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Editorial

Preface to the Special Issue on Probability and Stochastic
Processes with Applications to Communications, Systems
and Networks

Alexander Bochkov 1,* and Gurami Tsitsiashvili 2

1 JSC NIIAS, 109029 Moscow, Russia
2 Institute for Applied Mathematics, Far Eastern Branch of Russian Academy of Sciences,

690041 Vladivostok, Russia
* Correspondence: a.bochkov@gmail.com or a.bochkov@vniias.ru

This Special Issue is devoted to probability, statistics, stochastic processes, and their
different applications in systems and networks analysis. The Special Issue will include
works related to the analysis and applications of different queuing models, which begin
with general approaches to modeling queuing systems and networks. Significant attention
will be devoted to the analysis of probabilistic and statistical methods in telecommunication;
asymptotic analysis of queuing networks in the condition of a large load will be considered
since original approaches are being developed in the asymptotic analysis of queuing
networks in the condition of a large load and in the calculation of distributions in retrial
queuing systems. We welcome considerations of general complex networks and their
structures in terms of, e.g., topology and graph theory; mathematical methods and models
in smart cities; exclusive statistical methods, such as statistical estimates in bio/ecology,
medicine, and neural networks; and works that estimate parameters in complex technical
systems, etc.

The authors’ geographical distribution is shown in Table 1; the 21 authors are from
eight different countries. Note that it is usual for a paper to be written by more than one
author and for authors to collaborate with authors with different or multiple affiliations.

Table 1. Geographic distribution of authors by country.

Country Number of Authors

Canada 3

Russia 10

India 1

Czech Republic 2

Saudi Arabia 2

Egypt 1

Korea 1

UK 1

Mass serving systems are widely used in many areas of real life. While single-server
queue systems work in some cases, multi-server systems can efficiently handle the most
complex applications. Multi-server mass service systems (compared to well-designed
single-server systems) are more complex and more difficult to handle, especially when
the arrival time distribution is arbitrary. The paper [1] is devoted to the analytical and
computational analysis of queue length distributions for a complex multi-server mass
service system. Introducing a quorum further complicates the model. In view of this, a
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two-dimensional Markov chain must be employed. It now appears that this system has
not been considered so far. An elegant closed-form analytical solution and an efficient
algorithm for obtaining a queue length distribution in three different epochs are presented.

Specialists in medical and zoogeography, mining, applications of meteorology to field
problems, etc., have considerable interest in large or extreme outliers in sets of empirical
information. For the following purposes, specialists are important: the essential importance
of large emissions, the fear of errors in the study of large emissions by standard and previ-
ously applied methods, the speed of information processing, and the ease of interpretation
of the results obtained. To meet these requirements, algorithms for interval pattern recogni-
tion and accompanying auxiliary computational procedures were developed in [2]. These
algorithms were developed for specific samples provided by users (short samples, the
presence of rare events in them, or the difficulty of constructing interpretation scenarios).
What they have in common is that original optimization procedures are constructed for
them or known optimization procedures are used. The authors present a series of results
on the processing of observations through the extraction of large outliers, both in the time
series and in planar and spatial observations. The algorithms presented in [2] are fast and
sufficiently valid in terms of specially selected indices and have been tested on specific
measurements and accompanied by meaningful interpretations.

In [3], the authors present an alternative and simpler approach to finding stationary
distributions of the number of jobs for a mass service model with finite space using roots
of its own characteristic equation. The main advantage of this alternative process is
that it provides a unified approach to working with both finite-buffer and infinite-buffer
systems. The queue length distribution is obtained both at the departure epoch and at the
random epoch.

Typically, a complex system consists of various components that are usually subject to
service policies. In [4], the authors consider systems containing components that are under
preventive maintenance and repair maintenance. Preventive maintenance is treated as a
failure-based preventive maintenance model in which a complete update is implemented
after every nth failure occurs. It proposes an imperfect corrective maintenance model
in which each repair worsens the lifetime of a component or system, whose probability
distribution gradually changes by increasing the failure rate. The paper demonstrates
reliability mathematics for quantifying unavailability. A model of the renewal process
involving preventive maintenance based on failure arises from a new corresponding re-
newal cycle, which is denoted as the real aging process. Imperfect corrective maintenance
leads to an undesirable increase in the unavailability function, which can be corrected by a
correctly chosen failure-based preventive maintenance policy, i.e., replacing the correctly
chosen component considering both cost and unavailability after the n-th failure occurs.
The number n is considered the decision variable, while cost is the target function in the
optimization process. The paper describes a new method for finding the optimal preventive
maintenance policy based on failures for a system considering a given reliability constraint.
The decision variable n is optimally chosen for each component from a set of possible
realistic maintenance policies. The authors focus on a discrete maintenance model in which
each component is implemented in one or more maintenance modes. A fixed value of the
decision variable determines one mode of service as well as the cost of the mode. The
system optimization process requires computation time because if the system contains k
components, each with three service modes, 3k service configurations need to be estimated.
Discrete service optimization is shown for two systems taken from the literature.

Today’s smart grids make it possible to efficiently manage energy supply and con-
sumption while avoiding various safety risks. System disturbances can be caused by both
natural and man-made events. Operators must be aware of the different types and causes
of power system disturbances to make informed decisions and respond appropriately. Re-
search [5] proposes a solution to this problem with a deep learning-based attack-detection
model for power systems that can be trained using data and logs collected from vector
measurement units (PMUs). Creating properties or specifications is used to create features,
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and the data are sent to various machine learning methods, of which the random forest was
chosen as the main classifier by AdaBoost. Data from simulated energy systems from open
sources are used to test a model containing 37 case studies of energy system events. The
proposed model was compared to other layouts on various evaluation metrics. Simulation
results showed that this model provides a detection rate of 93.6% and an accuracy rate of
93.91%, which is higher than existing methods.

In [6], a variant of group testing (GT) models, called noise threshold group testing
(NTGT), is considered, in which if there is more than one defective sample in the pool,
its test result is positive. The authors are dealing with a variant model of GT in which,
as in the diagnosis of COVID-19 infection, not only do false positives and false negatives
occur if the virus concentration falls below the threshold, but unexpected measurement
noise can change the correct result above the threshold to become incorrect. The authors
aim to determine how many tests are needed to recover a small set of defective samples in
such an NTGT problem. To do this, they find necessary and sufficient conditions for the
number of tests needed to recover all defective samples. First, Fano’s Inequality was used
to obtain a lower bound on the number of tests needed to satisfy the necessary condition.
Second, an upper bound was found using the MAP decoding method, which leads to a
sufficient condition to recover defective samples in the NTGT problem. As a result, the
authors show that the necessary and sufficient conditions for successful reconstruction of
defective samples in the NTGT coincide. In addition, they show a tradeoff between the
percentage of defective samples and the density of the group matrix, which is then used to
construct the optimal NTGT structure.

The paper [7] introduces a stochastic process of an inhomogeneous Markov system in
a stochastic environment in continuous time (S-NHMSC). The ordinary inhomogeneous
Markov process is a special case of S-NHMSC. The author studied the expected population
structure of the S-NHMSC, the first central classical problem of finding the conditions
under which the asymptotic behavior of the expected population structure exists, and
the second central problem of finding which expected relative population structures are
possible limits if the limiting vector of input probabilities into the population is controlled.
Finally, the rate of convergence is studied.

In various areas of human activity, there is inevitably a need to select the best (rational)
courses of action from the alternatives proposed. In the case of retrospective statistics, risk
analysis is a convenient tool for solving the choice problem. However, when planning
the growth and development of complex systems, a new approach to decision making is
needed. The article [8] deals with the concept of risk synthesis in comparing alternatives
for the development of a special class of complex systems, which the authors call smart
expansive systems. “Smart” in this case implies a system capable of balancing its growth
and development, considering possible external and internal risks and constraints. Smart
expansive systems are considered in the quasi-linear approximation and under stationary
problem-solving conditions. In the general case, when the alternative comparison is not
the object itself, but some scalar way of determining risks, the problem of selecting the
objects most exposed to risk is reduced to the evaluation of weights of factors influencing
the integral risk. As a result, there is a complex problem of analyzing the risks of objects,
which is solved through the value by which the integral risk can be minimized. Risks are
considered as the antipotential of the system development, which are the retarders of the
reproduction rate of the system. The authors give a brief characteristic of an intellectual
expansive system and propose approaches to modeling the type of functional dependence
of the integral risk of functioning of such a system on the set of risks, measured, as a
rule, in synthetic scales of pair comparisons. The solution to the problem of reducing the
dimensionality of the influencing factors (private risks) by the vector compression method
(in group and interscale formulations) is described. The paper presents an original method
of processing matrices of incomplete pairwise comparisons with fuzzy information based
on the idea of constructing benchmark-consistent solutions. Examples of applications of
the vector compression method to solve practical problems are given. The paper presents
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an original method of processing matrices of incomplete pairwise comparisons with fuzzy
specified information, based on the idea of constructing benchmark-consistent solutions.

In [9], the following two optimization problems on analysis of acyclic orgraphs are
solved. The first one consists of determining the minimal (by volume) set of arcs whose
removal from the acyclic orgraph breaks all paths passing through a subset of its vertices.
The second problem is to determine the smallest set of arcs, whose introduction into the
acyclic orgraph turns it into a strongly connected one. The first problem was solved by
reducing it to the problem of maximal flow rate and minimal section. The second problem
was solved by calculating the minimum number of input arcs and determining the smallest
set of input arcs in terms of the minimum coverage of the arcs of the acyclic orgraph.
The solution of these problems extends to an arbitrary orgraph by distinguishing it in the
components of cyclic equivalence and the arcs between them.

The paper [10] considers the reliability function of a system consisting of k of n, under
the conditions when the failures of its components lead to an increase in the load on the
remaining ones and, consequently, to a change in their residual lifetime. It should be noted
that the development of models is able to consider that failures of system components lead
to a decrease in the residual lifetime of the remaining ones, which is of crucial importance
in the tasks of increasing the reliability of the system. In [10], a new approach based on the
application of order statistics of the system components’ service life to model this situation is
proposed. An algorithm for calculating the system reliability function and two moments of
its no-failure operation time is developed. Numerical research includes sensitivity analysis
for cases of the considered model based on two real systems. The obtained results show
the sensitivity of system reliability characteristics to the form of service life distribution, as
well as to the value of variation coefficient at a fixed average value.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chaudhry, M.; Gai, J. Analytic and Computational Analysis of GI/Ma,b/c Queueing System. Mathematics 2022, 10, 3445.
[CrossRef]

2. Tsitsiashvili, G. Processing Large Outliers in Arrays of Observations. Mathematics 2022, 10, 3399. [CrossRef]
3. Chaudhry, M.; Goswami, V. The Geo/Ga,Y/1/N Queue Revisited. Mathematics 2022, 10, 3142. [CrossRef]
4. Briš, R.; Jahoda, P. Really Ageing Systems Undergoing a Discrete Maintenance Optimization. Mathematics 2022, 10, 2865.

[CrossRef]
5. Almalaq, A.; Albadran, S.; Mohamed, M. Deep Machine Learning Model-Based Cyber-Attacks Detection in Smart Power Systems.

Mathematics 2022, 10, 2574. [CrossRef]
6. Seong, J. Theoretical Bounds on the Number of Tests in Noisy Threshold Group Testing Frameworks. Mathematics 2022, 10, 2508.

[CrossRef]
7. Vassiliou, P. Limiting Distributions of a Non-Homogeneous Markov System in a Stochastic Environment in Continuous Time.

Mathematics 2022, 10, 1214. [CrossRef]
8. Zhigirev, N.; Bochkov, A.; Kuzmina, N.; Ridley, A. Introducing a Novel Method for Smart Expansive Systems’s Operation Risk

Synthesis. Mathematics 2022, 10, 427. [CrossRef]
9. Tsitsiashvili, G.; Bulgakov, V. New Applied Problems in the Theory of Acyclic Digraphs. Mathematics 2022, 10, 45. [CrossRef]
10. Rykov, V.; Ivanova, N.; Kozyrev, D.; Milovanova, T. On Reliability Function of a k-out-of-n System with Decreasing Residual

Lifetime of Surviving Components after Their Failures. Mathematics 2022, 10, 4243. [CrossRef]

4



Citation: Chaudhry, M.; Gai, J.

Analytic and Computational

Analysis of GI/Ma, b/c Queueing

System. Mathematics 2022, 10, 3445.

https://doi.org/10.3390/

math10193445

Academic Editors: Gurami

Tsitsiashvili and Alexander

Bochkov

Received: 16 August 2022

Accepted: 8 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Analytic and Computational Analysis of GI/Ma, b/c
Queueing System

Mohan Chaudhry and Jing Gai *

Department of Mathematics and Computer Science, Royal Military College of Canada,
Kingston, ON K7K 7B4, Canada
* Correspondence: jing.gai@rmc.ca

Abstract: Bulk-service queueing systems have been widely applied in many areas in real life. While
single-server queueing systems work in some cases, multi-servers can efficiently handle most complex
applications. Bulk-service, multi-server queueing systems (compared to well-developed single-server
queueing systems) are more complex and harder to deal with, especially when the inter-arrival time
distributions are arbitrary. This paper deals with analytic and computational analyses of queue-
length distributions for a complex bulk-service, multi-server queueing system GI/Ma, b/c, wherein
inter-arrival times follow an arbitrary distribution, a is the quorum, and b is the capacity of each
server; service times follow exponential distributions. The introduction of quorum a further increases
the complexity of the model. In view of this, a two-dimensional Markov chain has to be involved.
Currently, it appears that this system has not been addressed so far. An elegant analytic closed-form
solution and an efficient algorithm to obtain the queue-length distributions at three different epochs,
i.e., pre-arrival epoch (p.a.e.), random epoch (r.e.), and post-departure epoch (p.d.e.) are presented,
when the servers are in busy and idle states, respectively.

Keywords: queues; bulk service; multi-server; Markov chain; quorum

MSC: 60-08; 60J27

1. Introduction

Queueing theory consists of a powerful tool for modelling and analytically studying
many complex systems, such as computer networks, banks, telecommunications, manufac-
turing, and transportation systems. Compared to well-developed single-server non-bulk
queueing systems, bulk-service systems have an extensive mathematical theory. They are
more complex and harder to deal with. In a bulk-service queue, a group (or batch) of
customers can be served simultaneously. Examples of their applications can be seen in
shuttle-bus services, freight trains, express elevators, tour operators, and batch servicing
in manufacturing processes. This topic, due to its perceived applicability, has attracted
the attention of many researchers over several decades. At an early stage, some simple
bulk-service models, such as single-server systems GI/Mb/1 and M/Ma/1 were studied
by Shyu [1] and Gross et al. [2], respectively. Neuts [3] first introduced a quorum bulk
service rule to create more complex models necessary to describe certain realistic situa-
tions. He considered a queueing system with Poisson arrivals and a general service-time
distribution M/Ga, b/1, where a is the quorum and b is the capacity of the server. Easton
and Chaudhry [4] extended these results to the case where the inter-arrival times were
Erlangian with the η-stage, Eη/Ma, b/1. Later, Chaudhry and Madill [5] gave a solution
for a more general queueing system GI/Ma, b/1. An alternate method was given in Neuts’
book [6], wherein he describes the application of his matrix geometric approach to the
GI/PHa, b/1 system, which has a phase-type service-time distribution. However, these
systems are single-server queues. For many other variations of bulk-service queues, such

Mathematics 2022, 10, 3445. https://doi.org/10.3390/math10193445 https://www.mdpi.com/journal/mathematics5
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as bulk service queues with vacations or bulk-service queues of the type M/G/1, one may
view the survey paper written by Sasikala and Indhira [7]. In this survey, which had over
100 publications, most of the models considered were single server queues.

Multi-server queueing systems are an important class of queueing processes and have
broad practical applications. However, such systems are more complex and harder to deal
with compared to single-server queueing systems, especially when the inter-arrival time
distribution is arbitrary. Medhi [8] investigated a queue with Poisson arrivals M/Ga, b/c,
but his method was not analytically tractable for c > 2. Related work has also been
conducted by Sim [9] on M/Ma, b/c by using algorithmic methods but no numerical results
were given. Sim [10] solved the η-phase Erlangian arrivals Eη/Ma, b/c system for the
random epoch probabilities in the steady state and discussed his results in the context
of a transportation system. Adan and Resing [11] derived and presented the numerical
results of the queue-length distributions for models M/COXIAN-2a, b/c and M/Eη

a, b/c.
Compared to our model GI/Ma, b/c, the most relevant model studied by other researchers
was GI/Mb/c, where the quorum was set to 1. Goswami et al. [12] solved the finite-buffer
GI/Mb/c model by the supplementary variable technique. Shyu [13], as well as Chaudhry
and Templeton [14], dealt with the distribution of the number of customers in the system
without considering the server being busy or idle. Therefore, there is no information
regarding server utilization. Moreover, the numerical results for the system GI/Mb/c are
not available.

To make the model useful for applications, in this paper, we considered analytic and
computational aspects to determine the performance of a complex bulk-service, multi-
server queueing system GI/Ma, b/c. The model GI/Ma, b/c is an extension of the system
GI/Mb/c (Shyu [13] as well as by Chaudhry and Templeton [14]), by introducing quorum in
the multi-server system GI/Mb/c. A quorum refers to the minimum number of customers
that are required in the waiting line before service commences, e.g., a ferry will not start
until the quorum is met, or if we are dealing with transportation problems, a bus may
not start until we have the quorum. This is an important policy desired by the service
providers to reduce the business cost and maximize server utilization. The adding of
the quorum policy makes the model closer to the real situation, but it also makes the
model more complex to study. In view of this, a two-dimensional Markov chain has to
be involved where the first dimension corresponds to the state of the servers (busy or
idle) and the second dimension corresponds to the number of customers in the queue. We
give an elegant analytic closed-form solution to obtain the queue-length distributions at
three different epochs, such as pre-arrival epoch (p.a.e.), random epoch (r.e.), and post-
departure epoch (p.d.e.), not only for the system in a busy state, but also in an idle state.
In the case of the idle state, the probabilities were obtained by simultaneously solving the
c × a equations, some of which contained infinite series, which needed to be truncated to
obtain the results. Instead of truncation, which leads to approximate results, we derived a
closed-form solution and proposed an efficient algorithm to fix this problem. The model
GI/Ma, b/c that we considered includes most models ([1,2,4–6,8–10,13,14]) as special cases.
Our model was validated in giving numerical results with the desired degree of accuracy
and trivial computational costs. By selecting particular numbers for the parameters a, b and
c, and inter-arrival time distributions, the numerical results produced by our model match
the ones provided in those simpler models as expected.

The paper is organized as follows. In the following section, we describe the queueing
model GI/Ma, b/c, and establish a transition probability matrix (t.p.m.) for the system
in Section 3. In Sections 4–6, we obtain the queue-length distributions at three different
epochs, such as pre-arrival epoch (p.a.e.), random epoch (r.e.), and post-departure epoch
(p.d.e.). To make the model useful for applications, sample numerical results are provided
in Section 7.
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2. Model Description

In this continuous-time queueing system GI/Ma, b/c, there are c independent servers,
each serving at the rate μ. The customers arrive at the rate λ according to a renewal process
with an arbitrary inter-arrival time distribution A(t). One of the idle c servers starts the
service as soon as the number of customers (including the new arriving customer) in the
queue reaches quorum a. Each c server is able to serve up to b customers simultaneously.
This indicates that if the server completes a service and finds less than the quorum a in
the queue, it will become idle until a is reached. The service times of each server are
independently–identically exponentially distributed random variables (i.i.e.d.r.v.′s). We
consider the system to be in a steady state with the traffic intensity ρ = λ/(bcμ) < 1.
The queue discipline is first-come first-serve (FCFS) by batches.

3. Transition Probability Matrix (t.p.m.)

In the queueing system GI/Ma, b/c, the states occurring at the instants immediately
before the arrivals form an embedded Markov chain (I.M.C.). The state seen by an arriv-
ing customer can be described by (Sn, n), where n ≥ 0 is the queue-length and Sn is a
supplementary flag defined as

Sn =

{
I(k), if k servers are idle, 1 ≤ k ≤ c, 0 ≤ n ≤ a − 1,
B, if all servers are busy, n ≥ 0.

We define the system as busy if all the servers are busy (Sn = B), and idle if at least
one server is idle (Sn = I(k), k is the number of idle servers). The queue-length n can be
written as n = qb + n0, 0 ≤ n0 ≤ b − 1, where q is the nearest lower non-negative integer of
the fraction n/b, denoting the available number of full size batches (the batch size is b) in
the queue waiting for service.

To build a t.p.m. of the system, we first define the following probabilities.

1. [l|m; t] and [l|m], where 0 ≤ l ≤ m ≤ c, and there are less than a customers waiting in
the queue at the beginning of the period, thus q = 0. Here,

[l|m; t] =
(

m
l

)
(1 − e−μt)l(e−μt)m−l

is the conditional probability that l of m servers complete services during an inter-
arrival period of duration t, given that m servers are busy (c − m servers are idle) at
the beginning of the period. Moreover, [l|m] is defined as

[l|m] =
∫ ∞

0
[l|m; t]dA(t), 0 ≤ l ≤ m ≤ c. (1)

2. {l|c; q} is the conditional probability that l of c servers become idle during an inter-
arrival period, given that all c servers are busy at the beginning of the period, and q
(q ≥ 1) batches of customers are waiting for the services. Assume that a time V has
elapsed when the last batch of q batches enters service. In this case, the c servers have
been processed at a rate of cμ until time V has elapsed. When all c servers are busy,
the number of departed batches follows a Poisson process with a rate cμ. The time V
is Erlang-distributed, so it is the sum of q exponential random variables with a rate
cμ, implying that the probability density function (p.d.f.) of V is given by

p(v) =
(cμ)(cμv)q−1e−cμv

(q − 1)!
, v > 0.

After all the waiting q batches leave the queue, there is time t − V remaining to have l
batches processed. The probability that these l batches complete the service during
period t − V is [l|c; t − V]. Therefore

7
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{l|c; q} =
∫ ∞

0

∫ t

0

(
c
l

)
(1 − e−(t−v)μ)l(e−(t−v)μ)c−l (cμ)(cμv)q−1e−cμv

(q − 1)!
dvdA(t). (2)

3. (l|c) is the conditional probability that l batches complete service during an inter-
arrival period of duration t, given that all the c servers are busy at the beginning of
the period and still busy at the end of the period. In this case, the number of batches
served in time t is distributed as a Poisson process at a rate of cμ:

(l|c) =
∫ ∞

0

e−cμt(cμt)l

l!
dA(t), l ≥ 0. (3)

Remark 1.

1. [0|c] = (0|c) = ∫ ∞
0 e−cμtdA(t) ≡ K0.

Though [0|c] and (0|c) give identical results, they have totally different meanings. [0|c] is for
the case when (c− 1) servers are busy and (a− 1) customers are in queue. After one customer
arrives, all the servers become busy without any departures during the inter-arrival time.
In this situation, the number of customers in the queue must be zero. Moreover, (0|c) is for the
case that all the servers are already busy before an arrival, and no departures happen during
an inter-arrival time. In this situation, the queue-length can be any non-negative number.

2. It is easy to prove that (l|c) = {0|c; l}.

Let Jr be the system state on the arrival of the rth customer who sees n customers in
the queue. The entry of the one-step t.p.m. T from state (Si, i) to state (Sj, j) is

[T(Si ,i),(Sj ,j)] = P(Jr+1 = (Sj, j)|Jr = (Si, i)), i ≥ 0, j ≥ 0,

implying that the (r + 1)th arriving customer sees j customers waiting in the queue with
the server state Sj, given that the previous rth arriving customer saw i customers waiting
in the queue with the server state Si.

The Markov chain (see Tables 1–4) for this system is two-dimensional rather than the
usual one-dimensional. The t.p.m. can be formed as four sub-matrices, which are shown in
Tables 1–4.

We describe the four sub-matrices that form the t.p.m.

T =

[
TIdle→Idle TIdle→Busy
TBusy→Idle TBusy→Busy

]
. (4)

(I) TIdle→Idle. In this situation, the number of customers waiting in queue is less than a.
Assume that there are ki servers idle at the beginning of the inter-arrival time period,
and kj servers idle at the end of the inter-arrival time period, 1 ≤ ki ≤ kj ≤ c.

[T(Si ,i),(Sj ,j)] =

{
[T(I(ki),i),(I(kj),i+1)] = [(kj − ki)|(c − ki)] if 0 ≤ i < a − 1, j = i + 1,

[T(I(ki),a−1),(I(ki),0)] = [(kj − ki + 1)|(c − ki + 1)] if i = a − 1, j = 0.
(5)

(II) TBusy→Idle. All the servers are busy at the beginning of the period, and k(1 ≤ k ≤ c)
servers are idle at the end of the period, implying that the number of customers in
the queue, say j, at the end of the period, must be less than a, i.e., j < a. In a manner
similar to what we define for n = qb + n0, 0 ≤ n0 ≤ b − 1, we need to arrange i
customers who are waiting in queue, with FCFS discipline, into q full-size batches
and a batch holding the remainders, i.e., i = qb + i0, 0 ≤ i0 ≤ b − 1.

[T(Si ,i),(Sj ,j)] =

⎧⎪⎨⎪⎩
[T(B,i),(I(k),i+1)] = [k|c] if 0 ≤ i < a − 1, j = i + 1,

[T(B,qb+i0),(I(k),i0+1)] = {k|c; q} if 0 ≤ i0 < a − 1, q ≥ 1, j = i0 + 1,

[T(B,qb+i0),(I(k),0)] = {k|c; q + 1} if a − 1 ≤ i0 ≤ b − 1, q ≥ 0, j = 0.

(6)

(III) TIdle→Busy. The system is idle at the beginning of the time period. After one customer
arrives, all the servers become busy and are still busy at the end of the time period.

8
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This case appears only if the number of customers waiting in queue is a − 1, and there
is only one server idle at the beginning of the time period.

[T(Si ,i),(Sj ,j)] =

{
[T(I(1),a−1),(B,0)] = [0|c] if i = j − 1, j = 0,
[T(I(ki),i),(B,j)] = 0 otherwise.

(7)

(IV) TBusy→Busy. All the servers are busy from the beginning to the end of the period, and
the number of batches served in time t follows the Poisson process with rate cμ.

[T(Si ,i),(Sj ,j)] =

⎧⎪⎨⎪⎩
[T(B,qb+i0),(B,(q−l)b+i0+1)] = (l|c) if 0 ≤ i0 < b − 1, 0 ≤ l ≤ q,

i = qb + i0, j = (q − l)b + 1,
[T(B,qb+i0),(B,0)] = (q + 1|c) if a − 1 ≤ i0 ≤ b − 1 and j = 0, q ≥ 0.

(8)

Finally, [T(Si ,i),(Sj ,j)] = 0 if j > i + 1 is true for all of the above I–IV cases. By using
identities 1 and 2, it can be easily proven that the sum of all the entries in t.p.m. equals one.

Identity 1. ∑c
l=1{l|c; q}+ ∑

q
i=0(i|c) = 1 for q > 0. This equation shows that the sum of all the

conditional probabilities in each row of t.p.m. (when the initial system state is busy) equals one.

Proof.

c

∑
l=1

{l|c; q} =
∫ ∞

0

∫ t

0

c

∑
l=1

(
c
l

)
(1 − e−(t−v)μ)l(e−(t−v)μ)

c−l × (cμ)(cμv)q−1e−cμv

(q − 1)!
dvdA(t)

=
∫ ∞

0

∫ t

0
(1 − e−cμ(t−v))

(cμ)(cμv)q−1e−cμv

(q − 1)!
dvdA(t)

=
∫ ∞

0

∫ t

0

(cμ)(cμv)q−1e−cμv

(q − 1)!
dvdA(t)︸ ︷︷ ︸

Term 1

−
∫ ∞

0

∫ t

0

(cμ)(cμv)q−1e−cμt

(q − 1)!
dvdA(t).︸ ︷︷ ︸

Term 2

“Term 1” in the above equation can be simplified as 1 − ∑
q−1
i=0 (i|c) by using the results that the

CDF of Erlang is 1 − ∑
q−1
i=0

(cμt)i e−cμt

i! and (i|c) = ∫ ∞
0

(cμt)i e−cμt

i ! dA(t). “Term 2” can be simplified to

(q|c). Combining these two terms gives
c
∑

l=1
{l|c; q} = 1 −

q
∑

i=0
(i|c).

Identity 2. ∑c
i=m[(i − m)|(c − m)] = 1, 0 ≤ m ≤ c. This equation shows that, when the initial

system state is idle, the sum of all the conditional probabilities in each row of t.p.m. equals one.

Proof. ∑c
i=m[(i − m)|(c − m)]

=
∫ ∞

0 ∑c
i=m (c−m

i−m)(1 − e−μt)i−m(e−μt)c−idA(t)
=
∫ ∞

0 dA(t) = 1.
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Table 3. Submatrix TBusy→Busy.

(Sn, n) (B, 0) (B, 1) (B, 2) · · · (B, a) · · · (B, b) · · ·
(B, 0) (0|c)

(B, 1) (0|c)
...

...
. . . . . . . . .

(B, a − 2)

(B, a − 1) (1|c) (0|c)
...

...
. . . . . . . . .

(B, b − 1) (1|c) (0|c)

(B, b) (1|c)
...

...
. . . . . . . . .

(B, b + a − 2)

(B, b + a − 1) (2|c)
...

...
. . . . . . . . .

(B, 2b − 1) (2|c)

(B, 2b) (2|c)
...

...
. . . . . . . . .

(B, (q − 1)b) ((q-1)|c)
...

...
. . . . . . . . .

(B, (q − 1)b + a − 2)

(B, (q − 1)b + a − 1) (q|c) ((q-1)|c)
...

...
. . . . . . . . .

(B, qb − 1) (q|c) ((q-1)|c)

(B, qb) (q|c)
...

...
. . . . . . . . .

Since the Markov chain under consideration is irreducible, positive recurrent and
aperiodic, it has a limiting distribution if and only if ρ = λ/bcμ < 1. In view of this,
lim
r→∞

P(Jr = (Sn, n)) = X(Sn, n) exists. In this case, the limiting distribution is given by

X = XT where T is t.p.m. defined in (4), and the vector X has the form

X = [X(I(c), 0), · · · , X(I(c), a − 1), · · · , X(I(1), 0), · · · ,

X(I(1), a − 1), X(B, 0), · · · X(B, 1), · · · ], (9)

where X(I(k), n), 0 ≤ n < a and X(B, n), n ≥ 0, respectively, denote the p.a.e. unnormal-
ized probabilities that an arriving customer sees n customers in queue, k of c servers idle,
and n customers in queue, with all servers busy. If such a vector X exists, it will be the
vector of the steady state p.a.e. probabilities up to some normalizing constant.
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Table 4. Submatrix TIdle→Busy.

(Sn, n) (B, 0) (B, 1) · · · (B, a − 1) · · · (B, b) · · ·
(I(c), 0)

...

(I(c), a − 2)

(I(c), a − 1)

(I(c − 1), 0)
...

(I(c − 1), a − 2)

(I(c − 1), a − 1)
...

(I(2), 0)
...

(I(2), a − 2)

(I(2), a − 1)

(I(1), 0)
...

(I(1), a − 2)

(I(1), a − 1) [0|c]

4. Queue-Length Distributions at Pre-Arrival Epoch

4.1. The Busy Server Probabilities

When all the servers are busy during an inter-arrival time period, for the queueing
model GI/Ma, b/c, the service times for batches are i.i.d.r.v.′ s, having exponential distribu-
tions. Thus, the number of batches that complete service during an arbitrary inter-arrival
time will have a Poisson distribution, which implies that the probability of l service comple-
tions during an inter-arrival time A is (l|c), and the probability generating function (p.g.f.)
of (l|c) is

D(z) =
∞

∑
l=0

(l|c)zl = ā(cμ(1 − z)), (10)

where ā(α) is the Laplace–Stieltjes transform (L.-S.T.) of A(t), i.e., ā(α) =
∫ ∞

0 exp(−αt)dA(t)
and

K0 = ā(cμ) =
∫ ∞

0
exp(−cμt)dA(t). (11)

Theorem 1. For the queueing system GI/Ma, b/c, in the steady state case, the busy-server probabili-
ties of queue length at pre-arrival epoch are given by P−(B, n) = X(B, n)/CN = wn/CN , n ≥ 0,
where w is a real root inside the unit circle of equation D(zb) = z = ā(cμ(1 − zb)) and CN is a
normalizing constant given by CN = ∑c

j=1 ∑a−1
i=0 X(I(j), i) + 1

1−w.

Proof. When the system is busy and n customers are waiting in the queue, it is evident
from t.p.m. that

X(B, n) =
∞

∑
j=0

(j|c)X(B, jb + n − 1), n > 0. (12)

To solve the difference Equation (12), in the same manner as by Chaudhry and
Madill [5], a solution of the form X(B, n) = zn (z �= 0), n ≥ 1 is assumed. For more
details on this method, one may see Chaudhry and Templeton ( [14], page 350). Substitut-
ing X(B, n) = zn into Equation (12), we have

13
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zn =
∞

∑
j=0

zjb+n−1(j|c) = zn−1
∞

∑
j=0

(j|c)zjb = zn−1D(zb). (13)

Combining this with Equation (10), and simplifying, we obtain the root equation

D(zb) = z = ā(cμ(1 − zb)). (14)

By Rouché’s theorem, it can be shown that Equation (14) has a real root w inside the
unit circle if ρ = λ

bcμ < 1. Once the root w is found, X(B, 1), X(B, 2), · · · can be obtained by
using X(B, n) = wn, n ≥ 1.

Next, we can solve for X(B, 0) from Equation (12) by setting n = 1,

X(B, 1) = w =
∞

∑
j=0

(j|c)X(B, jb),

implying
w = (0|c)X(B, 0) + (1|c)wb + (2|c)w2b + · · · = D(wb). (15)

Combining (10), (14), and (15), we conclude X(B, 0) = 1. This implies that the
assumption X(B, n) = zn is true even for n = 0.

Finally, P−(B, n) can be obtained as the normalized X(B, n) by dividing a normalizing
constant CN (see Equations (23) and (24)).

4.2. The Idle Server Probabilities

The idle server unnormalized probabilities X(I(c), 0), · · · , X(I(c), a− 1), · · · , X(I(1), 0),
· · · , X(I(1), a − 1) can be obtained by c × a linear equations generated from the t.p.m.
In fact, there are “c × a + 1” equations, with (as usual) one being redundant.

These “c × a + 1” equations are

X(B, 0) =X(I(1), a − 1)[0|c] +
∞

∑
i=1

(i|c)
b

∑
l=a

X(B, (i − 1)b + l − 1), (16)

X(I(k), j) =
k

∑
m=1

X(I(m), j − 1)[(k − m)|(c − m)] + X(B, j − 1)[k|c]+
∞

∑
i=1

X(B, ib + j − 1){k|c; i}, (17)

and

X(I(k), 0) =
k+1

∑
m=1

X(I(m), a − 1)[(k − m + 1)|(c − m + 1)]+

∞

∑
i=1

{k|c; i}
b

∑
l=a

X(B, (i − 1)b + l − 1), (18)

where 1 ≤ j ≤ a − 1, 1 ≤ k ≤ c and X(I(c + 1), a − 1) = 0.

Remark 2. The c × a idle server unknown probabilities (unnormalized)

[X(I(c), 0), · · · , X(I(c), a − 1), · · · , X(I(1), 0), · · · , X(I(1), a − 1)]

can be obtained simultaneously by using the above c × a equations. However, large values of c or a
may cause a computational problem, since the last terms in both Equations (17) and (18) are infinite
series related to complex double integrals {k|c; i} (defined in Equation (2)). In general, when we
operate on an infinite series without a closed form, the series has to be truncated. Therefore, the
result is approximated as we lose the tails due to this truncation. To fix these problems, we want to
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simplify Equations (17) and (18) by deriving a closed form for these series. Before we move on, we
need to prove the following two lemmas.

Lemma 1. The last term in Equation (16)

∞

∑
i=1

(i|c)
b

∑
l=a

X(B, (i − 1)b + l − 1) =
wa−b−1 − 1

1 − w
(w − K0).

Proof.

∞

∑
i=1

(i|c)
b

∑
l=a

X(B, (i − 1)b + l − 1)

= wa−b−1
∞

∑
i=1

(i|c)
b−a

∑
k=0

wib+k = wa−b−1 1 − wb−a+1

1 − w

∞

∑
i=1

(i|c)wib

= wa−b−1 1 − wb−a+1

1 − w
(D(wb)− K0) =

wa−b−1 − 1
1 − w

(w − K0)

by using (0|c) = K0, and Equation (13).

Lemma 2. Define J(k) = ∑∞
i=1 wib{k|c; i}, and

J(k) = cμwb
∫ ∞

0

∫ t

0

(
c
k

)
(1 − e−(t−v)μ)k(e−(t−v)μ)c−ke−cμv(1−wb)dvdA(t). (19)

Proof.

∞

∑
i=1

wib{k|c; i}

=
∞

∑
i=1

wib
∫ ∞

0

∫ t

0

(
c
k

)
(1 − e−(t−v)μ)k(e−(t−v)μ)c−k (cμ)(cμv)i−1e−cμv

(i − 1)!
dvdA(t)

=
∫ ∞

0

∫ t

0

(
c
k

)
(1 − e−(t−v)μ)k(e−(t−v)μ)c−k

∞

∑
i=1

wib (cμ)(cμv)i−1e−cμv

(i − 1)!
dvdA(t)

= cμwb
∫ ∞

0

∫ t

0

(
c
k

)
(1 − e−(t−v)μ)k(e−(t−v)μ)c−ke−cμv(1−wb)

∞

∑
i=1

(cμvwb)i−1e−cμvwb

(i − 1)!︸ ︷︷ ︸
=1, Poisson p.m.f

dvdA(t).

Theorem 2. For the queueing system GI/Ma, b/c, in the steady state case, the idle server probabili-
ties of queue length at the pre-arrival epoch are given by P−(I(k), n) = X(I(k), n)/CN , 0 ≤ n <
a− 1, 1 ≤ k ≤ c, where CN is a normalizing constant given by CN = ∑c

j=1 ∑a−1
i=0 X(I(j), i) + 1

1−w
and X(I(k), n) satisfy the following equations:

(i) X(I(1), a − 1) =
1

(1 − w)K0
(1 − wa−b + K0wa−b−1 − K0), (20)

(ii) X(I(k), j) =
k

∑
m=1

X(I(m), j − 1)[(k − m)|(c − m)] + wj−1([k|c] + J(k)), 1 < j < a − 1, (21)

(iii) X(I(k), 0) =
k+1

∑
m=1

X(I(m), a − 1)[(k − m + 1)|(c − m + 1)] +
wa−b−1 − 1

1 − w
J(k). (22)

Proof. (i) Using Lemma 1 and [0|c] = K0, we can rewrite Equation (16) and directly solve
for X(I(1), a − 1).
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(ii) and (iii) Using Theorem 1, replacing X(B, j− 1) by wj−1, X(B, ib+ j− 1) by wib+j−1,
and X(B, (i − 1)b + l − 1) by w(i−1)b+l−1, then applying the result of Lemma 2, we can
rewrite Equations (17) and (18) as Equations (21) and (22), respectively.

We first solved X(I(1), a − 1) using Equation (20), and then solved other idle server
probabilities recursively by using Equations (21) and (22). For more details on this, see the
algorithm developed in Appendix A.

Finally, we obtained all queue-length probabilities, and needed to normalize the vector

X = [X(I(c), 0), · · · , X(I(c), a − 1), · · · ,X(I(1), 0), · · · ,

X(I(1), a − 1), X(B, 0), · · · X(B, 1), · · · ].
by dividing a normalizing constant CN , which is given by

CN =
c

∑
j=1

a−1

∑
i=0

X(I(j), i) +
∞

∑
i=0

X(B, i) =
c

∑
j=1

a−1

∑
i=0

X(I(j), i) +
1

1 − w
. (23)

Define P− as the vector of normalized p.a.e. such that

P− =
X

CN
. (24)

Further, P−(I(k), n) and P−(B, n), respectively, are normalized p.a.e. probabilities and
represent that k of the c servers are idle, 0 ≤ n < a − 1, and all servers are busy, n ≥ 0.

4.3. Special Cases

4.3.1. Single-Server Probabilities for GI/Ma, b/1

The system GI/Ma, b/1 is a special case of GI/Ma, b/c when c = 1.

(A) When c = 1, the root Equation (14) is simplified to D(z) = z = ā(μ(1 − z)), which
agrees with the root equation in the work by Chaudhry and Madill [5]; consequently,
the same results of X(B, 0), · · · , X(B, 1), · · · , X(B, M) can be obtained.

(B) Moreover, k = m = c = 1, [0|0] = 1, [1|1] = 1− [0|1] = 1− K0, and ∑∞
i=1 wib{1|1; i} =

1
(1−wb)

(wb − w + (1 − wb)K0). Equation (21) can be simplified to

X(I(1), j) = X(I(1), j − 1) + wj−1(1 − K0 +
1

(1 − wb)
(wb − w + (1 − wb)K0))

= X(I(1), j − 1) + wj−1 1 − w
1 − wb .

This agrees with the equation in Chaudhry and Madill [5] for solving the idle server
probabilities.

4.3.2. Multi-Server Queueing System GI/Mb/c

The system GI/Mb/c is a special case of GI/Ma, b/c when a = 1.
In GI/Mb/c, the system is idle only if there is no customer waiting in queue. Instead

of evaluating the queue-length distributions, Chaudhry and Templeton [14] consider the
distribution for the number of customers in the system for GI/Mb/c without considering
the server being busy or idle. The numerical results for the system GI/Mb/c are also
not available. We can see that our model includes this model as a special case, it not
only produces the numerical solutions for the queue-length distributions, but also the
information of the server utilization.

5. Queue-Length Distributions at Random Epoch

We are now interested in knowing the probability that the system will be in a given
state at a random epoch (r.e.) in time. A random epoch is said to occur at the end of
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a random period of time, R, since the last p.a.e. From renewal theory, the probability
associated with R, dR(t) is given by dR(t) = λ(1 − A(t))dt, t > 0 (see Chaudhry and
Templeton [14]). Proceeding in a manner directly analogous to that used for developing
(l|c), [l|m] and {l|c; q}, where the services are considered during the inter-arrival time A
(see Equations (1)–(3)), (l|c)R, [l|m]R and {l|c; q}R are defined as the probabilities that such
services take place during time R. The p.g.f. of (l|c)R (see proof in Appendix B) is

DR(z) =
∞

∑
l=0

(l|c)Rzl =
ρb

1 − z
[1 − ā(cμ(1 − z))], (25)

and
(0|c)R = [0|c]R = λ

∫ ∞

0
exp(−cμt)(1 − A(t))dt = ρb(1 − K0). (26)

Similar to the definition for the p.a.e probability vector P− in Equation (24), we define
P as the vector of the r.e. probabilities, such that

P = [P(I(c), 0), · · · , P(I(c), a − 1), · · · , P(I(1), 0), · · · , P(I(1), a − 1), P(B, 0), · · · P(B, 1), · · · ],

where P(I(k), n), 0 ≤ n < a and P(B, n), n ≥ 0, respectively, denote the r.e. probabilities
that, at the end of a random period of time R after arrival, k of the c servers are idle,
0 ≤ n < a − 1 customers are in the queue , and all servers are busy, n ≥ 0 customers
are in the queue. The forms of the t.p.m. T in Tables 1–4 contain all of the information
required on transitions within the queueing system in a period measured from the last p.a.e.
The nature of the entries in the t.p.m. serve to indicate the probabilities associated with
the transitions. Thus, if the limiting distribution is P− = P−T when the timeframe is the
inter-arrival time, A, instead of the entries (l|c), [l|m] and {l|c; q}, the entries (l|c)R, [l|m]R
and {l|c; q}R are used with the timeframe, R, and P = P−TR, where the newly formed t.p.m.
TR describes how the steady-state p.a.e. probabilities are transformed into steady-state
probabilities for the system at a random epoch after the last p.a.e.

Remark 3. Similar to those in the p.a.e. systems, it can be proven that the following three equations
still hold for the case of r.e. systems:

• [0|c]R = (0|c)R ≡ ρb(1 − K0) (see Equation (26));
• ∑c

l=1 {l|c; q}R + ∑
q
i=0 (i|c)R = 1 for q > 0; and

• ∑c
i=m [(i − m)|(c − m)]R = 1, 0 ≤ m ≤ c.

Thus, the sum of entries in each row of t.p.m. TR equals one.

5.1. The Busy-Server Probabilities

The busy-server r.e. probabilities P(B, n), n ≥ 0 can be calculated in a similar manner
as the queue-length distributions at the pre-arrival epoch described in Section 4.1. Here, we
derive the closed-form busy-server probability distribution of the queue length at a random
epoch. The probabilities P(B, n), n ≥ 0 can be obtained using Equations (27) and (28)
(see below). Since both are in terms of the root w, the calculations become extremely
simple. The key idea to derive these two equations is based on the relations between two
probabilities: P(B, n) and P−(B, n), n ≥ 0.

Theorem 3. For the queueing system GI/Ma, b/c, in the steady state case, the busy-server probabili-
ties of the queue length at the random epoch are given by

(i) P(B, n) = 1
CN

ρb(1−w)wn−1

1−wb , n > 0.

(ii) P(B, 0) = ρb(1−K0)
CN(1−w)K0

(1 − wa−b) + ρb(wa−b−1−1)
CN(1−wb)

.

Proof. (i) At the end of a random period of time R after arrival, if all servers are busy and
the waiting line is not empty (n > 0), then the sizes for those batches that were taken into
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service during time R must be maximum (= b, full batch size). Since the queue length at a
pre-arrival epoch will be n − 1 + mb, m ≥ 0, it leads to r.e. probabilities as

P(B, n) =
∞

∑
m=0

(m|c)RP−(B, mb + n − 1), n > 0.

By using the fact that P−(B, n) = wn, and Equations (14) and (25), we have

P(B, n) =
1

CN

∞

∑
m=0

(m|c)Rwmb+n−1

=
1

CN

ρb(1 − w)wn−1

1 − wb , n > 0.

(27)

(ii) In this situation, the queue length is empty at a random time while all the servers
are busy, then the size for the last batch into service can be any number between [a, b],
and the servers at the moment when the last customer arrives are either all busy or one
idle. Combining all of these possibilities, using Equation (20) and the following equation

∞

∑
i=1

(i|c)R

b

∑
j=a

P−(B, (i − 1)b + j − 1) =
wa−b−1 − 1
CN(1 − w)

[
∞

∑
i=0

(i|c)Rwib − (0|c)R

]

=
wa−b−1 − 1
CN(1 − w)

(
ρb(1 − w)

1 − wb − ρb(1 − K0)

)
,

P(B, 0) can be expressed as

P(B, 0)

= (0|c)RP−(I(1), a − 1) +
∞

∑
i=1

(i|c)R

b

∑
j=a

P−(B, (i − 1)b + j − 1)

=
ρb(1 − K0)

CN(1 − w)K0
(1 − wa−b + K0wa−b−1 − K0) +

wa−b−1 − 1
CN(1 − w)

(
ρb(1 − w)

1 − wb − ρb(1 − K0))

=
ρb(1 − K0)

CN(1 − w)K0
(1 − wa−b) +

ρb(wa−b−1 − 1)
CN(1 − wb)

.

(28)

At the end of a random period of time R after arrival, if all servers are busy, the queue
length n (n ≥ 0) distribution can be evaluated by using Equations (27) and (28). In this
case, both the results are in closed-form in terms of the root w.

5.2. The Idle Server Probabilities

Corollary 1. The idle server r.e. probabilities P(I(k), n), 0 ≤ n < a can be obtained by using
Theorem 2. The Equations (30) and (31) (see below) are modified from Equations (21) and (22)
in Theorem 2 by replacing the term[l|m] with [l|m]R, and normalizing the probabilities from
X(I(m), j − 1) to P−(I(m), j − 1), 1 < j < a. Moreover, we redefine JR(k) as

JR(k) =
∞

∑
i=1

wib{k|c; i}R

= cλμwb
(∫ ∞

0

∫ t

0

(
c
k

)
(1 − e−(t−v)μ)k(e−(t−v)μ)c−ke−cμv(1−wb)(1 − A(t))dvdt

)
(29)

Then, P(I(k), 0) =
k+1

∑
m=1

P−(I(m), a − 1)[k − m + 1|c − m + 1]R +
wa−b−1 − 1

1 − w
JR(k), (30)

P(I(k), j) =
k

∑
m=1

P−(I(m), j − 1)[k − m|c − m]R + wj−1([k|c]R + JR(k)), (31)
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where 1 ≤ j ≤ a − 1, 1 ≤ k ≤ c, P−(I(c + 1), a − 1) = 0.

5.3. The Special Case: Eη/Ma, b/c Queue

The system Eη/Ma, b/1 is a special case of GI/Ma, b/c when the inter-arrival time is
Erlang (with η phase)-distributed. Then the root Equation (14) can be simplified to(

ηρb
ηρb + 1 − zb

)η

− z = 0.

By replacing dA(t) with (λη)η tη−1e−ληt

(η−1)! dt, we can calculate p.a.e. probability distribu-
tions for both busy and idle servers by using the algorithm introduced in Appendix A.
Then the r.e. probability distributions can be obtained by using Equations (27)–(31).

Sim [10] solved the η-phase Erlangian arrivals system Eη/Ma, b/c only for the prob-
abilities at r.e. and discussed the results in the context of transportation systems. Our
algorithms can not only solve the systems with general inter-arrival time distributions,
but also provide the solutions at different epochs. Our numerical results agree with those
provided by Sim [10].

6. Queue-Length Distributions at Post-Departure Epoch

In this section, we derive the probabilities for the state of the system immediately after
a real service completion takes place. It was assumed that no time elapsed after the server
completed a batch before accepting a quorum-complete batch from the queue. Thus, the
post-departure epoch (p.d.e.) occurred immediately after a server had either reduced the
queue or became idle.

To find the p.d.e. probabilities, we need to first define an epoch—a pre-service comple-
tion epoch (p.s.e.), i.e., the instant in the time immediately before a real departure occurs
(before a real service completes). Then, PS−(I(k), n) and PS−(B, n), n ≥ 0, 1 ≤ k ≤ c, respec-
tively, are defined as the probabilities at p.s.e., when there are n customers in queue, k of c
servers idle, and n customers in queue, all servers busy. It is apparent that PS−(I(c), n) = 0
for any n.

Similarly, we define P+(I(k), n), 0 ≤ n < a, 1 ≤ k ≤ c and P+(B, n), n ≥ 0, as the
probabilities of the queue length at a p.d.e.

Conjecture 1. The following relationships between p.d.e. and p.s.e. probabilities apply

P+(I(k), n) = PS−(I(k − 1), n), 0 ≤ n ≤ a − 1, 2 ≤ k ≤ c

P+(I(1), n) = PS−(B, n), 0 ≤ n ≤ a − 1,
(32)

and

P+(B, n) = PS−(B, n + b), n ≥ 1,

P+(B, 0) =
b

∑
n=a

PS−(B, n).
(33)

Corollary 2. PS−(I(k), n), 0 ≤ n < a, 1 ≤ k ≤ c and PS−(B, n), n ≥ 0 satisfy the following
equations:

PS−(I(k), n) =
P(I(k), n)

1 − ∑a−1
i=0 P(I(c), i)

, 0 ≤ n ≤ a − 1, 1 ≤ k ≤ c − 1,

PS−(B, n) =
P(B, n)

1 − ∑a−1
i=0 P(I(c), i)

, n ≥ 0.
(34)
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Proof. When the service time distribution is exponential, service completions, real or
potential, occur at random epochs. The probabilities, PS−(I(k), n), 0 ≤ n < a, 1 ≤ k ≤ c
and PS−(B, n), n ≥ 0 can be found by conditioning the r.e. probabilities to ensure that at
least one server is busy. Thus, using the results of r.e. probabilities given in Theorem 3, we
can obtain p.d.e. probabilities for both busy and idle servers from Equations (32)–(34).

Remark 4.

(i) When we set c = 1, these probabilities agree with those of Chaudhry and Madill [5] for the
system GI/Ma, b/1.

(ii) As a check on the algebra, also useful as a computational check, we note that, using (32)–(34),

c

∑
k=1

a−1

∑
j=0

P+(I(k), j) +
∞

∑
j=0

P+(B, j) =
∑c−1

k=1 ∑a−1
j=0 P(I(k), j) + ∑∞

j=0 P(B, j)

1 − ∑a−1
i=0 P(I(c), i)

=
1 − ∑a−1

i=0 P(I(c), i)

1 − ∑a−1
i=0 P(I(c), i)

= 1,

as it should be.

7. Numerical Results

In this section, we present some numerical results for various inter-arrival time distri-
butions such as η-phase Erlang (Eη), deterministic (D), and uniform (U). All the examples
we considered have the same mean value of the inter-arrival time E(A) = 1/λ. The root
equation (see Equation (14)), probability density functions (p.d.f.) of inter-arrival time
A, and p.d.f. of a random period time R for these three distributions are summarized in
Table 5.

Table 5. Root Equations, p.d.f.s of A(t), R(t), and mean value of of A(t) for Eη/Ma, b/c, D/Ma, b/c
and U/Ma, b/c.

Inter-arrival time
distributions Root Equations (Equation (14)) p.d.f. of A(t) p.d.f. of R(t) E(A)

η-phase Erlang

(
ηρb

ηρb+1−zb

)η − z = 0 (λη)η tη−1exp(−ληt)
(η−1)! λ ∑

η−1
n=0

(ληt)nexp(−ληt)
n! 1/λ

Deterministic exp(− 1−zb

ρb )− z = 0 δ(t − 1/λ)

{
λ, i f t < 1

λ

0, i f t ≥ 1
λ

1/λ

Uniform

exp(− 1−zb
ρb )

ϕcμ(1−zb)
× [exp(ϕcμ(1 −

zb)/2)− exp(−ϕcμ(1 − zb))/2] − z =
0, ϕ = t2 − t1, is the interval width

1/ϕ

⎧⎪⎨⎪⎩
λ, i f t < t1
1
ϕ + λ

2 − λt
ϕ , i f t1 ≤ t < t2

0, i f t ≥ t2

t1 =

1
λ − ϕ

2 , t2 = 1
λ +

ϕ
2

1/λ

Besides the calculations for the queue-length probabilities at the pre-arrival, random, and
post-departure epochs for both idle and busy systems, we also considered the performance
measures, such as the mean (denoted as LQe) and the standard deviations (denoted as SDLQe)
of the queue length; the mean (denoted as Ee[I(k)]) and variance (denoted as Vare[I(k)] ) of
the idle servers. The symbol “e” denotes the epoch state, which can be pre-arrival (e = “−”),
random (e = “ ”), or post-departure (e = “+”). We define PBe = ∑∞

n=0 Pe(B, n) as the probability
that an arriving customer sees the system busy at e epoch, and PIe = ∑a−1

n=0 ∑c
k=1 Pe(I(k), n) is

the probability that the system is idle at e epoch. The probabilities of the queue length at three
different epochs are presented in closed form. Since most of these probabilities are irrational,
for computational purposes, we need to set the precision ε. Throughout all computations in
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the following examples, we use ε = 10−20 as the precision. Due to the rounding error, the sum
of the probabilities may not be one.

The results of the E6/M5,10/5 queue with traffic intensities ρ = 0.1, 0.5, 0.9 for both
busy and idle servers at pre-arrival epoch are presented in Tables 6 and 7, respectively.
When we set the number of servers to 1, our results match with those obtained for
E6/M5,10/1 by Chaudhry et al. [5].

We considered three systems E6/Ma,10/5, D/Ma,10/5, and U/Ma,10/5 (t1 = 0.875/λ,
t2 = 1.125/λ, ϕ = 0.25/λ). All three systems have the same mean value of inter-arrival time
E(A) = 1/λ. In Table 8, we present the performance measures for these three systems for
idle servers at three different epochs with varied a = 1, 4, 7 and ρ = 0.1, 0.5, 0.9. In Figure 1,
we compare the performance of D/M4,10/5 for busy servers at pre-arrival epochs with
ρ = 0.1, 0.3, 0.5, 0.7 and 0.9. In Figure 2, we compare the performance of U/Ma,10/5 for
busy servers at pre-arrival epochs with a = 1, 4, 7.

Table 6. Distribution of queue lengths at pre-arrival epochs for the busy system E6/M5,10/5,
ρ = 0.1, 0.5, 0.9, ε = 10−20.

n
P−(B, n)

ρ = 0.1 ρ = 0.5 ρ = 0.9
0 1.12 × 10−5 0.0715625 0.0198544
1 4.45 × 10−6 0.0612334 0.0194400
2 1.76 × 10−6 0.0523951 0.0190343
3 7.00 × 10−7 0.0448325 0.0186371
4 2.77 × 10−7 0.0383615 0.0182481
5 1.10 × 10−7 0.0328244 0.0178673

...
...

...
...

10 1.08 × 10−9 0.015056 0.0160790

...
...

...
...

50 9.28 × 10−26 2.95 × 10−5 0.0069163

...
...

...
...

296
... 6.55 × 10−22 3.86 × 10−5

...
...

...
...

2184
...

... 1.96 × 10−22

PB− 0.0000186 0.4957989 0.9513294
PI− 0.9999815 0.5042011 0.0486706

SUM 1.0000001 1.0000000 1.0000000

21



Mathematics 2022, 10, 3445

Table 7. Distribution of queue lengths at the pre-arrival epochs for the idle system E6/M5,10/5,
ρ = 0.1, 0.5, 0.9, ε = 10−20.

ρ = 0.9
n

Probabilities of k servers idle
0 1 2 3 4

I(k)

1 0.0045133 0.0062023 0.0077054 0.0090392 0.0102190 0.0376792

2 0.0008471 0.0012652 0.0017914 0.0024039 0.0030832 0.0093908

3 0.0000996 0.0001656 0.0002602 0.0003883 0.0005533 0.0014670

4 0.0000058 0.0000116 0.0000210 0.0000351 0.0000554 0.0001289

5 0.0000001 30.0000003 0.0000007 0.0000013 0.0000023 0.0000047

# in queue 0.0054659 0.0076450 0.0097787 0.0118678 0.0139132 SUM: 0.0486706

ρ = 0.5
n

Probabilities of k servers idle
0 1 2 3 4

I(k)

1 0.0476528 0.0526108 0.0551242 0.0557986 0.0551149 0.2663013

2 0.0231853 0.0281785 0.0331282 0.0377295 0.0417906 0.1640121

3 0.0064926 0.0089895 0.0118683 0.0150732 0.0185253 0.0609489

4 0.0008326 0.0014196 0.0021965 0.0031834 0.0043942 0.0120263

5 0.0000258 0.0000722 0.0001465 0.0002567 0.0004115 0.0009126

# in queue 0.0781891 0.0912706 0.1024636 0.1120414 0.1202365 SUM: 0.5042011

ρ = 0.1
n

Probabilities of k servers idle
0 1 2 3 4

I(k)

1 0.0005343 0.0002563 0.0001226 0.0000585 0.0000279 0.0009995

2 0.009807 0.0057356 0.0033333 0.0019273 0.0011097 0.0219129

3 0.0620315 0.0455535 0.0329312 0.0235189 0.0166373 0.1806724

4 0.1067216 0.1061743 0.1006805 0.0923661 0.0827349 0.4886774

5 0.0208943 0.0422757 0.0629306 0.0821285 0.0994901 0.0009996

# in queue 0.1999887 0.1999954 0.1999982 0.1999993 0.1999999 SUM: 0.9999815

Queue Length 

Probabilities 

Figure 1. Comparison of performance measures of D/M4,10/5 for busy servers, ρ = 0.1, 0.3, 0.5, 0.7,
0.9, ε = 10−20.
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Queue Length 

Probabilities 

Figure 2. Comparison of performance measures of U/Ma,10/5 for busy servers, a = 1, 4, 7, ρ = 0.5,
ε = 10−20.

8. Conclusions

The queue GI/Ma, b/c was successfully investigated by using the two-dimensional em-
bedded Markov chain. Simple and exact analyses to determine queue-length distributions
are presented. An algorithm was derived for the analysis of the steady state behaviour of
the system. Our recursive solution approach is not only very efficient, but also accurate by
providing the exact queue-length probabilities at p.a.e. In a similar manner, we studied
the queue-length distribution at r.e. and derived closed-form formulae in terms of the root
w for evaluating the exact queue-length probabilities at r.e. We also obtained the proba-
bilities of p.d.e. through the relations between r.e. and p.d.e. The results for this system
were provided numerically by considering three inter-arrival time distributions—Erlang,
deterministic, and uniform. The work on higher order moments and other distributions
can be conducted similarly.

There are two special features in this work. The first is the effort to express the
important results in closed form; the second is the development of the methodology and
algorithms to efficiently derive accurate results. The models under consideration were
validated by using MAPLE to obtain numerical results with sufficient accuracy and trivial
computational costs.
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Appendix A. Algorithm for Calculating p.a.e. Probabilities

The method for determining the complete solution to the stationary queue-length
probabilities at p.a.e. for the model GI/Ma, b/c is described in the following steps:

1. Find the unique real root w inside the unit circle of Equation (14).
2. X(B, n) = wn, n ≥ 0. Let k = 1.
3. Calculate X(I(1), a − 1) by using Equation (20).
4. Calculate J(k) by using Equation (19).
5. Calculate X(I(k), a − 2), · · · , X(I(k), 0) recursively by using Equation (21).
6. Substitute X(I(k), a − 1) and X(I(k), 0) into Equation (22) to find X(I(k + 1), a − 1).

Let k = k + 1.
7. Repeat step 4 to step 6, and solve for the rest of the idle server probabilities.
8. Finally, find the normalized p.a.e. vector using P− = X

CN
.

Appendix B. Proof of Equation (25)

DR(z) =
∞

∑
l=0

(l|c)Rzl =
ρb

1 − z
[1 − ā(cμ(1 − z))].

Proof.

∞

∑
l=0

(l|c)Rzl =
∞

∑
l=0

zl
∫ ∞

0

e−cμt(cμt)l

l!
dR(t)

=
∫ ∞

0
e−cμt

∞

∑
l=0

(cμtz)l

l!
dR(t)

=
∫ ∞

0
e−cμtecμtzdR(t)

=
∫ ∞

0
e−cμ(1−z)tλ(1 − A(t))dt

= λ
∫ ∞

0
e−cμt(1−z)dt︸ ︷︷ ︸

=1/cμ(1−z)

−λ
∫ ∞

0
e−cμ(1−z)t A(t)dt

=
ρb

1 − z
+

ρb
1 − z

∫ ∞

0
A(t)de−cμ(1−z)t

=
ρb

1 − z
(1 −

∫ ∞

0
e−cμ(1−z)tdA(t)︸ ︷︷ ︸
=ā(cμ(1−z))

). (using Equation (11))
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Abstract: The interest in large or extreme outliers in arrays of empirical information is caused by the
wishes of users (with whom the author worked): specialists in medical and zoo geography, mining,
the application of meteorology in fishing tasks, etc. The following motives are important for these
specialists: the substantial significance of large emissions, the fear of errors in the study of large
emissions by standard and previously used methods, the speed of information processing and the
ease of interpretation of the results obtained. To meet these requirements, interval pattern recognition
algorithms and the accompanying auxiliary computational procedures have been developed. These
algorithms were designed for specific samples provided by the users (short samples, the presence
of rare events in them or difficulties in the construction of interpretation scenarios). They have
the common property that the original optimization procedures are built for them or well-known
optimization procedures are used. This paper presents a series of results on processing observations
by allocating large outliers as in a time series in planar and spatial observations. The algorithms
presented in this paper differ in speed and sufficient validity in terms of the specially selected
indicators. The proposed algorithms were previously tested on specific measurements and were
accompanied by meaningful interpretations. According to the author, this paper is more applied
than theoretical. However, to work with the proposed material, it is required to use a more diverse
mathematical tool kit than the one that is traditionally used in the listed applications.

Keywords: large outliers; arrays of observations; complex systems; digraphs

MSC: 93B07; 06A06

1. Introduction

This paper is devoted to the analysis of large outliers in data samples in medical and
zoo geography, mining, an application of meteorology in fishing tasks, etc. The closest to
this problem in probability theory, mathematical statistics, queuing theory and insurance is
the analysis of heavy-tailed distributions [1–7].

It should be noted that recently, this topic has attracted the attention of a large number
of data processing specialists from the fields of mathematical statistics [8,9], statistical
methods in medicine [10,11] and physiological studies [12], as well as in the analysis of
industrial processes [13,14]. Moreover, along with the statistical methods in this area, it
requires the development of new algorithms and the application of graph theory elements,
particularly in the study of protein networks [15].

However, in those applications with which the author had to work, it was necessary
to shift the emphasis from estimates of heavy tails to the large outliers in empirical infor-
mation. Apparently, this is due to the fact that we have to work with short samples or in
the presence of rare events. However, the main reason is that there are no well-established
theoretical models in these areas of application, and we have to work with data within the
framework of a phenomenological approach. This circumstance required the development
of original heuristic algorithms that allowed obtaining information useful and interesting
to users who submitted their empirical results to the author. The novelty and significance
of the algorithms constructed by the author were confirmed during last 20 years by the joint

Mathematics 2022, 10, 3399. https://doi.org/10.3390/math10183399 https://www.mdpi.com/journal/mathematics27
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results represented in [13,15–20]. Previously, for a long time, such tasks simply could not be
solved by the author.

In the listed areas of application, the ability to consistently meet the user requirements
plays a crucial role. The following motives are important for these specialists: the sub-
stantial significance of large emissions, the fear of errors in the study of large emissions
by standard and previously used methods, the speed of information processing and the
ease of interpretation of the results obtained. To meet these requirements, interval pattern
recognition algorithms and the accompanying auxiliary computational procedures have
been developed. These algorithms were designed for specific samples provided by the
users. They have the common property of the original optimization procedures being built
for them or well-known optimization procedures being used.

The emphasis on large outliers is due to the fact that their behavior usually obeys some
asymptotic relations [21] and is therefore somewhat simplified. Such circumstances allow
us to raise the question of increasing the reliability of the results of the processing arrays
of observations and reducing the counting time. The latter plays an important role in the
interdisciplinary interactions between domain specialists and mathematical programmers
processing the arrays of observations. To carry out such work, it is advisable to identify the
applied tasks in which such observation processing procedures may be implemented.

The considered samples of observations are defined by the number n of observations
and the number m of their dimensions. The requirements of mathematical statistics [10]
are such that it is desirable that the parameter n is large and the parameter m is small.
However, in the arrays of observations with which we had to deal, the opposite situation
was often observed, where the parameter n was small and the parameter m was large. For
example, such a situation occurs in problems of medical geography [17] and in problems of
meteorology and hydrology [18]. This circumstance forces one to look for sufficiently fast
algorithms for processing short time series, and the accuracy of calculations determined in
some way, on the contrary, increases with an increase in the parameter m.

At the same time, there are one-dimensional long time series (m = 1, and n is suffi-
ciently large) in which not just rare but very rare events associated with large outliers are
observed [13]. It is required to process these series in such a way that the length of the
series and the number of large outliers in it do not create problems for either processing or
interpretation of the results obtained.

Along with time series, which are not quite convenient for data processing, in various
applications, there are large arrays of observations that require data compression and
packaging and lead to extreme graph theory problems. These include disturbances in the
rock according to the results of acoustic monitoring and the movement of animals in a
territory. Despite the presence of well-known graph theory algorithms, special auxiliary
algorithms, albeit simple, are designed well enough with the requirements of a particular
subject area and are also required for processing such data.

This paper describes the methods of interval pattern recognition used in medical
geography and meteorology recognition of rare outliers by a generalized indicator used
in mining, studies of the vicinity of the extremes in the nodes of the square grid used
in meteorology and hydrology and special classification methods used in the analysis of
protein networks in zoo geography, mining and other subject areas.

2. Materials and Methods

The materials for constructing algorithms for processing empirical information are the
following:

• Multidimensional short series of observations containing the main component and m
accompanying components;

• Series of real observations equipped with Boolean variables indicating the presence or
absence of critical events;

• An array of three-dimensional vectors characterizing the coordinates of sound sources;
• An array of one-dimensional characteristics of square lattice nodes;
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• A scheme of the protein network in the form of a digraph;
• A map with a set of districts and a description of the presence or absence of borders

between them.

The methods are as follows:

• The method of interval pattern recognition;
• The method for optimizing monotone piecewise constant functions;
• The method for converting a matrix of distances between points in three-dimensional

space into an undirected graph;
• The method for difference approximation of first- and second-order partial derivatives

for the functions of two variables;
• The method of sequentially allocating cyclic equivalence classes in a digraph and

constructing a zero-one matrix of a partial order between these classes;
• The method of hierarchical classification of districts on a map with respect to the

presence of common boundaries between them.

The following optimization problems are considered:

• When recognizing critical events from an array of one-dimensional observations, two
optimization problems are considered. A connection between them is established, and
it is shown how by reducing one task to another, the array of processed information
may be significantly decreased.

• In determining the acoustic core, the connectivity component that contains the mini-
mum number of vertices is selected from another connectivity component of a graph.

• An algorithm for approximating a level line of a smooth function, given at the nodes
of a square lattice, in the form of an ellipse is constructed.

• In the hierarchical classification of districts on a map, for each district, the minimum
number of borders, a crossing of which allows one to get out from this district to a
common boundary, is determined.

All described methods are closely connected with the initial formulations of the
applied problems and are adopted to real data processing. Moreover, in relation to each
case, it is necessary to introduce some new element into the algorithm.

3. Interval Pattern Recognition Method and Related Algorithms

This section discusses the interval pattern recognition algorithm, which has found its
application in the processing of time series in the problems of medical geography [17], as
well as in meteorology, hydrology [18] and fishing [22,23].

3.1. Interval Pattern Recognition Method

Suppose that an array of observations is represented by a set of vectors with dimen-
sions m + 1 : X = {(x01, x11, . . . , xm1), . . . , (xn0, xn1, . . . , xnm)}. Here, the components of
vectors x01, . . . , x0m characterize the main features, and all other components of these vec-
tors are related features. Let us say the element (xk0, xk1, . . . xkm) corresponds to a larger
outlier in the sample if the inequality xk0 ≥ x0 is satisfied at some critical level x0 (selected
by an expert) of the zero component value in the vector. Then, in the initial sample X, a
set of elements with numbers 1 ≤ k1, . . . , ks ≤ n is determined, for which the inequality
xkj0 ≥ x0, 1 ≤ j ≤ s is satisfied. All these elements are perceived as large outliers. We first
calculate

x+i = max
1≤j≤s

xkji, x−i = min
1≤j≤s

xkji, (1)

Then, a decisive rule is constructed according to which the sample element (xk0, xk1, . . . xkm)
is a large outlier if the following inequalities are met:

x−i ≤ xki ≤ x+i , 1 ≤ i ≤ m. (2)

29



Mathematics 2022, 10, 3399

This decisive rule is defined as interval pattern recognition. Here, the image is un-
derstood as a large outlier determined by the value of the zero component of the sample
element, and the decisive rule (2) is determined by the belonging of the components of the
vector (xk0, xk1, . . . xkm) to the segments [x−i , x+i ], 1 ≤ i ≤ m.

Let us now list the main properties of interval pattern recognition. For this, we denote
S as the number of sample elements that are perceived by this decisive interval recognition
rule as large outliers:

• All sample elements that are large outliers are perceived by interval recognition as
large outliers. Therefore, the S ≥ s inequality is fulfilled. Then, the quality of interval
recognition may be chosen by the ratio s/S ≤ 1.

• With an increase in the number m of associated features, the recognition quality of s/S
increases and, for some samples of observations, may even approach unity.

• The number of arithmetic operations for the interval recognition procedure is propor-
tional to the product nm and therefore depends linearly on the number n of sample
elements X and on the number m of accompanying features.

• The solution of this problem in its initial version was tested with respect to s/S,,
characterizing the quality of recognition for a given sample. Here, it is possible to
increase the value 0.6 obtained by standard methods to 0.7 or more with an increase in
the number m.

3.2. Investigation of the Extremum of a Function in the Nodes of a Square Lattice

The most important element of a structure of the pressure field at an altitude of 5 km
above the Far East is a stable and extensive depression. The coordinates of this depression
(which are usually associated with a square lattice node) and the pressure value H500 at an
altitude of 5 km determine the nature of atmospheric circulation and significantly affect
the weather [19]. This also includes observations represented by a finite number of points
located at the nodes of a square lattice and characterizing a certain meteorological system.
It is known from observations that the extremes of H500 at the nodes of such a grid largely
determine the functioning of the meteorological system. If we assume that H500 is described
by a smooth function defined on a rectangle and having a minimum at the lattice node,
then by decomposing this function into a Taylor series and assuming the lattice step is
small enough, we may approximate the level lines of this function with ellipses [19]. In
turn, the direction of the major axis of the ellipse and its relation to the minor axis allow us
to make meteorological forecasts concerning the behavior of anticyclones in the vicinity of
the minimum point.

Suppose that the function f (x, y), specifying H500, is continuously differentiable twice
in the domain D = {0 ≤ x ≤ Nh, 0 ≤ y ≤ Mh}, and at the point (kh, lh), 0 < k < N,
0 < l < m, its first differential is zero, and its second differential A(x − kh)2 + B(y − lh)2 +
2C(x − kh)(y − lh) is a positive definite quadratic form (A = fx,x(kh, lh), B = fy,y(kh, lh),
C = fx,y(kh, lh)). Then, the point (kh, lh) is the point of the local minimum of the functions
f , and therefore, by virtue of the Sylvester criterion, the inequalities A + B > 0, AB > C2

are fulfilled. The lines of the level of the function f in the vicinity of the point (kh, lh) are
approximately ellipses. The angle of inclination of the major axis and the compression ratio
of these ellipses determine the nature of the atmospheric circulation.

We denote a = A + o(h), b = B + o(h) and c = C + o(h) as the finite difference
approximations of the partial derivatives A, B and C. We approximate the function f by the

function f̂ up to o(h2) in variables X =
x − kh

h
and Y =

y − lh
h

:

f̂ (x, y) = f (kh, lh) +
1
2
(aX2 + bY2 + 2cXY), a + b > 0, ab > c2.

Therefore, for small h values, the quadratic form aX2 + bY2 + 2kxy is also positively
definite.
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We reduce this form to a diagonal form by constructing a matrix A =

(
a c
c b

)
and

writing out the characteristic equation (a − λ)(b − λ)− c2 = 0, whose roots

λ± =
a + b

2
±
√(

a + b
2

)2
− ab + c2 > 0,

are the eigenvalues of the matrix A.
In the coordinate system (u+, u−) with an orthonormal basis −→n +, −→n − from the

eigenvectors of matrix A, the quadratic form aX2 + bY2 + 2cXY is represented by the sum
of squares λ+u2

+ + λ−u2− with level lines in the form of ellipses λ+u2
+ + λ−u2− = const > 0,

having a compression ratio k =
√

λ+/λ−. The slopes of the major axis of the ellipses were
found, and the compression ratio at the H500 level line allowed meteorologists to build a
physical reconstruction of various processes occurring in the atmosphere. The lines of the
level of the analyzed function H500, constructed in the form of ellipses, were rechecked
during the construction of a physical meteorological forecast in [19].

4. Recognition of Rare Outliers and Related Algorithms

Another type of observation may be time series in which m = 1 and the length of the
series n is quite large, being to the order of several hundred. Such observations characterize
important and therefore rare events in the system. These include the already described
collapses in mine workings. The miners proposed to characterize the state of the system at
some point in time by a generalized one-dimensional indicator ρ and a Boolean variable
characterizing the presence or absence of a collapse in the system. The task is to recognize
presence or absence of the collapse in the presented one-dimensional series of observations.
An algorithm is proposed for constructing a recognition procedure for the presence or
absence of the collapse, in which the amount of calculations is determined only by the
number of important events N being much smaller than n. This algorithm is based on
maximizing the frequency of correct recognition of the presence or absence of an event
from the critical value ρ∗, determining the recognition result using the inequality ρ ≤ ρ∗.

Let us now turn to the consideration of long series of observations in which the
number of large emissions is small (i.e., n is much larger than one, and N/n is much
smaller than one). Such observations include, in particular, collapses in mine workings.
There is a class of applied problems in which a certain generalized indicator is selected
as a concomitant feature, formed by specialists of this subject area based on the results
of numerous observations, such as mining specialists based on the results of acoustic
monitoring of the rock strata [13,24,25].

4.1. Recognition of Rare Outliers by a Generalized Indicator

In this subsection, we assume that the initial sample is formed as follows. All general-
ized indicators form a sequence {x11, . . . , xn1}, and the numbers k1, . . . , ks of the sample
elements characterizing large outliers are given. It is required to build a recognition rule
for determining emissions by this generalized (single) indicator. Let us place the sequence
{x11, . . . , xn1} on the real line and mark it with crosses with the numbers k1, . . . , ks (see
Figure 1). We are looking for a number x∗ defining the following decisive rule: if xk ≥ x∗,
then the sample element with the number k refers to large outliers. If xk < x∗, then the
sample element with the number k is not recognized as a large outlier.

Figure 1. Representation of a training sample on a straight line by a set of characters ×, •.

For each number c, we compare the frequency ρ×(c) of correctly attributing a sample
element to large outliers and the frequency ρ•(c) of not correctly attributing a sample
element to large outliers. The value ρ∗ is introduced using an expert method, and it is
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required that the solution corresponding to it satisfies the inequality ρ×(c) ≥ ρ∗. Among
all c : ρ×(c) ≥ ρ∗, it is required to find one value that maximizes ρ•(c). Here, ρ×(c)
characterizes the security of the decision being made, and ρ•(c) characterizes its cost-
effectiveness.

Since the function ρ×(c) is stepwise and monotonically non-increasing by the argu-
ment c, being continuous to the left, and the function ρ•(c) is stepwise and monotonically
non-decreasing, being continuous on the right (see Figures 1–3), then this problem has
many solutions that can be represented by some segment. In turn, the task of determining
the maximum value of x∗ at which ρ×(c) ≥ ρ∗ has a unique solution, which is the right
end of the segment specified above. It is natural, for security reasons, to determine the
right end of the segment, which is the solution to the maximization problem ρ•(c), under
the condition ρ×(c) ≥ ρ∗. Due to the specified property of this solution, it is sufficient to
solve the problem for the maximum of the function ρ×(c) under the condition ρ×(c) ≥ ρ∗.

Figure 2. Type of function ρ×(c).

Figure 3. Type of function ρ•(c).

The resulting solution to the problem of recognizing large outliers by sampling
{x11, . . . , xn1} and numbers k1, . . . , ks requires only knowledge of the sequence xk11, . . . xks1,
which significantly reduces the amount of calculations, since s/n is much smaller than one.

Using the method of recognizing a large outburst (exceeding the generalized indicator
of the critical level), the results were obtained for predicting collapses in the mine, which
were confirmed by specialists in mining. Moreover, the frequency of correct recognition
of a critical event (a collapse in a mining operation) constructed in solving this problem
characterizes the safety factor of mining operations, and the frequency of correct recogni-
tion of an absence of a critical event characterizes the cost-effectiveness factor of mining
operations. Therefore, when solving this problem, safety restrictions were first introduced,
and under these restrictions, the efficiency indicator was optimized. The solution of the
concrete problem considered in [13] was verified by comparing the optimization result c
obtained by the author and the result independently obtained by mining specialists (which
practically coincided). It was very important for the mining specialists to independently
verify their own rather cumbersome calculations.

4.2. Clusters of Points in Space

When implementing an acoustic monitoring system, it becomes necessary to deter-
mine acoustically active zones and, on this basis, predict dangerous collapses in mining
according to the generalized indicator introduced by mining specialists [24,25]. In the
previous subsection, to construct a generalized indicator, it was necessary to determine
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the acoustically active zone from a set of n points in three-dimensional space determined
during acoustic monitoring of cod sources in the rock column [13].

In fact, we are talking about constructing a model of an acoustically active zone based
on the available observations and an algorithm for determining it. This procedure is based
on information about the matrix ||rij||ni,j=1 of pairwise distances between the points detected
during acoustic sounding and the critical distance r between them, as set by experts.

For the first step, the matrix ||rij||ni,j=1 is converted to a zero-one matrix ||I(rij <

r)||ni,j=1.
In the second step, the constructed zero-one matrix is further considered as the adja-

cency matrix of an undirected graph, whose edges between the vertices i and j exist only
under the condition rij < r.

In the third step, using the well-known methods of graph theory, in the set of 1, . . . , n
vertices of the graph G, a set of connectivity components is determined, among which the
one with the maximum number of vertices is selected. This set of vertices is defined as an
acoustically active zone (several zones are also possible).

In the forth step, the classification procedure is accelerated in the following way.
Initially, the point 1 is taken, which is denoted by the first class. Let the vertex classes
I1, . . . , Ip from the set {1, . . . , k} be allocated in step k, and the point k+ 1 is connected by the
edges to some of these classes. Then, a new class is formed from them and the point k + 1,
and the classes that are not included in this new class remain the same, together forming a
set of classes in step k + 1. In such an algorithm, information previously used is not lost
at each step of the algorithm. The most significant step is the last step of this algorithm,
in which it is proposed to preserve the classification of the connectivity components of
the graph and not leave only one applicant for the formation of the final connectivity
component.

The selection of clusters of points in the three-dimensional space detected during
acoustic monitoring allows us to build generalized indicators by which critical events (col-
lapses) in a mine are predicted. The solution to the problem considered in [13] was verified
visually by mining specialists, who were interested in convenient computer algorithms for
defining acoustically active zones.

5. Special Classification Algorithms

Classification algorithms allow us to identify some extreme modes in a complex
system. In particular, with the help of classification algorithms, it is possible to determine
the acoustically active zones. Of particular interest are hierarchical classification algorithms
that identify objects, namely those that most influence the behavior of a complex system or
objects that play the role of hubs through which numerous connections between elements
pass. This section of the work is devoted to these issues.

5.1. Hierarchical Classification of Graph Vertices

This problem arose when analyzing a protein network presented by a complete di-
graph containing n vertices [26]. The vertices of such digraphs are proteins and the directed
edges of the connection between them. The procedure of hierarchical classification in such
a digraph is in some sense equivalent to the isolation of clots (aggregates of proteins close
to each other).

Using Floyd’s algorithm, we construct a matrix ||cij||ni,j=1 of the lengths of the minimal
paths between the vertices of the original digraph. We transform the matrix ||cij||ni,j=1
into a symmetric matrix ||rij||ni,j=1, rij = cij + cji. Thus, rij is the minimum length of a
cycle connecting the vertices i and j. It is obvious that the minimum length of a cycle
passing through a pair of vertices can be considered the distance between them, since it is
nonnegative and satisfies the triangle inequality.

Let us construct a finite, monotonically increasing sequence of R = {r1 < r2 < . . . <
rm} nonzero elements of this matrix. Having chosen some critical level r, we transform the
matrix ||rij||ni,j=1 into a zero-one matrix ||I(rij ≤ r)||ni,j=1. Now, let us construct a graph Gr,
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whose edges connect the vertices i and j provided that rij ≤ r. Then, in the undirected graph
Gr, the connectivity components may be distinguished using the classification algorithms
described above. The parameter r may be selected in different ways, such as by assuming
r = r1, . . . , rm. In this case, with 1 ≤ rp < rq ≤ rm, the class defined with r = rq necessarily
enters some class defined with r = rp. Thus, the hierarchical classification of the set of
vertices 1, . . . , n is determined. However, the increasing sequence of values of the critical
level r may be reduced at the choice of the users.

5.2. Allocation of Cyclic Equivalence Classes in a Digraph

The problem considered above requires for its formulation the allocation of cyclic
equivalence classes (clusters) in the digraph. The cyclic equivalence relation between a pair
of digraph vertices assumes the existence of a cycle containing this pair of vertices. Then,
a partial order relation may be introduced between the cyclic equivalence classes in the
digraph. There are different algorithms to define the cyclic equivalence classes and matrix
of their partial order (see, for example, [27,28]).

In order to construct a sequential algorithm for solving this problem, it is required at
each step to establish a partial order relation between the classes of cyclic equivalence. It is
not enough to just allocate cyclic equivalence classes. It is also required to determine the
zero-one matrix of the partial order relationship of clusters (a presence of a path from one
cluster to another).

To accomplish this, at step 1, the vertex 1 is taken, and a cluster and a one-by-one
unit matrix are formed from it. Let the clusters and the matrix of partial order relations
between them be constructed at step t − 1. We take the element t and select the following
sets of clusters: B1, B2 and B. The set B1 contains clusters, each of which has a path from
the vertex t, and the set B2 contains clusters from which there are paths to the vertex t. All
other clusters fall into the set B, and from them, there can be paths only to the clusters of
the set B1, and paths can exist in them only from the set B2. Then, at step t, a new cluster
[t] is built, consisting of the vertex t and the clusters of the set B1 ∩ B2. The matrix of a
partial order at step t is defined by rectangular sub matrices 0 consisting of only zeros,
rectangular sub matrices 1 consisting of only ones and rectangular sub matrices repeating
the corresponding submatrices of the matrix a at step t − 1 (see Table 1).

Table 1. Algorithm of transition from step t − 1 to step t for a matrix of partial order a.

Matrice Partial
Order

Clusters Set A1 Clusters Set [t] Clusters Set A2 Clusters Set B

set A1 clusters repeating step
(t − 1) 0

0
set [t] clusters

1
set A2 clusters repeating step (t − 1)

set B clusters repeating step
(t − 1) 0 repeating step

(t − 1)

This method has been applied to the analysis of the thermal stability of some protein
networks [16], and so far, requests have been received from various applied biological
journals for the continuation of this topic.

5.3. Definition of Central Hub Areas on the Map

Another type of such observations may be maps divided into some areas and used
to highlight areas associated with animal movements [29]. Let us assume that there is
some bounded, connected territory with a set of U0 singled-out, single-connection regions
(administrative districts or hunting farms) on it. This territory is defined by a finite set of
bounded regions on the plane. Everywhere else, without limiting generality, we assume
that the boundaries between the regions are polylines. Our task is to compress information
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about this map in order to use it further for studying the movement of rare animals in this
area by traces of these animals found in these areas.

According to this division, it is necessary to build a hierarchical classification of
internal (not touching the border of the map) districts in relation to their neighborhood.
Such a hierarchical classification assumes the allocation on the map of a sequence of sets
of districts Uk, Uk+1 ⊆ Uk, k ≥ 1 so that each district in the set Uk+1 adjoins only the
districts from the set Uk. It is shown that such a sequence is finite, and in real observations,
the number of vertices at the end of the algorithm is usually significantly less than at the
beginning. Thus, the final vertices allow us to compress the original information about
the map.

This compression of map information is based on the “neighborhood” relationship
between the specified areas. For this purpose, a map with the areas highlighted on it is
represented as a planar graph, the faces of which are the regions, and the edges are the
sections of the border between two neighboring regions.

This procedure can be continued in a recurrent way:

Uk+1 = {A ∈ Uk : S(A) ⊆ Uk}, k ≥ 1 (3)

This can continue up to some step n, at which point one of two equalities is fulfilled:
Un+1 = Un or Un+1 = 
. Here, for A ∈ U0, we define S(A) as a set of regions bordering it.

The equality Un+1 = Un means that all regions of the set Un border only on the
regions of this set. However, due to the condition of the limitation of all areas of the map,
the finiteness of the number of these areas and the presence of only polylines as boundaries,
this condition cannot be fulfilled. In addition, since at each step k the strict inclusion of
Uk+1 ⊂ Uk is performed, then the number of regions N(Uk) in the set Uk satisfies the
inequality N(Uk+1) < N(Uk). This implies the inequality n < N(U0) < ∞. Therefore, the
algorithm in Equation (3) may be implemented in a finite number of steps n. In the second
case, when Un+1 = 
, we have N(Un+1) = 0, so no area from the set Un may be completely
surrounded by areas from the same set. This algorithm requires knowledge of the set of all
inner regions U1 and the sets {S(A) : A ∈ U1} of all regions bordering the inner regions
(of the first kind). Thus, the implementation of the algorithm in Equaiton (3) is working
with lists of the area numbers and not with their view on the plane, which greatly simplifies
its implementation.

Denote Vk = Uk \ Uk+1, 1 ≤ k < n, Vn = Un, and then the equalities are valid
(Uk =

⋃n
j=k Vj, 1 ≤ k ≤ n), and any vertex of the set Vk is connected by an edge to some

vertex of the set Vk−1 where there are no edges connecting this vertex to the vertices of the
sets Vj, j < k − 1. Indeed, if the vertex is v ∈ Vk, then the inclusion of v ∈ Uk is performed.
However, a complete encirclement of a vertex v by vertices from the set Uk is impossible,
because in this case, v ∈ Uk+1 means v ∈ Vj for some j ≤ k − 1. Therefore, there is an edge
connecting the vertex v with the set of vertices Uk−1. However, an edge connecting the
vertex v to the set Uk−2 is also impossible, because the vertex v is completely surrounded
by the vertices of the set Vk−1. Finally, the vertex v ∈ Vk may be connected with some
vertices of this set also. Therefore, each region of the set Un = Vn may be considered some
center on the map. Then, the set Vn−1 consists of the areas bordering it and completely
surrounding it, called its margin or periphery of the first kind. By attaching to the periphery
of the first kind, with the regions bordering on the regions from this periphery, it is possible
to build a periphery of the second kind, and so on. It follows from this construction that the
minimum number of boundaries that the path from the vertex v ∈ Vk to the total boundary
of all districts crossed is equal to k, where k = 1, . . . , n. The proposed algorithm was tested
during the analysis of traces of the Amur tiger in the territory of Primorsky Krai with the
help of ecologists and aroused their serious interest.

6. Discussions

What all the algorithms for processing large outliers given in this paper have in
common is the fact that the algorithms themselves are fairly standard, but when applying
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them to individual samples, it is necessary to select the correct combination of these
algorithms. It is this combination that ensures the novelty of the results obtained. For
example, when processing data on acoustic monitoring of the rock strata for an algorithm
for predicting critical events (collapses), an algorithm for identifying acoustically active
zones was required. In turn, when analyzing critical events in the climate system, it is
necessary not only to highlight the moments of occurrence of these events but also their
spatial localization and behavior in its vicinity.

In the practical application of the proposed algorithms, their computational complexity
and computational speed play an important role. In some cases, for example, when process-
ing data on animal movements over a certain territory, excessive requirements for data
processing algorithms may encounter excessive computational complexity. This led to the
construction and use of hierarchical classification algorithms, which at the top level of the
hierarchy identify some central parts of the study area.

The final results of the proposed algorithms for processing observations are evaluated
by experts from the subject area. Therefore, all elements of the proposed algorithms should
be understood by these experts and allow them to be checked. Moreover, the proposed
algorithms should be convenient to assist experts in constructing various scenarios of the
behavior of the analyzed system. It should be noted that the results of processing large
outliers tend to be some estimates that require estimates of their errors and the impact of
the inaccuracies of the observations of them.

The experience of working with algorithms for processing large outliers shows that
all the elements included in them should be selected as carefully as possible in order to
ensure high quality and demand among specialists in the subject areas. It is also necessary
to combine the proposed algorithms for processing large outliers with classical probabilistic
models. For example, when processing data on animal tracks in a certain territory, it is
convenient to use an inhomogeneous Poisson flow of points [30] as a model of animal
tracks. Now, it is difficult to predict what new algorithms and models will have to be
built to solve the problems discussed in the work. These tasks come from users and
require additional mathematical processing, but it is already clear that various optimization
procedures should play an important role in them.

When identifying flashes in a time series, some difficulties arise that require a set of
different methods to overcome. For example, there are known time series of pink salmon
yields, in which the harvest is small in even years and large in odd years. To analyze this
phenomenon, it is necessary to distinguish stable cycles of a length of two in the Ricker
model. These cycles appear when the growth coefficient of the model belongs to a certain
interval. However, the noted phenomenon occurs only at the right end of the interval, and
this can be detected only after additional and more detailed calculations.

7. Conclusions

This article presents an algorithm for constructing an interval pattern recognition
procedure. The properties of this algorithm were investigated, and it was shown that with
an increase in the dimension of observations, the recognition quality improves:

• An algorithm for recognizing a critical event from a one-dimensional series of obser-
vations was constructed by analyzing the (small) part of the series containing only
critical events.

• An algorithm for determining the acoustically active zone by the coordinates of the
sound source points was constructed. This algorithm is based on the transformation
of an array of coordinates of sound source points into an undirected graph and the
allocation of connectivity components in it.

• A sequential algorithm for determining cyclic equivalence classes and partial order
relations between these classes in the digraph was constructed.

• A (fast) algorithm for the hierarchical classification of districts on the map based on
the presence of common borders (neighborhood) between districts was constructed.
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Therefore, their further development requires assessments of the stability of the results
obtained with variations of these critical levels. In addition, an important role in the devel-
opment of this topic should be played by estimates of the impact of observation errors on
the results obtained in the work. If the array of observations of a system consists of parts
of its elements’ observations, then in the near future, it will be necessary to develop a
procedure for comparing the results of processing these parts in order to determine the
most sensitive part.

From the author’s point of view, this paper is more applied than theoretical. However,
to work with the proposed material, it is required to use a more diverse mathematical tool
kit than the one that is traditionally used in the listed applications. In particular, when
working with mining materials, this allows us to identify economic and safety indicators
and significantly reduce the volume of the analyzed information.

The algorithms presented in this paper appeared as a result of long and rather unsuc-
cessful computational experiments. Practice has shown that in order to obtain reasonable
applied results, it is necessary to strictly follow the initial meaningful statement of the prob-
lem, but the algorithms proposed by the mathematicians themselves should be convenient
in calculations and fast enough. Unfortunately, the consumers of these algorithms are often
impatient users.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This paper has no processing of concrete data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Teugels, J.L. The Class of Subexponential Distributions; University of Louvain: Annals of Probability: Louvan, Belgium, 1975;
Retrieved 7 April 2019.

2. Zolotarev, V.M. One-Dimensional Stable Distributions; American Mathematical Society: Providence, RI, USA, 1986.
3. Embrechts, P.; Klueppelberg, C.; Mikosch, T. Modelling Extremal Events for Insurance and Finance; Stochastic Modelling and Applied

Probability; Springer: Berlin, Germany, 1997; Volume 33.
4. Asmussen, S.R. Steady-State Properties of GI/G/1. Appl. Probab. Queues 2003, 51, 266–301.
5. Foss, S.; Korshunov, D.; Zachary S. An Introduction to Heavy-Tailed and Subexponential Distributions; Springer Science and Business

Media: Berlin/Heidelberg, Germany, 2013.
6. Novak, S.Y. Extreme Value Methods with Applications to Finance; CRC: London, UK, 2011.
7. Wierman, A. Catastrophes, Conspiracies, and Subexponential Distributions (Part III). Rigor + Relevance Blog; RSRG Caltech: Pasadena,

CA, USA, 2014.
8. Siebert, C.F.; Siebert, D.C. Data Analysis with Small Samples and Non-Normal Data Nonparametrics and Other Strategies; Oxford

University Press: Oxford, UK, 2017.
9. Chandrasekharan, S.; Sreedharan, J.; Gopakumar, A. Statistical Issues in Small and Large Sample: Need of Optimum Upper

Bound for the Sample Size. Int. J. Comput. Theor. Stat. 2019, 6. [CrossRef]
10. Konietschke, F.; Schwab, K.; Pauly, M. Small sample sizes: A big data problem in high-dimensional data analysis. Stat. Methods

Med. Res. 2020, 30, 687–701. [CrossRef] [PubMed]
11. Vasileiou, K.; Barnett, J.; Thorpe, S.; Young, T. Characterising and justifying sample size sufficiency in interview-based studies:

systematic analysis of qualitative health research over a 15-year period. BMC Med. Res. Methodol. 2018, 18, 148. [CrossRef]
[PubMed]

12. Morgan, C.J. Use of proper statistical techniques for research studies with small samples. Am. J. Physiol. Lung Cell. Mol. Physiol.
2017, 313, 873–877. [CrossRef] [PubMed]

13. Guzev, M.A.; Rasskazov, I.Y.; Tsitsiashvili, G.S. Algorithm of potentially burst-hazard zones dynamics Representation in massif of
rocks by results of seismic-acoustic monitoring. Procedia Eng. 2017, 191, 36–42. [CrossRef]

14. Zhu, Q.X.; Chen, Z.S.; Zhang, X.H.; Rajabifard, A.; Xu, Y.; Chen, Y.Q. Dealing with small sample size problems in process industry
using virtual sample generation: A Kriging-based approach. Soft Comput. 2020, 24, 6889–6902. [CrossRef]

15. Bulgakov, V.P.; Tsitsiashvili, G.S. Bioinformatics analysis of protein interaction networks: Statistics, topologies, and meeting the
standards of experimental biologists. Biochemistry 2013, 78, 1098–1103. [CrossRef] [PubMed]

37



Mathematics 2022, 10, 3399

16. Tsitsiashvili, G.S.; Bulgakov, V.P.; Losev, A.S. Factorization of Directed Graph Describing Protein Network. Appl. Math. Sci. 2017,
11, 1925–1931. [CrossRef]

17. Bolotin, E.I.; Tsitsiashvili, G.S.; Golycheva, I.V. Some aspects and perspectives of factor prognosis for the epidemic manifestation
of the Tick-Borne Encephalitis based on the multidimensional analysis of temporal rows. Parazitology 2002, 36, 89–95. (In Russian)

18. Shatilina, T.A.; Tsitsiashvili, G.S.; Radchenkova, T.V. Peculiarities of surface air temperature variations over the Far East regions
in 1976–2005. Russ. Meteorol. Hydrol. 2010, 35, 740–743. [CrossRef]

19. Shatilina, T.A.; Tsitsiashvili, G.S.; Radchenkova, T.V. Okhotsk medium-tropospheric cyclone and its role in the formation of
extreme air temperature in January in 1950–2019. Hydrometeorol. Stud. Forecast. 2021, 3, 64–79. (In Russian) [CrossRef]

20. Tsitsiashvili, G.S.; Shatilina, T.A.; Radchenkova, T.V. Application of New Algorithms for Processing Meteorological Observations;
Publishing House “Buk”: Kazan, Russia, 2022. (In Russian)

21. Lever, J.; Leemput, I.; Weinans, E.; Quax, R.; Dakos, V.; Nes, E.; Bascompte, J.; Scheffer, M. Foreseeing the future of mutualistic
communities beyond collapse. Ecol. Lett. 2020, 23, 2–15. [CrossRef] [PubMed]

22. Radchenko, V. Abundance Dynamics of Pink Salmon, Oncorhynchus gorbuscha, as a Structured Process Determined by Many
Factors. NPAFC Tech. Rep. 2011, 8, 14–18. [CrossRef]

23. Shuntov, V.P.; Temnikh, O.S. Far Eastern Salmon Industry–2016: Good Results, Successes and Errors in Forecasts and the Traditional
Failure of VNIRO on the Ways of Innovative Breakthroughs Announced by Him in Forecasting the Number and Catches of Fish. Study of
Pacific salmon in the Far East; TINRO-Center: Vladivostok, Russia, 2016; Volume 11, pp. 3–13. (In Russian)

24. Rasskazov, I.Y. Control and Management of Rock Pressure in the Mines of the Far Eastern Region; Gornaya Kniga Publ.: Moscow,
Russia, 2008. (In Russian)

25. Rasskazov, I.Y.; Gladyr, A.V.; Anikin, P.A.; Svyatetsky, V.S.; Prosekin, V.A. Development and modernization of the control system
of dynamic appearances of rock pressure on the mines of “Priargunsky Industrial Mining and Chemical Union”. JSC Gorn.
Zhurnal (Min. J.) 2013, 8, 9–14. (In Russian)

26. Tsitsiashvili, G.S.; Bulgakov, V.P.; Losev, A.S. Hierarchical classification of directed graph with cyclically equivalent nodes. Appl.
Math. Sci. 2016, 10, 2529–2536.

27. Mezic, I.; Fonoberov, V.A.; Fonoberova, M.; Sahai, T. Spectral Complexity of Directed Graphs and Application to Structural
Decomposition. Complexity 2019, 2019, 9610826. [CrossRef]

28. Tarjan, R. Depth-first Search and Linear Graph Algorithms. SIAM J. Comput. 1972, 1, 146–160. [CrossRef]
29. Pikunov, D.G.; Mikell, D.G.; Seredkin, I.V.; Nikolaev, I.G.; Dunishenko, Y.M. Winter Tracking Records of the Amur Tiger in the Russian

Far East (Methodology and History of Accounting); Dalnauka: Vladivostok, Russia, 2014. (In Russian)
30. Kingman, J.F.C. Poisson Processes; Oxford Studies in Probability-3; Clarendon Press: Oxford, UK, 1993.

38



Citation: Chaudhry, M.; Goswami, V.

The Geo/Ga,Y/1/N Queue Revisited.

Mathematics 2022, 10, 3142. https://

doi.org/10.3390/math10173142

Academic Editors: Gurami

Tsitsiashvili and Alexander Bochkov

Received: 25 July 2022

Accepted: 23 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

The Geo/Ga,Y /1/N Queue Revisited

Mohan Chaudhry 1 and Veena Goswami 2,*

1 Department of Mathematics and Computer Science, Royal Military College of Canada, P.O. Box 17000,
Kingston, ON K7K 7B4, Canada

2 School of Computer Applications, Kalinga Institute of Industrial Technology, Bhubaneswar 751 024, India
* Correspondence: veena@kiit.ac.in

Abstract: We not only present an alternative and simpler approach to find steady-state distributions
of the number of jobs for the finite-space queueing model Geo/Ga,Y/1/N using roots of the inherent
characteristic equation, but also correct errors in some published papers. The server has a random
service capacity Y, and it processes the jobs only when the number of jobs in the system is at least
‘a’, a threshold value. The main advantage of this alternative process is that it gives a unified
approach in dealing with both finite- and infinite-buffer systems. The queue-length distribution is
obtained both at departure and random epochs. We derive the relation between the discrete-time
Geo/Ga,Y/1/N queue and its continuous-time analogue. Finally, we deal with performance measures
and numerical results.

Keywords: batch service; roots; discrete-time queue; discrete renewal theory; finite buffer capacity
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1. Introduction

Discrete-time queues with batch service have numerous applications in various areas
such as transportation systems, traffic, production, manufacturing, telecommunication,
and cloud computing. In various real-life settings, it is often noted that the jobs are served
in batches. The server may serve with fixed maximum or variable capacity in batch
service systems. For more details on batch service queues, one may refer to Chaudhry
and Templeton [1] as well as Medhi [2]. Discrete-time queues are more notable in systems’
modelling, see [3–5].

In discrete-time queues, it is assumed that arrivals and departures occur at boundary
epochs of time slots. Further, discrete-time queues deal with an early arrival system (EAS)
or a late arrival system with delayed access (LAS-DA). For more on this, see Hunter [4]. We
may note that EAS and LAS-DA policies are similar to departure-first (DF) and arrival-first
(AF), respectively; see Gravey and Hébuterne [6].

Several researchers study single-server batch-service discrete-time queues with various
phenomena, see [7–13]. In Gupta and Goswami [10], they discuss a discrete-time finite-
buffer general bulk service queue under both LAS-DA and EAS policies. The model
involving batch-size-dependent service in a discrete-time queue where inter-arrival times
and the service times follow geometric and general distribution, respectively, has been
discussed by Banerjee et al. [14]. In Yi et al. [13], the authors analyze a discrete-time
Geo/Ga,Y/1/N queue, where service is initiated only when the number of jobs in the
system is at least ‘a’. In Zeng and Xia [15], the authors discuss M/Ga,b/1/N queue where
service is in batches with minimum threshold a, maximum capacity b and the buffer size,
N, finite or infinite.

At some point, finding the roots of the characteristic equation seemed difficult, mainly
when the number involved was large. Several researchers have made these comments.
Given this, the procedure for solving queueing models led to the matrix-analytic or matrix-
geometric method. In this connection, see the remark below. Following Chaudhry et al. [16],
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other researchers have attempted to show that roots can be found, and using them leads to
nice analytic and numerical solutions. Gouweleeuw [17] shows that the roots’ approach for
finding probabilities from generating functions in precise expressions is effective. Further,
in the case of large buffer size, solving simultaneous equations gives rise to poor reliability
and takes considerable time; see Powell [18] (p. 141), who, while dealing with the model
M/Dc/1, states that when c ≥ 40 the method using simultaneous equations breaks down
leading to negative probabilities. The goal of this paper is to give an alternative solution
that is analytically powerful, simple, and easy to implement numerically. It may be stated
further that this method has not been used to discuss the discrete-time queueing system
that deals with batch services and a finite buffer.

In real-world systems, we encounter many finite-buffer systems such as telecommuni-
cation networks. Because of this, we study the Geo/Ga,Y/1/N model under the assumption
of late arrival and delayed access system (LAS-DA). Here, we assume that the single server
with variable service capacity will process the jobs only when there are at least ‘a’ jobs in the
system. In Yi et al. [13], the authors found the queue-length distribution at post-departure
by solving simultaneous equations and random epoch by applying the “rate in = rate
out” arguments. We develop an alternate process to find the queue-length distributions at
post-departure and random epochs.

The principal contributions of this work may be summed up as follows:

• We find an alternative method to obtain the steady-state queue-length distributions of
Geo/Ga,Y/1/N at post-departure and random epochs.

• The approach presented in this paper unifies in a way that can handle both the infinite-
space as well as finite-space models at the same time.

• We point out the incorrectness of queue-length distributions’ numerical results (at
random epochs) reported in Yi et al. [13]. They also assumed batches with a random
capacity Y having probability mass function (pmf) P(Y = i) = yi, i = 0, 1, . . . , b
instead of i = a, a + 1, . . . , b.

• We compute the steady-state queue-length distributions of Geo/Ga,Y/1/N at post-
departure and random epochs when ρ > 1, which is missing in Yi et al. [13]. Further,
we point out the incorrectness of the formula for the mean waiting time in the queue
(using Little’s rule) in Yi et al. [13].

• We can obtain the continuous-time solution for the model M/Ga,Y/1/N (see Appendix A)
and the procedure used here can be applied to obtain a solution for this continuous-
time model too. Further, it is anticipated that, using this method, we can obtain
waiting-time distribution using Little’s law, a problem for which no solution is avail-
able, even using the matrix-analytic method. The primary purpose of this paper is to
show its unifying power and superiority over other methods, and to give a simple
solution to the existing problem.

• Finally, we compare the roots’ method against the process that uses simultaneous
equations and present the results in the numerical section. It clearly shows that the
roots approach takes less time.

The remaining paper is structured as follows. Section 2 specifies the model. Section 3
analyzes the Geo/Ga,Y/1/N system and finds queue-length distributions for the LAS-DA
policy. Section 4 examines various system performance measurements. Section 5 provides
some numerical results and, finally, the paper is concluded in Section 6.

Remark 1. It may be useful to comment on the matrix-analytic and the root-finding method.
Kendall [19] made a famous remark that queueing theory wears the Laplacian curtain. Kleinrock [20]
(p. 291) states, “One of the most difficult parts of this method of spectrum factorization is to solve for
the roots”. Neuts (see Neuts’ book [21] and also Stidham [22]) states, “In discussing matrix-analytic
solutions, I had pointed out that when the Rouch’ roots coincide or are close together, the method
of roots could be numerically inaccurate. When I finally got copies of Crommelin’s papers, I was
elated to read that, for the same reasons as I, he was concerned about the clustering of roots. In
1932, Crommelin knew; in 1980, many of my colleagues did not . . . ”. Following this, several other
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researchers made similar comments. Given this, the procedure for solving queueing models led to
the matrix-analytic or matrix-geometric method. In response, Chaudhry et al. [16] showed that the
roots can be found even when the number involved is large. (This was done when MATHEMATICA
OR MAPLE failed to give those roots. We can now use this software to find roots.)

2. Model Description

We consider a Geo/Ga,Y/1/N queue where jobs arrive following a Bernoulli process
with parameter λ. A single server processes the jobs on a first-come-first-served (FCFS)
discipline in batches with a random capacity Y possessing a probability mass function
(pmf) P(Y = i) = yi, i = a, a + 1, . . . , b with ∑b

i=a yi = 1, the probability generating function
(PGF) Y(z) = ∑b

i=a yizi, mean E(Y) = ∑b
i=a iyi and Y

′
(z) = zbY(z−1). We assume the

minimum and maximum threshold values of the random variable Y as a and b, respectively.
When there are at least ‘a’ jobs in the queue, the server commences serving a batch of size i
with probability yi (when there are Y ≤ b, it takes all of them). When the number of jobs
comes down below a threshold value a(≥ 1) in the system, the server remains idle but
awaits the number of jobs to rise to a; when it attains a, it resumes service. The service
times {Sn, n ≥ 1} are independently and identically distributed (iid) with arbitrary pmf
sk = P(Sn = k), k = 1, 2, . . . and s0 = 0, the PGF S(z) = ∑∞

i=1 sizi and mean service time
E(S) = s = d

dz S(z)|z=1= 1/μ.
The processing times of the jobs are independent of the arrival process and the number

of jobs served. The waiting buffer has a finite capacity N with b ≤ N. Thus, in the system,
no more than N + b jobs can be available anytime. We presume offered load of the system
as ρ = λE(S)/E(Y). In LAS-DA policy, arrivals occur in (u−, u), and departures take place
in (u, u+); arrivals supersede departures. Figure 1 describes the various time periods at
which events occur. For more details on this, one may refer to [5,6].

u− u

:Potential arrival epoch
:Potential departure epoch

∗ :Outside observer’s epoch

u+ (u + 1)− (u + 1)

(u+, (u+ 1)−) :Outside observer’s interval
u+ :Epoch after a potential departure
u− :Epoch prior to a potential arrival

(u + 1)+

A(Potential arrival)

D(Potential departure)

*

A

D

Figure 1. Various time epochs in LAS-DA.

3. Queue-Length Distributions

Here, we find steady-state queue-length distributions at various epochs of
Geo/Ga,Y/1/N queue with the LAS-DA policy.

3.1. Post-Departure Epoch Probabilities

Let Q+
� be the number of jobs in the queue after completing the �th service. Suppose

A�+1 and Y�+1 represent the number of arrivals throughout the processing time on the
(�+ 1)th job and the processing capacity of (�+ 1)th service, respectively. As per the batch
service rule, the departure epoch queue lengthis

Q+
�+1 = min

((
Q+

� − Y�+1
)+

+ A�+1, N
)

,
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where x+=max(x, 0). The probability distribution of A�+1 is

kn = P(A�+1 = n) =
∞

∑
j=1

P(A�+1 = n|S�+1 = j)P(S�+1 = j)

=
∞

∑
j=n

sj

(
j
n

)
λn(1 − λ)j−n, n ≥ 0.

Here we may note that arrivals are generated by a Bernoulli sequence by the property
of geometric interarrival times. In LAS-DA, if the service time of the (� + 1)th job is
j slots, then there will be j time slots where n arrivals may occur. One may note that
( j

n)λ
n(1 − λ)j−n is the probability of n arrivals in j slots. Let K(z) = ∑∞

n=0 knzn be the
probability generating function of the sequence {kn, n = 0, 1, . . .}. Thus

K(z) =
∞

∑
n=0

∞

∑
j=n

sj

(
j
n

)
λn(1 − λ)j−nzn =

∞

∑
j=0

sj(1 − λ + λz)j = S(1 − λ + λz).

Transition probabilities in one step of underlying Markov chain for
pij = lim

�→∞
Pr{Q+

�+1 = j|Q+
� = i} are given as

pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kj, 0 ≤ i ≤ a, 0 ≤ j ≤ N − 1,

kj
b
∑

r=i
yr +

i−1
∑

r=a
yrkj−i+r, a + 1 ≤ i ≤ b − 1, i − a − 1 ≤ j ≤ N − 1,

b
∑

r=a
yrkj−i+r, b ≤ i ≤ N, i − b ≤ j ≤ N − 1,

�N , 0 ≤ i ≤ a, j = N,

�N
b
∑

r=i
yr +

i−1
∑

r=a
yr�N−i+r, a + 1 ≤ i ≤ b − 1, j = N,

b
∑

r=a
yr�N−i+r, b ≤ i ≤ N, j = N,

(1)

where �j =
∞
∑

r=j
kr and kj with j < 0 defined to be zero, and which leads to the transition

probability matrix P = (pij) as

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 . . . j . . . N − 1 N

0 k0 k1 . . . kj . . . kN−1 �N

1 k0 k1 . . . kj . . . kN−1 �N

...
...

...
...

. . .
...

...
...

a k0 k1

... kj . . . kN−1 �N

a + 1 k0
b
∑

r=a+1
yr k1

b
∑

r=a+1
yr

... kj
b
∑

r=a+1
yr . . . kN−1

b
∑

r=a+1
yr �N

b
∑

r=a+1
yr

+k0ya +kj−1ya +kN−2ya +�N−1ya

...
...

...
...

. . .
...

...
...

b k0yb
b
∑

r=b−1
yrk1−b+r

...
b
∑

r=a
yrkj−b+r . . .

b
∑

r=a
yrkN−1−b+r

b
∑

r=a
yrkN−b+r

b + 1 0 k0yb

...
b
∑

r=a
yrkj−b+r−1 . . .

b
∑

r=a
yrkN−b+r−1

b
∑

r=a
yrkN−b+r−1

...
...

...
...

. . .
...

...
...

N 0 0 0
b
∑

r=a
yrkj−N+r

...
b
∑

r=a
yrkr−1

b
∑

r=a
yr�r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The (�+ 1)th batch service starts when there are ‘a’ jobs in the queue, and the state
changeover occurs from 0 ≤ i ≤ a − 1 to 0 ≤ j ≤ N − 1. If the state changeover is from
state i ≥ a to state 0 ≤ j ≤ N − 1, then there is a busy period between the leaving epoch of
the �th batch and the commencement of processing (�+ 1)st batch. Let the steady-state
probability p+ = {P+

0 , P+
1 , . . . , P+

n , . . . , P+
N } represent � jobs at departure epochs. Then, in

steady-state, p+ = p+P can be expressed as follows:

P+
j =

a

∑
i=0

P+
i kj +

b−1

∑
i=a+1

P+
i

b

∑
r=i

yrkj +
b−1

∑
i=a+1

P+
i

i−1

∑
r=a

yr kj−i+r +
N

∑
i=b

P+
i

b

∑
r=a

yr kj−i+r,

0 ≤ j ≤ N − 1, (2)

P+
N =

a

∑
i=0

P+
i �N +

b−1

∑
i=a+1

P+
i

b

∑
r=i

yr�N +
b−1

∑
i=a+1

P+
i

i−1

∑
r=a

yr �N−i+r +
N

∑
i=b

P+
i

b

∑
r=a

yr �N−i+r, (3)

where the normalization condition is
N
∑

j=0
P+

j = 1. It may be noted that Equation (3)

is redundant and will not be considered in analysis hereafter. Specify PGF of P+
j as

P+(z) =
N
∑

j=0
P+

j zj. Multiplying Equation (2) by zj and then adding overall j, we obtain

P+(z) =
N−1

∑
j=0

kjzj
a

∑
i=0

P+
i +

N−1

∑
j=0

zj
b−1

∑
i=a+1

P+
i

(
b

∑
r=i

yr

)
kj

+
N−1

∑
j=0

zj
b−1

∑
i=a+1

P+
i

i−1

∑
r=a

yr kj−i+r +
N−1

∑
j=0

zj
N

∑
i=b

P+
i

b

∑
r=a

yr kj−i+r + P+
N zN ,

P+(z)
[

1 − K(z)Y
(

1
z

)]
= K(z)

a−1

∑
i=0

P+
i

(
1 − ziY

(
1
z

))
+ P+

N zN

+ K(z)
b

∑
i=a

P+
i

(
b

∑
r=i

yr − zi
b

∑
r=i

yr

zr

)
−

b

∑
i=a

yi

N

∑
j=i+1

P+
j

∞

∑
r=N−j+a

krzr+j−i

−
(

a−1

∑
i=0

P+
i +

b

∑
i=a

P+
i

b

∑
r=i

yr

)
∞

∑
j=N

kjzj.

Simplifying the above equation, we get

P+(z) =
K(z)

[
a−1
∑

i=0
P+

i

(
zb − ziY

′
(z)
)
+

b−1
∑

i=a
P+

i

(
b
∑

r=i
yrzb − zi

b
∑

r=i
yrzb−r

)]
zb − K(z)Y′(z)

+

zN+b

(
P+

N − b
∑

i=a
yi

N
∑

j=i+1
P+

j

∞
∑

r=N−j+a
krzr+j−i−N

)
zb − K(z)Y′(z)

−
zN+b

(
a−1
∑

i=0
P+

i +
b
∑

i=a
P+

i

b
∑

r=i
yr

)
∞
∑

j=N
kjzj−N

zb − K(z)Y′(z)
. (4)

Only the first expression on the right side of the Equation (4) will add to the coefficient
of zj, j = 0, 1, . . . N. To the right of Equation (4), we ignore the second and third expressions,
which consist of an output of z higher than N + b. These are not required as we want
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to compare the coefficients of zj for j ≤ N on both sides in Equation (4) to find P+
j for

j = 0, 1, . . . , N. Let

P+
N (z) =

K(z)
[

a−1
∑

i=0
P+

i

(
zb − ziY

′
(z)
)
+

b−1
∑

i=a
P+

i

(
b
∑

r=i
yrzb − zi

b
∑

r=i
yrzb−r

)]
zb − K(z)Y′(z)

, (5)

which is equivalent to the PGF of an infinite buffer case. The function P+
N (z) is fully

determined once P+
i , i = 0, 1, . . . , b − 1 are known. One may observe that when ρ < 1,

Equation (5) denotes the PGF of discrete-time infinite buffer Geo/Ga,Y/1 queue. We can
calculate the probabilities for ρ ≥ 1 in the case of a finite buffer Geo/Ga,Y/1/N queue.

Remark 2. Using a = 1, the model is reduced to Geo/GY/1/N queue.

Remark 3. Taking y1 = 1, yi = 0, ∀ 2 ≤ i ≤ b and a = 1, the model becomes Geo/G/1/N

queue and Equation (5) establishes PGF as P+
N (z) = P+

0 K(z)(1−z)
K(z)−z , where K(z) = S(1 − λ + λz),

which corresponds to the results of [23].

Remark 4. Taking yb = 1 and yi = 0, ∀ i �= b, the model is reduced to Geo/G(a,b)/1/N and

Equation (5) establishes the PGF as P+
N (z) =

K(z)
b−1
∑

i=0
P+

i (zb−zi)

zb−K(z) .

Intending to establish a unified method to solve the queueing system Geo/Ga,Y/1/N,
we obtain {P+

n }N
0 from P+(z) by using the roots of characteristic equation and partial-

fraction expansion. The literature on queueing systems shows that arrival/service-time
distributions that possess the generating function as a rational function deal with the broad
class of distributions see [24]. For this, we suppose that K(z) = S(1 − λ + λz) as a rational
function in z, specified by

K(z) = S(1 − λ + λz) =
f (z)
g(z)

,

where f (z) and g(z) are polynomials of degree m and s, respectively, where m and s can
have any value, e.g., m can be greater than s, e.g., see Example 3(ii). Thus, we have from
Equation (5),

P+
N (z) =

f (z)
[

a−1
∑

i=0
P+

i

(
zb − ziY

′
(z)
)
+

b−1
∑

i=a
P+

i

(
b
∑

r=i
yrzb − zi

b
∑

r=i
yrzb−r

)]
zbg(z)− f (z)Y′(z)

. (6)

The denominator of Equation (6) is a polynomial of degree b + s which when equated
to zero has b + s roots inside, on, or outside the unit circle | z |= 1, say, γ1 = 1,
γi (i = 2, 3, . . . , b + s).

Remark 5. If the denominator zbg(z)− f (z)Y
′
(z) of Equation (6) = 0 obtains roots close to each

other or repeated roots, we may obtain them by applying advanced software packages, for instance,
MATHEMATICA or MAPLE. The MAPLE script for calculating repeated roots is exemplified
below for Equation

u(y) = (y − 2)(y − 5)2(y − 7)3(y − 11).
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restart : Digits := 10 : with(RootFinding) :

m := (y − 2)(y − 5)2(y − 7)3(y − 11);

Analytic( u, y, re = −1..10, im = −2 ..10 ) ;

7.00000000000000, 7.00000000000000, 7.00000000000000, 5.00000000000000,

5.00000000000000, 2.00000000000000, 11.00000000000000

According to Rouché’s theorem, the denominator of Equation (6) has b zeros say,
γi (i = 1, 2, . . . , b) inside the unit circle. As P+

N (z) converges in | z |≤ 1, the b zeros within
the unit circle of the denominator should cancel with the b zeros of the numerator. After
canceling the b factors in the numerator and denominator, we can re-write Equation (6) as

P+
N (z) = T

⎛⎜⎜⎜⎝C(z) +
f1(z)

b+s
∏

i=b+1
(z − γi)

⎞⎟⎟⎟⎠, (7)

where C(z) =
n0
∑

i=0
cizi and T is a normalizing constant. Note that when 2m < s, then C(z)

will be zero. In the partial-fraction process, a slight modification is needed ([25], p. 221)
when all the roots are not distinct. Since we are looking at the finite buffer queue system,
three instances appear here.

• If ρ < 1 the s roots γi, i = b + 1, b + 2, . . . , b + s remain outside the circle | z |= 1.
• If ρ = 1, among the s roots, one root is ‘1′, and the other roots γi, i = b + 2, b + 3,

. . . , b + s are outside the unit circle | z |= 1.
• If ρ > 1, among s roots, one root is inside, say γb+1 and the other roots γi, i = b + 2,

b + 3, . . . , b + s are outside, see [26]. One may note that when ρ > 0 increases, one
positive real root comes closer to the origin from right to left.

The expression (7) is tractable for inversion. Applying partial-fraction expansion to
Equation (7) yields

P+
N (z) = T

(
C(z) +

b+s

∑
i=b+1

Mi
z − γi

)
, (8)

where

Mi =
f1(γi)

b+s
∏

j=b+1,j �=i
(γi − γj)

.

Using Equation (8), we have

P+
n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T

(
cn +

b+s
∑

i=b+1

−Mi
γn+1

i

)
, if n = 0, 1, . . . , n0,

T
b+s
∑

i=b+1

−Mi
γn+1

i
, if n = n0 + 1, n0 + 2, . . . , N.

(9)
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Employing the normalization condition
N
∑

n=0
P+

n = 1, we obtain the only unknown T as

T =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
n0
∑

i=0
ci −

b+s
∑

i=b+1

Mi
γi

× 1−γ
−(N+1)
i

1−γ−1
i

)−1

, if ρ �= 1,

(
n0
∑

i=0
ci − Mb+1(N + 1)− b+s

∑
i=b+2

Mi
ψi

× 1−ψ
−(N+1)
i

1−ψ−1
i

)−1

, if ρ = 1.

(10)

Thus, once all the roots are known, we can get the distribution for the number in queue.

Remark 6. It may be noted that it is also possible to find the probabilities {P+
n }N

0 by assuming the
solution of the form P+

j = Czj, where C �= 0. Unfortunately, if we use this method, we have to
solve for N simultaneous equations.

3.2. Relationship between the Queue-Length Distributions at Post-Departure and Random Epochs

This sub-section establishes associations between probability at random and post-
departure epochs by basic probabilistic reasoning and discrete-time renewal theory. In
steady-state, let {Pj}N

0 and {P−
j }N

0 be the probabilities representing the number of jobs in
the queue at random times and before arrival, respectively. Since the inter-arrival times
use geometric distribution, the arrivals are independent of other events. Thus, it implies
that Pj = P−

j , ∀ j = 0, 1, . . . , N; for details, see Boxma and Groenendijk [27]. If the server
is idle, there are < a jobs in the queue. Suppose Nq is the number of tasks in the queue at
some random time. At a random epoch, the steady-state probabilities are Pn,0 = P(Nq = n,
server idle), 0 ≤ n ≤ a − 1, and Pn,1 = P(Nq = n, server busy), 0 ≤ n ≤ N. Given this,

Pj =

{
Pj,0 + Pj,1 if 0 ≤ j ≤ a − 1
Pj,1 if a ≤ j ≤ N

Let the limiting pmf of the elapsed service time be ŝ�, which is determined by

ŝ� = μ
∞
∑

r=�+1
sr, � ≥ 0 (see, [5] (p. 20)), and k̂� be the probability that the number of

arrivals during an elapsed service time is �. This yields

k̂� =
∞

∑
i=�

(
i
�

)
λ�(1 − λ)i−� ŝi, � = 0, 1, . . .

If E∗ is the mean inter-departure time of processing batches, 1/E∗ represents the
departure rate. At the batch departure epoch, if the number of jobs in the queue is less than
a, the subsequent batch departure occurs after an idle time and the service time processing
time. Otherwise, the release of the next batch takes place following the processing time of
the subsequent batch. This gives,

E∗ = E(S)

(
1 −

a−1

∑
i=0

P+
i

)
+

a−1

∑
i=0

P+
i

(
a − i

λ
+ E(S)

)
= E(S) +

a−1

∑
i=0

P+
i
(a − i)

λ
.

Remark 7. It can also be put down as E∗ = E(S) +
a
∑

i=1
P+

a−i

(
i
λ

)
. When a = 1, it matches with

Chaudhry and Chang [7].
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Theorem 1. The random- and post-departure-epoch probabilities {{Pj,0}a−1
0 , {Pj,1}N

0 }, and {P+
j }N

0
are related by

Pj,0 =

j
∑

i=0
P+

i

a−1
∑

i=0
(a − i)P+

i + λE(S)
, 0 ≤ j ≤ a − 1, (11)

Pj,1 =

(
1 −

a−1

∑
i=0

Pi,0

)
·
[ a−1

∑
i=0

P+
i k̂j +

b−1

∑
i=a

P+
i

(
b

∑
m=i

ym

)
k̂j +

b−1

∑
i=a+1

P+
i

i−1

∑
m=a

ym k̂j−i+m

+
N

∑
i=b

P+
i

b

∑
m=a

ym k̂j−i+m

]
, 0 ≤ j ≤ N − 1. (12)

Finally, PN,1 can be found from PN,1 = 1 − a−1
∑

j=0
Pj,0 −

N−1
∑

j=0
Pj,1.

Proof. The fraction of the time the batch server remains idle between two successive
departure epochs is the probability of getting the server idle at a random epoch (Pidle). Let
E(I) be the mean idle period. Using the definition of E(S) and E(I), we have

Pidle =
E(I)

E(I) + E(S)
,

Pj,0 = Pidle × P(fraction of idle period) =
E(I)

E(I) + E(S)
×

1
λ

j
∑

i=0
P+

i

E(I)
, 0 ≤ j ≤ a − 1,

where E(I) = 1
λ

a−1
∑

i=0
P+

i (a − i). We employ system state conditioning and discreet renewal

theory to find Pj,1. The processor is active with probability (1 − a−1
∑

i=0
Pi,0); thus,

Pj,1 = P(Nq = j, processor active) = (1 −
a−1

∑
i=0

Pi,0)P(Nq = j | processor active) (13)

Assuming that ke
j is the number of jobs that come following an embedded Markov

point until the elapsed service time, we have

P(Nq = j | processor active) =
a−1

∑
i=0

P+
i

b

∑
m=a

ymk̂j +
b−1

∑
i=a

P+
i

b

∑
m=i

ymk̂j

+
b−1

∑
i=a+1

P+
i

i−1

∑
m=a

ym k̂j−i+m +
N

∑
i=b

P+
i

b

∑
m=a

ym k̂j−i+m,

0 ≤ j ≤ N − 1. (14)

Putting together (13) and (14), we obtain (12). We can obtain PN,1 using normalization
condition. Thus, we obtain random epoch probabilities {{Pj,0}a−1

0 , {Pj,1}N
0 } in connection

with post departure epoch probabilities {P+
j }N

0 .

Though the relations between random- and post-departure epoch probabilities are
available in [13] using transition rates, here, we develop an alternative method to obtain
the queue-length distributions at random epochs.

Because of BASTA (Bernoulli arrivals see time averages) property, see [5], the queue-
length distribution exactly before arrival of job will be equal to that of Pj,0 and Pj,1. Further,

47



Mathematics 2022, 10, 3142

since the outside observation epoch falls in an interval between arrival and departure
epochs, the outside observer’s distribution is the same as the random epoch distribution.

4. Performance Measures

This section deals with several measures of performance. The average number of jobs
in the queue (Lq) is given by

Lq =
a−1

∑
j=0

j Pj,0 +
N

∑
j=0

j Pj,1

The probability of the processor being busy (PB) at some random moment is specified
by 1− ∑a−1

j=0 Pj,0. Due to the BASTA property, the loss or blocking probability (PBL) is given
by PBL = PN,1. Since the effective arrival rate λe = λ(1 − PN,1), we can obtain the average
wait time in the queue (Wq) by employing Little’s law as Wq =

Lq
λe

. The reported result of
Wq in [13] is incorrect. They have applied the effective arrival rate as λ instead of λe.

Remark 8. If ρ < 1 and N → ∞, then λe = λ and Lq =
a−1
∑

j=0
j Pj,0 +

∞
∑

j=0
j Pj,1. Using Little’s law,

the average waiting time in the queue (Wq) can be computed as Wq =
Lq
λ .

5. Numerical Results

To exemplify the analytic results found in this article, we illustrate several numerical
outcomes in tables and figures. We also give several performance measures, for instance, the
average queue length (Lq), the average waiting time in the queue (Wq), and the probability
of loss (Ploss). The computations were performed in double precision and executed in a
64-bit windows 10 professional OS possessing Intel(R) corei5-6200U processor @2.30 GHz
and 8 GB DDR3 RAM utilizing MAPLE 18 software. The numerical results were exact,
but we reported outcomes rounding to six decimal places. Because reported outcomes are
rounded, the sum of probabilities may not add up to one in some cases.

Example 1. Geo/NBa,Y
2 /1/10queue. Consider the distribution of service time as being in two

stage negative binomial distribution (NB) with PGF S(z) =
(

μz
1−μ̄z

)2
. Here, we consider the same

parameters as in Table 1 of the paper [13] to compare the results. The parameters are E(S) = 5,
y2 = 0.2, y3 = 0.1, y4 = 0.7, and E(Y) = 3.5. The arrival rates are 0.14, 0.35, and 0.56 with
corresponding traffic intensities ρ = 0.2, 0.5, and 0.8, respectively. To show the evaluation process,
let us assume λ = 0.14. The denominator of Equation (6) has six roots, two of which are outside,
and four are in and on the unit circle. From Equation (8),

P+
N (z) = T

(
0.068061 +

7.817631
z − 6.392624

− 6.204397
z − 5.024572

)
,

where T = 6.250001. Similarly, the denominator of P+
N (z) has two roots outside the unit circle

when arrival rates are 0.35 and 0.56, and we have from Equation (8),

P+
N (z) = T

(
c0 +

Mb+1
z − γb+1

+
Mb+2

z − γb+2

)
,

where γb+1 = 2.106094, γb+2 = 3.454495, T = 6.256038, c0 = 0.053212, Mb+1 = −0.619857,
Mb+2 = 1.113392 and γb+1 = 1.304299, γb+2 = 2.688401, T = 6.867372, c0 = 0.025779,
Mb+1 = −0.081358, Mb+2 = 0.224798, respectively.

Now, we can find post-departure epoch probabilities from Equation (9). The results are
presented in Table 1. We note that the results of queue-length distribution at post-departure

48



Mathematics 2022, 10, 3142

epoch match the results given by Yi et al. [13], but the random epoch does not. We have also
computed queue-length distributions at random epochs using their method for checking
purposes. They match perfectly with our results. However, the results presented in the
paper by [13] are different. Thus, various performance measures are also not the same.

Table 1. Queue-length distributions at various epochs for the Geo/NB2,Y
2 /1/10 queue.

P+
j {Pj,0, Pj,1}

ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8

P+
0 0.499734 0.157755 0.030728 P0,0 0.244991 0.066960 0.010330

P+
1 0.340335 0.290459 0.113199 P1,0 0.411838 0.190246 0.048385

P+
2 0.118658 0.246052 0.169892 P0,1 0.239989 0.301616 0.170317

P+
3 0.031582 0.148137 0.161190 P1,1 0.077189 0.206250 0.172979

P+
4 0.007532 0.079398 0.135131 P2,1 0.019965 0.116185 0.148409

P+
5 0.001694 0.040301 0.107666 P3,1 0.004694 0.060454 0.119818

P+
6 0.000368 0.019932 0.084302 P4,1 0.001047 0.030223 0.093880

P+
7 0.000078 0.009692 0.065970 P5,1 0.000226 0.014762 0.071726

P+
8 0.000016 0.004598 0.049310 P6,1 0.000048 0.007247 0.059329

P+
9 0.000003 0.002109 0.033773 P7,1 0.000010 0.003379 0.041064

P+
10 0.000001 0.001567 0.048838 P8,1 0.000002 0.001560 0.027772

P9,1 0.000000 0.000665 0.016418
P10,1 0.000000 0.000452 0.019571

Sum 1.000000 1.000000 1.000000 Sum 1.000000 1.000000 1.000000
Lq 0.548733 1.095056 2.820867
Wq 3.919521 3.130145 5.137817

PBL 0.000000 0.000452 0.019571

Remark 9. It may be noted that P+
N (z) is a polynomial in both cases, as can be seen in Table 1. The

same applies to other cases as well.

Example 2. Geo/DPHa,Y/1/Nqueue. The service-time distribution is assumed to be discrete
phase-type (DPH) having sk = αTk−1T0, k = 1, 2, . . ., T0 = e − Te, where e is the appropriate
column vector with all elements equal in size. This gives the PGF of service-time distribution as
S(z) = zα(I − zT)−1T0, |z| ≤ 1. Table 2 shows the queue length distributions at different
times employing the DPH service time distribution. For the first example of Table 2, we suppose

α =
[
0.40 0.50 0.10

]
, T =

⎡⎣0.10 0.20 0.05
0.30 0.15 0.10
0.20 0.50 0.10

⎤⎦,

with E(S) = 2.005267 and the other parameters are λ = 0.7, N = 15, y3 = 0.5, y5 = 0.3, y8 = 0.2
with E(Y) = 4.6. Here the denominator of P+

N (z) has eleven distinct roots, out of which three
roots are outside the unit circle, and they are γb+1 = 2.254374, γb+2 = −9.788249, and
γb+3 = −222.447161. From Equation (8),

P+
N (z) = T

(
−3.63007 +

1.301912
z − 2.254374

− 0.702111
z + 9.788249

+
930.333318

z + 222.447161

)
, (15)

where T = −1.755933.

In the second example of Table 2, we assume α =
[
0.60 0.40

]
, and T =

[
0.5 1/3
1/3 1/3

]
with

E(S) = 4.2 and the other parameters are λ = 0.84, N = 50, y3 = 0.7, y4 = 0.2, y5 = 0.1 with
E(Y) = 3.4. As ρ = 1.0376, we have one root in the range (0, 1) from the remaining four roots,
and the other three are outside the circle of unity. From Equation (8),

P+
N (z) = T

(
0.000674 +

5.2 × 10−21

z − 1.375407
+

0.001238
z − 0.974373

− 0.006324
z − 16.101113

− 4.900051 × 10−13

z − 16.100784

)
, (16)

where T = −7.569441.
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Table 2. Queue-length distributions at various epochs for the Geo/DPH3,Y/1/15 and
Geo/DPH3,Y/1/50 queues.

Geo/DPH3,Y /1/15 Geo/DPH3,Y /1/50
y3 = 0.5, y5 = 0.3, y8 = 0.2 y3 = 0.7, y4 = 0.2, y5 = 0.1

λ = 0.7, ρ = 0.30515 λ = 0.84, ρ = 1.0376

j P+
j Pj,0 Pj,1 j P+

j Pj,0 Pj,1

0 0.170394 0.055766 0.258523 0 0.001537 0.000432 0.009680
1 0.469965 0.209576 0.111943 1 0.009682 0.00315 0.009988
2 0.200698 0.27526 0.049464 2 0.010114 0.005989 0.010254
3 0.088375 0.021963 3 0.010392 0.010524
4 0.039275 0.00974 4 0.010666 0.010801
5 0.017414 0.004321 5 0.010946 0.011085
10 0.000299 0.000074 10 0.012463 0.012621
11 0.000133 0.000032 20 0.016158 0.016363
12 0.000059 0.000014 30 0.020947 0.021213
13 0.000026 0.000005 40 0.027156 0.027501
14 0.000012 0.000001 49 0.034304 0.009883
15 0.000005 0.000004 50 0.035206 0.049366

Sum 1.000000 0.540603 0.459397 Sum 1.000000 0.009570 0.990430

Lq = 1.1208, Wq = 1.6012 Lq = 29.6650, Wq = 7.1493
PBL = 0.000004 PBL = 0.049366

Remark 10. It may be noted that Equations (15) and (16) are polynomials since the coefficients of
zb are zero. This may be seen in Table 1. This also applies to all the examples that follow.

Example 3. As before, in this example, we consider two cases: (i) Geo/MGeo2,Y
2 /1/10 queue.

Here, the service time is a mixture of two geometric distributions with PGF S(z) = ς1
μ1z

1−(1−μ1)z
+

ς2
μ2z

1−(1−μ2)z
, where ς1 + ς2 = 1. The parameters are taken as E(S) = 2.83333, N = 10,

ς1 = 0.6, μ1 = 0.4, μ2 = 0.3, y2 = 0.2, y3 = 0.1, y4 = 0.7, E(Y) = 3.5, λ = 0.14. The
denominator of P+

N (z) has six distinct roots, out of which two roots are outside the unit circle, and
they are γb+1 = 4.031316 and γb+2 = 5.727647. From Equation (8),

P+
N (z) = T

(
−0.561775 − 1.819848

z − 4.031316
− 4.545280

z − 5.727647

)
,

where T = 1.0000001.
(ii) Geo/D2,Y/1/50 queue. Here, we consider service-time distribution as deterministic with
PGF S(z) = zk for some constant k = 4, sk = 1. The parameters are taken as E(S) = 4,
N = 50, y2 = 0.5, y3 = 0.2, y4 = 0.1, y5 = 0.1, y6 = 0.1, E(Y) = 3.1, and λ = 0.4. In this
case, the denominator of P+

N (z) has eight distinct roots, out of which two roots are outside the unit
circle, and they are γb+1 = 5.019701 and γb+2 = −11.795711. From Equation (8),

P+
N (z) = T

(
−1.316734z2 + 1.021799z − 102.664691 +

879.864750
z + 11.795711

− 141.482007
z − 5.019701

)
,

where T = 1. Table 3 presents queue-length distributions at various epochs when the service-time
distributions are a mixture of geometric and deterministic.
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Table 3. Queue-length distributions at various epochs for the Geo/MGeo2,Y
2 /1/10 and

Geo/D2,Y/1/50 queues.

Geo/MGeo2,Y
2 /1/10 Geo/D2,Y /1/50

y2 = 0.2, y3 = 0.1, y4 = 0.7 y2 = 0.5, y3 = 0.2, y4 = 0.1
μ1 = 0.4, μ2 = 0.3, ς1 = 0.6 y5 = 0.1, y6 = 0.1

λ = 0.14, ρ = 0.11333 λ = 0.4, ρ = 0.51613

j P+
j Pj,0 Pj,1 j P+

j Pj,0 Pj,1

0 0.683222 0.339297 0.15549 0 0.112580 0.052650 0.353602
1 0.250531 0.463714 0.032491 1 0.313097 0.199077 0.253667
2 0.051967 0.006998 2 0.337945 0.107802
3 0.011114 0.001551 3 0.177390 0.027021
4 0.002447 0.000352 4 0.048246 0.004913
5 0.000553 0.000082 5 0.008517 0.001019
6 0.000128 0.000019 10 0.000003 0.000003
7 0.000030 0.000005 20 0.000000 0.000000
8 0.000007 0.000001 30 0.000000 0.000000
9 0.000002 0.000000 40 0.000000 0.000000
10 0.000001 0.000000 50 0.000000 0.000000

Sum 1.000000 0.803010 0.196990 Sum 1.000000 0.251727 0.748273

Lq = 0.516831, Wq = 3.691651 Lq = 0.775713, Wq = 1.939284
PBL = 0.000000 PBL = 0.000000

Example 4. Here, we consider two cases. Table 4 presents the results of Geo/Ga,Y/1/∞ which can
be found from the Geo/Ga,Y/1/N system by assuming ρ < 1 and buffer capacity N appropriately
large. We can easily compute the queue-length distributions of infinite queue capacity from finite
queue capacity by assuming ρ < 1 and N sufficiently large.
(i) Geo/NBa,Y/1/∞ queue. Here, we assume negative binomial (NB) service time distribution
and the parameters are taken as λ = 0.703, E(S) = 5, y2 = 0.5, y4 = 0.2, y5 = 0.1, y6 = 0.1,
y8 = 0.1 with E(Y) = 3.7. From Equation (8), we have

P+
N (z) = T

(
0.005129 +

0.03006
z − 2.520637

− 0.00745
z − 1.042657

)
,

where T = 6.250024.
(ii) Geo/DPHa,Y/1/∞ queue. For a DPH service time distribution, the settings are chosenas

α =
[
0.60 0.40

]
and T =

[
0.5 1/3
1/3 1/3

]
.

with E(S) = 4.2 and the other parameters are λ = 0.58, y2 = 0.5, y3 = 0.3, y4 = 0.2, and
E(Y) = 2.7. From Equation (8), we have

P+
N (z) = T

(
−0.001463 +

0.019982
z − 22.872839

− 3.590919 × 10−14

z − 22.870101
− 0.004169

z − 1.080550
+

1.09 × 10−20

z − 1.543692

)
,

where T = 20.250.
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Table 4. Queue-length distributions at various epochs when N → ∞.

Geo/NB2,Y /1/∞ Geo/DPH2,Y /1/∞
y2 = 0.5, y4 = 0.2, y5 = 0.1, y6 = 0.1 y2 = 0.5, y3 = 0.3, y4 = 0.2,

y8 = 0.1, λ = 0.703, ρ = 0.95 λ = 0.58, ρ = 0.902

j P+
j Pj,0 Pj,1 P+

j Pj,0 Pj,1

0 0.002177 0.000616 0.028874 0.030809 0.011992 0.070392
1 0.013258 0.004369 0.034832 0.071536 0.039836 0.065422
2 0.029345 0.036239 0.066885 0.060557
3 0.034741 0.035880 0.061929 0.056044
4 0.035937 0.034858 0.057314 0.051866
5 0.035505 0.033609 0.053041 0.047999
10 0.029400 0.027374 0.036007 0.032584
20 0.019366 0.018028 0.016594 0.015016
30 0.012753 0.011872 0.007647 0.006920
50 0.005531 0.005149 0.001624 0.001470
100 0.000685 0.000638 0.000034 0.000031
150 0.000085 0.000079 0.000001 0.000001
200 0.000011 0.000010 0.000000 0.000000
250 0.000001 0.000001 0.000000 0.000000
300 0.000000 0.000000 0.000000 0.000000
500 0.000000 0.000000 0.000000 0.000000

Sum 1.000000 0.004986 0.995014 1.000000 0.051828 0.948172

Lq =23.80989, Wq =33.86898 Lq =11.815062, Wq =20.370796

In Figure 2, we compare the processing times to calculate probabilities at post-departure
using the proposed technique and the method used by [13] (solving a linear system of equa-
tions (SLSE)) against finite buffer capacity. We take the NB service-time distribution in two
stages with the input parameters in the same way as in Table 1 for ρ = 0.2. We notice that,
with the increase of N, the time needed by the roots method remains almost static, whereas
the method used by [13] takes more time for larger buffer size N and increases remarkably
as N increases. In the roots method, the variation of the time is minimal. This is because
of the initial estimation of the Newton iterative method for the calculation of polynomial
roots. The application of the SLSE process is low in reliability and time-consuming. The
root method provides a faster solution and superior performance in solving a linear system
of method equations both in speed and reliability.
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Figure 2. Time (in seconds) needed to calculate post-departure probabilities.
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Figure 3 shows the roots of the characteristic equation for the number in the queue
with NB service time distribution having 4 successes is the convolution of 4 geometric
distributions. Here we consider the parameters as λ = 0.81, y4 = 0.4, y6 = 0.1, y12 = 0.1,
y25 = 0.2, y30 = 0.1, y36 = 0.1, and ρ = 0.54. There are 40 of roots inside, on, and out of
the unit circle for the assumed parameters. Here the characteristic equation is

z36(−0.886 + 0.486 z)4 − 0.0256(0.19 + 0.81 z)4(0.1 + 0.4 z32 + 0.1 z30

+0.1 z24 + 0.2 z11 + 0.1 z6). (17)
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Figure 3. The 40 roots of Equation (17) when NB service-time distribution.

6. Conclusions

This article focuses on the Geo/Ga,Y/1/N queue length distributions at various points
in time. We use the roots of the associated characteristic equation to determine a unified way
to compute performance measures for both infinite- and finite-buffer systems. Queue length
distributions at a post-departure time are computed using an embedded Markov chain
method. We obtain associations between queue length distributions at several time points
by applying system state conditioning and discrete renewal theory. Several performance
indices have been carried out, such as the blocking probability, the average wait time in the
queue, and the average number of jobs in the queue. We illustrate them by using different
numerical outcomes. The approach discussed in this paper can be used to cover cases
when customers arrive in groups or even when arrivals are correlated (D-MAP-discrete
Markovian arrival process).
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Appendix A. The Continuous-Time Case

Here, we consider the relation between the discrete-time Geo/Ga,Y/1/N queue and its
continuous-time analogue. Let the time axis be divided into periods of uniform length Δu
with Δu > 0 sufficiently small. In Geo/Ga,Y/1/N, since the inter-arrival times (u) follow
geometric distribution, the arrivals will follow binomial distribution which, as we have
seen earlier, leads to PGF for binomial distribution. In the continuous-time case, geometric
tends to exponential, and binomial tends to Poisson distribution, and the PGF tends to
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Laplace transform. Let us discuss this analytically. Assume that the inter-arrival times in
the case of M/Ga,Y/1/N have a rate α. Then, λ = αΔu + o(Δu). In the discrete-case, let

the service times S be in multiples of Δu with probability P(S = �Δu) = s� and
∞
∑
�=1

s� = 1.

Further, let nΔu = vn, where the interval [0, vn] is divided into n intervals of length Δu.
The PGF of an arrival (or no arrival) in the interval (v�, v�+1) is (1 − λ + λz). If we denote
the probability density function of service times by h(·), then

P(service finishes in (u, u + Δu)| service time > u) = h(u)Δu + o(Δu)

and s� = h(v�)Δu + o(Δu).

When Δ → 0, the PGF S(1 − λ + λz) changes to a Laplace transform. Using the
definition of Lebesgue integration and taking the limit as Δ → 0 and λ = αΔ, we have

lim
Δ→0

K(z) = lim
Δ→0

∞

∑
�=1

s�(1 − λ + λz)� = h̄(α − αz).

The proof of the above is not discussed in detail here since the method applied can be
found in [28]. Now, using λ = αΔ, K(z) = h̄(α − αz) in (5) and taking the limit as Δ → 0,
we have

P+
N (z) =

h̄(α − αz)
[

a−1
∑

i=0
P+

i

(
zb − ziY

′
(z)
)
+

b−1
∑

i=a
P+

i

(
b
∑

r=i
yrzb − zi

b
∑

r=i
yrzb−r

)]
zb − h̄(α − αz)Y′(z)

,

the connections for M/Ga,Y/1/N system. Taking a = 1, we have

P+
N (z) =

h̄(α − αz)
[

b−1
∑

i=0
P+

i zb
(

b
∑

r=i
yr − zi

b
∑

r=i
yrz−r

)]
zb − h̄(α − αz)Y′(z)

,

which matcheswith [29].
Note that we cannot obtain results of discrete-time analogue from [29], that is, the

converse is not true.
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Abstract: In general, a complex system is composed of different components that are usually subject
to a maintenance policy. We take into account systems containing components that are under both
preventive and corrective maintenance. Preventive maintenance is considered as a failure-based
preventive maintenance model, where full renewal is realized after the occurrence of every nth
failure. It offers an imperfect corrective maintenance model, where each repair deteriorates the
component or system lifetime, the probability distribution of which gradually changes via increasing
failure rates. The reliability mathematics for unavailability quantification is demonstrated in the
paper. The renewal process model, involving failure-based preventive maintenance, arises from the
new corresponding renewal cycle, which is designated a real ageing process. Imperfect corrective
maintenance results in an unwanted rise in the unavailability function, which can be rectified by a
properly selected failure-based preventive maintenance policy; i.e., replacement of a properly selected
component respecting both cost and unavailability after the occurrence of the nth failure. The number
n is considered a decision variable, whereas cost is an objective function in the optimization process.
The paper describes a new method for finding an optimal failure-based preventive maintenance policy
for a system respecting a given reliability constraint. The decision variable n is optimally selected
for each component from a set of possible realistic maintenance modes. We focus on the discrete
maintenance model, where each component is realized in one or several maintenance mode(s). The
fixed value of the decision variable determines a single maintenance mode, as well as the cost of
the mode. The optimization process for a system is demanding in terms of computing time because,
if the system contains k components, all having three maintenance modes, we need to evaluate 3k

maintenance configurations. The discrete maintenance optimization is shown with two systems
adopted from the literature.

Keywords: unavailability; imperfect repair; failure-based replacement; renewal theory; optimization

MSC: 60K10; 90B25

1. Introduction

Various maintenance strategies have recently been intensively studied and developed
to improve the reliability, availability and usability of relevant industrial systems. Unex-
pected failures may cause dangerous situations for human lives, unplanned production
outages, etc. This is why systems must be protected against them. System reliability can be
significantly improved by applying the optimal maintenance strategy. One can read in the
work of [1] that maintenance is no longer a necessary evil and that production companies
should invest in maintenance to maximize revenues. To find the best and most suitable
strategy for every unit or subsystem, preferred economic decisions have to be made that
make it possible to achieve a profit. Therefore, evaluation of the performances of different
strategies is often used ([1,2]).

We can distinguish between the different maintenance strategies that can be used: cor-
rective maintenance (CM) and preventive maintenance (PM) strategies. CM strategies,
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often known as restoration or repair strategies, are only launched when a failure occurs
and the system is broken. The system is then returned to a functioning state by applying
a maintenance action. PM strategies aim to prevent the system from undergoing unde-
sired breakdowns. PM is usually carried out on operating systems and it reduces ageing
processes, which means that the probability of system failures is decreased. Maintenance
modelling is a dynamically developing recent scientific discipline, and we do not aim to
present a general overview of references on maintenance here. However, several papers
can be discussed, some of them dealing with CM, others with PM. For example, authors
of [3] mention that there are several different types of PM and CM actions depending on
the degree of restoration, including perfect maintenance action, which restores the system
to an as-good-as-new function state; and imperfect maintenance action, which can have
several restoration levels between perfect maintenance and minimal maintenance, with the
latter restoring the system to the same state it was in just before the failure occurred, with
the same failure rate that it had just before the minimal maintenance action.

A repair action can gradually restore a system to its initial level, with the system being
returned step-by-step to the operating state, resulting in perfect CM. This approach is in
detail introduced for example in [4] and the authors call it a gradual CM repair strategy.
In general, we can say that imperfect maintenance is a kind of intervention where the
system is returned to someplace between being as good as new and as bad as it used to be.
However, for any maintenance intervention, it is necessary to establish the level of imperfect
maintenance. Authors in [5] introduced such imperfect restoration when they assumed
that the system age is affected by the kind of maintenance intervention. Apart from the
system age, the failure rate may also become worse due to maintenance actions ([6]). Both
age shortening and failure rate adaptation are assumed in the so-called hybrid model,
which seems to be a more realistic model (see more in [7,8]). Whereas the former authors
addressed the optimal maintenance decision for binary systems to maximize the reliability
of the next mission under imperfect maintenance, the latter introduced the imperfect
maintenance model, where fixed maintenance action corrects a system functionality to any
state between minimal repair and full renewal; i.e., perfect repair. For extensive discussions
regarding imperfect maintenance models, readers may refer to authors in [9,10].

In this article, we use the imperfect CM process, which degrades the system lifetime at
any CM intervention due to the growing failure rate. Gradual changes in the failure rate
result in corresponding changes in the lifetime probability distribution. The basic aim of
this article is to describe a realistic failure-based PM model that undergoes a process of
discrete optimization. PM is considered a failure-based preventive maintenance model
(FBM), where full renewal is realized at the occurrence of every nth failure. This model is
related to the imperfect CM process, an overview of which is provided in [11]. For instance,
a comparable strategy, where a unit is replaced at the nth failure and (n − 1) previous
failures are repaired with minimal repair, was proposed in the cost-focused study [12].
However, the author supposed that the failure rate would not be violated after carrying
out minimal repair. Stochastic models that describe the failure pattern of repairable units
subject to minimal maintenance are discussed in [13]. The unit can be replaced at time T
or at the nth failure, whichever occurs first, and n can be minimized in the context with
both repair and replacement costs, as is developed in [14]. We use the imperfect CM model,
where each repair action deteriorates the component or system lifetime, the probability
distribution of which is gradually changed via the increasing failure rate. This model is of
particular interest for experts analyzing components of power distribution networks ([15]),
the reliability of which will be studied by the authors of this article in the near future.

Innovative reliability mathematics for the unavailability quantification of components
is presented in this article. The new renewal process model, involving the FBM, is des-
ignated as a real ageing process. The imperfect CM results in an unwanted rise in the
unavailability function, which can be rectified with a properly selected FBM process. This
means that the renewal of a component starts with the occurrence of the nth failure. The
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number n is considered a decision variable, whereas cost is an objective function in the
optimization process.

This article describes a new method that can be used to find an optimal FBM strategy
to solve a particular optimization problem while respecting a given reliability constraint.
The above-mentioned decision variable determining the different maintenance modes of a
system component is optimally selected from a set of possible realistic maintenance modes.
Thus, the discrete maintenance model is considered, where each component can work in
one or several maintenance modes. The fixed value of the decision variable n determines
one maintenance mode of the component, which predetermines both the unavailability
course and cost. Different maintenance modes of system components result in different
system configurations, each having a specific unavailability course, as well as cost. The
optimization process is demanding in terms of computing time because a complex system
can have many maintenance configurations. The discrete maintenance optimization is
demonstrated with two systems adopted from the literature.

2. Optimization Problem

Each optimization problem works on the presumption that an objective function
f (x) that varies in a given range must be optimized; i.e., either maximized or minimized,
constrained by several restrictions imposed on the decision variables. The optimization
problem in this article can be formulated using the following objective function f (x), which
represents the minimum cost:

f (x) = min CS (1)

subject to the constraint US(x) ≤ U0 (2)

where x = (x1, . . . , xk) ∈ Rk is a decision variable, and k is the number of system compo-
nents each having the decision variable xi = ni, which can be optimized if needed. Each
component undergoes a real ageing process, including imperfect CM, until the occurrence
of the ni-th failure, which starts its restoration (renewal).

In most cases, both f (x) and US(x) are complicated, either linear or nonlinear, functions
of the decision variable vector:

x = (x1, . . . , xk) = (n1, . . . nk)

that constitute parameters for which optimal values must be found.

3. Discrete Maintenance Model

Maintenance optimization can be classified in different ways. A recent thorough classi-
fication can be found in [16]. Concerning the optimization outcome and decision variables,
the discrete maintenance model can be classified as a process that finds optimized parame-
ter values defining a single maintenance strategy selected a priori; e.g., in this paper, the
type of action performed (repair, replacement). There are different optimization approaches
that take into account the previously selected decision variables. The methodology used in
this paper can be included among the mathematical approaches in which the optimization
problem is formulated utilizing mathematical equations, which are then solved using
differential calculus to identify optimal parameters for the maintenance strategy.

We introduced a discrete maintenance model for real multi-component systems with
non-identical components for the first time in [17], in which systems with repairable
components and latent failures were optimized using changeable periods of inspection as a
decision variable. Real complex systems are composed of a finite number of repairable and
maintained components. Each component can be operated in different discrete maintenance
modes. A maintenance mode of the i-th component is determined by a prescribed value of
the decision variable (xi = ni) that influences the maintenance cost of the mode. Given that
a system is composed of k components and each component has four maintenance modes
in general, we have to investigate 4k maintenance configurations of the system. Any system
configuration can be described by a maximal system unavailability US(x) and a total cost
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CS, which is usually obtained as a sum of the costs of all component modes forming the
configuration. The optimal system configuration is detected under requirements (1) and (2).
This maintenance model is defined in this article as a discrete maintenance model.

Similar models of maintenance optimization have been used in other publications.
For example, the work of authors in [18–20] addresses the optimization problem under
maintenance policies including two decision variables. One of them is the maximum
number of failures before the system undergoes a perfect restoration and the second is
the inspection interval used to detect hidden failures. In [21] authors consider only one
component system subject to two types of age-dependent failure. Catastrophic failures
are detected through periodic inspections, whereas minor failures are followed by minor
repairs. The system is preventively replaced either at an optimal multiple of the inspection
time or after the n-th minor failure, whichever comes first. Both parameters are decision
variables. The cost per unit of time is an objective function. The objective is to obtain a
cost-minimizing policy. Authors in [22] also present a maintenance model for a system
subject to two types of unrevealed failures: minor and catastrophic. The system is replaced
at the occurrence of the n-th minor failure, a catastrophic failure, or due to working age, etc.

4. Unavailability Analysis and Cost Model

4.1. The Method for Unavailability Calculation for a Complex System

The basic methodology, including algorithms, for unavailability calculation for a
complex system with maintenance was developed in [23,24]. The system structure and
its functionality are described through the use of a directed acyclic graph (AG). An AG
contains nodes and edges. The system function or non-function state constitutes the highest
node, which is at the top of the AG. Subsystems (components) are described through
internal (terminal) nodes, all of which are interconnected by edges. An AG cannot contain
feedback loops because it is acyclic. Terminal nodes characterize the stochastic behavior of
the input components of a system, which means that each terminal node must be provided
with information about the probability distribution of its lifetime, as well as maintenance
characteristics and parameters. Stemming from this information, the unavailability function
of each terminal node is further computed through the renewal process model described
in the following section. The final system unavailability function is obtained through the
unavailability functions of all terminal nodes. Other details concerning the computing
algorithm that calculates the system unavailability function from component (i.e., termi-
nal node) unavailability functions are described in our previous research work in ([17],
pp. 86–87).

4.2. Unavailability Analysis of Terminal Nodes

The reliability mathematics used in this section results partially from the work of
authors in [25] and partially from other articles presented in the references ([26–30]). The
mathematics used in these sources was developed to a large extent to consider the new
renewal cycle of a terminal node, as introduced below.

A complex maintained system consists of particular components that, in the context
of the AG system structure, are denoted terminal nodes. In this section, the unavailability
function of a terminal node is investigated. The renewal cycle of a terminal node starts at
time t = 0. The first failure occurs at the time X1 and CM of the node starts immediately.
This CM action takes the time Y1. The next failure occurs after the time X2 after the end
of the repair of the first failure elapses. In this way, the renewal cycle continues until the
nth failure occurs. This is followed by the FBM replacement of the node. When this is
completed, the renewal cycle ends, as is demonstrated in Figure 1, where the length of the
renewal cycle is T. We will call the progress over one renewal cycle a real ageing process.
This evolution is characterized by gradually changing probability distributions of random
variables X1, X2, . . . Xn due to different degradation processes caused by CM.
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Figure 1. The first renewal cycle. The time from the beginning of the renewal cycle to the occurrence
of the second failure is a random variable X∗

2 = X1 + Y1 + X2, etc. The renewal cycle T is terminated
by the n-th failure and followed by the replacement. The replacement time is the random variable Yn.

First, the unavailability function of the terminal node at a given time t in the first
renewal cycle is determined.

The random variables X1, . . . , Xn, Y1, . . . , Yn are supposed to be independent.
The terminal node is out of service at time t only if it is in the process of being repaired

(or replaced) after the i-th failure. This happens only when 0 ≤ X∗
i ≤ t ≤ X∗

i + Yi for some
i ∈ {1, . . . , n}.

It is well-known that

P(X∗
i + Yi < t) = FX∗

i +Yi (t) =
∫ ∞

−∞
FYi (t − x)dFX∗

i
(x)

Hence
P(t ≤ X∗

i + Yi) = FX∗
i +Yi (t)

= 1 −
∫ ∞

−∞
FYi (t − x)dFX∗

i
(x)

=
∫ ∞

−∞

(
1 − FYi (t − x)

)
dFX∗

i
(x)

=
∫ ∞

−∞
FYi (t − x)dFX∗

i
(x)

Let us denote the probability that the terminal node is unavailable at time t due to its
CM or FBM after the i-th failure Pi(t). It follows that

Pi(t) = P(0 ≤ X∗
i ≤ t ≤ X∗

i + Yi) =
∫ t

0
FYi (t − x)dFX∗

i
(x)

The probability that the node is out of order at time t in the first renewal cycle (let us
denote it u1(t)) fulfils the following equation:

u1(t) =
n

∑
i=1

Pi(t) =
n

∑
i=1

∫ t

0
FYi (t − x)dFX∗

i
(x) (3)

The length of the k-th renewal cycle is the random variable Tk and the k-th renewal
cycle is the time interval ( sk−1, sk〉 where s0 = 0 and sk is the value of the random variable
Sk = ∑k

i=1 Ti, as is shown in Figure 2.

 

Figure 2. Assuming that the FBM restores the system to an as-good-as-new state, it holds that all
renewal cycles are equivalent; i.e., Ti = Tj = T for all i, j ∈ N.
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The unavailability function of a terminal node describes the probability that the node is
out of order at a given time t. It can be determined as follows. Let us denote this probability
u(t). It is obvious that

u(t) =
∞

∑
k=1

uk(t), (4)

where uk(t) is the probability that the node is out of order at time t, which belongs to the
k-th renewal cycle ( sk−1, sk〉 .

The value u1(t) is given by Formula (3). The values uk(t) for k = 2, 3, . . . can be
determined in the following way, assuming that the FBM restores the terminal node to
an as-good-as-new state. It holds that u2(t) = u1(t − s1), u3(t) = u1(t − s2), . . . and, in
general, for k ≥ 2 (see Figure 3):

uk(t) = u1(t − sk−1) =
∫ t

0
u1(t − s)dFSk−1(s) (5)

where FSk−1 is the cumulative distribution function of the random variable Sk−1 = ∑k−1
i=1 Ti.

Under the assumption that the FBM restores the node to an as-good-as-new state, it
also holds that Ti = Tj = T for all i, j ∈ N. This means that FSk−1 is the (k − 1)-
fold convolution of the cumulative distribution function FT , where the random variable
T = ∑n

i=1 Xi + ∑n
i=1 Yi is the length of the renewal cycle. Hence

ET =
n

∑
i=1

EXi +
n

∑
i=1

EYi

and FT is the convolution of cumulative distribution functions FX1 , . . . , FXn , FY1 , . . . and FYn .

 

Figure 3. The value of the unavailability function uk(t) in the k-th renewal cycle for t ∈ ( sk−1, sk〉 is
the same as the value of the unavailability function u1 at the time t − sk−1.

Equations (4) and (5) then imply:

u(t) = u1(t) +
∞

∑
k=2

∫ t

0
u1(t − s)dFSk−1(s)

= u1(t) +
∞

∑
k=1

∫ t

0
u1(t − s)dFSk (s)

= u1(t) +
∫ t

0
u1(t − s)dG(s), (6)

where G(s) = ∑∞
k=1 FSk (s). Since S1 = T, it holds that

G(s) = FT(s) +
∞

∑
k=2

P(Sk ≤ s)

= FT(s) +
∞

∑
k=1

P(Sk + T ≤ s)
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= FT(s) +
∞

∑
k=1

FSk (s − T)

= FT(s) +
∫ s

0

∞

∑
k=1

FSk (s − T)dFT(t)

= FT(s) +
∫ s

0
G(s − T)dFT(t).

Hence, the function G(s) is the solution of the integral equation

G(s) = FT(s) +
∫ s

0
G(s − T)dFT(t).

Thus, knowing G(s), the required unavailability function u(t) can be determined as a
solution of the integral Equation (6).

The starting point for the development of this methodology lies in our previous work
introduced in [31], where dormant systems under inspection were investigated. The main
difference is in the renewal cycle. A dormant system has a different renewal cycle because
failures are not detected immediately but only at special inspection times.

4.3. Cost Model

The cost model of a system configuration can be derived by adding up all the contri-
butions arising from both the repair and replacement processes of a mode over all of the
system components. A maintenance mode of a component has two main cost contribu-
tions: the cost of FBM, given by the replacements of the component during a mission time
TM that depends on the decision variable of the component; and the cost of the imperfect
repair process, which further depends on the mean number of failures during the mission
time TM and the CM parameters. In practical situations, the cost contributions result from a
database for the year and give an average yearly cost for the system configurations in a mon-
itored period. In the remainder of this article, the cost will be computed in non-identified
cost units based on the summation principle.

To obtain the cost of one system configuration, we simply add up the costs of all
maintenance modes of all system components. The mean cost of one maintenance mode of
the j-th component CTM (j) can be computed as follows:

CTM (j) =

[
nR(j)

nj

]
. CR(j) +

(
nR(j)−

[
nR(j)

nj

])
.CCM(j) (7)

where
nR(j) =

TM
MTTF(j) + MTTR(j)

nR(j) is the mean number of failures of the j-th component per mission time TM
MTTF(j) . . . mean time to failure of the j-th component:

MTTF(j) =
∑

nj
k=1 MTTFk(j)

nj
(8)

MTTFk(j) . . . mean time to the k-th failure of the j-th component
MTTR(j) . . . mean repair time of the j-th component
nj . . . decision variable of the j-th component determining the FBM strategy
[x] . . . integral part of the real number x (i.e., f (x) = [x] is the floor function)[

nR(j)
nj

]
. . . number of FBM replacements of the j-th component per mission time TM(

nR(j)−
[

nR(j)
nj

])
. . . mean number of repairs (CM) of the j-th component

CR(j) . . . replacement cost = cost of one FBM action for the j-th component in cost units
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CCM(j) . . . CM cost = cost of one repair action for the j-th component
CTM (j) . . . mean cost of one maintenance mode of the j-th component
It is worth noting that the mean maintenance cost of the j-th component CTM (j)

depends on the decision variable nj, not only directly, as follows from Formula (7), but also
indirectly via nR(j) (see Formula (8) for MTTF(j)). The total cost of one system configuration
CS is obtained by summing up these contributions, described by Formula (7), over all of
the system components k:

CS =
k

∑
j=1

CTM (j) (9)

A similar principle for the computation of the total maintenance cost for the whole of
a system was used in [32].

5. Unavailability Optimization of Selected Systems and Discussion

5.1. One Maintained Component System Adopted from the Literature

First, we take into account one component system that is under both PM and CM.
PM is considered as FBM, where full renewal is realized at the occurrence of every nth
failure. The imperfect CM model causes a real ageing process, where each CM intervention
deteriorates the system lifetime at an increasing failure rate. Proceeding from the previously
derived reliability mathematics, the system unavailability function can be determined from
Formula (6). The imperfect CM results in an unwanted rise in the unavailability function
that can be reduced by the properly selected FBM process, meaning that renewal of the
system starts with the occurrence of the n-th failure. After the renewal, the system is
restarted to an as-good-as-new state. The number n is considered here as a changing
decision variable permitting optimization. The exact specification of the decision variable
determines a system configuration that is connected to a specific cost computed according
to Formula (9), where k = 1.

The discrete maintenance optimization method is shown for a system adopted from [25]
where a stochastic alternating renewal process model is derived but a different renewal
cycle is considered. The distribution function of the first failure time X1 is a Weibull distri-
bution with the shape parameter β = 2 and scale parameter α = 600 days. Imperfect CM is
characterized by a random repair time with rectangular distribution in an interval of <12,
16> days, so that the mean time for CM is 14 days. We further suppose that the replacement
time in the FBM model is deterministic—the renewal duration is 7 days; i.e., it is shorter
than the CM time since it may be scheduled beforehand, which is given by the fact that the
repair team has at its disposal information about (n − 1)-th failure.

The real ageing process can be realized in the following way. If a failure occurs, it is
followed by a standard CM action, which recovers the health of the system to some extent,
but its failure rate is always worse when compared with the system health before failure.
We presume that, following the first system failure and the CM action, the growth of the
failure rate can be estimated by the quotient qa, which ranges from 1 to 1.5 and by which
the failure rate is multiplied. Worsening of the failure rate will continue after the second
failure and will be followed by a repair time, etc., until the time of the FBM intervention;
i.e., the time of the n-th failure. Provided that the first failure time X1 follows a Weibull
distribution, the failure rate can be expressed in the following way:

λ(t) =
β

α2 .t (10)

X2 also has a Weibull distribution failure rate, which is worsened as follows:

λ(t) =
β

α2 .qa.t (11)
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and the worsening continues with each subsequent failure in the same way. In the time
Xn−1, the failure rate can be expressed as:

λ(t) =
β

α2 .qa
n−2.t (12)

and the FBM is started at the time Xn, which launches a renewal (replacement). Thus, the
system progressively deteriorates, and its lifetime distribution is modified after each CM
action until an FBM time comes. This is in accordance with real practice because each
failure followed by a CM action exposes the system to shocks that accumulate, and the
system becomes increasingly worse. For example, the level of deterioration after the CM
of circuit breakers, components of a power distribution network, has been intensively
and personally discussed with experts and authors ([15]), who stated that each CM action
makes the initial technical health of the component worse by approximately 10–25%. That
is why we selected the following computing experiments with an appropriate value for the
quotient qa = 1.25, which means the limit worsening of the failure rate by 25% after each
CM intervention.

The difference between real and theoretical ageing is demonstrated in Figure 4, which
illustrates the time-dependent unavailability function of the system u(t), computed accord-
ing to Formula (6), with a mission time of 4000 days for two system modes:

1. A real ageing mode without FBM; i.e., n = ∞ and ageing quotient qa = 1.25, so that
each failure is followed by CM and the subsequent system lifetime has an increasingly
worse failure rate, in accordance with Formulas (10)–(12);

2. A traditional ageing mode, where ageing is due to an increasing Weibull failure
rate. This ageing process can be denoted as theoretical ageing, where each failure is
followed by a standard CM intervention that makes the system as good as new, such
that the system is replaced (n = 1).

Figure 4. Theoretical versus real (qa = 1.25) ageing of one-component system discussed.

In the first mode, we can see a rapid rise in the unavailability function by the end of
mission time, whereas, in the second mode, the unavailability is stabilized shortly after
500 days, which is close to the mean lifetime of the system (531.7 days). These two curves
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are limiting curves for optimization. The unavailability growth of the real ageing mode
can be reduced using a properly selected FBM; i.e., with a properly selected value for the
decision variable n respecting a selected unavailability restriction.

Let us take into account that the maximal permissible value of US(x) is U0 = 0.04. It is
necessary to find an optimal system mode for the objective function given by Equation (1);
i.e., we look for an optimal value for the decision variable n. To solve this optimization
problem, we must provide data related to the maintenance cost: the cost of one FBM action
is CR = 12 and the cost of one CM action is CCM = 6, which is in good agreement with
practical experience because FBM entails the replacement of the old system with a new
one, which is more expensive than repairing it. The results of our optimization process are
shown in Table 1, which gives the clear conclusion that the optimal value for the decision
variable n = 5 and the corresponding minimal cost based on Formula (9) is 59.97 units.
Figure 5 shows the dependence of unavailability on time in the optimal mode respecting
the given restriction, as well as its comparison with all of the computed system modes.

Table 1. Results for the optimization process for decision variable n in a one-component system.

n US(x) Cost

1 0.026 85.98
2 0.026 64.36
3 0.027 60.82
4 0.029 63.36
5 0.031 59.97
6 0.034 62.65
7 0.036 65.40
8 0.039 68.22
9 0.042 71.12

Figure 5. Comparison of courses of the unavailability function u(t) for three different system modes.
The optimal value for the decision variable n = 5 respecting the given unavailability restriction
U0 = 0.04.

The results in Table 1 show that the anticipated gradual growth in unavailability
depends on the increasing value of the decision variable n. On the other hand, the cost
shows a decreasing trend up to the value of the decision variable n = 5 (except for n = 4)
and an increasing trend for the greater values of n. This outcome can easily be explained:
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the increasing value of the decision variable n results in an increasing number of failures
per mission time nR, but the increase in n is faster. For small values of n, it holds true
that nR > n, which means that FBM replacements have a direct influence on cost. When n
approaches nR, after a certain value of n is reached, the number of FBM replacements is
constant and equal to 1, such that the total cost increases successively only at the expense
of the repair cost. If n exceeds nR(n > nR), FBM replacement is not achieved; thus, it does
not affect the total cost. For example, the decision variable n = 2 produces nR = 7.7, such
that three FBM replacements influence the total cost, whereas for n = 5, . . . , 9, nR ranges
from 9.0 to 10.85, which means that all of these modes have only one FBM replacement and
the total cost only changes due to repairs.

We would like to remark that the cost optimization resulting from Formula (7) can
be significantly influenced by other parameters—for example, CR, CCM—as well as the
mission time TM ([21]), which has a decisive effect on nR. These parameters are fixed in the
analysis and the only decision variable is the number of failures until replacement n.

5.2. Unavailability Quantification and Discrete Maintenance Optimization of a
Four-Component System

The second system selected for optimization using the discrete maintenance model
based on FBM is a series-parallel system, which consists of two subsystems connected
in series. Each subsystem consists of two components connected in parallel, which is
demonstrated in Figure 6. The system has been used many times by different authors
to demonstrate an imperfect maintenance model; for example, in [7,32], etc. The system
parameters and maintenance characteristics are shown in Table 2. The distribution function
of the first failure time X1 of all components is a Weibull distribution, with the shape
parameter β = 2 and scale parameter α = 1500 h for both components of the first subsystem,
and α = 2000 h for both components of the second subsystem. Imperfect CM is characterized
by random repair times with a rectangular distribution and a CM MTTR = 300 h for both
components of the first subsystem and an MTTR = 200 h for both components of the second
subsystem. The replacement time in the FBM model is deterministic, with durations of 75 h
for both components of the first subsystem and 50 h for both components of the second
subsystem. Similarly to the first example, the replacement time for all components is
shorter than the CM time since it can be scheduled beforehand. The imperfect CM model is
characterized by a real ageing process, as described above. We presume that the real ageing
mode of all components is characterized by the same ageing quotient qa = 1.25, so that each
component failure (prior to the nth) is followed by CM and the subsequent component
lifetime has an increasingly worse failure rate, in accordance with Formulas (10)–(12). The
system is investigated with the mission time TM = 8000 h. Table 2 shows the FBM costs CR
and CM cost CCM of all components.

 

Figure 6. Series-parallel system.
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Table 2. System parameters and maintenance characteristics.

Component α (h) β MTTR (h) Replacement Time (h) CR CCM

(1,1) 1500 2 300 75 12 6
(1,2) 1500 2 300 75 12 5
(2,1) 2000 2 200 50 14 5
(2,2) 2000 2 200 50 15 6

First, the unavailability functions of all components (terminal nodes) were computed
according to Formula (6). Then, the system from Figure 6 was transformed into a corre-
sponding AG using the methodology described in [17]. Thereafter, the system unavailability
function was calculated using the AG. The difference between real and theoretical ageing
is shown in Figure 7, which illustrates the time-dependent unavailability function of the
system u(t) with the mission time of 8000 h for two system configurations:

1. All components (terminal nodes) are in a real ageing mode without FBM; i.e., n = ∞,
each failure is followed by CM, and the subsequent lifetime has a correspondingly
increased failure rate.

2. All components are in the traditional ageing mode (theoretical), where ageing is due
to an increasing Weibull failure rate and each failure is followed by CM, which brings
the system to an as-good-as-new state, such that components are replaced (n = 1).

Figure 7. Theoretical versus real (qa = 1.25) ageing of the four-component system.

Not surprisingly, we see a similar effect as was identified for the previous one-
component system. In the first system configuration, we could see a rapid rise in the
unavailability function, whereas, in the second configuration, the unavailability function
peaks at 0.0476 for about 1710 h, which is close to the mean lifetimes of both components
of the second subsystem (1772.4 h), and thereafter becomes stabilized. These two curves
are, again, limiting curves for optimization. The unavailability growth of the real ageing
configuration can be reduced through properly selected FBM for all components. Let us
take into account the unavailability restriction that states that the maximal permissible
value of US(x) is U0 = 0.08. It is necessary to obtain an optimal system configuration for
the objective function given by Equation (1) by applying our discrete maintenance model.
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We search for optimal component modes; i.e., values of the decision variable n for all four
components. In the preliminary calculations, we found that the optimal choice of decision
variables ranges from n = 6 to n = 8. As our system is composed of four components and
each component has three maintenance modes, we have to investigate 34 = 81 maintenance
configurations of the system. The results of this optimization process are shown in Table 3.

Table 3. Results for optimization process for decision variable n in a four-component system.

US(x) Cost Index US(x) Cost Index US(x) Cost Index

1 0.07168 135.67 1111 28 0.07539 134.776 3321 55 0.08235 126.4 1132

2 0.07189 137.01 2111 29 0.07539 136.016 3312 56 0.08235 126.63 1123

3 0.07189 136.78 1211 30 0.0757 132.34 2131 57 0.08344 127.74 2132

4 0.07191 138.366 3111 31 0.0757 132.11 1231 58 0.08344 127.51 1232

5 0.07191 137.92 1311 32 0.0757 133.81 2113 59 0.08344 127.97 2123

6 0.07211 138.12 2211 33 0.0757 133.58 1213 60 0.08344 127.74 1223

7 0.07214 139.476 3211 34 0.0758 133.696 3131 61 0.08377 129.096 3132

8 0.07214 139.26 2311 35 0.0758 133.25 1331 62 0.08377 128.65 1332

9 0.07217 140.616 3311 36 0.0758 135.166 3113 63 0.08377 129.326 3123

10 0.07441 129.83 1121 37 0.0758 134.72 1313 64 0.08377 128.88 1323

11 0.07441 131.07 1112 38 0.07627 133.45 2231 65 0.08472 128.85 2232

12 0.0748 131.17 2121 39 0.07627 134.92 2213 66 0.08472 129.08 2223

13 0.0748 130.94 1221 40 0.0764 134.806 3231 67 0.08513 130.206 3232

14 0.0748 132.41 2112 41 0.0764 134.59 2331 68 0.08513 129.99 2332

15 0.0748 132.18 1212 42 0.0764 136.276 3213 69 0.08513 130.436 3223

16 0.07487 132.526 3121 43 0.0764 136.06 2313 70 0.08513 130.22 2323

17 0.07487 132.08 1321 44 0.07653 135.946 3331 71 0.08558 131.346 3332

18 0.07487 133.766 3112 45 0.07653 137.416 3313 72 0.08558 131.576 3323

19 0.07487 133.32 1312 46 0.07975 125.23 1122 73 0.08716 127.8 1133

20 0.07520 131 1131 47 0.08053 126.57 2122 74 0.08876 129.14 2133

21 0.07520 132.47 1113 48 0.08053 126.34 1222 75 0.08876 128.91 1233

22 0.07523 132.28 2221 49 0.08072 127.926 3122 76 0.08937 130.496 3133

23 0.07523 133.52 2212 50 0.08072 127.48 1322 77 0.08937 130.05 1333

24 0.07531 133.636 3221 51 0.08141 127.68 2222 78 0.09064 130.25 2233

25 0.07531 133.42 2321 52 0.08164 129.036 3222 79 0.0914 131.606 3233

26 0.07531 134.876 3212 53 0.08164 128.82 2322 80 0.0914 131.39 2333

27 0.07531 134.66 2312 54 0.08189 130.176 3322 81 0.09225 132.746 3333

The sequence of the index digits in Table 3 corresponds to the numbering of the
components (2,2), (2,1), (1,2), and (1,1) and determines the component maintenance modes;
i.e., values for the decision variable n that range from 6 to 8 (the corresponding digits
range from 1 to 3). For example, the sequence index at row number 4 describes such a
maintenance configuration, where component (2,2) has the decision variable n = 8 (denoted
by the number 3 in the sequence), whereas all the components (2,1), (1,2), and (1,1) have
a maintenance mode with the decision variable n = 6 (all denoted by the number 1 in
the sequence).

The values for maximal system unavailability US(x) in Table 3 are ordered in ascend-
ing order so that it can be seen that the last value of US(x), which is below the restriction
U0 = 0.08, is in row number 46 and the minimal cost of the first 46 calculations computed
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according to Formula (9) is 125.23, which is also found in row number 46. This repre-
sents the optimal system configuration with the following optimal values for the decision
variable n: n = 6 for components (2,1) and (2,2) and n = 7 for components (1,1) and (1,2).
A comparison of the unavailability function of the optimal FBM and the unavailability
limiting curves is shown in Figure 8.

Figure 8. The unavailability function of the optimal FBM in a four-component system, U0 = 0.08.

FBM replacements affect both unavailability and cost. We can further see in Table 3
that the cost of all configurations ranges from 125.2 to 140.6 cost units. Low unavailability
values in the first section of Table 3 are caused by frequent FBM replacements—see the
often-repeated index 1, which means a minimal value for the decision variable n = 6.
This effect is particularly noticeable in the last two columns of the index sequence, which
correspond to components (1,1) and (1,2). Frequent FBM replacements produce excessive
total costs that vary between 130–140 units. On the other hand, in the last section of
the Table 3 indexes, 2 and 3 are most common (see again the indexes corresponding to
components (1,1) and (1,2)), which implies system configurations with higher maintenance
modes; i.e., component modes with higher decision variables n = 7 and 8. These values for
the decision variable for components (1,1) and (1,2) exceed the mean number of failures per
mission time nR such that FBM replacement is not achieved in most cases, and a relevant
part of the total cost of these configurations is at the expense of repair costs, which are
lower than replacement costs (Table 2). As a consequence of this, the decreasing total cost
mostly varies between 126–131 units, whereas the maximal system unavailability US(x)
increases to a value of 0.0923.

One more observation can be added. It was mentioned above that components (1,1)
and (1,2) have a higher impact on the decision-making process related to the optimization
problem. One more reason for this is that the mean time to failure of these two components
is less than the mean time to failure of the remaining two components (compare 1329 versus
1772 h). As the first block in the series-parallel system in Figure 6 has greater unavailability
than the second block, it is natural that it is of greater importance to solve the optimization
problem related to all systems.

70



Mathematics 2022, 10, 2865

6. Conclusions

In this paper, we introduced Weibull-based ageing systems that undergo discrete
maintenance optimization. The Weibull-based ageing process is considered imperfect
CM, where each failure and follow-up repair degrade the system to some extent. After
the occurrence of the n-th failure, where n can be determined for each component as an
optimal value for the decision variable of the optimization process, FBM is launched and
the component is replaced with a new one. The optimization is realized in a context
with minimal system costs and a prescribed unavailability restriction. The corresponding
reliability mathematics for the unavailability quantification of terminal nodes was derived
in this article because this unavailability is used as the main input in system unavailability
quantification using AGs as the system representation. Although the renewal process
model that originates from the new renewal cycle was only developed in this article, in
general, we can conclude that it is a limited case of the model developed in [31] where the
length of the inspection period approaches zero. A cost model respecting the imperfect
CM process with FBM was further introduced because it is indispensable for discrete
maintenance optimization.

Numerical experiments showed that the discrete maintenance optimization method is
a viable method to make an optimal decision for FBM—replacement of system components
that undergo real ageing. Although the computing process may in some cases be heavy on
computing time (see the 81 system configurations of the four component systems), none of
the computations in this paper exceeded 4 min. All these computing experiments, including
both the development of the algorithm for the unavailability function u(t) and the discrete
maintenance optimization, were numerically realized with the high-performance language
MATLAB on computing equipment with the following characteristics: Intel (R) Core™
i7-3770 CPU @ 3.4 GHz and 3.9 GHz, 8.00 GB RAM.

Our future research work will be based on our original achievements resulting from
our cooperation with power industry experts ([17]). It will involve maintenance optimiza-
tion of power networks with a particular focus on circuit breakers.

Author Contributions: Conceptualization, R.B. and P.J.; methodology, R.B. and P.J.; software and
validation, R.B.; formal analysis and investigation, R.B. and P.J.; writing—original draft preparation,
R.B. and P.J.; supervision, R.B.; funding acquisition, R.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was partly supported from ERDF „A Research Platform Focused on Industry 4.0
and Robotics in Ostrava Agglomeration“, No. CZ.02.1.01/0.0/0.0/17_049/0008425 and partly by the
VSB-Technical University of Ostrava project “Applied Statistics and Probability”, No.SP2020/46.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was partly supported from ERDF „A Research Platform Focused
on Industry 4.0 and Robotics in Ostrava Agglomeration“, No. CZ.02.1.01/0.0/0.0/17_049/0008425
and partly by the VSB-Technical University of Ostrava project “Applied Statistics and Probability”,
No.SP2020/46.

Conflicts of Interest: The authors declare no conflict of interest.

Glossary

CM corrective maintenance
PM preventive maintenance
FBM failure-based preventive maintenance
AG directed acyclic graph
CS total maintenance cost of a system configuration
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f (x) = min CS objective function
U(x,t) instantaneous time-dependent unavailability function
US(x) maximal system unavailability within a mission time TM
U0 a specified limitation of US (maximal permissible value)
x = (x1, . . . , xk) ∈ Rk decision variable
ni number of failures of the i-th component, which starts its renewal
k number of system components
X1 the time from the beginning of the renewal cycle to the first failure
Xi the time from the occurrence of the i-th failure to the end of its

CM repair (for i ∈ {1, . . . , n − 1})
Yi the time from the occurrence of the i-th failure to the end of its

CM repair (for i ∈ {1, . . . , n − 1})
Yn the time from the occurrence of the n-th failure to the end of the

FBM replacement
X∗

i = X1 +Y1 + · · ·+ the time from the beginning of the renewal cycle to the occurrence
X(i−1) + Y(i−1) + Xi of the i-th failure, X∗

1 = X1, X∗
2 = X1 + Y1 + X2, etc.

FX(t) = P(X ≤ t) the cumulative distribution function of the random variable X
FX(t) = 1 − FX(t) the reliability function of the random variable X
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Abstract: Modern intelligent energy grids enable energy supply and consumption to be efficiently
managed while simultaneously avoiding a variety of security risks. System disturbances can be
caused by both naturally occurring and human-made events. Operators should be aware of the
different kinds and causes of disturbances in the energy systems to make informed decisions and
respond accordingly. This study addresses this problem by proposing an attack detection model
on the basis of deep learning for energy systems, which could be trained utilizing data and logs
gathered through phasor measurement units (PMUs). Property or specification making is used to
create features, and data are sent to various machine learning methods, of which random forest has
been selected as the basic classifier of AdaBoost. Open-source simulated energy system data are used
to test the model containing 37 energy system event case studies. In the end, the suggested model has
been compared with other layouts according to various assessment metrics. The simulation outcomes
showed that this model achieves a detection rate of 93.6% and an accuracy rate of 93.91%, which is
greater compared to the existing methods.

Keywords: cyber-attack detection; deep machine learning; smart power grid; data processing

MSC: 94-10

1. Introduction

1.1. Necessity of the Research

Cyber-physical systems (CPS) attempt to couple the physical and cyber-worlds, and
they are extensively employed by industrial control systems (ICS) to provide users with all
the data they need in real-time [1]. Power distribution systems and waste-water treatment
plants are among the areas where CPS is being used. Nevertheless, CPS security problems
differ from conventional cyber-security problems in that they include integrity, confidential-
ity, and availability. In addition to transmitting, distributing, monitoring, and controlling
electricity, a smart grid (SG) would greatly enhance energy effectiveness and reliability.
Such systems may fail and result in temporary damage to infrastructures [2]. Power grids
are regarded as essential infrastructure nowadays by many societies, which have developed
security measures and policies related to them [3]. Phasor measurement units (PMUs) are
adopted in modern electrical systems to improve reliability as they become more complex
in their structure and design. Utilizing the gathered information for quick decision making
is one of the advantages. There is still the possibility that hacker exploits vulnerabilities to
result in branch overloaded tripping, which will lead to cascading failures and, therefore,
leads to considerable damage to SG systems [4]. As the operators monitor and manage
the energy grid, they must consider possible attacks on the grid. To accomplish this, much
energy and grid expertise is required. However, deep machine learning (DML) methods
are used because of their capability to recognize patterns and learn, as well as being quickly
able to identify potential security boundaries [5].
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1.2. Literature Review

Network systems, usually referred to as essential infrastructure systems, have been
usually applied to link the systems for monitoring and collecting equipment operations
in real-time. The supervisory control and data acquisition (SCADA) system is highly
vulnerable to cyber-attacks, and such attacks need to be handled with extreme caution [6].
Sensor’s fingerprints and noise processing are used in [7] for detecting hidden cyber-
attacks in CPS, and the data set from the actual-world water treatment plants is employed
to validate the approach, and the outcomes indicated an accuracy of 98%. In [8], a semantic
instruction detection system on the basis of the network was examined for detecting
attacks on water plant processes by analyzing network traffic. These findings highlight
the need for CPS investigation. Cyber and physical systems are part of the SG. Intrusion
detection problems are solved using DML, as seen in recent research [9–11]. The intrusion
detection method on the basis of DML is examined in [9]. The data set employed was
a SWAT-produced datum from various attacks of 10 various kinds. A quick one-class
classification scheme that overcomes the problem of vast sensitivity to out-of-range data is
employed in [10], and an actual data set is used to test the suggested algorithm. The data
sets employed in this study have also been utilized in numerous other types of research.
The authors in [11] examined the method with accuracy rates of around 90% for JRipper
+ Adaboost and 75% for random forest compared to the whole multiclass data set. The
privacy preservation intrusion diagnosing method on the basis of the correlation coefficient
and expectation maximization (EM) clustering techniques is presented in [12] to select
significant sections of data and recognize intrusive occurrences. There was an 88.9% recall
rate in the model compared to the multiclass data sets with 75% of features. Authors in [13]
have improved the detection process by dropping the defense target from rejecting attacks
to preventing outages to decreasing the necessary number of secured PMUs. In [14], the
authors investigated the effect of cyber-attack on the PMU state estimation process using
the Cartesian equations and in the case of zero injection buses. In [15], it is tried to develop
an allocation method for fault observability using PMU data considering zero injection
buses. In [16], the authors have introduced a fault detecting and classifying, and placement
approach based on advanced machine learning in radial distribution systems.

1.3. Contributions

A model based on machine learning is presented in this study for detecting system
behaviors by analyzing historical data and related log data. Although unsupervised
learning is beneficial for detecting zero-day attacks since it requires no training in attack
scenarios, it is also vulnerable to false positives [17]. Furthermore, supervised learning
can clearly improve the detection’s confidence. The experiments are then performed using
the supervised machine learning approach. The main contributions in this paper are
summarized as follows:

(1) Feature construction engineering is performed, and 16 novel features are constructed
via an analysis of the features and possible links of the raw data in the electrical
network. It is possible to construct novel features using a combination of attributes
that could help more effectively utilize possible types of data instances, which could
be used in machine learning models for better application.

(2) A new process for handling abnormal data, such as not the number and infinity
amounts in the data sets, is proposed. The suggested approach could significantly en-
hance accuracy in comparison to conventional processes of processing abnormal data.

(3) A classification model based on machine learning is constructed. The average ac-
curacy of 0.9389, precision of 0.938, recall of 0.936, and F1 score of 0.935 on 15 data
sets demonstrate that the suggested model successfully distinguished 37 kinds of
behaviors such as power grid fault and single-line-to-ground (SLG) fault replay, relay
setting varies, and trip command injection attacks.
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Following are the remaining sections of the study. A detailed explanation of the
methodology is provided in Section 2. The results of the classification are discussed in
Section 3. The conclusion appears in Section 4.

2. Model Structure

Scenarios where disturbances and attacks happen in the electric grid, as well as the
meaning of features in the data set, are presented in this part. The suggested model and
data processing are detailed here.

2.1. Introduction to Power System Framework Configuration

The suggested data set consisting of measurements associated with normal, fault, and
cyber-attack behavior, and so on [18–20]. The electrical network block diagram is shown
in Figure 1 [21]. Relay, control panel, snort, and PMU/synchronous are primarily used
for recording measurement data. Following are some of the most significant components.
Power generators are shown by P1 and P2, and the intelligent electronic device (IED) is relay
R1, which could switch breaker1 (BR1) on or off. Transmission lines (TLs) are represented
by L1 and L2. The phasor data concentrator is shown by PDC that stores and displays
Synchron-phasor data as well as records historical data. The IED incorporates a distance
protection mechanism that can trip the breaker if it detects faults. Due to the absence of
internal verification approaches for detecting changes, the breaker will be tripped regardless
of whether the fault is valid or not. BR1-4 can be tripped by manually sending relevant
commands to IEDs. In the event that lines or other components are to be maintained, the
manual override will be necessary.

SCADA
& PDC

State 
Estimation

OPF & AGC
Electricity Price …

Communication
Networks

PMU, RTU and 
other intelligent 

meter

Power Decision 
Making Layer

Power Physical 
Layer
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Attack

Attack

Attack

Control 
Central Bus Station Bus

 

Figure 1. The power system framework configuration.

This experiment applied a data set that contains 128 features recorded using PMUs 1
to 4 and relay snort alarms and logs (Relay and PMU have been combined). A synchronous
phasor, or PMU, measures electric waves on a power network using a common time
source. A total of 29 features could be measured by every PMU. The data set also contains
12 columns of log data from the control panel and one column of an actual tag. There
are three main categories of scenarios in the multiclass classification data set: No Events,
Events, Intrusion, and Natural Events. Table 1 summarizes the scenarios, and a brief
explanation of each category is provided in the data set.

(a) SLG fault: A fault occurs whenever the current, voltage frequency of the system
changes abnormally, and many faults in electrical systems occur in line-to-ground and
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line-to-line (LL). The simulated SLG faults are represented as short circuits at diverse
points along the TL in the data set.

(b) Line maintenance: This type of attack is caused when one or more relays have been
deactivated on a particular line to maintain.

(c) Data injection: More research is being conducted into false data injection state esti-
mation in electrical networks. False data injection attacks are one of the main forms
of network attacks, which could affect the power system estimation method. Attack-
ers alter phase angles in order to create false sensor signals. The objective of such
attacks is to blind the operators and to avoid raising an alarm, which could lead to
economic or physical damage to the electrical systems. Attackers synchronize the
phasor measurement with the fault’s SLG and next send a relay trip command on
the affected lines. A data set modeled the conditions by varying variables, such as
current, voltage, and sequence components, which caused faults on various levels
([10 to 19]%, [20 to 79]%, [80 to 90]%) of the TLs.

(d) Remote tripping command injection attack: This occurs when a computer on the
communications network uses unexpected relay trip commands to relay at the end of
a TL. For achieving attacks, command injection has been applied versus single relays
(R [1–4]) or double relays (R3 and R4, R1 and R2).

(e) Relay adjusting variation attack: The relay is configured with a distance protection
layout. Attackers change the setting, so the relay responds badly to authentic faults.
In the data sets, faults were caused via deactivating the relay functions at diverse
parts of TLs with R1 or R2 or R3 or R4 deactivated and fault.

Table 1. Explanation of scenarios.

Case Study No. 41 1–6 13, 14 7–12 15–20 21–30, 35–40

Explanation Usual operation
load variations SLG faults Line

maintenance Data injection
Remote tripping

command
injection

Relay setting
vary

Kind No events Natural events Intrusion events

2.2. Methodology

Despite the fact that the machine learning approach is capable of detecting distur-
bances and cyber-attacks on electric grids, it can have these drawbacks. Currently, refer-
ences just discuss how to diagnose attacks in the electrical grids and seldom examine the
data relationship. In contrast, when working with multi-classification problems, many
algorithms convert them into multi-two-class situations. Nonetheless, the AdaBoost algo-
rithm is able to handle multi-classification situations directly. It utilizes weak classifiers
well for cascading and is capable of using various classification algorithms as weak clas-
sifiers. In terms of the error rate of misclassification, the AdaBoost algorithm is highly
competitive [22]. With an increase in data amount, the fitting ability is affected both by
generalization problems and by the increasing difficulty of computing. Machine learning
requires a large amount of calculating to find the best solution. Additionally, the accuracy
rates on the model presented in [11,12] are about 90% compared to the multiclass data sets,
which provides considerable space for development. As a consequence of these findings,
this paper constructs a model that can perform superior feature engineering and next can
split the data by the diverse PMUs to minimize computation overhead. It should be noted
that the PMU allocation in the smart grid is performed in the planning stage and might be
implemented according to different purposes. While the high cost might be a limitation,
the high number of PMUs is always preferred to cover all areas of the smart grid. It is
worth noting that PMU allocation is out of the scope of this work but can be found in other
research works widely. In addition, the AdaBoost algorithm for detecting the 37-class fault
and cyber-attack case studies in the electric grids is adopted in this paper.
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About the feature selection process, it should be noted that this experiment applied a
data set that contains 128 features recorded using PMUs 1 to 4 and relay snort alarms and
logs (relay and PMU have been combined). Please also note that each PMU can record 29 dif-
ferent features. In this regard, and in order to obtain enriched and integrated informative
data, feature construction engineering is performed, and 16 novel features are constructed
via an analysis of the features and possible links of the raw data in the electrical network.
Technically, it is possible to construct novel features using a combination of attributes that
could help more effectively utilize possible types of data instances, which could be used
in machine learning models for better application. It is worth noting that we made use of
the random forest method to create and classify features. Finally, based on anticipation
weighted voting, 37 various case studies were implemented for simulation purposes.

2.3. Diagnosing Attack Behavior Model Structure

A model architecture diagram is shown in Figure 2 to detect faults and cyber-attack
in electrical grids. According to Figure 2, the model architecture usually consists of four
stages: property making, data dividing, weight voting, and layout training as follows:

 

Figure 2. Explanation of layout to detect disturbance and cyber-attack in electrical networks.

Stage.1. Property making. By creating novel features manually from the original data
set, it is able to improve the dimension of the data. A novel piece of data is generated by
integrating the novel features with several original ones. The upper limit of the model is
determined by the features and data, and the algorithm can just approximate the upper
limit as closely as feasible. In order to achieve maximum accuracy and improve robustness,
feature construction engineering is essential. It is important for feature construction using
the original data to obtain more flexible features, and therefore increase data sensitivity
and increase the ability to analyze it in the case of sending it to models for classification
and training. The target of helpful features is to be simple to understand and maintain.
The results of the analysis have led to the construction of 16 novel features. There is also a
tendency in machine learning problems to include a large number of features for training
instances, and it results in excessive computational overhead and overfitting, leading
to poor efficiency. The curse of dimensionality has usually been used to describe this
problem. Feature selection and feature extraction have been widely applied to mitigating
the problems caused by high dimensionality in learning problems [23].

Stage.2. Datum dividing and training. The test and training sets are divided through
9:1 through the data splitting module. There is too much noise in the classifier if too many
features are used [24]; therefore, every original data has been split into four parts according
to features from various PMUs. While doing this, a section of the main characteristics is
picked and sent to the AdaBoost layout to train alongside the novel features as well. This
step is necessary for reducing the effect of errors resulting from bad PMU measurements.
In case the feature dimension increases, the classifier’s performance decreases. As a result
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of this step, several of the original features are combined with novel ones in order to reduce
the dimension. The original features are sorted using feature importance, and afterward, a
variety of proportions of the features are selected, explained in more detail in Part 3. In
addition, several classifier models are developed for personalizing the features following
splitting. Various classifiers are set up to make every section of the data display the greatest
impact on the classifier, i.e., the training model. Using five classifiers and later obtaining
five tags following transferring the information to the layout reduces the effect of the alone
classifier generalization error.

Stage.3. Weights for voting. It is the responsibility of the module to assign diverse
weights to the tags derived from diverse classifiers and vote on the last classification tag
of the data. According to the accuracy ratio of every classifier in the training set, the ratio
of various weights has been thus determined. Various tags are generated by the test set
following they have passed through the trained classifier, and the weights are determined
for the last voting session based on the tags of the relevant classifier. By updating the
weights in real-time, the entire system can become more robust and generalizable.

2.4. In-Depth Explanation of the Attack-Diagnosing Layout
2.4.1. Properties Making

During property making, 16 novel features have been extracted from every PMU
measurement feature and incorporated into the original data set for preparing for the next
step. Raw data is mainly used for extracting novel features based on corresponding compu-
tations. Table 2 shows the name, explanation, and extraction process of the extracted feature.

Table 2. Explanation of extracted characteristics.

Feature VCA4 VCA1 SI

Description PA7:VH-PA 10:IH Sin (PA1:VH-P4:PA4:IH-
PA7:VH-PA10:IH) Sin (PA4:IH-PA 10:IH)

Feature SV VCM1 VCM2

Description Sin (PA1:VH-PA 7:VH) (PM1:V-PM7:V)/
(PM4:1-PM10:I)

(PM2:V-PM8:V)/
(PM5:I-PM11:I)

2.4.2. Data Processing

It is important to process the data prior to sending it to the machine learning model.
The normalization of the data is an important part of data processing. The benefit of this
method is that it speeds up and improves the accuracy of iterations for finding the best
solution for gradient descent. Among the most common techniques of data normalization
are z-score standardization and min-max standardization. Basically, min-max standard-
ization works by changing the original data linearly toward an outcome between [0, 1]
shown below:

Xscale =
x − xmin

xmax − xmin
(1)

In addition, Z-score standardization has been known as standard deviation standard-
ization, and it has been mostly applied for characterizing deviations from the average.
The data analyzed through this technique assure the standard usual distribution, which
is that the standard deviation and average are equal to one and zero, respectively. The
data processed using the process can satisfy the standard normal distribution, meaning the
mean equals 0 and the standard deviation Equation (1). Following is the transformation
function, the mean amount of the instant data is shown by μ, and the standard deviation is
represented by σ. This study adopts this normalization process.

Xscale =
x − μ

σ
(2)
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A data set may contain the not a number (NAN) and infinity (INF) amount, but it has
been usually substituted through the mean amount or zero. For the data set applied here,
the novel replacement process is proposed to avoid underflows in the final replacement
value and the data being overly discrete. log_mean value is used for replacing NAN and
INF values present in the data. It can be calculated as follows:

log_mean =
∑ log|ki|
Num(ki)

·
(

1 − 2�
(

∑ ki
Num(ki)

< 0
))

(3)

Here, the number of digits in a column is shown by Num(ki) and the indicator function
is represented by �(x), which can be described in the following way:

�(x) =
{

1 i f x is true
0 otherwise

(4)

Comparative experiments are conducted on various treatment approaches in this
study. Section 3 shows the outcomes that show that the suggested process succeeds.

2.4.3. Establish Classifier Layouts

During the process of making the classifier scheme, the features and characteristics of
the SG information are considered, and various DML classification schemes are established
for the data obtained from every PMU. Various experiments have shown that random forest
is the best for the data gathered through every PMU, and AdaBoost is the ideal layout for
combined features, including a section of the main characteristics as well as properties
derived from the property making. With AdaBoost, several basic classifiers are combined
into a robust classifier. The experiment proposes a new model in which random forest
has been applied as the basic classifier of AdaBoost, followed by weighted voting on the
anticipation outcomes (AWV).

Stage. (1) Set the training data’s weights of observation = (ω1, . . . ω2, . . . ωn) ωi = 1/n.
Stage. (2) For t = 1:T

(I) Select random forest classifier RFC(t) as the base classifier of Adaboost.
(II) Calculate classification error ε(t) = ∑n

i=1 ω
(t)
i �(yi �= RFC(t)(Xi)/ ∑n

i=1 ωi
(t)

Here, Xi shows the ith input feature vector, the actual tag of the ith input property
vector is represented by yi. The predicted outcome is shown through RFC(t)(Xi).

(III) Calculate α(t) = 0.5 ln
(

1−ε(t)

ε(t)

)
.

(IV) Update the weights through ω
(t+1)
i = ω

(t)
i exp

(
α(t)�

(
yi �= RFC(t)(Xi)

))
(V) Renormalize so that ∑n

i=1 ωi = 1.

Stage. (3) Output C(x) = argmaxy ∑T
t=1 α(t)�(RFC(t)(X) = y

Here, argmaxx( f (x)) function is meaned return the amount of x which maximizes f (x).
Here, for 37-class classification problem, so ∈ (1, 2, . . . , 37), and ∑T

t=1 α(t)�(RFC(t)(X) = y
is a 37-dimensional vector. When various probabilities are associated with various tags
for one feature vector Xi, the last output is determined through the probability with the
highest amount.

2.4.4. Voting with Weights

Hard combination and soft combination are two ways of addressing the final multiple
tags [25]. The hard combination is training the similar data set section with various DML
methods and assigning the similar weight to the achieved last tags for voting. The result
is the tag with the highest weight value. Similar to that, the soft combination involves
adopting various DML methods for a similar section of the data set. However, the tags are
assigned with different weights, and the end result is the tag with the highest weight. To
summarize, the main difference between the hard and soft combinations is whether or not
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the weights are equal. In a classifier, weights represent the probability value of a tag or its
confidence level. The present study sets up various machine learning models for various
data blocks to address multi-tag problems so as to make the model perform effectively for
the data set. Lastly, different weights are assigned to tags to determine the final results.
Algorithm 1 describes these steps.

Algorithm 1: Weight Voting Scheme

Input: 144 characteristics
Output: Tag
(1) Divide data by random Num (training set):Num (test set) = 9:1
(2) Divide 144 characteristics into 4 section PMUi_charectristics (i = 1, 2, 3, 4)

(3)
Transfer training set to the various machine learning; layout and take the precision rate
acc (cl fi) (i = 1, 2, 3, 4, 5)

(4) Transfer trail information to the trained layout and produce five tags; labeli (i = 1, 2, 3, 4, 5)

(5)
Initialize weight ωi (i = 1, 2, 3, 4, 5) and ω1 : . . . : ω5 ≈ acc (AdaBoost) : acc(RFC1) : . . . :
acc(RFC4)

(6) Merge tags with weights [[abel1, w1], . . . , [abel5, w5]]
(7) Constitute a tag set (tag), and compute the weight set W regarding the tag in the set
(8) Chose the tag with the largest weight in the W as the last outcome

3. Experiment and Evaluation

In machine learning, classifications and regressions are the primary learning tasks. It
is obvious that the classification problem is addressed in this study. The next experiments
are designed to test whether the model structure described in this study is capable of
distinguishing fault and disturbance in electrical systems. A comparison is made between
the model and various conventional models, such as convolution neural network (CNN),
gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), decision tree
(DT), support vector machine (SVM), and k-nearest neighbor (KNN).

Additionally, the accuracy achieved through transferring information has been com-
pared after the property making is compared.

3.1. Data Set

A multiclass classification data set for ICS cyber-attacks is used in the present study.
There are a total of 15 groups in the multiclass data set, each with about 5000 pieces of data.
Each group’s situation is shown in Table 3. Across all tag kinds, the distribution of data
can be fairly uniform. ARFF (Attribute-Relation File Format) is the main file template of
the data set. An ARFF file is the ASCII text format, which represents a set of attributes
shared by several samples. To ease the process, ARFF files are converted to CSV (Comma
Separated Values) template. In CSV files, textual/numeric tabular information is stored
in plain text. AUC, F1 score, ROC curve, ROC curve, precision, accuracy, and recall area
are primarily used to evaluate classification models in machine learning. There are several
terms applied in machine learning that require an explanation. The true positive (TP) is the
positive sample that the layout predicts to be positive, the false positive (FP) is the negative
sample that the layout predicts to be positive, and the false negative (FN) is the positive
sample that the model predicts to be negative, the true negative (TN) is the negative sample
that the model predicts to be negative. The suggested layout is evaluated using accuracy,
precision, recall, and F1 score. An F1 score is basically the harmonic value of precision and
recall, which are calculated according to the following equations:

accuracy = (TP + TN)/(TP + FP + FN + TN) (5)

precision = TP/(TP + FP) (6)

recall = TP/(TP + FN) (7)
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F1 score =
2TP

2TP + FN + FP
=

2·precision·recall
precision + recall

(8)

Table 3. Multiclass instance data statistics.

Data set Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

Data number 4966 5069 5415 5202 5161 4967 5236 5315

Data set Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Entire

Data number 5340 5569 5251 5224 5271 5115 5276 78,377

3.2. Experiment Outcome
3.2.1. Machine Learning Model

In this experiment, KNN, SVM, GBDT, XGBoost, CNN, and others were applied as
conventional models.

(A) Based on the distance among feature values, the K-nearest neighbor algorithm has
been categorized. Distance is calculated primarily using Euclidean/Manhattan distances
formulation.

(B) The SVM [26] layout uses the sample as a spot in the region and applies various
mapping functions for mapping the input into the great-dimensional property region for
constructing the hyperplane group or hyperplane. According to intuition, the further away
the boundary is from the point of data training, the more accurate the classification will be.
ωTx + b = 0 shows the formulation to divide the hyperplane, in which the normal vector is
shown by ω determining the hyperplane’s direction., and the displacement term is shown
by b determining the distance between the hyperplane and the origin. γ=

(
ωTx + b

)
/||ω||

show the formulation for the interval from each spot x to the hyperplane in the region,
γ must be maximized within the conditions, which the hyperplane properly divides the
training instances, i.e.:

max
ω,b

2
||ω||

subject to yi
(
ωTx + b

) ≥ 1
(9)

Calculating the limitation problem via the Lagrange function is more efficient, and
an objective function can be derived from the following formula, in which αi shows the
Lagrange multiplier and αi ≥ 0.

L(ω, b, α) =
1
2
||ω||2 +

m

∑
i=1

αi

(
1 − yi

(
ωTx + b

))
(10)

Determine L(ω, b, α)′s partial derivatives and make them 0:

∂L(ω, b, α)

∂ω
= 0,

∂L(ω, b, α)

∂b
= 0 (11)

The dual problem can be as follows:

max
α

m

∑
i=1

αi − 1
2

m

∑
i=1

m

∑
j=1

αiαjyiyjxT
i xi subject to

m

∑
i=1

αiyi = 0, αi ≥ 0 (12)

(C) The decision tree algorithm starts with a group of instances/cases and then makes a
tree information framework, which is applied to novel cases. A group of amounts/symbolic
amounts describes every case [27]. Entropy is used in C4.5 and C5.0 for the spanning
tree algorithm.

(D) A boosting algorithm has been used to improve the XGBoost [28] classifier algo-
rithm. The model is based on residual lifting. Based on the error function, the objective
function is calculated by taking the prime and second derivatives of every data spot. The
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loss function is a square loss. Here is its objective function, in which l shows a differential
convertible loss function, which shows variation among the prediction ŷi and the purpose
yi. The second part Ω can penalize the pattern complexity, and T shows the leaves number
in the tree. The γ and λ show the tree’s complexity, the greater their amount, and the
simpler the framework of the tree.

L(φ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) where Ω( f ) = γT +
1
2

λ||ω||2 (13)

(E) The random forest exhibits excellent efficiency and has been extensively ap-
plied [29]. RF utilizes the decision tree as its base classifier and shows an extension of
Bagging. RF uses two very significant procedures. The first technique involves introducing
random features in the procedure of decision tree making, and the second involves an
out-of-bag estimation. The RF method can be described below. The first step is to randomly
select a sample from every data, and afterward, to return the sample to the original data.
As a root sample for a decision tree, the chosen samples have been applied for training
the decision tree. Second, for splitting the nodes of the decision tree, m attributes have
been chosen randomly (there are a total of M attributes and ensuring << M). Choose an
attribute to be the dividing feature of the node using the strategy, such as information gain.
Continue to do this until the decision tree can no longer be divided.

(F) Among the more popular deep learning networks is CNN. There are usually input,
output, latent, and max-pooling layers in a CNN model. Several great results have been
obtained in numerous areas of computer vision. Here, one-dimension property vectors are
used as input, and a one-dimension convolution kernel in convolution layers is adopted.
The convolution layer extracts properties from the input, and here the kernel size is three.
The process of the CNN model is shown in Figure 3.

Figure 3. The procedure of CNN layout.

Actually, the main purpose of this research is to show the high and successful role of
the deep learning models in reinforcing the smart grid against various cyber-attacks. In
this regard, the proposed model would detect and stop cyber-hacking at the installation
location rather than focusing on the cyber-attack type. Therefore, the localization procedure
would be attained through the diverse detection models located in the smart grid, but the
cyber-attack type detection requires more data that can be made later based on the recorded
abnormal data.

3.2.2. Outcomes

This study considers 37 varied scenarios for events. In order to determine the need for
various models (fault analysis), we performed some comparative experiments according
to various PMU kinds. In one group, properties of localization/segmentation are sent to
the related DML model in order to train, and in the other one, whole features are sent
to various machine learning models. Moreover, it is shown in Table 4 that data can be
effectively split according to the PMU resources. Splitting the data can enhance the accuracy
of classification models as well as reduce data dimensions and enhance training speed and
minimize computing sources. The score of the significant features is shown in Figure 4.
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Table 4. Transfer diverse characteristics to the layout for comparison.

Technique
Characteristics

Entire Split

Accuracy 0.9344 0.9387

Figure 4. Significance features score.

Several corresponding experiments are conducted on various ways of replacing abnor-
mal values in data. Table 5 shows the outcomes. The replacement method is shown in the
left column, and the suggested approach is represented by log_mean. Zero shows a process
to replace NAN and INF with zero values, and mean shows a process to replace with the
mean value. The AWV model is utilized as a trial model, and the accuracy is adopted as
the assessment metrics, that is, the right column in Table 5.

Table 5. Diverse methods to procedure Inf and Nan.

Method Zero Mean Log-Mean

Accuracy 0.9361 0.9342 0.9387

Applying the log_mean technique for replacing the unusual amount in the data is
intuitively the best approach. According to the outcome, the suggested process in order to
process abnormal values has proven successful.

Comparison experiments are also conducted to verify feature selection. First, the
significance of the original features is determined, and afterward, they are arranged based
on significance. A variety of mixtures of features has been selected for training, and Table 6
shows these outcomes.

The approach was verified practically through a comparative test. The test extracts
the test group and training group from 15 multiclass data sets in a 9:1 ratio at random,
and afterward, these data sets have been combined into 1 training group. The training
group has been transferred to the layout to train and learn. Table 7 presents the outcomes
of 15 test sets transferred to the model for practically simulating the efficiency of the model
applications. It is apparent that the model’s accuracy has decreased. It is because data
interaction would occur by increasing the number of data resulting in changing the model,
and whenever whole data has been combined, there would unavoidably be abnormal
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points and noises. Due to the fact that such noises and anomalies have not been separated
in training, the model’s indexes alter, and the robustness decreases.

Table 6. Assessment of characteristics chosen.

Characteristics
Only New

Characteristics

12.5% Main
Characteristics

and New
Characteristics

25% Main
Characteristics

and New
Characteristics

37.5% Main
Characteristics

and New
Characteristics

50% Main
Characteristics

and New
Characteristics

Mean accuracy 0.7492 0.9390 0.9350 0.9337 0.9334

Characteristics

62.5% Main
Characteristics

and New
Characteristics

75% Main
Characteristics

and New
Characteristics

87.5% Main
Characteristics

and New
Characteristics

100% Main Characteristics and New
Characteristics

Mean accuracy 0.9335 0.9331 0.9324 0.9353

Table 7. Layout accuracy on 15 trail sets in the actual simulation.

Data set Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

Data number 0.8894 0.8699 0.9097 0.8830 0.9092 0.9096 0.9066 0.9193

Data set Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Entire

Data number 0.9083 0.9229 0.9241 0.9007 0.9016 0.8966 0.9130 0.9043

Firstly, the efficacy of the features created from the feature construction engineering
in the model is determined by sorting the significance of features. Model interpretability
can be determined by determining the significance of features. Weight, gain, cover, and so
on are general indicators of feature significance. In the XGBoost method [30], the number
of times a property appears in a tree has been shown by weight, the mean gain of the slot
using the property has been represented by the gain, and the mean coverage of the slot
using the property is shown by the cover. According to Figure 4, weight calculates feature
significance. The abscissa indicates the names of the beat 45 properties, and the ordinate
indicates the assessment score. The origin features are shown by the gray part. The features
derived from feature construction engineering are represented by the red mark. It is evident
that each of the 16-making properties is in the best 45.

The test trains 15 sets of multiclass classification data sets and tests respectively and
uses accuracy as an assessment metric. The accuracy of the trail data sent to the layout
before and after optimization based on the main 128 properties is shown in Figure 5. The
classification accuracy of the trail group on various layouts with default variables is shown
in Figure 5a, and the accuracy of the trail group on the layout applying optimized variables
is represented in Figure 5b. For a more intuitive visualization of the variation in accuracy
after layouts are optimized, Figure 5a and b are combined, and the mean of the accuracy
values for whole sets are adopted, i.e., Figure 5c. Figure 5 shows that the SVM layout
with default variables has an accuracy of approximately 0.30, but after optimization, it
grows to 0.85, which represents a near 200% advancement. Other models have improved
significantly in accuracy after optimization as well. The best accuracy of the suggested
AWV model is 0.9217.

Table 3 shows that every data set has about 5000 segments of data; therefore, the CNN
layout cannot be used. The semantic relationships among features might also be ignored by
several neural networks, such as CNN and long-short-term memory (LSTM) layouts. Thus,
in several cases, statistical features according to the manual design could positively affect
model accuracy as well. Moreover, the tree-based algorithm outperforms KNN and SVM.

The test set had better performance on the model suggested in this study in comparison
to the conventional DML and CNN, as shown in Figure 5.
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(a) 

(b) 

Figure 5. Cont.
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(c) 

Figure 5. Proficiency comparisons of variables through applying 128 properties (a); (b) precision over
15 data sets through applying optimum variables; (c) mean accuracy comparison.

4. Conclusions

Various SG information as the experimental foundation is used in the present study,
and property making for the original data is applied. The layout for identifying faults and
cyber-attack in the electrical system is proposed. The present study uses various DML
assessment indexes for evaluating the suggested model and conventional DML methods in
the experiment. According to the outcomes, the information analyzing process improves
the model’s accuracy, and the AWV layout detects 37 types of behavior in electrical systems
efficiently. As a result, machine learning can be used in the power grid to assist operators in
making decisions. In other words, the smart grid operator can always check the health level
of the data gathering by the PMUs all around the grid. In the case that any abnormality is
detected, the possibility of an intentional cyber-attack exists, and thus, some cautious pre-
operation strategies shall be considered to keep the power and demand balance. Moreover,
if the data readings from any PMU are unusual, the system operator can decide to estimate
the system status without this PMU and rely more on the data coming from the other
healthy PMUs.
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Abstract: We consider a variant of group testing (GT) models called noisy threshold group testing
(NTGT), in which when there is more than one defective sample in a pool, its test result is positive.
We deal with a variant model of GT where, as in the diagnosis of COVID-19 infection, if the virus
concentration does not reach a threshold, not only do false positives and false negatives occur, but also
unexpected measurement noise can reverse a correct result over the threshold to become incorrect.
We aim to determine how many tests are needed to reconstruct a small set of defective samples in this
kind of NTGT problem. To this end, we find the necessary and sufficient conditions for the number
of tests required in order to reconstruct all defective samples. First, Fano’s inequality was used to
derive a lower bound on the number of tests needed to meet the necessary condition. Second, an
upper bound was found using a MAP decoding method that leads to giving the sufficient condition
for reconstructing defective samples in the NTGT problem. As a result, we show that the necessary
and sufficient conditions for the successful reconstruction of defective samples in NTGT coincide
with each other. In addition, we show a trade-off between the defective rate of the samples and the
density of the group matrix which is then used to construct an optimal NTGT framework.

Keywords: noisy threshold group testing; defective samples; number of tests; bounds; COVID-19

MSC: 68Q01

1. Introduction

Group Testing (GT) is a underdetermined problem in [1], and numerous methods
have been developed to solve their problems. GT has become relevant in various problems
including probabilistic approaches. The expansion of compressive sensing goes back to the
fundamental idea of GT because it is an effort to find sparse signals [2,3]. Recently, academia
has begun using the GT method as on vital approach to finding confirmed COVID-19 cases,
showing this field’s potential importance in these uncertain times [4,5]

The first study for GT was proposed by Dorfman [1]. The background to the emergence
of GT is that a large project was conducted in the United States to find soldiers with
syphilis during World War II. Syphilis testing of inviduals involves taking a blood sample,
then analyzing that to produce a positive or negative result for syphilis in that patient.
The syphilis testing carried out at the time was very inefficient since it took a lot of time and
money to test all the soldiers one by one [3]. After all, if N soldiers are individually tested
for syphilis, N tests are required. Note that the number of soldiers infected with syphilis is
very small compared to the total number of soldiers. That is why it is probably inefficient
to test every soldier for syphilis one by one, and why the GT technique emerged. The initial
GT model was performed in the following way [1]. Several soldiers’ blood samples were
randomly selected, and the blood was put into a pool and mixed. Then, the blood pool
was checked to see if it activated to syphilis or not. A positive result indicates that at least
one of the soldiers in the pool was infected with syphilis. A negative result, on the other
hand, indicates that all soldiers in the pool were free of syphilis. GT is attractive because
the number of tests can be drastically reduced in the case of fewer soldiers infected with
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syphilis. After these beginnings, GT has mainly been studied with two different approaches,
each forming a field of research of its own. One these fields is how to generate GT models.
That is, it is a method of selecting samples to be included in one test pool. The second area
is to reconstruct defective samples with as few tests as possible. GT loses its benefits if the
requirement for a large number of retests leads to as many tests as the number of tests for
individual screening.

For GT, various models have been proposed in consideration of how the test results
express positive and negative results and the presence or absence of noise. In general, GT’s
test results told us to see if the pool under being tested contains one or more defective
samples. That is, a positive or negative result indicates whether at least one of the defective
samples in the pool are present. The model called quantitative GT [3] is a generalization
framework of GT. The test result of quantitative GT indicates the number of defective
samples in the test pool. There is also another GT model called Threshold Group Testing
(TGT) [6]. In the TGT model, a test result of a pool is positive or negative as in conventional
GT schemes. However, unlike the conventional GT model, the positive result occurs
only when the number of defective samples in the pool is greater than a given threshold.
Otherwise, the test outcome is negative. The TGT model is used because it can represent
situations in which the test result can be different depending on whether it is high or low,
such as the COVID-19 virus concentration. A modified GT model in which measurement
noise causes false negatives or false positives is also considered.

TGT problems have been dealt with in various fields such as construction of TGT
models [7], theoretical analysis of performance [8], and efficient model design [9,10]. How-
ever, there have been no studies so far to quantify how much measurement noise affects
performance of TGT models. In this paper, we consider a Noisy Threshold Group Testing
(NTGT) model. We provide guidelines for designing a NTGT model that is robust and
reliable to measurement noise. To this end, a lower bound on the number of tests is derived
using Fano’s inequality. We show the trade-off relationship between the sparsity of the
group matrix and the defective rate of the signal. And we obtain an upper bound on the
probability of an error using the MAP decoding method. We show necessary and sufficient
conditions on the number of tests required for finding a set of given defective samples
using the lower and upper bounds.

2. Related Work

We look through previous studies and their significance to GT. Then, we will classify
each type of problem related to current approaches to GT and consider the issues surround-
ing these problems. The study of GT first began in 1943 [1]. Dorfman made an effort to find
a small number of syphilis-infected soldiers. Dorfman performed the GT with the following
procedure. When testing for syphilis, all the soldiers were divided into various groups that
were equal in size, then individual testing was only performed on soldiers from the groups
that had recoded positive test results. In [1], the optimal group size for a given total number
of samples and defective rate was summarized and presented. Later, Sterrett improved
the performance by slightly modifying the existing GT method [11]. The main idea of
Sterrett’s approach is that once the first positive result is obtained, the remaining untested
individuals are put in one large grouped and tested. Other than that, there is no difference
between Sterrett’s method and Dorfman’s. If there is a low infection rate, Sterrett’s method
is more efficient because most of the samples are normal. A more general GT has been
presented in [12], in which several algorithms were developed for finding defective samples
when no infection rate exists. The paper [12] also provided a link between information
theory and GT, introduced a new application of GT, and discussed the generalization of GT.

GT is classified based on types of defective sample distributions and decoding ap-
proaches. A probabilistic model uses the assumption that a defective sample is generated
from a given probability distribution. On the other hand, the combinatorial model is an
attempt to find defective samples without knowledge of probability distributions [13,14].
A typical example of this model is the minmax algorithm [15]. In [16], the results of im-
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proved performance in the combinatorial model were presented. Looking at other classes,
the adaptive case is a model in which samples to be included in one pool are not indepen-
dent of the results of previous tests. The samples to be used for the next round are changed
each time based on the results of previous tests. Specifically, the method of selecting
samples to be included in the next pool is optimized by using the results obtained from
previous tests. Conversely, in the non-adaptive model, all tests are performed at the same
time by a sample selection process defined in advance. So in this model, every test is inde-
pendent of each other. This model offers the advantage of being able to test simultaneously
regardless of the test order. When predetermined multiple steps are used, the non-adaptive
model is extended to multi-stage models [1,17]. In fact, although the adaptive model has
more constraints in GT design than the non-adaptive model, the adaptive model generally
outperforms the non-adaptive model [3]. However, the recent research in [18] showed
limitations in improving the performance of the adaptive model. Non-adaptive GTs are
more efficient if all tests are being performed at the same time.

We now look at the significance of certain recent studies on noisy GT. The work in [19]
showed the information-theoretic performance of GT with and without measurement noise.
Several studies have recently showed interesting and significant performance. In [17],
the proposed algorithms uses positive rates in the group to be included for each sample.
In this case, if it is greater than the set value, the sample is considered as defective. This
approach does not lead to optimal performance in all domains, but it follows a scaling law
for a specific domain. In [19], there is separate testing for signals, and all of the group testing
is carried out while still considering each sample. That is, although no individual testing is
performed, samples use a binary value such as positive or negative. In the case of samples
affected by symmetric noise, it was shown that the minimum number of tests reduces to a
proportional to K log N of the optimal information-theoretic bounds for identifying any K
defectives samples in a population of N samples [19].

In [20,21], for noisy addition, GT algorithms were presented using message passing
and linear programming. Although it does not guarantee optimal performance for decoding
complexity, the algorithm proposed in [22] is capable of realistic runtime in terms of that
case of a large population. Although many studies have been performed on the noiseless
version of GT models, it has been considered as an assumption that the test results are
always pure. But this is not realistic. In addition, most of the noisy GT approaches to deal
with measurement noise were performed by considering the symmetric noise model such
as binary symmetric channel mentioned in channel coding theory. The symmetric noise
model referred to in this paper assumes that the test results have the same probability of
occurrence of false negatives and false positives. However, asymmetric noise models are
more natural than symmetric ones in various applications. For example, data forensics
in [23] is an example of using noisy GT models where it identifies to see if recoded files are
changed.

3. Noisy Threshold Group Testing Framework

3.1. Problem Statement

We define our NTGT problem. Let be the input x expressed as a binary vector of size
N, x = (x1, x2, · · · , xN), x ∈ {0, 1}N . For i ∈ [N], xi is the i-th element of x. xi is expressed
in binary to identify either a defective sample or a normal sample. In other words, if the
i-th sample is defective, xi = 1, otherwise xi = 0. Throughout this work, we assume that xi
has the following probability,

Pr(xi = α) =

{
1 − δ if α = 0,

δ if α = 1,
(1)

where δ is the defective sample rate, and α is a dummy variable. In this case, the defective
sample rate is less than 0.5, 0 < δ < 0.5, which is considered a small value for GT problems.

As mentioned earlier, one of the key points in the GT problems is to determine which
samples to participate in a pool. In this paper, samples to be included in the pool are
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selected using a non-adaptive model. We use a matrix as a more concise way to define
the samples to be included in the pool. Let be the group matrix which has M rows and
N columns as denoted A ∈ {0, 1}M×N , where M is the number of tests in the NTGT
model. Note that we aim for a small M as the number of tests required to reconstruct the
signal x. When the j-th test includes i-th sample xi and performs GT, it is expressed as
Aji = 1. Otherwise, Aji = 0. Whether i-th sample is included in the j-th test and performs
GT, is expressed as a binary value, i.e., 0 or 1, of each element Aji of the group matrix.
Although the d-Separable matrix and the d-Disjunct matrix [3] were used to design the
group matrix, the approach of randomly selecting the elements of the group matrix is
also known to be a good design method [3]. For i ∈ [N] and j ∈ [M], Aji is identically
independent distributed as follows:

Pr
(

Aji = α
)
=

{
1 − γ if α = 0,

γ if α = 1,
(2)

where γ denotes the sparsity of the group matrix and the range of γ is 0 < γ < 1.
As γ increases, the density of the group matrix also increases. Conversely, as they get
smaller, increasingly sparse group matrices are designed. It should be noted that the
computational complexity of the GT framework also increases when a group matrix is
constructed from a large γ. Therefore, it is necessary to design GT frameworks with as low
as possible the sparsity of group matrices while improving the reconstruction performance.
We will consider how the relationship between δ and γ affects the number of tests for
signal reconstruction.

The reason we are considering the NTGT model is as follows. Consider a model
that could be used for the diagnosis of COVID-19 infection. There are cases in which the
COVID-19 test showed false positive or false negative results when the concentration of the
virus was low or contaminated. The current diagnosis of COVID-19 infection is positive
when the virus concentration is above a certain level. During the incubation period or early
stage of infection, the virus concentration is low, and false negative results may be obtained.
In addition, even if the COVID-19 infection is confirmed using a precise and accurate
diagnostic method, the result is sometimes reversed due to unexpected measurement noise.
Throughout this work, a NTGT model suited to these challenges is considered. In other
words, we consider the best approach to a TGT scheme where positive and negative cases
occur by the quatitative concentration, and we consider an additive noise model because
measurement noise can reverse the results. In a recent study [24], for the diagnosis of
COVID-19 infection, false positives and false negatives were reported to be between 0.1%
and 4.5%, respectively. Next, we obtain lower and upper performance bounds on the NTGT
model in Sections 4 and 5.

TGT is different from conventional GT models. In conventional GT, if at least one
defective sample exists in one test, the output is positive without measurement noise.
However, TGT is positive when there is a number of defective samples greater than the
predefined threshold T. For example, T = 3 means that a positive result occurs only when
there are at least three defective samples in the pool. Once there is only one defective
sample in the pool, its result would be negative. In other words, the result in the pool
becomes positive only when it is above T for TGT models, also whether it is negative or
positive in the diagnosis of COVID-19 infection depends on whether the virus concentration
is high or low. The conventional GT uses T = 1. The following (3) presents an output for a
TGT model. Let zj be the result of the j-th test pool, which does not suffer from noise, where
zj = 1 indicates a positive result and 0 for a negative result, j ∈ [M], z = (z1, z2, · · · , zM).

zj =

{
0 if ∑N

i=1 Ajixi < T,
1 if ∑N

i=1 Ajixi ≥ T,
(3)

Through this paper, we consider the NTGT framework with measurement noise.
Assume a model whose results can be flipped due to the measurement noise. zj is the pure
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result of the pool test, and its result converts from positive to negative and vice versa due
to additive noise. For the NTGT model, the additive noise is defined as follows:

Pr
(
ej = α

)
=

{
1 − η if α = 0,

η if α = 1,
(4)

where η is the measurement noise, and we assume all ej are independent of each other.
Therefore, the j-th output yj in the NTGT model can be written as

yj = zj ⊕ ej (5)

where the symbol ⊕ denotes the logical operation XOR. We denote y = (y1, y2, · · · , yM)
and e = (e1, e2, · · · , eM).

Figure 1 shows an example of this NTGT. In this example, two samples out of ten are
defective, which is realized from (1). As shown in Figure 1, the number of tests is 7, M = 7.
The 7 × 10 group matrix is constructed by (2) mentioned above. For noiseless version,
the vector z is (0, 0, 1, 0, 0, 0, 0) with T = 2. In the third test only, the number of defective
samples becomes two, and the test result is positive. When additive noise is added as
defined in (4), the output is y = (1, 0, 1, 0, 0, 0, 0).

Figure 1. One example of NTGT where M = 7, N = 10, T = 2, the black boxes denotes 1 s, and white
ones 0 s.

3.2. Decoding

We use a maximum a posteriori (MAP) method to reconstruct a signal x in the NTGT.

x̂ = arg max
x

P(x|y, A) (6)

The posteriori probability in (6) is as follows:

P(x|y, A) =
P(x, y, A)

P(y, A)

∝ P(x, y, A)

= ∑
e

P(x, y, A, e)

= ∑
e

P(x)P(A)P(e)P(y|x, A, e)

(7)

The last line of (7) is obtained using independent conditions, while the conditional
probability P(y|x, A, e) is an indicator function that satisfies the following condition:

P(y|x, A, e) =

{
1 if y = z ⊕ e,
0 if y �= z ⊕ e,

(8)
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We define an error event if x̂ from (6) is not the same as the true realization of x.
In other words, the probability of an error is expressed as PE = Pr{x̂ �= x}.

3.3. Bounds for Group Testing Schemes

Now consider the number of tests on successful decoding in the conventional GT
models. The number of tests required to identify K defective samples out of all N samples
for an adaptive GT algorithm with perfect reconstruction denotes as m(N, K). Moreover,
for the case of a non-adaptive model, the number of tests is defined as m̄(N, K). The number
of tests N required for individual testing is greater than m̄(N, K). Adaptive GT models
require less or equal number of tests than those of non-adaptive GTs because they check
the results of previous tests and perform the next tests, m(N, K) ≤ m̄(N, K). Even if the
number of defective samples is one, at least one test must be performed, 1 ≤ m(N, K).
Therefore, the number of tests has a wide range as follows:

1 ≤ m(N, K) ≤ m̄(N, K) ≤ N (9)

From an information-theoretic bound, the minimum number of tests M for a GT
framework with a sample space is obtained as [3],

M ≥ log2|S| (10)

where S denotes the sample space. In addition, an information-theoretic performance is
presented even for a GT framework with small error probability. It is expressed as an upper
bound of the error probability for the number of tests required for successful decoding.
This GT algorithm performs in such a way as the following bound on successful probability
Ps for decoding of defective samples [25]:

Ps ≤ M
log2 (

N
K)

(11)

In the past half century, many studies on GT models have been performed, and among
them, well-known and important GT algorithms are introduced next. The first one to be
considered is the binary splitting algorithm [3]. This algorithm solves the existing GT
problems efficiently and is applicable to the adaptive GT models. So far, the reason this
algorithm is used for GT problems is because of its simplicity and good performance.
The number of tests required to reconstruct defective samples using the binary splitting
algorithm is known through the following bounds:

M =

{
N if N ≤ 2K − 2,

(log2 σ + 2)K + p − 1 if N ≥ 2K − 1,
(12)

where σ is the number of samples to be included for one test, and p is a uniquely determined
nonnegative integer conditioning p < K.

Next, the definite defectives algorithm [26] is considered. This algorithm is suitable for
non-adaptive GT models because an unknown input signal can be reconstructed using all
of the test results at the same time through an iterative process. The feature of the definite
defectives algorithm is attractive in that it can eliminate false negatives that may occur
during the reconstruction process. As a result, the use of the definite defectives algorithm
is more useful in applications where false negatives are sensitive or should not be present.
For given N and K, the definite defective algorithm has the following lower bound for the
number of tests M required for identifying defective samples if it is allowed an error rate
of σ,

M ≥ (1 − σ) log2

(
N
K

)
(13)
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This can be observed that (11) and (13) coincide with the same in the perfect recon-
struction of defective samples.

4. Necessary Condition for Complete Recovery

4.1. Lower Bound

In this section, we take into account a necessary condition for the number of tests
required to identify defective samples in the NTGT model. We obtain the necessary
condition using Fano’s inequality theorem [27] presented in information theory. Fano’s
inequality is mainly exploited in channel coding theory, and describes the connection
between error probability and entropy. In addition, in [28], the authors reviewed GT
problems comprehensively and in-depth from an information theory perspective. The
lower bound on the probability of an error is obtained by considering Fano’s inequality
theorem. From this lower bound, we are lead to the necessary condition for the number of
tests to find all defective samples for the NTGT model. We first explain Fano’s inequality
theorem before deriving the necessary condition.

Theorem 1 (Fano’s inequality [27]). Suppose there are random variables A and B of finite size.
If the decoding function Φ that finds A by considering B is used, the following inequality holds:

1 + P(Φ(B) �= A) log2|A| ≥ H(A|B ) (14)

where P(Φ(B) �= A) is the probability of an error for the decoding function Φ, and the conditional
entropy H(A|B ) is defined as follows:

H(A|B ) = − ∑
α∈A

∑
β∈B

PAB(α, β) log PA|B (α|β ) (15)

where PAB and PA|B are the joint probability and conditional probability, respectively.

In the NTGT problem, we are able to obtain a lower bound on the probability of an
error. This lower bound shows the minimum number of tests required to reconstruct an
unknown signal, regardless of which decoding function is used. In this paper, our lower
bound is a variant of the results obtained in [8]. Compared to [8], this work obtains the
lower bound taking into account the measurement noise. However, the overall procedure
of derivation is similar to each other because it uses Fano’s inequality theorem.

Theorem 2 (Lower bound). For any decoding function with the unknown sample signal defined
in (1) and the measurement noise defined in (4), a necessary condition for the probability of error PE
to be less than an arbitrary small and positive value ρ for PE < ρ holds such that

NH(δ)− M + MH(η)− 1
N

< ρ (16)

where H(·) is the entropy function.

Proof of Theorem 2. Let x̂ be the estimated signal of x found using the decoding function.
Considering the following process in terms of a Markov chain, we can say x → (y, A) → x̂.
Then, the following inequality is satisfied,

H(x|y, A ) ≤ H(x|x̂ ) (17)

Further, from Fano’s inequality described in (14), the conditional entropy is bounded
by

H(x|y, A ) ≤ 1 + PE log2

(
2N − 1

)
(18)
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Then, the probability of error is bounded in terms of the conditional entropy and the
total number of samples N,

PE ≥ H(x|y, A )− 1
N

(19)

It needs to tackle the conditional entropy H(x|y, A ). Let us divide and expand the
following conditional entropy in more detail:

H(x|y, A ) = H(x)− I(x; y, A)
= H(x)− (I(x; A) + I(x; y|A ))
(a)
= H(x)− (H(y|A )− H(y|A, x ))

(20)

where I(·) is mutual information, and equality (a) comes from the fact that x and A

are independent of each other. Note that the smaller the term on the right side of (19),
the lower the minimum value of the probability of error. This means that the conditional
entropy, H(x|y, A ), should be small as possible. As a result, on the last line of the right
side in (20), the conditional entropy H(y|A ) should be large; conversely, the conditional
entropy H(y|A, x ) should be small.

To do this, let us find the maximum and minimum values of the two conditional
entropies, respectively.

H(y|A ) ≤ H(y) = H(z ⊕ e)
≤ M

(21)

where the first inequality is due to the definition of conditional entropy, and the last
inequality comes from the fact that the result yj is either 0 or 1, yj values are independent of
each other, and the maximum binary entropy is 1 in the case that Pr

(
yj = 0

)
= Pr

(
yj = 1

)
.

Next, we take into account the other conditional entropy H(y|A, x ) which is minimized,

H(y|A, x ) = H(z ⊕ e|A, x )
= H(e)
= MH(η)

(22)

where the second equality comes from how the randomness of z vanishes if x and A are
known, the last equality being due to the independent events of e. Using (21) and (22), (20)
can be rewritten as

H(x|y, A ) ≤ NH(δ)− M + MH(η) (23)

Finally, if (19) is changed to satisfy the condition PE < ρ where ρ is a small, positive
value and ρ > 0, the following condition holds:

NH(δ)− M + MH(η)− 1
N

< ρ (24)

This completes the proof of Theorem 2.

4.2. Construction of Noisy Threshold Group Testing

We now consider the result obtained from Theorem 2. First, Theorem 2 can be ex-
pressed as the ratio of the number of tests to the total number of samples as follows:

M
N

>
H(δ)− ρ

1 − H(η)
(25)

It is advantageous to use the NTGT framework until the point N and M are equal.
Otherwise, when M > N, individual testing becomes more effective than GT. This shows
that NTGT can theoretically be used under the following noise conditions:

H(η) < 1 + ρ − H(δ) (26)
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To design an NTGT framework, how to construct a group matrix is important. The key
to this is shown in the proof of Theorem 2. Looking carefully at the conditions under which
the inequality of conditional entropy holds in (21), the maximum conditional entropy
H(y|A ) is obtained when the following conditions are satisfied: Pr

(
yj = 0

)
= Pr

(
yj = 1

)
.

This means that the NTGT system should be designed so that the output has an equal
probability of being 0 or 1. Since x and A are independent of each other, the probability of
an output of 0 is as follows:

Pr
(
yj = 0

)
=

T−1

∑
t=0

(
N
t

)
(δγ)t(1 − δγ)N−t =

1
2

(27)

As shown in (27), it can be seen that there is a trade-off between δ and γ. In other
words, to reconstruct a sparse signal, a high-density group matrix needs to be generated
and used. Conversely, if the signal is not sparse, the group matrix should be designed with
low density.

5. Sufficient Condition for Average Performance

5.1. Upper Bound

Now we prove there is an upper bound on the probability of errors from the MAP
decoding used in NTGT. We divide the proof of the upper bound into two parts: one
considers the definition of the error event and the other part formulates the probability
of errors.

We rewrite the a posteriori probability.

P(x|y, A ) ∝ ∑
e

P(x)P(A)P(e)1y=z⊕e (28)

Note that both A and y are given and known. Using MAP decoding, we estimate
with (28)

x̂ = arg max
x

∑
e

P(x)P(A)P(e)1y=z⊕e (29)

An error event occurs if there is a feasible vector x̄ �= x, such that

∑
v

P(x̄)P(v)1y=w⊕v ≥ ∑
e

P(x)P(e)1y=z⊕e (30)

where w = ∑Aji x̄i≥T Ax̄ comes from (3), and v comes from a realization from (4). When
given y, A, and x, we have one vector e, such that e = z ⊕ y. Then we can rewrite (30).

P(x̄)Pv(y ⊕ w) ≥ P(x)Pe(y ⊕ z) (31)

Therefore, an error event becomes equivalent to there existing a pair (x̄, v) such that

x̄ �= x,
y = w ⊕ v = z ⊕ e,

P(x̄)Pv(y ⊕ w) ≥ P(x)Pe(y ⊕ z)
(32)

So far, we have defined the error event and now we will derive an upper bound on
the probability of error. When given x and e, we let P(I|x, e ) be the conditional error
probability. We have an average error probability as follows:

PE = ∑
x

∑
e

P(x, e)P(I|x, e ) (33)

We now introduce two typical sets that were defined in [27] (Ch.3.1). Let AM
[e]ε

and

AN
[x]ε

be typical sets of x and e with respect to P(x) and P(e) as defined in (1) and (4).
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For any positive number ε and sufficiently large numbers of N and M, the two typical sets
are defined as

AN
[x]ε =

{
x ∈ 2N :

∣∣∣∣− 1
N

log P(x)− H(δ)

∣∣∣∣ ≤ ε

}
(34)

and

AM
[e]ε =

{
e ∈ 2M :

∣∣∣∣− 1
M

log P(e)− H(η)

∣∣∣∣ ≤ ε

}
(35)

From the Shannon–McMillan–Breiman theorem [27] (Ch.16.8), we obtain the following
two bounds:

P
(∣∣∣∣− 1

N
log P(x)− H(δ)

∣∣∣∣ ≤ ε

)
≥ 1 − ε (36)

and

P
(∣∣∣∣− 1

M
log P(e)− H(η)

∣∣∣∣ ≤ ε

)
≥ 1 − ε (37)

Now we define the space of the pair(x, e) with respect to the two typical sets. Let U
and U c be the sets for the pair (x, e) such that

U =
{

x ∈ 2N , e ∈ 2M :
(

x ∈ AN
[x]ε

⋂
e ∈ AM

[e]ε

)}
(38)

and
U c =

{
x ∈ 2N , e ∈ 2M :

(
x /∈ AN

[x]ε

⋃
e /∈ AM

[e]ε

)}
(39)

where U is the joint typical set for the pair (x, e), since x and e are independent.

Theorem 3 (Upper bound). In NTGT one, a distribution of defective samples defined in (1) and
noise probability defined in (4), for any small ε, the ratio of the number of tests M to the total number
of samples N is upper-bounded:

M
N

>
H(δ) + ε

1 − H(η)− ε
(40)

Proof of Theorem 3. The probability of error is bounded as

PE = ∑
(x,e)∈U

P(x)P(e)P(I|x, e ) + ∑
(x,e)∈U c

P(x)P(e)P(I|x, e )

(a)
≤ ∑

(x,e)∈U
P(x)P(e)P(I|x, e ) + ∑

(x,e)∈U c
P(x)P(e)

(b)
≤ ∑

(x,e)∈U
P(x)P(e)P(I|x, e ) + 2ε

(41)

where (a) is due to P(I|x, e ) ≤ 1, and (b) comes from the following,

∑
(x,e)∈U c

P(x)P(e) = 1 − ∑
(x,e)∈U

P(x)P(e)

= 1 − ∑
x/∈AN

[x]ε

P(x) ∑
e/∈AM

[e]ε

P(e)

≤ 1 − (1 − ε)(1 − ε)

≤ 2ε

(42)

This is because A is randomly generated as defined in (2); then we can define the
following event as

E(x, e; x̄, v) = {(x, e; x̄, v) : z ⊕ e = w ⊕ v} (43)
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The conditional error probability P(I|x, e ) is the probability of the union of all the
events in (43) with respect to all pairs (x̄, v) that satisfy (32). Thus, the conditional error
probability in (33) can be rewritten as

P(I|x, e ) = Pr

⎧⎨⎩ ⋃
x̄,v:P(x̄)P(v)≥P(x)P(e)

E(x, e; x̄, v)

⎫⎬⎭ (44)

Using the union bound in (41), we have the following bound:

PE ≤ ∑
(x,e)∈U

P(x)P(e) ∑
(x̄,v):P(x̄)P(v)≥P(x)P(e)

P
(E(x, e; x̄, v)

)
+ 2ε

= ∑
(x,e)∈U

P(x)P(e) ∑
(x̄,v)

P
(E(x, e; x̄, v)

)
Φ(x, x̄, e, v) + 2ε

(45)

where Φ(x, x̄, e, v) is the indicator function, such that P(x̄)P(v) ≥ P(x)P(e).

Φ(x, x̄, e, v) =

{
1 if P(x̄)P(v) ≥ P(x)P(e)
0 if P(x̄)P(v) < P(x)P(e)

(46)

The indicator function is bounded [29] (Ch. 5.6) for 0 < s ≤ 1.

Φ(x, x̄, e, v) ≤
(

P(x̄)P(v)
P(x)P(e)

)s
(47)

For s = 1 in (47), we have the following bound:

PE ≤ ∑
(x,e)∈U

∑
(x̄,v)

P(x̄)P(v)P
(E(x, e; x̄, v)

)
+ 2ε (48)

From the definition in (43), note that the probability P
(E(x, e; x̄, v)

)
is

P
(E(x, e; x̄, v)

)
= Pr(w ⊕ v = z ⊕ e) (49)

where

PE ≤ ∑
(x,e)∈U

∑
(x̄,v)

P(x̄)P(v)P
(E(x, e; x̄, v)

)
+ 2ε

= ∑
(x,e)∈U ,‖e⊕v‖0=d2

∑
‖x̄‖0=d1

∑
‖e⊕v‖0=d2

P(x̄)P(v)P
(

z ⊕ w = e ⊕ v
∣∣∣‖x̄‖0 = d1, ‖e ⊕ v‖0 = d2

) (50)

In (50), we find the following probability depending on the number of nonzero ele-
ments d1 and d2:

P
(

z ⊕ w = e ⊕ v
∣∣∣‖x̄‖0 = d1, ‖e ⊕ v‖0 = d2

)
=

M

∏
j=1

P
(

zj ⊕ wj = ej ⊕ vj

∣∣∣‖x̄‖0 = d1, ‖e ⊕ v‖0 = d2

)
= P

(
zj ⊕ wj = 1

∣∣∣‖x̄‖0 = d1, ‖e ⊕ v‖0 = d2

)d2

× P
(

zj ⊕ wj = 0
∣∣∣‖x̄‖0 = d1, ‖e ⊕ v‖0 = d2

)M−d2

= (1 − P0)
d2 PM−d2

0

(51)

where each row is independent. Given this, we define the following probability:

P0
Δ
= Pr

(
zj ⊕ wj = 0|‖x̄‖0 = d1

)
(52)
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We can divide P0 in (52) into two parts. If d1 < T,

P0 = Pr
(
zj = 0

)
Pr
(
wj = 0

)
+ Pr

(
zj = 1

)
Pr
(
wj = 1

)
= Pr

(
zj = 0

) (53)

Otherwise,

P0 = Pr
(
zj = 0

)(T−1

∑
t=0

(
d1

t

)
γt(1 − γ)(d1−t)

)
+ Pr

(
zj = 1

)( d1

∑
t=T

(
d1

t

)
γt(1 − γ)(d1−t)

)
= Pz,0(δ, γ)Pw,0(d1, γ) + (1 − Pz,0(δ, γ))(1 − Pw,0(d1, γ))

(54)

where

Pz,0(δ, γ)
Δ
= Pr

(
zj = 0

)
=

T−1

∑
t=0

(
N
t

)
(δγ)t(1 − δγ)N−t,

Pw,0(d1, γ)
Δ
= Pr

(
wj = 0

)
=

T−1

∑
t=0

(
d1

t

)
γt(1 − γ)d1−t

(55)

The maximum for P0 by looking at Pz,0(δ, γ) = 1/2 and Pw,0(d1, γ) = 1/2 from the fact
that P0 in (54) is concave with respect to Pz,0(δ, γ) and Pw,0(d1, γ). Therefore, its bound is

P0 ≤ 1
2

(56)

Using (51) and (56), (50) can be bounded as follows:

PE ≤ 2−M ∑
d1=0,x �=x̄

∑
(x,e)∈U ,x̄:‖x̄‖0=d1

P(x̄)

(
∑
v

P(v)

)
+ 2ε

≤ 2−M ∑
d1=0,x �=x̄

∑
(x,e)∈U ,x̄:‖x̄‖0=d1

P(x̄) + 2ε

≤ 2−M ∑
x∈AN

[x]ε

∑
e∈AM

[e]ε

∑
d1=0,x �=x̄

P(x̄) + 2ε

= 2−M
∣∣∣AN

[x]ε

∣∣∣ · ∣∣∣AM
[e]ε

∣∣∣ ∑
d1=0,x �=x̄

P(x̄) + 2ε

≤ 2−M
∣∣∣AN

[x]ε

∣∣∣ · ∣∣∣AM
[e]ε

∣∣∣+ 2ε

≤ 2−M2N(H(δ)+ε)2M(H(η)+ε) + 2ε

= 2N(H(δ)+ε)+M(H(η)+ε)−M + 2ε

(57)

As the probability of error is less than 1, the exponent term on the right side of (57) is
bounded by

N(H(δ) + ε) + M(H(η) + ε)− M < 0 (58)

Then, the ratio of M to N is

M
N

>
H(δ) + ε

1 − H(η)− ε
(59)

This completes the proof of Theorem 3.

5.2. Discussion for Necessary and Sufficient Conditions

In this section, we discuss the results obtained from Theorems 2 and 3. The result
from Theorem 2 allows us to solve the lower bound in the NTGT problem using Fano’s
inequality. The minimum number of tests required to recover all defective samples with
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δ probability out of N samples is also obtained. In other words, Theorem 2 is a necessary
condition for any probability of error to be smaller than ρ. Conversely, Theorem 3 leads
to the upper bound on the probability of an error using the MAP decoding method. This
condition refers to the upper bound on performance and is the sufficient condition to allow
us to reconstruct defective samples.

We show that the results of Theorems 2 and 3 coincide with each other. Finding
and presenting the necessary and sufficient conditions for the number of tests required in
the NTGT problem is significant for TGT. In addition, as shown in (27) above, a system
design method for NTGT was proposed so that the probability that a test result is 0 and the
probability that it is 1 are the same depending on threshold T.

6. Conclusions

In this paper, we considered a NTGT problem where the test result is positive when
the number of defective samples in a pool equals or greater than a certain threshold.
Recently, when performing GT for the diagnosis COVID-19 infection, if the sample’s virus
concentration did not sufficiently reach the threshold, false positives or false negatives can
occur, so in this work we dealt with this TGT framework. In addition, a noise model was
added in case pure results were flipped due to unexpected measurement noise. We took
into account how many tests were needed to successfully reconstruct a small defective
sample with the NTGT problem. To this end, we aimed to find the necessary and sufficient
conditions for the number of tests required. For the necessary condition, we obtained the
lower bound on the number of tests using Fano’s inequality theorem. Next, the upper
bound on performance defined by the probability of error was derived using the MAP
decoding method. This result leads to the sufficient condition for identifying all defective
samples in the NTGT problem. In this paper, we have shown that the necessary and
sufficient conditions are consistent with the NTGT framework. In addition, we presented
that the relationship between the defective rate of the input signal and the sparsity of the
group matrix should be considered to design an optimal NTGT system.
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Abstract: The stochastic process non-homogeneous Markov system in a stochastic environment in
continuous time (S-NHMSC) is introduced in the present paper. The ordinary non-homogeneous
Markov process is a very special case of an S-NHMSC. I studied the expected population structure of
the S-NHMSC, the first central classical problem of finding the conditions under which the asymptotic
behavior of the expected population structure exists and the second central problem of finding which
expected relative population structures are possible limiting ones, provided that the limiting vector
of input probabilities into the population is controlled. Finally, the rate of convergence was studied.
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1. Introductory Notes

The stochastic process of a non-homogeneous Markov system in a stochastic envi-
ronment (S-NHMS) in discrete time was introduced in [1]. The main goal was to satisfy
the need for a more realistic stochastic model in populations with various entities, which
were possible to be categorized in a finite number of exhaustive and exclusive states. The
expected population structure is studied, that is, the distribution of the expected number
of memberships in each state. Note that in the population, apart from the transition of
memberships among the states, there are transitions to the external environment, often
called wastage from the population, and flow of memberships in the population (system)
in the various states, often called recruitment.

The S-NHMS in discrete time is a generalization of the stochastic concept of an NHMS
in discrete time, which incorporated the idea of having a pool �I(t) of transition probability
matrices to choose from, the roots of which were in [2,3], for the special case where the
transition matrices are Leslie matrices.

The stochastic process of an NHMS was first introduced in [4]. This new concept
provided a more general framework for a number of Markov chain models in manpower
systems, which was actually the initial motive. For examples, see [5–10].

There are also a large number and a great diversity of applied probability models that
could be accommodated in this general framework. A simple fact that shows the dynamics
of the concept of an NHMS is, as we will show later, that the well known simple Markov
chain is a very special case of an NHMS.

In the present paper, we study the development of a continuous time version of a
S-NHMS. The choice in practice between a stochastic process in discrete and continuous
time is partly a matter of realism and partly one of convenience. With regard to realism,
for example, usually one would want to deal with the transitions between the states of the
members of the population in continuous time. However, in practice, the computational
advantages of discrete time, as well as the mental process of the researcher, leads all too
often to the choice of a discrete time process. On the other hand, continuous time models
are often more amenable to mathematical analysis and this may count many times in their
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favor. Having developed both versions of the theory of S-NHMS, more choices are at our
disposal, and hence, a more complete version of the entire theory.

A first concise and complete presentation of the theory of non-homogeneous Markov
process exists in [11], Section 8.9. There, apart from building a rigorous foundation of
the subject, in the respective references, one could also find the initial founders of the
subject. Reference [12] started a period of intense study of non-homogeneous Markov
processes. Strong ergodicity for continuous time non-homogeneous Markov processes,
using mean visit times, was studied in [13]. Important results on the strong ergodicity for
continuous time non-homogeneous Markov processes, using criteria on the functions of
intensity transition matrices, were provided by [14–16]. I will make extensive use of these
results in the present paper.

The estimates of rate of convergence for non-homogeneous Markov processes were
studied in a series of papers [17–21]. For Markov systems in continuous time results, could
be found in [22–25].

Estimations of the transition intensities in NHMS in continuous time were provided
by [26] for various cases of missing data. In [27], transition intensities were studied for
homogeneous Markov systems (HMS) in continuous time, as well as the relation between
the volume of the attainable expected population structures at time t and the trace and rank
of the intensity matrix.

In [28], the authors studied, for closed HMS in continuous time, the stability of size
order of elements in an expected population structure as t → ∞. The state sizes of the
elements of the expected population structures and their distributions for an HMS in
continuous time were studied in [29] with the use of factorial moments. In [30], the author
discussed the case of closed HMS with finite capacities of the states. In [31], the close
relation between M/M/k/T/T queues and close HMS in continuous time is presented.
More recent results on NHMS in continuous time could be found in [32], while a more
recent review on the subject was given by [33].

The paper is organized as follows: In Section 2, I define in detail for the first time the
stochastic process S-NHMSC. I also show that the ordinary non-homogeneous Markov
process is a special case of an S-NHMSC. Furthermore, I clarify that the open homoge-
neous Markov models and the ordinary NHMS in continuous time are special cases of
the S-NHMSC.

In Section 3, I evaluate the expected population structure of the S-NHMSC at any time
t, as a function of the basic parameters of the population by establishing the appropriate
differential and integral equation it satisfies.

In Section 4, I study the central classical problem, that of finding the conditions under
which the asymptotic behavior of the expected population structure E[N(t)] as t → ∞
exists, and finding its limit in closed analytic form as a function of the limits of the basic
parameters of the system. The second central problem is finding which expected relative
population structures are possible limiting ones, provided that we control the limiting
vector of input probabilities into the population. We prove that the set A∞ of asymptotically
expected relative population structure E[q(t)], under asymptotic input control of the S-
NHMSC, is a convex hull of the points, which are functions of the left eigenvector of a
certain limiting transition probability matrix and the limiting transition intensity matrices
of the inherent non-homogeneous Markov process.

I conclude this section by studying an important question, which logically arises, that
is, what is the rate of convergence to asymptotically attainable structures in an S-NHMSC.
In fact, I am interested in finding conditions under which the rate is exponential, because
then, the practical value of the asymptotic result is greater.

Finally, in Section 5, I present an illustrative example from manpower planning.

2. The S-NHMS in Continuous Time

I will start by presenting the concept of a non-homogeneous Markov system in a
stochastic environment in continuous time (S-NHMSC). Let {T(t), t ≥ 0}, a known con-
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tinuous function of time or a realization of a known stochastic process denoting the total
number of members in the system. Let S = {1, 2, ..., k} be the set of states that are assumed
to be exclusive and exhaustive. The state of the system at any time t is represented by the
expected population structure:

E[N(t)] = [E[N1(t)],E[N2(t)], ...,E[Nk(t)]],

where E[Ni(t)] is the expected number of members of the population at time t. Another
representation of the state of the system is provided by the relative expected popula-
tion structure:

E[q(t)] =
E[N(t)]

T(t)
= [E[q1(t)],E[q2(t)], ...,E[qk(t)]].

Furthermore, among the states of the system, as in the case of a non-homogeneous
Markov process ([11]), at the infinitesimal time interval [t, t + δt), the probabilities of
members of the system to move from state i to state j are generated by the transition
intensities rij(t):

pij(t, t + δt) = rij(t)δt + o(δt), for i �= j ∈ S. (1)

It is important to note at this point that (1) is valid as long as during the interval
[t, t + δt) the transition intensities rij(t) will operate. When taking a step up the ladder
towards reality, I will assume a stochastic mechanism of selecting the values of rij(t), and
the equation will be altered accordingly.

Furthermore, let state k + 1 represent members leaving the population and assume
that ri,k+1(t) is the transition intensity for a member of the population in state i to leave in
the time interval [t, t + δt):

pik+1(t, t + δt) = rik+1(t)δt + o(δt), for i �= j ∈ S. (2)

The transition intensities rjj(t) are defined by:

rjj(t) = −
k+1

∑
i=1
i �=j

rji(t) for j ∈ S. (3)

Let R(t) =
{

rij(t)
}

i,j∈S be the matrix of transition intensities at time t and

r�k+1(t) = [r1,k+1(t), r2,k+1(t), ..., rk,k+1(t)]
� be the vector of leaving intensities at time t.

Now, let p0i(t, t + δt) be the probability of a new member to enter the population in state i,
given that it will enter the population in the time interval [t, t + δt) and let p0(t, t + δt) =
[p01(t, t + δt), p02(t, t + δt), ..., p0k(t, t + δt)]. Define the following probabilities:

p̂ij(t, t + δt) = pij(t, t + δt) + pik+1(t, t + δt)p0j(t, t + δt)

= rij(t)δt + ri,k+1(t)δtp0j(t, t + δt) + o(δt). (4)

Now, let:

qij(t) = lim
δt→0

p̂ij(t, t + δt)
δt

= rij(t) + ri,k+1(t)p0j(t) for i �= j, (5)

be the transition intensity of a membership to move to state j in the time interval [t, t + δt),
given that it was in state i at time t. To visualize this deeper, let there be T(t) memberships
at the beginning of the interval [t, t + δt), and each member of the population holds one.
During the interval [t, t + δt), members are leaving the population and at the exit they
give their memberships to their replacement, who is distributed among the states with
probabilities p0(t, t + δt) at the end of the interval. Furthermore, let Q(t) =

{
qij(t)

}
i,j∈S be

the matrix of transition intensities of the memberships. Assume that Q(t) is measurable
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and that supij∈S
{∣∣qij(t)

∣∣} is integrable on every finite interval of t. We call the Markov
process defined by the matrix of intensities {Q(t), t ≥ 0} the imbedded or inherent Markov
process of the S-NHMSC.

Assume now that in the infinitesimal time interval [t, t + δt), the system has the choice
of selecting a transition intensity matrix from the pool:

RI(t) = {R1(t), R2(t), ..., Rν(t)}, (6)

such that Ri(t)1� + r�k+1(t) = 0 for i = 1, 2, ..., ν and for every t. Furthermore, assume
that it makes its choice in a stochastic way, and more specifically, in the infinitesimal time
interval [t, t + δt), the probability of selecting an intensity matrix from the set RI(t) is
given by

cij(t, t + δt) = P
{

R(t + δt) = Rj(t + δt) | R(t) = Rj(t)
}

= zij(t)δt + o(δt) for i �= j, t ≥ 0, (7)

and zii(t) is defined to be:

zii(t) = −∑
j �=i

zij(t), i, j ∈ I, t ≥ 0,

and let ci(0) for i = 1, 2, ..., k be the probabilities of the initial states.
Let Z(t) =

{
zij(t)

}
i,j∈I be the above intensity matrix and assume that Z(t) is mea-

surable for every t ≥ 0 and that supi∈I{|zii(t)|} is integrable on every finite interval of
time. Then, the intensity matrices {Z(t)}t≥0 define a non-homogeneous Markov process,
which we call the compromise non-homogeneous Markov process of the S-NHMSC. The
word ’compromise’ is selected in the sense that it is the outcome of the choice of strategy
under the various pressures in the environment. We call a process like the one described
above a non-homogeneous Markov system in a stochastic environment in continuous time
(S-NHMSC).

We defined the S-NHMSC in the most general way, in order to provide an inclusive
framework that could accommodate a large variety of applied probability models. Fur-
thermore, in the following, some basic questions will be answered within this general
framework. However, it is of great importance, in order to increase our intuition about
the potential power of applicability of the present theory and in order to place it at the
right position in the pyramid of progress towards reality, to make the following comments.
Firstly, when:

T(t) = 1, pk+1(t) = 0, p0(t) = 0 for every t > 0 and

RI(t) = {R(t)} for every t > 0,

then the S-NHMSC is the ordinary non-homogeneous Markov process, which has found
applications in almost all areas.

Secondly, when:

pk+1(t) = pk+1, p0(t) = p0, RI(t) = {R} for every t > 0 ,

then the S-NHMSC is the open homogeneous Markov model applied extensively in man-
power systems (see [5,34]).

Thirdly, when:
RI(t) = {R(t)} for every t > 0,

then the S-NHMSC is the ordinary NHMS in continuous time, which is a general framework
for many applied probability models (see [35,36]).
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3. The Expected Population Structure of the S-NHMSC

We will now study the problem of finding the expected population structure E[N(t)]
in terms of the basic functions of the parameters of the system. We call basic functions
of the parameters the least number of parameters that uniquely determine an S-NHMSC.
These are the functions {RI(t)}t≥0, {Z(t)}t≥0, {T(t)}t≥0, {rk+1(t)}t≥0, {p0(t)}t≥0, the
initial population structure N(0), and the initial probabilities cj(0). These are defined by:

D(t) = dT(t)/dt or T(t + δt)− T(t) = D(t)δt + o(δt). (8)

Let N0(t, t + δt) be the random variable which represents the number of new members
entering the population in the infinitesimal time interval [t, t + δt). Then, since the number
of losses from the population is a random variable, with the distribution for each state i ∈ S,
the binomial B(Ni(t), ri,k+1(t)δt) conditional on Ni(t), we have:

E[N0(t, t + δt)] =
k

∑
i=1

E[Ni(t)]ri,k+1(t)δt + D(t)δt. (9)

Furthermore, let Nij(t, t + δt) be the random variable representing the number of
members of the system moving from state i to state j in the time interval [t, t + δt). Then,
these flows from i to j ∈ S are multinomial random variables, in the sense that:

E
[
Nij(t, t + δt)

]
= E

[
E
[
Nij(t, t + δt) | Ni(t),RI(t)

]]
= E[Ni(t)]E

[
pij(t, t + δt)

]
= E[Ni(t)]E

[
rij(t)

]
δt + o(δt) for i �= j ∈ S, (10)

and:
E[Nii(t, t + δt)] = E[E[Nii(t, t + δt) | Ni(t),RI(t)]]

= E[Ni(t)]E[pii(t, t + δt)]

= E[Ni(t)] +E[Ni(t)]E[rii(t)]δt + o(δt) for i �= j ∈ S. (11)

Consequently, we have:

E
[
Nj(t + δt)

]
= ∑

i �=j
E[Ni(t)]

[
E
[
rij(t)

]
δt + ri,k+1(t)p0j(t, t + δt)

]
+E
[
Nj(t)

][
1 +E

[
rjj(t)

]
δt + rjk+1(t)δtp0j(t, t + δt)

]
+ D(t)δtp0j(t, t + δt) + o(δt). (12)

Equation (12), for all j ∈ S, could be written in matrix notation:

dE[N(t)]
dt

= E[N(t)]E[Q(t)] + D(t)p0(t), (13)

where:
E[Q(t)] = E[R(t)] + r�k+1(t)p0(t). (14)

We will now prove that the sum of the rows of the matrix E[Q(t)] is equal to zero.
We have:

E[Q(t)]1� = E[R(t)]1� + r�k+1(t)p0(t)1�

=
ν

∑
j=1

P
[
R(t) = Rj(t)

]
Rj(t)1� + r�k+1(t)

= −
ν

∑
j=1

P
[
R(t) = Rj(t)

]
r�k+1(t) + r�k+1(t)
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= −r�k+1(t) + r�k+1(t) = 0. (15)

Hence, the matrix E[Q(t)] is an intensity matrix and defines a non-homogeneous
Markov process which, by analogy with the ordinary NHMS in discrete time [5,35], we call
the expected embedded or inherent non-homogeneous Markov process for the S-NHMSC.
Assume that

∫ t
0 E[Q(u)]du < ∞ for all t ≥ 0, then there exists a unique transition function

(see [36] paragraph 8.9) E
[
Pq(., .)

]
, such that:

lim
h+h′→0

E

[
Pq

(
t − h, t + h

′)]− I

h + h′ = E[Q(t)], (16)

for all t /∈ E, where E ⊂ [0, ∞) is a set of Lebesgue measure zero. Moreover, E
[
Pq(., .)

]
satisfies the integral matrix equations:

E
[
Pq(s, t)

]
= I+

∫ t

s
E[Q(u)]E

[
Pq(u, t)

]
du, (17)

and:

E
[
Pq(s, t)

]
= I+

∫ t

s
E
[
Pq(u, t)

]
E[Q(u)]du. (18)

A detailed solution of (17) and (18) could be found in [36], paragraph 8.9, where
apparently E[Q(t)] is a function of {Z(t)}t≥0 and {RI(t)}t≥0 due to the selection of R(t)
by the compromise non-homogeneous Markov process. However, we are not interested in
a closed analytic formula E

[
Pq(s, t)

]
, and it is sufficient that we know that it exists and that

it is unique.
In what follows, I will use a probabilistic argument in order to find E[N(t)], which

will also be the solution of the differential Equation (13). The initial number of mem-
berships T(0) = N(0)1� at time t will be distributed to the various states with proba-
bilities E

[
Pq(0, t)

]
, which are the probabilities of transitions of the expected embedded

non-homogeneous Markov process generated by the intensity matrix E[Q(t)]. Thus, the
expected distribution across the states of the initial memberships will be:

N(0)E
[
Pq(0, t)

]
. (19)

Now, let the time interval be [x, x + δx), then the new memberships entering in that
time interval are D(x)δx, and their expected values in the various states at the end of the
interval are given by p0(x, x + δx)D(x)δx. After time t − x, the expected number of new
memberships will be distributed to the various states of the population and their expected
values will be p0(x, x + δx)D(x)δxE

[
Pq(x, t)

]
; therefore, integrating x from 0 to t, we get:

E[N(t)] = N(0)E
[
Pq(0, t)

]
+
∫ t

0
p0(x)D(x)E

[
Pq(x, t)

]
dx, (20)

4. The Asymptotic Behavior of the S-NHMSC

It is evident from previous studies, for example [1,4,35,37–40], that the central problems
in the theory of NHMS and S-NHMS in discrete time, which will be studied in the present
for S-NHMSC, are basically of two natures. The first classical problem is that of finding
the conditions under which the asymptotic behavior of the expected population structure
E[N(t)] as t → ∞ exists and finding its limit in closed analytic form as a function of the
limits of the basic parameters of the system. The second classical problem is finding which
expected relative population structures are possible limiting ones, provided that we control
the limiting vector of input probabilities in the population.

In what follows, I will use as a norm of matrix A ∈ Mk×k(R) the following:

‖A‖ = sup
i

∑
i

∣∣aij
∣∣.
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I will start by refreshing concepts and borrowing some important results from the
theory of non-homogeneous Markov processes, starting with the following definitions for
non-homogeneous Markov processes with countable state spaces.

Definition 1. A Markov process {Xt}∞
t=0 is weakly ergodic if for every s ≥ 0, limt→∞ δ(P(s, t)) = 0.

In the case of weak ergodicity the probability of the occurrence of any of the states at
time t tends to be independent from the initial probability distribution, but is in general
dependent on t.

Definition 2. A Markov process {Xt}∞
t=0 is ergodic if for every s ≥ 0, there exists a vector

Π = (π1, π2, ...) such that:

lim
t→∞

∣∣pij(s, t)− πj
∣∣ = 0 for every i, j ∈ S.

Definition 3. A Markov process {Xt}∞
t=0 is strongly ergodic if there exists a row-constant matrix

Π such that, for all s ≥ 0:
lim
t→∞

‖P(s, t)− Π‖ = 0. (21)

Remark 1. When the state space S is finite, then the concepts of ergodic and strongly ergodic coincide.

As the reader by now may have recognized, the generator of a non-homogeneous
Markov process is the sequence of intensity matrices {Q(t)}∞

t=0. This is so in the sense that
the transition probability matrix P could be seen as the generator of a homogeneous Markov
chain, and the sequence of transition probability matrices {P(t)}∞

t=1 as the generator of
a non-homogeneous Markov chain. Hence, our goal will now be to find conditions for
strong ergodicity for a non-homogeneous Markov process based on the convergence of the
sequence of intensity matrices {Q(t)}∞

t=1.
I will now borrow a basic theorem concerning strong ergodicity for a non-homogeneous

Markov chain based on its sequence of intensity matrices.

Theorem 1 ([14,15]). Let a complete probability space be (Ω,F ,P) and a non-homogeneous
Markov process {Xt}∞

t=0 with sequence of intensity matrices {Q(t)}∞
t=0, which is such that

supt≥0‖Q(t)‖ ≤ c. Let also a homogeneous Markov process be
{

X̂t
}∞

t=0 with intensity ma-
trix Q, such that ‖Q‖ ≤ c, and which is strongly ergodic. If limt→∞‖Q(t)− Q‖ = 0, then if
Π is the stable stochastic matrix, the limit of

{
X̂t
}∞

t=0, then {Xt}∞
t=0 is also strongly ergodic with

limit Π.

Remark 2. At this point, let us refresh the fact that for finite homogeneous, discrete, or continuous
Markov chains, the concept of ergodicity, strong ergodicity, and weak ergodicity coincide. For an
infinite chain, the notions of ergodicity and strong ergodicity are separated.

I will present an important result from [16]. Let Q be the intensity matrix of a homoge-
neous Markov process {Xt}∞

t=0 and supi∈S{|qii|} < c < ∞ and b > c, define:

P̂ = I+
Q

b
,

then P̂ generates a discrete Markov chain
{

X̂t
}∞

t=0.

Theorem 2 ([16]). Let a complete probability space be (Ω,F ,P) and a finite homogeneous Markov
process {Xt}∞

t=0, then it is ergodic if and only if the Markov chain
{

X̂t
}∞

t=0 generated by P̂ =
I + Q/b is ergodic.

I will now prove the following basic theorem:
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Theorem 3. Let a complete probability space be (Ω,F ,P) and a finite S-NHMSC, as defined in
Section 2. Assume that the following conditions hold:

(1) lim
t→∞

∥∥Rj(t)− Rj
∥∥ = 0, (2) lim

t→∞

∥∥∥r�k+1(t)− r�k+1

∥∥∥ = 0,

(3) lim
t→∞

‖p0(t)− p0‖, (4) lim
t→∞

‖Z(t)− Z‖ = 0, with

sup
t≥0

‖Z(t)‖ < ∞, sup
i∈I

{|zii|} < z < ∞ and let PZ = I +
Z

c1

with c1 > z, PZ an irreducible, aperiodic matrix

(5) sup
i∈S

{
rj,ii
}
< a < ∞, sup

{
ri,k+1

}
< b < ∞

where rj,ii the (i, j) element of Rj,

then, as t → ∞ E[Q(t)] converges in norm to the intensity matrix:

E[Q] =
ν

∑
j=1

πzj Rj + r�k+1p0,

where ΠZ =
(
πz1 , πz2 , ..., πzk

)
is the left eigenvector of the eigenvalue 1 of the matrix PZ.

Proof. From condition (4), since PZ is an irreducible, aperiodic stochastic matrix, then
there exists a stable stochastic matrix ΠZ with common row ΠZ =

(
πz1 , πz2 , ..., πzk

)
, which

is the left eigenvector of the eigenvalue 1 of the matrix PZ, that is:

lim
t→∞

∥∥Pt
Z − ΠZ

∥∥ = 0. (22)

Furthermore, from condition (4), we have that the intensity matrices {Z(t)}t≥0 con-
verge to the intensity matrix Z, and from (22), we know that it generates an ergodic Markov
process. Therefore, {Z(t)}t≥0, due to Theorem 2, generates an ergodic non-homogeneous
Markov process, and we have that:

lim
t→∞

‖C(s, t)− ΠZ‖ = 0. (23)

We have that:

E[R(t)] =
ν

∑
i=1

ν

∑
j=1

cij(0, t)ci(0)Rj(t). (24)

Now, consider: ∥∥∥∥∥E[Q(t)]−
ν

∑
j=1

πzj Rj − r�k+1p0

∥∥∥∥∥ ≤
∥∥∥∥∥E[R(t)]−

ν

∑
j=1

πzj Rj

∥∥∥∥∥+ ∥∥∥r�k+1(t)p0(t)− r�k+1p0

∥∥∥ ≤
∥∥∥∥∥ ν

∑
i=1

ν

∑
j=1

cij(0, t)ci(0)Rj(t)−
ν

∑
i=1

ν

∑
j=1

πzj ci(0)Rj

∥∥∥∥∥+∥∥∥r�k+1(t)− r�k+1

∥∥∥+ ∥∥∥r�k+1

∥∥∥‖p0(t)− p0‖ ≤
ν

∑
i=1

ν

∑
j=1

∥∥∥cij(0, t)Rj(t)− πzj Rj

∥∥∥ci(0)+

∥∥∥r�k+1(t)− r�k+1

∥∥∥+ ∥∥∥r�k+1

∥∥∥‖p0(t)− p0‖ ≤
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ν

∑
i=1

ν

∑
j=1

[∥∥∥cij(0, t)− πzj

∥∥∥∥∥Rj(t)
∥∥+ ∥∥Rj(t)− Rj

∥∥]
+
∥∥∥r�k+1(t)− r�k+1

∥∥∥+ ∥∥∥r�k+1

∥∥∥‖p0(t)− p0‖. (25)

We have that: ∥∥Rj(t)
∥∥ ≤ ∥∥Rj(t)− Rj

∥∥+ ∥∥Rj
∥∥,

and since
∣∣rj,ii

∣∣ = ∑l �=i

∣∣∣rj,il

∣∣∣+ ∣∣∣rj,i k+1

∣∣∣ , and by condition (5) we have supi∈S
{

rj,ii
}
< a <

∞, we could easily prove that:

∥∥Rj
∥∥ ≤ 2

{
∑
l �=i

∣∣∣rj,il

∣∣∣}+ sup
i∈S

∣∣∣rj,i k+1

∣∣∣ < b < ∞. (26)

By condition (1), one can choose t∗0 such that for t > t∗,
∥∥Rj(t)− Rj

∥∥ < 1. Let
M∗ = sup0≤t≤t∗

{∥∥Rj(t)− Rj
∥∥} , denoted by M = M∗ + 1 + b. Then:∥∥Rj(t)

∥∥ < M < ∞. (27)

From (25), (27), and the conditions of the Theorem, we get that for t > t0 :∥∥∥∥∥E[Q(t)]−
ν

∑
j=1

πzj Rj + r�k+1p0

∥∥∥∥∥ ≤ ε.

Furthermore, it is not difficult using the conditions of the Theorem to see that:

E[Q]1� =
ν

∑
j=1

πzj Rj1
� + r�k+1p01� = −

ν

∑
j=1

πzj r
�
k+1 + r�k+1 = 0.

In analogy with the discrete case for an S-NHMS, we provide the following definition:

Definition 4. We say that an S-NHMSC has an asymptotically attainable expected relative popu-
lation structure E[q(∞)] under asymptotic input control, if there exists a p0 = limt→∞ p0(t) such
that limt→∞ E[q(t)] = E[q(∞)]. We denote by A∞ the set of asymptotically expected relative
population structures under asymptotic input control of the S-NHMSC.

We now provide the following basic theorem concerning the asymptotic behavior of
the S-NHMSC.

Theorem 4. Let a complete probability space be (Ω,F ,P) and a finite S-NHMSC as defined in
Section 2. Assume that the conditions (1) → (5) of Theorem 2 hold and, in addition, that the
following conditions are true (6):

lim
t→∞

T(t) = T,

where T(t) is a non-dicreasing continuous function. (7) The matrix:

Pq = I +
E[Q]

c2
,
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with c2 > supi∈S{|E(qii)|} is an irreducible, aperiodic stochastic matrix. Then, (i) as t → ∞,

E[q(t)] converges to Πq =
(

πq1, πq2, ..., πqk

)
, which is the left eigenvector of the eigenvalue 1 of

the matrix Pq. (ii) The set A∞ is the convex hull of the points:

μi

⎡⎣ei

(
ν

∑
j=1

πzj Rj

)−1
⎤⎦, where μi = ei

(
ν

∑
j=1

πzj Rj

)−1

1�.

Proof. Since Πz is the left eigenvector of the eigenvalue 1 of the irreducible, aperiodic
matrix PZ, we have that 0 ≤ πzj ≤ 1 for j = 1, 2, ..., ν. Furthermore, condition (5) of
Theorem 3 is also valid for the present; hence, supi∈S

{
rj,ii
}
< ∞ and sup

{
ri,k+1

}
< b < ∞.

Consequently, from the expression of E[Q] in Theorem 3 we get that:

c2 > sup
i∈S

{E[qii]} < ∞. (28)

Now, since Pq is an irreducible, aperiodic stochastic matrix, we have that:

lim
t→∞

∥∥∥Pt
q − Πq

∥∥∥ = 0,

where Πq is a stable stochastic matrix with row Πq =
(

πq1, πq2, ..., πqk

)
, which is the left

eigenvector of the eigenvalue 1 of the matrix Pq. From (28), Theorems 1 and 2, we have
that if we denote with E

[
Pq(s, t)

]
the probability transition matrix of the non-homogeneous

Markov process defined by the intensities {E[Q(t)]}t≥0, then:

lim
t→∞

∥∥E[Pq(s, t)
]− Πq

∥∥ = 0 for every s ∈ N. (29)

Therefore, as t → ∞ is the first part of the right hand side of Equation (20):

lim
t→∞

N(0)E
[
Pq(s, t)

]
= N(0)Πq = T(0)Πq. (30)

Now, consider:

U(t) =
∥∥∥∥∫ t

0
p0(x)D(x)E

[
Pq(x, t)

]
dx −

∫ t

0
p0D(x)Πqdx

∥∥∥∥
≤
∫ t

0

∥∥p0(x)E
[
Pq(x, t)

]− p0Πq
∥∥D(x)dx

≤
∫ t

0
‖p0(x)‖∥∥E[Pq(x, t)

]− Πq
∥∥D(x)dx +

∫ t

0
‖p0(x)− p0‖D(x)dx

=
∫ t

0

∥∥E[Pq(x, t)
]− Πq

∥∥D(x)dx +
∫ t

0
‖p0(x)− p0‖D(x)dx

= A(t) + B(t)

From (29), we have that there exists a t0 > 0 such that for t − x > t0:∥∥E[Pq(x, t)
]− Πq

∥∥ < ε.

Thus:

A(t) ≤
∫ t−t0

0

∥∥E[Pq(x, t)
]− Πq

∥∥D(x)dx+

∫ t

t−t0

∥∥E[Pq(x, t)
]− Πq

∥∥D(x)dx

≤ ε{T(t − t0)− T(0)}+ 2{T(t)− T(t − t0)}. (31)
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Now, from condition (3), we have that there exists a t1 > 0 such that for t > t1,
‖p0(t)− p0‖ < ε. Thus:

B(t) =
∫ t

0
‖p0(x)− p0‖D(x)dx ≤

∫ t1

0
‖p0(x)− p0‖D(x)dx +

∫ t

t1

‖p0(x)− p0‖D(x)dx

≤ 2(T(t1)− T(0)) + ε(T(t)− T(t1)).

Hence, we have that limt→∞ A(t) = 0 and limt→∞ B(t) < ∞. Thus, U(t) is an in-
creasing function bounded from above and limt→∞ U(t) = 0. Therefore, from (31), we
have that:

lim
t→∞

∫ t

0
p0(x)D(x)E

[
Pq(x, t)

]
dx =

∫ t

0
p0D(x)Πqdx

= p0Πq[T − T(0)] = Πq[T − T(0)]. (32)

Hence, from (20), (30) and (32), we get that:

lim
t→∞

E[N(t)] = E[N(t)] = TΠq. (33)

Since ‖E[Q]‖ is finitely bounded and defines an ergodic Markov process, it is known that:

ΠqE[Q] = 0. (34)

From Theorem 3 and Equation (34), we get that

Πq

ν

∑
j=1

πzj Rj = −Πqrk+1p0 = ΠqRj1
�p0. (35)

The matrix ∑ν
j=1 πzj Rj, due to condition (7), is irreducible and aperiodic and is part of

the intensity matrix E[Q]. Hence, ([41])
(

∑ν
j=1 πzj Rj

)−1
exists and is nonnegative. Therefore:

Πq = ΠqRj1
�p0

(
ν

∑
j=1

πzj Rj

)−1

, (36)

and:

Πq = ΠqRj1
� k

∑
i=1

p0iei

(
ν

∑
j=1

πzj Rj

)−1

. (37)

Multiplying both sides of (37) by 1�, we obtain:

1 = ΠqRj1
� k

∑
i=1

p0iei

(
ν

∑
j=1

πzj Rj

)−1

1�. (38)

Let:

μi = ei

(
ν

∑
j=1

πzj Rj

)−1

1�. (39)

Then:

1 = ΠqRj1
� k

∑
i=1

p0iμi. (40)
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Therefore, from (33) and the above, we get that:

lim
t→∞

E[q(t)] = Πq =
k

∑
i=1

p0iμi

∑k
j=1 p0jμj

μ−1
i

⎡⎣ei

(
ν

∑
j=1

πzj Rj

)−1
⎤⎦. (41)

Hence, E[q(∞)] is a convex combination of the vertices:

μ−1
i

⎡⎣ei

(
ν

∑
j=1

πzj Rj

)−1
⎤⎦.

It is well known that for a homogeneous Markov process, with intensity matrix Q

and transition matrix P(t), which is strongly ergotic, the rate of convergence with which
P(t) converges to a stable stochastic matrix is exponential. Logically, this fact creates the
intuition, that possibly for a non-homogeneous Markov process with sequence of intensity
matrices Q(t), the rate at which the transition probability matrices converge to a stable
stochastic matrix is also exponential. The answer to this is negative, since we need one
more condition for this to be true, and that is limt→∞‖Q(t)− Q‖ = 0 with an exponential
rate of convergence. This result is stated formally in the following theorem, the proof of
which could be found in [14].

Theorem 5. Let a complete probability space be (Ω,F ,P) and a non-homogeneous Markov process
{Xt}∞

t=0 with sequence of intensity matrices {Q(t)}∞
t=0, which is strongly ergodic. Let also a

homogeneous Markov process be
{

X̂t
}∞

t=0 with intensity matrix Q, which is strongly ergodic. Let
g : R+ → R+ be a monotonically increasing function. If limt→∞ g(2t)‖Q(t)− Q‖ = 0 then:

lim
t→∞

sup
s≥0

{min(exp(λt)), g(t)‖P(s, t)− Π‖} = 0,

where 0 < λ < β/2 and β > 0 is the constant parameter of the exponential rate of convergence at
which

{
X̂t
}∞

t=0 converges.

An important question which logically arises is: what is the rate of convergence to
asymptotically attainable structures in an S-NHMSC? In fact, I am interested in finding
conditions under which the rate is exponential, because then, the practical value of the
asymptotic result is greater (see [42,43]). Furthermore, as in [20], the problem of construction
of sharp bounds for the rate of convergence of characteristics of Markov chains to their
limiting vectors is very important. That is, all too often, it is easier to calculate the limit
characteristics of a process than to find the exact distribution of state probabilities. Therefore,
it is very important to have a possibility to use the limit characteristics as asymptotic
approximations for the exact distribution. The following Theorem answers the question of
the rate of convergence of the expected structure of an S-MHMSC.

Theorem 6. Let a complete probability space be (Ω,F ,P) and a finite S-NHMSC as defined in
Section 2. Furthermore, let the conditions (1) → (7) of Theorem 4 hold and in addition assume that
the convergences in conditions (1) → (4) and (6) are exponentially fast. Then, the convergence of
E[N(t)] as t → ∞ is exponentially fast.

Proof. Since limt→∞‖Z(t)− Z‖ = 0 is exponentially fast and in addition Z is strongly
ergodic, then in Theorem 5 there are constants c3 and λ1 > 0 such that:

‖C(s, s + t)− Πz‖ ≤ c3e−λ1t for every s, t > 0. (42)
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Since the convergences in conditions (1)–(3) are exponentially fast, we have that:

∃ c0 > 0, a0 > 0 such that ‖p0(t)− p0‖ ≤ c0e−a0t for every t. (43)

∃ c1 > 0, a1 > 0 such that
∥∥∥r�k+1(t)− r�k+1

∥∥∥ ≤ c1e−a1t for every t. (44)

∃ c2 > 0, a2 > 0 such that
∥∥Rj(t)− Rj

∥∥ ≤ c2e−a2t for every t. (45)

From (25), (42) → (45), we arrive at:

‖E[Q(t)]−E[Q]‖ ≤ ce−at with c > 0, a > 0. (46)

Now, from (46), condition (7), of Theorems 4 and 5 we get that:∥∥E[Pq(s, s + t)− Πq
]∥∥ ≤ cqe−λ2t, cq, λ2, t > 0 for every t. (47)

We now have the following:∥∥E[N(t)]− TΠq
∥∥ = ‖N(0)E

[
Pq(0, t)

]
(48)

+
∫ t

0
p0(x)D(x)E

[
Pq(x, t)

]
dx − TΠq‖ ≤

‖N(0)‖∥∥E[Pq(0, t)
]− Πq

∥∥+∥∥∥∥∫ t

0
p0(x)D(x)E

[
Pq(x, t)

]
dx − (T − T(0))Πq

∥∥∥∥
≤ ‖N(0)‖∥∥E[Pq(0, t)

]− Πq
∥∥+ ∥∥(T(t)− T)Πq

∥∥+∥∥∥∥∫ t

0
p0(x)D(x)E

[
Pq(x, t)

]
dx − (T(t)− T(0))Πq

∥∥∥∥ ≤

‖N(0)‖∥∥E[Pq(0, t)
]− Πq

∥∥+ |(T(t)− T)|+∫ t

0

∥∥E[Pq(x, t)
]− Πq

∥∥D(x)dx +
∫ t

0
‖p0(x)− p0‖D(x)dx (49)

From (47), condition (3), we obtain the fact that the convergence as t → ∞ of T(t) is
exponentially fast, and based on (49), we arrive at the following relation:∥∥E[N(t)]− TΠq

∥∥ ≤ ce−λt with c, λ, t > 0 and for every t > 0,

which proves the Theorem.

5. An Illustrative Example from Manpower Planning

In the present section, the previous results are illustrated through an example from
manpower planning. Interesting examples of such systems can be found in [44]. Suppose
that intensities were estimated from the historical records of a firm with three grades, and
they found that three were repeatedly exercised; thus, the pool RI(t) has the elements:

R1(t) =

⎛⎝−4 − 2e−3t 3 + e−3t 0
0 −5 − 3e−t 3 + 2et

0 0 −7 − e−5t

⎞⎠,

R2(t) =

⎛⎝−5 − 10e−3t 4 + 9e−3t 0
0 −6 − 9e−t 4 + 7et

0 0 −7 − e−5t

⎞⎠,
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R1(t) =

⎛⎝−3 − 4e−3t 2 + 3e−3t 0
0 −7 − 3e−t 5 + et

0 0 −7 − e−5t

⎞⎠.

Let also:

rk+1(t) =
[
1 + e−3t, 2 + e−7, 7 + e−5t

]
, p0(t) =

(
0.2 0.3 0.5

)
.

In addition, let us utilize the well-known maximum likelihood estimates for tran-
sition intensities ([44]); the matrix of the transition intensities of the compromise non-
homogeneous Markov process {Z(t)}t≥0, under the assumption that they are time inde-
pendent, was found to be:

Ẑ =

⎛⎝−5 3 2
4 −9 5
2 5 −8

⎞⎠.

Applying Theorem 3 to the above data, we have that conditions (1)–(3) are satis-
fied with:

R1 =

⎛⎝−4 3 0
0 −5 3
0 0 7

⎞⎠, R2 =

⎛⎝−5 4 0
0 −6 4
0 0 7

⎞⎠,

R3 =

⎛⎝−3 2 0
0 −7 5
0 0 −7

⎞⎠ and rk+1 =
(
1 2 7

)
.

Obviously, supt≥0‖Z(t)‖ < ∞, and with c1 = 10, we get:

PZ =

⎛⎝0.5 0.3 0.2
0.4 0.1 0.5
0.3 0.5 0.2

⎞⎠,

which is obviously an irreducible regular stochastic matrix, and thus, condition (4) and
condition (5) of Theorem 3 are satisfied. Now, the asymptotic expected intensity matrix is
found to be:

E[Q] =

⎛⎝−3.8 3.3 0.5
0.4 −5.3 4.9
1.4 2.1 −3.5

⎞⎠,

which, apparently, is a matrix of transition intensities.
Theorems 4 and 5 are straightforwardly applicable with the above data. The present

example could be used as a guide for applying the theoretical results in many areas of
potential applications, such as for example in [44–48].

6. Conclusions

The concept of a non-homogeneous Markov system in a stochastic environment and
in continuous time was introduced. It was found under which conditions, using basic
parameters, the limiting population structure and the relating relative population structure
exist, and they were evaluated in elegant closed analytic forms. The set of all possible
relative population structures was characterized under all possible input probability vectors.
Finally, an illustrative example from manpower planning was presented, which could be
used as a guide for applications in other areas.
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Abstract: In different areas of human activity, the need to choose optimal (rational) options for actions
from the proposed alternatives inevitably arises. In the case of retrospective statistical data, risk
analysis is a convenient tool for solving the problem of choice. However, when planning the growth
and development of complex systems, a new approach to decision-making is needed. This article
discusses the concept of risk synthesis when comparing alternative options for the development of a
special class of complex systems, called smart expansive systems, by the authors. “Smart” in this case
implies a system capable of ensuring a balance between its growth and development, considering
possible external and internal risks and limitations. Smart expansive systems are considered in
a quasi-linear approximation and in stationary conditions of problem-solving. In general, when
the alternative to comparison is not the object itself, but some scalar way of determining risks, the
task of selecting the objects most at risk is reduced to assessing the weights of factors affecting the
integral risk. As a result, there is a complex task of analyzing the risks of objects, solved through
the amount by which the integral risk can be minimized. Risks are considered as anti-potentials of
the system development, being retarders of the reproduction rate of the system. The authors give
a brief description of a smart expansive system and propose approaches to modeling the type of
functional dependence of the integral risk of functioning of such a system on many risks, measured,
as a rule, in synthetic scales of pairwise comparisons. The solution to the problem of reducing the
dimension of influencing factors (private risks) using the vector compression method (in group and
inter-scale formulations) is described. This article presents an original method for processing matrices
of incomplete pairwise comparisons with indistinctly specified information, based on the idea of
constructing reference-consistent solutions. Examples are provided of how the vector compression
method can be applied to solve practical problems.

Keywords: decision-making; expert assessments; pairwise comparisons; risk; smart expansive
system; uncertainty; vector compression method

1. Introduction

Global processes of transformation have begun in recent years. The actuality of solving
the tasks of effective management of structurally complex sociotechnical systems has
increased significantly. The concept of the value of objects (assets) included in such systems
“presses up” the value of assessments and the significance of decision-making becomes
determining, but the definition of this “value” remains more an art than a scientifically
based methodology. Intuitively, with limited resources (of all kinds), it is necessary to aim
to use these resources in the most rational way. However, to develop a rational solution,
it is necessary to learn how to assess the results of the targeted activities of the system,
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how to apply them to the tasks set and learn the costs associated with each solution. To
make a comparison, you need to learn how to measure certain quantitative features that
characterize the functionality of an individual object and the entire complex sociotechnical
system. You also need a “tool” that allows you to assess the result. Since the task lies in
choosing the best of the compared options for the growth and development of the system,
first, it is necessary to learn how to measure the quality of decision-making. The quality of
any solution becomes apparent only in the process of its implementation (in the process
of target operation of a managed object or system). Therefore, the main objective is the
assessment of the quality of the solution by the effectiveness of its application. Thus, to
reasonably choose the preferred solution, it is necessary to measure the effectiveness of
the target function of the managed object or system versus its compared variants [1] in
conditions of existing uncertainty and risk.

The comparison of options and decision-making directly depends on the competence
of decision-makers (DM), that is, on their ability to comprehensively assess the risks
associated with the functioning and development of the system. To ensure a well-founded
choice of DM, we propose using decision-formers (DF), which as a rule, are analytical
tools based on mathematical methods. These can be found in Kantorovich’s “simplex
method” [2] on through to modern machine-learning methods, neural networks [3–5],
methods of reference vectors [6], genetic algorithms [7], etc.

There are several classes of decision-making tasks:

• deterministic, which are characterized by a one-valued connection between the decision-
making and its outcome, aimed at building the “progress” function and determining
the stable parameters at which the optimum is achieved;

• stochastic, in which each decision made can lead to one of many outcomes occurring
with a certain probability. Usually, it uses simulation programming methods [8], game
theory [9] or other methods of adaptive stochastic management [10] to choose the
optimal strategy in view of averaged, statistical characteristics of random factors;

• in conditions of uncertainty, when the criterion of optimality depends, in addition to
the strategies of the operating party and fixed risk factors, and also on uncertain factors
of a non-stochastic nature, an interval mathematics [11] approach, or approximations
in the form of fuzzy (blurred) sets [12,13], are used in decision-making.

The latter case involves processing the views of independent experts [14,15]. Despite
the wide application of expert systems in practice, the fairness of using certain methods of
analysis remains incomprehensible for many DM, especially when the results are contrary
to “common sense” (in their understanding) [16]. So, developers have to formulate and
uphold certain principles, without which the automation of methods adopted in expert
systems becomes unacceptable.

Often, expert assessment procedures are based on the method of processing matrices
of pairwise comparisons of various alternatives, known as the Saaty algorithm (or hierarchy
analysis method) [17]. It is quite widely used despite criticism [18–20] and the lack of a
one-valued solution to several research issues.

Firstly, with large dimensions for the pairwise comparison matrix, the number of
comparisons for each expert increases to N × (N − 1)/ 2, where N is the number of
alternatives considered. Problems arise with the “poor-quality” filling of the comparison
matrix by experts and the “insufficient” quality scale used in the method.

Secondly, not all experts can compare all proposed alternatives in pairs, and so some
pairwise comparison matrices will remain unassessed (NA). Partially, this issue was solved
by Saaty with the development of the method of analysis of hierarchies and the method
of analytical networks, but the latter contains several strong assumptions that impose
restrictions on its application [21,22].

Thirdly, as a rule, there is no “reference” alternative; the remaining assessments are
obtained by converting Ai,j = Ai,1 × A−1

j,1 , which is used, for example, in combinatorial
methods for restoring missing data [19].
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Fourthly, when summarizing the opinions of experts and moving to a common matrix
of pairwise comparisons, values with significant variation appear in the same cells, which
necessitates working with the assessments set in the interval scale [23].

Finally, in the case where the alternative to comparison is not the object itself, but
instead a scalar method is determining risks, then the task of selecting objects is reduced to
assessing the weights of factors affecting the integral risk. As a result, a complex problem
of analyzing the risks of objects arises, which can be solved by minimizing the integral
risk [24].

2. Smart Expansive System

Complex systems theory (synergy) uses nonlinear modeling and fractal analysis for
forecasting. In the last decade, such innovative areas as theoretical history and mathematical
modeling of history, based on a synergistic, holistic description of society as a non-linear
developing system, have been actively developing (V. Glushkov, B. Onyky, N. Zhigirev, S.
Kurdyumov, D. Chernavsky, V. Belavin, S. Malkov, A. Malkov, V. Korotaev, D. Khalturina,
P. Turchin, V. Budanov).

Modern complex sociotechnical systems are characterized by distribution in space, a
large variety of objects included in their composition and interaction of various types of
objects, a heterogeneous structure of transport and technological chains, unique conditions
for influencing individual objects and the system as a combination of risks of various na-
tures. If the stability of the functioning of such complex systems means the implementation
of their development plan with permissible deviations in terms of volume and timing of
tasks, then their management is reduced to minimizing unscheduled losses in emergency
situations and taking measures to anticipate them, that is, for the analysis, assessment and
management of associated risks.

The concept of management of such systems strives to achieve an optimal balance
between the cost of the object, associated risks and performance indicators, based on which
economic goals are formed and the use of the object is ensured in such a way that it creates
added value. In general, optimal profit-oriented management strikes a balance in the
reallocation of available resources (material, human and information) between “productive
activities” and “maintaining development potential”.

The above is described most closely by models of interaction between a developing
object and its environment, such as in the model of self-perfecting developing systems of
V. Glushkov. He introduced a new class of dynamic models based on nonlinear integral-
differential equations with a history [25]. He also developed approaches to modeling the
so-called “self-perfecting systems” and proved theorems on the existence and uniqueness
of solutions, describing their systems of equations [26].

However, it should be noted that the name “developing”, applied to the class of
systems in question, is not quite correct and contains some ambiguous interpretations. The
growth of the system may not be accompanied by its development (for example, improving
the science of creation and design, instructions for the manufacture or use of the product)
and vice versa (for example, expectations of a quick practical return on basic science).
Usually, growth and development are combined, there is a smooth or uneven change in the
proportions between them and some “equilibrium” state with the external environment
occurs (or does not occur).

In parallel with the work of V. Glushkov, works on Scientific and Technical Progress
(STP) have also begun in specific industries. Examples are the studies of B. Onyky and V.
Reznichenko [27,28], who laid the foundations for the theory of potential systems, and the
early works of N. Zhigirev [29]. Based on biophysical and economic models, they proposed
a practical new version including integral-differential equations that describe the process of
producing, introducing and forgetting knowledge in production cycles due to the transition
to other scientific and technological foundations. They demonstrated the cyclical nature of
capacity-building and the need to develop complex systems (health, education, industrial
safety systems, ecology and other infrastructure projects by generation).
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Our understanding and development of the aforementioned models compel us to
introduce into consideration a class of so-called “smart expansive systems,” consisting of
three subsystems (Figure 1).

Figure 1. Scheme of smart expansive system functioning.

The smart expansive system (SES) is an open system that may be growing or devel-
oping, or simultaneously both growing and developing (when, for example, objects of
different “generations” are included in it). Sometimes the growth of the system is accompa-
nied by “flattening” (flatlining at the same level of development) and degradation in its
development. The SES is open since it needs to effectively allocate the necessary resources
from the external environment, possibly “cleaning” them before use (including the human
resource), and remove biowaste.

The production subsystem is assessed by the reproduction rate multiplier at a condi-
tional minimum development potential. Below this minimum (critical mass of potential),
the growth and development of the SES are impossible in principle. The potential catalytic
function describing this multiplier in the limit is an asymptotic curve with saturation (like a
logistic curve), although potential inhibition is also possible since the production subsystem
occupies the space of a common SES. This behavior is similar to the flow system of the
“Brusselator” (an intensively working conveyor) when initial substrates flow out of it,
which do not have time to react with the catalyst, despite their sufficient amount [30].

The production subsystem serves to measure the success of expansion, determined,
for example, by the volume of useful products produced by the system.

The subsystem of the expansion potential of the production is intended for catalytic
management of the produced forms and resources (sometimes measured by money with a
dual structure—the cost of renewing matter and the cost of maintaining information in the
broad sense of the word).

The energy management subsystem is actually a two-circuit resource management system
(financial and temporary) between production and contribution to infrastructure projects.

In Figure 1, the externally directed energy flow (5) is distributed by the control sub-
system to the production subsystem (7) and goes to the expansion potential subsystem
for the production of knowledge and improvement of technologies, which are “recipes”
for the preparation of products (the so-called flow to the development of “infrastructure”).
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From the external environment, the expansion potential subsystem also receives additional
information on new knowledge, inventions and technologies (3) and has a catalytic effect
on the production subsystem (11). The production subsystem, in turn, receives from the
external environment a flow of “purified” semi-finished products (1) for further expansion.
In the process of expansion, there is inevitably a partial forgetting of information due to
various causes, including the physical death of the carriers of the original thought forms
(4), which causes a weakening of the expansion potential of the entire system.

There is an outflow (2) of products from the production subsystem to the external
environment, including unused semi-finished products, waste from the assembly of prod-
ucts, etc. Purified from (2), the flow of energy from the results of labor to the production
subsystem and the results of sales of products on the market supports the functioning of
the regulatory subsystem. In the latter, over time, it is possible to disperse energies (6) not
yet distributed among subsystems that can cause, under certain conditions, a collapse of
the management system.

Leaving beyond the scope of this article a detailed description of external and internal
interactions, let us dwell a little more on the features of a deterministic and stochastic
approach to modeling smart expansive systems.

2.1. Deterministic Model of Smart Expansive System

For the deterministic case, the SES is described by a two-parameter model for time
(1) and for the proportions of the energy distribution (3). The first equation describing the
system is in a sense autonomous:

dX(t)
dt

=

(
g × ϕ(β)

1 + β
− a
)
× X(t)− b × X2(t), (1)

where X(t) is the volume of the “production subsystem” measured by the number of prod-
ucts; a × X(t)—the additive of linear part—maintains the production technology and re-
quires linear costs (in economics, for example, these are depreciation costs);
g × ϕ(β)

1+β × X(t) is a linear production function of a useful subsystem with the parame-

ter β; s = 1
1+β (0 ≤ β ≤ ∞) is the proportion of energy distribution from newly created

forms s (s ∈ [0, 1]; (1 − s) = β
1+β (0 ≤ β ≤ ∞); g is the coefficient of the scale of production

losses, where as a rule, 0 ≤ g ≤ 1 is performed; ϕ(β) beforehand is the set amplifier
of the production of forms due to reading “the correct information” (e.g., instructions
for assembly), with information as a catalytic function; b × X2(t) is a quadratic term that
considers the limited “semi-finished products” and the competition of finished “products”
in the surrounding world.

The function ϕ(β) takes the form of a logistic curve (Figure 2), which is generally
unnecessary if the requirements of positive constrained monotonicity are met. This function
can have breaks of the first kind. The final form of the function ϕ(β) with the argument β
is also determined by the degree of necessary detail for the calculation.

Segments on the abscissa axis [β1; β2], [β2; βL] and [βR; β5] if Xk(β) < 0 are the area of
degradation of the smart expansive system. Accordingly, the segments [0; β1], [βL; β∗] and
[β∗; βR] if Xk(β) > 0 are the area of its growth (development). Moreover, the expansion
of the system begins only from β2 (on the segment [β2; β∗] Xk(β) grows, and on the rest,
it only decreases). Above the limit value β = β5, it makes no sense to look for a solution,
although already at the point βR, the system begins to degrade actively.

The type of logistic curve is selected so that in the segment [0; β1], the efficiency of the
productive subsystem is extremely low (this is the field of low-skilled labor and individual
potentially breakthrough ideas in science). The segment [βL; βR] corresponds to mass
production using the available knowledge and skills. The optimal Xk(β∗) is inside [βL; βR],
while at [βL; β∗], science is not sufficiently developed and highly-demanded, and at [β∗; βR],
science is “too much” and the results of scientific research simply do not have time to be
introduced and mastered in the production subsystem.
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Figure 2. Dependence on “potential for development” from expired costs.

The point β = 0 in Figure 2 corresponds to a situation where all resources are spent
exclusively on the growth of the production subsystem. The potential of such a system is
low due to permanent losses that can be avoided if there is the potential to anticipate and
manage emerging risks.

The section β = (0, β1) shows that if the funds assigned to study and counteract
threats and risks are small, then the return on such research and activities is less than the
resources assigned to them. Information collection for low-level investigation of internal
and external threats does not allow for an adequate assessment that improves the quality
of decision-making in most cases.

On the segment β = (β1, β∗ ), the contribution to the development potential begins
to give a positive return; however, the so-called “self-repayment” level of the costs of
developing the “potential” of the system ϕ(βL) will be achieved only at the point βL.
Therefore, it is advisable to consider this point as a point of “critical” position. The
reduction of the potential ϕ(β) to the level ϕ(βL) threatens a situation where “due to the
circumstances,” the “survival strategy” will be economically suitable—that is, taking the
strategy of completely eliminating the cost of solving the tasks of prediction and anticipation
of threats and risks, and ensuring reproduction only by increasing low-efficiency capacities
in the production subsystem β → 0 .

The optimum is reached at point β∗. This point has a certain sense to it. If resources
for the development of potential are given “excessively” (β � β∗), then the funds (β − β∗)
are incorrectly removed from the current reproduction and a situation arises where dispro-
portionate efforts are spent on studying and counteracting many risks that the developing
system may never face. The optimum does not depend on the values g, a, b. There may be
cases where a is so large that even with an optimal solution, the system does not develop,
but degrades. The condition of non-degeneracy of the decision is the presence of positive
ordinates in XK (Figure 3).
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Figure 3. Dependency graph Xk(β).

Generally, for the segment [0, βL], only the overregulation and excessive formalization
of management of a system can do much harm, and for the segment [β∗, ∞], there is a
situation where the costs of searching for an existing solution are so great that it is preferable
to receive it anew.

In Figure 2, with β along the abscissas axis and ϕ(β) along the ordinate axis, we draw
half-lines from the point T(−1, 0) crossing the graph’s ϕ(β). The position of the half-line is
set at (z = α(β + 1)) with a tangent α to the abscissa axis β and crosses over the ordinate
axis at point (0, α).

The position of the upper touch of the half-lines corresponds to the coordinate
(β∗, ϕ(β∗)), for which the following is performed

α∗ = ϕ(β∗)
(1 + β∗)

(2)

With a fixed β(s) and ϕ(β), an initial X(0) = X0 (next to zero deformation of the space
of forms) and an asymptotically final volume X(∞) = XK, solutions can be represented in
the form of a logistic curve.

If a1 =

(
g× ϕ(β)

1+β −a
)

b and XK = a1
b , then X(t) = XK×X0

(XK−X0)×exp(−a1×t)+X0
.

Let us find out how the parameter β influences final productivity, which means a
stable equilibrium state of XK.

Considering the difference scheme, we define the final growth graph ΔX with a step
Δt: X(t + Δt) = X(t) + ΔX(t)× Δt, where ΔX(t)= g × ϕ(β)

1+β − a.
The final graph Xk(β), taking into account the compression of the graph ϕ(β) by g

and the displacement by the value a vertically downward, followed by division by the
value b, is shown in Figure 3.

The second equation describes the dynamics of the laws of functioning of the system,
by which X(t) is created

dY(t)
dt

= f × (Y0 − Y(t)) + h × β × ϕ(β)

1 + β
× X(t). (3)
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Here, Y0 is the initial state. The regulator f describes the loss of knowledge, but(
h × β×ϕ(β)

1+β

)
× X(t) corresponds to the complication of laws for new unknown manage-

ment functions (“emergence”) that are not available in subsystems.
We define the maximum YK :

YK = Y0 +
hg
b f

× β × ϕ(β)

1 + β
×
(

ϕ(β)

1 + β
− A

)
, (4)

where the parameter A = a
g .

YK = Y0 + β × hg
b f

×
[
+

A
2
+

ϕ(β)

1 + β
− A

2

]
×
[
− A

2
+

ϕ(β)

1 + β
− A

2

]
, (5)

YK = Y0 + β × ha2

4 × gb f
×
[
+1 +

(
2
A

ϕ(β)

(1 + β)
− 1
)]

×
[
−1 +

(
2
A

ϕ(β)

(1 + β)
− 1
)]

. (6)

Making a replacement

C =

[(
2
A

× ϕ(β)

(1 + β)
− 1
)2

− 1

]
× β, (7)

we get the final solution of the following form

YK = Y0 +
ha2

4 × gb f
× C, (8)

where parameter C is searched for as the maximum value from the above range.
Maximum C is reached either at the edges of the segment or in one of the local minima.

So, in Figure 2, on the asymptote, β ∈ [βM, βR], ϕ(β) = ϕmax is performed.
This allows us to obtain a four-parametric model {β∗, ϕ(β∗), βR, ϕmax} of the initial

quasi-linear growth.

Z =
2 × g × ϕmax

a
; s =

1
(1 + β)

; (9)

C =
[
(Z × s − 1)2 − 1

]
× (1 − s)

s
= −

(
Z × s −

(
Z
2
+ 1
))2

+

[
Z
2
− 1
]2

(10)

xmin = 0; sR =
1

(1 + βR)
=

a
g × ϕmax

; CR = 0 (11)

sopt =
1
2
+

1
Z

; Copt =

[
Z
2
− 1
]2

=

[
g × ϕmax

a
− 1
]2

> 0; s∗ = 1
(1 + β∗)

(12)

sM =
1

(1 + βM)
=

ϕ(β∗)× s∗

ϕmax
(13)

Here, it is possible to give an explicit formula for CM

CM =
4

(ϕmax × sR)
2 {1 − sM} × {sM − sR} > 0, (14)

and it is possible to limit this to a simplified form

CM = −
(

Z × sM −
(

Z
2
+ 1
))2

+

[
Z
2
− 1
]2

< Copt (15)
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In conclusion, we confirm that sopt gets into the segment [sR, sM], i.e.,

sR ≤ sopt =
1
2
+

1
Z

≤ sM. (16)

The solutions are either sM or sopt depending on(
1
2
+

1
Z
− sR

)(
sM − 1

2
− 1

Z

)
≥ 0, (17)

(
1 − a

g × ϕmax

)(
ϕ(β∗)× s∗

ϕmax
− 1

2
− a

2 × g × ϕmax

)
≥ 0. (18)

The first bracket in (18) is the inability to create anything (β > βR)—in this case, it
acts as a criterion for the feasibility of expansion in general.

The second bracket, subject to

ϕ(β∗)× s∗ × g − a
b

= xmax, (19)

(
xmax × b
g × ϕmax

− 1
2
+

a
2 × g × ϕmax

)
≥ 0 (20)

is a criterion for achieving the desired performance xmax in the production subsystem.
The positivity of their work guarantees

sopt =
1
2
+

a
2 × g × ϕmax

; Copt =

[
g × ϕmax

a
− 1
]2

. (21)

Otherwise, the optimum is on the left edge sM, i.e.,

Copt = CM. (22)

However, there are unique systems, the value of which depends solely on the capacity
of the producer. When the potential is high and its assessment is not underestimated
relative to “fair”—i.e., g � 0—the second bracket is carried out, even at xmax = 1 and with
a lack of competition from other producers b ∼= 0.

The presence of two optimal solutions β∗ (by the number of products) and βopt (by the
“mind”), determined through the constant Copt in (22), means that optimal will be βopt > β∗
refusal of the gross product in favor of maximum use of the expansion potential, that is,
production with the “optimal” margin of “possible use” of the manufactured products
(multifunctionality).

Despite the counter nature of the described model, this gives the idea that threats and
risks can be considered as “anti-potentials” of development (i.e., they are retardants of the
reproduction rate of the entire system). To model a real system, it is necessary to analyze
the “raw” process data and then synthesize them into a meaningful structure explaining
the process under study.

2.2. Stochastic Linear Growth Models of Smart Expansive System
2.2.1. Model of System Growth Taking into Account the Effect of Random Perturbations of
System Productivity on the Speed of Its Reproduction

The model takes into account that in the “quasi-linear section” of the expansion of
the system, not only is the speed of expansion important but also the dispersion of the
process. At the same time, the “volatility” of the process itself plays a greater role than the
profitability of the “production subsystem”.

Despite an increase in the “average” amount of product from each element of the
system, each element is individually characterized by a limited time of effective operation.
Moreover, the indicator of “population mortality” under natural restrictions on mathe-
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matical expectation is mainly influenced by the magnitude of the variance. Therefore, for
example, in economics, where processes with mathematical expectation values of several
percent are studied, the variance values themselves appear in the definitions of “risks”.

Here, it is extremely important to note that to assess the values of mathematical
expectation and variance, they are quantified at the starting point of time based on group
assessments. It is further hypothesized that these assessments obtained for the group can
be used to predict the trajectories of each element of the group separately. This is a very
strong assumption since the model claims, firstly, that the obtained assessments will remain
constant for the entire forecast time, and secondly, it is established that each element at any
time behaves in the same way as some element at zero point in time. Such assumptions are
true, generally speaking, only for ergodic processes. Yet, not all the processes described
by the model in question are ergodic. In systems consisting of elements of more than one
type, the need to consider such “risks” is greatly increased, and these “risks” themselves
are much higher.

2.2.2. Model of Impact of Capital Fluctuation on System Growth

This model is not related to the properties of the system itself, but to the level of
fluctuations in the parameters (influencing factors) of the external environment (fluctuations
in the level of corruption, changes in tax legislation, etc.). The most likely values for the
number of elements in such a model are always less than its average value. A certain value
is introduced as the threshold of state criticality.

If the current value is lower than the critical value, the probability of ruin increases
sharply. It is important to note that with the increase in time, critical values also increase.

Moreover, if the fluctuation amplitude of the distribution variance assessment is
large and the mathematical expectation and initial value are sufficiently small, then the
probability of degeneration of the system tends to one.

Thus, on average, external fluctuations accelerate the growth of the system, but the
payment for such accelerated growth is an increased probability of its degeneration (a
decrease in the mathematical expectation of its degeneration time), and since the expansion
process is multifactorial, but the “history” of the behavior of such a system (as is the case, for
example, in mass service systems), as a rule, is not, it is essential that rather than conducting
an analysis based on statistics from past observation periods, instead, a synthesis of the
risk of functioning of the “smart expansive system” is carried out.

3. Smart Expansive System’s Risk Synthesis

Regarding risk, the concept of “synthesis” is currently hardly used in contrast to
the concept of “analysis”. However, it is necessary to understand that risk analysis is
characteristic of systems in which risk realization events occur often enough to apply a
well-developed apparatus of probability theory and mathematical statistics. This approach
works in insurance, for example, in the theory of reliability, when we deal with the flow
of insurance cases, accidents or breakdowns. Yet, when it comes to ensuring safety in an
era where the main characteristic is constant unsteadiness and variability, it is possible to
do this only through the synthesis of risks, developing automated advising systems that
become complicated as they develop tips for professionals (DF) or replacing professionals
with highly intelligent robotic systems. The risk from the concept of “analytics” in this case
is becoming “synthetic”.

As the analysis of integrated assessments of the state of complex objects and systems
used in system studies shows, generalized risk criteria (indices) are widely used. There are
additive (weighted average arithmetic) and multiplicative (weighted average geometric)
forms of these:

• arithmetic (smoothing “emissions” of private risk indicators) Rar = ∑M
i=1(αi × ri);

• geometric (enhancing negative “emissions” of private risk rating) Rge = ∏M
i=1 r∝i

i ;
• geometric anti-risk 1 − R∅ = U∅ = ∏M

i=1(ui)
∝i = ∏M

i=1(1 − ri)
∝i .
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Weight coefficients αi of partial estimates ri satisfy the condition

N

∑
i=1

αi = 1; αi > 0 (i = 1, . . . , M). (23)

Real numbers ri (private risks) take values from the interval between zero and one.
For smart expansive systems, the most acceptable form of risk representation is ge-

ometric anti-risk [31], which satisfies the main a priori requirements underlying the risk
approach to the construction of a nonlinear integral assessment of R∅, namely:

1. smoothness—the continuous dependence of the integral R assessment and its deriva-
tives on private assessments: R(r1, . . . , rM);

2. limitation—limits of the interval of change of private ri and integral R assessments:

0 < R(r1, . . . , rM) < 1 ; if 0 < r1, r2, . . . , rM < 1. (24)

3. equivalence—the same importance of private assessments ri and rj;
4. hierarchical single-level—aggregate only the private assessments of ri that belong to

the same level of the hierarchical structure;
5. neutrality—the integral assessment coincides with the private assessment when the

other one takes the minimum value:

R(r1, 0) = r1; R(0, r2) = r2; R(0, 0) = 0; R(1, 1) = 1. (25)

6. uniformity R(r1 = r, . . . , rM = r) = r.

The geometric anti-risk derives from the concept of “difficulties in achieving the goal”
proposed by I. Russman [31], and is the “assessment from above” for the weighted average
arithmetic and weighted average geometric risk.

Risk as a measure of the “difficulty in achieving the goal,” and assesses the difficulty
of obtaining the declared result dk with the existing resource quality assessments (μk) and
requirements for this quality (εk). The concept of difficulty in achieving a goal with a given
quality and given requirements for the quality of a resource and the result follows from the
considerations that it is more difficult to obtain a result of a certain quality when there is a
low quality of the resource or a high requirement for its quality.

For general reasons, the difficulty of obtaining dk result should have the following
basic properties:

• when μk = εk should be maximum, i.e., equal to one (indeed, the difficulty of obtaining
the result is maximum at the lowest permissible quality value);

• if μk = 1 and μk >> εk should be minimal, that is, equal to zero (for the maximum
possible value of quality, regardless of the requirements (for εk < 1), the complexity
should be minimal);

• if μk > 0 and εk = 0 should be minimal, that is, equal to zero (obviously, if there are
no requirements for the quality of the resource components and μk is more than zero,
then the difficulty of obtaining a result for this component should be minimal).

For these three conditions for εk < μk, a function of type dk =
εk(1−μk)
μk(1−εk)

is allowed.
We also assume that dk = 0 for μk = εk = 0 and dk =1 for μk = εk = 1.
The functioning of the reliable system is characterized by the preservation of its main

characteristics within the established limits. The actions of such a system are aimed at
minimizing deviations of its current state from some given ideal goal. In relation to the
system, the goal can be considered as the desired state of its outcome, that is, not only the
value of its objective function.

Let us briefly explain the essence of geometric anti-risk. We will consider the system
in the process of achieving the goal, moving from its current state to some future result, the
quantitative expression of which is Apl . Let us suppose that the goal is achievable in time
tpl . We also assume that there is a minimum speed of movement vmin to the goal in time
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and a maximum speed vmax. It is most convenient to measure the quantitative expression
of the result and the time required to achieve it in dimensionless values; to do this, we
assume Apl and tpl equate to 1 or 100%. In Figure 4, the minimum and maximum speed
trajectories of the system correspond to the OD and OB lines.

Figure 4. Geometric interpretation of system movement toward goal.

Polyline OD1C is the boundary of the exclusion zone, and for any point M with
coordinates (t′, A′), to describe the position of the system on an arbitrary trajectory to
the goal within the parallelogram OB1CD1, the distance r(M) is taken as the risk of not
reaching the goal:

r(M) = max
{

ln
1

1 − d1
, ln

1
1 − d2

}
(26)

where d1 = ε1(1−μ1)
μ1(1−ε1)

, d2 = ε2(1−μ2)
μ2(1−ε2)

, ε1 = |E1E2|
|E1E3| , μ1 = |E1 M|

|E1E3| , ε2 = |F1F2|
|F1F3| , μ2 = |F1 M|

|F1F3| .

We emphasize that the geometric anti-risk satisfies, in addition, the so-called theorem
“on the fragility of the good” in the theory of disasters, according to which, “ . . . for
a system belonging to a special part of the stability boundary, with a small change in
parameters, it is more likely to get into the area of instability than the area of stability”.
This is a manifestation of the general principle that everything good (for example, stability)
is more fragile than everything bad [32]. Risk analysis uses a similar risk-limiting principle.
Any system can be considered “good” if it meets a certain set of requirements, but must
be considered “bad” if at least one of them is not fulfilled. At the same time, everything
“good”—for example, the ecological security of territories—is more fragile, meaning it is
easy to lose it and difficult to restore.

The continuous function R(r1, . . . , ri, . . . , rn) satisfying the above conditions has the
following general form (27):

R(r1, . . . , ri, . . . , rn) = 1 −
{

n

∏
i=1

(1 − ri)

}
× g(r1, . . . , ri, . . . , rn), (27)

If in a special case g(r1, . . . , ri, . . . , rn) ≡ 1, then:

R(r1, . . . , ri, . . . , rn) = 1 −
{

n

∏
i=1

(1 − ri)

}
, (28)
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which gives an understated assessment of integral risk based on the calculation that the
flow of abnormal situations for objects of the system is a mixture of ordinary events taken
from homogeneous but different values of ri (i = 1, . . . , n) samples.

Since for real systems, risks are usually dependent, we have

g(r1, . . . , ri, . . . , rn) = 1 −
n−1

∑
i=1

n

∑
j=i+1

Cij × [ri]
αij × [rj

]βij , (29)

n−1

∑
i=1

n

∑
j=i+1

Cij ≤ 1, Cij ≥ 0, αij > 0, βij > 0, (30)

where Cij are the risk connectivity coefficients of the i-th and j-th abnormal situations for
the objects of the system and αij and βij are positive elasticity coefficients replacing the
corresponding risks. These allow for taking into account the facts of “substitution” of risks,
mainly since effective measures to reduce all risks cannot simultaneously be carried out
due to the limited time and resources of DM.

The current values of private risks ri (i = 1, . . . , n) included in the integral indicator
(27) are values that vary over time at different speeds (for example, depending on the
seasonal factor, the priorities of the solved technological problems in some systems of the
fuel and energy complex change significantly).

Private risks ri are built, as a rule, through the convolution of the corresponding
resource indicators—factors of influence that have a natural or value expression. These
factors are measured on certain synthetic scales (for example, in the previously mentioned
multiplicative Saaty, the pairwise comparison scale), the mutual influences of which should
also be studied since they are generally nonlinear and piecewise-continuous.

To obtain assessments of factors of influence, weighted scales must be built. To this
end, the authors have developed the so-called “vector compression method” [33], which is
discussed herein.

4. Vector Compression Method: Stationary Method of Incomplete Pairwise
Comparison of Risk Factors

When moving from the preference scale to the linear logarithmic scale, the weights of
objects W(xi) are converted into vi = log(W(xi)), and the matrix of pairwise comparisons
of the factors of influence of private risks A =

(
aij
)

is converted into an incomplete
antisymmetric matrix A =

(
log aij

)
[21].

The indicator matrix monitors the status of the link network. It takes two values:
Gi,j[t] = 1 when the link occurs, and Gi,j[t] = 0 when it is absent (NA, not available). This
article deals only with the case of stationary matrices Gi,j[t] = Gi,j.

An analog of the matrix consistency condition in such a statement is the elements of
the antisymmetric error matrix Eij:

Eij = aij − vi + vj. (31)

For correlation, matrices Eij = 0 for all i, j ∈ [1, N].

4.1. General Properties of Transformations of Antisymmetric Matrices

Let us introduce the basic designations:
Ei∗

max[t]—maximum value of elements of matrix Ei,j[t], for which indicator function
Gi,j = 1 (maximum on line i);

Ei∗
min[t]—minimum value of elements of matrix Ei,j[t], for which indicator function

Gi,j = 1 (minimum on line i);
E∗i

max[t]—maximum value of matrix elements Ej,i[t], for which indicator function
Gj,i = 1 (maximum by column i).
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The essence of the transformation of the matrix E[t + 1] = Si
x(E[t]) with the parameter

x consists of an element-by-element reduction by x of all elements of the i-th line and an
increase by x of all elements of the i-th column of the antisymmetric matrix E[t].

Transformations E[t1 + 1] = Si
x[t1]

(E[t1]), E[t2 + 1] = Si
x[t2]

(E[t2]), . . . , differing only
by the parameter x[t] with the constant i, we will call the same type.

The vector compression process is illustrated in Figure 5, in which the abscissa axis
is the parameter x and the ordinate axes are two deposited graphs of crossing straight
lines Lrow(x) = Ei∗

max[t]− x (A′A′′) and Lcolumn(x) = E∗i
max[t] + x (B′B′′), with the resulting

function Z (A′CB′) of the following type:

Z = max (Lrow(x), Lcolumn(x)) =
Lrow(x) + Lcolumn(x)

2
+

∣∣∣∣ Lrow(x)− Lcolumn(x)
2

∣∣∣∣ (32)

Figure 5. Geometric illustration of the vector compression method.

Moving to the point of intersection of the lines with the coordinate Xcross
=
(
Ei∗

max[t]− E∗i
max[t]

)
/2, we reduce the modulus of the difference between Lrow(x) and

Lcolumn(x).
Since the first addend does not depend on x, the result depends on the sign under the

module. At the point of intersection of Xcross, the module is zero.
Transformation properties:

1. Zero neutrality: regardless of the type, zero displacement leaves the matrix unchanged

E[t + 1] = Si
∅(E[t]) = E[t]. (33)

2. Absorption: two transformations of the same type are added together

E[t + 2] = Si
x2(E[t + 1]) = Si

x2

(
Si

x1(E[t])
)
= Si

x2+x1(E[t]). (34)
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3. Rearrangement: two adjacent transformations, regardless of their types, can
be rearranged

E[t + 2] = Si2
x2(E[t + 1]) = Si2

x2

(
Si1

x1(E[t])
)
= Si1

x1

(
Si2

x2(E[t])
)

. (35)

4. Cyclicity: regardless of x, the following is executed

E[t + N] = S1
x

(
S2

x . . .
(

SN
x (E[t])

))
= E[t]. (36)

Used to line up the final displacement parameters

E[t + 2N] = S1
x1−xN

(
S2

x2−xN
. . .
(

SN
∅(E[t])

))
. (37)

5. Convolution of sequences by permutation and absorption:

E[t + ∞] = S1
x1+...+x∞

(
S2

y1+...+y∞ . . .
(

SN
z1+...+z∞(E[t])

))
(38)

is provided by permutation of transformations (by property 3) of the first type to the
left with absorption (by property 2). The same procedures are then implemented for
the second and subsequent types.

From properties 1–5, it follows that at any time t, the state of the matrix E[t] is deter-
mined by the initial matrix E[t0] and accumulated sums for the same type of transformation,
while the order of application of transformations of various types is not important.

4.2. Transordinate Vector Compression Method

The choice of displacing

ΔLi[t] =
Ei∗

max[t]− E∗i
max[t]

2
=

Ei∗
max[t] + Ei∗

min[t]
2

(39)

influences the matrix E[t] with transformation Si
ΔLi [t]

(E[t]).
As a result, we get

Ei,j[t + 1] = Ei,j[t]− ΔLi[t], i f Gi,j = 1, (40)

Ej,i[t + 1] = Ej,i[t] + ΔLi[t], i f Gj,i = 1. (41)

The values Ei∗
max[t + 1] and E∗i

max[t + 1] are aligned.

Definition 1. The first norm ‖E‖ is the maximum of the matrix Ei,j[t] if Gi,j = 1.

Two lemmas of convergence are true.

Lemma 1. (by lines). If Ei∗
max[t] = ‖E‖[t] is the only maximum, at which E∗i

max[t] = ‖E‖[t], then
‖E‖[t + 1] = Si∗

ΔLi∗ [t]
(‖E‖[t]) < E[t]. (by line i∗).

Lemma 2. (by columns). Let the single maximum be reached on element Ei∗ ,j∗ [t]. Then, the decrease

‖E‖[t + 1] is achieved due to the conversion Sj∗
ΔLj∗

(E[t]) (by the column j∗).

Definition 2. The second norm �E� is defined as the sum.

�E� =
1
2

N

∑
i=1

∣∣∣Ei∗
max + Ei∗

min

∣∣∣. (42)
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By virtue of Lemmas 1 and 2, the process of lowering the first norms converges. If the
first and second norms are zero, the matrix E[t] becomes zero, and the matrix A becomes
consistent and is fully determined by the value of the accumulated sums taken with the
inverse sign.

For uncoordinated matrices A, the convergence process described in Lemmas 1 and 2
results in final states other than the zero matrix E[t]. The second norm �E� becomes zero,
and the first norm ‖E‖ becomes equal to the value K, which in the future we will call the
consistency criterion of the matrix A.

Now, let us consider the set of lines I = {i} for which Ei∗
max is K. Each line id ∈ I has

at least one maximum Eid∗
max and at least one minimum Eid∗

min. The remaining elements of
matrix E for which

(−K < Eid j < K
)

is executed may be temporarily discarded.
We create oriented graph Hij from

∣∣Eid j
∣∣ = K. We will assume that the maxima are the

entry points to the top id and the minima are the exit points from id. As a result, Hij will
have one or more cycles, and the cycles can be inserted into each other. The obtained graph
is not necessarily connected, nor does it necessarily contain all the tops of the graph aij.

Each cycle is similar to the known task in the theory of antagonistic games—the game
“rock-paper-scissors”, where the criterion of consistency K plays the role of a “bet” in one
game. With a small bet, the game is quite harmless. The price of the game is zero, and
there is a Nash balance—it is absolutely random, not subject to any algorithm and there
is proportional use of all three strategies. With a large bet (not comparable to the smaller
capital of one of the players), a “tragic” outcome is possible—no one will give credit to the
loser to “recover his losses”. How to reduce the game’s bet? With large consistency criteria
K, an unsolvable situation arises.

The first way out—as in the method of analyzing hierarchies, is to abandon the results
of uncoordinated expertise.

The second way out is to abandon some grades from Eid∗
max, and instead of Gij = 1,

accept Gij = 0. It is necessary to break some kind of cycling connection, without destroying
the connectivity of the remaining graph Gij. By breaking the cycle with K, after recalculation
vi, there will be a smaller value K1 < K.

The third way out is that communications remain the same: Gij = 1 and new is not
formed, but matrix weights A ”recover”, as specified in top set I. This is the best way to
ensure it has counted K1—the maximum value “preceding” the current value of K that
does not participate in the construction of Hij.

Let 0 < Kε ≤ K1 < K be executed for K1. In fact, you can limit yourself to a non-zero
minimum level of Kε. Yet, when Kε < K1, matrix E must be subtracted from matrix A , on
which the mask from elements of a positive multiplier θ = K − K1 is imposed on elements
from Hij. Thereby, the new matrix of A will have the criterion of coherence K1.

After that, it may be necessary to recalculate the “non-critical” (not included in the top
set I) “accumulated sums” of lines and form a new matrix Hij(K1). If this is for a new K2,
Kε < K2 will be executed. Let us continue the procedure as described above. If on any step
(ξ = 1, . . .) Kш < Kε, the step is summarizing and parameter θ decreases to θφ = Kξ − Kε.

4.3. Gradient Vector Compression Method

The presence of two equivalent methods (line i and column j) serves as the basis for
a gradient variant of realization of the vector compression method. As can be seen from
the matrix transformation definition itself, optimal compression at each time point t is not
necessary for success; it is only necessary to set the correct direction. To avoid searching
each iteration for the “best pair” by the displacement value (Table 1), one may wish to
reduce the displacement value several times.
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Table 1. Data for calculating components of displacement values in the gradient method of
vector compression.

No. of Line Maximum Value in Line Minimum Value in Line Displacement Value

1 E1∗
max[t] E1∗

min[t] (E1∗
max[t] + E1∗

min[t])/(2 ∗ Q)
2 E2∗

max[t] E2∗
min[t] (E2∗

max[t] + E2∗
min[t])/(2 ∗ Q)

. . .
N EN∗

max[t] EN∗
min[t] EN∗

max[t] + EN∗
min[t])/(2 ∗ Q)

First, by computational experiment, and then, theoretically, it was possible to show
for 3 × 3 matrices that an increase in the divider in the displacement value by a factor of
Q = 1.5 turned out to be more effective. This allows the maxima and minima of the matrix
to be recalculated once every N iterations.

As a result, the algorithm of the gradient method of vector compression is reduced to
the following successive steps:

1. Calculate local maxima Ei∗
max and minima Ei∗

min by lines.

2. Recalculate vm
i [t + 1] = vm

i [t] +
Ei∗

max+Ei∗
min

3 .
3. If 1

2 ∑N
i=1
∣∣ Ei∗

max + Ei∗
min

∣∣ > ε, transition to item 1.

Otherwise:

4. If E∗∗
max > ε1 is a correction of A = A − θE, the previous vm

i can be left.

Transition to item 1.
Otherwise:
The specified accuracy has been achieved.
In these steps, ε is a measure of the inaccuracy of the definition of a gradient of

logarithms of weights, while ε1 is the required accuracy of the decision.
Obviously, inequities are being fulfilled

0 < ε � ε1 � 1. (43)

4.4. Hybrid Methods for Partial Pairwise Comparison with Fuzzy Information

The tool discussed in Section 4.3 is applicable for operation with one decision matrix
(filled with half-significant elements [23]). To work with matrices of large dimensions,
various methods of aggregating assessments are needed [34]. This is significantly observed
in two extreme cases—when the number of experts M is large, and when the number of
objects of comparison N is large. In either of these scenarios, a significant chunk of the
resources will be spent on checking non-zero values of the indicator matrix Gi,j. Therefore,
we propose representing generalized matrices in the form of “lists” of non-zero elements
by lines {i}, or in the form of a multilayer regular neural network (NN), which implements
the calculation of local maxima Ei

max and minima Ei
min by lines.

In this case, the calculation of “lists” can be regularized by the addition of maxima
Ei

max and minima Ei
min into the functions of calculation to take the place of missing com-

munication elements, such as communication with the first elements in the list (element in
the first layer of the NN). They are marked in the examples below (in Table 2, grey on an
orange background, and in Table 3, yellow on a grey background).

137



Mathematics 2022, 10, 427

Table 2. Co-locating based on vector compression method.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 s = 1 s = 2 s = 3 s = 4

X1 NA +0.1 NA NA NA 0 NA NA NA NA NA 2 +0.1 2 +0.1 6 +0.0 2 +0.1
X2 −0.1 NA +0.3 NA NA NA NA 0 NA NA NA 3 +0.3 1 −0.1 8 +0.0 3 +0.3
X3 NA −0.3 NA =0.2 NA NA NA NA NA NA NA 4 +0.2 2 −0.3 4 +0.2 4 +0.2
X4 0 NA −0.2 NA +0.1 NA NA NA NA 0 NA 5 +0.1 3 −0.2 10 +0.0 5 +0.1
X5 0 0 NA −0.1 NA NA NA NA NA NA NA 4 −0.1 4 −0.1 4 −0.1 4 −0.1
X6 0 NA NA NA NA NA =0.2 NA 0 NA NA 7 +0.2 7 +0.2 1 −0.0 9 +0.0
X7 NA NA NA NA NA −0.2 NA +0.3 NA NA NA 8 +0.3 6 −0.2 8 +0.3 8 +0.3
X8 NA 0 NA NA NA NA −0.3 NA NA NA 0 7 −0.3 7 −0.3 2 −0.0 11 +0.0
X9 NA NA NA NA NA 0 NA NA NA +0.1 NA 10 +0.1 10 +0.1 6 −0.0 10 +0.1
X10 NA NA NA 0 NA NA NA NA −0.1 NA +0.3 11 +0.3 9 −0.1 4 −0.0 11 +0.3
X11 NA NA NA NA NA NA NA 0 NA −0.3 NA 10 −0.3 10 −0.3 8 −0.0 10 −0.3

Table 3. Group decision-making based on vector compression method.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 s = 1 s = 2 s = 3 s = 4
X1 NA +0.1 +0.3 NA 0.0 NA NA NA 0.0 NA NA NA 5 0.0 9 0.0 2 +0.1 3 +0.3
X2 −0.1 NA NA NA NA 0.0 NA NA NA 0.0 NA NA 6 0.0 10 0.0 1 −0.1 6 0.0
X3 −0.3 NA NA −0.2 NA NA 0.0 NA NA NA 0.0 NA 7 0.0 11 0.0 1 −0.3 4 −0.2
X4 NA NA +0.2 NA NA NA NA 0.0 NA NA NA 0.0 8 0.0 12 0.0 3 +0.2 8 0.0
X5 0.0 NA NA NA NA NA +0.1 +0.3 0.0 NA NA NA 1 0.0 9 0.0 7 +0.1 8 +0.3
X6 Ta 0.0 NA NA NA NA −0.3 −0.4 NA 0.0 NA NA 2 0.0 10 0.0 7 −0.3 8 −0.4
X7 NA NA 0.0 NA −0.1 +0.3 NA NA NA NA 0.0 NA 3 0.0 11 0.0 5 −0.1 6 +0.3
X8 NA NA NA 0.0 −0.3 +0.4 NA NA NA NA NA 0.0 4 0.0 12 0.0 5 −0.3 6 +0.4
X9 0.0 NA NA NA 0.0 NA NA NA NA +0.2 NA NA 1 0.0 5 0.0 10 +0.2 1 0.0
X10 NA 0.0 NA NA NA 0.0 NA NA −0.2 NA −0.2 NA 2 0.0 6 0.0 9 −0.2 11 −0.2
X11 NA NA 0.0 NA NA NA 0.0 NA NA +0.2 NA −0.2 3 0.0 7 0.0 10 +0.2 12 −0.2
X12 NA NA NA 0.0 NA NA NA 0.0 NA NA +0.2 NA 4 0.0 8 0.0 11 +0.2 4 0.0

It is advisable for a group task to have a regular sub-table of inter-matrix links as
the first links, in contrast, for co-scaling tasks, select positive elements straight above
the main diagonal. All elements will be non-negative except for the last element in each
scale. The actual extreme elements in the scales on the second layer are duplicated by the
corresponding elements of the first layer.

So, the algorithm consists of the first layer and following layers of the same type. On
the first layer, the first element of the “list matrix” is assigned

Ei
max[1] = −vi + vj[1] + aij[1] (44)

Ei
min[1] = −vi + vj[1] + aij[1]. (45)

On subsequent layers NN s = 2, . . . the following is carried out

Ei
max[s] = max

{
Ei

max[s − 1];−vi + vj[s] + aij[s]

}
(46)

Ei
min[s] = min

{
Ei

min[s − 1];−vi + vj[s] + aij[s]

}
(47)

It is clear that such an organization of calculations is beneficial when M × N is large.
Examples of matrices recalculations for the full list (neural network) are given in Tables 2
and 3 (right side).

4.5. Group Decision-Making Based on Vector Compression Method

Let O1, O2, . . . , ON now represent a set of comparison objects. Each expert Э1, Э2, . . . , ЭM

sets his own logarithmic matrix of pairwise comparisons
(

am
ij

)
and an indicator matrix(

Gm
ij

)
. The only condition is that the link graph forms the backbone graph [33].

We create a combining network in the form of a block matrix A of dimension
[M × N, M × N] (Table 3) and a zero vector vm

i [0] of dimension [M × N].
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The difference between a new algorithm and the one described earlier is that correc-
tions (item 4) are made only according to expert matrices.

So:

1. Calculate local maxima Ei∗
max and minima Ei∗

min by lines.

2. Recalculate vm
i [t + 1] = vm

i [t] +
Ei∗

max+Ei∗
min

3 .
3. If 1

2 ∑N
i=1
∣∣ Ei∗

max + Ei∗
min

∣∣ > ε, transition to item 1.

Otherwise:

4. If E∗∗
max>ε1 is a correction of all Am

= Am − θEm, the former vm
i can be left.

Transition to item 1.
Otherwise:
The specified accuracy has been achieved.

6. Calculate vm
i for each expert.

7. Make the top Ti and lower Bi assessments of sets of weights Bi ≤ vm
i ≤ Ti.

Introducing the upper Ti and lower Bi assessments for each expert results in all or
almost all of the weights in the “agreed group assessment” eventually coinciding in the
sense of co-scaling. Although no final decision was received, the order of the various
experts was upheld, at least for the most significant comparison objects. Here, “non-
stationary methods” of the indicator matrix (with the removal of inconsistent links) [23]
can be effectively used.

4.6. Method and Algorithm for Combining Scales of Conflicting and Incomplete Expert Judgments

Let there be 〈q〉X—a positively defined, monotonically non-growing scale on which
certain factors of influence are assessed (q = 1, . . . , Q). Moving to the logarithmic scale, we
get assessments

<q>
1 x = logC<q>(

<q>
1 x) ≥<q>

2 x ≥ . . . ≥<q>
<q>n−1 x ≥<q>

<q>n x ≥<q>
<q>n+1 x ≥ . . . ≥<q>

<q>N x, (48)

where 〈q〉N is the total number of compared objects and C〈q〉 refers to the logarithmic bases.

The vector column of preferences <q>
<q>na (<q>n = 1, . . . ,<q> N − 1) is calculated using

formula <q>
<q>na =

<q>
<q>n x −<q>

<q>n+1 x. For certainty, let us assume that <q>
<q>na = 0.

The column vector reflects the non-negative, by definition, upper-right diagonal of the
matrix of links 〈q〉A of dimension

[
〈q〉N , 〈q〉N

]
. The maximum and minimum values of the

line participating in the vector compression method [23,24], depending on 〈q〉N , are built
automatically via (44) and (45).

The minima and maxima take their final values only at the end of accounting for all
inter-scale connections via (46) and (47).

The order of enumeration of many inter-scale links does not affect the total.
The areas of the preference column vector in which zero is observed, we call the areas

of equality of objects. Thus, in the assessments, the preference column vector alternates
between the areas of equality and those of strict positive inequality of ordered factors.
Factors belonging to the same equality area can be repositioned relative to each other. The
factors of strict positive inequality are not permutable; otherwise, the order of constructing
the preference column vector will be destroyed.

Here, there is an interesting case of pairwise interaction of scales. Let us, based on
some assumptions, determine the equality of factors between two groups. This may be
physical equality, such as assessments of the factors of two different influence groups in
which some factors are present in both groups (athletes participating in both competitions).
Or it can be logical equality—for example, the factors <q1>

<q1>n
x and <q2>

<q2>mx are considered
equal if they have the same realization risk, for example, if they lead to the same market
share losses.

139



Mathematics 2022, 10, 427

Having two different scales can lead to contradictions. So, the statement

(
<q2>
<q2>m1

x >
<q2>
<q2>m2

x)&(
<q1>
<q1>n1

x >
<q1>
<q1>n2

x)&

&(
<q2>
<q2>m1

x =
<q1>
<q1>n2

x)&(
<q1>
<q2>m2

x =
<q1>
<q1>n1

x)
(49)

results in equality being recognized

(
<q2>
<q2>m1

x =
<q2>
<q2>m2

x)&(
<q1>
<q1>n1

x =
<q1>
<q1>n2

x). (50)

Both scales are compressed.
The same situation occurs in cases (51) and (52)

(
<q2>
<q2>m1

x >
<q2>
<q2>m2

x)&(
<q1>
<q1>n1

x =
<q1>
<q1>n2

x)&(
<q2>
<q2>m1

x =
<q1>
<q1>n2

x)&(
<q2>
<q2>m2

x =
<q1>
<q1>n1

x) (51)

(
<q2>
<q2>m1

x =
<q2>
<q2>m2

x)&(
<q1>
<q1>n1

x >
<q1>
<q1>n2

x)&(
<q2>
<q2>m1

x =
<q1>
<q1>n2

x)&(
<q2>
<q2>m2

x =
<q1>
<q1>n1

x) (52)

but with the compression of one of the two scales.
Thus, for a paired comparison of two scales, a general rule can be formulated: contra-

dictions between two scales do not occur if and only if the sets of pairwise equations in the
two scales are themselves an ordered set.

5. Discussion of Results

Let us analyze the typical examples.

Example 1. Let us consider the interaction state of scales 〈1〉X and 〈2〉X in the form of the
following matrix with inter-scale connections as corresponding equations (Table 4):

(〈1〉
1 x =

〈2〉
1 x

)
&
(〈1〉

2 x =
〈2〉
3 x

)
&
(〈1〉

3 x =
〈2〉
4 x

)
&
(〈1〉

4 x =
〈2〉
5 x

)
&
(〈1〉

5 x =
〈2〉
6 x

)
.

Table 4. Matrix of coefficients.

NA 0.1 NA NA NA 0.0 NA NA NA NA NA
−0.1 NA 0.3 NA NA NA NA 0.0 NA NA NA
NA −0.3 NA 0.2 NA NA NA NA 0.0 NA NA
NA NA −0.2 NA 0.1 NA NA NA NA 0.0 NA
NA NA NA −0.1 NA NA NA NA NA NA 0.0
0.0 NA NA NA NA NA 0.2 NA NA NA NA
NA NA NA NA NA −0.2 NA 0.3 NA NA NA
NA 0.0 NA NA NA NA −0.3 NA 0.1 NA NA
NA NA 0.0 NA NA NA NA −0.1 NA 0.1 NA
NA NA NA 0.0 NA NA NA NA −0.1 NA 0.3
NA NA NA NA 0.0 NA NA NA NA −0.3 NA

It can be seen that both scales are consistent according to the general formed rule. A
directed graph is similar to a joint network of two performers in which there are restrictions
in the form of information links. This allows us to calculate the late completion of “work”
in each node and the corresponding reserves of “work” (Table 5).

Table 5. Given data for optimal time reserve solution.

Index 〈1〉X 〈1〉a 〈1〉r 〈1〉OptX 〈2〉X 〈2〉a 〈2〉r 〈2〉OptX
1 0.7 0.1 0.4 1.3 1.0 0.2 0 1.3
2 0.6 0.3 0 0.8 0.8 0.3 0 1.1
3 0.3 0.2 0 0.5 0.5 0.1 0.2 0.8
4 0.1 0.1 0.2 0.3 0.4 0.1 0.1 0.5
5 0 0 0 0 0.3 0.3 0 0.3
6 0 0 0 0
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It can also be seen that time stretches affect both scales. We get an extended scale that,
in particular, is piecewise-continuous. This is quite natural since private risk-rating is often
measured in pieces. When the optimal time Topt = 1, 3 (Table 6) does not suit—for example,

we cannot wait long for the end of all work 〈final〉
j a—we must solve the task of partially

compressing some “critical work” in both scales.

Table 6. Dynamics of reduction of time reserves from the value of total time allocated for the complete
scope of work.

SC Topt T*
opt

〈1〉
1 X 0.7 1.30 1.200 1.000 0.9(3) 0.9000 0.80 0.7000 0.40 0.100 0.0
〈2〉
1 X 1.0 1.30 1.200 1.000 0.9(3) 0.9000 0.80 0.7000 0.40 0.100 0.0
〈2〉
2 X 0.8 1.10 1.100 0.925 0.8(6) 0.8375 0.75 0.6625 0.40 0.100 0.0
〈1〉
2 X 0.6 0.80 0.900 0.750 0.7(0) 0.6750 0.60 0.5250 0.30 0.075 0.0
〈2〉
3 X 0.5 0.80 0.900 0.750 0.7(0) 0.6750 0.60 0.5250 0.30 0.075 0.0
〈1〉
3 X 0.3 0.50 0.600 0.500 0.4(6) 0.4500 0.40 0.3500 0.20 0.050 0.0
〈2〉
4 X 0.4 0.50 0.600 0.500 0.4(6) 0.4500 0.40 0.3500 0.20 0.050 0.0
〈1〉
4 X 0.1 0.30 0.300 0.250 0.2(3) 0.2250 0.20 0.1750 0.10 0.025 0.0
〈2〉
5 X 0.3 0.30 0.300 0.250 0.2(3) 0.2250 0.20 0.1750 0.10 0.025 0.0
〈1〉
5 X 0.0 0.00 0.000 0.000 0.0(0) 0.0000 0.00 0.0000 0.00 0.000 0.0
〈2〉
6 X 0.0 0.00 0.000 0.000 0.0(0) 0.0000 0.00 0.0000 0.00 0.000 0.0

This is similar to the application of additional resources (human and material) to
reduce the risks of the entire project (e.g., time delays). In non-critical locations, compression
will be carried out by reducing the time reserve for performing non-critical work, until the
reserve for such work runs out and the work becomes critical. The yellow color indicates
when the work ceases to have a reserve and becomes critical as Tplan decreases.

If T∗
opt = 0, 9(3), a second optimal solution will be achieved, in which the maximum

time reserve is equal to the maximum compression.
The solution of T∗

opt is interesting because it is achieved without collapsing the work
on the general scale.

By collapse, we mean the situation where the private scale nodes offered for this
work cease to be distinguishable. In this example, the first and only collapse occurs when
Tplan = 4 with work 〈2〉

1 a. Time Tplan = 4 < T∗
opt, but there are often cases where works

(scale nodes, objects) are located close to one another already on a private scale and collapse
can thus occur ahead of the balance time.

Finally, if Tplan = 0, all scales collapse, which indicates that the objects of comparison
are not distinguishable on the generalized scale. If we have a lot of resources, then they can
be spent on eliminating all the disadvantages

(
Tplan → 0

)
and the initial state of objects in

both scales becomes insignificant.
Thus, both the remoteness of the target and the available resource affect the overall risk.

Example 2. Let us now consider the solution of summarizing private assessments of the order of
preference of groups of different types of objects, as ranked within their groups into a single “group”
preference. We solved a similar task in determining the systemic significance of different types of
objects of a gas transmission system (compressor stations, gas distribution systems, underground
gas storage facilities, etc.) [34].

Based on physical and organizational principles, we add two dummy objects to these objects
for each object type: TOP and BOTTOM. The TOP of type m is assigned the maximum achievable
values that objects of type m could reach on each measured scale, while the BOTTOM of type m is
assigned the minimum achievable values that objects of type m could reach on each measurement
scale under consideration. That is, the BOTTOM and TOP values are pre-calculated boundaries of
the possible change in assessments of all objects on the corresponding measurement scale. Down-
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loadable assessments for each data type are obtained with their own relative error, which makes
it possible to determine the extremum maximum size of the cluster in the corresponding types of
measurement scales.

The accuracy of assessing an object on a scale depends both on the size of the cluster and on
the number of objects of the base type that correspond to the scale, and through the values of the
assessments based on which other types of objects are recalculated. If in some scales the error is large
or there are few objects, then it is obvious that the assessments of all objects on this scale will garner
less “trust” than more accurate assessments for more objects. Next, the assessments of objects are

“logarithmed” (in a conditional example, the decimal logarithms of the assessments are considered).
Like group expertise, in which matrix inconsistency is a rule rather than an exception and

which leads to cyclic periodic closures, the presence of a cycle (X1 = Z3) & (Z3 < Z2) & (Z2 = Y4)
& (Y4 < Y1) & (Y1 = X3) & (X3 < X1) leads to clusters in the solution due to inconsistency of
the original matrices. Scales are inconsistent if there is almost no ordered set of their elements. All
objects on all private scales are a partially ordered set. In the previous Example 5.1, clusters were
formed before a full merger due to the uniformity of risks.

The meaning of the procedure for combining different types of objects into one list in the present
example is the synthesis of the integral risk for each object, taking into account its own significance.
We are looking for a solution that leads to minimal formation of clusters (mergers of objects) on the
general scale. Optimal clustering is essentially the optimal risk of the entire design given the actual
material.

The organization of the procedure for assigning an assessment to experts is an independent
task. Experts are not required to know either the order of the types that are selected for examination
or the values of intra-system indices. It is beneficial to know the results of object comparisons given
by other experts. The initial data are a list of “approximate equations” (fuzzy equivalences) compiled
by experts. It does not matter that there are no compared objects, and some objects can be present
several times. A balanced solution is shown in Figure 6.

Eight clusters were formed, but only two had the same types of objects. This suggests that
persistence was partially violated in them, which may indicate a “lie detection” [35]:

• errors in the initial data;
• discovery of new “unique” properties that certain scales did not have separately—“emergence”.
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Figure 6. Building a balanced solution to the task of making an integral assessment of different types
of objects.

6. Conclusions

This article analyzed the foundations of the future methodology for synthesizing
the risk of functional smart expansive systems, taking into account the need to consider
the balance between its constituent subsystems: production, development potential and
regulation. We propose considering risks as “development anti-potentials” that slow down
the reproduction speeds of the entire system. The concept of the geometric integral “anti-
risk” is introduced, resulting from the concept of “difficulties in achieving the goal”. Thus,
the conceptual definition of risk as the influence of uncertainties on the achievement of the
goal of smart expansive systems is formalized.

To assess private risk factors included in the integral risk, we propose a method of
vector compression. The idea to build compatible reference solutions, which form the basis
for the developed method, represents an alternative to pairwise comparison in the method
of analysis of hierarchies and the method of analytical networks.

Further to this, we propose an approach to processing partial matrices of pairwise
comparisons, which makes it possible to minimize the disadvantages of the existing meth-
ods for working with similar matrices, especially for matrices of large dimensions. The
principles of handling pairwise comparison matrices by describing their upper and lower
boundaries have been investigated. The developed vector compression algorithm allows us
to obtain the weights of compared objects on the basis of matrices of pairwise comparisons
containing omissions, without fully restoring the matrix of pairwise comparisons, and also
allows us to obtain the weights of given upper and lower boundaries through comparative
assessment of pairs of objects.

This paper is not a standalone work capable of covering all issues and presenting
the variety of smart expansive systems. These will undoubtedly be the topics of further
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research. To give an example of where future studies may take us, the smart expansive
system in this paper was considered in a linear approximation and stationary case. Beyond
the scope of the article, a question must also be raised about the behavior of an intelligent
expansive system in a “non-stationary state”, where oscillatory processes (and maybe
chaos) may occur. Moreover, the uniqueness of the approximation we chose has not been
proven, and the option of using the vector compression method for upper and lower
bounds in cases of restrictions imposed on the coefficient (greater than/less than zero) for
fuzzy definition of the original matrices has not been considered. We plan to investigate all
these and many other avenues in the future.

The proposed method could become an important element in the algorithmic provision
of expert advising systems to support decision-making on the management of smart
expansive systems, provided there is an appropriately organized procedure for selecting
experts to be involved in the assessment of solutions.
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Abstract: The following two optimization problems on acyclic digraph analysis are solved. The
first of them consists of determining the minimum (in terms of volume) set of arcs, the removal of
which from an acyclic digraph breaks all paths passing through a subset of its vertices. The second
problem is to determine the smallest set of arcs, the introduction of which into an acyclic digraph
turns it into a strongly connected one. The first problem was solved by reduction to the problem
of the maximum flow and the minimum section. The second challenge was solved by calculating
the minimum number of input arcs and determining the smallest set of input arcs in terms of the
minimum arc coverage of an acyclic digraph. The solution of these problems extends to an arbitrary
digraph by isolating the components of cyclic equivalence in it and the arcs between them.

Keywords: acyclic digraph; maximal flow; minimal cut; minimal arc cover; bipartite digraph

1. Introduction

The monographs [1–3], which have become classic, are devoted to theoretical and
applied issues of digraph research. They are closely related to the Ford–Fulkerson theorem
on the equality of the maximum flow and the minimum cut [4,5]. At first glance, many
problems with digraphs look like NP-problems. However, with a special selection of
optimized indicators and graph transformation, these tasks can be reduced to the search
for Ford–Fulkerson algorithms. In this way, it becomes possible to avoid the appearance
of NP-problems when working with digraphs. Therefore, these studies can be attributed
to the intensively developing applications of digraph theory in system analysis and the
theory of optimization algorithms on graphs [6,7]. The papers closest to the subject of this
article can be considered [8,9].

In particular, the strong connectivity in digraphs is considered in the presence of arc
failures [10]. The paper [11] studies the use of digraphs in interferometry. The paper [12]
explores the issues of spectral complexity of digraphs and their application to structural
decomposition. In [13], using digraph models, the issues of signal processing and learning
from network data are analysed. In the work [14], the multilevel task of identifying
bottlenecks in the network is considered. In the works [15,16], minimal networks are built
in which the Ford–Fulkerson procedure may not be completed. The paper [17] explores
various ways of applying stochastic models on digraphs in computational biology. Due
to the intensive development of biotechnology, two new applied problems of digraph
theory are posed in this paper, which require both the development of the theory and
the construction of new optimization algorithms on digraphs. Both tasks were initiated
by biotechnological problems related to protein networks. Let us describe these tasks in
more detail.

The importance of analysing protein networks in plant bioengineering is due to the
fact that the growth and development of plants, as well as their protective functions, are
regulated by the interaction of various protein signalling modules. At the same time,
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fine-tuning of metabolic processes takes place, allowing the plant to adapt to changing
environmental conditions. Plant interactomes have not been worked out enough yet.
Therefore, it is necessary to develop mathematical modelling methods that describe the
natural functions of protein modules as accurately as possible.

Previously, we tried to link various cellular processes affecting the biosynthesis of
anthocyanins. In this work, we have identified the main signalling protein modules
that regulate the biosynthesis of anthocyanins. As far as we know, this was the first
reconstruction of a network of proteins involved in the secondary metabolism of plants [18].

It was further shown that the signalling systems of abscisic acid (ABA) and chap-
erones are integrated by chromatin remodelling proteins (CRC) into a single regulatory
network. CRC proteins “remember” the previous stressful effects and adjust the plant to
the perception of new ones, and memory is generated in the offspring. A new scientific
direction—“bioengineering of memory” was substantiated [19].

Fabregas et al. [20] reported that overexpression of the vascular brassinosteroid
receptor BRL 3 provides improved drought resistance without disrupting plant growth.
We have constructed a network of protein–protein interactions of ABA and brassinosteroid
signalling systems. It has been established that the phenomenon of drought resistance
mediated by BRL3 can be explained by the generation of stress memory (a process known
as “priming” or “acclimation”) [21]. Let us now turn to the mathematical formulation and
algorithmic solution of the protein network modelling.

In the first problem, we are talking about finding a smallest set of arcs, the removal
of which blocks all paths passing through an acyclic digraph with a set of W (corrupted)
vertices. To solve this problem, it is proposed to cut the pathways entering the set of affected
proteins or leaving this set, thus minimizing the number of cut paths. Such minimization
deforms the structure of the protein network in the least way. It should be noted that
isolation measures restricting the normal functioning of various communication networks,
such as transport, economic, educational, etc., have recently invaded our lives. Therefore,
the considered biotechnological problem acquires a more general meaning, which requires
the construction of economical algorithms for its solution.

In biotechnology there is a problem to decrease a number of blocking arcs. To solve this
problem it is possible to add to incoming and out coming arcs some arcs between corrupted
vertices (selected by the biotechnologists) and to choose among them minimal number
of blocking arcs. This procedure may be realized by implementing a large bandwidth to
chosen arcs. All its stages are well known, but together they make it possible to solve an
important and new problem in the field of biotechnology. Thus, it becomes possible to
structure both the formulation and the solution of this problem, taking into account the
choice of biotechnologists.

The solution of this problem is based on a special building of the integer bandwidths
of the arcs of an acyclic digraph, the minimum section in which contains only of arcs
entering from the inside into the subset W and/or exiting from the inside of the subset
W and some arcs between vertices from W. By choosing the integer bandwidths, the arcs
connecting the vertices of the subset U∗, are made unsaturated by the maximum flow.
In turn, saturated with the maximum flow (the maximum flow passing through them
coincides with their throughput) can only be arcs entering from the outside into a subset of
W and/or exiting from the outside of the subset W. Next, the minimal section is searched
using the well-known Ford–Fulkerson algorithm [4,5], which guaranteed to converge
only for integer throughput. This algorithm was developed in its modifications [22,23].
Minimizing the number of arcs satisfying certain properties creates a risk of encountering
an NP-problem as the problem of continuous brute force. The use of techniques that
lead the tasks to the modified Ford–Fulkerson algorithm allows us to avoid the risk of
NP-complex problems. Thus, in order to use the Ford–Fulkerson algorithm in solving this
problem, it is necessary to build a two-pole and select the integer throughputs of its arcs so
that the solution obtained in this algorithm determines the solution of the problem.
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An alternative and in some sense inverse second problem is connected with the
introduction into the digraph of a smallest set of new arcs that turn an acyclic digraph into
a strongly connected one (in which there is a path from any vertex to any other vertex).
This procedure is needed to include all the vertices of the acyclic digraph in the feedbacks
that stabilize the functioning of the network represented by the digraph.

To do this, we first consider a bipartite acyclic digraph, in which all arcs are directed
from the first lobe to the second. By removing the orientation of the arcs, we obtain an undi-
rected bipartite graph. Using the well-known generalizations of the Ford–Fulkerson [24]
algorithm, the maximum matching is searched for in it by a method of increasing alter-
nating paths [25], from which the minimum arc cover is constructed. It consists of an
incoherent collection of star-like sub graphs (in which arcs connect some vertices with the
base of the star) ([26] p. 318). Next, the orientation of the arcs is restored and additional
arcs are introduced in the resulting bipartite digraph by a special algorithm. This algorithm
is based on the sequential arrangement first of the stars of the first type-with roots in the
first lobe and then of the stars of the second type with roots in the second lobe. If all the
stars have the same type, then their vertices may be connected by a Hamiltonian cycle [27].

However, if there are stars of different types, then the stars of the first and then the
second type are located first. Then, additional arcs are introduced from the vertices of
the second lobe to the vertices of the first lobe so that their number equals the maximum
between the number of vertices of the first lobe and the second lobe. This number of
additional arcs is minimal for obtaining strongly connected digraph. When moving from
the minimum arc cover to the original bipartite digraph, the minimum number of additional
arcs cannot increase. At the same time, the set of additional arcs already found transforms
this bipartite digraph into a strongly connected one. The transition from an arbitrary acyclic
digraph to a bipartite one is based on the allocation in an arbitrary digraph of the first lobe,
including vertices from which only arcs come out, and the second lobe, including vertices
that only arcs enter. An arc between the vertex of the first lobe to the vertex of the second
lobe in a bipartite digraph is drawn if and only if there is a path between these vertices in
the original digraph.

When solving both problems, we have to deal with digraphs that are not initially
acyclic. The transformation of an arbitrary digraph into an acyclic one is based on the
procedure for allocating cyclic equivalence classes (in which there is a path from any vertex
to any other vertex) and arcs between them [28]. The paper presents an original algorithm
for solving the problem of allocating cyclic equivalence classes [29] basing on the sequential
inclusion in the digraph of a new vertex and arcs connecting it to the already specified ones.

2. Optimal Blocking of Selected Vertices of the Acyclic Digraph

Consider an acyclic digraph G, with a finite set of vertices U and a finite set of arcs V .
In the set U , a subset U ⊂ U of the so-called corrupted vertices is allocated. Let’s define an
acyclic digraph G ⊂ G , with a set of vertices U and a set of arcs V connecting these vertices.

We attach to the digraph G the arcs of the digraph G, walking to the set U from the
set U \ U and the arcs coming out of U to U \ U and some arcs from the set U , selected by
biotechnologists. The set of these arcs is denoted by W and we call the path passing through
the set U in the digraph G, if it starts at the vertex of the set U \ U moves by an arc of W to
the set U, passes through the set U and then moves by an arc of the set W to the set U \ U.
Our task is to determine in the set W the smallest subset of arcs whose removal from the
digraph G breaks all paths, passing through the set of vertices U.

To do this, we transform the digraph G together with the set of its incoming and out
coming arcs into the digraph G′ as follows. All vertices of the set U \ U, from which arcs of
the set W move to U we combine into one vertex S and call it the source. All vertices of the
set U \ U, to which arcs of the set W move from U we combine into one vertex T and call it
a drain. All arcs of the set W, going from the source S to the vertex P ∈ U, we combined
into one arc w∗ and determine its throughput equal to n(P), which is the number of arcs to
be combined. All arcs of the set W, going from the vertex P ∈ U to the drain T, we combine
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into one arc w∗ and determine its throughput equal to N(P). If there is not an arc from the
source S to vertex P, then n(P) = 0, if there is not an arc from the vertex P to the drain T,
then N(P) = 0 as well.

Note that to formulate the optimization problem, it is necessary to exclude from its
solution all arcs of the set V, which are not chosen by biotechnologists. To realize this

procedure denote L = min

(
∑

P∈U
n(P), ∑

P∈U
N(P)

)
and assign the bandwidth L + 1 to all

arcs of the digraph G′, which are not included in the set W. All arcs of the digraph G′,
which are chosen by biotechnologists, receive bandwidth 1. Therefore, the acyclic digraph
G′ becomes the bipolar, that is the digraph with the single vertex S, which has only out
coming arcs, and the single vertex T, which has only incoming arcs.

Proposition 1. The quantity of maximal flow in the bipolar G′ is not larger than L.

Proof of Proposition 1. Indeed, the quantity of maximal flow in the bipolar G′ is not larger
than a sum ∑

P∈U
n(P) of weights of arcs moving from the source S. The quantity of maximal

flow in the bipolar G′ is not larger than a sum ∑
P∈U

N(P) of weights of arcs moving from

the drain T. Consequently, the quantity of the maximal flow in the bipolar G′ is not larger

than L = min

(
∑

P∈U
n(P), ∑

P∈U
N(P)

)
.

Proposition 2. If in bipolar G′, some arc w has bandwidth L + 1, then it does not include into any
minimal cut.

Proof of Proposition 2. From the theorem of Ford–Falkerson [4,5], it is clear that any
minimal cut in the bipolar G′ consists only of arcs saturated by any maximal flow. Therefore,
the arcs which have bandwidths L + 1 cannot be included into any minimal cut.

Remark 1. It follows from Propositions 1 and 2 that the proposed method for setting the bandwidths
in the two-pole G′ allows determining the minimum cuts only from the arcs of the set W, as required
in the original formulation of the problem.

As all included bandwidths are integers, using the Ford–Fulkerson algorithm [4,5]
(or its modifications [22,23]) it is possible to calculate the maximum flow in the digraph
G′ and to obtain minimal cut W ′. Each of the arcs of the set W ′, going from S to P ∈ U is
defined as the union of n(P) arcs of the digraph G. Similarly, each of the arcs of the set W ′,
going from P ∈ U to T is defined as the union of N(P) arcs of the digraph G. Denote W ′′ a
set of arcs from the set W, included in the combined arcs of the set W ′. Consequently from
Propositions 1 and 2 and Remark 1 we have that W ′′ is the solution of the optimization
problem of selecting a smallest set of arcs from the set W whose removal breaks all paths
passing through the vertex set of U. Indeed, if the united arc w ∈ W ′, then to block all
paths passing through the vertex set U, we must delete all arcs, united in an arc w.

3. Optimal Algorithm for Converting an Acyclic Digraph into a Strongly Connected One

Problem statement. Suppose that a complex system, for example, a protein network,
is represented by an acyclic digraph G without loops and isolated vertices. Let’s denote
V1 the set of vertices from which the arcs only come out, and V2 the set of vertices into
which the arcs only enter. Now let’s construct a bipartite digraph G, in which the set of
vertices of the first lobe V1, and the set of vertices of the second lobe V2, the vertex v1 ∈ V1
is connected to the vertex v2 ∈ V2 by an arc, if there is a path between them in the acyclic
digraph G. As the digraph G is acyclic so there are not ways from vertices of the second
lobe V2 to vertices of the first lobe V1. We denote p(G) the smallest set (by a number of
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arcs) of additional arcs (call them “good arcs”), the introduction of which in G transforms
it into a strongly connected digraph and designate |p(G)| the number of good arcs in p(G).

Let us transform a bipartite digraph G into an undirected one by removing the
orientation of the arcs and find a minimal arc cover in it (see, for example, [6,24]). To do
this, using the algorithm of increasing alternating paths, we find the maximum matching
that can be transformed into a minimum arc cover, whose connected components are
star-like sub graphs (all arcs come from one vertex or enter one vertex, called the root). In
the minimal arc cover, we restore the direction of the arcs and denote the resulting bipartite
digraph Ĝ. It should also be noted that there are two types of star-like sub graphs. In the
star-like sub graph of the first type, the root is contained in the first lobe V1 (on the left in
Figure 1) and in the star-like sub graph of the second type, the root is contained in the
second lobe V2 (on the right in Figure 1).

The main result of the work is an algorithm for constructing a smallest set of good
arcs that turn Ĝ into a strongly connected digraph. It is proved that the number of good
arcs in a smallest set p(Ĝ) = max(|V1|, |V2|), where |Vi| the number of vertices in the set
Vi, i = 1, 2. This equation applies to a bipartite graph G with lobes V1, V2 and to acyclic
digraph G. This is due to the fact that “good arcs,” turning the bipartite digraph Ĝ into
strongly connected, also turn the bipartite digraph G and the original acyclic digraph G
into strongly connected.

Main results. Consider a bipartite digraph Ĝ, consisting of the set of unrelated M
stars G1

1, . . . , GM
1 with the root in the first lobe and N stars G1

2, . . . , GN
2 with the root in

the second lobe. Let m the number of leaves in the stars G1
1, . . . , GM

1 and n the number of
leaves in the stars G1

2, . . . , GN
2 . Then, it performs equality |V1| = M + n, |V2| = m + N.

Figure 1 shows an example of a digraph Ĝ, consisting of stars G1
1, G2

1, G1
2, G2

2 in the case
of m = n = 6, M = N = 2. Here, the upper vertices make up the first lobe, and the lower
ones make up the second lobe.

Figure 1. Unrelated stars G1
1, G2

1, G1
2, G2

2, M = N = 2, m = n = 6.

Theorem 1. Equality |p(Ĝ)| = max(|V1|, |V2|) is true.

Proof of Theorem 1. When converting the digraph Ĝ, the number of good arcs, entering
the roots of stars G1

1, . . . , GM
1 , must be no less than M, and entering the leaves of stars

G1
2, . . . , GN

2 —no less than n. The number of good arcs, leaving the leaves of stars G1
1, . . . , GM

1 ,
must be no less than m, and leaving the roots of the stars G1

2, . . . , GN
2 are no less than N.

Therefore, the number of good arcs entering the vertices of the first lobe is no less than
M + n, and leaving the vertices of the second lobe is no less than m + N. Additional
incoming and outgoing arcs may coincide. Therefore, the minimum number of additional
arcs is |p(Ĝ)| ≥ max(m + N, n + M). Now, we prove that |p(Ĝ)| = max(M + n, m + N) =
max(|V1|, |V2|).

Let us first consider the case when the digraph Ĝ consists only of stars G1
1, . . . , GM

1 or
only of stars G1

2, . . . , GN
2 . Let us add stars G1

1, . . . , GM
1 by good arcs.

In the stars G1
1, . . . , GM

1 with good arcs, we indicate the Hamiltonian cycle. It starts at
the root of the star G1

1, passes sequentially through all the leaves of this star, goes to the root
of the star G2

1, etc., from the last leaf of the star GM
1 to the root of the star G1

1. As a result,
we transform the stars G1

1, . . . , GM
1 into a strongly connected digraph with the number of

additional arcs m = max(m + 0, 0 + M) (Figure 2). If M = 1, then the last leaf of the star
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G1
1 is connected by the good arc with its root.

Figure 2. A strongly connected digraph constructed from the stars G1
1, G2

1 (right).

Similarly, in the digraph Ĝ, consisting only of stars G1
2, . . . , GN

2 , let us add these stars
with good arcs sequentially connected by their leaves. In addition, from the root of the star
Gk

2, we will draw a good arc to the first leaf of the star Gk+1
2 , k = 1, . . . , N − 1, and from

the root of the star GN
2 to the first leaf of the star G1

2. If N = 1, we connect the root of the
star G1

2 with its first leaf.
In the stars G1

2, . . . , GN
2 with additional arcs, we indicate the Hamiltonian cycle. It

starts in the first leaf of the star G1
2, passes sequentially through all its leaves, and goes to

its root, then goes to the first leaf of the star G2
2, etc. From the root of the star GN

2 , the path
continues to the first leaf of the star G1

2. As a result, we transform the stars G1
2, . . . , GN

2 into
a strongly connected digraph with the number of additional arcs n = max(0 + N, n + 0)
(Figure 3). If N = 1, we connect the root of the star G1

2 by the good arc with its first leaf.

Figure 3. A strongly connected digraph constructed from the stars G1
2, G2

2 (right).

Let us now consider the case when MN > 0, i.e., in the digraph Ĝ, there are stars of
both the first and the second types. Denote W1 the set of all vertices in the stars G1

1, . . . , GM
1

and W2 the set of all vertices in the stars G1
2, . . . , GN

2 . Let us introduce a good arc, coming
out of the root of the star GN

2 and entering some leaf of the star GN−1
2 , an arc coming out of

the root of the star GN−1
2 and entering some leaf of the star GN−2

2 , etc., good arc, coming
out of the root of the star G1

2 and entering the root of the star GM
1 , good arc, coming out

of some leaf of the star GM
1 and entering the root of the star GM−1

1 , coming out of any leaf
of the star GM−1

1 and entering the root of the star GM−2
1 , etc., good arc, coming out of any

leaf of the star G2
1 and entering the root of the star G1

1. Let us call the introduced good arcs
and their incident vertices marked (see Figure 4, highlighted in grey). It is obvious that
from any labelled, and hence from any vertex of the star of the set G1

2, . . . , GN
2 , there is a

path to any vertex of the star of the set G1
1, . . . , GM

1 . We will denote this statement W2 ⇒ W1.

Figure 4. Introduction of M + N − 1 additional arcs.

The number of labelled arcs connected the vertices of the star G1
1, . . . , GM

1 , is M − 1,
and the arcs connected the vertices of the star G1

2, . . . , GN
2 , is N − 1. Then, the total number
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of marked arcs taking into account the arc from the star G1
2 to the star GM

1 is M − 1 + N −
1 + 1 = M + N − 1.

The total number of unlabelled vertices in the stars G1
1, . . . , GM

1 is m − (M − 1), the
number of unlabelled vertices in the stars G1

2, . . . , GN
2 is n − (N − 1). From each unlabelled

vertex of the set W1 (see Figure 5), let us draw good arc to some unlabelled vertex of
the set W2 so that each unlabelled vertex of the set W2 includes an arc from some ver-
tex of the set W1. Thus, the number of additionally introduced good arcs is equal to
max(m − (M − 1), n − (N − 1)). Therefore, the total number of good arcs becomes equal
to max(m − (M − 1), n − (N − 1)) + M + N − 1 = max(m + N, n + M).

Figure 5. Introduction of max(m − (M − 1), n − (N − 1)) good arcs.

We prove that the introduction of all good arcs into the stars G1
1, . . . , GM

1 , G1
2, ..., GN

2
transforms these stars into a strongly connected digraph. Let us take an arbitrary unlabelled
vertices v1 ∈ W1, v2 ∈ W2 and draw the path through unlabelled vertices v1, v′2, v′1, v2,
where v′2 ∈ W2—the vertex connected with a vertex v1 by good arc, and v′1 ∈ W1—the
vertex connecting with the vertex v2 by good arc. Since from any labelled vertex of the set
W1 it is possible to draw a path to some unlabelled vertex of this set and from any unlabelled
vertex of the set W2 it is possible to draw good arc to some labelled vertex of this set, then
it is possible to draw a path from any vertex of the set W1 to any vertex of the set W2, i.e.,
W1 ⇒ W2. Then, from the relations W1 ⇒ W2, W2 ⇒ W1 we get W1

⋃
W2 ⇒ W1

⋃
W2.

Therefore, constructing from the stars G1
1, . . . , GM

1 , G1
2, . . . , GN

2 digraph with the entered
max(m + N, n + M) good arcs, is strongly connected. The statement of Theorem 1 is
fully proved.

Theorem 2. For a bipartite digraph G, the minimum number of good arcs, that turn it into a
strongly connected digraph is determined by the equality

|p(G)| = max(|V1|, |V2|). (1)

Proof of Theorem 2. From Theorem 1, the equalities

|V1| = n + M, |V2| = m + N, |p(Ĝ)| = max(|V1|, |V2|)

follow. From the definition of a minimal arc cover Ĝ, it follows that the set of its vertices
coincides with the set of vertices in the bipartite digraph G. And the set of arcs in Ĝ is
contained in the set of arcs in G, therefore max(|V1|, |V2|) = |p(Ĝ)| ≥ |p(G)|. However,
since |p(G)| ≥ max(|V1|, |V2|), the equality (1) is fulfilled. Theorem 2 is proved.

Remark 2. Using the algorithm for proving Theorem 1, it is possible to construct a smallest set
p(G) of good arcs that transform a bipartite digraph G into a strongly connected digraph G̃. Thus,
a constructive solution is given to the problem of determining the smallest set of good arcs in a
bipartite digraph G.
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Theorem 3. For an acyclic digraph G, the minimum number of good arcs that turn it into a
strongly connected one is determined by the equality

|p(G)| = max(|V1|, |V2|).

Proof of Theorem 3. By arcs from the smallest set p(G) of good arcs, we connect the
vertices of the sets V1, V2 into G . We obtain from the acyclic digraph G a strongly connected
digraph in which the minimum number of good arcs |p(G)| = max(|V1|, |V2|). Theorem 3
is proved.

Remark 3. Assume that the acyclic digraph G has an isolated vertex that no arcs enter into it or
exit from it. Then, we may fictitiously introduce this vertex into the first and second lobes and
connect these vertices with a fictitious arc. Then all further constructions are saved.

4. Recurrent Algorithm for Class Allocation Cyclic Equivalence

This section provides one of the algorithms for converting a digraph into an acyclic
digraph by allocating cyclic equivalence classes in it. There are different algorithms to solve
this problem, see for example [12,28], etc. In this section, we show sequential algorithm in
which at each step new vertex and arcs connecting it with previously introduced are added
to the digraph. This algorithm was convenient to deal with protein networks in numerical
examples [29,30].

Let us say that two vertices of a digraph are cyclically equivalent if they are included
in any cycle contained in it. On the set of cyclic equivalence classes (clusters), a partial
order relation is defined v � w, if there is a path from the cluster v to the cluster w. We
define a zero-one matrix ||a(v, w)|| by the condition a(v, w) = 1 ⇐⇒ v � w. Then, the
algorithm for determining the set of clusters and the matrix a, specifying the partial order
� on it, is based on the following recurrent procedure [29].

Let all vertices in the original digraph be numbered: 1, 2, . . . , n. At step 1, a single
cluster is constructed consisting of a vertex 1 and a partial order matrix a, consisting of
a single element a(1, 1) = 1. Suppose that at step t − 1, clusters and a matrix specifying
a partial order � between them are given. Then, at the step t, the vertex t and the good
arcs connecting this vertex to the already specified clusters are added. Then, in a digraph
consisting of clusters constructed at step t − 1 and paths between them, after adding
a vertex t and good arcs connecting it to already constructed clusters, sets of clusters
B1, B2, B are determined (see Figure 6, left). The set B1 contains clusters into which there
is a path from the vertex t. Similarly, the set B2 contains clusters from which there is a
path to the vertex t. All other clusters fall into the set B, and from them there can be paths
only to the clusters of the set B1 and paths can exist in them only from clusters of the set
B2 (see Figure 6, left). Then, at step t, a new cluster [t] is built, consisting of the vertex t
and the clusters of the set A = B1 ∩ B2, and the paths between the remaining clusters are
shown in Figure 6, on the right. Then, the matrix a of partial order � is defined by Table 1.
In this table, rectangular sub matrices 0 consist of only zeros, rectangular sub matrices 1
consist of only ones, and rectangular matrices denoted by values at step t − 1 repeat the
corresponding sub matrices of the matrix a at step t − 1 (see [29]).
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Figure 6. The algorithm of transition from step t − 1 to step t for clusters.

Table 1. Algorithm of transition from step t − 1 to step t for a matrix of partial order a.

Matrice Partial
Order

Clusters Set A1 Clusters Set [t] Clusters Set A2 Clusters Set B

clusters of set A1
meanings on

step t − 1 0 0

clusters of set [t] 1
clusters of set A2 meanings on step t − 1

clusters of set B meanings on
step t − 1 0 meanings on

step t−1

As a result of such clustering, the original digraph is transformed into a digraph with
a set of cluster vertices. An arc is drawn between two clusters if at least one arc exists
between them in the original digraph.

5. Discussions

Thus, the tasks set in the paper are solved by reducing to the problem of the maximum
flow and the minimum section. This allows us to use Ford–Fulkerson algorithms [4,5] and
their modifications [22,23], which avoid the need to solve NP-problems. To do this, either
the arc throughput is determined in a special way, or good arcs are introduced not for
the entire acyclic digraph, but for its arcs coverage, which greatly simplifies the task. We
also note that the optimization tasks considered in the paper do not always have a single
solution. However, the proposed algorithms allow us to obtain some of these solutions.
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Abstract: We consider the reliability function of a k-out-of-n system under conditions that failures
of its components lead to an increase in the load on the remaining ones and, consequently, to a
change in their residual lifetimes. Development of models able to take into account that failures of
a system’s components lead to a decrease in the residual lifetime of the surviving ones is of crucial
significance in the system reliability enhancement tasks. This paper proposes a novel approach based
on the application of order statistics of the system’s components lifetime to model this situation. An
algorithm for calculation of the system reliability function and two moments of its uptime has been
developed. Numerical study includes sensitivity analysis for special cases of the considered model
based on two real-world systems. The results obtained show the sensitivity of system’s reliability
characteristics to the shape of lifetime distribution, as well as to the value of its coefficient of variation
at a fixed mean.

Keywords: k-out-of-n system; dependent failures; order statistics; reliability characteristics; sensitivity
analysis

MSC: 60H99

1. Introduction and Motivation

Ensuring the reliability of systems, objects, and processes is one of the main goals
in their creation and further operation. Redundancy serves this aim, and a k-out-of-n : F
model is a very popular configuration for it. This is a model of a system that consists of n
components in parallel that fails when at least k of them fail. Hereinafter, we will use this
notation omitting the symbol “F”.

Due to the wide range of practical applications of k-out-of-n systems, many papers
have been devoted to their study. The bibliography on the related topics is extensive (see
Trivedi [1], Chakravarthy et al. [2] and the bibliography therein). For a brief overview
of further investigations, see, for example, [3] by Rykov et al. An overview of recent
publications on k-out-of-n multi-state systems can be found in [4]. Furthermore, the k-
out-of-n systems with several types of failure have been considered in [5,6]. In the 1980s
in [7,8] for the investigation of heterogeneous systems, Ushakov proposed the method of
Universal Generating functions. At present, it has become a very popular technique and
has been used in different applications (see, for example, a monograph by Levitin [9] and
the bibliography therein). Recently, in [10], Kala proposed new sensitivity measures for the
system’s reliability function based on the entropy of its structural function. Engineering
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applications of this model to the study of real-world systems can be found in [11] for
the reliability study of some structures in the oil and gas industry. In [12], the model is
used for reliability analysis of a remote monitoring system of underwater sections of gas
pipeline, and in [13] for the reliability study of a rotary-wing flight module of a high-altitude
telecommunications platform.

Another interesting line of research within the framework of the problem of system
reliability enhancement is the prediction of the remaining useful life (RUL), which is
an indispensable indicator to measure the degradation process of system components.
In [14], a novel adaptive approach based on Kalman filter and expectation maximum
with Rauch–Tung–Striebel was proposed to solve the problem of the RUL prediction of
lithium-ion battery which is critical for the normal operation of electric vehicles [15].

A data-driven RUL prediction approach based on deep learning was proposed in [16]
and verified by two real-world datasets—the aircraft engines dataset and the actual milling
machine dataset.

Recently, an interesting approach of stress–strength reliability characteristic study was
proposed (see, especially, [17–19]). It is interesting to study this index with respect to its
sensitivity to both stress and strength distribution. We do not touch this approach here,
but it will be in our plans in future.

In paper [13], a wide range of issues was posed for the study of systems whose
failure depend not only on the number of failed components, but also on their location
in the system. Moreover, it is also very important to take into account that failures of
system components lead to the increase in the load on the remaining ones. A simple
load-sharing model, in which the lifetime is exponentially distributed and the load from the
failed components is distributed proportionally among the survivors, is considered in [20]
through the example of a 2-out-of-3 system. A load-sharing k-out-of-n : G system with
identical components and arbitrary distribution of lifetime under the equal load-sharing
rule in the context of semi-Markov embedded processes was studied in [21].

The study of a k-out-of-n model in which failed components do not affect the residual
lifetime of surviving components, using order statistics, is considered in [22]. On the other
hand, the increase in the load on working components after the stop of functioning of the
failed ones can lead to the decrease in their residual lifetime. Such a problem has been
studied in our previous papers [12,23]. In addition, in [24] this problem was modeled by
the changing in components’ hazard rate function.

The application of order statistics to the study of k-out-of-n models is not new [1,25].
Previously, in [26], the so-called sequential order statistics (which is some extension of
ordinary order statistics) were considered for the study of a k-out-of-n system, in which
a failure of any component can affect other components, so that their basic failure rate is
corrected in relation to the number of previous failures. A similar model of the impact
of a component’s failure on the functioning of the survived ones has been developed for
example in [27,28], where it was supposed that the failure of any component influences the
others, so that their failure rate is adjusted with respect to the number of preceding failures.

However, the problem of system failure, associated with a change in the residual
component lifetime, depending on the increase in load after the failure of any component,
has not yet been solved. Thus, the present article is devoted to the solution of this problem.
The novelty of this investigation consists of the following:

– we perform the reliability study of a k-out-of-n system, whose component failures
change residual lifetime of the other components;

– in the current paper, despite the fact that order statistics have already been applied to
the study of k-out-of-n system reliability characteristics, we propose a novel applica-
tion of order statistics to study of the lifetimes of components and the whole system.

The paper is organized as follows. In the next section, the problem is set up, the main
notations and some practical examples of k-out-of-n models are given. Then, in Section 3
the necessary preliminaries are introduced and in Section 4 the general procedure for the
solution of the stated problem is proposed. The numerical study of different scenarios for
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the investigation of a 2-out-of-6 system is made in Section 5. In conclusion, directions for
further research are outlined.

2. State of the Problem: Notations and Examples

2.1. Problem Setting

Usually, real-world redundant systems are constructed based on the same type of
components. Thus, we consider a k-out-of-n system that consists of n identical components
in parallel and fails if at least k of them fail. At that point, it is supposed that the failure of
an i-th component for i < k leads to the increase of load on the others and therefore to the
decrease of their residual lifetimes. It is modeled by multiplying the residual lifetime of the
surviving components by some weighting factor ci < 1, (i = 1, k − 1). We will consider
the system operation up to its first failure.

In the present paper, the main reliability characteristics of such a system are studied,
namely:

– time T to the first failure of the system,
– reliability function R(t) = P{T > t} of the system,
– its two first moments,
– high confidence quantiles;
– sensitivity analysis of the system’s reliability function to the shapes of its components’

lifetime distribution.

2.2. Notations: Assumptions

To study the system, introduce the following notations:

• P{·}, E[·] are symbols of probability and expectation;
• Ai : (i = 1, n) is the series of components’ lifetimes, which are supposed to be

independent identically distributed (iid) random variables (rv);
• A(t) = P{Ai ≤ t} is their common cumulative distribution function (cdf);
• j is the system state, which means the number of failed components;
• E = {j = {0, 1, . . . , k}} is the set of the system states.

Under the set of states E, define a stochastic process J = {J(t) : t ≥ 0} by the
expression

J(t) = j, if in time t the system is in the state j ∈ E

and denote by T and R(t) time to the first system failure and the reliability function,
respectively,

T = inf{t : J(t) = k}, R(t) = P{T > t}.

2.3. Examples

As mentioned in the Introduction, k-out-of-n models have a wide sphere of applica-
tions (see [1] and others), including the study of energy (see [11,12]), and telecommunica-
tion [13] problems. Let us focus on two examples of applying the k-out-of-n model. In the
numerical analysis, we will use these examples for the special case of n = 6, k = 2.

2.3.1. A Flight Module of a Tethered High-Altitude Telecommunication Platform

As an application example of the proposed k-out-of-n model, consider the model of a
multi-copter flight module, which is part of the tethered high-altitude telecommunications
platform [13]. The main area of its application is solving problems related to the long-term
operation (tens of hours) without lowering the unmanned flight module to the ground.
Therefore, unlike autonomous Unmanned Aerial Vehicles (UAVs) reliability parameters are
of crucial importance for the tethered UAV-based high-altitude platforms.

A multi-rotor UAV is a system consisting of n rotors arranged uniformly in a circle and
pairwise symmetrically with respect to the center of the circle [29]. The multi-copter may
malfunction due to the failure of the propeller engines. There are various modifications
of multi-rotor UAVs. The most common architectures are quad-, hexa-, and octocopters.
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The higher the redundancy ratio, the higher the reliability of the system. , Therefore,
in practice, flight modules with 6 or 8 rotors are most often used. In this example, we
consider a hexacopter as a hot standby system consisting of n = 6 components (rotors) that
work and fail independently of each other (see Figure 1).

Figure 1. An unmanned hexacopter flight module of a tethered high-altitude telecommunications
platform.

If the location of the failing components is not taken into account, this system fails
when k = 2 out of 6 rotors fail.For practical use, various reliability characteristics of such a
system, including those considered in the general model, are of interest.

2.3.2. An Automated System for Remote Monitoring of a Sub-Sea Pipeline

As another application example of the k-out-of-n model, we consider an automated
system for remote monitoring of a sub-sea pipeline. This system has been considered in [12],
where its description has been given in details. One of the main parts of this system is an
Unmanned Underwater Vehicle (UUV), the structure of which is illustrated in Figure 2.

Figure 2. An unmanned multi-functional underwater vehicle.

The UUV consist of 6 motors, indicated by numbers 1–6, which allow it to rise, fall
and move in various directions, including along the pipeline. The UUV is equipped with
various devices, indicated by numbers 7–15, for receiving and transmitting information
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about the state of the pipe. In paper [12] the reliability function of this model has been
studied in two scenarios:

(1) in the case, when the system’s failure depends only on the number of its failed
components. At that point, it is assumed that the device can perform its functions
until at least 3 of its engines fail;

(2) in the case, when the system’s failure depends also on the position of the failed
components in the system. At that point, the UUV can perform its functions as long
as at least two engines located on opposite sides, or any three engines are operational.
Therefore, it could be considered to be a combination of 3 + 1-out-of-6 : F and 5-out-
of-6 : F systems. For such a system, the special notation such as (5, 3 + 1)-out-of-6 : F
system was used.

However, the influence of the number of failed components on the residual lifetimes
of the survived ones was not taken into account earlier. In the current paper, this model
has been studied under the condition that failed components reduce the residual lifetime
of surviving system’s components.

3. Distribution of the System’s Time to Failure

3.1. Preliminaries

It is evident that if a k-out-of-n system’s failure depends only on several its failed
components, it coincides with the k-th order statistic from n iid rv Ai (i = 1, n) with a
given cdf A(t). For simplicity, further we will denote order statistics A(1) ≤ · · · ≤ A(k) ≤
· · · ≤ A(n) of iid rv Ai (i = 1, n) by Xi, i.e., Xi = A(i) and X1 ≤ · · · ≤ Xk ≤ · · · ≤ Xn.
Distributions of order statistics are well studied (see, for example, [30]), where it was
shown that the joint probability density function (pdf) fn(x1, . . . xn) of all order statistics
X1 ≤ X2 ≤ · · · ≤ Xn from n iid rv A1, A2, . . . , An with a given pdf a(x) has the follow-
ing form:

fn(x1, x2, . . . , xn) = n!a(x1)a(x2) · · · a(xn) (x1 ≤ x2 ≤ · · · ≤ xn).

By integration of this pdf with respect to last n − k variables one can simply find the
joint pdf fk(x1, . . . xk) of the first k order statistics X1 ≤ X2 ≤ · · · ≤ Xk from the n iid rv
Ai (i = 1, n) in the domain x1 ≤ x2 ≤ . . . ≤ xk in the form

fk(x1, x2, . . . , xk) =
n!

(n − k)!
a(x1)a(x2) . . . a(xk)(1 − A(xk))

n−k. (1)

However, if a failure of one of the system’s components leads to the change in the
residual lifetimes of all survived components, then their distributions are also changed.

3.2. Transformation of Order Statistics

Following the proposed model of the influence of components’ failures on the residual
lifetime of survivors, they are reduced by multiplying by some constant ci depending on
the number of failed components. Denote by Yi (i = 1, k) the time of an i-th component
failure under the conditions of increasing the load on survived components. To simplify
the representation of these values in terms of order statistics X1 ≤ X2 ≤ · · · ≤ Xn, we
introduce the following notations,

C1 = (1 − c1), C2 = c1(1 − c2), . . . , Ck−1 = c1 · · · ck−2(1 − ck−1), Ck = c1 · · · ck−1.

In these notations, the following theorem holds.

Theorem 1. The time to the considered system failure Yk is a linear function of order statistics of
the following form:

Yk = C1X1 + C2X2 + · · ·+ Ck−1Xk−1 + CkXk. (2)
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Proof. To calculate the time of the system failure, we slightly expand the problem state-
ment and calculate the successive time moments Yi (i = 1, k) of failures of the system’s
components under conditions of increasing load on the surviving components. To do that,
we use a recursive procedure and denote by X(j)

i the expected time moment of the i-th
failure after the failure of the j-th component (i > j).

Thus, to start the induction, we have X(0)
i = Xi. After the first failure of a component

at time Y1 = X(0)
1 = X1 all residual lifetimes of surviving components that equal Xi − X1

for i > 1 decrease by a factor of c1, and therefore the expected failure times X(1)
i for i > 1

take the form

X(1)
i = X(0)

1 + c1(X(0)
i − X(0)

1 ) = (1 − c1)X1 + c1Xi, i = 2, k.

Therefore Y2 = X(1)
2 = (1 − c1)X1 + c1X2.

Similarly, after the j-th failure at time Yj = X(j−1)
j , the residual lifetimes X(j−1)

i −X(j−1)
j

of all surviving components for all i > j decrease by a factor cj, 0 < cj < 1 (j = 1, k) and
the expected failure times of components take the following form:

X(j)
i = X(j−1)

i , ∀i ≤ j,

X(j)
i = X(j−1)

j + cj(X(j−1)
i − X(j−1)

j ) = (1 − cj)X(j−1)
j + cjX

(j−1)
i , ∀i > j.

Thus, the expected failure times of the system components Yj (j = 1, k) under condi-

tions of load redistribution equal to Yj = X(j−1)
j (j = 1, k). Expressing X(j)

i in terms of the
original order statistics, we obtain the following expression for i > j:

X(j)
i = (1 − c1)X1 + c1(1 − c2)X2 + c1c2(1 − c3)X3 + · · ·+ c1 · · · cj−1(1 − cj)Xj + c1 · · · cjXi

=
j

∑
l=1

c1 · · · cl−1(1 − cl)Xl + c1 · · · cjXi. (3)

Supposing that the last expression is true for a given j check it for all i > j:

X(j+1)
i = (1 − c1)X1 + c1(1 − c2)X2 + c1c2(1 − c3)X3 + · · ·+ c1 · . . . · cj−1(1 − cj)Xj

+ c1 · . . . · cj(1 − cj+1)Xj+1 + c1 · . . . · cjcj+1Xi =

=
j

∑
l=1

c1 · · · cl−1(1 − cl)Xl + c1 · · · cj(1 − cj+1)Xj+1 + c1 · · · cj+1Xi =

=
j+1

∑
l=1

c1 · · · cl−1(1 − cl)Xl + c1 · · · cj+1Xi. (4)

Hence, by the principle of mathematical induction, the equality (3) holds for any j. In
terms of the original order statistics Xi (i = 1, k), we obtain for all j = 1, k:

Yj = X(j−1)
j = (1 − c1)X1 + c1(1 − c2)X2 + · · ·+ c1 · · · cj−2(1 − cj−1)Xj−1 + c1 · · · cj−1Xj,

which, using the notation introduced earlier, leads to (2) for j = k, which completes the
proof.

3.3. Distribution of the System Failure Time

Now move on to the calculation of the cdf FYk (y) of the system’s time to failure Yk
under the condition of redistribution of the load on the components. We will do that
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by taking into account expression (2) for the time of the system failure in terms of order
statistics Xi and using Formula (1) for the joint distribution of the first k order statistics.

To simplify the representation of this cdf we introduce the following notations,

z0 = y,

zi = zi(y; x1, . . . , xi) =
y − C1x1 + C2x2 − . . . − Cixi

Ci+1
(i = 1, k − 1). (5)

With these notations the following theorem holds.

Theorem 2. The distribution of the system’s time to failure for y > 0 is

FYk (y) = P{Yk < y}

=
n!

(n − k)!

z0∫
0

a(x1)dx1

z1∫
x1

a(x2)dx2· · ·
zk−1∫

xk−1

a(xk)(1 − A(xk))
n−kdxk. (6)

Proof. According to Theorem 1 (see Formula (2)) the time Yk of the system failure is the
linear function of the first k order statistics

Yk = C1X1 + C2X2 + · · ·+ Ck−1Xk−1 + CkXk.

Therefore, for cdf FYk (y) of rv Yk in terms of pdf fk(x1, . . . , xk) of the first k order
statistics we obtain

FYk (y) = P{Yk < y}
= P{C1X1 + C2X2 + · · ·+ Ck−1Xk−1 + CkXk < y}
=

∫
· · ·

∫
D(x1,...,xk ;y)

fk(x1, x2, . . . , xk)dx1 . . . dxk, (7)

where the integration domain is

D(x1, . . . , xk; y) = {0 ≤ x1 ≤ · · · ≤ xk, C1x1 +C2x2 +C3x3 + . . . +Ck−1xk−1 +Ckxk ≤ y}.

Let us represent this multidimensional integral as an iterated one. Taking into account
that x1 ≤ x2 ≤ · · · ≤ xk, the integration domain can be transformed in the following way.
For the last variable xk from the inequality

C1x1 + C2x2 + C3x3 + . . . + Ck−1xk−1 + Ckxk ≤ y,

it follows that

xk ≤ y − C1x1 − C2x2 − C3x3 − . . . − Ck−1xk−1
c1 · · · ck−1

= zk−1(y; x1 . . . xk−1).

Furthermore, taking into account that xk−1 ≤ xk, from the last inequality, it follows that

xk−1 ≤ xk ≤ y − C1x1 − C2x2 − C3x3 − . . . − Ck−1xk−1
c1 · · · ck−1

.

From this inequality with the simple algebra one can find

xk−1 ≤ y − C1x1 − C2x2 − . . . − Ck−2xk−2
c1 · · · ck−2

= zk−2(y; x1 . . . , xk−2).
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Following in the same way we obtain for variable x2 the inequality

y ≥ (1 − c1)x1 + c1(1 − c2)x2 + c1c2x3 ≥
≥ (1 − c1)x1 + c1(1 − c2)x2 + c1c2x2 = (1 − c1)x1 + c1x2,

from which it follows that

x2 ≤ y − (1 − c1)x1

c1
,

and, at last,
y ≥ (1 − c1)x1 + c1x1 = x1.

It means that 0 ≤ x1 ≤ y. This argumentation shows that the integration domain
D(x1, . . . , xk; y) in terms of notations (5) can be represented as

D(x1, . . . , xk; y) = {xi−1 ≤ xi ≤ zi(y; x1, . . . xi−1) (i = 1, k)}.

Thus, using formula (1) for pdf fk(x1, . . . , xk) for the first k order statistics and the
above form of the integration domain, we can rewrite integral (7) for y ≥ 0 as

FYk (y) =
n!

(n − k)!

y∫
0

a(x1)dx1

z1∫
x1

a(x2)dx2 · · ·
zk−1∫

xk−1

a(xk)(1 − A(xk))
n−kdxk,

that ends the proof.

As a consequence of the theorem, the main system reliability characteristics can
be calculated.

Remark 1. Based on the distribution of the system’s time to failure, any other system’s reliability
characteristics can be calculated, such as:

– its reliability function R(y) = 1 − FY(y);
– its mean lifetime E[T] =

∫ ∞
0 R(t)dt;

– its lifetime variation var[T].

3.4. A Special Case: Exponential Distribution

In a special case, when the system components’ Ai (i = 1, n) lifetimes have exponen-
tial (Exp) distribution with a parameter α the integral (6) can be calculated analytically,
but the calculations are rather cumbersome. We show it for the given value of k = 2.
But for exponential distribution of the system components’ lifetime, we propose another
approach for the system lifetime distribution. It is based on the memoryless property of
any exponentially distributed rv.

Denote by Ti the time interval between i− 1-th and i-th components failures, i = 1, k − 1
(T0 = 0). Then due to the memoryless property of the exponential distribution the time to
the k-th failure Yk is the sum

Yk = T1 + T2 + · · ·+ Tk,

of k independent exponentially distributed rv Ti with parameters

λ1 = nα, λi = c1c2 · · · ci−1(n − i + 1)α = c̄i(n − i + 1)α, i = 2, k,

where for simplicity additional notations are used:

c̄i =

{
1, i = 1,
c1 · · · ci−1, i = 2, k.
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The moment generating function (mgf) of the system’s lifetime in this case has the
following form:

φk(s) = E
[
e−sYk

]
= ∏

1≤i≤k
E
[
e−sTi

]
= ∏

1≤i≤k

c̄iλi
s + c̄iλi

.

To apply the above theorem and the proposed approach, let us consider the simplest
example of a k-out-of-n model with k = 2. In this case, suppose c1 = c. Thus, according
to (1) the joint distribution of rv X(1), X(2) is

f2(x1, x2) =
n!

(n − 2)!
a(x1)a(x2)(1 − A(x2))

n−2 =
n!

(n − 2)!
α2e−αx1 e−(n−1)αx2 .

Calculate cdf FY2(y) of the rv Y2 = (1 − c)X(1) + cX(2),

FY2(y) = P{(1 − c)X(1) + cX(2) < y} = P

{
X(2) <

y − (1 − c)X(1)

c

}

= n(n − 1)α2
y∫

0

e−αx1 dx1

y−(1−c)x1
c∫

x1

e−(n−1)αx2 dx2

= 1 +
n − 1

nc − (n − 1)
e−nαy − nc

nc − (n − 1)
e−

(n−1)α
c y,

and therefore its pdf for y ≥ 0 is

fY2(y) =
n(n − 1)α

nc − (n − 1)

(
e−

(n−1)α
c y − e−nαy

)
.

Please note that this result holds for c �= (n − 1)/n and in this case the distribution
is a mixture of exponential distributions. The point c = (n − 1)/n is a singular point for
which cdf of the rv Y2 is the Erlang distribution,

FY2(y) = 1 − e−nαy − nαye−nαy, y > 0,

with pdf
pY2(y) = n2λ2ye−nλy, y > 0.

Remark 2. The singularity in the calculation of the cdf of the system’s lifetime arises because for
some special values of the coefficient ci (here for c = (n − 1)/n) the moment generating function of
the system’s lifetime has multiple roots that leads to changing of the shape of distribution.

With the help of another approach one can find mgf of the system’s lifetime in the
following form:

φ2(s) =
n(n − 1)α2

s2 + (2n − 1)αs + n(n − 1)α2 .

By expanding this expression into simple fractions, we find

φ2(s) =
n(n − 1)α

s + nα
− n(n − 1)α

s + (n − 1)α
,

then, by calculating the inverse function, we obtain

f2(y) = n(n − 1)α
(

e−(n−1)αy − e−nαy
)

,

which is the same as the result above for c = 1.
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The analytical calculations of the reliability characteristics are not always possible.
Nevertheless, their numerical analysis in the wide domain of initial data is possible. There-
fore, in the next section a procedure for the numerical calculation of different reliability
characteristics of the considered system will be proposed. Furthermore, in Section 5 this
procedure will be used for the numerical analysis of the model with some examples.

4. The General Calculation Procedure of the System Reliability Characteristics and
Numerical Experiments

Based on the results of the previous section, the general procedure for the problem
solution can be implemented with the help of the following algorithm (Algorithm 1).

Algorithm 1 : General algorithm for calculation of reliability function

Beginning. Determine: Integers n, k, real ci (i = 1, k), distribution A(t) of the system components’
lifetime and its pdf.
Step 1. Taking into account that the system’s failure moment Yk according to formula (2) equals

Yk = C1X1 + C2X2 + · · ·+ Ck−1Xk−1 + CkXk,

calculate the following,

Ci =

⎧⎪⎨⎪⎩
1 − ci, i = 1,
c1 · · · ci−1(1 − ci) i = 2, k − 1,
c1 · · · ck−1 i = k.

Step 2. Taking into account that according to formula (1), the joint distribution density of first k order
statistics X1 ≤ X2 ≤ · · · ≤ Xk holds

fX1X2...Xk (x1, x2, . . . , xk) =
n!

(n − k)!
a(x1)a(x2) . . . a(xk)(1 − A(xk))

n−k,

with which following to (6) calculate the reliability function

R(y) = 1 − FYk (y) = 1 − n!
(n − k)!

y∫
0

a(x1)dx1

z1∫
x1

a(x2)dx2 · · ·
zk−1∫

xk−1

a(xk)(1 − A(xk))
n−kdxk,

where the limits of integration are determined by the relation (5)

z0 = y, zi = zi(y; x1, . . . , xi) =
y − C1x1 + C2x2 − . . . − Cixi

c1c2 . . . ci
(i = 1, k − 1).

Find the values of the constants ci (singular points at which the denominator of the cdf FYk (y) turns
into 0) for which the cdf changes its appearance.
Step 3. From the system reliability function R(y), calculate
– mean time to the system failure

μT = E[Yk] =

∞∫
0

R(y)dy;

– its variance

σ2
T = Var[Yk] =

∞∫
0

(y − μT)
2 f (y)dy, where f (y) =

d
dy

FYk (y),

and coefficient of variation
v =

σ

μ
.

Stop.

Remark 3. The algorithm can also be used to solve other different problems, for example, to analyze
the sensitivity of the system’s reliability function and its characteristics to the shape of the lifetime
distribution of the system’s components.

Furthermore, the algorithm will be applied to some examples.
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5. Numerical Experiments: 2-Out-Of-6 System

According to Algorithm 1, we calculate the reliability function of a 2-out-of-6 sys-
tem. Since such a system fails due to the failure of two components, we have only one
constant that defines the decreasing residual lifetime of surviving components. Therefore,
hereafter, we suppose c1 = c. Consider the Gnedenko–Weibull (GW) distribution as the

lifetime distribution of the system’s components, A(t) ∼ GW
(

θ,
a

Γ(1 + θ−1)

)
, with the

corresponding cdf

A(t) = 1 − exp

{
−
(

tΓ(1 + θ−1)

a

)θ
}

, t > 0,

where

• a is a fixed mean components’ lifetime,
• θ is the shape parameter of GW distribution calculated based on the preset value of

the coefficient of variation,

• v =
σ

a
= a−1 ·

√
Γ(1 + 2 · θ−1)

Γ(1 + θ−1)2 − 1 is the coefficient of variation,

• σ is the standard deviation.

Additionally, consider the Erlang (Erl) distribution, A(t) ∼ Erl(l, θ) with pdf

a(y) =
θl

Γ(l)
yl−1e−θy, y > 0.

In this case, the distribution’s parameters can be represented via the corresponding
mean a and coefficient of variation v as follows,

l = v−2, θ = (av2)−1.

For numerical experiments, we consider the reliability function and its characteristics
of a 2-out-of-6 system for given distributions with a fixed mean a and different values of v.
Thus, we can analyze the influence of the coefficient of variation of the repair time on the
reliability characteristics of the system. In other words, investigate its sensitivity.

Suppose that the mean lifetime of the component a = 1. If θ = 1, GW and Erl
distributions transform into the exponential one with the mean time a and the coefficient of
variation v = 1. In this case, its reliability function is

R(t) =
5e−6t − 6c · e− 5t

c

5 − 6c
. (8)

From Formula (8) it is clear that c = 5
6 leads to changing of the shape of distribution.

Since calculating the coefficient θ for GW through the value of v is quite difficult, we
define the parameter θ so that v ≈ 0.5. Moreover, if θ of GW takes non-integer values, it
is not always possible to obtain a closed-form reliability function R(t) according to Algo-
rithm 1 (the integrand takes a complex form). Therefore, define θ = 2, then, the coefficient
of variation v = 0.5227. For Erl distribution, suppose that v = 0.5, which leads to θ = 4.

Suppose c = 0.1; 0.5; 1. Figure 3 illustrates the reliability function of the 2-out-of-6
system for different distributions, as well as c and v. Here, solid line means v = 1 and
reliability function (8), dashed one is for GW with v = 0.5227 and dash-dotted is for Erl
with v = 0.5. The legend of the figure denotes the color of line for different c.
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Figure 3. Reliability function of a 2-out-of-6 system.

The figure shows that the higher reliability coincides with the lower value of v.
The case c = 1 means the absence of load from the failed components to the surviv-
ing ones, thus this case corresponds to the highest reliability for different v compared to
the values c < 1. Moreover, dependence of the reliability function curve on the shape of
lifetime distribution is observed. On a small interval y, the system reliability as A ∼ Erl is
higher than as A ∼ GW for each c, despite close values v. This may indicate the sensitivity
of the reliability function not only to the shape of the lifetime distribution, but also to the
corresponding value of the coefficient of variation.

According to the algorithm, we calculate other reliability characteristics of the 2-out-
of-6 system (Tables 1 and 2). These characteristics correspond to the system’s reliability
behavior, shown in Figure 3. The lower value of v leads to the higher value of the system
lifetime expectation E[Y2], and the lower value of c leads to the lower value of E[Y2].
Moreover, as v ≈ 0.5 the relative error between the considered distributions is 14.11% for
c = 0.1, 7.98% for c = 0.5 and 3.86% for c = 1.

Table 1. E[Y2] of a 2-out-of-6 system.

c = 0.1 c = 0.5 c = 1

v = 0.5 (A ∼ Erl) 0.4925 0.5670 0.6668
v = 0.5227 (A ∼ GW) 0.4316 0.5251 0.6420

v = 1 (A ∼ Exp) 0.1867 0.2667 0.3667

To distinguish coefficients of variation of the components and the whole system,
denote them as vcomp and vsys, respectively. Thus, Table 2 shows the following. With a
decrease in c, the coefficient of variation of the system vsys grows and tends to the value
of the coefficient of variation of each system component vcomp. The increasing vcomp leads
to the increasing vsys for all distributions and c. Thus, the coefficient of variation of the
system vsys confirms that as c tends to 0 and vcomp tends to 1, variability with respect to the
average lifetime of the system E[Y2] grows.
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Table 2. vsys of a 2-out-of-6 system.

c = 0.1 c = 0.5 c = 1

vcomp = 0.5 (A ∼ Erl) 0.3802 0.3049 0.2986
vcomp = 0.5227 (A ∼ GW) 0.4813 0.3854 0.3641

vcomp = 1 (A ∼ Exp) 0.8993 0.7289 0.7100

Table 1 showed that with increasing c and v ≈ 0.5, the mean system lifetime E[Y2]
is very close. However, Figure 3 shows that over a small interval y with these c and v,
the reliability of the system has significant differences. This leads to the study the quantiles
of the system reliability. This measure shows how long the system will be reliable with
a fixed probability. The quantiles qγ = R−1(γ) of the reliability function are presented
in Figures 4–6. In all cases, red bullets correspond to γ = 0.99, whereas black bullets
correspond to γ = 0.9.

All the values for quantiles γ = 0.999; 0.99; 0.9 are presented in Table 3 for different
distributions. The values in the table show that for the presented quantiles qγ, the shape of
the lifetime distribution of the system’s components as well as its coefficient of variation
play a critical role on the system’s reliability. Therefore, for example, as c = 0.1 and A ∼ Erl
a given reliability level 0.9 will last about 8 times longer than for c = 0.1 and A ∼ Exp.
At that for q0.999, the difference for similar case is almost 40 times. As the coefficient c
increases, this difference decreases for all values of the quantiles and lifetime distributions
of the components. As c = 1 this difference is reduced by about two times. Thus, even as
c = 1, which defines no changing in components’ residual lifetimes, the influence not only
of the lifetime distribution of the components but also its coefficient of variation on the
reliability of the system is huge. This once again confirms the sensitivity of the reliability
characteristics of the k-out-of-n system to the shape of the lifetime distribution and the
coefficient of variation of system’s components.

Figure 4. Reliability function with v = 1 and quantiles (A ∼ Exp). Red and black bullets are the
points of intersection of the reliability function curves with fixed reliability levels of 0.99 and 0.9,
respectively.
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Figure 5. Reliability function with v = 0.5227 and quantiles (A ∼ GW). Red and black bullets are
the points of intersection of the reliability function curves with fixed reliability levels of 0.99 and 0.9,
respectively.

Figure 6. Reliability function with v = 0.5 and quantiles (A ∼ Erl). Red and black bullets are the
points of intersection of the reliability function curves with fixed reliability levels of 0.99 and 0.9,
respectively.

Table 3. Quantiles of reliability function qγ.

c = 0.1 c = 0.5 c = 1

q0.999 A ∼ Exp 0.0026 0.0059 0.0083
A ∼ GW 0.0419 0.0804 0.1027
A ∼ Erl 0.1019 0.1641 0.1945

q0.99 A ∼ Exp 0.0088 0.0192 0.0271
A ∼ GW 0.0804 0.1458 0.1859
A ∼ Erl 0.1576 0.2345 0.2784

q0.9 A ∼ Exp 0.0344 0.0691 0.0972
A ∼ GW 0.1813 0.2784 0.3517
A ∼ Erl 0.271 0.3574 0.424
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6. Conclusions and the Further Investigations

The reliability function of a new k-out-of-n : F model is investigated, under the new
assumptions that the failures of its components lead to the increase in the load on the
remaining ones and, consequently, to the change in their residual lifetimes. To model the
situation, we proposed a novel approach based on the transformation of the order statistics
of the system components’ lifetimes , which is the new field of application of order statistics.
An algorithm for calculation of the system’s reliability function and its moments has been
developed. Numerical experiments for the special case of the considered model based on
the real-world systems have been carried out. The experiments show an essential sensitivity
of the model reliability function and its moments to the shapes of the lifetime distributions
of the system’s components and their coefficient of variation.

Furthermore, it is proposed we extend this approach to the investigation of stationary
characteristics of the model and consider its preventive maintenance, aiming to improve its
reliability characteristics.
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The following abbreviations are used in this manuscript:

iid independent and identically distributed
rv random variable
cdf cumulative distribution function
pdf probability density function
UAV Unmanned Aerial Vehicle
UUV Unmanned Underwater Vehicle
mgf moment generating function
Exp Exponential distribution
GW Gnedenko–Weibull distribution
Erl Erlang distribution

References

1. Trivedi, K.S. Probability and Statistics with Reliability, Queuing and Computer Science Applications, 2nd ed.; John Wiley & Sons:
New York, NY, USA, 2016. [CrossRef]

2. Chakravarthy, S.R.; Krishnamoorthy, A.; Ushakumari, P.V. A k-out-of-n reliability system with an unreliable server and Phase
type repairs and services: The (N, T) policy. J. Appl. Math. Stoch. Anal. 2001, 14, 361–380. [CrossRef]

3. Rykov, V.; Kozyrev, D.; Filimonov, A.; Ivanova, N. On Reliability Function of a k-out-of-n System with General Repair Time
Distribution. Probab. Eng. Inf. Sci. 2020, 35, 885–902. [CrossRef]

171



Mathematics 2022, 10, 4243

4. Pascual-Ortigosa, P.; Sáenz-de-Cabezón, E. Algebraic Analysis of Variants of Multi-State k-out-of-n Systems. Mathematics 2021, 9,
2042. [CrossRef]

5. Zhang, T.; Xie, M.; Horigome, M. Availability and reliability of (k-out-of-(M + N)): Warm standby systems. Reliab. Eng. Syst. Saf.
2006, 91, 381–387. [CrossRef]

6. Gertsbakh, I.; Shpungin, Y. Reliability Of Heterogeneous ((k, r)-out-of-(n, m)) System. RTA 2016, 3, 8–10.
7. Ushakov, I. A universal generating function. Sov. J. Comput. Syst. Sci. 1986, 24, 37–49.
8. Ushakov, I. Optimal standby problem and a universal generating function. Sov. J. Comput. Syst. Sci. 1987, 25, 61–73.
9. Levitin, G. The Universal Generating Function in Reliability Analysis and Optimization; Springer Series in Reliability Engineering;

Springer: London, UK, 2005. [CrossRef]
10. Kala, Z. New Importance Measures Based on Failure Probability in Global Sensitivity Analysis of Reliability. Mathematics 2021, 9,

2425. [CrossRef]
11. Rykov, V.; Sukharev, M.; Itkin, V. Investigations of the Potential Application of k-out-of-n Systems in Oil and Gas Industry Objects.

J. Mar. Sci. Eng. 2020, 8, 928. [CrossRef]
12. Rykov, V.; Kochueva, O.; Farkhadov, M. Preventive Maintenance of a k-out-of-n System with Applications in Subsea Pipeline

Monitoring. J. Mar. Sci. Eng. 2021, 9, 85. [CrossRef]
13. Vishnevsky, V.M.; Kozyrev, D.V.; Rykov, V.V.; Nguyen, D.P. Reliability modeling of an unmanned high-altitude module of a

tethered telecommunication platform. Inf. Technol. Comput. Syst. 2020, 4, 26–36. [CrossRef]
14. Zhang, J.; Jiang, Y.; Li, X.; Huo, M.; Luo, H.; Yin, S. An adaptive remaining useful life prediction approach for single battery with

unlabeled small sample data and parameter uncertainty, Reliab. Eng. Syst. Saf. 2022, 222, 108357. [CrossRef]
15. Zhang, J.; Jiang, Y.; Li, X.; Luo, H.; Yin, S.; Kaynak, O. Remaining Useful Life Prediction of Lithium-Ion Battery with Adaptive

Noise Estimation and Capacity Regeneration Detection. IEEE/ASME Trans. Mechatron. 2022, 1–12 [CrossRef]
16. Zhang, J.; Jiang, Y.; Wu, S.; Li, X.; Luo, H.; Yin, S. Prediction of remaining useful life based on bidirectional gated recurrent unit

with temporal self-attention mechanism, Reliab. Eng. Syst. Saf. 2022,221, 108297. [CrossRef]
17. Eryilmaz, S. Phase type stress-strength models with reliability applications. Commun. Stat.—Simul. Comput. 2018, 47, 954–963.

[CrossRef]
18. Bai, X.; Shi, Y.; Liu, Y.; Liu, B. Reliability estimation of stress-strength model using finite mixture distributions under progressively

interval censoring. J. Comput. Appl. Math. 2019, 348, 509–524. [CrossRef]
19. Zhang, L.; Xu, A.; An, L.; Li, M. Bayesian inference of system reliability for multicomponent stress-strength model under

Marshall-Olkin Weibull distribution. Systems 2022, 10, 196. [CrossRef]
20. Tang, Y.; Zhang, J. New model for load-sharing k-out-of-n : G system with different components. J. Syst. Eng. Electron. 2008, 19,

842, 748-–751. [CrossRef]
21. Hellmich, M. Semi-Markov embeddable reliability structures and applications to load-sharing k-out-of-n system. Int. J. Reliab.

Qual. Saf. Eng. 2013, 20, 1350007. [CrossRef]
22. Bairamov, I.; Arnold, B.C. On the residual lifelengths of the remaining components in an n − k + 1 out of n system. Stat. Probab.

Lett. 2008, 78, 945–952. [CrossRef]
23. Nguyen, D.P.; Kozyrev, D.V. Reliability Analysis of a Multirotor Flight Module of a High-altitude Telecommunications Platform

Operating in a Random Environment. In Proceedings of the 2020 International Conference Engineering and Telecommunication
(En&T), Dolgoprudny, Russia, 25–26 November 2020, pp. 1–5. [CrossRef]

24. Rykov, V.; Ivanova, N.; Kochetkova, I. Reliability Analysis of a Load-Sharing k-out-of-n System Due to Its Components’ Failure.
Mathematics 2022, 10, 2457. [CrossRef]

25. Katzur, A.; Kamps, U. Order statistics with memory: A model with reliability applications. J. Appl. Probab. 2016, 53, 974–988.
[CrossRef]

26. Cramer, E.; Kamps, U. Sequential order statistics and k-out-of-n systems with sequentially adjusted failure rates. Ann. Inst. Stat.
Math. 1996, 48, 535–549. [CrossRef]

27. Navarro, J.; Marco, B. Coherent Systems Based on Sequential Order Statistics. Nav. Res. Logist. 2011, 58, 123–135. [CrossRef]
28. Sutar, S.; Naik-Nimbalkar, U.V. A load share model for non-identical components of a k-out-of-m system. Appl. Math. Model. 2019,

72, 486–498. [CrossRef]
29. Kozyrev, D.V.; Phuong, N.D.; Houankpo, N.G.K.; Sokolov, A. Reliability evaluation of a hexacopter-based flight module of a

tethered unmanned high-altitude platform, Commun. Comput. Inf. Sci. 2019, 1141, 646–656._52. [CrossRef]
30. David, H. A.; Nagaraja, H. N. Order Statistics, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2003. [CrossRef]

172



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics





MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com ISBN 978-3-0365-6486-9 


	A9R1tf4_4lo06f_5n0.pdf
	Probability and Stochastic Processes with Applications to Communications, Systems and Networks .pdf
	A9R1tf4_4lo06f_5n0

