a
vector of length 6. Each of the six values represents the presence or absence of any of the
20 abnormality features described in the Data section above. Hence, for each sextant, if one
of the abnormalities is present, the sextant is considered ‘abnormal,’ whereas if none of
the abnormalities is present, it is considered ‘normal.’ In Equation (1), L1 and L2 are both
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binary cross entropy losses in this case. For the secondary task, the loss is the average loss
among all six outputs.

4.5. Abnormality Segmentation

Segmenting abnormalities provides location information as the locations of each of
the sextants are also available. For this task, the losses from Equation 1 are modified such
that L1 is the binary cross entropy loss and L2 is the combination of Jaccard loss and
binary cross entropy loss for the segmentation of abnormal regions. Figure 7 shows the
modification of the base model into an encoder-decoder U-Net style architecture for the
additional task of abnormality segmentation. Two approaches are taken into account to
determine the abnormal ground truth regions.

4.5.1. Sextant Segmentation from Radiologist Annotation

The sextant annotations from the radiologist are converted into masks such that the
location information of each sextant is also available to the network. Each pixel in the
sextant with presence of any abnormality is set to 1, and 0 otherwise. This is similar to the
sextant classification with added information of the location of each of the sextants.

4.5.2. TB Abnormality Segmentation

Instead of using the abnormalities from clinical text data, we alternatively use the TB
abnormality segmentation network to derive the ground truth. The Shenzhen dataset with
annotations has a finer segmentation of abnormalities. In this approach, the chest X-ray
images are segmented for lesions using the network trained on the Shenzhen data [30].
The advantage of this approach is that even images without annotations can be used
for training.

Figure 6. Multi-output network with the same pretrained backbone (ResNet18) for the additional
task of abnormal sextant classification. The data used for this task is multi-modal. The inputs to the
network are the chest X-ray images, whereas the labels for abnormal sextants are derived from the
clinical text data described in Section 3.2.
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Figure 7. Multi-output network for the additional task of abnormality segmentation. The pretrained
backbone (ResNet18) is modified to be a U-Net with encoder and decoder. The inputs for this network
are chest X-ray images whereas the segmentation output masks are derived from the clinical text data.

5. Experimental Results

We perform our experiments with a 5-fold cross validation stratification. We also
separate 7.5% of the training data, to check inter-epoch performance and stop the model
early once the performance degrades for a long period on this set. The pretrained network
backbone, as described in Figure 5, is the ResNet18 [33] architecture. The number of
parameters for ResNet18 (11 million) are half of that of InceptionV3 (22.3 million), which
we previously used [17]. Even with the smaller network and smaller dataset (since samples
are held out), the performance on the validation set was 79% AUC. As we convert these
networks to a U-Net style segmentation network for secondary tasks, the difference in
parameters is increased even more. With the choice of ResNet18, we are able to transfer the
pretrained weights from ImageNet [38] and keep the number of total trainable parameters
small while having a consistent network to compare different approaches.

5.1. CNN-Based Drug Resistance Classification

To examine if our network is robust against domain changes and if it generalizes well
to unseen data, we exclude the data from one country before cross validation stratification
and use it as a held out set. As we see from Table 1, the only two countries that have more
than 100 samples in each class are Belarus and Georgia. Aside from these two countries,
every other country has less than 25 samples in the minority class. Choosing other countries
would lead to a highly imbalanced testing set or a testing set with very few samples per
class. When we excluded Georgia to use it as a held out set for evaluating generalization,
the total number of samples decreased by almost half. There were only 479 samples per
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class for the balanced training set. The AUC performance on the validation set was 78%
but the performance on the held out Georgia data was at 52%. Also, less than 25% of
the Georgia patients had sextant information available and hence the evaluation for the
multi-task learning was not feasible. The data from Belarus has been used previously
in [16], to both train and evaluate the classification of DR/DS TB from chest X-rays. Because
of these reasons, we only used the data from Belarus as our held out set and used Georgia’s
data as part of the training sets.

For our classification training, we experimented with two different sets of initialization
weights. The first set of weights is from the ImageNet classification task and the second
set is from the network trained for TB-abnormality segmentation described in Section 5.6.
When we trained the model with the cropped images (Figure 3c), similar to the previous
approach [17], the performance on the validation set was 73% AUC and on the Belarus
dataset it was 55% AUC.

In an effort to improve generalization, explicit attention on the lung regions was
provided by setting the areas outside the segmented lung to 0 (Figure 3d). This approach
improved the classification performance on each of the datasets. Table 3 shows that the
best AUC performance was observed on the validation set, using both the ImageNet
classification and TB abnormality segmentation weights, with 79% AUC. On the Belarus
dataset, the best AUC of 65% was observed with the dataset with sextant information and
with ImageNet weights. Achieving a much better performance with this approach, we use
the segmented lungs as an input to the following experiments.

Table 3. DR-TB/DS-TB Classification Performance on the Validation Set and the Belarus Set.

Validation Set Belarus Dataset

Trained on Initialization Weights AUC Accuracy AUC Accuracy

Gen. Dataset
ImageNet classification [38] 0.79 ± 0.03 0.72 ± 0.04 0.60 ± 0.01 0.55 ± 0.03

TB abnormality segmentation 0.79 ± 0.02 0.72 ± 0.03 0.60 ± 0.02 0.57 ± 0.02

Sext. Dataset ImageNet classification 0.77 ± 0.03 0.72 ± 0.03 0.65 ± 0.02 0.62 ± 0.02

5.2. Classification with Radiomic Features

With the usage of non-learnable features, some acquisition-specific details can be
hidden, which may be easily identified by a sufficiently large deep network. For this
purpose, 104 radiomic features are extracted with the aid of the pyradiomics (https:
//pyradiomics.readthedocs.io/en/latest/features.html (accessed on 10 January 2022))
library [35]. The library calculates the features based on the X-ray image and the mask of
the object of interest. We evaluate these features on both the lungs and the rest of the image
by providing the lung masks and the complement of the lung masks, respectively. For our
classifiers we use standard machine learning algorithms such as support vector classifiers
(SVC), k-nearest neighbors (k-NN), Random Forest (RF) and multi-layer Perceptron (MLP).

The support vector classifier achieved the best performance on the validation set and
the Belarus dataset, as seen in Table 4. Surprisingly, the best validation performance (74.5%)
was computed when the lung region was excluded, that is, only non-lung parts of the
image were used to derive these features. The performance on the Belarus dataset was
62.8%.

Table 4. AUC Performance with radiomic features.

Testing Data Input Data SVC k-NN RF MLP

Validation Set (Gen. dataset)
Lung only 0.722 0.681 0.725 0.720

Lungs excluded 0.745 0.688 0.732 0.725

Belarus dataset
Lung only 0.628 0.577 0.620 0.620

Lung excluded 0.583 0.563 0.621 0.530
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5.3. Classification with Sextant Divisions

The location of abnormalities are useful for classifying tuberculosis [39,40]. The
sextant-based annotations are localized features that show different abnormalities within
the lung. We also divide the chest X-rays into six divisions similar to how they were
annotated by radiologists.

We classify DR-TB and DS-TB from the annotations acquired and our divided chest
X-ray images. As described in Table 2, there are 20 such features for each of the sextants.
Hence, there are 120 features in total. Figure 8 shows how abnormalities are more frequent
in the apex of the lung.

Figure 9 shows the classification performance when individual sextants, the entire
lung, and top, bottom, and middle regions were evaluated regarding DR-TB vs DS-TB
classification. On the validation set, the CNN classifier trained on chest X-rays performed
indiscriminately to the lung location used for training. With the annotated data and classical
machine learning classifiers, the top sextants were more discriminatory than the bottom
sextants. On the Belarus dataset, however, classical machine learning classifiers were not
able to discriminate between the two classes with much success. An MLP (multi-layer
Perceptron) classifier was able to achieve 60% AUC performance. When a single sextant
was used, they all performed similarly at around 60%. Training on the entire image yielded
the best results (65%) on the CXR images.

When we reduce the number of features to use just the location information or the
type of abnormality, providing the location yielded better AUC performance (62.9%) on
the Belarus dataset. However, on the validation set, providing the type of abnormality
performed better (AUC of 70.0%) as shown in Table 5. ‘Location’ refers to the presence of any
abnormality in sextants whereas ‘Type’ refers to the presence of one of the 20 abnormalities
listed in Table 2 in any area of the lung.

Figure 8. Abnormality occurrence heatmap in different regions of the lung derived from radiologists’
annotated sextant data.
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Figure 9. Drug Resistance Classification—AUC performance on sextants.

Table 5. Performance when location and type are separated for annotated radiologic features.

Classifier:
Validation Set Belarus Dataset

Location Type Location Type

SVC 0.573 0.700 0.629 0.539
KNN 0.501 0.670 0.484 0.506

RF 0.547 0.687 0.527 0.497
MLP 0.505 0.663 0.596 0.504
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5.4. Classification with Data and Network Capacity Limitations

The classification performance with radiomic features derived from the non-lung
region also prompted us to further examine the performance of our CNN classifier with
limited information in Table 6. The limitations we added are regarding the input data and
the training networks.

To further investigate the bias in the data that is supposedly not related to the underly-
ing disease manifestations, we apply limitations to the information received by the network
or limit the capacity of the network itself. This was achieved by modifying the data as well
as the training network. Figure 10 shows examples of different ways the X-ray images were
manipulated to reduce the information input to the classifier network. The information
from the chest X-rays were limited or diminished by randomizing pixel locations. For
example, in a particular experiment, entire image intensities were randomized. This would
conceal the spatial relationships between pixels but still preserve the histograms and first
order statistics of image intensity values. For further experiments, only certain regions of
the image were randomized and the rest were set to 0. Lung masks were also used as input
where the pixel intensity values are lost but the shape of the lungs are still intact. Another
approach was subtracting the mean of the background (non-lung) and re-normalizing
each image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Different ways in which a chest X-ray image is modified to limit the information the
classifier relies on. Top (left to right): (a) Cropped X-ray image, (b) lung mask, (c) segmented lung,
(d) segmented lung with mean of background subtracted. Bottom (left to right): (e) Entire image
randomized, (f) lung pixels randomized with non-lung area set to 0, (g) non-lung pixels randomized
with lung pixels set to 0, and (h) lung pixels set to 0.

Table 6. Performance with input and model limitations.

Model Input Validation Set Belarus Dataset

Lung excluded 0.79 0.59
Histogram normalized (lung excluded) 0.74 0.58

Lung mask 0.61 0.55
Randomized pixels (entire image) 0.63 0.50

Randomized pixels (lung only) 0.64 0.50
Randomized pixels (lung excluded) 0.64 0.55

Frozen conv. layers (lung only) 0.66 0.62
Frozen conv. layers (lung excluded) 0.66 0.50
Background normalized (lung only) 0.75 0.61
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To limit the network and its capacity, all the convolutional layers of the CNN were
frozen (set to become non-trainable). These layers were used as a feature extractor and the
fully-connected layers acted as a trainable classifier. When the lung pixel values were set
to 0 (lung excluded), the performance on the verification test set (Belarus data) with the
CNN network was 59%. Histogram normalization did not yield better results for this. As
expected, when we completely randomized the pixel locations of the entire image or of the
lung regions the performance was random (50%) on the balanced Belarus dataset. Using
the shape of the lungs (lung masks) without the intensity values was enough to improve
that performance to 55%. When intensity values of the non-lung regions (background)
were provided, the performance further improved to 59%. On the same images, if the
background pixels were randomized again, the performance dropped back to 55%. This
series of results hints that the shape of the lung itself carries useful information. However,
it was interesting that the non-lung regions had a small contribution to the identification of
drug resistance. The performance on both datasets improved when the local information of
the non-lung regions was retained.

Freezing the convolutional layer weights (ImageNet weights) but allowing the fully-
connected layer weights to be trainable, the performance achieved was comparable at 62%.
Here, the frozen convolutional layers are acting as fixed feature extractors and the dense
layers are learning to interpret them. The approach and the performance were comparable
to using the radiomic features. Normalizing by subtracting the mean of the non-lung
regions from the lungs also had a similar performance of 61%.

5.5. Country Classification

Being able to identify the origin of the chest X-rays can be insightful in understanding
the extent of bias in the data based on the data origin and the acquisition standards within
a country. As seen in Table 1, the distribution of samples from different countries is not
uniform and neither is the distribution of samples of each class. The chest X-ray images
originate from a variety of imaging devices from hospitals in several different countries
with their own imaging protocols and other variances that affect image content. These
types of artifacts can often be identified by a deep neural network but may not be visible to
a human observer. The entire dataset was used for the country classification experiments.
Because the number of samples was imbalanced, we used weights based on the number of
samples for the categorical cross entropy loss function during our training.

The mean intensities of the input images to the training network were plotted to
observe the distribution differences across various countries in Figure 11. The width of
each violin plot represents the frequency of the mean intensity. Generally, the wider the
violin plot, the higher is the probability that the images of the respective country have the
corresponding mean intensity.The histogram equalization centers the mean of the images
intensities to zero for each of the countries and helps to reduce some of the bias present in
the dataset due to the images’ country of origin. The variance in the intensity distribution
is still present.

The multi-class country-of-origin classification from the X-ray images achieves an
accuracy of 85.7%. When histogram equalization is applied to the same images to remove
some of the intensity-based biases, performance decreased to 82.6%. These results show
that the models are very efficient in deriving the country of origin from the chest X-ray
images. Even with histogram equalization, the country classification performance did not
decrease sharply. This points to other biases in the data (potentially other acquisition biases)
that are not accessible like the country of origin.

We also performed a multi-class country-of-origin classification based on clinical text
data. Demographic features such as gender, age, and education, were included along with
radiological findings from chest X-rays (such as nodules, cavities, infiltrates, collapses,
etc.). The multi-class country-of-origin classification with seven demographic features and
20 radiological features resulted in an accuracy of 59.3%, and the classification with just
20 radiological features showed an accuracy of 35.2%. The confusion matrices in Figure 12
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show that the image-derived features have many fewer false predictions when classifying
the country of origin compared to the model trained on clinical features. The performance
of this classifier is based on clinical findings whereas the deep learning classifier is using
the image content which potentially includes information not related to the disease and
not visible to the human observer but detectable by the network, allowing it to obtain
better performance. Consequently, the DR/DS classifier also has access to this non-disease
specific information which may introduce confounding features into that model, improving
its performance on the trained domain but harming its generalizability.

5.6. Tuberculosis Abnormality Segmentation

Transfer learning with pretrained weights has been effectively used not only to reduce
training time compared to random initialization but also to obtain a better performance.
Intuitively, it makes sense to use TB abnormalities as priors to the drug resistance clas-
sification as well. Hence, we utilize the TB abnormality segmentation network to aide
the classification of drug resistance, using its weights and output for the multi-task clas-
sification. We use the Shenzhen dataset with TB lung lesions [30], which has two sets of
annotations for the same image.

The average segmentation overlap between the two sets of annotations was 0.538 (Dice
score). For the TB abnormality segmentation network, the cross validation Dice score was
0.636. The weights for this network are used to initialize the classification and multi-task
models. For the classification tasks, only the encoder weights were used, whereas for the
segmentation tasks all the convolutional layer weights were used.

Figure 11. Mean intensity distributions per country for the normalized cropped X-ray images (top)
and the same images after histogram equalization is applied (bottom).
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Figure 12. Summation of confusion matrices on test sets from 5 folds on the country-of-origin classi-
fication task. (top-left) Lung-segmented images, (top-right) histogram-equalized lung-segmented
images, (bottom-left) radiological and demographic features and (bottom-right) radiological features.
Note that the image-derived features have a significantly better performance than the disease-specific
radiological findings.

Table 7 shows that the annotations by radiologists matched with the abnormalities
identified by the TB abnormality segmentation model in each of the sextants and overall.
The average GradCAM [41] map values for each of the sextants was poorly correlated
with sextant annotations. Abnormality predictions were also derived from the mean of
the GradCAM heatmaps (with a threshold of 0.7) and compared with the abnormalities
from the TB segmentation model. On both of these, the top sextants had very little overlap
compared with the middle and bottom sextants. This result is contrary to expectation as TB
abnormalities are often seen at the top of the lung [42].

Figure 13 shows some examples of DR-TB and DS-TB. GradCAM heatmaps show
the average of activations from the last layer of a CNN. In these examples, it can be seen
that for the DR-TB class, activations are more frequent. This is consistent with previous
results [9], where DR-TB patients are shown to have more abnormalities in their lungs.
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Table 7. Comparison (AUC) of localized abnormalities from different sources tested on Belarus dataset.

Ground Truth: Sextant Annotations Sextant Annotations GradCAM (Predictions)

Prediction: TB Abnormal Seg. Prob. Map GradCAM (Heatmap) TB Abnormal Seg. Prob. Map

Top Right 0.788 0.469 0.518
Top Left 0.742 0.504 0.567
Middle Right 0.759 0.627 0.692
Middle Left 0.759 0.630 0.716
Bottom Right 0.808 0.642 0.699
Bottom Left 0.758 0.571 0.665

Overall 0.769 0.574 0.643

Figure 13. GradCAM visualizations on X-ray images. Top row shows examples of drug-sensitive TB
and bottom row shows examples of drug-resistant TB.

5.7. Multi-Task Based Classification

As an approach to assist the drug resistance classifier, a secondary task was added
to further incentivize the network to focus on relevant areas. The second task acts as a
regulator to constraint the neural network to focus on the interesting regions. ResNet18
was used as the primary backbone for the networks and layers were added to generate
output for the secondary tasks. Instead of experimentally determining the best loss weights
for the model, we allow them to be learnt by the model itself.

Initially, both tasks were given equal weights to allow the network to determine
which task needs to be focused. To restrain the scope of the work, while we monitored
the performance on the secondary class, we only used the performance on the main task
to determine our experimental setup and hence we report the performance on the main
task only.

While adding a related secondary task did not improve the drug resistance classifica-
tion on the validation set, the AUC performance on the Belarus dataset improved by about
2%–3% and accuracy improved by 1%. An AUC of 68% (±1%) was the best performance
achieved on the Belarus dataset as shown in Table 8.
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Table 8. Classification performance with an additional task.

Validation Set Belarus Dataset

Trained on Secondary Task AUC Accuracy AUC Accuracy

Abnormal Sextant Classification 0.77 ± 0.02 0.70 ± 0.02 0.64 ± 0.01 0.61 ± 0.03
Sext. Dataset Abnormal Sextant Segmentation 0.78 ± 0.02 0.70 ± 0.02 0.67 ± 0.01 0.63 ± 0.01
Gen. Dataset TB Abnormalities Segmentation 0.77 ± 0.02 0.69 ± 0.02 0.68 ± 0.01 0.63 ± 0.02

6. Conclusions

This paper explores the cross validation and generalization performance achieved for
drug-sensitive and drug-resistant classification on chest X-rays from different countries.
By excluding data from one country of origin from training and using it for testing, we
evaluate classifier performance on unseen data. The generalization performance was much
lower (65% AUC) compared to the cross validation performance (79% AUC). The same
CNN architecture was able to classify the country of origin from a chest X-ray image.
Evaluations with radiomic features from X-ray images, and experimental limitations to the
data and classifier, indicated that the model based its decisions on other artifacts present
in the images. TB lesions annotated by radiologists were utilized to see if the location
information was useful for discriminating between drug-resistant and drug-sensitive cases.
While GradCAM heatmaps from the X-ray image-based CNN model did not overlap
significantly with the TB lesions and the annotations from radiologists, adding a secondary
task related to the localization of lesions did improve the classification performance to
68% AUC. Because of an imbalanced dataset, insufficient amount of samples of one of the
two classes, and the lack of clinical text data describing the radiological findings for all
the patients, we only excluded one single country for our generalization evaluation. A
solution that does not require annotations by radiologists to improve the generalization
performance would be more valuable. Procedures and methods that allow the model to
pick up only the manifestations of disease are a direction for future research. In general,
we believe that experiments addressing generalization to new datasets should be standard
practice in medical image analysis with deep learning.
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Abstract: Background: Diagnosing cardiac amyloidosis (CA) from cine-CMR (cardiac magnetic
resonance) alone is not reliable. In this study, we tested if a convolutional neural network (CNN)
could outperform the visual diagnosis of experienced operators. Method: 119 patients with cardiac
amyloidosis and 122 patients with left ventricular hypertrophy (LVH) of other origins were retrospec-
tively selected. Diastolic and systolic cine-CMR images were preprocessed and labeled. A dual-input
visual geometry group (VGG ) model was used for binary image classification. All images belonging
to the same patient were distributed in the same set. Accuracy and area under the curve (AUC)
were calculated per frame and per patient from a 40% held-out test set. Results were compared to a
visual analysis assessed by three experienced operators. Results: frame-based comparisons between
humans and a CNN provided an accuracy of 0.605 vs. 0.746 (p < 0.0008) and an AUC of 0.630 vs.
0.824 (p < 0.0001). Patient-based comparisons provided an accuracy of 0.660 vs. 0.825 (p < 0.008) and
an AUC of 0.727 vs. 0.895 (p < 0.002). Conclusion: based on cine-CMR images alone, a CNN is able to
discriminate cardiac amyloidosis from LVH of other origins better than experienced human operators
(15 to 20 points more in absolute value for accuracy and AUC), demonstrating a unique capability to
identify what the eyes cannot see through classical radiological analysis.

Keywords: cardiac amyloidosis; AL/TTR amyloidosis; hypertrophic cardiomyopathy; left ventricular
hypertrophy; deep learning; convolutional neural network

1. Introduction

Cardiac amyloidosis (CA) is a specific cardiomyopathy caused by the deposition of
misfolded amyloid fibrils in the extracellular myocardial space. Light-chain (AL) and
transthyretin (TTR) are the most common subtypes. Cardiac amyloidosis is a fatal disease
requiring rapid diagnosis for patients to benefit from recently released medications [1–3].
Its diagnosis has gained significant improvements in recent years, in particular with the
recognition of diphosphonate SPECT imaging for the identification of the TTR form of the
disease [4].

MRI plays an important role in this field thanks to gadolinium injections providing
quite a specific pattern of myocardial late-enhancement [5] and demonstrating highly
relevant extracellular volume (ECV) increase [6]. Despite recent relief in the restrictions
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on the use of gadolinium chelates [7], caution needs to be exercised in case of renal im-
pairment, and a diagnostic approach without injection would be beneficial. Steady-state
free precession (SSFP) cine-CMR is a basic method in cardiac MRI, offering a good quality
morphological and functional depiction of important cardiac features [8]. Myocardial wall
thickening, atrial enlargement and pericardial or pleural effusion constitute the hallmarks
of amyloid cardiac involvement [9]. However, these signs are very nonspecific since they
are also seen in many other etiologies of left ventricular hypertrophy such as advanced
hypertensive disease, aortic stenosis and other overload diseases such as Fabry disease and
sarcomeric hypertrophic cardiomyopathies, which is why cine-CMR alone is not recognized
as effective for diagnosing cardiac amyloidosis.

Machine learning and, particularly, deep learning applied to imaging quickly estab-
lished themselves in most pathological areas, and these methods are now recognized as
having diagnostic capacities similar to experienced radiologists, particularly in cardiomy-
opathies [10] and cardiac amyloidosis [11]. An even more interesting fact concerns the
superior diagnostic capacities of deep learning over human readers in some fields, such
as breast cancer [12], especially its ability to identify pathologies invisible to the naked
eye, such as abnormalities discernible only in immunohistochemistry or through genetic
analysis. For example, deep learning was reported to be efficient in improving mutation
prediction in hypertrophic cardiomyopathy using MR-cine images [13].

This innovative concept led us to initiate the present study in which we compared the
performance of commonly available deep learning methods to experienced radiologists to
discriminate cardiac amyloidosis from other myocardial hypertrophies based on cine-CMR
alone. Moreover, we explored the capacity of deep learning to differentiate AL from TTR
amyloidosis, which is not reliably achievable visually with cine-CMR.

2. Materials and Methods

2.1. Study Population

We retrospectively analyzed the cine-CMR sequences of patients performed between
2010 and 2020 in the radiology department of our hospital. This study was registered and
approved by the Institutional Review Board of our university hospital, and all datasets
were obtained and de-identified, with waived consent in compliance with the rules of our
institution. The cine-CMR exams of 241 patients were studied, including 119 with histolog-
ically proven amyloidosis and 122 with left ventricular hypertrophy without amyloidosis
(LVH). The patients’ characteristics are listed in Table 1.

The left ventricular hypertrophy without amyloidosis group (n = 122) consisted of
patients referred to CMR for suspected cardiac amyloidosis due to several suggestive
features such as a heart failure episode, thickening of the myocardial walls on ultrasound
examination, restrictive transmitral Doppler filling pattern, reduced longitudinal strain with
apical sparring, monoclonal gammopathy or dubious Perugini grade 1 bone scintigraphy.
Other cases presented a CMR of concentric left ventricular hypertrophy (left ventricular wall
thickness ≥13 mm in diastole). The clinical context was consistent with hypertension, aortic
stenosis or non-obstructive hypertrophic cardiomyopathy. Late-enhancement imaging
obtained in all cases never demonstrated circumferential subendocardial or diffuse late-
enhancement patterns suggestive of amyloid involvement.

For the amyloidosis group (n = 119), the selection criteria for amyloidosis diagnosis
were based on typical CMR features confirmed by clinical, biological, bone scintigraphic
and anatomo-histological findings. Left ventricular wall thickening (≥13 mm in dias-
tole), left ± right atrial dilatation, increased native myocardial T1 relaxation time and/or
extracellular volume (ECV), pericardial or pleural effusion and typical subendocardial
late-enhancement pattern (circumferential, diffuse or not related to a coronary territory)
were the main diagnostic clues for amyloidosis.
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Table 1. Clinical and CMR characteristics of the study population.

Amyloidosis LVH p

N patients 119 122

Age (years) 74.65 ± 9.53 59.50 ± 14.34 0.0001

Sex (F/M) 31/88 39/83 0.31

Weight (kg) 70.80 ± 15.16 82.95 ± 20.50 0.0001

Height (m) 169.9 ± 8.84 170.36 ± 10.05 0.78

BSA (m2) 1.84 ± 0.22 2.00 ± 0.27 <0.0001

IVS (mm) 18.11 ± 3.54 18.38 ± 3.54 0.56

LVMI (g/m2) 115.96 ± 29.08 116.58 ± 31.43 0.88

LVDVI (mL/m2) 69.88 ± 22.21 74.51 ± 20.82 0.36

LVEF (%) 58.96 ± 10.93 67.33 ± 12.18 <0.0001

LA surface (cm2) 31.55 ± 5.23 25.47 ± 5.96 0.0002

Systolic time (ms) 321 ± 39 332 ± 40 0.095

T1 (ms) 1138.5 ± 48.1 1038.0 ± 56.2 <0.0001

ECV (%) 53.97 ± 11.17 26.89 ± 4.00 <0.0001

N long axis frames/patient 2.24 ± 0.93 2.22 ± 0.94 0.93

N short axis frames/patient 3.41 ± 1.45 3.59 ± 1.27 0.49

N frames/patient 5.68 ± 1.85 5.47 ± 1.81 0.58

N frame post-gadolinium 171/676 167/667 0.96

N patient with pericard. 54 (45%) 27 (22%) 0.00013

N patients with pleural. 45 (38%) 10 (8%) 0.00001

N patients with both. 24 (20%) 3 (2.5%) 0.00001
The characteristics of patients with amyloidosis and left ventricular hypertrophy were included in this study. The
number of observations, (integer) or average values ± standard deviation, are listed: BSA: body surface area; IVS:
interventricular septum thickness; LVMI: left ventricular mass index; LVDVI: left ventricular diastolic volume
index; LVEF: left ventricular ejection fraction; LA: left atrial; systolic time: the time of the systolic image; and ECV:
extracellular volume. Between the parentheses is the percentage. Pericard. is for pericardial effusion, pleural is for
pleural effusion and both is for pericardial + pleural effusions.

The characteristics of AL and TTR patients can be found in the supplemental material
(Table S1). TTR amyloidosis was defined in 38 patients without monoclonal gammopathy
and with a 99mTc-diphosphonate SPECT Perugini score of >1 or with amyloid deposits on
an extracardiac and/or endomyocardial biopsy. AL amyloidosis was reported in 59 cases,
based on the detection of a kappa/lambda free light-chain with monoclonal gammopathy
and an extracardiac and/or endomyocardial biopsy. Among the 22 patients who were
not categorized as AL or TTR, three were AA type, three had uncertain immunostaining,
one had Perugini 1 and no gammopathy, four elderly patients died and 11 were lost to
follow-up.

For the cine-CMR acquisitions, all images were obtained at 1.5 Tesla, using three
Siemens (Erlangen, Germany) and one Philips (Eindhoven, The Netherlands) scanners.
Steady-state free precession (SSFP) cine sequences were obtained with TE/TR 1.6/3.5 ms, 8
to 32 elements cardiac coil and 6 to 8 mm thick slices. End-systole (with the smallest left
ventricular dimension) was visually selected (systolic time in Table 1). Orientation planes
were long axis (4-chamber and vertical 2-chamber views) and short axis views. Table 1 lists
the summary of acquisition parameters.
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2.2. Image Preparation

The image preparation of cine studies exported from the PACS of our hospital was
carried out with a dedicated Visual C software. All images were first de-identified and
resampled (bilinear) in order to obtain a normalized homogeneous pixel size of 1.5 mm.
The images’ intensity windowing was manually focused on the central cardiac region of
interest. Diastolic and systolic frames were selected. Epicardial contours (ROI_epi) and
myocardial contours (ROI_myo) were manually drawn.

Finally, five pairs of images (cropped to 128 and 160 pixels, full view 256 pixels,
ROI_epi and ROI_endo), as illustrated in Figure 1, were stored. The purpose of these
tests (especially for ROIs) was to determine if a focused analysis led to better classification
performance. Labeling (orientation plane, pathology, presence of effusion and gadolinium
injection) was carried out simultaneously and saved in the labeled file.

Figure 1. Example of input shapes submitted to the CNN, with native 256 × 256 full image format
(A), 224 × 224 cropped image (B), 160 × 160 cropped image (C), 128 × 128 cropped image (D),
epicardial region of interest (ROI) image (E) and myocardial ROI (F).

2.3. Deep Learning Process

CNN implementation was performed in Python 3.7.6, with Keras library and Ten-
sorFlow backend. According to CLAIM recommendations [14], the data were distributed
in order to ensure that images of the same patient always lie in either the train set, the
validation set or the test set (no mixture between these sets).

For hyperparameter trimming, data processing was performed according to the dia-
gram shown in Figure 2. A 40% test set (538 pairs of frames and 96 patients) was isolated
and stored as a held-out test set. With the 60% remaining data, a three-fold cross-validation
training was performed in order to trim hyperparameters (batch size, optimizer, learning
rate, decay, number of trainable layers, dropout rate and parameters of the image data
generator). This was done to avoid the influence of individual training and validation
examples on the choice of hyperparameters.
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Figure 2. Schematic view of the processing method used in order to strictly separate train-
ing/validation data and test data.

With optimal hyperparameters, a final model was built with all training data and
evaluated on the test set. Patient-based metrics were calculated from the average of the
predicted probability corresponding to all frames of a unique patient.

A VGG16 [15] base model was used and trained from scratch for diastolic and systolic
frames. The two outputs (diastole and systole) were concatenated and followed by the
following layers, where ReLU non-linearity was used after each Dense layer except the
last one: Flatten, Dense 256, Dropout 0.40, Dense 128, Dropout 0.45, Dense 64, Dropout
0.50, Dense 1 and output Sigmoid activation layer. In the final model, training was done
with batch size: 32; number of epochs: 150; optimizer: SGD; LR 4 10−5.; and decay: 10−6.
Binary cross entropy was used as a loss function. The parameters of data augmentation
applied during training were zoom range <0.15, 15% height and width shift range and up
to 20◦ rotation.

The Grad-CAM algorithm [16] was used to visualize class activation maps. With this
algorithm, the identification of the most contributive pixels involved for each class is related
to the gradient information flowing into the final convolutional layer of the network.

2.4. Experienced Radiologists/Cardiologists Blind Reading

The blind reading of diastolic and systolic images was performed by one radiologist
and two cardiologists (>10 years’ experience of CMR analysis and reporting). Frame-based
reading was obtained from the pairs of images corresponding to the test set. Patient-based
reading was obtained from the whole dataset (241 patients), and paired comparisons were
made with the 40% held-out test set (average number of frame pairs, 5.5 per patient).

2.5. Evaluation and Statistical Analysis

The performance metrics—computed on a frame-basis and a patient-basis—were test
accuracy, sensitivity, specificity, confusion matrices, receiver operating characteristic (ROC)
curves and precision-recall curves with the corresponding area under the curve (AUC) val-
ues. Testing the relationship between categorical variables (e.g., accuracy comparisons) was
carried out with a Chi-square test. A comparison of the quantitative values was performed
with Student’s t-test, and a comparison of the AUC of ROC curves was performed with the
Delong test. MedCalc 12.1.4 (MedCalc Software, Ostend, Belgium) was used for statistical
analyses.
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3. Results

3.1. Amyloidosis vs. LVH Classification Obtained with the Held-Out Test Set According to the
Input Shape

Table 2 lists the results obtained with the various input shapes illustrated in Figure 1.
Patient-based results were always better than frame-based results.

Table 2. Accuracy and AUC of the ROC curve for classification of amyloidosis vs. LVH in the 40%
held-out test group, according to the input shape.

Frame-Based Patient-Based

Input Shape Accuracy ROC AUC Accuracy ROC AUC

160 × 160/D + S 0.759 0.836
[0.786–0.878] 0.812 0.937

[0.828–0.987]

160 × 160/D 0.760 (ns) 0.820 (ns)
[0.769–0.864] 0.833 (ns) 0.918 (ns)

[0.802–0.978]

160 × 160/S 0.733 (ns) 0.801 (0.04)
[0.749–0.848] 0.833 (ns) 0.890 (ns)

[0.767–0.962]

256 × 256/D + S 0.710 (ns) 0.790 (0.03)
[0.735–0.836] 0.771 (ns) 0.803 (0.02)

[0.663–0.904]

224 × 224/D + S 0.728 (ns) 0.823 (ns)
[0.772–0.867] 0.812 (ns) 0.852 (ns)

[0.720–0.938]

128 × 128/D + S 0.740 (ns) 0.808 (ns)
[0.756–0.853] 0.812 (ns) 0.922 (ns)

[0.807–0.979]

Epicardial ROI 0.722 (ns) 0.787 (0.01)
[0.762–0.810] 0.791 (ns) 0.888 (ns)

[0.839–0.927]

Myocard. ROI 0.662 (0.05) 0.719 (0.01)
[0.693–0.745] 0.714 (ns) 0.814 (0.03)

[0.756–0.863]
Results obtained with the 40% held-out test set after hyperparameters tuning. 160 × 160 indicates the cropping
size of input frames. D and S indicate diastole and systole. Between brackets is the confidence interval of AUC.
Values between parentheses indicate the level of significance of the difference as compared to the 160 × 160 D + S
result (assessed with Chi-square test from the number of observations for accuracy and assessed by Delong test
for AUC comparisons).

Optimal performance was obtained with 160 × 160 cropped diastolic and systolic
images in which per frame analysis provided a test accuracy of 0.759 and an AUC of 0.836,
whereas per patient analysis provided a test accuracy of 0.812 and an AUC of 0.937.

Combining diastole and systole did not improve the results. Full field 256 × 256
frames and focused myocardial ROI images provided significantly weaker results.

3.2. Amyloidosis vs. LVH Classification Obtained with the Held-Out Test Set by Human Readers
and by CNN

The comparison between classification by experienced radiologists/cardiologists and
the CNN is given in Table 3. The CNN provided a largely superior performance when
compared to human readers.

Frame-based comparisons of human vs. CNN classification led to an accuracy of 0.605
vs. 0.746 (p < 0.0008) and an AUC of 0.630 vs. 0.824 (p < 0.0001).

Patient-based comparisons provided an accuracy of 0.660 vs. 0.825 (0.008) and an AUC
of 0.727 vs. 0.895 (p < 0.002). The ROC curves of these comparisons are plotted in Figure 3.
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Table 3. Accuracy and AUC of the ROC curve for classification of amyloidosis vs. LVH in the held-out
test group for human readers vs. CNN.

Frame-Based Patient-Based

Metric Accur.
Sensitiv.
Specific.

ROC AUC Accur.
Sensitiv.
Specific.

ROC AUC

CNN 0.746 77.0
71.0

0.824
[0.770–0.869] 0.825 85.7

77.6
0.895

[0.816–0.948]

Read 1 0.585
(0.001)

66.4
50.85

0.570
[0.506–0.632]

(0.0001)

0.629
(0.004)

67.4
58.8

0.654
[0.550–0.747]

(0.001)

Read 2 0.623
(0.005)

69.6
54.5

0.623
[0.560–0.684]

(0.0001)

0.649
(0.009)

69.6
60.8

0.712
[0.611–0.799]

(0.0002)

Read 3 0.585
(0.001)

66.4
50.9

0.587
[0.523–0.649]

(0.0001)

0.660
(0.013)

71.1
61.5

0.731
[0.631–0.816]

(0.002)

Read
(avg)

0.605
(0.0008)

69.2
52.7

0.630
[0.567–0.690]

(0.0001)

0.660
(0.008)

72.1
61.1

0.727
[0.627–0.813]

(0.002)
Frame-based and patient-based results obtained with the held-out test set by human readers and by CNN. Accur.
is for accuracy, Sensitiv. and Specific. are for sensitivity and specificity. Values between parentheses indicate the
level of significance of the difference between human reader and CNN (assessed with Chi-square test from the
number of observations for accuracy and assessed by Delong test for AUC comparisons).

Figure 3. ROC curves and AUC for frame-based (A) and patient-based (B) classification of amyloido-
sis vs. LVH by CNN and by three human readers (Read. 1 to 3).

3.3. CNN Classification of AL vs. TTR Amyloidosis

The frame-based accuracy and AUC obtained by the CNN classification of AL vs. TTR
cardiac amyloidosis were 0.662 and 0.703 [0.664–0.741]. The corresponding patient-based
values were 0.711 and 0.752 [0.654–0.834]. No comparison was performed here with human
classification, but the comparison between the AUC values of the CNN and the simple
left ventricular septal wall thickness measurement (per-patient AUC 0.735) did not show a
statistically significant difference.

145



Diagnostics 2022, 12, 69

3.4. Analysis of the Saliency Maps

Saliency maps, which reveal the pixel areas responsible for classification, show that
cardiac regions contribute to CNN decisions in only 25% of cases (Figure 4). Among the
extracardiac targeted regions, the lungs are the most frequent, followed by the subcuta-
neous fat and liver. Distribution is quite similar for correct classification (concordant) and
erroneous classification (discordant).

 

Figure 4. Saliency maps targeting cardiac region (A) but also frequently subcutaneous fat (B), lung
(C) or liver (D). Diastolic frames are shown in the upper row and systolic frames in the lower row.

4. Discussion

The most important result of this study is the possibility of discriminating cardiac
amyloidosis and LVH from other origins by simple cine-CMR images, which was signifi-
cantly better with the CNN than by the physicians’ visual analysis. The comparison carried
out on slightly more than 100 patients of the two groups shows that, for frame-based and
patient-based analysis, binary classification accuracy is approximately 15 absolute points
higher with the CNN than with experienced radiologists/cardiologists. The same signifi-
cant difference is also found by considering the AUC of the ROC curve, with a little less
than 20 points absolute value improvement with the CNN as compared with experienced
human readers.

4.1. Methodological Considerations

Patient-based analysis constitutes a much more relevant assessment because this is
how the clinical diagnosis is carried out, and it should be noted that the transposition of the
results from the image-level to the patient-level (by taking the average of the elementary
predictions per frame) leads to an improvement of the accuracy in the range of 5 points
(absolute value) and in the range of 10 points for the AUC. This phenomenon, which is
observed for the human reader and CNN, may be explained thanks to the “averaging
process” in the mind of the physician who examines the whole set of pictures of the patient.

The influence of methodological choices should be stressed: (1) The distribution of
patients’ images in a distinct train or validation/test data sets is mandatory; otherwise, the
results would be clearly biased because we would have trained on images that are—for
some features—similar to test images. Processing this way (without frame distribution for
a unique patient) with our data set led to a misleading “improvement” of almost 10 points
(absolute value) for accuracy and AUC results (data not listed here). (2) The strict separation
of the train and validation set for hyperparameter tuning and the test set has been done.
This method, based on a separate test set, schematized in Figure 2, is required to avoid
information leakage related to hyperparameter tuning.
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4.2. Superiority of CNN Capacities over Human Diagnosis

The aim of this study was not to propose making the diagnosis of cardiac amyloidosis
solely on the cine-CMR data because much more relevant CMR indices are available thanks
to gadolinium injection. Actually, late-enhancement and ECV allow the diagnosis of the
presence of CA with a high sensitivity of 95% and an even higher specificity of 98% [5], and
deep learning was demonstrated to be efficient in this field [11]. Our goal was to show that
deep learning is able to extract diagnostic clues clearly surpassing visual analysis (15 to
20 points in the present study).

Excellent performances of the CNN are often reported in the literature, but their
interest is limited if they are not compared to human performance. Among human–machine
comparisons, many studies have reported that CNN diagnosis is on par with human
visual assessment in multiple areas [17]. For example, for malignancy risk estimation of
pulmonary nodules using thoracic CT, Venkadesh et al. [18] reported that the DL algorithm
had an AUC of 0.96, which was significantly better than the average AUC of the clinicians
(0.90) but comparable to that of thoracic radiologists. Our model was able to discriminate
between AL and TTR CA with interesting values of patient-based accuracy (0.711) and
AUC (0.752); however, this was no better than the classification obtained with the simple
measurement of the septal thickness, already reported in previous publications [19–21] and
resulting from the known increased amyloid burden in this subtype.

Of more interest is to show significant machine-over-human superiority in routine
areas, where “clinical” visual analysis is the classic benchmark. Our study provides
an interesting demonstration in this direction for diagnosing cardiac amyloidosis from
cine-CMR. A small number of other publications could demonstrate that AI systems
are capable of surpassing human experts in disease prediction. Such is the case for the
distinction between low-grade and high-grade glioma by radiologists, which lacks accuracy
(40–45% of non-enhancing MR lesions are found subsequently to be malignant glioma),
whereas, in contrast, CNN-based grading provides > 90% accuracy [22]. Resnet-50 CNN
outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image
classification task [23]. For the diagnosis of breast cancer, in a large multicenter study, Mc
Kinney et al. [12] found that the AI system exhibited specificity and sensitivity superior
to that of radiologists practicing in an academic medical center and exceeded the average
performance of radiologists by a significant improvement in the area under the ROC curve
(ΔAUC = +0.115). Similarly, in differentiating benign from malignant renal tumors, Xu
et al. [24] reported higher AUC with the CNN model (0.906, based on T2-weighted images)
as compared to the AUC obtained by two radiologists (0.724).

4.3. Unveiling the Invisible

One more step in this diagnostic quest is the possibility of discriminating pathological
conditions that clinicians are not able to predict at all using the naked eye. Subtyping
molecular markers, histological or immune-histochemical and genetic classes is impossible
to ascertain from radiologic data. These identifications were initially proposed from
radiomic signatures, for instance, to discriminate between hypertensive heart disease and
hypertrophic cardiomyopathy [25] or between recent infarction vs. old infarction [26].
However, several comparative studies have demonstrated that deep learning based on
radiologic data is superior to radiomics. This has been demonstrated for renal cancer [24],
subtyping different types of cerebral glioma [27], diagnosis of breast cancer [28] and
predicting axillary lymph node metastasis of breast cancer [29].

This may be explained because radiomics’ features are handcrafted in advance and,
thus, may not always fit to discriminate particular tasks. In contrast, the CNN is more
flexible, adaptive and dynamic. As a data-driven tool, it is able to automatically learn
to extract and select task-specific features if the amount of training data is large enough.
Further evidence for the power of deep learning to make a histological diagnosis from
radiological data has been provided by Zhao et al. for renal cell carcinomas Fuhrman-
grading [30] and by Yuan et al. for prostate cancer Gleason score staging (accuracy 0.87) [31].
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4.4. Explanation of Classification Remains Unsatisfactory

Deep neural networks operate through a multilayer nonlinear structure, making
their predictions difficult to interpret. They are able to pick up a number of features
that cannot be interpreted by humans but which are relevant for making a diagnosis.
These automatically-learned discriminative features are unfortunately presently not clearly
identifiable.

Grad-CAM helps identify the areas of pixels that are most responsible for class predic-
tion [16]. This should provide valuable clues to understand the algorithm’s decision. In
principle, the salient areas should be located in the cardiac region, which only appeared in
a quarter of the cases in our study. Two explanations may be advanced for this anomaly.

(1) Technically, our network uses only fully connected layers in the last phase, which
is where the classification happens, but saliency cannot be obtained from fully connected
layers. As a solution, we should try replacing some of the fully connected layers that come
right after VGG with convolution. This way, the spatial information would be preserved
longer in the network, and we might see more meaning in the saliency maps.

(2) Amyloidosis is not a disease confined to the heart since the involvement of the
lungs, fatty tissues and other organs is also common. Liver and, moreover, spleen amyloid
deposits have been reported in 41% of patients with systemic amyloidosis (almost only
in AL type), and CMR-derived ECV measurement showed good diagnostic capability in
this field [32]. This is why the diagnosis is also based on extracardiac biopsies, and it is
interesting to note that the texture analysis was able to show specificities in the architecture
of ultrasound images within abdominal fat [33], resulting in increased echogenicity and
a loss of the normal structure of the fat layer, consistent with histopathological amyloid
deposition in the fat.

This ubiquitous aspect of the disease may also explain why the input shape submitted
to the CNN (from the full field image to the small region of interest focused on the sole
myocardium illustrated in Figure 1) hardly modifies the performance of our model as
shown in Table 2. It can also be noted in Table 2 that the combination of diastole and systole
does not provide any diagnostic benefit, unlike for other cardiomyopathies [10], because
the global LV systolic function is generally preserved in the early stage of amyloidosis.

4.5. Study Limitations

Two types of confounding factors must be mentioned. First, plane orientation and the
presence of gadolinium in the sets of images could have influenced the results, but Table 1
shows a perfect equivalence between the two groups. Second, the presence of pericardial or
pleural effusion constitutes a more important bias because the prevalence (slightly higher
than in the study of Binder et al. [9]) is very different in the two groups. Pericardial effusion
is observed in almost 50% of CA, i.e., two times more often than in hypertrophies unrelated
to amyloidosis. Pleural effusions are observed in just over a third of CA, i.e., four times
more than in other hypertrophies, and mixed effusions are 10 times more frequent in the
amyloidosis group than in the LVH group. This disparity probably contributes to the
classification made by CNNs (although heat maps rarely focus on areas of effusion) but
also influences clinical judgment, so that the bias is the same for the machine and for the
human, which, therefore, does not explain the diagnostic superiority of the algorithm.

A multiparametric approach is needed. Only cine-CMR data has been used here, and
it is likely that one could significantly improve performances by combining the analysis
with other CMR sequences such as T1 mapping, ECV assessment and late gadolinium-
enhancement imaging. Based on gadolinium-enhanced images—and not on cine-MR
images—Martini et al. obtained an accuracy of 0.88 and AUC of 0.98 [11], but remember
that our aim was not to develop the best model to optimize cardiac amyloidosis diagnosis
but to compare CNN and human reader performance. For the distinction between AL and
TTR CA, it has been reported that transmural patterns of late gadolinium enhancement
may differentiate these two types of the disease [21] but with relatively low performance.
Recently, the use of a logistic regression model integrating T2 mapping (slightly increased
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in the AL subtype) and right ventricular ejection fraction combined with age was reported
to discriminate between these two subtypes with an AUC of 0.92 [34]. The performance of
AI integrating such multiparametric CMR features, especially for the distinction between
AL and TTR cardiac amyloidosis, should be explored in the future.

Technical improvements should be implemented. The leverage of more sophisti-
cated CNN models (not limited to the classical VGG model used here) and, moreover, the
combination (concatenation) of several multiparametric inputs, with possible additional
categorical clinical input variables (e.g., [30]), should improve performance. Orientation
plane specific models [11] should also be tested since images of different views were clas-
sified here by the same network, which makes learning relevant features from images
potentially much harder as it increases variability unrelated to any disease. Significant
work also remains to be done to improve the explainability of the results. Finally, the rela-
tively limited number of observations and the monocentric nature of this study constitute
another limitation. Multicenter studies could be of interest for the further validation and
generalization of our findings.

5. Conclusions

In this study, based on cine-CMR images alone, we could demonstrate the ability of
CNNs to discriminate cardiac amyloidosis from LVH of other origins significantly better
than experienced human operators. The diagnostic accuracy and AUC were 15 to 20 points
higher (in absolute value) for the VGG convolutional network used here than for human
readers. This diagnostic superiority of the CNN results from the unique capability of
the algorithm to identify features invisible to the naked eye, indiscernible through the
classical radiological analysis. This scientific novelty, already reported in a few recent
articles concerning other pathological fields, opens up promising prospects for improving
diagnostic capacities in routine clinical practice. The astonishing potential of CNNs to
improve the recognition of pathologies that are imperfectly detectable in radiology and to
reveal invisible clues such as the histological type of lesions will certainly constitute a large
field of future research.
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Abstract: Pulmonary nodule is one of the lung diseases and its early diagnosis and treatment are
essential to cure the patient. This paper introduces a deep learning framework to support the auto-
mated detection of lung nodules in computed tomography (CT) images. The proposed framework
employs VGG-SegNet supported nodule mining and pre-trained DL-based classification to support
automated lung nodule detection. The classification of lung CT images is implemented using the
attained deep features, and then these features are serially concatenated with the handcrafted features,
such as the Grey Level Co-Occurrence Matrix (GLCM), Local-Binary-Pattern (LBP) and Pyramid
Histogram of Oriented Gradients (PHOG) to enhance the disease detection accuracy. The images used
for experiments are collected from the LIDC-IDRI and Lung-PET-CT-Dx datasets. The experimental
results attained show that the VGG19 architecture with concatenated deep and handcrafted features
can achieve an accuracy of 97.83% with the SVM-RBF classifier.

Keywords: lung CT images; nodule detection; VGG-SegNet; pre-trained VGG19; deep learning

1. Introduction

Lung cancer/nodule is one of the severe abnormalities in the lung, and a World
Health Organization (WHO) report indicated that around 1.76 million deaths have occurred
globally in 2018 due to lung cancer [1]. Lung cancer/nodule is due to abnormal cell growth
in the lung and, in most cases, the nodule may be cancerous/non-cancerous. The Olson
report [2] confirmed that lung nodules can be categorized into benign/malignant based on
their dimension (5 to 30 mm fall into the benign class and >30 mm is malignant). When
a lung nodule is diagnosed using the radiological approach, a continuous follow-up is
recommended to check its growth rate. The follow-up procedure can continue for up to
two years and, along with non-invasive radiographic imaging procedures, other invasive
methodologies, such as bronchoscopy and/or tissue biopsy, can also be suggested to
confirm the condition and harshness of the lung nodules in a patient [3].

Noninvasive radiological techniques are commonly adopted in initial level lung nod-
ule detection using CT images, and, therefore, several lung nodule detection works are
already proposed in the literature [4–6] which involve the use of traditional signal pro-
cessing and texture analysis techniques combined with machine learning classification [7],
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deep learning models [8,9], neural networks combined with nature-inspired optimization
techniques [10,11] and ensemble learning [12]. The aims of this research are to construct
a Deep Learning (DL) supported scheme to segment the lung nodule segment from the
CT image slice with better accuracy and classify the considered CT scan images into nor-
mal/nodule class with improved accuracy using precisely selected deep and handcrafted
features.

The recent article by Rajinikanth and Kadry [13] proposed a framework with VGG16
neural network model for the automated segmentation and classification of lung nodules
from CT images. In their paper, a threshold filter technique is implemented to remove
artifacts from CT images, and the artifact-eliminated images are then considered to test the
proposed disease detection framework. The proposed scheme is tested using the LIDC-
IDRI database [14–16] and the classification task implemented with the combined deep and
handcrafted features helped to achieve a classification accuracy of 97.67% with a Random
Forest (RF) classifier.

In this paper, we suggest a framework to support automated segmentation and clas-
sification of lung nodules with improved accuracy. The proposed scheme includes the
following stages: (i) image collection and resizing, (ii) implementing the pre-trained VGG
supported segmentation; (iii) deep feature-based classification, (iv) extracting the essential
handcrafted features such as Gray Level Co-occurrence Matrix (GLCM), Local Binary
Pattern (LBP) and Pyramid Histogram of Oriented Gradients (PHOG), (v) implementing a
serial feature concatenation to unite the deep and handcrafted features and (vi) implement-
ing and validating the performance of the classifiers using a 10-fold cross validation.

The images used for the experiments are collected from the LIDC-IDRI [15] and Lung-
PET-CT-Dx [17] datasets. All these works are realized using the MATLAB® (MathWorks,
Inc., Natick, MA, USA), and the attained result is then compared and validated with the
earlier results presented in the literature.

The major contribution of the proposed work is as follows:

i. Implementation of VGG19 to construct the VGG-SegNet scheme to extract lung
nodule.

ii. Deep learning feature extraction based on VGG19.
iii. Combining handcrafted features and deep features to improving nodule detection

accuracy.

The proposed work is organized as follows. Section 2 presents and discusses earlier
related research. Section 3 presents the implemented methodology. Section 4 shows the
experimental results and discussions and, finally, the conclusions of the present research
study are given in Section 5.

2. Related Work

Due to its impact, a significant amount of lung nodule detection from CT images is
proposed using a variety of image databases, and summarizing the presented schemes
will help to obtain an idea of the advantages and limitations of the existing lung nodule
detection procedures. Traditional methods of machine learning (ML) and deep learning
(DL) were proposed to examine lung nodules using CT image slices, and the summary of the
selected DL-based lung nodule detection systems is presented in Table 1; all the considered
works in this table discuss the lung nodule detection technique using a chosen methodology.
Furthermore, all these works considered the LIDC-IDRI database for examination.
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The summary (see Table 1) presents a few similar methods implemented using CT
images of the LIDC-IDRI database, and the highest categorization accuracy achieved is
97.67% [13].

In addition, a detailed evaluation of various lung nodule recognition practices existing
in the literature is available in the following references [25–27]. Some of the works discussed
in Table 1 recommended the need for a competent lung nodule detection system that
can support both segmentation of the nodule section and classification of lung nodules
from normal (healthy) CT images. The works discussed in Table 1 implemented either
a segmentation or classification technique using deep features only. Obtaining better
detection accuracy is difficult with existing techniques and, hence, the combination of
deep features (extracted by a trained neural network model) and handcrafted features is
necessary.

In this paper, the pre-trained VGG-16 supported segmentation (VGG-SegNet) is
initially executed to extract the lung nodule section from CT images, and then the CT image
classification is executed using deep features as well as combined deep and handcrafted
features. A detailed assessment among various two-class classifiers, such as SoftMax,
Decision-Tree (DT), RF, K-Nearest Neighbor (KNN) and SVM-RBF are also presented using
a 10-fold cross-validation to validate the proposed scheme.

3. Methodology

In the literature, several lung abnormality detection systems based on DL are pro-
posed and implemented using clinical-level two-dimensional (2D) CT images as well as
benchmark images. Figure 1 shows the proposed system to segment and classify the lung
nodule section of the CT images. Initially, the CT images are collected from the benchmark
data set and, later, the conversion from 3D to 2D is implemented using ITK-Snap [28]. The
ITK-Snap converts the 3D images into 2D slices of planes, such as axial, coronal and sagittal
and, in this work, only the axial plane is considered for the assessment. Finally, all test
images are resized to 224 × 224 × 3 and then used for the segmentation and classification
task. The resized 2D CT images are initially considered for the segmentation task; where
the lung nodule segment is mined using the VGG-SegNet scheme implemented with the
VGG19 architecture. Later, the essential features are extracted with GLCM, LBP and PHOG,
and then these features are combined with the learned features of the pre-trained DL
scheme. Finally, the serially concatenated deep features (DF) and handcrafted features
(HCF) are used to train, test and confirm the classifier. Based on the attained performance
values, the performance of the proposed system is validated.

Figure 1. Structure of the proposed lung-nodule segmentation and classification system.
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3.1. Image Database Preparation

The CT images are collected from LIDC-IDRI [15] and Lung-PET-CT-Dx [17] databases.
These data sets have the clinically collected three-dimensional (3D) lung CT images with
the chosen number of slices.

The assessment of the 3D CT images is quite complex and, hence, 3D to 2D conversion
is performed to extract the initial image with a dimension of 512 × 512 × 3 pixels, and
these images are then resized to 224 × 224 × 3 pixels to decrease the assessment complexity.
In this work, only the axial view of 2D slices is used for the estimation and the sample test
images of the considered image data set are depicted in Figure 2 and the total images for
investigation are given in Table 2.
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Figure 2. Sample test images considered in this study.

Table 2. The lung CT images analyzed in the experiments.

Image Class Dimension Total Images Training Images Validation Images

Normal 224 × 224 × 3 1000 750 250
Nodule 224 × 224 × 3 1000 750 250

3.2. Nodule Segmentation

Evaluation of the shape and dimension of the abnormality in medical images is widely
preferred during the image-supported disease diagnosis and treatment implementation
process [29,30]. Automated segmentation is widely used to extract the infected section
from the test image and the mined fragment is further inspected to verify the disease and
its severity level. In the assessment of the lung nodule with CT images, the dimension
of the lung nodule plays a vital role and, therefore, the extraction of the nodule is very
essential. In this work, the VGG-SegNet scheme is implemented with the VGG19 scheme
to extract the CT image nodule. Information on the traditional VGG-SegNet model can be
found in [29].

The proposed VGG-SegNet model consists of the following specification; traditional
VGG19 scheme is considered as the encoder section and its associated structure forms the
decoder unit. Figure 3 illustrates the construction of the VGG19-based segmentation and
classification scheme in which the traditional VGG19 scheme (first 5 layers) works as the
encoder region and the inverted VGG19 with up-sampling facility is then considered as the
decoder region. The pre-tuning of this scheme for the CT image is performed using the test
images considered for training along with the essential image enhancement process [31].
The preliminary constraints for training the VGG-SegNet are allocated as follows: batch
size is equal for encoder-decoder section, initialization uses a normal weight, learning rate
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is fixed as 1e-5, Linear Dropout Rate (LDR) is assigned, and Stochastic Gradient-Descent
(SGD) optimization is selected. The final SoftMax layer uses a sigmoid activation function.

Figure 3. Structure of VGG19 supported segmentation (VGG-SegNet) and classification scheme.

3.3. Nodule Classification

In the medical domain, automated disease classification plays an important role
during the mass data assessment and a perfectly tuned disease classification system further
reduces the diagnostic burden of physicians and acts as an assisting system during the
decision-making process [32–35]. Therefore, a considerable number of disease detection
systems assisted by DL are proposed and implemented in the literature [36–40]. Recent
DL schemes implemented in the LIDC-IDRI with fused deep and HCF helped achieve a
classification accuracy of >97% [13].

Figure 3 presents the assisted classification of using the VGG19 of lung CT images
(dimension 224 × 224 × 3 pixels) using the DF using the SoftMax classifier, and then the
performance of VGG19 is validated with VGG16, ResNet18, ResNet50 and AlexNet (images
with dimension of 227 × 227 × 3 pixels) [41–46] and the performance is compared and
validated. The performance of the implemented VGG19 is validated using DF, concatenated
DF + HCF and well-established binary classifiers existing in the literature [47–50].

3.3.1. Deep Features

Initially, the proposed scheme is implemented by considering the DF attained at fully
connected layer 3 (FC3). After possible dropout, FC3 helps to provide a feature vector of
dimension 1 × 1024, whose value is mathematically represented as in Equation (1).

FVVGG19 (1×1024) = VGG19(1,1), VGG19(1,2), . . . , VGGgg19(1,1024) (1)

Other essential information on VGG19 and the related issues can be found in [41].

3.3.2. Handcrafted Features

The features extracted from the test image using a chosen image processing method-
ology are known as Machine Learning Features (MLF) or handcrafted features (HCF).
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Previous research in the literature already confirmed the need for the precision of HCF
to progress the categorization accuracy in a class of ML and DL-based disease detection
systems [46,50,51]. In the proposed work, the essential HCF from the considered test
images is extracted using well-known methods such as GLCM [13,36,42], LBP [13,46] and
PHOG [48].

The GLCM features are commonly used due to their high performance and, in this
paper, the GLCM features are extorted from the lung nodule section segmented with the
VGG-SegNet. The entire feature used in this work can be found in Equation (2).

FV1GLCM (1×25) = GLCM(1,1), GLCM(1,2), . . . , GLCM(1,25) (2)

In this work, the LBP with varied weight (weights with values; W = 1, 2, 3, and 4)
is considered to mine the important features from the considered test images and the
proposed LBP is already implemented in the works of Gudigar et al. [52] and Rajinikanth
and Kadry [13]. The LBP features for the varied weights are depicted in Equations (3)–(6)
and Equation (7) depicts the overall LBP features.

FVLBP1 (1×59) = LBP1(1,1), LBP1(1,2), . . . , LBP1(1,59) (3)

FVLBP2 (1×59) = LBP2(1,1), LBP2(1,2), . . . , LBP2(1,59) (4)

FVLBP3 (1×59) = LBP3(1,1), LBP3(1,2), . . . , LBP3(1,59) (5)

FVLBP4 (1×59) = LBP4(1,1), LBP4(1,2), . . . , LBP4(1,59) (6)

FV2LBP (1×236) = FVLBP1 (1×59) + FVLBP2 (1×59) + FVLBP3 (1×59) + FVLBP4 (1×59) (7)

Along with the above said features, the PHOG features are also extracted and consid-
ered along with GLCM and LBP. The total information on the PHOG can be found in the
article by Murtza et al. [48]. In this work, 255 features are extracted by assigning number
of bins = 3 and levels (L) = 3. The PHOG features of the proposed work are depicted in
Equation (8).

FV3PHOG (1×255) = PHOG(1,1), PHOG(1,2), . . . , PHOG(1,255), (8)

3.3.3. Features Concatenation

In this work, a serial features concatenation is realized to unite the DF and HCF, and
this technique helps to improve the feature dimension to a higher level. The serial features
concatenation implemented in this work is depicted in Equation (9) and Final-Feature-
Vector (FFV) is presented in Equation (10).

Concatenated f eatures = DF(1×1024) + HCF(1×516), (9)

FFV(1×1540) = FVVGG19 (1×1024) + FV1GLCM(1×25) + FV2LBP(1×236) + FV3PHOG(1×255), (10)

The FFV is then used to train, test and validate the classifier considered in the proposed
methodology for the automated classification of lung nodules using CT images.

3.3.4. Classifier Implementation

The performance of the DL-based automated disease detection arrangement depends
chiefly on the performance of the classifier implemented to categorize the considered test
images based on the need. In this paper, a binary classification is initially implemented using
the SoftMax classifier and, later, the well-known classifiers, such as Decision Trees (DT), RF,
KNN and Support Vector Machine-Radial Basis Function (SVM-RBF) [13,53–56], are also
considered to improve the classification task. In this paper, a 10-fold cross-validation process
is implemented, and the finest result attained is then considered as the final classification
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result. The performance of the classifier is then authenticated and confirmed based on the
Image Performance Values (IPV) [57–59].

3.4. Performance Computation and Validation

The overall eminence of the proposed method is validated by computing the essen-
tial IPV measures, such as True-Positive (TP), False-Negative (FN), True-Negative (TN),
False-Positive (FP), Accuracy (ACC), Precision (PRE), Sensitivity (SEN), Specificity (SPE),
Negative-Predicted-Value (NPV), F1-Score (F1S), Jaccard Index and Dice coeeficient, which
are calculated in percentages, presented in Equations (11)–(16). The necessary information
regarding these values can be found in [45–47].

Accuracy = ACC =
TP + TN

TP + TN + FP + FN
× 100% (11)

Precision = PRE =
TP

TP + FP
× 100% (12)

Sensitivity = SEN =
TP

TP + FN
× 100% (13)

Speci f icity = SPE =
TN

TN + FP
× 100% (14)

Negative Predictive Value = NPV =
TN

TN + FN
× 100% (15)

F1 − Score = F1S =
2TP

2TP + FN + FP
× 100% (16)

Jaccard =
TP

TP + FN + FP
× 100% (17)

Dice =
2TP

2TP + FN + FP
× 100% (18)

4. Results and Discussions

This section demonstrates the results and discussions attained using a workstation
with an Intel i5 2.5GHz processor, with 16GB RAM and 2GB VRAM equipped with
MATLAB® (version R2018a). Primarily, lung CT images are used as presented in Table 2
and then each image is resized into 224 × 224 × 3 pixels to perform the VGG19-supported
segmentation and classification task. Initially, the VGG-SegNet-based lung nodule extrac-
tion process is executed on the test images considered, and the sample result obtained for
the normal/nodule class image is represented in Figure 4. Figure 4 presents the experi-
mental result of the trained VGG-SegNet with CT images. Figure 4a shows the sample
images of the normal/nodule class considered for the assessment; Figure 4b depicts the
outcome attained with the final layer of the encoder unit; Figure 4c,d depicts the results of
the decoder and the SoftMax classifier, respectively. For the normal (healthy) class image,
the decoder will not provide a positive outcome for localization and segmentation, and
this section will provide the essential information only for the nodule class.

In this paper, the extracted lung-nodule section with the proposed VGG-SegNet is
compared to the ground truth (GT) image generated using ITK-Snap [28] and the essential
image measures are calculated as described in previous works [4,13]. The performance
of VGG-SegNet is also validated against the existing SegNet and UNet schemes in the
literature [24,25,48,49]. The result achieved for the trial image is depicted in Figure 5
and Table 3, respectively. Note that the performance measures [50,51] achieved with
VGG-SegNet are superior compared to other approaches.
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Figure 4. Results obtained with proposed VGG-SegNet scheme: (a) text image, (b) lung section
enhanced by encoder, (c) localization of nodule by decoder and (d) extracted nodule by SoftMax unit.

    
(a) GT (b)VGG-SegNet (c) SegNet (d) UNet 

Figure 5. Segmentation results attained with considered CNN models.

Table 3. Performance evaluation of CNN models on sample lung CT image. Best values are shown
in bold.

Approach Jaccard (%) Dice (%) ACC (%) PRE (%) SEN (%) SPE (%)

VGG-SegNet 82.6464 90.4988 99.6811 98.4496 83.7363 99.9756
SegNet 73.1898 84.5198 99.4539 96.6408 75.1004 99.9471
UNet 79.2308 88.4120 99.6233 93.1525 84.1307 99.8925

The segmentation performance of the proposed scheme is then tested using the lung
nodules with various dimensions, such as small, medium and large, and the attained
results are depicted in Figure 6. This figure confirms that the VGG-SegNet provides a
better segmentation on the medium and large nodule dimension and provides reduced
segmentation accuracy on the images having lesser lung nodule due to the smaller test
image dimension.

After collecting the essential DF with VGG19, the other HCFs, such as GLCM, LBP
and PHOG are collected. The GLCM features for the normal (healthy) class image are
collected from the whole CT image, and for the abnormal class image it is collected from the
binary image of the extracted nodule segment. Figure 7 shows the LBP patterns generated
for the normal/nodule class test images with various weight values. During LBP feature
collection, each image is treated with the LBP algorithm with various weights (ie, W = 1
to 4) and the 1D features obtained from each image are combined to obtain a 1D feature
vector of dimension 1 × 236.

The PHOG features for the CT images are then extracted by assigning a bin size
(L) of 3 and this process helped to obtain a 1 × 255 vector of features. The sample
PHOG features collected for a sample CT image are seen in Figure 8. All these features
(GLCM+LBP+PHOG) are then combined to form a HCF vector with a dimension of
1 × 516 features, following which they are then combined with the DF to improve the lung

161



Diagnostics 2021, 11, 2208

nodule detection accuracy. After collecting the essential features, the image classification
task is implemented using DF and DF + HCF separately.
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Figure 6. Segmentation of nodule from chosen images of Lung-PET-CT-Dx and LIDC-IDRI dataset.
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Figure 7. LBP patterns generated from the sample image with various LBP weights.

Initially, the DF-based sorting is executed with the considered CNN schemes and the
classification performance obtained with the SoftMax is depicted in Table 4. Figure 9 presents
the spider plot for the features considered, and the result of Table 4 and the dimension of
the glyph plot confirm that VGG19 helps achieve an enhanced IPV compared to other CNN
schemes. VGG19 is chosen as the suitable scheme to examine the considered CT images, and
then an attempt is made to enhance the performance of VGG19 using DF + HCF.
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Figure 8. PHOG features obtained with the sample test images of Normal/Nodule class.

Figure 9. Spider plot to compare the CT image classification performance of CNN models.

Table 4. Classification performance attained with pre-trained DL scheme with DF and SoftMax classifier. Here TP—true
positives, FN—false negatives, TN—true negatives, FP—false positives, ACC—accuracy, PRE—precision, SEN—sensitivity,
SPE—specificity, NPV—negative predictive value and F1S—F1-score.

DL Scheme
(Image Size)

TP FN TN FP ACC (%) PRE (%) SEN (%) SPE (%) NPV (%) F1S (%)

VGG19
(224 × 224 × 3) 235 15 236 14 94.20 94.38 94.00 94.40 94.02 94.19

VGG16
(224 × 224 × 3) 236 14 230 20 93.20 92.19 94.40 92.00 94.26 93.28

ResNet18
(224 × 224 × 3) 229 21 228 22 91.40 91.23 91.60 91.20 91.57 91.42

ResNet50
(224 × 224 × 3) 228 22 231 19 91.80 92.31 91.20 92.40 91.30 91.75

Ale × Net
(2274 × 227 × 3) 231 19 233 17 92.80 93.14 92.40 93.20 92.46 92.77
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The experiment is then repeated using the VGG19 scheme with the DF + HCF
(1 × 1540 features) using classifiers, such as SoftMax, DT, RF, KNN and SVM-RBF; the
outcomes are depicted in Table 5. Figure 10 shows the performance of VGG19 with SVM-
RBF, in which a 10-fold cross validation is implemented and the best result attained among
the 10-fold validation is demonstrated. The result demonstrated in Table 5 confirms that
the SVM-RBF classifier offers superior outcome contrast to other classifiers and a graphical
illustration in Figure 11 (Glyph-Plot) also confirmed the performance of SVM-RBF. The
Receiver-Operating-Characteristic curve (ROC) presented in Figure 12 also confirms the
merit of proposed technique.

Table 5. Disease detection performance of VGG19 with DF + HCF with different classifiers. Best values are shown in bold.

Classifier TP FN TN FP ACC (%) PRE (%) SEN (%) SPE (%) NPV (%) F1S (%)

SoftMax 237 13 244 6 96.20 97.53 94.80 97.60 94.94 96.14
DT 238 12 241 9 95.80 96.36 95.20 96.40 95.25 95.77
RF 240 10 238 12 95.60 95.24 96.00 95.20 95.97 95.62

KNN 241 9 242 8 96.60 96.79 96.40 96.80 96.41 96.59
SVM-RBF 243 7 246 4 97.83 98.38 97.20 98.40 97.23 97.79

Figure 10. Training performance of the VGG19 with SVM-RBF for lung CT image slices.

 

Figure 11. Overall performance of VGG19 with various classifiers summarized as glyph-plots.
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Figure 12. ROC curve attained for VGG19 with DF + HCF.

The above-shown result confirms that the disease detection performance of VGG19
can be enhanced by using both the DF with the HCF. The eminence of the proposed lung
nodule detection system is then compared with other methods found in the literature.
Figure 13 shows the comparison of the classification precision existing in the literature and
the accuracy obtained with the proposed approach (97.83%) is superior compared to other
works considered for the study. This confirms the superiority of the proposed approach
compared to the existing works.

Figure 13. Validation of the disease detection accuracy of the proposed system with existing approaches.

The major improvement of the proposed technique compared to other works, such as
Bhandary et al. [4] and Rajinikanth and Kadry [13], is as follows: this paper proposed the
detection of lung nodules using CT images without removing the artifact. The number of
stages in the proposed approach is lower compared to existing methods [4,10].
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The future work includes: (i) considering other hand-made characteristics, such as
HOG [48] and GLDM [43], to improve disease detection accuracy, (ii) considering the other
variants of the SVM classifiers [43] to achieve better image classification accuracy and
(iii) implementing a selected procedure to enhance the segmentation accuracy in lung CT
having a lesser nodule size.

5. Conclusions

Due to its clinical significance, several automated disease detection systems have been
proposed in the literature to detect lung nodules from CT images. This paper proposes a
pre-trained VGG19-based automated segmentation and classification scheme to examine
lung CT images. This scheme is implemented in two stages: (i) VGG-SegNet supported
extraction of lung nodules from CT images and (ii) classification of lung CT images using
deep learning schemes with DF and DF + HCF. The initial part of this work implemented the
VGG-SegNet architecture with VGG19-based Encoder-Decoder assembly and extracted the
lung nodule section using the SoftMax classifier. Handcrafted features from the test images
are extracted using GLCM (1 × 25 features), LBP with varied weights (1 × 236 features)
and PHOG with an assigned bin = L = 3 (1 × 255 features), and this combination helped
to obtain the chosen HCF with a dimension of 1 × 516 features. The classification task is
initially implemented with the DF and SoftMax, and the result confirmed that the VGG19
provided better result compared to the VGG16, ResNet18, ResNet50 and AlexNet models.
The CT image classification performance of VGG19 is once again verified using DF + HCF
and the obtained result confirmed that the SVM-RBF classifier helped to obtain better
classification accuracy (97.83%).

The limitation of the proposed approach is the dimension of concatenated features
(1× 1540) which is rather large. In the future, a feature reduction scheme can be considered
to reduce this set of features. Also, the performance of the proposed system can be
improved by considering other HCFs that are known from the literature.
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Abstract: Background: For COVID-19 lung severity, segmentation of lungs on computed tomography
(CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have
a bias in the training stage of segmentation because only one set of ground truth (GT) annotations
are evaluated. We propose a robust and stable inter-variability analysis of CT lung segmentation
in COVID-19 to avoid the effect of bias. Methodology: The proposed inter-variability study consists
of two GT tracers for lung segmentation on chest CT. Three AI models, PSP Net, VGG-SegNet,
and ResNet-SegNet, were trained using GT annotations. We hypothesized that if AI models are
trained on the GT tracings from multiple experience levels, and if the AI performance on the test
data between these AI models is within the 5% range, one can consider such an AI model robust
and unbiased. The K5 protocol (training to testing: 80%:20%) was adapted. Ten kinds of metrics
were used for performance evaluation. Results: The database consisted of 5000 CT chest images from
72 COVID-19-infected patients. By computing the coefficient of correlations (CC) between the output
of the two AI models trained corresponding to the two GT tracers, computing their differences in
their CC, and repeating the process for all three AI-models, we show the differences as 0%, 0.51%,
and 2.04% (all < 5%), thereby validating the hypothesis. The performance was comparable; however,
it had the following order: ResNet-SegNet > PSP Net > VGG-SegNet. Conclusions: The AI models
were clinically robust and stable during the inter-variability analysis on the CT lung segmentation on
COVID-19 patients.

Keywords: COVID-19; computed tomography; lungs; variability; segmentation; hybrid deep learning

1. Introduction

The WHO’s International Health Regulations and Emergency Committee (IHREC)
proclaimed COVID-19 a “public health emergency of international significance” or “pan-
demic” on 30 January 2020. More than 231 million people have been infected worldwide,
and nearly 4.7 million people have died due to COVID-19 [1]. Although this “severe
acute respiratory syndrome coronavirus 2” (SARS-CoV-2) virus specifically targets the
pulmonary and vascular system, it has the potential to travel through the body and lead to
complications such as pulmonary embolism [2], myocardial infarction, stroke, or mesen-
teric ischemia [3–5]. Comorbidities such as diabetes mellitus, hypertension, and obesity
substantially increase the severity and mortality of COVID-19 [6,7]. A real-time reverse
transcription-polymerase chain reaction (RT-PCR) is the recommended method for diagno-
sis [8]. Chest radiographs and computed tomography (CT) [9–11] are used to determine
disease severity in patients with moderate to severe disease or underlying comorbidities
based on the extent of pulmonary opacities such as ground-glass (GGO), consolidation,
and mixed opacities in CT scans [7,12–14].
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Most radiologists provide a semantic description of the extent and type of opacities
to describe the severity of COVID-19 pneumonia. The semiquantitative evaluation of
pulmonary opacities is time-consuming, subjective, and tedious [15–18]. Thus, there is a
need for a fast and error-free early COVID-19 disease diagnosis and real-time prognosis
solutions. Machine learning (ML) offers a solution to this problem by providing a rich set
of algorithms [19]. Previously, ML has been used for detection of cancers in breast [20],
liver [21,22], thyroid [23–25], skin [26,27], prostate [28,29], ovary [30], and lung [31]. There
are two main components in disease detection, i.e., segmentation [32–35] and classifica-
tion [36,37], where segmentation plays a crucial step. An extension of ML called deep
learning (DL) employs dense layers to automatically extract and classify all relevant imag-
ing features [38–43]. Hybrid DL (HDL), a method that combines two DL systems, helps
address some of the challenges in solo DL models [44,45]. This includes overfitting and
optimization of hyperparameters, thereby removing the bias [45].

During the AI model training, the most crucial stage is the ground truth (GT) annota-
tion of organs that need to be segmented. It is a time-consuming operation with monetary
constraints since skilled personnel such as radiologists are expensive to recruit and difficult
to find. These annotations, if conducted by one tracer, make the AI system biased. A
plurality of tracers being used to produce the GT annotated dataset makes the system more
resilient and lowers the AI bias [46–49]. This is because the AI model can grasp and adjust
to the sensitivity of the difference in the tracings of the tracers. Thus, to avoid AI bias,
one needs to have an automated AI-based system with multiple tracers. To establish the
validity of such automated AI systems, one must undergo inter-variability analysis with
two or more observers.

To validate the AI systems, we hypothesize that two conditions must be met: (a) the
two observers should perform within 5% range of each other and (b) the performance of
the AI system using the ground truth tracings from these two observers should also be
within the 5% threshold [48]. The AI performance is computed between the GT-area and
the AI model-estimated area. The focus of the proposed research is to design a reliable
AI system based on the inter-observer paradigm. Figure 1 depicts a COVID-19 CT lung
segmentation system in which the CT machine is used to acquire CT volumes. This volume
is then annotated by multiple observers (Figure 1, n denotes the number of observers),
and multiple AI models are generated, which is then used for lung segmentation. The
segmentation output is the binary mask of the lung, its boundary, and the corresponding
boundary overlays. This output can be used for evaluating the performance, analysis, and
quantification of the results.

 

Figure 1. COVLIAS 1.0: Inter-variability analysis of CT-based lung segmentation and quantification system for COVID-19
patients. ROC: Receiver operating characteristic; AUC: Area-under-the-curve.

The layout of this inter-variability study is as follows: Section 2 presents the methodology
with the demographics, COVLIAS 1.0 pipeline, AI architectures, and loss functions. The experi-
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mental protocol is shown in Section 3, while results and performance evaluation are presented
in Section 4. The discussions and conclusions are presented in Sections 5 and 6, respectively.

2. Methodology

2.1. Patient Demographics, Image Acquisition, and Data Preparation
2.1.1. Demographics

The dataset consists of 72 adult Italian patients with 46 being male and the remaining
being female. The mean height and weight were 173 cm and 79 kg, respectively. A total of
60 patients tested positive for RT-PCR, while 12 patients were confirmed using broncho-alveolar
lavage [50]. Overall, the cohort had an average of 4.1 GGO, which was considered low.

2.1.2. Image Acquisition

All chest CT scans were performed in a supine posture during a single full inspiratory
breath-hold using a 128-slice multidetector-row Philips Healthcare’s “Philips Ingenuity
Core” CT scanner. There were no intravenous or oral contrast media administrations.
The CT exams were performed using a 120 kV, 226 mAs/slice (utilizing an automatic
tube current modulation—Z-DOM by Philips), a 1.08 spiral pitch factor, 0.5-s gantry
rotation time, and 64 × 0.625 detector setup. Soft tissue kernel with 512 × 512 matrix
(mediastinal window) and lung kernel with 768 × 768 matrix (lung window) was used
to reconstruct 1 mm-thick images. The Picture Archiving and Communication System
(PACS) workstation that was utilized to review the CT images was outfitted with two
Eizo 35 × 43 cm displays with a 2048 × 1536 matrix. Figure 2 shows the raw sample CT
scans of COVID-19 patients with varying lung sizes and variable intensity patterns, posing
a challenge.

2.1.3. Data Preparation

The proposed study makes use of the CT data of 72 COVID-positive individuals. Each
patient had 200 slices, out of which the radiologist [LS] chose 65–70 slices from the visible
lung region, resulting in 5000 images in total. The AI-based segmentation models were
trained and tested using these 5000 images. To prepare the data for segmentation, a binary
mask was created manually in a selected slice with the help of ImgTracer™ under the
supervision of a qualified radiologist [LS] (Global Biomedical Technologies, Inc., Roseville,
CA, USA) [47,48,51]. Figure 3 shows the white binary mask of the lung region computed
using ImgTracer™ during manual tracings by Observer 1 and 2 (both were postgraduate
researchers trained by our radiological team).

2.2. Architecture

COVLIAS 1.0 system incorporates three models: one solo DL (SDL) and two hybrid
DL (HDL). The proposed study incorporates three AI models: (a) PSP Net, (b) VGG-SegNet,
and (c) ResNet-SegNet.

2.2.1. Three AI Models: PSP Net, VGG-SegNet, and ResNet-SegNet

The Pyramid Scene Parsing Network (PSP Net) [52] is a semantic segmentation net-
work with the ability to consider the global context of the image. The architecture of PSP
Net (Figure 4) has four parts: (i) input, (ii) feature map, (iii) pyramid pooling module,
and (iv) output. The input to the network is the image to be segmented, which undergoes
extraction of the feature map using a set of dilated convolution and pooling blocks. The
dilated convolution layer is added at the last two blocks of the network to keep more
prominent features at the end. The next stage is the pyramid pooling module; it is the
heart of the network, as it helps capture the global context of the image/feature map
generated in the previous step. This section consists of four parts, each with a different
scaling ability. The scaling of this module includes 1, 2, 3, and 6, where 1 × 1 scaling helps
capture the spatial features and thereby increases the resolution of the features captured.
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The 6 × 6 scaling captures the higher-resolution features. At the end of this module, all
the output from these four parts is pooled using global average pooling. For the last part,
the global average pooling output is fed to a set of convolutional layers. Finally, the set of
prediction classes are generated as the output binary mask.

 

Figure 2. Raw lung COVID-19 CT scans taken from different patients in the database.
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Figure 3. GT white binary mask for AI model training for Observer 1 vs. Observer 2.
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Figure 4. PSP Net architecture.

The VGGNet architecture (Figure 5) was designed to reduce the training time by
replacing the kernel filter in the initial layer with an 11 and 5 sized filter, thereby reducing
the # of parameters in the two-dimension convolution (Conv) layers [53]. The VGG-SegNet
architecture used in this study is composed of three parts (i) encoder, (ii) decoder part, and
(iii) a pixel-wise SoftMax classifier at the end. It consists of 16 Conv layers compared to
the SegNet architecture, where only 13 Conv layers are used [54] in the encoder part. This
increase in #layers helps the model extract more features from the image. The final output
of the model is a binary mask with the lung region annotated as 1 (white) and the rest of
the image as 0 (black).

 
Figure 5. VGG-SegNet architecture.

Although VGGNet was very efficient and fast, it suffered from the problem of vanish-
ing gradients. It results in significantly less or no weight training during backpropagation;
at each epoch, it keeps getting multiplied with the gradient, and the update to the initial
layers is very small. To overcome this problem, Residual Network or ResNet [55] came
into existence (Figure 6). In this architecture, a new connection was introduced known as
skip connection which allowed the gradients to bypass a certain number of layers, solving
the vanishing gradient problem. Moreover, with the help of one more additions to the
network, i.e., an identity function, the local gradient value was kept to one during the
backpropagation step.

2.2.2. Loss Functions for AI Models

The proposed system uses cross-entropy (CE)-loss during the training of the AI models.
Equation (1) below represents the CE-loss, symbolized as lCE, for the three AI models:

lCE = −[( xi × log pi) + (1 − xi) × log(1 − p i)] (1)
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where xi represents the input GT label 1, (1 − xi) represents the GT label 0, pi represents
the probability of the classifier (SoftMax) used at the last layer of the AI model, and ×
represents the product of the two terms. Figures 4–6 presents the three AI architectures
that have been trained using the CE-loss function.

 

Figure 6. ResNet-SegNet architecture.

3. Experimental Protocol

3.1. Accuracy Estimation of AI Models Using Cross-Validation

A standardized cross-validation (CV) protocol was adapted for determining the accu-
racy of the AI models. Our group has published several CV-based protocols of different
kinds using AI framework [27,30,37,56,57]. Since the data were moderate, the K5 protocol
was used, which consisted of 80% training data (4000 CT images) and 20% testing (1000 CT
images). Five folds were designed in such a way that each fold got a chance to have a
unique test set. An internal validation mechanism was part of the K5 protocol where
10% data was considered for validation.

3.2. Lung Quantification

There were two methods used for quantification of the segmented lungs using AI
models. The spirit of these two methods originates from the shape analysis concept. In the
first method, lung area (LA) is computed since the region is balloon-shaped, thus the area
parameter is well suited for the measurement [58,59]. In the second method, we compute
the long-axis of the lung (LLA) since the shape of the lung is more longitudinal than
circular. A similar approach was taken for the long-axis view in heart computation [60].
The lung area (LA) was calculated by counting the number of white pixels in the binary
mask segmented lungs, and the lung long axis (LLA) was calculated by the most distant
distance segment joining anterior to posterior of the lungs. A resolution factor of 0.52 was
used to convert (i) pixel to mm2 for the LA and (ii) pixel to mm for the LLA computation
and quantification.

If the total number of the image is represented by N in the database, Aai(m, n) rep-
resents lung area for in the image “n” using the AI model “m”, Aai(m) represents the
mean lung area corresponding to the AI model “m,” and mean area of the GT binary mask
is represented by Agt, then mathematically Aai(m) and Agt can be computed as shown
in Equation (2).

Aai(m) = ∑N
n = 1 Aai(m,n)

N

Agt =
∑N

n = 1 Agt(n)
N

⎫⎪⎬⎪⎭ (2)

Similarly, LAai(m, n) represents LLA for in the image “n” using the AI model “m”,
LAai(m) represents the mean LLA corresponding to the AI model “m,”LAgt represents the
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corresponding mean LLA of the GT binary lung mask, then mathematically LAai(m) and
LAgt can be computed as shown in Equation (3).

LAai(m) = ∑N
n = 1 LAai(m,n)

N

LAgt =
∑N

n = 1 LAgt(n)
N

⎫⎪⎬⎪⎭ (3)

3.3. AI Model Accuracy Computation

The accuracy of the AI system was measured by comparing the predicted output and
the ground truth pixel values. These values were interpreted as binary (0 or 1) numbers as
the output lung mask was only black and white, respectively. Finally, these binary numbers
were summed up and divided by the total number of pixels in the image. If TP, TN, FN,
and FP represent true positive, true negative, false negative, and false positive, then the
accuracy of the AI system can be computed as shown in Equation (4) [61].

ACC (ai) (%) =

(
TP + TN

TP + FN + TN + FP

)
× 100 (4)

4. Results and Performance Evaluation

4.1. Results

Previously, COVLIAS 1.0 [54] was designed to run on a training: testing ratio of 2:3
dataset from 5000 images. However, this study proposes an inter-observer variability study
with K5 in a CV framework. The training was performed on two sets of annotations, i.e.,
Observer 1 and Observer 2. The output results are similar to the previously published
study, i.e., a binary mask of the segmented lungs. Figures 7–9 show the AI-generated binary
mask, segmented lung, and color segmented lung with grayscale background as an overlay
for the three AI models.

 

Figure 7. Results from PSP Net while using Observers 1 and 2. Columns are the raw, binary mask
output, segmented lung region, and overlay of the estimated lung region vs. ground truth region.

4.2. Performance Evaluation

This section deals with the performance evaluation (PE) of the three AI models for
Observer 1 vs. Observer 2. Section 4.2.1 presents the visual comparison of the results, which
includes (i) boundary overlays against the ground truth boundary and (ii) lung long axis
against the ground truth axis. Section 4.2.2 shows the PE for lung area error, which consists
of (i) cumulative frequency (CF) plot, (ii) Bland-Altman plot, (iii) Jaccard Index (JI) and Dice
Similarity (DS), and (iv) ROC and AUC curves for the three AI-based models’ performance
for Observer 1 vs. Observer 2. Similarly, lung long axis error (LLAE) presents PE using
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(i) cumulative plot, (ii) correlation coefficient (CC), and (iii) Bland-Altman plot. Finally,
statistical analyses of the LA and LLA are presented using paired t-test, Wilcoxon, Mann-
Whitney, and CC values for all 12 possible combinations for three AI models between
Observer 1 and Observer 2.

 

Figure 8. Results from VGG-SegNet while using Observers 1 and 2. Columns are the raw, binary
mask output, segmented lung region, and overlay of the estimated lung region vs. ground truth
region.

 

Figure 9. Results from ResNet-SegNet while using Observers 1 and 2. Columns are the raw, binary
mask output, segmented lung region, and overlay of the estimated lung region vs. ground truth region.

4.2.1. Lung Boundary and Long Axis Visualization

The overlay for the three AI model boundaries (green) and GT-boundary (red) cor-
responding to Observer 1 (left) and Observer 2 (right) with a grayscale COVID-19 CT
slice in the background is shown in Figure 10, while Figure 11 shows the AI-long axis
(green) and GT-long axis (red) between Observer 1 and Observer 2 for three AI models.
It shows the reach of anterior to posterior of the left and right lungs, with the GT bound-
ary (white) corresponding to Observer 1 (left) and Observer 2 (right) of the lungs by the
tracer using ImgTracer™. The three AI models follow the order: PSP Net, VGG-SegNet,
and ResNet-SegNet.
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4.2.2. Performance Metrics for the Lung Area Error
Cumulative Frequency Plot for Lung Area Error

The frequency of occurrence of the LAE is compared to a reference value in the
cumulative frequency analysis and shown in Figure 12 (left lung) and Figure 13 (right lung)
for three AI models between Observer 1 and Observer 2. A cutoff-score of 80% was chosen
to show the difference between the three AI models. The LAE with the selected cutoff for
the left lung was 1123.36 mm2, 725.90 mm2, and 571.65 mm2 for the three AI models using
Observer 1, and 834.08 mm2, 1730.58 mm2, and 683.42 mm2, respectively, for the three AI
models using Observer 2. A similar trend was followed by the right lung with 1158.93 mm2,
612.47 mm2, and 532.44 mm2 for the three AI models using Observer 1, and 809.77 mm2,
1610.15 mm2, and 572.56 mm2, respectively, for the three AI models using Observer 2. The
three AI models follow the order: PSP Net, VGG-SegNet, and ResNet-SegNet.

 

Figure 10. AI-model segmented boundary (green) vs. GT boundary (red) for Observer 1 and Observer 2.
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Figure 11. AI-model long axis (green) vs. GT long axis (red) for Observer 1 and Observer 2.
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Figure 12. Cumulative frequency plot of left LAE using three AI models: Observer 1 vs. Observer 2.
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Figure 13. Cumulative frequency plot of right LAE using three AI models: Observer 1 vs. Observer 2.

Correlation Plot for Lung Area Error

Coefficient of correlations (CC) plots for the three AI models’ LA vs. GT, area corre-
sponding to the left and right between Observers 1 and 2, are shown in Figures 14 and 15.
The CC values are summarized in Table 1 with a percentage difference between Observers 1
and 2. The percentage difference for the CC value (p < 0.001) ranges from 0% to 2.04%, which
is <5% as part of the error threshold chosen as the hypothesis. This clearly shows that the AI
models are clinically valid for the proposed setting of the inter-observer variability study.
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Figure 14. CC of left lung area using three AI models: Observer 1 vs. Observer 2.
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Figure 15. CC of right lung area using three AI models: Observer 1 vs. Observer 2.

Jaccard Index and Dice Similarity

Figure 16 depicts a cumulative frequency plot for dice similarity (DS) for three AI
models between Observers 1 and Observer 2. It shows that 80% of the CT images had a
DS > 0.95. A cumulative frequency plot for the Jaccard Index (JI) is presented in Figure 17
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and shows that 80% of the CT scans had a JI > 0.90 between Observer 1 and Observer 2.
The three AI models follow the order: PSP Net, VGG-SegNet, and ResNet-SegNet.

Table 1. Comparison of the CC values obtained between AI model area and the GT area corresponding to Observer 1 and
Observer 2.

PSP Net VGG-SegNet ResNet-SegNet

Left Right Mean Left Right Mean Left Right Mean

Observer 1 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.98

Observer 2 0.98 0.98 0.98 0.98 0.98 0.98 1.00 1.00 1.00

% Difference 0.00 0.00 0.00 0.00 1.01 0.51 2.04 2.04 2.04

Figure 16. DS for combined lung using the three AI models: Observer 1 vs. Observer 2.
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Figure 17. JI for combined lung using three AI models: Observer 1 vs. Observer 2.

Bland-Altman Plot for Lung Area

A Bland-Altman plot is used to demonstrate the consistency of two methods that em-
ploy the same variable. Based on our prior paradigms [48,62], we follow the Bland-Altman
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computing procedure. Figures 18 and 19 show the (i) mean and (ii) standard deviation of the
lung area between the AI model and GT area corresponding to Observers 1 and Observer 2.

Figure 18. BA for left LA for three AI models: Observer 1 vs. Observer 2.

189



Diagnostics 2021, 11, 2025

 
Figure 19. BA for right LA using three AI models: Observer 1 vs. Observer 2.

ROC Plots for Lung Area

An ROC curve represents how an AI system’s diagnostic performance changes as the
discrimination threshold changes. Figure 20 shows the ROC curve and corresponding AUC
value for the three AI models between Observer 1 and Observer 2. The three AI models
follow the order: PSP Net, VGG-SegNet, and ResNet-SegNet.
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Figure 20. ROC and AUC curve for the three AI models: Observer 1 vs. Observer 2.

4.2.3. Performance Evaluation Using Lung Long Axis Error
Cumulative Frequency Plot for Lung Long Axis Error

Figures 21 and 22 show the cumulative frequency plot LLAE for left and right lung,
respectively, corresponding to Observer 1 and Observer 2 for the three AI models. Based
on the 80% threshold, the LLAE for the left lung (Figure 21) using the three AI models for
Observer 1 and Observer 2 were 6.12 mm (for PSP Net), 4.77 mm (for VGG-SegNet), and
5.01 mm (for ResNet-SegNet) and 10.88 mm (for PSP Net), 13.30 mm (for VGG-SegNet), and
9.18 mm (for ResNet-SegNet), respectively. Similarly, for the right lung (Figure 22), the error
was 7.81 mm (for PSP Net), 5.47 mm (for VGG-SegNet), and 3.10 mm (for ResNet-SegNet)
and 9.14 mm (for PSP Net), 11.33 mm (for VGG-SegNet), and 6.88 mm (for ResNet-SegNet),
respectively, for Observer 1 and Observer 2. The three AI models follow the order: PSP
Net, VGG-SegNet, and ResNet-SegNet.
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Figure 21. Cumulative frequency plot for left LLAE using three AI models: Observer 1 vs. Observer 2.
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Figure 22. Cumulative frequency plot for right LLAE using three AI models: Observer 1 vs. Observer 2.

Correlation Plot for Lung Long Axis Error

Figures 23 and 24 show the CC plot for the three AI models considered in the proposed
inter-observer variability study for Observers 1 and 2. Table 2 summarizes the CC values
for the left, right, and mean errors of the LLA. It proves the hypothesis that the percentage
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difference between the results using the two observers has a difference of <5%. This demon-
strates that the proposed system is clinically valid in the suggested inter-observer variability
study context.

Figure 23. CC of left LLA for three AI models: Observer 1 vs. Observer 2.
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Figure 24. CC of right LLA using three AI models: Observer 1 vs. Observer 2.

Bland-Altman Plots for Lung Long Axis Error

The (i) mean and (ii) standard deviation of the lung long axis corresponding to
Observer 1 and Observer 2 for the three AI models is shown in Figure 25 for the left lung
and Figure 26 for the right lung.
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Table 2. Comparison of the CC values obtained between AI model lung long axis and the GT lung long axis corresponding
to Observer 1 and Observer 2.

PSP Net VGG-SegNet ResNet-SegNet

Left Right Mean Left Right Mean Left Right Mean

Observer 1 0.97 0.99 0.98 0.96 0.97 0.97 0.98 0.99 0.99

Observer 2 0.96 0.98 0.97 0.96 0.97 0.97 0.98 0.98 0.98

% Difference 1.03 1.01 1.02 0.00 0.00 0.00 0.00 1.01 0.51

 
Figure 25. BA for the left LLA using the three: Observer 1 vs. Observer 2.
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Figure 26. BA for the right LLA using the three AI models: Observer 1 vs. Observer 2.

Statistical Tests

The system’s dependability and stability were assessed using a standard paired t-test,
ANOVA, and Wilcoxon test. The paired t-test can be used to see if there is enough data
to support a hypothesis; the Wilcoxon test is its alternative when the distribution is not
normal. ANOVA helps in the analysis of the difference between the means of groups of
the input data. MedCalc software (Osteen, Belgium) was used to perform the statistical
analysis. To validate the system presented in this study, we have presented all the possible
combinations (twelve in total) for the three AI models between Observer 1 and Observer 2.
Table 3 shows the paired t-test, ANOVA, and Wilcoxon test results for the 12 combinations.
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Table 3. Paired t-test, Wilcoxon, ANOVA, and CC for LA and LLA for the 12 combinations.

Lung Area Lung Long Axis

SN Combinations
Paired
t-Test

(p-Value)

Wilcoxon
(p-Value)

ANOVA
(p-Value)

CC
[0–1]

Paired
t-Test

(p-Value)

Wilcoxon
(p-Value)

ANOVA
(p-Value)

CC
[0–1]

1 P1 vs. V1 <0.0001 <0.0001 <0.001 0.9726 <0.0001 <0.0001 <0.001 0.9509

2 P1 vs. R1 <0.0001 <0.0001 <0.001 0.9514 <0.0001 <0.0001 <0.001 0.9506

3 P1 vs. P2 <0.0001 <0.0001 <0.001 0.9703 <0.0001 <0.0001 <0.001 0.9686

4 P1 vs. V2 <0.0001 <0.0001 <0.001 0.9446 <0.0001 <0.0001 <0.001 0.9445

5 P1 vs. R2 <0.0001 <0.0001 <0.001 0.9764 <0.0001 <0.0001 <0.001 0.9661

6 V1 vs. R1 <0.0001 <0.0001 <0.001 0.9663 <0.0001 <0.0001 <0.001 0.9561

7 V1 vs. P2 <0.0001 <0.0001 <0.001 0.9726 <0.0001 <0.0001 <0.001 0.9671

8 V1 vs. V2 <0.0001 <0.0001 <0.001 0.9766 <0.0001 <0.0001 <0.001 0.9638

9 V1 vs. R2 <0.0001 <0.0001 <0.001 0.9943 <0.0001 <0.0001 <0.001 0.9796

10 R1 vs. P2 <0.0001 <0.0001 <0.001 0.9549 <0.0001 <0.0001 <0.001 0.9617

11 R1 vs. V2 <0.0001 <0.0001 <0.001 0.9513 <0.0001 <0.0001 <0.001 0.9499

12 R1 vs. R2 <0.0001 <0.0001 <0.001 0.9690 <0.0001 <0.0001 <0.001 0.9726

CC: Correlation coefficient; P1: PSP Net for Observer 1; V1: VGG-SegNet for Observer 1; R1: ResNet-SegNet for Observer 1; P2: PSP Net for
Observer 2; V2: VGG-SegNet for Observer 2; R2: ResNet-SegNet for Observer 2.

Figure of Merit

The likelihood of the error in the system is known as the figure of merit (FoM). We
have calculated FoM for (i) lung area and (ii) lung long axis to show the acceptability of
the hypothesis if the % difference between the two observers is <5%. Table 4 shows the
values for FoM using Equation (5) and the % difference for the three AI models against the
two observers. Similarly, Table 5 shows the values for FoM using Equation (6) and the %
difference for the three AI models against the two observers.

FoMA(m) = 100 −
[(∣∣Aai(m)− Agt

∣∣
Agt

)
× 100

]
, (5)

FoMLA(m) = 100 −
[( |Lai(m)−Lgt|

Lgt

)
× 100

]
where Aai(m) = ∑N

n = 1 Aai(m,n)
N , Agt =

∑N
n = 1 Agt(n)

N ,

LAai(m) = ∑N
n = 1 LAai(m,n)

N & LAgt =
∑N

n = 1 LAgt(n)
N

(6)

Table 4. FoM for lung area.

Observer 1 Observer 2 % Difference Hypothesis (<5%)

Left Right Mean Left Right Mean Left Right Mean Left Right Mean

PSP Net 95.07 95.11 95.09 97.37 97.49 97.43 2% 3% 2% � � �

VGG-SegNet 96.73 97.40 97.04 97.74 97.27 97.52 1% 0% 0% � � �

ResNet-SegNet 98.33 99.98 99.11 97.88 99.20 98.50 0% 1% 1% � � �
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Table 5. FoM for lung long axis.

Observer 1 Observer 2 % Difference Hypothesis (<5%)

Left Right Mean Left Right Mean Left Right Mean Left Right Mean

PSP Net 98.91 97.34 98.13 98.65 98.60 98.62 0% 1% 1% � � �

VGG-SegNet 99.41 98.50 98.95 97.07 97.27 97.17 2% 1% 2% � � �

ResNet-SegNet 99.73 99.37 99.83 99.51 98.75 99.13 0% 1% 1% � � �

5. Discussion

The study presented the inter-observer variability analysis for the COVLIAS 1.0 using
three AI models, PSP Net, VGG-SegNet, and ResNet-SegNet. These models have con-
sidered tissue characterization approaches since they analyze the tissue data for better
feature extraction to evaluate for ground vs. background, thus are more akin to a tissue
characterization in classification framework [30,37]. Our group has strong experience in
tissue characterization approaches with different AI models and applications for classifi-
cation using ML frameworks such as plaque, liver, thyroid, breast [21,28,30,63–68], and
DL framework [1,36,69,70]. These three AI models were trained using the GT annotated
data from the two observers. The percentage difference between the outputs of the two
AI model results was less than 5%, and thus the hypothesis was confirmed. During the
training, the K5 cross-validation protocol was adapted on a set of 5000 CT images. For
the PE of the proposed inter-observer variability system, the following ten metrics were
considered: (i) visualization of the lung boundary, (ii) visualization of the lung long axis,
cumulative frequency plots for (iii) LAE, (iv) LLAE, CC plots for (v) lung area, (vi) lung
long axis, BA plots for (vii) lung area, (viii) lung long axis, (ix) ROC and AUC curve, and
(x) JI and DS for estimated AI model lung regions. These matrices showed consistent and
stable results. The training, evaluation, and quantification were implemented on the GPU
environment (DGX V100) using python. We adapted vectorization provided by python
during the implementation of the Numba library.

5.1. A Special Note on Three Model Behaviors with Respect to the Two OBSERVERS

The proposed inter-observer variability study used three AI models for the analysis,
where PSP Net was implemented for the first time for COVID-19 lung segmentation. The
other models VGG-SegNet and ResNet-SegNet were used for benchmarking. The AUC for
the mean lung region for the three AI models was >0.95 for both Observer 1 and Observer 2.

Our results, shown below in Table 6, compared various metrics that included the inter-
observer variability study for the three AI models. All the models behaved consistently
while using the two different observers. Our results showed that ResNet-SegNet was the
best performing model for all the PE metrics. The percentage difference between the two
observers was 0.4%, 3.7%, and 0.4%, respectively, for the three models PSP Net, VGG-
SegNet, and ResNet-SegNet, respectively. This further validated our hypothesis for every
AI model, keeping the error threshold less than 5%. Even though all three AI models
passed the hypothesis, VGG-SegNet is the least superior. This is because the number of
the layers in the VGG-SegNet architecture (Figure 5) is 19, compared to ~50 in PSP Net
(Figure 4) and 51 (encoder part) in the ResNet-SegNet model (Figure 6). By taking the
results from both the observers into account, the order of the performance of the models
is ResNet-SegNet > PSP Net > VGG-SegNet. Further, we also conclude that HDL models
are superior to SDL (PSP Net). The aggregate score was computed as the mean for all the
models for Observer 1, Observer 2, and the mean of the two Observers. Even though the
performance of all the models was comparable, when carefully looking at the performance
of Observer 1 the order of performance was ResNet-SegNet > VGG-SegNet > PSP Net.
For Observer 2, the order of performance was ResNet-SegNet > PSP Net > VGG-SegNet.
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Further, the performance of the left lung was better than the right lung for the reasons
unclear at this point, and more investigations would be needed to evaluate this.

Table 6. Comparison of PE metrics for Observer 1 and Observer 2 and their mean.

Observer 1 Observer 2 Mean Obs. 1 & Obs. 2

Attributes
PSP
Net

VGG-
SegNet

ResNet-
SegNet

PSP
Net

VGG-
SegNet

ResNet-
SegNet

PSP
Net

VGG-
SegNet

ResNet-
SegNet

DS 0.96 0.98 0.98 0.96 0.95 0.97 0.96 0.97 0.98

JI 0.93 0.96 0.97 0.92 0.9 0.94 0.93 0.93 0.96

CC Left LA 0.98 0.98 0.98 0.98 0.98 1 0.98 0.98 0.99

CC Right LA 0.98 0.99 0.98 0.98 0.98 1 0.98 0.99 0.99

CC Left LLA 0.97 0.96 0.98 0.96 0.96 0.98 0.97 0.96 0.98

CC Right LLA 0.99 0.97 0.99 0.98 0.97 0.98 0.99 0.97 0.99

CF Left LA < 10% 0.83 0.85 0.90 0.81 0.75 0.89 0.82 0.80 0.89

CF Right LA < 10% 0.78 0.85 0.90 0.80 0.75 0.88 0.79 0.80 0.89

Aggregate Score 7.42 7.54 7.67 7.39 7.24 7.64 7.40 7.39 7.66

DS: Dice similarity; JI: Jaccard index; CC: Correlation coefficient; LA: Lung area; LLA: Lung long axis; CF: Cumulative frequency; Obs: Observer.

5.2. Benchmarking

There have been several studies in the area of DL for lung segmentation, but only a
few in the region of COVID-19 [71–74], and even less that involved variability analysis.
Table 7 shows the benchmarking table having three variability studies: Saba et al. [48],
Jeremy et al. [75], and Joskowicz et al. [76], that are compared against Suri et al. in this
proposed study. Saba et al. has used a dataset of 96 patients with three observers for
tracings, and ROC curves were also not presented in the study. Jeremy et al. [60] have
demonstrated the variability analysis using five different observers that used the area
error as the metric. The boundary error, ROC, JI, and DS were not discussed. Finally,
Joskowicz et al. [76] used 480 images and 11 observers to annotate the dataset, but no area
and boundary errors were present. Moreover, they did not present the ROC curves, JI, and
DS for the tracings. All three studies [48,75,76], only performed manual annotation of the
non-COVID dataset, and there was no involvement of the AI techniques to generate the
boundaries automatically. Comparatively, the proposed study provides a first-of-its-kind
for inter-observer variability analysis alongside HDL and SDL solutions, supporting our
hypothesis that the error between the AI models trained using the two observers involved
is less than 5%.

5.3. Strengths, Weakness, and Extensions

The proposed study successfully validated the hypothesis for the inter-observer vari-
ability settings, demonstrating that the difference between the two AI models when trained
by the two observers was less than 5%. It was the first-time inter-observer variability was
presented for COVID-19 lung segmentation using HDL and SDL models.

In spite of encouraging results, the study could not include more than two observers
due to reasons such as cost, time, and availability of the radiologists. The imaging anal-
ysis component could be extended to handle more dense pulmonary opacities such as
consolidation or mixed opacities during lung segmentation.

As part of the extension, the HDL models can be extended, which combines DL with
ML or two solo DL models for lung segmentation. Conventional methods [77,78] can be
used for lung segmentation embedded with denoising methods [79] and benchmarked
against the AI models. The system can be extended to unseen data where the training data
is taken from one clinical site and testing data can be from the other clinical site. It would
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also be interesting to explore the segmentation of lungs in the healthy patients using the AI
model trained on COVID-19 patients. Other neural network techniques such as generative
adversarial networks (GANs) [80] or transfer learning and loss schemes [38,44,81] can also
be adapted. A big data framework can be used to integrate comorbidity factors [82] in the
AI models.

Table 7. Benchmarking Table.

Attributes/Author Saba et al. [49] Jeremy et al. [77] Joskowicz et al. [78] Suri et al. (Proposed)

# of patients 96 33 18 72

# of Images NA NA 490 5000

# of Observers 3 5 11 2

Dataset Non-COVID Non-COVID Non-COVID COVID

Image Size 512 NA 512 768

# of tests/PE 5 0 2 13

CC 0.98 NA NA 0.98

Boundary estimation Manual Manual Manual Manual & automatic

AI Models NA NA NA 3

Modality CT CT CT CT

Area Error � � � �

Boundary Error � � � �

ROC � � � �

JI � � � �

DS � � � �

CC: Correlation coefficient; ROC: Receiver-Operating Characteristics; DS: Dice similarity; JI: Jaccard index.

6. Conclusions

The proposed study is the first of its kind to evaluate the effect of ground-truth tracings
on the AI models for COVID-19 CT lung segmentation. Three kinds of AI models, PSP
Net, VGG-SegNet, and ResNet-SegNet, were adapted for lung segmentation. Two different
Observers were used to annotate 5000 CT lung slices taken from 72 COVID-19 patients.
Thus, six AI training models (three AI models times two Observers) were generated and
evaluated using the K5 cross-validation protocol. Ten different kinds of metrics were used
for the evaluation of the six AI models. The two Observers’ error metrics were compared
to validate the hypothesis for every AI model, keeping below the error threshold of 5%.
Our results showed that the difference in these errors were 0%, 0.51%, and 2.04% (all < 5%),
respectively, for the three AI models, validating the hypothesis. Statistical analysis was
conducted using a standard paired t-test, ANOVA, and Wilcoxon test to prove the system’s
hypothesis. The inter-variability COVLIAS 1.0 showed clinically robust and statistically
stable outcomes for this pilot study and, thus, can be adapted in clinical settings.
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Abbreviations

SN Symbol Description of the Symbols

1 ACC (ai) Accuracy
2 AE Area Error
3 AI Artificial Intelligence
4 ARDS Acute Respiratory Distress Syndrome
5 AUC Area Under the Curve
6 BA Bland-Altman
7 BE Boundary Error
8 CC Correlation coefficient
9 CE Cross Entropy
10 COVID Coronavirus disease
11 COVLIAS COVID Lung Image Analysis System
12 CT Computed Tomography
13 DL Deep Learning
14 DS Dice Similarity
15 FoM Figure of merit
16 GT Ground Truth
17 HDL Hybrid Deep Learning
18 IS Image Size
19 JI Jaccard Index
20 LAE Lung Area Error
21 LLAE Lung Long Axis Error
22 NIH National Institute of Health
23 PC Pixel Counting
24 RF Resolution Factor
25 ROC Receiver operating characteristic
26 SDL Solo Deep Learning
27 VGG Visual Geometric Group
28 VS Variability studies
29 WHO World Health Organization
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Symbols

SN Symbol Description of the Symbols

1 lCE Cross Entropy-loss
2 m Model used for segmentation in the total number of models M
3 n Image scan number in total number N
4 Aai(m) Mean estimated lung area for all images using AI model ‘m’
5 Aai(m, n) Estimated Lung Area using AI model ‘m’ and image ‘n’
6 Agt(n) GT lung area for image ‘n’
7 Agt Mean ground truth area for all images N in the database
8 LAai(m) Mean estimated lung long axis for all images using AI model ‘m’
9 LAai(m, n) Estimated lung long axis using AI model ‘m’ and image ‘n’
10 LAgt(n) GT lung long axis for image ‘n’
11 LAgt Mean ground truth long axis for all images N in the database
12 FoMA(m) Figure-of-Merit for segmentation model ‘m’
14 FoMLA(m) Figure-of-Merit for long axis for model ‘m’
15 JI Jaccard Index for a specific segmentation model
16 DSC Dice Similarity Coefficient for a specific segmentation model
17 TP, TN True Positive and True Negative
18 FP, FN False Positive and False Negative
19 xi GT label
20 pi SoftMax classifier probability
21 Yp Ground truth image
22 Ŷp Estimated image
23 P Total no of pixels in an image in x, y-direction
24 K5 Cross-validation protocol with 80% training and 20% testing (5 folds)
Deep Learning Segmentation Architectures

25 PSP Net SDL model for lung segmentation with pyramidal feature extraction
26 VGG-SegNet HDL model designed by fusion of VGG-19 and SegNet architecture
27 ResNet-SegNet HDL model designed by fusion of ResNet-50 and SegNet architecture
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Bardales, R.H.; Witkowska, A.; et al. Diagnosis of Hashimoto’s thyroiditis in ultrasound using tissue characterization and pixel
classification. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2013, 227, 788–798. [CrossRef]

65. Acharya, U.R.; Faust, O.; Alvin, A.P.C.; Krishnamurthi, G.; Seabra, J.C.; Sanches, J.; Suri, J.S. Understanding symptomatology of
atherosclerotic plaque by image-based tissue characterization. Comput. Methods Programs Biomed. 2013, 110, 66–75. [CrossRef]

66. Acharya, U.R.; Faust, O.; Sree, S.V.; Alvin, A.P.C.; Krishnamurthi, G.; Sanches, J.; Suri, J.S. Atheromatic™: Symptomatic
vs. asymptomatic classification of carotid ultrasound plaque using a combination of HOS, DWT & texture. In Proceedings
of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA,
3 August–3 September 2011; IEEE: Piscataway, NJ, USA, 2011.

67. Acharya, U.R.; Mookiah, M.R.K.; Sree, S.V.; Afonso, D.; Sanches, J.; Shafique, S.; Nicolaides, A.; Pedro, L.M.; e Fernandes, J.F.;
Suri, J.S. Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification:
A paradigm for stroke risk assessment. Med. Biol. Eng. Comput. 2013, 51, 513–523. [CrossRef]

68. Molinari, F.; Liboni, W.; Pavanelli, E.; Giustetto, P.; Badalamenti, S.; Suri, J.S. Accurate and automatic carotid plaque characteri-
zation in contrast enhanced 2-D ultrasound images. In Proceedings of the 29th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; IEEE: Piscataway, NJ, USA, 2007.

69. Saba, L.; Biswas, M.; Suri, H.S.; Viskovic, K.; Laird, J.R.; Cuadrado-Godia, E.; Nicolaides, A.; Khanna, N.N.; Viswanathan, V.;
Suri, J.S. Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: A deep learning paradigm.
Cardiovasc. Diagn. Ther. 2019, 9, 439–461. [CrossRef]

70. Biswas, M.; Kuppili, V.; Saba, L.; Edla, D.R.; Suri, H.S.; Sharma, A.; Cuadrado-Godia, E.; Laird, J.R.; Nicolaides, A.; Suri, J.S. Deep
learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: A tool for stroke risk.
Med Biol. Eng. Comput. 2019, 57, 543–564. [CrossRef]

71. Chaddad, A.; Hassan, L.; Desrosiers, C. Deep CNN models for predicting COVID-19 in CT and x-ray images. J. Med. Imaging
2021, 8 (Suppl. S1), 014502. [CrossRef] [PubMed]

72. Gunraj, H.; Wang, L.; Wong, A. COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for Detection of
COVID-19 Cases From Chest CT Images. Front. Med. 2020, 7, 608525. [CrossRef] [PubMed]

73. Iyer, T.J.; Raj, A.N.J.; Ghildiyal, S.; Nersisson, R. Performance analysis of lightweight CNN models to segment infectious lung
tissues of COVID-19 cases from tomographic images. PeerJ Comput. Sci. 2021, 7, e368. [CrossRef]

74. Ranjbarzadeh, R.; Jafarzadeh Ghoushchi, S.; Bendechache, M.; Amirabadi, A.; Ab Rahman, M.N.; Baseri Saadi, S.; Aghamoham-
madi, A.; Kooshki Forooshani, M. Lung Infection Segmentation for COVID-19 Pneumonia Based on a Cascade Convolutional
Network from CT Images. BioMed Res. Int. 2021, 2021, 5544742. [CrossRef]

75. Erasmus, J.J.; Gladish, G.W.; Broemeling, L.; Sabloff, B.S.; Truong, M.T.; Herbst, R.S.; Munden, R.F. Interobserver and intraobserver
variability in measurement of non–small-cell carcinoma lung lesions: Implications for assessment of tumor response. J. Clin.
Oncol. 2003, 21, 2574–2582. [CrossRef]

76. Joskowicz, L.; Cohen, D.; Caplan, N.; Sosna, J. Inter-observer variability of manual contour delineation of structures in CT. Eur.
Radiol. 2019, 29, 1391–1399. [CrossRef] [PubMed]

77. El-Baz, A.; Suri, J. Lung Imaging and CADx; CRC Press: Boca Raton, FL, USA, 2019.
78. El-Baz, A.; Suri, J.S. Lung Imaging and Computer Aided Diagnosis; CRC Press: Boca Raton, FL, USA, 2011.
79. Sudeep, P.V.; Palanisamy, P.; Rajan, J.; Baradaran, H.; Saba, L.; Gupta, A.; Suri, J.S. Speckle reduction in medical ultrasound images

using an unbiased non-local means method. Biomed. Signal Process. Control. 2016, 28, 1–8. [CrossRef]
80. Sarker, M.M.K.; Rashwan, H.A.; Akram, F.; Singh, V.K.; Banu, S.F.; Chowdhury, F.U.; Choudhury, K.A.; Chambon, S.; Radeva, P.;

Puig, D.; et al. SLSNet: Skin lesion segmentation using a lightweight generative adversarial network. Expert Syst. Appl. 2021,
183, 115433. [CrossRef]

81. Saba, L.; Agarwal, M.; Sanagala, S.S.; Gupta, S.K.; Sinha, G.R.; Johri, A.M.; Khanna, N.N.; Mavrogeni, S.; Laird, J.R.; Pareek,
G.; et al. Brain MRI-based Wilson disease tissue classification: An optimised deep transfer learning approach. Electron. Lett. 2020,
56, 1395–1398. [CrossRef]

82. El-Baz, A.; Suri, J.S. Big Data in Multimodal Medical Imaging; CRC Press: Boca Raton, FL, USA, 2019.

206



diagnostics

Article

Diagnostic Performance of Dual-Energy Subtraction
Radiography for the Detection of Pulmonary Emphysema:
An Intra-Individual Comparison

Julia A. Mueller 1, Katharina Martini 1,*, Matthias Eberhard 1, Mathias A. Mueller 2, Alessandra A. De Silvestro 1,

Philipp Breiding 1 and Thomas Frauenfelder 1

Citation: Mueller, J.A.; Martini, K.;

Eberhard, M.; Mueller, M.A.; De

Silvestro, A.A.; Breiding, P.;

Frauenfelder, T. Diagnostic

Performance of Dual-Energy

Subtraction Radiography for the

Detection of Pulmonary Emphysema:

An Intra-Individual Comparison.

Diagnostics 2021, 11, 1849. https://

doi.org/10.3390/diagnostics11101849

Academic Editor: Sameer Antani

Received: 26 August 2021

Accepted: 5 October 2021

Published: 7 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, 8091 Zürich, Switzerland;
juliaanna@gmx.ch (J.A.M.); Matthias.eberhard@gmx.de (M.E.); desilvestro.alessandra@usz.ch (A.A.D.S.);
philipp.breiding@usz.ch (P.B.); Thomas.frauenfelder@usz.ch (T.F.)

2 Institute of Radiology, Cantonal Hospital of Frauenfeld, 8501 Frauenfeld, Switzerland;
Mahias.mueller@stgag.de

* Correspondence: katharina.martini@usz.ch

Abstract: Purpose/Objectives: To compare the diagnostic performance of dual-energy subtraction
(DE) and conventional radiography (CR) for detecting pulmonary emphysema using computed
tomography (CT) as a reference standard. Methods and Materials: Sixty-six patients (24 female,
median age 73) were retrospectively included after obtaining lateral and posteroanterior chest X-rays
with a dual-shot DE technique and chest CT within ±3 months. Two experienced radiologists first
evaluated the standard CR images and, second, the bone-/soft tissue weighted DE images for the
presence (yes/no), degree (1–4), and quadrant-based distribution of emphysema. CT was used
as a reference standard. Inter-reader agreement was calculated. Sensitivity and specificity for the
correct detection and localization of emphysema was calculated. Further degree of emphysema on
CR and DE was correlated with results from CT. A p-value < 0.05 was considered as statistically
significant. Results: The mean interreader agreement was substantial for CR and moderate for
DE (kCR = 0.611 vs. kDE = 0.433; respectively). Sensitivity, as well as specificity for the detection
of emphysema, was comparable between CR and DE (sensitivityCR 96% and specificityCR 75% vs.
sensitivityDE 91% and specificityDE 83%; p = 0.157). Similarly, there was no significant difference
in the sensitivity or specificity for emphysema localization between CR and DE (sensitivityCR 50%
and specificityCR 100% vs. sensitivityDE 57% and specificityDE 100%; p = 0.157). There was a slightly
better correlation with CT of emphysema grading in DE compared to CR (rDE = 0.75 vs. rCR = 0.68;
p = 0.108); these differences were not statistically significant, however. Conclusion: Diagnostic
accuracy for the detection, quantification, and localization of emphysema between CR and DE is
comparable. Interreader agreement, however, is better with CR compared to DE

Keywords: lung; conventional radiography; diagnostic procedure; chronic obstructive pulmonary disease

1. Introduction

Chronic obstructive pulmonary disease (COPD) is defined symptomatically as chronic
bronchitis and physiologically as airway obstruction or anatomically as emphysema [1],
usually caused by tobacco use [2]. Its course is creeping and progressive with a high
impairment in quality of life [3] and COPD is a leading cause of death worldwide [4]. The
early detection of emphysematous lung tissue is important to prevent and manage the
global disease burden [5,6].

Since the pathogenesis in COPD is not fully understood and pulmonary function tests
(PFT) are not sensitive in detecting mild emphysema and fail to register the heterogeneity
of the disease, radiological imaging plays a major role in emphysema detection and evalua-
tion [7,8]. Computed tomography (CT) is the most sensitive radiological imaging modality
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for the detection, quantification, and phenotyping of emphysema [9,10]. Due to the high
sensitivity of HRCT, pulmonary emphysematous changes detected before PFT (forced ex-
piratory volume in 1 s, FEV1) are pathologic [11]. The benefit of earlier therapy of chronic
cough with normal FEV1 but conspicuous features in CT is not yet known, but a delay of
disease progression is postulated [12]. Conventional radiography (CR) seems not to be
as reliable as CT in the detection of emphysema unless the disease is advanced. Indirect
signs, such as horizontal standing ribs, extended intercostal space, flattened diaphragms,
retrosternal air space, increased radiographic transparency, and rarefication of small blood
vessels in the periphery, can give a hint to the underlying disease, however [13].

Nevertheless, CR holds its position as a first diagnostic approach in the daily clinical
practice due to its broad availability; fast examination time; low cost and low radiation
dose [14,15]; and new developments, such as dual energy subtraction chest X-ray (DE),
which might help to increase its diagnostic accuracy.

In DE, besides the standard image, a soft tissue image with bone information removed
and a bone image with soft tissue information removed is generated [16,17].

Previous studies have shown that DE images improve the sensitivity for shading
lesions, such as the detection of infectious consolidations, tumors, interstitial lung changes,
and aortic or tracheal calcification, compared to CR-images [18–21]. We hypothesize that
DE might improve the conspicuousness of hyperlucent lung pathologies in a similar way.

Therefore, the aim of this study was to assess the diagnostic performance of DE for
detecting pulmonary emphysema compared to CR using CT as a reference standard.

2. Materials and Methods

2.1. Patient Population

The study was approved by the institutional review board and local ethics committee
(KEK Zürich: Cantonal ethics committee Zurich Switzerland). Informed consent was
waived because of the retrospective setting of this study (blinded for review).

In this observational study, 74 patients (age: 71.6 ± 8.7 years, 26 females) undergoing
CR, DE, and chest CT between September 2015 and Mai 2019 were retrospectively included.
Inclusion criterion was the presence of a CT ± 3 months within the conventional imaging.
Patients were excluded when there was an intervention (interventional or surgical lung
resection) between imaging. In- and exclusion criteria are listed in Table 1.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Age > 18 years Incapability of undergoing upright
chest radiography

Existence of chest examinations with DE
and CT Cardiopulmonary decompensation

Description of lung emphysema in radiologic
findings or COPD in list of diagnosis

Obscured lung tissue by foreign bodies,
e.g., cardiac devices

Short time interval between the two
imaging modalities

Consolidation,
e.g., empyema, encapsulated pneumonia

Changes between performed DE and reference
CTOccurrence of a pneumothorax
Lung volume reduction surgery

Endoscopic lung volume reduction,
e.g., valves, coils, sealants

DE = dual energy subtraction radiography; CT = computed tomography.

208



Diagnostics 2021, 11, 1849

2.2. Data Acquisition
2.2.1. CR and DE Images

All patients underwent chest radiography in lateral and p.a. projection, whereby the
latter was obtained using a dual energy mode (FDR AcSelerate, Fujifilm, Tokyo, Japan)
at a tube current of 7 mA and a tube voltage of 120 kV and 60 kV after a delay of 150 ms
according to institution’s standard protocol. The higher energy exposure was used to
produce the CR image. With the use of a post-processing algorithm, the “virtual” soft tissue
and bone image were calculated from the two acquisitions (see Figure 1).

 

Figure 1. Moderate emphysema, right upper lobe and left lower lobe. Left: conventional X-ray postero anterior (p.a.),
middle: dual energy X-ray p.a., right: corresponding computed tomography image.

2.2.2. CT Images

Single-energy CT was performed with or without intravenously injected contrast agent
at 120 kV/110 mA (Somatom Sensation, Somatom Flash and Somatom Force, Siemens
Healthcare, Forchheim, Germany) and reconstructed with a slice thickness of 2.0 mm.
A radiation dose was recorded for each scan.

2.3. Image Analysis
2.3.1. CR/DE Image Analysis

All images were anonymized prior to readout. Two experienced readers (5 and 10 years
of experience in thoracic imaging, respectively) reviewed the images in two reading-rounds:

Reading-round 1 (CR): Only the conventional p.a. and lateral projections were evaluated.
Reading round 2 (DE): All images (including the p.a. bone and soft tissue images) of

the patients were evaluated.
Readers had to evaluate the images for the presence (yes/no) of emphysema. If

emphysema was present, readers had to score the degree of emphysema (none, mild,
moderate and strong; 1–4) of emphysema. For the quantification of emphysema, readers
were trained with four data sets showing the entire range of emphysema manifestations
(Figures 2 and 3).

Readers further had to sign the quadrant (upper right, lower right, upper left, lower
left) of the most affected area.

If there was a disagreement between the two readers, re-evaluation was performed
until consensus was sought. The time frame between the two reading-rounds was of
four weeks to avoid a recall bias.
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Figure 2. Dual energy soft tissue X-ray image of non-mild-moderate-severe emphysema in the right upper lobe.

 

Figure 3. Four patients with varying degrees of emphysema in the right upper lobe.First row: no
emphysema; second row: mild emphysema; third row: moderate emphysema; and fourth row: severe
emphysema. Left column: conventional postero anterior (p.a.) X-ray; middle column: dual-energy
p.a. X-ray; and right column: conventional lateral X-ray.
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2.3.2. CT Image Analysis

One expert reader (15 years of experience in thoracic imaging) evaluated the CTs for
the presence (yes/no) of emphysema. Further evaluation of CT images was performed
with a commercially available software tool (Ziostation, Ziosoft Inc., Tokyo, Japan). The
software quantified emphysema using the Goddard score (Figure 4) and assessed the ratio
of low attenuation area to lung volume (LAA%) using a threshold of −950 Hounsfield
units (HU).

 
Figure 4. Lobe- and quadrant-based quantification.

The Goddard score is a semi-quantitative assessment score functioning as a surrogate
marker for the presence of emphysema based on the evaluation of low attenuation areas in
a number of representative lung fields. The total score is defined as the sum of the single
scores [22]. The Goddard score was used for overall emphysema grading as well as for
defining the most affected lung quadrant.

2.3.3. Statistical Analysis

Statistical analysis was conducted using SPSS (released 2017, version 25.0, Armonk,
NY, USA). Interreader agreement for binomial variables was calculated with Cohen’s kappa
(κ). According to Landis and Koch [23], κ values were defined as follows: slight agreement
(κ = 0–0.2), fair agreement (κ = 0.21–0.40), moderate agreement (κ = 0.41–0.60), substantial
agreement (κ = 0.61–0.80), and almost perfect agreement (κ = 0.81–1.0). For calculating the
interreader agreement in emphysema grading, the interclass correlation coefficient (ICC)
was used. An ICC below 0.5 was considered as poor agreement, values between 0.5 and
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0.75 were considered as moderate, and values between 0.75 and 0.9 were considered as
good agreement [24].

Sensitivity, specificity, negative predictive value (NPV), and positive predictive value
(PPV) for the presence and location of the most affected quadrant were calculated. Further,
emphysema grading on CR and DE were correlated with the CT-derived Goddard score using
Pearson’s correlation (r). A p-value of <0.05 in overall analysis was considered significant.

3. Results

3.1. Patient Population

Indications for conventional radiography and chest CT in the included patents were
medical evaluation of potential lung volume reduction surgery (LVRS; n = 23), further
assessment of radiological findings (e.g., pulmonary noduli or malignancies) or clarification
of clinically persistent symptoms (e.g., chronical cough, recurrent infections or hemoptysis;
n = 32), and vascular indications (n = 10).

A total of eight participants were excluded due to the following events within the time
interval between CT and DE: lung volume reduction surgery (n = 1), new small pleural
effusion (n = 1), new pneumothorax (n = 1), progressive lymphatic spread of leukemia
(n = 1), evolution of pericardial effusion (n = 1), paraseptal emphysema (n = 2), and bilateral
discrete emphysema (n = 1).

3.2. CT Images: Standard of Reference

The time interval between CT and conventional radiography was of 28 ± 58 days (see
Table 2).

Table 2. Patient characteristics.

Patients Controls

Number 61 13

Age (years), mean ± SD 71.9 ± 8.2 70.6 ± 10.8

Time between CT and CR/DE (days), mean ± SD 41.8 ± 1.4 20.7 ± 46.8

Male:Female ratio 40:21 8:5
SD = standard deviation; CT = computed tomography; CR = conventional radiography; DE = dual energy
subtraction radiography.

3.3. Presence of Emphysema

From the 66 included patients, 81.8% (n = 54) showed emphysema.

3.4. Emphysema Grading

The mean Goddard score based on quantitative CT analysis was 7 (SD ± 4.5; range
0–22). The mean LAA% based on quantitative CT analysis was 16.66% (SD ± 17.1; range
0.01–82.3%). Thirty-two patients had mild emphysema (Goddard-Score 1–7), twenty had
moderate emphysema (Goddard-Score 8–15), and two had severe emphysema (Goddard-
Score >15).

3.5. CR and DE Image Analysis
3.5.1. Interreader Agreement

Overall, the mean interreader agreement was substantial for CR and moderate for DE
(kCR = 0.611 vs. kDE = 0.433; respectively). While the interreader agreement was compa-
rable for emphysema grading (both good), the interreader agreement for the presence of
emphysema and for the assignation of the most affected lung quadrant was better in CR
(substantial and fair) compared to DE (moderate and slight) (see Table 3).
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Table 3. Interreader comparison of assessed features.

Assessment Features Kappa bzw. ICC CR Kappa bzw. ICC DE

Presence of emphysema (yes/no) 0.693 (substantial) 0.462 (moderate)

Subjective emphysema score (none = 1,
mild = 2, moderate = 3, severe = 4) 0.834 (good) 0.809 (good)

Location of maximal emphysema
manifestation 0.306 (fair) 0.027 (slight)

ICC = intra-class correlation; CR = conventional radiography, DE = dual energy subtraction radiography.

3.5.2. Presence of Emphysema and Location of the Most Affected Lung Quadrant

Sensitivity as well as specificity for the detection of emphysema was comparable
between CR and DE (sensitivityCR 96% and specificityCR 75% vs. sensitivityDE 91% and
specificityDE 83%; p = 0.157). Similarly, there was no significant difference in the sensitivity
or specificity for emphysema localization between CR and DE (sensitivityCR 50% and
specificityCR 100% vs. sensitivityDE 57% and specificityDE 100%; p = 0.157) (Table 4).

Table 4. Test characteristics of CR and DE.

Presence of Emphysema
Location of Maximal Emphysema

Manifestation

Assessment parameter CR DE CR DE

Sensitivity 96.3% 90.7% 50% 57.4%

Specifity 75% 83.33% 100% 100%

NPV 81.82% 66.67% 30.77% 34.29%

PPV 94.55% 96.08% 100% 100%
CR = conventional radiography, DE = dual energy subtraction radiography, NPV = negative predictive value,
PPV = positive predictive value.

3.5.3. Severity of Emphysema between CR/DE and CT

The average subjective emphysema score was rated significantly higher in DE (mean:
2.62 ± 0.87) versus CR (mean: 2.45 ± 0.89; p = 0.003; controls included). Emphysema
grading with DE showed a slightly higher correlation with the Goddard score than with
CR; these differences, however, were not statistically significant (rDE = 0.75 vs. rCR = 0.68;
p = 0.108). Similarly, emphysema grading with DE showed a slightly higher correlation
with LAA% than with CR lacking statistical significance (rDE = 0.73 vs. rCR = 0.71; p = 0.586).

4. Discussion

We compared DE to CR for the evaluation of lung emphysema, and found that diag-
nostic accuracy for the detection, quantification, and localization of emphysema between
CR and DE is comparable. The interreader agreement, however, was better with CR
compared to DE.

Clinically, PFT is used to diagnose COPD. PFT, however, is relatively insensitive to the
severity and distribution of emphysema. (1) There is no correlation between reduced FEV1
and severity of lung emphysema, leading to a wide range in severity of emphysema despite
having clinically the same disease stage [25]. (2) Clinical presentation of emphysema does
not definitively relate to the distribution of emphysema on imaging [26–29], and upper
lung zones are rather silent regions in PFT, leading to a high percentage of patients with
mild to moderate disease being missed by PFT [30,31]. (3) FEV1 depends on the patient’s
cooperation. These points stress the importance of imaging in early stages of COPD.
Further, some patients undergo chest X-ray for other clinical questions (i.e., pre-operative
evaluation, evaluation of infective consolidation.) without the suspicion of emphysema or
signs of COPD. These patients would otherwise not undergo PFT and could be lost.
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Conventional imaging, which is often used as baseline imaging, only yields a moderate
sensitivity for detecting emphysema (approximately 40%) [32]. This is due to the slight
difference in X-ray absorption of pulmonary parenchyma, resulting in low conspicuity
of the disease on conventional imaging [33]. DE is a new imaging modality with the
potential to overcome these difficulties. In DE, a post-processing algorithm separates
calcium-containing structures from soft-tissue components and overcomes the problem of
superimposition of several structures [34].

Further, the less penetrating beam with the lower tube voltage used in DE results
in a higher dynamic range of resultant image data, higher intrinsic contrast (i.e., lesion’s
intensity relative to the surrounding tissue intensity), and hence a better depiction of the
lung parenchyma and its pathology [35].

In fact, previous studies could show that DE improves the sensitivity for shading
lesions, such as the detection of infectious consolidations, tumors, interstitial lung changes,
and aortic or tracheal calcification compared to CR images [18–21]. Other studies have
shown that DE can reduce diagnostic errors of chest pathologies and prevent misdiagnosis
of consolidations or lung nodules, for example, also by less-experienced radiologists [34,36].
The higher accuracy for detecting focal opacities (i.e., lung nodules or infectious infiltrates)
was attributed to the better accentuation of lung abnormalities [37]. Since the better
intrinsic contrast should yield also higher diagnostic accuracy for hyperlucencent lung
pathologies, also called “minus pathologies”, we hypothesized that DE-images emphasize
emphysematous lung sections in a similar way and, thus, may aid in earlier detection of
pulmonary emphysema.

Our results, however, could not show a higher diagnostic accuracy for the detection
and localization of emphysema. On the contrary, interreader agreement seemed to be worse
with DE, even though the readers had also the standard CR images side by side when
evaluating the DE images. We believe that, quite unusual, soft tissue and bone images
confused the readers more in their diagnosis than they helped. Therefore, readers might
benefit from training in order to get used to the DE images. Further, differences in the
depiction of emphysema might be so subtle that there is no measurable clinical benefit in
using DE instead of CR. The results are further hampered by the radiologist inexperience
to evaluate DE images, reflected in the worse interreader experience compared to CR.

An interesting observation we made in this study concerns the relatively high sen-
sitivity in the detection of emphysema compared to values reported in the literature for
CR [32]. This might be due to the lower kV used for the acquisition of DE images compared
to conventional CR images. The higher soft tissue contrast with the lower kV used in
DE might yield a better distinction of emphysematous lung changes from normal lung
parenchyma. Since CR and the DE images were acquired in our study with the lower kV,
both CR and DE benefit from the lower kV and had higher sensitivity for emphysema
detection. The acquisition of two consecutive X-rays, first with a conventional CR and then
with the DE technique, in order to compare the sensitivities between a conventional CR
and DE, would have been unethical. However, previous studies have shown that the use
of lower tube voltages resulting in lower beam penetration enhances density differences in
the lung [38].

Subjective emphysema grading for both CR and DE correlated well with CT. Even
though we could observe a slightly better correlation of DE with CT than with CR, differ-
ences were not statistically significant.

The downsides of DE are definitely the higher radiation dose, which is only partially
compensated on lateral chest radiography and the risk of motion artifacts which can occur
when the patient moves between the two image acquisitions [16].

Even if CR holds its position in initial chest evaluation, it insufficiently quantifies
regional lung perfusion and emphysema, evaluates fissural integrity, or stimulates the effect
of surgical resection. Therefore, to guide therapeutic options in extended emphysema (e.g.,
lung volume reduction surgery, endobronchial valves, coils), further imaging examinations
are essential [39].
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Dual-energy CT imaging methods can not only gain anatomical information but also
functional information too. For example, lung iodine perfusion blood volume (iPBV)
illustrates regional lung perfusion changes [40], or inhalative xenon tracer gas functions
as a surrogate for regional lung ventilation. These modalities correlate with the degree of
emphysema and could serve as tools for detecting mild emphysema [41]. Nevertheless,
lowering the radiation dose by displaying only a target volume would render overall
assessment impossible [42].

Limitations of the study are as follows. First, the quantification of emphysema was
based on a subjective scoring system, which may limit interreader comparability. Second,
the degree of emphysema in CR and DE may be underestimated due to soft tissue overlay,
especially in corpulent patients. Third, we did not distinguish between different types of
emphysema (centrilobular, panlobular, paraseptal). Forth, uneven ventilation or hyperin-
flation might affect the detection of emphysema. While reduced ventilation could lead to
underestimation of emphysema due to denser lung parenchyma, overinflation on the other
hand could potentially lead to an overestimation of emphysema. These factors similarly
affect CT densitometry based on HU values. Fifth, we did not perform a correlation of our
findings with PFT. Due to the retrospective nature of our study, PFT was not available in the
majority of patients. Sixth, in our study, both the CR and the DE images were acquired with
the lower kV, meaning that we could not show a difference in sensitivity for emphysema
detection related to different kV in our dataset. The acquisition of two consecutive X-rays,
first with a conventional CR and then with the DE technique, would have been unethical.
However, previous studies have shown that the use of lower tube voltages resulting in
lower beam penetration enhances density differences in the lung [38].

5. Conclusions

In conclusion, diagnostic accuracy for the detection, quantification, and localization of
emphysema between CR and DE is comparable. This implies that the presumably higher
tissue contrast in DE did not have the expected benefit in the evaluation of emphysema.
Besides that, interreader agreement was influenced negatively by the evaluation of DE,
which we attribute to the unfamiliarity of the readers with the new technique.

An interesting observation we made in this study was the relatively high sensitivity
in the detection of emphysema compared to values reported in the literature for CR [32].
This might be due to the lower kV used for the acquisition of DE images compared to
conventional CR images, potentially resulting in a better distinction of emphysematous
lung changes from normal lung parenchyma.

Author Contributions: Conceptualization T.F.; methodology, T.F.; software, K.M.; validation, K.M.
and M.A.M.; formal analysis, J.A.M.; investigation, J.A.M.; resources, P.B., A.A.D.S. and M.E.;
data curation, J.A.M.; writing—original draft preparation, J.A.M.; writing—review and editing, all;
visualization, J.A.M.; supervision, T.F.; project administration, T.F. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by a grant from the Lunge Zürich, Switzerland.

Institutional Review Board Statement: The study was approved by the institutional review board
and local ethics committee (KEK Zürich: Cantonal ethics committee Zurich Switzerland).

Informed Consent Statement: Informed consent was waived because of the retrospective setting of
this study (blinded for review).

Data Availability Statement: The study data is not available in a public database. However, data
can be requested at the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

215



Diagnostics 2021, 11, 1849

References

1. Snider, G.L. Nosology for our day: Its application to chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2003,
167, 678–683. [CrossRef]

2. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences
of Smoking—50 Years of Progress: A Report of the Surgeon General; Centers for Disease Control and Prevention (US): Atlanta, GA,
USA, 2014.

3. Sullivan, S.D.; Ramsey, S.D.; Lee, T.A. The economic burden of COPD. Chest 2000, 117, 5S–9S. [CrossRef]
4. Calverley, P.M.; Walker, P. Chronic obstructive pulmonary disease. Lancet 2003, 362 (Suppl. 2), 1053–1061. [CrossRef]
5. Plantier, L.; Boczkowski, J.; Crestani, B. Defect of alveolar regeneration in pulmonary emphysema: Role of lung fibroblasts. Int. J.

Chronic Obstr. Pulm. Dis. 2007, 2, 463–469.
6. Gorbunova, V.; Jacobs, S.S.A.M.; Lo, P.; Dirksen, A.; Nielsen, M.; Bab-Hadiashar, A.; de Bruijne, M. Early Detection of Emphysema

Progression. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2010 13th
International Conference, Beijing, China, 20–24 September 2010; Volume 13, pp. 193–200.

7. Mohsen, L.A.; Gawad, E.A.A.; Ibrahiem, M.A. CT quantification of emphysema: Is semi-quantitative scoring a reliable enough
method? Egypt. J. Radiol. Nucl. Med. 2014, 45, 673–678. [CrossRef]

8. Irion, K.L.; Marchiori, E.; Hochhegger, B.; da Silva Porto, N.; da Silva Moreira, J.; Anselmi, C.E.; Allen Holemans, J.; Irion, P.O. CT
Quantification of Emphysema in Young Subjects with No Recognizable Chest Disease. Am. J. Roentgenol. 2008, 192, W90–W96.
[CrossRef] [PubMed]

9. Madani, A.; Keyzer, C.; Gevenois, P.A. Quantitative computed tomography assessment of lung structure and function in
pulmonary emphysema. Eur. Respir. J. 2001, 18, 720–730. [CrossRef] [PubMed]

10. Thurlbeck, W.M.; Müller, N.L. Emphysema: Definition, imaging, and quantification. AJR Am. J. Roentgenol. 1994, 163, 1017–1025.
[CrossRef] [PubMed]

11. Alkadhi, H.; Marincek, B.; Stolzmann, P. Dual-Energy Bildgebung Nicht nur fürs Handgepäck. Schweiz. Med. Forum. Schlaglichter
2008, 8, 1019–1020.

12. Welte, T.; Vogelmeier, C.; Papi, A. COPD: Early diagnosis and treatment to slow disease progression. Int. J. Clin. Pract. 2015, 69,
336–349. [CrossRef]

13. Frauenfelder, T.; Nguyen, T.D.L.; Delaloye, B. CT der Lunge: Von der morphologischen Darstellung zur Quantifizierung. Swiss
Med. Forum 2013, 686–688. [CrossRef]

14. Wells, J.M.; Washko, G.R.; Han, M.K.; Abbas, N.; Nath, H.; Mamary, A.J.; Regan, E.; Bailey, W.C.; Martinez, F.J.; Westfall, E.; et al.
Pulmonary arterial enlargement and acute exacerbations of COPD. N. Engl. J. Med. 2012, 367, 913–921. [CrossRef] [PubMed]

15. Santos, S.; Peinado, V.I.; Ramírez, J.; Melgosa, T.; Roca, J.; Rodriguez-Roisin, R.; Barberà, J.A. Characterization of pulmonary
vascular remodelling in smokers and patients with mild COPD. Eur. Respir. J. 2002, 19, 632–638. [CrossRef] [PubMed]

16. Kuhlman, J.E.; Collins, J.; Brooks, G.N.; Yandow, D.R.; Broderick, L.S. Dual-energy subtraction chest radiography: What to look
for beyond calcified nodules. Radiographics 2006, 26, 79–92. [CrossRef] [PubMed]

17. MacMahon, H.; Armato, S.G. Temporal subtraction chest radiography. Eur. J. Radiol. 2009, 72, 238–243. [CrossRef] [PubMed]
18. Martini, K.; Baessler, M.; Baumueller, S.; Frauenfelder, T. Diagnostic accuracy and added value of dual-energy subtraction

radiography compared to standard conventional radiography using computed tomography as standard of reference. PLoS ONE
2017, 12, e0174285. [CrossRef]

19. Gilkeson, R.C.; Novak, R.D.; Sachs, P. Digital radiography with dual-energy subtraction: Improved evaluation of cardiac
calcification. AJR Am. J. Roentgenol. 2004, 183, 1233–1238. [CrossRef] [PubMed]

20. Fischbach, F.; Freund, T.; Röttgen, R.; Engert, U.; Felix, R.; Ricke, J. Dual-energy chest radiography with a flat-panel digital
detector: Revealing calcified chest abnormalities. AJR Am. J. Roentgenol. 2003, 181, 1519–1524. [CrossRef]

21. Kelcz, F.; Zink, F.E.; Peppler, W.W.; Kruger, D.G.; Ergun, D.L.; Mistretta, C.A. Conventional chest radiography vs dual-energy
computed radiography in the detection and characterization of pulmonary nodules. AJR Am. J. Roentgenol. 1994, 162, 271–278.
[CrossRef]

22. Kimura, T.; Kawakami, T.; Kikuchi, A.; Ooev, R.; Akiyama, M.; Horikoshi, H. A Study on Diagnostic Assist Systems of Chronic
Obstructive Pulmonary Disease from Medical Images by Deep Learning. J. Comput. Commun. 2018, 6, 21–31. [CrossRef]

23. McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [CrossRef]
24. Portney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice, 3rd ed.; Pearson/Prentice Hall: Washington,

DC, USA, 2009.
25. Makita, H.; Nasuhara, Y.; Nagai, K.; Ito, Y.; Hasegawa, M.; Betsuyaku, T.; Onodera, Y.; Hizawa, N.; Nishimura, M.; Group,

H.C.C.S. Characterisation of phenotypes based on severity of emphysema in chronic obstructive pulmonary disease. Thorax 2007,
62, 932–937. [CrossRef]

26. Benoit, T.M.; Straub, G.; von Garnier, C.; Franzen, D. Schweres Lungenemphysem: Noch lange kein Endbahnhof! Swiss Med.
Forum 2020, 20, 7–11. [CrossRef]

27. Celli, B.R.; Cote, C.G.; Marin, J.M.; Casanova, C.; Montes de Oca, M.; Mendez, R.A.; Pinto Plata, V.; Cabral, H.J. The body-mass
index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004,
350, 1005–1012. [CrossRef]

216



Diagnostics 2021, 11, 1849

28. Mair, G.; Miller, J.J.; McAllister, D.; Maclay, J.; Connell, M.; Murchison, J.T.; MacNee, W. Computed tomographic emphysema
distribution: Relationship to clinical features in a cohort of smokers. Eur. Respir. J. 2009, 33, 536–542. [CrossRef]

29. de Torres, J.P.; Bastarrika, G.; Zagaceta, J.; Sáiz-Mendiguren, R.; Alcaide, A.B.; Seijo, L.M.; Montes, U.; Campo, A.; Zulueta, J.J.
Emphysema presence, severity, and distribution has little impact on the clinical presentation of a cohort of patients with mild to
moderate COPD. Chest 2011, 139, 36–42. [CrossRef]

30. Gurney, J.W.; Jones, K.K.; Robbins, R.A.; Gossman, G.L.; Nelson, K.J.; Daughton, D.; Spurzem, J.R.; Rennard, S.I. Regional
distribution of emphysema: Correlation of high-resolution CT with pulmonary function tests in unselected smokers. Radiology
1992, 183, 457–463. [CrossRef]
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Abstract: Our systematic review investigated the additional effect of artificial intelligence-based
devices on human observers when diagnosing and/or detecting thoracic pathologies using different
diagnostic imaging modalities, such as chest X-ray and CT. Peer-reviewed, original research articles
from EMBASE, PubMed, Cochrane library, SCOPUS, and Web of Science were retrieved. Included
articles were published within the last 20 years and used a device based on artificial intelligence (AI)
technology to detect or diagnose pulmonary findings. The AI-based device had to be used in an
observer test where the performance of human observers with and without addition of the device
was measured as sensitivity, specificity, accuracy, AUC, or time spent on image reading. A total of
38 studies were included for final assessment. The quality assessment tool for diagnostic accuracy
studies (QUADAS-2) was used for bias assessment. The average sensitivity increased from 67.8%
to 74.6%; specificity from 82.2% to 85.4%; accuracy from 75.4% to 81.7%; and Area Under the ROC
Curve (AUC) from 0.75 to 0.80. Generally, a faster reading time was reported when radiologists were
aided by AI-based devices. Our systematic review showed that performance generally improved for
the physicians when assisted by AI-based devices compared to unaided interpretation.

Keywords: artificial intelligence; deep learning; computer-based devices; radiology; thoracic
diagnostic imaging; chest X-ray; CT; observer tests; performance

1. Introduction

Artificial intelligence (AI)-based devices have made significant progress in diagnostic
imaging segmentation, detection, and disease differentiation, as well as prioritization. AI
has emerged as the cutting-edge technology to bring diagnostic imaging into the future [1].
AI may be used as a decision support system, where radiologists reject or accept the al-
gorithm’s diagnostic suggestions, which was investigated in this review, but there is no
AI-based device that fully autonomously diagnose or classify findings in radiology yet.
Some products have been developed for the purpose of radiological triage [2]. Triage
and notification of a certain finding have been a task that has had some autonomy since
there is no clinician assigned to re-prioritize the algorithm’s suggestions. Other uses of

Diagnostics 2021, 11, 2206. https://doi.org/10.3390/diagnostics11122206 https://www.mdpi.com/journal/diagnostics
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AI algorithms could be suggestion of treatment options based on disease specific predic-
tive factors [3] and automatic monitoring and overall survival prognostication to aid the
physician in deciding the patient’s future treatment plan [4].

The broad application of plain radiography in thoracic imaging and the use of other
modalities, such as computed tomography (CT), to delineate abnormalities adds to the num-
ber of imaging cases that can provide information to successfully train an AI-algorithm [5].
In addition to providing large quantities of data, chest X-ray is one of the most used imag-
ing modalities. Thoracic imaging has, therefore, not only a potential to provide a large
amount of data for developing AI-algorithms successfully, but there is also potential for
AI-based devices to be useful in a great number of cases. Because of this, several algorithms
in thoracic imaging have been developed—most recently in the diagnosis of COVID-19 [6].

AI has attracted increasing attention in diagnostic imaging research. Most studies
demonstrate their AI-algorithm’s diagnostic superiority by separately comparing the algo-
rithm’s diagnostic accuracy to the accuracy achieved by manual reading [7,8]. Nevertheless,
several factors seem to prevent AI-based devices from diagnosing pathologies in radiology
without human involvement [9], and only few studies conduct observer tests where the
algorithm is being used as a second or concurrent reader to radiologists: a scenario closer
to a clinical setting [10,11]. Even though diagnostic accuracy of an AI-based device can be
evaluated by testing it independently, this may not reflect the true clinical effect of adding
AI-based devices, since such testing eliminates the factor of human-machine interaction
and final human decision making.

Our systematic review investigated the additional effect AI-based devices had on
physicians’ abilities when diagnosing and/or detecting thoracic pathologies using different
diagnostic imaging modalities, such as chest X-ray and CT.

2. Materials and Methods

2.1. Literature Search Strategy

The literature search was completed on 24 March 2021, from 5 databases: EMBASE,
PubMed, Cochrane library, SCOPUS, and Web of Science. The search was restricted to
peer-reviewed publications of original research written in English from 2001–2021, both
years included.

The following specific MESH terms were used in PubMed: “thorax”, “radiography,
thoracic”, “lung”, “artificial intelligence”, “deep Learning”, “machine Learning”, “neural
networks, computer”, “physicians”, “radiologists”, “workflow”, “physicians”. MESH
terms were combined with the following all-fields specific search words and their bended
forms: “thorax”, “chest”, “lung”, “AI”, “artificial intelligence”, “deep learning”, “ma-
chine learning”, “neural networks”, “computer”, “computer neural networks”, “clinician”,
“physician”, “radiologist”, “workflow”.

To perform the EMBASE search, the following combination of text word search and
EMTREE terms were used: (“thorax” (EMTREE term) OR “lung” (EMTREE term) OR
“chest” OR “lung” OR “thorax”) AND (“artificial intelligence (EMTREE term) OR “ma-
chine learning” (EMTREE term) OR “deep learning” (EMTREE term) OR “convolutional
neural network” (EMTREE term) OR “artificial neural network” (EMTREE term) OR “ai”
OR “artificial intelligence” OR “neural network” OR “deep learning” OR “machine learn-
ing”) AND (“radiologist (EMTREE term) OR “ physician” (EMTREE term) OR “clinician”
(EMTREE term) OR “workflow” (EMTREE term) OR “radiologist” OR “clinician” OR
“physician” OR “workflow”).

We followed the PRISMA guidelines for literature search and study selection. After
removal of duplicates, all titles and abstracts retrieved from the search were independently
screened by two authors (D.L. and L.M.P.). In case of unresolved disagreements, that could
not be determined by consensus vote between D.L. and L.M.P., a third author (J.F.C.) was
appointed to assess and resolve the disagreement. Data were extracted by D.L. and L.M.P.
using pre-piloted forms. To describe the performance of the radiologists without and with
assistance of AI-based devices, we used a combination of narrative synthesis and compared
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measures of accuracy, area under the ROC curve (AUC), sensitivity, specificity, and time
measurements.

For evaluating the risk of bias and assess quality of research, we used the QUADAS-2
tool [12].

2.2. Study Inclusion Criteria

Peer-reviewed original research articles published in English, between 2001 and 2021,
were reviewed for inclusion. Inclusion criteria were set at follows:

1. AI-based devices, either independent or incorporated into a workflow, used for
imaging diagnosis and/or detection of findings in lung tissue, regardless of thoracic
imaging modality; and

2. an observer test where radiologists or other types of physicians used the AI-algorithm
as either a concurrent or a second reader; and

3. within the observer test, the specific observer that diagnosed/detected the findings
without AI-assistance must also participate as the observer with AI-assistance; and

4. outcome measurements of observer tests included either sensitivity, specificity, AUC,
accuracy, or some form of time measurement recording observers’ reading time
without and with AI-assistance.

Studies where one set of physicians, with the aid of AI, retrospectively re-evaluate
another set of physicians’ diagnoses without AI were excluded. AI-based devices that
did not detect specific pulmonary tissue findings/pathology, e.g., rib fracture, aneurisms,
thyroid enlargements etc. were also excluded.

3. Results

We included a total of 38 studies [13–50] in our systematic review. The QUADAS-2
tool is presented in Figure 1, and a PRISMA flowchart of the literature search is presented
in Figure 2.

We divided the studies into two groups: The first group, consisting of 19 stud-
ies [13–31], used an AI-based device as a concurrent reader in an observer test, where
the observers were tasked with diagnosing images with assistance from an AI-based
device, while not being allowed (blinded) to see their initial diagnosis made without assis-
tance from AI (Table 1a). The second group, consisting of 20 studies [19,32–50] used the
AI-based device as a second reader in an un-blinded sequential observer test, thus allowing
observers to see and change their original un-assisted diagnosis (Table 1b).

Figure 1. The QUADAS-2 tool for evaluating risk of bias and assess quality of research.
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Figure 2. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart of the literature search
and study selection.

Table 1. (a) Included studies with artificial intelligence-based devices as concurrent readers in the observer test. (b) Included
studies with artificial intelligence-based devices in an observer test with a sequential test design.

Author Year Standard of
Reference

Type of Artificial
Intelligence-Based

CAD
Pathology

No. of
Cases

Test Observers
Image

Modality

a

Bai et al. [13] 2021 RT-PCR
EfficientNet-B3
Convolutional

Neural Network
COVID-19
pneumonia 119

6 radiologists
(10–20 years of chest

CT experience)
CT

Beyer et al. [19] 2007 Radiologist identified
and consensus vote

Commercially
available (LungCAD

prototype version,
Siemens Corporate
Research, Malvern,

PA, USA)

Pulmonary nodules 50
4 radiologists
(2–11 years
experience)

CT

de Hoop et al. [20] 2010 Histologically
confirmed

Commercially
available (OnGuard

5.0; Riverain Medical,
Miamisburg,

OH, USA)

Pulmonary nodules 111
1 general radiologist,
1 chest radiologist,

and 4 residents
Chest X-ray

Dorr et al. [14] 2020 RT-PCR DenseNet
121 architecture

COVID-19
pneumonia 60

23 radiologists
and 31 emergency

care physicians
Chest X-ray

Kim et al. [15] 2020 Bacterial culture and
RT-PCR for viruses

Commercially
available (Lunit

INSIGHT for chest
radiography, version

4.7.2; Lunit, Seoul,
South Korea)

Pneumonia 387

3 emergency
department
physicians
(6–7 years

experience)

Chest X-ray

Koo et al. [21] 2020 Pathologically
confirmed

Commercially
available (Lunit
Insight CXR, ver.
1.00; Lunit, Seoul,

South Korea)

Pulmonary nodules 434 2 thoracic radiologists
and 2 residents Chest X-ray
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Table 1. Cont.

Author Year Standard of
Reference

Type of Artificial
Intelligence-Based

CAD
Pathology

No. of
Cases

Test Observers
Image

Modality

a

Kozuka et al. [22] 2020 Radiologist identified
and majority vote

Faster Region-
Convolutional

Neural Network
Pulmonary nodules 120 2 radiologists

(1–4 years experience) CT

Lee et al. [23] 2012 Pathologically
confirmed

Commercially
available

(IQQA-Chest, EDDA
Technology, Princeton

Junction, NJ, USA)

Pulmonary nodules
malignant/benign 200 5 chest radiologists

and 5 residents Chest X-ray

Li et al. [24] 2011 CT

Commercially
available (SoftView,

version 2.0; Riverrain
Medical, Miamisburg,

OH, USA-Image
normalization, feature

extraction and
regression networks)

Pulmonary nodules 151
3 radiologists
(10–25 years
experience)

Chest X-ray

Li et al. [25] 2011
Pathologically
confirmed and

radiology assessed

Commercially
available (SoftView,

version 2.0;
Riverain Medical)

Pulmonary nodules 80
2 chest radiologists,

4 general radiologists,
and 4 residents

Chest X-ray

Liu et al. [16] 2020 -

Segmentation model
with class attention

map including
a residual

convolutional block

COVID-19
pneumonia 643 - Chest X-ray

Liu et al. [26] 2019 Radiologist identified
and majority vote

DenseNet and Faster
Region-Convolutional

Neural Network
Pulmonary nodule 271 2 radiologists

(10 years experience) CT

Martini et al. [27] 2021 Radiologist consensus

Commercially
available

(ClearRead-CT,
Riverrain

Technologies,
Miamisburg,

OH, USA)

Pulmonary consolida-
tions/nodules 100

2 senior radiologists,
2 final-year residents,
and 2 inexperienced

residents

MDCT

Nam et al. [29] 2021 RT-PCR and CT

Deep learning-based
algorithm (Deep

convolutional
neural network)

Pneumonia,
pulmonary edema,
active tuberculosis,

interstitial lung
disease, nodule/mass,
pleural effusion, acute

aortic syndrome,
pneumoperitoneum,

rib fracture,
pneumothorax,

mediastinal mass.

202

2 thoracic radiologists,
2 board-certified
radiologists, and

2 residents

Chest X-ray

Rajpurkar et al. [31] 2020 Positive culture or
Xpert MTB/RIF test

Convolutional
Neural Network Tuberculosis 114

13 physicians
(6 months–25 years

of experience)
Chest X-ray

Singh et al. [28] 2021 Radiologically
reviewed

Commercially
available (ClearRead

CT Vessel
Suppression and
Detect, Riverain

Technologies TM)

Subsolid nodules
(Incl ground-glass
and/or part-solid)

123
2 radiologists
(5–10 years
experience)

CT

Sung et al. [30] 2021 CT and clinical
information

Commercially
available (Med-Chest
X-ray system (version
1.0.0, VUNO, Seoul,

South Korea)

Nodules,
consolidation,

interstitial opacity,
pleural effusion,
pneumothorax

128

2 thoracic radiologists,
2 board-certified

radiologists,
1 radiology resident,
and 1 non-radiology

resident

Chest X-ray

Yang et al. [17] 2021 RT-PCR Deep Neural
Network

COVID-19
pneumonia 60

3 radiologists
(5–20 years
experience)

CT

Zhang et al. [18] 2021 RT-PCR

Deep Neural
Network using the

blur processing
method to improve

the image
enhancement

algorithm

COVID-19
pneumonia 15

2 physicians
(13–15 years
experience)

CT
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Table 1. Cont.

Author Year Standard of
Reference

Type of Artificial
Intelligence-Based

CAD
Pathology

No. of
Cases

Test Observers
Image

Modality

b

Abe et al. [47] 2004
Radiological review

and clinical
correlation

Single three-layer,
feed-forward

Artificial Neural
Network with a

back-propagation
algorithm

Sarcoidosis, miliary
tuberculosis,
lymphangitic

carcinomatosis,
interstitial pulmonary

edema, silicosis,
scleroderma, P.

Carinii pneumonia,
Langerhals cell

histiocytosis,
idiopathic pulmonary

fibrosis, viral
pneumonia,
pulmonary

drug toxicity

30
5 radiologists
(6–18 years
experience)

Chest X-ray

Abe et al. [48] 2003

Radiology consensus
Fourier

transformation and
Artificial Neural

Network

Detection of
interstitial

lung disease
20

8 chest radiologists,
13 other radiologists,

and 7 residents
Chest X-ray

Clinical correlation
and bacteriological

Artificial Neural
Network

Differential diagnosis
of 11 types

of interstitial
lung disease

28
16 chest radiologists,
25 other radiologists,

and 12 residents
Chest X-ray

Pathology Artificial Neural
Network

Distinction between
malignant and benign
pulmonary nodules

40
7 chest radiologists,

14 other radiologists,
and 7 residents

Chest X-ray

Awai et al. [33] 2004 Radiological review Artificial Neural
Network Pulmonary nodules 50

5 board-certified
radiologists and

5 residents
CT

Awai et al. [32] 2006 Histology Neural Network Pulmonary nodules
malignant/benign 33

10 board-certified
radiologists and

9 radiology residents
CT

Beyer et al. [19] 2007 Radiologist identified
and consensus vote

Commercially
available (LungCAD

prototype version,
Siemens Corporate
Research, Malvern,

PA, USA)

Pulmonary nodules 50
4 radiologists
(2–11 years
experience)

CT

Bogoni et al. [34] 2012 Majority of agreement

Commercially
available (Lung CAD

VC20A, Siemens
Healthcare, Malvern,

PA, USA)

Pulmonary nodules 43
5 fellowship-trained

chest radiologists
(1–10 years experience)

CT

Chae et al. [35] 2020

Pathologically
confirmed and
radiologically

reviewed

CT-lungNET (Deep
Convolutional

Neural Network)
Pulmonary nodules 60

2 medical students,
2 residents,

2 non-radiology
physicians, and

2 thoracic radiologists

CT

Chen et al. [36] 2007 Surgery or biopsy Deep Neural
Network

Pulmonary nodules
malignant/benign 60

3 junior radiologists,
3 secondary

radiologists, and
3 senior radiologists

CT

Fukushima et al. [49] 2004
Pathological,

bacteriological and
clinical correlation

Single three-layer,
feed-forward

Artificial Neural
Network with a

back-propagation
algorithm

Sarcoidose, diffuse
panbronchioloitis,

nonspecific interstitial
pneumonia,

lymphangitic
carcinomatosis, usual

interstitial
pneumonia, silicosis,

BOOP or chronic
eopsinophilic
pneumonia,

pulmonary alveolar
proteinosis, miliary
tuberculosis, lym-

phangiomyomatosis,
P, carinii pneumonia
or cytomegalovirus

pneumonia

130
4 chest radiologists

and 4 general
radiologists

High
Resolution

CT
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Table 1. Cont.

Author Year Standard of
Reference

Type of Artificial
Intelligence-Based

CAD
Pathology

No. of
Cases

Test Observers
Image

Modality

b

Hwang et al. [50] 2019 Pathology, clinical
or radiological

Deep Convolutional
Neural Network with

dense blocks

4 different target
diseases (pulmonary
malignant neoplasms,

tuberculosis,
pneumonia,

pneumothorax)
classified in to binary

classification of
normal/abnormal

200

5 thoracic radiologists,
board-certified

radiologists, and
5 non-radiology

physicians

Chest X-ray

Kakeda et al. [41] 2004 CT

Commercially
available (Trueda,
Mitsubishi Space

Software,
Tokyo, Japan)

Pulmonary nodules 90
4 board-certified
radiologists and

4 residents
Chest X-ray

Kasai et al. [40] 2008 CT Three Artificial
Neural Networks Pulmonary nodules 41

6 chest radiologists
and 12 general

radiologists

Lateral chest
X-ray only

Kligerman et al. [42] 2013 Histology and CT

Commercially
available (OnGuard

5.1; Riverain Medical,
Miamisburg,

OH, USA)

Lung cancer 81

11 board-certified
general radiologists

(1–24 years
experience)

Chest X-ray

Liu et al. [37] 2021
Histology, CT, and

biopsy/surgical
removal

Convolutional
Neural Networks

Pulmonary nodules
malignant/benign 879

2 senior chest
radiologists,

2 secondary chest
radiologists, and

2 junior radiologists

CT

Matsuki et al. [38] 2001 Pathology and
radiology

Three-layer,
feed-forward

Artificial Neural
Network with a

back-propagation
algorithm

Pulmonary nodules 50

4 attending
radiologists,

4 radiology fellows,
4 residents

High
Resolution

CT

Nam et al. [43] 2019

Pathologically
confirmed and
radiologically

reviewed

Deep Convolutional
Neural Networks
with 25 layers and

8 residual connections

Pulmonary nodules
malignant/benign 181

4 thoracic radiologists,
5 board-certified

radiologists,
6 residents, and
3 non-radiology

physicians

Chest X-ray

Oda et al. [44] 2009 Histology, cytology,
and CT

Massive training
Artificial Neural

Network
Pulmonary nodules 60

7 board-certified
radiologists and

5 residents
Chest X-ray

Rao et al. [39] 2007 Consensus and
majority vote LungCAD Pulmonary nodules 196 17 board-certified

radiologists MDCT

Schalekamp et al. [45] 2014

Radiologically
reviewed, pathology

and clinical
correlation

Commercially
available (ClearRead
+Detect 5.2; Riverain

Technologies and
ClearRead Bone
Suppression 2.4;

Riverain
Technologies)

Pulmonary nodules 300 5 radiologists and
3 residents Chest X-ray

Sim et al. [46] 2020 Biopsy, surgery, CT,
and pathology

Commercially
available (ALND,

version 1.00; Samsung
Electronics, Suwon,

South Korea)

Cancer nodules 200

5 senior chest
radiologists, 4 chest

radiologists, and
3 residents

Chest X-ray

Visual summaries of the performance change in sensitivity, specificity, and AUC for
all studies are shown in Figure 3a,b.
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Figure 3. Sensitivity and specificity (a) and AUC (b) without and with the aid of an AI-based device.

3.1. Studies Where Human Observers Used AI-Based Devices as Concurrent Readers

In 19 studies observers were first tasked to diagnose the image without an AI-based
device. After a washout period, the same observers were then tasked to diagnose the
images again. They were not allowed to see and change their original un-aided radiological
diagnosis before making their diagnosis aided by and AI-based device (Table 1a). The
results of the observer tests are listed in Table 2a–c for concurrent reader studies.
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Table 2. Sensitivity and specificity (a); accuracy and AUC (b); and time measurement results (c) for observer tests without
and with AI-based devices as a concurrent reader.

Author
Without AI-Based CAD With AI-Based CAD

Change Statistical Significance
between DifferenceSensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

a

Bai et al. [13] 79 88 88 91 ↑ p < 0.001

Beyer et al. [19] 56.5 - 61.6 - ↑ p < 0.001

de Hoop et al. [20] 56 * - 56 * - ↑ -

Dorr et al. [14] 47 79 61 75 ↑ p < 0.007

Kim et al. [15] 73.9 88.7 82.2 98.1 ↑ p < 0.014

Koo et al. [21] 92.4 93.1 95.1 97.2 ↑ -

Kozuka et al. [22] 68 91.7 85.1 83.3 ↑ p < 0.01 **

Lee et al. [23] 84 - 88 - ↑ -

Rajpurkar et al. [31] 70 52 73 61 ↑ -

Singh et al. [28] 68 * 77.5 * 73 * 74 * ↑ -

Sung et al. [30] 80.1 89.3 88.9 96.6 ↑ p < 0.01

Yang et al. [17] 89.5 - 94.2 - ↑ p < 0.05

Author
Without AI-Based CAD With AI-Based CAD

Change Statistical Significance
between DifferenceAccuracy (%) AUC Accuracy (%) AUC

b

Bai et al. [13] 85 - 90 - ↑ p < 0.001

Kim et al. [15] - 0.871 - 0.916 ↑ p = 0.002

Koo et al. [21] - 0.93 - 0.96 ↑ p < 0.0001

Li et al. [24] - 0.840 - 0.863 ↑ p = 0.01

Li et al. [25] - 0.807 - 0.867 ↑ p < 0.001

Liu et al. [26] - 0.66 * - 0.78 * ↑ -

Nam et al. [29] 66.3 * - 82.4 * - ↑ p < 0.05

Rajpurkar et al. [31] 60 - 65 - ↑ p = 0.002

Singh et al. [28] - 0.73 * - 0.74 * ↑ Not statistically
significant

Sung et al. [30] - 0.93 - 0.98 ↑ p = 0.003

Yang et al. [17] 94.1 - 95.1 - ↑ p = 0.01

Author
Without AI-Based CAD With AI-Based CAD

Change Statistical Significance
between DifferenceTime Time

c

Beyer et al. [19] 294 s (1) 337 s (1) ↓ p = 0.04

Kim et al. [15] 165 min (2) 101 min (2) ↑ -

Kozuka et al. [22] 373 min(2) 331 min (2) ↑ -

Liu et al. [16] 100.5 min (3) 34 min (3) ↑ p < 0.01

Liu et al. [26] 15 min (1) 5–10 min (1) ↑ -

Martini et al. [27] 194 s (1) 154 s (1) ↑ p < 0.001

Nam et al. [29] 2771.2 s * (1) 1916 s * (1) ↑ p < 0.002

Sung et al. [30] 24 s (1) 12 s (1) ↑ p < 0.001

Zhang et al. [18] 3.623 min (2) 0.744 min (2) ↑ -

a: * our calculated average; ** for sensitivity only; - not applicable; ↑ positive change. b: * our calculated average; - not applicable; ↑positive
change. c: (1) per image/case reading time; (2) total reading time for multiple cases; (3) station survey time; * our calculated average; - not
applicable; ↑ positive change; ↓ negative change.
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3.1.1. Detection of Pneumonia

Bai et al. [13], Dorr et al. [14], Kim et al. [15] Liu et al. [16], Yang et al. [17], and
Zhang et al. [18] had AI-based algorithms to detect pneumonia findings of different
kinds, e.g., Covid-19 pneumonia from either non-Covid-19 pneumonia or non-pneumonia.
Bai et al. [13], Yang et al. [17], Dorr et al. [14], and Zhang et al. [18] investigated detection of
Covid-19 pneumonia. Bai et al. [13], Dorr et al. [14], and Yang et al. [17] all had significant
improvement in performance measured in sensitivity after being aided by their AI-based
devices (Table 2a), and Zhang et al. [18] reported shorter reading time per image but there
was not any mention of statistical significance (Table 2c). Liu et al. [16] incorporated an
AI-algorithm into a novel emergency department workflow for Covid-19 evaluations: a
clinical quarantine station, where some clinical quarantine stations were equipped with
AI-assisted image interpretation, and some did not. They compared the overall median
survey time at the clinical quarantine stations in each condition and reported statistically
significant shortened time (153 min versus 35 min, p < 0.001) when AI-assistance was
available. Median survey time specific to the image interpretation part of the clinical
quarantine station was also significantly shortened (Table 2c), but they did not report if
the shortened reading time were accompanied by the same level of diagnostic accuracy.
While the previously mentioned studies specifically investigated Covid-19 pneumonia,
Kim et al. [15] used AI-assistance to distinguish pneumonia from non-pneumonia and
reported significant improvement in performance measured in sensitivity and specificity
after AI-assistance (Table 2a).

Detection of Pulmonary Nodules

Beyer et al. [19], de Hoop et al. [20], Koo et al. [21], Kozuka et al. [22], Lee et al. [23],
Li et al. [24], Li et al. [25], Liu et al. [26], Martini et al. [27], and Singh et al. [28] used AI-based
devices to assist with detection of pulmonary nodules. Even though de Hoop et al. [20]
found a slight increase in sensitivity in residents (49% to 51%) and change in radiologists
(63% to 61%) for nodule detection, both changes were not statistically significant (Table 2a).
In contrast, Koo et al. [21], Li et al. [24], and Li et al. [25] reported improvement of AUC
for every individual participating radiologist when using AI-assistance, regardless of
experience level (Table 2b). Lee et al. [23] reported improved sensitivity (84% to 88%)
when using AI as assistance (Table 2a) but did not mention if the change in sensitivity was
significant. However, their reported increase in mean figure of merit (FOM) was statistically
significant. Beyer et al. [19] had performed both blinded and un-blinded observer tests; in
the blinded, concurrent reader test, radiologists had significant improved sensitivity (56.6%
to 61.6%, p < 0.001) (Table 2a) but also significantly increased time for reading when assisted
by AI (increase of 43 s per image, p = 0.04) (Table 2c). Martini et al. [27] reported improved
interrater agreement (17–34%) in addition to improved mean reading time (Table 2c), when
assisted by AI. Results for the effects of AI assistance on radiologists by Kozuka et al. [22],
Liu et al. [26], and Singh et al. [28] are also shown in Table 2a,b, but only Kozuka et al. [22]
reported significant improvement (sensitivity from 68% to 85.1%, p < 0.01). In addition to
change in accuracy, Liu et al. [26] reported a reduction of reading time per patient from
15 min to 5–10 min without mentioning statistical significance.

Detection of Several Different Findings and Tuberculosis

Nam et al. [29] tested an AI-based device in detecting 10 different abnormalities
and measured the accuracy by dividing them into groups of urgent, critical, and normal
findings. Radiologists significantly improved their detection of critical (accuracy from 29.2%
to 70.8%, p = 0.006), urgent (accuracy from 78.2% to 82.7%, p = 0.04), and normal findings
(accuracy from 91.4% to 93.8%, p = 0.03). Reading times per reading session were only
significantly improved for critical (from 3371.0 s to 640.5 s, p < 0.001) and urgent findings
(from 2127.1 to 1840.3, p < 0.001) but significantly prolonged for normal findings (from
2815.4 s to 3267.1 s, p < 0.001). Even though Sung et al. [30] showed overall improvement
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in detection (Table 2a–c), per-lesion sensitivity only improved in residents (79.7% to 86.7%,
p = 0.006) and board-certified radiologists (83.0% to 91.2%, p < 0.001) but not in thoracic
radiologists (86.4% to 89.4%, p = 0.31). Results from a study by Rajpurkar et al. [31] for
the effects of AI-assistance on radiologists detecting tuberculosis show that there were
significant improvement in both sensitivity, specificity, and accuracy when aided by AI
(Table 2a,b).

3.2. Studies Where Human Observers Used AI-Based Devices as a Second Reader in a Sequential
Observer Test Design

In 20 studies, observers were first tasked to diagnose the image without an AI-based
device. Immediately afterwards, they were tasked to diagnose the images aided by an
AI-based device and were also allowed to see and change their initial diagnosis (Table 1b).
The results of the observer tests are listed in Table 3a–c for sequential observer test de-
sign studies.

3.2.1. Detection of Pulmonary Nodules Using CT

A total of 16 studies investigated the added value of AI on observers in the detection
of pulmonary nodules; nine studies [19,32–39] used CT scans, and seven studies [40–46]
used chest X-rays (Table 1b). Although Awai et al. [33], Liu et al. [37], and Matsuki et al. [38]
showed statistically significant improvement across all radiologists (Table 3b) when using
AI, other studies reported only significant increase in a sub-group of their test observers.
Awai et al. [32] and Chen et al. [36] reported only significant improvement in the groups
with the more junior radiologists; Awai et al. [32] reported an AUC from 0.768 to 0.901
(p = 0.009) in residents but no significant improvement in the board-certified radiologists
(AUC 0.768 to 0.901, p = 0.19), and Chen et al. [36] reported an AUC from 0.76 to 0.96
(p = 0.0005) in the junior radiologists and 0.85 to 0.94 (p = 0.014) in the secondary radiologists
but no significant improvement in the senior radiologists (AUC 0.91 to 0.96, p = 0.221). In
concordance, Chae et al. [35] only reported significant improvement in the non-radiologists
(AUC from 0.03 to 0.19, p < 0.05) but not for the radiologists (AUC from −0.02 to 0.07). While
the results from Bogoni et al. [34] confirm the results from Beyer et al.’s [19] concurrent
observer test, Beyer et al. [19] showed in the sequential observer test the opposite: decreased
sensitivity (56.5 to 52.9, p < 0.001) with shortened reading time (294 s to 274 s per image,
p = 0.04) (Table 3a,c). In addition to overall increase in accuracy (Table 3b), Rao et al. [39]
also reported that using AI resulted in greater number of positive actionable management
(averaged 24.8 patients), i.e., recommendations for additional images and/or biopsy, that
were missed without AI.

3.2.2. Detection of Pulmonary Nodules Using Chest X-ray

As with detection of pulmonary nodules using CT, there were also contrasting
results regarding radiologist experience level when using chest X-rays as the test set.
Kakeda et al. [41] (AUC 0.924 to 0.986, p < 0.001), Kligerman et al. [42] (AUC 0.38 to 0.43,
p = 0.007), Schalekamp et al. [45] (AUC 0.812 to 0.841, p = 0.0001), and Sim et al. [46] (sensi-
tivity 65.1 to 70.3, p < 0.001) showed significant improvement across all experience levels
when using AI (Table 3a,b). Nam et al. [43] showed significant increase in average among
every radiologist experience level (AUC 0.85 to 0.89, p < 0.001–0.87), but, individually,
there were more observers with significant increase among non-radiologists, residents,
and board-certified radiologists than thoracic radiologists. Only one out of four thoracic
radiologists had a significant increase. On the other hand, Oda et al. [44] only showed
significant improvement for the board-certified radiologists (AUC 0.848 to 0.883, p = 0.011)
but not for the residents (AUC 0.770 to 0.788, p = 0.310). Kasai et al. [40] did not show any
statistically significant improvement(Table 3b), but they reported that sensitivity improved
when there were only lateral images available (67.9% to 71.6%, p = 0.01).
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Table 3. Sensitivity and specificity (a); accuracy and AUC (b); and time measurement results (c) for sequential observer
tests without and with AI-based devices as a second reader.

Author
Without AI-Based CAD With AI-Based CAD

Change Statistical Significance
between DifferenceSensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

a

Abe et al. [48] 64 - 81 - ↑ p < 0.001

Beyer et al. [19] 56.5 - 52.9 - ↓ p < 0.001

Bogoni et al. [34] 45.34 * - 59.34 * - ↑ p < 0.03

Chae et al. [35] 70 * 69 * 65 * 84 * ↓ Not statistically
significant

Hwang et al. [50] 79 * 93.2 * 88.4 * 94 * ↑ p = 0.006–0.99

Kligerman et al. [42] 44 - 50 - ↑ p < 0.001

Sim et al. [46] 65.1 - 70.3 - ↑ p < 0.001

Author
Without AI-Based CAD With AI-Based CAD

Change Statistical Significance
between DifferenceAccuracy (%) AUC Accuracy (%) AUC

b

Abe et al. [47] - 0.81 - 0.87 ↑ p = 0.031

Abe et al. [48] - 0.94 - 0.98 ↑ p < 0.01

Abe et al. [48] - 0.77 - 0.81 ↑ p < 0.001

Awai et al. [33] - 0.64 - 0.67 ↑ p < 0.01

Awai et al. [32] - 0.843 - 0.924 ↑ p = 0.021

Chae et al. [35] 69 * 0.005 * 75 * 0.13 * ↑ Not statistically
significant

Chen et al. [36] - 0.84 * - 0.95 * ↑ p < 0.221

Fukushima et al. [49] - 0.972 * - 0.982 * ↑ p < 0.071

Hwang et al. [50] - 0.880 * - 0.934 * ↑ p <0.002

Kakeda et al. [41] - 0.924 - 0.986 ↑ p < 0.001

Kasai et al. [40] - 0.804 - 0.816 ↑ Not statistically
significant

Kligerman et al. [42] - 0.38 - 0.43 ↑ p = 0.007

Liu et al. [37] - 0.913 - 0.938 ↑ p = 0.0266

Matsuki et al. [38] - 0.831 - 0.956 ↑ p < 0.001

Nam et al. [43] - 0.85 * - 0.89 * ↑ p < 0.001-0.87

Oda et al. [44] - 0.816 - 0.843 ↑ p = 0.011–0.310

Rao et al. [39] 78 - 82.8 - ↑ p < 0.001

Schalekamp et al. [45] - 0.812 - 0.841 ↑ p = 0.0001

Author
Without AI-Based CAD With AI-Based CAD

Change Statistical Significance
between DifferenceTime Time

c

Beyer et al. [19] 294 s (1) 274 s (1) ↑ p = 0.04

Bogoni et al. [34] 143 s (1) 225 s (1) ↓ -

a:* our calculated average; - not applicable; ↑ positive change; ↓ negative change. b: * our calculated average; - not applicable; ↑ positive
change. c: (1) per image/case reading time; - not applicable;↑ positive change; ↓ negative change.

3.2.3. Detection of Several Different Findings

Abe et al. [47], Abe et al. [48], Fukushima et al. [49], and Hwang et al. [50] explored the
diagnostic accuracy in detection of several different findings besides pulmonary nodules
with their AI-algorithm (Table 1b). While Abe et al. [47] found significant improvement
in all radiologists (Table 3b), Fukushima et al. [49] only found significant improvement in
the group of radiologists that had more radiological task experience (AUC 0.958 to 0.971,
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p < 0.001). In contrast, Abe et al. [48] found no significant improvement in the more senior
radiologists for detection of interstitial disease (p > 0.089), and Hwang et al. [50] found no
significant improvement in specificity for the detection of different major thoracic diseases
in the more senior radiologists (p > 0.62). However, there were significant improvements in
average among all observers for both studies (Table 3a,b).

4. Discussion

The main finding of our systematic review is that human observers assisted by AI-
based devices had generally better detection or diagnostic performance using CT and chest
X-ray, measured as sensitivity, specificity, accuracy, AUC, or time spent on image reading
compared to human observers without AI-assistance.

Some studies suggest that physicians with less radiological task experience benefit
more from AI-assistance [30,32,35,36,48,50], while others showed that physicians with
greater radiological task experience benefitted the most from AI-assistance [44,49]. Gaube
et al. [51] suggested that physicians with less experience were more likely to accept and
deploy the suggested advice given to them by AI. They also reported that observers
were generally not averse to following advice from AI compared to advice from humans.
This suggests that the lack of improvement in the radiologists’ performance with AI-
assistance, was not caused by lack of trust in the AI-algorithm but more by the presence of
confidence in own abilities. Oda et al. [44] did not find that the group of physicians with
less task experience improved from assistance by AI-based device and had two possible
explanations. Firstly, the less experienced radiologists had a larger interrater variation
of diagnostic performance, leading to insufficient statistical power to show statistical
significance. This was also an argument used by Fukushima et al. [49]. Secondly, they
argued that the use of AI-assistance lowers false-negative more than false-positive findings,
and radiologists with less task experienced generally had more false-positive findings.
However, Nam et al. [43] found that physicians with less task experience were more inclined
to change their false-negative diagnosis’ and not their false-positive findings; therefore, they
benefitted more from AI-assistance. Nam et al. [43], confirmed Oda et al.’s [44] finding in
that there was a higher acceptance rate for false-negative findings. Brice [52] also confirmed
this and suggested that correcting false-negative findings could have the most impact
on reducing errors in radiological diagnosis. Although Oda et al. [44], Nam et al. [43],
and Gaube et al. [51] had different reports on which level of physicians could improve
their performance the most from the assistance of AI-based devices, they all confirm that
AI-assistance lowers false-negative findings, which warrants advancing development and
implementation of AI-based devices in to the clinics.

A limitation of our review is the heterogeneity of our included studies, e.g., the
different methods for observer testing; some of our studies used a blinded observer test
where AI-based devices was used as a concurrent reader (Table 1a), some studies used an
un-blinded, sequential observer test (Table 1b), and some used both [19]. To the best of
our knowledge, Kobayashi et al. [53] was one of the first to use and discuss both test types.
Even though they concluded that there was no statistical significance in the difference
of the results obtained from the two methods, they argue that an un-blinded, sequential
test type would be less time consuming and practically easier to perform. Since then,
others have adopted this method of testing [54] not only in thoracic diagnostic imaging
and accepted it as a method for comparing effect of diagnostic tests [55]. Beyer et al. [19]
also performed both methods of testing, but they did not come to the same conclusions
about the results as Kobayashi et al. [53]. Their results of the two test methods were not
the same; In the blinded concurrent reader test, they used more reading time per image
(294 s to 337 s, p = 0.04) but achieved higher sensitivity (56.5 to 61.6, p < 0.001), and, in the
un-blinded sequential reader test, they were quicker to interpret each image (294 s to 274 s,
p = 0.04) but had worse sensitivity (56.5 to 52.9, p < 0.001) when assisted by AI. The test
observers in the study by Kobayashi et al. [53] did not experience prolonged reading time,
even though Bogoni et al. [34] confirmed the results by Beyer et al. [19] and also argued
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that correcting false-positives would prolong the time spent on an image. Roos et al. [56]
also reported prolonged time spent on rejecting false positive cases when testing their
computer-aided device and explained that false-positive cases may be harder to distinguish
from true-positive cases. This suggests that the sequential observer test design could result
in prolonged time spent on reading an image when assisted by a device since they are
forced to decide on previous findings. Future observer test studies must, therefore, be
aware of this bias, and more studies are needed to investigate this aspect of observer tests.

A pre-requisite for AI-based devices to have a warranted place in diagnostic imaging
is that it has higher accuracy than the intended user, since human observers with less
experience may have a higher risk of also being influenced by inaccurate advice due to
availability bias [57] and premature closure [58]. To be able to include a larger number of
studies, we allowed the possibility of some inter-study variability in the performance of
the AI-based devices because of different AI-algorithms being used. We recognize this as a
limitation adding to the heterogeneity of our systematic review. In addition, we did not
review the diagnostic performance of the AI-algorithm by itself, and we did not review
the training or test dataset that was used to construct the AI-algorithm. Because of the
different AI-algorithms, the included studies may also have been subjected to publication
bias since there may be a tendency to only publish well-performing AI-algorithms.

Improved performance in users is a must before implementation can be successful.
Our systematic review focused on observer tests performed in highly controlled environ-
ments where they were able to adjust their study settings to eliminate biases and variables.
However, few prospective clinical trials have been published where AI-based devices have
been used, in a more dynamic and clinically realistic environment [59,60]. No clinical trials
have been published using AI-based devices on thoracic CT or chest X-rays, whether it be
as a stand-alone diagnostic tool or as an additional reader to humans [61]. Our systematic
review has, therefore, been a step towards the integration of AI in the clinics by showing
that it generally has a positive influence on physicians when used as an additional reader.
Further studies are warranted not only on how AI-based devices influence human deci-
sion making but also on their performance and integration into a more dynamic, realistic
clinical setting.

5. Conclusions

Our systematic review showed that sensitivity, specificity, accuracy, AUC, and/or time
spent on reading diagnostic images generally improved when using AI-based devices com-
pared to not using them. Disagreements still exist, and more studies are needed to uncover
factors that may inhibit an added value by AI-based devices on human decision-making.

Author Contributions: Conceptualization, D.L., J.F.C., S.D., H.D.Z., L.T., D.E., M.F. and M.B.N.;
methodology, D.L., L.M.P., C.A.L. and J.F.C.; formal analysis, D.L., L.M.P. and J.F.C.; investigation,
D.L., L.M.P., J.F.C. and M.B.N.; writing—original draft preparation, D.L.; writing—review and editing,
D.L., L.M.P., C.A.L., H.D.Z., D.E., L.T., M.F., S.D., J.F.C. and M.B.N.; supervision, J.F.C., S.D. and
M.B.N.; project administration, D.L.; funding acquisition, S.D. and M.B.N. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Innovation Fund Denmark (IFD) with grant no. 0176-00013B
for the AI4Xray project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

232



Diagnostics 2021, 11, 2206

References

1. Sharma, P.; Suehling, M.; Flohr, T.; Comaniciu, D. Artificial Intelligence in Diagnostic Imaging: Status Quo, Challenges, and
Future Opportunities. J. Thorac. Imaging 2020, 35, S11–S16. [CrossRef]

2. Aidoc. Available online: https://www.aidoc.com/ (accessed on 11 November 2021).
3. Mu, W.; Jiang, L.; Zhang, J.; Shi, Y.; Gray, J.E.; Tunali, I.; Gao, C.; Sun, Y.; Tian, J.; Zhao, X.; et al. Non-invasive decision support for

NSCLC treatment using PET/CT radiomics. Nat. Commun. 2020, 11, 5228. [CrossRef]
4. Trebeschi, S.; Bodalal, Z.; Boellaard, T.N.; Bucho, T.M.T.; Drago, S.G.; Kurilova, I.; Calin-Vainak, A.M.; Pizzi, A.D.; Muller, M.;

Hummelink, K.; et al. Prognostic Value of Deep Learning-Mediated Treatment Monitoring in Lung Cancer Patients Receiving
Immunotherapy. Front. Oncol. 2021, 11. [CrossRef]

5. Willemink, M.J.; Koszek, W.A.; Hardell, C.; Wu, J.; Fleischmann, D.; Harvey, H.; Folio, L.R.; Summers, R.M.; Rubin, D.L.; Lungren,
M.P. Preparing Medical Imaging Data for Machine Learning. Radiology 2020, 295, 4–15. [CrossRef]

6. Laino, M.E.; Ammirabile, A.; Posa, A.; Cancian, P.; Shalaby, S.; Savevski, V.; Neri, E. The Applications of Artificial Intelligence in
Chest Imaging of COVID-19 Patients: A Literature Review. Diagnostics 2021, 11, 1317. [CrossRef]

7. Pehrson, L.M.; Nielsen, M.B.; Lauridsen, C. Automatic Pulmonary Nodule Detection Applying Deep Learning or Machine
Learning Algorithms to the LIDC-IDRI Database: A Systematic Review. Diagnostics 2019, 9, 29. [CrossRef]

8. Li, D.; Vilmun, B.M.; Carlsen, J.F.; Albrecht-Beste, E.; Lauridsen, C.; Nielsen, M.B.; Hansen, K.L. The Performance of Deep
Learning Algorithms on Automatic Pulmonary Nodule Detection and Classification Tested on Different Datasets That Are Not
Derived from LIDC-IDRI: A Systematic Review. Diagnostics 2019, 9, 207. [CrossRef] [PubMed]

9. Strohm, L.; Hehakaya, C.; Ranschaert, E.R.; Boon, W.P.C.; Moors, E.H.M. Implementation of artificial intelligence (AI) applications
in radiology: Hindering and facilitating factors. Eur. Radiol. 2020, 30, 5525–5532. [CrossRef] [PubMed]

10. Wagner, R.F.; Metz, C.E.; Campbell, G. Assessment of Medical Imaging Systems and Computer Aids: A Tutorial Review. Acad.
Radiol. 2007, 14, 723–748. [CrossRef] [PubMed]

11. Gur, D. Objectively Measuring and Comparing Performance Levels of Diagnostic Imaging Systems and Practices. Acad. Radiol.
2007, 14, 641–642. [CrossRef]

12. Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.;
QUADAS-2 Group. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med.
2011, 155, 529–536. [CrossRef] [PubMed]

13. Bai, H.X.; Wang, R.; Xiong, Z.; Hsieh, B.; Chang, K.; Halsey, K.; Tran, T.M.L.; Choi, J.W.; Wang, D.-C.; Shi, L.-B.; et al. Artificial
Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Origin at Chest
CT. Radiology 2021, 299, E225. [CrossRef] [PubMed]

14. Dorr, F.; Chaves, H.; Serra, M.M.; Ramirez, A.; Costa, M.E.; Seia, J.; Cejas, C.; Castro, M.; Eyheremendy, E.; Slezak, D.F.; et al.
COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence. Intell. Med. 2020, 3-4, 100014.
[CrossRef] [PubMed]

15. Kim, J.H.; Kim, J.Y.; Kim, G.H.; Kang, D.; Kim, I.J.; Seo, J.; Andrews, J.R.; Park, C.M. Clinical Validation of a Deep Learning
Algorithm for Detection of Pneumonia on Chest Radiographs in Emergency Department Patients with Acute Febrile Respiratory
Illness. J. Clin. Med. 2020, 9, 1981. [CrossRef] [PubMed]

16. Liu, P.-Y.; Tsai, Y.-S.; Chen, P.-L.; Tsai, H.-P.; Hsu, L.-W.; Wang, C.-S.; Lee, N.-Y.; Huang, M.-S.; Wu, Y.-C.; Ko, W.-C.; et al.
Application of an Artificial Intelligence Trilogy to Accelerate Processing of Suspected Patients With SARS-CoV-2 at a Smart
Quarantine Station: Observational Study. J. Med. Internet Res. 2020, 22, e19878. [CrossRef]

17. Yang, Y.; Lure, F.Y.; Miao, H.; Zhang, Z.; Jaeger, S.; Liu, J.; Guo, L. Using artificial intelligence to assist radiologists in distinguishing
COVID-19 from other pulmonary infections. J. X-ray Sci. Technol. 2021, 29, 1–17. [CrossRef]

18. Zhang, D.; Liu, X.; Shao, M.; Sun, Y.; Lian, Q.; Zhang, H. The value of artificial intelligence and imaging diagnosis in the fight
against COVID-19. Pers. Ubiquitous Comput. 2021, 1–10. [CrossRef]

19. Beyer, F.; Zierott, L.; Fallenberg, E.M.; Juergens, K.U.; Stoeckel, J.; Heindel, W.; Wormanns, D. Comparison of sensitivity and
reading time for the use of computer-aided detection (CAD) of pulmonary nodules at MDCT as concurrent or second reader. Eur.
Radiol. 2007, 17, 2941–2947. [CrossRef]

20. De Hoop, B.; de Boo, D.W.; Gietema, H.A.; van Hoorn, F.; Mearadji, B.; Schijf, L.; van Ginneken, B.; Prokop, M.; Schaefer-Prokop,
C. Computer-aided Detection of Lung Cancer on Chest Radiographs: Effect on Observer Performance. Radiology 2010, 257,
532–540. [CrossRef] [PubMed]

21. Koo, Y.H.; Shin, K.E.; Park, J.S.; Lee, J.W.; Byun, S.; Lee, H. Extravalidation and reproducibility results of a commercial deep
learning-based automatic detection algorithm for pulmonary nodules on chest radiographs at tertiary hospital. J. Med. Imaging
Radiat. Oncol. 2020, 65, 15–22. [CrossRef]

22. Kozuka, T.; Matsukubo, Y.; Kadoba, T.; Oda, T.; Suzuki, A.; Hyodo, T.; Im, S.; Kaida, H.; Yagyu, Y.; Tsurusaki, M.; et al. Efficiency
of a computer-aided diagnosis (CAD) system with deep learning in detection of pulmonary nodules on 1-mm-thick images of
computed tomography. Jpn. J. Radiol. 2020, 38, 1052–1061. [CrossRef] [PubMed]

23. Lee, K.H.; Goo, J.M.; Park, C.M.; Lee, H.J.; Jin, K.N. Computer-Aided Detection of Malignant Lung Nodules on Chest Radiographs:
Effect on Observers’ Performance. Korean J. Radiol. 2012, 13, 564–571. [CrossRef] [PubMed]

233



Diagnostics 2021, 11, 2206

24. Li, F.; Hara, T.; Shiraishi, J.; Engelmann, R.; MacMahon, H.; Doi, K. Improved Detection of Subtle Lung Nodules by Use of Chest
Radiographs with Bone Suppression Imaging: Receiver Operating Characteristic Analysis With and Without Localization. Am. J.
Roentgenol. 2011, 196, W535–W541. [CrossRef] [PubMed]

25. Li, F.; Engelmann, R.; Pesce, L.L.; Doi, K.; Metz, C.E.; MacMahon, H. Small lung cancers: Improved detection by use of bone
suppression imaging-comparison with dual-energy subtraction chest radiography. Radiology 2011, 261, 937–949. [CrossRef]

26. Liu, K.; Li, Q.; Ma, J.; Zhou, Z.; Sun, M.; Deng, Y.; Tu, W.; Wang, Y.; Fan, L.; Xia, C.; et al. Evaluating a Fully Automated Pulmonary
Nodule Detection Approach and Its Impact on Radiologist Performance. Radiol. Artif. Intell. 2019, 1, e180084. [CrossRef]

27. Martini, K.; Blüthgen, C.; Eberhard, M.; Schönenberger, A.L.N.; De Martini, I.; Huber, F.A.; Barth, B.K.; Euler, A.; Frauenfelder, T.
Impact of Vessel Suppressed-CT on Diagnostic Accuracy in Detection of Pulmonary Metastasis and Reading Time. Acad. Radiol.
2020, 28, 988–994. [CrossRef]

28. Singh, R.; Kalra, M.K.; Homayounieh, F.; Nitiwarangkul, C.; McDermott, S.; Little, B.P.; Lennes, I.T.; Shepard, J.-A.O.; Digumarthy,
S.R. Artificial intelligence-based vessel suppression for detection of sub-solid nodules in lung cancer screening computed
tomography. Quant. Imaging Med. Surg. 2021, 11, 1134–1143. [CrossRef]

29. Nam, J.G.; Kim, M.; Park, J.; Hwang, E.J.; Lee, J.H.; Hong, J.H.; Goo, J.M.; Park, C.M. Development and validation of a deep
learning algorithm detecting 10 common abnormalities on chest radiographs. Eur. Respir. J. 2020, 57, 2003061. [CrossRef]

30. Sung, J.; Park, S.; Lee, S.M.; Bae, W.; Park, B.; Jung, E.; Seo, J.B.; Jung, K.-H. Added Value of Deep Learning-based Detection
System for Multiple Major Findings on Chest Radiographs: A Randomized Crossover Study. Radiology 2021, 299, 450–459.
[CrossRef]

31. Rajpurkar, P.; O’Connell, C.; Schechter, A.; Asnani, N.; Li, J.; Kiani, A.; Ball, R.L.; Mendelson, M.; Maartens, G.; Van Hoving, D.J.; et al.
CheXaid: Deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV. NPJ Digit. Med.
2020, 3, 1–8. [CrossRef]

32. Awai, K.; Murao, K.; Ozawa, A.; Nakayama, Y.; Nakaura, T.; Liu, D.; Kawanaka, K.; Funama, Y.; Morishita, S.; Yamashita, Y.
Pulmonary Nodules: Estimation of Malignancy at Thin-Section Helical CT—Effect of Computer-aided Diagnosis on Performance
of Radiologists. Radiology 2006, 239, 276–284. [CrossRef]

33. Awai, K.; Murao, K.; Ozawa, A.; Komi, M.; Hayakawa, H.; Hori, S.; Nishimura, Y. Pulmonary Nodules at Chest CT: Effect of
Computer-aided Diagnosis on Radiologists’ Detection Performance. Radiology 2004, 230, 347–352. [CrossRef] [PubMed]

34. Bogoni, L.; Ko, J.P.; Alpert, J.; Anand, V.; Fantauzzi, J.; Florin, C.H.; Koo, C.W.; Mason, D.; Rom, W.; Shiau, M.; et al. Impact of a
Computer-Aided Detection (CAD) System Integrated into a Picture Archiving and Communication System (PACS) on Reader
Sensitivity and Efficiency for the Detection of Lung Nodules in Thoracic CT Exams. J. Digit. Imaging 2012, 25, 771–781. [CrossRef]
[PubMed]

35. Chae, K.J.; Jin, G.Y.; Ko, S.B.; Wang, Y.; Zhang, H.; Choi, E.J.; Choi, H. Deep Learning for the Classification of Small (≤2 cm)
Pulmonary Nodules on CT Imaging: A Preliminary Study. Acad. Radiol. 2020, 27, e55–e63. [CrossRef] [PubMed]

36. Chen, H.; Wang, X.-H.; Ma, D.-Q.; Ma, B.-R. Neural network-based computer-aided diagnosis in distinguishing malignant from
benign solitary pulmonary nodules by computed tomography. Chin. Med. J. 2007, 120, 1211–1215. [CrossRef]

37. Liu, J.; Zhao, L.; Han, X.; Ji, H.; Liu, L.; He, W. Estimation of malignancy of pulmonary nodules at CT scans: Effect of computer-
aided diagnosis on diagnostic performance of radiologists. Asia-Pacific J. Clin. Oncol. 2020, 17, 216–221. [CrossRef]

38. Matsuki, Y.; Nakamura, K.; Watanabe, H.; Aoki, T.; Nakata, H.; Katsuragawa, S.; Doi, K. Usefulness of an Artificial Neural
Network for Differentiating Benign from Malignant Pulmonary Nodules on High-Resolution CT. Am. J. Roentgenol. 2002, 178,
657–663. [CrossRef]

39. Rao, R.B.; Bi, J.; Fung, G.; Salganicoff, M.; Obuchowski, N.; Naidich, D. LungCAD: A clinically approved, machine learning
system for lung cancer detection. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Jose, CA, USA, 12–15 August 2007; pp. 1033–1037.

40. Kasai, S.; Li, F.; Shiraishi, J.; Doi, K. Usefulness of Computer-Aided Diagnosis Schemes for Vertebral Fractures and Lung Nodules
on Chest Radiographs. Am. J. Roentgenol. 2008, 191, 260–265. [CrossRef]

41. Kakeda, S.; Moriya, J.; Sato, H.; Aoki, T.; Watanabe, H.; Nakata, H.; Oda, N.; Katsuragawa, S.; Yamamoto, K.; Doi, K. Improved
Detection of Lung Nodules on Chest Radiographs Using a Commercial Computer-Aided Diagnosis System. Am. J. Roentgenol.
2004, 182, 505–510. [CrossRef]

42. Kligerman, S.; Cai, L.; White, C.S. The Effect of Computer-aided Detection on Radiologist Performance in the Detection of Lung
Cancers Previously Missed on a Chest Radiograph. J. Thorac. Imaging 2013, 28, 244–252. [CrossRef]

43. Nam, J.G.; Park, S.; Hwang, E.J.; Lee, J.H.; Jin, K.-N.; Lim, K.Y.; Vu, T.H.; Sohn, J.H.; Hwang, S.; Goo, J.M.; et al. Development and
Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs.
Radiology 2019, 290, 218–228. [CrossRef] [PubMed]

44. Oda, S.; Awai, K.; Suzuki, K.; Yanaga, Y.; Funama, Y.; MacMahon, H.; Yamashita, Y. Performance of Radiologists in Detection of
Small Pulmonary Nodules on Chest Radiographs: Effect of Rib Suppression With a Massive-Training Artificial Neural Network.
Am. J. Roentgenol. 2009, 193. [CrossRef] [PubMed]

45. Schalekamp, S.; van Ginneken, B.; Koedam, E.; Snoeren, M.M.; Tiehuis, A.M.; Wittenberg, R.; Karssemeijer, N.; Schaefer-Prokop,
C.M. Computer-aided Detection Improves Detection of Pulmonary Nodules in Chest Radiographs beyond the Support by
Bone-suppressed Images. Radiology 2014, 272, 252–261. [CrossRef]

234



Diagnostics 2021, 11, 2206

46. Sim, Y.; Chung, M.J.; Kotter, E.; Yune, S.; Kim, M.; Do, S.; Han, K.; Kim, H.; Yang, S.; Lee, D.-J.; et al. Deep Convolutional Neural
Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs. Radiology 2020, 294,
199–209. [CrossRef] [PubMed]

47. Abe, H.; Ashizawa, K.; Li, F.; Matsuyama, N.; Fukushima, A.; Shiraishi, J.; MacMahon, H.; Doi, K. Artificial neural networks
(ANNs) for differential diagnosis of interstitial lung disease: Results of a simulation test with actual clinical cases. Acad. Radiol.
2004, 11, 29–37. [CrossRef]

48. Abe, H.; MacMahon, H.; Engelmann, R.; Li, Q.; Shiraishi, J.; Katsuragawa, S.; Aoyama, M.; Ishida, T.; Ashizawa, K.; Metz, C.E.;
et al. Computer-aided Diagnosis in Chest Radiography: Results of Large-Scale Observer Tests at the 1996–2001 RSNA Scientific
Assemblies. RadioGraphics 2003, 23, 255–265. [CrossRef]

49. Fukushima, A.; Ashizawa, K.; Yamaguchi, T.; Matsuyama, N.; Hayashi, H.; Kida, I.; Imafuku, Y.; Egawa, A.; Kimura, S.; Nagaoki,
K.; et al. Application of an Artificial Neural Network to High-Resolution CT: Usefulness in Differential Diagnosis of Diffuse Lung
Disease. Am. J. Roentgenol. 2004, 183, 297–305. [CrossRef] [PubMed]

50. Hwang, E.J.; Park, S.; Jin, K.-N.; Kim, J.I.; Choi, S.Y.; Lee, J.H.; Goo, J.M.; Aum, J.; Yim, J.-J.; Cohen, J.G.; et al. Development and
Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs. JAMA
Netw. Open 2019, 2, e191095. [CrossRef]

51. Gaube, S.; Suresh, H.; Raue, M.; Merritt, A.; Berkowitz, S.J.; Lermer, E.; Coughlin, J.F.; Guttag, J.V.; Colak, E.; Ghassemi, M. Do as
AI say: Susceptibility in deployment of clinical decision-aids. Npj Digit. Med. 2021, 4, 1–8. [CrossRef]

52. Brice, J. To Err is Human; Analysis Finds Radiologists Very Human. Available online: https://www.diagnosticimaging.com/
view/err-human-analysis-finds-radiologists-very-human (accessed on 1 October 2021).

53. Kobayashi, T.; Xu, X.W.; MacMahon, H.; E Metz, C.; Doi, K. Effect of a computer-aided diagnosis scheme on radiologists’
performance in detection of lung nodules on radiographs. Radiology 1996, 199, 843–848. [CrossRef]

54. Petrick, N.; Haider, M.; Summers, R.M.; Yeshwant, S.C.; Brown, L.; Iuliano, E.M.; Louie, A.; Choi, J.R.; Pickhardt, P.J. CT
Colonography with Computer-aided Detection as a Second Reader: Observer Performance Study. Radiology 2008, 246, 148–156.
[CrossRef]

55. Mazumdar, M.; Liu, A. Group sequential design for comparative diagnostic accuracy studies. Stat. Med. 2003, 22, 727–739.
[CrossRef] [PubMed]

56. Roos, J.E.; Paik, D.; Olsen, D.; Liu, E.G.; Chow, L.C.; Leung, A.N.; Mindelzun, R.; Choudhury, K.R.; Naidich, D.; Napel, S.; et al.
Computer-aided detection (CAD) of lung nodules in CT scans: Radiologist performance and reading time with incremental CAD
assistance. Eur. Radiol. 2009, 20, 549–557. [CrossRef] [PubMed]

57. Gunderman, R.B. Biases in Radiologic Reasoning. Am. J. Roentgenol. 2009, 192, 561–564. [CrossRef]
58. Busby, L.P.; Courtier, J.L.; Glastonbury, C.M. Bias in Radiology: The How and Why of Misses and Misinterpretations. RadioGraphics

2018, 38, 236–247. [CrossRef] [PubMed]
59. Wang, P.; Liu, X.; Berzin, T.M.; Brown, J.R.G.; Liu, P.; Zhou, C.; Lei, L.; Li, L.; Guo, Z.; Lei, S.; et al. Effect of a deep-learning

computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): A double-blind randomised study.
Lancet Gastroenterol. Hepatol. 2020, 5, 343–351. [CrossRef]

60. Lin, H.; Li, R.; Liu, Z.; Chen, J.; Yang, Y.; Chen, H.; Lin, Z.; Lai, W.; Long, E.; Wu, X.; et al. Diagnostic Efficacy and Therapeutic
Decision-making Capacity of an Artificial Intelligence Platform for Childhood Cataracts in Eye Clinics: A Multicentre Randomized
Controlled Trial. EClinicalMedicine 2019, 9, 52–59. [CrossRef]

61. Nagendran, M.; Chen, Y.; Lovejoy, C.A.; Gordon, A.; Komorowski, M.; Harvey, H.; Topol, E.J.; A Ioannidis, J.P.; Collins, G.;
Maruthappu, M. Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep
learning studies. BMJ 2020, 368, m689. [CrossRef]

235





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Diagnostics Editorial Office
E-mail: diagnostics@mdpi.com

www.mdpi.com/journal/diagnostics





MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com ISBN 978-3-0365-6435-7 


	A9Rry3kg6_t9jt9p_7l0.pdf
	Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases.pdf
	A9Rry3kg6_t9jt9p_7l0

