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Preface to ”High Performance Computing Serving
Atmospheric Transport & Dispersion Modelling”

The last decade has witnessed both the use of increasingly sophisticated physical and

mathematical models of atmospheric transport and dispersion (AT&D), and considerable

development in high-performance computing (HPC) based on a very large number of CPU and/or

GPU processors. During this period, computational resources have not only become larger and larger,

but also more and more available and accessible. They now make three-dimensional calculations

possible, whose size and scale were unfeasible at the beginning of the 21st century. Simulations

are very often based on efficiently parallelized versions of weather forecasting and atmospheric

dispersion models. These are used in computational chains which allow the descent from the

mesoscale to the microscale in the atmospheric environment, and even inside buildings or within

infrastructure. Intensive simulations have several crucial aspects. On the one hand, they can achieve

very high spatial and/or temporal resolutions in gigantic computational domains encompassing

complex, built, natural, or mixed terrains. On the other hand, they make it possible to obtain

results very quickly, in accelerated time compared with physical time, which is extremely useful for

responding to emergencies. Finally, they can carry out ensembles of calculations which are essential,

for example, in producing statistics for the average spatial distribution of an atmospheric release over

a period of several years, to propagate uncertainties in input data, and to infer their influence on the

results of possibly hazardous materials which have been dispersed, to determine the source terms at

the origin of detection on a network of sensors by various methods, or to establish databases used by

methods of meta-modelling or machine learning. Thus, there are countless reasons to be interested in

HPC in connection with the modelling and simulation of AT&D.

This reprint brings together fifteen remarkable articles published in the Special Issue of

the journal Atmosphere, entitled “High-Performance Computing Serving Atmospheric Transport

& Dispersion Modelling”. These articles address a wide variety of physical models of weather

forecasting and atmospheric dispersion at all spatial and temporal scales. The applications are just as

diverse, as the introductory remarks to the articles below show.

Singh et al. simulated the vertical transport of aerosols during deep convection episodes in

the Himalayas using the WRF-Chem model. They highlight the importance of a fine horizontal

resolution, in the order of one kilometer, to resolve convection phenomena and determine the precise

distribution of rainfall.

Gunawardena et al. emulated radioactive material deposition maps obtained from WRF and

FLEXPART simulations. They showed that the implemented machine learning method succeeded in

reproducing the results of the physical models 10,000 times faster, even when using a limited number

of realizations for learning.

Zhong et al. divided ADMS-Urban calculations over a large domain into sub-regions that were

performed by multiple cores of a supercomputer. They thus managed to reduce annual air quality

calculations down to the fine scale of streets in the West Midlands region (UK), from several weeks to

a few hours.

Oldrini et al. describe the EMERGENCIES project for 3D high-resolution flow and dispersion

modelling with PMSS over giant urban areas. They demonstrated the feasibility of using such a

system in the event of the atmospheric release of hazardous materials in order to support rescue teams

in their decisions. Oldrini et al. also worked on the visualization of the widespread results of the

atmospheric dispersion of hazardous materials and health impacts on the enormous EMERGENCIES

ix



domain. They established that efficient parallel processing enables the production and broadcast of

maps on the fly with multiple zoom levels.

Nibart et al. noted the growing use of HPC to assess urban air quality at high resolution in

the context of construction projects and services such as weather forecasting. They emphasized the

experience acquired on the modelling system, PMSS, which made it possible to validate the method

on multiple cases and optimize its use.

Russo et al. utilized the CRESCO/ENEAGRID computing center to carry out air quality forecasts

at the urban scale in the city of Rome. They specify that a super-computer was utilized to perform

simulations with PMSS and collect detailed floating car data as emission inputs for the model.

Villani et al. assessed the impact of greening building facades on the concentration of

atmospheric pollutants in urban areas. Based on PMSS simulations at the CRESCO/ENEAGRID

computing center, they showed that these infrastructures are effective in reducing population

exposure at hotspots.

Nakayama et al. implemented a method for predicting atmospheric dispersion, which combined

a flow database pre-calculated with the LES model LOHDIM and local meteorological observations

acquired by a Doppler LiDAR. They illustrated the relevance of the method with validation tests on a

built site of the JAEA. Nakayama et al. also performed simulations of plume dispersion in downtown

Oklahoma City with the LES model LODHIM using a WRF mesoscale model or observations as

meteorological inputs. They showed that comparisons with measurements were better with WRF,

although were still acceptable with observations.

Gowardhan et al. carried out LES simulations of turbulent flows and dispersion over complex

and urban terrains using the AEOLUS model. They validated the model based on wind and tracer

measurements from the Joint Urban 2003 field campaign and with the data of buoyant plumes

generated by explosions.

Bieringer et al. developed a GPU-based approach to LES simulations of harmful material

dispersion. They validated the model on open terrain for unstable, neutral, and stable atmospheres,

and showed that their urban indoor/outdoor JOULES model provided results 150 times faster on

GPU than on CPU.

Jacob et al. present an approach based on the lattice Boltzmann method (LBM) with wall model

large eddy simulations (WMLES) to take into account multi-scale flows and dispersion, not only in

the urban atmospheric environment, but also in indoor environments. They document a large and

diverse panel of validation cases.

Elfverson and Lejon examined the scalability of the parallel OpenFOAM model in built-up

environments. They solved the RANS equations with the k-ω turbulence model and used it in

a domain with two million cells around the Parade square in Warsaw, where flow and dispersion

results were achieved in minutes.

Schalau et al. proposed a method which preserves the mean velocity and turbulence profiles

specified as boundary conditions of RANS models such as OpenFOAM. They verified that the

numerical results obtained with this method agree with wind tunnel measurements for various

obstacle configurations.

We hope that everyone enjoys reading this Special Issue!

Patrick Armand

Editor
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Abstract: The Himalayan region is facing frequent cloud bursts and flood events during the summer
monsoon season. The Kedarnath flooding of 2013 was one of the most devastating recent events,
which claimed thousands of human lives, heavy infrastructure, and economic losses. Previous re-
search reported that the combination of fast-moving monsoon, pre-existing westerlies, and orographic
uplifting were the major reasons for the observed cloud burst over Kedarnath. Our study illustrates
the vertical distribution of aerosols during this event and its possible role using the Weather Research
and Forecasting model coupled with chemistry (WRF-Chem) simulations. Model performance evalu-
ation shows that simulations can capture the spatial and temporal patterns of observed precipitation
during this event. Model simulation at 25 km and 4 km horizontal grid resolution, without any
changes in physical parameterization, shows a very minimal difference in precipitation. Simulation
at convection-permitting scale shows detailed information related to parcel motion compared to
coarser resolution. This indicates that the parameterization at different resolutions needs to be further
examined for a better outcome. The modeled result shows changes of up to 20–50% in the rainfall
over the area near Kedarnath due to the presence of aerosols. Simulation at both resolutions shows
the significant vertical transport of natural (increases by 50%+) and anthropogenic aerosols (increases
by 200%+) during the convective event, which leads to significant changes in cloud properties, rain
concentration, and ice concentration in the presence of these aerosols. Simulations can detect changes
in important instability indices such as convective available potential energy (CAPE), convective
inhibition energy (CIN), vorticity, etc., near Kedarnath due to aerosol–radiation feedback.

Keywords: aerosols; South Asia; WRF-Chem; precipitation; CAPE; CIN

1. Introduction

Dimri et al. (2017) reviewed the dynamic, thermodynamic, and physical reasons
for cloud burst cases in the Himalayan region and their impact on the society in detail.
Generally, the interaction of fast-moving monsoons with existing active westerlies [1] and
orographic uplifting often results in havoc in the central Himalayan region [2]. Himalayan
foothills make an intersection point, where northward moving monsoon, active westerlies,
and orographic lifting produce high convection and thunderstorm activity [3]. A previous
study has indicated that the presence of aerosols can enhance or suppress rain over Asian
regions [4]. The Indo-Gangetic Plain (IGP), which is known as a hotspot of anthropogenic
pollution in South Asia [5–7], as well as the deserts of Rajasthan and middle east Asia [8],
supply ample aerosols to the Himalayan region.

Aerosol–cloud–precipitation interaction is considered to be a complex system and
much remains to be understood [9–11]. Aerosols act as cloud condensation nuclei (CCN),
which is necessary to form clouds and rain [9]. Some of the aerosols act as ice nuclei
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(IN) [12,13], which may hold the water content in clouds and delay precipitation [14]. In
the presence of excess aerosols, smaller cloud droplets are formed, which reduces the pre-
cipitation amount [9]. In the form of CCN and IN in clouds, aerosols affect cloud properties
such as brightness, cloud cover, cloud top temperature, and cloud top pressure [15–17]. The
presence of aerosol layers above or below a cloud can affect the cloud cover in either of the
aforementioned ways [16,17]. Andreae and Rosenfeld (2008) reported that natural aerosol
and CCN concentration is lower over land, and cloud formation over the continent mostly
results from anthropogenic emissions [12]. More CCN (more aerosols) leads to smaller and
narrower cloud droplet size and distribution, which results in suppressed warm rain and
enhanced cold rain. Higher CCN in mixed phase clouds makes it deeper and enhances
lightning activity with more flashes [18]. An increase of 1–30% in the dust and sea salt
concentration affect cloud properties and precipitation significantly; the conclusion that a
15% increase in the dust concentration may delay rain by one hour was reported [13]. Up
to a 70% increase in the CCN over northwestern Europe due to aged Saharan dust was
reported in previous research [19]. Increased cloud fraction (~5%) and decreased cloud top
pressure (~40 mb) are reported due to elevated aerosol concentration over the Atlantic [17].
Several studies have indicated that aerosols are not only limited to acting as CCN/IN but
that they also affect radiation-derived parameters (such as convective available energy
(CAPE) and convective inhibition energy (CIN), which are important in the prediction of
severe weather [11,20].

Most of the extreme precipitation events over the western Himalayas are observed
during the month of September, based on the records available from 1875–2010 [21]. From
16–17 June 2013, the rapid arrival of monsoon in northern India along with the presence
of strong westerlies over the region was one of the major causes for a massive precipi-
tation event over Kedarnath, India [22–25]. Kedarnath (30.73◦ N, 79.06◦ E; 3553 m from
sea level) is a small town in the Indian state of Uttarakhand in the Himalayan region.
This study focuses on the atmospheric analysis during the Kedarnath flood, which oc-
curred from 16–17 June 2013, and was followed by significant flooding over western Nepal
from 17–18 June 2013, an event which was later called the Himalayan tsunami [22]. The
Kedarnath floods claimed the loss of hundreds of human lives and damaged vast infras-
tructure [23]. Many studies after the event tried to analyze the causes of such devastation.
Some of the observations [1,23] and model-based studies [24] have analyzed meteorological
conditions, orographic and climatic perspectives [22,26], and the effect of chemistry on
precipitation [4].

This study attempts to understand the vertical distribution of aerosols at the synoptic
and convection-permitting scales during the Kedarnath heavy precipitation event using the
regional Weather Research Forecast coupled with chemistry (WRF-Chem) model. A model
horizontal grid resolution of below 5 × 5 km is considered as a convection-permitting scale
where there is no need for specific cumulus parameterization schemes in the model [27,28].
Additionally, we discuss how the presence of aerosols affected radiation and altered the
severe weather indices, which are important in predicting precipitation and severe weather.

2. Data and Methodology
2.1. Observations

In situ data for various stations obtained from the Meteorological and Oceanographic
Satellite Data Archival Centre (MOSDAC) of the Indian Space Research Organization (ISRO)
containing precipitation, relative humidity, wind direction, wind speed, temperature, and
near-surface pressure were used in this study. MOSDAC collects data from the Indian
Meteorological Department (IMD) and various Automated Weather Stations (AWS) from
different sources (https://www.mosdac.gov.in/, accessed on 1 April 2021). MOSDAC-AWS
uses a tipping bucket rain gauge to measure accumulated rainfall [29].

Tropical Rainfall Measuring Mission (TRMM) monthly level 3 data (TRMM_3A12) avail-
able at a horizontal grid resolution of 0.5◦ × 0.5◦ (https://disc.gsfc.nasa.gov/datacollection/
TRMM_3A12_7.html, accessed on 1 April 2021) were used to analyze the general trends
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over the study region. Further analysis was performed using TRMM-TMPA (Multi-satellite
Precipitation) level 3 data at a 0.25◦ × 0.25◦ spatial resolution, which was available at 3-hour
temporal resolutions.

Atmospheric infrared sounder (AIRS) Aqua level 3 daily products available at a
1◦ × 1◦ resolution (AIRX3STD) downloaded from https://search.earthdata.nasa.gov/
(accessed on 1 April 2021) were used to understand the cloud properties during the heavy
precipitation event. Moderate Resolution Imaging Spectroradiometer (MODIS) level 3 Terra
(MOD08_D3) and Aqua (MYD08_D3) daily products available at a 1◦ × 1◦ resolution were
also used along with AIRS. Both of these satellite products provided cloud fraction, cloud
top pressure, and temperature, which were useful to understand the cloud properties.

2.2. Model Setup

This study uses the Weather Research and Forecasting (WRF) model [30,31] coupled
with chemistry (WRF-Chem) for various simulations [32]. A total of six sets of simulations
were performed to analyze the vertical transport of bulk aerosols during the Himalayan
extreme precipitation event. Out of these, three sets of WRF simulations were performed
at the resolution of 25 km for the domain consisting of the whole Indian subcontinent
(6.5–36.0◦ N, 53.0–103.0◦ E; Figure S1) with MOZCART and MOZART and with WRF
without the chemistry option. Similarly, another three sets of WRF simulations were
performed at the resolution of 4 km, covering an area between 28–32.0◦ N, 74.25–85.75◦ E
that covered significant portions of the IGP and the Himalayas. To stabilize the chemistry in
the single domain model simulations, one week of spin-up time was used. Event analysis
was conducted using the data from 3 days before to 3 days after the event. Details of the
WRF simulations with MOZCART chemistry (WC25) and without chemistry at a 25 km
(WRF25) horizontal grid resolution and similarly at the 4 km resolution (WC4 and WRF4,
respectively) are outlined in Table 1. The Thompson Graupel Scheme, a double-moment
microphysics scheme, was used in the simulations and consists of six classes of moisture
species along with the ice concentration number for the prediction of cloud properties. To
understand the aerosol–cloud–radiation feedback, the cloud effect on the optical depth in
radiation was also activated in the simulations. Supporting Figure S1 shows the domain
of the simulation at the resolution of 25 km and 4 km (red box) and at the location of
Kedarnath (black dot).

The experiments were designed in such a way that the simulations for WC/WRF4 used
chemical and meteorological boundary conditions from the simulations of WC/WRF25.
In this kind of setup, we were able to overcome computational limitations in terms of
storage and processing capacity. Both of the simulations (25 km and 4 km resolutions)
used National Center for Environmental Prediction Final Analysis (NCEP-FNL) for the
meteorological initial conditions [7,24], whereas boundary conditions for the simulation
at WC/WRF25 used NCEP-FNL and the simulations at WC/WRF4 used meteorological
data from WC/WRF25. In a similar way, the WC25 simulations used chemical boundary
conditions from a global simulation model for ozone and related chemical tracers, version
4(Mozart-4) [33]. The WC4 simulations used chemical boundary conditions from WC25.
For both simulations, WC4 and WC25 anthropogenic emissions were considered from those
from the Emission Database for Global Atmospheric Research-Hemispheric Transport of
Air Pollution (EDGAR-HTAP) [34].
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Table 1. Domain and parameterization details for different simulations.

Simulations WC25 WRF25 WC4 WRF4

Centered at 22◦ N, 78◦ E 30◦ N, 80◦ E
Resolution 25 × 25 km 4 × 4 km

No. of grids 130 × 203 × 40 223 × 555 × 40
Domain 6.5–36.0◦ N, 53.0–103.0◦ E 28–32.0◦ N, 74.25–85.75◦ E

Chemistry Scheme MOZCART - MOZCART -
Convective parameterization Kain–Fritsch Scheme [35]

Planetary boundary layer
physics Yonsei University Scheme (YSU) [36]

Shortwave radiation physics Dudhia Shortwave Scheme [37]
Microphysics Thompson graupel scheme [38]

Longwave radiation physics RRTM Longwave Scheme [39]
Land-atmosphere interaction Unified Noah Land Surface Model scheme [40]

Surface layer option MM5 Similarity Scheme [41]
Photolysis Madronich fast-Ultraviolet-Visible Model (F-TUV) [42]

3. Results and Discussion
3.1. Precipitation Analysis

Normal rain was reported during 2013 monsoon season throughout India, except
a few states of India such as Bihar, Arunachal Pradesh, and Jammu [25]; however, an
excess of rain was reported over most of India in June 2013, except for in northeast India.
Uttarakhand faced more than a 191% excess of rain during the month of June, which was
the highest compared to any other state, while the overall monsoon season recorded only
12% excess rain. As per IMD records, more than 13 districts of Uttarakhand recorded excess
rain during June 2013, which was an unusual event in the month of June [22].

This study used the TRMM monthly surface rain rate data product (TRMM_3A12)
from January 1998 to December 2014 to determine the rain pattern in Uttarakhand, a state
of India, and over Kedarnath, a Himalayan Mountain city. The year 2013 was a neutral year
in terms of El Niño and La Nina. An analysis of seasonal and annual average precipitation
over Uttarakhand for the year 2013 suggested that it was an average year in terms of
accumulated precipitation when compared to other years from 1998–2014. On the other
hand, the monthly analysis suggested that in 2013, the month of June observed the highest
precipitation compared to any other year. The area-averaged rain rate taken from a few
horizontal grids over Kedarnath suggests that seasonal and annual rain rate for the year
2013 was average during the analysis period, whereas the rain rate was higher compared to
the state of Uttarakhand. The Kedarnath grid suggests that the rain rate during the month
of June and the monsoon season of 2013 was the highest compared to any other year from
1998–2014 (Table S1 and Figure S2).

Figure 1 shows the results of 3 days of accumulated rain (from 16–18 June 2013) over
the simulation domain from TRMM and different versions of the WRF model. TRMM
accumulated rain (Figure 1a) shows heavy precipitation (greater than 100 mm) over the
western coast, northern India, western Nepal, and the area near the southeastern Bay of
Bengal. Figure 1b shows accumulated precipitation from the WRF WC25 simulation. The
model reproduces major precipitation when compared to the TRMM precipitation results,
with some minor differences. Figure 1c shows accumulated rain from WRF25 simulation,
which again is similar to the TRMM observations with minor differences. Figure 1d shows
the difference in the accumulated rain produced by the WC25 to WRF25 simulation. The
results show that precipitation is reduced in the central and northeastern parts of India
with the chemistry option turned on. However, northern India (majorly Uttarakhand), over
the Arabian Sea and Bay of Bengal, shows increased rain in WC25.

Similar results are seen for the 4 km resolution model simulations (Figure 2). WRF
with MOZCART chemistry (WC4) and WRF without chemistry (WRF4) show similar
features of accumulated rain when compared to each other, while there are differences
when compared to the results obtained from TRMM. It must be noted that grid resolution
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between the model simulation and the TRMM observations also leads to some of the
observed differences. Most of the area that is focused on in the study shows a decrease
in precipitation from the simulations with chemistry turned on, whereas few areas also
show an increase in precipitation. Both sets of simulations (25 km and 4 km) show the
effect of aerosols on precipitation amount in either direction (i.e., increase or decrease).
WC25 shows that most of the area over and near Uttarakhand produces more rain in the
presence of aerosols, while WC4 shows less rain in the presence of aerosols, except for in a
few concentrated places.
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Using a combination of different parameterization schemes in WRF simulations, the
study by Chawla et al. (2018) shows that most of the combinations were able to capture
spatial precipitation features for 15–18 June 2013 as they appear in TRMM with some
differences [24]. A previous study using WRF-Chem simulation by Kedia et al. (2018)
suggests a 20% increase in precipitation over Uttarakhand due to chemistry, which was
determined using a 15-day average simulation and by observing rain over the region
for analysis [4]. Average precipitation and other parameters for 15 days were shown
as aggregates illustrating the impact of aerosols; however, this was illustrated without
providing temporal resolution for the event. Thus, it is difficult to compare our results with
previous research [4].

Figure 3 presents a time series of precipitation at four stations in the Himalayan
Mountains of Uttarakhand from 15–20 June 2013. These four stations are the nearest present
stations to Kedarnath. In situ observation at all four stations shows that precipitation starts
from the morning of the 16 and ends on the morning of the 18. A similar trend is observed
through satellites for the same time period. All four model simulations can correctly predict
the start and end pattern of precipitation and peaks in precipitation with some minor
temporal shifts. At all the four stations, WC25 shows early rain, whereas WRF25 shows
delayed rain when the models are compared to each other. Both WC4 and WRF4 show
delayed rain matching with each other and also match with the WRF25 simulation trend
but predict higher rainfall compared to WRF25 for the peak rain during these days. WC25,
however, better matches with the TRMM observations compared to other simulations
regarding the timing of the rainfall. The study by Castorina et al. (2021) suggests an
explicit resolution of the convective system and provides better simulation for extreme
events. As the horizontal dimension of convective clouds varies from 0.1 km–10 km and
considering that our model resolution (5 km in their study) is much higher than that,
the physical parameterization of the convective system can improve the simulation [43].
However, our simulation with convective parameterization shows that the accumulated
rain at 25 km and 4 km is in a similar range with some differences, which justifies the role
of the parameterization of the convective system in the simulation of extreme events.
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6



Atmosphere 2021, 12, 1092

from 15–20 June 2013. Over Kedarnath, the TRMM and model simulations show a low R2
value (0.36–0.41). At other places, TRMM and in situ data show R2 in the range of 0.32–0.60;
R2 for TRMM and model ranges between 0.32–0.95, except for Dehradun. The R2 between
in situ observation and the models ranges between 0.23–0.93, except for Jolly Grant. The R2
at Jolly Grant between TRMM and in situ observation is 0.60, and between the observation
and the model, it is less than 0.31. Observed accumulated rain at Jolly Grant was as high
as 200 mm/day (in situ); the model produces less than 100 mm/day during event days,
and the model also does not perform well at Dehradun station. Over other stations, the
model replicates the strength and period of precipitation. An observation-based report
from IMD presents heavy precipitation on 16 and 17 June 2013 [25], which is evident in
all model simulations and satellite observations as well (Figure 3). Other observation
studies also show heavy precipitation on 16 and 17 June over most of the Uttarakhand
region [22,23,26,44].

Figures 1–3 suggest that all model simulations adequately capture the spatial and
temporal coverage of precipitation, with some differences in the amount of precipitation.
WC25 and WRF25 show up to a 50 mm/day rain difference at some of the stations, whereas
WC4 and WRF4 show a negligible precipitation difference. Additional analysis suggests
more rain in the 25 km simulation without chemistry at Dhanauri (~20 mm/day), Jolly
Grant (~60 mm/day), Dehradun (~70 mm/day), and Mandal (~100 mm/day). How-
ever, more rain is produced in the 25 km simulation with chemistry in places such as
Kedarnath (~40 mm/day), Champawat (~60 mm/day), Nainital (~15 mm/day), Lamba-
grh (~40 mm/day), Pandukeshwar (~10 mm/day), and Pipalkoti (~20 mm/day). WRF
and WRF-Chem were able to simulate precipitation well over most of the observation
stations, which is further corroborated by the TRMM observations. Given the model’s
ability to replicate the rainfall over Uttarakhand, we present the model-based analysis of
monsoon dynamics, cloud properties, and aerosols during this event.

3.2. Monsoon Dynamics

The Indian Meteorological Department, India, and the Department of Hydrology
and Meteorology (DHM), Nepal, reported the onset of the summer monsoon on 15 and
14 June 2013, respectively. Due to low heat (high temperature leads to low-pressure zone)
over northern India and the high-pressure zone over the adjacent ocean, moisture moves
with the wind from the ocean to northern India during monsoons. Figure 4a,b shows the
counterclockwise cyclonic motion of the wind direction, implying a strong low pressure
(WC25 due to full chemistry option) zone over northern India on 15–16 June, which guided
the moisture from the ocean towards the land. WC4 shows consistent winds flowing from
southeast to northwest (Figure not shown). Figure 4c shows a low-pressure zone on the 17,
which is moving towards the north. The same low-pressure zone further moved towards
western Nepal (Figure 4d) on the 18, which created a flood situation in western Nepal
(https://www.icimod.org/?q=10932, accessed on 1 April 2021); after the 19 this system
disappeared (Figure 4e,f).

Singh and Chand, (2015) have shown the presence of a low-pressure zone over central
India (Rajasthan and Madhya Pradesh), as simulated by their model on 16 June. Ray et al.
(2014) reported the presence of a low-pressure system during the 16 and 17 over central
India [23,25]. The dynamic interaction of the monsoon due to the low-pressure system over
central India with the mid-latitude western disturbance results in heavy rainfall [23,25,45].
Similar wind patterns and low-pressure were simulated in all the simulations. The precipi-
tation pattern was also simulated well in the simulations concerning observations and the
previous literature.
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In situ observations for all of the stations listed in the supporting table shows low
pressure near the surface, about 4–6 hPa less than the average atmospheric pressure on
the 17. The WC4 and WRF4 simulations represent better pressure at different stations in
comparison to simulation WC25 and WRF25, mainly due to a higher model resolution that
is better able to reflect topography height. Low pressure indicates an unstable atmosphere
and a higher probability of precipitation. High surface relative humidity (≥90%) was
observed during the 16 and 17, and the model also simulated high relative humidity for
all of the stations (≥80%). Persistent higher humidity indicates a higher probability of
precipitation in that area. Observations and the models both showed a rapid decrease
in relative humidity from the morning of 18 June. The observed surface temperature on
17 June at all stations fell (~3 ◦C–5 ◦C) compared to the average temperature. Similarly,
WC25 and WRF25 show temperature falls of ~4 ◦C–6 ◦C, while WC4 and WRF4 show a fall
of ~2 ◦C–6 ◦C. All of the parameters show normal atmospheric conditions from the morning
of 18 June in comparison with the event days. Literature based on observations shows
70–100% humidity, low pressure, and low wind during event days over Kedarnath [22].

3.3. Cloud Property

Figure 5 shows the average cloud fraction (CF) from the MODIS (Aqua and Terra)
satellites (a,b) and the average model simulated cloud fraction (c,d) for 16 and 17 June 2013.
Both the satellites and the model show similar features on 16 (Figure 5a,c): dense clouds
from the Arabian Sea to northern India passing through central India along with some
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dense clouds in the southeastern Bay of Bengal. Both the satellites and the model-based
observations show that all of Uttarakhand and western Nepal were covered by dense clouds
on the 16. On the 17, the satellites do not show a dense cloud fraction over Uttarakhand
and western Nepal, whereas the model does simulate dense cloud fraction over the area.
However, on the 17, the satellite data do show similar cloud fraction features over the
Western Ghats, Arabian Sea, and Bay of Bengal, as seen on the 16.
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Model analysis reveals that the entirety of the Arabian Sea, Bay of Bengal, and central
India is covered with low and mid-level clouds (Figure not shown). In this study, low
cloud cover is considered up to 800 hPa, medium cloud cover is below 450 hPa, and high
cloud cover is above 450 hPa. Along with low- and mid-level clouds, Uttarakhand, Western
Nepal, a small part of the Arabian Sea, and the Bay of Bengal were covered with dense
high-level clouds on 16 and 17 June. The satellites observed low cloud top pressure (CTP)
over Uttarakhand compared to surrounding areas (~300 hPa) on the 16 and (~400 hPa) on
17, indicating the presence of high-level cloud cover over Uttarakhand.

Low cloud top temperature (CTT) was observed from the satellites (~−30 ◦C to
−40 ◦C) on the 16 and (~ −20 ◦C to −30 ◦C) on the 17 over Uttarakhand and western
Nepal. CTT from the model simulation was lower in comparison with Uttarakhand and
western Nepal (~−10 ◦C to −20 ◦C) on both days. WC4 simulates further cooler CTT on
the 17 (~−30 ◦C to −40 ◦C). The presence of aerosol mostly produced warmer cloud top at
WC25, except in some places near Kedarnath, and WC4 simulated changes in CTT variation
(±15 ◦C). Lower CTP and CTT indicate deep cloud with a high amount of precipitation [14].

At 25 km resolution, the presence of aerosols affected the cloud fraction by ±25% away
from the major sources of emission (inferred from Figure 1d). The presence of aerosols
simulated more clouds at a low level, whereas a decrease was simulated in the high-level
clouds, while the mid-level clouds were affected in both ways over the domain of the
simulation. Similar results were simulated at the 4 km resolution with and without aerosols
for both days. The presence of aerosols played a role in creating warm clouds in the
central and eastern parts of India, the same region where the aerosols negatively affected
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precipitation (Figure 1d). Satellite data along with the model show low CTT and CTP
over Kedarnath during the 16 and 17 compared to previous days. The model indicates the
presence of dense high clouds over Kedarnath, which could result in a heavy downpour.

3.4. Aerosol Concentration

Satellite and model analysis suggests the presence of dense high-level (above 6 km)
clouds over Kedarnath, so we analyzed aerosols above 6 km (above ~500 hPa). Our results
show that over Kedarnath, there is an elevated concentration of anthropogenic and natural
aerosols at high altitudes during the event days. Figure 6a,b shows area average concen-
tration of black carbon (BC), and Figure 6c,d shows dust over Uttarakhand (~29–31◦ N,
~78–81◦ E) from the 15–19. The night of the 17 shows the highest BC concentration at
500 hPa (>0.25 µg/m3) and above in WC25, whereas it was (>0.05 µg/m3) in the WC4
simulations; the columnar average BC concentration was higher by ~0.1 µg/m3 in WC25,
whereas it was lower in WC4 from the previous day. Figure 3 shows that a precipitation
peak was present for a similar period over most of the stations. Similarly, natural aerosol
dust shows a higher concentration at 500 hPa and above in both the WC4 and WC25 simula-
tions (Figure 6c,d). The previous study on the vertical transport of aerosols during volcanic
eruption suggests that WRF-Chem simulates the process quite realistically [46,47]. Simi-
larly, the model-based previous study demonstrates that WRF-Chem realistically simulates
vertical aerosol transport during deep convection events [33].
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Other bulk aerosol species such as organic carbon (OC), dust (different size), sea salt
(different size), and sulfates show similar elevated peaks at 500 hPa and above. Table 2
presents the differences in the concentrations of various aerosol species at 850 hPa, 500 hPa,
3 hPa, and the total column average. The methodology for calculating the differences in
the concentrations is as follows:

Table 2. ∆concentration for different aerosols and ∆ in absolute percentage in model column and at 850 hPa, 500 hPa, and
300 hPa for 16 and 17 June 2013 over Kedarnath at 25 km resolution.

Aerosols

16 June 2013

∆ Column ∆ 850 hPa ∆ 500 hPa ∆ 300 hPa

ug/m3 % ug/m3 % ug/m3 % ug/m3 %

Black Carbon (BC) −0.001 −0.56 −0.225 −25.10 0.156 200.26 0.029 142.23

Organic Carbon (OC) −0.023 −2.15 −1.672 −28.86 1.038 226.53 0.177 240.49

DUST1 0.685 36.86 2.409 40.01 1.124 45.43 0.352 95.92

DUST2 1.264 29.56 4.893 34.38 2.069 38.09 0.775 104.79

DUST3 0.766 26.03 3.189 30.91 1.384 40.55 0.549 137.52

DUST4 −0.054 −5.85 −0.764 −17.66 0.357 50.64 0.149 230.30

DUST5 −0.031 −47.90 −0.165 −57.98 −0.027 −39.57 0.003 19.12

SEA SALT1 0.008 93.74 0.026 71.09 0.015 210.09 0.002 41.50

SEA SALT2 0.075 128.65 0.22 71.48 0.146 493.88 0.021 1478.02

SEA SALT3 0.058 152.67 0.194 87.73 0.083 540.52 0.011 3580.23

SEA SALT4 0.0002 873.93 0.0011 653.67 0.0001 1481.69 0.00001 43480.71

sulf −0.028 −2.82 −1.349 −28.99 0.711 85.37 0.126 72.73

17 June 2013

∆ Column ∆ 850 hPa ∆ 500 hPa ∆ 300 hPa

ug/m3 % ug/m3 % ug/m3 % ug/m3 %

BC 0.03 20.82 −0.039 −4.36 0.154 197.75 0.031 151.07

OC 0.189 17.89 −0.473 −8.17 0.981 214.08 0.152 205.95

DUST1 0.298 16.05 1.412 23.44 0.489 19.75 0.108 29.43

DUST2 0.615 14.37 3.033 21.31 1.212 22.31 0.227 30.63

DUST3 0.423 14.38 2.063 20.00 0.999 29.29 0.148 37.05

DUST4 −0.043 −4.62 −0.773 −17.85 0.387 54.91 0.042 64.18

DUST5 −0.025 −38.44 −0.137 −48.18 −0.012 −17.96 0.001 −7.58

SEA SALT1 0.008 93.29 0.031 86.71 0.011 148.71 0.001 9.00

SEA SALT2 0.077 132.31 0.284 91.95 0.107 362.54 0.009 690.37

SEA SALT3 0.036 95.69 0.137 61.89 0.047 307.40 0.004 1261.94

SEA SALT4 0.0001 220.35 0.0002 122.56 0.00003 291.73 0.000002 7656.47

sulf −0.056 −5.60 −1.087 −23.37 0.405 48.55 0.073 41.89

For all of the aerosol species BC, OC, dust (all sizes), sea salt (all sizes), and sulfates
(sulf), we subtracted area average concentration over Uttarakhand (~29–31◦ N, ~78–81◦ E)
on the event dates (16 or 17) to the nonprecipitating dates (15, 18, 19 and 20) at different
pressure levels (column, 850 hPa, 500 hPa, and 300 hPa).

Change in aerosol concentration (∆X) = area average concentration (non-precipitating days) − area average
concentration (event day)

(1)
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Most of the bulk aerosol species BC, OC, dust, and sea salt show elevated concentration
at 850 hPa and above, especially at the higher elevation of 500 hPa. DUST5 decreases while
Sea Salt4 and Sea Salt1 increase insignificantly on the 16 and 17 at all elevations. The near-
surface (850 hPa) concentration of DUST4, BC, and OC decreases during heavy precipitation
events. At 500 hPa and above, BC, OC, DUST2, 3, 4, and SEA SALT2, 3 increase significantly
during the precipitation event days. Sulfate concentration was less in a column and was
near the surface, whereas at 500 hPa and above, the concentration was significantly higher
during the 16–17 (Table 2). Similar results are observed with the 4 km resolution simulation
(Supporting Table S3) with a lower ratio of concentration in the vertical layers compared
to the 25 km resolution. The previous study on WRF-Chem sensitivity on horizontal
resolution and nesting suggests that the boundary layer shows more sensitivity to 1-way
nesting than 2-way nesting at a finer resolution [48], whereas the boundary layer plays an
important role in atmospheric aerosols and chemistry [49]. A multimodel study suggests
that the model performance to simulate aerosols does not depend on resolution, but the
basic difference comes with the treatment of aerosols in a model such as that for removal
and deposition parameterization [50].

Further analysis at 500 hPa and above suggest that bulk aerosols follow the fast-
moving moisture content from the 15 of June from the eastern coast of India to the Hi-
malayan region until 18 June. The concentration of aerosols was much higher than the
stable atmospheric conditions in that region. The study suggests the significant uplifting of
aerosols in the mid-troposphere during deep convective events as suggested in previous
studies [33,49]. Figure S3 shows a lesser concentration of near-surface BC (850 hPa) during
the event period, whereas Figures S4 and S5 shows a significant amount of BC over 500 hPa
and 300 hPa in the active convective area during the event. Other aerosols also show similar
features in the free troposphere. This indicates the strong vertical transport of aerosols
during strong convective events over the effective region, which is evident in the BC flow
analysis in Figures S6 and S7. That figure shows a strong updraft of BC from the plains
towards to the Himalayan region during the event day, with convection anthropogenic
and natural aerosol transport significantly above 500 hPa and above, which are further
transported through synoptic monsoon motion in the atmosphere.

Aerosols act as IN and CCN, which are responsible for creating clouds and precip-
itation [12,13]. Model analysis of average columnar rain number concentration (RNC)
and ice number concentration (ICC) over Kedarnath (Figure 6e,f), reveals the elevated
concentration of RNC during 16 and 17 June, while ICC shows an elevated concentration
on the 17 and a smaller peak on the 19. While there is a significant difference between
the model simulations at 25 km and 4 km resolution, there is a minimal difference when
taking chemistry (i.e., aerosols) into account. On the 16, all of the models simulated a good
number of RNC, whereas ICC was not significantly high over Kedarnath. Higher RNC
delays the precipitation time, which leads to higher and deeper clouds [18], as observed by
the satellites and the model over Kedarnath on the 16 (Figure 5a,b).

On 17 June, above 500 hPa, a significantly high amount of ICC was present (Figure not
shown), which justifies a cooler cloud top, as observed by satellites over Kedarnath. RNC,
ICC (Figure 6e,f), and precipitation (Figure 3) patterns suggest two events. The first event
(peak) before the 17, which was had been continuously increasing since the evening of the
15 to 16 that resulted in a downpour late at night on the 16–17. The second event with the
RNC and ICC peak values that were present during the daytime of 17 led to precipitation
in the late evening but with a lesser quantity. Our results suggest that a high amount of ICC
held the precipitation within the cloud, which then moved with the synoptic circulation
towards western Nepal on the 18, resulting in a heavy downpour there.

Analysis of the extinction coefficient profile from WC25 and WRF25 show the higher dif-
ference in extinction coefficient between the heights 2 to 8 km (calculated from Equation (1)),
whereas RNC significantly increases in presence of aerosols at 4–6 km on both days
over Kedarnath. During both days, the ICC decreases significantly in the presence of
aerosols. Supporting Figures S8 and S9 shows decreased ICC above 6 km during the
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16 and 17. The satellites were not able to capture aerosol optical depth (AOD) dur-
ing event day, even near the area near the AERONET station (over Kanpur) does not
have data; therefore, AOD comparison with observation was not possible. On the 17,
CALIPSO shows 3% data availability, and data loss was reported to be due to a ground sta-
tion anomaly (https://www-calipso.larc.nasa.gov/products/lidar/browse_images/data_
event_log.php?s=production&v=V3-30&browse_date=2013-06-17, accessed on 1 April 2021),
whereas the 16 and 18 passes were far from the area of interest.

Analysis suggests the presence of anthropogenic and natural aerosols (BC, OC, dust,
sulfate, and sea salt) in the free troposphere above 2 km leads to an increase in RNC,
which results in more precipitation over the Kedarnath region. The result shows a higher
concentration of aerosols at elevated layers negatively affected the ICC numbers, which
resulted in more precipitation in the region. Aerosols over the simulation domain affected
the clouds and precipitation in either way.

We also considered evaluating the parameters that are important to indicate severe
weather such as convective available potential energy (CAPE), convective inhibition energy
(CIN), vorticity, and helicity [51,52]. CAPE was simulated high (≥1000 J/kg) over the
Bay of Bengal, the Arabian Sea, and many parts of the Indian subcontinent in WC25,
whereas the Kedarnath region does not show high CAPE values during the event days.
CIN was very less (≤50 J/kg) over most of the area except over Pakistan and northern
India (≥100 J/kg) during event days. Strong (≥12 × 10−5/s) vorticity is simulated in
models along the low-pressure zone (Figure 3). Strong helicity (≥400 m2/s2) was also
simulated over the Arabian Sea and Uttarakhand. The presence of aerosols affected the
radiation over the region, which resulted in changes to the above parameters. At 25 km
and 4 km, the presence of aerosols shows (≥±300 J/kg) changes in CAPE, (≥±50 J/kg)
CIN, (≥±100 m2/s2) helicity, and (≥±6 × 10−5/s) vorticity values over many parts in the
simulation domain. Over Uttarakhand, the presence of aerosols increased ~200 J/kg in
CAPE, ~20 J/kg in CIN, up to 100 m2/s2 in helicity, and above 4 × 10−5/s in vorticity.

In the 4 km simulation, the aerosol effect show changes up to ±200 J/kg in the
CAPE value during the event day in the simulation domain. (Figure 7a), CIN values are
significantly affected by the presence of aerosols, whereas similar results are simulated
at the 25 km resolution simulation (Figure S10a,b). Helicity and vorticity show strong
variation in the presence of aerosols over Kedarnath and nearby areas at convection-
permitting scale (Figure 7c,d). Helicity and vorticity changes are not very evident at a
25 km resolution (Figure S10c,d). At the convection-permitting scale, variation in the
parameters affected by orographic and thermodynamic are more evident than at low-
resolution simulations. WRF-Chem based previous studies suggest that the presence of
aerosols in the mid-troposphere shows a significant effect on the surrounding environment
at regional and local levels, such as changes in near-surface temperature, wind speed,
humidity, boundary layer, etc. [49,53].

Results indicate that the presence of aerosols does not only affect cloud and precipi-
tation by acting as CCN and IN but also affects the severe weather indices; CAPE, CIN,
helicity, and vorticity show significant changes in presence of aerosols. Over the Uttarak-
hand and near to Himalayan foothills, CAPE, CIN, helicity, and vorticity significantly
increases in the presence of aerosols.
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4. Summary and Conclusions

Long-term (1998–2014) analysis of precipitation from TRMM over Kedarnath sug-
gested that heavy precipitation during June over Kedarnath is an unusual event. Analysis
shows that June of 2013 experienced the highest precipitation compared to of the month of
June in any other year from 1998–2014; otherwise, the year 2013 was recorded as a normal
monsoon year. We used six sets of model simulations at 25 km and 4 km resolution (three
each), and further analysis was conducted using four sets of simulations (two from each
resolution). We dropped two sets of simulations (one from each resolution) since chemistry
without aerosols (MOZART) and without chemistry showed no significant difference in
the precipitation amount at both resolutions.

All of the model simulations captured the TRMM observed spatial coverage of pre-
cipitation with some differences. The presence of aerosols shows a significant increase
in precipitation over Kedarnath and nearby areas, whereas the suppressed precipitation
over the central and eastern part of India was observed at a 25 km resolution. Aerosols at
the convection-permitting scale (4 km resolution) show similar results with more regional
variation and differences in precipitation changes due to the presence of aerosols. In situ
observations and TRMM data over many stations near Kedarnath show that the model
captures the temporal trend and strength of precipitation with some differences. The model
captured the consistent movement of the low-pressure system from central India on the
16 to Kedarnath on the 17 and further towards western Nepal on the 18, as reported in the
literature, while it dissipated on the 19. Temperature, pressure, and humidity are also well
replicated by the model. Cloud properties such as cloud fraction, cloud top temperature,
and pressure are also well simulated by the model, as observed from the satellites.

Model simulation shows deep clouds (above 500 hPa) over Kedarnath and some
other parts over the ocean on the 16 and 17. Model analysis suggests the presence of
aerosols above 500 hPa, which may act as CCN/IC. The high amount of RNC and ICC
over Kedarnath on the 16 and 17 suggests the role of aerosols in heavy precipitation
events over Kedarnath. Some of the stations showed a 100 mm/day increase in the rain
due to the presence of aerosols, most of the stations showed ~ ± 40 mm/day difference.
Average profile analysis shows an unusual presence of aerosols over Kedarnath and
significant changes in the rain and ice concentration number in the presence of aerosols.
The effect of aerosols on precipitation was not only limited to CCN and IN in clouds; aerosol–
radiation feedback causes significant alterations in precipitation. Analysis of CAPE, CIN,
vorticity, and helicity shows positive radiation feedback in the region where precipitation
was high and a negative effect in the area where precipitation was lower (Figure 1d).
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Himalayan orographic lifting, a fast-moving monsoon due to low pressure generated from
15–18 June 2013, active westerlies, and aerosol effect on cloud formation due to direct
CCN/IN and an indirect radiative effect made this event so devastating. Further detailed
analysis of such a system is necessary to understand the vertical transport of aerosols and
its effect on cloud properties and convection dynamics in the Himalayan region.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos12091092/s1, Figure S1: (a) Domain of simulation at 25 km resolution, domain of
simulation at 4 km resolution (red box), and Kedarnath (black dot), (b) zoom-in for the location of
station 1. Kedarnath, 2. Champawat, 3. Pipalkoti, 4. Pandukeshwar, and 5. Lambgarh. Figure S2:
Rain rate over Uttarakhand, nearby Kedarnath, and over Kedarnath average for the annual, monsoon,
and June precipitation. Figure S3: BC1 concentration at 850 hPa from 14–19 June 2013. Figure S4:
BC1 concentration at 500 hPa from 14–19 June 2013. Figure S5: BC1 concentration at 300 hPa from
14–19 June 2013. Figure S6: BC1 volume flow on 17 June 2013, 25 km resolution (gif). Figure S7: BC1
volume flow on 17 June 2013, 4 km resolution (gif). Figure S8: Difference of extinction coefficient,
rain, and ice concentration profile over Kedarnath during (a) 16 June and (b) 17 June from the WC25
and WRF25 simulations. Figure S9: Difference of extinction coefficient, rain, and ice concentration
profiles over Kedarnath during (a) 16 June and (b) 17 June from WC4 and WRF4 simulations (WC4-
WRF4). Figure S10: Effect of aerosols on (a) CAPE, (b) CIN, (c) helicity, and (d) vorticity at 25 km
resolution (WC25-WRF25) during 17 June. Table S1: Average rain rate (mm/hr) over Uttarakhand,
Kedarnath, and nearby area for the period of 1998–2014 from TRMM. Table S2: R2 of precipitation
from different simulation with observed precipitation from in situ and satellite observations. Table S3:
∆concentration for different aerosols and ∆ in absolute percentages in model column and at 850 hPa,
500 hPa, and 300 hPa for 16 and 17 June 2013 over Kedarnath at 4 km resolution.
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Abstract: In the event of an accidental or intentional hazardous material release in the atmosphere,
researchers often run physics-based atmospheric transport and dispersion models to predict the
extent and variation of the contaminant spread. These predictions are imperfect due to propagated
uncertainty from atmospheric model physics (or parameterizations) and weather data initial condi-
tions. Ensembles of simulations can be used to estimate uncertainty, but running large ensembles
is often very time consuming and resource intensive, even using large supercomputers. In this
paper, we present a machine-learning-based method which can be used to quickly emulate spatial
deposition patterns from a multi-physics ensemble of dispersion simulations. We use a hybrid linear
and logistic regression method that can predict deposition in more than 100,000 grid cells with as few
as fifty training examples. Logistic regression provides probabilistic predictions of the presence or
absence of hazardous materials, while linear regression predicts the quantity of hazardous materials.
The coefficients of the linear regressions also open avenues of exploration regarding interpretability—
the presented model can be used to find which physics schemes are most important over different
spatial areas. A single regression prediction is on the order of 10,000 times faster than running a
weather and dispersion simulation. However, considering the number of weather and dispersion
simulations needed to train the regressions, the speed-up achieved when considering the whole
ensemble is about 24 times. Ultimately, this work will allow atmospheric researchers to produce
potential contamination scenarios with uncertainty estimates faster than previously possible, aiding
public servants and first responders.

Keywords: deposition; machine learning; hazardous release; WRF; FLEXPART; prediction

1. Introduction

From localized air-pollution caused by fireworks [1], to seasonal changes in pollution
caused by cars [2], to planetary-scale dust transport from earth’s deserts [3], particulate and
gaseous hazardous matter can be dispersed throughout the environment from numerous
natural and anthropogenic processes. One event which is important to public health and
national security is the release of hazardous materials from nuclear weapons explosions,
nuclear reactor breaches (such as Chernobyl or Fukushima), chemical spills, industrial
accidents, and other toxic releases. These types of incidents happen suddenly and without
warning, creating a plume of toxic material in the earth’s atmosphere or ocean which can
threaten the well-being of living organisms and environments.

In such situations, it is crucial that politicians, policy makers, and first responders
have adequate knowledge about how the toxic plume will disperse and deposit throughout
the environment. This can be used to determine evacuation zones and how resources are
deployed to minimize the loss of public health. For example, during the 2011 Fukushima
Daiichi disaster, the United States Department of Energy, the United States Environmental
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Protection Agency, and other United States national agencies worked together to determine
the effect of the radioactive release on international aviation routes, global food supply,
and other crucial aspects of society [4].

To predict how a toxic plume disperses and deposits throughout the environment,
scientists typically run computer simulations. These dispersion simulations solve physical
and chemical equations to produce evolving concentration and deposition fields, but many
of the processes represented in the models are uncertain or not resolved at the scales of
interest. These processes are represented by empirical or semi-empirical parameterizations,
and no single set of parameterizations always performs best for every scenario. Picking
and choosing different sets of parameterizations provides an estimate of uncertainty and is
a necessary component of the prediction process. In addition, many detailed transport and
dispersion models that are currently in use are very computationally expensive, sometimes
requiring several hours to complete a single simulation. Since time is of the essence during
emergencies, these long run-times can be detrimental to first-responder efforts.

Therefore, in the event of a toxic environmental release, the scientists making pre-
dictions with limited computing resources often face a dilemma: using a detailed model,
they can make a small number of predictions quickly but have poor knowledge of the
uncertainty of those predictions, or they can make a large number of predictions slowly
but have better knowledge of the uncertainty of the predictions.

A machine learning or statistical method that emulates a transport and dispersion
model provides the opportunity to minimize this uncertainty versus time dilemma. To do
this, the scientists would vary the inputs to the traditional weather/dispersion model to
create a small number of predictions. They would then train a statistical model to produce
dispersion predictions given the original input values. Finally, the statistical model could
be used to create predictions for the set of inputs that were not originally run with the
traditional dispersion model. That is to say, the statistical model is an emulator of the
original dispersion model.

In this paper, we introduce a statistical method that rapidly predicts spatial deposition
of radioactive materials over a wide area. The deposition predictions we are emulating
were originally produced using material releases in the FLEXible PARTicle dispersion
model (FLEXPART) [5] and meteorological fields generated from the Weather Research
and Forecasting (WRF) [6] model. We created two FLEXPART-WRF ensembles for training
and testing—one simulating a continuous surface release from a hypothetical industrial
accident and one simulating an instantaneous elevated cloud from a hypothetical nuclear
detonation. Each ensemble contained 1196 members with different weather conditions.
(Each ensemble initially contained 1200 runs, but four runs did not complete due to
numerical stability issues). To create the ensembles, WRF physics parameterizations were
varied (i.e., a multi-physics ensemble) and used as inputs for our statistical model. Multi-
physics WRF ensembles are often used to estimate weather model uncertainty, and our
statistical method is able to capture this uncertainty very efficiently without having to run
the full ensemble. We use a hybrid statistical model consisting of a two-dimensional grid
of linear and logistic regression models for predicting spatial deposition.

The paper is organized as follows: Section 2 reviews the literature and the tools used.
Section 3 describes the details of the dataset. Section 4 describes the statistical algorithm
that is used as the emulator, and Section 5 presents the performance of the algorithm.
Finally, Sections 6 and 7 discuss future work and summarize the current work, respectively.

2. Background
2.1. FLEXPART-WRF

There are many different methods that can be used to predict how an airborne con-
taminant disperses throughout the atmosphere, ranging from simple box models and
Gaussian plumes to more sophisticated Lagrangian and Eulerian transport models [7].
Gaussian plume models are the simplest and the fastest to run but are often limited to
very specific, idealized scenarios. Lagrangian and Eulerian models are slower but contain
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representations of physical and chemical processes typically needed to simulate real-world
releases. One key distinction between Gaussian plume models and Lagrangian/Eulerian
models is that Gaussian plume models do not incorporate spatially and temporally varying
meteorological fields.

We use the FLEXPART Lagrangian dispersion model for calculating the dispersion of
airborne contaminants and estimate the effects of weather uncertainty in the dispersion cal-
culations. To transport materials through the atmosphere and deposit them on the surface,
FLEXPART requires spatially and temporally varying wind and precipitation data, which
can come from archived meteorological forecast/analysis/re-analysis fields or weather
models. For the work presented here, we use a specific version of FLEXPART designed to
work directly with WRF output [5] (FLEXPART-WRF version 3.3). Although FLEXPART
also has several internal physics options, we did not vary these for this work. A detailed
description of our FLEXPART setup is provided in Section 3.

Several researchers have investigated the uncertainty of atmospheric dispersion mod-
els without incorporating machine learning. Leadbetter et al. [8] classify dispersion model
error into three categories: source term uncertainty, meteorological uncertainty (which we
study here), and intrinsic dispersion model uncertainty. They proceed to rank the uncertain-
ties and find that wind direction and wind speed are important. Korsakissok et al. [9] ran
multiple dispersion ensembles, some hypothetical and some realistic (e.g., the Fukushima
Release) and analyzed the uncertainty. Finally, Sørensen et al. [10] simulated a nuclear
power plant atmospheric release (similar to our surface release scenario) and presented a
methodology to quantitatively estimate the variability of the ensemble. All studies cited
the need for ensemble dispersion modeling. We focus specifically on uncertainty due to
meteorological modeling.

To calculate winds and estimate weather uncertainty, we use the Weather Research
and Forecasting model (WRF), a tool which is used to predict weather phenomena on scales
of hundreds of meters to thousands of kilometers. A detailed description of WRF is found
in Skamarock et al. [6]. WRF contains several physics options known as parameterizations
for simulating processes such as cumulus convection, boundary layer turbulence, and land
surface interactions. In our application, we estimate weather uncertainty by using a
multi-physics approach that varies these parameterizations and uses the output to drive
FLEXPART. A detailed description of the WRF setup is in Section 3. We specifically use
WRF code version 3.9 with the advanced research dynamical numerical core.

Several other researchers have investigated WRF multi-physics ensembles. For exam-
ple, researchers produced WRF multi-physics ensembles to investigate precipitation [11],
heatwaves [12,13], and climate [14,15]. In prior work, we have investigated WRF multi-
physics uncertainty to investigate the release from a nuclear power plant [16]. The impor-
tant thing to note is that many of these ensembles have sizes of a few dozen members to a
few hundred members. Our ensemble, having 1200 members, is feasible but significantly
larger than average for a WRF multi-physics ensemble.

Machine learning and statistical methods have frequently been used to emulate com-
plicated atmospheric models. Much of the prior emulation work focused on the potential
speed-up offered, with applications to uncertainty studies, though some discussed ways
to improve sub-grid scale parameterizations. Jensen et al. [17] and Lucas et al. [16] used
machine learning algorithms to accelerate probabilistic inverse modeling studies of at-
mospheric sources. Watson [18] demonstrated the use of machine learning to improve
long term climate statistics. Calbó et al. [19], Mayer et al. [20], and Beddows et al. [21]
used polynomial chaos expansions and Gaussian processes to emulate air quality models.
Wang et al. [22] used a neural network to emulate the planetary boundary layer param-
eterization of WRF. Krasnopolsky et al. [23] and Pal et al. [24] demonstrated the use of
machine learning to emulate radiation parameterizations for global atmospheric models.
Lucas and Prinn [25], Kelp et al. [26], and Ivatt and Evans [27] used statistical and machine
learning approaches to emulate atmospheric chemistry and transport models. To our
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best knowledge, this paper describes the first time a machine learning method is used to
emulate full FLEXPART-WRF spatial deposition maps.

2.2. Linear and Logistic Regression

The two main statistical methods we used were linear regression and logistic regres-
sion. Since these simple methods are fast, easy to train, and readily interpretable, we used
them over other more complex methods that we also investigated. Since linear regression
and logistic regression are basic statistical tools, we will only present a brief overview
here. More information about both methods can be found in many statistics and machine
learning textbooks, such as Murphy [28] or Gelman and Hill [29]. Linear regression is
a type of regression used to fit data that have a linear relationship. It can be written as
y = βTx, where y is the scalar output of the regression, β is an n-dimensional coefficient
vector, T indicates the transpose operation, and x is the n-dimensional predictor vector.
The first or last element in x is typically just set to 1 and is there so the fitted hyperplane
has an intercept instead of being forced to pass through the origin. The “linear” in linear
regression only applies to the coefficient vector—the elements of the input vector can be
transformed as desired. Finally, linear regression without regularization is trained in a
non-iterative fashion by minimizing the squared residuals. This contrasts with many other
machine learning algorithms which are trained in an iterative fashion.

Logistic regression is a simple classification method that can be used to classify binary
variables. It can be written as p = 1

1+e−βTx
. Here, p is the probability that the target class has

a value of 1, β is an n-dimensional coefficient vector, T indicates the transpose operation,
and x is the n-dimensional predictor vector. The function f = 1

1+e−x is also known as the
logistic function or sigmoid function. As with linear regression, logistic regression can have
an intercept term. Unlike linear regression, logistic regression must be trained iteratively,
even if regularization is not used.

3. Dataset

We trained our statistical model on two sets of FLEXPART dispersion simulations.
Both sets release the radioactive particulate material cesium-137 (Cs-137), which has a
half-life of 30.17 years, is highly soluble, and is subject to removal from the atmosphere by
rainout and wet and dry deposition. Both sets of FLEXPART simulations use 1196 different
weather conditions generated by a WRF multi-physics ensemble, as described below.
The first set contains the results for a hypothetical continuous release of Cs-137 from the
surface of the earth at an industrial facility representing a large-scale radiological accident.
This set of simulations is referred to as the “surface release” case or the “surface” case.
The second set contains simulations of a hypothetical instantaneous release of Cs-137 in
the form of a mushroom cloud similar to how contaminants are created from a nuclear
detonation. This set of simulations is referred to here as the “elevated release” case or
“elevated” case. Any mathematical notation from this point forward can be generalized to
either case unless otherwise specified.

Within a case, each ensemble member k consists of an 1× 16 input vector xk and an
M×N target deposition map Yk, where M and N are the number of grid boxes in latitudinal
and longitudinal directions, respectively. (The dimensionality of the input vector xk will be
explained later in this section). The vector xk contains the physics parameterizations used
by WRF and is the input to our statistical model. The deposition map Yk is the output of
FLEXPART-WRF given xk and is used as the target data for training our statistical model.
The input vectors are identical between the surface release case and the elevated release
case because they are based on the same WRF ensemble, i.e., xk

Surface = xk
Elevated.

The FLEXPART settings remain constant for every ensemble member within a given
case. Consequently, they are not included as inputs to our statistical model. Each FLEX-
PART simulation was set to begin at 12:00Z on 24 April 2018 and end 48 h later. An adaptive
timestep was used for the sampling rate of the output, but the nominal value was 180 s.
Subgrid terrain effects and turbulence were included, and land-use data were taken from
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WRF. Two million Lagrangian particles were released, and the total mass for the surface
and elevated cases was 1 kg and 0.28 g, respectively. We used the default precipitation
scavenging coefficients for Cs-137. Table 1 shows the Cs-137 particle size distributions and
masses as a function of altitude for the elevated release case, as further described in Nor-
ment [30]. Further information about the release scenarios can be found in Lucas et al. [31]
and Lucas et al. [32].

While the FLEXPART settings of each ensemble member remain constant within the
case, the set of physics options in WRF is different for every ensemble member. We vary the
following five categories of physics parameterizations within WRF: planetary boundary
layer physics (PBL), land surface model (LSM), cumulus physics (CU), microphysics (MP),
and radiation (RA). Any remaining parameterizations or options remain fixed. To run WRF,
one parameterization must be chosen from each physics category. While each category has
several different parameterization options available, yielding well over 100,000 possible
combinations of parameterizations, we selected a subset of 1200 possibilities expected to
simulate the weather, as determined by expert judgment. The ensemble members were
roughly chosen to maximize diversity in physics parameterizations.

In a real-world scenario, these 1200 possibilities would be forecasts, i.e., plausible
scenarios for the time evolution of the weather and plumes over a two-day period given
initial weather conditions that are known at the beginning of the forecast. Therefore, we
assume that each ensemble member is equally likely and do not attempt to “prune" the
ensemble while it is running because it is a short-term forecast. The 1200-member ensemble
therefore provides an estimate of weather model uncertainty in forecasting the deposition
from the hypothetical Cs-137 release events. Because we used data from 2018, we were
able to verify the meteorological forecasts. In work not presented here, we ran simulations
using data assimilation to produce analysis-observational fields. The ensemble simulations
provide a reasonable spread around the nudged fields [32], which gives us confidence
that our machine learning model can perform in realistic scenarios. Furthermore, for our
short-term forecasts of two days, the WRF parameterization uncertainty is expected to
dominate the variability. Very short term forecasts (e.g., 1 h) would not have a lot of
variability, while longer forecasts (e.g., 7 days) have errors dominated by initial conditions,
and the machine learning task would be much more difficult.

Ultimately, we selected five parameterizations for PBL, four for LSM, five for CU,
four for MP, and three for RA. The specific parameterizations are shown in Table 2. This
results in 5× 4× 5× 4× 3 = 1200 different combinations of the WRF parameterizations.
However, 4 of the 1200 combinations caused numerical issues in WRF, which failed to
run to completion, so there are only 1196 members in the final multi-physics weather
dataset. The 1196 input vectors xk are vertically concatenated to create a 1196× 16 input
matrix X. The 1196 output matrices Yk are concatenated in the third dimension to make the
M× N × 1196 output matrix Y. The ordering of the parameterization combinations in the
ensemble is shown in Figure 1.

The individual physics parameterizations are nominal categorical variables repre-
sented as numbers in WRF. In other words, the parameterizations are not ordinal—PBL
parameterization 2, which represents the MYJ scheme, is not greater than PBL parameteri-
zation 1, which represents the YSU scheme. To prevent our statistical model from treating
a higher numbered parameterization differently than a lower numbered parameterization,
we transformed the input WRF parameterization vector using one-hot encoding [28]. This
turns the five categorical variables for the parameterizations into sixteen boolean variables,
which is why xk has shape 1× 16. For example, the LSM parameterization has four options:
LSM 1, LSM 2, LSM 3, and LSM 7. When one-hot encoding, LSM 1 is represented by the
vector [0, 0, 0], LSM 2 is represented by the vector [1, 0, 0], LSM 3 is represented by the vector
[0, 1, 0], and LSM 7 is represented by the vector [0, 0, 1]. The vectors for each parametrization
are concatenated together. (For example, the ensemble member run with PBL 2, LSM 1, CU
5, MP 4, and RA 4 has a one-hot encoded input vector [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1]).
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The output matrix Y consists of 1196 simulations produced by FLEXPART-WRF . Each
ensemble member Yk is an M× N map of the surface deposition of Cs-137 from either the
surface release or the elevated release. For the surface release case, each map contains a total
of 160,000 grid cells, with 400 cells in the latitudinal direction and 400 cells in longitudinal
direction using a spatial resolution of about 1.7 km per cell. For the elevated release case,
each map contains 600 grid cells by 600 grid cells with a resolution of about 1.2 km. Both
deposition domains range from +32.3◦ to +38.5◦ in the latitudinal direction and −77.3◦ to
−84.6◦ in the longitudinal direction. The height of the surface release domain was 3000 m
resolved using 11 vertical layers, and the height of the elevated release domain was 4500 m
resolved using 14 layers. The latitude and longitude of the location of the surface release
were +35.4325◦ and −80.9483◦, respectively. The latitude and longitude of the location of
the elevated release were +35.2260◦ and −80.8486◦, respectively. This domain is centered
on the southwest corner of the US state North Carolina and has many different land types,
including the Appalachian Mountains and the Atlantic Ocean.

The surface deposition output of FLEXPART-WRF accounts for both wet and dry
removal of Cs-137 from the atmosphere and is reported in units of Bq/m2 using a specific
activity for Cs-137 of 3.215 Bq/nanogram. We also filtered out data less than 0.01 Bq/m2 in
our analysis, as deposition values below this level are comparable to background levels
from global fallout [33] and do not pose much risk to public health.

All FLEXPART-WRF runs were completed on Lawrence Livermore National Labo-
ratory’s Quartz supercomputer which has 36 compute cores, 128 GB of RAM per node,
and 3018 nodes total. A single WRF run costs about 150 core-hours, and a single FLEX-
PART run costs about 20 core-hours. The total ensemble cost was about 180,000 core-hours.
The speedup between the full ensemble and the machine learning training set cost depends
on the training size, which is discussed in Section 5. For a training size of 50, the total cost
would be 7500 core-hours, which is a speedup of 24 times (or a savings of 172,500 core-
hours). Figures 2 and 3 show selected examples of ensemble members from the surface case
and elevated case, respectively. The members were chosen to highlight the diversity of the
ensemble. The examples in the figures used PBL, LSM, CU, MP, and RA parameterization
combinations (1, 1, 2, 3, 4) for member 25, (2, 1, 1, 3, 4) for member 245, (2, 3, 5, 3, 4) for
member 413, and (7, 7, 10, 3, 4) for member 1157.

Figure 1. WRF parameterizations were varied as illustrated to create the multi-physics ensemble by
iterating through the schemes in the order PBL, LSM, CU, MP, and RA.
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Table 1. Profile for elevated release.

Altitude (m) Mean Diameter (µm) Geometric Standard Deviation Cs-137 Mass (mg)

0 910 1.9 20.7
250 400 1.2 2.45
500 350 1.2 3.24
750 300 1.2 4.05
1000 270 1.2 5.17
1250 220 1.3 6.25
1500 170 1.4 9.67
1750 110 1.6 17.7
2000 52 2.1 51.5
2250 54 2.5 36.9
2500 48 2.4 36.6
2750 40 2.3 34.4
3000 32 2.0 26.1
3250 19 2.0 22.6

Table 2. WRF parameterizations used to create dataset, referred to here by their standard option number (between
parentheses), name, and corresponding citation.

PBL LSM CU MP RA

(1) YSU [34] (1) Thermal Diffusion [35] (1) Kain-Fritsch [36] (2) Lin (Purdue) [37] (1) RRTM [38]
(2) MYJ [39] (2) Noah [40] (2) Betts-Miller-Janjic [39] (3) WSM3 [41] (3) CAM [42]
(4) QNSE [43] (3) RUC [44] (3) Grell-Devenyi [45] (4) WSM5 [41] (4) RRTMG [46]
(5) MYNN2 [47] (7) Pleim-Xu [48] (5) Grell-3 [49] (5) Eta (Ferrier) [50]
(7) ACM2 [51] (10) CuP [52]

Figure 2. Examples of different deposition maps produced by FLEXPART-WRF for the surface release
case. All values below 0.01 Bq/m2 were removed. The WRF parameterizations used to create each
subplot can be found in Section 3.
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Figure 3. Examples of different deposition maps produced by FLEXPART-WRF for the elevated
release case. All values below 0.01 Bq/m2 were removed. The WRF parameterizations used to create
each subplot can be found in Section 3.

4. Spatial Prediction Algorithm

The algorithm we use to emulate physics package changes in WRF is straightforward.
A conceptual schematic can be seen in Figure 4. We start by creating an M× N grid Ŷk
to represent the prediction of a given FLEXPART-WRF map Yk. Each grid cell Ŷi,j,k is
the combined output of an independent linear regression and logistic regression model.
The inputs to every linear and logistic regression model in the grid are the same: a 1× 16
vector xk of one-hot-encoded WRF physics categorical variables, as described in Section 3.
For each grid cell, the associated logistic regression model determines the probability
that the location will experience surface contamination from the hypothetical release
event. If the probability at that location is greater than a pre-determined threshold value,
the corresponding linear regression model determines the magnitude of the deposition.
Mathematically, the value of a given grid cell Ŷi,j,k is given by Equations (1) and (2). The
α and β terms represent the vector of regression coefficients for the logistic and linear
regression models, respectively. The coefficients in Equation (2) are exponentiated because
the linear regression is trained on the logarithm of the deposition. This linearizes the
deposition values which allows the regression model to be fit; however, the logarithm is
also useful for analyzing the data in general since the deposition values span many orders
of magnitude.

Pi,j,k =
1

1 + e−αT
i,jxk

(1)

Ŷi,j,k =

{
0 if Pi,j ≤ pthreshold

eβT
i,jxk if Pi,j > pthreshold

(2)

The full M× N× 1196 dataset Y can be split into an M× N× n training set YTrain and
an M× N × (1196− n) testing set YTest. The linear regression models are trained on the
logarithm of the deposition values, while the logistic regression models are trained on a
binary indicator determining whether a grid cell has deposition or not.
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We implemented our model in Python 3 using Numpy [53]. We used the linear
regression and the logistic regression implementations from Scikit-Learn [54]. The logistic
regression implementation in Scikit-Learn was run with the “liblinear“ solver and L2
regularization with λ = 1.0. L2 regularization is necessary to obtain accurate results and
ensure convergence. With 50 training examples, training regression models for every grid
cell in the domain took approximately 1–1.5 min on a modern desktop computer. Making
predictions for 1146 full maps took 5–6 min on the same computer, but that was achieved
by re-implementing the Scikit-Learn “predict” functions using the Python just-in-time
compiler Numba [55]. At approximately 315 ms per prediction on one core, the machine
learning model offers an approximately two million times speedup for a single run. Some
researchers have found similar speedups using ML on scientific codes [56]. Large scale
experiments where the training and testing cycles had to occur thousands of times (e.g.,
determining training size convergence curves) were completed on Lawrence Livermore
National Laboratory’s Quartz Supercomputer and could take up to a few hours.

Figure 4. Conceptual diagram of the training set and model. Each deposition map produced by
FLEXPART-WRF is a grid of size M× N. There are n maps in the training set. A single grid cell of
a single deposition map is represented by Yi,j,k and can be approximated by our machine learning
model output, Ŷi,j,k. Ŷi,j,k is produced by the output of a single linear regression model and a single
logistic regression model which is trained on the n data values for grid cell i, j. Further details of the
model can be found in Section 4.

5. Results and Analysis

To test the effectiveness of our statistical model, we ran a suite of tests and derived
performance statistics from the results. For these tests, we trained and evaluated our
statistical model for eight different training sizes, with 100 runs with varying random
seeds for each training size. The eight different training sizes we used were n = 25,
n = 50, n = 75, n = 100, n = 250, n = 500, n = 750, and n = 1000 ensemble members.
This corresponds to 2.09%, 4.18%, 6.27%, 8.36%, 20.90%, 41.81%, 62.71%, and 83.61% of
our 1196-member ensemble dataset, respectively. Varying the random seed allowed each
of the 100 runs for a given training size to have different members in the training set,
which allowed us to see how much performance varied by training set member selection.
The members of the test set for a given training size and random seed can be used in the
training set for a different random seed. In other words, for a given training size and
random seed, we had a training set and a testing set, but looking at all the random seeds
for a given training size together was similar to k-fold cross validation. Since we used all
1196 members for this process, we did not have any truly held out test set that was not part
of the 1196-member ensemble.

Figures that do not show training size variability (Figures 5–7) show the results from
a 50-member training set with the same fixed random seed. The number 50 is somewhat
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arbitrary but shows the minimum amount of training examples that produces accurate
predictions. At 50 training examples, the predictions are qualitatively good, and one starts
to see significant overlap between the training and testing performance metric distributions.
Figures 8–10 all show results from the cross-validation tests.

The following subsections summarize the statistical and numerical performance of the
algorithm. Some subsections present summary statistics, while some subsections present
individual member predictions. In subsections where individual predictions are present,
the training size is also presented.

5.1. Decision Threshold

Before showing summary statistics, it is important to understand how the output of
our model is a probabilistic prediction. Figures 5 and 6 both have six subplots. The top left
plot shows the true output by FLEXPART-WRF for a selected ensemble member. The top
middle plot shows the probability map produced by the grid of logistic regression models.
The color at each pixel represents the probability that the pixel has a non-zero deposition
value. The areas of this subplot that are not colored are excluded from prediction because
the corresponding grid cells in the training data contain no deposition. The remaining
areas use the combination of logistic and linear regressions for making predictions.

The output of the logistic regression models is used in conjunction with a user-defined
decision threshold value to produce deposition predictions. As determined from the
training data, grid cells with probabilities greater than the threshold are predicted to
have deposition, while those less than it are not. If conservative estimates are desired,
a low threshold value can be used to include low probability, but still likely, areas of
contamination in the prediction. The top-right and entire bottom row of Figures 5 and 6
show the predictions at different decision thresholds. The decision threshold can also be
thought of as a probability cutoff value. The term “decision threshold” is synonymous
with “decision boundary”, which is referred to in the literature when classifying positive
and negative outcomes [28].

Figure 5. True FLEXPART-WRF output vs. predicted output at several decision threshold values
for the surface release ensemble member 0 with n = 50. The WRF parameterization choices for this
ensemble member were PBL 1, LSM 1, CU 1, MP 2, and RA 1. The top middle plot shows the original
decision threshold map.
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Figure 6. True FLEXPART-WRF output vs. predicted output at several decision threshold values for
the elevated release ensemble member 0 with n = 50. The WRF parameterization choices for this
ensemble member were PBL 1, LSM 1, CU 1, MP 2, and RA 1. The top middle plot shows the original
decision threshold map.

Through a qualitative assessment, we determined that a decision threshold of 0.5 ap-
pears to be optimal. With values larger than 0.5, the plume shape starts becoming distorted
and leaves important sections out. With values less than 0.5, noisy values at the edges of
the plume are included, which are typically not accurate. These noisy values occur in grid
cells where there are not many examples of deposition in the training data, and they are
eliminated as more examples are included when the training size increases (see Section 5.2).
These values can be seen in the bottom left subplot of Figure 5 on the northern edge of
the plume. Anomalously large prediction values skew the performance statistics and are
removed from the metrics if they exceed the maximum deposition value present in the
training examples.

5.2. Training Size Variability

As with all statistical methods, the size of the training set affects the model perfor-
mance. Figure 7 shows the plume prediction for ensemble member 296 as the training
size increases. The members of the training set at a given size are also all included in the
training set at the next largest size (i.e., the n = 50 training set is a proper subset of the
n = 75 training set). The decision threshold is set to 0.5 for each training size. It is evident
from the figure that as the training size increases, the deposition values and the plume
boundary become less noisy. A quantitative assessment of how the predictions change
with increasing training size is shown in Figures 8 and 9 for the surface case and elevated
case, respectively.

These two figures show different statistical measures for predicting the members of
training and testing sets as a function of training size. Because the selection of members is
random and can affect the prediction performance, the experiment is repeated 100 times
using different random seeds. Therefore, each “violin” in the plots displays the statisti-
cal variation stemming from member selection differences. For a given training size n,
the orange training distributions are estimated from n× 100 predictions, while the blue
test distributions are derived from (1196− n)× 100 predictions.

The following error metrics are used to assess the predictive performance of the
regression system. Two of the metrics target the logistic regressions (figure of merit in
space and accuracy), three are for the linear regressions (fraction within a factor of 5,
R, and fractional bias), and an aggregated metric (rank) is used to gauge the overall
performance. Many other metrics are available to judge regression and classification
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performance (e.g., mean squared error, F1), but we wanted to use metrics that were
commonly used in the atmospheric science community [57,58].

• Figure of Merit in Space (FMS): A spatial error metric which is defined as the inter-
section of the area of the predicted and actual plumes divided by the union of area
of the predicted and actual plumes [57]. Outside of atmospheric science this is also
known as the Jaccard index. This metric depends only on the absence or presence of
deposition, not the magnitude, and so directly assesses the logistic regressions. This
metric varies between 0 and 1, and values of 0.8 and above are generally considered
good for atmospheric models.

• Fraction within a Factor 5 (FAC5): The fraction of the predicted values within a factor
of 5 of the actual values is an effective metric for assessing the linear regressions. Gen-
eralized, this is defined as FACX = Fraction of data that satisfy 1

X ≤ Predicted Value
Actual Value ≤

X [57]. We present the FAC5 value for the intersection of the predicted and actual
plume locations. This metric can range from 0 to 1, with values above 0.85 generally
being considered good values for atmospheric models.

• Pearson’s R: Pearson’s correlation coefficient R measures the linear relationship be-
tween the predicted and actual magnitudes of deposition in a log space. We present
R calculated for the natural log of the intersection of the predicted and actual plume
locations. This metric can range from −1 to 1, with values further away from 0 being
good. (A Pearson’s R value of −1 implies perfect anticorrelation, which is still useful).

• Accuracy: This is the standard classification accuracy as explained in Swets [59]. It is
defined as the ratio of the sum of true positives and true negatives to all classifications
considered (i.e., TP+TN

TP+TN+FP+FN ). In a logistic regression case such as ours, a grid cell is
classified as positive or negative by whether it has deposition above or below a certain
threshold value. As described in Section 3, a deposition threshold of 0.01 Bq/m2 was
used. This metric can range from 0 to 1, with values closer to 1 being considered good.

• Fractional Bias (FB): Fractional bias is defined as FB = CO−CP
0.5(CO+CP)

, where CO and

CP are the mean observed values and mean predicted values, respectively. It is a
normalized indicator of model bias and essentially describes the difference in means
in terms of the average mean. This metric ranges from −2 to +2 and has an ideal
value of 0. In Figures 8 and 9, the fractional bias plot has a different shape from all the
others. One reason for this is the fractional bias range is different, and the ideal value
is in the center of the range. However, even if the absolute value of the fractional
bias was taken, the shape would still be different. In this case, as the training set
size increases, the fractional bias statistic converges to the inherent bias that exists
between our statistical model and FLEXPART-WRF , just as the others do. However,
in this case, it is shown that the training size that produces the least fractional bias
is n = 50. This does not mean that n = 50 is the best sample size overall, as other
metrics improve with increasing sample size. Like the other metrics, the fractional
bias training and test curves converge with increasing training size, though they seem
to converge much faster than the others.

• Rank: Described in Maurer et al. [58], the rank score is a metric that combines several
statistics into a single number used to assess the overall performance of an atmo-
spheric model. It is defined as Rank = R2 + (1− |FB|

2 ) + FAC5 + Accuracy. R2 is the
coefficient of determination, and FB is the fractional bias. Each term in the equation
ranges from 0 to 1, with 1 being best, which means the rank score ranges from 0 to 4,
with 4 being best. The models studied in Maurer et al. [58] had a mean rank score of
2.06, which means our model looks very good in comparison. However, the models
studied were time series models applied to individual stations, so they cannot be
directly compared to our model.

In both the surface and elevated release cases, increasing the training size leads to,
on average, an increase in performance on the test set and a decrease in performance on
the training set. Nevertheless, as expected, the training set performance is better than the
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testing set performance. There is no immediately distinguishable difference in performance
between the surface case and the elevated case; on some metrics the surface case performs
better and on others the elevated case performs better. However, the distribution of error
metrics for the elevated case is often bimodal, whereas the surface case is more unimodal.
This makes intuitive sense since the elevated case often has two separate deposition patterns
with different shapes, while the surface case typically only has one large pattern.

Figures 7 and 8 highlight one of the most important conclusions from this work. Very
few training samples are needed to make reasonable predictions. Even a prediction using
50 training samples, or 50/1196 = 4.18% of the total dataset, is capable of accurately
predicting deposition values in over 100,000 grid cells. Because there is significant overlap
between the training and test distributions in Figure 8, these predictions are also robust to
the 50 training samples selected from the full set.

Figure 7. Spatial prediction for ensemble member 296 as the training set size increases. The true
FLEXPART-WRF output is the top left subplot. The samples in the training set are randomly selected
and the pthreshold value is 0.5. Ensemble member 296 was in the test set for all training sizes. The WRF
parameterization choices for this ensemble member were PBL 2, LSM 1, CU 5, MP 4, and RA 4.
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Figure 8. Spread of error metrics for all members for several different training sizes and 100 different
random seeds for the surface release case. Training and test distributions are in blue and orange,
respectively. A description of the metrics is provided in Section 5.2. Within the distributions,
the dashed lines indicate the quartiles, the solid line is the mean, and the corresponding vertical bars
are the standard deviations.
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Figure 9. Same as Figure 8, except for the elevated release case.

5.3. Predictability of Individual Ensemble Members

The previous subsection described how training size affected the statistical model
performance for the entire ensemble. In this section, we show how the predictions vary
with training size for selected individual ensemble members. The purpose of this test is to
show that some FLEXPART-WRF members are easier to predict than others, regardless of
the amount of training members. Figure 10 shows the mean Pearson’s R score by training
size and member number for the surface release case for selected members of the test set.
The members are selected by their decile average performance. We only show the members
that are closest to the decile average performance because showing all 1196 members
results in a visualization that is difficult to read.

For example, take the square marked by “60% (132)” on the x-axis and “250” on
the y-axis. This square represents the mean Pearson’s R score for member 132 calculated
from every statistical model (out of 100) where member 132 was contained in the test set.
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Member 132 is the member that is closest to the 60th percentile mean Pearson’s R score
averaged over all training sizes.

As already demonstrated, the general performance of the model increases as the
training set size increases; however, the relative individual performance does not generally
change. Part of this can be explained statistically. Our statistical model essentially fits a
hyperplane in the WRF-parameter/deposition space. A hyperplane is one of the simplest
possible models, and there is noise in the dataset. Some data points will be far away from
the hyperplane, and increasing the training size does not move the hyperplane enough to
successfully fit those points. This highlights the importance of the fact that physics-based
modeling-machine learning is not able to capture all of the variation present in the dataset,
even with very large training sizes. While we analyzed the WRF inputs associated with
well and poorly performing members, we found no consistent pattern associated with
poor predictions and WRF parameterizations. Hypothetically, if there was a relationship
between WRF inputs and poorly performing members, the information could be used by
WRF developers to improve accuracy for certain parameterizations. This figure also shows
that low amounts of training data start producing accurate predictions. A similar analysis
can be done for the elevated case but is not included here.

Figure 10. Mean Pearson R by training size and selected ensemble member. Some members are easier
than others to predict regardless of the training size. Only instances where the ensemble member
was included in the test set are used for calculations. The members were selected to be closest to the
overall decile performance.

5.4. Ensemble Probability of Exceedance

One of the main goals of emulating Cs-137 spatial deposition is to account for the vari-
ability in the ensemble from weather uncertainty, so we use probability of exceedance plots
to compare the variability of the predicted and true ensemble in Figure 11. The topmost
and center subplots of Figure 11 show the percentage of members in the ensemble that
have deposition values that exceed a threshold of 0.01 Bq/m2 at every location. For ex-
ample, if 598 ensemble members have deposition above 0.01 Bq/m2 at grid cell (200, 200),
the percentage for that cell is 598/1196 = 50%. Yellow colors indicate areas where many,
if not all ensemble members report above-threshold deposition values. Dark purple col-
ors indicate areas where very few ensemble members report above-threshold deposition
values. Generally, the probability of exceedance drops as one moves further away from
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the release location. The predictions are based on 50 training samples, and both ensembles
used for this plot contain all 1196 members, meaning the training and testing predictions
are included for the predicted percentages.

Figure 11. Percentage of members in the true (top) and predicted (center) ensembles that have
deposition that exceeds 0.01 Bq/m2 at each location. The bottom-most plot shows the difference
between the two.
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The topmost subplot shows the probability of exceedance of the true ensemble. As ex-
pected, the outside of the shape is made up of low percentage grid cells, as only outlier
plumes make up those locations. The center subplot shows the probability of exceedance
of the predicted ensemble. The predicted probability of exceedance takes up less area than
the true ensemble because the outliers around the edge are challenging for the regressions
to predict.

Despite the vast differences in computational resources needed to produce them,
the probability of exceedance in the true and predicted ensembles appears similar. To high-
light the differences, we created the bottom-most subplot of Figure 11, which shows the
difference between the true ensemble percentages and the predicted ensemble percentages.
Positive values, in teal, show areas where the population of members in the true ensemble
is higher than the predicted ensemble. Negative values, in brown, show areas with higher
predicted population than true population. Comparing the plot to Figure 12, one notices
that the boundary between brown and teal happens approximately where the number of
samples per pixel drops below 17, which is where the linear regression becomes underde-
fined. The conclusion we have drawn is that the regressions tend to overpredict values
where there are sufficient samples (with some exceptions, such as in the center right of the
plot) and underpredict where there are not sufficient samples.

5.5. Spatial Coefficient Analysis

One advantage our regression method holds over other machine learning models
is the potential for interpretability. In this subsection we highlight one aspect of this
interpretability. Our predictions are made using thousands of individual regression mod-
els, each of which has coefficients that transform the WRF parameterization input variables
into a deposition value. In traditional regression approaches with non-categorical inputs,
the units of all the input variables can be standardized so that the magnitude of a coefficient
is related to the effect of its corresponding variable. That is, the larger the value of a
coefficient, the more important the corresponding predictor is to the output. However, our
WRF variables are one-hot-encoded as binary inputs, so determining their importance is
not as straightforward as standard regression. Each of the regression models in our method
has seventeen input terms—one for the intercept and sixteen binary encoded variables that
represent five different WRF physics parameterizations. Out of these sixteen non-intercept
coefficients, the first four represent the five PBL schemes, the next three represent the four
LSM schemes, the next four represent the five CU schemes, the next three represent the
four MP schemes, and the final two coefficients represent the three RA schemes. Taking the
mean of the absolute value of a WRF physics package’s coefficients gives an estimate of the
importance of that variable. In other words, 1

4 ∑4
i=1 |βi| represents the importance of PBL,

1
3 ∑7

i=5 |βi| represents the importance of LSM, and so on.
Once the mean coefficient magnitudes are calculated, the argmax is used to find the

WRF parameterization which is most important at a given grid cell. These results can
be plotted to see which parameterizations are most important for a given area, as seen
in Figure 12 for the surface release case. Figure 12 was created using models trained on
50 ensemble members and only includes grid cells that have greater than 17 samples.
The intercept is not considered when determining importance. It is important to remember
that with our process, the “most important variable” is not the same as “only important
variable.” Combinations of WRF parameterization changes can be important, resulting
in the many coefficients that have a similar mean magnitude. In other words, the second
most important WRF parameterization can still be very important because it has a mean
coefficient magnitude slightly smaller than the most important WRF parameterization.
Regardless, this analysis provides an interesting consequence of using regression models
to interpret WRF physics.

Figure 12 shows that PBL variations tend to dominate other WRF parameterizations,
as captured by the large areas in beige. This result is not surprising, as changing the PBL
scheme in WRF is known to greatly influence atmospheric turbulence and mixing near the
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surface. The variable importance map also shows other interesting features, including the
red areas highlighting the relatively elevated importance of cumulus convection variations
over coastal and mountainous areas where precipitation occurs during the release events.
Similarly, magenta areas where microphysics is important occur near areas where cumulus
convection is also important, which is consistent with the correlation of these physical
processes in the model. The overall spatial complexity in Figure 12 illustrates one final
critical point. No single WRF parameterization is most important everywhere, so multi-
physics WRF ensembles that vary a range of physical parameterizations are needed to
capture weather model uncertainty.

Figure 12. Primary WRF parameterization changes associated with Cs-137 deposition are color-coded
and shown for every grid cell. Areas with 17 or fewer samples are excluded. The total training
dataset included 50 ensemble members. In the legend, PBL stands for the planetary boundary layer
physics parameterization (tan), LSM stands for land surface model (green), CU stands for cumulus
physics (red), MP stands for microphysics (magenta), and RA stands for radiation (cyan).

6. Future Work

The regression prediction method we have described has some drawbacks and un-
knowns, which means there are several avenues for further exploration. The most signif-
icant drawback is that it does not exploit spatial correlations of nearby locations in the
domain. Since each grid cell is treated as completely independent from the other grid cells,
spatial correlations are not used to improve the overall prediction. This means that any
predicted plume is limited to the envelope of the union of all of the training plumes, as our
model cannot predict in areas that do not have any training data. However, this trait can be
viewed as a positive feature of our algorithm; it will not poorly extrapolate in areas where
there are no training data. To overcome this problem, spatial data can be incorporated into
the overall model. Including spatial correlation information in our model may lead to a
more parsimonious model or one that produces improved predictions. Including spatial
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correlations can also potentially be done using dimensional reduction techniques such as
PCA or autoencoders. For example, the model we describe could be used to produce an
initial map, and then an alternate model based off radial basis functions, multitask learning,
or even linear regression can be used to refine it.

Another drawback is the subjective nature of picking a decision threshold pthreshold
in the logistic regression component. We used a value of 0.5 for all the calculations
presented here, which is a reasonable value to use, but that is the result of qualitative
analysis. Implementing an optimization routine to determine the best pthreshold to use
would increase the objectivity and may improve the performance of our model. The tuned
threshold could also be applied at a grid-cell level, which may increase performance in the
boundary regions.

As mentioned in Section 5.1, we remove outlier deposition values which are predicted
to be larger than any deposition value present in the training set. This is a simple way to
remove outliers and is easily implemented operationally. However, it is a naive outlier
removal method. A more complex outlier removal method may be beneficial to help
differentiate false extreme values from true extreme values, the latter of which can pose a
large risk to public health.

When we create training sets for our method we sample randomly from the entire
population of predictions. By using methods from adaptive sampling, it may be possible to
dynamically produce a training set that is more representative of the population than a
random sample, leading to higher performance for the trained model with fewer expensive
computer simulations. In an emergency situation, this would be very useful.

The individual models that predict hazardous deposition in each grid cell do not
necessarily have to be linear or logistic regression models. They can be produced by other
regression and classification models such as random forests or artificial neural networks.
The biggest hurdle in implementing more complex grid cell-level models is the training
time. During our testing on a desktop computer, the training time for a single grid cell
took between 1 and 10 ms, and training a full spatial map was on the order of minutes.
Changing to a more complicated model could potentially increase training time by an order
of magnitude.

Finally, this regression method should be tested with more FLEXPART-WRF simu-
lations. It should be tested with different hazardous releases in different locations from
FLEXPART-WRF , but it could also be tested on completely different physical models. More
terms could also be added to the regression model to account for larger initial condition
errors present in longer forecast simulations. There is nothing about our method that is in-
herently specific to FLEXPART-WRF , and we think this method could work for simulations
that are unrelated to deposition.

7. Conclusions

In this paper, we presented a statistical method that can be used to quickly emulate
complex, spatially varying radiological deposition patterns produced by the meteorolog-
ical and dispersion tools WRF and FLEXPART. FLEXPART-WRF is slow to run, and a
single simulation from it may have significant uncertainty due to model imperfections.
To estimate uncertainty, researchers can run FLEXPART-WRF hundreds of times by vary-
ing representations of physical processes in the models, but that can take crucial hours.
Instead of running FLEXPART-WRF hundreds of times, researchers can run it dozens of
times, use the results to train our emulator, and then use the emulator to produce the
remaining results.

Our emulator is represented by an M× N grid where the value at each grid cell is
determined by the output of independent linear regression and logistic regression models.
The logistic regression determines whether hazardous deposition is present at that location,
and the linear regression determines the magnitude of the deposition. Since all the grid cells
are independent from one another, our model can accurately predict subsets of locations.
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We used two datasets for training, testing, and predicting. One was a simulated
continuous surface contaminant release representing a large-scale industrial accident, and
the other was a simulated instantaneous elevated contaminant release from a hypothetical
nuclear explosion. For each of the two cases, there were 1196 different simulations, all
representing variations in the WRF parameterizations. The WRF parameterizations were
treated as categorical variables that were binary encoded and used as the inputs to the
linear and logistic regression models used in our emulator.

We conducted several tests to evaluate the performance of our emulator. We found that
the emulator performs well, even with only 50 samples out of the 1196-member population.
While the deposition patterns have variance, they are not drastically different shapes,
which is why 50 samples is sufficient to make reasonable predictions. This is promising
since in an emergency situation, the amount of computationally expensive runs should be
minimized. As with many machine learning models, the prediction performance on the
test set increases with increasing training size. We also found that for each case there are
some members that perform better than others, regardless of the training size.

In general, we think that the emulator that we have presented here is successful in
predicting complex spatial patterns produced by FLEXPART-WRF with relatively few
training samples. We think there are several areas that can be explored to improve our
emulator, and we hope to complete some of them in the future.
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Notation
The following is a table of the notation used in the document. All notation is generalizable to

the surface release case and the elevated release case.

Symbol Meaning
x General single instance of predictor vector
xk Specific single instance of predictor vector
X Complete set of input vectors
XTrain Training set of input vectors
XTest Testing set of input vectors
Y Complete set of target matrices
Yk Specific single instance of target matrix
Yi,j,k Specific location of single instance of target matrix
YTrain Training set of target matrices
YTest Testing set of target matrices
Ŷ Complete set of estimation matrices
Ŷk Specific single instance of estimation matrix
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Ŷi,j,k Specific location of single instance of estimation matrix
M Number of rows in Y or Ŷ
N Number of columns in Y or Ŷ
n Size of training set
αi,j Coefficients for the logistic regression model at a location
βi,j Coefficients for the linear regression model at a location
Pi,j Probability of non-zero deposition at a location
pthreshold Decision threshold to be applied to prediction
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Abstract: High resolution air quality models combining emissions, chemical processes, dispersion
and dynamical treatments are necessary to develop effective policies for clean air in urban environ-
ments, but can have high computational demand. We demonstrate the application of task farming
to reduce runtime for ADMS-Urban, a quasi-Gaussian plume air dispersion model. The model
represents the full range of source types (point, road and grid sources) occurring in an urban area
at high resolution. Here, we implement and evaluate the option to automatically split up a large
model domain into smaller sub-regions, each of which can then be executed concurrently on multiple
cores of a HPC or across a PC network, a technique known as task farming. The approach has been
tested for a large model domain covering the West Midlands, UK (902 km2), as part of modelling
work in the WM-Air (West Midlands Air Quality Improvement Programme) project. Compared
to the measurement data, overall, the model performs well. Air quality maps for annual/subset
averages and percentiles are generated. For this air quality modelling application of task farming, the
optimisation process has reduced weeks of model execution time to approximately 35 h for a single
model configuration of annual calculations.

Keywords: air pollution; air quality modelling; ADMS-Urban; high performance computing; HPC;
West Midlands

1. Introduction

Air pollution has become the biggest environmental risk for public health both globally
and locally [1–4]. Air pollution can cause adverse health effects, e.g., diseases associated
with respiratory, circulatory, nervous, digestive and urinary systems [5]. In 2016, the World
Health Organisation (WHO) estimated [6,7] premature deaths attributed to ambient air
pollution as about 4.2 million per year and that about 91% of the world’s population
dwelt in areas with air pollution levels higher than WHO guidelines [8]. The mortality
burden associated with ambient air pollution is about 28–36,000 per year in the UK [9]. The
availability of air quality information is of vital importance to improve the understanding
of the associated health effects [10,11], and to develop effective and equitable air pollution
control policies.

Air quality measurements can provide direct information about the levels of air
pollutants in the atmosphere. The UK Automatic Urban and Rural Network (AURN) [12]
is the largest automatic air quality monitoring network across the UK. The quality-assured
stationary sites in AURN can normally provide continuous measurements of air pollution
concentrations at high temporal resolution (e.g., hourly air quality data), but with coarse
spatial resolution due to the limited number of sites [12], and at significant capital and
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operational cost. Owing to the advanced development of Internet of Things, low-cost
sensors [13] are also increasingly used for air quality measurements, as indicative measures.
These techniques can enable the dense network of air quality monitoring required for
building smart cities. Other monitoring approaches, such as mobile measurements using
bicycles [14,15] and vehicles [16], generate air quality information at both high temporal
and spatial resolutions within relatively small domains, while satellite measurements can
provide a globally consistent air quality monitoring service at a coarse spatial resolution [17].
However, these measurement approaches are unable to provide the high-resolution spatial
and temporal air pollutant concentration data required for some detailed population
exposure calculations, or to evaluate potential policy options.

To complement the information obtainable from air quality monitoring services, the
use of air quality modelling has rapidly increased over recent decades. These tools play a
key role in environmental science because of their capability to quantify the deterministic
relationships between emission sources, dispersion, mixing, concentrations, advection and
deposition over different distance and time scales [18]. Their use has been promoted by the
2008 European Directive on Ambient Air Quality and Cleaner Air for Europe that explicitly
encourages the adoption of modelling for air quality management such as forecasting
and emission reduction plans [19]. Air quality models use mathematical equations to
simulate physical and chemical processes affecting air pollution in the atmosphere using
different approaches depending on the degree of meteorological and chemical detail re-
quired for a given application [20,21]. Dispersion, transport and chemical processes are
modelled from local to regional scales using different types of models. Local-scale models
can represent explicit source properties, such as geometry and efflux conditions, incorpo-
rating a simplified chemical scheme and using representative meteorological and emission
data [22,23]. Regional-scale models use diffusion equations (e.g., Eulerian models) [24,25]
or instantaneous flow approaches (e.g., Lagrangian models) [26,27] to simulate full chem-
istry and physical mechanisms acting in the atmosphere, accounting for the interaction of
the emissions, homogeneously mixed on each grid, with meteorology. Other models adopt
a simpler and less data-demanding approach to estimate air pollutant concentrations using
a statistical or empirical approach [28–31]. The simplification of these models is achieved by
ignoring the time-varying processes affecting air pollutant concentrations connected with
variations in emissions, processing and meteorological conditions. Models that represent
physical and chemical processes are the most suitable for air quality assessment planning
for a number of reasons including: the capability to simulate at different spatial scales
(from hemispheric simulations to regional and local scale) [32] and temporal scales (from
short time period or event analysis to annual and inter-annual simulations) and the possi-
bility to conduct several types of analysis, from the dispersion processes of inert and/or
trace pollutants at a particular ground-level receptor influenced by an emission source, to
simulations of the full chemistry acting in the atmosphere on pollutants from all available
emission sources, and their interactions with meteorology. This also allows the models to
be used to assess the likely changes in air pollutant concentrations resulting from differing
scenarios of emissions reductions and/or forecasts of future climatic conditions [33].

Different mesoscale meteorological and chemistry-transport models (CTMs) (e.g.,
WRF [34], CMAQ [35] or WRF-Chem [36]) are commonly used worldwide by governments
and researchers to study air pollution exposure [37,38], plan emissions reductions [39] and
create scenarios [40] to reduce air pollution in urban areas. These systems require exten-
sive computational time and resources in comparison to statistical and empirical models.
This is due to the necessity to account for atmospheric dynamics and complex chemical
dispersion and deposition processes of potentially thousands of primary and secondary
pollutants over urban areas at different spatial resolution (from a few hundreds of meters
to several km) [28]. Parallel HPC (High Performance Computer) clusters are generally
used to supply the computational resources for this type of dispersion modelling. HPC
clusters are able to run calculations from simulations of three-dimensional domains with
different cell dimensions and sizes in parallel with a reasonable computational time [41].
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In contrast, for most applications, local-scale dispersion models execute sequentially in
terms of spatial and temporal calculations, leading to extended runtimes for the simulation
of large urban areas.

Computer models representing physical or chemical processes such as pollutant dis-
persion are commonly initially written in a sequential form, as this is simple to develop
and it is easily portable across different types of computational architecture. However,
the computational burden associated with modelling complex atmospheric processes of-
ten requires runtime optimisation, such as code parallelisation whereby calculations are
distributed over multiple cores on HPC clusters [42]. Sequential code can be converted
into parallel code using parallelisation algorithms such as OpenMP [43], Parallel Virtual
Machine (PVM) [44] and Message Passing Interface (MPI) [45], but a simpler approach,
not requiring changes to code architecture, is to use task farming. Task farming involves
running the same, possibly sequential, code on multiple processors using differing model
configuration parameters and data inputs [46]. The application of task farming to mod-
elling of physical processes with differing configurations relating to different spatial areas
is sometimes known as spatial parallelisation. For some applications, task farming may
be wasteful in terms of computational resources compared to full code parallelisation; for
instance, the same code will be executed separately on each core and, for spatial paralleli-
sation, there may be a need for additional calculations at the edge of each computational
sub-domain. However, spatial parallelisation is relatively simple to implement from a code
development perspective and can lead to runtime optimisations that broadly scale with the
number of processors available. A task farming approach has previously been applied to
the AERMOD Gaussian plume dispersion model with preliminary testing [47], alongside a
qualitative assessment of the possibility of code parallelisation, which concluded that it
would require significant development effort.

ADMS-Urban [48,49] is a quasi-Gaussian plume air dispersion model that represents
the structure of the atmospheric boundary layer using two governing parameters: the
boundary layer depth and the Monin–Obukhov length. It uses a physics-based approach,
so it requires a range of data inputs (meteorological, emissions and long-range pollutant
transport data). ADMS-Urban explicitly represents the full range of source types occurring
in an urban area at high resolution (industry, transport and diffuse sources); the model is
able to account for the influence of complex urban morphology (building density, street
canyons [50,51]) on dispersion and generates street-scale resolution maps that highlight
both pollution hotspots and areas of better air quality. The model has been used to quantify
urban air pollution levels in many cities worldwide [49,52], but model run times can be
extensive when run sequentially, with city-scale calculations taking weeks to execute on
standard Windows PCs. Multiple model runs can be required in order to assess different
policy or emissions scenarios, and to perform sensitivity analyses, so improving model run
times is a key requirement for enabling the analysis of a broad range of scenarios.

This paper presents the results of a novel approach to running ADMS-Urban, where
task farming has been used to spatially parallelise the model configuration, and each run
component has been executed on an HPC—Bluebear at the University of Birmingham.
The approach has been tested for a large model domain covering the West Midlands
(WM), UK (902 km2), as part of modelling work in the WM-Air (the West Midlands Air
Quality Improvement Programme) project [53]. WM-Air is a five-year impact-focussed
programme to support the improvement of air quality and associated health, environmental
and economic benefits in the West Midlands. Section 2 describes the methodology of task
farming in the ADMS-Urban model and presents the modelling configuration for the WM
case study. Section 3 reports the model evaluation from the receptor run and several types
of air quality maps from the contour run. Section 4 discusses the results and Section 5 gives
a summary.
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2. Methodology
2.1. ADMS-Urban Model

ADMS-Urban can model pollution sources with explicit point, line, area or volume
geometry, using quasi-Gaussian plume dispersion expressions, with skewed vertical pro-
files used in convective conditions [54]. Road sources are modelled as a special case of
line sources, where traffic-induced turbulence effects are included based on user-defined
emission rates and/or traffic flow and speed data [55]. Point sources are modelled as
elevated sources for large industry sources and stack parameters (e.g., stack height and
diameter, efflux temperature and exit velocity) are needed. A regular grid of volume
sources with uniform source depth is also used to represent total emissions of both the
explicit sources and other sources where less detailed source characteristics are available,
such as domestic heating or minor industrial processes.

Dispersion calculations for each explicit source and a single volume source (forming
one cell of the uniform regular grid) are initially carried out along an “internal grid” of
calculation locations following the downwind plume centreline, with along-wind inter-
polation, lateral and vertical profile factors used to obtain concentrations at the required
output locations. The internal calculation grid resolution is finest at the source location
and increases in geometric sequence with increasing distance from the source, as plume
properties are expected to vary more slowly further from the source. The single volume
source grid cell dispersion patterns are spatially translated to the location of each cell,
scaled by the individual cell emissions and applied to the final output locations.

For pollutants which are considered inert on local scales, concentrations from all
included sources are summed at each output location to form the total output concentration.
For pollutants where local chemistry processes are significant, such as NOx and NO2, a
concentration-weighted average of dispersion time is also calculated at each output location
and used in an implementation of the Generic Reaction Set (GRS) chemistry scheme [56,57].

2.2. Run-Time Optimisation Using Task Farming

ADMS-Urban is a serial program designed to run on a single processor. However, the
latest version of the model includes the ability to split up a large modelling region into
smaller sub-regions, each of which can then be executed concurrently on multiple cores of
a HPC or across a PC network, a technique known as task farming.

Only those output points that fall within a given sub-region are included in that
sub-region run. Conversely, since the concentration at any output point can be affected by
any upwind source within the modelling region, it is important that all source emissions
are included in each sub-region run. A study of agricultural non-point source dispersion
modelling, for sources with a maximum horizontal dimension of 60–80 m, showed that
the exact geometry of neutrally buoyant non-point source types made little difference to
predicted downwind concentrations beyond approximately 100 m [58]. Large efficiency
gains can therefore be achieved, for appropriate source types, by only explicitly modelling
those sources that fall within the sub-region (plus an additional “buffer” zone), while
the emissions from more distant sources can be modelled via the (computationally much
cheaper) grid source. This also provides justification for regional-scale chemical transport
models typically only requiring gridded input emissions.

In ADMS-Urban, road sources are modelled as neutrally buoyant sources (with an
initial mixing depth to account for vertical spread in the wake of vehicles) and can therefore
be spatially truncated to sub-regions in this way. Figure 1 below shows an example of
which road sources are explicitly modelled for a particular sub-region run. Run times can
be optimised by ensuring a similar number of explicitly modelled sources and associated
output points are included within each sub-region, hence, smaller sub-regions are used in
areas with a higher density of explicit road sources.
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Figure 1. Example of explicit road source truncation for a particular sub-region. A buffer zone of
750 m has been used. Note that spatial sub-regions outside the WM boundary are run in the model
but not included in contour output, and thus are not shown here.

Conversely, point sources with high pollutant emission rates are always modelled
explicitly due to their non-negligible buoyancy and elevated source height, which affect
their dispersion over a long distance. Point sources are generally selected for explicit
modelling if they have annual average emissions greater than 1 g/s of a pollutant of
interest, or are subject to specific national regulation (“‘Part A” sources). The number of
point sources of this type is often much smaller than the number of modelled road sources
and so the run-time cost of including all point sources in each sub-region run, with extents
normally of the order of 1 km, is comparatively small.

2.3. Case Study

The West Midlands Combined Authority (WMCA) in the UK covers seven constituent
local authorities (Birmingham, Coventry, Dudley, Sandwell, Solihull, Walsall and Wolver-
hampton). Geographically, the West Midlands (WM) is an area of around 902 km2 roughly
centred on Birmingham. Air quality modelling is an important tool for the investiga-
tion of air quality within the WM region and for the assessment of the impact of specific
intervention scenarios on air quality within the region.

2.3.1. Emissions

Emission sources in the model included explicit point sources, explicit road sources
and 1 km × 1 km horizontal resolution grid sources for the baseline year of 2016 (shown
as Figure 2). The EMIT Atmospheric Emissions Inventory Toolkit (developed by CERC)
was used to pre-process the emission data before import into the ADMS-Urban model.
Table 1 shows an overview of total emissions for different source types over WM computa-
tional domain.
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Figure 2. Emission sources in the model and spatial splitting for the modelling domain over
West Midlands.

Table 1. Overview of total emissions (in tonnes/year) for different sources over the WM computa-
tional domain.

Group 1 NO2 NOx VOC PM10 PM2.5 SO2

Major Roads 3165 16,740 502 985 460 24
Point Sources 148 2951 1441 318 230 153

SNAP01 energyprod 20 400 4 6 6 106
SNAP02 domcom 150 3000 1801 1826 1775 994
SNAP03 indcom 165 3294 46 248 243 660
SNAP04 indproc 1 24 411 1773 197 20
SNAP05 offshore 0 0 1746 0 0 0
SNAP06 solvents 0 3 18,140 552 233 2

SNAP07 Minor Roads 2025 10,830 1362 586 314 50
SNAP08 othertrans 530 6620 2135 368 403 59

SNAP09 waste 3 57 251 129 119 3
SNAP10 agric 4 84 1049 194 40 0

SNAP11 nature 0 4 721 89 82 0
1 For SNAP sectors, see Section Grid Sources.

Point Sources

Point source emission rates were taken from the UK National Atmospheric Emissions
Inventory (NAEI) [59], which collected detailed emission data from large individual sources.
Other smaller emission sources in the industrial and commercial sector were included
as grid sources (Section Grid Sources). Large industrial point sources were considered
explicitly as elevated point sources in the dispersion model. The emission inventory for
these point sources combined the NAEI 2016 data (for emission rates) and Birmingham City
Council (BCC) Airviro [60] model data (for stack parameters, e.g., stack height and diameter,
efflux temperature and exit velocity). Representative typical stack characteristics by sector
were used for the point sources where the stack characteristics are not known. The emission
rates from the point sources were given for a wide range of pollutants; those of interest
are NOx as NO2, PM10, PM2.5, Non-Methane Volatile Organic Compounds (NMVOC) and
SO2. The location of the point sources was given in the British National Grid Coordinate
System (OSGB) and has been converted to the modelling coordinate system in Lambert
Conformal Conic Projection (LCC). The use of modelling coordinate was consistent with
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that in the regional Community Multiscale Air Quality (CMAQ) modelling system, to
prepare for the development of a coupling system between CMAQ and ADMS-Urban
model under WM-Air.

Road Sources

Road sources in the current baseline model combined the traffic maps from Trans-
port for West Midlands (TfWM) PRISM model [61] and BCC’s SATURN model [62]. The
SATURN model has more road links within the forthcoming Clean Air Zone of Birming-
ham [63]. The traffic map covers major roads, e.g., motorways and “A” roads. Minor roads
not represented by the current traffic map are modelled as grid sources. The traffic data for
AM peak, PM peak and inter-peak time periods have been combined and converted into
Annual Average Daily Traffic (AADT). The traffic flows were categorised into heavy and
light vehicles. These traffic model output data were evaluated against the TfWM’s traffic
count data. The light vehicle from the traffic model agrees well with traffic counts, while the
heavy vehicle is consistently underestimated compared to traffic counts and an adjustment
was made. Bus timetable data from Remix [64] were also processed and included in the
model input. Representative fleet composition data (Euro classification for each sub-type
of heavy and light vehicles) were taken from ANPR data in a recent Birmingham Clean
Air Zone (CAZ) document [62] and has been incorporated into the EMIT calculations. The
UK NAEI 2014 road traffic emission factors, with real-world adjustments following the
approach described in Hood et al. 2018 [49], were used for the calculation of emission rates.

Grid Sources

Grid sources for 2016 were defined at 1 km × 1 km resolution with a typical depth
of 10 m. The base gridded emissions were downloaded from the NAEI website [59] in
the OSGB coordinate system, and have been converted to the LCC modelling coordinates.
NAEI emissions are available for all SNAP (Selected Nomenclature for Air Pollution)
sectors, i.e.,:

• SNAP 01—Combustion in Energy Production and Transformation (energyprod);
• SNAP02—Combustion in Commercial, Industrial, Residential and Agriculture (domcom);
• SNAP03—Combustion in Industry (indcom);
• SNAP04—Production Processes (indproc);
• SNAP05—Extraction and Distribution of Fossil Fuels (offshore);
• SNAP06—Solvent Use (solvents);
• SNAP07—Road Transport (roadtrans);
• SNAP08—Other Transport and Mobile Machinery (othertrans);
• SNAP09—Waste Treatment and Disposal (waste);
• SNAP10—Agriculture, Forestry and Landuse Change (agric);
• SNAP11—Nature (nature).

The pollutants of interest are NOx as NO2, NMVOC, PM10, PM2.5 and SO2. SNAP07
has been reduced by subtracting the emission contribution from the explicit major road
sources. EMIT also aggregates the explicit major road emissions into the same 1 km × 1 km
grid. The residual emission for this SNAP07 sector can be then derived and modelled as
SNAP07_minor road.

2.3.2. Time Varying Factors

Time-varying factors from the EMEP model [65,66] were available for each hour of the
day by SNAP sector and pollutant. An emissions inventory covering the area of interest
was available, with total emission for each sector. These emission rates were used to
calculate a combined set of weighted average monthly emission factors for each pollutant,
which were applied to the total gridded emission rates. Separate time varying factors
were applied to particulate and gaseous gridded emissions, reflecting different balances
between sectors and source types for these pollutants. In additional to the gridded emission
rates, time varying factors have been also applied to explicit road sources. The monthly
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factors used for explicit road source emissions were taken from Community Modelling and
Analysis System (CAMS) regional emissions v3.1 [67]. Diurnal profiles for road traffic have
been calculated using 24-h flow and speed data from automatic traffic count sites (data
downloaded from TfWM), typically available for 1 week per site. The roads of interest
were isolated, and the light and heavy vehicle hourly flows and speeds were processed
through an Emissions Factor Toolkit (EFT, version 9.0) [68] spreadsheet to calculate hourly
emission rates of the pollutant of interest. The emission rates were then normalised by
the average emission rate on the road, to give a time varying profile for the road. The
roads were classified into medium or high flow and average time-varying profiles were
calculated for each type. The diurnal profile for medium roads was also applied to the
grid source, representing both the significant contribution of minor roads to the residual
gridded emissions and the representation of emissions from roads outside the current
sub-region and buffer zones in the gridded emissions.

2.3.3. Background Data

Background concentration files were created using historic observation data from a
variety of rural background sites surrounding the West Midlands modelling area, available
from the Department for Environment, Food and Rural Affairs (Defra) UK-Air website [12].
Data were limited in the West Midlands area, so a suitable background file was created
using the following sites for different pollutants: (1) NOx, NO2, O3: Ladybower (Lat, Lon:
53.403370, −0.752006), Market Harbough (52.554444, −0.772222), Chilbolton (51.149617,
−1.438228), Leominster (52.221740, −2.736665), (2) SO2: Ladybower, Narberth (51.781784,
−4.691462), Chilbolton and (3) PM10 and PM2.5: Chilbolton (with large periods of missing
data filled using data from Sheffield Devonshire Green). The direction of each monitoring
site from the centre of the modelling region, and wind direction sectors which were
appropriate for each site, were calculated. The monitored wind direction for each hour
was used to identify upwind monitoring data for that hour. The use of Chilbolton for
particulate background concentrations was due to the fact that appropriate background
monitoring sites for PM were scarce around the West Midlands area. The monitored
Chilbolton concentration was multiplied by the ratio of the annual average concentration at
a rural area bordering the West Midlands to that at Chilbolton based on Defra’s background
concentration maps [69].

2.3.4. Meteorological Data

For the West Midlands, an appropriate synoptic meteorological measurement site is
located at Birmingham Elmdon, within Birmingham Airport, with data obtained from Met
Office MIDAS in CEDA Archive [70]. “UK Hourly weather data”, “UK Mean Wind” and
“UK Hourly rainfall data” have been combined to create the met data format required by
the model. The generated met file included hourly data for wind direction, wind speed
(converted from knots to m/s), total cloud fraction, air temperature, relative humidity
and precipitation.

2.3.5. Advanced Canyon and Urban Canopy Files

The data required to carry out the advanced canyon [51] and urban canopy [50]
calculations are (1) a road network shapefile and (2) a buildings shapefile, including a
height field. The building data have been obtained from Digimap database [71] via the
University. The ADMS-Urban software package included ArcGIS tools [72] which have
been used to calculate an Advanced Canyon file. The building height and canyon width
along each road link were derived. The gridded urban canopy parameters have also
been calculated for use in representing urban wind flow variations. These will enable the
ADMS-Urban model to account for the street canyon effect for road emissions and spatially
varying urban canopy flow for all source types.

50



Atmosphere 2021, 12, 983

2.3.6. Spatial Splitting

The task farming approach was achieved by spatially splitting the domain within the
ADMS model. The overall rectangular output grid domain extent covering WM was first
divided into 468 smaller sub-domains (forming a grid of 26 by 18 sub-domains, shown as
Figure 2), each with a size of 2 km × 2 km. For some 2 km × 2 km subdomains with denser
road links in city centre areas, which also included increased numbers of output points to
fully resolve the near-road concentrations, a further spatial splitting into 1 km × 1 km or
500 m × 500 m was adopted in order to reduce the overall computation time. The total
number of sub-domains was 540 (although no output points have been specified beyond
1 km outside the WM boundaries). The maximum number of road sources in a single
sub-domain was 598 and the maximum number of output points in a domain was 4725.
A buffer zone [73] of 750 m for road sources (to exclude explicit road sources unlikely
to contribute significantly to modelled concentrations in the sub-domain) was used for
each sub-domain.

3. Results
3.1. Receptor Run: Model Evaluation

For the purpose of model evaluation, the model was first run in a “Receptor” Mode (a
run with output for a limited number of specified receptors) for 32 air quality measurement
sites within the WM over the whole year of 2016, with measured concentration data
obtained from local authorities and Defra’s AURN [12] (shown as Figure 3, mostly with
available hourly air quality measurements). These sites included three types, i.e., 1 airport
site, 19 roadside sites and 12 urban background sites. In order to reduce the model
computational time, the source exclusion option [73] was used to not explicitly model road
sources far away from specified receptors, and therefore unlikely to contribute significantly
to modelled concentrations at receptors, with a specified exclusion distance of 750 m. The
Receptor run was conducted in a Windows PC and it took about 12 h’ computation time
to get the hourly output of five air pollutants (NOx, NO2, O3, PM10 and PM2.5) across a
whole year for all 32 receptors. The Model Evaluation Toolkit [74] was used to conduct the
evaluation of the model by comparing to the measured air quality data using statistical
and graphical methods.

Figure 3. Monitoring sites within West Midland used for the model evaluation.
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3.1.1. NOx and Chemistry

Figure 4 shows the evaluation of modelled annual NOx, NO2 and O3 against observa-
tions using scatter plots divided by site type. Overall, the model performed well in terms of
NOx and NO2 for all site types. The good fits for O3 further suggested good performance
of the model chemistry. Table 2 shows the statistics (see definitions in [49]) for the model
evaluation for the baseline year of 2016, calculated from the hourly modelled and measured
concentrations. Fb (Fractional bias) measures the mean concentration difference between
the model and measurement (ideal value is 0). Fac2 measures the fraction of modelled data
within a factor of 2 of observations (ideal value is 1.0). NMSE (normalised mean square
error) measures the mean concentration difference between matched pairs of modelled and
measured data (ideal value is 0). R (correlation coefficient) measures a linear relationship of
concentrations between the model and measurement (ideal value is 1.0). Fb varies between
(−0.24, 0.03) for NOx and (−0.08, 0.06) for NO2 and O3, while (0, 0.05) for NOx and (−0.01,
0.06) for NO2 and O3 were derived for the ADMS-Urban run with adjusted road traffic in
Hood et al. (2018) [49]. Fac2 indicates that more than 62% of NOx, 76% of NO2 and 73% of
O3 are within a factor of 2 of observations. NMSE varies between (1.03, 1.24) for NOx, (0.12,
0.32) for NO2 and O3, which is similar to (0.62, 0.86) for NOx and (0.21, 0.29) for NO2 and
O3 in Hood et al. (2018) [49]. R varies between (0.58, 0.83) for NOx, NO2 and O3, which is
close to (0.61, 0.77) in Hood et al. (2018) [49].

Figure 4. Comparison of annual averages between model output and measurement: (a) for NOx

(in µg m−3), (b) for NO2 (in µg m−3) and (c) for O3 (in µg m−3).
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Table 2. Statistics for model evaluation for the baseline year of 2016 calculated from the hourly modelled and measured
concentrations. nSites: number of sites; Obs: observed concentration; Mod: modelled concentration; Fb: fraction bias (ideal
value is 0); Fac2: fraction of modelled data within a factor of 2 of observations (ideal value is 1.0); NMSE: normalised mean
square error (ideal value is 0); R: correlation coefficient (ideal value is 1.0).

Pollutant Site Type nSites Obs (µg m−3) Mod (µg m−3) Fb Fac2 NMSE R

NOx roadside 16 96.6 75.8 −0.24 0.62 1.03 0.58
Nox urban background 9 38.2 39.4 0.03 0.74 1.24 0.63
NO2 roadside 17 39.0 36.0 −0.08 0.76 0.32 0.59
NO2 urban background 8 23.7 25.0 0.06 0.81 0.32 0.71
O3 roadside 3 34.3 33.8 −0.01 0.73 0.17 0.80
O3 urban background 4 42.5 40.0 −0.06 0.79 0.12 0.83

PM10 roadside 8 15.6 17.1 0.09 0.78 0.43 0.48
PM10 urban background 3 13.9 15.6 0.12 0.79 0.43 0.50
PM2.5 roadside 3 13.4 11.8 −0.13 0.76 0.53 0.61
PM2.5 urban background 3 10.7 10.3 −0.03 0.74 0.50 0.66

3.1.2. PM10 and PM2.5

Figure 5 shows the evaluation of modelled annual average PM10 and PM2.5 against
observations using scatter plots divided by site types; note that there were no PM2.5
measurements at the single airport site. PM10 had a very good fit for the airport and urban
background sites. PM10 tended to slightly over-predict at roadside sites, possibly related to
uncertainties in traffic non-exhaust emissions and background data. The model had good
predictions for the small number of sites with available PM2.5 measurement data. For PM10
and PM2.5, Fb ranges between (−0.13, 0.12), slightly wider than (−0.07, 0.09) in Hood et al.
(2018) [49]. Fac2 indicates that more than 74% of PM10 and PM2.5 are within a factor of
2 of observations. NMSE varies between (0.43, 0.53) for PM10 and PM2.5, slightly higher
than (0.27, 0.37) in Hood et al. (2018) [49]. R varies between (0.48, 0.66) for PM10 and PM2.5,
slightly lower than (0.58, 0.77) in Hood et al. (2018) [49].

Figure 5. Comparison of annual averages between model output and measurement: (a) for PM10

(in µg m−3); (b) for PM2.5 (in µg m−3).
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3.2. Contour Run: Air Quality Maps

For the generation of air quality maps, the model was then run in a “Contour” Mode
(with the splitting option activated) to include output points covering the whole WM (and
extending up to 1 km outside the WM boundary). An array job with 540 cores, each for a
single sub-domain as shown in Figure 2, was submitted to the HPC at the University of
Birmingham using the Linux version of the ADMS-Urban model. The overall elapsed time
for the run (determined by the slowest core of 540 cores) for the typical whole year 2016
baseline case is about 35 h, with a median core run time of about 5 h and a minimum run
time of 16 s for sub-domains without any emission sources. The total computational time
(summing over all 540 cores) is about 169 days. Figure 6 shows a comparison of elapsed
(clock) time of the slowest core and total computational time using task farming, (estimated
by a typical one day simulation due to the substantial computational time requirement
for a single core simulation). From 1 core to 4 core, the typical elapsed time can reduce
by about 80%. From 156 cores, the typical elapsed time reduces more gradually. The total
computational time profile has a slower decrease than the profile for the elapsed time of the
slowest core, which is due to the increase in the buffer zone calculations for larger numbers
of cores (especially for 540 cores). The choice of the number of cores can be dependent
on the local HPC service, such as limitations in the number of available cores and the
maximum allowed time for a single core (walltime).

Figure 6. Comparison of elapsed (clock) time of the slowest core and total computational time using
task farming; note that the horizontal axis scale is non-linear.

The output for each subdomain was in netcdf file format, which has been combined
and interpolated using the CombineCOF and AddInterpIGP utilities developed by CERC.
The re-combination and interpolation time was about 1 h. The recombined and interpolated
outputs for the hourly output of the whole year over WM region contained ~0.61 million
and ~1.26 million output locations, and had file sizes of about 120 GB and 247 GB, respec-
tively. The final netcdf output was then processed to derive annual/subset averages and
other statistical output (e.g., percentiles) using the “Process comprehensive output” tool in
the model. This process took a couple of hours, dependent on the number of output air
pollutants. The final contour plots over WM at a specified resolution (e.g., 10 m × 10 m)
were created via GIS tools, in particular using interpolation in Surfer and display in ArcGIS.
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3.2.1. Annual Air Quality Map

Figure 7 presents a map of the annual average NO2 concentration which is a key air
quality challenge for roadside locations in the UK, at 10 m × 10 m horizontal resolution
for the baseline year of 2016. Other pollutants such as NOx, O3, PM10 and PM2.5 are
shown in Figure A1. The legend of Figure 7 indicates colour scales with annual mean NO2
concentrations higher than the UK objective value of 40 µg m−3 [75] shown in orange and
red. There were relatively higher concentrations of NO2 near motorways and major roads
in city centre areas, mostly due to the higher traffic-related emissions. Away from major
roads and in rural areas, NO2 concentrations were generally lower.

Figure 7. Annual air quality maps for NO2 (in µg m−3) at 10 m × 10 m resolution. Areas exceeding
the UK objective value of 40 µg m−3 are shown in yellow, orange and red.

3.2.2. Projected Air Quality Map for Health

For the purposes of health-related research, including assessment of personal exposure
and exploration of relationships between air pollution levels and socio-demographic
characteristics typically available on different spatial scales, the 10 m × 10 m horizontal
resolution annual air quality map may need to be further aggregated into other polygon
layers, e.g., Lower Layer Super Output Areas (LSOA) and ward levels (averages over these
layers). Figure 8 shows examples of projected annual air quality maps for NO2 averaged
over LSOA layer and ward level layer. There were clear patterns of higher concentration in
city centre areas and lower concentration in rural areas. The projected air quality maps for
other pollutants such as NOx, O3, PM10 and PM2.5 are shown in Figure A2 (in LSOA layer)
and Figure A3 (in the ward layer). These can then be linked to population and health data
for the assessment of the health impacts of air pollution. Note that the spatial averaging
process leads to a narrower range of concentrations across the whole area, as both the
lowest concentrations in the most rural areas and the highest concentrations adjacent to
road sources are no longer fully represented; this reduction in dynamic range is significant
and dependent on spatial resolution.
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Figure 8. Projected annual air quality maps for NO2 (in µg m−3) (a) in the Lower Layer Super Output Areas (LSOA) layer
and (b) in the ward level.

3.2.3. Percentile Air Quality Map

Apart from annual average air quality targets, percentiles are also a useful indicator
for the exceedance of the air quality objective value. For NO2, the 99.8 percentile for the
1 h mean [75] is normally used, which represents the 18th highest concentration in hourly
series over a whole calendar year. The UK objective for 1 h mean NO2 concentration (where
public exposure occurs) is “200 µg m−3 not to be exceeded more than 18 times a year” [75].
Figure 9 shows the 99.8 percentile for 1 h mean NO2 concentration. The exceedance of air
quality objective value (200 µg m−3) for 1 h NO2 concentration was found mostly along
motorways and major roads linking to motorways, areas in which public exposure may
be limited.

Figure 9. The 99.8 percentile annual air quality maps for 1 h mean NO2 (in µg m−3) at 10 m × 10 m
resolution. Areas exceeding the UK objective value of 200 µg m−3 are shown in orange and red.

3.2.4. Air Quality Maps over Temporal Subsets

Post-processing tools provide the flexibility to obtain concentration averages over
temporal subsets, which may be useful when mapped for health/exposure study. Figure 10
shows air quality maps of NO2 over selected temporal subsets, i.e., AM (7 a.m.–9 a.m.)
weekday, IP (inter-Peak) (9 a.m.–3 p.m.) weekday, PM (3 p.m.–7 p.m.) weekday, and IP
(9 a.m.–3 p.m.) weekend. For AM weekday and PM weekday, the influence of major road
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emissions is clearly visible over the whole WM region, due to the region-wide increased
traffic activity during these peak periods. For IP weekday and IP weekend, the major
roads have a lesser contribution to concentrations over the WM region, compared with
peak periods on weekdays. The NO2 concentration for IP weekday shows higher overall
concentration levels and a clearer pattern of influence from road emissions than that for
IP weekend.

Figure 10. Air quality maps for NO2 (in µg m−3) at 10 m × 10 m resolution averaged over (a) AM weekday, (b) IP weekday,
(c) PM weekday, (d) IP weekend.

4. Discussion

The air quality sites used to evaluate the model performance included three repre-
sentative types (i.e., airport, roadside and urban background sites). Overall, the model
performed well for all pollutants. For airport and urban background sites, the model results
reproduce the measured values well since these are less influenced by local emissions and
complex building geometry. For roadside sites, the concentrations of air pollutants are more
influenced by local emission (e.g., traffic NOx) and street canyon geometry, which may be
reflected in higher uncertainty for some of the roadside sites. NOx and NO2 concentration
levels are most closely related to local emissions and can be well predicted by the current
model. PM concentrations are more related to the regional background, which may have
some uncertainty. In order to reduce the model uncertainty, the model has been set up
with the best available emissions, meteorology, building data, source locations and monitor
locations for the WM region. From the model best practice and model evaluation, the
model configuration is satisfactory for the wider WM contour run. It is of note that, for
PM10 and PM2.5, the background concentrations (constrained to observations) are greater
than the increment associated with emissions in the model domain at all sites.
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The contour run was performed by using the modelling capability of task farming (via
spatial splitting) within the ADMS-Urban model. For this air quality modelling application
in a large urban area, the optimisation process has reduced weeks of model execution
time to only ~35 h and the model can generate high horizontal resolution “street-scale”
air quality maps over WM. There are relatively higher annual concentrations of NO2 in
city centre areas (e.g., Birmingham), mainly due to the higher local traffic emissions. As
NO2 concentrations are closely related to local traffic emissions, the control of traffic in
city centre areas would have a substantial effect on reducing proximate NO2 levels. A
Birmingham CAZ is proposed to be in place from June 2021 to reduce air pollution levels
within Birmingham city centre [63].

The high horizontal resolution air quality maps generated from the model output can
be further aggregated into other health-related layers (such as LSOA and ward layers) to
study the relationship between air quality and health data. Apart from the annual averages,
the model output and post-processing flexibility enables the calculation of other statistics,
such as percentiles. Exceedances of the air quality objective value for the 99.8 percentile
of the 1 h mean NO2 concentration were generally only found for motorways and major
roads directing to motorways, which is unsurprising due to intensive traffic activity. The
reduction in traffic speed limits for some motorways (e.g., trials on speed limits on M6
and M5 motorways near Birmingham reduced from 70 mph to 60 mph by Highways
England [76]) may thus help to reduce the NO2 exceedance, although exposure at such
locations may be limited.

Air quality maps over temporal subsets can be also derived for health/exposure study.
As expected, AM weekday and PM weekday have clear patterns of region-wide traffic,
while NO2 concentrations over these periods are much higher than the annual averages.
The influences of traffic over IP weekday and IP weekend are less significant compared
with AM weekday and PM weekday. These findings can be useful for exposure and health
studies over working periods. Reis et al. [77] also highlighted the importance of workday
population mobility on the exposure to air pollutants.

5. Conclusions

A WM-Air ADMS-Urban baseline model configuration has been developed and model
predictions for NOx, NO2, O3, PM10 and PM2.5 have been evaluated using measurement
data. Overall, the model performed well and run times are manageable using the task
farming approach. A regional (e.g., CMAQ) modelling system can provide spatially varying
regional background predictions, which can be coupled with the ADMS-Urban model in
future, but may also have its own uncertainties in terms of model configuration, compared
with observational constraints. The post-processing flexibility enables the creation of air
quality maps for annual/subset averages and other statistical output (e.g., percentiles). The
model outputs can be useful for the study of health impacts of air pollutants.

Future work will draw upon the demonstrated efficient execution of multiple air
quality modelling scenarios on HPC. It is important to ensure that the model configuration
includes model inputs that are sufficiently detailed that they allow different scenarios to
be represented. There are a range of possible air quality modelling scenarios: local and
national, short-term and long-term, transport related and non-transport related. The com-
bination of detailed inventory and spatially defined emissions, high resolution dispersion
simulation, efficient parallelisation and flexible post-processing will allow the exploration
of multiple scenarios. These may investigate concentration responses to interventions
such as Clean Air Zones, the influence of solid fuel combustion, agricultural emissions,
air quality–climate interactions and the relationships between air pollution exposure and
population distribution. These in turn enable optimisation of combined benefits and equity
of possible future limit value and exposure reduction based on air quality targets.
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Appendix A

Figure A1. Annual air quality maps for (a) NOx (in µg m−3), (b) O3 (in µg m−3), (c) PM10 (in µg m−3) and (d) PM2.5

(in µg m−3) at 10 m × 10 m resolution.
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Figure A2. Projected annual air quality maps for (a) NOx (in µg m−3), (b) O3 (in µg m−3), (c) PM10 (in µg m−3) and (d)
PM2.5 (in µg m−3) in the Lower Layer Super Output Areas (LSOA) layer.

Figure A3. Cont.
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Figure A3. Projected annual air quality maps for (a) NOx (in µg m−3), (b) O3 (in µg m−3), (c) PM10 (in µg m−3) and (d)
PM2.5 (in µg m−3) in the ward level.
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Abstract: Accidental or malicious releases in the atmosphere are more likely to occur in built-up
areas, where flow and dispersion are complex. The EMERGENCIES project aims to demonstrate
the operational feasibility of three-dimensional simulation as a support tool for emergency teams
and first responders. The simulation domain covers a gigantic urban area around Paris, France, and
uses high-resolution metric grids. It relies on the PMSS modeling system to model the flow and
dispersion over this gigantic domain and on the Code_Saturne model to simulate both the close
vicinity and the inside of several buildings of interest. The accelerated time is achieved through the
parallel algorithms of the models. Calculations rely on a two-step approach: the flow is computed
in advance using meteorological forecasts, and then on-demand release scenarios are performed.
Results obtained with actual meteorological mesoscale data and realistic releases occurring both
inside and outside of buildings are presented and discussed. They prove the feasibility of operational
use by emergency teams in cases of atmospheric release of hazardous materials.

Keywords: operational emergency modeling; atmospheric release; high-resolution metric grid; 3D;
PMSS modeling system; Code_Saturne; EMERGENCIES project

1. Introduction

Many types of accidents, malicious actions, or terrorist attacks lead to the releases of
noxious gases into the atmosphere. Densely built-up and highly populated areas, such
as industrial sites or urban districts, are the critical locations for such events. The health
effects are most severe close to the source of emission. On a local scale, the buildings
significantly influence the airflow and consequently the dispersion. Thus, atmospheric
dispersion models need to account for the influence on the flow of the three-dimensional
(3D) geometry of the buildings.

Up to now, first responders and emergency teams essentially relied on modified
Gaussian modeling. Most of the fast response modeling tools indeed use simplified flow
formulations in the urban canopy and concentration analytical solutions with assumptions
about the initial size of the plume and increased turbulence due to the urban environment:
for examples, see ADMS-Urban [1], PRIME [2], SCIPUFF [3], and the dispersion model
tested by Hanna and Baja [4]. However, Gaussian approaches do not apply to the complex
flow patterns in the vicinity of the release in built-up areas, where the most serious conse-
quences of the release are happening. Further away from the source, they cannot model
specific effects due to buildings, such as the entrapment and subsequent releases of noxious
substances due to canyon streets, cavity zones behind buildings, etc. Field experiments,
such as the Mock Urban Setting Test (MUST) field experiment [5], clearly demonstrated the
importance of high-resolution modeling in complex built-up areas: critical effects, such as
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change in the plume centerline direction compared to the inflow condition, were observed
and studied [6,7]. Models developed for scales too large to handle individual buildings
have difficulties taking into account such effects.

At the same time, more precise modeling tools are becoming increasingly available
for emergency situations at the mesoscale [8] and local scale [9,10]. Computational fluid
dynamics (CFD) models provide reference solutions by solving the Navier–Stokes equa-
tions. In particular, the Reynolds-averaged Navier–Stokes (RANS) approach can be used
on small setups by relying on heavy parallel computing and optimization [11] or precom-
putation [12,13].

The computational cost of CFD calculations, such as RANS and especially large
eddy simulation (LES), indeed makes their usability complex for real-time emergency
situations. To overcome this, a common strategy is to precompute a database of cases [12,13].
Nonetheless, the capability of the database to represent the variability of actual flows is
an important issue, especially for complex 3D flows: it requires discretizing not only
many inflow parameters, such as wind speed and wind direction, but also turbulence
parameters and requires consideration of multiple inflow locations, usually at least along
a vertical distribution. This leads to very large databases still lacking representativeness.
The representativeness is particularly critical in built-up environments where an actual
flow can be drastically different from a database case with similar but just slightly different
inflow conditions.

Other approaches strike a balance between model speed and accuracy. Röckle [14]
suggested such an approach by using mass consistency in combination with local wind
observations to solve the mean flow. Kaplan et al. [15] extended the approach by coupling
the flow modeling with Lagrangian particle dispersion modeling (LPDM, see [16]). This
approach has been completed to provide modeling solutions (see [17,18]).

Since first responders and emergency teams still essentially rely on modified Gaussian
modeling, the EMERGENCIES project was designed to prove the operational feasibility of
3D high-resolution modeling as a support tool for first responders or emergency teams.
As such, the modeling approach was defined to apply to a realistic chain of events and
applied to a geographic area compatible with the area of responsibility of an emergency
team. The approach selected was to precompute a 3D and high-resolution flow over this
huge domain by using mesoscale forecasts from one day to the next and then to compute
the dispersion on an on-demand basis.

While source term estimation is a critical issue, it is not covered in this paper, which
is dedicated to the modeling of flow and dispersion. Source term estimation requires
dedicated modeling to deal both with uncertainties regarding the situation and with the
particular physics that may be involved, such as fire or explosions.

The paper is organized in five parts: Section 2 contains a brief description of the
modeling tools, both the numerical models and the computing infrastructure, and Section 3
summarizes the EMERGENCIES project modeling set-up. Section 4 presents and comments
on the results of the simulations, including the operational aspects. Section 5 draws
conclusions on the potential use of this approach for emergency preparedness and response
in the case of an atmospheric release.

2. Modeling Tools

After describing the numerical models, we introduce the computing cluster used for
the simulations.

2.1. Presentation of the PMSS Modeling System

Operational modeling systems must provide reliable results in a limited amount of
time. This is all the more of a challenge when one needs to consider large simulation
domains, e.g., covering a whole urban area, at a high spatial resolution. The challenge
can be tackled by combining appropriate models with efficient parallelization. This was
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the basic motivation for the development of the Parallel Micro SWFT and SPRAY (PMSS)
modeling system.

2.1.1. The Modeling System

The PMSS modeling system [17,19–21] is a parallelized flow and dispersion modeling
system. It is constituted of the Parallel-SWIFT (PSWIFT) flow model and the Parallel-SPRAY
(PSPRAY), an LPDM, both used in small-scale urban mode.

The PSWIFT model [22–24] is a parallelized mass-consistent 3D diagnostic model
able to handle complex terrain using terrain-following coordinates. It uses analytical
relationships for the flow velocity around buildings and produces diagnostic wind velocity,
pressure, turbulence, temperature, and humidity fields. A calculation is performed using
the three sequential steps:

• First guess computation starting from heterogeneous meteorological input data, mix-
ing surface and profile measurements with mesoscale model outputs;

• Modification of the first guess using analytical zones defined around isolated buildings
or within groups of buildings [14,15];

• Mass consistency with impermeability on ground and buildings.

The PSWIFT model also incorporates a RANS solver [24,25]. It can be used as an alter-
nate in the third step above. The RANS solver provides a more accurate pressure field: this
is essential to derive the pressure on facades of buildings and model the infiltration inside.

The PSPRAY model [23,26,27] is a parallelized LPDM [16] that takes into account
obstacles. The PSPRAY model simulates the dispersion of an airborne contaminant by
following the trajectories of numerous numerical particles. The velocity of each virtual
particle is the sum of a transport component and a turbulence component. The transport
component is derived from the local average wind vector, while the turbulence component
is derived from the stochastic scheme developed by Thomson [28] that solves a 3D form
of the Langevin equation. This equation comprises a deterministic term that depends
on the Eulerian probability density function of the turbulent velocity, and is determined
from the Fokker–Planck equation, and a stochastic diffusion term that is obtained from
a Lagrangian structure function. The PSPRAY model treats elevated and ground-level
emissions, instantaneous and continuous emissions, or time-varying sources. Additionally,
it is able to deal with plumes with initial arbitrarily oriented momentum, negative or
positive buoyancy, and cloud spread at the ground due to gravity.

2.1.2. Scalability

In order to allow for very large calculations and near-real-time calculations, the PMSS
modeling system integrates parallelism using both weak and strong scalability [17].

The weak scalability relies on domain decomposition (DD). The domain is divided
into tiles that are compatible in size with the memory available to a single core. The strong
scalability is implemented differently within the PSWIFT and PSPRAY models. Within the
PSWIFT model, strong scalability relies on the diagnostic property of the code: time frames
are computed in parallel. Within the PSPRAY model, strong scalability is achieved by
distributing the virtual particles among the computing cores. An example of a combination
of strong and weak scaling is illustrated for the PSWIFT model and for the PSPRAY model
in Figure 1.
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PSPRAY model.
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The PMSS modeling system has also the ability to handle multiple nested domains.
The PSPRAY model can hence use a nested domain computed by the PWIFT flow model
or computed by another flow model such as, in our case, Code_Saturne (see Section 2.2).
The results of this flow model on the nested domain must be stored in the same binary
format as a PSWIFT calculation, and they must contain at least wind velocity and turbu-
lence fields.

The PMSS modeling system has been validated both in scalar mode [22,26,27] and
regarding parallel algorithms [17,20]. The parallel testing was performed in computa-
tional environments ranging from a multicore laptop to several hundred cores in a high-
performance computing center.

2.2. Presentation of the Code_Saturne Model

In an urban area, one cannot exclude transfers of pollutants from outside to the inner
part of buildings or, vice versa, pollution originating in a building and being transferred
outside. Neither the diagnostic nor the momentum version of PSWIFT is appropriate to
model the flow inside a building. Thus, computational fluid dynamics (CFD) is needed;
more specifically, we used the Code_Saturne model [29], an open-source general-purpose
and environmental application-oriented CFD model.

The Code_Saturne model (http://code-saturne.org, accessed on 17 May 2021) is an
open-source CFD model developed at EDF R&D. Based on a finite volume method, it
simulates incompressible or compressible laminar and turbulent flows in complex 2D
and 3D geometries. Code_Saturne solves the RANS equations for continuity, momentum,
energy, and turbulence. The turbulence modeling uses eddy-viscosity model or second-
moment closure, such as k-epsilon. The time-marching scheme is based on a prediction of
velocity followed by a pressure correction step. Additional details are provided in [29].

The Code_Saturne model also has an atmospheric option [7]. The model has been
used extensively, not only for atmospheric flow but also to model the flow within buildings,
including the complicated setup of an intensive care hospital room [30].

2.3. The Computing Infrastructure

Modeling the flow and dispersion at high resolution in very large domains of several
tens of kilometers of extent requires parallel domain decomposition using several hundreds
or even thousands of cores of a supercomputer.

The simulations were carried out on a supercomputer consisting of 5040 B510 bull-X
nodes, each with two eight-core Intel Sandy Bridge EP (E5-2680) processors at 2.7 GHz and
with 64 GB of memory. The network is an InfiniBand QDR Full Fat Tree network. The file
system offers 5 PB of disk storage.

3. The EMERGENCIES Project

The EMERGENCIES project aims to demonstrate the operational feasibility of accel-
erated time tracking of toxic atmospheric releases, be they accidental or intentional, in a
large city and its buildings through 3D numerical simulation.

After describing the domain setup, we present the flow modeling and then the re-
lease scenarios.

3.1. Domain Setup

The modeling domain covers Greater Paris: it includes the City of Paris, the Hauts-de-
Seine, the Seine-Saint-Denis, and the Val-de-Marne (see Figure 2). It extends to the airports
of Orly, to the south, and of Roissy Charles de Gaulle, to the north. This geographic area is
under the authority of the Paris Fire Brigade.
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The simulation domain has a uniform horizontal resolution of 3 m and dimensions of
38.4 km × 40.8 km, leading to 12,668 × 13,335 points in a horizontal plane. The vertical
grid has 39 points from the ground up to 1000 m, the resolution near the ground being
1.5 m. The grid, therefore, has more than 6 billion points.

The static data used for the modeling consists of the following:

• The topography at an original resolution of 25 m taken from the BD Topo of the French
National Geographical Institute (IGN);

• The land use data with the same gridded resolution but obtained from the CORINE
Land Cover data [31];

• The buildings data, taken also from the BD Topo of IGN, consisting of 1.15 million
polygons with height attributes.

These data have a disk footprint ranging from 1 GB for the topography or land
use to 3 GB for the building data. Figure 3 presents a view of the topography and the
building data.
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Figure 3. 3D view of the topography and buildings.

This very large domain is treated using domain decomposition: the domain is divided
into horizontal tiles of 401 × 401 horizontal grid points (see Figure 4). In total, 1088 tiles are
used to cover the domain, 32 along the west–east axis, and 34 along the south–north axis.
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Figure 4. Domain decomposition of the domain in 1088 tiles.

Three buildings of particular interest have been chosen: a museum (M), a train station
(TS), and an administration building (A). Their locations are presented in Figure 5. They
have been selected to demonstrate the capability of the system to provide relevant informa-
tion regarding releases either propagating from inner parts of buildings to the outside or
occurring in the urban environment and then penetrating buildings. Three nested domains
around M, TS, and A have been defined using a grid with a very high horizontal and
vertical resolution both inside the buildings and in their vicinity. The characteristics of
these nested domains are summarized in Table 1. The grid size is about 1 m horizontally
and vertically.
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Table 1. Nested domain main characteristics.

Domain M TS A

Domain extension (m) 390 × 350 × 100 385 × 290 × 100 230 × 170 × 100
Number of vertical grid levels 42 43 43

Number of cells (million) 5.6 4.6 2.6

3.2. Flow Simulations

The flow accounting for the buildings in the huge EMERGENCIES domain is down-
scaled from the forecasts of the mesoscale Weather Research and Forecasting (WRF)
model [32]. These simulations run every day and require 100 computing cores for 2 h
10 min for 72 h simulated.

The WRF forecasts are extracted every hour on vertical profiles inside the huge
urban simulation domain and provided as inputs to the PMSS modeling system. Thus,
24 timeframes of the microscale 3D flow around buildings are computed by PSWIFT.
Finally, the inflow conditions for flow and turbulence are extracted on the boundaries of
the very high resolution nested domain to perform the Code_Saturne simulations.

These calculations can be performed routinely every day provided the computing
resource is available. The flow and turbulence fields are then available every day in advance
both for the full domain and the chosen nests. Accidental scenarios can then be simulated
on an on-demand basis.

3.3. Dispersion Simulations

In the framework of the project, fictitious multiple attacks consisting of the releases of
substances with potential health consequences were considered. These substances could
be radionuclides, chemical products, or pathogenic biological agents. Substances were
assumed to be released inside or near the public buildings introduced in the previous
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section. All sources are fictitious point releases of short durations occurring on the same
day (taken as an example), in real meteorological conditions.

The day for the release was chosen arbitrarily to be 23 October 2014. The releases were
carried out in the morning, starting at 10 a.m. for the first one. The simulated period for
the dispersion is a 5-h duration period between 10 a.m. and 3 p.m.

The flow conditions for 23 October 2014 show an average wind speed of 3 m/s at
20 m above ground with winds coming from the southwest.

Each release has a 10 min duration, and the material emitted is considered to be a
gas, without density effect, or fine particulate matter, i.e., with aerodynamic diameters
below 2.5 µm. One kilogram of the material is emitted during each release. The first release
occurs at 10 a.m. local time in the museum, the second one occurs at 11 a.m. inside the
administration building, and the last one starts at 12 a.m. in front of the train station.

All these releases are purely fictional, but the intention is to try to apply the modeling
system to a scenario that could be faced by emergency teams and first responders.

The nested modeling is handled in a two-way mode by the LPDM PSPRAY model
within the PMSS modeling system: numerical particles move from the nested domains
around the buildings where the attacks take place to the large domain encompassing the
Paris area or, vice versa, from this large domain back to a nested domain.

4. Results and Discussion

In this section, the results obtained in the framework of the EMERGENCIES project
are presented and discussed, taking into account the characteristics of the simulations
and the associated computational resources (duration, CPU required, and storage). After
describing the results for the flow simulations, we then present the results obtained for the
dispersion before briefly discussing the constraints in rapidly and efficiently visualizing
very large results.

4.1. Flow Simulations

After presenting the flow results for the large domain and the nested domains, we
discuss the operating applicability of the system developed in the frame of the EMERGEN-
CIES project.

The calculation for the flow on the whole domain using the PMSS modeling system
requires a minimum of 1089 computing cores, i.e., one core per tile plus a master core.
Time frames can be simulated in parallel. Several parallel configurations have been tested
and are presented in Table 2. An example of the level of precision of the flow obtained
throughout the whole domain is presented in Figure 6.

Table 2. Duration of simulations for the flow on the large domain.

Number of Time Frames
in Parallel Number of Cores Simulation Duration

(min)

1 1089 161
4 4353 92
8 8705 82

The duration ranges from around 2 h 40 min using the minimum number of cores
down to around 1 h 20 min when computing eight timeframes concurrently. Regarding the
storage, a single time frame requires 200 GB for the whole domain, leading to around 8 TB
for 24 timeframes.

When considering the simulation for the nested domains, the Code_Saturne CFD
model has been set up using around 200 cores per nested domain and per time frame.
It requires 14,400 cores to handle the 24 timeframes for each of the three domains. The
simulation duration is then 100 min for the domain M, 69 min for the domain TS, and
64 min for the domain A. The storage per time frame is 281, 232, and 80 MB, respectively.
The storage for the detailed computations in and around the buildings is low compared
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to the large urban domain covering Greater Paris, contrarily to the computational costs.
Indeed, the CFD model is much more computationally intensive than the diagnostic
approach used in the PMSS modeling system. An example of the flow both in the close
vicinity of and inside the administration building is presented in Figure 7.
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ranges from 0 m/s in cyan to 2 m/s in magenta.

The flow modeling is intended for use on a daily basis: each day, a high-resolution
flow modeling over the whole Paris area is simulated to be made available should any
dispersion modeling of accidental or malevolent airborne releases be necessary.

After the WRF forecast modeling, around 3 h down to no more than 1 h 20 min is
required to downscale the flow on the large Parisian domain at 3 m resolution, depending
on the number of cores dedicated, respectively 1089 and 8705.

Then, around 5000 cores are required to handle the 24 timeframes of each nest in less
than 1 h 40 min. If the three nested domains at very high resolution are treated, around
10,000 cores need to be available for 2 h: 5000 cores available each hour to handle the
domain TS and then the domain A and 5000 cores to handle the domain M for 1 h 40 min.

Hence, the whole microscale flow modeling could be performed in 3 h 20 min using
10,000 cores.

4.2. Dispersion Simulations

After presenting the dispersion results for the large domain and the nested domains,
we discuss the operating applicability of the system developed in the framework of the
EMERGENCIES project.
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Figure 7. 3D view of the flow streamlines for the nested domain both in the vicinity of and inside the administration
building. The wind speed ranges from 0 m/s in deep blue to 3.5 m/s in orange.

The dispersion modeling benefits from two-way nested computations: numerical
particles can move from the inner-most 1 m resolution domains to the large domain over
Paris and its vicinity, and vice versa. At each 5 s emission step, 40,000 numerical particles
are emitted. Since there are three 10 min-long releases, 14.4 million particles are emitted.
A parametric study regarding the number of cores is presented in Table 3. Concentrations
are calculated every 10 min using 10 min averages.

Table 3. Influence of the number of cores on the duration of the dispersion simulation.

Number of Cores Simulation Duration (min)

250 150
500 88
750 96
1000 120

Five hundred cores were retained for operational use. The simulation results produce
90 GB for 5 simulated hours. Eighty tiles of the large domain were reached by the plumes
during the calculation, plus the three nested domains.

Figure 8 illustrates the evolution of the plume inside, in the vicinity of, and further
away from the museum.
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In an operational context, the dispersion simulation would be activated on demand.
Using 500 cores, the duration of the calculation, one and a half hours, has to be compared
to the physical duration of five hours simulated here. The simulation is thus 3.3 times
faster than the reality. Moreover, the results can be analyzed on the fly, without requiring
the whole simulation to be completed.

4.3. Visualization of the Simulation Results

Due to the large amount of data generated, the efficient visualization of data for
operational use has proved to be a challenge in itself. After introducing a first attempt
using a traditional scientific visualization application, we present a short overview of
a more operative approach [33].

3D modeling results can be explored using 3D scientific visualization applications.
Due to the large quantity of data, the viewer chosen has to handle heavy parallelization. We
chose the open-source software ParaView and developed a dedicated plugin. Nonetheless,
interactive visualization using several hundred cores required several seconds or tens
of seconds for refreshing: this is too ineffective for a user to navigate the results. Non-
interactive image rendering has also been used (see Figure 1), but it would be ineffective
for the user in an emergency situation.
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Hence, we relied finally on a tiled web map approach. The results of the simulation
are processed on the fly as results are produced [33]. Multiple vertical levels can be treated
to provide views not solely on the ground but also in the volume at multiple heights above
the ground. Processing takes a few minutes for each time frame since it consists only of a
change of file format. Then, results can be consulted in real time through a tile map service
using any web browser. Figures 6, 8 and 9 use such an approach.
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5. Conclusions

The EMERGENCIES project proved it is feasible to provide emergency teams and first
responders with high-resolution simulation results to support field decisions. The project
showed that the areas of responsibility of several tens of kilometers of length can be
managed operationally. The domain, at a 3 m resolution, includes very high resolution
modeling for specific buildings of interest where both the outside and the inside of the
building have been modeled at 1 m resolution.

The modeling is carried out in two steps: First, the modeling of the flow is computed
in advance starting from mesoscale forecasts provided each day for the following day. Then,
these flows are used for on-demand modeling of dispersion that can occur everywhere in
the domain and at multiple locations.

The modeling of the flow for the 24 timeframes can be achieved in 3 h 20 min using
10,000 cores both for the large domain and the three nested domains. If 5000 cores are
available, the large domain requires 1 h 30 min and each nested domain requires an
additional duration ranging between 1 h and 1 h 40 min. Five hundred cores are then
required to be ready for on-demand modeling of the dispersion: the dispersion is modeled
3.3 times faster than it occurs in real life.

This amount of computer power is large but not inconsistent with the means usually
dedicated to crisis management.

The dispersion requires a lower amount of computing cores than the modeling of
the flow. This allows the modeler to perform several dispersion calculations concurrently,
particularly to create alternate scenarios for the source terms. This is of particular interest
considering the uncertainties related to the source term estimation. Successive scenarios
may also be considered as information is updated and the comprehension of the situation
by the emergency teams improves.

A large amount of 3D data was produced: 200 GB for the flow and 90 GB for the
dispersion. While data produced near the ground are of the uttermost importance, the
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vertical distribution of concentration from the ground to a moderate elevation is also partic-
ularly relevant. Firstly, calculations of inflow and outflow exchanges for specific buildings
of interest require such information. Then, the vertical distribution of concentration can
support decisions to design evacuation strategies for specific buildings, such as moving
people toward the building rooftop rather than evacuating them at the ground level into
the neighboring streets.

One key aspect also put forward during the project is the difficulty of efficiently
visualizing this huge amount of data produced. After focusing initially on a parallel scien-
tific visualization application, we relied on on-the-fly data processing to create tiled web
maps for the flow and the dispersion. These data can then be accessed in real time by the
emergency team. This approach to visualizing data will be the focus of a dedicated paper.
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Abstract: In the case of an atmospheric release of a noxious substance, modeling remains an essential
tool to assess and forecast the impact of the release. The impact of such situations on populated,
and hence built-up, areas is of the uttermost importance. However, modeling on such areas requires
specific high-resolution approaches, which are complex to set up in emergency situations. Various
approaches have been tried and evaluated: The EMERGENCIES and EMED project demonstrated an
effective strategy using intensive parallel computing. Large amounts of data were produced that
proved initially to be difficult to visualize, especially in a crisis management framework. A dedicated
processing has been set up to allow for rapid and effective visualization of the modeling results. This
processing relies on a multi-level tiled approach initiated in web cartography. The processing is using
a parallel approach whose performances were evaluated using the large amounts of data produced in
the EMERGENCIES and EMED projects. The processing proved to be very effective and compatible
with the requirements of emergency situations.

Keywords: operational emergency modeling; atmospheric release; high-resolution metric grid; web
visualization; web mapping; emergencies project

1. Introduction

In the context of crisis management in case of atmospheric release, such as accidental
or malevolent releases, numerical simulation can be an important asset [1]. Locations
with high population densities are where the simulation capability is the most critical, in
particular due to the number of potential casualties. Such locations are usually built-up
areas. Nonetheless, built-up areas require specific and precise modeling due to complex
flow and dispersion patterns [2–6].

Modified Gaussian approaches are already largely in use in decisions support systems
in the case of emergency situations, see for instance ALOHA [7], or SCIPUFF [8] within
HPAC [9]. They offer a capability to handle in tens of minutes the global impact of built-up
areas on the flow and turbulence, and hence for phenomena at a minimum spatial scale of
several tens of meters. They offer indeed limited capabilities regarding the complexity of
the flow and dispersion, especially in the vicinity of the release, where the effects are the
most acute. They also lack, further away from the release, important effects of the buildings
such as entrapment of the pollutants, for instance in the canyon streets, or change in the
plume direction due to the building pattern [10]. On the contrary, the computational fluid
dynamic (CFD) often succeeds in accurately describing complicated patterns of flow and
dispersion. Still, Reynolds-averaged Navier–Stokes (RANS) models and, more importantly,
large eddy simulation (LES) models may require very large computational times compared
to Gaussian plume approaches. Such difficulties may be solved on small setups by relying
on heavy parallel computing and optimization [11] or precomputation [12].

Nonetheless, responsibility areas of emergency teams are usually quite large. Relying
on shared expertise with the emergency practitioners during exercises [13], we developed

81



Atmosphere 2021, 12, 920

a capability to use complex 3-dimensional (3D) modeling that takes buildings explicitly
into account in such large areas. This capability was demonstrated during the projects
EMERGENCIES [14] and Emergencies-MEDiterranean (EMED [15]. The responsibility
areas of the Paris Fire Brigade and of the Marseille area Fire Brigade (Bouches-du-Rhône)
used in the EMERGENCIES and EMED projects, respectively, are very large areas of several
tens of kilometers of extension from north to south and west to east. Using a high-resolution
3D approach, the projects generated large amount of data. However, at the same time, in
the framework of crisis management, the projects also illustrated the necessity to provide
the emergency teams with rapid visualizations able to describe the simulation results both
at the local and global scale. Indeed, global views of the simulation results on the whole
domain proved to be impossible to obtain using on the shelf traditional scientific viewing.
This was all the more an issue in the framework of crisis management where rapidity and
efficiency are of the essence.

Initial attempts relied on parallel scientific viewer usage with specific developments
to handle the modeling system specifics. However, while being able to visualize the results
as a whole, it was not applicable in practice due to the lengthy and non-interactive process.
In order to tackle this challenge, we introduced a web-based multi-zoom tiled approach
relying on parallel treatment of massive simulations results. This kind of approach has
been introduced in the field of web mapping services to handle maps with various levels
of details and very large dimensions, see for instance [16].

The paper is organized as follows: Section 2 contains a brief description of the EMER-
GENCIES and EMED projects and the modeling data to visualize. Section 3 introduces
the approach, including the parallel treatments of the results to support the subsequent
web visualization, while Section 4 presents and comments on the results. Section 5 draws
conclusions on the potential use of this approach for emergency preparedness and response
in case of an atmospheric release.

2. The EMERGENCIES and EMED Project

After offering an overview of the projects and the associated modeling, we describe
the data produced.

2.1. Overview of the Projects

The EMERGENCIES and EMED projects are dedicated at demonstrating the opera-
tional capability, for crisis management, of high-resolution modeling required in built-up
areas. As such, the modeling domain has been chosen according to the responsibility areas
of actual emergency teams, namely the Fire Brigades of Paris, Marseille, Toulon, and Nice.

These urban areas have geographical extension of up to several tens of kilometers.
To be able to model such areas at almost metric resolution, specific modeling tools and
computing clusters were used. After giving an overview of the modeling and computing
capabilities, we summarize the setup of each project.

2.1.1. Modeling and Computing Capabilities

The PMSS modeling system (see [17–20]) has been used to model the flow and disper-
sion on domain with extension of several tens of kilometers and horizontal grid resolution
of 3 m. The modeling system consists of the individual PSWIFT and PSPRAY models.
The PSWIFT model [21–24] is a flow and turbulence parallel, 3D, mass-consistent, and
terrain-following diagnostic model that uses a Röckle-type [25] approach to take into ac-
count buildings. It also incorporates an optional fast momentum solver. The dispersion
is handled by the PSPRAY model [22,26,27] using the flow and turbulence computed by
the PSWIFT model. The PSRPAY model is a parallel Lagrangian particle dispersion model
(LPDM) [28] that takes into account obstacles. It simulates the dispersion of an airborne
contaminant by following the trajectories of numerous numerical particles. The velocity of
each virtual particle is the sum of a transport and turbulent component, the latest being
derived from the stochastic scheme developed by Thomson [29] that solves a 3D form of
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the Langevin equation. While not being a source term model, the PSPRAY model treats
complex releases, including elevated and ground-level emissions, instantaneous and con-
tinuous emissions, or time-varying sources. Additionally, it is able to deal with plumes
with initial arbitrarily oriented momentum, negative or positive buoyancy, radioactive
decay, and cloud spread at the ground due to gravity.

The parallel scheme of the PMSS modeling system allows domain decomposition
to be performed. It is particularly adapted to large domains while taking into account
explicitly buildings.

Very high-resolution modeling at 1-m resolution inside and in close vicinity of specific
buildings of interest was performed using the Reynolds-averaged Navier–Stokes (RANS)
computational fluid dynamic (CFD) model Code_Saturne [30]. Based on a finite volume
method, it simulates incompressible or compressible laminar and turbulent flows in com-
plex 2D and 3D geometries. Code_Saturne solves the RANS equations for continuity,
momentum, energy and turbulence.

Calculations were performed on a supercomputer consisting of 5040 B510 bull-X
nodes, each with 2 eight cores Intel Sandy Bridge EP (E5-2680) processors at 2.7 GHz and
with 64nGB of memory. The network is an InfiniBand QDR full-fat tree network. The file
system offers 5 PB of disk storage.

The approach is a two-step approach:

• Flow and turbulence are computed in advance each day for the next, and for the whole
domain starting from meso-scale meteorological forecasts computed using the WRF
model [31];

• Dispersion is computed on-demand when a situation occurs.

2.1.2. Experimental Setting for the EMERGENCIES Project

The domain covered the Greater Paris area, with an extension of roughly 38 × 41 km2

(see Figure 1). The horizontal grid resolution was 3 m. The vertical grid had 39 grid
points from the ground up to 1000 m with 1.5-m grid resolution near the ground. The grid
contained more than 6 billion points.
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Figure 1. 3D view of the topography and buildings. North is at the top. Figure 1. 3D view of the topography and buildings. North is at the top.

The domain contained three very high-resolution nested domains around specific
buildings, a museum, a train station, and an administrative building, with 1-m grid size.
The dispersion scenario consisted of three malevolent releases, close or inside the buildings
of interest, with a duration of several minutes and occurring during a period of two hours.
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The domain was divided into more than 1000 tiles distributed among the computing
cores (see Figure 2).
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Figure 2. Domain decomposition of the domain in 1088 tiles.

The release scenarios consisted of several 10 min duration releases of one kilogram
each. The release could be a gas, without density effects, or fine particulate matter, i.e.,
with aerodynamic diameters below 2.5 µm.

2.1.3. Experimental Setting for the EMED Project

The EMED project can be considered as a follow-up of the EMERGENCIES project
and dedicated as a first step toward an industrialization of the approach.

In this project, three high-resolution domains around three major cities along the
French Riviera were modeled: Marseille, Toulon, and Nice. The domain size ranged from
20 × 16 km2 around Nice to 58 × 50 km2 around Marseille (see Figure 3), each with a
horizontal grid resolution of 3 m. The grid for the Marseille domain contained more than
10 billion points.
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The Marseille domain was divided into more than 2000 tiles distributed to the com-
puting cores. Among the domains of the EMED project, the Marseille domain is mainly
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referred to in the following sections since the volume of data generated was larger, and the
difficulty to handle them was more acute.

The release scenarios consisted of several 20-min duration releases of one kilogram
each. The release could be a gas, without density effects, or fine particulate matter, i.e.,
with aerodynamic diameters below 2.5 µm.

2.2. Data Produced

For each project, and each domain, the data produced were twofold:

• First the flow and turbulence data (FT data), on each and every tile of the domain;
• Then concentration data (C data), only on tiles reached by the plumes generated by

the releases.

For the EMERGENCIES project, three additional nested domains are also available
around and inside the buildings of interest.

FT data are produced for a 24-h duration. In the EMERGENCIES project, they are
produced every hour, while in the EMED project, they are produced every 15 min. Since the
grid contains roughly 13,000 × 13,000 × 39 point in EMERGENCIES, and 19,000 × 16,000
× 39 in EMED for the domain covering Marseille, the data produced for each timeframe
are quite large:

• 200 GB per timeframe for the domain covering Paris;
• 668 GB per timeframe for the domain covering Marseille.

These data do not interest directly the team handling the crisis management, with
the exception maybe of the flow for the firefighters in the case of a fire associated with a
release. Still, the modelers are required to inspect and verify the modeling of the flow and
turbulence.

Regarding the transport and dispersion of the release, the size of the C data produced
is directly proportional to:

• The area covered by the plume: the larger the plume, the larger the number of tiles
that contain C data;

• The persistency duration of the plume in the domain;
• The averaging period used.

The area and persistency are strongly related to the transport and diffusion due to
the flow.

Regarding the averaging period, since the transport and dispersion model is an LPDM,
to compute a concentration field, particles have to be projected onto the computation grid.
This is done during the averaging period. If the averaging period is 10 min, 6 values per
grid point are obtained for one hour simulated. If this averaging period is 1 min, 60 values
are obtained for one hour simulated. An averaging period of 10 min is sufficient for the
needs of a crisis management team. As a modeler, it is nonetheless interesting to produce
1-min averages to obtain a more detailed view of the plume evolution, especially close to
the source.

For the EMERGENCIES project, with 10 min averages, 90 GB of concentration data
were produced to simulate a period of 5 h. This reaches 900 GB if 1-min averages are used.

For the EMED project, using 10 min averages, 85 GB of concentration data were
produced to simulate a period of 4 h. This reaches 850 GB for 1-min averages.

The amount of data produced by the simulation ranges between around 100 GB and
several TB. The fact that they were decomposed onto calculation tiles, and also the necessity
for them to be rapidly and efficiently explored and manipulated in the context of crisis
management led us to develop the approach presented in the following section.

3. Treatment and Visualization of the Data

After presenting the initial attempts for visualization, we introduce the methodology
chosen based on multilevel tiled images. Then, we describe its implementation, with a
particular focus on the treatment of vector field and the parallel distribution of calculations.
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3.1. Initial Attemtps

With this large amount of data, the requirement is to be able to zoom in specific
locations with a high level of details while at the same time being able to get a good
understanding of what is occurring globally, with all this under the constraint of keeping a
good level of interactivity.

In the EMERGENCIES project, the ability to produce any visualization of the results
over the whole domain was not possible out of the box.

At first, parallel 3D scientific viewing was tried. The open-source data analysis and
visualization application PARAVIEW [32] was selected due to its parallel capabilities. A
dedicated plugin was developed. The plugin is relying on the computation tiles, i.e., the
way the domain is decomposed by the PMSS modeling system: each tile is loaded by a PAR-
AVIEW visualization server, and images can be generated in batch or through interactive
views. Hence, the Paris domain required more than 1000 cores, one per PARAVIEW server,
and the Marseille domain more than 2000 to operate the flow visualization. While the
batch permitted to generate several views of interest (such as Figures 1–3 above), through
a lengthy iterative process of blind view setup then view production, it is not interactive.
The interactive viewing was tested up to around 120 computation tiles, but it required
several tens of second to change a point of view, which restricted its actual usability. It also
required a large amount of core to be available at the exact time of the visualization, and
during the whole visualization session.

3.2. Introduction to the Methodology

The final methodology retained was taken from online cartography and very large
high-resolution maps. The idea was to provide different levels of details at different zoom
levels and to slice the data into visualization tiles at each level, as illustrated in Figure 4.
The aim was to reduce the memory footprint of the data and limit it to the data being
actually displayed in the view.
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At each zoom level z, the global map for the Earth surface is divided in 2z visualization
tiles, and each tile has a size of 256 × 256 pixels, since each tile is an image, traditionally
a portable network graphics (PNG) type. At each zoom level, the tiles are numbered
according to their location along the west–east, the x coordinate, and north–south axis, the
y coordinate.
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From now on, each time we refer to a tile, it is a visualization tile. A tile related
to the domain decomposition of the parallel scheme of the model is referred to as a
computational tile.

We retained such approach since it enabled fast browsing through a cartographic-type
client, while being able to display high level of details when required.

The treatment was performed directly on the computing cluster as a post-processing
step performed on the FT or C simulation data. The tiles were then made available through
a web server and displayed by a JavaScript client on any web browser.

The post-processing was performed on a set of FT or C data, for a set of time frames
and vertical levels. Accessing the actual values of each field, instead of producing a colored
image, was required to be able to change the coloring scale or explore vector outputs such
as the flow field. Hence, floats were encoded in 4 bytes and stored directly in the PNG files
by using the 4 bytes normally distributed to the red, green, blue, and alpha channels.

3.3. Details on the Multilevel Tiling Implementation

The post-processing was performed in parallel using the message passing interface
(MPI) standard. After describing the algorithm, we discuss the particular of vector fields
such as the wind flow.

3.3.1. Parallel Scheme

The scheme relied on the Tiff file standard [33] and the Geospatial Data Abstraction
Library (GDAL) [34]. It used the Tiff virtual stack approach to handle the domain decom-
position inherited from the parallel calculation and see the group of Tiff files generated
from each calculation tile as multiple parts of a single large Tiff file. It went through the
following steps:

• First step, generation of the Tiff files:

# Distribution of the analysis of available bin files to available cores to retrieve
available fields, domain coordinates, available time steps;

# Calculation by the master core of the large domain footprint, the tiles coordi-
nates required for each zoom levels and the time steps to extract;

# Generation of Tiff files for each FT or C data file, and for each vertical level
and time step selected. The files are generated using the Google Mercator
projection;

# Creation of a Tiff virtual stack encompassing the whole calculation domain, the
domain being, or not, decomposed in multiple computation tiles of arbitrary
dimension;

• Second step, generation of the tiles from the Tiff files:

# Loop on zoom levels being treated starting from the larger zoom level;
# Distribution of each tile, from the total pool of tiles combining field name, time

step and vertical level, to a core for generation.

3.3.2. Specificity for Vector Fields

For the vector fields visualization, additional treatment was performed but only on the
client side. Indeed, the methodology for the post-processing was similar to the one used
for a scalar field, with each component of the vector field being generated as a scalar field.

The visualization client then treated specifically the vector field by proposing either
to view each component individually or by treating them as a vector field and offering
streamline visualization. Streamlines were generated by using visualization particles which
trajectories of are drawn on the screen. Visualization particles were exchanged between
tiles to prevent streamline boundaries to appear at each tile boundary.

A dedicated presentation of the client will be available in a future publication.
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4. Results

After presenting the results obtained for the EMERGENCIES and EMED data, we
describe the performances of this approach then discuss its usability in crisis management.

4.1. Visualization
4.1.1. Flow and Turbulence Data

As described above, the flow was computed by the PMSS modeling system with a
grid step of 3 m: A detailed view of the flow is presented in Figure 5 close to the train
station and the museum of the project EMERGENCIES. The streamlines reveal the details
of the flow and its importance for the dispersion pattern close to the source, especially
regarding the entrapment of the concentration obviously in the buildings, but also in the
recirculation zones and some narrow canyon streets nearby.
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This type of analysis is particularly important for the modeler to evaluate the quality
of the modeling and attain an understanding on the concentration patterns computed by
the model.

The capability to visualize the flow streamlines on a large area is displayed in Figure 6.
The flow can hence be visualized on a large area to understand the global flow pattern,
while specific analysis at the scale of the road or the building is also available in any
locations of these very large domains.
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Obviously, the wind speed can also be presented. Figure 7 displays the wind speed in
the Marseille city center and on the topography south of the city.
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4.1.2. Concentration Data

The concentration field of the EMERGENCIES project for the first minutes after the
release inside the museum is presented on Figure 8. It shows the dispersion pattern
first within the building (Figure 8a–c), then in the rather open field close to the museum
(Figure 8d,e), and finally in the streets to the north (Figure 8f).
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Figure 8. View, for the EMERGENCIES project, of the plume inside and in the vicinity of the museum: (a) 1 min after the
release; (b) 3 min; (c) 4 min; (d) 6 min; (e) 8 min; (f) 10 min. The change from the 1-m resolution of the inner domain to the
3-m resolution of the large domain can be noticed. The threshold for 500 µg/m3 of concentration is in red, while that for
1 µg/m3 is in orange and that for 0.001 µg/m3 is in green. North is at the top.

The release in the city of Nice in the EMED is displayed in Figure 9. The release
occurred in a plaza, the Place Massena, (Figure 9a) and the plume was both trapped in
the plaza and transported rapidly by the stronger flow in the large street south of the
release (Figure 9b). It then hit a first hill, the Colline du Chateau (Figure 9c), before moving
away and reaching the strong mountainous topography northeast of Nice, while remaining
trapped in some narrow streets of the city center (Figure 9d).
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Figure 9. View, for the EMED project and the release in the Nice domain, of the plume in the vicinity and further away
from the release: (a) 2 min after the release; (b) 5 min; (c) 15 min; (d) 55 min. The scale, and the zoom level, vary between
the views to cope with the evolution of the plume. The threshold for 500 µg/m3 of concentration is in red, while that for
1 µg/m3 is in orange and that for 0.01 µg/m3 is in green. North is at the top.

In Figure 10, for the multiple releases in the Marseille domain, various zoom levels
allowed the global pattern of the plume to be displayed while being able to also focus on
pollutant entrapment inside canyon streets.

4.2. Performances

Performances of the methodology were evaluated both regarding the post-processing
prior to the navigation, but also obviously during the navigation.

4.2.1. Post-processing Step

Performances of the creation of the multilevel tiled data were also relevant since they
had to be included in the duration of the simulation, especially for a modeling system
aimed at crisis management.

The parallel scheme had very limited communications between cores but was limited
by the number of tiles that could be distributed among cores. Still, the fewer the tiles, the
smaller the domain size and the lower the computational cost of the post-processing step.

The post-processing step had been performed on the same infrastructure as the simu-
lations for the projects.

Regarding the flow and turbulence treatment, the zoom level was constructed between
the levels 10 and 16. The levels above 16 were useless since the grid size of the mesh for the
modeling system was 3 m, and at zoom level 16, the pixel size on the equator was below
3 m.
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For the wind flow field, either in the Paris or Marseille domains, the treatment per
timeframe using 100 cores required less than 10 min.

For the concentration data at 1 min, and since the data were stored in a single file
per tile for the whole duration of the simulation, the treatment for the whole period of
time used 50 cores and required roughly 2 h either for Marseille or Paris. For the Marseille
domain, the simulation duration was 4 h and the binaries contained 240 timeframes; hence,
the post-processing required 30 s on average per timeframe.

Regarding the disk size, the data produced for exploration had sizes similar to the raw
binary output of the model, being binary too, with a maximum zoom level, 16, which led
to a pixel size being of the same order of magnitude as the grid size of the model. A small
overhead was due to the size of the additional zoom level above 16. On the other side, not
all the vertical levels were extracted but mainly the levels near the ground.

As an illustration, the EMED concentration data, using 10-min averages for the con-
centration, had a size of 85 GB, while the multilevel tiles limited to the first two vertical
levels had a size of 3.2 GB.
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level, vary between the views to cope with the evolution of the plumes. The threshold for 500 µg/m3 of concentration is in
red, while that for 1 µg/m3 is in orange and that for 0.01 µg/m3 is in green. North is at the top.

4.2.2. Navigation

The navigation through the data was limited by the capability of the server serving
the tiles to support a defined level of workload. This being a problem of server scalability,
which is rarely an issue in the context of crisis management where the number of team
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members accessing the data is very limited, the visualization on the client side was similar
with the experience of a user browsing through any web mapping service:

• Data are accessible in less than several seconds, whatever the global size of the domain;
• Change in locations used the tiling capability, with additional tiles being loaded

when required;
• Change in zoom allows both large scale and small-scale features to be monitored.

4.3. Discussion for Crisis Management

The approach taken here allowed us to:

• Take the most out of the computing infrastructure during the modeling phase by
preparing the output;

• Enable a very efficient navigation in and consultation of the result during the exploita-
tion of the simulation, even for non-expert users of modeling due to the very large
diffusion of web mapping tools.

The web mapping approach allows a better integration of the simulation results in
third parties integration tools, especially geographical information systems (GIS), which
have increasing availability during crisis management.

It also allows the modeler to explore the results even for very large simulation results
like the flow data presented above.

5. Conclusions

The EMERGENCIES and EMED project demonstrated the operational capability of
high-resolution modeling in built-up areas for crisis management and supported by high-
performance computing. These projects pointed out the vital importance of a capability to
visualize easily and in time compatible with emergency situations the simulation results.

Since these projects were applied on responsibility areas of actual emergency teams,
they generated very large amounts of data that made it all the more difficult to explore the
data generated.

While an initial approach relying on traditional 3D scientific viewing permitted us
to create visualizations in batch mode for such large results, this approach proved to
be difficult to use as an actual operational capability. This was mainly related to limits
in interactivity.

An alternative approach was introduced taken from the field of web mapping by
using multilevel tiled images. The approach was implemented in a parallel library to be
used as a post-processing step after the simulation of the flow and the dispersion and on
the same infrastructure. The approach was also modified to allow us to display values
rather than images, time-dependent and multi-height results, and scalar or vector fields.

The performance of the parallel post-processing step proved to be largely compatible
with the requirement of the emergency situation, since the intensity in calculation and time
required were significantly lower than those of the simulation in itself.

The actual navigation in the result either by the emergency team or the modeler was
similar with the one experienced by any web mapping tool user, and hence very satisfactory
to the requirement in terms of rapidity and capability do visualize both the larger scale but
also the fine details.

This kind of tool is also widely known among the users, and it has natural integration
capabilities in third party tools such as GIS.

This approach is hence of paramount importance for the adoption of high-resolution
modeling in built-up areas by the crisis management teams, either during preparation of
exercises or during an actual situation management.

In a context of increasing adoption of virtual or augmented reality (AR/VR) tools in
the crisis management community, proving again the vital importance of very efficient
visualization tools for the simulation community, additional perspectives are under studies
to allow the integration of modeling results in the framework of AR/VR.
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Abstract: The number of cities, or parts of cities, where air quality has been computed using the
PMSS 3D model now appears to be sufficient to allow assessment and understanding of performance.
Two fields of application explain the growing number of sites: the first is the long-term air quality
assessment required in urban areas for any building or road project. The geometric complexity
found in such areas can justify the use of a 3D approach, as opposed to Gaussian ones. However,
these studies have constraining rules that can make the modelling challenging: several scenarios
are needed (current, future with project, future without project), the long-term impact implies a
long physical time period to be computed, and the spatial extension of the domain can be large in
order to cover the traffic impact zone of the project. The second type of application is dedicated to
services and, essentially, to forecasting. As for impact assessments, the modelling can be challenging
here because of the extension of the domain if the target area is a whole city. Forecast also adds
the constraint of time, as results are requested early, and the constraint of robustness. The CPU
amount needed to meet all these requirements is important. It is therefore crucial to optimize all
possible parts of the modelling chain in order to limit cost and delay. The sites presented in the article
have been modelled with PMSS for long periods. This allows feedback to be provided on different
topics: (a) daily forecasts offer an opportunity to increase the robustness of the modelling chain;
(b) quantitative validation at air quality measurement stations; (c) comparison of annual impact
based on a whole year, and based on a sampling list of dates selected thanks to a classification process;
(d) large calculation domains with widespread pollutant emissions offer a great opportunity to
qualitatively check and improve model results on numerous geometrical configurations; (e) CPU time
variations between different sites provide valuable information to select the best parametrizations, to
predict the cost of the services, and to design the needed hardware for a new site.

Keywords: air quality impact study; 3D; PMSS model; high resolution grid

1. Introduction
1.1. General Context and Motivations

Air pollution is known to impact health strongly: the World Health Organization esti-
mates today that it kills approximatively 7 million people per year. Exposure is especially
alarming in dense urban areas, where both population and pollutant emissions are high.

Methodologies for estimating the exposure in cities is therefore fundamental to de-
scribe current and future situations, and define improvement strategies.

Air quality in cities results not only from local emissions, but is a complex system that
can be described by the following simplifications [1]: the regional-scale contribution which
have a uniform impact on the city; the city-scale contribution, including emissions from
heating for example, that is uniformly considered within the city or within the different
districts of the city according to the spatial resolution of the available emission inventory;
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and the street-scale contribution, which are related mainly to local traffic emissions, and
are highly non-uniform.

The present article is focused on the deterministic modelling of the street-scale con-
tribution. As air quality observations provide concentration measurements of all the
contributions, model validation is not performed with only the street-scale, but also with
the larger scale contributions that can be named “background contribution”.

Modeling provides additional and complementary information to air quality mon-
itoring networks that are limited to a given number of measurement points: exposure
maps detailing spatial gradients are one of the added values of modeling. Urban micro-
meteorology has been studied since the 1980s [2], and different types of approaches,
ranging from simple analytical formulations (Gaussian models) to full fluid dynamics
(CFD models), are used nowadays [3].

The approach is noticeably chosen depending on the objectives, the time, and budget
constraints. The present article deals with applications where both 3D high resolution
and limited CPU time are required, and for which the PMSS modeling system is an
applied solution.

1.2. The PMSS Modeling System

Parallel-Micro-SWIFT-SPRAY (PMSS) is a flow and dispersion modelling system con-
stituted by the SWIFT and SPRAY models. They became Micro-SWIFT and Micro-SPRAY
when explicit consideration of the obstacles [4,5] was added based on the preliminary work
of Rockle [6], with the principal objective of rapid modelling (faster than a full CFD model)
of the accidental or malicious dispersion of pollutants in dense urban areas. PMSS has
then been improved, and parallel versions of Micro-SWIFT and Micro-SPRAY (abbreviated
as PSWIFT and PSPRAY) have been developed [7,8]. Recent validations in this scope of
application are presented in [9,10].

The rapid nature of PMSS and the increase in power of the computational machines
then enabled, in addition to the defense-oriented use, the study of air quality in dense urban
areas, often highly impacted by road traffic. The model was first used on neighborhoods
such as Bologna [5], and then on entire cities such as Paris [11]. In this type of application,
the number of sources to be considered is much more important, and makes the calculation
more CPU expensive.

PSWIFT [1] is a 3D diagnostic, mass-consistent, terrain-following model providing
the wind, turbulence, and temperature following three main steps:

• A first guess computation based on the interpolation of heterogeneous meteorological
input data, a mix of surface and profile measurements, and/or possibly meso-scale
model outputs;

• The modification of the first guess using analytical zones defined around isolated
buildings or within groups of buildings, based the approach originally proposed
by [6];

• The mass-consistency (with impermeability condition at the ground and buildings)
obtained by minimizing the difference of the wind field of the second step over
the volume of the domain under the mass conservation constraint. The effect of
atmospheric stability on the flow around obstacles is considered through a coefficient
α applied to the vertical wind component terms during the minimizing process [12].

The method allows detailed flow fields in the urban environment to be generated
within a matter of minutes [13]. To consider traffic-produced turbulence (TPT) in street
canyons, a formulation based on the OSPM model [14] has been added, increasing the
turbulent kinetic energy field predicted by PSWIFT in these zones according to vehicles
fluxes, speed, and effective area.

PSPRAY is a 3D Lagrangian particle dispersion model (LPDM) [15], directly derived
from the SPRAY code [16–22]. The dispersion of a pollutant (gas or fine aerosol) is simulated
following the trajectories of a large number of numerical particles. The trajectories are
obtained by integrating in time the particle velocity, which is the sum of a transport
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component defined by the local averaged wind provided by PSWIFT, and a stochastic
component representing the dispersion due to the atmospheric turbulence. The stochastic
component is obtained by solving a 3D form of the Langevin equation for the random
velocity, and applying the stochastic scheme developed by Thomson [23].

To consider the transformation between NO and NO2, a simple chemical scheme has
been added in PSPRAY [24].

1.3. The Different Type of High Resolution Air Quality Modeling Applications

In France, the two main frameworks in which such modelling are used are regulatory
impact studies for road or building projects, and forecasting (or now-casting) systems
operated by territorial agencies. The number of neighborhoods or cities modelled in these
contexts with PMSS now seems to be sufficiently large to gather different feedbacks and
optimization methods of the computational resource in the present article, with the goal of
satisfying temporal and budgetary constraints.

In the first section, different reasons making the use of HPC useful for long-term
impact studies of air quality in cities are presented. In some examples, optimization
methods of computing resources and modelling validations are also presented. It should
be noted that for most impact studies, contractual context frequently does not allow for
the publication of results. These studies, limited in terms of budget, also don’t include
modelling validation. Consequently, in this article, only the results obtained in the study
of chronic pollution in the framework of collaborative research and innovation projects
are presented.

In the second section, feedback is presented from forecasting systems incorporating
the PMSS model. This type of system poses a significant performance constraint in terms
of computational time in order to obtain results early enough.

Finally, the third section gathers information on the configuration parameters of the
model, on the computational machines used, and on the performances obtained, in order
to identify useful trends for specifying the resources required for future modelling of the
same type.

2. Long Term Air Quality Assessment in Urban Areas
2.1. Why Is HPC Used?

In France, urban development projects can be subjected to environmental assessment
or to a case-by-case analysis according to criteria and thresholds (decree No. 2020-844 of
3 July 2020 on the environmental authority and the authority responsible for the examina-
tion of the case). The content of the “air and health” section of impact studies is defined in
the methodological guide provided with the technical note of “22 February 2019”, related
to consideration of the health effects of air pollution in road infrastructure impact studies.
According to this methodological guide, air concentrations that are induced by the project
must be estimated with the help of a dispersion model.

Several specificities of these development project impact studies on air quality in dense
urban areas potentially lead to a model choice whose complexity and computational cost
guide towards the use of HPC machines. The following section describes these different
specificities, partially within the prism of French regulations.

2.1.1. Complex Geometry

The first element is the geometric context of this type of study: in a dense urban area,
the volume occupied by buildings is important. Inside Paris, for example, 39% of land is
covered with buildings (calculated from the BD TOPO database of the National Geographic
Institute (IGN)). This significant percentage implies a calculation error of the pollutant
concentration for modelling approaches that do not consider the volume occupied by
buildings. This is the case, for example, for Gaussian models such as CALINE4 [25], for
which concentration underestimations are recorded by [26] for a canyon street configuration.
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The operational street pollution model, OSPM [27], takes into account the confinement effect
in street canyons, while keeping an inexpensive approach in terms of computation time.

The high buildings density and their organization into streets, crossroads, and blocks
of houses also involve channeling effects. The Gaussian approach to model the disper-
sion can then be upgraded, as in the SIRANE model [28], with pollutant mass exchange
algorithms both at the top of canyon streets, and at crossroads between road segments.
Modelling consequently remains inexpensive in terms of computing time.

These approaches are based on the geometric hypothesis of a classic or semi-open
canyon street with a uniform building height along the street. To address any geometric
configurations, it seems required to explicitly take into consideration the volumes of each
building, for example, by constructing an unstructured mesh around it, or by projecting
these volumes on a structured mesh. This spatial discretization is typical for CFD models,
which are, however, more expensive in terms of computation time. In the atmospheric
dispersion field, the family of models based on Rockle’s work [6], such as PSWIFT, provides
less expensive alternatives compared to full CFD models [29].

2.1.2. Unsteady Meteorology and Unsteady Emissions

A second specificity of impact studies is the temporal variability, both in terms of
meteorological conditions, and pollutant emissions. This double variability raises questions
concerning the use of steady or unsteady models, and increases the potential number of
situations to be modelled.

Steady versus Unsteady Approaches

Straight-lined Gaussian models are stationary by construction, and the most com-
plete models, such as the CFD models, can also be used in a stationary way within the
atmospheric dispersion framework when the considered meteorological conditions and
emissions are constants. To calculate an annual impact, a number (often limited for the more
expensive models) of these steady-state situations is simulated, and an average, weighted
by the frequency of occurrence of each situation, is used to estimate annual values. This ap-
proach was used in 2020, for example, on the impact study of the developing project around
the Eiffel Tower (https://www.paris.fr/pages/grand-site-tour-eiffel-un-poumon-vert-au-
c-ur-de-paris-6810/ (accessed on 10 September 2021)), and for the developing project
at the “Porte de Montreuil” (https://www.paris.fr/pages/20-e-porte-de-montreuil-3329
(accessed on 10 September 2021)). It can be described as a frequency approach. The
transitory aspect of the dispersion is neglected. To take it into account, it is necessary to
use an unsteady dispersion model over sequences of several hours or several days for
example, and ideally, over a full year. Today, calculating sequences over several days
with a full CFD model seems to be too costly, in terms of computation time, to be com-
patible with deadlines and the total costs of impact studies, however, with intermediate
approaches such as PMSS, it is reasonable, and already done for many studies. A com-
plete one-year sequence is a possible approach (sequential approach), but in practice, the
selection of a few dozen typical days (several 24 h sequences) is more affordable. The
latter has been used, for example, in the impact study of the Porte Maillot project in 2019
(https://www.paris.fr/pages/projet-16e-17e-porte-maillot-4559 (accessed on 10 Septem-
ber 2021)). It is then both a sequential and frequential approach. This trade-off is detailed
in a concrete study case in Section 2.2.

Input Data Cross-Variability

Time variability in meteorology and emissions implies, for a frequential approach,
choosing the most representative combinations, a task which might not be trivial. For ex-
ample, if low winds are rather nocturnal and, therefore, associated with low traffic periods,
in winter, the night can last until the morning peak traffic. The situation then penalizes
the air quality because of weak winds and large emissions, and might be considered in the
selection. However, in a frequential approach, the limited number of cases often entails the
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impossibility of considering this type of specific combination because only average daily
traffic values are used.

2.1.3. Purifying Systems

In order to bring a contribution to the air quality improvement in cities, some develop-
ment projects include depollution systems. The use of a high-level model with a sufficient
complexity is required in order to take into account the effects of the depollution systems,
and quantify the extent of the affected zone in three dimensions.

2.1.4. Numerous Scenarios

In France, the methodological guide, coming with the technological note of “22
February 2019”, related to the effects of air pollution on health in impact studies of road
infrastructures, states the necessity of examining numerous scenarios: the current situation,
and the future situation at different horizons (at least at the commissioning of the project,
and up to 20 years after the commissioning, with and without the project)—at least five
scenarios for each project should be examined. As deadlines to conduct impact studies
are often short, it is necessary to use powerful computing machines to complete all of the
calculations.

2.1.5. Domain Extents

For road development impact studies, French regulations require the computational
domain to cover the zone for which road traffic is modified by 10%. Areas that must be
modelled can then be far more extended than the development project itself. As an example,
for the development of the Eiffel Tower neighborhood (Autorité Environnementale, 2020
Avis délibéré de l’Autorité environnementale sur l’aménagement du site de la Tour Eiffel
(75)—N◦ Ae 2020-115), the project’s extension is included in a 1.5 km × 1.5 km area, and
the computation domain for the modelling of the air quality is 7 km × 5.3 km.

2.2. Annual Impact on a Coastal City with Very Complex Terrain—HPC Use Optimization
with Classification
2.2.1. Presentation and Objectives

The computation times of PMSS can lead to costly annual impact studies of a site when
many sources are being considered. As discussed in the previous section, for an urban
site with emissions linked to road traffic, a classification of the input data (meteorological
data for example), allows for the selection of a few entire days to model. Statistics, and,
in particular, average concentrations, are therefore calculated from a few dozen days, but
not from the whole year. The use of classified input data allows the computation time
to be restricted, while keeping the benefits associated with the modelling of continuous
sequences, taking into account diurnal cycle and emission modulations.

Self-organized maps (SOMs) is the classification method used in the study presented
in this section. It is based on artificial neural networks that operate through unsupervised
learning [30]. This method was introduced in the context of atmospheric studies in the
late 1990s as a classification and shape recognition method. The article [31] reviews
the applications of the SOMs method to meteorology and oceanography. This method
is shown to be useful at very different spatial and temporal scales. The current study
proposes verifying that the SOMs classification of the input data allows for the estimation
of a yearly average and percentiles of concentrations close to those obtained without
SOMs classification. Percentiles are important to assess the frequencies of exceedances
for regulatory impact studies. Estimating these values with the classification is more
challenging than annual averages because classifications tend to approximate statistical
tails less accurately.

This study, in collaboration with Atmo Sud, deals with the air quality modelling of
a port agglomeration in the south of France. The horizontal extent of the study domain
is about 3.6 km by 4.6 km. Given the street types of the agglomeration, a 3 m resolution
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was chosen for the whole domain to efficiently model the dispersion of the pollutant in the
urban fabric. The steep topography culminates at 770 m. The 3D buildings database (BD
TOPO IGN) has 3637 polygons in the modelled domain. The road network is described
in 1382 sections, on average 101 m long, but whose length can vary from a few meters
up to 3.3 km. Hourly meteorological data from a station located in the computation
domain is integrated as an input to the PMSS model. Pollutant emissions from road traffic
were modelled with the COPERT 5 method, and were provided by Atmo Sud with time
modulation profiles for business days, Saturdays, Sundays, and holidays. Atmo Sud also
provided the emissions from an incinerator located in the modelled domain with the
thermodynamic properties of the chimneys (height, temperature, expulsion speed of the
discharges at the chimney output). Other sources of pollutants are taken into account by
integrating background concentrations recorded at urban background stations located in
the modelled area. These stations are supposed to be located outside of the direct influence
of the sources that are explicitly modelled.

NO2 concentrations are herewith presented. PM10 and PM2.5 concentrations have also
been analyzed. As the conclusions from the SOMs classification assessment are similar, they
are not presented. Background concentrations of NO2 were recorded at two measurement
stations, but only the minimum value is selected as the background concentration. O3
background was also extracted from observations at background monitoring stations.

2.2.2. Model Performance without Classification

Days without observations were not modelled. Consequently, the year 2017 counted
359 days that could be modelled. In this first part of the study, all the available days were
considered. Calculations were carried out at the CALMIP computation center (University
of Toulouse). With PSWIFT, one day is modelled in 15 min by allocating 151 computation
cores, whereas PSPRAY runs for 91 min with 240 computation cores. In comparison with a
Eulerian model such as PSWIFT, the Lagrangian approach of the PSPRAY model implies a
significant variability of the computation time, mainly according to meteorological situation.
For example, the 15 March was modelled in 102 min, whereas the 17 March was modelled
in 76 min.

In the context of the project, in 2018, Atmo Sud conducted a measurement campaign
to complete the field diagnostic by bringing complementary data to the five permanent
stations located in the modelled area.

Table 1 presents the scores obtained for hourly concentrations at the five stations. The
high scores at station three can be explained by the fact that the values at this station were
used as input data for the model.

Table 1. Statistical evaluation of the model performances for hourly NO2 concentrations on five monitoring stations during
359 days of year 2017.

Station Mean Observation (µg/m3) Mean Model (µg/m3) Bias (µg/m3) RMSE (µg/m3) r

Station 1 * 27.9 21.4 −6.8 15.46 0.78
Station 2 41.3 33.7 −7.6 24.44 0.56

Station 3 * 20.4 20.2 −0.4 5.33 0.95
Station 4 50.8 52.9 2.2 20.89 0.68
Station 5 35.3 32.8 −2.3 20.10 0.57

* background stations.

In addition to the five permanent stations, passive NO2 measuring samplers were
positioned on 37 locations in the modelled domain. The locations of the measurements aim
to better characterize air quality at a fine scale on the modelled area. Particular attention
has been paid to consider:

• Different neighborhoods, in order to evaluate the distribution of the concentrations,
and to better consider the impact of the topography;

• Major road axes crossing the territory, and those with a canyon-type;
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• The acquisition of measurements in the vicinity of atypical sources of emissions
(proximity to heliports, gas stations, cruise ships quays, tunnel portals, etc.).

Sampling took place over two periods of the year. The first took place during the
winter between the 22 January and the 26 February, whereas the second one took place
between the 19 June and the 17 July in the summer season. Assessing two distinct periods
allows for the inclusion of seasonal meteorological variations, as well as activity variations
on the territory. Linear regression coefficients to estimate the 2017 annual average as a
function of the values obtained during the campaign (average of summer and winter) were
established for the permanent stations. These linear regression coefficients are then used to
estimate average concentrations for 2017 of each passive sample.

Figure 1a shows the average observed concentrations for 2017 at the passive samplers
for NO2, and those computed with the PMSS model. The figure shows a significant
heterogeneity in concentration levels, and this observation is generally valid for dense
urban centers. For 86% of the points in Figure 1a, a vast majority of them, the PMSS
model is less than 10 µg·m−3 from the observations. The regression line shows a slight
underestimation of PMSS. The origin of this underestimation is difficult to isolate, and
probably results from the different intermediate approximations. Figure 1b shows the
annual average and 99.8th percentile estimated by PMSS at the five permanent stations.
The calculation of the annual average also presents a slight underestimation. In the case
of three stations out of five, an underestimation is observed by the model for the 99.8th
percentile. The line «y = x/2» shows, however, that these values remain within a factor of 2
of the observations.
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Figure 1. Comparison of observed and computed NO2 concentration for annual average at passive sensors (a), and annual
average and 99.8th percentile at monitoring stations (b).

2.2.3. Results with SOMs Classification

All the elements that need to be classified (vectors) at the input of SOMs are of the
same size: there are 359 days (vectors) described in hourly step, and each component of
these vectors can be the 24 values of speed, and (or) of direction, and of temperature, etc.
The SOMs classification is applied to two sets of surface data from permanent monitoring
stations. In the c1 setup, the input data of SOMs are wind speed, its direction, humidity,
and temperature, whereas setup c2 also includes background concentrations (PM10, PM25,
NO, NO2, O3).
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Input data processing is applied before the SOMs classification. The comparison be-
tween vectors is based on a Euclidian distance. In order to not privilege components with
high values (temperatures in Kelvin for example) over those with low values (wind am-
plitudes in m·s−1 for example), the variables were standardized (zero mean and standard
deviation of 1). The wind direction and its magnitude are preferred to wind components,
in order to preserve the angle notion in the classification. This was not the case in this
example, however, a shift of 90◦ might be considered if the north sector is a dominant
direction of the wind (because of the proximity between 359◦ and 1◦).

One of the parameters of the SOMs classification algorithm is the targeted class number
Nc, defined as the product of two integers Nc = Xdim.Ydim. The SOMs method forms a
grid with Xdim.Ydim nodes, where each node is associated with a vector. The classification
is done through two successive learning phases, where the second one is finer than the first
one. In this study, the number of neighbors of a node is fixed at 4 (rectangular grid), and
all the nodes are modified by each input vector, with a respective weight that decreases
with distance. Three-hundred fifty-nine vectors at the input are divided into Nc classes. A
Euclidian distance between vectors and the barycenter of “their class” is calculated, and
the vector with the smallest distance is acknowledged as the best representative of the class.
The modelling of this day (=vector) with PMSS thus represents its class. It is then necessary
to choose a method to rebuild a complete time history, in order to compute annual means
and percentiles from the Nc best representatives modelled with PMSS. Two reconstruction
methods are tested: an unmodelled day is represented by “its best” representative among
those modelled (method m1); or by a weighted sum of the modelled days (method m2),
with a weighting chosen from the Euclidean distance between a representative and the
studied day (the weighting is described in [32]).

The symmetry of the SOMs classification has been checked. This means that a classifi-
cation with Nc = Xdim.Ydim classes is identical to the classification with the Ydim.Xdim
classes. It must, however, be noted that a number of classes can be obtained in several
ways (40 = 5 × 8 = 4 × 10), and as many different classifications. For this study, and
for the convergence analysis, the number of targeted classes is chosen as 5 × 5 = 25 and
10 × 10 = 100. Concentrations are extracted from the five air quality monitoring stations
located in the calculation domain. Table 2 summarizes the presented elements.

Table 2. List of tested classifications parameters.

Setup c1 Wind speed, direction, humidity, and temperature

c2 Wind speed, direction, humidity, temperature, and background concentration (PM10, PM25,
NO, NO2, O3)

Reconstruction
m1 A day is equal to the day associated with its representative among the modelled days
m2 A day is equal to the weighted sum of the modelled days

Nc
5 × 5

10 × 10

For the eight possible cross configurations (setup/reconstruction/Nc), Figure 2 shows
the obtained values for the annual mean estimate (left) and the 95th percentile (right).
Other statistics, such as the median and the 5th percentile, were also analyzed, and present
similar conclusions. The regression lines allow an aggregation of the values at the five
stations, and the correlation coefficients R2 of the different lines are all superior to 0.995.

A greater gap with and without the classification is observed on the 95th percentile
than on averages. A greater deviation also implies that the regression line moves away
from the perfect correlation (y = x). The classification tends to underestimate the means and
the 95th percentile values, and tends to overestimate the 5th percentiles. This is consistent
with the complexity for the classifications to properly reproduce statistical distribution
tails. However, errors remain in the order of 5 µg·m−3, and are less than 2 µg·m−3 for
the means. The consideration of the background concentrations (setup c2) substantially
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improves the means and the 95th percentile values estimation. It is consistent with the
fact that air quality in urban areas is not only sensitive to local emissions, but also to
background concentrations, with air quality being a multiscale issue. The 95th percentile
estimate with the c1 setup does not seem to depend on the number of classes. In other
cases, a decrease in the differences is observed overall with the increase of the number of
classes. For the percentile’s estimation in the c2 setup, this decrease is actually faster for
the reconstruction method m1. This last finding is understandable because method 2 (m2)
represents the unmodelled days by a weighted sum of all the representatives, and thus,
smooths the complete time history more than the m1 method does. Annual means do not
seem responsive to the reconstruction model, and this also remains true for each annual
means at a specific hour (not shown here).
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Figure 2. Comparison of annual average (a) and 95th percentile (b) with and without SOMs classification, for different
configurations (c1; c2), reconstruction method (m1; m2), and number of target classes (5 × 5; 10 × 10).

2.3. Grenoble Case—Validation with High Density Sensors Network
2.3.1. Context and Model Setup

A modelling at the local scale is operated on the Grenoble agglomeration by Atmo
Auvergne Rhône Alpes (Atmo AURA), mainly based on the SIRANE model. In 2016–2018,
the Mobicit’air project has also allowed the evaluation of different methodologies for the
assimilation of concentration observations (https://www.atmo-auvergnerhonealpes.fr/
sites/ra/files/atoms/files/rapport_final_mobicitair_lot3.pdf (accessed on 10 September
2021), published in 2017) with a relatively high density of sensors, thanks to the use of
micro-sensors, which are less costly than reference stations with analyzers. In 2018–2019,
as part of the FUI FAIRCITY project (https://www.axelera.org/fr/actualite/Projet-Faircity
(accessed on 10 September 2021), published in 2019), this measurement campaign, including
micro-sensors and reference stations, was used to assess the performance of the PMSS
model, and develop a coupling methodology between SIRANE and PMSS. The coupling,
which is not detailed in this article, aims to allow the application of PMSS on a sub-domain
to the one of SIRANE. It is based on the creation of groups of emission sources in the
SIRANE input in order to be able to access the effects of all sources, but also of all sources
except the ones taken into account by PMSS. This specification in the larger scale modelling
(here SIRANE) allows for the summing of the concentrations of PMSS and SIRANE in the
PMSS subdomain without double counting. This summation assumes a linearity of the
sources’ contributions particularly, despite chemical reactions in the atmosphere, such as
NO/NO2 conversion.

The PMSS computation domain is 1770 m × 1671 m, located in the center of Grenoble
(the SIRANE domain extent is, in comparison, 32 km × 44 km). The horizontal spatial
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resolution is 3 m. The vertical spatial resolution is 2 m between the ground and the
first 10 m, then progressively decreases up to the computation ceiling, located at 2000 m.
The mesh contains about 7.9 million cells. The domain was specifically chosen in or-
der to include a large number of sensors: two reference stations and five micro-sensors.
Concentration values used by the micro-sensors were post-processed by Atmo AURA,
notably, thanks to the cross-comparisons before and after the measurement campaign
(see https://www.atmo-auvergnerhonealpes.fr/sites/ra/files/atoms/files/rapport_final_
mobicitair_lot3.pdf (accessed on 10 September 2021) published in 2017).

The emissions considered with PMSS are limited to the road traffic emissions. They
are extracted from the emissions estimated by Atmo AURA and used in the SIRANE setup
for the whole agglomeration. The potential contributions of other (and external) sources are
considered with the help of the regional scale model (named CHIMERE [33]) and a kriging
algorithm using concentration measurements from the entire Atmo AURA measurements
network. Comparisons are made on NO2 hourly concentrations over the continuous period
from the 15 January 2017 to the 31 January 2017.

2.3.2. Results

The model-measurement deviations are inferior to 20%, except for the MC_GRE_JPerrot
station, where the error exceeds 50%. A strong correlation is observed with an overestima-
tion trend (see Figure 3). All the comparison stations are located close to traffic. Only the
Mob_Grenoble_caserne_Bonne is an urban background type. For this station, where scores
are the best (see Table 3), regional modelling quality might be preponderant. At the fixed
station Grenobles_Boulevard, the hourly evolution of modelled concentrations reproduces
well those of the observed concentrations (see Figure 4). If the absolute values of the
concentrations are not properly reproduced on the peaks, the temporality is satisfactory.

Atmosphere 2021, 12, 1410 11 of 24 
 

 

 

Figure 3. Scatter plot observation versus model for all the measurements points (two stations and 

five micro-sensors)—Hourly average concentration of NO2 during the period from the 15th of Jan-

uary 2017 to the 31st of January 2017. 

 

Figure 4. Time series of observed and computed concentration of NO2 at Grenoble_boulevards station between the 25th of 

January 2017 and the 31st of January 2017. 

PMSS NO2 results are compared to SIRANE results obtained by Atmo AURA over 

the same computation period with strictly the same input data (emissions, meteorology, 

and background concentrations) (see Figure 5). Only the first vertical level of the PMSS 

model is compared to the concentrations of the SIRANE model, which correspond more 

by construction to spatial averages within each street. 

Figure 3. Scatter plot observation versus model for all the measurements points (two stations and
five micro-sensors)—Hourly average concentration of NO2 during the period from the 15 January
2017 to the 31 January 2017.

Table 3. Statistics of comparison between observed and computed hourly average concentration of NO2 during the period
from the 15 January 2017 to the 31 January 2017.

Station Mean Observation (µg/m3) Mean Model (µg/m3) Bias (µg/m3) RMSE (µg/m3) r

Grenoble_Boulevards 64.9 76.1 11.2 19.9 0.74
MC_GRE_JJaures 53.4 61.0 7.6 13.5 0.84
MC_GRE_JPain 76.5 72.9 −3.6 24.7 0.73

MC_GRE_JPerrot 40.4 61.0 20.6 23.2 0.85
MC_GRE_Leclerc 52.9 45.6 −7.3 18.1 0.77
MC_GRE_VHugo 62.0 63.6 1.6 16.2 0.76

Mob_Grenoble_caserne_Bonne 53.8 53.7 −0.1 8.8 0.90
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Figure 4. Time series of observed and computed concentration of NO2 at Grenoble_boulevards station between the 25 January
2017 and the 31 January 2017.

PMSS NO2 results are compared to SIRANE results obtained by Atmo AURA over
the same computation period with strictly the same input data (emissions, meteorology,
and background concentrations) (see Figure 5). Only the first vertical level of the PMSS
model is compared to the concentrations of the SIRANE model, which correspond more by
construction to spatial averages within each street.
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At the MC_GRE_JPerrot station, an overestimation with both models is observed.
At the MC_GRE_Leclerc station, where PMSS presents an underestimation compared to
SIRANE, PMSS input data was therefore reviewed, allowing for the notification of an
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underestimation of the pollutant mass rates in the neighborhood because of the position at
the boundary of the calculation subdomain. The contribution of some near-road sections
is missing.

At the Grenoble_Boulevards reference station, it is interesting to observe a good agree-
ment for SIRANE, and an overestimation for PMSS. It is also interesting to analyze the
geometric definition of the emission strands in this street, which is, in real life, organized
into two traffic lanes separated by two tramway lanes at the center of the street. In the
input data, the emissions from both directions are allocated to a single strand, which is
itself off-centered and located near the measuring station on one of the sidewalks. In the
database, most of the streets are taken into account by a single emission strand, as the
SIRANE model considers a balance per street. This might explain the difference observed
in the comparison between the two models.

Average concentration maps over the period (see Figure 6) have been calculated by
only taking into account the results of the models, without adding the regional background.
This enables a better comparison between the specificities of each model. The SIRANE map
resolution is 10 m, whereas the PMSS one is 3 m. For the same color scale, concentrations
are more contrasted with the PMSS model compared to the SIRANE model (higher concen-
trations on the road delineation, and zero in buildings). The decrease in concentrations
obtained by moving away from a road is more abrupt with the PMSS model, where the
SIRANE model further dilutes the concentrations within the streets. This difference not
only originates from the resolution difference between the two models, but also, perhaps,
from the different modelling principles.
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Figure 6. Average NO2 concentrations maps during the period from the 15 January 2017 to the 31 January 2017 computed
with SIRANE (a) and PMSS (b) models.

2.4. Rome Case
2.4.1. Context and Model Setup

In the framework of the BEEP project (Big Data in Environmental and Occupational
Epidemiology, https://www.progettobeep.it/index.php (accessed on 10 September 2021),
2019), a long-term simulation at building-resolving scale over a large domain that covers
most of the Rome conurbation has been run. The simulation has been conducted for the
entire year 2015 over a 12 × 12 km urban domain with a high spatial resolution of 4 m
grid step, and provides hourly ground concentration fields for different pollutants. The
resulting fields account for the concentration values in cells between 0 and 3 m in height,
but the domain extends in height up to 300 m, therefore, the calculation grid considers
1.8 × 107 cells.
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The simulation has been carried out using a hybrid modelling approach to reproduce
air quality of an urban area. The developed hybrid modelling system (HMS) couples PMSS
with the Eulerian chemical transport model (CTM) and FARM (flexible air quality regional
model) [34,35]. The latter reproduces the transport and the chemical interactions at regional
scale of all the sources that are discretized only at the resolution of the CTM, such as the
space heating. PMSS simulates, instead, traffic emissions within the city, which cause
hotspots and strong concentration gradients typical of urban environments, and deals with
the presence of buildings that lead to urban canyon effects. The two models have been
run independently, and subsequently combined, allowing the application of each model
over a different domain with appropriate grid resolution, and with proper emission inputs.
The consistency between the models is ensured by using the same meteorological data,
provided by the WRF meteorological model [36], as well as the same topography and land
use data for both models. Consequently, FARM considers a 60 × 60 km domain centered
over Rome with a horizontal resolution of 1 km, whereas PMSS is applied over the target
domain described above.

The advantage of the models’ independent execution is minimizing the computational
effort, making it feasible to run long-term microscale simulations over large domains. In
fact, a CTM, which requests a lower computational time, manages a greater number of
sources, whereas a LPDM, which is more demanding, simulates only traffic emissions.
Accordingly, PMSS computational time is representative of that of HMS. In this work,
FARM computational time is equal to 11 min per simulated day on an HPC system with
1 node and 36 cores, whereas PMSS takes 3 h per simulated day on an HPC system with
5 nodes and 180 cores. Furthermore, PMSS computational demand is particularly low in
respect to traditional implementations, thanks to the exploitation of the kernel method
to calculate concentrations inside PMSS code [37]: for this simulation, the deployment of
this method has allowed a reduction estimated at about 80% of the computational time
compared to what would be obtained using the traditional PMSS code.

2.4.2. Results

The HMS achieved good performance when reconstructing the typical urban spatial
variability, showing very diverse concentration levels in different neighborhoods across
the city. The comparison of HMS outcomes with the results of a CTM run at urban scale
(typically of 1 km) is particularly promising, mainly due to the fact that the HMS is capable
of reproducing the presence of city hotspots, contrarily to a CTM, which is unable to
capture these because of its coarser horizontal resolution. Figure 7 shows the comparison
between observed and two predicted daily NO2 concentrations during the entire year 2015
at Magna Grecia station, which belongs to the air quality monitoring system of this region,
and which is located near a main road. The figure reports the concentrations calculated
with FARM in green, run at 1 km of horizontal resolution, and taking into account all the
emissions considered by the HMS, and the HMS concentrations are in blue. From this
comparison, it is evident that the CTM itself underestimates NO2 concentrations at this
urban traffic station, whereas HMS, mainly thanks to PMSS, which better reproduces traffic
contribution, has a good agreement with measurements.

Table 4 reports the statistical evaluation of HMS performance on the urban traffic
station of Magna Grecia for daily NO2 concentrations, carried out with the estimation
of bias, RMSE, and correlation. It confirms the good agreement of HMS results with
measurements.

Table 4. Statistical evaluation of HMS (FARM + PMSS) performance for daily NO2 values on Magna Grecia station.

Station Mean Observation (µg/m3) Mean Model (µg/m3) Bias (µg/m3) RMSE (µg/m3) r

Magna Grecia 65.2 61.6 −3.6 18.78 0.56
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Figure 7. Comparison between observed (black dots) and modelled daily NO2 concentrations by the CTM FARM run at
1 km (a) and by HMS (FARM + PMSS) (b) at monitoring station Magna Grecia in Rome.

3. REX from Different Forecast Systems

Using a full deterministic approach to forecast physical phenomena implies the con-
straint of a CPU time smaller than the real time: the whole modelling chain must be faster
than real time.

Contrary to the context of the studies presented in the previous section, the com-
putational time cannot be shortened by modelling only a number of days limited by a
classification. Hybrid methods including a statistical part can be used [38]. In this paper,
the focus is only on entirely deterministic approaches. Two operational systems on cities
are presented in this section. The system operated during the Elise project in Turin in
2015–2016 gives an additional example, not detailed here, but described in [39].

3.1. Paris Forecast System
3.1.1. Context and Model Setup

A forecasting system was operated in Paris between September 2018 and January 2019
as part of the FUI FAIRCITY project. It partly takes the configuration setup previously used
during the FEDER AIRCITY project [11]: the extent of the calculation domain of the PMSS
model is 14,022 m × 11,499 m, including the whole city of Paris. The horizontal spatial
resolution is constant, and equal to 3 m. The vertical spatial resolution is of 2 m between
the ground, and the first 30 m then decreases until the calculation ceiling, located at 800 m.
The mesh counts approximately 6.27 × 108 cells. The calculation chronology allows the
calculation of the 24 h of the following day during the night. The system provides hourly
concentrations.

Large-scale meteorological data and background concentrations of NO, NO2, O3,
and PM10 are taken from the ESMERALDA forecast system of AIRPARIF (http://www.
esmeralda-web.fr/accueil/index.php (accessed on 10 September 2021). They are available
around 10 PM, local time. Emissions considered by the PMSS model are limited to those
from road traffic. The pollutant emissions are estimated by AIRPARIF with the help of a
classification by standard day (as opposed to quasi-real-time estimates using real-time-
existing measurements of the vehicles fluxes that are not available for the forecasting
system). All the input data are available at an hourly time resolution.

The period of several months was leveraged to make the computational workflow
more robust. Malfunctions were analyzed and, if possible, led to calculation chain upgrades.
Among the malfunctions, those that come from the hardware can be cited (under-sizing of
the memory requested to the calculation server: a safety margin has been put into place;
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crash of a computational node of the calculation server: one occurrence without possible
patch; AIRPARIF ftp server does not provide access to the ESMERALDA forecast: two
disfunctions), and those that come from the software can be cited (case of a very weak
wind leading to PMSS error: three crashes before setting up a patch). The chronology of
the malfunctions of the calculation system over the targeted period was: six in September,
four in October, one in November, and none in December and January.

The results, in terms of NO2 and PM10 concentrations, were quantitatively analyzed by
comparison to observations at the location of AIRPARIF monitoring stations, qualitatively,
through the observation of hourly average maps.

3.1.2. Results

Over the period between the 1 September 2018 and the 30 January 2019, the compari-
son of statistics at monitoring stations, from which we can distinguish those close to the
traffic and those in the background, shows a significant over-estimation trend (see Table 5).
The over-estimation is lower for the background stations, but present for NO2 and PM10.
The models’ calculation cost has greatly limited the number of sensitivity tests that could
be carried out afterward. The following paragraphs present some attempts to improve the
modelling chain.

Background concentrations added hour by hour to the PMSS results could explain a
part of the over-estimation. Modifying them does not require a recalculation, but only post-
treatments. Scores at the measuring stations could be recalculated over the entire period
with a different method of background estimation: instead of extracting the cell value of
the ESMERALDA chain (horizontal resolution of 15 km in the available nesting level early
enough for the PMSS forecast chain) located in downtown Paris, we have extracted the cell
values upwind of Paris, according to the wind prediction from the ESMERALDA chain.
This new calculation, therefore, remains compatible with a forecast mode. It allows for
the avoidance of doubly counting emissions related to traffic in Paris, considered both
with PMSS and ESMERALDA. Inversely, it does not allow for the inclusion of sources
in the PMSS domain but not considered by PMSS, such as urban heating. This method
permits significant improved RMSEs and biases, except for several background stations,
particularly, with the emergence of negative biases for the NO2 (PA_12, PA_13, and PA_18)
and PM10 (PA_18) concentrations, which could be explained by the underestimate of
sources other than the road traffic previously mentioned.

The significant size of the computation domain and the large size of the number
of modelled days constitute a database with a large variability of both geometric and
meteorological configurations. The analysis of concentration maps, more particularly, days
with major deviations at stations, has enabled the identification of several issues. The
main one is the emergence of a large number of concentration accumulation zones in
front of buildings, yet not direct neighbors of an emission strand. The settings analysis
of PMSS, and, more specifically, the comparison with other setups that do not present
this artifact, highlighted the effect of the α stability coefficient in PSWIFT, used during
the mass conservation step. In the Paris calculation chain, this coefficient was calculated
during a pre-processing step to PSWIFT from the ESMERALDA temperatures profiles and
a tabulation indexed on the vertical temperature gradient. This tabulation, derived from
an in-house parametric study carried out with confidential data from a wind farm site
with a complex terrain, is adapted for the consideration of the stability effect on obstacle
avoidance with hill or mountain length scale, but not with a building length scale: for a
Froude number lower than 1, an atmospheric flow bypasses an obstacle [40], but, even
for a very stable meteorological case, such as a weak wind with a speed of 1 m·s−1 and a
vertical gradient of potential temperature of 0.03◦·m−1, the Froude number Fr is equal to
1.59 for an obstacle of height h = 20 m, such as Parisian buildings (Fr = 0.31 for h = 100 m).
It is therefore convenient to use α coefficient close to 1 in order to calculate the flow around
buildings in urban areas.
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Over the 5 months modeling period, 5 days were selected by including cases with
good and bad scores, and recalculated with α = 1. Accumulation zones have significantly
decreased. Scores from the initial setup (called Config 1) limited to the 5 days are available
in Table 5 next to the scores obtained with the α coefficient correction and the choice of
the background concentration value in the upwind cell of Paris (named Config 2). Config
1 scores, limited to the 5 days, are generally worse than those for the 5-month period.
The choice of 5 days is therefore rather penalizing. Over these 5 days, RMSE, bias, and
correlation are improved between Config 1 and Config 2, except at the background stations
PA_12, PA_13 and PA_18 for NO2, and at PA_18 for PM10. Low scores recorded at the
Auteuil station are significantly improved. This station located on the edge of the ring road
is not in the vicinity of a building. Nevertheless, it is close to a slope, the ring road there
being located in a 10 m recessed zone. Modification of the α coefficient can therefore have
an impact on the calculation of the flow in this area.

Another issue that was observed through the analysis of the hourly average concen-
tration maps is the noisy appearance of the values with horizontal gradients from one cell
to the other, even in open areas. Emissions might have been not well discretized because of
the number of Lagrangian particles being too low. The calculation time constraint limits
this number. Possible improvements include the use of the Kernel method [38] for the
computation of concentrations from particles, as well as the optimization of the number
of particles emitted by each road section. In the setup used for the Paris forecast system,
all the strands emit the same number of particles, even if they emit different amounts of
pollutants. On the setup presented in the next section, this distribution, according to mass
rate, has been implemented and optimized. It allows the balance between computation
time and noise in concentration fields to be improved.

Finally, another issue was observed on the hourly average concentration maps: concen-
tration levels on some major roads appear to be potentially very high (exceeds 1000 µg·m−3

in NO2 some days). These roads are associated with rather fast traffic and rather open
areas, which are too wide to experience canyon effects (for example Grande Armée Avenue
in Neuilly-sur-Seine or Paris Ring Road). The noise, due to the number of lagrangian
particles being too low, could explain some of these high values, but it seems also that the
impacted zones depend on the wind direction: particle accumulation along the road axis is
maximized when the wind is aligned with the axis. One possibility for improvement could
be to consider the turbulence induced by the traffic of these road axes, as already done in
the canyon type streets (see Section 1), but with a formulation that would be adapted to
less-confined areas.

3.2. Antony Forecast System
3.2.1. Context and Model Setup

A forecasting system for the city of Antony, located in the south suburbs of Paris,
was operated between the 15 October 2019 and the 16 April 2020 in the framework of the
“Numerical Challenge POC & Go on Air Quality”. The extent of the computational domain
of the PMSS model is 4300 m × 4800 m. The horizontal spatial resolution is constant, and
is equal to 4 m. The vertical resolution is equal to 1.5 m between the ground, and the first
20 m then decreases gradually up to the calculation ceiling, located at 500 m. The mesh is
composed of approximately 3.48 × 107 cells.

The computation chronology allows for calculation of the 24 h of the following day
overnight. The chain provides hourly concentrations. Meteorological forcing of PMSS is
driven by a forecast made with the WRF model, which, itself, is forced by the NCEP/GFS
global forecast. Background concentration forecasts are extracted from the forecast of the
COPERNICUS Atmosphere Monitoring Service (CAMS) implemented by ECMWF.

3.2.2. CPU Time Performance and Optimization

No reference station of air quality measurement is included in the domain. The
validation of the pollutant concentration forecasts could not be done. Nonetheless, this

113



Atmosphere 2021, 12, 1410

case remains interesting for the optimization aspect of the computational time. The forecast
chain has indeed been operated with a machine which has a limited computation capacity:
one node of 12 cores. In order to obtain forecasts results on time (the targeted CPU time is
5 h for 24 modelled hours), the number of particles that discretize the dispersion in PSPRAY
has been optimized. The particles emission time step, and the number of particles emitted
per source (here, per section of road), were adjusted. By default, this number is identical
for all sources, even if they have different pollutant mass rates. Some particles therefore
have, with this configuration, a more important weight, which can lead to very noisy
concentration fields. PSPRAY enables, though pre-processing or internally, to modulate the
numbers of emitted particles according to the mass rate of the pollutant. A pre-processing
adjustment was applied to the case of Antony, whose domain includes high traffic highways
and low traffic residential lanes.

4. CPU Demand Analysis and Estimation

This section summarizes the computation times for the modelling described previously.
Only the dispersion part (calculated by PSPRAY) is detailed because it is predominant
in this type of application. For the meteorological part with PSWIFT, the optimization
of the computation time could be done by the choice of the number/sizes of tiles (i.e.,
subdomains). However, this has not been carried out on the different cases. Computation
times of PSPRAY can be found in Table 6, in hour and hour.core. They are given for the
modelling of a day of physical time. Three of the cases were performed on the EOS server
at the CALMIP computing center. Different servers were used for the two other cases.
Part of the computing times variability can thus come from the variability of machine
performances, but this has not been quantified.

Table 6. Modelling setup parameters, effective CPU demand for dispersion part with PSPRAY model, and estimation
through a simple linear fit. The CALMIP calculation center server used is EOS. It is constituted of nodes with Intel IvyBridge
@2.80 GHz (20 logical cores per node). The server1 and server2 are internal calculation servers, respectively constituted of
two intel Xeon E5-2640 V4 @2.40 GHz (40 logical cores) and two Intel Xeon X5680 @3.33 GHz (12 physical cores without
hyperthreading). The two last lines give estimations of CPU based on input parameters and a simple linear fit.

Paris Coastal
City Grenoble Antony Rome

Variable Short Name Unit

Domain X-axis dimension Lx km 10 3.6 1.7 4.3 12
Domain Y-axis dimension Ly km 13 4.6 1.8 4.8 12

Horizontal resolution dx m 3 3 3 4 4
Number of tiles 120 9 1 9 36

Number of line sources per unit area nblin km−2 327.7 1078.6 260.8 454.4 513.9
Number of emitted particles is function

of mass rate no no no yes yes

Kernel method no no no no yes
Emission time step dtmin s 2 10 1 10 100

Synchronisation time step dtsync s 6 5 5 10 5
Number of cores 480 240 30 10 180

Machine CALMIP CALMIP Server 1 Server 2 CALMIP
CPU time for 24 h (PSPRAY only) hour 6.0 1.4 6.9 5.0 3.0

Number of hour·core for 24 h hour·core 2880 333 208 50 540
Number of hour·core per day and per km2 CPU_cost hour·core. km−2·day−1 22.2 20.1 68.0 2.4 3.8

CPU_cost estimation =
f(nblin/dtmin/dtsync/dx2) CPU_cost_estim1 hour·core·km−2·day−1 22.8 18.0 43.5 2.1 0.5

CPU_cost estimation =
f(nblin/dtmin/dtsync/) CPU_cost_estim2 hour·core·km−2·day−1 22.4 17.7 42.8 3.7 0.8

To compare the different cases, it is firstly assumed that the computation time increases
linearly with the extent of studied area—the table thus provides CPU times per area unit.
The resulting values range from 2.4 to 68 h·core·km−2.

Other parameters that seem to significantly affect the computation time are provided:
the number of emission sources, normalized by area, in order to compare sites of different
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sizes; emission time step and synchronization time step (the synchronization time step
in PSPRAY allows recording of the position of particles at a regular frequency, which,
apart from these moments, move with their own time steps); whether or not the Kernel
method was used for the computation of concentrations. The latter takes more time for the
concentration calculation, but can allow the number of particles that need to be transported
to be reduced (see the larger emission time-step for the Rome study).

The table only provides a sample of five sites, and the number of parameters influenc-
ing the computation time is maybe too large to perform a multi-regression. However, a
rough approximation of computation time by unit area (conjecturing the CPU time linearity
with the calculation domain area) was done, assuming linearity with: (1) the emission
sources number; (2) the inverse of the emission time step; (3) the inverse of synchronization
time step; and possibly (4) the inverse of the square of the horizontal resolution. These
rough approaches underestimate CPU times for the cases of Grenoble and Rome, but
are satisfying for the three other cases. In the Rome study, the Kernel method was used,
making this case special compared to others.

The goal of these estimates is to quantify, in principle, the CPU cost for a new site, in
order to design the required size for the computing machines.

5. Discussion

The different sites presented in the paper provided both validation scores and valuable
feedback to improve the modelling and its CPU cost. The scores’ quality appears to be
disparate between the sites, but also for the same site: modelling air quality at local
scale means dealing with different configurations, even in the same city (narrow canyon
streets, complex crossroads, half-buried highways, skyscraper zones, streets with complex
emission distribution due to the presence of tramway lanes).

An overestimation tendency seems to be observed. Even if the possible origins are
numerous, an underestimation of the turbulence due to road traffic could be one. This
effect could be considered in the 3D turbulence fields, or, more simply, by enlarging the
emission volumes.

The long-term results analysis has shown some patterns, and provides feedback that
has led to model improvements, especially for making the Rockle approach more robust in
more geometrical configurations.

The long-term calculations were also useful to analyze the performances of two
methods used to improve the CPU cost:

- Classification with SOMs method to reduce the number of days to be considered.
The study provides the quantification of the classification effect on annual average
concentration and, more challengingly, on percentiles;

- Kernel method to compute concentration fields from particle clouds. The obtained
CPU times during the BEEP project are attractive. The method, already implemented
in other LPDM, such as FLEXPART [41] and LAPMOD [42], should be tested on
other sites.

The CPU time of the different sites have been compared, and a tentative estimation
has been made from input parameters and characteristics, such as the area, the number of
roads, and particle emission time steps. The limited number of sites does not allow a true
multi-regression to be calculated, so only a raw linear law is set. The CPU time database
should be fed by all the impact studies performed with PMSS, but these values are not
available because they are not stored by default.

The 3D approach presented in the paper allows access to detailed 3D concentration
fields that open perspectives about health impact and exposure. Exposure, which is the
integration of both concentration and population density, is usually performed based
on a 2D raster method. The results provided with PMSS can be used differently: as the
buildings are seen explicitly, the exposure can be computed by building. The concentration
for each building could be the average and maximum concentration around it, for example.
Moreover, the exposure can be computed level by level, quantifying the vertical gradient

115



Atmosphere 2021, 12, 1410

between the first and last floors. During the FAIRCITY project, a first attempt has been
made on an area of Grenoble, with ATMO AURA showing some significant gradients
(10% reduction between the ground and 18 m.a.g.l. for the NO2 concentration), but no
observation was available to validate the results. Observations in wind tunnel experiments
are available [43], but might miss some of the processes present in a real street, such as
traffic-induced turbulence, or convective flows due to the thermal and radiative effects
of buildings. Having a field campaign with sensors at different heights on the façades of
buildings, as is described in [44–46], would open a great validation perspective.

Author Contributions: Conceptualization: M.N.; Methodology: M.N.; Software: B.R. and D.B.;
Validation: M.N., B.R., G.T. and D.B.; Formal Analysis: M.N., B.R., G.T. and D.B.; Writing—Original
Draft Preparation: M.N., B.R., L.R., G.T. and D.B.; Writing—Review and Editing: M.N.; Visualization:
B.R. and D.B.; Supervision: M.N.; Project administration: J.M. and G.T.; Funding Acquisition: J.M.,
G.T. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the FUI, the Auvergne-Rhône-Alpes and Ile-de-France
regions for the funding of the FAIRCITY project, and also the National Institute for Insurance against
Accidents at Work for the project “BEEP” (project code B72F17000180005).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Air quality observations on Paris are available on https://data-airparif-
asso.opendata.arcgis.com/search?tags=mesure (accessed on 10 September 2021).

Acknowledgments: We truly appreciate the help of the three Air quality regional agencies who
provided input data of their own modelling systems and participated in the analyses of the results
obtained with the 3D model PMSS. The authors would also like to thank the CALMIP HPC teams for
their support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Harrison, R.M. Urban atmospheric chemistry: A very special case for study. NPJ Clim. Atmos. Sci. 2018, 1, 20175. [CrossRef]
2. Arya, S.P. Introduction to Micrometeorology; Academic Press: San Diego, CA, USA, 1987; p. 307.
3. Oke, T.R.; Mills, G.; Christensen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; p. 519.
4. Moussafir, J.; Oldrini, O.; Tinarelli, G.; Sontowski, J.; Dougherty, C. A new operational approach to deal with dispersion around

obstacles: The MSS (Micro-Swift-Spray) software suite. In Proceedings of the 9th International Conference on Harmonisation
within Atmospheric Dispersion Modelling for Regulatory Purposes, Garmish-Partenkirchen, Germany, 6–10 June 2004; Volume 2,
pp. 114–118.

5. Tinarelli, G.; Brusasca, G.; Oldrini, O.; Anfossi, D.; Trini Castelli, S.; Moussafir, J. Micro-swift-spray (MSS) A new modeling system
for the simulation of dispersion at microscale, general description and validation. In Proceedings of the 27th CCMS-NATO
Meeting, Banff, AB, Canada, 24–29 October 2004.

6. Rockle, R. Bestimmung der Stromungsverhaltnisse im Bereich Komplexer Bebauungsstrukturen. Ph.D. Thesis, Vom Fachbereich
Mechanik, der Technischen Hochschule Darmstadt, Darmstadt, Germany, 1990.

7. Oldrini, O.; Olry, C.; Moussafir, J.; Armand, P.; Duchenne, C. Development of PMSS, the parallel version of Micro SWIFT SPRAY.
In Proceedings of the 14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory
Purposes, Kos, Greece, 2–6 October 2011; pp. 443–447.

8. Oldrini, O.; Armand, P.; Duchenne, C.; Olry, C.; Tinarelli, G. Description and preliminary validation of the PMSS fast response
parallel atmospheric flow and dispersion solver in complex built-up areas. J. Environ. Fluid Mech. 2017, 17, 997–1014. [CrossRef]

9. Trini Castelli, S.; Armand, P.; Tinarelli, G.; Duchenne, C.; Nibart, M. Validation of a Lagrangian particle dispersion model with
wind tunnel and field experiments in urban environment. Atmos. Environ. 2018, 193, 273–289. [CrossRef]

10. Gomez, F.; Ribstein, B.; Makké, L.; Armand, P.; Moussafir, J.; Nibart, M. Simulation of a dense gas chlorine release with a
lagrangian particle dispersion model (LPDM). Atmos. Environ. 2021, 244, 117791. [CrossRef]

11. Moussafir, J.; Olry, C.; Nibart, M.; Albergel, A.; Armand, P.; Duchenne, C.; Mahé, F.; Thobois, L.; Loaëc, S.; Oldrini, O. AIRCITY: A
Very High Resolution Atmospheric Dispersion Modeling System for Paris. In American Society of Mechanical Engineers, Fluids
Engineering Division; FEDSM: Chicago, IL, USA, 2014; Volume 1D. [CrossRef]

12. Geai, P. Méthode d’interpolation et de reconstitution tridimensionnelle d’un champ de vent: Le code d’analyse objective SWIFT.
In EDF/DER Internal Report HE34-87; EDF Group: Chatou, France, 1987.

116



Atmosphere 2021, 12, 1410

13. Hanna, S.; White, J.; Trolier, J.; Vernot, R.; Brown, M.; Gowardhan, A.; Kaplan, H.; Alexander, Y.; Moussafir, J.; Wang, Y.; et al.
Comparisons of JU2003 observations with four diagnostic urban wind flow and Lagrangian particle dispersion models. Atmos.
Environ. 2011, 45, 4073–4081. [CrossRef]

14. Berkowicz, R.; Hertel, O.; Larsen, S.; Sørensen, N. Modelling Traffic Pollution in Streets; Ministry of Environment and Energy,
National Environmental Research Institute: Roskilde, Denmark, 1997.

15. Rodean, H.C. Stochastic Lagrangian Models of Turbulent Diffusion; American Meteorological Society: Boston, MA, USA, 1996;
Volume 45.

16. Anfossi, D.; Desiato, F.; Tinarelli, G.; Brusasca, G.; Ferrero, E.; Sacchetti, D. TRANSALP 1989 experimental campaign Part II:
Simulation of a tracer experiment with Lagrangian particle models. Atmos. Environ. 1998, 32, 1157–1166. [CrossRef]

17. Carvalho, J.; Anfossi, D.; Castelli, S.T.; Degrazia, G.A. Application of a model system for the study of transport and diffusion in
complex terrain to the TRACT experiment. Atmos. Environ. 2002, 36, 1147–1161. [CrossRef]

18. Ferrero, E.; Anfossi, D. Comparison of PDFs, closures schemes and turbulence parameterizations in Lagrangian Stochastic Models.
Int. J. Environ. Pollut. 1998, 9, 384–410.

19. Ferrero, E.; Anfossi, D.; Tinarelli, G. Simulations of Atmospheric Dispersion in an Urban Stable Boundary Layer. Int. J. Environ.
Pollut. 2001, 16, 1–6. [CrossRef]

20. Trini Castelli, S.; Anfossi, D.; Ferrero, E. Evaluation of the environmental impact of two different heating scenarios in urban area.
Int. J. Environ. Pollut. 2003, 20, 207–217. [CrossRef]

21. Tinarelli, G.; Anfossi, D.; Brusasca, G.; Ferrero, E.; Giostra, U.; Morselli, M.G.; Moussafir, J.; Tampieri, F.; Trombetti, F. Lagrangian
particle simulation of tracer dispersion in the lee of a schematic two-dimensional hill. J. Appl. Meteorol. 1994, 33, 744–756.
[CrossRef]

22. Tinarelli, G.; Anfossi, D.; Bider, M.; Ferrero, E.; Trini Castelli, S. A new high performance version of the Lagrangian particle
dispersion model SPRAY, some case studies. In Air Pollution Modelling and Its Applications XIII; Gryning, S.E., Batchvarova, E.,
Eds.; Kluwer Academic/Plenum Press: New York, NY, USA, 2000; pp. 499–507.

23. Thomson, D.J. Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 1987, 180,
529–556. [CrossRef]

24. Kaplan, H.; Olry, C.; Moussafir, J.; Oldrini, O.; Mahé, F.; Albergel, A. Chemical reactions at street scale using a lagrangian particle
dispersion model (LPDM). In Proceedings of the 15th International Conference on Harmonization within Atmospheric Dispersion
Modeling for Regulatory Purposes, Madrid, Spain, 6–9 May 2013.

25. Benson, P. CALINE4—A Dispersion Model for Predicting Air Pollutant Concentrations near Roadways. Internal Report No
FHWA/CA/TL-84/15. 1989. Available online: https://trid.trb.org/view/215944 (accessed on 15 September 2021).

26. Malherbe, L.; Wroblewski, A.; Letinois, L.; Rouil, L. Evaluation of numerical models used to simulaite atmospheric pollution near
roadways 13. In Proceedings of the International Conference on Harmonisation within Atmospheric Dispersion Modelling for
Regulatory Purposes (HARMO 13), Paris, France, 1–4 June 2010; pp. 697–700.

27. Hertel, O.; Berkowicz, R. Operational Street Pollution Model (OSPM). In Evaluation of the Model on Data from St. Olavs Street in
Oslo, DMU Luft A-135; National Environmental Research Institute: Roskilde, Denmark, 1989.

28. Soulhac, L.; Salizzoni, P.; Cierco, F.-X.; Perkins, R.J. The model SIRANE for atmospheric urban pollutant dispersion: PART I:
Presentation of the model. Atmos. Environ. 2011, 45, 7379–7395. [CrossRef]

29. Armand, P.; Commanay, J.; Nibart, M.; Albergel, A.; Achim, P. 3D simulations of pollutants atmospheric dispersion around the
buildings of an industrial site comparison of MERCURE CFD approach with Micro-SWIFT-SPRAY semi-empirical approach. In
Proceedings of the 11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory
Purposes (HARMO11), Cambridge, UK, 2–5 July 2007.

30. Kohonen, T. Self-Organizing Maps, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1997.
31. Yonggang, L.; Weisberg, R.H. A Review of Self-Organizing Map Applications in Meteorology and Oceanography. In Self

Organizing Maps: Applications and Novel Algorithm Design; Mwasiagi, J.I., Ed.; IntechOpen: London, UK, 2011; pp. 253–272.
32. Wendum, D.; Moussafir, J. Méthodes d’interpolation spatiale utilisables pour le calcul d’écoulements atmosphériques à moyenne

échelle. In EDF Internal Report EDF/DER HE/32-85.22; EDF Group: Chatou, France, 1985.
33. Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Blond, N.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; et al.

CHIMERE (2013): A model for regional atmospheric composition modelling. Geosci. Model Dev. 2013, 6, 981–1028. [CrossRef]
34. Gariazzo, C.; Silibello, C.; Finardi, S.; Radice, P.; Piersanti, A.; Calori, G.; Cecinato, A.; Perrino, C.; Nussio, F.; Cagnoli, M.; et al. A

gas/aerosol air pollutants study over the urban area of Rome using a comprehensive chemical transport model. Atmos. Environ.
2007, 41, 7286–7303. [CrossRef]

35. Silibello, C.; Calori, G.; Brusasca, G.; Giudici, A.; Angelino, E.; Fossati, G.; Peroni, E.; Buganza, E. Modelling of PM10 Concentra-
tions Over Milano Urban Area Using Two Aerosol Modules. Environ. Model. Softw. 2008, 23, 333–343. [CrossRef]

36. Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description
of the Advanced Research WRF Version 3; NCAR Technical Note NCAR/TN-475+STR; NCAR: Boulder, CO, USA, 2008. [CrossRef]

37. Barbero, D. Sviluppo e Applicazione del Metodo Kernel in Modelli Lagrangiani a Particelle a Scala Locale e a Microscala.
Master’s Thesis, Politecnico di Milano, Milan, Italy, 2019. Available online: http://hdl.handle.net/10589/146531 (accessed on
11 September 2021).

117



Atmosphere 2021, 12, 1410

38. Bessagnet, B.; Couvidat, F.; Lemaire, V. A statistical physics approach to perform fast highly-resolved air quality simulations—A
new step towards the meta-modelling of chemistry transport models. Environ. Model. Softw. 2019, 116, 100–109. [CrossRef]

39. Carlino, G.; Pallavidino, L.; Prandi, R.; Avidano, A.; Matteucci, G.; Ricchiuti, F.; Bajardi, P.; Bolognini, L.; Elise, P. Micro-scale
modelling of urban Air quality to forecast NO2 critical level in traffic Hot-spots. In Proceedings of the Air Quality 2013, Milan,
Italy, 14–18 March 2016.

40. Stull, R.B. An Introduction to Boundary Layer; Springer: Dordrecht, The Netherland, 1988.
41. Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical note: The Lagrangian particle dispersion model FLEXPART

version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [CrossRef]
42. Bellasio, R.; Bianconi, R. LAPMOD—Manuale D’uso; Technical report of Enviroware-Air Qual; Consult; Enviroware: Concorezzo,

Italy, 2017.
43. Soulhac, L.; Méjean, P.; Perkins, R.J. Modelling the transport and dispersion of pollutants in street canyons. Int. J. Environ. Pollut.

2001, 16, 404–416. [CrossRef]
44. Wu, Y.; Hao, J.; Fu, L.; Wang, Z.; Tang, U. Vertical and horizontal profiles of airborne particulate matter near major roads in Macao,

China. Atmos. Environ. 2002, 36, 4907–4918. [CrossRef]
45. Tuckett-Jones, B.T. Reade. In City Quality at Height—Lessons for Developers & Planners; Report from WSP; Parsons Brinkerhoff:

London, UK, 2017.
46. Wong, P.P.Y.; Lai, P.-C.; Allen, R.; Cheng, W.; Lee, M.; Tsui, A.; Tang, R.; Thach, T.-Q.; Tian, L.; Brauer, M.; et al. Vertical monitoring

of traffic-related air pollution (TRAP) in urban street canyons of Hong Kong. Sci. Total Environ. 2019, 670, 696–703. [CrossRef]
[PubMed]

118



atmosphere

Article

A Study of Traffic Emissions Based on Floating Car Data for
Urban Scale Air Quality Applications

Felicita Russo 1,* , Maria Gabriella Villani 1, Ilaria D’Elia 1 , Massimo D’Isidoro 1 , Carlo Liberto 2 ,
Antonio Piersanti 1, Gianni Tinarelli 3, Gaetano Valenti 2 and Luisella Ciancarella 1

Citation: Russo, F.; Villani, M.G.;

D’Elia, I.; D’Isidoro, M.; Liberto, C.;

Piersanti, A.; Tinarelli, G.; Valenti, G.;

Ciancarella, L. A Study of Traffic

Emissions Based on Floating Car Data

for Urban Scale Air Quality

Applications. Atmosphere 2021, 12,

1064. https://doi.org/10.3390/

atmos12081064

Academic Editor: Riccardo Buccolieri

Received: 12 July 2021

Accepted: 14 August 2021

Published: 19 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development,
SSPT-MET-INAT, 40129 Bologna, Italy; mariagabriella.villani@enea.it (M.G.V.); ilaria.delia@enea.it (I.D.);
massimo.disidoro@enea.it (M.D.); antonio.piersanti@enea.it (A.P.); luisella.ciancarella@enea.it (L.C.)

2 ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development,
TERIN-PSU-STMS, 00196 Roma, Italy; carlo.liberto@enea.it (C.L.); gaetano.valenti@enea.it (G.V.)

3 ARIANET, Via Gian Giacomo Gilino, 9, 20128 Milan, Italy; g.tinarelli@aria-net.it
* Correspondence: felicita.russo@enea.it

Abstract: Urban air quality in cities is strongly influenced by road traffic emissions. Micro-scale
models have often been used to evaluate the pollutant concentrations at the scale of the order of
meters for estimating citizen exposure. Nonetheless, retrieving emissions information with the
required spatial and temporal details is still not an easy task. In this work, we use our modelling
system PMSS (Parallel Micro Swift Spray) with an emission dataset based on Floating Car Data
(FCD), containing hourly data for a large number of road links within a 1 × 1 km2 domain in the
city of Rome for the month of May 2013. The procedures to obtain both the emission database and
the PMSS simulations are hosted on CRESCO (Computational Centre for Research on Complex
Systems)/ENEAGRID HPC facilities managed by ENEA. The possibility of using such detailed
emissions, coupled with HPC performance, represents a desirable goal for microscale modeling that
can allow such modeling systems to be employed in quasi-real time and nowcasting applications. We
compute NOx concentrations obtained by: (i) emissions coming from prescribed hourly modulations
of three types of roads, based on vehicle flux data in the FCD dataset, and (ii) emissions from the
FCD dataset integrated into our modelling chain. The results of the simulations are then compared
to concentrations measured at an urban traffic station.

Keywords: air quality; urban scale; traffic emissions; micro-scale dispersion models; HPC

1. Introduction

Urban air quality is determined by complex atmospheric patterns, influenced by local
emissions, and shaped by the three-dimensional structure of the built environment. The
so called “street canyons” (which is a term frequently used for urban streets flanked by
buildings on both sides) tend to entrap pollution near the ground, while in more open
spaces (parks, squares, residential areas) the pollution levels take the form of an urban
background, with increasing impact of more distant sources [1]. Among the sources
of local emission, road traffic is usually the main contributor [2,3]. A study from The
European Topic Centre on Air and Climate Change (ETC/ACC) [4] through a survey
among European cities reported average percentage contributions from road traffic ranging
from 40% (21%) to 49% (28%) of nitrogen dioxide (particulate matter) concentrations
measured at background stations.

Microscale dispersion models have been used to evaluate pollutant concentrations
at high spatial detail, featuring grids with metrical resolution in order to estimate citizen
exposure more accurately than other air quality models at larger scales [5,6]. For species
mainly driven by local emissions, such as nitrogen oxides (NOx), such a detailed model
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description of dispersion dynamics requires a coherent emission input, therefore reproduc-
ing the spatial variability at the single street/stack level and the temporal variability at
hourly or even sub-hourly levels. For air quality applications, the calculation of street-level
and hourly-level emissions covering large urban areas is not straightforward. Traffic flows
and speeds on urban road networks at the street level are usually obtained as long-term
averages by traffic assignment models calibrated from observations; as shown in the review
by [7], these models are the typical input for Static Emission Models, commonly used for
transportation planning purposes due to their relative simplicity but are mostly adequate
when a high resolution is not required. Therefore, in order to obtain the hourly variations,
modulation profiles are needed which generally come from dedicated measurements or
the literature and are not street-specific [8,9]. Though it is able to obtain a comprehensive
coverage of urban areas for long time periods, this approach has shown limitations in
reproducing measured street level concentrations, namely in their hourly variability, and
therefore it can lead to biased estimations of human exposure to pollutant concentrations.
More recently, some studies have considered new types of measurements. Video-based sys-
tems allow both vehicle flows to be counted and the fleet composition to be retrieved [10],
but at a fixed location and therefore with limited spatial coverage. Remote sensing of
actual vehicle positions (FCD, Floating Car Data) can deliver very detailed vehicle passages
on wider areas by tagging each single vehicle at very short time steps. e.g., 30 s [11,12].
This allows very detailed vehicle flows on individual streets and hourly intervals to be
derived, improving emission calculations. Jing et al., reported a large part (60 km × 60 km)
of the Beijing road network divided into segments according to the traffic speed, with
an attribution of the traffic flow and speed for each segment [13]. On the other hand,
depending on the area and the period considered, the storage and elaboration of FCD can
require important resources, limiting their use on comprehensive urban road networks (e.g.,
Gately et al. used FCD only for vehicle speeds and in-road sensors for vehicle flows, while
Jiang et al. studied the link between traffic speed and volume on a one ring expressway
in Beijing) [14,15]. Therefore, there is at the moment no universal solution to evaluate
microscale traffic emissions over an extended part of a city at a reasonable cost [8].

In this work, we describe a microscale simulation of NOx concentrations, conducted
with the Parallel Micro Swift Spray (PMSS) model, and fed by an emission dataset based
on FCD, containing hourly data for a large number of road links within the city of Rome
for the month of May 2013. In this work, all the simulations were performed relying on
the computational resources of CRESCO (Computational Centre for Research on Complex
Systems) /ENEAGRID High Performance Computing infrastructure [16].

The main objective was to evaluate NOx concentrations simulated by PMSS using
FCD-based emissions in comparison to NOx concentrations measured at the Magna Grecia
urban air quality station. We computed NOx concentrations obtained by: (i) emissions
coming from prescribed hourly modulations of three types of roads, based on vehicle flux
data in the Floating Car dataset, and (ii) emissions from the Floating Car dataset integrated
into our modelling chain. We also present an exploration of the FCD-emissions database,
evaluating the feasibility of automatically integrating it into our modelling chain and
possible alternative strategies for a more straightforward use as a model input.

Section 2 presents a detailed description of the emission database, the other input
data, the modelling chain, and the simulations setup. Section 3 presents the results and
discussions with an evaluation of the modelled NOx concentrations against the reference
measurements (Section 3.1), and a detailed comparison of the traffic emissions processors
used to retrieve the mass emitted starting from the vehicle flux information (Section 3.2).
Section 4 presents our conclusions. Some useful additional graphics and definitions are
included in Appendices A and B.
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2. Methodology
2.1. Road Traffic SMTS Data

Nowadays, the use of massive FCD to extract traffic patterns and travel behaviors
occurring in urban areas is extremely appealing [17–19]. It represents a reliable and cost-
effective way to gather accurate traffic data over a wide-area road network and thus to
improve many applications, such as location-based services [20], urban planning [21], and
traffic management [22,23]. Despite this remarkable potential, FCD exploitation in urban
transport is still at an early stage compared to other approaches [24,25], particularly due
to the fragmented availability of transport/mobility data, institutional barriers, and data
privacy/security issues. In this study we present ENEA’s STMS (Systems and Technologies
for Sustainable Mobility) laboratory FCD collected by Octo Telematics to obtain insights
into the travel patterns of private cars and to estimate the traffic emissions in the case
study. Octo Telematics is a company that offers data analytics for the auto insurance indus-
try and provides other innovative connected user services including vehicle diagnostics,
fleet management, road tolling, and real-time monitoring of traffic and environmental
conditions [26]. The FCD used in this study represents about 5 percent of the circulating
passenger cars in the study area. Similar datasets have been used in the past to calculate
vehicle home locations to predict energy-oriented land use [27]. The residential population
calculated with FCD was compared to a census population showing a R-squared value
of 0.74, proving therefore that the initial FCD dataset was adequately representative of
the mobility patterns of the entire road network, though covering a fraction of all ve-
hicle movements. Cars were equipped with an OBU (On-Board Unit) that stores GPS
measurements (position, heading, speed, quality) and, periodically, transmits them to the
Data Processing Center. The OBU consists of a GPS receiver, a GPRS transmitter, a 3-axis
accelerometer sensor, a battery pack, a mass memory, a processor, and a RAM. The OBU
stores GPS measurements every 2 km travelled or, alternatively, every 30 s when the vehicle
is running along a motorway or some main urban arterials. For each equipped vehicle,
we then extracted the travel list performed and the most likely routes in the network by
matching sequences of the positioning data to a street digital map. We reconstructed the
route between each OD (origin–destination) pair by applying a map-matching algorithm
that incorporates the street network topology, including prohibited maneuvers and turn
restrictions information. The database at this point was used to evaluate the emitted mass
per link per hour using the traffic emission processor ECOTRIP [28].

2.2. Emission Processors

In this work, we performed simulations using emission data obtained with two differ-
ent emission processors: TREFIC [29], which is the native traffic emissions pre-processor
for the model PMSS, and ECOTRIP. TREFIC is based on COPERT 4 [30] methodology for
the calculation of the road vehicle emission factors. In order to calculate emissions, TREFIC
takes into account vehicle type, fuel consumption, average travelling speed, and road type.
TREFIC performs a reading and processing cycle for each road link. The input consists
of 4 groups of files, related to the road network (geometry, speed, and volume of traffic
flows, for each link of the network), vehicle fleet (split into COPERT 4 categories, for each
of the road types or driving cycles), time modulations (tables of values which allow the
time profiles of emissions to be quantified) and COPERT 4 methodology emission factors.
Starting from the input information and for each road link, TREFIC calculates the emission
factors (EFs) for each road type. These emission factors depend on fuel type, vehicle
type, age and maintenance, road average speed, and driving cycle. If specific information
is available, EFs can take into account the ambient average temperature (cold start and
evaporative emissions), the average slope of the road, and the actual average load (for
freight vehicles). Time modulation files, in text format, contain coefficients representing the
time modulation factors of flow, speed, and temperature. These files allow a modulated
input to be generated to the dispersion model and they support the user in generating
time emission profiles for traffic flows, speed, and temperature. At each run, TREFIC

121



Atmosphere 2021, 12, 1064

generates at least three standard output files, containing aggregated emissions according
to the temporal step in the input file, respectively, for traditional pollutants, particulate
matter (PM) species, and evaporative losses.

ECOTRIP (Emission and Consumption Calculation Software Based on Trip Data
Measured by Vehicle On-Board Unit) [28,31,32] is software developed by STMS to estimate
atmospheric pollutant emissions (Carbon Monoxide, NOx, Non-Methane Hydrocarbons,
and PM), greenhouse gas emissions (Carbon Dioxide), and fuel consumption produced by
vehicle fleets. ECOTRIP is capable of carrying out a precise and georeferenced estimate of
fuel consumption and polluting emissions produced by any type of vehicle in circulation
equipped with on-board units. The innovative nature and originality of the ECOTRIP
software derives from the ability to use data on actual routes, on the driving cycle, and
on the characteristics of the vehicle, as well as the ability to operate on different levels of
aggregation and detail and potentially in real time. ECOTRIP can be a valid tool to support
vehicle traffic monitoring and mobility management activities.

ECOTRIP has been widely used and updated within the Electric System Research
Programme supported by the Italian Ministry of Economic Development [28].

The evaluation procedures consider the speed-dependent hot emission factors de-
scribed in the COPERT 4 guidebook [33] which were obtained from several experimental
measurements collected in different European countries. These factors vary according
to the fuel supply, the European Emission Standards, the engine size for passenger cars,
and the weight for commercial vehicles and buses. ECOTRIP has been updated in order
to include recent European Emission Standards (Euro 5 and Euro 6), as well as hybrid,
electric, light-commercial and heavy-duty vehicles, buses, mopeds, and motorcycles. In
addition to hot running emissions, ECOTRIP accounts for the “cold start” emissions, which
occur when engines and catalysts are not (fully) warmed up and operate in a non-optimal
condition. The estimation of the extra cold emissions refers to the methodology developed
by INRETS (Institut national de recherche sur les transports et leur sécurité), which is based
on several experimental tests performed in different European laboratories, as described in
the ARTEMIS European Project [34]. In this study, ECOTRIP estimated the pollutant emis-
sions from equipped cars. Estimates were carried out for each segment located between
two consecutive GPS traces of a journey, combining the vehicle features together with the
geographical information of the routes, then map-matched to the static road network.

2.3. Dispersion Model

Micro-SWIFT-SPRAY (PMSS) is a modelling system which reproduces primary pollu-
tant transport and dispersion at the microscale (i.e., resolution of meters), and calculates
the dry and wet deposition of airborne chemical species. PMSS is the parallelized version
of the MSS model suite, which is fully described in several papers [35–37]. Here we provide
a summary of its main characteristics, schematically represented in Figure 1.

The system has two pre-processing phases for the meteorological and the emission
data, respectively. These modules prepare the input for the main processing models, the
meteorological driver PSWIFT, an analytically modified mass consistent interpolator over
complex terrain [38], and the three-dimensional Lagrangian particle dispersion model,
PSPRAY. In the meteorological pre-processing phase, the meteorological data and the tur-
bulence parameters provided at a local or regional scale are elaborated by using SURFPRO,
the surface–atmosphere interface processor [39,40], to generate the input files required to
run PSWIFT at a much higher spatial resolution (generally of the order of a few meters).
In the emission pre-processing phase, the emission data and their spatial and temporal
variations are used by the emission manager TREFIC to produce the emission input for
PSPRAY. Different types of emission sources, such as a point, area, or line, can be simulated.
Here we considered only line sources to study the primary pollutant dispersion at the
urban scale caused by traffic. Obstacles, such as buildings, are directly considered in the
model and are represented as filled cells in the meteorological field [35,36]. PSWIFT pro-
duces mass-consistent wind fields using data from a dispersed meteorological network or
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from simulated meteorological data at a lower resolution. PSPRAY calculates the pollutant
concentration by means of “virtual” particles that carry a portion of the pollutant mass
emitted by the sources. The velocity of the particles is calculated from a mean velocity
component, defined by the local wind computed by PSWIFT, and a stochastic velocity
component, representing atmospheric turbulence. PSPRAY can compute mean and instan-
taneous concentrations on a three-dimensional grid defined by the user, differentiating
the calculation by both “chemical species” and “source”. PSPRAY only simulates the
dispersion of atmospheric compounds in the urban environment and cannot take into
account the transformations due to chemical reactions. Recent developments have re-
ported the implementation of several chemical models into PSPRAY to consider chemical
reactions occurring at the urban scale [36]. However, in the present work, we considered
only the dispersion characteristics of the PMSS system, neglecting chemical transforma-
tions. The modelling system PMSS is a commercially available software developed by
ARIANET [41]. The codes PSWIFT and PSPRAY used here, in their versions PSWIFT-2.1.1
and PSPRAY-3.7.3, were compiled with an Intel16 compiler, using OPENMPI library.

Figure 1. Scheme of the PMSS modelling system.

2.4. Simulation Setup

We performed simulations for a period of 29 days from 2 May to 30 May 2013. We
used the hourly fluxes of passenger cars provided by the STMS database described in
Section 2.1. We set a 2 × 2 km2 horizontal domain that was centered on the urban traffic air
quality (AQ) station Magna Grecia. The domain is indicated by the red square in Figure 2
and covered an adequate fraction of the emissions of the city while providing that the AQ
station was far enough from the domain border, where the model uncertainty is generally
higher. The spatial resolution of 3 m was chosen to ensure the highest resolution possible
while keeping the run time within acceptable values, and the domain was composed of
667 × 667 grid points. For the vertical grid, we chose the following 25 levels above the
ground: 0, 1.5 m, 3 m, 4 m, 6 m, 8 m, 10 m, 13 m, 16 m, 19 m, 22 m, 25 m, 30 m, 35 m, 42 m,
50 m, 60 m, 80 m, 120 m, 160 m, 200 m, 240 m, 300 m, 380 m, and 700 m.
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Figure 2. Simulation domain (red square, with a resolution of 3 m) centered in the AQ station of Magna Grecia (pink point).
(a) shows the domain within the Rome urban area, (b) at increased zoom level, (c) includes (in blue) the street segments for
which the FCD based emissions are available.

We conducted the simulations on the CRESCO/ENEAGRID High Performance Com-
puting infrastructure funded by ENEA [25]. As the model system was structured, each
29-day-simulation consisted of 29 single model runs, each simulating 24 h. The restart
option was applied, therefore, for each simulated day the values for the pollutant concen-
trations calculated for the last hour were saved and were used as initial conditions for the
following run.

The simulation duration depended mainly on the number of emitted particles, and
this in turn depended on the concentration resolution required, that is the concentration
contribution given by a single particle in a concentration cell. In addition, the meteorologi-
cal conditions can also play a key role in constraining a different number of particles to
remain inside the computational domain depending on the mean flow and turbulence. In
our simulations, using a concentration resolution of 0.5 µg/m3 for the NOx species and
using 528 cores for PSPRAY, which represents the most CPU demanding part of the system,
the CPU time per core per simulated day was 8148 s.

2.4.1. Input Meteorological Data

Meteorological data used to feed the diagnostic model PSWIFT were provided by the
Weather Research and Forecasting [42] mesoscale model using ERA5 reanalysis [43] as
boundary conditions at a 28 km resolution and a 3-hourly time-step. WRF simulations,
performed using the 3.9.1.1 model version, were based on two-way nesting over 3 grids,
the coarser one covering the whole of Italy at a 9 km horizontal resolution (over Italy), then
an intermediate domain at a 3 km resolution (over the Lazio region), and finally the target
domain at a 1 km resolution over the city of Rome.

WRF parameterizations adopted for the simulation are summarized in Table 1.

Table 1. Parameterizations schemes used for the WRF meteorological simulation.

Parameterization Reference

Cloud microphysics Hong et al., 2004 [44]
Short wave radiation Dudhia, 1989 [45]
Long wave radiation Mlawer, 1997 [46]

Surface layer Jimenez et al., 2012 [47]
Land surface model Tewari et al., 2004 [48]

Planetary boundary layer Hong et al., 2006 [49]
Cumulus convection (activated over coarse domain only) Kain, 2004 [50]
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Hourly data of the meteorological fields were used by PSWIFT to reconstruct the
three-dimensional wind, temperature, and turbulent flow at a 3 m resolution.

2.4.2. Emissions

The Emission database described earlier includes the vehicle hourly fluxes determined
by FCD. Therefore, the vehicle fluxes considered in the database were relative only to
the circulating passenger cars. However, it was possible to estimate the emissions of the
remaining part of the circulating fleet by considering the vehicle population in the city
of Rome for the year 2013. Data relative to the circulating fleet needed for the emission
estimate, such as vehicle type and fuel technology distribution, were retrieved from public
registers of vehicle licenses [51]. By considering this information, we calculated a scaling
factor for each of the remaining vehicle categories not included in the FCD database
(motorcycles, light duty vehicles, heavy duty vehicles), in order to extrapolate their fluxes
starting from the hourly fluxes of the passenger cars. These factors led to a vehicle fleet
composition shown in Table 2.

Table 2. Fleet composition by vehicle type.

Vehicle Type Fleet Composition

Passenger cars 77.3%
Motorcycles 17%

Light duty vehicles 5.4%
Heavy duty vehicles 0.3%

To calculate the emissions in terms of mass per hour, it was necessary to define at least
one daily modulation profile for each vehicle category. TREFIC in fact requires as input the
total flux per vehicle category and a separated time modulation profile. This allows for a
variety of approaches regarding the time modulations (i.e., top-down emission definitions).
Given the limitation on the number of input hourly profiles, a detailed inspection of
the FCD was necessary to estimate the variability and the statistical significance of the
modulation profiles computed from the emission database, with the aim to identify a small
set of representative profiles.

The study of the most representative modulation profiles within the database was lim-
ited to the road links in close proximity to the monitoring station, shown in Figure 3, which
were most likely to influence the hourly variability of the simulated NOx concentrations at
the station.

The area examined covered about 300 × 300 m2 and included 24 street links. The
2 May was chosen as a reference day and each hourly profile was scaled to its total daily
fluxes for each day. From the database inspection, 3 average modulation profiles were
determined, depending on the range of total flux, shown in Table 3. The profiles are shown
in Figure 4.

Table 3. Average vehicle flux modulation profiles defined as input in the TREFIC model.

Profile ID Vehicle Flux (Ftot) Range

1 Ftot < 3000
2 4000 < Ftot < 6000
3 6000 < Ftot < 11000

125



Atmosphere 2021, 12, 1064

Figure 3. Street segments in proximity to the AQ Station Magna Grecia for which the time variability
was studied. The labels indicate the ID number of the street segment within the database.

Figure 4. Vehicle flow modulation profiles used in TREFIC.

The profiles shown in the picture had similar behaviors, indicating a decrease in traffic
during the night and an increase during the day, but they also had different behaviors for
the hours at which the peaks were located:

- Profile 1 (prof1): shows a steady increase in traffic from the very early morning to
midday when it started decreasing more slowly than during the morning increase;

- Profile 2 (prof2): shows 3 peaks, one in the morning at 10, one at 12–13, and the other
at 18;

- Profile 3 (prof3): shows two relevant peaks: one at 13 and the other at 18.

These profiles are relative to 2 May. They were averaged over a few road links
around the stations and are therefore representative of the traffic modulation in that
particular location. Applying these profiles for the modulation of the dataset was certainly
a significant approximation, the degree of which was tested through dedicated model runs
as follows.
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The validation of the observed concentrations was not the only goal of this study. A
very interesting feature of the ENEA STMS emission database is its ability to potentially
deliver an FCD-based emission database in near real-time. The possibility to incorporate
this emission input in our PMSS modeling chain represents a foreseeable development of
our modeling tools and needs to be investigated.

For these reasons, we performed different simulations with the different emission
configurations that are listed in Table 4 and described hereinafter:

- Sim 1: we used the passenger cars traffic fluxes from the FCD database, the modulation
profiles described in Figure 4, and the relative percentages listed in Table 2 to calculate
with TREFIC the traffic emissions due to passenger cars, motorcycles, heavy duty
vehicles, and light duty vehicles to be used as input to PMSS;

- Sim 2: this simulation was similar to Sim 1, and the calculation was performed only
for passenger cars;

- Sim 3: we used as the input for PMSS the emissions already present in the FCD
database in terms of emitted mass/unit time. These emissions were calculated using
the emission processor ECOTRIP considering only passenger car traffic fluxes.

Table 4. Definition of the emission configurations used in the different simulations.

Simulation Name Type of Vehicle Emission Processor

Sim 1

Passenger cars
Motorcycles
Light duty

Heavy duty

TREFIC

Sim 2 Passenger cars TREFIC
Sim 3 Passenger cars ECOTRIP

Among these simulations, only Sim 1 could be compared to the observations, having
a complete coverage of the different types of emitting vehicles. However, Sim 2 and Sim 3
offered an interesting opportunity to compare the calculations of two different emission
processors and to validate the time modulation assumption described earlier. In fact, Sim 2
and Sim 3 differed for two reasons:

• The operation of translating fluxes into emissions was completed using two different
traffic processors, which despite being both based on COPERT 4 methodologies, still
showed some differences (not shown here);

• Different hourly time modulations were used: in Sim 2 they followed Figure 4 profiles
and were assigned following Table 3, while in Sim 3 they pertained to the variations of
emissions in the database, and were therefore potentially different for each road link.

The comparison between Sim 2 and Sim 3 allowed the influence of the approximation
of the time modulations to be understood.

2.4.3. NOx Background

Since our simulation only took into account primary NOx emitted in the study domain,
to analyze how well our model reproduced the total NOx concentrations, we needed to
estimate the background contribution, i.e., the NOx entering the domain from outside.
One possible way to do this was to use measurements of the urban background NOx
concentrations outside the domain, assuming that they were not influenced by sources
internal to the domain (to avoid a double counting of emissions) [52,53]. In particular,
in this study, the urban NOx background was calculated by taking into consideration
the average of the NOx concentrations measured by the background air quality reference
stations located around the simulation area, which are shown in Figure 5.
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Figure 5. Maps reporting the location of urban background air quality stations. The yellow points
were used for the calculation of the background NOx concentrations, while the pink point represents
the urban traffic station of Magna Grecia inside the simulation domain (the area within the red square).

For these urban background AQ stations, we considered the data provided by the
European Environmental Agency Air Quality portal [54] for May 2013 focusing on the
pollutant “NOx as NO2”. By using R-cran base packages [55–58], we calculated the concen-
tration time series for May 2013 of the main statistics parameters (mean and percentiles
values of the distribution) from the concentrations of all the background stations. Figure 6
reports the average and median background concentrations (panel a) and the average,
minimum, and maximum values of the background NOx concentrations (Panel b). We also
included the NOx concentration measured at the urban traffic AQ station of Magna Grecia,
as shown in Panel b in Figure 6.

The NOx concentration measured at Magna Grecia is always higher than the back-
ground with an average percentage difference of 39% and an absolute difference of
34 µg/m3 between the monthly average values. Therefore, it is reasonable to assume
that the measured concentrations observed at the Magna Grecia station are the sum of
a background component and an additional component generated by local emissions
in the immediate surroundings of the station. This background component was added,
hour by hour, to the NOx concentration simulation to compare the results of Sim1 with
the observations.

For Sim 2 and Sim 3, since the simulated NOx was not comparable with the NOx
observed at the urban traffic station, the NOx background concentration was not added.
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Figure 6. Time series of the main statistics parameters calculated for the NOX concentrations of the urban background AQ
stations surrounding the simulation domain. (a) Average background NOX concentration compared to median concentration.
(b) Average background in blue with the shaded grey area between the minimum and maximum values and the traffic
station observed concentration in green.

3. Results and Discussion

In the following paragraphs, detailed comparisons between the observations and
Sim 1 and between Sim 2 and Sim 3 are reported in Sections 3.1 and 3.2, respectively.

3.1. PMSS Traffic Emission Simulation (Sim 1)

Figure 7 shows the monthly average of the NOx concentration at ground level (1.5 m
height). In this Figure we can see that the domain includes several busy roads, characterized
by an average NOx concentration between 90 and 120 µg/m3, and that the road next to
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the monitoring station is characterized by a significant traffic intensity with average NOx
concentrations around 90 µg/m3. Since the dispersion model has a very high spatial
resolution (3 m), the high spatial variability of NOx concentrations near the road traffic
emission sources can be appreciated. Concentrations are usually higher near the street
central axes and lower towards the borders, with sharp spatial gradients in line with similar
modelling studies in urban street canyons [5]. Concentrations vary in a wide range in
different parts of the domain reflecting local traffic flows.

Figure 7. Average simulated NOx concentration in the month of May.

The comparison between the hourly observed NOx and the modelled concentrations
of NOx at the Magna Grecia AQ station is shown in Figure 8, while in Figure 9 the absolute
value of the daily fractional bias and the R-squared linear coefficient, whose definition
is reported in the Appendix B, are shown. Here, we used the absolute value of the daily
fractional bias as we were interested in discussing its magnitude rather that its sign. In
general, Sim 1 showed a good agreement with the hourly NOx concentration variation
(Figure 8) with an average fractional bias of 0.2 across the period. This was confirmed
by the daily fractional bias that showed values below 20% for half of the days (Figure 9)
and only for 7 days above 30%. Higher discrepancies are indicated by low values of
R-squared. Generally, for almost half of the simulated days, R-squared values larger than
0.4 were found.

Figure 8. Hourly NOx concentration comparisons between observations (blue line) and simulations (orange line).
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Figure 9. Daily linear correlation coefficients and the absolute value of the daily fractional bias relative to the time series
shown in Figure 9.

The reasons behind the low correlations with a low fractional bias can be ascribed to
the three chosen modulations that were not always the most representative of the vehicle
flow variability in all the 29 days. These comparisons show nevertheless that the daily
fractional bias was generally low, indicating that the background concentrations were fairly
well transported by the model and that the reduced modulations used had little influence
on most of the daily averages.

Figure 10a shows a regression plot of the modelled vs. observed NOx concentrations
relative to all the simulated periods, and a R-squared coefficient of 0.35, indicating a
significant influence of the few days with very low correlations. Daily plots on selected
days, with a mean fractional bias lower than 20%, in the same Figure 10b–d, show that the
daily-averaged correlation could reach significant values.

In general, there are no universally accepted rules to evaluate the performance of
a model in the field of air quality. Usually, the metric to use and the acceptance levels
to consider for such a task are matter of debate [58]. Recently, a growing number of
studies have used metrics that are involved in the definition of general acceptance criteria
for dispersion model evaluation, proposed by the authors of [59] for urban dispersion
modelling. Among these studies, a recent paper [60], applied these criteria to evaluate
the WRF-Chem NOx concentration simulations to use as background for a Micro Swift
Spray simulation.

The acceptance criteria for dispersion model evaluation are based on the following
metrics: Fractional bias (FB); Normalized Mean Squared Error (NMSE); Fraction of sim-
ulations within a factor of two of the measurements (FAQ2); and Normalized Absolute
Difference (NAD). Their definitions, following the work in [59], are listed in Appendix B.
A model will meet these acceptance criteria if the aforementioned indicators satisfy the
values reported in Table A1 for urban and rural air quality stations.

The performances of our model are reported in Table 5.
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Figure 10. Regression plot of modelled vs. observed NOx hourly concentrations of the complete dataset (a) and of selected
days 10 May (b), 16 May (c), 19 May (d) with a mean fractional bias lower than 20%.

Table 5. Model performances at Magna Grecia.

|FB| NMSE FAC2 NAD

Magna Grecia (Urban) 0.049 0.37 0.87 0.20

The comparison between the performances of our model and the acceptance criteria
indicated a good agreement between our simulation and the observations.

We also point out that Oldrini et al. 2017 [34] considered satisfying a simulation in
which 68% of the predicted concentrations were within a factor of two, based on one of the
same acceptance criteria cited previously, when we had 87%, as shown in Table 5.

Figure 11 shows a quantile–quantile plot of the modelled vs. observed NOx concen-
trations, which indicates that both the measured and modelled values follow the same
statistical distribution except for values higher than 110 µg/m3, when the model seemed to
overpredict the NOx concentration. This feature was already noted in Villani et al., 2021 [61]
who presented a comparison between the NOx concentrations simulated by PMSS and the
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concentrations observed in a street canyon in Modena during a field campaign. In that
study, the Q–Q plot was very similar and the value at which the simulated and observed
distributions started to significantly differ was above 50 µg/m3. At the moment, no clear
explanation for these differences has been identified.

Figure 11. Q–Q plot of modelled vs. observed NOx.

The distribution of the differences between the observed and simulated NOx concen-
trations was generally normal, and slightly skewed towards positive values. Figure 12
shows the histogram of the hourly percentage difference combined with the cumulative
probability of occurrence, indicating that more than 50% of the differences were between
−10% and 20%. The R-squared values corresponding to some of these cases are shown in
more detail in Figure 10. The results we show here are comparable to those obtained from
the use of dedicated measured vehicle flow data during a field campaign [61].

Figure 12. Histogram of the frequency of the differences of hourly modelled NOx concentrations vs.
obScheme 3. 2. Passenger car simulations (Sim 2 and Sim 3).
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3.2. Comparison between Emission Processors (Sim 2 and Sim 3)

In this section, we present the comparison between the two emission processors TRE-
FIC and ECOTRIP. Figure 13 shows a general good agreement between the two simulations,
except for a general overestimation of Sim 3 for high values of NOx concentrations. The
percentage differences between Sim 2 and Sim 3 were mostly between −30% and 20% as
shown in Figure A2 of Appendix A.

Figure 13. Comparison between Sim 2 and Sim 3 at Magna Grecia in terms of the concentration timeseries.

On average, the percentage difference between the NOx concentrations of Sim 2 and
Sim 3 changed with the time of the day. In Figure 14 we mapped the period average of
hourly concentrations at 19:00, which represented typical high traffic conditions.

Figure 14. Maps of the ensemble average of the NOx concentration (Sim 3) at 19:00 (a) and the
ensemble average of the NOx percentage difference at 19:00 (b).

We can observe that the percentage differences were often limited to values between
−10% and 10% (Figure 14 panel b). On the other hand, and as expected, these differences
could be significant at times where the NOx concentrations were lower. Therefore, de-
pending on the aim of the study, the choice of the time modulation used as input in the
data can have a significant impact on the simulated concentrations and the availability
of an emission database with highly detailed hourly modulations possibly represents a
significant advantage.

Once again, we find it necessary to point out that in these comparisons between Sim 2
and Sim 3, the NOx concentrations were generally lower than those shown in Section 3.1
for two reasons: fewer vehicle types were accounted for and no background evaluation
was added to the final concentrations that were compared.
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4. Conclusions

In this work, we applied FCD data for modelling NOx concentrations at a microscale
level in Rome. We first used the hourly vehicle fluxes to generate our best estimate of the
NOx concentration at the location of the Magna Grecia air quality station (Sim 1) from
2 May to 30 May of 2013. We made the assumption that three averaged time modulation
profiles were sufficient to describe the variability within the database, with the purpose
of comparing the simulated concentrations to the one measured in the air quality station.
The comparison against the observation showed an acceptable agreement with the daily
mean fractional bias below 20% for almost half of the days and above 30% for only 7 out
of 29 days. This is an encouraging result that shows that we can successfully incorporate
high resolution vehicle circulation data into our microscale modelling suite. We calculated
the FB, NMSE, FAQ2, and NAD statistical indicators, the values of which satisfied the
acceptance criteria [59] both for rural and urban air quality stations.

The innovative aspect of this work is the use of FCD computed emissions to feed
our urban scale model. Although extremely appealing, the use of massive FCD to extract
traffic patterns and travel behaviors in urban areas is still at an early stage compared to
other sectors, particularly due to the fragmented availability of transport/mobility data,
institutional barriers, and data privacy/security issues. As a consequence, the dataset used
in this study was based on data collected by only 5% of the circulating passenger cars.
Extrapolating this dataset to the entire fleet could represent an important approximation.
For these reasons, 87% of the simulated values within a factor of two with respect to the
measurements represents a remarkable success, even if the linear correlations were poor
with only few days above 0.6.

Finally, the kind of agreement we found in this study was very similar to what we
found in a recently published study using PMSS in the city of Modena, where traffic flows
and NOx observations were available during a measurements campaign [61].

To have an indication of the effect of the simplified hourly profiles of vehicle flows
on the simulated NOx concentrations, a test was made in which we used the FCD flows
of passenger cars to compute the NOx emissions with TREFIC in the way described in
Section 2.4.2 (Sim 2) and we compared the resulting NOx concentrations with the ones
obtained using ECOTRIP emissions as input to PSPRAY (Sim 3). The added value of
comparing Sim 2 (few modulation profiles for all the road links) vs. Sim3 (each road link
with its own modulation) lies in the study of the influence of the modulation profiles
used on the simulated NOx concentrations. These two simulations showed very similar
concentrations at Magna Grecia and their differences were often between −30% and 20%.
This further study allowed the direct implementation of this database into our microscale
modelling suite, avoiding the assumption on the time modulations, and providing a valid
tool to potentially enable the use of PMSS with emission inputs that can be provided in
quasi-real time.

Future developments of this work could involve the use of more FCD data in our
PMSS modelling chain. Moreover, if the availability of FCD data increases and is less
fragmented, other pollutants and longer time scales could be explored.
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Appendix A

This section includes some material supplemental to the discussion in the main sections.

Appendix A.1. From ECOTRIP Data to PMSS Emission Input

To use the emissions calculated by ECOTRIP, it was necessary to adapt them to the
PMSS input format. The information on the geographical domain and the position of each
road segment included in the ENEA–SMTS database were coupled with the segments
present in the PMSS input file usually used as PMSS emission input, containing the road
segments with the associated hourly emissions. For each day of the simulations, a database
containing details on the road segments and hourly emissions were compiled in the text for-
mat which was then processed to generate the emission input files for PSPRAY (see scheme
in Figure A1). The procedure was defined using R-cran packages (base [55], lubridate [56],
RGDAL [57]) and Fortran compiled libraries coded by ARIANET. The most significant
difference in using the emission input generated with this procedure and the usual input
generated by TREFIC, described in Section 2.4.2, was the possibility to use hourly emissions
estimates for each road segment based on the traffic counts provided by the Octo Telematics
without introducing any additional simplification on the modulation profiles.

Figure A1. Scheme to illustrate the steps to create the files to use as input into PSPRAY.

Appendix A.2. Emission Processors Comparison

Figure A2 shows the percentage differences between Sim 3 and Sim 2 (i.e., (Sim 2–Sim 3)
/Sim 2 × 100) with most of the values between −30% and 20% in agreement with what
was found in Figure 14.
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Figure A2. Comparison between Sim 2 and Sim 3 in terms of percentage difference. The orange line indicates the zero.

Figure A3. NOx concentrations scatter plot of Sim 2 vs. Sim 3.

Appendix B

In this work, to test the acceptance criteria of [59] we used the definition of average
Fractional Bias (FB), the Normalized mean square error (NMSE), the Fraction of simulated
values within a factor of two of the observed value (FAC2), and the Normalized Absolute
Difference (NAD) as:

FB = 2
(Co − Cs)(
Co + Cs

) , (A1)

NMSE =
(Co − Cs)

2
(
Co ∗ Cs

) , (A2)

FAC2
(

fraction of data where 0.5 <
Cs

Co
< 2

)
, (A3)
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NAD =
|Co − Cs|(
Co + Cs

) (A4)

where Co and Cs are, respectively, the modelled and the observed concentrations. The
acceptance criteria for dispersion model evaluation were defined for two categories of
measurements stations based on their location. Hence, they were defined for rural and
urban stations and are reported here in Table A1.

Table A1. Definition of the acceptance criteria for dispersion model evaluation.

Type of Measuring Station |FB| NMSE FAC2 NAD

Rural |FB|≤0.3 ≤3 ≥0.5 ≤0.3
Urban |FB|≤0.67 ≤6 ≥0.3 ≤0.5

A model will meet the acceptance criteria if these statistical indicators satisfy the
values reported in Table A1 for urban and rural types of monitoring stations.

Furthermore, as a metric for the linear regressions, we used the R-squared, that in
a x-y linear regression is calculated as the square of the linear correlation coefficient (R)
and indicates the amount of predicted variability explained by the observed variability.
The value of R is calculated by the cor.test function in the package R-cran [55] which refers
to [62,63].
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Abstract: Nature-based solutions can represent beneficial tools in the field of urban transformation
for their contribution to important environmental services such as air quality improvement. To evalu-
ate the impact on urban air pollution of a CityTree (CT), an innovative wall-type green infrastructure
in passive (deposition) and active (filtration) modes of operation, a study was conducted in a real
urban setting in Modena (Italy) during 2017 and 2018, combining experimental measurements with
modelling system evaluations. In this work, relying on the computational resources of CRESCO
(Computational Centre for Research on Complex Systems)/ENEAGRID High Performance Comput-
ing infrastructure, we used the air pollution microscale model PMSS (Parallel Micro-SWIFT-Micro
SPRAY) to simulate air quality during the experimental campaigns. The spatial characteristics of
the impact of the CT on local air pollutants concentrations, specifically nitrogen oxides (NOx) and
particulate matter (PM10), were assessed. In particular, we used prescribed bulk deposition velocities
provided by the experimental campaigns, which tested the CT both in passive (deposition) and in
active (filtration) mode of operation. Our results showed that the PM10 and NOx concentration
reductions reach from more than 0.1% up to about 0.8% within an area of 10 × 20 m2 around the
infrastructure, when the green infrastructure operates in passive mode. In filtration mode the CT
exhibited higher performances in the abatement of PM10 concentrations (between 1.5% and 15%),
within approximately the same area. We conclude that CTs may find an application in air quality
hotspots within specific urban settings (i.e., urban street canyons) where a very localized reduction
of pollutants concentration during rush hours might be of interest to limit population exposure. The
optimization of the spatial arrangement of CT modules to increment the “clean air zone” is a factor
to be investigated in the ongoing development of the CT technology.

Keywords: urban air pollution; nature-based solutions; green infrastructure; PMSS Lagrangian
model; NOx; PM10

1. Introduction

With the proportion of the European population living in urban areas expected to rise
to over 80% by 2050 [1], making European cities sustainable for human health has become
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a key challenge. This challenge includes efforts to improve air quality not only by reducing
emissions, but also by modifying the urban morphology to reduce the exposure of the
population to air pollution [2,3].

Beyond urban measures addressing air pollution mitigations, such as those aimed
at reducing emissions from traffic, residential heating, industry and secondary particle
formations [4], urban green infrastructures have proved to be promising in mitigating air
pollution in urban areas of several cities around the world [5–8]. The work presented in [5]
concerned modelling the annual potential of particulate matter and ozone removal from
urban forests in Florence, amounting to 0.009–0.031 t/ha depending on the pollutant and
the forest type. The results in [6] identified six specific policy interventions, underpinned by
research, allowing green infrastructures to improve air quality with unambiguous benefits.
The works of [7] analyzed a case study area in Melbourne, Australia, finding that trees
provide the highest air pollution removal capability, but green roofs and green walls allow
higher building energy savings. Finally, [8] provided in 2019 a scientific review of the
link between air pollution, green infrastructure and human health, highlighting that the
deployment of green infrastructure is critical to avoid unintended consequences such as
trapping air pollution in street canyons or increasing the presence of bio allergens in the air.
Therefore, it is crucial to develop design guidelines, vital for promoting and optimizing
greening benefits.

Urban green infrastructures are networks of green spaces, water or other natural
features within urban areas offering several important services to the urban population,
such as reducing the risk of flooding [9], cooling high urban temperatures [10,11] and
reducing human exposure to pollutants [8]. In particular, trees and vegetation can abate
air pollution directly by trapping and removing fine particulate matter [12], and they may
indirectly influence the urban climate by decreasing air temperatures [13,14]. The strength
of the effect may depend on meteorological parameters, pollutants concentration, the type
and state of vegetation, and the urban design [2,3,5–8,15]. As the actual impact of the green
infrastructures on air quality is highly context-dependent, it is very important to assess
such effects in realistic urban settings.

With the aim of addressing specific green infrastructure capability in relation to
deposition and filtration processes, the Project CityTree Scaler [16] took place in Modena,
Italy, during the years 2017 and 2018. A green infrastructure, the CityTree (hereafter
indicated as “CT”), consisting of a vertical panel, sized 3 × 0.6 × 4 m3 [L ×W × H], with
vertical deposition and filtration mechanisms [17], was placed in viale Verdi-Modena (Italy),
a road segment having the characteristics of a street canyon, close to a heavily polluted
area of the city where traffic represents the main source of pollution. CTs are standalone
units suitable for placement on curbsides and represent the ideal solution in architectural
contexts in which the lack of free-soil space can prove problematic.

The Institute of Atmospheric Sciences and Climate of the Italian National Research
Council (CNR-ISAC) and the Consorzio PROAMBIENTE, in collaboration with the CT
manufacturer, Green City Solutions [17], examined the operational modes of the infrastruc-
ture during three field campaigns taking place in 2017 and 2018 and reported in [16]. In the
cited work, the filtering and depositing capability of the urban green infrastructure were
fully characterized. In particular, during these campaigns the bulk deposition coefficients
(as in [18]) employed in our study were calculated. Hereafter, the field campaigns and
observational datasets will be labelled “CNR”.

As a companion paper of [16], the present study further examines the reduction of air
pollutants, particularly PM10 and NOx concentrations, operated by the green infrastructure.
We looked into the air pollution spatial distribution, by means of a Lagrangian dispersion
and transportation numerical model. We chose this modelling approach as Lagrangian
dispersion models have been successfully deployed to study the air flow within vegetation
and forested environments [19–24], as well as within complex urban environments (see as
an example: [25–28]).
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The modelling tool we chose for this type of assessment is a fit-for-purpose model
capable of reproducing passive deposition processes. We used the modelling system PMSS
(Parallel Micro-SWIFT-SPRAY) [29–34], which has a demonstrated ability to reconstruct
air transport in complex city environments, particularly in street canyons (please refer
to: [35–43]).

The PMSS model operates at very high spatial resolution (meters), and it is able to
simulate the effect of the presence of the infrastructure both on the pollutant concentration
and on the reconstructed air flow within a street canyon. It is also able to consider the CT
structure as an obstacle with measured deposition characteristics [44,45]. In fact, although
our Lagrangian model cannot yet simulate filtration by obstacles directly, it can account
for the porosity of the vegetation covering the vertical surfaces of the CT and the complex
effects between air motion and the CT structure, already effectively included in the bulk
deposition velocity values [18,44,45] used as input. In relation to the derivation of the
deposition coefficients [16], these do represent a sort of “total deposition” as they include
several effects such as particle interception, absorption and throughflow (please refer
to [18]).

In the literature, a recent study [46] examined the impact of a similar CT studied in our
work. This study aimed at investigating with a computational fluid dynamic model (CFD),
the impact of a CT on the yearly pollutant abatement (particulate matter and nitrogen
dioxide) in the city of Amsterdam. This study also considered different numbers of green
structures and their configurations. However, it only involved CFD simulations based
on statistics of pollutant concentrations and wind speed to guarantee realistic results,
considering factory values of deposition efficiencies. The distinctive feature of our work,
besides a different time period, is to rely on measurements available at the CT location,
as well as on the adoption of a Lagrangian approach. The choice between an Eulerian
and a Lagrangian approach depends highly on the objective of the study and on the
characteristics of the problem under investigation [47]. The Lagrangian method, which
describes the motion of the fluid by following individual fluid parcels, is typically used
to predict the overall particle dispersion pattern [47,48] and the temporal variation of the
mean concentration [47,49,50], with detailed particle spatial distributions [47]. On the other
hand, the Eulerian approach is more suitable when the details of the air flux properties are
relevant in a particular location, since it is based on the mass conservation equation and it
can incorporate second and higher order chemical kinetic equations necessary to describe
photochemical smog generation [51].

In this work we examine the abatement of air pollutants due to the green infrastruc-
ture focusing on two timeframes (12–31 May 2017 and 5–17 April 2018) when the CNR
experimental campaigns provided a complete characterization of the deposition velocities
and filtration efficiency of the CT.

Our study has three main objectives to assess: (i) the effective PM10 and NOx concen-
tration reductions due to the CT; (ii) the characteristics of the area where the air pollutants
abatement takes place; (iii) how well our model PMSS is able to reproduce the observed
concentrations. In fact, the last objective (iii) represents a fundamental aspect to evaluate
the model performances and is the basic step for objective (i) and (ii).

In this study, several simulations were performed and this required the implementa-
tion of the calculations on the High Performance Computing (HPC) infrastructure ENEA-
GRID/CRESCO [52], whose clusters are distributed over six sites and have been running
since 2008. CRESCO started with co-funding by the Italian Ministry of Education, Univer-
sity and Research (MIUR), in the framework of the 2001–2006 PON (European Regional
Development Funds Program).

The methodology section describes the green infrastructure CT and the field cam-
paigns performed by the CNR and Consorzio PROAMBIENTE. We explain the PMSS setup
in details, including the urban settings (obstacles and buildings), the prescribed CT location
and meteorological and emission features coherent with the experimental campaigns [16].
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The results section focuses on the abatement of air pollutants produced by the CT and
presented as percentage reductions in PM10 and NOx concentrations, with the description
of their spatial characteristics. In Appendix A, we analyze the ability of the model to
reproduce the measured concentrations. As will be explained in Section 3.1, the comparison
is presented for only one of the pollutants (NOx), exploring the role of the background
NO2 concentrations and of the wind conditions.

2. Methodology
2.1. Green Infrastructure–CityTree Structure

The CT is a 3 × 0.6 × 4 m3 (L × W × H) panel with the two largest vertical sides
covered with a combination of hydroponic cultures of mosses and non-vascular plants that
act as depositing surfaces for particulate matter and pollutant gases (see [17] for details).
The mosses were predominantly Amblystagium varium “Plattenmoos” and Lucobryum
Glaucum “Polstermoos” types. The first type was placed in the inner side of the panel since
it benefits from reduced sunlight. The second type, better suited for withstanding direct
sunlight, was placed on the external part of the panel. Irrigation in CTs is provided by a
fully automated system that relies on temperature and relative humidity measurements to
ensure the highest efficiency for moss cultures. The newest types of CT host hydroponic
cultures of mosses only. Being permeable to air and with their mesh-like texture, mosses
can capture atmospheric particulate matter by impaction and deposition when flowed with
ambient air. Air flow can be forced in CTs by the internal venting system. As discussed in
the companion paper, the “filtration mode” results in enhanced removal of PM but not of
NOx with respect to when the venting system is switched off (“passive mode”), most likely
due to an increased probability of impact and deposition of solid particles induced by the
higher flow rate, not involving the gaseous species [16]. Since filtration requires an energy
supply, CTs were operating most of the time in passive mode during the field campaigns
in Modena.

2.2. Experimental Activities

Since 2017, three field campaigns have been performed in order to obtain a complete
characterization of the filtration efficiency and deposition velocities of the CT in a real
environment, consisting of a urban street canyon, and different meteorological conditions.
We considered the western side of the road named viale Verdi (44◦ 38′ 34.94′′ N and 10◦ 56′

07.81′′ E) in Modena (Italy), (see Figure 1).

Figure 1. Simulation domain and location of the CT unit within the urban area of Modena, which includes viale Verdi,
indicated by a green line.

In the companion paper [16], data and results from the experimental activities are fully
described. For the reader’s convenience, here we report a brief description of the experi-
mental activities. The first measurement campaign was performed between 12 May and
27 June 2017, for a total duration of 37 days. This campaign focused on the determination
of the CT deposition velocities for selected air pollutants in spring-summer meteorologi-
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cal conditions. The second measurement campaign was performed from 9 November to
25 November 2017. This campaign aimed at the determination of the CT filtration efficiency
when the ventilation system was active.

The last campaign was performed from 27 March to 17 April 2018. The measurements
in deposition mode were performed from 6 April to the end of the period for a total
duration of 12 days. This campaign focused on studying the removal rates of particulate
and gaseous pollutants in winter-spring conditions both in deposition and filtration modes.

The mobile laboratory was equipped with state-of-the-art instrumentation for air
quality and meteorological observations. Particle concentrations were measured using a
condensation particle counter (CPC, Grimm Aerosol Model 5.403, 1 Hz) for total particle
number concentration (PNC) and an optical particle counter (OPC, Grimm 1.109, 31 chan-
nels) for particle number size distribution and particle mass size distribution. Both CPC
and OPC collected samples with 1 min resolution. The system was able to measure PNC
in the range between 0.009 and 1 µm. The OPC was used to measure the particle number
size distribution in the size range between 0.25 and 32 µm. The OPC provides estimates
of the particulate mass in the PM10, PM2.5 and PM1 size ranges. Gaseous concentrations
of NO, NO2, and NOx were measured with a temporal resolution of 1 min. NO, NO2,
and NOx were measured using a Teledyne-API (200E analyzer). Black Carbon (BC) was
measured by a Thermo Fisher Scientific Multi-Angle Absorption Photometer (MAAP).
The instrument provides the atmospheric concentration of the equivalent black carbon
(BC) with 1 min time resolution. Furthermore, the mobile laboratory was equipped with a
three-dimensional ultrasonic anemometer (R3, Gill Instruments), installed at about 3 m
above the ground on a telescopic mast, and a slow response thermo-hygrometer Rotronic
MP100A (Campbell Scientific).

Statistically significant passive deposition velocities (first quartile, median, and third
quartile of the distribution were provided) for PM10 and NOx, measured during the
first and the third field campaigns were used in the PMSS model to evaluate potential
reductions of air pollutants concentration in the area nearby the CT. In addition, traffic
observations (consisting of vehicle counting) were used to estimate the traffic emission
input for the simulation.

2.3. Micro-SWIFT-SPRAY (PMSS)

The modelling system Micro-SWIFT-SPRAY (PMSS) is a suite for simulations of pri-
mary pollutant transport and dispersion. PMSS is the parallelized version of the MSS model
suite, which is fully described in [29–34]. The system is composed of two main model units:
PSWIFT, an analytically modified mass consistent interpolator over complex terrain [30],
and PSPRAY, a three-dimensional Lagrangian particle dispersion model. The modelling
suite can be used for both local scale and microscale simulations, with complex terrain
or obstacles such as buildings, which are represented as filled cells in the meteorological
field [32,33]. PSWIFT produces mass-consistent wind fields using data from a dispersed
meteorological network or from simulated meteorological data at lower resolution.

In PSPRAY the pollutant concentration is simulated by generating a certain number of
“virtual” particles, each of them carrying a portion of the pollutant mass. The velocity of the
particles is composed by a mean velocity component defined by the local wind computed by
PSWIFT, and a stochastic velocity component, characteristic of the atmospheric turbulence.
PSPRAY can compute mean and instantaneous concentrations on a three-dimensional
grid defined by the user, differentiating the calculation both by “chemical species” and
by “source”.

PSPRAY can simulate the dispersion of pollutants from point, area or line sources.
The model reproduces the transport, the dispersion and the dry and wet deposition of
the airborne chemical species emitted. In particular, PSPRAY is also able to compute dry
deposition due to interactions with roofs, walls and ceilings, by inserting species dependent
deposition velocities into the model [33].
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In its current version and differently from a CFD model [15,53], our model cannot
compute the air flow through a porous medium, such as a tree, since the porosity of obsta-
cles has not yet been implemented. However, as already mentioned in the introduction,
the bulk deposition coefficients measured in [16] represent a sort of “total deposition” as
they include the main effects such as particle interception, absorption and throughflow
(see [18]). Moreover, they already take into account the porosity of the vegetation and the
complex effects between air motion and vegetation as found in the literature [18,44,45].

In our model simulations, the CT structure was represented as an obstacle with
deposition characteristics, which we can parametrize in PMSS. When the filtration mode
was activated in the CT, the calculated bulk “effective filtration” deposition velocity was
assumed to be the deposition velocity capable of producing the impact of the CT measured
in filtration mode. In this way, we could use PMSS to study the spatial characteristics of
the filtration efficiency.

As a Lagrangian dispersion model, PSPRAY performs the dispersion of chemical
compounds (NOx) in the urban environment. However, chemical reactions occur at this
scale, affecting the concentrations of the chemical species [33]. In order to represent this,
recent developments have addressed the implementation of several chemical models into
PSPRAY (see [33] for more details). However, in the present work, we decided to consider
only the dispersion characteristic of the PMSS system, and the chemical models were
not implemented.

The PMSS modelling system is a commercial software developed by ARIANET [54]:
PSWIFT and PSPRAY codes, in the versions PSWIFT-2.1.1 and PSPRAY-3.7.3, compiled
with Intel16 compiler, using OPENMPI library.

2.4. Simulation Set-Up

As mentioned in the introduction, we focused on two-time frames: 12–31 May 2017;
and 5–17 April 2018. In these time frames the CNR experimental campaigns provided a
complete characterization of the bulk deposition velocities for NOx and PM10. Since these
measurements did not show a significant variation during the campaigns, their average
values were used for the simulations. Only for the PM10 concentrations was the filtration
efficiency retrieved of the CT operating in active mode. The reason for selecting PM10 lies
in the fact that [16] reported neglectable abatement for the NOx concentrations when the
CT operated in active mode.

We performed two sets of simulations:

1. For the year 2017, we ran PMSS to simulate vertical deposition due to the CT operating
in passive mode (only deposition).

2. For the year 2018 we reproduced the air pollution abatement linked to the deposition
vertical velocities when the CT operated in passive mode (as in 2017). In addition,
we studied the PM10 concentration abatement produced when the CT filtration mode
was activated. Here we used the passive deposition velocity, calculated from mea-
surements analysis, able to produce the same pollutant deposition measured with the
CT in filtration mode (see [16]).

2.4.1. Input Meteorological Data

Meteorological data used to feed the diagnostic model PSWIFT for 2017 and 2018
periods were provided by RAMS (Regional Atmospheric Modelling System, [55]), the
meteorological model driving the national Air Quality modelling system MINNI [56–58]
and the air quality forecast system FORAIR-IT [59,60].

Hourly data of meteorological fields were used by PSWIFT to reconstruct the three-
dimensional wind, temperature and turbulent flow at 2 m resolution.

The meteorological parameters that are used in the model (such as relative humidity
and precipitation) affect only the state of the atmosphere and cannot change the deposition
characteristics of the CT, which are described by the bulk deposition velocity that is constant
for each pollutant.
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2.4.2. Simulation Domain, Area and Obstacles

We set a 1 × 1 km2 horizontal domain that was centered in viale Verdi, where the CT
was located (Figure 1). The domain is shown by the red square in Figure 1 and covered
an adequate fraction of the emissions of the city while providing that the CT unit was far
enough from the domain border, where the model uncertainty is generally higher. The
spatial resolution of 2 m was chosen to ensure that the model represented the CT as closely
as possible while keeping computational time within acceptable values. For the vertical
grid, we chose the following 25 levels above the ground: 0, 1.5 m, 3 m, 4 m, 6 m, 8 m, 10 m,
13 m, 16 m, 19 m, 22 m, 25 m, 30 m, 35 m, 42 m, 50 m, 60 m, 80 m, 120 m, 160 m, 200 m,
240 m, 300 m, 380 m, and 700 m. Since buildings are represented by the model as filled
cells in the computational grid, vertical levels were chosen in order to properly describe
the range of the heights of the buildings within the domain.

As mentioned in the introduction, in our simulations the CT was represented as an
obstacle with deposition characteristics. This is a sound assumption, as [44] showed that,
rather than representing every leaf, air flow and particle-leaf interactions are represented
statistically by using a continuum approach. As for the case of the CT that contains a
sufficiently large number of single vegetated elements, the effects of individual vegetated
items are irrelevant in the average transport through the volume. Moreover, each vegetation
item of the CT surfaces has dimensions much smaller than our model grid size. On this
basis, we represented the CT as a barrier with proper measurable parameters describing
vegetation (see for example [44,45]), which are fully provided in our modelling study by
the measurement campaigns of [16].

2.4.3. Bulk Deposition Velocities for PM10 and NOx

The bulk deposition velocities used in our simulations are of two kinds:

• Bulk Deposition Velocities with the CT in passive mode (filtration switched off)

We considered the main statistical parameters of deposition velocities resulting from
the measurements of both the 2017 and 2018 campaigns. Upon observing that the values
did not change significantly, the results from both campaigns were included for a more
robust statistic.

Measurements of air pollutants were performed, alternatively, through a computer-
controlled valve switching system, at two different horizontal distances on both sides of
the CT (at the front and at the rear of the wall). Figure 2 shows the sampling system that
was composed of four identical conductive silicon sampling tubes connected to a common
inlet through four electronic valves for automatically switching the inlet (P1, P2, P3 and P4)
every 7 min, resulting in a complete cycle of 28 min. Inlet P1 and P2 were positioned in
proximity (at 5 and 30 cm respectively) of the surface of moss and leaves on the roadside of
the CT panel. Inlet P3 and P4 were in a specular position on the curb side of the CT panel.

Figure 2. Diagram showing the sampling points used to measure Bulk Deposition Velocities.
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The statistical parameters considered for the estimate of the deposition velocity were
the first quartile, the median and the third quartile, and are presented in Table 1. These
values are consistent with the deposition velocity values found in the literature [61].

Table 1. Summary of PMSS set-up.

Parameters 2017 2018

Days Simulated 12–31 May 2017 5–17 April 2018
Pollutant Simulated PM10, NOx PM10, NOx
Horizontal Domain 1 km × 1 km 1 km × 1 km

Horizontal Resolution 2 m 2 m

Emissions:
Vehicle Input

Flow model for 2017 +
vehicle Measurements 2017

in viale Verdi

Flow model for 2017 +
vehicle Measurements 2018

in viale Verdi
Obstacle Position Viale Verdi 21 Viale Verdi 21

Meteo Input RAMS [55]
4 km × 4 km, May 2017

RAMS [55]
4 km × 4 km, April 2018

Bulk Velocity Deposition (PM10) CT passive mode:
1st quartile, median, 3rd quartile

vd -> 0.0005 m/s,
0.0012 m/s,
0.003 m/s

vd -> 0.0005 m/s,
0.0012 m/s,
0.003 m/s

Bulk Velocity Deposition (PM10) CT active mode Not simulated vd filtration ~0.024 m/s

Bulk Velocity Deposition (NOx) CT passive mode:
1st quartile, median, 3rd quartile

vd -> 0.0004 m/s,
0.0011 m/s,
0.0025 m/s

vd -> 0.0004 m/s,
0.0011 m/s,
0.0025 m/s

Model Versions
PSWIFT-2.1.1, PSPRAY-3.7.3,

Intel16 compiler,
OPENMPI library

PSWIFT-2.1.1, PSPRAY-3.7.3, Intel16
compiler,

OPENMPI library

• Bulk Deposition Velocities for PM10 with the CT in filtration mode

The filtration mechanism occurs in the CT by means of fans operating inside the
structure, and it is a more efficient mechanism than the passive deposition (e.g., [16,62,63]).
In particular, [16] showed that the aerosol removal efficiency of the CT was from ~3 to
almost 20 times higher in filtration than in deposition mode.

We provided an estimate of the effect of the CT in filtration mode on particulate matter
concentrations to study its influence at increasing distance from the structure. Consider-
ing PM10 measured concentrations, CNR and Consorzio PROAMBIENTE calculated an
“equivalent deposition velocity” as the bulk deposition velocity that the CT should have
in order to produce the observed pollutant reduction in the active filtration mode. The
average value of about 0.024 m/s was obtained and is consistent with the largest values of
deposition velocity intervals found in the literature.

2.4.4. Emissions

We computed the traffic emissions in viale Verdi from the hourly vehicle flows mea-
sured during the campaigns from 12–31 May 2017 and from 5–17 April 2018. Hourly
modulations of buses passages were calculated according to the public transportation
timetable at the bus stop. In all the other roads of the simulation domain, total daily vehicle
flows generated by a flow assignment model run for 2017 by the Municipality, combined
with hourly traffic modulation measured in viale Verdi, were used (e.g., Figure 3).
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Figure 3. Hourly vehicle flow modulation measured during the 2017 and the 2018 campaign.

The composition of the vehicle fleet, in terms of age, emission standard, displacement,
and fuel, was retrieved from the public registry of motor vehicles for the year 2017 (which
was the latest published online at the time of the study) and for the city of Modena.
The emission input for PSPRAY has been calculated by TREFIC (Traffic Emission Factors
Improved Calculation), a software designed by ARIANET [64] for the calculation of road
emissions. TREFIC calculates emission factors (EFs) using the COPERT 4 methodology [65],
based on vehicle type, fuel consumption, average travelling speed and road type.

2.4.5. Parallel Run Details CRESCO

PMSS allows for parallelization in time for PSWIFT and for PSPRAY, both with respect
to the domain, referring to a multi tiles domain, and to sources/particles decomposition [31].
Our domain is an area of 1 × 1 km2 at the resolution of 2 × 2 m2, which is suited to be
represented by a single tile [32]. Therefore, our PSPRAY simulations were handled by a
single tile of 501 × 501 cells, and the computation was parallelized with respect to particles.

We conducted the simulations on the CRESCO/ENEAGRID High Performance Com-
puting infrastructure funded by ENEA [52]. As the model system was structured, each
12-day-simulation consisted of 12 single model runs, each simulating 24 h. The restart
option was applied, i.e., for each simulated day the values of the pollutant concentrations
calculated for the last hour were saved and used as initial condition for the following run.

The simulation duration depends also on the number of emitted particles and on the
concentration resolution required. In our simulations, the total number of emitted particles
reached peaks of about 34.3 million particles per day, with a typical particle number per
time step of 4000. Here we used 264 cores and for PSPRAY, which represents the most
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CPU demanding part of the system, the CPU time per core per simulated day was 470 s. A
summary of the whole simulation set-up is provided in Table 1.

2.4.6. NOx and PM10 Reduction Operated by the CT

In order to quantify the abatement due to the presence of the CT on PM10 and NOx
concentrations, we set up two simulations for each mode (deposition for 2017 and 2018,
and filtration-like mode for 2018) that were equivalent to considering the cases with and
without the CT. In particular, we considered the measured deposition properties of the CT
as an on and off parameter in the model runs, similarly to what was done in the study [46].
Then, we calculated the percentage difference of the PM10 and NOx concentrations with
and without the deposition on the CT as metrics of its impact on the air quality.

2.5. Reference Air Quality and Meteorological Data

The model validation represents a key factor to evaluate the model performances, and
thus to assess the reliability of the results. Since our simulation took into account only
primary emissions, to analyze how well our model reproduces NOx concentrations, we
needed to estimate the secondary contribution due to atmospheric chemicals processes.
Our best indicator available for secondary contribution to NOx concentrations were the
measurements of urban background NO2 concentrations, consisting of NO2 hourly concen-
trations measured in the air quality station of Parco Ferrari (10◦ 54′ 22.8′′ Lon, 44◦ 39′ 2.2′′

Lat, 34 m a.s.l (see [66]).
Concerning the meteorological data, we used wind speed and direction data measured

by ARPAE station located in (10◦ 55′ lon, 44◦ 39′ lat, 35 m altitude a.s.l.). Both stations are
presented in Figure 4.

Figure 4. Map reporting PMSS domain, the CT position (red star symbol), the reference meteorolog-
ical station Modena Urbana (yellow pentagon symbol) and the air quality station at Parco Ferrari
(orange square symbol).

2.6. Tools for the Analyses

For the analyses performed, we used the FAIRMODE IDL-based DELTA software tool
version 5.4 [67,68] provided by the Forum for Air Quality Modelling in Europe [67], and
R-cran based scripts [69,70].
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3. Results
3.1. NOx Modelled and Measured Data Evaluation

To evaluate the PMSS performances, we studied the NOx concentration time series
for the year 2017. We focused on this time period since the measurement campaign from
12 May to 27 June 2017 was the longest (37 days). We compared hourly NOx concentrations
measured during the CNR campaign with the simulated NOx after adding the background
concentrations. The reason for choosing the pollutant NOx relies on the fact that we used
our PMSS modelling system studying the dispersion of pollutants, neglecting chemical
reactions (see Section 2.3). Therefore, it was possible to properly represent air pollutions
from primary sources only. In our case, the NOx concentration is produced mostly by traffic,
thus the approximation that is made neglecting the chemistry has a smaller influence on
the simulated concentration that can be corrected by adding a background concentration,
which represents most of the secondary contribution.

Hourly measurements of NO2, provided by the urban background air quality station
located in Parco Ferrari (see Section 2.5), at a distance of about 2 km from viale Verdi, were
used as background concentration values, since data for the concentrations of NO and NOx
were not available at this station.

In Appendix A we present detailed analyses to assess our model performances.

3.2. Green Infrastructure Abatement

The results of the simulations are presented here as averages over the two simulation
periods (19 days for 2017 and 12 days for 2018), in order to show the pattern of the area
interested by the effect of the presence of the CT.

Here the differences between the simulations with and without the CT are presented
as mean PM10 and NOx percentage concentration differences. All the graphics reported
show results using the median of the measured deposition velocities. Similar maps cor-
responding to the values obtained using the first and third quartile of the deposition
velocity distributions for each case simulated did not differ significantly, therefore they are
not shown.

3.2.1. CT in Passive Mode-Deposition

Median values of the deposition velocities were 0.0012 m/s and 0.0011 m/s for PM10
and NOx, respectively (see Table 1).

From Figure 5, the effect of the CT in passive mode (deposition) translates into a
maximum concentration reduction of about 0.8% for both PM10 and NOx concentrations.
Though our simulations are not directly comparable to the CFD simulations in the TNO
study, nevertheless our results for PM10 are in agreement with those found in Amster-
dam [46]. For a given deposition velocity, we can define a “region of influence” of the CT
as the area where the concentration reductions are larger than 10% of the maximum value
reached. For the CT operating in passive mode, the region of influence has concentration
reductions larger than 0.1%, and it is found in proximity to the CT, with an extension of
about 10 × 20 m2 more or less centered on the CT position, as shown in Figure 6.
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Figure 5. Simulation results for the case of PM10 (top panels) and NOx (bottom panels) showing
the percentage difference between the concentration simulated without and with the CT for the two
simulation periods 2017 (a,c) and 2018 (b,d). The values in the legend indicate the upper limit of the
corresponding interval.

Figure 6. Maps for 2017 (left) and for 2018 (right) representing the areas where the percentage difference is larger than 0.1%.

Figure 6 also indicates the location of the two points (Figure A1), A and D, in which
we studied the NOx concentration comparisons with measurements (presented in detail in
Appendix A) and in which we extracted the vertical profiles shown in Figures 7 and 8.
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Figure 7. Vertical profiles for percentage difference reduction for PM10 (left panel) and NOx (right panel) in passive mode.

Figure 8. Impact of the CT operating in filtration mode on the PM10 concentration (a) and an example
of vertical dependence of such impact in the sampled points A and D (b). The map corresponds to
the deposition velocity vd = 0.024 m/s. The numbers in the legend indicate the upper limit of the
corresponding interval.

3.2.2. Vertical Profiles of Pollution Reduction in Passive Mode

The mean vertical profiles for the pollutant reduction are reported in Figure 7. In
particular, we took into consideration two points, A and D, which were close (point A) and
4 m away (point D) from the structure (see Figure A1).

We observe:

• Reduction profiles for PM10 and NOx have the same characteristics. They have the
maximum reduction values in the first few meters above the ground. The reduction
decreases significantly at heights above the green infrastructure (above 6 m).

• For both NOx and PM10, the maximum pollutant reduction is obtained very close
to the green infrastructure, at point A, with values of about 0.5%. At point D, the
maximum pollutant reduction decreases to 0.1–0.2%.
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• Air pollutant reduction decreases rapidly, moving away from the green infrastructure,
both in the vertical and in the horizontal directions.

3.2.3. CT in Active Mode (Filtration) for PM10 Concentrations in 2018

The results for the CT in active mode of operation (filtration) for PM10 concentrations
in 2018 are shown in Figure 8.

The space distribution of the impact did not significantly change with respect to
the previous simulations with lower deposition velocities (here the value is 0.024 m/s,
instead of about 0.001 m/s). However, the values of the maximum PM10 concentration
reduction increased to 15% very close to the CT. In analogy with CT in passive mode
(deposition) cases, we observe a very similar region of influence with different values and
largest concentration reductions at the southwest CT corner. Here, in the areas where the
percentage difference is higher than 1.5%, we observe a much larger extension covering
most of viale Verdi and some of the lateral roads (approximately 10 × 30 m2). The vertical
distribution of the impact of the CT (Figure 8b) has not significantly changed with respect
to the passive deposition case (Figure 7).

4. Discussion

When we take into consideration the pollutant abatement caused by the CT in passive
mode (deposition), we observe that reductions of NOx and PM10 concentrations are smaller
than 1% in an area of about of 10 × 20 m2 around the CT and at the same height as that of
the green wall. Comparing our results to those obtained in other studies is not an easy task.
The only other modelling study published on a similar CT as that deployed in Modena,
was performed by TNO [46]. The simulations in this study were performed by considering
a realistic situation using factory specifications for the CT, therefore not considering input
measurements for the model, as done in the study presented here. Although our modelling
results are not directly comparable to those of the TNO study, nevertheless our results
for PM10 in the case of passive mode of operation are in agreement with those found by
TNO [46].

When the CT operated in active mode (filtration), our modelling estimate of the impact
suggests pollutant reductions of a larger order of magnitude, reaching values of about
15%. As for the previous result, in this case finding similar results in the literature for
comparison was not an easy task. A recent study [71] involving a similar type of green
wall with filtering capabilities placed at the edge of a highway showed measurements
that can be compared to the filtration efficiency measured during the CNR campaigns.
These measurements are in some agreement, in the experimental estimate of the filtration
efficiency for PM2.5, with the results of the CT experimental campaigns [16].

We observed that the region of influence has about the same shape and dimensions
for both 2017 and 2018, with the CT in passive mode, as well as for the case with the CT
in active mode of operation. Given the differences in the setups for the 2017 and 2018
simulations, especially regarding emissions and meteorological conditions, we expect that
this area is more significantly influenced by the building pattern and distribution than by
CT position in relation to the buildings. Indeed, in preliminary studies conducted for the
year 2017, with the same setup with the exception of the CT position, the area of influence
showed a shape which did not significantly differ from the one here presented in terms of
contours, size and pollutants abatement.

We can conclude that a single CT will not have a significant impact in the reduction
of particulate matter and nitrogen oxide concentrations in the whole urban extension.
This finding is consistent with the work of [46] where several hypothetical configurations
were analysed, including set ups with many CT structures. When more units of CT were
represented, [46] obtained pollutant removal in the area considered was less than 20–30%.
However, when looking at air pollution in hotspots and/or considering specific building
arrangements, these abatements could be achieved.
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In the present work, the reliability of the simulated reduction operated by the CT depends
on the quality of our model simulations, e.g., we assumed that our model could represent
absolute concentrations well, given our specific traffic primary emissions as input. The
analyses of the measured and observed NOx concentrations in Appendix A aim to investigate
the soundness of our results. The validation of a pollutant such as particulate matter is
more complex, not having considered as input all the precursors of the PM secondary
components, nor the chemical reactions in the atmosphere that generate these components.

In Appendix A.2, we observed that the values of the NO2 background concentrations
were generally close to 20 µg/m3, and they were associated with prevailing easterly
winds (up to 6 m/s). These concentration values were possibly generated by air being
transported from Modena city center that, due to strict traffic regulations, is less affected by
traffic than peripheral areas of the city. Differently, larger NO2 background concentrations
(above 50 µg/m3) were measured with SW-SE winds of less than 3 m/s, and they were
possibly brought from major traffic roads located southward, some kilometers away from
Parco Ferrari.

The NOx observed and modelled concentration analyses reported an overall good
agreement (see Figures A4–A7). The modelled values are generally close to the observations
(see Figure A4). However, in specific cases the simulated concentrations are higher than
the measurements (Figures A5 and A6). In particular, the measured and modelled hourly
data show a dispersion that changes with the concentration values: for concentrations of
less than 50 µg/m3, the two distributions are very similarly normally distributed (e.g.,
Figure A6), while for higher values (specifically for more than 100 µg/m3) the model tends
to overpredict the NOx concentrations.

To further investigate the comparisons of the NOx concentrations, we took into account
groups of days (Figure A9) and local and urban wind directions classified according to
four sectors (Figures A10 and A11) (Appendix A.1). We found that:

• Wind measurements taken at the urban scale (at Modena Urbana) and close to the CT
(CNR measurements inside the urban canyon) are significantly “decoupled” as already
well documented in the literature (e.g., [72]). It was very difficult to establish a relation
between the urban and local wind datasets, likely to be due to the air circulation
specific to the street.

• The agreement between modelled and measured data is significantly more evident
during the days 25–31 May, characterized by urban south-easterly wind and NOx
concentrations between 20–100 µg/m3. During the days 26–31 May, the Taylor dia-
gram shows the best agreement with correlation values of about 0.85 and normalized
standard deviations close to one.

In the previous settings, to assess if the NOx concentration distributions would
spatially differ close to the CT, we analysed the concentrations at the points A and D
(see Appendix A.1). However, we concluded that the distributions at the two locations did
not differ significantly (e.g., we obtained similar statistical scores for both A and D, from
the Taylor diagrams).

We did not identify the reasons for the good agreement obtained during 26–31 May.
In addition, we need to further investigate the reasons why our model tends to overpredict
NOx concentrations higher than 100 µg/m3.

Note that the NO2 background concentration measurements did show a very good
correlation with the CNR local measurements. This represented a key factor for the overall
good agreements between measured and simulated NOx concentrations at the local scale.

5. Conclusions

We presented an application of the modelling suite Micro-SWIFT-SPRAY (PMSS) as a
reasonable tool for an estimate of the impact of a single CityTree (CT) on the abatement of
air pollution concentrations, such as PM10 and NOx, in viale Verdi, Modena (Italy).

We applied the Lagrangian model Spray considering:

• The specific urban setting centered in viale Verdi, Modena (obstacles and buildings);

155



Atmosphere 2021, 12, 839

• A prescribed location of the CT consistent with the experimental field CT installation;
• Meteorological data and emission features coherent with the first and the third re-

search campaigns;
• Values of bulk deposition velocities deriving from the experimental campaigns (and

in agreement with results obtained in the literature).

PMSS simulations showed that the passive operational mode of the CT may produce
air pollutant concentrations abatement larger than 0.1% and up to about 0.8% in an area
of 10 × 20 m2 around the CT and along the vertical extension of the green infrastructure
(4 m). The area may depend on the urban infrastructures design.

When the CT operated in filtration mode, by using a value of bulk deposition that
produced the same PM10 concentration abatement, in terms of concentration difference
between the values measured in front and at the rear of the panel, we obtained a PM10
concentration reduction of about 15% close to the CT. This is the best estimate of the active
CT mode operation on PM10 concentration abatement achievable with the PMSS suite.
Furthermore, this finding suggests that active filtration mode can abate particulate matter
concentrations at least one order of magnitude more efficiently with respect to the only
deposition removal and that the abatement is present along the entire vertical extension of
the CT.

The novelty of our results lies in the use of measured passive deposition velocities
during three intensive field campaigns in the city of Modena (Italy) [16]. In addition, an
assessment of model performance was developed with reference to NOx modelled and
measured concentrations. For the year 2017, good agreement resulted between observations
and modelled data reporting overall correlation indexes of about 0.6 and normalized
standard deviations of about 1.25.

The results of the present study indicate that a single CT will not have a significant
impact in improving the air quality of a street along its full length. These findings, tested
with different meteorological conditions and different emissions input for the experimental
time periods in 2017 and 2018, show that, according to the value of the deposition velocity,
the major reduction effect occurs in a specific area in the neighborhood of the infrastructure
(the “region of influence”) in both deposition and filtration modes. Therefore, an effect
in reducing particulate matter and nitrogen oxides concentrations, and thus population
exposure, can still be achieved for specific environments (e.g., sidewalk benches, small
gathering areas, bus stops, school or hospital entrances).

On the basis of these results, we expect that a cluster of CT modules, properly located
in an urban context, could design restricted densely populated areas with consistent
air pollution reduction, the so-called “clean air zones”, where citizens are expected to
spend time during rush hours. For practical applications, parameters such as energy and
water consumption per operating hour are important. Such technical parameters of CTs
were not optimized at the time of our field campaigns, while later generation CTs have
been accurately engineered to account for power and water supply. A comparison of the
technical features of the new CT model with respect to the one deployed in Modena (a
CT 1.0 version) is available in Appendix B (Figure A12). In new CT 2.0 models, energy
consumption is around 120–150 W per operating hour and water consumption is between
2 and 8 L per operating hour depending on local climate conditions. In recent experimental
evaluations the filtration capacity for CT 2.0 has been estimated as 31 mg of fine particulate
matter per hour. These results support the potential of CT technologies for protecting air
quality in local urban contexts.
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Appendix A

In this section we assess the ability of the model to reproduce the measured NOx
concentrations considering the urban background NO2 concentrations and the role of the
wind conditions.

Appendix A.1. Viale Verdi Orientation and Geographical Sectors

To assess the model performances and to assess the pollutant reductions, we compared
the simulated concentrations with measurements. In particular, we took into consideration
features like the orientation of viale Verdi with respect to the northerly direction (about 32◦

northward) to define four sectors of wind direction, which are parallel to viale Verdi:

• NE (347–77◦),
• SW (167–257◦);

and perpendicular:

• NW (257–347◦),
• SE (77–167◦).

To examine the air pollutant reduction caused by the CT, we decided to study two
cells of the simulation domain: A and D as indicated in Figure A1. The points were both
close to the cell that represents the CT in the model grid: point A is adjacent to the CT and
can be considered as representative of the air volume directly in contact with the CT, while
point D is more related to the air volume within the street canyon. Point D is only four
meters away from point A.

Figure A1. Left: positions of the A and D points with respect to the CT indicated here with the brown square. Centre: sectors
considered according to the viale Verdi orientation. Right: position of the CT, in red, and the buildings and streets nearby.
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Appendix A.2. NO2 Background Concentration

We analysed the background NO2 concentration provided by the reference station in
Parco Ferrari considering the wind observed at the background station Modena Urbana.
The results are shown in Figure A2. According to the diagram we outline:

• The prevailing wind directions were easterly. However, significant contributions were
also from north-west and south-west directions.

• Mean NO2 background concentrations were generally close to 20 µg/m3. These values
were detected particularly with easterly winds, which were stronger (up to 6 m/s) than
in the other directions where intensities were generally lower than 4 m/s (Figure A3).

Figure A2. Concentration wind rose diagrams expressing the dependence of Parco Ferrari background NO2 concentration
on wind direction from Modena Urbana station (2017).

The Modena city center is located in an eastward direction with respect to the station
and, because of traffic restrictions, is usually affected by less traffic than the peripheral areas.
Larger NO2 background concentrations, reaching hourly concentrations above 50 µg/m3,
were measured with SW-SE winds of less than 3 m/s. Winds blowing from these directions
carry pollutants from major traffic roads such as the motorway A1/E45, which is located
about three km away from Parco Ferrari.

Appendix A.3. Wind Distributions

As a first step, we studied the wind distributions of the data measured at the stations
of Modena Urbana (background station) and from the CNR and Consorzio ProAmbiente,
in viale Verdi. The resulting wind rose diagrams are presented in Figure A3. When urban
and local wind distributions are compared, many differences can be outlined relating to
both wind directions and speed. The local wind directions were mainly between NE and
SW, which was probably due to the microscale circulation driven by the presence of the
buildings (see Figure A1). Wind speeds were generally lower than 2 m/s with the majority
of the values below 1 m/s. Stronger wind speeds up to 2 m/s were measured with westerly
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and north-easterly winds, the latter corresponding to the north-related orientation of viale
Verdi (see Figure A1).

Figure A3. Wind rose distribution for wind measured at Modena Urbana (top) and in viale
Verdi (bottom).

Appendix A.4. NOx Concentrations—Model Evaluation

We conducted the analyses in two steps:

• Dataset exploration:

We applied the FAIRMODE IDL-based DELTA software tool version 5.4 [67,68] pro-
vided by the Forum for Air Quality Modelling in Europe (FAIRMODE) [67,73,74]. The tool
was developed under the FAIRMODE framework specific evaluation protocols to support
the use of air quality models when they are applied for officially reporting on national air
pollution levels and for examining compliance with regulations (assessment, forecasting,
planning) [73].

The FAIRMODE IDL-based DELTA software tool is based on an approach relying on
paired modelled and monitored data to offer diagnostics of model performances using
various statistical indicators and diagrams [73]. Given the nature and the time length of
our case study, we applied the FAIRMODE IDL-based DELTA software tool for exploratory
purposes [68] since the user can analyze different statistical metrics and diagrams.

Our dataset was composed of the measured data from the CNR group, and modelled
data extracted in two points close to the green infrastructure, A and D, as seen in Figure A1.

We used the software to obtain: (i) timeseries plots, in order to analyze the dataset with
respect to time; (ii) scatterplots, for the correlation between measured and modelled values,
including their mean values; (iii) quantile plots, to compare the probability distributions by
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plotting their quantiles against each other; (iv) and Taylor diagrams, to quantify the degree
of correspondence between the modelled and observed behaviour in terms of Pearson
correlation coefficient, and the normalized standard deviation.

• Further dataset Analysis:

We took into account hourly and daily meteorological data for a more detailed analysis
by applying R-Cran library-based scripts [75], and the Taylor diagram package [70]. The me-
teorological measurements were provided by the station Modena Urbana (see Section 2.5),
and the observed data from the CNR-Consorzio ProAmbiente measurement campaigns.

• Exploration with the FAIRMODE IDL-based DELTA software tool

Regarding the exploration with the FAIRMODE IDL-based DELTA software tool,
Figures A4–A7 show the diagrams resulting from the application of the software tool when
applied in the exploratory mode to our datasets [68].

Figure A4. Timeseries diagram from FAIRMODE IDL-based DELTA software tool with hourly CNR observations (black),
modelled data in A (red), and in D (green).

The timeseries plot (Figure A4) reports on the x-axis the time in hours. The figure
shows an overall good agreement in trend between observed and modelled values (e.g., see
the values between the hours 3480–3570, 26 May up to 29 May 18:00). With the exception
of few cases, such as the hours 3170–3180, (13 May 2017, 02:00–12:00 h), 3330 (19 May 2017,
18:00), 3560 (29 May 2017, 08:00), the modelled values are in line with the observations and
in some cases they are higher than the observations (e.g., hours before 3170, 13 May 2017
02:00, and between 3390–3490, 22 May 2017 06:00 up to 26 May 2017 10:00).

From the scatterplot diagram in Figure A5 and the quantile distribution in Figure A6,
measured and modelled hourly data show a dispersion that changes with the concentration
values. For NOx values of less than 50 µg/m3 the two distributions are very similar and
normally distributed. For higher values of NOx concentrations, the model tends to over
predict, particularly when NOx concentrations are higher than 100 µg/m3. The overall R2

is quite low (0.4) in both the points A and D.
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Figure A5. Scatterplot diagram from FAIRMODE IDL-based DELTA software tool with hourly
modelled data in A (red), and in D (blue).

Figure A6. Quantile plot from FAIRMODE IDL-based DELTA software tool with hourly modelled
data in A (red), and in D (green).

The Taylor diagram in Figure A7 summarizes the features of the modelled and ob-
served distributions found in the previous plots. Here, we obtain correlation coefficients
larger than 0.6 for both A and D points, the latter having R slightly larger. The ratio
sigma modelled over sigma observed, e.g., normalized standard deviation is close to 1.25,
indicating that the modelled values are more dispersed than the observations.
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Figure A7. Taylor diagram from FAIRMODE IDL-based DELTA software tool with hourly modelled data in A (red), and in
D (blue).

• NOx Concentration Comparisons considering Wind Directions

Figure A8 shows the comparisons between timeseries of modelled and measured CNR
data with the urban wind directions in the background.

Figure A8. NOx concentrations (orange: NO2 concentration measured by the urban background station; black: observed
NOx concentration; blue: NOx concentration simulated at point A, and red: NOx concentration simulated at point D) with
daily prevailing wind directions from Modena Urbana according to the sectors specified in Appendix A.1. Grey vertical
bands indicate rainy periods.
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Figures A9–A11 show the Taylor diagrams obtained for the datasets (modelled points
A and D in red and blue, respectively, and the measured urban NO2 background, in green)
taking the CNR data as reference measurements. Data were classified by:

• day range within the month of May 2017 (12–16; 16–21; 21–26; and 26–31);
• urban wind direction within four sectors (NE 347–77; NW 257–347; SE 77–167; SW

167–257);
• local wind direction in the same four sectors as defined in Figure A1.

Figure A9. Taylor diagram with hourly modelled data in A (red), and modelled data in D (blue), and the measured
background NO2 concentration (green), according to four different groups of days.

The agreement between modelled and measured data (Figure A8) is much more
evident after 25 May, where the days are generally characterized by south-easterly wind,
and NOx concentrations are between 20–100 µg/m3, which are generally lower than
on other days. During 26–31 May, the Taylor diagram shows the best agreement with
correlation values of about 0.85 and normalized standard deviations close to one, indicating
a very good agreement in the values distribution for modelled and measured data.

All the Taylor diagrams show a very good correlation with the urban background
measured NO2 concentrations (green dot) which, the distribution being lower in value
than the CNR observations, has a normalized standard deviation about half that of the
measured one.

Figure A9 indicates that the best model performance is found during the period 12–16 May,
with correlation of about 0.7 and normalized standard deviation about 1; and the period 26–
31 with correlation R above 0.8 and normalized standard deviation close to 1. In the period
between 16–21 and 21–26, the correlation R is between 0.5–0.6 and the normalized standard
deviation is about 1.25, indicating a general over-prediction of the CNR standard deviations.

In Figure A10, NO2 concentration measured by the urban background station (green
dot) is generally always well correlated with the CNR NOx measurements (correlation
between 0.6 and 0.85), and it has normalized standard deviations between 0.3 (SW_167_257
sector) and 0.6 (NE 347-77 sector). With the modelled data (A in red, D in blue), the
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best agreement is obtained in the SW 167-257 sector with a correlation close to 0.8, and
the normalized standard deviation of about 1.2. The other sectors are characterized by
correlation values generally close to 0.6, and normalized standard deviation between 1.2
and 1.5.

Figure A10. Taylor diagram with hourly modelled data in A (red), and modelled data in D (blue), and the measured
background NO2 concentration (green), according to the urban wind sectors defined as in Figure A1.

Figure A11 shows background NO2 values for all the sectors (green dot) with corre-
lations close to 0.8 and normalized standard deviation values in a limited range (0.4–0.5).
Differently, the modelled data (red and blue dots) show a larger variability according to the
wind sector. The best agreement is found in the SE 77–167 sector where the correlation is
close to 0.8 and the normalized standard deviation is 1, followed by the SW 167–257 sector,
with R close to 0.6 and normalized standard deviation slightly larger than one. Sector NE
347–77 has a correlation above 0.6, but the normalized standard deviation is larger than 1.2.
The sector which shows the worst model performance is NW 257–347 where R is smaller
than 0.4 and the normalized standard deviation is close to 1.8–2.
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Figure A11. Taylor diagram with hourly modelled data in A (red), and modelled data in D (blue), and the measured
background NO2 concentration (green), according to the local wind sectors defined as in Figure A1.

Appendix B

Here we show a diagram (Figure A12) representing the evolution of the CT design
from its first version (CT 1.0) that is the one studied in the work presented here, and
the newest generations of CT (CT 2.0) available at the moment in which this paper was
submitted. Different design features, such as for example the presence of a wooden
cover to provide shade for the moss, have been improved and the development has been
oriented at lowering the costs of operation, such as energy and water consumption. In
the new CT 2.0 models, energy consumption is around 120–150 W per operating hour and
water consumption is between 2 and 8 L per operating hour depending on local climate
conditions. These results support the potential of CT technologies for protecting air quality
in local urban contexts.
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Figure A12. Timeline of the CT improvements from 2013 to present. Many design features have
improved, included the use of wood in substitution of the cover plants.
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Abstract: An accurate analysis of local-scale atmospheric dispersion of radioactive materials is
important for safety and consequence assessments and emergency responses to accidental release
from nuclear facilities. It is necessary to predict the three-dimensional distribution of the plume in
consideration of turbulent effects induced by individual buildings and meteorological conditions. In
this study, first, we conducted with meteorological observations by a Doppler LiDAR and simple
plume release experiments by a mist-spraying system at the site of Japan Atomic Energy Agency.
Then, we developed a framework for prediction system of local-scale atmospheric dispersion based
on a coupling of large-eddy simulation (LES) database and on-site meteorological observation. The
LES-database was also created by pre-calculating high-resolution turbulent flows in the target site
at mean wind directions of class interval 10◦. We provided the meteorological observed data with
the LES-database in consideration of building conditions and calculated the three-dimensional
distribution of the plume with a Lagrangian dispersion model. Compared to the instantaneous shots
of the plume taken by a digital camera, it was shown that the mist plume transport direction was
accurately simulated. It was concluded that our proposed framework for prediction system based on
a coupling of LES-database and on-site meteorological observation is effective.

Keywords: large-eddy simulation; database; on-site meteorological observation; water mist disper-
sion; lagrangian dispersion model

1. Introduction

In an emergency response to accidental release of radioactive materials from nuclear
facilities on a local-scale, it is important to accurately and quickly predict the air concentra-
tions at the evaluation point for internal doses and surface concentrations for external doses
to evaluate the radiological consequences in consideration of the influence of turbulent
effects induced by individual buildings and meteorological disturbances. For investigating
plume dispersion over complex surface geometry in distances of up to several kilometers
from the emission source, computational fluid dynamics (CFD) models are useful.

In principle, there are two approaches in CFD models: Reynolds-Averaged Navier–
Stokes (RANS) and Large-Eddy Simulation (LES) models. RANS-based CFD models
calculate a mean wind flow to deliver an ensemble- or time-averaged solution, and all
turbulent motions are modeled using turbulence parameterization. The main advantage
of the RANS model is its efficiency in simulating a mean flow field at a relatively low
computational cost. However, it was reported that lateral dispersion behaviors of a plume
are not reproduced well [1–3]. Recently, LES-based CFD models have also become useful
tools. The basic idea of LES models resolves grid-scale turbulent motions and parameterizes
only subgrid-scale motions. The advantage is that they can well capture plume dispersion
behaviors in complex turbulent flows such as impinging, separated, and recirculating
flows around buildings [2–7]. However, LES models also have a significant disadvantage
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of calculation time for emergency response purposes. To solve the trade-off problem of
calculation time and prediction accuracy, we developed a combined LES-database/RANS
model in which dispersion fields are simulated by RANS with LES pre-calculated wind
velocity data and applied to plume dispersion in an actual urban central district [8]. It
was shown that the combined model accurately reproduces horizontal concentration
distributions obtained from a wind tunnel experiment for a simple street canyon case [5].
In addition, for a real urban area case, it was found that the results of the combined model
reasonably agree with those of the LES used alone, although the underestimation in low
concentration areas was observed. We concluded from these results that the combined
model provides accurate results with a reasonable calculation time 1/40 times shorter
than the LES model alone. However, this model evaluation was conducted under an ideal
atmospheric condition in which the mean wind speeds and directions are constant. An
important issue was remained in incorporating meteorological information into the model
as input conditions.

Collier et al. [9] developed an operational dispersion model known as the Nuclear
Accident Model (NAME) by combining with meteorological observations (OBS). The
NAME model was designed based on a Lagrangian particle model and two mobile Doppler
LiDAR systems. The dispersion processes of large numbers of imaginary particles are
calculated by the mean flow and the turbulence parameters obtained from the dual-Doppler
LiDAR dataset. The NAME is used for many applications such as nuclear accidents,
pollutant episode studies, source term estimation, and air quality forecasting over a wide
region of several 100 km2. Recently, the on-site measurement coupled to CFD approach
has been applied to wind resource assessment by several researchers [10–12]. For example,
Radunz et al. [12] developed a framework based on a combination of on-site OBS and
CFD and showed a fast and comprehensive solution to produce a wind resource map and
estimate energy yield over a wide region of 144 km2 by prescribing accurate CFD inflow
conditions obtained from on-site OBS. These studies indicate the usefulness of a coupling
of on-site OBS and CFD.

In the case of nuclear accidents, radioactive materials are assumed to be released into
the atmosphere directly from a nuclear reactor building rather than an exhaust stack in
many cases. In such a situation, plume transport and dispersion are highly influenced
by individual buildings and structures, which results in inhomogeneous distributions of
air concentrations. In this study, we propose a framework for prediction system of local-
scale atmospheric dispersion based on a coupling of LES-database and on-site OBS that
takes into account both individual buildings and real meteorological conditions. Toward
development of the framework, first, we performed LESs of turbulent flows over a target
site and created the dataset of mean and turbulent flows for 36 mean wind directions at 10◦

class interval. Then, we conducted with meteorological observations by a Doppler LiDAR
and simple dispersion experiments using a mist-spraying system for representing a plume
at the site of Japan Atomic Energy Agency (JAEA). Here, the dispersion behaviors of the
water mist plume were observed using a digital camera. Our objective is to investigate
the effectiveness of the coupling of the LES-database and on-site OBS by comparing the
coupling simulation results with the transport direction of the water mist plume.

2. Field Experiments

Meteorological observations were conducted at the site of JAEA Nuclear Science
Research Institute (NSRI), Tokai-mura, Ibaraki prefecture, Japan during the period from
16 November to 23 December 2020. A mist plume was continuously released by a mist-
spraying system for 10 min several times during the period from 1049 JST to 1132 JST 26
November and from 1030 JST to 1122 JST 1 December. The target site and the locations of
the experimental devices are shown in Figure 1. A Doppler LiDAR (Streamline Pro, HALO
Photonics Ltd.) and an ultrasonic anemometer (WindMaster II, Gill Instruments Ltd.) were
placed on the building rooftop at 12-m height. The laser beam was intensively directed
toward the position of the mist-spraying system. The Doppler LiDAR repeatedly conducted
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a 3-min scan sequence, which included four Plan Position Indicator (PPI) scans at elevation
angles of 1.0◦, 7.6◦, 14.9◦ and 21.8◦, and six Range Height Indicator (RHI) scans at azimuth
angles with a 15◦ interval. The detection range was from 15 m to 3000 m, with a range
resolution of 35 m in the radial direction. However, the missing rate of the Doppler LiDAR
was extremely high at the positions 300 m away from there. Nakano et al. [13] measured
wind direction and velocity data by a Doppler LiDAR (Windcube WLS7, Leosphere Ltd.)
at the site located approximately 2 km south of the NSRI of JAEA for one-year starting
from 1st February 2012 and showed that the missing rate of the Doppler LiDAR was
high especially during the period from late autumn to winter. The tendency of the high
missing rate during our observation period is the same as their one-year observation [13].
Figure 2 shows an example of spatial distributions of the observed radial wind speeds at
elevation angles of 1.0◦, 7.6◦, 14.9◦, and 21.8◦. Those were linearly interpolated on grids of
1 m × 1 m in the horizontal direction and were used for plume dispersion simulations in
the computational domain of 150 m × 150 m. The details are described in the next section.

Figure 3 shows photograph of the mist plume generated by the mist-spraying system
(TIC Corporation Ltd.). Hashimoto et al. [14] and Onogi et al. [15] proposed field particle
image velocimetry (PIV) imaging technique using a mist-spraying system with digital still
cameras and successfully captured the turbulent eddy structures in the surface boundary
layer. They emphasized that the field PIV technique using a mist-spraying system has
significant advantages in safety and environment. The mist-spraying system used here was
composed of a 50-L pump and a fan. This fan had a diameter of 45 cm and was equipped
with 10 spray nozzles (KX47S-01) at an interval of 5 cm. The water mist was discharged
vertically upward from each nozzle at a rate of 2.7 L per minute. The photograph of the
mist plume was taken by the digital camera (SONY HDR-CX680-R) on the ground directed
toward the mist-spraying system (see Figure 1). However, the fan was not operated in
order to prevent the influence on the ambient flow.
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Figure 1. Locations of the meteorological observations and the mist-spraying system. (a) Study site in JAEA. (b) Doppler
LiDAR and sonic anemometer. (c) Mist-spraying system. The photograph (a) is reproduced by GoogleTM earth graphic.
The red star depicts a position of the Doppler LiDAR and sonic anemometer placed at the building rooftop. The yellow
circles are measurement points of wind velocity by the Doppler LiDAR at elevation angle of 1.0◦. The white square depicts
a position of the mist-spraying system placed at the building rooftop. The white arrow indicates a position of the digital
camera on the ground directed toward the mist-spraying system.
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3. LES-Database
3.1. LES Model

The CFD model used here is the LOHDIM-LES (LOcal-scale High-resolution at-
mospheric DIspersion Model using LES) developed by JAEA [16–18]. The governing
equations are the filtered continuity equation, the Navier–Stokes equation in Boussinesq-
approximated form, and the transport equations of temperature and concentrations. The
subgrid-scale turbulent effect is represented by the Smagorinsky model [19]. The subgrid-
scale scalar fluxes are also parameterized by an eddy viscosity model. Buildings and
structures are explicitly represented by the use of a digital surface model dataset. The
turbulent effects of buildings are represented by the immersed boundary method [20].
The tree canopy effect is represented by a conventional drag force composed of the drag
coefficient, the leaf area index, and wind velocities. The performance of LOHDIM-LES was
evaluated by conducting detailed simulations of turbulent flows and plume dispersion
over a flat terrain and a two-dimensional hill, around an isolated building, within building
arrays with different obstacle densities, and within a central district of an actual urban area
under ideal and realistic meteorological conditions.

3.2. Computaiotnal Conditions

Figure 4 shows the computational domain for creating the LES-database of mean
and turbulent winds over the site of JAEA. The size of the computational domain is
1.2 km × 1.2 km in the horizontal direction at a depth of 200 m. The total mesh number is
1200 × 1200 × 88 nodes. The grid spacing is 1 m in the horizontal direction and 1–10 m
stretched in the vertical direction. The buildings and tree canopy were explicitly resolved
using a digital surface model dataset in the domain of 600 m × 600 m. The driver sections
with a length of 300 m were set, and roughness blocks were placed to efficiently generate
turbulent boundary layer (TBL) flows.
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Figure 4. Computational domain for creating the LES-database of mean and turbulent winds over
the target site.

We pre-calculated LESs of TBL flows under a neutral stability condition and created
a dataset of mean and turbulence velocities for 36 different mean wind directions at class
interval 10◦. The 10◦ class interval is enough to reasonably estimate spatial distributions of
plume concentrations using the database for changing meteorological conditions [21]. A
vertical profile with a power law exponent of 0.14 with a mean wind speed of 15 m/s at 60-m
height was imposed at the inflow boundaries. At the same time, time-dependent turbulent
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inflow data were added to it by the recycling method [22]. At the bottom surface, the Monin-
Obukhov similarity theory is applied [23]. The total length of the calculation run is 30 min.
The first 20 min are considered to be the spin-up period before turbulent statistics become a
statistical steady-state. The mean wind velocities and turbulence standard deviation were
computed over the last 10-min period. The calculation time step interval is 0.005 s.

4. Dispersion Simulation Settings
4.1. Coupling of the LES-Database and On-Site OBS

The relationship between the lower atmospheric boundary layer and building mor-
phological characteristics has been studied by many researchers. It is well known that
boundary layer flows over buildings are mainly classified into three types: the building
canopy layer, the roughness sublayer, and the inertial sublayer [24–26] as shown in Figure 5.
In the building canopy layer, the flow patterns are directly determined by building ar-
rangements and show a strong three-dimensionality caused by impinging, separated, and
recirculating flows. The depth of the roughness sublayer ranges up to 2 to 5 times the
height of the buildings [25]. In the inertial sublayer, the dynamical influence of the surface
decreases with height and the flows eventually readjust to the meteorological conditions.

Atmosphere 2021, 12, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 4. Computational domain for creating the LES-database of mean and turbulent winds over 
the target site. 

4. Dispersion Simulation Settings 
4.1. Coupling of the LES-Database and On-Site OBS 

The relationship between the lower atmospheric boundary layer and building 
morphological characteristics has been studied by many researchers. It is well known that 
boundary layer flows over buildings are mainly classified into three types: the building 
canopy layer, the roughness sublayer, and the inertial sublayer [24–26] as shown in Figure 
5. In the building canopy layer, the flow patterns are directly determined by building 
arrangements and show a strong three-dimensionality caused by impinging, separated, 
and recirculating flows. The depth of the roughness sublayer ranges up to 2 to 5 times the 
height of the buildings [25]. In the inertial sublayer, the dynamical influence of the surface 
decreases with height and the flows eventually readjust to the meteorological conditions. 

 
Figure 5. Schematic of TBL flows over buildings. Adopted from Britter and Hanna [27]. 

Figure 6 shows spatial distributions of the building heights represented by a digital 
surface model dataset. The averaging building height is 11.1 m. The building height 
variability defined as the ratio of the standard deviation of building height to the average 
building height is 5.1 m. The building height at this site is nearly uniform except the 
structure located at the east side. It is considered from this building morphological 
characteristics that the height at which the influence of buildings on atmospheric winds 
becomes fully small is approximately 55 m. Therefore, we took the measuring 6-points 

Figure 5. Schematic of TBL flows over buildings. Adopted from Britter and Hanna [27].

Figure 6 shows spatial distributions of the building heights represented by a digital
surface model dataset. The averaging building height is 11.1 m. The building height
variability defined as the ratio of the standard deviation of building height to the aver-
age building height is 5.1 m. The building height at this site is nearly uniform except
the structure located at the east side. It is considered from this building morpholog-
ical characteristics that the height at which the influence of buildings on atmospheric
winds becomes fully small is approximately 55 m. Therefore, we took the measuring
6-points averaged winds obtained at 61.2-m height (elevation angle of 21.8◦) for a reference
meteorological condition.
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estimating the reference meteorological condition.

Doppler LiDAR instruments can capture spatial distributions of wind velocities in real
meteorological conditions. However, it was pointed out that those might include errors
in representing high-frequency turbulent fluctuations [27]. Furthermore, buildings and
trees cause obstructions of the laser beam at low elevation angles in certain azimuths [28].
On the other hand, LES models are intrinsically superior in capturing basic flow patterns
within building canopy that are governed mainly by the building morphology under ideal
meteorological conditions.

In this meteorological observation by the Doppler LiDAR, the radial wind velocities
just above the building heights were measured for a case of elevation angle 1.0◦. Therefore,
first, in estimating a mean flow filed, we prepared the OBS data obtained by the Doppler
LiDAR for the region above the building canopy layer and used the LES-database of mean
velocities for the region below it.

Ucoup(x, y, z) = UOBS(x, y, hOBS(x, y)) for z > hOBS(x, y) (1)

Ucoup(x, y, z) = ULES(x, y, z)
UOBS(x, y, hOBS(x, y))
ULES(x, y, hOBS(x, y))

for z ≤ hOBS(x, y) (2)

where Ucoup, UOBS, ULES, and hOBS are the mean wind velocity estimated by a coupling of
the LES-database and on-site OBS, the OBS wind velocity linearly interpolated on the LES
calculation grids, the LES database of mean wind velocity, and the lowest measurement
height of the Doppler LiDAR at the position of (x, y), respectively. ULES is extracted from
the LES-database pre-calculated for 36 different mean wind directions at class interval 10◦

in accordance with the target meteorological condition.
It is well known that the ratio of turbulence standard deviation to mean velocity

is not constant and changes with the mean wind velocity for a weak wind condition,
while the ratio is almost constant for a strong wind condition regardless of the mean
velocity. The LES-database of mean and turbulence velocities was created under a strong
neutral wind condition as mentioned in Section 3.2. The turbulence standard deviation
can be estimated by multiplying the ratio in the LES-database by the mean wind velocity
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Ucoup for a strong wind condition. However, for a weak wind condition, the turbulence
standard deviation can be no longer estimated by the product of them. Therefore, in
estimating a turbulent flow field, we adopted Normal Turbulence Model (NTM) pro-
posed by the International Electrotechnical Commission (IEC) in the international standard
IEC61400-1 used for determining appropriate locations of wind turbines as shown in the
following formulation [29].

σl = Ire f (aU + b) (3)

where σl is the longitudinal turbulence standard deviation and U is the mean wind speed
at hub height over a 10-min period. Ire f is the expected value of the turbulence intensity
at 15 m/s and has three values of 0.12, 0.14, and 0.16 depending on wind turbine classes,
respectively. The constants of a and b are 0.75 and 3.8, respectively, for the mean turbulence
standard deviation. The measurements were taken at a height of the hub height of typically
from 60 m to 80 m. The applicability of NTM IEC was investigated by Ishihara et al. [30].

To investigate the applicability to complex turbulent flow fields such as impinging,
separated, and recirculating flows formed at building rooftop, regression analysis for Ire f
was conducted using the wind velocity data measured by the ultrasonic anemometer.
When Ire f = 0.16, the coefficient of determination shows a peak and its value is over 0.6
as shown in Figure 7a. It is also found from Figure 7b that the measurement data are
generally distributed well along the NTM curve with Ire f of 0.16, which indicates that the
formulation is applicable to complex turbulent flow fields. Therefore, we applied it to
strong three-dimensional turbulent flow fields within and over individual buildings as the
following expression.

σl_est(x, y, z) = Ire f _l_LES(x, y, z)
(
aUcoup(x, y, z) + b

)
(4)

Ire f _l_LES(x, y, z) =
σl_LES(x, y, z)
ULES(x, y, z)

(5)

where σl_est is the estimated longitudinal turbulence standard deviation and Ire f _l_LES is
the longitudinal component of the local turbulence intensity given from the LES-database.
Because it is difficult to derive two components of the turbulent fluctuations σu and σv
directly from the longitudinal turbulence standard deviation σl , we assumed that σl is
equal to σu for the measuring 6-points averaged wind direction θ ranging from 45◦ to 135◦

and from 225◦ to 315◦, and σl is equal to σv for θ ranging from 0◦ to 45◦, from 135◦ to 225◦,
and from 315◦ to 360◦, respectively. When assuming σl = σu here, σu can be estimated by
the following formula.

σu_est(x, y, z) = Ire f _LES(x, y, z)
(
aUcoup(x, y, z) + b

)
(6)

Ire f _LES(x, y, z) =
σu_LES(x, y, z)
ULES(x, y, z)

(7)

The v- and w-components of the turbulence standard deviation were estimated by the
following expression.

σv_est(x, y, z) =
σv_LES(x, y, z)
σu_LES(x, y, z)

σu_est(x, y, z) (8)

σw_est(x, y, z) =
σw_LES(x, y, z)
σu_LES(x, y, z)

σu_est(x, y, z) (9)
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4.2. Lagrangian Particle Dispersion Model and Calculation Conditions

We adopted the following expression of a Lagrangian particle dispersion model [31].

xi(t + ∆t) = xi(t) + upi∆t (10)

upi = Ui + u′i (11)

u′i(t + ∆t) = au′i(t) + bσuiξ + δi3(1− a)tLxi
∂σ2

ui
∂xi

(12)

a = exp
(
− ∆t

tLxi

)
(13)

b =
(

1− a2
)1/2

(14)

where xi, upi, Ui, u′i, σui, ξ, tLxi, δi, t, and ∆t are the particle position in the i-direction
(east-west direction, i = 1; north-south direction, i = 2; vertical direction, i = 3), velocity of
the particle, mean wind velocity, turbulence velocity, standard deviation of the velocity
fluctuation, a random number from a Gaussian distribution with zero mean and unit
variance, the Lagrangian integral time, the Dirac delta function, time, and calculation time
step interval, respectively.

The size of the computational domain is 150 m × 150 m in the horizontal direction at
100-m height as shown in Figure 2. The grid spacing and mesh arrangement are the same
as the LES computational conditions as mentioned earlier. The target simulation periods
are 10 min from 1122 JST to 1132 JST on 26 November 2020 and from 1112 JST to 1122 JST
on 1 December 2020. The plume is released at 1.5-m height from the building rooftop.
As described in the previous section, Ui are provided from Equations (1) and (2). Each
component of σi was given by Equations (6), (8) and (9). The particles are assumed to be
reflected at the solid boundaries. The calculation time step interval is 0.05 s. The number of
the imaginary particles is 3600.

5. Results

Figure 8 shows horizontal distributions of the Doppler LiDAR-derived wind velocity
vectors near the mist plume release height for the two experimental periods of the case A
from 1125 to 1131 JST 26 November and the case B from 1116 to 1122 JST 1 December. The
wind velocities were interpolated on the grids of 1 m × 1 m. For the case A, first, a western
wind blew around the release location and a northwesterly wind was also overserved on
the north side from there. Then, a north-northwest wind blew just in the west side and a
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west wind did in the east side from the release point. At 1131 JST, a west-northwest and
northwest wind blew in the whole area. For the case B, first, a northeast wind blew just
in the northeast area, southeaste wind did in the southeast area, and an east wind blew
in the vicinity of the release point. A vortex weak wind rotating counterclockwise was
also observed in the southwest side. Then, an east wind blew in the whole area. The main
flow directions above the building canopy changed from 280◦ to 304◦ and from 75◦ to 118◦

during the periods for the cases A and B, respectively. It is found that the wind direction
variability is larger for the case B.
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Figure 8. Horizontal distributions of the Doppler LiDAR-derived wind velocity vectors near the mist plume release height.
The areas correspond to the square area of 150 m × 150 m shown in Figure 1. The white square depicts a position of the
mist-spraying system placed at the building rooftop. The arrow indicates a position of the digital camera on the ground
directed toward the mist-spraying system. The case A is the period from 1125 to 1131 JST 26 November. The case B is the
period from 1116 to 1122 JST 1 December.

Figure 9 shows instantaneous dispersion shots of the mist plume generated by the
mist-spraying system at 3-min interval over the 10-min period after the release for the
two cases. Here, the 10-min period was selected as the sampling period for investigating
general behaviors of the plume under the influence of turbulent-scale flows. Macdonald
and Griffiths [32] and Macdonald et al. [33] investigated plume dispersion behavior over
regular arrays of building-like obstacles at a field site. In their field experiments, the 3-min
period was selected as the standard sampling period for mean concentration because the
time period less than 15–20-min removes the influence of the lateral meandering of a plume
due to the meteorological disturbances. For the case A, it is observed that the mist plume
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was constantly transported in the east from the plume release location. On the other hand,
for the case B, the mist plume centroid was actively fluctuated around the general transport
direction in the west. This is due to the separated turbulent flows formed at the corner of
the building. The horizontal transport direction of the plume generally corresponds to the
Doppler LiDAR-derived wind velocity vectors for both cases.
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Figure 9. Instantaneous shots of the mist plume dispersion generated by the mist-spraying system at 3-min interval (a) and
the simulated plume dispersion (b). The dashed line indicates the enveloping contour of the mist plume. The photograph
was taken by the digital camera directed toward the mist-spraying system as shown in Figure 1. The yellow areas indicate
the 50% iso-surface of initial concentration.

Figure 10 shows 3-dimensional distributions of 10-min averaged concentrations of
the simulated plume for the cases A and B. Concentration at each mesh was estimated by
kernel density estimation [31]. For the case A, the plume is transported in the east and a
part of the plume is entrained into the zone of recirculating flow behind the building. For
the case B, the plume is transported in the west and a part of the plume is entrained into
the gap between the buildings due to the channeling effects. When compared both cases, it
is also found that the plume spreads for the case B are larger than the ones for the case A.
This is because the initial plume spreads are enhanced by the strong turbulence intensities
produced at the building corner.

These results indicate that the general transport direction of the simulated plume
is reproduced well by using the Doppler LiDAR-derived wind velocities for the region
above the building canopy layer in comparison with the instantaneous shots of the real
mist plume shown in Figure 9. The entrainment behavior of the plume into the building
wake is also qualitatively represented well by using the LES-database for the region below
it. Furthermore, the relative size of the simulated plume between the two cases can be
associated with the fact that the fluctuating patterns of the real mist plume centroid, which
implies that the local turbulence velocities are reasonably estimated from the empirical
formulation of the relationship between mean wind speed and turbulence standard de-
viation. Therefore, it is concluded that our proposed framework for prediction system
of local-scale atmospheric dispersion based on a coupling of LES-database and on-site
meteorological observation has an enough potential to simulate plume transport direction
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by mean winds and reasonably represent dispersion behaviors by turbulence under the
influences of individual buildings and meteorological disturbances.
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6. Conclusions

We developed a framework for prediction system of local-scale atmospheric dispersion
based on a coupling of LES-database and on-site meteorological observation that takes
into account both individual buildings and real meteorological conditions. First, we
performed LESs of turbulent flows over a target site and created the dataset of mean and
turbulent flows for 36 mean wind directions at 10◦ class interval. Then, we conducted with
meteorological observations by a Doppler LiDAR and simple dispersion experiments using
a mist-spraying system at the target site, and observed dispersion behaviors of the water
mist plume using a digital camera.

In estimating a mean flow filed, we prepared the OBS data obtained by the Doppler
LiDAR for the region above the building canopy layer and used the LES-database of
mean velocities for the region below it. In estimating a turbulent flow field, we adopted
the empirical formulation of the relationship between mean wind speed and turbulence
standard deviation used for determining appropriate locations of wind turbines. Compared
to instantaneous shots of dispersion behaviors of the real mist plume, it was shown that the
transport direction of the simulated plume was reproduced well by the Doppler LiDAR-
derived wind velocities. The entrainment behavior of the plume into the building wake
was qualitatively represented well by the LES-database. Furthermore, the plume spreads
were also reasonably represented well by the estimated local turbulence velocities from the
empirical formulation.

Here, we discuss the feasibility of our proposed framework for prediction system
of local-scale atmospheric dispersion a as a practical emergency response system. Since
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computing time is an essential problem for emergency situations, first result should be
provided within a few minutes especially in local-scale emergency response [34]. Our dis-
persion calculations by this coupling of the LES-database and on-site OBS were executed on
a single core of an Intel CPU. The calculation time was approximately 15 s in order to simu-
late plume concentrations in the target computational domain of 150 m × 150 m × 50 m
at 1 m grid. In conducting CFD simulations of turbulent flows and/or plume disper-
sion in a local-scale, the target site usually has a computational domain size of several
kilometers at grid spacing of several meters for the horizontal direction. Considering
it, the estimated calculation time is a few minutes. These facts indicate that our pro-
posed coupling of the LES-database and on-site OBS is effective to accurately and quickly
predict plume dispersion under the influences of both individual buildings and real
meteorological conditions.

For the areas that are not covered by the measurements or for a case that the wind
LiDAR is not available, a meso-scale meteorological simulation (MMS) model data should
be used. Recently, coupling simulations of CFD and MMS models have been studied and
evaluated against the urban tracer field experiments by many researchers [35–37]. We also
conducted LESs of plume dispersion in the real urban central district by coupling with the
MMS model and showed the reasonable performance of simulating plume dispersion in
the built-up area under realistic meteorological conditions [17].

In future work, it is necessary to conduct field dispersion experiments on tracer gas
release in a local-scale distances of up to several kilometers. We previously conducted
LESs of plume dispersion in various urban areas with a wide range of obstacle density
and building height variability, and compared the streamwise variation of mean and r.m.s.
concentrations. It was shown that the spatial extent of concentration distribution patterns
influenced by complex surface geometry is 1 km from a point source by comparative
analysis [38]. Furthermore, it was reported that the assumption of a neutral stability
is valid for within an urban area where building-induced turbulence is dominant and
the assumption is less valid for the urban wake region because the levels of building-
induced turbulence greatly subside [39]. It is necessary to quantitatively evaluate the
coupling framework in comparison with the field experimental data at many downstream
positions under thermal stability conditions in a local-scale distances of up to several
kilometers. When fully evaluating it, our proposed technique is expected to use in source
term estimation for contaminant plume dispersion in emergency responses to accidental
release from nuclear facilities.
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Abstract: Contaminant gas dispersion within an urban area resulting from accidental or intentional
release is of great concern to public health and social security. When estimating plume dispersion
in a built-up urban area under real meteorological conditions by computational fluid dynamics
(CFD), a crucial issue is how to prescribe the input conditions. There are typically two approaches:
using the outputs of a mesoscale meteorological simulation (MMS) model and meteorological
observations (OBS). However, the influences of the different approaches on the simulation results
have not been fully demonstrated. In this study, we conducted large-eddy simulations (LESs) of
plume dispersion in the urban central district of Oklahoma City under real meteorological conditions
by coupling with a MMS model and OBS obtained at a single stationary point, and evaluated
the two different coupling simulations in comparison with the field experiments. The LES–MMS
coupling showed better performance than the LES–OBS one. The latter one also showed a reasonable
performance comparable to the acceptance criteria on the model prediction within a factor of two
of the experimental data. These facts indicate that the approach using observations at a single
stationary point still has enough potential to drive CFD models for plume dispersion under real
meteorological conditions.

Keywords: large-eddy simulation; plume dispersion; urban area; coupling simulation; mesoscale
meteorological simulation model; meteorological observation

1. Introduction

Contaminant gas dispersion within an urban area resulting from accidental release
or intentional release of CBRN (chemical, biological, radiological, or nuclear) agent is of
great concern to public health and social security. According to the special issue on CBRN
Terrorism & Defense in Journal of Japan Society for Safety Engineering, Inoue [1] provided an
overview of CBRN agents in the past and its emergency preparedness, and listed sarin,
chlorine, ammonium, dioxin, nitrogen dioxide, and sulfur dioxide, etc. as substances of
very high concern in chemical agents. In UNSCEAR 2013 [2], in the event of accidental
release of radionuclides into the atmosphere, measurements were largely focused on the
radionuclides 131I, 134Cs and 137Cs, because these are considered to be the most significant
contributors to exposure. According to the document of WHO First Global Conference
on Air Pollution and Health [3], for almost all pollutants, both short-term and long-term
exposure can damage health. Additionally, in WHO Air quality guidelines for particulate
matter, ozone, nitrogen dioxide and sulfur dioxide [4], for example, the guideline values
are 40 µg/m3 over annual mean and 200 µg/m3 over 1-h mean for nitrogen dioxide, and
20 µg/m3 over 24-h mean and 500 µg/m3 over 10-min mean for sulfur dioxide, respectively.
For the assessment of human health hazards from accidental or intentional release, the
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existence of high-concentration peaks in a plume should be considered in accordance with
the exposure time period.

It has long been known that the root mean square (r.m.s) of concentration fluctuations
is almost comparable to the mean concentrations on the mean plume axis in the atmo-
sphere [5]. In such a situation, it is necessary to accurately capture not only mean but
fluctuating concentrations of a plume within an urban environment by considering the
effects of the individual buildings. The usual methodology used to treat this problem is
to firstly obtain information about the mean and r.m.s concentrations, the intermittency
factor, and the maximum expected concentrations with a given confidence [6,7].

Urban surface geometries are highly inhomogeneous and complex since the ground is
covered with many buildings with highly variable heights and shapes. The lower part of
atmospheric boundary layer is strongly influenced by the individual roughness obstacles
that induce strong three-dimensionality of the flow [8]. In order to understand contaminant
gas transport process in complex surface geometries, a computational fluid dynamics
(CFD) model is widely used. CFD models are generally designed based on two different
practically relevant approaches, Reynolds-averaged Navier–Stokes (RANS) and large-eddy
simulation (LES) models. The former computes mean fields of wind flow and plume
dispersion, delivering an ensemble- or time-averaged solution, and all turbulent motions
are modeled using a turbulence model. The latter resolves large-scale turbulent motions
and models only small-scale motions.

When conducting CFD simulations of plume dispersion in urban central districts
under real meteorological conditions, a crucial issue is how to prescribe the input condi-
tions for determining turbulent flow and plume dispersion fields. There are typically two
approaches to reproduce realistic atmospheric conditions: one is coupling with a mesoscale
meteorological simulation (MMS) model, and the other is coupling with meteorological
observations (OBS). For example, Warner et al. [9] reproduced realistic atmospheric condi-
tions by prescribing the different OBS data obtained by the URBAN 2000 field experiments
conducted in Salt Lake City at the RANS-based CFD model and evaluated the model
predictions for plume concentrations within urban environments. They reported that the
inputs obtained close to the plume source led to the worst performance due to the signifi-
cant variability induced by the urban buildings. Tewari et al. [10] evaluated the following
two different approaches of supplying initial and boundary conditions: (i) coupling with
observation obtained from a single stationary point and (ii) coupling with the MMS model
during the URBAN 2000 field experiments. They mentioned that the latter approach shows
better performance in comparison to the former one in comparison with the OBS data of
mean concentrations.

Recently, many model evaluation studies using meteorological and tracer gas data
by the Joint Urban 2003 (JU2003) field experiments have been reported [11–15]. This field
campaign was conducted in the central district of Oklahoma City from 28 June through
31 July 2003 [16]. For example, Wyszogrodzki et al. [11] performed coupling simulations
of LES and MMS models for the Joint Urban 2003 (JU2003) field experiments conducted
in the central district of Oklahoma City and concluded that the accuracy of the model
performance of concentrations heavily depends on the quality of the MMS data which
accounts for transient effects within complex urban canopy. Nelson et al. [12,13] conducted
building-resolving detailed simulations of plume dispersion using WRF model data and
various meteorological observations. Burman et al. [14] conducted LESs of turbulent flows
in Oklahoma City and investigated the accuracy of three typical LES subgrid models in
comparison to the field experimental data. Li et al. [15] proposed a new scheme which
employs the turbulence-reconstruction method for the simulation of microscale flow and
dispersion in which both the mesoscale field and small-scale turbulence are specified at the
boundary of a microscale model. We also conducted LESs of plume dispersion in the urban
central district of Oklahoma City by coupling with the MMS model and showed that the
prediction accuracy of the high-resolution simulations highly depends on the quality and
reproducibility of the wind speed and direction prescribed by the MMS model [17].
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However, these model evaluation studies have focused on the influence of the coupling
simulations, mainly on the accuracy of the mean concentrations. Thus, the influence of
the different coupling approaches on the mean and peak concentrations of a plume in
the complex surface geometries has not been fully demonstrated. As mentioned earlier,
when the accidental or intentional release of harmful substances into the atmosphere
occurs, it is important to estimate not only the mean but the behavior of the concentration
fluctuations for consequence assessment and countermeasures. In this study, we conducted
LESs of turbulent flows and plume dispersion in an urban central district under realistic
atmospheric conditions by coupling with the MMS model and OBS. Our objective is to
evaluate mean and peak concentrations obtained by the two different coupling simulations
in comparison with the experimental field data.

2. Configuration of the Numerical Experiments
2.1. Brief Outline of JU2003 Field Experimental Dataset

The field experiments of the JU2003 were conducted in the central district of Oklahoma
City from 28 June through 31 July 2003 [16]. It is found from Figure 1a that there are
residential areas covered with many trees around the central district of Oklahoma City.
The meteorological stations of the OBS1 and OBS2 were located in the residential area
and central district, respectively. The concentration measurements used for the model
evaluation study are shown in Figure 1b. The average building height, maximum building
height, building height variability, and building frontal area index of the urban central
district are 32 m, 152 m, 1.0, and 0.15, respectively, as described in Nakayama et al. [17].
Here, the building height variability is the ratio of standard deviation of building height to
average building height. The building frontal area index is the ratio of total frontal area of
roughness elements to total surface area. It seems from this fact that the surface geometry of
the residential area is nearly homogeneous and covered with low-rise buildings, although
that of the urban central district is sparsely built-up, having buildings with very variable
heights.
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Figure 1. Locations of meteorological stations (a) and concentration measurement in the central busi-
ness district of Oklahoma City (b). The star mark depicts a point source position which corresponds
to the meteorological station OBS2. Time series of concentration fluctuations obtained at points A–H
are used for the model evaluation. The photograph is reproduced by GoogleTM earth graphic.

The wind velocities and potential temperature were measured by Sodar and Rawin-
sonde at the OBS1, while the wind velocities were measured by minisodar at the OBS2.
These OBS data were obtained with 15-min interval. Sulfur hexafluoride (SF6) tracer was
released from a ground-level as puff and 30-min continuous releases during the 10 main
IOPs (intensive observation periods). The first six IOPs and the last four ones were con-
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ducted in the daytime and the nighttime, respectively. During each IOP, three 30-min
continuous and four instantaneous releases were typically carried out.

2.2. MesoScale Meteorological Simulation

The Weather Research and Forecasting (WRF), the Advanced Research WRF Version
3.3.1 [18] was adopted as MMS. Two-way nesting was used to resolve the Oklahoma City
region at a fine grid spacing by setting three computational domains (with the top being
at the 50-hPa level) as shown in Figure 2. The three domains cover 2700 km, 600 km, and
150 km square areas with 4.5 km, 1.5 km, and 0.5 km grids, respectively. The number of
vertical levels is 53, with 12 levels in the lowest 1-km depth. The terrain data used here were
the global 30-s data (GTOPO30) from the U.S. Geological Survey (USGS). Six-hourly Final
Analysis (FNL) data of the U.S. National Centers for Environmental Prediction (NCEP)
were used determine the initial and boundary conditions for the atmospheric and surface
variables. A physics parameterization closely relevant to the simulation of wind fields was
a planetary boundary layer (PBL) mixing parameterization. A Mellor–Yamada Level 2.5
scheme [19] was used for boundary layer physics.
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Figure 2. Computational areas of the MMS model. The MMS model is configured with three nested domains covering areas
of (a) 2700 km × 2700 km at 4.5 km grid, (b) 600 km × 600 km at 1.5 km grid, and (c) 150 km × 150 km at 500 m grid [17].

2.3. LES-Based CFD Model

The LES-based CFD model used in this study is the LOHDIM-LES [17]. The governing
equations are the filtered continuity equation, the Navier–Stokes equation in Boussinesq-
approximated form, and the transport equations of temperature and concentrations. The
subgrid-scale turbulent effect is represented by the Lagrangian dynamic Smagorinsky
model [20]. The subgrid-scale scalar fluxes are also parameterized by an eddy viscosity
model. The turbulent Prandtl and Schmidt numbers are 0.5.

Buildings and structures in the central district of Oklahoma City were explicitly repre-
sented by the use of a digital surface model dataset. The turbulent effects are represented by
the immersed boundary method [21]. The model is configured using two nested domains
with one-way as shown in Figure 3: one is an outer domain for generating atmospheric
boundary layer flow and the other is an inner domain for detailed simulations of plume
dispersion in the central business district. The outer and inner domains cover areas of
8 km by 8 km by 2.0 km with the grid spacing of 20 m by 20 m by 2–20 m stretched and
1.6 km by 1.6 km by 0.75 km with the grid spacing of 4 m by 4 m by 2–20 m stretched in the
streamwise, spanwise and vertical directions.

According to the guidelines for CFD simulations of wind environment in urban
areas [22,23], the minimum grid resolution should be 10 grid points to accurately reproduce
separating flows around buildings. Individual urban buildings in the LES inner domain
are basically resolved by 10 grid points, which are expected to capture the basic patterns of
turbulent flows.
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3. Coupling with the MMS Model and OBS

The target events are the three 30-min continuous plume release from the Botanical
Garden at 0900, 1100, and 1300 Central Daylight Time (CDT) on 16 July in IOP6 for cases1,
2, and 3, respectively. In this study, we compared the concentration data measured by
fast-response tracer analyzers with a time response of approximately 1-Hz by Lawrence
Livermore National Laboratory.

Figure 4 shows schematic of the LES–MMS and LES–OBS coupling cases. For the
LES–MMS coupling case, the MMS model data of wind velocities (UMMS) and potential
temperature (θOBS) of the innermost domain shown in Figure 2 were used as the input
conditions of the LES outer domain. First, the atmospheric conditions of IOP6 were
reproduced by the MMS model from 1900 CDT 14 July to 1900 CDT 16 July 2003. The
first and second inner domains were initialized at 1900 CDT 15 July and at 0700 CDT 16
July, respectively. Then, the boundaries of the inflow and ground surface were determined
by the MMS outputs (with 1-min interval and 500-m resolution) linearly interpolated
on the grids of the LES outer domain with 1-min interval. On the other hand, for the
LES–OBS coupling case, the meteorological observation data obtained at a single stationary
point of the OBS1 with 15-min interval from 0700 CDT to 1400 CDT were used as the
input conditions of the LES outer domain. Since the dominant mean wind directions
were nearly south and the OBS1 was located over the homogeneous ground surface at the
upstream position of the urban central district for the target period as shown in Figure 1, the
vertical profile of the OBS data obtained at a single stationary point was given at the inflow
boundaries under the assumption of horizontal homogeneity. Due to the limitation of the
observation range, the upper winds above 300-m height were given by the MMS model
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data under the condition that the OBS data gradually match with them for the vertical
direction. The 15-min averaged OBS data were linearly interpolated on the temporal and
spatial resolutions of the LES outer domain and were given as inputs. Furthermore, the
input conditions of the LES inner domain were determined by the outputs of the LES outer
domain linearly interpolated on the grids of the inner domain with 3-s interval in both
coupling cases.
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Inflow and outflow boundaries of the LES outer domain are automatically determined
in accordance with mean wind direction in the meteorological field. For example, when
the mean wind direction lies in the range from 0◦ to 90◦, the vertical planes on the north
and east sides are set to inflow boundaries, and those on the south and west sides are set
to outflow boundaries. The details were described in Nakayama and Takemi [24]. Each
component of the turbulent fluctuations is generated by the recycling method [25]. The
following are the formulations at the inflow boundary of the y–z vertical plane.

u′(y, z, t)inlt = φ(z)
(
urecy(y, z, t)− [u(z, t)]

)
, (1)

v′(y, z, t)inlt = φ(z)
(
vrecy(y, z, t)− [v(z, t)]

)
, (2)

w′(y, z, t)inlt = φ(z)
(
wrecy(y, z, t)− [w(z, t)]

)
, (3)

where u′, v′, w′, and φ(z) are each components of the turbulent fluctuations and a damping
function to control the unwanted development of turbulent fluctuations in the upper part
of the simulated boundary layer, respectively. The suffixes of inlt and recy indicate the inlet
boundary and the recycle station, respectively. [u], [v], and [w] are horizontally averaged
winds over the driver region ranging from the inlet boundary to the recycle station, re-
spectively. At the bottom surface, the Monin–Obukhov similarity theory [26] is applied.
At the upper boundary, a free-slip condition for the horizontal velocity components and
a zero-speed condition for the vertical velocity component are imposed. At the outlet
boundary, a free-slip condition is applied for each component of wind velocity.

192



Atmosphere 2021, 12, 889

Table 1 shows input conditions of the two different coupling cases. Here, subscripts
i, j, and k stand for coordinates (horizontal directions; x, y and vertical direction; z). u, u∗,
and θ are the LES calculated data of the instantaneous wind velocity, the friction velocity,
and the potential temperature, respectively. τi3, q3, ψm, ψh, z0, z0T , κ, and t are the local
instantaneous local wall stress, the surface heat flux, the stability corrections for momentum
and heat, roughness length for momentum and heat, the von Karman constant, and the
time, respectively. The suffixes of ws and grd are the wind speed and ground, respectively.
ψm and ψh are estimated by the formulation of Businger et al. [27]. z0T is estimated by the
formulation of Moriwaki and Kanda [28].

Table 1. Input conditions of the LES–MMS and LES–OBS coupling cases.

Input Data LES–MMS Coupling Case LES–OBS Coupling Case

Wind
velocity

field

Inlet UMMS(y, z, t) + u′(y, z, t) UOBS(z, t) + u′(y, z, t)
Ground
surface τi3 = −

(
uws_grd(x, y, t)κ
ln(z/z0)− ψm

)2 ui_grd(x, y, t)
uws_grd(x, y, t)

Potential
temperature

field

Inlet θMMS(y, z, t) θOBS(z, t)
Ground
surface q3 =

u∗κ
(

θMMS_grd(x, y, t)− θgrd(x, y, t)
)

ln(z/z0T)− ψh
q3 =

u∗κ
(

θOBS_grd(t)− θgrd(x, y, t)
)

ln(z/z0T)− ψh

The simulation periods of the LES outer and inner domains are from 0700 to 0940
and from 0800 to 0940 for case1, from 0900 to 1140 and from 1000 to 1140 for case2, and
from 1100 to 1340 and from 1200 to 1340 for case3, respectively. The calculation time step
intervals are 0.2- and 0.02-s in the LES outer and inner domains, respectively.

4. Results
4.1. Flow Field

Figure 5 shows vertical profiles of wind speed, wind direction, and potential tempera-
ture of the OBS, MMS, LES–MMS, and LES–OBS cases at each plume release time at the
OBS1 position. The wind speed of the OBS increased with height at 0900 CDT. With the
development of daytime convective boundary layer (CBL), the OBS wind speed gradually
became nearly homogeneous up to 300-m height due to the turbulent mixing motions.
According to Wyszogrodzki et al. [11], the low-level jet was observed during the early
morning in IOP6. The OBS data of the sharp peak in the range of 300–400 m height at
1100 and 1300 CDT were due to the residual low-level jet. As the MMS model did not
capture the rapid change of the wind speed, nor was it simulated by the LES–MMS case,
the LES–OBS case did not reproduce the low-level jet either, since the upper winds above
300-m height were given by the MMS model. Both cases showed nearly constant vertical
profiles of the wind direction at 0900 and 1100 CDT although they did not reproduce the
rapid change of the OBS wind directions across 200-m height at 1300 CDT. The potential
temperature profiles of the LES–MMS case were similar to the OBS data and those of the
LES–OBS were consistent with the OBS at each time point.
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and LES–OBS cases at each plume release time at the position of the OBS1.

Figure 6 shows the vertical profiles of the wind speed and wind direction at the plume
release point. The OBS wind speed rapidly decreases near the ground surface. The OBS
wind direction also rapidly varies from the ground surface to 30-m height, especially at 0900
and 1100 CDT. According to the study on turbulent boundary layer flows over urbanlike
roughness by Cheng and Castro [8], the flow patterns are directly determined by building
arrangements and show a strong three-dimensionality caused by impinging, separated,
and recirculating flows in the building canopy layer, while the dynamical influence of
the surface decreases with height and the flows eventually readjust to the meteorological
conditions. It seems that these rapid changes are due to the influence of various obstacles
such as buildings and trees in the Botanical Garden. As these were not explicitly resolved
in the MMS models, the LES–MMS case did not reproduce the local variations and rapid
decrease in the wind speed and wind direction near the ground surface. The LES–OBS case
did not capture such a tendency either. Figure 7 shows the time series data of the wind
speed and wind direction of the OBS and the 10-min averaged LES data. These data of
both cases are different from the OBS data, although the LES–OBS case was consistent with
the OBS data of the wind speed in the morning.
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It is found from these results that there are quantitatively differences in the vertical
profiles and time series of the wind velocities between the OBS and both LES coupling
cases. However, the tendencies of the development of CBL were simulated well by both
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LES coupling cases. It is also considered from these results that the OBS data obtained at
a single stationary point used for the LES–OBS case are reasonable to prescribe the input
condition under the assumption of horizontal homogeneity.

There have been many studies on incorporating aerodynamic effects of roughness
elements on urban boundary layer flows into MMS models. For example, Wyszogrodzki
et al. [11] compared performance of a single-layer urban canopy model (SUCM) and a
multilayer urban canopy model (MUCM) used in WRF model. They concluded that
WRF–MUCM reproduces the observed mean near-surface and boundary-layer winds and
temperature fields during daytime conditions, and provides statistics during the nighttime
more accurately than WRF–SUCM. In order to represent urban aerodynamic effects of
urban surfaces more accurately by MMS model, such urban canopy models should be
used.

4.2. Concentration Field

Figure 8 shows horizontal distributions of the 30-min averaged concentrations near
the ground surface after each plume release time for LES–MMS and LES–OBS cases. The
horizontal spread of the plume becomes larger with the development of the daytime CBL,
and the general distribution patterns were similar between both LES coupling cases. The
high-concentration regions in the LES–OBS case were formed mainly around the plume
release point and the mean concentrations rapidly decreased with downwind distance,
while those in the LES–MMS case were formed along the main street parallel to the mean
wind direction at 1300CDT.
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Nelson et al. [13] conducted building-resolving detailed simulations of plume dis-
persion using WRF model data and various meteorological observations, and evaluated
them against the Joint Urban 2003 tracer gas measurements. They mentioned that local
intermediate-scale variabilities (i.e., between mesoscale and microscale) reproduced by
using only an OBS single stationary point as input were represented as if they were sudden
changes in the mesoscale wind field, which significantly overpredicted the lateral spread
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of the plume. There is a possibility that the larger horizontal spread of the plume for the
LES–OBS case is due to the use of a single measurement location.

Figure 9 compares time series of concentration fluctuations obtained by the LES–MMS
and LES–OBS cases with the field experimental data at the positions of C, E, and G for
cases 1, 2, and 3. At point C, instantaneous high concentrations of the field experiments
intermittently occur for each case. Those obtained by both coupling cases were less
intermittent and were smoother than the experimental values. Thus, the concentration
fluctuating patterns were considerably different from the experimental data. According
to the LES sensitivity analysis of grid resolution for a point source corresponding to 1.0
and 10 times the real diameter on the plume intermittency by Michioka et al. [29], it
was shown that the intermittency of the concentrations was overestimated by the excess
subgrid turbulent mixing for a case of a coarse grid. The hose diameter used for continuous
gas release in the JU2003 field experiments was approximately 1.6-cm [30], which was
far smaller than the grid resolution of 4 m by 4 m set up in this calculation condition.
This overestimation of the intermittency is clearly due to the excess action of the subgrid
turbulent mixing by a coarse grid resolution. At point E, instantaneous high concentrations
frequently occurred in the field experiments for each case. These tendencies were simulated
well by both coupling cases. At point G, the concentrations fluctuated with a large time
scale and showed high peaks in the experiments, especially for case 1. Both coupling
cases showed sharper peak concentrations than the experimental ones. The fluctuating
concentration patterns were considerably different from the experimental data.

1 
 

 
Figure 9. Time series of concentrations fluctuations of the OBS, the LES–MMS and LES–OBS cases.

Figure 10 shows a scatter plot of the 30-min averaged and maximum concentrations
during the plume release duration time. Here, FAC2, whose value is within 0.5–2.0, is the
ratio of the LES data to the OBS data. From this definition, the best results have a value
of 1.0. Statistical performance measures for quantitatively evaluating the predictions of a
model with field measurements usually include fractional bias (FB), geometric mean bias
(MG), normalized mean square error (NMSE), geometric variance (VG), and the fraction
of predictions within a factor of 2 of field measurements (FAC2). According to the model
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performance evaluation study by Chang and Hanna [31], the FAC2 is the most robust
performance measure, because it is not overly influenced by either low or high outliers.
The mean concentrations of both LES cases were overestimated in the high concentrations.
In addition, those of the LES–OBS were comparatively scattered and were somewhat under-
estimated in the low concentrations. The maximum concentrations of both LES cases were
consistent with the OBS data especially in the high concentrations. However, those of the
LES–OBS case were comparatively scattered in the low concentrations. Burman et al. [14]
conducted LESs of turbulent flows in Oklahoma City and investigated the accuracy of three
typical subgrid models in comparison to the field experimental data. They mentioned that
in the urban central district, simulated turbulence is mainly determined by buildings and
their configurations and is only weakly affected by LES subgrid model type, while outside
and upwind of the central district the turbulence given at the inflow boundaries is very
important. It seems that the deviations between measured and simulated concentration
data within the built-up areas are caused mainly by geometrical simplifications.
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The FAC2 of the mean and maximum concentrations were 0.42 and 0.63 for LES–MMS,
and 0.30 and 0.58 for LES–OBS, respectively. Various methodologies have been investigated
to evaluate the performance of local-scale atmospheric dispersion models [32–35]. For
example, Hanna and Chang [34] suggested that a good model should have FAC2≥ 30% for
urban areas based on a large number of model evaluation exercises by the field experimental
data of mean concentrations. FAC2 of the mean concentrations by the LES–OBS case was
comparable to the recommended value, whereas that of the LES–MMS case exceeded it.
The peak concentrations obtained by both LES cases were distributed around the perfect
line in the high concentrations. As there is no universal definition of acceptable criteria for
peak concentrations at present, it is difficult to fully evaluate the model performance for
them. However, it can be expected that the peak concentrations were reasonably captured
depending on different downwind positions.
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It is found from these results that the LES–MMS coupling case show good performance.
The LES–OBS one also shows reasonable performance. This indicates that it is effective to
prescribe the input conditions using the OBS data obtained even at a single stationary point
over the homogeneous ground surface with the assumption of horizontal homogeneity.

5. Conclusions

We conducted LESs of plume dispersion in the urban central district under realistic
meteorological conditions by coupling with the MMS model and OBS obtained at a single
stationary point, and evaluated the two different cases in comparison with the JU2003 field
experiments conducted in the central district of Oklahoma City.

For the LES–MMS coupling case, the MMS model data of wind velocities and potential
temperature were used as the input conditions of the LES domain. For the LES–OBS
coupling case, the OBS data obtained at a single stationary point were used as the input
conditions of the LES domain under the assumption of horizontal homogeneity. Although
there were quantitative differences in the vertical profiles and time series of the wind
velocities between the OBS and both LES coupling cases, the tendencies of the development
of CBL were simulated well. This indicates that the OBS data used for the LES–OBS case
was reasonable for prescribing the input condition under the assumption of horizontal
homogeneity.

The general distribution patterns of the mean concentrations were similar between
both LES coupling cases, although the high-concentration regions were a little different in
the daytime CBL development. The fluctuating concentration patterns were considerably
different from the field experimental data at several measuring points. This is due to
coarse grid resolution for a plume release point. Focusing on a scatter plot of the 30-min
averaged and maximum concentrations during the plume release duration time, it was
shown that the mean concentrations obtained by both LESs were overestimated in the high-
concentration regions. Those of the LES–OBS case were comparatively scattered and were a
little underestimated, especially in the low concentrations. The maximum concentrations of
both LESs were consistent with the experimental data, especially in the high concentrations.
The LES–MMS case showed better performance than the LES–OBS one. However, FAC2 of
the latter case was comparable to the acceptance criteria on the model prediction within
a factor of two of the field experimental data and showed reasonable performance. This
indicates that it is promising to prescribe the input conditions using the OBS data obtained
at a single stationary point over the homogeneous ground surface under the assumption of
horizontal homogeneity.

In order to further improve the simulation accuracy, the following three points should
be considered.

1. Appropriately represent aerodynamic effects of urban surfaces with the MMS model;
2. Utilize multiple spatially varying wind field observations;
3. Incorporate data assimilation techniques into the LES model.

Regarding the first point, one conventional approach to parameterize the effects of
buildings and structures is to introduce an urban canopy model. Several researchers [35–37]
recommended the use of multilayer urban canopy models for appropriately representing
urban effects on boundary layer structure. On the second point, Nelson et al. [13] mentioned
that using the spatially varying flow fields generated from multiple observation profiles
generally provided the best performance from model evaluation against the Joint Urban
2003 tracer gas measurements. Multiple spatially varying meteorological observations are
favorable in terms of avoiding unrealistically reproduced temporal and spatial variability
by using only a single measurement location as an input. The final point is that it is
effective to use a data assimilation technique which is capable of reproducing more realistic
simulated states by incorporating observational data into simulation models. In future
work, we will apply the data assimilation method using a vibration equation [38] to LESs
of plume dispersion in complex urban environments while both nudging the flow fields
toward a target mean state and retaining the fluctuating nature of turbulent flows.
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Abstract: Fast and accurate predictions of the flow and transport of materials in urban and complex
terrain areas are challenging because of the heterogeneity of buildings and land features of different
shapes and sizes connected by canyons and channels, which results in complex patterns of turbulence
that can enhance material concentrations in certain regions. To address this challenge, we have
developed an efficient three-dimensional computational fluid dynamics (CFD) code called Aeolus
that is based on first principles for predicting transport and dispersion of materials in complex terrain
and urban areas. The model can be run in a very efficient Reynolds average Navier–Stokes (RANS)
mode or a detailed large eddy simulation (LES) mode. The RANS version of Aeolus was previously
validated against field data for tracer gas and radiological dispersal releases. As a part of this work,
we have validated the Aeolus model in LES mode against two different sets of data: (1) turbulence
quantities measured in complex terrain at Askervein Hill; and (2) wind and tracer data from the
Joint Urban 2003 field campaign for urban topography. As a third set-up, we have applied Aeolus to
simulate cloud rise dynamics for buoyant plumes from high-temperature explosions. For all three
cases, Aeolus LES predictions compare well to observations and other models. These results indicate
that Aeolus LES can be used to accurately simulate turbulent flow and transport for a wide range of
applications and scales.

Keywords: urban dispersion; large eddy simulation; complex terrain; fast-response dispersion
modeling; computational fluid dynamics

1. Introduction

More than half of the world’s population lives in urban areas and the danger from an
accidental or deliberate release of hazardous materials can be significant. The transport and
dispersion of atmospheric contaminants in urban areas is strongly influenced by surround-
ing buildings, which significantly modify the winds, leading to areas of channeling along
the streets, updrafts and downdrafts in the wake of the buildings, and recirculating flow in
street canyons [1,2]. In addition, urban areas create highly heterogeneous regions of wind
speed and turbulence intensity. Similarly in complex terrain, the local terrain impacts the
flow field significantly, producing similar complex effects which can lead to non-intuitive
dispersion patterns. There is a great need to have an accurate and efficient capability to
predict dispersion and deposition patterns in these complex scenarios.

High-resolution computer models can predict how airborne materials spread around
buildings in urban areas and land features in complex terrain. However, the modeling
tool must be flexible enough to use for a variety of applications, and should be coupled
to many relevant databases, such as terrain, building shapefiles, land-use characteristics,
and population. Many fast-response urban dispersion models have been developed to
predict transport for these scenarios. Gaussian plume models, which run in seconds on a
laptop, have been modified to account for the plume centerline shift that may occur due to
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channeling in street canyons [3]. Hall et al. (2000) developed a Gaussian puff model called
the Urban Dispersion Model (UDM) for use from neighborhood to city scales [4]. Röckle
(1990) derived a diagnostic model that computes three-dimensional (3-D) flow around
buildings using empirical equations and mass conservation [5]. Most fast-response models
rely on empirical algorithms based on idealized building configurations. This makes it
difficult to generalize the accuracy of these models for flow fields in highly heterogeneous
urban terrain without many validation exercises [6].

Computational fluid dynamics (CFD) models have been used to compute the flow
field in urban areas and complex topography. Comparison of these results with field
measurements shows that these models work well in most regions [7–13]. These CFD
models, however, are computationally very expensive and prohibitive for applications
related to toxic releases in cities or at industrial facilities where turnaround time is very
important.

Further, before running CFD models, users need to generate detailed grids that account
for the 3-D geometry of the surrounding city and terrain. This is usually a time-consuming
process, which renders these models useless for an operational response where a quick
answer is needed in a small amount of time.

Gowardhan et al. (2011) developed a fast-response CFD model which represents
an intermediate model type that produces fast runtimes (in the order of minutes for a
several-block problem) and a reasonably accurate solution [9]. Neophytou et al. (2011) also
evaluated this model and showed these fast-response CFD models can accurately predict
the flow features in complex urban configurations [10].

Based on work carried out by Gowardhan (2008) and Gowardhan et al. (2011), we
have developed a new fast-response operational dispersion modeling system called Aeolus,
which can predict the flow and transport of airborne contaminants in urban areas and
complex terrain [9,11]. The model can be run in a very efficient (~minutes) RANS (Reynolds
average Navier–Stokes) mode or a detailed (~hours) LES (large eddy simulation) mode.

In this paper, we describe the Aeolus model and evaluate its performance in large
eddy simulation mode. The LES version is validated for two different cases and applied to
a third case to showcase the model capabilities over a wide range of applications. We first
present validation results for turbulence generated in neutrally stratified flow over complex
terrain case using data from Askervien hill campaign [14]. Next, flow and dispersion in an
urban area is validated using wind and tracer data from the Joint Urban 2003 Oklahoma
City field experiment [15]. Last, we apply the model’s capability to simulate the cloud rise
dynamics of a high-temperature bubble from a nuclear explosion in the troposphere using
data from the Upshot-Knothole Dixie test. This test was a high-altitude air burst with an
explosive yield of 11 kilotons and a height of burst (HOB) of 1836 m above ground level
(AGL).

2. Introduction to Aeolus Modeling System

Aeolus is an efficient 3-D CFD code based on a finite volume method. It solves the
time-dependent incompressible Navier–Stokes equations on a regular cartesian staggered
grid using a fractional step method algorithm. It also solves a scalar transport equation for
potential temperature, which is coupled to the flow using an anelastic approximation. The
model includes a Lagrangian dispersion model for predicting the atmospheric transport
and dispersion of tracers and other materials. The RANS version of Aeolus is used as
an operational model in the National Atmospheric Release Advisory Center (NARAC) at
Lawrence Livermore National Laboratory (LLNL) for quickly simulating the impacts of
airborne hazardous materials in urban areas. NARAC uses Aeolus and other operational
atmospheric models to provide the United States Department of Energy information and
services pertaining to chemical, biological, radiological, and nuclear airborne hazards [16,17].
NARAC can simulate downwind effects from a variety of scenarios, including fires, industrial
and transportation accidents, radiation dispersal device explosions, hazardous material spills,
sprayers, nuclear power plant accidents, and nuclear detonations.
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2.1. Large Eddy Simulation Model

Aeolus can be run in a high-fidelity mode using an LES model. LES resolves the
time-dependent turbulent flow field at both small and large scales, allowing better fidelity
than alternative approaches such as RANS. The smallest scales of the solution rely on a
Smagorinsky model with a constant of Cs = 0.12 to account for unresolved scales in the
flow, rather than resolving them directly as in expensive direct numerical simulation (DNS)
methods. This makes the computational cost for applying LES to realistic engineering
systems with complex geometry or flow configurations practical and attainable using
supercomputers. In contrast, direct numerical simulation, which resolves every scale of the
solution, is prohibitively expensive for nearly all atmospheric dispersion problems with
complex geometry.

2.2. Numerics

The model uses the 3rd order accurate Quadratic Upstream Interpolation for Con-
vective Kinematics (QUICK) scheme [18] for the advective terms and 2nd order central
difference for the diffusive terms. The scalar transport equation uses a Bounded QUICK
(BQUICK) scheme to obtain a bounded solution while maintaining spatial accuracy and
reducing dispersion errors. The law of the wall boundary condition is imposed at the rigid
surface by applying a free slip boundary condition at the surface. The tangential shear
stress is set equal to u∗2. The value of friction velocity u∗ is evaluated using a log-law
(u∗ = uk/ln(0.5 × ∆z/z0)), where u is the magnitude of the tangential velocity and z0 is the
surface roughness, k is the von Karman constant with a value of 0.4, and ∆z is the vertical
grid resolution.

The pressure Poisson equation is solved using the successive over-relaxation method
(SOR via the methodology described above). A free slip condition is used at the top and
side boundaries. The following outflow boundary condition is prescribed at the outlet:

∂ϕ

∂t
= Ub

∂ϕ

∂n
(1)

where n denotes the direction normal to the boundary face, ϕ is the advected variable, and
Ub is a velocity that is independent of the location of the outflow surface and is selected so
that an overall mass balance is maintained. This boundary condition allows the convection
of turbulent structures out of the domain and avoids problems with reflection of pressure
waves back to the interior of the domain.

2.3. Dispersion Model

To model dispersion within the atmosphere, Aeolus models the 3-D, incompressible,
advection–diffusion equation with sources and sinks using a Lagrangian framework [19]:

DC
Dt

= Q− S (2)

where the total derivative represents the advection and diffusion that occurs to species in a
Lagrangian reference frame, C is the air concentration of the species, Q is the source term,
and S is the sink term, which accounts for removal processes such as deposition.

The equations for the Lagrangian particle displacement due to advection, diffusion,
and settling in the three coordinate directions are:

dxi = ũidt +
∂υT
Sc

dxi
dt +

(
2

υT
Sc

)1/2
dWxi (3)

where ũi is the wind components in the x, y, and z projection directions, respectively, υT
is the eddy diffusivity, Sc is the Schmidt number, dWx,y,z are three independent normal
random variates with zero mean and variance dt, which is the timestep of advection of
the Lagrangian particle. The stochastic differential equations above are then integrated in
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time to calculate an independent trajectory for each Lagrangian particle. The concentration
c̃, at any time t, can then be calculated from the Lagrangian particle locations at time
t and the contaminant mass associated with each particle. The model does not apply
kernel smoothing and the grid cell concentration depends on the number of particles in the
respective grid cell.

2.4. Grid Generation

The model uses a cartesian grid and straightforward masking approach for generating
a computational grid. New model grids can be generated in seconds from geographic
information system shapefiles (for a few kilometers) and/or building data available from
the National Geospatial Intelligence Agency and United States Geological Service (USGS)
dataset containing building data for over 100 U.S. cities. Apart from the building dataset,
the model also uses the USGS national elevation data at 10 m resolution (NED10) for terrain
information which covers the 48 contiguous U.S. states, Hawaii, and portions of Alaska.
The built-in datasets and fast grid generation tools are useful for operational applications.
Examples of the grids produced for urban areas and complex terrain areas are shown in
Figure 1.
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Figure 1. Grids produced by Aeolus modeling system for (left) the central business district in Oklahoma City showing the
vertical resolution and (right) a region with complex terrain.

Apart from the elevation and building databases, the modeling system also integrates
data about land-use characteristics, daytime and nighttime population, as well as meteoro-
logical fields from operational weather forecast centers and other sources. All the above
information provides the model with the required initial and boundary conditions and
subsequently helps to reduce the model setup time to minutes. The integrated databases
also ensure that relevant products can be produced quickly and be distributed to relevant
authorities.

2.5. Inflow Turbulence

Large eddy simulation models often need a precursor simulation to build a turbulent
inflow profile. However, this process can be time consuming and difficult to achieve in an
operational setup. Following DeLeon and Senocak (2017), we have developed a robust
inflow turbulence generator which uses temperature perturbations in cells near the inflow
boundary to produce a turbulent profile [20]. The inflow turbulence zone is contained
within the five grid cells nearest to the inlet where a mean velocity is prescribed. The
buoyancy effect due to the perturbation in the temperature field propagates to the velocity
field and produces the requisite turbulent structures.

3. Complex Terrain Validation

The Aeolus model using the large eddy simulation methodology was validated against
experimental data for three different applications: flow over complex terrain, flow and
dispersion of tracers in urban areas, and cloud rise dynamics for buoyant plumes from
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high-temperature explosions. This section covers the complex terrain validation, while the
following two sections cover the urban area and cloud rise validations.

The Askervein Hill project [14] was a field study conducted in 1982 and 1983 to study
the boundary-layer flow over low-profile hills. It was performed under a collaborative
effort under the auspices of the International Energy Agency Programme for Research
and Development on Wind Energy Conversion Systems. Askervein Hill is a low, isolated
elliptic hill on the west coast of the island of South Uist in the Outer Hebrides of Scotland,
which peaks at about 116 m above the ground. During these field campaigns, more than
50 towers were deployed and instrumented for wind measurements on and around this
low-profile hill, as shown in Figure 2. Towers were placed in two arrays along the major
axis of the hill (lines A and AA), in the prevailing wind direction, and one array along
the minor axis of the hill (line B). Lines A and AA pass through points hilltop (HT) and
center point (CP), respectively, and along an orthogonal line B. A measurement site called
reference site (RS) was also placed upstream of the hill to characterize the inflow conditions.
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Figure 2. Terrain elevation map of Askervien Hill field study area.

The Aeolus grid was generated by rotating the elevation dataset clockwise by 60 de-
grees so that the inflow wind direction is orthogonal to the grid as shown in Figure 2, with
the vertical extent of 1 km. A uniform Cartesian mesh was created using a grid resolution
of ∆x, ∆y = 20 m, and ∆z = 10 m resulting in~16 million grid cells. The inflow velocity
profile was created using a log-law profile (u = (u∗/k) ln(z/z0)), to fit the observed data
from the upstream site RS as shown in Figure 3. The value of surface roughness, z0, was
0.03 m [14] and the friction velocity u∗ was derived using the velocity reading (ur = 14 m/s
at zr = 60 m) at the reference site RS.
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Figure 3. Inflow profile for the Aeolus model (black line) overlaid with field data from site RS (red
squares are the time averaged values and the red line represent the variance).

Figure 4 shows the turbulent structures in the velocity magnitude in a vertical slice
along lines A and AA. The velocity magnitude increases as it passes over the Askervein
Hill top and the flow separates in the lee side of the hill. It can be observed that a larger
wake is created behind the plane passing along line A. This larger region of separation
occurs due to a steeper drop in elevation along line A and has been observed in other
model results, as well as observed data.
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Figure 4. Turbulent structures in the vertical planes passing along line A through point HT (upper)
and along line AA through point CP (lower).
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Winds were simulated for 2 h, which took about 6 h of computer time on a quad-core
machine. After a 1.5 h spinup period, Aeolus data from the last 30 min of the simulation
was time averaged for comparision with the observed data.

Observations along lines A and AA are compared with averaged velocities from
the Aeolus simulation. Historically, other model simulations have been compared to the
Askervein Hill dataset in terms of fractional speedup ∆S, which is defined as

∆S =
S(z)− SRS(z)

SRS(z)
(4)

where S is the horizontal wind speed at a specified height above the surface z = 10 m, and
SRS is the wind speed at the reference site. The fractional speedup ∆S provides a measure
of the influence of the terrain on the wind field based on the upwind undisturbed inflow.

Figure 5 compares the fractional speedup ∆S at 10 m above ground from Aeolus
with field data and two other peer-reviewed models, the standard Weather Research and
Forecasting (WRF) model and a version of WRF with an immersed boundary method (WRF-
IBM) [8]. For results along line A, Aeolus compares reasonably well with the observed data
and the other models. It correctly captures the speed-up observed at the top of hill, as well
as the separation of the flow on the lee side of hill. Aeolus is also able to predict the slight
deceleration in the upwind part of hill reasonably well. Predictions along line AA have
been challenging for many models, but here also, Aeolus is able to predict the key features
observed in the data.
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Figure 5. Comparison of fractional speedup predicted by Aeolus along lines A (top) and AA (bottom)
with field campaign data as well as other peer-reviewed models.

This validation study shows us that Aeolus is able to predict key flow features in
complex terrain and this makes it an important tool for many applications ranging from
wind turbine optimization studies to predicting dispersion patterns in regions with complex
terrain. In future work, we plan to validate Aeolus for predicting flow and dispersion
pattern in more complicated terrain involving multiple hills and valleys.
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4. Urban Area Flow and Dispersion Validation

Aeolus was validated using data from the Joint Urban 2003 field experiment, which
was performed in July 2003 in the central business district of Oklahoma City. A large
number of meteorological instruments and tracer-gas air samplers were deployed in the
urban area. Meteorological measurements were taken at over 160 different locations [15]
while tracer measurements were made at over 130 locations [21]. Ten intensive operation
periods (IOPs) were conducted for both daytime and nighttime periods, during which most
meteorological and gas sampler instruments were activated. During the IOPs, the winds
were predominantly from the south. Further details about the experiment, instrument types
and locations, and tracer release information can be found in Allwine et al. (2004), Clawson
et al. (2005), Flaherty et al. (2007), Nelson et al. (2007), and Brown et al. (2004) [15,21–24].

Aeolus results were compared to field data from a continuous release of sulfur hex-
afluoride (SF6) during IOP 8 trial 2. As noted previously, the winds were predominantly
from the south for this release. The event was chosen because there was little variation in
the inflow wind direction and the edge of the plume was well captured by the gas sampler
data. The portable wind detector at the city post office (PWID 15), a propeller anemometer,
was used to record the ‘wake-free’ inflow profile for wind direction and wind speed. It was
located about 500 m upstream of the central business district at 50 m above ground on a
35 m rooftop tower, and was free from building effects. A total of 5488 g of SF6 gas was
released continuously for 30 min from the Westin location shown in Figure 6.
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Figure 6. SF6 release locations in the Oklahoma City central business district during Joint Urban 2003
(• Park Avenue, •Westin, and • Botanical). The northward direction is indicated by the black arrow.

The computational domain is displayed in Figure 1 (left) and was 1.2 km × 1.4 km ×
0.21 km in the x, y, and z directions discretized on a regular grid (∆x = ∆y = 5 m, ∆z = 3 m).
The horizontal grid resolution of 5 m is the minimum grid spacing needed to resolve a
typical street canyon. The grid consists of about 4.5 million cells. Time varying input for
the simulation was constructed using data from the PWID 15 anemometer. Six log-law
profiles using a surface roughness value of z0 = 0.1 m (5 min average) were used in the LES
simulation. Figure 7 shows the wind speed and direction measured by the anemometer
(dashed lines) and the five minute averaged values used to construct the Aeolus input
wind profile (solid line, squares). The averaged log-law profiles were used to create the
mean inflow profile while the inflow turbulence gerator perturbed the velcoity field to
create physically realistic turbulent features. The source was defined as a sphere of 1 m
radius and a release amount of 5488 g was simulated by releasing 0.5 million lagrangian
particles over the release duration of 30 min. It was found that 0.5 million particels are
sufficient to estimate 30 min averaged concentration at this spatial resolution.
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Figure 7. Five minutes of averaged data from PWID 15 were used to build the inflow profiles for the
Aeolus LES simulation.

Similarly to the complex terrain case, the flow field was simulated for 1.5 h, with
the initial hour used for spinup and the final 30 min used for analysis and comparison
with observations. The simulation took about 2 h of computer time to run on a quad-core
machine.

Figure 8 shows the velocity vector field for flow around Oklahoma City in the x–y plane
at 8 m above ground level (AGL). Simulated wind vectors from the Aeolus model (grey
arrows) are overlaid with meteorological observations (black arrows). Longer arrows in the
figure indicate higher wind speed. The Aeolus wind speed prediction is also represented
by the color shading around the buildings, where warmer colors indicate higher predicted
wind speed values. From this figure, it can be observed that the Aeolus model is able to
predict the important flow features reasonably well.
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2003 field experiment. The simulation shows the horizontal slice (xy plane) at 2 m AGL. The zoomed-in area highlights
urban effects that are predicted well by Aeolus.
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The model captures the channeling effects along north–south running streets and
predicts the high wind speeds measured in these regions. Aeolus also predicts the reverse
flow in the street canyons and wake regions in the domain. The model-produced velocities
in the intersection areas are in good agreement with the field data.

Figure 9 shows the measured and predicted SF6 air concentration values at ground
level. The colored circles represent the measured air concentrations averaged over the 30
min of the continuous release. The colored contours represent the Aeolus prediction of
the 30 min average air concentration, with higher predicted values near the source (red,
orange areas). The Aeolus model predictions agree with the experimental results well; the
areas of highest concentration and the general downwind plume spreading are captured in
the simulation results.
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Figure 9. Contours of 30 min averaged SF6 air concentration (g/m3) from Aeolus overlaid with 30 min averaged field
concentration data (filled circles) for IOP 8 trial 2 during the Joint Urban 2003 field experiment. The simulation shows the
horizontal slice (xy plane) at 2 m AGL.

Figure 10 displays scatter plots of the paired (point-to-point) values from the Aeolus
predictions and the field experiment measurements. Data points (blue circles) that fall on
the solid black diagonal represent perfect matching between the predicted and measured
values. Points that lie above and below the black line represent values that are over-
and under-predicted by Aeolus, respectively, as compared to the measured data. The
green, blue, and orange colored diagonal lines represent factors of 2, 5, and 10 model–
measurement mismatches, respectively (FAC2, FAC5, and FAC10). The scatter plots show
good agreement between predicted and measured values, with most pairs falling within
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the blue FAC5 lines. Figure 10 also indicates that the number of matched zeros, which
show how often the model correctly predicts zero-valued measurements (data below the
instrument minimum level of detection, MLOD = 10−7.5 g/m3). The number of matched
zeros shows that the model is able to correctly predict the spread of the plume. Overall,
we found that 48.9%, 84.7%, and 91.5% of the simulated points fall within FAC2, FAC5,
and FAC10, respectively, indicating excellent performance for predicting dispersion in
complex urban areas which are consistent with the values suggested in Hanna and Chang
(2012) [25].
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Figure 10. Scatter plot showing points paired in time and space for predicted and observed 30 min
averaged SF6 concentrations (g/m3) for IOP 8 trial 2 during the Joint Urban 2003 field experiment.

Further quantitative analysis of our results is given in terms of absolute value of
fractional bias (|FB|) and the normalized mean square error (NMSE) for concentration.
Fractional bias is a normalized value of mean error [26]. |FB| values range from 0 to +2. A
perfect agreement between model and measurement would result in FB = 0.

FB =

( (
Ci

P − Ci
o
)

0.5
(
Ci

P + Ci
o
)
)

(5)

where Ci
o is the ith observation (measurement), and Ci

P is the corresponding model predic-
tion. NMSE captures the overall absolute departure of the modeled results from measure-
ments. Lower values of NMSE indicate better agreement between model and experimental
values.

NMSE =
1
n ∑
(
Ci

P − Ci
o
)2

Co
2 (6)

where n is the number of valid measurement–model data pairs and Co is the mean mea-
surement value. Hanna and Chang (2012) suggest the following limits on the comparison
metrics for acceptable performance of an urban model [25]:
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• |FB| . 0.67, i.e., the relative mean bias less than a factor of ~2.
• NMSE . 6, i.e., the random scatter . 2.4 times the mean.
• FAC2 . 0.30, i.e., 30% or more of model predicted values are within a factor of two of

measured values.

The absolute value of the fractional bias (|FB|) was found to be 0.015 and the NMSE
for the LES simulation was 0.29, indicating relatively low simulation errors compared to
the experimental data. This excellent comparison of the Aeolus model with field measure-
ments in complex urban areas makes it a very useful tool for predicting flow features and
dispersion patterns in these scenarios.

5. High-Temperature Nuclear Cloud Rise Dynamics

For the final application, we ran Aeolus to simulate the dynamics of a hot nuclear
detonation cloud rising in the troposphere with a specified ambient potential temperature
profile θa. In this set-up, the source is not only a mass release, but also a large temperature
perturbation. Therefore, the initialization requires the temperature, altitude, and size of the
fireball formed from the detonation.

The Smagorinsky scheme in Aeolus (see Section 2.1) is useful for simulating turbulence
at standard atmospheric conditions, but not for including all the relevant turbulence scales
in a buoyant nuclear cloud. Realistically, there is additional mass and energy exchange as
ambient air is entrained into the cloud. In Section 5.3, we describe a new parameterization
that was added to Aeolus to represent this entrainment process.

5.1. Dixie Event Description

The Dixie test was performed during operation Upshot-Knothole on 6 April, 1953
at 07:30 local time in Nevada (37◦5′5” N, 116◦1′5” W). The device was detonated in the
atmosphere at 1.84 km AGL (3.1 km above mean sea level) with an explosive yield of
11 kilotons [27]. These characteristics result in a scaled height of burst of 831 m correspond-
ing to ‘regime 1′ in which no soil or dirt is disturbed due to the detonation [28]. During the
shot, high-frequency cameras captured the formation and propagation of the shockwave
and fireball for comparison with simulations, such as Miranda [29]. Miranda simulates the
initial fireball size and temperature, which is shown in Figure 11 for the timestep directly
before the Dixie cloud starts rising. Additionally, the time series of the observed top and
bottom of the Dixie cloud were recorded in Hawthorne (1979) [30].
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Previous models successfully simulated Dixie cloud rise. Kanarska et al. (2009)
compared predictions from a compressible Eulerian model with a low Mach number com-
ponent [31]. More recently, Arthur et al. (2021) used the Weather Research and Forecasting
model to simulate Dixie cloud rise, finding good agreement with observations [32]. How-
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ever, neither of these prior modeling studies contained detonation gas and debris in the
cloud, which is included in the Aeolus simulation.

5.2. Model Setup

In setting up the model grid, there is a tradeoff between having cells that are small
enough to resolve the turbulent flow, but not too small because a large domain with many
cells is required to simulate cloud rise throughout the troposphere. For this simulation,
we selected a model resolution of ∆x, ∆y, ∆z = 30 m in the x-, y-, and z-directions and a
domain size of x, y, z = 9000 m, 9000 m, 15,000 m, resulting in 45 million grid cells.

The ambient conditions are specified as vertical profiles of temperature and pressure at
the detonation location. These input data are at a resolution of 304.8 m, and Aeolus linearly
interpolates the temperature and pressure profiles to its vertical grid (Tk, Pk). The profiles
utilized for the Dixie case from radiosonde measurements [30] are shown in Figure 12. The
potential temperature of every grid cell θi,j,k in Aeolus is set according to the vertical profile:

θi,j,k = Tk

(
103 mb

Pk

)0.286

(7)
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Figure 12. Ambient meteorology utilized to simulate the Dixie test. The ambient temperature and
pressure vertical profiles are shown with respect to height above ground level (agl).

The source inputs defining the initial hot bubble include the detonation time tdet,
bubble diameter Dsrc and temperature Tsrc, the mass Msrc and number of Lagrangian
particles Np, src representing materials in the hot bubble, the density ρsrc and size dp,src of
materials in the hot bubble, and the source position (xsrc, ysrc, zsrc). Aeolus replaces the
ambient potential tempertaure with the hot bubble potential temperature at the source
location based on Tsrc and the grid pressure at tdet. Additionally, 1.8 million Lagrangian
particles are released at random locations within the bubble volume, representing the hot
cloud at tdet.

5.3. Entrainment Parameterization

The momentum and energy balances are solved for the velocity and potential temper-
ature fields at each grid cell center. Turbulent viscosity is determined based on the shear
rate and Smagorinsky constant Cs, but it is also enhanced by entrainment of ambient air
that is not tracked in Aeolus. To account for the induced mixing from entrainment, we add
an entrainment term (Ei,j,k) to eddy viscosity for momentum and potential temperature
equation (vi,j,k) at the grid cell at index i, j, and k in the x-, y-, and z-direction, respectively.

vi,j,k = Ei,j,k +
(

Cs
3
√

∆x∆y∆z
)2∣∣S

∣∣ (8)
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where S is contraction of the rate-of-strain tensor, Sij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

This enhancement due to entrainment is determined based on the vertical velocity of
that cell wi,j,k the potential temperature of that cell θi,j,k, the ambient potential temperature
at that vertical level θa

k , and a dimensionless empirical parameter fent entrainment factor.

Ei,j,k = max
{

0, fent
3
√

∆x∆y∆z
∣∣∣wi,j,k

∣∣∣
θi,j,k − θa

k
θa

k

}
(9)

Using the model inputs and entrainment parameterization described above, we per-
formed seven Aeolus simulations. The model set-up was identical for all seven simulations
except that we varied fent between zero and one. An entrainment factor of zero is equiv-
alent to running a simulation without the entrainment parameterization. The results are
shown in Figure 13 where the green profile corresponding to fent of 0.5 is the closest match
to the observations.
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Figure 13. Dixie cloud rise dynamics for different entrainment factors. The black dashed profiles, green dotted profile, and
colored solid profiles show the observed cloud top and bottom, the simulated cloud center without entrainment, and the
simulated cloud center with varying fent from 0.2 to 1, respectively.

The entrained ambient air slows the cloud rise velocity, decreasing the maximum
cloud height. Additionally, entrainment results in oscillations around the stabilized cloud
height since the cloud does not overshoot the tropopause height. The hot cloud rises
above its neutral buoyancy height due to its inertia until the inertia cannot sustain the
imbalance in density between the cloud and environment. At this point, the cloud is
denser than its surroundings and it falls, carried past stabilization by its momentum. The
oscillations continue as the cloud height converges to its stabilization height. Theoretically,
the frequency of oscillations in a stratified environment can be described with the Brunt–
Väisälä frequency N.

N2 =
g
θ

dθ

dz
(10)

Figure 13 shows the cloud center of mass, which is not the best comparison to the
observations of cloud top and bottom. Instead, Figure 14 shows the normalized cloud
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mass ( fk(t)) calculated from the average concentration in the x- and y-directions for each
vertical level k (Ck(t)) where mk is the number of horizontal grid cells in each vertical level.
The mean cloud mass is normalized so the maximum value of f (t) is one, so the average
concentration is divided by its maximum value across the vertical levels.

Ck(t) =
ΣjΣiCi,j,k(t)

mk
(11)

fk(t) =
Ck(t)

maxC(t)
(12)
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Figure 14. Simulated cloud rise with entrainment factor of 0.5. The average concentration of cloud
gas normalized by the maximum value at each time is shown in the shaded grey, the center of mass
of simulated cloud is shown in solid blue profile, and the red dashed and dash-dotted profiles show
the observed cloud top and bottom.

Similar to simulations by Arthur et al. (2021), the cloud height is underpredicted in the
first 2 min post detonation [32]. At later times, the majority of the cloud mass is contained
between the observed cloud top and bottom, as shown in Figure 14.

Figure 15 shows the evolution of the cloud temperature and gas and debris concen-
trations at 1.0, 3.5, 6.5, and 11.5 min after detonation. The potential temperature is shown
across the y- and z-grid cells at x = 4.5 km, which corresponds to the cloud center. The
gas and debris concentrations are averaged over the x-direction and normalized by their
respective source mass to determine their dilution ratios shown in Figure 15. The cloud
vertical extent, shown in the grey shaded area, is defined as the altitudes zcloud(t) in which
the concentration is more than 10% of the current maximum concentration.

zcloud(t) ∈
{

zk s.t. Cj,k(t) > 0.1 max Cj,k(t)
}

(13)
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The cloud center is defined as the cloud center of mass within the cloud extent, which
is shown as the black solid lines in Figure 15.

zcenter(t) =
ΣiΣjΣkCi,j,k(t) zcloud

k (t)
ΣiΣjΣkCi,j,k(t)

(14)

The observed cloud top and bottom is also shown in Figure 15 as the red dashed lines.
The simulated cloud rise matches observations well on average, with an underestimate of
the observed height initially and a slight overestimate at the maximum height near 6.5 min
post-detonation. Additionally, even though the simulated cloud bottom extends lower
than the observed after about 8 min (as shown in Figure 14), most of the cloud below the
observed bottom could be considered the stem instead of the cap.

6. Conclusions

Aeolus is a fast-running computational fluid dynamics urban dispersion model that
has been validated using several experimental data sets. Using the Aeolus model, complex
dispersal experiments can be completed with simulation run times small enough for use
in emergency response, to provide consequence management information. The model is
coupled to all the relevant databases required to setup and run the model and produce
products which are useful for first responders.

In this work, we have simulated flow and dispersion using the large eddy simulation
version of the Aeolus model in three different regimes—complex terrain, urban domain,
and high-temperature cloud rising into high altitudes. This showcases the flexibility and
adaptability of the model in different scenarios.

Comparing Aeolus predictions to field experiments, the model generally shows good
agreement with the measured data. This report details model validation to the Askervein
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hill field campaign conducted in 1982 and 1983, the Joint Urban field experiments con-
ducted in 2003 for both continuous and instantaneous tracer gas releases, and explosive
cloud rise data from the Dixie nuclear test conducted at the Nevada Test Site in 1953.
Aeolus results compare well with measured data both qualitatively and quantitatively and
were found to compare well with the data.

Expanding the capabilities of a fast-running urban dispersion model and validating its
simulation results against field data greatly advances NARAC’s ability to make predictions
of the fate of material released in an urban environment and complex terrain. The improved
and validated Aeolus model represents a significant capability for NARAC, and improved
support to the USA’s Department of Energy.

In future, we plan to validate the LES model for additional complex terrain regions
and other real and mock urban areas. We also plan on validating the model for different
release types, including buoyant and dense gas releases in urban areas. Given the simplicity
of the model to adapt to complex grids, we intend to extend the model for modeling flow
and dispersion pattern in indoor environments. To further increase the efficiency of the
large eddy simulation capability of the Aeolus model, we plan to implement the code on
a Graphics Processing Unit (GPU) platform which will truly help in operationalizing the
model.

In addition, we plan to validate the entrainment parameterization in nuclear cloud
rise simulations using other test shots.
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Abstract: Recent advances in the development of large eddy simulation (LES) atmospheric models
with corresponding atmospheric transport and dispersion (AT&D) modeling capabilities have made
it possible to simulate short, time-averaged, single realizations of pollutant dispersion at the spatial
and temporal resolution necessary for common atmospheric dispersion needs, such as designing
air sampling networks, assessing pollutant sensor system performance, and characterizing the
impact of airborne materials on human health. The high computational burden required to form
an ensemble of single-realization dispersion solutions using an LES and coupled AT&D model has,
until recently, limited its use to a few proof-of-concept studies. An example of an LES model that
can meet the temporal and spatial resolution and computational requirements of these applications
is the joint outdoor-indoor urban large eddy simulation (JOULES). A key enabling element within
JOULES is the computationally efficient graphics processing unit (GPU)-based LES, which is on the
order of 150 times faster than if the LES contaminant dispersion simulations were executed on a
central processing unit (CPU) computing platform. JOULES is capable of resolving the turbulence
components at a suitable scale for both open terrain and urban landscapes, e.g., owing to varying
environmental conditions and a diverse building topology. In this paper, we describe the JOULES
modeling system, prior efforts to validate the accuracy of its meteorological simulations, and current
results from an evaluation that uses ensembles of dispersion solutions for unstable, neutral, and
stable static stability conditions in an open terrain environment.

Keywords: large eddy simulation; graphics processing unit computing; atmospheric dispersion
modelling; microscale dispersion; model validation

1. Introduction

The methods used to simulate outdoor dispersion of airborne materials range from
simple, computationally efficient empirical approaches to complex computational fluid
dynamics (CFD)-based approaches. The simplest methods use empirical formulations that
utilize information on the meteorological conditions to control the corresponding disper-
sion behavior produced by the model. More complex CFD methods, on the other hand,
are capable of resolving (explicitly or implicitly) the time-varying wind, turbulence, and
dispersion patterns that drive the downwind transport and dispersion of the material. This
enables the development of dispersion simulations that can reconstruct the detailed struc-
tures in the contaminant dispersion that qualitatively resembles the “single-realization”
visual depictions of smoke dispersion observed in photographs. The challenge inherent
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with creating “single-realizations” of dispersion with a CFD model is that atmospheric
measurements are typically not sufficient to adequately initialize these microscale atmo-
spheric simulations (e.g., at spatial resolutions in the 10s of meters and timescales on the
order of 1 s). To produce ensembles of “single-realization” dispersion solutions, the CFD
model is initialized with the mean atmospheric conditions that can be measured and then
an ensemble of uncorrelated dispersion solutions can be created by moving the release (e.g.,
in location and/or time) within the turbulent flow. This approach provides a distribution
of dispersion solutions that can then be averaged (in time and space) to determine the
mean properties of downwind dispersion analogous to the products produced by standard
Gaussian plume and puff models. Alternatively, this distribution of dispersion solutions
can be sampled/analyzed to understand the variance from the mean and the skewness of
the distribution if present [1]. While this approach can be used to provide a wealth of infor-
mation on the properties of dispersion for a given scenario, the production of ensembles
of single-realization dispersion solutions is computationally expensive when compared
to traditional Gaussian plume/puff and Lagrangian particle modeling techniques. The
computational expense associated with producing these ensembles has, until recently,
limited the use of CFD models for dispersion to research and academic applications.

Here, we introduce a large eddy simulation (LES) CFD model that has been imple-
mented to run on a GPU computing platform and discuss the computational performance
advantages provided by this GPU-LES approach. The accuracy of the dispersion solutions
is critical for providing confidence in the use of this emerging technology. In this paper,
we provide an illustration of an approach for validating dispersion simulations at these
spatial and temporal scales. Our validation discussion includes a description of the ob-
servational data sets used to evaluate the model and the methodology used to simulate
these experiments and to compare predictions to the observations. Detailed results across
environmental conditions ranging from unstable to stable planetary boundary layer (PBL)
conditions (i.e., daytime to nighttime) are provided. We conclude with a summary of the
findings, and a brief description of the plans to extend this capability to support modeling
urban environments and building interiors.

1.1. Ensemble-Average and Single-Realization Dispersion Solutions

A common simulation method for estimating the dispersion of airborne contaminants
are ensemble-average approaches. These are largely empirical approaches in which the
model is designed to represent the apparent stochasticity of atmospheric turbulence and
its corresponding impact on downwind dispersion. Here, empirical parameters are used
to describe dispersion that might have occurred over many atmospheric and dispersion
conditions. When formulated for a Eulerian reference frame, these empirical parameters
are used to describe airborne material dispersion relative to the mean wind direction where
the rate of dispersion changes as a function of downwind distance for a given atmospheric
condition. When formulated for a Lagrangian reference frame, airborne material dispersion
in these tools is computed from the perspective of a hypothetical air parcel following the
mean winds. The empirical parameters used to control the material spread following the
flow are typically represented by a series of Gaussian puffs or individual particles. For
the Lagrangian puff models, an assumption is made to represent localized concentration
patterns using a Gaussian distribution, where the empirical parameters control the localized
crosswind spread of the material as a function of downwind distance and atmospheric
conditions [2,3]. In Lagrangian particle models, the empirical parameters are typically
used to control the magnitude of particle spread within a random-walk method that
redistributes the particles at each model time step [4,5]. In both approaches, there is an
implicit assumption that the material concentration at each point in space and time is an
ensemble average over a large number of realizations of this apparent stochastic process.

Individual realizations of dispersion can differ significantly from the ensemble-average
solution, and it is typically not possible to recover specific details of a given dispersion real-
ization from the ensemble-average statistics [6]. While ensemble-average solutions can in
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general provide reasonable model assessments, they have been shown to provide incorrect
and misleading results, particularly for scenarios involving high-frequency data sampling,
strong spatial and temporal correlations between variables, and nonlinear effects [1,7]. For
example, the consequences of exposure to airborne contaminants may depend nonlinearly
on the concentration, so that brief exposure to a high concentration can have greater impact
than longer exposure to the same time-averaged concentration. CFD models can be used
to create ensembles of what we refer to as “single-realization” dispersion solutions that use
a very short time average relative to the eddy turn-over time of the eddies in the flow field.
Individual uncorrelated dispersion realization ensemble members can be created in a cou-
ple of ways. One approach is to create multiple independent simulations where the model
is started from slightly different initial conditions. One way to do this is by modifying
the random number seed on the initial heat flux distribution that initiates the turbulence
within the model. A second approach is to create uncorrelated releases by spacing a set of
releases within a simulated boundary layer with spatially homogenous conditions (e.g.,
roughness length, heat flux, etc.). A third way this can be done is to create realizations
by creating releases within a spatially and homogeneous environment at different times.
The use of this approach with a CFD and dispersion model has been demonstrated to
produce an ensemble of dispersion solutions that when averaged can closely replicate
the dispersion solution from a Gaussian puff model that calculated dispersion based on
empirical relations designed to replicate an ensemble averaged dispersion. A more detailed
discussion of this can be found in Bieringer et al. [1].

The large eddy simulation (LES) modeling approach has demonstrated the ability to
successfully predict unique simulations of many types of atmospheric scenarios relevant for
airborne dispersion and defense analyses described above [1,6,8,9]. LES models have been
developed to explicitly resolve the motions associated with the largest eddies in the atmo-
spheric boundary layer and use parameterizations or closures to represent the small-scale
turbulent eddies. The large eddies are resolved or separated from the small, unresolved
eddies by filtering the governing Navier–Stokes equations in the inertial subrange, whereby
the eddies smaller than the filter width are treated by a subgrid model and the eddies larger
than the filter are explicitly resolved [10]. The filter size used is dependent upon the type
of atmospheric conditions being modeled and the corresponding turbulence length scales
involved. Air-flow solutions from LES models can be produced at spatial grid increments
approaching 1 m and be solved at very short time-steps that when used to drive dispersion
models (in both Lagrangian and Eulerian reference frames), can produce single-realization
dispersion patterns [1,6,11–14]. When combined with an immersed boundary method
(IBM) surface layer parameterization, necessary to keep the model numerically stable at
the walls of the buildings, LES models have also been demonstrated to be capable of simu-
lating the detailed winds and dispersion that occur in urban environments [15,16]. When
compared to observational data, the results indicate that an LES approach has been shown
to accurately represent both the mean properties of dispersion and the variance present in
the observations from open terrain convective boundary layer field trials [11,12,17].

1.2. GPU-Enabled Atmospheric Computing

General purpose computing on graphics processing unit (GPGPU) hardware, hereafter
referred to as a GPU, has emerged as a high-performance computing (HPC) option for a
variety of applications, including scientific computing. GPUs typically have many times
the number of computational cores relative to central processing unit (CPU) computers
and are purpose built to solve problems in graphics shaders for the calculation of the levels
for light, darkness, and color for the rendering of graphics on computer screens. Scientific
computing with this technology began in the early 2000s with a demonstration using a
matrix multiplication application that was shown to run considerably faster on a GPU than
on a CPU [18]. Since then, programming languages and standards, such as OpenCL and
Nvidia’s CUDA, provide an application programming interface that enables the use of
C and C++ software to be executed on GPUs. Modern GPUs, such as the Nvidia A100,

223



Atmosphere 2021, 12, 890

have even more densely packed computational cores (nearly 7000), and higher memory
bandwidth (2 Terabytes per second) [19], which collectively enable faster computations
and reduced data latency (reduced time spent waiting for data load/store processes to
complete). Collectively, these characteristics enable the GPUs to significantly outperform
CPUs for calculations in data-parallel applications, which require the same instruction (or
calculation) to be made concurrently. Many scientific calculations, including CFD and LES
calculations, fall into this data parallel paradigm.

The atmospheric science modeling community recognized the computational potential
provided by the GPU in the mid to late 2000s. Early examples where the use of a GPU
for an atmospheric modeling application explored the porting of computationally expen-
sive elements of the Weather Research and Forecast (WRF) model [20] to run on a GPU.
This work, commonly referred to as GPU acceleration, includes work by Michalakes and
Vachharajani [21], Mielikainen et al. [22], Silva et al. [23], and Wahib and Maruyama [24].
An alternative approach that has been more recently taken by atmospheric modelers is to
port the entire atmospheric model to run resident on the GPU. Examples of models that
take this approach include the GPU Resident Atmospheric Simulation Program (GRASP)
(previously referred to as the GPU-resident Atmospheric Large-Eddy Simulation (GALES)
model) by Schalkwijk et al., 2012 [25]; Schalkwijk et al., 2015 [26]; Schalkwijk et al., 2016 [27];
the Parallelized Large Eddy Simulation Model (PALM) by Maronga et al., 2015 [28]; the
MicroHH model by van Heerwaarden et al., 2017 [29] and the FastEddy model (Sauer, J.
A., & Muñoz-Esparza, D. (2020) [30]. Using the CPU to handle data input and output (I/O)
and moving all of the core atmospheric calculations to the GPU has been shown to provide
an increase in the calculation speed of an atmospheric simulation by more than an order of
magnitude over comparable calculations on CPU hardware [29].

To characterize these benefits, our team conducted benchmark LES simulations using
the Weather Research and Forecast (WRF) model with LES turbulence closure [31,32]
and compared the computational performance to the GRASP model. The WRF-LES and
GRASP simulations used a 128 × 128 × 64 (X, Y, Z) grid with a spatial resolution of
20 m × 20 m × 17 m. The simulation used a periodic lateral boundary condition to spin
up convective eddies and turbulence over a 1-h period. The WRF-LES simulation was
performed on a Dell R640 running Red Hat v7.6 Linux on an Intel Xenon E5 v4, 8-core
CPU, and was configured to use the distributed memory, Message Passing Interface (MPI),
option. On this hardware, a 1-h WRF-LES simulation required approximately 1 h and 32
min of wall clock time. A comparable GRASP simulation was performed on an NVIDIA
Tesla K40 with 2880 cores operating at 745 MHz and 12 GB of onboard fast access memory.
The GRASP simulation completed in 36 s of wall clock time. This represents a GPU-LES
simulation that is approximately 150 times faster than the comparable CPU-LES simulation.

The GPU-LES has substantially lower equipment costs, power consumption, cooling
requirements, and physical space requirements than a CPU platform that can provide
comparable simulations. Based on the benchmark described above, and assuming linear
performance scaling, we estimate that a cluster of 19 Dell R640 Linux servers and a high-
speed network switch would be required to match the performance of a single NVIDIA
Tesla K40. Evidence on the hardware performance of the GPU vs. CPU suggests that
this type of computational performance difference is a sustained characteristic of these
platforms. Figure 1 shows the theoretical computational capacity and memory bandwidth
benchmarks for a series of NVIDIA GPUs and Intel CPUs over the past decade [33,34]. This
figure illustrates how the GPU continues to maintain a significant advantage over its Intel
CPU counterpart, as measured by floating point operations per clock cycle and memory
bandwidth speed, and that this advantage has continued to grow as new architecture
designs are released. For reference, the NVIDIA K40 used for the performance benchmark
cited above is a 2014 graphics card based on the NVIDIA Kepler architecture.
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Figure 1. Computational benchmarks for NVIDIA GPU vs. Intel CPU hardware platforms. The left panel illustrates
theoretical floating-point operations (FLOPS) per clock cycle and the panel on the right illustrates theoretical memory
bandwidth in gigabits per second (Gbps).

1.3. Atmospheric Dispersion Modeling on a GPU-LES Model

To form an ensemble of single-realization dispersion solutions using a LES and cou-
pled atmospheric transport and dispersion (AT&D) model comes at a high computational
expense. In spite of the computational burden that has historically been associated with
LES AT&D, it has been used in a variety of studies ranging from characterizing convective
boundary layers [13], the development of more accurate Lagrangian dispersion modeling
through the incorporation of subgrid turbulence [11,12], and the use of dispersion ensem-
bles for hazard prediction and sensor placement calculations [1,17]. In recent years, LES
models are being increasingly used for atmospheric dispersion studies [25,26] and when im-
plemented on GPU-based computing platforms, showed great promise for enabling a range
of atmospheric boundary layer research topics and applications by significantly reducing
the computational resource requirements to make the calculations [27]. Here, we present a
dispersion modeling system designed to take advantage of the GPU-LES modeling tech-
nology called the joint outdoor-indoor urban large eddy simulation (JOULES). JOULES
is a collection of modeling capabilities designed to calculate atmospheric conditions and
corresponding airborne contaminant transport in open terrain and urban locations both
inside and outside of buildings. At the core of JOULES is the GPU Resident Atmospheric
Simulation Program (GRASP) described above. GRASP was originally developed to pro-
vide high-resolution simulations of clouds, winds, and turbulence and designed to be run
on central processing unit (CPU) computing platforms. It was later adapted to run on
GPU-based architectures by scientists at Delft University of Technology (TU Delft) and
Whiffle B.V. Additional details on the origins of this model as well as information on the
turbulence closures and other formulations used within the GRASP model can be found
in [25–27].

Since its initial development, GRASP has undergone a number of evaluations to assess
its ability to provide high-resolution reconstructions of atmospheric variables and short-
term weather predictions. Of particular relevance to its use for atmospheric dispersion
applications is the work by Schalkwijk et al. [25,26] to couple GRASP to a regional-scale
atmospheric model in order to predict a continuous, year-long, three-dimensional time
series of turbulence and clouds. The predictions were compared to detailed boundary
layer observations collected at the Cabauw Experimental Site for Atmospheric Research
(CESAR). This study included favorable comparisons between the measured and simulated
power spectrum of horizontal and vertical wind speed variance across a variety of weather
conditions and temporal scales.
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2. Materials and Methods

In this section, we describe the implication of coupling JOULES with an AT&D model,
which solves for the advection and diffusion of a passive scalar (i.e., a neutrally buoyant
airborne tracer). Our study evaluates the accuracy of the GPU-LES dispersion solutions
produced by this model over flat open terrain. The evaluation was performed using data
from three separate dispersion experiments, with atmospheric conditions ranging from
unstable daytime “convective” PBLs, to stable environments that typically occur at night.
This section describes the observational data used in the model evaluation, the approach
used to develop the ensembles of dispersion solutions, the analysis methodology, and the
metrics used to compare the simulations to the observations.

2.1. Observational Data

This study uses data from three dispersion experiments, representing open terrain
environments under unstable, neutral, and stable conditions. The observations during
unstable or “convective” conditions were taken from the classic convective water tank
experiments conducted by Willis and Deardorff [35], and two outdoor atmospheric trials,
Project Prairie Grass [36,37], and the COnvective Diffusion Observed by Remote Sensor
(CONDORS) experiments [38–40]. Collectively, these three experiments provide data from
trials representing both near-surface airborne tracer releases and observations of material
concentrations at the surface and aloft. Since vertical dispersion is less significant in stable
conditions, near-surface observations from Project Prairie Grass were used to assess our
implementation for neutral and stable simulations. The following subsections describe
these data.

2.1.1. Willis and Deardorff Water Tank Experiments

Historically, the development of ensembles of dispersion realizations from outdoor
dispersion measurements has been difficult to construct because the atmospheric conditions
in which the measurements are taken typically do not repeat with sufficient consistency or
frequency during the experiments. Laboratory experiments are one way of addressing this
challenge and have been demonstrated to provide comprehensive ensembles of dispersion
for repeatable conditions. In the 1970s and 1980s, Willis and Deardorff conducted a series
of water-tank experiments, to measure the temperature, heat flux, wind velocity, and
fluctuations in temperature and velocity in a convectively forced fluid [35]. They later
extended these experiments to include dispersion in the convective boundary layer [41].
These observations, and a series of numerical simulations enabled the characterization
of dispersion in the convective atmospheric boundary layer, and showed how the large
variability in concentration measurements observed in convective boundary layers can be
explained by the location of the release relative to the updrafts and downdrafts [42,43].

This work demonstrated that an ensemble of dispersion realizations is typically needed
to characterize the statistical properties of dispersion in convective boundary layers. Later
experiments measured crosswind-integrated concentration as a function of the downstream
distance from the source. This led to a further extension of these earlier convective water
tank experiments, where additional observational experiments were designed to produce
ensembles of dispersion solutions [41–43] (including measurements of crosswind integrated
concentrations as a function of the downstream distance from the source for a series of
near-surface and elevated releases. The Willis and Deardorff observations have been
used extensively to understand the convective boundary layer and in a variety of model
evaluation studies [11,12,42,43] involving LES models. In this study, data from the water
tank experiment were used in the assessments of the GPU-LES model simulations of
downwind dispersion at the surface and aloft during convective conditions.
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2.1.2. Project Prairie Grass Experiment

Project Prairie Grass [36] is a classic outdoor atmospheric dispersion field trial that has
been widely used to understand the properties of atmospheric dispersion from near surface
releases. Briefly, the experiment featured a series of 10-min continuous sulfur dioxide (SO2)
releases from a point 0.46 m above the ground. Downwind concentration measurements
were made along five semi-circular arcs, located 50, 100, 200, 400, and 800 m from the
release, at spacings of 2◦ for the four innermost arcs, and at 1◦ for the 800 m arc. Surface-
based samplers collected 10-min integrated concentration measurements. The mean winds
were measured at 8 heights, from 0.125 m to 16 m. The micro-meteorological information
(friction velocity (u∗) and Obukhov length (L)) were determined by fitting the friction
velocity and temperature measurements to the tower data. Approximately 70 releases
were conducted, and data collected across a range of atmospheric stability regimes. In
this study, data from the Prairie Grass experiment were used in the assessments of near-
surface GPU-LES dispersion model simulations for unstable, neutral, and stable boundary
layer conditions. The Project Prairie Grass data were obtained from Arhus University,
Denmark [37]. We refer the reader to [36] for a full description of the experiment.

2.1.3. COnvective Diffusion Observed by Remote Sensors (CONDORS) Experiment

The COnvective Diffusion Observed by Remote Sensors (CONDORS) experiments
measured both near-surface and vertical dispersion, extending to the full depth of the
atmospheric boundary layer [38–40]. Measurements aloft included rawinsondes released
near the time of the tracer experiments, acoustic sounders, and observations from a 300-m
tower, which enabled estimates of the mixing layer depth, heat, and momentum fluxes.
The trials used three tracers (oil fog, chaff, and a passive gas), in daytime releases near
Erie, Colorado during August and September. Concentration measurements were collected
by samplers at the surface, and with lidar and radar aloft. Twenty-six hours of data
were collected across 12 separate mid-day periods. Of these data, over 11 h of data were
processed into 29- to 60-min averaging periods during conditions where the convective
boundary layer or mixed layer depth normalized by the Obukhov length (zi/L) ranged from
24 (moderately unstable) to 1125 (extremely unstable) [38]. Obukhov length is defined as:

L = −u3
∗Ta/

(
kgw′θ′0

)
(1)

where u∗ is the surface friction velocity, Ta is the ambient temperature, k is the von Kármán
constant (k = 0.4), g is the gravitational acceleration, and w′θ′0 is the surface kinematic
heat flux. This experiment provides a comprehensive set of measurements of crosswind-
integrated concentration, lateral dispersion, plume height, and vertical dispersion. Data
from the CONDORS experiment were used in the unstable boundary layer evaluations of
the GPU-LES model dispersion at both the surface and aloft.

2.2. Categorization of the Observations

For each of the categories of static stability, we combined dispersion measurements
from a combination of observations collected at multiple distances downwind from the
release location and from a variety of individual trials conducted during similar weather
conditions. Combining the observational data in this way enabled us to then compare
both the mean and spread of the full distribution of observations to the model simulations.
Taken together, the water tank, Prairie Grass, and CONDORS experiments cover a range
of weather and stability conditions, near-surface and above-surface data, and distances
downwind from the release location. Broadly, Prairie Grass provides near-surface disper-
sion estimates for unstable, neutral, and stable boundary layer conditions. For unstable
boundary layers, these are supplemented by the Willis and Deardorff water tank and CON-
DORS data for both near-surface and vertical dispersion, including crosswind-integrated
concentration, plume height, and lateral and vertical dispersion.
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In order to synthesize complete datasets against which to evaluate our GPU-LES
model, we organized the data around elements of the Pasquill–Gifford stability cate-
gories [44,45]. We chose to represent dispersion in convective (unstable), neutral, weakly
stable, moderately stable, and strongly stable conditions, based on the ranges of the
Obukhov length that have been correlated to these stability categories [46,47]. Table 1
lists the Obukhov ranges used to select specific trials from the Project Prairie Grass and
CONDORS data sets. To the extent possible, care was taken to group measurements taken
under similar weather conditions. Specific trials selected by these criteria included:

1. The convective water tank experimental data from Case 1 in Willis and Deardorff [26],
comprising data from seven experimental trials;

2. All the surface-based releases of oil and chaff, for eight releases and five locations, in
the CONDORS experiment;

3. Seven Project Prairie Grass trials—Trials 7, 8, 10, 16, 25, 44, and 51.

Table 1. Obukhov values used to define stability categories for the GPU-LES evaluation.

Stability L
(m)

Unstable <−2
Neutral stability >75
Slightly Stable 35 to 75

Moderately Stable 8 to 35
Extremely Stable 1 to 8

Table 2 gives details on the 81 individual trials distributed across the four categories
and the corresponding mean atmospheric properties for each category.

Table 2. The mean environmental conditions of the observational data used in the evaluation.

Stability Number of
Trials

U @ 1m
(m s−1) u* (m s−1)

Heat Flux
(W m−2) T (◦C) θ (K) w* (m s−1) L (m)

Unstable 47 4.054 0.331 200.517 28.96 307.10 1.613 −18.33
Neutral
stability 12 4.84 0.38 −29.39 22.33 300.36 −0.54 167.25

Slightly
Stable 7 2.74 0.21 −25.94 22.15 300.19 −0.50 54.20

Moderately
Stable 6 2.21 0.16 −22.07 21.73 299.68 −0.49 18.91

Extremely
Stable 9 1.24 0.07 −10.74 19.03 297.13 −0.36 4.29

2.3. Scaling Methodology

In addition to their water tank experiments, Willis and Deardorff [26] also introduced
methods for scaling dispersion measurements. Their approach acknowledges that disper-
sion in the PBL depends primarily on the time over which the fluid disperses through the
media. Their initial work considered highly convective PBLs, where non-dimensional scal-
ing factors were derived using the convective boundary layer depth, zi, and the convective

velocity scale, w∗ =
(

gw′θ′ozi/Ta

) 1
3 . They further defined the turbulence time scale, or

eddy-turnover time, as zi/w∗. In the along-wind direction, they recognized that, because
dispersion in the PBL is a function of time, downwind distance, X, from the source for
convective conditions can be scaled as:

X =
w∗x
Uzi

(2)
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where x is the distance downwind of the release location, and U is the average PBL
wind speed. Willis and Deardorff [26] also suggested a dimensionless parameter for the
crosswind integrated concentration (CWIC or Cy), defined as Cy =

∫ ∞
−∞ C(x, y, z)dy. To do

so, they scaled CWIC by the concentration that would be present in a uniformly mixed
PBL, well downwind of the release. This uniformly mixed concentration is Q/Uzi where
Q is the mass-release rate. Based on this approach, a normalized dimensionless CWIC can
be calculated as:

Normalized CWIC =
CyUzi

Q
(3)

This approach was first used by Willis and Deardorff [35] to visualize the dispersion
measurements from their convective water tank experiments. Our work here leverages
these methodologies and in particular plots of CWIC like Figures 8 and 9 from Willis
and Deardorff [35] that depict measurements with a non-dimensional mean CWIC from
the water tank data that was plotted as a function of the scaled downwind distance X
and height.

Since its introduction, this scaling approach has been extended and adapted for use in
atmospheric dispersion applications that range from interpreting observational data [48]
to the development of empirical models [49,50] and the evaluation of dispersion mod-
els [11,12]. Here, we used this scaling approach to combine observations taken at different
times from a single experiment, and observations taken from different experiments, into
a collection of measurements that represent dispersion in each stability class. Similar
methods were used by Weil et al. [11,12] for unstable conditions, and Venkatram et al. [51]
for neutral and stable conditions. The scaling used in this study and by Weil et al. [11,12]
for the convective cases closely follows the approach found in [35]. For evaluating plume
height, and vertical and lateral dispersion, we also followed the Weil et al. [11,12] approach
of normalizing the results by zi.

The downwind distance scaling method used in this evaluation for the neutral
and stable static stability conditions follows the approach published in [50]. The Venka-
tram et al. [50] scaling differs slightly from that of Willis and Deardorff [35], normalizing
the downwind distance using:

X =
x
|L| (4)

where |L| is the absolute value of the Obukhov length from Equation (1). Because the
convective scale velocity of neutral-to-stable cases would be negative, we instead use a
scaling factor that utilizes friction velocity and Obukhov length. For neutral and stable
scenarios, normalized CWIC is calculated using the following relationship:

Normalized CWIC =
Cyu∗L

Q
(5)

The scaling parameters, as described above, are applied to all of the point-location
observations used in this evaluation. The same relationships are applied to the simulations
enabling a comparison with the observations.

2.4. GPU-LES Model Simulations

The development of the GPU-LES dispersion simulations involved a two-step pro-
cess. The first step was the design and execution of the atmospheric simulation. Five
configurations, corresponding to the stability categories defined in Tables 1 and 2, were
developed. The unstable configuration was based on the specifications of Weil et al. [11,12].
The neutral and stable configurations required finer spatial resolution, and a different
approach for establishing the desired stability conditions. To achieve a simulation with the
desired Obukhov length, we set the roughness length, heat flux, temperature, and initial
convective boundary layer depth to values representative of the environmental conditions
in the ensemble of field trials. Next, we adjusted the geostrophic wind (Ug and Vg) until
the Obukhov length matched the observations within the category. Table 3 provides details
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on the model configurations and initial conditions (e.g., domain size, spatial resolutions,
and core meteorological parameters). The wind speeds in Table 3 are the initial values (i.e.,
at the model start time) for the entire PBL. The turbulent PBL simulation is first spun up for
60 min from a cold start using cyclic (i.e., periodic) lateral boundary conditions. Figure 2
shows sample horizontal and vertical cross-sections of vertical velocity after the spin-up of
a convective PBL simulation over a 2 km × 2 km × 1.0 km domain. Following the initial
spin-up, we then began the tracer release, allowing the tracer mass to reach steady state.
This required another 60 min of simulated time. Hence, we did not use meteorological
or dispersion results from the first 120 min of the simulations. Our development here
emphasized model selections that aided in separating model calibration to the experiment
conditions from model calibration to the resulting data.

Table 3. The JOULES GPU-LES model configuration parameters.

Simulation
Category

Grid
Points

(nx,ny,nz)

Model
Resolution

(Hor,Vert) (m)
U (m/s) Ug (m/s) Vg (m/s) Heat Flux

(W/m2) zi (m) L (m)

Unstable (192,192,96) (52.1,20.8) 2.8 2.8 −1.5 240 1000 −11.5
Neutral
stability (256,256,64) (6.25,6.25) 8 8 −5.5 −10 190 372.2

Slightly
Stable (256,256,64) (6.25,6.25) 4 3.5 −4.5 −10 116 47.6

Moderately
Stable (256,256,64) (6.25,6.25) 4 3.2 −4.2 −10 103 28.9

Extremely
Stable (256,256,64) (6.25,6.25) 3 2.5 −2.5 −10 78 7.6

Figure 2. Illustration of a horizontal and vertical cross-section of vertical velocities for a convective planetary boundary
layer (PBL) simulation. Red represents updrafts; blue represents downdrafts; and green represents areas where vertical
motions are low. In this simulation, the depth of the boundary layer was set at 1000 km, clearly visible as the level where
vertical velocities abruptly transition from large to small values.

The second step in developing dispersion simulation data for this evaluation is a
process we used to develop an ensemble of uncorrelated dispersion solutions. Once the

230



Atmosphere 2021, 12, 890

GPU-LES model has spun up the turbulence and corresponding dispersion to a quasi-
steady state, we calculated the model evaluation metrics. A continuous set of values in the
along-wind direction were computed for each of the evaluation metrics. The calculations
used a 10-min average or integrated value, depending on the metric in question. Individual
uncorrelated realizations of the dispersion patterns, following the methodology used
in [12], were created by varying a combination of the source location and the start time of
the release. For example, Figure 3 depicts the predicted near-surface concentrations from
five uncorrelated simulations. It illustrates the type of variability in the dispersion patterns
that can be created within a convective PBL simulation using this methodology. Because
the GPU-LES model runs quickly, we were able to generate an ensemble of 130 realizations
that we believe described the unstable PBL dispersion comprehensively and do so in
approximately two hours of wall-clock time for these experiments. Subsequently, for the
neutral and stable simulations, we reverted to using 30 realizations per ensemble, as was
done in [12], and we found suitable for our comparisons. The model evaluation metrics
were then computed for each ensemble member, using the sampling characteristics of the
field program. This enabled us to create a comprehensive distribution of model evaluation
metrics that captured the range of dispersion patterns associated with how the airborne
material release responds to the winds and turbulence in the PBL.

Figure 3. Variability in the dispersion patterns. Five sample realizations of near-surface concentration, 10 min after the
start of the tracer release, were generated by varying the release start time or release location in the time-varying turbulent
environment produced by the GPU-LES model.

3. Results

We assessed the suitability of the GPU-LES model to simulate dispersion in the PBL
by comparing the plume height normalized by PBL height, vertical profiles of CWIC,
downwind surface-based CWIC, surface crosswind dispersion, and vertical dispersion to
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comparable dispersion metrics computed from observations. Calculations of the metrics
computed from observations are represented by symbols/markers in the forthcoming
figures. Calculations of the metrics for a single dispersion realization from the GPU-
LES model simulations are represented by either grey lines or blue dots and are plotted
on the figure to illustrate the distribution of solutions. The following sections present
results comparing the JOULES GPU-LES model predictions to observational data and are
organized by stability category as described in Table 1.

3.1. Unstable PBL Comparison

The observational data sets used for the unstable PBL evaluation were from the Willis
and Deardorff [35] water-tank, the Project Prairie Grass, and CONDORS experiments. The
crosswind integrated concentration was computed from the release location to a downwind
distance of 9750 m, for the full vertical depth of the simulation (2000 m). Figure 4 shows
the CWIC calculation from the unstable GPU-LES dispersion solution. Qualitatively,
the results closely match the measurements illustrated in Figure 8 from the Willis and
Deardorff [35] experiment for scaled downwind distances less than three. Overall, the
GPU-LES dispersion solution shows strong qualitative agreement with the Willis and
Deardorff [35] observations, notably the near surface concentration minimum that occurs
between a downwind distance of ~1 to 3. Because the GPU-LES simulation extends beyond
the downwind distance measured by Willis and Deardorff, we are able to predict an
increase in average CWIC near surface extending out to a scaled downwind distance of
X = ~5.

Figure 4. Normalized crosswind integrated concentration as a function of the downwind distance from the release
location. This figure and corresponding calculation are frequently used in the atmospheric dispersion community to
compare dispersion simulations to observational data. The plot represents the average CWIC from 130 individual GPU-
LES realizations.

Figure 5 shows a quantitative comparison of the GPU-LES CWIC solution with the
Willis and Deardorff [35] data. The figure illustrates how CWIC varies with height, out
to a scaled downwind distance of approximately 3 from the release location. Past X = 3,
the CWIC value shows unity up to the height of the boundary layer. It shows promising
agreement between the ensemble mean of CWIC from the GPU-LES model (black line) and
the measured vertical profiles of CWIC from the water tank experiments (black dots).
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Figure 5. Crosswind integrated vertical dispersion as a function of the downwind distance from the release location, for the
Willis and Deardorff [35] water tank experiments. The gray lines depict 130 realizations from the JOLES model, and the
black lines show the average of these realizations. The circles represent data measured by Willis and Deardorff.

Surface measurements for calculating CWIC were available from the Project Prairie
Grass and CONDORS experiments. Figure 6 compared surface CWIC measurements
(represented by the black circles, dots, squares, and stars) with calculations from 130 GPU-
LES realizations (represented by the small blue dots). The green line denotes a calculation
of CWIC using surface layer similarity (SLS) theory [51]. At locations nearest the source,
the LES model under predicts CWIC compared to SLS theory and Prairie Grass data. This is
due to the resolution of the computational grid. Near the source, the tracer is immediately
dispersed uniformly throughout each grid cell, making the model over-dispersive at
this location. The underprediction near the source can be addressed (when required) by
decreasing the volume of the grid cells (i.e., increasing the spatial resolution), or through
the use of a Lagrangian particle dispersion model (LPDM). Figure 6 shows that, except very
near to the source, the simulations of surface-based normalized CWIC show promising
agreement with the measurements from the field trials. The figure also illustrates how
the spread in the observations and model simulations vary as a function of the scaled
downwind distance from the source. Notably, both show the pattern of smaller spread near
the source location, an increase in spread near a scaled downwind distance of one, and
then a collapse of the spread to a CWIC value near one further downwind as the material
becomes well-mixed in the PBL.

Figure 7 compared lateral or horizontal crosswind dispersion, computed from sur-
face observations from both the Project Prairie Grass and CONDORS experiments, and
corresponding calculations of lateral dispersion from the GPU-LES model. Here, again,
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there is fair agreement between the observations and the mean lateral dispersion from the
ensemble of simulations. A majority of observations fall within the ensemble distribution,
and the slope of the increase in plume spread with distance is well aligned with the obser-
vations. However, the mean of the ensemble appears to be slightly below the observations,
including the formulation fit to the data by Briggs [48], for scaled downwind distances
greater than approximately 0.1.

Figure 6. Crosswind integrated concentration as a function of the downwind distance from the release location. The
green line represents the dispersion based on surface layer similarity (SLS) theory. The blue dots depict 130 individual
realizations from the LES model, and the red line represents the average of these realizations. The markers (closed
circles, open circles, squares, and stars) represent observations measured during convective trials in the Prairie Grass and
CONDORS experiments.

In Figure 8 we illustrate the vertical dispersion results. For this metric, the mean of the
ensemble aligns well with the observations, and the spread of the ensemble corresponds
nicely to the spread observed in the CONDORS data. This metric also demonstrates that
the GPU-LES dispersion model exhibits the expected increase in vertical dispersion as the
scaled downwind distance increases. Finally, it appears to correctly capture the properties
in the vertical dispersion observations, where normalized vertical dispersion stabilizes at
scaled downwind distances greater than one.
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Figure 7. Surface crosswind dispersion from the GPU-LES model as a function of the downwind
distance, compared to observations from the CONDORS field program. The gray lines depict a series
of 30 individual realizations from the LES model. The black line represents the average of those
realizations. The circles and triangles represent observations of normalized concentrations measured
during the CONDORS and Prairie Grass experiments.

Figure 8. Normalized vertical dispersion as a function of the downwind distance. The gray lines
depict 30 individual realizations from the LES model, while the black line represents the average
of those realizations. The circles and triangles represent observations of normalized concentrations
measured during the CONDORS experiments.
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Figure 9 shows the normalized average plume height, zp, as a function of the scaled
downwind distance. Excluding outlier observations during sampling periods 32 and 33
(pds 32,33) in the CONDORS field trials, noted by Briggs [49], there is good agreement
between the CONDORS observations of zp and the dispersion realizations. The average
value of zp from the ensemble of simulations (black line) is near the center of the scatter
of observations. The ensemble of the plume height calculations presents little variability
near the release location and far downwind of the release, but a greater range of results
at scaled downwind distances between X = 0.75 and 2.5. This pattern in the ensemble
spread agrees closely with the scatter observed in the CONDORS observations. It also
matches expectations based on the characteristics of dispersion in a strongly convective
PBL environment.

Figure 9. Normalized plume height as a function of the downwind distance. The gray lines depict 100
individual realizations from the JOULES and the black line represents the average of those realizations.
The circles and triangles represent observations measured during the CONDORS experiments.

3.2. Neutral and Stable PBL Comparison

Data from the Project Prairie Grass field experiment were also used to evaluate the
dispersion solutions from the GPU-LES dispersion simulations for neutral and stable PBL
conditions. Our selection criteria identified surface concentration data from 34 trials for
use in the model evaluation. As described above, in order to account for variability of
dispersion conditions within this range of stability categories, we categorized these data
into four distinct subsets; see Table 1. Surface CWIC and lateral dispersion results are
provided for each category.

3.2.1. Neutral PBL Comparison

Figure 10 shows a vertical cross-section of normalized CWIC as a function of the
downwind distance calculated from the ensemble of 30 neutral GPU-LES dispersion
simulations with an Obukhov length of ~372 m. It illustrates that for the neutral condition
simulations, the airborne materials from a surface release mix up to about half the depth
of the PBL (~95m). In Figure 11, the calculation of CWIC from the GPU-LES model was
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compared to calculations of CWIC from the surface observations from the Prairie Grass
experiment, where the Obukhov length during the experiment was greater than 75 m. This
figure shows good agreement between the CWIC observations (black dots) and the values
computed from the GPU-LES simulations (blue dots). The red line depicts the ensemble
average of the CWIC simulations. Note that the slope of this line matches the slope of the
observations. The figure also indicates that the width of the distribution from the ensemble
of simulations is very consistent with the scatter suggested by the observations.

Figure 10. Normalized crosswind integrated concentration as a function of the downwind distance from the release location,
for the neutral stability. The plot shows the average CWIC from 30 individual GPU-LES realizations.

Figure 11. Normalized crosswind integrated concentration as a function of the downwind distance from the release location,
for neutral stability conditions. The blue dots represent individual realizations of dispersion from the GPU-LES model,
where the simulation was designed to produce neutral conditions with L = ~368. The red line represents the average of this
ensemble. The black squares represent observations from the Prairie Grass experiment during neutral conditions.
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3.2.2. Stable PBL Comparison

Similar calculations were made for the simulations produced for the slightly, moder-
ately, and extremely stable PBL conditions. Figure 12 depicts the vertical cross-sections of
CWIC for each and illustrates how the simulated CWIC values vary as the environmental
conditions become more stable. As expected, the depth to which the airborne materials
from a surface release are mixed decreases as the static stability increases (approximately
62, 41, and 31 m for the weakly, moderately, and extremely stable conditions, respectively).
This results in higher concentrations being seen further downwind of the release location
as the atmosphere becomes more stable. The data from these three stability categories
were also directly compared to normalized CWIC calculations made using Project Prairie
Grass observations. The results, summarized in Figure 13, show good agreement between
the model and observations for the weakly and moderately stable conditions. There was
considerably more scatter in the CWIC data computed from the ensemble of extremely
stable observations and the ensemble average of the extremely stable GPU-LES CWIC
simulations was on the high end of the pattern of observations (though still within the
range of the scatter). This suggests that the turbulence is much lower in our GPU-LES
simulation than what was present in the experimental data and that we do not have a suffi-
cient understanding of the sources of turbulence in these very stable cases to incorporate it
into the simulation.

Figure 12. Cont.
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Figure 12. Normalized crosswind integrated concentration as a function of the downwind distance
from the release location, for the slightly (top), moderately (middle), and extremely (bottom) sta-
ble conditions. Each plot represents the average CWIC from 30 individual GPU-LES dispersion
simulation realizations.

In Figure 14, results from the neutral through extremely stable cases are plotted to
depict the collective information on model accuracy for this range of stabilities. These
results, and the results shown earlier for the convective PBL environments, indicate that the
GPU-LES modeling system may be able to be configured from first principal parameters to
provide ensembles of single-realization dispersion solutions that are representative of this
range of environmental conditions.

Figure 13. Cont.
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Figure 13. Normalized crosswind integrated concentration as a function of downwind distance
from the release location, for weakly (top), moderately (middle), and extremely (bottom) stable
conditions. The black square markers are derived from the Prairie Grass experiments. Blue dots
represent individual realizations of dispersion from the GPU-LES model. The red line represents the
average of this ensemble of simulated results.
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Figure 14. A summary of the GPU-LES dispersion simulation results for the neutral and stable boundary layer simulations.
Each of the lines represents an ensemble average of 18 simulations. The dots represent observations from the Prairie Grass
experiment during neutral and stable conditions. The results demonstrate that the GPU-LES can accurately represent
atmospheric dispersion for conditions ranging from neutral to stable conditions.

4. Discussion and Conclusions

A research goal for developing our GPU-LES approach, JOULES, is to design a system
for computing single-realizations of detailed, coupled urban (outdoor-indoor) contaminant
dispersion. To describe the variability inherent in the atmospheric and urban conditions,
our design required that that each simulation is completed quickly so that we could
generate many realizations, all equally probable. A resulting capability would allow us to
compute mass-conserving transport in a complete urban setting for various applications,
many which cannot be analyzed using ensemble-averaging methods. The capability also
allows us to derive synthetic data to test the suitability of existing operational tools.

Here, we present the evaluation of the JOULES dispersion solutions for open terrain
environments. These tests are critical for many applications. It is also essential before testing
it for more complex urban settings. This study used observational data from three field
trials, following peer-reviewed methods and evaluation metrics that have been extended
to evaluate the GPU-LES dispersion model’s suitability and promise across a range of
environmental conditions, including convective (daytime) and extremely stable (nighttime)
conditions. The open terrain convective comparisons showed very close agreement, both at
the surface and aloft, for surface-based releases across this range of stability regimes. The
simulations and performance metrics also closely match the performance of the Lagrangian
particle dispersion model (LPDM) and National Center for Atmospheric Research (NCAR)
LES model published in [12] for convective conditions.

This study moved beyond the work presented by Weil et al. [12] and examined
the accuracy of dispersion simulations for neutral and stable conditions. JOULES also
performed well for the neutral, weakly, and moderately stable cases when compared to
surface observations from Project Prairie Grass. While there was some agreement between
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the dispersion simulations and observation for the extremely stable cases, the normalized
CWIC calculations from JOULES were on the high end of the scatter in the observations.

The atmospheric conditions and corresponding dispersion solutions can be produced
by configuring first principle PBL parameters in the model to produce a simulated environ-
ment across static stability scenarios that range from unstable convective to moderately
stable conditions. The results of this model evaluation study suggest that JOULES can
produce very promising atmospheric dispersion solutions for open-terrain homogeneous
environments. Furthermore, the GPU implementation has been demonstrated to enable
simulations to run over 150 times faster than comparable CPU-based LES implementations.
This advancement significantly reduces the computational costs associated with devel-
oping microscale atmospheric and dispersion simulations and now makes it feasible to
produce ensembles of single-realization dispersion solutions that are necessary in a variety
of airborne dispersion and defense analyses [1,8,9].

In future work, we plan to implement a simulation capability for urban interiors.
Such efforts require deciding on appropriate physics-based models and improving com-
putational performance to allow for even larger simulation domains, terrains, and non-
homogeneous land covers.
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Abstract: Mesocale atmospheric flows that develop in the boundary layer or microscale flows
that develop in urban areas are challenging to predict, especially due to multiscale interactions,
multiphysical couplings, land and urban surface thermal and geometrical properties and turbulence.
However, these different flows can indirectly and directly affect the exposure of people to deteriorated
air quality or thermal environment, as well as the structural and energy loads of buildings. Therefore,
the ability to accurately predict the different interacting physical processes determining these flows
is of primary importance. To this end, alternative approaches based on the lattice Boltzmann method
(LBM) wall model large eddy simulations (WMLESs) appear particularly interesting as they provide
a suitable framework to develop efficient numerical methods for the prediction of complex large
or smaller scale atmospheric flows. In particular, this article summarizes recent developments and
studies performed using the hybrid recursive regularized collision model for the simulation of
complex or/and coupled turbulent flows. Different applications to the prediction of meteorological
humid flows, urban pollutant dispersion, pedestrian wind comfort and pressure distribution on
urban buildings including uncertainty quantification are especially reviewed. For these different
applications, the accuracy of the developed approach was assessed by comparison with experimental
and/or numerical reference data, showing a state of the art performance. Ongoing developments
focus now on the validation and prediction of indoor environmental conditions including thermal
mixing and pollutant dispersion in different types of rooms equipped with heat, ventilation and air
conditioning systems.

Keywords: lattice Boltzmann method; large eddy simulation; pollutant dispersion; urban physics

1. Introduction

The capability to accurately predict urban physics and environmental quality for
citizens via numerical simulation is nowadays a critical challenge, since it is a key tool
for designing future optimized and sustainable urban areas. Such predictive models
should account for a very broad range of physical mechanisms, ranging from large-scale
meteorological effects to very small scale unsteady fluctuations of physical quantities such
as temperature, air velocity, pressure, humidity, etc.

Among the different interacting physical phenomena occurring in the atmosphere
at the meso- and microscales are orographic effects, land sea breeze, urban heat islands,
deep convection, thunderstorms, convection, thermals, building wakes and turbulence (see
Figure 1 in Schlünzen et al. [1]). Mesoscale atmospheric flows that develop in the boundary
layer or microscale flows that develop in urban areas are thus very complex, especially due
to multiscale interactions, multiphysical couplings, land and urban surface thermal and
geometrical properties and turbulence.

Accurately predicting these different atmospheric phenomena and their underlying
physical mechanisms is challenging. It is even more the case in the urban roughness
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sublayer due to the intricate patterns of cities, generally composed of heterogeneous and
dense layouts of numerous buildings and trees, as well as various types of surfaces, heat
and moisture sources. However, accurately predicting these flows in cities is of the utmost
importance, especially as urban air flows are determining pollutant dispersion, pedestrian
wind comfort, and structural and thermal loads on buildings.

Therefore, a key feature of predictive numerical models is the capability to handle
realistic full scale configurations (including geometrical details and physical mechanisms
at play) via high-fidelity unsteady simulation techniques well suited for turbulent flows.
Large eddy simulations (LESs [2]) have appeared as a promising numerical approach for
that purpose, whose main limitation is related to the simulation complexity and numerical
cost [3,4]. To alleviate this problem, Lattice Boltzmann Methods (LBMs [5,6]) have recently
been identified as one of the most efficient approaches for “revolutionnary computational
fluid dynamics (CFD)” [7] since they allow for a drastic reduction in (i) the computational
time compared to classical CFD approaches based on the Navier–Stokes equations and (ii)
the preprocessing step including the volumic mesh generation thanks to the coupled use of
embedded Cartesian grids and immersed boundary conditions techniques.

The efficiency of LBM-based solvers to handle full scale urban flow simulations has
been demonstrated by several authors. As an example, they have been used recently
to simulate the flow in a 19.2× 4.8× 1 km3 area of Tokyo to evaluate the gust index at
pedestrian level [8] and the turbulence statistics [9]. These simulations were carried out
in a complex geometry thanks to the use of Cartesian grids and the immersed boundary
conditions strategy that permit drastically reducing the preprocessing cost. Thanks to
its high efficiency in terms of parallel computing, the LBM is an attractive method for
implementation on Graphic Processing Units (GPUs), which reduce the computational cost.
The use of the LBM for implementing GPUs allows real time simulations of the flow over a
build area [10] and the dispersion of a pollutant inside Oklahoma City [11] to be achieved
with quite good accuracy. The efficiency of the LBM compared to a Navier–Stokes (NS)
approach has been analysed in the case of the cross flow through an open window in an
isolated cubical building. The comparison of the velocity field inside the building shows a
good accuracy of both NS-LES and LBM-LES simulations compared to experimental data
and the LBM simulation on GPU was up to 700 times faster than the NS simulations [12,13].

The goal of the present paper is to illustrate and summarize an innovative CFD LES
approach for the simulation of atmospheric and urban flows, developed in the framework
of the ProLB software [14,15] and based on the LBM. Already used to study the aerody-
namics of vehicles and airfoils [16–18], the approach was adapted to deal with atmospheric
and urban physics problems. Thanks to its formulation and the treatment of boundary
conditions, the approach is computationally effective. It is thus possible to perform efficient
but detailed and high-fidelity simulations of complex built environments with multiscale
interactions and multiphysical couplings, in order to study a large scope of atmospheric
and urban physics problems.

To illustrate the ability of the developed LBM-LES approach to study mesoscale and ur-
ban microscale atmospheric flows, including transport and dispersion processes, the paper
is organized as follows. First, Section 2 synthesizes the main numerical aspects of the devel-
oped method. Then, Sections 3–5 summarize recent developments and validated studies
performed using the hybrid recursive regularized (HRR) collision model for the simulation
of complex or/and coupled turbulent atmospheric flows, including a micrometeorological
model, with different applications. In particular:

• Section 3 reviews four applications of the developed method to the prediction of
convective humid air flows with condensation with increasing meteorological likeness:
a double diffusive Rayleigh Bénard convection (Section 3.1), rising two- and three-
dimensional moist thermal bubbles (Section 3.2) and a shallow cumulus convection
(Section 3.3).

• Section 4 reviews three use cases focusing on pollutant dispersion, considering differ-
ent geometrical or physical complexity levels: neutral gas dispersion in a street canyon
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without or with tree planting effects (Section 4.1), neutral gas dispersion behind an
isolated building without or with unstable thermal stratification (Section 4.2) and
neutral or dense gas dispersion in a complex realistic urban environment (Section 4.3).

• Lastly, Section 5 reviews the validation and study of velocities (Sections 5.1 and 5.3)
and pressure distribution on building facades (Sections 5.2 and 5.4) in a complex
urban environment including high-rise buildings, with uncertainty quantification
towards a more relevant assessment of pedestrian wind comfort and wind loads on
urban buildings.

To conclude, Section 6 discusses the ongoing developments, especially regarding in-
door dispersion problems with thermal and moving people effects, and Section 7 closes the
present paper by summarizing the main findings of the different studies performed, high-
lighting the benefit of the current approach to support the development of fast response
models and decision making.

2. The HRR-LBM-WMLES Numerical Model for Atmospheric Flows

This section summarizes the main elements of the developed LB-based numerical
model. More details about the general LBM can be found in Krüger et al.’s work [5].

2.1. Generalities about LBM

The LBM mainly aims at simulating the macroscopic behaviour of fluids. However,
as compared to the macroscopic description of the flow underlying common Navier–Stokes-
based approaches, the LBM is based on a mesoscopic description of the flow. The fluid
dynamics is simulated through streaming and collision steps based on the lattice Boltzmann
equation:

fi(x + ci∆t, t + ∆t)− fi(x, t) = Ωi(x, t) (1)

where ci is a set of discrete velocities, usually a D3Q19 for three-dimensional problems
(3 dimensions, 19 discrete velocities), fi(x, t) is the discrete distribution function, and
Ωi(x, t) is the collision operator, i.e., the source term representing the redistribution of fi
induced by collision. From this lattice Boltzmann equation, we can see that in practice
only the first order neighbours are used in the algorithm, which permits increasing the
parallel computation efficiency and allows the LBM to be faster than classical Navier–
Stokes approaches.

Multiscale expansions show that the three-dimensional weakly compressible Navier–
Stokes equations can be recovered to the second order by the LBM.

2.2. Key Features of the Present Lattice Boltzmann Method

Based on the general LBM framework, different developments were made in the
ProLB solver to deal more efficiently with atmospheric and urban problems. In particular,
the collision term was estimated using a regularized BGK model with a hybrid recursive
procedure [19] as follows:

Ωi(x, t) = σ f neq,LBM
i (x, t) + (1− σ) f neq,FD

i (x, t) (2)

where 0 ≤ σ ≤ 1, f neq,LBM
i (x, t) is the nonequilibrium part of the distribution function com-

puted from the projection of distribution function on Hermite polynomials and f neq,FD
i (x, t)

is the nonequilibrium part of distribution functions approximated by finite differences. This
procedure allows for both improved robustness as compared to usual BGK or MRT collision
models and accuracy for large scale simulations, including urban and atmospheric flows.

Different forcing mechanisms (e.g., buoyancy, Earth rotation, etc.) can also be taken
into account in the model following Guo et al. [20]. In particular, buoyancy forces (Fg), due
to differences in gas composition or temperature, can be modeled using a usual Boussinesq
approach, as follows:

Fg,c = ρ0 βc (C− C0) g (3)
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Fg,T = ρ0 βT (T − T0) g (4)

with:

βc = −
1

ρair

(C ρpoll − ρair

C

)
(5)

βT =
1
T0

(6)

where C is the concentration, C0 is the reference concentration that is equal to 0, βc is the
expansion coefficient of concentration, T is the temperature, T0 is the reference temperature
and βT is the expansion coefficient of temperature. Note that thermal buoyant flows can
also be modeled thanks to the perfect gas law. Several other external forcings such as
mesoscale or Coriolis effects can also be taken into account.

The domain boundaries are integrated using the cut cell method, which enables
complex geometries to be modeled while substantially reducing the preprocessing costs
(see Feng et al.’s work [21] for details), and a synthetic eddy method (SEM, [22]) was
developed to generate inlet turbulence [23].

Since the LBM exhibits the same turbulent closure problems as the Navier–Stokes-
based methods, classical subgrid models and wall models (WMs) for atmospheric flow
simulations (including neutral, convective and stable cases) are used in the present solver,
leading to the definition of the present HRR-LBM-WMLES tool for atmospheric flow
simulation. Details are omitted here for the sake of brevity and can be found in Feng et al.’s
work [24].

The developed approach also relies on a hybrid strategy to address more complex
problems than purely aerodynamic problems, such as dispersion or thermal problems. This
approach does not consider multidistributions, but the mass and momentum conservation
equations are solved using the LBM, while the scalar transport equations are solved using
a usual finite volume/finite difference method for the sake of efficiency. The corresponding
temporal and spatial discrete coordinates are the same as the ones used for the LBM.
Thus, it is possible to consider only one additional unknown per additional equation and
optimize the numerical efficiency of the model.

3. Application of the Present HRR-LBM-WMLES to Convective Humid Boundary
Layers with Cloud Formation

This section reviews different use cases studied to finally address large scale buoyant
meteorological flows accounting for cloud dynamics thanks to a condensation scheme.
More details can be found in Feng et al.’s work [25,26].

For these applications, the potential temperature (θ) is defined as:

θ = T
(

p0(z)
p0

)− Rd
cp

(7)

where Rq is the air gas constant per mass unit, Cp is the averaged mass heat capacity, p0 is
the reference pressure at ground and p0(z) is the height-dependent reference state pressure.

The air was assumed as a mixture of liquid water (mass fraction ql), water vapour
(mass fraction qv) and dry air (mass fraction qd), the rate of phase change was assumed to
be infinitely fast, and the two phases were assumed to be in thermo-chemical equilibrium.
The vapour and liquid water were modeled following Equations (8) and (9).

∂qv

∂t
+ uα

∂qv

∂xα
=

∂

∂xα

(
Dq

∂qv

∂xα

)
− Q̇ (8)

∂ql
∂t

+ uα
∂ql
∂xα

=
∂

∂xα

(
Dq

∂ql
∂xα

)
+ Q̇ (9)
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where Q̇ is a source term (typically the condensation) and Dq is the water fraction diffusiv-
ity coefficient.

3.1. Double Convective Rayleigh-Bénard with Humid Air

The first validation case aims at validating the capability of the method to capture
buoyancy effects, including both temperature and humidity gradients. It addresses the flow
in a 2D square domain with temperature and humidity differences between its bottom and
top boundaries as shown in Figure 1. Two Rayleigh numbers of 104 and 105 as well as two
grids with δx = 0.02 m or half and δt = 0.0115 s or half were considered. Condensation
was neglected and details of the model settings can be found in Feng et al.’s work [25].

Figure 1. Configuration of the double convective Rayleigh-Bénard.

HRR-LBM simulation results were compared to the reference solution of Ouertatani
et al. [27], which used a finite volume method discretized using the QUICK scheme in the
momentum equation, and a second order central difference scheme in the energy equation,
with a nonuniform grid of 2562 points.

The comparison between the simulated and reference velocity profiles along the
domain midlines (Figure 2), as well as local Nusselt number through the hot wall, potential
temperature and total water humidity contours when the steady state had been achieved
(not shown here), highlights a good performance of the developed HRR-LBM.

(a) u along y (b) v along x

Figure 2. Reference and simulated velocity profiles along the midlines for the double Rayleigh-Bénard convection.
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3.2. 2D and 3D Rising Moist Bubbles

The second and third validation cases focus on a 2D and a 3D moist bubbles rising in
a 2D or a 3D rectangular domain as shown in Figure 3. In both cases, the domain height
was 2400 m and the domain width was 3600 m.

(a) 2D

(b) 3D

Figure 3. Configurations of the rising moist thermal bubbles.

In the 2D configuration, a uniform grid with δx = 5 m and δt = 0.034 s was used,
while in the 3D configuration a nonuniform grid with finest δx = 6.25 m and δt = 0.18 s was
considered. Other model settings can be found in Feng et al.’s work [25]. 2D simulations
were performed for 10 min physical time and the results were compared to reference data
at 3, 5 and 7 min. 3D simulations were run for 6 min physical time and the results were
compared to reference data at 2, 4 and 6 min.

HRR-LBM simulation results were compared to benchmark solutions, which used a
multidimensional positive definitive advection transport algorithm and an anelastic solver
with a 2.5 m grid in 2D configuration and on a grid with a 6.25 m finest grid spacing in 3D
configuration [28,29].

Regarding the 2D bubble, HRR-LBM and reference results were compared in terms of
highest vertical position of the 20% maximum ql contours and vertical fluid velocity at the
top central position of the interface at different times (Table 1). As in the reference study, the
HRR-LBM results show the rising and expansion of the moist bubble as the phase changes.
HRR-LBM results are thus generally in good agreement with the reference data except for
the highest vertical position of the 20% maximum ql contours and the vertical fluid velocity
at the top central position of the interface, especially at 7 min, which could be explained by
the Boussinesq and not the aneleastic approximation used in the current study.
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Table 1. Highest vertical location of the 20% maximum ql contour (H20) and vertical fluid velocity at
the top central position of the interface (W f ) at 3, 5 and 7 min.

Physical Time Variables HRR-LBM (2 eq.) [28]

3 min H20 (m) 1128 1194
W f (m s−1) 1.60 1.59

5 min H20 (m) 1278 1363
W f (m s−1) 1.21 1.21

7 min H20 (m) 1374 1468
W f (m s−1) 0.56 0.72

Regarding the 3D case, the good performance of the HRR-LBM model was highlighted
by the comparison of the vertical velocity profiles along the midline of the domain (Figure 4)
as well as liquid humidity profiles and the liquid and vapour contours (not shown).

Figure 4. Reference and simulated vertical velocity profiles along the midline for the 3D moist bubble
at 3 different times.

3.3. Atmospheric Cloud Formation

Finally, the fourth validation case addresses a convective atmospheric boundary layer
case with a shallow cumulus formation to assess the capability of the HRR-LBM-WMLES
model to predict the moist thermodynamics and its interactions with meteorological flows.
The configuration refers to the model intercomparison case of the Barbados Oceanographic
and meteorological Experiment (BOMEX). The considered domain is a 5 km long and 3 km
high square-based domain with temperature and humidity surface fluxes and underwent
an altitude-dependent geostrophic wind. Table 2 gives the related initial conditions.

Table 2. Initial conditions set for the shallow cumulus convection case.

Height (m) ql (g · kg−1) θl (K) u (m · s−1) v (m · s−1)

0 17.0 298.7 −8.75 0
520 16.3 298.7
700 −8.75
1480 10.7 302.4
2000 4.2 308.2
3000 3.0 311.85 −4.61 0
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For this configuration, HRR-LBM-WMLES simulations considered a δx = 40 m grid
with δt = 0.27 s. The Monin Obukhov similarity theory was used as the surface model of
the horizontal momentum components, temperature and humidity, and additional sources
terms were added to the model to represent the large scale effects that cannot be included
in LES. Details of the model settings can be found in Feng et al.’s work [24,25].

Simulations were run for 6 h physical time and statistics were computed on 1 h.
The comparison of HRR-LBM and reference results of Siebesma et al. [30] in terms of

profiles of mean velocity (Figure 5), potential temperature, vapour and liquid water (not
shown) highlights a good performance of the developed HRR-LBM-WMLES model, as the
different atmospheric layers (mixed, conditionally unstable and inversion, from the ground
upwards) and the instantaneous formation of the cloud are well captured.

Figure 5. Reference and simulated profiles of mean velocity for the shallow cumulus convection case.

Hence, the hybrid LBM-based atmospheric numerical model, including the HRR
collision model with forcing terms, and a finite volume method for temperature and water
transport equation appear well suited to predict atmospheric humid convection with cloud
formation, even considering large scale sources.

4. HRR-LBM-WMLES Application to Urban Pollutant Dispersion

This section reviews different case studies performed to assess the performance and
the benefits of the proposed approach regarding the prediction of outdoor urban pollutant
dispersion. Geometric complexity (trees, urban patterns) and buoyancy effects (pollutant
or thermals) were especially studied.

4.1. Dispersion in a Street Canyon Including Tree Planting

A first validation study deals with dispersion of neutral traffic such as pollutant
emissions in an ideal street canyon planted or not along a centred row of more or less dense
tree crowns (λ = 0, 80 and 200 m−1, respectively) and undergoing a perpendicular wind
(Figure 6).
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Figure 6. Configuration of street canyon with tree planting case.

The drag force (Fpor) induced by porous media is modeled via a Forchheimmer formu-
lation, as follows:

Fpor = −ρ× R× |u| × u×Φ (10)

where R = λ/2 is the drag force coefficient and Φ is the ratio of porous media immersed in
the volume cell.

Simulations were performed at reduced scale (1:150, H = 0.12 m) as in the reference
experiment [31], with a domain of 3× 2× 1 m3 and the street canyon located 0.84 m from
the inlet. Table 3 gives the different boundary conditions. Accounting for δx = 0.00125 m,
δt = 1.44× 10−5 s and five refinement levels, the total number of grid points was 41× 106.
Simulations were run on 240 cores for 25 s physical time, with the last 10 s being kept for
postprocessing. Details can be found in Merlier et al.’s work [32].

Table 3. Model settings for the street canyon dispersion case.

Domain dimensions (m3) 3× 2× 1

Reference height (m) H = 0.12 m

Reference velocity (m s−1) 4.65

Inlet Imposed velocity and turbulent intensity values

Outlet Imposed pressure value

Top boundary condition Slip wall

Lateral boundary condition Slip wall

Ground boundary condition Wall law

Building boundary condition Wall law

Quantitative (Table 4) and qualitative (not shown) comparisons of experimental and
numerical mean concentrations on the leeward and windward walls of the street canyon
highlight a state of the art performance of the HRR-LB model as compared to other
reference studies.

Table 4. Quality metrics for the street canyon. References according to Chang and Hanna [33].

Case FAC2 FB RNMSE

Target 1 0 0

Tolerance >0.5 ]− 0.3; 0.3[ <1.2

λ = 0 m−1 0.9 −0.1 0.3

λ = 80 m−1 0.7 0.1 0.4

λ = 200 m−1 0.4 0.2 0.5
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Table 4 especially shows that the global statistical performance indicators generally
match the acceptance criteria suggested by Chang and Hanna [33]. Nonetheless, the
results show a better agreement between numerical and experimental concentrations on
the leeward wall, where the concentration is higher than on the windward wall, and for
less dense tree crowns (λ = 0 and 80 m−1). The analysis of concentration distributions on
walls also highlights higher concentrations on the streamwise symmetry plane as in the
reference experiment.

In addition, thanks to high-fidelity unsteady simulations, the analysis of concentration
statistics at different locations in the street canyon highlighted that high peaks of concen-
tration can occur notably in the presence of dense tree crowns, which could be particularly
harmful for short time exposure problems.

4.2. Dispersion behind a Building under Unstable Stratification

A second validation study deals with the dispersion of a gas released from a ground
source just downwind of an isolated building located in an unstable boundary layer
(Figure 7).

Figure 7. Configuration of the isolated building located in an unstable boundary layer case.

Simulations were performed at a reduced scale (H = 0.16 m) as in the reference
study [34], with a domain of 2× 1.2× 1 m3 according to AIJ guidelines [35], the building
being located 0.32, 0.6 and 0.84 m from the inlet, lateral and top domain boundaries,
respectively. Table 5 gives the corresponding boundary conditions. Accounting for δx =
0.002 m, δt = 12.8× 10−5 s and five refinement levels for the coarse grid case and δx =
0.001 m, δt = 6.4× 10−5 s and six refinement levels for the medium grid case, the total
number of grid points was 4.7× 106 for coarse grid and 11.2× 106 for the medium grid.
Simulations were carried out on 28 or 56 cores for 16.25 s physical time, the last 6.4 s being
kept to compute the statistics.

Table 5. Model settings for the isolated building located in an unstable boundary layer case.

Domain dimensions (m3) 2× 1.2× 1

Reference height (m) 0.16

Reference velocity (m s−1) 1.37

Inlet Imposed velocity, temperature and turbulent kinetic energy (Figure 8)

Outlet Imposed pressure

Top boundary condition Slip Wall

Lateral boundary condition Slip Wall

Ground boundary condition Wall model with imposed temperature (Tf = 45.3 ◦C)

Building boundary condition Wall model with imposed temperature (Tbuild = 41.7 ◦C)
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The pollutant source with a diameter of 0.005 m is located 0.04 m downstream the
building. A gas flux of q = 9.17× 10−6 m3 s−1 with a temperature of 30.4 ◦C was imposed.
The inflow velocity, temperature and turbulent kinetic energy were interpolated from
experimental data provided in the TPU database [36] and are plotted in Figure 8.

(a) velocity (b) temperature (c) turbulent kinetic energy

Figure 8. Inlet profiles for the isolated building located in an unstable boundary layer.

The velocity, temperature and concentration of tracer gas were compared to experimen-
tal data at four different locations downstream of the building. Velocity was normalized
with the reference velocity at building height (U∗ = U/UH), the temperature was nor-
malized using floor temperature (Tf and the difference between floor temperature and
temperature at building height (T∗ = (T − Tf )/(Tf − TH)) and the concentration was
normalized by release gas flux, building height and reference velocity (c∗ = (cUH H2)/q).

Figures 9 and 10 present the comparison of the HRR-LBM results obtained with a
coarse and medium grid with the experimental data of Yoshie et al. [37]. A good agreement
was obtained for concentration field downstream of the building and the present results
are more accurate than other literature LES simulations related to the same case [34,38].
A fairly good agreement was found for streamwise velocity profiles downstream of the
building, although velocity is generally underestimated compared to experimental data.

(a) x = 0.375H (b) x = 0.625H

(c) x = H (d) x = 1.5H

Figure 9. Comparisons of normalized pollutant concentrations at different positions downstream of
the building.
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(a) x = 0.375H (b) x = 0.625H

(c) x = H (d) x = 1.5H

Figure 10. Comparisons of normalized streamwise velocity at different positions downstream of
the building.

4.3. Dispersion of Neutral and Dense Gas in an Urban Area

A third validation study deals with the dispersion of neutral and dense gas from a
ground source in a realistic urban environment. Two different source locations and wind
incidences (C1: neutral and dense gas emitted in a rather channeled flow in a large avenue,
C2: neutral gas emitted in a surround built crossroad, see Figure 11) are considered.

Figure 11. Configuration of the urban area dispersion case.

Simulations were performed at reduced scale (1:350, Hmoy = 0.078 m) as in the refer-
ence experiment [39], with a domain of 8.75 (C1) or 9.5 (C2) ×3.5× 1.5 m3, with the model
located 1.15 m from the inlet of the domain. Table 6 gives the different boundary conditions.

256



Atmosphere 2021, 12, 833

Table 6. Model settings for the urban area dispersion case.

Domain Dimensions (m3) 8.75 or 9.8× 3.5× 1.5

Reference height (m) 0.078

Reference velocity (m s−1) 1

Inlet Imposed velocity

Outlet Imposed pressure value

Top boundary condition Slip wall

Lateral boundary condition Wall law

Ground boundary condition Wall law

Building boundary condition Wall law

Accounting for δxmin = 1.75× 10−3 m and δt = 1.5× 10−4 s with six refinement
levels, the total number of grid points was 175× 106 (C1) or 220× 106 (C2). Simulations
were run on about 103 cores for 27.5 s physical time and statistics were computed over 5 s.
More details can be found in the work of Merlier et al. [40].

The performance indicators given in Table 7 for concentration at street level highlight
a good performance of the model, especially for configuration 2.

Table 7. Quality metrics for the urban area dispersion case. References according to Hanna and
Chang [41].

Case FAC2 FB NMSE

Target 1 0 0

Tolerance ≥0.3 [−0.67; 0.67] ≤6

C.1, neutral gas 0.46 −0.14 0.54

C.1, dense gas 0.38 0.47 0.62

C.2, neutral gas 0.55 −0.01 0.23

Results match the different acceptance criteria for urban dispersion models suggested
in the work of Hanna and Chang [41], although the dense gas configuration shows a
worse, but still acceptable, accuracy. Indeed, the analysis of the spatial distribution of
concentration (not shown) highlights that:

• The neutral gas emitted in the channeled flow is carried mainly in the main street by
the prevailing flow and progressively mixes upwards;

• The dense gas emitted in the channeled flow follows a rather circular and flat disper-
sion all around the source;

• The dispersion of the neutral gas emitted in the crossroad is notably vertical due to
the presence of the obstacles built upstream and downstream.

The comparison of the HRR-LBM and reference vertical as well as horizontal concen-
tration profiles above the canopy (not shown) are generally also satisfactory regarding both
the mean and the standard deviation of concentration levels. These results suggest that
the dynamics of dispersion processes are well reproduced by the model. Being capable of
providing the temporal statistics of velocity and concentration, the developed approach
appears well suited to support the design of fast response models.

5. HRR-LBM-WMLES-Based Urban Wind Prediction with Application to Pedestrian
Wind Comfort and Building Wind Loads under Uncertainty

A next step toward an improved reliability of numerical simulations for realistic full
scale urban applications is the capability to account for uncertainties that appear in the
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prescription of the atmospheric conditions, instantaneous wind conditions, surface rough-
ness, pollutant source features, etc. The variability of the numerical solution with respect to
uncertain parameters must be quantified in order to provide users with useful information,
since a single fully deterministic solution is meaningless in such problems. To this end,
efficient techniques for Uncertainty Quantification (UQ) must be used. A challenging issue
is that most existing UQ techniques require the use of a significant number of samples,
each sample being currently an unsteady high-fidelity LES of the case under consideration.
Therefore, adequate UQ methods must be defined that minimize the number of required
simulations while preserving the accuracy of the uncertainty propagation in the results.
Such a method, the c-APK method, was developed by Margheri and Sagaut [42] with
application to urban flow simulations in complex areas.

The c-APK method will not be detailed here for the sake of brevity, and the reader is
referred to Margheri and Sagaut [42] for details. Nonetheless, to highlight two additional
applications of the c-APK method, this section reviews two validation studies and two
projected applications related to the prediction of urban air flows with UQ: pedestrian
wind comfort and wind loads on buildings. The configuration studied for the projected
applications is a new hypothetical tower located in a complex and dense urban area.

5.1. Prediction of Mean Flow Field in a Complex Urban Environment

The first validation study focuses on a full scale urban area of Tokyo, which includes
an area of low-rise buildings upstream a cluster of towers. Simulations were performed
at full scale, considering Hmax = 225 m, to evaluate the performance of the model at a
realistic Reynolds number, as both full scale and reduced scale data are provided in the
reference experimental data [43]. More precisely, the configuration studied corresponds
to the case F of the open source Architectural Institute of Japan’s database, which gathers
full scale and wind tunnel measurements, wind tunnel tests corresponding to the 1977 full
scale measurements campaign.

Figure 12 details the different model dimensions and boundary conditions used for
the simulations.

Figure 12. Configuration of Shinjuku area case.

Accounting for δx = 0.5 m and δt = 0.0075 s with seven refinement levels, the total
number of grid points was 136 × 106 for the finest grid (respectively, δx = 1 m, δt =
0.015 s, six refinement levels and 54× 106 grid points for medium grid). Simulations were
run on 504 cores (240 for medium grid) for 2 h physical time, the last 1 h being kept for
postprocessing. More details can be found in the work of Jacob and Sagaut [44].
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The HRR-LBM and reference mean velocities reported in Figure 13 at 10 m high and
for different locations in the area of interest evidence a good performance of the developed
model and also for mean velocity.

Figure 13. Reference and simulated mean velocities for the Shinjuku area case. Medium grid results
are in red; fine grid results are in blue.

5.2. Prediction of Surface Pressure on a High-Rise Building

To evaluate the accuracy of the developed approach also on building surface quantities
before coupling the HRR-LBM-WMLES tool with a UQ technique, a second validation
study was extensively carried out at a reduced scale isolated high-rise building (1:300,
H = 0.49 m), for which detailed measurement data of velocity and pressure on the model
surface are available [45]. Figure 14 details the different model dimensions and boundary
conditions, which included an extension of the original incompressible SEM to reconstruct
the inlet turbulence in the current LBM framework, given the importance of the turbulent
inflow properties dynamically studying wind loading on isolated structures.
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Figure 14. Configuration of the isolated high-rise building case.

With δx = 1.56× 10−3 m and δt = 1.5× 10−5 s and six refinement levels, the total num-
ber of grid points was 5.8× 106. More details can be found in the work of Buffa et al. [23].

The comparison of mean and standard deviation values of pressure coefficients at the
building surface for the different faces of the building and at different heights (Figure 15)
shows a very satisfactory match for all the tested data, especially for the mean Cp value.
Experimental and simulated data were also extensively compared in terms of spectral
analysis and local instantaneous pressure maxima (not shown), showing the reliability of
the developed approach for wind load prediction.

Figure 15. Reference and simulated pressure coefficients for the isolated high-rise building case.
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5.3. Wind Comfort Assessment with Uncertainty Quantification

Thanks to the possibilities offered by the developed dynamic model, pedestrian wind
comfort at street level (H = 2 m) was studied considering Melbourne criteria [46] in an
area of 400× 400 m2 inside Shinjuku area as shown in red in Figure 16.

Figure 16. Integration of the new hypothetical buildings in the Shinjuku urban area.

The domain used in this study is the same as in Section 5.1. Simulations were run on
1.5 h physical time and the statistics were computed over the last hour. As described by
Jacob and Sagaut [44], two buildings were added in Shinjuku area: one in the middle of
the area (in blue in Figure 16) for wind comfort assessment and one (in green in Figure 16)
for the study of Section 5.4. The case presented by Jacob and Sagaut [44] with the wind
coming from the north is here considered as the reference sample for the UQ analysis,
and several other samples have been considered by changing the velocity magnitude by
a factor α (0.6 ≤ α ≤ 1.4) and wind direction with an angle θ around the north direction
(−30 ≤ θ ≤ 30◦). A set of 57 simulations have been performed for this study permitting to
estimate first the sensitivity of the mean velocity field to α and θ and to compute the mean
value of mean velocity at pedestrian level using the c-APK method.

Figure 17 shows the Sobol indices obtained for the mean velocity field at the pedestrian
level, which permits quantification the influence of each parameter on the global variance
of the system. The results highlight that the inflow velocity magnitude is generally the
main influential parameter in most locations in the area of interest. In some locations, wind
direction has a large contribution on the variance, especially in areas that can be located in
wake for some inflow directions.

(a) (b) (c)

Figure 17. Sobol indices of the mean velocity computed from c-APK model for (a) α index, (b) α− θ

index and (c) θ index.
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Figure 18 shows the classification obtained following the Melbourne criteria using
the data of the reference sample (α = 1, θ = 0) and the mean data obtained from the 57
samples. The results highlight that by using the c-APK output, a large part of the area is
located in Zones A, B and C where pedestrian comfort can be considered as good, whereas
a part of the area is unclassified (here the pedestrian comfort is not so good) using only the
reference sample.

(a)

(b)

Figure 18. Visualization of the different wind comfort zones following (a) Melbourne criteria based
on the reference data (α = 1, θ = 0) and (b) Melbourne criteria based on the UQ data.

5.4. Prediction of Structural Wind Loads with Uncertainty Quantification

The same configuration as in Section 5.3 was considered to study pressure distribu-
tion on the facades of the hypothetical building (green building in Figure 16) for further
applications to the prediction of structural wind loads. The analysis is based on the same
set of simulations changing the inflow velocity magnitude and direction.

The Sobol indices plotted on the different building faces in Figure 19 highlight that the
inflow velocity magnitude is the most influential parameter on the pressure distribution
on the building faces, except on a part of the north face, where the wind direction appears
to influence pressure values more than the wind velocity magnitude.
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(a) (b) (c)

Figure 19. Sobol indices of the mean pressure on building walls computed from c-APK model for (a)
α index, (b) α− θ index and (c) θ index. The building faces are presented here, from left to right, in
the order east, north, west and south, with the top face on top of the figure.

This is explained by the fact that a large part of the north face is located in a wake
area when the flow is coming from the northeast direction, whereas it is directly exposed
to inflow wind when it comes from the northwest direction. The second order term is very
low compared to the others and does not significantly contribute to the global variance
of the pressure on building faces. Figure 20 presents the pressure coefficients obtained
in the case of the reference sample (α = 1, θ = 0) on the different building faces and the
pressure coefficients computed from the average pressure given by the c-APK analysis.
Few differences were observed on top, east, west and south faces, whereas the estimated
pressure coefficient was lowered by the c-APK analysis on the north face compared to the
reference sample.

(a) (b)

Figure 20. Pressure coefficients obtained on the building faces for (a) the reference sample (α = 1,
θ = 0) and (b) the c-APK average over the 57 samples. The building faces are presented here, from
left to right, in the order east, north, west and south, with the top face on top of the figure.

This result suggests that uncertainties on the inflow wind should be accounted for
in urban simulations since it has an impact on the dynamics of the flow around high-rise
buildings and on the related surface quantities.

6. Indoor Pollutant Dispersion with Thermal and Moving Body Effects

Another step toward the numerical simulation of realistic full scale configuration is
the use of high-fidelity CFD for evacuation problems. In such cases, human agents present
in the domain under consideration may have an effect on the pollutant dispersion because
they trigger some physical mechanisms (mixing induced by the wakes of moving persons,
natural convection due to the heat release by persons, breathing effects, etc.), leading to
the definition of a two-way coupling problem. In such a problem, the behaviour of human
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agents has a direct influence on the flow, but it is governed by their responses to external
parameters, which result from the conjunction of physical (e.g., heat) and psychological
parameters. Therefore, a more complex level of modeling is required that couples classical
physical CFD to psychological and behavioural models.

The present HRR-LBM-WMLES model has been coupled with a Social Force Model
(SFM) [47–50] that allows us to evaluate individual human displacement, taking into
account some psychological effects, and therefore to account for the effect of crowd evacua-
tion on pollutant dispersion. The trajectories of people leaving a room are evaluated using
SFM, then the drag force of each person is added into LBM equation using the actuator line
method (ALM) [51] to account for the effect of human motion on the fluid, leading to the
occurrence of wakes.

An application of this coupled method is shown here. It is related to an evacuation
scenario inside a concert hall [52]. This hall (with dimensions 83.2× 68.4× 15.1 m3) con-
tains 12 exits, indicated in green in Figure 21, and is initially occupied by 6026 persons.
The concert hall is equipped with ventilation systems located on the room ceiling that allow
for the balancing of the heat release of the persons in the concert hall.

Figure 21. Configuration of the concert hall simulation. The exits are marked in green and the person
initial positions of people are indicated in red.

We consider an instantaneous pollutant release from a cloud with a 20 m diameter in
the centre of the concert hall, as shown in Figure 21. Evacuation starts at the same time as
pollutant release and 299.2 s are necessary to allow all the people inside the concert hall
to exit.

The pollutant field at human head level obtained at several times is displayed in
Figure 22. We can see here that the pollutant is advected inside persons wake from the
initial cloud to the two central upper exits. Pollutant dispersion towards the other exits is
not significant since people leaving the concert all through these exits were not initially
located inside the cloud.
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(a) t = 5 s (b) t = 10 s

(c) t = 15 s (d) t = 20 s

(e) t = 40 s (f) t = 60 s

Figure 22. Visualisation of pollutant field at head level at different time step in case of an evacuation
of a concert hall (person locations are indicated in grey).

7. Concluding Remarks

The versatility and efficiency of the HRR-LBM-WMLES approach for atmospheric flow
simulations, urban physics and pollutant transport prediction have been illustrated by a
broad range of applications including humidity effects with phase changes and evacuation
prediction with coupling to a social force model.

The main advantages of the present approach are its efficiency in terms of computa-
tional time, which is due to the explicit nature of the lattice Boltzmann method, the com-
pactness of the underlying stencil, and the preprocessing time which is drastically reduced
thanks to the use of embedded uniform grids along with an immersed boundary approach
to handle complex fully arbitrary geometries.

In all cases, a very satisfactory agreement with reference data (if they exist) is reported,
demonstrating the accuracy of the simulation tool. The coupling with the c-APK method
for uncertainty quantification was also illustrated, showing that the HRR-LBM-WMLES
tool is fast enough to allow for the use of UQ tools in complex full scale configurations.

Hence, thanks to its reliability—highlighted through the different validation studies—
relevance—highlighted by the different physical analyses carried out—and its computa-
tional efficiency—induced by its numerical properties—the developed method appears
very to be promising to support the design of fast response models and urban deci-
sion making.
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CFD Computational Fluid Dynamics
LES Large Eddy Simulation
LBM Lattice Boltzmann Method
SEM Synthetic Eddy Method
BGK Bhatnagar Gross Krook
MRT Multiple Relaxation Time
HRR Hybrid Recursive Regularized
WMLES Wall Model Large Eddy Simulation
QUICK Quadratic Upstream Interpolated Scheme for Convective Kinematic
c-APK centered Anova POD Kriging
UQ Uncertainty Quantification
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ALM Actuator Line Model
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Abstract: Complex flow and pollutant dispersion simulations in real urban settings were investigated
by using computational fluid dynamics (CFD) simulations with the SST k−ω Reynolds-averaged
Navier–Stokes (RANS) equation with OpenFOAM. The model was validated with a wind-tunnel
experiment using two surface-mounted cubes in tandem, and the flow features were reproduced
with the correct qualitative behaviour. The real urban geometry of the Parade Square in Warsaw,
Poland was represented with both laser-scanning data for the ground geometry and the CityGML
standard to describe the buildings as an example. The Eulerian dispersion of a passive scalar and
the flow behaviour could be resolved within minutes over a computational domain with a size of
958 × 758 m2 and a height of 300 m with over 2 M cells due to the good and strong parallel scalability
in OpenFOAM. This implies that RANS modelling with parallel computing in OpenFOAM can
potentially be used as a tool for situational awareness on a local urban scale; however, entire cities
would be too large.

Keywords: RANS; urban dispersion modelling; Reynolds-averaged Navier–Stokes; situational
awareness; CityGML

1. Introduction

The simulation of intended or unintended atmospheric dispersion in a complex
geometry—e.g., in an urban area or industrial site—is necessary for the assessment of
hazards. In addition to the characteristics of sources, which are not considered here, the
governing factors in such events are the wind speed and atmospheric stability, as well as
the interaction with 3D structures, such as buildings and rough terrain. For the purpose of
situational awareness, a reliable, fast, and fairly accurate tool is needed in the mitigation of
risk, in decision making, and among first responders.

Wind-field modelling is imperative for such capabilities, and computational fluid
dynamics (CFD) models have gained increased popularity for phenomena occurring at
the street level, such as wind wakes and re-circulation patterns, as people who are at risk
can be modelled. Among these models, the Reynolds-averaged Navier–Stokes (RANS)
model is the fastest and is, thus, likely a suitable choice for moderately large areas [1]. It
involves solving the general equations of fluid dynamics (i.e., the continuity, momentum,
and energy equations) together with a turbulence closure in order to approximate the
turbulent behaviour of the flow. Large eddy simulations (LESs) offer turbulence modelling
that is closer to reality, but at the expense of computational effort. The first-responder tool
CT-analyst [2] relies on LES-precomputed wind fields. Back in 2010, some authors stated
that it would take about two years to get good coverage of an area [2]. Other authors, on the
other hand, claimed that pre-computations on the full parameter set of, e.g., wind speeds,
wind directions, and turbulences, would not be realistic, even with RANS [3]. Today, the
question of the size of the domain that can be modelled with RANS within the timeframe
of a first response remains.
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Although CFD and pre-computations may be possible, there are also other non-CFD
or hybrid approaches that have been developed for risk mitigation and fast response. For
an early review, the reader is referred to [4]. Setting a basis for the field, in 1990, Röckle
developed [5] a wind-field model based on the forcing mass consistency for the mean flow
together with empirical local wind observations around buildings. This renders a Poisson
equation that is computationally feasible to solve. See [6] for an evaluation of the Quick
Urban and Industrial Complex (QUIC) model. The downside of this diagnostic approach
is the lack of generality for handling arbitrary and complex 3D geometries. Gaussian puff
models have also been popular; because they do not explicitly resolve urban topography,
efforts have been made to combine them with a mechanistic street network model and
Lagrangian stochastic model for dispersion [7], or with SIRANERISK [8], which is an
operational model. More recently, an interesting approach was presented in which mega-
cities could be modelled based on a forecasted meteorology by combining CFD (RANS)
near the source with a diagnostic model for the entire domain; this was referred to as the
PMSS modelling system [3].

To investigate the speed achieved by a RANS model in an urban geometry, the popular
and open-source CFD environment OpenFOAM [9] was used to solve the system of
equations with the shear stress transport (SST) k−ω [10–12] turbulence closure in parallel
on a local server with 80 cores. This closure was validated for urban geometries in [13,14],
and it is an adequate choice because of its relatively low computational cost. OpenFOAM
has support for both compressible and incompressible turbulent flow simulations in 3D, as
well as an extensive set of turbulence closures for RANS modelling. Recently, a new suite
of atmospheric boundary conditions was added to OpenFOAM (v2006), which made it a
good choice for this application.

Herein, OpenFOAM was firstly validated against wind-tunnel data from two surface-
mounted cubes in tandem [15], which showed qualitative agreement. The parallel scalabil-
ity and computational time from the perspective of a situational awareness tool were then
investigated with the atmospheric inflow profiles. By using the Parade Square in Warsaw,
Poland as an example, a method was devised so that dispersion events could be simulated
in complex and real geometries.

2. Materials and Methods

The Navier–Stokes (NS) equations describe the motion of viscous fluids. Consider
the NS equations for incompressible flow together with the continuity equation and an
equation for turbulent pollutant transport:

∂tu +∇ · (u⊗ u) = − 1
ρ0
∇p +∇ · ν(∇u +∇uT) +

1
ρ0

g, (1)

∇ · u = 0, (2)

∂tc +∇(cu) = ∇ · Dc∇c + Sc, (3)

where u is the velocity, p is the pressure, ν is the kinematic viscosity, ρ0 is the mass density,
g represents body forces, c is the pollutant concentration, Dc is the molecular diffusion of
the pollutant, and Sc is a source term. In RANS models, the time averages of velocity (ū),
pressure (p̄), and concentration (c̄) are simulated. Thus, instead of resolving in time, the
Reynolds averaging decomposes these quantities into fluctuating and static components or
primed and barred notation (u = u′ + ū, p = p′ + p̄, and c = c′ + c̄, respectively); in the
NS equations, the time-averaged flow description is given as follows:

∇ · (ū⊗ ū) = − 1
ρ0
∇ p̄ +∇ · ν(∇ū +∇ūT)−∇ · (u′ ⊗ u′) +

1
ρ0

g, (4)

∇ · ū = 0. (5)
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The pollutant transport is modelled with time dependence in order to to have a
framework that accommodates a time-varying source:

∂t c̄ +∇(c̄ū) = ∇ · Dc∇c̄−∇ · (c′u′) + Sc. (6)

The fluctuating components remain as cross-terms; for ease of the simulations, the
Reynolds stress and turbulent pollutant flux are parameterised with the Boussinesq hy-
pothesis [16]:

−(u′ ⊗ u′) = νt(ū⊗ ū)− 2
3

kI, (7)

−(c′u′) =
νt

Sct
∇c̄, (8)

respectively, where νt is the eddy/turbulent viscosity and νt/Sct is the eddy pollutant flux.
The turbulent Schmidt number, Sct, is case dependent and can vary in the range from 0.2
to 1.3, but here Sct = 0.7 according to others [17,18].

To close the system of equations, k and νt are modelled with the SST k−ω model [10–12].
This model is a blend of the standard k− ε model in the free shear flow where it is accurate
and the k − ω in the boundary layer where the standard k − ε model otherwise over-
predicts the turbulent kinetic energy. The kinetic turbulent energy k and ω are modelled
with the following equations:

∇ · (ūk) = ∇ · (ν + σkνt)∇k + G− β∗ωk + Sk, (9)

∇ · (uω) = ∇ · (ν + σωνt)∇ω +
γ

ν
G− βω2 − (F1 − 1)CFkω + Sω, (10)

where the terms and default constants for OpenFOAM-v2012 [19] are used. We use a
built-in steady-state solver simpleFoam [19] and the simple consistent algorithm [20] for
the RANS equations and for the turbulent transport ((6) and (8)); a custom solver was also
implemented.

2.1. Boundary Conditions

The turbulent inflow parameters for the simulation of the double-bluff wind-tunnel
experiment were set to:

k =
3
2
(IU)2, ω =

k1/2

(β∗)1/4L
, (11)

with the intensity I = 0.1 and characteristic length scale L = 0.04.
For the ABL flow, a logarithmic inflow boundary [21] based on Monin–Obukhov

similarity theory was used:

u =
u∗
κ

log
(

z + z0

z0

)
, k =

u2∗
(β∗)1/2 , ω =

u∗
(β∗)1/2

1
z + z0

, u∗ =
urefκ

ln
(

zref+z0
z0

) , (12)

where z0 = 0.04 is a roughness parameter.
For the wall boundary conditions, the velocity field ū uses a no-slip boundary con-

dition on the ground and buildings. For k using a zero gradient and for ω and νt, we use
wall functions [19]. Symmetric boundary conditions are imposed for the sides and top
boundaries.

2.2. Three-Dimensional Geometry and Computational Mesh

The virtual topography of the Parade Square in Warsaw, Poland was built based on
a combination of two data sources: one for the buildings [22] in the CityGML format
and a numerical terrain model [23] (NTM) to represent ground roughness. CityGML is
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the international standard of the Open Geospatial Consortium (OGC) and is based on
the Geography Markup Language (GML) [24]. The standard defines a three-dimensional
description of cities and regional areas at three different levels of detail (LODs). In this
work, LOD = 2 was chosen, since it contains sufficient details for accurate wind-field
calculations and dispersion events, but omits details that would make the amount of data
very large and too complicated for the generation of a computational mesh. NTM data
are based on laser scanning. This dataset was filtered using the ground classification (=2)
to exclude, e.g., buildings for which CityGML was a better source. The average height
error was not greater than 0.20 m, and the data were at a 1 m spatial resolution in the
ground plane in the source. However, they were downsampled to a 5 m resolution to aid in
having faster simulations. All geometric operations were performed with the Visualization
Toolkit [25] to produce a triangulation of the surfaces that was compatible with the native
mesh generator snappyHexMesh in OpenFOAM.

3. Results
3.1. Double Bluff

The comparison of the wind-tunnel data of two surface-mounted cubes in tandem [15,26]
showed a good agreement between the simulations and experiments. The main features of
the mean velocity field (see Figure 1a,b), the front wake at the first cube, the re-circulation
zone between the cubes, and the leeward wake of the second cube were present. The
lift at the front wall of the first cube eventually dropped down and was re-attached at
the roof of the second cube. This model successfully captured the complex flow pattern
of a 3D geometry that was similar to that of an urban environment with sharp-cornered
buildings. The Reynolds number was Re = 22,000 based on the free-stream velocity of
u = 8.8 m/s, cube dimension of h = 0.04 m, and viscosity of air of ν = 1.6 × 10−5.
Although small geometric differences were reported, this was well above the threshold for
the independence of the Reynolds number [27].

3.2. Wind-Field Simulation of a Scaled-Up Double-Bluff Geometry with Atmospheric Inflow
Profiles

Simulations of the scaled-up version of the wind-tunnel experiment with cubes
(h = 20 m) that were 500 times larger than those in the original experiment are shown
in Figure 1c. The Reynolds number (Re = 44) was still above the threshold for the indepen-
dence of the Reynolds number (=25) [27]. Here, a logarithmic inflow profile was used in
comparison with the flat profile in order to simulate the wind tunnel’s geometry; clearly,
this had profound effects on the flow characteristics. The re-circulations were still there, but
were slightly shifted in their positions. The main difference was that the wind speed was,
for the height of the buildings, distinctly lower than in the free stream above the buildings.
With a logarithmic inflow, the urban topography effectively acted to shield against the
free-blowing wind.

The logarithmic boundary conditions in OpenFOAM were developed for neutral at-
mospheric stability [28]. Inflow boundary conditions based on Monin–Obukhov similarity
theory for the case of stable stratification were employed with RANS modelling and vali-
dated in atmospheric dispersion field trials called the Mock Urban Setting Test (MUST) [29].
Much better agreement was found when the inflow turbulent kinetic energy (TKE) was
fitted to the upstream values measured [29]. OpenFOAM offers the possibility of fitting
the levels of the TKE of the inflow to the measured data and still satisfying the solution
to the RANS equations [30]. Nevertheless, it is perhaps more challenging to accurately
assess the present atmospheric turbulence (as well as the wind speed and direction). The
merging of atmospheric stratification with numerical dispersion modelling is likely a topic
for continued future research; a review is provided in [31].
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(a)

(b)

(c)
Figure 1. Comparison of the velocity fields of the simulations using the SST k−ω turbulence model (a) to experimental wind-tunnel
data [15] (b). Simulations with the atmospheric inflow boundaries of the scaled-up geometry are shown in (c); these panels are not to
scale. The size of the arrows has been adjusted to aid visualisation, and streamlines have been added to enhance the patterns in which
the arrows are small.

3.3. Warsaw

Accurate 3D representations of buildings are needed to simulate the atmospheric
properties in the vicinity of those structures. For the Parade Square in Warsaw, the geometry
is characterised by a central landmark building in an otherwise open square, followed
by several large and tall buildings that are downwind. The upwind regime consists
of smaller rectangular buildings. This gives rise to the simulated wind field seen in
Figure 2, with several recirculation and deflection zones, as well as separation lines. Clearly,
the CFD simulation captures the physical flow behaviour around the central landmark
building, as well as the smaller and larger circulations throughout the domain. This
complex flow pattern influences the transport of a simulated release. The release point
was chosen to be at the rooftop of a smaller building that was upwind (marked by a star
in Figure 2) to capture the urban turbulence effects in the close vicinity of the source. The
concentration also increases upwind from the source due to the wake patterns, which are
similar to the those of the double-bluff experiment. The central building then deflects the
transport of the pollutant from the general wind direction as the plume spreads and travels
downwind, which is in agreement with the results of other simulations [3] and the MUST
field trials [32].
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Figure 2. Visualisation of the ground concentration of a pollutant on a logarithmic scale that was
released on a roof top (white star), which is in the bottom part of the figure. The complex wind
field is visualised using streamlines, and the inflow wind direction is given by the white arrow. The
geometry is that of the Parade Square in Warsaw, Poland.

3.4. Parallel Scaling

The parallel performance of the RANS turbulence model was investigated on an
Intel(R) Xeon(R) Gold 6230 CPU at 2.10 GHz with four sockets containing 20 cores each.
The mesh was decomposed using scotch [33], which aims to minimise the number of
processor boundaries. Two meshes with different coarseness were produced—one with
10,839,462 and the other with 2,292,898 cells. In both cases, 1000 iterations were performed
with the simpleFoam solver in OpenFOAM. The computational domain had a footprint with
a size of 958 × 758 m2 and a height of 300 m.

As seen in Figure 3, for this particular problem, the solver showed good parallel
behaviour. A further increase in the processor number would not significantly increase
the total clock time. Up to about 35 cores, the solver exhibited strong, excellent scaling for
these problem sizes; however, above this number, the communication between different
cores became significant. The full capacity of the server gave approximately 135,000 or
28,000 cells for each core to handle, and the total clock time was 954 or 133 s, respectively.
To further reduce the computation time, a smaller area or coarser mesh is needed, and the
one-minute mark is viable.
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Figure 3. Parallel scaling using two different mesh sizes of the RANS solver on the real geometry of
the Parade Square in Warsaw, Poland.

From the perspective of situational awareness, this means that with pre-generated
meshes, in terms of time, RANS modelling is within the reach of the actions first responders
in moderate-sized urban environments. Larger scales that approach the whole of even
small cities will currently be too large, considering that the number of cells increases with
the size of the footprint modelled at a constant mesh resolution.

4. Conclusions

Here, it was shown that parallel scaling in OpenFOAM increases the speed enough that
the wind and dispersion over a local urban environment can be simulated in close to real
time with the SST k−ω Reynolds-averaged Navier–Stokes (RANS) model. Nevertheless,
length scales that cover whole cities would still be too time consuming. Building geometry
and ground topography can, respectively, be incorporated by using the CityGML standard
and laser-scanning data if available.

It is suggested for future work to include validation of the model with a large-scale
field experiment. Furthermore, the inflow profiles used here are for neutral stratification,
but stable and unstable stratification would also be of interest. The vertical mixing processes
can then be further studied for all stratification types, and, since the RANS framework
does not seem to be sufficiently fast for large scales, such as whole cities, a more accurate
hybrid approach could be foreseen by combining the outcomes from the RANS model with
those of either a street network model or a Gaussian puff model, as in [3]. Another possible
research direction would be to compare the SST k−ω turbulence closure to the cheaper
zero-equation approach used in [1] for urban geometries.
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Abstract: CFD simulations of near-ground gas dispersion depend significantly on the accuracy of the
wind field. When simulating wind fields with conventional RANS turbulence models, the velocity
and turbulence profiles specified as inlet boundary conditions change rapidly in the approach flow
region. As a result, when hazardous materials are released, the extent of hazardous areas is calculated
based on an approach flow that differs significantly from the boundary conditions defined. To solve
this problem, a turbulence model with consistent boundary conditions was developed to ensure
a horizontally homogeneous approach flow. Instead of the logarithmic vertical velocity profile, a
power law is used to overcome the problem that with the logarithmic profile, negative velocities
would be calculated for heights within the roughness length. With this, the problem that the distance
of the wall-adjacent cell midpoint has to be higher than the roughness length is solved, so that a
high grid resolution can be ensured even in the near-ground region which is required to simulate
gas dispersion. The evaluation of the developed CFD model using the German guideline VDI
3783/9 and wind tunnel experiments with realistic obstacle configurations showed a good agreement
between the calculated and the measured values and the ability to achieve a horizontally homogenous
approach flow.

Keywords: atmospheric boundary layer; OpenFOAM; gas dispersion; CFD; turbulence model;
hazard assessment; horizontal homogeneity; wind field

1. Introduction

When assessing hazards from industrial plant applications, calculating the gas disper-
sion is one of the main tasks for determining safety distances. Simple models for calculating
the gas dispersion are generally not able to account for obstacles such as buildings or the
topography of the dispersion area. To simulate dispersion scenarios in complex areas,
computational fluid dynamics (CFD) codes can be used. By solving the full Navier–Stokes
equations, CFD codes can simultaneously model the wind field and the dispersion of
pollutants, taking into account obstacles, topography, and thermal stratification, as well
as the type of release (with or without momentum). Simulating gas dispersion is mainly
influenced by the wind field. The main problem when using CFD codes is the cost–benefit
ratio, as the computational time is exceedingly high compared to simpler models. To reduce
the computational time, relying on RANS (Reynolds-averaged Navier–Stokes) equations is
a common practice. To close the RANS equations, the k-ε turbulence model is used in a
wide number of publications for calculating the atmospheric wind field.

When simulating near-ground atmospheric boundary layer phenomena, fully de-
veloped wind and turbulence profiles are specified as inlet boundary conditions. Due
to numerical reasons, every CFD simulation requires a computational domain of spatial
extensions much above the dimensions of the area of interest. Therefore, an obstacle free
approach flow region is required between the inlet and the first obstacle [1]. To ensure
that the posed inlet boundary conditions reach the area of interest, where the release
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and dispersion occurs, a CFD model should be chosen that is able to conserve the inlet
conditions in the approach flow region, resulting in a horizontally homogenous boundary
layer flow. Otherwise, the turbulence model of the CFD code will modify the approach
flow depending on the domain length and grid resolution, resulting in different extents of
hazardous areas for the same release scenario [2].

Several publications [3–6] state that reaching a horizontally homogenous boundary
layer flow with RANS CFD models is not evident. Richards and Hoxey [7] state that a
horizontally homogenous boundary layer flow can only be reached if there is a consistency
between the turbulence model and the boundary conditions, such as the atmospheric inlet
condition and wall functions. They propose inlet conditions on the basis of a logarithmic
wind profile, as well as necessary modifications to the k-ε turbulence model. Several other
authors [8–10] present comparable solutions for the problem of horizontal homogeneity.
Whilst all aforementioned publications try to achieve a solution by modifying the constants
of the k-ε model, [11] they achieved the horizontal homogeneity by introducing an addi-
tional source term to the dissipation equation [12] and by introducing it in the turbulent
kinetic energy equation.

To reduce the computational cost, wall functions are used for describing the near wall
area using a roughness factor, to avoid modelling even the smallest details (e.g., vegetation,
fences, cars). Different types of roughness parameters and their suitability for modelling
horizontally homogenous boundary layer flows were discussed [13–15]. However, for all it
was stated that the general formulations of wall functions for rough walls (based on the
equivalent sand grain roughness ks or the roughness length z0) introduce a dependency of
the wall-adjacent cell size from the defined roughness value. This results in wall-adjacent
cell sizes that are much too big for simulating near-ground or near-obstacle effects with
acceptable accuracy. If a near-wall cell size smaller than the requirements due to the defined
roughness is chosen, the simulation will not result in a horizontally homogenous boundary
layer flow [13].

For near-ground gas dispersion scenarios, a coarse wall-adjacent mesh will lead to an
unrealistic prediction of the gas cloud sizes, as the concentration gradients near ground
cannot be resolved with sufficient accuracy.

In this work, a CFD model based on the open source CFD code OpenFOAM is
presented, which was developed with the aim to compute a horizontally homogenous
boundary layer flow and to overcome the wall resolution restrictions due to wall roughness.
In this model the wind profile is described by a power law instead of a log wind profile. The
used flow solver is a transient, compressible flow solver, to also be able to simulate in the
future gas dispersion, gas cloud explosions, or gas cloud combustion. In this work we will
focus on the wind field modelling. The model will be evaluated systematically using the
German Guideline VDI 3783/9 [16,17]. This guideline provides test cases in which generic
obstacle configurations are investigated and objective evaluation criteria are provided. To
evaluate the model performance for a more realistic obstacle configuration comparable to
an industrial area, wind tunnel measurements are used. In opposite to free field trials, they
show a high reproducibility, and the average boundary conditions can be kept constant over
a long time period to produce a statistically sound database. The wind tunnel data used
were generated at the University of Hamburg in the context of an actual research project.
The quality of the presented model to simulate a horizontally homogenous boundary layer
approach flow and the flow around obstacles will be demonstrated and evaluated with the
VDI Guideline 3783/9 and the aforementioned wind tunnel experiments.

2. Turbulence Model and Boundary Conditions for Neutral Stratification

The presented CFD model is based on the transient and compressible solver rhoRe-
actingBuoyantFoam [18,19], as well as on the k-ε-turbulence model of Launder and Spald-
ing [20] and El Tahry [21], implemented in OpenFOAM 5.0. The differential equations

280



Atmosphere 2021, 12, 933

describing the turbulent kinetic energy k (1) and the dissipation ε (2) are coupled to the
Navier–Stokes equations through the turbulent viscosity νt (3):
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The values of the model constants C1, C2, Cµ, σk and σε in Equations (1)–(3) are based

on [22]. The variable ρ is the density of the fluid and
→
U is the velocity vector, Pk describes

the production of the turbulent kinetic energy and Sε is an additional source term, which
will be derived in the following.

With the idealized assumption of a horizontally homogenous boundary layer flow
and with the additional assumptions that:

- the flow is stationary,
- the flow fields are free of horizontal gradients,
- the vertical velocity is zero,

Equations (1) and (2) can be simplified to:
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The dynamic viscosity is assumed to be negligible (νt � ν).
Assuming a two-dimensional horizontally homogenous boundary layer flow, the

turbulence production is defined as

Pk = ρνt

(
∂Ux

∂z

)2
(6)

Based on Equations (4) to (6), models have been developed to achieve a horizontally
homogenous boundary layer solution (e.g., [7,10,12]). All these models are based on a
logarithmic wind velocity profile. This assumption leads to a dependency of the grid
resolution near ground from the roughness length [13]. To overcome this restriction, in this
work a power-law wind profile is used as inlet boundary condition

Ux = Ure f

(
z

zre f

)m

(7)

The value of the exponent m of the wind profile is set in accordance to the roughness
length z0, which is now only indirectly linked to the governing model equations, allowing
us to choose the grid resolution independently of the ground roughness.

The vertical profile of the turbulent kinetic energy of the incident flow, as described
by, e.g., Richards and Hoxey [7], is dependent on the wall shear stress velocity which can
be defined as nearly constant with height for a neutrally layered atmosphere

k =
u2∗√
Cµ

(8)
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u∗ =
Ure f κ

ln
( zre f +z0

z0

) (9)

To achieve a horizontally homogenous atmospheric boundary layer flow, it is manda-
tory that the flow profiles at the inlet boundary satisfy the equations of the turbulence
model. This is achieved for the turbulent kinetic energy Equation (4) with the condition
that ∂k/∂z = 0 for

ρε
!
= Pk (10)

From Equations (3), (6)–(8), and (10), the vertical profile of the turbulent dissipation ε
at the inlet boundary is

ε =
u2∗ ·m ·Ure f

(
z

zre f

)m

z
(11)

The inlet boundary conditions (7), (8), and (11) only satisfy the equation for the
turbulent dissipation (5) with

Sε = −∂ρ

∂z
νt

σε

∂ε

∂z
− ρ

σε

∂νt

∂z
∂ε

∂z
− ρ

νt

σε

∂2ε

∂z2 −
C1ε

k
ρνt

(
∂Ux

∂z

)2
+ C2ρ

ε2

k
(12)

With this modification, horizontally homogenous boundary layer flows can be simu-
lated for near-ground grid resolutions that are not dependent on the roughness length. This
source term is evaluated solely based on the vertical inlet profiles at the beginning of the
simulation and is therefore time independent. As this source term is relevant and designed
to achieve a horizontally homogenous flow without obstacles, this term is only active in
the upstream region when simulating obstacles in the domain. In the vicinity of obstacles,
the turbulence model (Equations (1)–(3)) is used with Sε = 0. The term Sε compensates
the expected dissipation of turbulent kinetic energy with the standard k-ε-model in an
obstacle-free flow domain.

Besides the described modifications to the turbulence model, the simulation of a
horizontally homogenous boundary layer flow also requires a formulation for wall func-
tions consistent to the modifications made. Wall functions available in OpenFOAM de-
scribe the turbulent energy dissipation and production for hydraulically smooth walls
(epsilonWallFunction), as well as the turbulent viscosity based on the roughness length
(nutkAtmRoughWallFunction). To avoid reintroducing here the dependency of the possible
grid resolution on the roughness length, and at the same time to satisfy Equation (11), the
turbulent dissipation at the wall-adjacent cell center is defined as

εp =
u2∗ ·m · ure f

(
zp

zre f

)m

zp
(13)

Coupling of the wall function with the flow field occurs in analogy to the OpenFOAM
epsilonWallFunction [18], by replacing the friction velocity by the wall adjacent turbulent
kinetic energy through Equation (8)

εp =

√
Cµ · kp ·m · ure f

(
zp

zre f

)m

zp
(14)

In accordance with Equation (6), the turbulence production in the wall adjacent cell is

Pk,p = µt

(
∂ux

∂z

)2
= µt

∂ux

∂z
∂ux

∂z
(15)

In analogy to the OpenFOAM nutkAtmRoughWallFunction [18], one of the two
velocity gradients of the wall function is replaced by the analytical derivative of the power
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law profile and the other by its spatial discretization. Thus, the turbulence production can
be rewritten as

Pk,p = µt

(
∂ux

∂z

)2
≈ µt

m · ure f

(
zp

zre f

)m

zp

∆ux

∆z
(16)

The wall sheer stress τ0, considered as constant within the Prandtl layer, is

τo = ρu2
∗ = µt

∂ux

∂z
(17)

and by integration with respect to the height and assuming a no slip wall, Equation (17)
becomes

ρu2
∗ = µt

up

zp
(18)

resulting in the wall function for the turbulent viscosity, by substituting up with Equation (7):

νt =
u2∗zp

ure f

(
zp

zre f

)m (19)

u∗ = C0.25
µ k0.5 (20)

For the turbulent kinetic energy, a zero gradient is specified at the wall, in accordance
with the inlet boundary condition.

Studies [13,23] observed that choosing fixed shear stress as a boundary condition on
the top of the domain instead of a symmetry boundary condition leads to a less inhomo-
geneous horizontal boundary layer. This was also confirmed by [24] who noticed a better
agreement with experimental values when setting a fixed shear stress as the top boundary
condition. Therefore, in the presented model, constant values for the wind speed and the
turbulent values based on Equations (7)–(9) are set as the top boundary conditions. All
other values are set to zero gradient.

3. Results

Several investigations have been carried out to assess the accuracy of the presented
model. Beginning with a study of the horizontal homogeneity of the boundary layer
flow when using the original and the modified code over a benchmark with the VDI
3783/9 [16,17], to a comparison with wind tunnel experiments for complex terrain, the
quality of the new model is shown.

3.1. Horizontally Homogeneous Boundary Layer

By using a power law to describe the vertical velocity profile and introducing the
additional source term Sε, it should be possible to simulate a horizontally homogenous
boundary layer flow with a grid resolution not depending on the roughness length. Figure 1
shows the wind velocity in the main direction Ux calculated by the k-ε turbulence model
without modification (standard model) and with the model presented here (modified
model) at a height of 1 m above the ground from the inlet up to a distance of 200 m. A
power law with a reference velocity of 3 m/s at a reference height of 10 m was specified
as the inlet boundary condition and a roughness length of 1.2 m was assumed. For the
standard model, a wall function based on the roughness length is chosen (OpenFOAM
nutkAtmRoughWallFunction), whilst the roughness length is approximated by the ex-
ponent of the power law in the modified model. The simulations were carried out in a
400 m × 8 m × 100 m (l × w × h) pseudo 2D domain without obstacles. In Figure 1, it can
be clearly seen that the standard model, as expected, does not conserve the wind profile
over the distance, whereas the modified model shows insignificant deviations from the
given inlet velocity.
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Figure 1. Development of the boundary layer for the standard model and the model presented.

To ensure the presented model being able to carry out simulations of a horizontally
homogenous boundary layer flow where the grid resolution can be chosen independently
of the surface roughness, which is not possible for standard turbulence models in CFD [13],
further simulations were carried out in the same domain. In these simulations, the wind
speed at 10 m in height over the ground was varied in a range of 1 m/s up to 5 m/s, and
for wind profiles corresponding to roughness lengths between 0.1 m and 1.2 m, covering
a typical range for hazard assessment scenarios. The wind profiles were investigated
after a distance of 300 m, a typical distance from the inlet according to the best practice
guidelines [1], where distances from the inlet of two to eight times the obstacle height are
recommended as the approach flow distance. The grid resolution ranged from 0.5 m down
to 0.125 m for the wall-adjacent cell, corresponding to cell midpoint heights zp of 0.25 m
down to 0.0625 m.

Figure 2 shows the relative deviation between the calculated vertical wind profile in
the main direction (Ux) and the inlet boundary condition. As no significant changes were
observed over the range of wind speeds, the figure shows exemplarily the results for a
wind speed of 3 m/s at 10 m over the ground. The wind profiles after the investigated
distance of 300 m do not differ from the inlet profile by more than +/−5% close to the
ground. At a height of 1 m or more from the ground, the deviation between the inlet profile
and the computed values is negligible. Similar observations can be made for the eddy
viscosity profiles (Figure 3). The maximum deviation reached is around +/−10%, which
seems small enough to be qualified as acceptable.

As these observations for the wind velocity and eddy viscosity profiles are valid for
any of the investigated combinations of roughness length and grid resolution, it can be
concluded that the modified turbulence model and wall functions presented here are able
to simulate a horizontally homogenous boundary layer flow for near-wall grid resolutions
that can be chosen independently to the roughness length.

3.2. VDI 3783/9 Benchmark

The German Guideline VDI 3783/9 [16,17] is used to evaluate the quality of wind
field models for a built-up environment. In the guideline, a number of test cases are
defined to evaluate different characteristics of the wind field model. In some test cases,
comparisons of the model have to be performed with wind tunnel experiments that were
carried out for generic obstacle configurations (scale 1:200) by the meteorological institute
of the University of Hamburg [25]. As the aim of this work is to provide a wind field
model for, e.g., dispersion scenarios in built up environment, the evaluation of the model
presented here is carried out with these test cases.
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Figure 2. Wind profiles at 300 m distance from the inlet for varying surface roughness and grid resolution.

Figure 3. Eddy viscosity profiles at 300 m distance from the inlet for varying surface roughness and
grid resolution.

The evaluation method of the guideline VDI 3783/9 gives a quantitative estimate of
the model quality by determining a hit ratio q

q =
n
N

=
∑ ni

N
(21)
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It indicates in percent the proportion of the total of correctly predicted values n in the
total number of comparison values N. For successful validation in comparison with wind
tunnel experiments, it is required that q > 66%. The number of correctly predicted values ni
results from the comparison of the normalized results Pi and the normalized comparison
values Oi [17]:

ni =

{
1, i f

∣∣∣ Pi−Oi
Oi

∣∣∣ ≤ D or |Pi −Oi| ≤W
0, otherwise

}
(22)

In Equation (22), W is the absolute permitted difference and D the permitted difference,
which are defined separately for each case in [16,17].

The focus is laid on the test cases c3, c4 and c6 of the 2005 version of the guideline [16],
as a simple generic case for a multiple building scenario (test case c6) is available. Figure 4
shows the geometrical representation of the test cases, and the corresponding parameters
are given in Table 1. Parameters of each test case. For the test cases c3 and c4 (single
obstacle), the guideline requires evaluating the wind field in the near field (grey dotted
region in Figure 4a,b), as well as in the whole computational domain. For test case c6, only
the whole domain has to be considered.

Figure 4. Geometrical representation of the test cases (a) test case c3 cube with 90◦ approach flow,
(b) test case c4 cube with 270◦ approach flow, (c) test case c6 7 × 3 array of buildings.

Table 1. Parameters of each test case.

Test Case C3 Test Case C4 Test Case C6

Domain in m (l × w × h) 500 × 200 × 200 500 × 200 × 200 520 × 400 × 200
Nr. of Buildings

Building Size in m (l × w × h)
1 Building

25 × 25 × 25
1 Building

25 × 25 × 25
3 × 7 Buildings

30 × 20 × 25
Mesh size 1.60 Mio cells 1.80 Mio cells 7.30 Mio cells

Atmospheric Inlet Conditions

z0 = 0.10 m
m = 0.22

Ure f = 5.04 m/s
zre f = 75 m

u∗= 0.31 m/s

z0 = 0.10 m
m = 0.21

Ure f = 4.43 m/s
zre f = 75 m

u∗ = 0.27 m/s

z0 = 0.10 m
m = 0.21

Ure f = 6.30 m/s
zre f = 132 m

u∗ = 0.36 m/s

Definition of near fields

upwind of the building: 25 m
downwind of the building: 50 m

each side transverse to the direction of flow: 12.5 m
above the building: 12.5 m

-

Permitted difference D 25% 25% 25%
Absolute permitted

difference W 0.06 0.06 0.10

286



Atmosphere 2021, 12, 933

During a grid sensitivity study, the grid was refined from near-wall mesh sizes of
1.0 m down to 0.25 m, showing that the hit ratio is not very sensitive to the grid refinement,
as only negligible differences for all refinements can be observed. In the following, only
results for a mesh with a near-wall mesh size of 0.5 m will be discussed, although the
observations made are also valid for all investigated meshes.

Table 2 Hit ratio in % for all three test cases. shows the hit ratio q for all three test cases,
subdivided into hit ratios for qUx—corresponding to the main wind direction, qUy—the
crosswind direction, and qUz—the vertical to the main wind direction. For all test cases
and all three wind direction components, the required minimum hit ratio of 66% is reached
or exceeded when evaluating the whole computational domain.

Table 2. Hit ratio in % for all three test cases.

qUx qUy qUz

Whole
Domain Near Field Whole

Domain Near Field Whole
Domain Near Field

Test case c3 83 72 92 88 91 85
Test case c4 81 70 69 62 77 61
Test case c6 78 - 87 - 80 -

While the near-field values for test case c3 meet the requirements of the guideline,
test case c4 does not reach the required minimum value for the hit ratio for some velocity
components. Due to the high velocity gradients occurring at obstacles where a flow
detachment or recirculation can be observed, the choice of the turbulence model has a
significant influence on the quality of the result, whilst, in general, a higher deviation
between computed values and experimental data is to be expected in these cases. Although
the minimum criterion for the hit ratio is reached for test case c3, in test case c4 with a
45◦ approach flow, this can only be achieved for the hit ratio of the main wind direction
component. Study [26] stated that the approach flow in the experiments for test case c4
was not exactly 45◦ but showed a slight deviation of 2◦. It is still to be examined whether
correcting the simulation values for the 2◦ deviation might lead to better hit ratios.

3.3. Wind Tunnel Experiments

After having compared the model results to such generic cases as the ones defined
in [16,17], the model is still to be validated for a more realistic obstacle configuration.
Due to the high reproducibility and to a lack of field experiments, wind tunnel data
generated at the University of Hamburg in the context of an actual research project are
used. The experiments were carried out at the EWTL large boundary layer wind tunnel
of the University of Hamburg in a scale of 1:100. The 25 m long wind tunnel has an 18 m
long, 4 m wide and approx. 3 m high test section. The investigated model area (Figure 5)
was planned with aerial photos and building data from real industrial areas. In real scale,
it covers about 300 m × 300 m. The model consists of 20 cuboid shaped buildings which
have varying side lengths of 20 m to 40 m. Each building has a height of 15 m. The
spaces between the buildings range between 10 m and 80 m. In the middle of the model
area, a large building is located. This main building has a base area of 30 m × 60 m. The
main building has three openings on the sides and one opening on the roof with a size of
4 m × 4 m. In the future, it is planned to carry out gas dispersion experiments with this
setup where the mentioned openings on the buildings will be used as gas inlets.

Flow measurements were performed with Laser-Doppler Anemometry (LDA). The
LDA measures two components of the turbulent wind vector simultaneously with a spatial
resolution of approx. 110 mm in full scale. To receive statistical representative time series
in a turbulent flow, measurements are performed for several minutes. In real scale, this
represents a measurement taken for 30 h under stationary meteorological conditions.
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Figure 5. Wind tunnel and obstacle configuration.

Two different boundary layer approach flows are modelled at a scale of 1:100 to
investigate the influence of the flow on the measurements inside the model area. One
boundary layer flow represents the conditions of a “moderately rough” boundary layer.
This type of boundary layer flow develops over grasslands or farmlands. The second
wind boundary layer represents a flow that develops over suburban area and is described
by the definition of a “rough” boundary layer. The roughness classes are defined by
VDI 3783/12 [27]. The similarity between wind tunnel experiments and real scale has
been ensured by checking that the turbulence intensity, the wind profiles, the spectral
distribution of turbulent energy and the lateral homogeneity are similar to nature-given
profiles and distributions. In addition, the functional relationship between the roughness
length z0 and the wind profile exponent m has been checked, according to [28].

In the following, the simulated wind fields are compared to the profiles measured in
the wind tunnel for the “moderately rough” case. For the considered case, the roughness
length for the “moderately rough” case is z0 = 0.06 m, corresponding to an exponent of
the wind profile power law of m = 0.17. The same approach flow (Figure 6a) was used
for two different wind directions, case M1 and case M2 (with respect to the obstacles,
Figure 6b). The horizontal flow components (Ux, Uy) were measured around the obstacles
at 327 positions for the direction M1 and at 383 positions for M2, at a height over the
ground varying from 2 m up to 20 m. Figure 6a shows a good agreement of the measured
and calculated normalized vertical wind velocity profile of the approach flow. For each
horizontal, homogeneity was verified.

Figure 6. (a) Comparison of the boundary layer flow measured in the wind tunnel and calculated
with the presented model; (b) schematic representation of the obstacle configuration and the approach
flows M1 and M2.
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For the following investigations of the model performance, an objective evaluation
method comparable to the VDI Guideline 3783/9 is desirable. In the VDI Guideline 3783/9,
in the 2017 version [17], a test case is defined for a real built-up area. The evaluation
criteria for this case (D = 25% and W = 0.08, threshold for q = 66%) are applied to the cases
investigated here, as they also represent realistic topographies. It should be noted that the
evaluation criteria of the VDI Guideline are defined as case-specific and therefore might
not be fully adapted to the cases M1 and M2. Nevertheless, as the permitted differences
(D and W) and the hit ratio q do not change significantly for all cases of the guideline, this
approach appears to be permissible.

For the cases M1 and M2, grid refinements were carried out to investigate if the hit
ratio might be independent of the resolution, as this was the case in Section 3.2. For both
cases, it is noticed that, with each refinement of the grid, the hit ratio increased up to a
point where a grid resolution of 0.25 m adjacent to the obstacles finally led to a successful
“validation” in terms of reaching the hit ratio threshold. These simulations already showed
a total number of cells > 20 Mio. As further refinement would have led to domains with at
least 80 Mio. cells, no further refinement was investigated due to the resulting extremely
long simulation time.

Figures 7 and 8 show the repartition of the measuring points at heights of 2 m
(Figures 7a and 8a) and 8 m over the ground (Figures 7b and 8b), respectively, for cases M1
and M2. Whilst in the VDI Guideline the experimental data used to define the thresholds
are evenly spread over the whole domain, the measuring points in cases M1 and M2 are
concentrated around buildings and close to the ground, making it harder to reach the
threshold. Both figures represent the investigated area in such way that the approach
flow is oriented parallel to the x-axis coming from the left. Full black bullets show a point
where the calculated hit ratios qUx and qUy reach values higher than the threshold of 66%,
half-filled bullets show points where the hit ratio of one velocity component did not reach
the threshold, and for the blank bullets, no component of the horizontal velocity reached
the threshold.

Figure 7. Illustration of the hit ratio for case M1 (a) at 2 m height over ground, (b) at 8 m height
over ground.

With increasing height over the ground, the number of points which show a hit ratio
higher than the threshold increases in both cases. This is due to the fact that the closer to
the ground, the more complex the turbulence-influenced effects are on the flow. To resolve
these effects in a satisfactory manner, at least a LES (Large-Eddy Simulation) would be
required. Table 3 Hit ratio for the whole domain of case M1 and M2. shows that the hit
ratio for the whole domain exceeds the threshold value of 66% for both cases. For the aim
of providing an adequate wind field for hazard assessment purposes, the reached accuracy
is therefore sufficient.
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Figure 8. Illustration of the hit ratio for case M2 (a) at 2 m height over ground, (b) at 8 m height
over ground.

Table 3. Hit ratio for the whole domain of case M1 and M2.

qUx qUy

M1 71 89

M2 67 82

4. Discussion

The transient, compressible flow solver rhoReactingBuoyantFoam of OpenFOAM 5.0
in combination with the standard k-ε turbulence model is promising for simulating the
dispersion process of pollutants in the atmosphere. Due to inconsistencies between the
required boundary conditions for modelling atmospheric boundary layer flow and the
formulation of the turbulence model, simulating a horizontally homogenous boundary
layer flow is not possible.

As the horizontally homogenous approach flow is mandatory for reliable estimations
of the safety distances for hazard assessment purposes, when a pollutant is released near
ground in the atmosphere, a modification to the turbulence model has been made and
was presented in this work. Introducing an additional source term in the equation for the
turbulent dissipation and replacing the log law profile by a power law profile for the wind
field, in combination with a new formulation of the wall functions, showed the ability to
simulate a horizontally homogenous boundary layer flow. Additionally, the grid resolution
adjacent to the walls can now be chosen independently of the roughness length defined
on the ground. For gas dispersion purposes in a built-up domain, the grid resolution in
the vicinity of buildings is crucial to achieve a satisfactory resolution of the concentration
gradients, leading to a reliable and reproducible prediction of the safety distances. The
model’s performance for this application is currently under investigation.

The evaluation of the presented model occurred in three steps. In the first step, it was
checked against the original model formulation for its performance to produce horizontally
homogenous wind and turbulence profiles, and showed a clear advantage compared to
the original formulation by achieving the homogeneity. In the second step, the model was
evaluated considering the rules defined by the VDI Guideline 3783/9 [16] where generic
obstacle configurations are presented, and an objective statistical method for evaluation
using a so-called hit ratio is defined. The model was evaluated against three test cases of
the guideline with a single cube in a 90◦ approach flow and a 45◦ approach flow, as well
as for an array of 7 × 3 obstacles. Considering the whole domain, the model performed
well in all cases and reached hit ratios clearly fulfilling the defined threshold. For the two
single cube cases, an evaluation of the “near-field” had to be carried out. The hit ratio
showed lower values than for the whole domain, due to restrictions of the k-ε turbulence
model in the vicinity of obstacles. The third evaluation step consisted of comparing the
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presented model to wind tunnel measurements and using the evaluation criteria of the
VDI Guideline 3783/9 [17] to obtain an objective measure of the performance, even though
the criteria might not fully match the considered case. Nevertheless, the presented model
showed again a good performance by reaching the required thresholds.
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